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Abstract 
 
 
 

The platform of Today's PC consists of many local buses with different requirements, to allow the 
communication of different devices with each other. Nowadays, many of these modern electronic 
devices are demanding a high bandwidth, even higher than what already existing input and output (IO) 
bus systems can deliver, of most interest is the Peripheral Component Interconnect (PCI) bus. These 
bus systems are reaching their practical limits and are facing serious problems and shortcomings that 
prevent them from being able to provide the bandwidth and features needed by the electronic industry, 
which keeps needing to an increased bandwidth as well as to a simple electrical connectivity. 

All these factors together have motivated the engineering of a new IO bus system, the so-called 
Peripheral Component Interconnect Express (PCIe), which has been adopted as a general purpose IO 
device interconnect in different applications, such as desktop, server, mobile, workstations, computing 
and communication platforms.  

Within this diploma work, the theory of PCIe was summarized and presented in monthly-based 
presentations (PCIe tutorial). Some of the available PCI Express Intellectual Property (IP) solutions in 
the market were studied and compared. 

In addition to that, a PCIe-based embedded data communication system was specified, designed, 
simulated, and synthesized. This system utilizes the Xilinx Microblaze soft processor core, the Xilinx 
PCIe core, and the Philips PX1011A physical layer.   

Data communication between the designed PCIe-based intelligent Endpoint device (in the PCIe 
topology) and the system memory, as well as the Central Processing Unit (CPU), through the Root 
complex, was simulated. 

Keywords: IP, Microblaze, PCI, PCIe Core, PCIe Endpoint, On Chip Peripheral Bus (OPB), OPB 
IPIF, OPB to PCIe Bridge, Philips PX1011A PHY, USER LOGIC. 
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Kurzfassung 
 
 
 

Die Architekturen heutiger PCs bestehen aus vielen Bussystemen mit unterschiedlichen 
Anforderungen, welche die Kommunikation der unterschiedlichen Geräte miteinander erlauben. 
Heutzutage verlangen viele dieser modernen elektronischen Geräte eine hohe Bandbreite, oft höher als 
es die verfügbaren Eingangs- und Ausgangsbussysteme erlauben. Die größte Bedeutung hat die 
Peripheral Component Interconnect (PCI) Busfamilie, aber auch diese Bussysteme erreichen ihre 
praktischen Grenzen und beinhalten ernsthafte Probleme und Mängel, welche verhindern, dass die, 
durch die elektronische Industrie geforderte, immer höhere Bandbreite, und die einfache elektrische 
Anbindung erreicht werden. 

Alle diese Faktoren zusammen haben die Entwicklung eines neuen IO Bussystems motiviert, dem 
sogenannten Peripheral Component Interconnect Express (PCIe) Bus, welcher als universelles 
Eingangs- und Ausgangsbussystem in den unterschiedlichsten Anwendungen, wie Desktopcomputer, 
mobile Endgeräten, Workstations, sowie Rechen- und Kommunikationsplattformen eingesetzt wird. 

Im Rahmen dieser Diplomarbeit wurde die Theorie von PCIe zusammengefasst und in monatlichen 
Präsentationen vorgestellt (PCIe Tutorial). Einige der vorhandenen PCIe Intellectual Property (IP) 
Lösungen im Markt wurden untersucht und verglichen. 

Zusätzlich wurde ein PCIe basiertes embedded Datenübermittlungssystem spezifiziert, entworfen, 
simuliert und synthetisiert. Dieses System verwendet den Xilinx Microblaze Processor Core, den 
Xilinx PCIe Core und die Philips PX1011A physikalische Ebene. 

Außerdem wurde die Datenkommunikation zwischen dem entworfenen PCIe basierten intelligenten 
Endpunkt-Gerät (in der PCIe Topologie) und dem Systemspeicher, sowie der Zentraleinheit (CPU), 
durch den Verbindungsblock, simuliert. 

Stichwörter: IP, Microblaze, PCI, PCIe Core, PCIe Endpunkt, On-chip Peripheral Bus (OPB), OPB 
IPIF, OPB zur PCIe Brücke, Philips PX1011A PHY, USER LOGIK. 
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1 Introduction                                                                            
 
1.1 Objectives 

The main purpose of this diploma work is to demonstrate the capabilities of the third generation IO 
Interconnect bus system, the so-called PCI Express. To achieve this purpose, two sub-objectives are 
aimed to: 

• Preparing a kind of PCIe tutorial (PowerPoint- Presentation) for the fast entry in the PCI 
Express technology. These presentations provide the Know-How required for someone to use 
this technology for the fist time. In addition, some of the available solutions in the market for 
the implementation of PCI Express are to be studied, discussed and compared. 

• Designing of a PCI Express-based embedded system for customer reference. In this system an 
intelligent Endpoint device, employing this technology, should be able to write a double word 
(DW = 32 bits) to a location within the system memory and read this data back. This system 
should also enable data communication between the CPU through the Root Complex and this 
Endpoint device.   

1.2 Method, Software and Hardware 

PCI Express theory has been acquired through an extensive reading of two reference books. Namely, 
the PCI Express System Architecture and PCI System Architecture by MindShare, Incorporated. The 
PCI Express Base Specification v1.0 – 2002 and others were additional valuable references as well. 

XILINX, which leads the Programmable Logic Device (PLD) market, one of the fastest growing 
segments of the semiconductor industry, was the source of most of the used Intellectual Property (IP) 
solutions, which are functions designed for the implementation in the Field Programmable Gate Array 
(FPGA) devices. Throughout this documentation the Intellectual Property will be referred to as IP. 
Xilinx provides many of these ready optimized and compiled IP solutions. Xilinx accompanies these 
with data sheets, manuals and detailed descriptions, which provide a paramount help. For the use of 
the available development tools, Xilinx reports several tutorials and demos, which were extensively 
used to assist the designing of the embedded system. Xilinx also gives the opportunity for consultancy 
and technical supporting, through what it calls webcases. During this diploma work, several webcases 
were opened, discussed, and successfully solved with engineers from this company.  
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Xilinx PCI Express Physical Interface for PCI Express (PIPE) Endpoint 1-Lane IP core was used to 
implement the protocol layers of the PCI Express architecture. In the remainder of this documentation, 
this core will be referred to as PCIe core. 

An evaluation licence of this core was received in a package, along with the Spartan-3 PCI Express 
Starter Kit. On which the designed system is to be implemented.  The core was generated, configured 
and customized using the Xilinx CORE generator. 

The Xilinx Spartan-3 FPGA and Philips PX1011A PHY demonstrate a two-chip solution for designing 
such a system. The Microblaze processor soft core IP was embedded in the Endpoint, to make it an 
intelligent device. The Microblaze based embedded system and the PCIe PIPE core, are to be 
implemented in the Spartan-3 FPGA. 

The XPS (Xilinx Platform Studio), a part of Xilinx EDK (Embedded Development Kit) 8.2i, and the 
SDK (Software Development Kit) were used to design the Microblaze based system. 

PX1011A PHY is a discrete chip used to implement the physical layer of the PCIe protocol. For the 
simulation, a behaviour model of this chip was received as a packaged model from NXP 
Semiconductors. This model interfaces the simulation tool using the Verilog HDL Programming 
Language Interface (PLI). 

Xilinx provides a complete PCIe simulation testbench. In a customized version of this testbench and 
with the help of the simulation tool ModelSim SE, the whole system was simulated.  

Synplify Pro 8.1 and ISE (Integrated Software Environment) 8.2i were used to synthesize the PCI 
Express based Embedded System. 

ISE 8.2i was used to prepare the implementation of the design in the Xilinx programmable logic 
device. 

1.3 Tasks and Time Plan 

The tasks carried out were divided into two parts: a theoretical part regarding the theory of PCI 
Express and the preparing of the power point presentations, and a practical part regarding the 
implementation of the data transfer system. These two main tasks were further divided into the 
following subtasks: 

• PCI Express theory: reading, studying and researching 

• Preparation of PCIe tutorial and presentations to the chip design team at Siemens. 

• Overview of the different available PCIe IP solutions in the market, studying and comparing. 

• Specification of a microprocessor system (Microblaze) with PCIe links. 

• Implementation of the system in Register Transfer Level (RTL) using Very High Speed 
Integrated Circuit Hardware description Language (VHSIC-HDL or VHDL). 

• Software development for the data transfer. 
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• Simulation and functionality verification. 

• FPGA prototyping including measurements (optional). 

• Documentation of the work, including an experience report. 

This project was accomplished in four phases, over duration of 8 months.  

1.4 Outline 

After the brief introduction in chapter one, chapter two will summarize the most important aspects of 
the PCI Express bus system. It starts with a short introduction to the evolution of IO bus systems. In 
this chapter, the PCI bus architecture, its key features, practical limitations, challenges and 
shortcomings are discussed. Furthermore, the PCIe bus system is introduced. Its topology and 
architecture are then discussed. The functionality of each layer in the PCIe architecture is finally 
illustrated through an example of a Memory Write Transaction. 

Chapter three is dedicated to the design of a PCI Express based Endpoint. First, an overview of the 
design is given.  The Microblaze based Endpoint device is presented next. The complete design is 
overviewed. Then all the components and IPs building up the system are discussed. The PX1011A 
PHY physical layer, its block diagram, operational principle and interfaces are demonstrated. After 
this, the PCIe core, its block diagram, functionality, features, interfaces, generation and configuration 
are discussed. The Microblaze core, its interfaces, the Local Memory Bus (LMB) and the On-chip 
Peripheral Bus (OPB) are also explained in this chapter. The final section of this chapter concentrates 
on the design of the Microblaze PCIe peripheral. This includes a detailed description of the developed 
OPB to PCIe Bridge, its internal structure, interfaces, and functionality. 

Chapter four presents the simulation of the designed PCIe Endpoint. It introduces the simulation 
models of each functional block in this Endpoint device. In this chapter the PCIe Downstream Port 
simulation model provided by Xilinx is explained. Its integration into the PCIe Testbench is also 
demonstrated. Then, a detailed description of the C application program executed by the Microblaze is 
given. The next section in this chapter provides the simulation flow, followed by a summary of the 
conducted testcases.  

Finally, chapter 5 brings some conclusions and highlights future work. 
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2 PCI Express Theory                                                               
 
 
2.1 Evolution of IO Bus Systems 

Since the 1980s till nowadays, many bus systems have been developed to serve different electronic 
devices, computing and communication platforms.  

Figure 2.1 depicts the evolution of IO bus systems. The first IO buses generation, which is located at 
the bottom of the figure, was introduced in the 1980s, including the Industry Standard Architecture 
(ISA), which enables a very low bandwidth of 16.7 Mbytes/s, a sufficient one at that time. Extended 
ISA (EISA) and Video Electronics Standards Association (VESA) are other buses of this generation. 

In the 1990s, the second IO buses generation was 
started with different buses. In 1993 the PCI 33 MHz 
bus was released. At that time, a 32-bit version of this 
bus was enough to deliver a bandwidth of 133 
Mbytes/s, which met the bandwidth requirements of 
the available IO peripherals. A 64-bit version of this 
PCI bus delivers a bandwidth of 266 Mbytes/s 
[AS99].  

However, due to the increase in the processor speeds 
and the bandwidth needs of new developed IO 
technologies, the PCI bus frequency was increased in 
1995 from 33 to 66 MHz, to increase the bandwidth 
from 133 Mbytes/s to 266 Mbytes/s for a 32-bit PCI, 
and from 266 Mbytes/s to 533 Mbyte/s for a 64-bit 
PCI, correspondingly [ABS04].  

Several practical limitations of the PCI 66 MHz bus 
and the emerging of new high end system 
technologies that continued asking for higher 
bandwidths led in 1999, to the releasing of a new 
generation of the PCI called the PCI-X bus. 
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Figure 2.1 - Evolution of IO bus systems 
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The PCI-X bus has frequencies of 66 and 133 MHz and enables a bandwidth up to 1.066 Gbytes/s. 
These frequencies were increased to 266 and 533 MHz in the first quarter of 2002, to increase the 
bandwidth provided up to 4 Gbytes/s [ABS04]. 

Another bus system in the second generation is the Accelerated Graphics Port (AGP). A x1 AGP bus, 
for example, enables a bandwidth of 266 Mbyte/s and a x8 AGP can enable a bandwidth of up to 2.1 
Gbytes/s. 

However, in order to meet the higher bandwidth requirements and to satisfy the bandwidth hungry 
devices, a new bus system was still needed.  

The third and latest generation IO bus system is the PCIe, which was released in the second quarter of 
2002. It evolved from the PCI and overcame the limitations of the PCI. The PCI Express (which is 
currently being adopted as general purpose IO devices interconnect in different applications) began 
shipping in standard desktop PCs in 2004. A x1 PCIe bus provides theoretically a bandwidth of 500 
Mbytes/s, a x16 PCIe can provide up to 8 Gbytes/s, and a x32 provides 16 Gbytes/s [ABS04].  

Next, the PCI bus system including its architecture, key features, practical limitations, and challenges 
will be explained.   

After that, an illustration of the PCIe bus system architecture, key advantages, and future prospectives 
will follow. 

2.2 Peripheral Component Interconnect (PCI) 

2.2.1 PCI Architecture  

Figure 2.2 illustrates an example of a 33 MHz PCI bus based system, which consists of a processor bus 
to PCI bus Bridge, called the North Bridge, to which the Accelerated Graphics Port (AGP), system 
memory, and the 33 MHz PCI buses are connected. The PCI bus is bridged to the ISA bus over the so-
called South Bridge, to which additionally the Integrated Device Electronics bus (IDE) and the 
Universal Serial Bus (USB) are connected.  

The PCI bus is a multi-drop parallel interconnect which uses a shared bus topology (the bus bandwidth 
is shared) to allow data communication among the different devices that share the bus including the 
CPU. 

The PCI bus operating at 33 MHz and 32 bits provides a peak theoretical bandwidth of 132 Mbytes/s. 
A bandwidth of 266 Mbytes/s is possible by extending the bus to 64 bits [ABS04].  

Theoretically, up to 32 devices can be connected on a PCI bus. Due to some signal timing restrictions, 
the PCI bus cannot support more than 10-12 loads (or 5-6 connectors); each connector is equivalent to 
2 loads [ABS04]. However, it is possible to connect more devices to the PCI bus by implementing a 
PCI-to-PCI bridge, as depicted in figure 2.2. 
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Figure 2.2 - An Example of 33 MHz PCI Bus Based System [ABS04] 

 

Figure 2.3 shows an example of a 66 MHz PCI 
bus based system, in which the latest 
generation of Intel PCI chipsets is used, where 
North and South bridges are replaced with a 
Memory Controller Hub (MCH) and an IO 
Controller Hub (ICH), respectively. A Hub link 
connects both of these hubs together. The 
figure also shows each 66 MHz PCI bus is 
accessed over a P64H (PCI 64-bit Hub) bridge 
connected to the MCH via Hub Link buses. 
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Figure 2.3 - An Example of 66 MHz PCI Bus Based  
System [ABS04] 
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The 66 MHz PCI bus system supports a bandwidth requirement of 533 Mbytes/s, and one connector to 
which a device can be connected, while the PCI-X can support from 8 to 10 loads or 4 connectors at 66 
MHz and 3 to 4 or 1 to 2 connectors at 133 MHz. The peak bandwidth achievable with 64-bit/133 MHz 
PCI-X is 1064 Mbytes/s. A further improvement to the PCI-X is the PCI-X 2.0 bus, which supports 
either Dual Data Rate (DDR) or Quad Data Rate (QDR) data transport, and provides a peak bandwidth 
capability of 4256 Mbytes/s for a 64-bit 533 MHz effective PCI-X bus [ABS04]. 

2.2.2 PCI Key Features 

The PCI bus overcame the limitations of its predecessors and had several advantages over them. 

Referring to figure 2.2, one can see a kind of partitioning into two hubs, the MCH and the ICH. 
Indeed, this provides a kind of processor independency and buffered separation. Separating the CPU 
local bus from the PCI bus, gives the ability to run simultaneous cycles on the CPU and PCI buses. It 
also allows the CPU local bus to increase its frequency accompanied by a change in the memory bus, 
independent of the PCI bus speed and loading. 

The PCI bus provides a bus mastering connectivity, where the PCI devices arbitrate to access the bus 
and master the bus transaction directly instead of waiting for the CPU to serve them. This results in 
reducing the overall latency. 

Another advantage of the PCI bus is the plug and play operation, which allows devices to be 
automatically detected and configured. 

2.2.3 PCI practical Limitations and challenges 

The PCI bus has limited bandwidth capabilities, which makes it an unsatisfying choice for several 
applications, which require a higher bandwidth. 

In the industry, two ways are followed to adapt the performance of a bus system to the devices’ 
requirements: increasing the number of signals, or increasing the signal frequency. In both cases, the 
bus system reaches its limitations. Both solutions also add extra costs to the development phase. 

The PCI bus’s frequency cannot be scaled up, and its voltage cannot be scaled down. It faces some 
time restrictions and stringent signal routing rules.  

The PCI bus implements a shared bus topology, in which many devices share the same bus. Some of 
these devices can monopolize more than 80% of the available PCI bus bandwidth. 

PCI bus efficiency is reduced. This reduction is due to several factors:  

• Masters and slaves are allowed to insert wait states in the bus cycle. Slower devices will make 
the transfer on the bus slower. 

• The transfer size on the bus is not indicated, which leads to an inefficiency in the buffer 
management within both the master and slave devices.  
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• The handling of delayed transactions on the PCI bus is inefficient.  

• The architecture of PCI follows strict ordering rules as defined by the PCI specification.  

• The way the PCI architecture handles the interrupts is inefficient, because many devices share 
the same PCI interrupt signal, which imposes additional time latency in discovering which of 
these devices has generated the interrupt.  

The PCI bus does not support real-time data transfer services. As many applications today require the 
data streaming from video and audio devices, the bus must set some priorities in processing these 
time-dependent data in a process called the Quality of Services (QoS).   

This bus also does not provide advanced power management features, which are required by many 
modern electronic devices. 

All these limitations and challenges have motivated the developing of a new IO bus generation. The 
PCI Express bus system was the result of the developments carried out by Intel. This PCIe bus system 
was brought to the market in 2004, and is now used as a general IO Interconnect in diverse 
applications.  

The PCIe bus system is discussed next. Its topology, architecture and layer structure are explained. 

2.3 Peripheral Component Interconnect Express (PCIe) 

2.3.1 PCIe Introduction 

Unlike the PCI bus, the PCIe bus is serial. Figure 2.4 shows a PCIe Link, which implements a high 
performance, high speed, point-to-point, dual simplex, low-pin-count and differential signalling Link 
for interconnecting devices. This bus system was developed to overcome the limitation of the original 
PCI bus. 

 

 

 

 

Figure 2.4 - PCI Express Link [ABS04] 

The PCIe link shown in the figure implements the physical connection between two devices. A PCIe 
interconnect is constructed of either a x1, x2, x4, x8, x12, x16 or x32 point-to-point link. A x1 Link has 
1 Lane or 1 differential signal pairs in each direction, transmitter and receiver, with a total of 4 signals. 
Correspondingly, x32 Link has 32 Lanes or 32 signal pairs for each direction, with a total of 128 
signals [ABS04].  
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PCIe employs a packet-based communication protocol with a split transaction. Communication in this 
bus system includes the transmission and reception of packets called Transaction Layer packets 
(TLPs). 

The transactions supported by PCIe protocol can be grouped into four categories: Memory, IO, 
Configuration, and Message transactions. 

2.3.2 PCIe Topology 

The PCIe topology shown in figure 2.5 contains different components. A Root Complex, PCIe 
switches, PCIe Endpoints, Legacy Endpoints, and optional PCIe to PCI bridges. 

The Root Complex connects the CPU and 
the memory to the PCIe fabric. For 
instance, an Intel chipset could be used as a 
Root Complex.  

The main purpose of the Root Complex is 
to generate transaction and configuration 
requests on behalf of the CPU.  

PCIe implements a switch-based topology 
in order to interconnect multiple devices. 
These Switches implement multiple, 
logical, and virtual bridges.  

Shown in the figure are switches with one 
upstream port that points in the direction of 
the root complex, and two downstream 
ports, which point in the opposite direction. 
These switches can have any number of 
ports. 

PCIe Endpoint (EP) is a device which can 
be a requester that originates a PCIe 
transaction or a completer that responds to 
a PCIe transaction addressed to it.  

As mentioned above, these Endpoints can posses a x1, x2, up to x32 link. PCIe Endpoints are 
peripheral devices such as Ethernet, USB or graphic devices. Legacy Endpoint does not support all the 
transaction like the PCIe Endpoint. 

In order to connect some PCI devices to the PCIe fabric, a PCIe to PCI Bridge must be used. 
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Figure 2.5 - PCI Express Topology 
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2.3.3 PCIe Key Features 

The shared bus topology used for PCI is replaced with a shared switch, which provides each device, 
with a direct access to the bus.  

In a PCIe based system, unlike the parallel PCI bus system, data is sent serially in packet based 
protocol.  

PCIe bus has an advantageous attribute of frequency and bandwidth scalability, because it implements 
a point-to-point interconnect, which limits the electrical load on the link, allowing transmission and 
reception frequencies to be scaled up. Multiple lanes can be used to increase the bandwidth of the 
PCIe link.  

PCIe supports the same address spaces as PCI: memory, IO, and configuration address spaces. 
Additionally, it enhances the configuration address space by extending it from 256 Bytes to 4 Kbytes 
[PXS05].  

The same transaction types supported by PCI and PCI-X are used by the PCIe. These include Memory 
Read and Memory Write, IO Read and IO Write, Configuration Read and Configuration Write. The 
PCIe bus also supports a new transaction type called Message transaction. 

PCIe offers a new feature, called the Quality of Service (QoS). This new feature allows the routing of 
packets from different devices with different priorities. 

PCIe uses a flow control mechanism. This ensures that the TLP won't be transmitted unless there is 
enough space in the receiving device.  

PCIe uses Message Signalled Interrupt (MSI) style for handling interrupts. In order to interrupt the 
CPU, a Memory Write packet is used to write an interrupt vector to the Root Complex, which in-turn 
interrupts the CPU.  

Other features supported by PCIe are the advanced power management features, which enable the 
design of low power mobile devices. PCIe also supports hot plug and hot swap features. Signalling of 
such features is carried out in-band using packet based messaging instead of side-band signals. This 
has the advantage of keeping the device pin count low. 

PCIe applies the same programming model as PCI and PCI-X. It also has a configuration model which 
is compatible with PCI configuration model, shown in figure 2.6. It is also compatible with existing 
operating systems, bus enumeration and configuration software for PCI/PCI-X [ABS04]. 

2.3.4 PCIe Architecture 

PCIe has a layered architecture as depicted in figure 2.7. It consists of the Transaction Layer, the Data 
Link Layer and the Physical Layer. On the top of these three layers resides the Software Layer, or 
device core.  Each of these layers is further divided into two sections: transmitter and receiver.  
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The transmitter is responsible for processing the Transaction Layer Packets requested from the device 
core before being transmitted across the PCIe link. At the same time, the receiver processes the 
incoming TLPs before sending them to the device core.  

To demonstrate the functionality of PCI Express protocol and for the purpose of this diploma work, 
32-bit addressable Memory Write/Read and Completion with Data (CPLD) TLPs will be considered.  

Figure 2.8 shows the assembly and disassembly of a PCIe TLP. It also illustrates the contribution of 
each layer to this TLP.  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6 - PCI Configuration Model [ABS04] 

 
The Memory Write TLP is considered to be a posted transaction where the requester transmits a 
request TLP to the completer. This in turn does not return a completion TLP back to the requester. 
Unlike the Memory Read TLP where the completer is supposed to return a completion TLP back to 
the requester. The completer returns either a Completion with Data (CPLD), if it is able to provide the 
requested data, or a Completion without data (CPl), if it fails to obtain the requested data.  
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Figure 2.7 - PCI Express Architecture [XP05] 

 
In the illustration below, the core of device B issues a Memory Write request in order to write some 
data to a memory mapped location within device A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 - PCI Express TLP Assembly/Disassembly 
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Device Core 

The core of device B, which could be the Root Complex core logic or Endpoint core logic, sends to 
the transaction layer the information required to assemble the TLP. This information contains the 
Header (HDR) and the Data Payload (if it exists), because some TLPs do not have data payload, as in 
the case of Memory Read TLPs. 

The size of the Header can vary between 3 and 4 DWs depending on the TLP. 3 DWs are used for 32-
bit addressable Memory and CPLD TLPs, while the Header with 4 DWs is dedicated to 64-bit 
addressable Memory TLPs. The maximum size of the data payload is 4Kbytes (1024 DW) [ABS04]. 

Figure 2.9 depicts the Header of a 32-bit addressable Memory Write request to write data of 1 DW 
payload to a memory mapped location of 32-bit address within device A1. 

This Header consists of 3 DWs. In the case of 64-bit addressable Memory TLPs, one more DW is 
used. Bytes 12 to 15 must be added to the Header shown in the figure.  

 

 

 

 

Figure 2.9 - Header for a 32-bit Memory Write TLP 

 
The figure also shows the different fields in this Header. The following is a detailed explanation of 
each field: 

• Byte0 [7]: R (Reserved bit): This bit should be set to zero. 
• Byte0 [6:5]: Fmt (Packet Format) and Byte0 [4:0]: Type (TLP packet Type field) are used in a 

combination that specifies the transaction type, header size, and whether data payload is 
present or not (Byte0 [6:0]):  

 0000000b = Memory Read (3DW without data) 
 0100000b = Memory Read (4DW without data) 
 1000000b = Memory Write (3DW with data) 
 1100000b = Memory Write (4DW with data) 
 0001010b = Completion (3DW without data) 
 1001010b = Completion (3DW with data) 

 
 
1 refer to [ABS04] for CPLD & Configuration TLPs 
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• Byte1 [7]: R (Reserved bit): This bit should be set to zero. 
• Byte1 [6:4]: TC (Traffic Class): These 3 bits are used to determine the traffic class to be applied 

to the TLP. There are seven different traffic classes. In this example, the default traffic class 
was applied to the transmitted TLP: 

 000 = Traffic Class 0 (Default Class) 
 001 = Traffic Class 1 
 010 = Traffic Class 2 
 011 = Traffic Class 3 
 100 = Traffic Class 4 
             101 = Traffic Class 5 
 110 = Traffic Class 6 
 111 = Traffic Class 7  

• Byte1 [3:0]: R (Reserved bits): These bits should be set to zeros. 
• Byte2 [7]: TD (TLP Digest Field Present): If set = 1, the optional 32-bit Cyclic Redundancy 

Check (CRC) field is included with this TLP. All receivers must check the presence of this 
field when this TD is set to 1. 

• Byte2 [6]: EP (Poisoned data): When set = 1, the payload data with this TLP should be 
considered corrupted, although the transaction completes normally. 

• Byte2 [5:4]: Attr (Attributes): Bit 5 = Relaxed ordering: If set = 1, the PCI-X relaxed ordering 
is enabled for this TLP. Otherwise, strict PCI ordering is used. Bit 4 = No Snoop.  

• Byte2 [3:2]: R (Reserved bits): These bits should be set to zeros. 
• Byte2 [1:0] and Byte3 [7:0]: length, TLP data payload transfer size (in DW). Maximum 

transfer size is 10 bits; 210 = 1024 DW (4Kbytes). Encoding [ABS04]: 

 00 0000 0001b = 1DW 
 00 0000 0010b = 2DW 
  . 
  . 
 11 1111 1111b = 1023 DW 
 00 0000 0000b = 1024 DW 

• Byte4 [7:0] and Byte5 [7:0]: Requester ID: Indicates the identification number of the device 
that generates the TLP. This number is indicated for the purpose of returning a completion 
TLP.  

Byte4 [7:0]: bus number,  
Byte5 [7:3]: device number and 
Byte5 [2:0]: function number. 

• Byte6 [7:0]: Tag: These bits are used to identify each transmitted request issued by the 
requester. Upon the sending of one request, the next sequential tag is assigned. By default, 
only 5 bits are used for this tag, which allows 32 outstanding transactions at a time. This 
number can be extended to 256 tags by having 8 bits used, when configuring the PCIe core by 
setting the extended tag bit in the PCIe control register = 1. 

• Byte7 [7:4]: Last DW BE: These bits are used to qualify the bytes in the last sent DW. These 
byte enables are active high.  
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A value of "0" indicates that the concerned byte should not be written by the completer of the 
TLP. It is written otherwise. Since we have the valid transfer data are within only 1 aligned 
DW, the Last DW BE must be = 0000b. 

• Byte7 [3:0]: 1st DW BE: These bits are used to qualify the bytes in the first sent DW. Since we 
have the valid transfer data are within only 1 aligned DW, the 1st DW BE must be = 1111b. 

• Byte8 [7:0], Byte9 [7:0], Byte10 [7:0] and Byte11 [7:2]: Address: 32-bit addressable memory 
mapped location. This targeted address is used to route the Packet in the PCIe fabric to the 
intended device. 

• Byte11 [1:0]: R (Reserved bits): These bits should be set to zero. Doing so forces the 32-bit 
start address to be DW aligned. 

In figure 2.8, the PCIe based transmitter and receiver are illustrated. The following is an explanation 
of the role each of the PCIe layers plays when transmitting and receiving TLPs. 

Transaction Layer 

The main functionality of the Transaction Layer is the generation of TLPs to be transmitted across the 
PCIe link and the reception of TLPs received from the PCIe link.  

Transaction Layer employs the split transaction protocol, by associating the incoming completion TLP 
of a certain tag with the transmitted non posted TLP of the same tag.  

In this layer, Transmission buffers are included to store the TLPs that wait to be transmitted as well as 
to store the received TLPs. This layer provides a flow control mechanism, ensuring that the TLP won't 
be transmitted unless there is enough space in the receiving device.  

Also in this layer, the Quality of Service protocol is implemented, which prioritizes the transmission 
and receiving of TLPs. 

The contribution of this layer to the transmitted packet is shown in figure 2.8. This layer appends a 32-
bit End to End Cyclic Redundancy Check (ECRC). This ECRC is generated based on the whole TLP 
from the first byte of the Header to the last byte of the data Payload, in order to check for CRC errors 
in the header and the data Payload. These 32 bits are stripped out of the incoming TLPs before being 
forwarded to the core of the receiving device (as shown in figure 2.8). 

Data Link Layer 

This layer is responsible for ensuring a reliable data transport on the PCIe link. The received TLP from 
the transaction layer is concatenated with a 12-bit sequence ID and a 32-bit Link CRC (LCRC) as 
shown in figure 2.7. The LCRC is calculated based on all the bytes within the TLP in addition to the 
sequence ID. These added bits are stripped out from the incoming TLP by the same layer in the 
receiving device before being transferred to the Transaction Layer (as shown in figure 2.8). 
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The Data Link Layer applies a replay mechanism (ACK/NAK) to ensure the transmission of the TLPs 
across the link. Before sending the TLP, it copies it into a replay buffer. The sequence ID is used to 
associate this copy with a received ACK/NAK Data Link Layer Packet (DLLP) from the targeted 
receiver.  

This ACK/NAK packet indicates whether the transmitted TLP has been received with or without 
errors. If no errors are found, the reply buffer is cleared. Until then the stored TLP is sent again and 
again until it is received properly. 

Physical Layer    

The physical layer of a PCIe device is responsible for driving and receiving the Low Voltage 
Differential Signals (LVDS) at a high speed rate of 2.5 Gbps each way. It interfaces the device to the 
PCIe fabric. Such an interface is scalable to deliver a higher bandwidth. The physical layer supports 
for example x1, x2, x4, x8, x12, x16, and x32 lane widths. 

The TLPs and DLLPs are transferred to this layer for the purpose of transmission across the link. This 
layer also receives the incoming TLPs from the link and sends them to the Data Link Layer. 

In this layer the data clock is embedded using an 8b/10 encoding algorithm, in order to obtain the high 
data rate.  

Figure 2.8 shows the contribution of this layer to the transmitted packets. It appends 8-bit Start and 
End framing characters to the packet before being transmitted. The physical layer of the receiving 
device in-turn stripes out these characters after recognizing the starting and ending of the received 
packet, and then forwards it to the Data Link Layer. 

In addition to that, the physical layer of the transmitter issues Physical Layer Packets (PLPs) which are 
terminated at the physical layer of the receiver, such PLPs are used during the Link Training and 
Initialization process. In this process the link is automatically configured and initialized for normal 
operation; no software is involved. During this process the following features are defined: link width, 
data rate of the link, polarity inversion, lane reversal, bit/symbol lock per lane, and lane-to-lane de-
skew (in case of multi-lane link). 

2.3.5 PCIe future prospective 

The current PCIe bus represents the first PCIe bus generation demonstrating a bandwidth capability of 
2.5 Gbps. The second and third generations of this bus are expected in the future, and will have 
bandwidths of 5 Gbps and 10 Gbps, respectively [ABS04].  

The layered architecture of PCIe allows such an increase in the bandwidth by redesigning the physical 
layer only. No modification is required on the other layers. Such architecture leaves the door open for 
using optical fibers for instance, as a medium to carry packets in the PCIe fabric. 
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3 PCIe Endpoint Design                                                            
 

3.1 Design Overview  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1- Basic Memory Transactions 
 
 
Figure 3.1 shows the PCIe topology again. For design purposes, the x1 PCIe Endpoint will be 
considered. 

In this illustration, the Endpoint is an intelligent device which acts as a target for downstream TLPs 
from the CPU through the Root Complex and as an initiator of upstream TLPs to the CPU. 

In this diploma work, the PCIe Endpoint was designed. This Endpoint generates or responds to 
Memory Write/Read transactions. Since the used PCIe core supports up to six 32-bit Base Address 
Registers (BARs) used to route the TLP [XUG167], the behavior of this Endpoint can be easily 
extended by reconfiguring this core to have memory and IO address spaces.  
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When the Endpoint acts as a receiver, the CPU issues a store register command to a memory mapped 
location in the Endpoint. This is done by having the Root Complex generate a Memory Write TLP 
with the required memory mapped address in the Endpoint, the payload size (a Doubleword in this 
design), byte enables and other Header contents. These will be discussed later in the device core 
section of this Endpoint.  

This TLP moves downstream through the PCIe fabric to the Endpoint. Routing of the TLP in this case 
is based on the address within its Header. A termination of the transaction takes place when the 
Endpoint receives the TLP and writes the data to the targeted local register. 

To read this data back, the CPU issues a load register command from the same memory mapped 
location in the Endpoint. This is done by having the Root Complex generate a Memory Read TLP with 
the same memory mapped address and other Header contents. This TLP moves downstream through 
the PCIe fabric to the Endpoint. Again, routing here is based on the same address within the Header.  

Once the Endpoint receives this Memory Read TLP, it generates a Completion with Data TLP 
(CPLD). The Header of this CPLD TLP includes the ID number of the Root Complex, which is used 
to route this TLP upstream through the fabric to the Root Complex, which in-turn update the targeted 
CPU register and terminates the transaction.  

The other way around, is to have the Endpoint act as a bus master and initiate a Memory Write TLP to 
write 1 DW to a location within the system memory. This TLP is routed upstream toward the Root 
Complex which in turn writes the data to the targeted location in the system memory. 

If the Endpoint wants to read the data it has written, it generates a Memory Read TLP with the same 
address. The TLP is steered to the Root Complex, which in-turn accesses the system memory, gets the 
required data and generates a Completion with this data. This CPLD TLP is routed downstream to the 
Endpoint through the PCIe fabric. The Endpoint receives this TLP, updates its local register and 
terminates the transaction.  

As mentioned in chapter 2, the PCIe core can be integrated in different devices composing the PCIe 
fabric. For instance, the core can be implemented in the Root Complex, in the PCIe switch, and in the 
PCIe Endpoint. For the purpose of this diploma work, the focus will be on designing a PCIe Endpoint. 

When designing a PCIe Endpoint, several issues have to be considered. Figure 3.2 shows the layered 
structure of a PCIe Endpoint device. In the figure, the way this Endpoint was designed is depicted.  

The physical layer provides the electrical transceivers, which drive and receive the dual-simplex low 
voltage differential signals at the 2.5 Gbps data rate. There are two different solutions for the physical 
layer. In the first solution, this layer can be integrated with the other layers in the same chip. Doing so 
increases the complexity of this chip and provides a higher integration level. This integrated solution 
has one key advantage when designing using an FPGA. It uses less number of IO pins, which enables 
easier timing closure. 
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Figure 3.2 - Endpoint Design 
 
An example of this integrated solution is offered by Xilinx in their newly introduced Xilinx Virtex-5 
PCIe Endpoint block shown in figure 3.3. 
 

 
 

Figure 3.3 - Xilinx Virtex-5 LXT PCI Express endpoint block [UG197] 
 
Unlike the first solution mentioned above which is quite expensive, the second solution offers a low 
cost way of implementing the PCIe Endpoint. In this solution, the physical layer exists in one chip, 
and the other layers are designed in another chip. 



 
CHAPTER 3. PCIe ENDPOINT DESIGN  20 

 

 

In this two-chip solution, a smaller FPGA with external PHY can be used. Within this diploma work, 
the discrete PHY, PX1011A from Philips was used. 

This PHY supports x1 PCIe designs. Having the practical bandwidth provided by x1 PCIe is 2.0 Gbps 
requires an internal interface of 8 bits runs at 250 MHz or an interface of 16 bits runs at 125 MHz. 
This solution has the disadvantage of higher number of IO pins. 

The protocol layers containing the logical sub-layer of the physical layer, the data link layer and the 
transaction layer are implemented using the Xilinx PCIe core. 

A Microblaze based embedded system was built up to implement the Application layer of the designed 
PCIe Endpoint. In this Microblaze processor embedded system, the PCIe core is attached as a slave to 
the processor, which in-turn tries to access the configuration space of this core, reading from and 
writing to this space.  

In the application layer, the Microblaze is responsible for sending the required Header and data 
payload to the transaction layer of the PCIe core, which generates a TLP and forwards it to the data 
link layer. The Data link layer appends a 12-bit sequence number and a 32-bit LCRC, to ensure a 
reliable data transport. The TLP is then forwarded to the physical layer to be transmitted across the 
PCIe link.  

When a TLP is received by the PCIe Endpoint, the Header and the payload, if exists, will be 
forwarded to the Microblaze for further processing. The Microblaze also controls the transmitting and 
receiving of TLPs. 

The protocol layers and the application layer are to be implemented on a Xilinx® Spartan-™3/E 
FPGA, as depicted in figure 3.4, which shows a Spartan-3 PCI Express Starter Kit from Xilinx. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 3.4 - Spartan-3 PCI Express Starter Kit [Xilinx] 

 

Xilinx Spartan-3 FPGA  

PHILIPS 
PX1011A x1 PCI Express PHY x1 PCI Express Slots 
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Figure 3.5 shows the complete designed PCIe Endpoint. This system embeds the Xilinx Microblaze, 
which implements a 32-bit Reduced Instruction Set Computer (RISC) and operates at a frequency of 
50MHz. Having the Microblaze as a soft core processor enables the design of a unique and customized 
PCIe peripheral device to be connected as a slave to it.  
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Figure 3.5 - Complete PCIe Endpoint device 
 
The Microblaze has different bus interfaces, connecting it with different peripherals. For example, the 
Local Memory Bus (LMB) allows the communication between the processor and the Block Random 
Access Memory (BRAM), which is initialized with the application program to be executed by the 
Microblaze. 

The Microblaze has a Harvard structure, in which the BRAM consists of two sections, data and 
instructions. These sections are accessed by the processor through memory controllers over the local 
memory bus. 

Xilinx On-Chip Peripheral Bus (OPB), which implements the IBM CoreConnect On-Chip Peripheral 
Bus, has two 32-bit separate paths for data and address. This bus is used to connect peripherals to the 
Microblaze, which masters the bus. Several peripherals can be attached to the Microblaze as slaves.  

The PCIe core can not be directly connected to the OPB as a slave, because of the incompatibility of 
its interfaces with the OPB protocol. To fulfill this compatibility issue, a bridge was developed to 
bridge the OPB and the PCIe core.  
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This bridge interfaces the OPB with its standard protocol through the OPB Intellectual Property 
Interface (OPB IPIF) from one side, and the PCIe core through the USER LOGIC model from the 
other side. This USER LOGIC model implements the logic needed to transmit/receive TLPs across the 
PCIe link and to access the configuration space of the PCIe core. The PCIe core transaction interfaces 
are synchronized with a clock of 62.5 MHz generated from the core as indicated in the figure. 

The PCIe core interfaces with the Philips PHY using the Philips PHY Specification Physical Interface 
for PCI Express (PXPIPE), defined by Philips Semiconductors, which implements an extended version 
of the Physical Interface for PCI Express (PIPE), defined by Intel. PXPIPE is a 250 MHz source 
synchronous interface, which provides two clocks, one for transmission, and the other for reception. 

Depicted in the figure are the interfaces of Philips PHY to the PCIe link, which are the low voltage 
differential signals (LVDS) driven at a high data rate of 2.5 Gbps.  

In the following sections of this chapter, the components building up the PCIe Endpoint device are 
discussed in details1. 

3.2 Philips PX1011A PHY 

Philips PHY is a standalone transceiver, which is optimized for usage with digital Application Specific 
Integrated Circuits (ASICs) and low cost FPGAs. This device implements a x1 PCIe physical layer. It 
provides a receiving bit error rate of less than 10-12 and comes in a small package used for chip to chip 
communication [KPE06]. 

3.2.1 Block Diagram 

Figure 3.6 illustrates the block diagram of the PX1011A. It interfaces the Media Access Controller 
(MAC) of the physical layer of the protocol layers from the upper side, as well as the PCIe fabric from 
the other side.  

3.2.2 Operation Principle 

For the transmission of TLPs, the PX1011A receives words of 8 bits from the MAC, accompanied by 
a control bit that indicates whether the 8-bit word is data or a control character. The data is clocked in 
at a rate of one word per cycle of a 250 MHz clock. A First in First Out (FIFO) is used to compensate 
the phase difference between the interfacing clock and the internal 250 MHz transmitting clock 
generated by the Phase Locked Loop of the transmitter (TXPLL). 

The data is first buffered in a FIFO. For the purpose of a high transmission rate, the transmission clock 
of 2.5 GHz is embedded by decoding the data using an 8b/10b encoder.  The resulting symbols of 10 
bits are then serialized and differentially transmitted across the transmission line. 

 

1 Excluding the PX1011A and the USER LOGIC, all the components are IPs provided by Xilinx 
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When the PX1011A receives the 
serial differential data from the 
transmission line, it recovers a clock 
from the incoming signal. This clock 
is used to sample the serial data. The 
sampled data is then forwarded to a 
serial to parallel converter, which 
converts the serial data into 10-bit 
symbols.  

Once the 10-bit symbols are available, 
the symbol boundaries must be 
recognized. This is done by detecting 
a special 10-bit character called the 
"comma" character, which is used for 
symbol synchronization.  

After the symbol synchronization, the 
synchronized 10-bit characters are 
passed through an elastic buffer that 
compensates the frequency difference 
between the recovered clock and the 
locally generated transmission clock. 
8-bit data words are obtained by 
decoding the 10-bit symbols using an 
8b/10 decoder. The resulting data is 
then stored in a register before being 
outputted to the protocol layers.  

3.2.3 Interfaces                                                                      

Interfaces to PCIe Link 

The electrical part of the PX1011A physical layer interfaces the PCIe fabric with two Low Voltage 
Differential Signals (LVDS) to drive and receive the high data rate data of 2.5 Gbps. Figure 3.7 shows 
the electrical characteristics of a PCIe signal. A positive difference between the D+ and D- lines 
indicates the transmission of logic "1", while a negative difference implies a logic "0" on the link. 
Having a voltage difference of zero leads to a high impedance "tri-state" link, and forces the link to 
stay in the electrical idle state [ABS04].  

Table 3.1 summarizes the interfaces of this layer to the PCIe link. 

 
 
 

Figure 3.6 - Block diagram of PX1011A [GL05] 
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Figure 3.7 - PCIe Differential Transmitter/Receiver [ABS04] 
 

 
Table 3.1 - PHY Interfaces to the PCIe Link 

 
Signal 

 

 
I/O 

 
Description 

TX_P 
 

O Positive transmission signal 

TX_N 
 

O Negative transmission signal 

RX_P 
 

I Positive receiving signal 

RX_N 
 

I Negative receiving signal 

REFCLK_P 
 

I Reference clock of 100 MHz 

REFCLK_N 
 

I out of phase version of REFCLK_P 

 
 
Interfaces to PCIe core  

Figure 3.8 illustrates the PHY Interface for the PCI Express Architecture (PIPE), defined by Intel. 
This kind of interface assigns a single 250 MHz clock, referred to as PCLK in the figure. This clock 
synchronizes both the transmitting and receiving of data. This clock is outputted from the PHY as 
shown in the figure. Intel first introduced an 8-bit data interface.  

Due to a timing budget problem, this interface was further improved to a 16-bit data interface. The 
newly introduced interface has the disadvantage of requiring more pins than the previous one and 
imposes an extra latency in converting from 16 to 8 bits. 
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Philips Semiconductors provided a version of the PIPE interface named PXPIPE. This interface 
employs the source synchronous clocking. Instead of having one clock for both directions, it provides 
two clocks: one for transmitting and another for receiving, as shown in figure 3.9.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interface signals with the Xilinx PCIe core are summarized in table 3.2. 
 

 

 

 
 
 

Figure 3.8 - PIPE Interface [PPHY] 

 
 
 

Figure 3.9 - PXPIPE Interface [PPHY] 
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Table 3.2 - Philips PHY Interfaces to the Xilinx PCIe Core [KPE05]* 
 

Signal 
 

 
I/O 

 
Description 

TXDATA[7:0] I 8-bit transmit data from the FPGA to the PHY.  
TXDATAK  I Data or control for the symbols of transmit data. A value of “0” 

indicates a data byte; a value of “1” indicates a control byte. 
RXDATA[7:0]  O 8-bit receive data from the PHY to the FPGA.  
RXDATAK  O Data or control for the symbols of receive data. A value of “0” 

indicates a data byte; a value of “1” indicates a control byte. 
TXCLK  I Source synchronous 250 MHz clock for transmit from the FPGA. 

All the data and input signals to the PHY are synchronized to this 
clock 

RXCLK  O Source synchronous 250 MHz clock for received data bound for the 
FPGA. 

RXDET_ LOOPB  I Enables the Philips PHY to begin a receiver detection operation or 
to begin loopback. 

TXIDLE  I Forces Philips PHY TX output to electrical idle when asserted in all 
power states. 

TXCOM  I When high, sets the running disparity to negative. Used when 
transmitting the compliance pattern. 

RXPOL I Active high, signals the PHY to perform a polarity inversion on the 
receive data. 

RESET_N  I Output Active low PHY reset from FPGA. 
PWRDWN1, 
PWRDWN0 

I Power up or down the transceiver. Power states [1:0]: 
00 - P0, normal operation 
01 - P0s, low recovery time (2.5 µs), power saving state 
10 - P1, longer recovery time (64us max), lower power state 
11 - P2, lowest power state. 

RXVALID  O Indicates symbol lock and valid data on RXDATA and RXDATAK 
PHYSTATUS  O Communicates completion of several Philips PHY functions, 

including power management state transitions, and receiver 
detection. 

RXIDLE  O Indicates receiver detection of an electrical idle. This is an 
asynchronous signal. 

RXSTATUS2, 
RXSTATUS1, 
RXSTATUS0 

O Encodes receiver status and error codes for the received data stream 
and receiver detection. Encoding [2:1] 
000 - Received data OK 
001 - 1 SKP added 
010 - 1 SKP removed 
011 - Receiver detected 
100 - 8B/10B decode error 
101 - Elastic Buffer overflow 
110 - Elastic Buffer underflow 
111 - Receive disparity error 

* The direction is defined from the perspective of the PHY. 

3.3 Xilinx PCIe Core 

The product name of this core is Xilinx PCIe Physical Interface for PCI Express (PIPE) Endpoint 1-
Lane core.  
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This core implements a high performance 
serial Interconnect intellectual property, 
which is optimized for the use with the 
Spartan-3/3E device families of Xilinx, as 
indicated in table 3.3. 

The table also shows some of the core's 
specifications, such as the complexity when 
targets the XC3S1000-4 device of the Xilinx 
Spartan-3 family. 

 
   
 
 
 
 
This core shows a compliance with the PCI Express Base Specification v1.1, and a backward 
compatibility with the existing PCI software model. 

3.3.1 Features and Applications 

Several features make the Xilinx PCIe core one of the most desirable core in implementing PCIe based 
serial interconnects with Xilinx FPGAs. The most important features are listed here [XDS321]: 

• Flexibility, scalability, and reliability, due to its compliance to the PCIe base specification and 
compatibility with the PCI software model. 

• Meeting the PCIe transaction ordering rules. 
• Implementing 32-bit datapaths. 
• Employment of six programmable and configurable Base Address Registers (BARs) and an 

expansion ROM BAR. 
• Providing error and detection of corrupted packets. 
• Supporting Message Signaling Interrupt (MSI). 
• Providing of PCI/PCIe power management 

functions: 
o Active State Power Management (ASPM) 
o Programmed Power Management (PPM).  

• Offering a two-chip solution with the Philips 
PX1011A PHY, to demonstrate a capable 
transceiver to provide a high data rate of 2.5 
Gbps, buffering and clock compensation, clock 
and data recovery as well as 8b/10b encoding 
and decoding.  Figure 3.10 shows the two-chip 
low cost solution. 

 

 
  Table 3.3 - PCIe Core Specification [XDS321] 

1. The precise number of slices depends on the user configuration  
    of the interface and the level of resource sharing with adjacent  
    logic. 2. This range indicates resources used for a 2BAR– 
    7BAR  implementation 

 
 
Figure 3.10 - Two-chip solution [XP05] 
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• Supporting a maximum transaction payload of 

up to 512 bytes. 
• Supporting packet-based full-duplex 

communication and back-to-back transactions. 
• Enabling of data flow control. 
• Full configurability using the Xilinx CORE 

Generator. 

The PCIe PIPE Endpoint can be used in many applications. For instance, it can be used in test and 
medical imaging equipments, graphic boards, data communication, telecommunication networks, chip 
to chip communications and server applications. 

3.3.2 Block Diagram and Functionality 

A top-level functional block diagram of the Xilinx PCIe core is shown in figure 3.11. This core 
consists of four different functional blocks, namely the Transaction Layer Module (TLM), the Data 
Link Layer Module (LLM), the Physical Layer Module (PLM) and the Configuration Management 
Module (CMM). 

 

 
 

Figure 3.11 - Top-level functional blocks diagram and  
Interfaces of Xilinx PCIe Core [XUG167] 

 
Each of the four modules is further divided into receive and transmit parts. As mentioned previously, 
the received part processes the incoming TLPs while the transmit part processes the TLPs to be 
transmitted. Theses four modules implement the functionality of each layer of the PCIe architecture. 

The transaction layer module generates the transaction layer packets (TLPs), which are used for the 
purpose of transactions communication, such as Read and Write memory transactions. 
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The transaction layer of the PCIe PIPE core uses a pipelined, full split-transaction protocol, employs 
flow control of TLPs in addition to other features. 

The main purpose of the Data Link Layer Module is to implement the functionality of the Data Link 
Layer in providing a reliable transport of the TLPs across the PCIe link. It does this by detecting and 
recovering errors and generating Data Link Layer Packets (DLLP). 

The Physical Layer Module interfaces the Data Link layer module from one side, while interfaces the 
Philips PHY through the PXPIPE from the other side. It is responsible for initializing the physical link 
and scrambling /de-scrambling the transmitted/received data. 

The Configuration Management Module enables the communication between the different modules of 
the core to support the generation and reception of TLPs. It implements configuration space registers, 
which support the PCI configuration space as well as a new PCIe extended space.  

Programmed Power Management (PPM) and Active state Power Management (ASPM) are the power 
management functions supported by this configuration management module. This module also 
provides error reporting and tracking. It receives Configuration Reads and Writes, and transmits a 
completion with or without data. In addition to that, Message Signaling Interrupt is implemented by 
this module. 

Figure 3.12 shows the PCIe configuration space. A type 0 configuration space is implemented in this 
module, consisting of 64 bytes (the type 0 configuration space header) plus 192 bytes, used for the 
purpose of the PCIe extended capabilities. A new operating system is needed to access theses extended 
PCIe capabilities. 

Within this configuration space, the Base Address Registers (BARs) exist. The PCIe core uses the 
addresses stored in these registers to route TLPs. When the information in the Header of a TLP 
indicates that address routing is to be used, then the PCIe core compares the address in the TLP 
Header with the implemented BARs. It claims and forwards the TLP to the user logic, if it founds a 
match in the address. Otherwise, it blocks this TLP. The initialization of these BARs will be explained 
later in this chapter. 

3.3.3 Core Interfaces 

The PCIe core poses four different interfaces:  System interface (SYS), PCI Express PIPE (PXPIPE), 
Transaction interface (TRN) and Configuration interface (CFG). 

System Interface (SYS) 

For a hard reset of the core and the external physical layer PHY, a system reset signal (sys_reset_n) is 
used as an asynchronous input to the core. This reset signal is an active low. Practically, this signal is 
connected to a sideband reset signal. 
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Figure 3.12 - PCIe Configuration Space [XUG167] 
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PCI Express PIPE (PXPIPE) 

In tables 3.4 to 3.8, the interfaces of this core to the discrete PHY from Philips are illustrated. 

 
  Table 3.4 - PXPIPE Transmit Data Interface Signals [XUG167] 

 
Signal 

 

 
I/O 

 
Description 

 

 

TXDATA[7:0] 
 

O 
 

 

8-bit transmit data from the FPGA to the Philips PHY. 
 

 

 

TXDATAK  
 

O 
 

 

Data/Control for the symbols of transmit data. A value of 0 
indicates a data byte; a value of 1 indicates a control byte. 
 

 
   
  Table 3.5 - PXPIPE Receive Data Interface Signals [XUG167] 

 
Signal 

 

 
I/O 

 
Description 

 

 

RXDATA[7:0]  
 

I 
 

 

8-bit receive data from the Philips PHY to the FPGA.  
 

 

RXDATAK  
 

I 
 

Data/Control for the symbols of received data. A value of 0 
indicates a data byte; a value of 1 indicates a control byte. 
 

 
  
  Table 3.6 - Clock and Reference Signals [XUG167] 

 
Signal 

 

 
I/O 

 
Description 

 
TXCLK  

 
O 

 

Source synchronous 250 MHz clock (from FPGA) for transmit 
clock from MAC input. All the data and the input signals to the 
PHY are synchronized to this clock 
 

 
RXCLK  

 
I 

 

 

Source synchronous 250 MHz clock (to FPGA) for received data 
bound for the MAC output 
 

 

fast_train_simulation_only  
 

 

I 
 

Used for Simulation Only, active high. Causes link training time-
out counters to be smaller than normal for faster link training. 
 

 

two_plm_auto_config 
 

 

I 
 

 

Used for Simulation Only, active high. PCI Express specification 
non compliant link train with another similarly configured core. 
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  Table 3.7 - PXPIPE Command Interface Signals [XUG167] 
 

 
Signal 

 

 

 
I/O 

 

 
Description 

 
TXDETECTRX_ 
LOOPBACK  

O  

Enable the Philips PHY to begin a receiver detection operation or 
to begin loopback. 
 

TXELECIDLE  O  

Forces Philips PHY TX output to electrical idle when asserted in 
all power states. 
 

TXCOMPLIANCE  O  

When high, sets the running disparity to negative. Used when 
transmitting the compliance pattern. 
 

 

RXPOLARITY 
 

 

O 
 

 

Active high, signals the PHY to perform a polarity inversion on 
the receive data. 
 

 

RESETN  
 

 

O 
 

 

Output Active low PHY reset from FPGA. 
 

 
POWERDOWN[1:0] 

 
O 

 

Power up or down the transceiver. Power states: 
00 - P0, normal operation 
01 - P0s, low recovery time latency, power saving state 
10 - P1, longer recovery time (64us max) latency, lower power 
state 
11 - Reserved for P2, lowest power state. 
 

 
 
  Table 3.8 - PXPIPE Status Interface Signals [XUG167] 

 
Signal 

 

 
I/O 

 
Description 

 

RXVALID  
 

 

I 
 

Input Indicates symbol lock and valid data on RxData and RxDataK 
 

 
PHYSTATUS  

 
I 

 

Used to communicate completion of several Philips PHY functions 
including power management state transitions, and receiver detection. 
 

 
RXELECIDLE  

 
I 

 

Indicates receiver detection of an electrical idle. This is an asynchronous 
signal. 
 

 
 
RXSTATUS[2:0] 

 
 
I 

 

Encodes receiver status and error codes for the received data stream and 
receiver detection. 
000 - Received data OK 
001 - 1 SKP added 
010 - 1 SKP removed 
011 - Receiver detected 
100 - 8B/10B decode error 
101 - Elastic Buffer overflow 
110 - Elastic Buffer underflow 
111 - Receive disparity error 
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The core interfaces the user application logic with different signals, to enable the transmission and 
reception of TLPs. These interfaces are divided into three sections: the Common Transaction 
Interface, the Transmit Transaction Interface and the Receive Transaction Interface. The following is 
an explanation of each section.  

Common Transaction Interface Signals 

trn_clk: Transaction Clock: An output 62.50 MHz clock signal. All transaction and configuration 
interfaces are synchronized to the rising edge of this clock. This signal is not available whenever the 
sys_reset_n is asserted.  

trn_reset_n: Transaction Reset: An active low output reset signal. This signal is used to reset user 
logic, which interfaces with the transaction and configuration signals. The deassertion of this signal is 
synchronized to trn_clk. 

trn_lnk_up_n: Transaction Link Up: An active low output signal. This signal is activated, when the 
PCIe core and the upstream PCIe link are ready and can start exchanging packets, and deactivated 
when they are trying to establish communication or when data is lost because of some error on the 
link.    

Transmit Transaction Interface Signals 

These are the interfaces the core needs to transmit TLPs across the PCIe link.  

trn_tsof_n:  Transmit Start-of-Frame (SOF): An active low input signal that indicates the start of a 
packet.  

trn_teof_n: Transmit End-of-Frame (EOF): An active low input signal that signals the end of a 
packet. 

trn_td [31:0]: Transmit Data: 32-bit input packet data to be transferred to the transaction layer of the 
core.  

trn_terrfwd_n: Transmit Error Forward: An active low input signal. This signal is used to indicate 
that the associated packet is error-poisoned.   

trn_tsrc_rdy_n: Transmit Source Ready: An active low signal that indicates the availability of valid 
data from the user logic application. 

trn_tdst_rdy_n: Transmit Destination Ready: An active low signal that indicates that the PCIe core is 
ready to receive data on trn_td [31:0]. The simultaneous assertion of trn_tsrc_rdy_n and 
trn_tdst_rdy_n represents a successful transfer of one DWORD of data on trn_td [31:0]. 

trn_tsrc_dsc_n: Transmit Source Discontinue: An active low signal indicates that the user application 
is discarding the current packet. 
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trn_tbuf_av [3:0]: Transmit Buffers Available: Number of transmit buffers available in the core. The 
maximum number is 6. Each transmit buffer can hold one packet with up to 512 bytes of payload. 

Receive Transaction Interface Signals 

These are the interfaces the core needs to receive TLPs across the PCIe link. Tables 3.9 and 3.10 list 
and explain these signals.  

 Table 3.9 - Xilinx PCIe PIPE Endpoint Core Transaction Receive Interfaces [XUG167] 
 

Signal 
 

 
I/O 

 
Description 

PCIE_TRN_RSOF_N I Receive Start-of-Frame (SOF): Signals the start of a packet. 
Active low. 

PCIE_TRN_REOF_N I Receive End-of-Frame (EOF): Signals the end of a packet. 
Active low. 

PCIE_TRN_RD[31:0] I Receive Data: Packet data being received. 
PCIE_TRN_RERRFWD_N I Receive Error Forward: Marks the current packet in progress 

as error-poisoned. Asserted by the core at EOF. Active low. 
PCIE_TRN_RSRC_RDY_N I Receive Source Ready: Indicates that the PCI Express Endpoint 

core is presenting valid data on trn_rd [31:0]. Active low. 
PCIE_TRN_RDST_RDY_N O Receive Destination Ready: Indicates that the User Application 

is ready to accept data on PCIE_TRN_RD [31:0]. Active low. 
The simultaneous assertion of PCIE_TRN_RSRC_RDY_N and 
PCIE_TRN_RDST_RDY_N marks the successful transfer of 
one DWORD of data on PCIE_TRN_RD [31:0]. 

PCIE_TRN_RSRC_DSC_N O Receive Source Discontinue: Indicates that the PCI Express 
Endpoint core is aborting the current packet. Asserted when the 
physical link is going into reset. Active low. 

PCIE_TRN_RNP_OK_N O Receive Non-Posted OK: The User Application asserts this 
whenever it is ready to accept a Non-Posted Request packet. 
This allows Posted and Completion packets to bypass Non-
Posted packets in the inbound queue if necessitated by the User 
Application. Active low. When the User Application approaches 
a state where it is unable to service Non-Posted Requests; it must 
deassert PCIE_TRN_RNP_OK_N after SOF of the second-to-
last Non-Posted packet it can accept. 

trn_rbar_hit_n[6:0] I Receive BAR Hit: Indicates BAR(s) targeted by the current 
receive transaction. Active low. 
trn_rbar_hit_n[0] => BAR0 
trn_rbar_hit_n[1] => BAR1 
trn_rbar_hit_n[2] => BAR2 
trn_rbar_hit_n[3] => BAR3 
trn_rbar_hit_n[4] => BAR4 
trn_rbar_hit_n[5] => BAR5 
trn_rbar_hit_n[6] => Expansion ROM Address 
Note that, if two BARs are configured into a single 64-bit 
address, both corresponding trn_rbar_hit_n bits will be asserted. 
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 Table 3.9 - Xilinx PCIe PIPE Endpoint Core Transaction Receive Interfaces (Cont.) [XUG167] 
 

Signal 
 

 
I/O 

 
Description 

TRN_RFC_PH_AV[7:0] I Receive Posted Header Flow Control Credits Available: 
The number of Posted Header FC credits available to the 
remote link partner. 

TRN_RFC_PD_AV[11:0] I Receive Posted Data Flow Control Credits Available: The 
number of Posted Data FC credits available to the remote link 
partner. 

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits 
Available: The number of Non-Posted Header FC credits 
available to the remote link partner. 

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available: 
The number of Non-Posted Data FC credits available to the 
remote link partner. 

TRN_RFC_CPLH_AV[7:0] I Receive Completion Header Flow Control Credits 
Available: The number of Completion Header FC credits 
available to the remote link partner. Note that this value and 
PCIE_TRN_RFC_CPLd_AV [11:0] are hypothetical 
quantities reflecting credit availability that would be advertised 
to the remote link partner if the PIPE core were not required to 
advertise infinite Completion credits. 

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits 
Available: The number of Non-Posted Header FC credits 
available to the remote link partner. 

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available: 
The number of Non-Posted Data FC credits available to the 
remote link partner. 

TRN_RFC_CPLH_AV[7:0] I Receive Completion Header Flow Control Credits 
Available: The number of Completion Header FC credits 
available to the remote link partner. 
Note that this value and PCIE_TRN_RFC_CPLd_AV [11:0] 
are hypothetical quantities reflecting credit availability that 
would be advertised to the remote link partner if the PIPE core 
were not required to advertise infinite Completion credits. 

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits 
Available: The number of Non-Posted Header FC credits 
available to the remote link partner. 

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available: 
The number of Non-Posted Data FC credits available to the 
remote link partner. 

TRN_RFC_CPLd_AV[11:0] I Receive Completion Data Flow Control Credits Available: 
The number of Completion Data FC credits available to the 
remote link partner. 
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Configuration Interface 

The core enables the user to access its configuration space. In this version of the core a writing access 
of the registers is not supported. Tables 3.11 to 3.13 describe these interfaces.  

  
 Table 3.10 - Xilinx PCIe Core Configuration Interfaces [XUG167] 

 
Signal 

 

 
I/O 

 
Description 

 
CFG_DO[31:0] 

 
I 

Configuration Data Out: This is a 32-bit data output port 
used to obtain read data from the configuration space 
inside the PCI Express endpoint. 

 
 
 
 
 
CFG_RD_WR_DONE_N 

 
 
 
 
 
I 

Configuration Read Write Done: This active-low read-
write done signal indicates a successful completion of the 
user configuration register access operation. For a user 
configuration register read operation, the signal validates 
the cfg_do [31:0] data-bus value. For a user configuration 
register write operation, the assertion signals the 
completion of a successful write operation. 
Not supported for write operations. 

 
CFG_DI[31:0] 

 
O 

Configuration Data In: This is a 32-bit data input port 
used to provide write data to the configuration space inside 
the core. Not supported. 

 
CFG_DWADDR[9:0] 

 
O 

Configuration DWORD Address: This is a 10-bit address 
input port used to provide a configuration register 
DWORD address during configuration register accesses. 

 
CFG_WR_EN_N 

 
O 

Configuration Write Enable: This is the active low write 
enable for configuration register access. 
Not supported. 

 
CFG_RD_EN_N 

 
O 

Input Description: Configuration Read Enable: This is the 
active low read enable for configuration register access. 

 
CFG_INTERRUPT_N 

 
O 

Configuration Interrupt: This is the active low interrupt 
request signal. The User Application may assert this to 
cause appropriate interrupt messages to be transmitted by 
the PCI Express PIPE core. 

 
CFG_INTR_RDY_N 

 
I 

Configuration Interrupt Ready: This is the active low 
interrupt grant signal. The assertion on this signal indicates 
that the PIPE core has successfully transmitted the 
appropriate interrupt message. 

 
CFG_TURNOFF_OK_N 

 
O 

Configuration Turnoff OK: This is the active low power 
turn-off ready signal. The User Application may assert this 
to notify the PCI Express PIPE core that it is safe for 
power to be removed. 

 
 
 
CFG_TO_TURNOFF_N 

 
 
 
I 

Configuration To Turnoff: This output signal notifies the 
user that a PME_TURN_Off message has been received 
and the CMM will start polling the 
PCIE_CFG_TURNOFF_OK_N input coming in from 
the user. Once PCIE_CFG_TURNOFF_OK_N is 
asserted, CMM sends a PME_To_Ack message to the 
upstream device. 
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 Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167] 
 

Signal 
 

 
I/O 

 
Description 

 
CFG_BYTE_EN_N[3:0] 

 
I 

Configuration Byte Enable: This is the active low byte 
enables for configuration register access signal. Not 
supported. 

 
CFG_ERR_ECRC_N 

 
O 

ECRC Error Report: The user can assert this signal to 
report an ECRC error (end-to-end CRC). 

 
CFG_ERR_CPL_TIMEOUT_N 

 
O 

Configuration Error Completion Timeout: The user 
can assert this signal to report a completion timed out. 

 
CFG_ERR_CPL_TIMEOUT_N 

 
O 

Configuration Error Completion Timeout: The user 
can assert this signal to report a completion timed out. 

 
CFG_ERR_CPL_ABORT_N 

 
O 

Configuration Error Completion Aborted: The user 
can assert this signal to report that a completion was 
aborted. 

 
CFG_ERR_CPL_UNEXPECT_N 

 
O 

Configuration Error Completion Unexpected: The 
user can assert this signal to report that an unexpected 
completion was received. 

 
CFG_ERR_CPL_POSTED_N 

 
O 

Configuration Error Posted: This signal is used to 
further qualify any of the PCIE_CFG_ERR_* input 
signals. When this input is asserted concurrently with 
one of the other signals, it indicates that the transaction 
which caused the error was a posted transaction. 

 
CFG_ERR_COR_N 

 
O 

Configuration Error Correctable Error: The user can 
assert this signal to report that a correctable error was 
detected. 

 
CFG_ERR_UR_N 

 
O 

Configuration Error Unsupported Request: The user 
can assert this signal to report that an unsupported 
request was received. 

 
 
CFG_ERR_TLP_CPL_HEADER[47:0] 

 
 

O 

Configuration Error TLP Completion Header: This 
input to the core accepts the header information from 
the user when an error is signaled. This information is 
required so that the core can issue a correct completion, 
if required. 

 
CFG_BUS_NUMBER[7:0] 

 
I 

Configuration Bus Number: This output provides the 
assigned bus number for the device. The user may 
require this information to form packets. 

 
CFG_DEVICE_NUMBER[4:0] 

 
I 

Configuration Device Number: This output provides 
the assigned device number for the device. The user 
may require this information to form packets. 

 
CFG_FUNCTION_NUMBER[2:0] 

 
I 

Configuration Function Number: This output 
provides the function number for the device. The user 
may require this information to form packets. 

 
 
CFG_PCIE_LINK_STATE_N[2:0] 

 
 
 

I 

PCI Express Link State: This one-hot encoded bus 
reports the PCI Express Link State Information to the 
user. 
110b - PCIExpress Link State is "L0" 
101b - PCIExpress Link State is "L0s" 
011b - PCIExpress Link State is "L1" 
111b - PCIExpress Link State is "under transition"    
 

 



 
CHAPTER 3. PCIe ENDPOINT DESIGN  38 

 

 

Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167] 
 

Signal 
 

 
I/O 

 
Description 

CFG_STATUS [15:0] I Configuration Status: PCI status register output 
CFG_COMMAND [15:0] I Configuration Command: PCI command register 

output. 
CFG_DSTATUS [15:0] I Configuration Device Status: PCI Express PIPE device 

status register output. 
CFG_DCOMMAND [15:0] I Configuration Device Command: PCI Express PIPE 

device command register output. 
CFG_LSTATUS [15:0] I Configuration Link Status: PCI Express PIPE link 

status register output. 
CFG_LCOMMAND [15:0] I Configuration Link Command: PCI Express PIPE link 

command register output. 
 
 
 
 
CFG_PM_WAKE_N 

 
 
 
 
O 

Configuration Power Management Wake: A one-
clock cycle active low assertion on this signal enables 
the core to generate and send a Power Management 
Wake event to the upstream link partner. 
NOTE: The user is required to assert this input only 
under stable link conditions as reported on the 
PCIE_CFG_PCIE_LINK_STATE_N[2:0]bus. 
Assertion of this signal when the PCI Express link is 
under transition will result in incorrect behavior on the 
PCI Express link. 

 
CFG_DSN [63:0] 

 
O 

Configuration Device Serial Number: Serial Number 
Register fields of the PCI Express Device Serial Number 
extended capability. 

 
 
 
CFG_PCIE_LINK_STATE_N [2:0]  

 
 
 
I 

PCI Express Link State: This one-hot encoded bus 
reports the PCI Express Link State Information to the 
user. 
110b - PCIExpress Link State is "L0" 
101b - PCIExpress Link State is "L0s" 
011b - PCIExpress Link State is "L1" 
111b - PCIExpress Link State is "under transition"    

CFG_LSTATUS [15:0] I Configuration Link Status: PCI Express PIPE link 
status register output. 

CFG_LCOMMAND [15:0] I Configuration Link Command: PCI Express PIPE link 
command register output. 

 
 
 
 
CFG_PM_WAKE_N 

 
 
 
 
O 

Configuration Power Management Wake: A one-
clock cycle active low assertion on this signal enables 
the core to generate and send a Power Management 
Wake event to the upstream link partner. 
NOTE: The user is required to assert this input only 
under stable link conditions as reported on the 
PCIE_CFG_PCIE_LINK_STATE_N[2:0]bus. 
Assertion of this signal when the PCI Express link is 
under transition will result in incorrect behavior on the 
PCI Express link. 

 
CFG_DSN [63:0] 

 
O 

Configuration Device Serial Number: Serial Number 
Register fields of the PCI Express Device Serial Number 
extended capability. 
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3.3.4 Core Generation and Configuration 

The PCIe core is fully configurable and highly customizable. The Xilinx CORE Generator was used to 
generate and customize this core. 

The following figures show some of the important steps in generating and configuring the PCIe core.1 

In Figure 3.13, the component name is given, which was used as a base name of the output files 
generated for the core. The physical interface is indicated as well. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.13 - PCIe Component Name [XUG167] 

 
Figure 3.14 shows the ID initial values screen where different parameters can be set. The Vendor ID 
identifies the manufacture of the device or application. A default value of 10EE refers to Xilinx. A 
Device ID can also be set to identify the application. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.14 - PCIe ID Initial Values [XUG167] 

 
 
 
 
 
 1 For more detailed steps, refer to the user guide [XUG167]. 
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In Figure 3.15, the configuration of the Base address registers space is shown. The core was 
configured to support memory mapped space. Base Address Registers (BARs) are used for two 
purposes. Firstly, the Endpoint device through these BARs can request blocks of addresses in the 
system memory map. Secondly, after the operating system or Basic Input Output System (BIOS) 
defines the addresses to be assigned to the Endpoint device, the BARs are programmed with these 
addresses and the Endpoint uses this information for the address decoding and recognizing of TLPs. 

 

 
Figure 3.15 - PCIe Base Address Registers (BARs) Configuration 

 

The core can be configured to support up to six 32-bit BARs or three 64-bit BARs. Once the core 
receives a TLP, it compares the address included in the header of the TLP with the address defined by 
the BAR. If the address matches within the range, the core presents the data at the Transaction 
interface for the user logic. The data will be blocked otherwise.  

The unused BARs are disabled, and the logic that enables their usage is not implemented to reduce the 
complexity. 

In figure 3.16 the capabilities register setting is shown. Here, the PCIe logical device type is 
determined. The only functionality supported by Xilinx PCIe core is to have it as PCI Express 
Endpoint device. 

The figure also shows the setting of the device capabilities register. In this register, the Maximum 
Payload size can be configured. This core can support up to 512 bytes as payload to be sent with the 
packet. 
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Figure 3.16 - PCIe Capabilities and Device Capabilities Register Configuration [XUG167] 

 
The configuration of the Link Capabilities Register is depicted in figure 3.17. Illustrated are the link 
speed and width which are set to 1 to indicate a x1 PCIe link, which has a data transfer rate of 2.5 
Gbps. 
 

 
Figure 3.17 - PCIe Link Capabilities Register Configuration [XUG167] 
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Some of the advanced settings are shown in figure 3.18. For the transaction layer, selecting Trim TLP 
Digest ECRC will cause the core to drop out any TLP digest of the incoming TLPs before forwarding 
it to the user logic. Scrambling data TLPs to be transmitted can be deselected in the logical sublayer of 
the core's physical layer. Enabling and disabling of PCI configuration space is also possible. 
Furthermore, the extended PCI Configuration space can be enabled or left disabled.   
 

 
Figure 3.18- PCIe Advanced Settings [XUG167] 

 
 
3.4 Xilinx Microblaze Soft Processor Core 

Xilinx Microblaze processor is a soft IP core optimized for the implementation in Xilinx FPGAs. This 
core implements a 32-bit reduced instruction set computer. It includes thirty-two 32-bit general 
purpose registers and implements a 32-bit instruction word with three operands and two addressing 
modes. This core uses 32-bit address buses. 

The Microblaze "soft" processor is built using the FPGA's logic, unlike the "hard" processor which is 
built using dedicated silicon. It is configurable for the optimal use of the designer. 

3.4.1 Microblaze Block Diagram 

Figure 3.19 shows the block diagram of this soft core. In the figure both the fixed and the configurable 
features of this processor are shown.  The core uses the Harvard structure by dedicating two different 
paths for the instruction and the data (as illustrated in the figure). 
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Figure 3.19 - Microblaze Block Diagram [XUG081] 
 
3.4.2 Microblaze Interfaces 

The Microblaze core has many interfaces. The following is a list of them [XUG081]: 
 
 DOPB:              Data interface, On-chip Peripheral Bus 
 DLMB:            Data interface, Local Memory Bus (BRAM only) 
 IOPB:             Instruction interface, On-chip Peripheral Bus 
 ILMB:              Instruction interface, Local Memory Bus (BRAM only) 
 MFSL 0..7:       FSL master interfaces 
 SFSL 0..7:        FSL slave interfaces 
 IXCL:  Instruction side Xilinx CacheLink interface (FSL master/slave pair) 
 DXCL:  Data side Xilinx CacheLink interface (FSL master/slave pair) 
 Core:   Miscellaneous signals for: clock, reset, debug, and trace 
 
 For the purpose of this work, the LMB and OPB interfaces will be considered1.  
 
 

 

 

 

 

 

1 Refer to Xilinx Microblaze Processor Reference Guide [XUG081] for other interfaces and details. 
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3.4.3 Local Memory Bus (LMB) 

The main purpose of the LMB is to access an on-chip Block RAM (BRAM) peripheral, in a single 
clock cycle. The Microblaze core has two LMB interfaces: The Data Local Memory Bus (DLMB), 
which provides an interface to the data RAM and the Instruction Local Memory Bus (ILMB), which 
interfaces the instruction RAM. 

The BRAM Block is a dual port configurable memory that can be attached to the Microblaze ILMB 
and DLMB ports in conjunction with the Local Memory Bus (LMB) Block RAM (BRAM) Interface 
Controller as illustrated in figure 3.20. This BRAM is initialized with the application program to be 
executed by the Microblaze. 

The dual port feature of the BRAM enables a concurrent access of the ILMB and DLMB sides in a 
single cycle. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.20 – Local Memory Bus (LMB) 
 
3.4.4 On-Chip Peripheral Bus (OPB) 

The Microblaze enables the attachment of several peripherals using the OPB interfaces. These 
peripherals must be connected to the processor using data and address buses. 

The OPB implemented in this Microblaze system is a 32-bit configurable version of the IBM's 
Coreconnect architecture which facilitates the connection of peripherals to the processor. These 
peripherals must fulfill the compatibility with the OPB protocol.  

This bus provides address and data interfaces both of 32-bit. It allows choosing the valid byte on the 
data bus, by dedicating a byte enabling signal. The OPB employs logic arbiter to arbitrate among 
masters, in case more than one master is connected to the bus. 

Figure 3.21 shows the OPB slave interfaces, and tables 3.14 to 3.16 describe these interfaces. 

 

ILMB 

DLMB 
 
 

Microblaze 

 
 
 
 
 
 

 
 

BRAM 

Instruction 
BRAM 

Data 
BRAM 

 
DLMB 

Controller 

 
ILMB 

Controller 



 
CHAPTER 3. PCIe ENDPOINT DESIGN  45 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.21 - OPB Slave Attachment [XTU02] 

 
   Table 3.11 - OPB global signals 

 

Signal 
 

I/O 
 

Description 
 

 

OPB_Clk 
 

I 
 

 

All input signals are synchronized to the rising edge of this clock. 
 

 
 

OPB_Rst 
 

I 
 

 

Active high reset, which is asynchronous to the OPB_Clk. The 
Microblaze uses the same reset signal. 
 

 
 
   Table 3.12 - OPB Interface Signals 

 
Signal 

 

 
I/O 

 
Description 

OPB_ABus [0:31] I Address bus driven by the OPB and received by all slaves. This 
signal is valid whenever the OPB_Select signal is activated. 

OPB_BE I Byte-enable indicates which byte is valid within the data path. 
OPB_DBus [0:31] I Write data bus driven by the OPB and received by all slaves 
OPB_RNW  I (Read not Write) signal, setting this signal to "1" indicates that 

the master is performing a read operation on the slave, while a 
"0" values refers to a write operation on the slave. 

OPB_select I Driven by the OPB to indicate that a transfer on the OPB is 
taking place. 

OPB_seqAddr I OPB sequential address indicates that the current transfer will be 
followed by a transfer to the next sequential address in the same 
direction.  

<Sln>_DBus[0:31] O Read data bus driven by the targeted slave. <Sln> refers to the 
name of the peripheral. 
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  Table 3.12 - OPB Interface Signals (Cont.) 
 

Signal 
 

 
I/O 

 
Description 

<Sln>_xferAck O OPB transfer Acknowledge. Asserted by the addressed slave to 
indicate that the data transfer between the OPB master and slave 
has been accomplished. 

<Sln>_retry O OPB bus cycle retry. This signal is asserted by an OPB slave to 
indicate that it is unable to perform the requested transfer at this 
time. 

<Sln>_toutSup O Slave time-out Suppress. If an OPB slave wants to delay the bus 
operation for an extended time, it asserts this signal.. 

<Sln>_errAck O OPB transfer error Acknowledge. The signal is asserted by a slave 
device to indicate that the slave encountered an error in performing 
the requested transfer. 

 
 
3.5 Microblaze PCIe Peripheral  

The Xilinx Embedded Development Kit (EDK) delivers many compiled and optimized IPs that 
implement different functionalities and peripherals. This design tool does not provide all the modules 
required for the designing of a PCIe peripheral, which imposes a challenging task when carrying out 
such a design. 

The PCIe peripheral has to be attached as a slave to the Microblaze as shown in the figure 3.22. In case 
of having more than one master existing on the bus, an OPB arbiter is needed to control the 
communication over the bus. 

 
 
 
     
  
Figure 3.22 - PCIe Peripheral Attachment as  
                      Slave [XTU02] 
 
 
 
 
 
 
 
A PCIe peripheral (or PCIe slave), shown in figure 3.23, is a device that consists of the protocol layers 
implemented by the PCIe core and the OPB to PCIe Bridge module. The OPB to PCIe Bridge module 
implements the standard OPB protocol and the logic needed to transmit/receive TLPs as well as the 
logic needed to access the configuration space of the PCIe core. 
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Figure 3.23 - PCIe Peripheral 
 
3.5.1 OPB to PCIe Bridge  

A module that bridges the OPB to the PCIe protocol layers is not available from Xilinx. Therefore, an 
effort was made to develop a simplified bridge that adapts the PCIe core to the OPB for the purpose of 
designing a PCIe peripheral.  

Figure 3.24 shows the two modules, which construct this bridge: the OPB IPIF and USER LOGIC 
modules. 

 
 

 
 
 
 
 
 
 

 
 
 

Figure 3.24 - OPB to PCIe Bridge 
 
A top level block diagram of the OPB to PCIe Bridge is illustrated in figures 3.25 and 3.26. This bridge 
is controlled by the Microblaze over the OPB. The standard OPB protocol is implemented on the side 
of the OPB by the OPB IPIF module.  

The interfaces to the PCIe are also shown in the figure. These interfaces are divided into four groups: 
Transmit Transaction Interface, Receive Transaction Interface, Common Transaction Interface, and 
Configuration Interface.  
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These interfaces are driven by the USER LOGIC module, which is explained later. In addition to the 
bus protocol compatibility, the bridge implements the logic needed for the transmission and reception 
of TLPs as well as the logic needed for accessing the configuration space of the PCIe core. The way 
how this is implemented, is explained in the coming sections. 
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Figure 3.26 - OPB to PCIe Bridge Interfaces/Configuration Interfaces 
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OPB_select 

OPB ClK

1 2 3 4 5 6

ReadRNW 

OPB_ABus Valid Address

Valid BE

<Sln>_DBus Valid data 0000-0000 0000-0000

OPB_BE 

<Sln>_xferAck 

 

In figure 3.27, a basic OPB read transaction is shown. When the OPB master, the Microblaze in this 
case, wants to access a register in the PCIe peripheral for the purpose of reading, it first selects the 
OPB by asserting the OPB_select signal and validates the 32-bit address on the OPB_ABus. While 
reading, the RNW is asserted to indicate a read not write access. The Microblaze puts a valid Byte 
Enable (BE) on the bus. Once the targeted slave recognizes this transaction, it loads the bus with the 
required data using the <Sln>_DBus signal. It asserts the acknowledge signal at the same time to 
complete the transfer. This in-turn causes the Microblaze to get the valid data and deselect the OPB by 
deasserting the OPB_select signal. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.27 - Basic OPB Read Transaction [XTU02] 

 
 
An OPB write transaction is shown in figure 3.28. The Microblaze does the same thing as with the 
read transaction. 
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Figure 3.28 - Basic OPB Write Transaction [XTU02] 

3.5.2 On-chip Peripheral Bus Intellectual Property Interface (OPB IPIF) 

Although Xilinx did not provide a ready solution for the bridge, it facilitates its design by providing a 
module called OPB IPIF, which makes the connection of Xilinx cores or third party IPs to the OPB 
easier. 

This module consists of eight different modules as depicted in figure 3.29. These modules allow an 
easy connection of the customized core to the processor bus, with making less effort in developing 
such modules from scratch. The interface to the IP core is called IP Interconnect (IPIC) as shown in the 
figure. 

This OPB IPIF is a highly configurable module.  It enables the designer to select the required modules 
for his optimal usage. A full set of the provided facilities: Master attachment, Slave attachment, 
Interrupt control, Address Decode, Read FIFOs, Write FIFOs, Direct Memory Access (DMA), and 
Scatter Gather (automated DMA) is shown in figure 3.29. 
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Figure 3.29 - Full Set of OPB IPIF Features [XTU02] 

The main duties of the embedded processor are to check the configurability of the PCIe core, to access 
its configuration space by reading from/writing to this space, to control the transmission/reception of 
TLPs, and to send the Header and Payload of a TLP to the Transaction layer in the PCIe core. This 
indeed, makes the PCIe peripheral a simple slave that needs not more than input/output data buses, 
some register address decoding, read/write request and some acknowledge signals. Therefore, a 
simplified OPB IPIF, with only features that enabled register accessing was used as shown in figure 
3.30.  

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.30 - OPB IPIF Features for Register Access [XTU02] 
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When creating the PCIe peripheral, several parameters can be configured in this OPB IPIF.  The Base 
System Builder (BSB) of the Xilinx Platform Studio (XPS) assigns the peripheral base and high 
addresses. These addresses allow the processor to access the accessible registers implemented in the 
bridge. The Address and Data widths on the OPB are set to 32 bits. The targeted FPGA family and the 
number of registers can also be specified, based on the design requirements.  

Figure 3.31 shows the OPB IPIF top-level block diagram, which only implements register interfaces. 
A slave attachment is shown in this figure. Such configuration allows the translation of the OPB 
standard protocol to some enabling signals serve the accessing of the registers implemented in the 
bridge. The address decoding unit is responsible for the generation of enable signals to access the 
targeted registers. These registers are enabled either to read from or to write onto them. 

The interfaces to the PCIe core for the purpose of register access are explained in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.31 - OPB IPIF Top-level Block Diagram, Register Interface Only [XDS414] 

3.5.3 USER LOGIC 

The main functionality of the PCIe peripheral is implemented in this module. First of all, a top level of 
this USER LOGIC module is illustrated in figure 3.32. This module has two groups of interfaces. It 
interfaces the OPB IPIF module from one side and the PCIe core from the other side.  

The interfaces to the OPB IPIF are not more than a way that enables the processor to access the 
registers implemented in the PCIe peripheral. In another word, it makes this peripheral compatible with 
the OPB protocol. In our simplified case, the register interface facility is implemented in the USER 
LOGIC module.  
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Figure 3.32 - USER LOGIC Interfaces 

The following is a description of the interfaces to the OPB IPIF (IPIC): 

• Bus2IP_Clk: This signal is connected to the OPB_Clk signal of 50 MHz, to which the OPB is 
synchronized. 

• Bus2IP_Reset: This signal is used to reset the IP, asserted whenever the OPB_Rst signal is 
activated. 

• Bus2IP_Data: 32-bit data transferred from the processor to the IP over the OPB.  

• Bus2IP_BE (0 to 3): Byte Enables to indicate on which byte’s location the valid data is 
available. 

• Bus2IP_RdCE (i): Register read enables; where i indicates the corresponding register under a 
read transaction. 

• Bus2IP_WrCE (i): Register write enables; where i indicates the corresponding register under a 
write transaction. 

• IP2Bus_Data: 32-bit data from the IP to the OPB. 

• IP2Bus_Ack: IP to bus read or write Acknowledgment. Asserted when the targeted register 
responses to a read or write transaction. 

• IP2Bus_Retry: This signal is asserted whenever the PCIe peripheral is unable to perform the 
requested transfer at this time. 

• IP2Bus_Error: This signal indicates an error response. 

• IP2Bus_ToutSup: This signal is asserted by the peripheral whenever its acknowledgment or 
retry response will take longer than 8 cycles. 
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Figures 3.33 and 3.34 show examples of basic read and write transactions for IP Interconnect. Reading 
and writing accesses of a targeted register are illustrated.   

Normally, (for each implemented register) a separate decoding for the read and write access exists. 
This is indicated by the vectors Bus2IP_RegRDCE (i) and Bus2IP_RegWrCE (i), respectively as shown 
in the figures. The figures also show the signals Bus2IP_RegRd and Bus2IP_RegWr. These signals 
enable register read and write transactions, respectively. In the designed OPB IPIF module, only two 
signals serve the same purpose.  

As mentioned above, the signal Bus2IP_RdCE(i) is used to enable a register read transaction, with the 
index i points to the addressed register and the signal Bus2IP_WrCE(i) is used to enable a register 
write transaction, with the index i indicates the requested register [XDS414]. 

As indicated in the figure, when reading a register, the PCIe peripheral drives the signal IP2Bus_Data 
with a 32-bit non-zero value. The peripheral drives zero otherwise. The peripheral can determine the 
duration of the transaction because it issues the acknowledgement.  

For the purpose of this simplified unit, the acknowledgment signals due to read and write accesses are 
indicated by one signal, the IP2Bus_Ack on the interface. This acknowledgement can be returned in the 
same cycle as the request, making the transaction as short as one cycle. If the peripheral is unable to 
return an acknowledgment within 8 cycles, it can then drop the timeout by asserting the 
IP2Bus_ToutSup and holding it until it responds to the transaction [XDS414].  

In case of an error, the peripheral can issue an error response by asserting IP2Bus_Error as indicated in 
the figures. If the transaction can be completed successfully, if it is retried, the peripheral asserts the 
IP2Bus_Retry. 

For both transactions, the peripheral must drive these signals with zero, in case it is not addressed and 
accessed by the processor.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.33 - Read Transaction from IP that utilizes Register Decodes [XDS414] 
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Figure 3.34 - Write Transaction to IP that utilizes Register Decodes [XDS414] 

The USER LOGIC module consists of several units that implement the functionality of the PCIe 
peripheral. Figure 3.35 shows the register read, register write, 15 X 32 software accessible register 
bank, PCIe transmission state machine, PCIe receiving state machine, and PCIe configuration space 
access read/write units that construct the USER LOGIC. Following is a detailed description of each of 
these units. 

3.5.3.1 Register Read 

This unit implements the slave model register read multiplexer. Figure 3.33 shows an example of a 
read transaction from an addressed register.  

3.5.3.2 Register Write 

The slave model register write multiplexer is implemented in this unit. An example of a write 
transaction into an addressed register is illustrated in figure 3.34. 

Both Register Read and Register Write units interface the OPB IPIF through the IP Interconnects 
(IPICs) as shown in figure 3.35. 
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Figure 3.35 - USER LOGIC Internal Structure 

3.5.3.3 Software accessible Register Bank 

In order to enable the Microblaze to control the transmission and reception of TLPs as well as to 
access the configuration space of the PCIe core, fifteen 32-bit registers were used. The Microblaze 
does access these register by issuing read or write transactions.  

These registers can be accessed using the base address assigned to the PCIe peripheral, when creating 
it. Each register is assigned a unique address, which is the Base address plus an offset as shown in 
figure 3.36. The figure also shows the names given to these registers.  

These registers use Big-Endian bit-reversed format to represent data as depicted in figure 3.37. 
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Figure 3.36 - Register Bank, Base Address and Offset are in Hexadecimal 

 
 
 
 
 
 
 

 

Figure 3.37 - Registers Big-Endian Format [XUG081] 

STATUS Register 

The status register, shown in figure 3.38, provides a kind of feedback to the Microblaze by indicating 
the accomplishment of several tasks. The following is a detailed description of each field in this 
register: 

 
 
 

 

Figure 3.38 - STATUS Register 
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STATUS [0:24]: These bits are set to zeros.  

STATUS [25]: cpld_transmitted: Indicates that a completion with data TLP (CPLD) was successfully 
transmitted. 

STATUS [26]: mem_rd_received: Indicates that a Memory Read TLP was successfully received. 

STATUS [27]: mem_wr_received: Indicates a successful reception of a Memory Write TLP. 

STATUS [28]: cpld_received: Indicates that a CPLD TLP was successfully received. 

STATUS [29]: mem_rd_transmitted: Indicates that a Memory Read TLP was successfully transmitted 

STATUS [30]: mem_wr_transmitted: Indicates that a Memory Write TLP was successfully 
transmitted. 

STATUS [31]: cfg_command (2): Refers to the master enabling in the command register of the PCIe 
configuration space. Setting this bit to "1" indicates that the PCIe Endpoint is enabled as a bus master 
and can initiate TLPs across the PCIe link. Setting this bit to "0" disables the PCIe Endpoint bus 
mastering. In this case the Endpoint can only respond to TLPs but not initiate them.  

CONTROL Register 

This register stores the control signals received from the Microblaze for the purpose of controlling the 
generation of TLPs as well as accessing the configuration space of the PCIe core. Figure 3.39 shows 
the bits allocation within this register. 

 
 
 

 

Figure 3.39 - CONTROL Register 
 
CONTROL [0]: master_enable: The Microblaze asserts this bit to confirm the enabling of the PCIe 
Endpoint as bus master. Deasserting this bit disables the master enabling feature. 

CONTROL [1]: mem_wr_gen: The Microblaze asserts this bit after sending the information required 
to generate a Memory Write TLP (Header + Payload) to the USER LOGIC. This enables the 
generation of a Memory Write TLP and allows the sending of this information to the transaction layer 
located in the PCIe core. Deasserting this bit deactivates the generation of a Memory Write TLP. 

CONTROL [2]: mem_rd_gen:  The Microblaze asserts this bit after sending the information required 
to generate a Memory Read TLP (Header + Payload) to the USER LOGIC. This enables the 
generation of a Memory Read TLP and allows the sending of this information to the transaction layer 
located in the PCIe core. Deasserting this bit deactivates the generation of a Memory Read TLP. 
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CONTROL [3]: compl_gen: The Microblaze asserts this bit after receiving a Memory Read TLP that 
request a completion with data.  

CONTROL [4]: cfg_read: The Microblaze sets this bit to "1" in order to generate a configuration 
register read cycle.  At the same time, it writes a 10-bit address onto CONTROL [6:15] to address the 
required configuration register in the PCIe core. 

CONTROL [5]: cfg_write: The Microblaze sets this bit to "1" in order to generate a configuration 
register write cycle.  At the same time, it writes a 10-bit address onto CONTROL [6:15] to address the 
required configuration register in the PCIe core. 

CONTROL [6:15]: cfg_dwaddr: A 10-bit address for a DWORD location in the configuration space of 
the PCIe core. This address points to two 16-bit registers. 

CONTROL [16:31]: These bits are set to zeros. 

MWR/MRD HDR DW1 Register  

This register contains the first header's DW of a Memory Write or a Memory Read TLP. This DW is 
written by the Microblaze over the OPB to the USER LOGIC. The transferring of the TLP to the PCIe 
core starts after the reception of all information required from the Microblaze and the activation of the 
memory generation signal in the control register.  

Figure 3.40 shows the MWR/MRD HDR DW1 register and the following is a detailed illustration of 
each bit: 
 
 
 
 
 
 

Figure 3.40  -  MWR/MRD HDR DW1 Register 
 
MWR/MRD HDR DW1 [0]: Reserved bit: This bit must be set to zero. 

MWR/MRD HDR DW1 [1:2]: FMT (Packet Format) and MWR/MEMRD HDR DW1 [3:7]: Type 
(TLP packet Type field) are used in a combination that specifies the transaction type, header size, and 
whether data payload is present or not (MWR/MRD HDR DW1 [1:7]): 

 0000000b = Memory Read (3DW without data) 
 0100000b = Memory Read (4DW without data) 
 1000000b = Memory Write (3DW with data) 
 1100000b = Memory Write (4DW with data) 
 0001010b = Completion (3DW without data) 
 1001010b = Completion (3DW with data) 
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MWR/MRD HDR DW1 [8]: Reserved bit: This bit must be set to zero. 

MWR/MRD HDR DW1 [9:11]: TC (Traffic Class): These 3 bits are used to determine the traffic class 
applied to the TLP. There are seven different traffic classes. In our design, the default traffic class was 
applied to the transmitted TLP: 

000 = Traffic Class 0 (Default Class) 
001 = Traffic Class 1 
010 = Traffic Class 2 
011 = Traffic Class 3 
100 = Traffic Class 4 
101 = Traffic Class 5 
110 = Traffic Class 6 
111 = Traffic Class 7  

MWR/MRD HDR DW1 [12:15]: Reserved bits: These bits must be set to zeros. 

MWR/MRD HDR DW1 [16]: TD (TLP Digest Field Present): If set = 1, the optional 32-bit Cyclic 
Redundancy Check (CRC) field is included with this TLP. The receiver must check the presence of 
this field when this TD is set to “1”. This bit is set = 0 by the Microblaze in order to ignore checking 
this CRC. 

MWR/MRD HDR DW1 [17]: EP (Poisoned data): When set = 1, the payload data with this TLP 
should be considered corrupted, although the transaction completes normally. This bit is set = 0 to 
indicate a valid payload data. 

MWR/MRD HDR DW1 [18:19]: Attr (Attribute): Bit 18 = Relaxed ordering: If set = 1, The PCI-X 
relaxed ordering is enabled for this TLP. Strict PCI ordering is used otherwise. Bit 19 = No Snoop. 
These 2 bits are set to zeros. 

MWR/MRD HDR DW1 [20:21]: Reserved bits: These bits must be set to zeros. 

MWR/MRD HDR DW1 [22:31]: length: TLP data payload transfer size (in DW). Maximum transfer 
size is 10 bits; 210 = 1024 DW (4KB). Encoding: 

 00 0000 0001b = 1DW 

 00 0000 0010b = 2DW 
  . 
  . 
 11 1111 1111b = 1023 DW 
 00 0000 0000b = 1024 DW 

In this designed Endpoint, the maximum payload size is 1 DW. 

MWR/MRD HDR DW2 Register 

In this register, shown in figure 3.41, the second DW of a transmitted Memory Write or Memory Read 
TLP is stored. 
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Figure 3.41 - MWR/MRD HDR DW2 Register 
 
MWR/MRD HDR DW2 [0:15]: Endpoint ID: Indicates the identification number of the device that 
generates this TLP. This number is indicated for the purpose of returning a completion TLP.  

MWR/MRD HDR DW2 [0:7]: Bus number,  

MWR/MRD HDR DW2 [8:12]: Device number and 

MWR/MRD HDR DW2 [12:15]: Function number. 

MWR/MRD HDR DW2 [16:23]: Tag: These bits are used to identify each outstanding request issued 
by the requester. Upon the sending of one request, the next sequential tag is assigned. By default, only 
5 bits are used for this tag, which allows 32 outstanding transactions at a time. This number can be 
extended to 256 tags by using 8 bits. This can be done by setting the extended tag bit in the PCIe 
control register = 1, when configuring the PCIe core. 

MWR/MRD HDR DW2 [24:27]: Last DW BE: These bits are used to qualify the bytes in the last sent 
DW. These byte enables are active high. A value of "0" indicates that the concerned byte should not be 
written by the completer of the TLP. It is written otherwise. Since we have the valid transferred data 
are within only 1 aligned DW, the Last DW BE must be = 0000b. 

MWR/MRD HDR DW2 [28:31]: 1st DW BE: These bits are used to qualify the bytes in the first sent 
DW. Since we have the valid transferred data are within only 1 aligned DW, the 1st DW BE must be = 
1111b. 

MWR/MRD HDR DW3 Register 

This register includes a 32-bit memory address to point to the system memory location, onto which the 
payload accompanying the TLP should be stored. For the purpose of this diploma work, only 32-bit 
addressing is allowed, although a 64-bit addressing is possible, by reconfiguring the PCIe core. This 
64-bit addressing extends the header of the TLP to 4 DWs. 

Figure 3.42 shows the MWR/MRD HDR DW3 Register. The bits 30 and 31 are reserved bits and must 
be set to zero. Doing so forces the address to be a DW aligned. 

 

 
 

Figure 3.42 - MWR/MRD HDR DW3 Register 
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MWR PAYLOAD Register 

This register holds the data payload to be transmitted across the PCIe link. This designed PCIe 
Endpoint supports only 1 DW payload.  

REC. MWR/MRD/CPLD DW1 Register 

In this register, shown in figure 3.43, the first header's DW of a received Memory Write/ Read or 
CPLD TLP is stored. This DW is sent to the Microblaze over the OPB. The bits allocation and 
description are the same as those in the MWR/MRD HDR DW1 Register. 

 

 
 

 
Figure 3.43 - REC. MWR/MRD/CPLD DW1 Register 

REC. CPLD DW2 Register 

The second received DW of a CPLD is stored in this register shown in figure 3.44. The following is a 
detailed description of each bit in this register: 

 
 
 
 
 

Figure 3.44 - REC. CPLD DW2 Register 
 
REC. CPLD DW2 [0:15]: Completer ID: Indicates the identification number of the completer. This 
information is not needed for routing the completion TLP. 

REC. CPLD DW2 [0:7]: Completer bus number. 

REC. CPLD DW2 [8:12]: Completer device number. 

REC. CPLD DW2 [12:15]: Completer function number. 

REC. CPLD DW2 [16:18]: compl_status: Indicates the status of the completion by the completer. 
Encoding: 

 000b = Successful Completion (SC) 
 001b = Unsupported Request (UR) 
 010b = Configuration Request Retry Status (CRS) 
 100b = Completer Abort. (CA) 
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REC. CPLD DW2 [19]: compl_bcm (byte modified count): This value is set = 1, only by PCI-X 
completers. This indicates that the byte count field reflects the first transfer payload rather than the 
total payload remaining. 
 
REC. CPLD DW2 [20:31]: Byte Count: This is the number of bytes to be returned with a completion 
TLP. Normally, this value can be derived from the length of the TLP. For 1 DW, this value is set = 
004x. 

REC. CPLD DW3 Register 
 
The third received DW of a CPLD is stored in this register shown in figure 3.45.  
 
 
 
 
 
 

Figure 3.45 - REC. CPLD DW3 Register 
 
REC. CPLD DW3 [0:15]: Requester ID: This identification number is copied from the request in order 
to be used in routing the completion back to the original requester.  

REC. CPLD DW3 [16:23]: Tag: 8-bit tag received with the request. These bits are used by the 
requester to associate the incoming completion with an outgoing request. 

REC. CPLD DW3 [25:31]: Lower Address: These 7 bits are the lower 7 bits of the address of the first 
valid byte of the data. This address is calculated from the request length and byte enables. In our case, 
this byte start address is the same as the starting address of the DW, since we only have 1 aligned DW.  

REC. CPLD DW4 Register 

The received completion data requested by the Endpoint as a consequence of a Memory Read TLP is 
stored in this register. 

REC. MWR/MRD DW2 Register 

In this register, the second received DW of a Memory Read or Memory Write TLP is stored. 
The contents of this register are shown in figure 3.46. 

 
 
 
                

Figure 3.46 - REC. MWR/MRD DW2 Register 
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REC. MWR/MRD DW2 [0:15]: Requester ID: Indicates the identification number of the device that 
generates this TLP (used for returning a completion TLP). In our design, this number is the 
identification number of the Root Complex which generates a Memory Write/Read TLP to write/read 
a DW to/from a memory mapped location within the PCIe Endpoint. 

REC. MWR/MRD DW2 [16:23]: Request Tag: These bits are used to identify each outstanding 
request issued by the requester. 

REC. MWR/MRD DW2 [24:31]: Request BE: first and last DW Byte Enables, which are received 
with the request to qualify the bytes in the first and last DW sent. In case of having only 1 DW, these 
bits have to be set = 00001111b. 

REC. MWR/MRD DW3 Register 

The third received header's DW of a Memory Read/Write TLP is stored in this register. This 32-bit 
address points to the memory mapped location within the PCIe Endpoint, to which the data Payload is 
to be written, in case of a Memory Write TLP, or from which data is to be read, in case of a Memory 
Read TLP.  

REC. MWR DW4 Register 

In case of a received Memory Write TLP, this register is used to store the data payload 
associated with this TLP. 

PCIe CONFIG. DATA READ Register 

When the Microblaze generates a PCIe Configuration Read cycles, the required data received from the 
configuration space of the PCIe core is loaded in this register. This data is the content of two 
configuration registers within that space.  

PCIe CONFIG. DATA WRITE Register 

When the Microblaze generates a PCIe Configuration Write cycle, the required data to be written to 
the addressed configuration register of the PCIe core is located in this register. 

3.5.3.4 PCIe Transmission State Machine 

The PCIe Transmission State Machine is responsible for transferring the information required to 
generate a TLP to the transaction layer of the PCIe core. This information is written by the Microblaze 
over the OPB onto the internal registers of the USER LOGIC module, in case of having a Memory 
Write/read TLP, or assembled internally in the USER LOGIC, in case of a completion with data TLP. 
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In case of a Memory Write TLP, this information consists of the header and the data Payload.  The 
header is only needed when generating a Memory Read TLP. For the generation of a CPLD TLP, the 
header and the completion data are required. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.47 - PCIe Transmission State Machine 

Figure 3.47 shows the interfaces of this state machine. The main purpose of this State Machine is to 
generate the timing diagram depicted in figure 3.49. This figure shows a TLP with a header of 3 DWs 
and a payload of 1 DW. This TLP can be an example of a 32-bit addressable Memory Write request, 
or a CPLD TLP. 
 
Table 3.13 illustrates a simplified transition table of this state machine. The corresponding state 
diagram is shown in figure 3.48. As mentioned before, these states are required for sending Memory 
Write, Memory Read, and CPLD TLPs. 
 
In this state machine and in case of having the example of a Memory Write request as shown in figure 
3.49, the following sequence of events has to be performed on the PCIe Transmit Transaction 
interfaces:  
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Table 3.13 - PCIe Transmission State Machine Transition Table* 
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S0 a  0  1  1  1  0  0  0  A  X  X  X  X  0  X  S0  
S1  b  1  0  1  0  0  0  0  B  0  1  0  1  1  0  S0  
S4  c  1  0  1  0  0  0  0  C  0  0  1  1  1  0  S0  
S6 d  1  0  1  0  0  0  0  D  1  0  0  1  1  0  S0  
S0 e  0  1  1  1  0  0  0  E  X  X  X  X  0  X  S6  

S7 f  1  0  1  1  0  0  0  F  X  X  X  X  1  0  S6  

S6 g  1  0  1  1  0  0  0  G  X  X  X  X  1  1  S6  

S0 h  0  1  1  1  0  0  0  H  X  X  X  X  0  X  S7  

S8 i  1  0  1  1  0  0  0  I  X  X  X  X  1  0  S7  

S7 j  1  0  1  1  0  0  0  J  X  X  X  X  1  1  S7  

S0  k  0  1  1  1  0  0  0  K  X  X  X  X  0  X  S8  
S0  l  1  0  0  1  0  0  1  L  X  X  X  X  1  0  S8  
S8  m  1  0  1  1  0  0  0  M  X  X  X  X  1  1  S8  
S0  n  0  1  1  1  0  0  0  N  X  X  X  X  0  X  S1  
S2  o  1  0  1  1  0  0  0  O  X  X  X  X  1  0  S1  
S1  p  1  0  1  1  0  0  0  P  X  X  X  X  1  1  S1  
S0  q  0  1  1  1  0  0  0  Q  X  X  X  X  0  X  S2  
S3  r  1  0  1  1  0  0  0  R  X  X  X  X  1  0  S2  
S2  s  1  0  1  1  0  0  0  S  X  X  X  X  1  1  S2  
S0  t  0  1  1  1  0  0  0  T  X  X  X  X  0  X  S3  
S0  u  1  0  0  1  0  1  0  U  X  X  X  X  1  0  S3  
S3  v  1  0  1  1  0  0  0  V  X  X  X  X  1  1  S3  
S0  w  0  1  1  1  0  0  0  W  X  X  X  X  0  X  S4  
S5  x  1  0  1  1  0  0  0  X  X  X  X  X  1  0  S4  
S4  y  1  0  1  1  0  0  0  Y  X  X  X  X  1  1  S4  
S0  z  0  1  1  1  0  0  0  Z  X  X  X  X  0  X  S5  
S0  η  1  0  0  1  1  0  0  γ  X  X  X  X  1  0  S5  
S5  μ  1  0  1  1  0  0  0  σ  X  X  X  X  1  1  S5  

* For the purpose of simplification, not all the inputs and outputs are specified in this table. For example, the 
assignment of trn_td [31:0] is not included here. 
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Figure 3.48 - PCIe Transmission State Machine State Diagram 
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Figure 3.49 - Memory Write TLP with a 3 DW Header and Payload [XUG167] 

Firstly, after receiving a control signal (mem_wr_gen) from the processor indicating the availability of 
all DWs of the packet, the machine asserts trn_tsof_n, trn_tsrc_rdy_n and presents the first TLP’s DW 
on trn_td [31:0], as long as the PCIe core is indicating that it is ready to accept data on trn_rd [31:0] by 
asserting trn_tdst_rdy_n. 

Secondly, at the next clock cycle, the state machine deasserts trn_tsof_n and presents the rest of the 
TLP’s DWs on trn_td [31:0]. The PCIe core keeps the assertion of trn_tdst_rdy_n. 

Thirdly, this state machine asserts trn_tsrc_rdy_n and trn_teof_n together with the last DW of data. 

Finally, at the next clock cycle, the state machine deasserts trn_tsrc_rdy_n to indicate the end of valid 
transfer of data on trn_td [31:0].   

In figure 3.50, a 3-DW TLP Header without data payload is shown. A 32-bit addressable Memory 
Read request is an example of such TLP. 

 

 

 

DATA 
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Figure 3.50 - Memory Read TLP with a 3 DW Header without Payload [XUG167] 

3.5.3.5 PCIe Receiving State Machine    

This PCIe Receiving State Machine is responsible for receiving TLPs from the PCIe core. The 
received TLPs are stored in the internal register of the USER LOGIC before being transferred to the 
Microblaze over the OPB. 

Figure 3.51 shows the interfaces of this machine. The main purpose of this PCIe Transmission State 
Machine is to enable the reception of TLPs coming from the PCIe core by generating the timing 
diagram shown in figure 5.53. This figure shows a received TLP with a header of 3 DWs and a 
payload of 1 DW. This TLP might represent an example of a received 32-bit addressable Memory 
Write request, or a received CPLD TLP. 

Table 3.14 illustrates a simplified transition table of this state machine. Figure 3.52 shows the 
corresponding state diagram. As mentioned before, these states are required for receiving Memory 
Write, Memory Read, and CPLD TLPs. 
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In this state machine and for the purpose of receiving a Memory Write TLP as shown in figure 3.53, 
the following sequence of events has to be performed on the PCIe Receive Transaction interfaces: 

Firstly, this state machine asserts trn_rdst_rdy_n whenever it is ready to receive data.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.51 - PCIe Receiving State Machine 

Secondly, the PCIe core asserts trn_rsrc_rdy_n when it is ready to transfer the data. At the same time, 
it asserts trn_rsof_n and presents the first DW of the TLP on trn_rd [31:0]. 

Thirdly, at the next clock cycle, the PCIe core deasserts trn_rsof_n, asserts trn_rsrc_rdy_n, and 
presents the rest of the TLP DWs on trn_rd [31:0] for the successive clock cycles. The state machine 
keeps the assertion of trn_rdst_rdy_n. 

Fourthly, the PCIe core asserts trn_reof_n with the simultaneous presentation of the last DW of the 
TLP. 

Fifthly, at the next clock cycle, the PCIe core deasserts trn_rsrc_rdy_n to indicate the end of valid 
transfer of data on trn_rd [31:0].  
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       Table 3.14 - PCIe Receiving State Machine Transition Table* 
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S0  e  0  0  0  E  X  0  0  S0  
S0  f  0  0  0  F  X  1  0  S0  

S0  g  0  0  0  G  X  0  1  S0  

S0  h  0  0  0  H  X  1  1  S0  

S5  i  0  0  0  I  X  0  X  S4  

S4  j  0  0  0  J  X  1  X  S4  

S0  k  1  0  0  K  X  0  X  S5  
S5  l  0  0  0  L  X  1  X  S5  
S2  m  0  0  0  M  X  0  X  S1  
S1  n  0  0  0  N  X  1  X  S1  
S3  o  0  0  0  O  X  0  X  S2  
S2  p  0  0  0  P  X  1  X  S2  
S0  q  0  1  0  Q  X  0  X  S3  
S3  r  0  0  0  R  X  1  X  S3  
S7  s  0  0  0  S  X  0  X  S6  
S6  t  0  0  0  T  X  1  X  S6  
S8  u  0  0  0  U  X  0  X  S7  
S7  v  0  0  0  V  X  1  X  S7  
S0  w  0  0  1  W  X  0  X  S8  
S8  x  0  0  0  X  X  1  X  S8  

 * For the purpose of simplification, not all the inputs and outputs are specified in this table.                                            
 

 

In figure 3.54, a 3-DW TLP Header without data payload is shown. A 32-bit addressable Memory 
Read request is an example of such TLP. 
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Figure 3.52 - PCIe Receiving State Machine State Diagram 
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Figure 3.53 - Received 32-bit Addressable Memory Write TLP [XUG167] 
 
 

 
 
 

Figure 3.54 - Received 32-bit addressable Memory Read TLP [XUG167] 
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3.5.3.6 PCIe Configuration space Access READ/WRITE State Machine 

Some of the registers within the PCIe configuration space can be accessed directly through the 
interfaces provided by the PCIe core. The contents of these registers can only be modified by 
Configuration Writes issued by the Root Complex. Changing the contents of these register from the 
user side is not possible. 

Table 3.15 lists the Command and Status registers mapped directly to the configuration ports of the 
PCIe core. 

           Table 3.15 - Registers mapped directly onto the configuration Interface of the core 

 
Register Name 

 

 
Description 

 
 
cfg_bus_number[7:0] 

Configuration Bus Number: This register provides the 
assigned bus number to the core. Default value is 00h and 
over written whenever a Type0 configuration packet is 
received. 

 
cfg_device_number[4:0] 

Configuration Device Number: This register provides the 
assigned device number to the core. Default value is 00000b 
and over written whenever a Type0 configuration packet is 
received. 

cfg_function_number[2:0] Configuration Function Number: This register provides the 
function number of the core. This is hard wired to 000b.  

cfg_status[15:0] Configuration Status: PCI status register from the 
configuration space header. 

 
cfg_command[15:0] 

Configuration Command: PCI command register of the 
configuration space header. 

 
cfg_dstatus[15:0] 

Configuration Device Status: PCI Express PIPE device status 
register output. 

 
cfg_dcommand[15:0] 

Configuration Device Command: PCI Express PIPE device 
command register output. 

 
cfg_lstatus[15:0] 

Configuration Link Status: PCI Express PIPE link status 
register output. 

 
cfg_lcommand[15:0] 

Configuration Link Command: PCI Express PIPE link 
command register output. 

 

A combination of cfg_bus_number [7:0], cfg_device_number [4:0] and cfg_function_number [2:0] 
forms the PCIe core identification. This ID is written by the Root Complex through the generation of 
Type0 Configuration Write. The designed Endpoint uses this number as a Requester ID for all the 
TLPs it generates, or as a Completer ID for all the TLPs it completes. The used PCIe core supports 
only one function. Therefore, the function number is hard wired to 000b. 

cfg_status [15:0] advertises the Status Register of the PCI configuration space header. cfg_command 
[15:0] allows the user to see the value stored in the Command Register of the PCI configuration space, 
where cfg_command [0] indicates whether the IO Address Space Decoder is enabled or not, while 
cfg_command[1] specifies whether the memory address space decoder is activated or not. 
cfg_command [2] reflects enabling the PCIe core as a bus master.  
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cfg_dcommand [15:0] contains the information exists in the Device Control Register of the PCI 
Express Extended Capabilities. For example, cfg_dcommand [7:5] determines the maximum payload 
size allowed by this PCIe core.1 

In order to access the other registers, within this configuration space, the PCIe configuration space 
Access State Machine was developed. In this state machine, the required events to generate Read and 
Write cycles are implemented. Writing access implemented in this machine does not work properly, 
because the PCIe core specifications do not allow writing to its configuration space. 

When user wants to write the configuration space, the write cycle does not finish correctly, because 
the PCIe core does not provide the required reaction on the interfaces. 

 
  
 
 
 
 
 
 
 
 
 
 

 
Figure 3.55 - PCIe Configuration Space Access READ/WRITE 

State Machine 

Figure 3.55 shows the interfaces of the PCIe Configuration space Access Read/Write State Machine. 
Table 3.16 illustrates a simplified transition table of this state machine. Its corresponding state diagram 
is depicted in figure 3.56. 

The main functionality of this state machine is to enable the accessing of the PCIe configuration space 
for the purpose of reading from this space by generating the subsequent events shown in figure 3.57. 

In order to read the content of any register in the configuration space of the PCIe core, the state 
machine places the DWORD address of the required register on cfg_dwaddr [9:0]. This address points 
to two registers within this space. The required register can then be separated in the application 
program. The state machine simultaneously asserts cfg_rd_en_n. Once the PCIe core receives this 
signal, it loads the content of the addressed register on cfg_do [31:0].  

 

  
1 Refer to the PCI Express Base Specification [PXS05] for a detailed description of these Registers. 
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The state machine waits until cfg_rd_wr_done_n is asserted by the PCIe core. After the assertion of 
this signal, it reads the configuration data from cfg_do [31:0] as shown in figure 3.57. This figure 
shows an example of two consecutive reads from the Configuration Space. 

                        Table 3.16 - PCIe Configuration Space Access READ/WRITE State                                              
     Machine Transition Table* 
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Figure 3.56 - PCIe Configuration space Access READ/WRITE 

State Machine Bubble Diagram 
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Figure 3.57 - Reading of PCIe Configuration Space [XUG167] 
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4 PCIe Endpoint Simulation                                                     
 

4.1 PCIe Testbench 

The designed PCIe Endpoint was integrated in a top level Testbench to simulate its functionality. 
Figure 4.1 shows the top level of this Testbench (which is written in Verilog HDL). The figure depicts 
the hierarchy of this Testbench. In the top level named boardx01 (indicates a x1 PCIe design), the 
PCIe Downstream Port model, the Philips PHY and the Design Under Test (DUT) are instantiated. 

 
 
   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 4.1 - PCIe Testbench Top-level  

 

The following subsections explain each of these simulation models in details. 
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4.1.1 Philips PHY Simulation Model 

The PX1011A behavioral model is a 
packaged model, which can be simulated 
in ModelSim or other standard Hardware 
Description Language (HDL) simulators. 
The IP Model Packager from Cadence 
was used to generate this model. 

This model can be integrated in any 
simulator that supports either the IEEE 
standard 1499 – the open Model 
Interface, or the IEEE standard 1364 – 
the Verilog PLI 1.0 (Programming 
Language Interface).  

The ModelSim simulator supports the 
PLI. PLI is a kind of an interface that 
defines a way for implementing tasks 
and functions that communicates with 
the used simulator through a defined C 
procedural interface. 

Figure 4.2 - PX1011A Packaged Model [PUG05] 
 
For the model usage in ModelSim, one can either use the precompiled version "libpli.dll" provided 
with the package, or by compiling and linking of the adapter delivered with the package. For the 
purpose of this diploma work, the precompiled version, provided by NXP Semiconductors, was used 
as shown in figure 4.2. 

4.1.2 Xilinx PCIe Downstream Port Simulation Model 

In a PCIe Testbench, a simulation model is needed to implement the functionality of the Root 
Complex and the PCIe switch in the PCIe topology shown in figure 4.3. 

The Xilinx PCIe Downstream Port simulation model, offered by Xilinx when generating the core, was 
used for the purpose of simulation in the PCIe based system. 

The main functionality of this model is to generate downstream TLPs from the CPU to the PCIe 
Endpoint and to receive upstream TLPs from the PCIe Endpoint to the CPU. 
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In addition to the main functionality, this 
model does the initialization of the PCIe 
core's configuration registers, verifies the 
transmission and reception of TLPs by 
generating TLP logs, and provides a kind 
of Test Programming Interface (TPI), 
which enables the simulation of PCIe 
Endpoint device. 

This model is written in Verilog HDL, all 
source codes are provided to give the 
designer the possibility to customize the 
test cases for the best usage and to save 
time in the creation of PCIe testbench.  
 
 
 
 
 
Figure 4.4 depicts the different components of the PCIe Downstream Port model. DSPORT 
implements the functionality of the physical and the Data Link Layers of the PCIe protocol, which are 
responsible for the electrical signalling interfaces to the PCIe link and the reliable transport of TLPs 
across the PCIe link, respectively. 
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Figure 4.3 - PCIe Downstream Port Model 
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Figure 4.4 - Functional Block Diagram of the  
      PCIe Downstream Port Model 

[XUG341]
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The Usrapp_tx demonstrates a transmission engine, which is responsible for the generation of 
downstream TLPs to simulate the functionality of the PCIe Endpoint. The Usrapp_rx implements all 
the functions needed to receive upstream TLPs generated by the PCIe Endpoint. 

Both Usrapp_tx and Usrapp_rx models use common tasks, which are implemented by the Usrapp_com 
model. 

Customized tests can be included by the mean of Test Program Interface (TPI). These tests are written 
in Verilog HDL. The user can indicate the test case to be carried out, when invoking the simulator. 

For the purpose of functional verification, the model implements an output logging mechanism. Three 
different text files are generated, when running a defined task. One of the files summarizes the received 
TLPs, another shows the transmitted TLPs, and the third file includes error messages, in case any 
errors are detected.      

4.1.3 Design Under Test (DUT) 

Figure 4.5 shows a top level of the DUT, which consists of two sub-models: the Microblaze based 
system and the PCIe core simulation models. 

 

 

 

 

 

 
Figure 4.5 - Top level of DUT Model 

 

4.1.3.1 Xilinx PCIe Core Simulation Model 

The generation of the core using Xilinx CORE Generator resulted in several models, one of these 
model was the PCIe core simulation model. This simulation model is a VHDL structural verification 
model that uses simulation primitives, which may not truly implement the device. Such a model is not 
synthesizable. 
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4.1.3.2 Microblaze based system Simulation Model 

The Microblaze based simulation model is illustrated in figure 4.6. Shown are the different 
components building up this system. This simulation model was generated using the Xilinx Platform 
Studio (XPS). This tool allows the initialization of the on-chip BRAM with the compiled application 
program in the Executable Link Format (ELF). This application program is executed by the 
Microblaze.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6 - Top level of Microblaze based System Simulation Model 

4.2 C Application Program 

The BRAM is initialized with the application program described next. This program is written in C, 
using special C-functions provided by Xilinx. It is compiled into an executable link format and loaded 
onto the on-chip BRAM. 

The application program is divided into several segments. Theses segments are executed sequentially 
by the embedded processor. The following is an explanation of each segment in this program, a 
flowchart is provided for each of these segments. 
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Segment 1: Initialization and configuration of the PCIe Core 

Figure 4.7 shows the flowchart of this segment. In this segment, the assigned address to the PCIe 
peripheral is obtained. A time delay is required to allow the plug and play software to configure the 
PCIe core. During this time delay, the following actions take place: 

• System Reset deassertion. 

• Transaction Reset deassertion 

• Transaction Link Up activation. 

• Configuration of the PCIe core. 

• Endpoint configuration as Bus master. 

 

 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 4.7 - Segment 1: Initialization and configuration of the PCIe Core 
 

Segment 2: PCIe Core Configuration Space Read  
 
In this segment, shown in figure 4.8, the Microblaze generates a PCIe configuration space read cycle 
to read one of the configuration registers within the PCIe configuration space. In order to generate 
such a read cycle, the Microblaze does the following actions:  

• Firstly, it generates a write cycle to access the CONTROL register. It set cfg_read to "1" 
within this register to enable the PCIe configuration space read process and writes the 
DWORD address of the targeted configuration register. 

• Secondly, it reads the required data by generating a read cycle to access the PCIe CONFIG 
DATA READ register. 

• Finally, it generates a write cycle to access the CONTROL register. It sets cfg_read to "0" to 
disable the PCIe configuration space read process. 
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Get the Base Address of PCIe Peripheral 

Wait for: 
1) System Reset to be de-asserted 
2) Transaction Reset to be deasserted 
3) Transaction Link Up 
4) The core get configured   
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Figure 4.8 - Segment 2: PCIe Core Configuration Space Read 
 

Segment 3: PCIe Core Configuration Space Write  

Figure 4.9 shows the flow diagram of this segment. In this segment, the Microblaze generates a PCIe 
configuration space write cycle to write onto one of the configuration registers within the PCIe 
configuration space. In order to generate such a write cycle, the Microblaze does the following 
actions:  

• Firstly, it generates a write cycle to access 
the CONTROL register. It sets cfg_write to 
"1", within this register, to enable the PCIe 
configuration space write process and writes 
the DWORD address of the targeted 
configuration register. 

• Secondly, it writes the required data by 
generating a write cycle to write the data 
onto the PCIe CONFIG WRITE READ 
register. 

• Finally, it generates a write cycle to access 
the CONTROL register. It sets cfg_write to 
"0" to disable the PCIe configuration space 
write process. 

 
 

Figure 4.9 - Segment 3: PCIe Core Configuration Space Write 
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Segment 4: Bus Master Enable 

Figure 4.10 shows the flow diagram of this segment. 
In this segment, the Microblaze checks whether the 
core is configured as a bus master or not. It reads the 
STATUS register and then checks cfg_command (2) 
for bus mastering.  
 
 
 
 
 
 
 
 
 
 

              Figure 4.10 - Segment 4: Bus Master Enable 

Segment 5: Generating of a Memory Write TLP 

Figure 4.11 shows the flow diagram of this segment. In this segment, the Microblaze sends the Header 
and the data Payload to the USER LOGIC model, in order to generate a Memory Write TLP. In this 
segment, the Microblaze does the following actions:  

• Firstly, if the core is enabled as a bus master, it starts sending the Header and Payload by 
carrying out the following events: 

1 It writes the first DW in the Header onto the MWR/MRD HDR DW1 register.   

2 It writes the second DW in the Header onto the MWR/MRD HDR DW2 register. 

3 It writes the third DW in the Header onto the MWR/MRD HDR DW3 register. 

4 It writes the data Payload onto the MWR PAYLOAD register. 

• Secondly, it generates a write cycle to access the CONTROL register. It sets both 
mem_wr_gen and master_enable to "1" in order to activate the Memory Write TLP 
generation process and to confirm the enabling of the core as bus master. 

• Thirdly, it reads the STATUS register to check whether the TLP was sent or not. It checks 
mem_wr_transmitted. If this signal is = 1, it continues to the next segment. Otherwise, it 
keeps reading this register and controlling this signal. 

 
 
 
 
 
 

PCIe 
configured 

as Bus 
Master 

 No 

 Yes 

Microblaze reads STATUS Register  



 
CHAPTER 4. PCIe ENDPOINT SIMULATION  88 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 - Segment 5: Generating of a Memory Write TLP 

 
Segment 6: Generating of a Memory Read TLP 

Figure 4.12 shows the flow diagram of this segment. In this segment, the Microblaze sends the Header 
to the USER LOGIC model in order to generate a Memory Read TLP. In this segment the Microblaze 
does the following actions: 
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• Firstly, if a Memory Write TLP was sent, it waits for a while then starts sending the first 
DW in the Header of the Memory Read TLP to the MWR/MRD HDR DW1 register. The 
same information stored in the registers MWR/MRD HDR_DW2 and MWR/MRD 
HDR_DW3, are used as the second and third DWs of the Header. 

• Secondly, it generates a write cycle to access the CONTROL register. It sets mem_wr_gen to 
"0" and mem_rd_gen to "1" in order to deactivate the Memory Write TLP generation process 
and to activate the Memory Read TLP generation process. It also confirms the enabling of 
the core as bus master. 

• Thirdly, it reads the STATUS register to check whether the Memory Read TLP was sent or 
not. It checks mem_rd_transmitted. If this signal is = 1, it continues to the next segment. 
Otherwise, it keeps reading this register and controlling this signal. 
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Segment 7: Receiving of a CPLD TLP 

The Memory Read TLP is a non-posted transaction, which requires a completion TLP either with Data 
(CPLD) or without data (CPL). In this segment, the Microblaze receives a CPLD as a consequence of 
its Memory Read request. In this segment, the Microblaze does the following actions: 

• Firstly, it reads the STATUS register to check whether a CPLD TLP was received or not. It 
checks cpld_received. If this signal is = 1, it starts receiving the CPLD TLP. Otherwise, it 
keeps reading this register and controlling this signal. 

• Secondly, if CPLD TLP was received, it reads the four registers, REC. MWR/MRD/CPLD 
DW1, REC. CPLD DW2, REC. CPLD DW3, and REC. CPLD DW4 Registers, 
successively, as shown in figure 4.13.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 - Segment 7: Receiving of a CPLD 
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Segment 8: Receiving of a Memory Write TLP 

In this segment, the Microblaze receives a Memory Write TLP. It does the following actions: 

• Firstly, it reads the STATUS register to check whether a Memory Write TLP was received 
or not. It checks mem_wr_received. If this signal is = 1, it starts receiving the TLP. 
Otherwise, it keeps reading this register and controlling this signal. 

• Secondly, if a Memory Write TLP was received, it reads the four registers, REC. 
MWR/MRD/CPLD DW1, REC. MWR/MRD DW2, REC. MWR/MRD DW3, and REC. 
MWR/MRD DW4 Registers, successively, as shown in figure 4.14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14 - Segment 8: Receiving of a Memory Write TLP 
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Segment 9: Receiving of a Memory Read TLP 

In this segment, the Microblaze receives a Memory Read TLP. It does the following actions: 

• Firstly, it reads the STATUS register to check whether a Memory Read TLP was received or 
not. It checks mem_rd_received. If this signal is = 1, it starts receiving the TLP. Otherwise, 
it keeps reading this register and controlling this signal. 

• Secondly, if a Memory Read TLP was received, it reads the four registers, REC. 
MWR/MRD/CPLD DW1, REC. MWR/MRD DW2, REC. MWR/MRD DW3, and REC. 
MWR/MRD DW4 Registers, successively, as shown in figure 4.15.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15 - Segment 9: Receiving of a Memory Read TLP 
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Segment 10: Generation of a CPLD TLP 

Figure 4.16 shows the flow diagram of this segment. In this segment, the Microblaze enables the 
generation of a Completion with Data TLP. This CPLD is generated in the USER LOGIC model. In 
this segment, the Microblaze does the following actions: 

• Firstly, it generates a write cycle to access the CONTROL register. It sets compl_gen to “1”, 
mem_rd_gen and mem_wr_gen to “0” in order to deactivate both the Memory Write and 
Read TLP generation processes and to activate the CPLD TLP generation process. It also 
confirms the enabling of the core as bus master. 

• Secondly, it reads the STATUS register to check whether the TLP was sent or not. It checks 
cpld_transmitted. If this signal is = 1, it finishes. Otherwise, it keeps reading this register and 
controlling this signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16 - Segment 10: Generation of a CPLD TLP 
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Running test {EndPoint_test}......

# [0] : System Reset Asserted...

# [4995000] : System Reset De-asserted...

# [8522100] : Transaction Reset Is De-asserted...

# [80186100] : Transaction Link Is Up...

# [80186100] : Inspecting Core Configuration 

Space...

.

.

.

Selected when invoking the simulator 

vsim +TESTNAME=EndPoint_test work.boardx01

SEGMENT 1

STARTSTART

Time in PSTime in PS ActionAction

 

4.3 Simulation Flow 

Figures 4.17, 4.20, 4.26, 4.28, and 4.31 show the simulation flow carried out to verify the functionality 
of the designed Endpoint. In these figures the transcript window of the ModelSim Simulator is shown. 
Each of these figures is related to one or more of the C application program segments executed by the 
Microblaze. One should differentiate between this C application program executed by the Microblaze 
and the test program executed by the PCIe Downstream Port simulation model. The simulation flow is 
divided into the following stages: 

Stage 1: Initialization and configuration of the PCIe Core 

The simulation starts by selecting the required test when invoking the simulator as shown in figure 
4.17. This stage of the simulation flow is related to segment 1 of the C application program. In this 
stage, the test program of the PCIe Downstream Port Simulation model waits the system reset to 
deassert as well as the endpoint's trn_lnk_up signal to assert, before it starts configuring the Endpoint. 

The waveforms shown in figure 4.18 depict the PXPIPE Interfaces. In this figure, shown are the 
Physical Layer Packets (PLPs) which issued by the physical layer of the Downstream port and 
terminated at the physical layer of the PCIe Endpoint. Such PLPs are used during the Link Training 
and Initialization.  

The cursor in this figure indicates the moment when RXVALID changes from “0” to “1”, at this 
moment, symbol lock takes place and valid data are available on RXDATA and RXDATAK.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.17 - Simulation Flow Stage 1 

Figure 4.19 shows the interfaces of the Downstream Port model. In this figure, the system reset is 
indicated by the first cursor on the most left. The second cursor shows the moment when trn_lnk_up is 
activated.  
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Figure 4.18 - Symbol Lock/PXPIPE Waveforms 

The test program then carries out a series of Type 0 Configuration Writes and Reads to the Endpoint's 
PCI configuration space shown in figure 2.6. It determines the memory and IO requirements of the 
Endpoint, and then programs the Endpoint's Base Address Registers in order to make the Endpoint 
device ready to receive TLPs from the PCIe Downstream Port model. These Configuration Write and 
Read TLPs are indicated between the second and the third cursors shown in figure 4.19. 

The test program cycles through all the Endpoint's BARs and determines whether they are enabled or 
disabled. If they are enabled, it determines their type, whether they are 32-bit memory, 64-bit memory 
or IO spaces as shown in figure 4.20. 

Referring to figure 3.15, the PCIe core was configured to support only 32-bit memory space of 64 
Kbytes and a starting address of ffff0000h, by configuring BAR0. Figure 4.20 emphasizes that the test 
program found the same configuration. After this inspection the test program starts setting the core 
configuration space. The procedure of setting this space is illustrated in figure 4.21.  
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.

.

# [126330000] PCI EXPRESS BAR MEMORY/IO MAPPING PROCESS BEGUN...

# # BAR 0: VALUE = 00000000 RANGE = ffff0000 TYPE =  MEM32 MAPPEDBAR 0: VALUE = 00000000 RANGE = ffff0000 TYPE =  MEM32 MAPPED

# BAR 1: VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# BAR 2: VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# BAR 3: VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# BAR 4: VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# BAR 5: VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# EROM : VALUE = 00000000 RANGE = 00000000 TYPE =  DISABLED

# [126330000] : Setting Core Configuration Space...

.

.

# [184890000] : PCIe core is configured as Bus Master

.

.

64 KB

 

 

 
Figure 4.19 - PCIe Downstream Port Waveforms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.20 - Simulation Flow Stage 1 (Continued) 
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31

0000

0123415

000000000000XXXXXXXXXXXXXXXX

31

(1) After power-up or a reset „Uninitialized BAR0“

(2) Test program writes all 1‘s.

0000

0123415

0000000000001111111111111111

31

0000

0123415

0000000000001111111111111111

31

(3) Test program reads BAR0 to check the request

0000

0123415

0000000000001111111111111111

31

0000

0123415

0000000000001111111111111111

31

0 = Memory request,                             

1 = IO request

10 = 64 bit address

00 = 32 bit address

1 = prefetchable

0 = non-prefetchable

0 = Memory request,                             

1 = IO request

10 = 64 bit address

00 = 32 bit address

1 = prefetchable

0 = non-prefetchable

(4) Test program writes Start Address

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.21 - Setting of PCIe Configuration Space 

 

The Type0 Configuration Write to and Read from Endpoint's PCI Base Address Register 0 (BAR0) 
TLPs are logged out in the transmitting text file generated when running a defined task as shown in 
figure 4.22. The PCIe Endpoint completes the Read request with a completion without data TLP 
(CPL), which is received by the Downstream Port model. Figure 4.23 depicts this TLP which is 
logged out in the receiving text file. The waveform of this TLP is depicted in figure 4.25.  

The final step in setting up the BAR0 (as illustrated in figure 4.21) is to write the starting address for 
BAR0. This Configuration Write TLP is depicted in figure 4.24 which again shows the transmitting 
output logging.  

The procedure of setting BAR0 is illustrated here. The same steps are carried out when setting BAR1 
to BAR5 and the expansion ROM Base Address. 
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[80282000]: Config Write Type 0 Frame 
 
Traffic Class: 0x0 
TD: 0 
EP: 0 
Attributes: 0x0 
Length: 0x001 
Requester Id: 0x01a0 
Tag: 0x00 
Last and First Byte Enables: 0x0f 
Completer Id: 0x01a0 
Register Address: 0x010 
 
0xff 
0xff 
0xff 
0xff 
 
 
[83578000]: Config Read Type 0 Frame 
 
Traffic Class: 0x0 
TD: 0 
EP: 0 
Attributes: 0x0 
Length: 0x001 
Requester Id: 0x01a0 
Tag: 0x01 
Last and First Byte Enables: 0x0f 
Completer Id: 0x01a0 
Register Address: 0x010 

 

Figure 4.22 - Transmission Output Logging 

 

[83866000]: Completion Without Data Frame  

Traffic Class: 0x0 

TD: 0 
EP: 0 
Attributes: 0x0 
Length: 0x000 
Completer Id: 0x01a0 
Completion Status: 0x0 
Requester Id: 0x01a0  
Tag: 0x00  

 

Figure 4.23 - Reception Output Logging 
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[126426000]: Config Write Type 0 Frame  
 
  Traffic Class: 0x0 
  TD: 0 
  EP: 0 
  Attributes: 0x0 
  Length: 0x001 
  Requester Id: 0x01a0 
  Tag: 0x00 
  Last and First Byte Enables: 0x0f 
  Completer Id: 0x01a0 
  Register Address: 0x010  
 
  0x00 
  0x00 
  0x00 
  0x00 
  

 

Figure 4.24 - Transmitting Output Logging/Writing BAR0 Starting Address 

 

Figure 4.25 - Waveforms of Configuration Write and CPL TLPs 

 

 

 

CPL. TLP

CFG. Write TLP
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.
# ** Note: Microblaze reads PCIe Core Configuration Space
# Time: 187018568 ps  Iteration: 4  Instance:
/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_i
_0/pcie_ip_0/user_logic_i
# ** Note: Microblaze writes PCIe Core Configuration Space
# Time: 187514568 ps  Iteration: 4  Instance:
/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_i
_0/pcie_ip_0/user_logic_i
# [187962000] : TSK_PARSE_FRAME on Receive

.

.

 

In addition to assigning the starting address of BAR0, the test program writes to both the PCIe 
command and device control registers in order to configure the core as bus master (as illustrated in 
figure 4.20) and to indicate the maximum payload size. 

Stage 2: PCIe Core Configuration Space Access 

This stage is related to segments 1 and 2 of the C application program. In this stage the Microblaze 
accesses the PCIe configuration space, reading from and writing to this space as shown in figure 2.26. 
The waveforms of this stage are illustrated in figure 4.27. As mentioned before, the write cycle does 
not finish properly due to the fact of having the PCIe core does not allow such a write access to it’s 
configuration space.  
 

 
 

 

 

 

 

Figure 4.26 - Simulation Flow Stage 2 

 

Figure 4.27 - PCIe Core Configuration Space Access Waveforms 

 

Read 

Write 
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Stage 3: Endpoint generates Memory Write/Read TLPs  

This stage is related to segments 5 to 7 of the C application program. Figure 4.28 depicts this stage, 
where the Endpoint transmits a Memory Write TLP followed by a Memory Read TLP. The PCIe 
Downstream Port Model receives these TLPs and responds with a CPLD TLP as shown in the figure.  

. 

. 

. 

# [185210000] : PCIe Downstream Port expect a Memory write TLP 

# [187962000] : TSK_PARSE_FRAME on Receive 

# ** Note: PCIe Core transmitted a MEM_WR32 TLP 

#    Time: 188522568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i 

# ** Note: PCIe Core transmitted a MEM_RD32 TLP 

#    Time: 189002568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i 

# [190042000] : TSK_PARSE_FRAME on Receive 

# [190042000] : Received MEMWR --- Tag 0x01 

# [190042000] : TEST PASSED --- received MEMWR with written Data: 55555555  

# [190362000] : PCIe Downstream Port expect a Memory read TLP 

# [190490000] : TSK_PARSE_FRAME on Receive 

# [190490000] : Received MEMRD --- Tag 0x01 

# [190490000] : TEST PASSED --- PCIe Downstream Port received MEMRD  

# [192186000] : TSK_PARSE_FRAME on Transmit 

# [192186000] : PCIe Downstream Port transmitted a CPLD 

# ** Note: PCIe Core received a CPLD TLP 

#    Time: 193514568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i 

# ** Note: PCIe Core succeed in receiving a CPLD with the required Data 

#    Time: 193562568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i 

. 

. 

. 

Figure 4.28 - Simulation Flow Stage 3 

The waveforms of the transmitted Write and Read TLPs from the PCIe Endpoint are illustrated in 
figure 4.29 which also shows the PCIe transmitting state machine. 

SEMGMENT 5 

SEMGMENT 6 

SEMGMENT 7 
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Figure 4.29 - Simulation Flow Stage 3 Waveforms 

Stage 4: PCIe Downstream Port Model generates Memory Writes/Reads TLPs 

This stage is related to segments 8 to 10 of the C application program. Figure 4.31 shows this stage, 
where the PCIe Downstream Port Model transmits a Memory Write TLP followed by a Memory Read 
TLP. The Endpoint receives these TLPs and responds with a CPLD TLP as depicted by the waveform 
shown in the figure 4.30. 

 

 

Figure 4.30 - Simulation Flow Stage 4 Waveforms 
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. 
. 
. 
. 
. 
. 

# [193882000] : TSK_PARSE_FRAME on Transmit 

# [193882000] : PCIe Downstream Port transmitted a MEMWR TLP 

# [194298000] : TSK_PARSE_FRAME on Transmit 

# [194298000] : PCIe Downstream Port transmitted a MEMRDR TLP 

# [194298000] : PCIe Downstream Port expects a CPLD from PCIe Core 

# ** Note: PCIe Core received a MEM_WR32 TLP 

#    Time: 195210568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i 

# ** Note: PCIe Core received a MEM_RD32 TLP 

#    Time: 195610568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/ 

pcie_ip_0/pcie_ip_0/user_logic_i 

# ** Note: PCIe Core transmitted a CPLD TLP 

#    Time: 196922568 ps  Iteration: 4  Instance: 

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/ 

pcie_ip_0/pcie_ip_0/user_logic_i 

# [198458000] : TSK_PARSE_FRAME on Receive 

# [200698000] : Test PASSED --- Write Data: 01020304 successfully received 

# [200698000] : Finished transmission of PCI-Express TLPs 

# ** Note: $finish    : ../tests/sample_tests1.v(336) 

#    Time: 200698 ns  Iteration: 5  Instance: 

/boardx01/xilinx_pci_exp_1_lane_downstream_port/tx_usrapp 

# 1 

FFIINNIISSHH  

 
 

 

Figure 4.31 - Simulation Flow Stage 4 
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SEMGMENT 9 

SEMGMENT 10 
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4.4 Test Cases Summary 

Several test cases were conducted to verify the functionality of this system. The following is a 
summary of these test cases: 

Test case 1: 

In this test case (shown in figure 4.32), the CPU generates a Memory Write TLP to write data of 1 DW 
payload size to a memory mapped location within the Endpoint. It then generates a Memory Read TLP 
to read this data.  

The Endpoint responds to this Memory Read request by generating a Completion with the required 
Data CPLD TLP. The CPU receives this TLP and terminates the transaction. 

Test case 2: 

In this test case, the Endpoint, which is 
configured as a bus master, generates a 
Memory Write TLP to write data of 1 DW 
payload size to a location within the System 
Memory. The Root Complex receives this 
TLP and writes the data onto the specified 
location. The Endpoint then generates a 
Memory Read TLP to read the same data, it 
has written. The Root Complex receives this 
TLP and in turn accesses the System Memory 
to get the required data, once it has the data, it 
generates a Completion with this Data CPLD 
TLP. This TLP is downstream steered to the 
Endpoint, which in turn receives this TLP and 
terminates the transaction. 

 
 
 
 
 
 
 
 
 

 
 

Figure 4.32 - Test Cases 1 and 2 
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Test case 3: 

The purpose of this test case is to verify the ability of the Microblaze to read the PCIe configuration 
space. In this test case, the Microblaze reads one of the registers within this space. 

Test case 4: 

In this test case, the Microblaze tries to write to one of the PCIe configuration registers. In this case, 
the Microblaze fails to write because the version of the PCIe core used to implement the PCIe protocol 
layers does not allow such an access. This feature might be implemented in newer version of this core.
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5 PCIe Endpoint Implementation 
 
 
The designed PCIe Endpoint was synthesized using the Xilinx Integrated Software Environment 
(ISE). The different phases of the design implementation (Translation, Mapping, and Place & Route) 
were also performed.  
 
The generation of a programming file to configure the targeted FPGA device (which is located on the 
Xilinx PCIe Spartan-3 Starter Kit) was not performed. Therefore, a board level functional verification 
was not carried out. The reason behind this was the unavailability of a windows software driver for the 
regarded kit.    

Table 5.1 summarizes some of the resulted device utilization (FPGA family: Spartan-3, Target Device: 
xc3s1000, Target Package: fg676, and Target Speed: -4). These results are obtained from the 
generated Map and Place & Route reports. All the time requirements and constraints were met.  

Table 5.1 - Device Utilization 

 

Name 

 

Nr. out of total 
resources Nr. 

 

Percentage 
(%) 

 

Description 

BUFGMUXs 5 out of 8 62 Global clock buffer Multiplexers associated with 
the clock distribution tree.  

DCMs 1 out of 4 25 Data Clock Managers 

External IOBs         35 out of 391 8 Input/Output Blocks 

LOCed IOBs           35 out of 35 100 Located Input/Output Blocks 

MULT18X18s        3 out of 24 12 18X18 Multipliers 

Block RAMs 16 out of  24 66 Block Random Access Memory 

GCLKs 5 out of  8 62 Global Clocks 

4 input LUTs 7668 out of 15360 49 4 input Look Up Tables 

Slice Flip Flops 5796 out of 15360 37 Flip Flops 

Slices 6209 out of 7680 80 Area utilization  
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6 Conclusion and Future Work                                               
 
 
Within this diploma work, the various capabilities of the PCIe bus protocol were demonstrated. The 
theory of PCIe was summarized and presented in monthly-based presentations (PCIe tutorials). Some 
of the available PCIe IP solutions in the market were studied and compared. 
 
In a platform based on PCIe topology, an Endpoint device was designed. This Endpoint embeds the 
Microblaze soft core of Xilinx, which is bridged to the PCIe protocol layers implemented by the PCIe 
core, to serve the data communication between this intelligent Endpoint and the CPU/system memory 
through the Root Complex. 
 
The Xilinx Platform Studio (XPS), a part of the Xilinx Embedded Development Kit (EDK), was used 
to specify and design the Microblaze based system. A basic and simplified OPB to PCIe Bridge was 
developed to bridge the Microblaze and the PCIe protocol layers. The PCIe core was generated, 
configured and customized using the Xilinx CORE generator. A packaged simulation model, provided 
by NXP Semiconductors, was used to simulate the functionality of the PCIe physical layer. This 
model interfaces the simulation tool using the Verilog HDL Programming Language Interface (PLI). 
 
In a modified version of a PCIe Testbench (provided by Xilinx) and with the help of the simulation 
tool ModelSim, the functionality of the designed Endpoint was simulated and verified. 
  
In addition to that, the designed Endpoint was synthesized using the Xilinx Integrated Software 
Environment (ISE). The synthesized system was prepared to be implemented in the Xilinx Spartan-3 
FPGA, located on the Xilinx PCIe Spartan-3 Starter Kit. The implementation itself was not carried 
out. The reason behind this was the unavailability of a windows software driver for this Kit. Therefore, 
the system functionality was not verified on the board level. This motivates the developing of a 
software driver to enable the future implementation (with the available results) and the board level 
verification of the designed PCIe Endpoint.   
 
It can also be concluded that working with PCIe requires the knowledge of the PCIe protocol, because 
most of the available PCIe IP cores don’t provide a compatible interfaces, which allow them to be 
directly connected to the regarded processor. Therefore, in most cases, an effort must be made to 
develop a bridge that allows an easy connection of the PCIe peripheral to the processor.    
 
Furthermore, the functionality of this designed Endpoint can be more complicated than this simple 
data transfer task. One can further extend the capabilities of this Endpoint by reconfiguring the PCIe 
core to include IO mapped space, as well as to allow some of the advanced features of this PCIe 
Endpoint. 
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Appendix A: PCI Express IP Providers                                 
 
 
Many FPGA vendors and third party companies provide tested and optimized PCIe IPs as shown in 
figure A.1. Provided features for each layer of the PCIe structure differ from one provider to another.  
 
Within this diploma work, some of the PCIe IPs available in the market were studied and compared. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A.1 - PCIe IP Providers 

 
 
The comparison was held in three different tables. In the first table, the various features of the physical 
and data link layers were compared. Features such as the number of the implemented Lanes, the line 
speed, the link Initialization and Training, the configuration of the physical layer (whether being built-
in or external), the type of the interface to the PCIe IP, and the inclusion of a retry (replay) buffer and 
its size were considered in this table. 
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The second table compares the features implemented for the transaction layer. The features considered 
here are: the transmitter buffer and its size, the data bus width, the availability of virtual channel 
buffers, whether quality of services protocol is implemented or not, the data payload (Max. of bytes), 
flow control, TLP order rules, and the type of interface the core has when attached to a 
microprocessor.  
 
In the third table, the general key features were compared. Features such as the functionality of the IP 
cores, the PCIe base specification version the cores meet, the targeted devices, the implemented 
features for data integrity, Compatibility with PCI-Special Interest Group (PCI-SIG), the power 
management features, and the configuration possibilities were considered in this table. 
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Table A.1 - Features of the Physical Layer and Data Link Layer 1 

 
 

IP Provider 

 
 

Core Name 

 
Nr. of 
Lanes 

 
Line 
speed 

(Gbps) 
 

 
Link 

initialization 
and Training 

 

 
Built-in 

PHY 

 
External 

PHY 

 
PIPE 

Interface 

 
 

Replay (Retry) Buffer 

 
Pci_exp_1_Lane_64b_ep 

 
X1 

 
2.5 

 
1 MGTs2 

Pci_exp_4_Lane_64b_ep X4 10 4 MGTs 
Pci_exp_8_Lane_64b_ep X8 20 8 MGTs 
Pci_exp_1_Lane_32b_ep X1 2.5 1 MGTs 
Pci_exp_4_Lane_32b_ep X4 10 

 
 

Link width & 
Link data rate 

 

4 MGTs 

 
 
 

NA 
 

 
 
 

NA 
 

PCI Express PIPE 
Endpoint 1-Lane 

X1 2.5 Polarity 
Inversion 

NA Philips PX1011A 8-bit 

 
 
 
 

NA 
 

 
 
 

 

PCI Express Endpoint 
Block 

 

x1,x2, 
x4,x8 

2.5,10,20 NA Rocket IO 
GTP 

NA NA 1 up to 8 (32kbit RAM 
Block) 

  
PCI-Express CTLR 

 
 

 
x1, x2, 
x4,x8 

 

 
 

2.5,10,20 

Lane and 
polarity 
Reversal  
LTSSM 

 
 

NA 

Support for 8 or 
16 bit PIPE 
interface for 

SerDes 
 

 
 

8-bit or 16 

 
 

Supported 

 

PCI-Express Bus 
Controller 

EC310 

x1,x4 2.5,10 Full LTSSM Rambus 
and Xilinx 

PHY 

Philips’ 
PX1011A, PHY 

from 
Genesys Logic 

 
Standard 

PIPE 
Interface 

 
Supported 

 

 

 

PCI Express Endpoint 
Core 

 
x1,x2,x4
,x8,x12,

x16 
 

 
2.5,5,10,2
0,30,40 

 
Full LTSSM 

 
NA 

 

 
Any PIPE 1.0 

compliant PHY. 

 
8-bit or 16 

 
Single 

1 NA stands for Not Available. The feature is either not available, or no information are provided 
2 MGTs: Multi-Gigabit Tranceivers 

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
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Table A.1 - Features of the Physical Layer and Data Link Layer (Cont.) 1 

 
 

IP Provider 

 
 

Core Name 

 
Nr. of 
Lanes 

 
Line 
speed 
(Gbps) 

 
Link 

initialization 
and Training 

 

 
Built-in 

PHY 

 
External 

PHY 

 
PIPE 

Interface 

 
 

Replay (Retry) Buffer 

Endpoint 

Root port 

Dual Mode(EP/RC) 

 

 

Switch Port (Up-
/Downstream) 

 
 
 

x1, x2, 
x4,x8 
or x16 

 

 
 
 
 
 

2.5,5,10,20
,40 

 

 
 
 
 
 

NA 

 
 
 
 
 

NA 

 
 
 
 

PIPE or Non-
PIPE PHY 

logic 

 
 
 
 

8-bit and 16-
bit PIPE 

 

 
 
 
 

Configurable 

 

 

 
 

PCIe-EP 

 
 

x1,x4 

 
 

2.5,10 

Link width, lane 
order, Lane 

Reversal and 
polarity 

Inversion 

 
 

NA 

Any 16-bit 
PIPE-

compliant  
PHY 

 
 

16-bit 

 
 

NA 

 

 

 
 
 

PCI Express Core 

 
 

x1,x4, 
x8 

 

 
 
 

2.5,10,20 

 
 
 

NA 

 
 

Integrated 
PHY 

FPGAs 

Discrete PHY 
(Genesys, 

Philips, TI) and 
PIPE-

compliant 
ASIC PHY 

 
 
 

Standard 
PIPE 

 
 

NA 

 
 

 

 
GPEX-EP 

 
x1, x2, 
x4,x8 
or x16 

 

 
2.5,5,10,20

,40 
 

 
Flexible Lane 
ordering and 

Lane Reversal 

 
NA 

 

 
PIPE spec 

v1.0 
compliant 

 

 
8-bit or 16-bit 

 
Configurable 

 

 

 1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.rambus.com/us/
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.rambus.com/us/
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Table A.1 - Features of the Physical Layer and Data Link Layer (Cont.) 1 

 
 

IP Provider 

 
 

Core Name 

 
Nr. of 
Lanes 

 

 
Line 
speed 
(Gbps) 

 
Link 

initialization 
and Training 

 

 
Built-in 

PHY 

 
External 

PHY 

 
PIPE 

Interface 

 
 

Replay (Retry) Buffer 

PCI Express Endpoint 
Core 

 

 

 
PCI Express 2.0 
Endpoint Core 

 

 
 

x1, x2, 
x4,x8 
or x16 

 
 

2.5,5,10,20
,40 

Complete Link 
Training 
(LTSSM) 

Automatic Lane 
Reversal and 

polarity 
Inversion 

 
 

NA 

 
 

Rocket I/O 
for example. 

 

 
 

8-bit or 16-bit 

 
 

Configurable 

 
PCI Express IP core 

IP7001 

x1, x2, 
x4, x8 
future 

 

2.5,5,10,20  
 

NA 

FPGA On-
Chip 
PHY 

through 
wrapper 

Intel 
compatible 
PIPE PCIe 

PHY 

 
 

NA 

 
 

NA 

 

Databahn™ PCI 
Express IP 

 
x1, x2, 
x4, x8 

 
2.5,5,10,20 

 
 

NA 

 
 

NA 

Compliant 
with Intel 

PIPE 
Specification 

v1.86 

 
8-bit or 16-bit 

PIPE 

 
 

NA 

 
PCI Express End Point 

(GPEX-EP) 

PCI Express Root 
Complex 

GPEX-RC 

 
 

 PCI Express Switch 
Controller (GPEX-SW) 

 
 
 
 

x1, x2, 
x4, x8 
or x16 

 
 
 
 
 

2.5,5,10,20
,40 

 
 
 

Flexible lane 
ordering and 

support for lane 
reversal 

 
 
 
 
 

NA 

 
 
 
 

PIPE based 
PHY 

 
 
 
 

PIPE based 
PHY 

 
 
 

Efficient 
Flexible and configurable 

 

 
 

1 NA stands for Not Available. The feature is either not available, or no information are provided 
2 LTSSM: Link Training and Status State Machine 

http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.denali.com/
http://www.gdatech.com/default.shtml
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Table A.2 - Features of the Transaction Layer 1 
 

 
 

IP Provider 

 
 

Core Name 

 
Tx Buffers 
Width/bit 

 
Data 
Bus 

Width 
 

 
Virtual 

Channel 
Buffers 

 
Quality of 
Services 
Protocol 

 
Data Payload 

(Max. of bytes) 

 
 

Flow Control 

 
TLP 

Ordering 
Rules 

 
Standard 

Bus 
Interface 

 
Pci_exp_1_Lane_64b_ep 

 
16 (5) 

 
64 

Pci_exp_4_Lane_64b_ep 16 (5) 64 
Pci_exp_8_Lane_64b_ep 32 (6) 64 
Pci_exp_1_Lane_32b_ep 8 (5) 32 
Pci_exp_4_Lane_32b_ep 16 (5) 32 

PCI Express PIPE Endpoint 
1-Lane 

6 32 

 
 
 

NA 

 
 
 

NA 

 
 
 

512 
 

 
 
 
 

 
 
 

 
PCI Express Endpoint Block 

Min. 1 and 
max. 16 
(36K-bit 

block RAM) 
 

 
32 

 
UP to 2 VCs 

 
NA 

 
From 128 to 4000 

 
 
 
 
 

Receive and 
Transmit 

 

 
 
 
 
 

Fully 
compliant 

 

 
 
 
 
 

NA 
 

 

 
 

 
PCI-Express CTLR 

 

 
Configurable 

 
32,64 or 

128 

Default 
TC0/VC0 

VC capability 

 
NA 

 
NA 

 
Receive and 

Transmit 

 
Compliant 

 
NA 

 

 
PCI-Express Bus Controller 

EC310 
 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
Receive and 

Transmit 

 
Compliant 

 
NA 

 

 

 
PCI Express Endpoint Core 

 

 
Flexible and 
configurable 

 
64 or 
128 

 
Up to 8 VCs 
and 8 TCs 

 

 
provided 

 
NA 

 
Flow control in both 

direction 

 
Compliant 

 
NA 

 

1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
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Table A.2 - Features of the Transaction Layer (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
Tx Buffers 
Width/bit 

 
Data 
Bus 

Width 
 

 
Virtual 

Channel 
Buffers 

 
Quality of 
Services 
Protocol 

 
Data Payload 

(Max. of bytes) 

 
 

Flow Control 

 
TLP 

Ordering 
Rules 

 
Standard 

Bus 
Interface 

Endpoint 

Root port 

Dual Mode(EP/RC) 

 

 

Switch Port 
 

 
 
 

NA 

 
 
 

32/64/ 
128 bit 

 

 
 
 

Up to 8 VC/8 
TC 

 
 
 

Provided 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 
 
 
 

 

 
 

 
 

PCIe-EP 

 
 

Configurable 

 
 

64 

 
 

Up to 8 

 
 

NA 

 
 

From 128 to 4000 

 
 

Receive and Transmit 

 
 

Supported 

 
Wishbone 

AMBA 

 

 
 

 
 

PCI Express Core 

 
 

Flexible 
sizing 

 
 

NA 

 
 

Multiple VCs 

 
 

NA 

 
 

NA 

 
 

NA 

 
 

NA 

 
 

NA 

 

 

 
PCI Express IP core 

IP7001 

 
NA 

 
NA 

 
NA 

 
NA 

 
From 64 to 4000 

 
NA 

 
NA 

 
NA 

 
 
 

 

 1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
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Table A.2 - Features of the Transaction Layer (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
Tx Buffers 
Width/bit 

 

 
Data 
Bus 

Width 
 

 
Virtual 

Channel 
Buffers 

 
Quality of 
Services 
Protocol 

 
Data Payload 

(Max. of bytes) 

 
 

Flow Control 

 
TLP 

Ordering 
Rules 

 
Standard 

Bus 
Interface 

GPEX-EP 
 

GPEX-RC 
 

GPEX-SW 
 

 
 
 
 

 

GPEX-EP/RC 
 

 
 
 

Configurable 

 
 
 

32,64 or 
128 

 
 
 

Configurable 
up to 8 

 
 
 

Provided 

 
 
 

From 128 to 4000 

 
 

Flow control logic for 
both directions 

 
 
 

Compliant 
 
 

 
 
 

NA 
 

 

 
Databahn™ PCI 

Express IP 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
PCI Express End Point 

(GPEX-EP) 

 
configurable 

 
From 64 to 4000 

 
Flow control in both 

direction 
 

PCI Express Root 
Complex 

GPEX-RC 

 
Configurable 

up to 8 

 
NA 

 
 

 

PCI Express Switch 
Controller             
GPEX-SW 

 
 
 
 
 

NA 

 
 
 
 

32,64 or 
128 

 
configurable 

 
 
 
 

NA 
 
 

From 128 to 4000 

 
Flow control in both 

direction 

 
 
 
 
 

Compliant 
 
 
 

 
 
 
 
 

NA 

 
 

 1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.rambus.com/us/
http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.rambus.com/us/
http://www.denali.com/
http://www.gdatech.com/default.shtml
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Table A.2 - Features of the Transaction Layer (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
Tx Buffers 
Width/bit 

 
Data 
Bus 

Width 

 
Virtual 

Channel 
Buffers 

 
Quality of 
Services 
Protocol 

 
Data Payload 

(Max. of bytes) 
 
 

 
 

Flow Control 

 
TLP 

Ordering 
Rules 

 
Standard 

Bus 
Interface 

 
 

PCI Express Endpoint 
Core 

 

 
 

Configurable 

 
 

32,64 or 
128 

 
Configurable 

up to 8 
And up to 8 

TCs 

 
 

NA 

 
 

From 128 to 4000 

 
 

Flow control in both 
direction 

AMBA™ 
2.0 

AHB™ 
and 

AMBA™ 
3 AXI™ 

 

 
 

 

PCI Express 2.0 
Endpoint Core 

 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
NA 

 
 
 
 

Compliant 
 
 

 
NA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 NA stands for Not Available. The feature is either not available, or no information are provided 
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Table A.3 - General Key Features 1 
 

 
 

IP Provider 

 
 

Core Name 

 
 

Function 

 
PCIe 
Base 
Spec. 

 

 
Targeted 

Device 

 
Data integrity, Message and 

Interrupt 

 
 

PCI-SIG 

 
Power Management and 

Configuration 

 
Pci_exp_1_Lane_64b_ep 

 
Virtex-4, 

Virtex-II Pro 
Pci_exp_4_Lane_64b_ep Virtex-4, 

Virtex-II Pro 
Pci_exp_8_Lane_64b_ep Virtex-4 
Pci_exp_1_Lane_32b_ep Virtex-4 
Pci_exp_4_Lane_32b_ep Virtex-4 

 
 
 
 

PCI/PCIe power management 
 

PCI Express PIPE 
Endpoint 1-Lane 

 
 
 
 
 

Endpoint 
 

Spartan-3™ 
Spartan-3E 

Active State Power management 
Programmed Power management 

 
 
 
 
 
 
 
 

 

 
PCI Express Endpoint 

Block 

PCIe 
Endpoint 

block 

 
 
 
 
 
 
 

v1.1 
 

Virtex™-5 
LXT 

 
 
 
 
 
 
 
 

Error detection, recovery and 
Reporting 

 
 
 
 
 
 
 

Compliant 
 

Up to 6 x 32-bit or 3 x 64-bit BARs (or 
a combination of 32 bit and 64 bit)  and     
BARs configurable for memory or I/O 

 

 

 
 

PCI-Express CTLR 

 
Endpoint 
or Root 
complex 

 
 

v1.1 
 

 
 

ASIC 
FPGA 

 

 
MSI or Legacy Interrupt Message 

Optional End-to-end CRC 
(ECRC) 

Optional parity protection 
 

 
 

Compliant 

 
 

NA 

 

 
 

 
PCI-Express Bus 

Controller 
EC310 

 
 

Endpoint 

 
v1.1 

 

 
ASIC,FPGA: 
Virtex II Pro 

Virtex 4 

 
LCRC, error checking 

 
 

Compliant 

 
all PCI Express configuration and power 

management registers 

 
 

1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.xilinx.com/
http://www.eurekatech.com/
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Table A.3 - General Key Features (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
 

Function 

 
PCIe 
Base 
Spec. 

 

 
Targeted 

Device 

 
Data integrity, Message and 

Interrupt 

 
 

PCI-SIG 

 
Power Management and 

Configuration 

 
 

 

 
 

PCI Express Endpoint 
Core 

Endpoint 
configuration. 
extensible to 
support root 
complex and 

switch 
solutions 

 

 
 

v1.1 
 

 
Virtex II Pro 
and Virtex 4 
and 0.18u or 

below 
 

 
Optional ECRC 

Optional Advanced Error Reporting 
support 

Complete message support for 
INTx, MSI,PME 

 
 

 
 
 

Compliant 

 
Optional Power Budgeting 

capability support. 
Supports Active State Power 

Management 
(ASPM) and Software compatible 

PCI-PM. 

 

Endpoint 

 
 

Endpoint 

v1.1 
and 

v2.0, 
Rev 
0.7 

Root port Root Complex  

Dual Mode(EP/RC) Dual 
(Endpoint/Ro

ot) 

 

 

Switch Port (Up-
/Downstream) 

Switch  

 
 
 
 
 

ASIC FPGA 
 

 
 
 
 
 

Selectable ECRC and Advanced 
Error Reporting Support 

 

 
 
 
 
 

Compliant 

 
 
 

Supports all power management 
states L0,L0s,L1,L2 & L3 

Supports Beacon and Wake-Up 
mechanism 

Configurable Type-0 (Endpoint) or 
Type-1 (Root Port, Switch Port) 

Config Headers 

 
 

 

 
 

PCIe-EP 

 
 

Endpoint 

 
 

1.0a 

ASIC(TSM
C 0.13 and 
0.18 µm), 

FPGA 
(Virtex-II 

Pro, Startix 
GX ) 

 
 

Advanced error reporting 
ECRC 

 
 

Compliant 

 
 

PCI configuration space type 0 
header 
MSI 

 

1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.tallika.com/index.htm
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.tallika.com/index.htm
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
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Table A.3 - General Key Features (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
 

Function 

 
PCIe 
Base 
Spec. 

 

 
Targeted 

Device 

 
Data integrity, Message and 

Interrupt 

 
 

PCI-SIG 

 
Power Management and 

Configuration 

 

 
 

 
 

PCI Express Core 

 
 

Endpoint 

 
 
 

v1.1 

 
 

ASIC and 
FPGA 

 
 

Complete error-handling (detection 
and reporting) 

 
 

Compliant 

 
 

User expansion of Config. space 

GPEX-EP Endpoint 
Controller 

GPEX-RC Root Complex 
Port controller 

GPEX-SW Switch Port 
Controller 

 
 
 
 

 

GPEX-EP/RC Dual Mode 
Controller 

 

 
 
 
 

v1.1 
and 

v1.0a 
 

 
 
 
 

ASIC and 
FPGA 

 
 
 
 

Baseline and advanced error and 
reporting 

 

 
 
 
 

Compliant 
 

 
 
 

All configuration capabilities 
Memory/IO /Expansion ROM 

BARs 

 
PCI Express Endpoint 

Core 
 

 
v1.1 

 
ASIC (0.18 
micron or 

below) 
and FPGA 

 

 
 

 

 
PCI Express 2.0 
Endpoint Core 

 

 
Endpoint, 

Root 
Complex, 

Dual mode, 
Switch/Bridge 

 
v1.1 
and 
v2.0 

 

ASIC (90nm 
or below) 
and FPGA 

 
Optional advanced PCI Express 

error reporting, Optional ECC for 
RAM, Configurable ECRC 

generation and checking 
All in-band messages supported for 

Endpoint, Legacy PCI, MSI, and 
MSI-X interrupt support 

 
 

Compliant 

Configurable EP filtering rules for 
posted, non-posted and 

completion traffic 
Configurable BAR filtering (up to 

6), IO filtering, configuration 
filtering and completion 
lookup/timeout for EP 

Supports expansion ROM 
Type 0 configuration space 

 
 

1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.rambus.com/us/
http://www.rambus.com/us/
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Table A.3 - General Key Features (Cont.) 1 
 

 
 

IP Provider 

 
 

Core Name 

 
 

Function 

 
PCIe 
Base 
Spec. 

 

 
Targeted 

Device 

 
Data integrity, Message and 

Interrupt 

 
 

PCI-SIG 

 
Power Management and 

Configuration 
 

 

 
 

 
 

PCI Express IP core 
IP7001 

 

 
 

Endpoint 

 
 

NA 

 
 

NA 

 
 

NA 

 
 

Compliant 

 
 

NA 

 

 

 
Databahn™ PCI 

Express IP 

Root 
Complex, 
Endpoint, 

Dual Mode 
(RC/EP) 

 

v1.1 
and 

prelim
inary 
v2.0 

 
ASIC or 
FPGA 

 
 

Advanced Error Reporting 

 
 

Compliant 

 
 

AN 

PCI Express End Point 
(GPEX-EP) 

 

Endpoint, 
bridge, switch, 
Root Complex 

 
NA 

 
 

X 
PCI Express Root 

Complex 
GPEX-RC 

 
NA 

Message manager to map error 
messages to local events 

 
Efficient error management scheme 

Hardware assisted power 
management scheme 

 
 

 
PCI Express Switch 

Controller               
GPEX-SW 

 
 

NA 

 
 
 
 
 

v1.0a 
 

 
 
 
 

0.18u ASIC 
or better, 

FPGA 
 

 
 

NA 

 
 
 
 
 
 

Compliant 

ASPM L1 / Wake support, 
Auxiliary power support 

Supports Type1 configuration 
space 

Supports Type0/1 configuration 
conversions 

 

1 NA stands for Not Available. The feature is either not available, or no information are provided 

http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.denali.com/
http://www.gdatech.com/default.shtml
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Appendix B: Xilinx WebCases 
 
 
WebCase 668804 
 
Table B.1: WebCase Summary 

Title:  Working with PCI Express 
PIPE v1.5  Case Type:  Technical Support  

Owner:  Mark Noble  Severity:  No Rush  

Contact:  Faraj Nassar  Condition:  Closed  

Phone: 6504394756 Status:  Closed  

Site ID: 249680 Service Pack:  sp2 

Site Name:  Technical University Of 
Vienna  Device Family:  Spartan-3 

    Software Version:  8.2i  

    Os Type:  WinXP  

Attachments: 
 There are no attachments for 
this case.  

 

   

 

 

The following topics were discussed in this WebCase: 

• Simulation without the Philips PHY 

• Configuration of the PCIe Core 

• Simulation of the reference design 

• Link Training and Initialization 

• Xilinx training courses on how to design and develop the PCIe interfaces with the Xilinx Core 

For more details, refer to the file xilinx_webcase_history.doc, located in the documentation sub-
directory of the project’s directory (C: /pcie_based_system/doc/).
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Appendix C: Project Directory Structure 
 
 
Figures C.1 shows the PCIe based System directory structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.1 – Project Directory Structure 
 
 

Pcie_based_system

C: 

doc 

implementation 

simulation 

downstream_port

DUT_pcie_endpoint

mb_system

__XPS

data

drivers

opb_pcie_bridge_v1_00_a

data

scr

microblaze_0

code

include

lib

libsrc

pcieApp_program

src

data sheets

ppt

bibliography

ISE XST

pcie ep

EDK XST

pcie ep
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Figure C.1 - Project Directory Structure (Cont.) 

Due to the license agreements with the companies Xilinx and NXP Semiconductors, the contents 
of the project directory, are kept for SIEMENS use only. Table C.1 lists the provided materials, 
to be found on a compact disc (CD) included with this thesis. 

Table C.1- Project Directory Structure 
 

Name 
 

 
Description 

 
C:/pcie_based_system/ 
 

 
Main project’s directory 

 
C:/pcie_based_system/doc/ 
 

 
System Documentations 

pcie_based_system.pdf PDF version of the Master’s thesis. 
C:/…/…/data_sheets/ Data sheets of PCIe IP solutions. 
C:/…/…/ppt/ PCIe tutorial as PowerPoint presentations. 
C:/…/…/bibliography/ References. 
 
 

pcie_peripheral_v1_00_a

functional

PX1011A-Generic-Behavioral-Model-v1.3

tests

doc 

px1011a 

tools 

tools.hppa 

tools.lnx86 

px1011a 

tools.sun4v 

pcores

data

devl

bfmsim

projnav

synthesis

hdl

vhdl

simulation

behavioral

implementation
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