
DISSERTATION

Web Application Security

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der Sozial- und Wirtschaftswissenschaften

unter der Leitung von

Privatdozent Dipl.-Ing. Dr.techn. Christopher Krügel
E183-1

Institut für Rechnergestützte Automation

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Mag.rer.soc.oec. Nenad Jovanovic
Matrikelnummer: 0025527

Traiskirchnerstraße 19
A-2512 Tribuswinkel, Österreich

Wien, am 25. Juli 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung
(German Abstract)

Im Lauf der letzten Jahre hat sich das Web zu einem wesentlichen Bestand-
teil unseres täglichen Lebens entwickelt. Während unsere Abhängigkeit vom
Web zunimmt, steigt gleichzeitig auch das Interesse von Angreifern an der
Ausnützung von Sicherheitslücken in Webanwendungen. In dieser Arbeit werden
neuartige Ansätze zur Erkennung solcher Sicherheitslücken sowie zum Schutz
von Anwendern gegen Webangriffe vorgestellt

Erkennung von Sicherheitslücken. Die prominentesten Arten von Sicher-
heitslücken in Webanwendungen (wie z.B. SQL Injection und Cross-Site Scrip-
ting) gehören zur allgemeinen Klasse der Taint-basierten Sicherheitslücken. Die
vorliegende Arbeit beschreibt neue Techniken zur Erkennung dieser Art von
Sicherheitslücken durch statische Analyse des Quelltexts potentiell verwundba-
rer Anwendungen. Die vorgestellten Techniken basieren auf flußsensitiver, in-
terprozeduraler und kontextsensitiver Datenflußanalyse, um verwundbare Pro-
grammpunkte aufzuspüren. In diesem Zusammenhang werden Algorithmen für
die Lösung von Problemen präsentiert, die charakteristisch für die Analyse von
Webanwendungen sind.

Schutz von Anwendern. Abgesehen von der proaktiven Erkennung und
Behebung von Sicherheitslücken ist es ebenfalls nutzbringend, Echtzeitmetho-
den zum Schutz von Benutzern von Webanwendungen einzusetzen. Insbeson-
dere Cross-Site Request Forgery ist eine gefährliche Art von Angriff, durch die
sich Authentifizierungsmechanismen verwundbarer Anwendungen umgehen las-
sen. Bestehende Ansätze zur Entschärfung dieser Bedrohung sind unvollständig,
zeitaufwendig und fehleranfällig. Wir präsentieren eine proxy-basierte Lösung,
die einen zuverlässigen und vollständig automatischen Benutzerschutz für exi-
stierende Webanwendungen zur Verfügung stellt. Diese Lösung ist einfach ein-
zusetzen und führt zu keiner Beeinträchtigung des regulären Verhaltens der
geschützten Webanwendung.

Die vorgeschlagenen Techniken wurden zur Gänze implementiert und an Beispie-
len aus der Praxis evaluiert, um deren Machbarkeit, Effektivität und Nützlichkeit
zu demonstrieren. Unsere Prototypen wurden unter einer Open-Source-Lizenz
veröffentlicht und können von unserer Website [67] heruntergeladen werden.

i

Abstract

During the last years, the web has evolved into an integral part of our daily lives.
Unfortunately, as our dependency on the web increases, so does the interest of
attackers in exploiting security vulnerabilities in web applications. This thesis
presents novel approaches aimed at the detection of such vulnerabilities, and at
the protection of clients against web-based attacks.

Vulnerability Detection. The most prominent types of web application vul-
nerabilities (such as SQL Injection and Cross-Site Scripting) belong to the gen-
eral class of Taint-Style Vulnerabilities. In this thesis, we describe novel tech-
niques for detecting these types of vulnerabilities by statically analyzing the
source code of potentially vulnerable applications. More precisely, our tech-
niques are based on flow-sensitive, interprocedural and context-sensitive data
flow analysis to discover vulnerable points in a program. In this context, we
present algorithms for the solution of problems unique to the analysis of web
applications.

Client Protection. Apart from proactively detecting and fixing vulnerabil-
ities at the server side, it is also beneficial to employ real-time methods for
protecting web application users against attacks. In particular, Cross-Site Re-
quest Forgery is a dangerous type of attack that is capable of bypassing the
authentication mechanism of vulnerable applications. Existing approaches to
mitigating this threat are incomplete, time-consuming, and error-prone. We
present a proxy-based solution that provides a reliable and fully automatic user
protection for existing web applications. Applying this solution is straightfor-
ward, and does not interfere with the regular behavior of the protected web
application.

The proposed techniques have been implemented and evaluated on real-world
examples, demonstrating their feasibility, effectiveness, and usefulness. Our
prototype implementations have been released under an open-source license,
and are available for download at our web site [67].

ii

Acknowledgements

Professional. I owe my thanks to my advisors, Christopher Kruegel and En-
gin Kirda, who have safely and skillfully guided me through the entirety of the
work presented in this thesis. They have earned my gratitude and respect with
their professional competence, their catching enthusiasm, and the admirable
ability to keep their students’ work steadily on the road of science. Their posi-
tive example has strongly influenced my way of working, and has resulted in a
thesis that I believe to be both interesting and nice to read.

Familial. Ich danke meinen Eltern für ihre unbeirrbare Zuwendung und Un-
terstützung, ohne die nicht nur diese Arbeit, sondern auch zahlreiche andere Er-
rungenschaften in meinem Leben nicht möglich gewesen wären. Meinem Bruder
danke ich für die vielen gemeinsamen Stunden, aus denen ich so oft und reich-
haltig die Kraft für bevorstehende Herausforderungen geschöpft habe. Meine
Familie war für mich immer ein Ort der Sicherheit und der gegenseitigen Hilfe,
und wird mir als Vorbild für meine weitere familiäre Zukunft dienen.

Emotional. Birgit, meiner geliebten Ehefrau, danke ich für ihre Zuneigung,
ihr Interesse, und dafür, daß es sie gibt. Ihr positives Wesen und die Wärme, die
sie ausstrahlt, erfüllen mich jedesmal aufs neue mit Glück und frischer Ener-
gie. Die vergangenen Jahre, die wir miteinander verbracht haben, waren die
schönsten und erfülltesten meines Lebens.

Financial. This work was supported by the Austrian Science Foundation
(FWF) under grants P18368 (Omnis) and P18764 (Web-Defense), and by the
Secure Business Austria competence center.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Overview . 1

1.2.1 Static Detection of Taint-Style Vulnerabilities 2
1.2.2 Dynamic Prevention of Cross-Site Request Forgery 2

2 Taint-Style Vulnerabilities 4
2.1 Cross-Site Scripting (XSS) . 4
2.2 SQL Injection (SQLI) . 5
2.3 Shell Injection . 6
2.4 Script Injection . 7
2.5 Path Traversal (Directory Traversal) 7
2.6 Focus of this Thesis . 8

3 Static Vulnerability Detection 9
3.1 Data Flow Analysis . 9

3.1.1 Static Analysis Attributes 12
3.2 PHP Front-End . 16

3.2.1 Parse Tree Construction 16
3.2.2 Intermediate Representation: P-Tac 17

3.3 Analysis Back-End . 17
3.4 Literal Analysis: Basics . 18

3.4.1 Carrier Lattice Definition 18
3.4.2 Transfer Functions Definition 19
3.4.3 Dependence on Alias Analysis 22

3.5 Alias Analysis . 23
3.5.1 Aliases in PHP . 23
3.5.2 Intraprocedural Alias Analysis 24
3.5.3 Interprocedural PHP Concepts 25
3.5.4 Interprocedural Alias Analysis 26
3.5.5 Complexity . 32

3.6 Literal Analysis Revisited . 34
3.7 Taint Analysis . 38

3.7.1 Carrier Lattice Definition 38
3.7.2 Transfer Functions Definition 39
3.7.3 Using the Analysis Results 40
3.7.4 Detecting Stored XSS Attacks 40
3.7.5 Limitations . 41

iv

CONTENTS v

3.8 Resolving Includes . 41
3.9 Empirical Results . 42

3.9.1 A Case Study: MyBloggie 43
3.9.2 False Positives . 44
3.9.3 File Inclusion Effectiveness 45

3.10 Summary . 47

4 Taint-Aware String Analysis 48
4.1 Architectural Overview . 50
4.2 Dependence Analysis . 51
4.3 SQLI Analysis . 53
4.4 Program Capability Analyses . 58
4.5 XSS Analysis . 60
4.6 Custom Sanitization Awareness 63
4.7 Implementation . 67
4.8 Empirical Results . 68

4.8.1 Results of SQLI Analysis 68
4.8.2 Results of Database Capability Analysis 71
4.8.3 Results of Filesystem Capability Analysis 73
4.8.4 Results of XSS Analysis 73

4.9 Summary . 75

5 Preventing Cross-Site Request Forgery 76
5.1 Cross-Site Request Forgery . 77

5.1.1 User Authentication in Web Applications 77
5.1.2 Exploiting Session Mechanisms 78

5.2 Existing Mitigation Techniques 80
5.3 A Proxy-Based Solution . 82

5.3.1 Request Processing . 83
5.3.2 Reply Processing . 84
5.3.3 Token Table Cleanup . 86
5.3.4 Discussion of Attacks against the System 86
5.3.5 Eliminating State . 87
5.3.6 Limitations . 87

5.4 Implementation . 88
5.5 Experimental Results . 89

5.5.1 A Case Study: Sending Mails with SquirrelMail 91
5.6 Summary . 92

6 Related Work 93
6.1 Client-Side Techniques . 93
6.2 Dynamic Server-Side Techniques 94
6.3 Static Server-Side Detection of Programming Bugs 96
6.4 Static Server-Side Detection of Web Vulnerabilities 96

7 Conclusions 99

Bibliography 99

List of Figures 105

CONTENTS vi

List of Tables 107

A Lattices 109
A.1 Binary Relations . 109
A.2 Partial Order Relations . 109
A.3 Partially Ordered Sets . 110
A.4 Bounds . 111
A.5 Lattices . 111

List of Publications 113

Curriculum Vitae (German) 114

Chapter 1

Introduction

1.1 Motivation

Web applications have become one of the most important communication chan-
nels between various kinds of service providers and clients on the Internet. The
use of web-based services (such as online shops, news pages, and search engines,
to name just a few) has become a wide-spread routine in today’s economic and
social life. Countless applications are running on millions of servers world-wide,
and their numbers are constantly increasing.

Along with the increased importance of web applications in the last years,
the negative impact of security flaws in such applications has grown as well.
Vulnerabilities that may lead to the compromise of sensitive information are
being reported continuously, and the costs of damages resulting from exploited
flaws can be enormous. In the past, buffer overflows were the dominating type
of vulnerability, and received the highest attention from both the security com-
munity and attackers. According to a recent analysis of the CVE [14] archives,
buffer overflows have descended to rank number four between 2004 and 2006,
whereas the top three ranks are now occupied by web application vulnerabili-
ties [7]. These flaws include common problems such as SQL injection (SQLI)
and cross-site scripting (XSS), and pose a serious threat to both providers and
users of web-based services. Among the main reasons for this phenomenon are
time and financial constraints, limited programming skills, and lack of security
awareness on part of the developers. However, even under the best conditions,
programmers might make mistakes that introduce security problems into their
applications. As a result, the need for automated tools that detect vulnerabili-
ties or protect users against attacks is evident.

1.2 Thesis Overview

The various approaches for mitigating threats to web applications can be di-
vided into client-side and server-side solutions (a more detailed classification
and an overview of related work can be found in Chapter 6). In this thesis,
we address two main aspects of server-side web application security. First, we
present techniques for the static detection of taint-style vulnerabilities. Sec-
ond, we describe a system for the dynamic protection of web application users

1

CHAPTER 1. INTRODUCTION 2

against cross-site request forgery attacks. This thesis is based on previous work
presented in [35, 36, 37, 38, 39, 40, 6].

1.2.1 Static Detection of Taint-Style Vulnerabilities

Many common web applications vulnerabilities (such as cross-site scripting and
SQL injection) share a number of characteristics that makes it possible to re-
gard them as instances of a general vulnerability class. We introduce this class,
which we denote as Taint-Style Vulnerabilities, in Chapter 2. This classification
permits us to focus our concepts on the common properties of these vulnerabil-
ities, and to easily derive solutions for concrete vulnerabilities from the general
techniques.

In Chapter 3, we address the problem of vulnerable web applications by
means of static source code analysis. More precisely, we use flow-sensitive, in-
terprocedural and context-sensitive data flow analysis to discover vulnerable
points in a program. We focus our discussion on the detection of cross-site
scripting vulnerabilities in PHP applications. PHP is a programming language
that is widely used for web application development, and contains several com-
mon scripting language features that pose unique challenges to the analysis
process. We describe techniques for handling these issues, including untyped
arrays, unique referencing semantics, and dynamic file inclusions. Our analysis
is designed to achieve a high level of precision, and can be effectively used to
detect vulnerabilities in real-world programs.

The techniques presented in Chapter 3 are characterized by a strong fo-
cus on the propagation of taint values. In Chapter 4, we advance our previous
concepts by combining taint information with string information, such that pre-
viously undetected vulnerabilities can be discovered. More precisely, we describe
a novel analysis for the detection of SQL injection vulnerabilities. This anal-
ysis is supported by an automata-based and taint-aware string analysis, and
is able to discover even subtle vulnerabilities. During the analysis, taint flow
traces are generated, which describe the paths of tainted values through the
program, and facilitate the manual inspection of vulnerability reports. We also
present a variation of this analysis that is capable of detecting custom forms of
input sanitization, which rely on the use of general string-modifying functions
to remove harmful properties from user input. Moreover, we demonstrate how
to extract program capabilities with regard to a program’s interaction with the
database and the filesystem, and describe how this information can be leveraged
to enhance an application’s resilience against attacks. To evaluate our tech-
niques in practice, we conducted a comprehensive analysis of seven real-world
applications. The empirical results show that our concepts enable us to detect
vulnerabilities under a low false positive rate, and that program capabilities can
be extracted with a high precision.

1.2.2 Dynamic Prevention of Cross-Site Request Forgery

In contrast to SQL injection and cross-site scripting, cross-site request forgery
(XSRF) is a relatively new type of attack that has not received much atten-
tion in the literature. In an XSRF attack, the trust of a web application in its
authenticated users is exploited by letting the attacker make arbitrary HTTP

CHAPTER 1. INTRODUCTION 3

requests on behalf of a victim user. The problem is that web applications typ-
ically act upon such requests without verifying that the performed actions are
indeed intentional. Because web application developers are largely unaware of
XSRF, there exist many web applications that are vulnerable to XSRF. Unfor-
tunately, existing mitigation approaches are time-consuming and error-prone,
as they require considerable manual effort to integrate defense techniques into
existing systems. In Chapter 5, we present a solution that provides a completely
automatic protection from XSRF attacks. More precisely, our approach is based
on a server-side proxy that detects and prevents XSRF attacks in a way that
is transparent to users as well as to the web application itself. We provide ex-
perimental results to demonstrate that we can use our prototype to secure a
number of popular open-source web applications, without negatively affecting
their behavior.

Chapter 2

Taint-Style Vulnerabilities

An important observation in the study of web application security is that many
types of vulnerabilities (including XSS and SQLI vulnerabilities) belong to the
general class of taint-style vulnerabilities. The essence of these vulnerabilities is
that they share a common “from source to sink” characteristic. In this context,
tainted data denotes data that originates from potentially malicious users and
thus, can cause security problems at vulnerable points in the program (called
sensitive sinks). Tainted data may enter the program at specific places (denoted
as taint sources), and is propagated through the program via assignments and
similar constructs. Using a set of suitable operations, tainted data can be un-
tainted (sanitized), removing its harmful properties. Apart from XSS and SQLI,
other prominent examples for taint-style vulnerabilities include shell injection,
script injection, and path traversal attacks. An alternative overview of taint-
style vulnerabilities is given by Livshits and Lam in [48]. In this thesis, we
have chosen to focus on XSS and SQLI, because these two occur frequently in
real-world applications.

2.1 Cross-Site Scripting (XSS)

One of the main purposes of XSS attacks [10] is to steal the credentials (e.g., the
cookie) of an authenticated user. Every web request that contains an authenti-
cation cookie is treated by the server as a request of the corresponding user (as
long as she does not explicitly log out). Thus, everyone who manages to steal a
cookie is able to impersonate its owner for the current session. Web browsers are
aware of the importance of cookies and hence, they automatically send a cookie
only to the web site that created it. Using JavaScript, a cookie can be sent to
arbitrary locations. Fortunately, the access rights of JavaScript programs are
restricted by the same-origin policy. That is, a JavaScript program has access
only to cookies that belong to the site from which the code originated.

XSS attacks circumvent the same-origin policy by injecting malicious Java-
Script code into the output of vulnerable applications. In this case, the malicious
code appears to originate from the trusted site and thus, has complete access
to all (sensitive) data related to this site. For example, consider the following
simple PHP script, where a user’s search query is displayed after submitting it:

echo "You searched for " . $_GET[’s’];

4

CHAPTER 2. TAINT-STYLE VULNERABILITIES 5

The user’s search query is retrieved from a GET parameter. Therefore, it can
also be supplied in a specifically crafted URL such as the following, which results
in the user’s cookie being sent to evilserver.com:

http :// vulnerable.com/post.php?s=

<script >

document.location=’evilserver.com/steal.php?’+document.cookie

</script >

All that the attacker has to do is to trick a user into clicking this link (for
example, by sending it to the victim via email). As soon as the user clicks
on this link, her browser visits the page post.php on the vulnerable site, with
the GET parameter ‘s’ set to the malicious JavaScript code. As a result, the
malicious code is embedded in the application’s reply page, and now has access
to the user’s cookie. The JavaScript code sends the cookie to the attacker, who
can now use it to impersonate the victim.

The particular type of XSS vulnerability discussed above is called reflected
XSS, since the attacker’s malicious input is immediately returned (i.e., reflected)
to the victim. There also exists a second type of XSS, where the application
first stores the malicious input into a database or the filesystem. At a later
stage, the application retrieves this data through database queries or file reads,
and finally sends it to the victim. For instance, such stored XSS vulnerabilities
often occur in web guestbooks or forums, where a visitor leaves a comment that
is later accessed by another visitor.

In general, an XSS vulnerability is present in a web application if malicious
content (e.g., JavaScript) received by the application is not properly stripped
from the output sent back to a user. When speaking in terms of the sketched
class of taint-style vulnerabilities, XSS can be roughly described by the following
properties:

• Taint Sources: GET, POST, and COOKIE arrays.

• Sanitization Routines: PHP functions that delete or alter characters
that have a special meaning in JavaScript or HTML code, such as htmlen-
tities(), htmlspecialchars(), and certain type casts (e.g., casts to integer
values).

• Sensitive Sinks: All routines that return data to the user’s browser for
display, such as echo(), print() and printf().

2.2 SQL Injection (SQLI)

Most web applications make use of a back-end database for storing data such as
client accounts, postings, or user preferences. The interaction with the database
is typically performed by means of SQL queries. These queries are often assem-
bled dynamically by the program, which combines predefined SQL language
elements with user input. For instance, the query in the following PHP snip-
pet attempts to retrieve an account based on a name and password that are
provided by the user through an HTTP GET request:

CHAPTER 2. TAINT-STYLE VULNERABILITIES 6

mysql_query ("

SELECT * FROM users WHERE name=’$_GET[name]’ AND pw=’$_GET[pw]’

");

An SQL injection vulnerability is present whenever an attacker is able to alter
the syntactic structure of such queries in an unexpected way [78]. Given the
example above, by providing an empty name parameter and a specially crafted
pw parameter (underlined), an attacker could trick the application into issuing
the following query to the database:

SELECT * FROM users WHERE name=’’ AND pw=’’ OR name=’admin’

The effect of the altered query is that the account of the user “admin” is re-
turned, bypassing the application’s authentication mechanism. In other cases,
SQLI attacks can also seriously corrupt the back-end database, or even com-
promise the entire host that the web application runs on. Analogous to XSS, it
is possible to classify SQLI as an instance of the taint-style vulnerability class
that was defined earlier in this chapter:

• Taint Sources: GET, POST, and COOKIE arrays.

• Sanitization Routines: PHP functions that delete or alter characters
that have a special meaning in SQL queries, such as addslashes() and
certain type casts (e.g., casts to integer values).

• Sensitive Sinks: All routines that pass data to the back-end database,
such as mysql query().

2.3 Shell Injection

The invocation of external programs from within a web application is a popular
technique for reusing existing code written in other languages. Otherwise, it
would be necessary to re-implement legacy code in the programming language
that is used for web application development. Consider the following simple
example:

$dirname = $_GET[’x’];

$result = system ("ls /mypath/${dirname }");

In this example, the GET parameter ‘x’ is read into the variable $dirname, which
is used to assemble a shell command that lists the content of a subdirectory of
“/mypath” with the given name. The problem of this code is that it does not
consider the possibility that an attacker could use shell meta-characters (i.e.,
characters that have a special meaning to the shell) to inject arbitrary code
to the command shell. For instance, by providing the value “someDir; touch
attack.txt” for the ‘x’ parameter, the shell command not only lists the content of
“someDir”, but also creates a file with the name “attack.txt” on the web server.
That is, the attacker is able to execute arbitrary shell commands with the rights
of the user that owns the web server process. If the attack is not targeted at the
invocation of arbitrary commands, but at the malicious alteration of an invoked
program’s behavior by means of providing additional parameters, it is called
parameter injection.

CHAPTER 2. TAINT-STYLE VULNERABILITIES 7

2.4 Script Injection

The concept of script injection is analogous to shell injection, and only differs
with respect to the language of the injected code. In the case of script injec-
tion, the injected code is written in the same (scripting) language as the web
application. This type of attack requires that the vulnerable program makes use
of routines that interpret their input as scripting code, and execute this code
dynamically (e.g., the eval function in PHP). If this input is controlled by the
attacker and insufficiently sanitized by the application, the attacker can trigger
the execution of arbitrary scripting code on the web server.

Due to its unambiguous name, the definition of shell injection is largely
agreed upon in the security community. In contrast, script injection is some-
times regarded as “injection of JavaScript code” in the context of XSS attacks.
Likewise, the related terms code injection and command injection are used in
an inconsistent way, and potentially include any kind of attack where some type
of code is injected. In this sense, these terms also include SQL injection attacks,
since SQL code (or commands) are injected into the application.

2.5 Path Traversal (Directory Traversal)

Some web applications assemble the names of filesystem objects (i.e., directo-
ries or files) from user input. For instance, the following example code reads
and returns the content of a file whose name is retrieved from a user-defined
parameter:

$filename = $_GET[’x’];

$f = file_get_contents ("/ myDir/$filename ");

echo htmlentities($f);

This code is vulnerable to a path traversal attack, since it implicitly assumes that
the accessed file is located inside directory “/myDir”. However, by providing
the relative path “../etc/passwd”, the system’s password file is returned instead.

In cases where the accessed file is used by the program as a source of program
statements that are to be executed dynamically, path traversal vulnerabilities
can be used to launch script injection attacks. The following code is susceptible
to this kind of attack, as it passes unsanitized user input to the file inclusion
routine include:

$filename = $_GET[’x’];

include ("/ myCode/$filename ");

In order to inject arbitrary scripting code in this example, the adversary is
required to create a file that contains the code on the server under attack. This
additional obstacle is not present in cases where the name of the included file
begins with a user-controlled value:

$filename = $_GET[’x’];

include ("${filename }.php ");

Given that the server is configured to permit remote file inclusions (which is a
default setting in the PHP environment), the attacker could place the malicious

CHAPTER 2. TAINT-STYLE VULNERABILITIES 8

code at some arbitrary server (e.g., at “http://evilServer/attack.php”), and
inject the corresponding URL into the inclusion statement.

2.6 Focus of this Thesis

Even though the explanations and experiments in this thesis are focused on XSS
and SQLI vulnerabilities, the presented concepts are targeted at the underly-
ing general properties of taint-style vulnerabilities (i.e., propagation from taint
sources to sensitive sinks). As a result, applying the concepts to other types of
taint-style vulnerabilities can be reduced to adjusting only a few vulnerability-
specific parameters in our implementation.

Chapter 3

Static Vulnerability
Detection

In this chapter, we describe techniques for the static detection of XSS vulner-
abilities in PHP 4 [59] code by means of data flow analysis. We chose PHP as
the target language since it is widely used for creating web applications [77],
and a substantial number of security advisories refer to PHP programs [9]. The
main contributions described in this chapter are as follows:

• A flow-sensitive, interprocedural, and context-sensitive data flow analysis
for PHP, targeted at detecting taint-style vulnerabilities. This analysis
process had to overcome significant conceptual challenges due to the un-
typed nature of PHP.

• A precise alias analysis targeted at the unique reference semantics com-
monly found in scripting languages. This analysis generates precise results
even for conceptually difficult aliasing problems. Without a preceding
alias analysis, taint analysis would generate false positives as well as false
negatives in conjunction with aliases.

• We enhance the quality and quantity of the generated vulnerability re-
ports as well as our tool’s usability by integrating an iterative two-phase
algorithm for fast and precise resolution of file inclusions. In C, include
statements only contain static file names and thus, can be resolved eas-
ily. In PHP, however, include statements can be composed of arbitrary
expressions, which necessitates more sophisticated resolution techniques.

• To evaluate our concepts in practice, we implemented Pixy, an open-source
web vulnerability scanner. We present empirical results that demonstrate
that our tool can be used to detect XSS vulnerabilities in real-world pro-
grams. The analysis process is fast, completely automatic, and produces
few false positives.

3.1 Data Flow Analysis

The goal of our analysis is to determine whether it is possible for tainted data to
reach sensitive sinks without being properly sanitized. To this end, we have to

9

CHAPTER 3. STATIC VULNERABILITY DETECTION 10

identify the taint value of variables that are used at these sinks. To achieve this,
we apply the technique of data flow analysis, which is a well-understood topic
in computer science and has been used in compiler optimizations for decades [1,
53, 56]. In a general sense, the purpose of data flow analysis is to statically
compute certain information for every single program point (or for coarser units
such as functions). For instance, literal analysis computes, for each program
point, the set of literal values that variables may hold.

Note that we use the term “literal analysis” to refer to the classic combina-
tion of constant propagation and constant folding. The reason is that in PHP
terminology, the word “constant” has a meaning that is different from the usual
meaning (where it denotes a literal value). In PHP, a constant is a special type
of variable that can only hold simple values (e.g., it cannot contain array ele-
ments), and that cannot change after it has been defined. To avoid confusion
due to the collision of the two different meanings of the word “constant”, we
will use the term “literal analysis” in this thesis.

start

v:T

v = 3

if (*)

v = 3 v = 4

skipskip

end

v:T

v:3

v:3v:3

v:3 v:4

v:T

true false

Figure 3.1: Example CFG with associated resulting analysis information.

To illustrate how data flow analysis is used to perform literal analysis, imag-
ine a fictitious programming language that uses only one variable (v) and two
literals (the integers 3 and 4). Data flow analysis operates on the control flow
graph (CFG) of a program. Figure 3.1 shows the CFG for a simple example
program. In this figure, each CFG node is associated with its final data flow
information after the analysis has finished. Skip nodes represent empty instruc-
tions. Assume further that the condition of the if branch cannot be resolved
statically, for example, because it depends on the value of an environment vari-
able. We use the symbol > (“top”) for the unknown literal, which indicates that
the exact value of the literal cannot be determined. This is the case on program
entry, since in our programming language, a variable contains random garbage
before being initialized. After performing literal analysis for this program, each
CFG node is associated with information about which literal is mapped to vari-

CHAPTER 3. STATIC VULNERABILITY DETECTION 11

able v before executing that node. Note that the exact value for variable v
after the if construct is also unknown, because the analysis cannot determine
which branch will be taken at runtime. Inside the branches, however, precise
information is available.

v:T

v:4v:3

⊥

Figure 3.2: A simple lattice.

An important concept used in the theory of data flow analysis is that of a
lattice1, which is used to represent the type of information that is to be collected.
Every piece of information that could ever be associated with a CFG node by
the analysis must be contained as an element of the used lattice. The lattice
for our previous example is depicted in Figure 3.2 (as Hasse diagram [84]).
Note that an additional bottom element ⊥ is required by the analysis algorithm
for marking nodes as “not visited yet” at the beginning (to prevent premature
termination of the algorithm). Each line in Figure 3.2 indicates an ordering
between the elements at its end points with regard to precision. For instance,
the element (v:3) is more precise (less conservative) than (v:>), written as (v:3)
< (v:>). In this sense, the bottom element is defined as being smaller than all
other elements. The least upper bound t of two elements is the smallest element
that is greater than or equal to both of the elements. For example, (v:3) t (v:4)
= (v:>), and (v:3) t (⊥) = (v:3). The t operator is used for conservatively
combining the information of merging paths (e.g., after if branches), which can
also be seen at the end node in Figure 3.1. A more comprehensive introduction
to lattice theory can be found in Appendix A.

In this thesis, the notation with regard to lattice structure and the least
upper bound operation follows Nielson et al. [56]. Other authors, especially in
the advent of data flow analysis (introduced by Kildall [42]), used an alternative,
but equivalent notation. In this other notation, more precise elements were
located at the top of the lattice, instead of its bottom.

Another important ingredient for data flow analyses are transfer functions.
Each CFG node is associated with such a transfer function, which takes a lattice
element as input and returns a lattice element as output. The purpose of transfer
functions is to model the semantics of their corresponding node with respect to
the collected information. In our example in Figure 3.1, all assignment nodes
possess a transfer function that adjusts the literal mapping of the assigned
variable accordingly.

After specifying a data flow analysis with its underlying lattice and transfer
functions, an iterative algorithm for computing the results is initiated. Begin-
ning at the program’s entry node, this algorithm propagates analysis information
through the program by applying transfer functions and combining information

1To be precise, data flow analysis requires a complete lattice that satisfies the ascending
chain condition, or equivalently, a semi-lattice with a unit that satisfies the ascending chain
condition [56].

CHAPTER 3. STATIC VULNERABILITY DETECTION 12

at merge points. As soon as a fixed point is reached (i.e., additional compu-
tations do not lead to changes anymore), the algorithm terminates, and the
analysis is finished.

3.1.1 Static Analysis Attributes

There exist several attributes of static analyses that determine their precision
and efficiency, depending on the presence or absence of these attributes. In
general, attributes that increase precision lead to decreased performance. One of
the main challenges in static analysis is to achieve a trade-off between precision
and performance that yields good results in practice.

Flow-Sensitivity. A flow-sensitive analysis considers the ordering of program
instructions, whereas a flow-insensitive analysis does not (i.e., reordering in-
structions inside a function does not affect its results). To see this, consider the
following code:

$v = 3; // v:3

$v = 4; // v:4

$v = 3; // v:3

If this example program is scanned with a flow-sensitive analysis, it associates
all three program points with precise information about variable $v (shown in
comments next to the statements). A flow-insensitive analysis, however, does
not compute information for every single program statement, but for coarser
units such as functions, or even the whole program. For the above code, such
an analysis would compute only one result for the whole program, namely “v:>”.
Obviously, this is a quite imprecise result, as it indicates that “no information is
available about $v.” To improve this, it would be possible to adapt the analysis
such that it returns the result “v:{3,4}” (i.e., “variable $v can hold one of the
values 3 or 4”), which is still less precise than the result of a flow-sensitive
analysis. Since a flow-insensitive analysis does not compute information at
the granularity of single statements, its results are not affected by reordering
program statements within its granularity scope (e.g., within functions). Due
to their smaller complexity, flow-insensitive analyses have a better performance
than more precise, flow-sensitive analyses.

Interprocedurality. Interprocedural analyses take function calls into account,
while intraprocedural analyses operate only inside a single function. For in-
stance, the following code performs a function call on Line 3, which returns the
integer value 4:

1 function foo() {

2 $v = 3; // v:3

3 $v = bar (); // interprocedural ... v:4

4 // intraprocedural ... v:>
5 }

6

7 function bar() {

8 return 4;

9 }

CHAPTER 3. STATIC VULNERABILITY DETECTION 13

If the analysis is intraprocedural, it cannot compute the effects of function invo-
cations. Consequently, in order to compute correct results, it has to make con-
servative assumptions about the behavior an return values of called functions.
For the above example, the effect of the call to “bar” on Line 3 is approximated
by considering it to return the unknown value >. In contrast, an interprocedural
analysis is able to determine that the return value is 4.

Interprocedural analyses can further be classified depending on whether they
are context-sensitive, or context-insensitive. Context-sensitive analyses distin-
guish between different call sites to a function, whereas context-insensitive anal-
yses do not make this distinction. Therefore, a context-insensitive analysis con-
fuses the information computed for different calls to the same function. In the
example shown in Figure 3.3, context-sensitivity makes it possible to distinguish
between the two calls on Lines 3 and 4, and to compute precise information for
variables $x and $y. If the analysis is context-insensitive, data flows related to
different contexts are merged (by computing the least upper bound), leading to
the return value > for the two function invocations.

1 // context -sensitive | context -insensitive

2

3 $x = foo (3); // x:3 | x:>
4 $y = foo (4); // y:4 | y:>
5

6 function foo($p) {

7 return $p;

8 }

Figure 3.3: Context-sensitivity.

There exist two different approaches for achieving context-sensitivity, which
are described by Sharir and Pnueli in [71]. In principle, both techniques are
based on making context information explicit by means of function cloning. For
instance, to compute context-sensitive results through function cloning for the
example in Figure 3.3, the analysis would take measures that are analogous to
transforming the code in the following way:

1 $x = foo1 (3);

2 $y = foo2 (4);

3

4 function foo1($p) {

5 return $p;

6 }

7 function foo2($p) {

8 return $p;

9 }

After context information has been made explicit by this source-to-source trans-
formation, a context-insensitive analysis can be performed, leading to context-
sensitive results. The two approaches presented by Sharir and Pnueli differ in
the way how the cloning is performed. In the functional approach, a clone is
generated for each distinct set of inputs to the function. This is illustrated by
the first two columns of the example in Figure 3.4. Since the function invoca-
tions on Lines 3 and 5 of this example provide the same input to the function,
they can be represented by the same clone (i.e., “foo1”). To express this in

CHAPTER 3. STATIC VULNERABILITY DETECTION 14

more precise terms, the “input” to a function that is used for the cloning de-
cision corresponds to (at least) all data flow information that can affect the
behavior (i.e., the return value and side-effects) of the called function. That is,
this “input” does not only cover function parameters, but also other influences
such as global variables that are used by the called function. An advantage
of the cloning policy of the functional approach is that the results for already
analyzed functions can be reused at later invocations of the same function. In
Figure 3.4, the analysis does not have to analyze the code inside “foo1” for the
call on Line 5, as it can reuse the results from the inspection of the previous
call on Line 3.

1 // Original Functional Call -String

2

3 $x = foo (3); $x = foo1 (3); $x = foo1 (3);

4 $y = foo (4); $y = foo2 (4); $x = foo2 (4);

5 $x = foo (3); $x = foo1 (3); $x = foo3 (3);

Figure 3.4: Function cloning.

The second approach for achieving context-sensitivity is named call-string
approach. In its simplest form, this technique creates a function clone for every
call to this function. This policy is illustrated by the third column of Figure 3.4,
where it generates separate clones for each of the three function calls. However,
this can lead to imprecise results in case of call chains, as the following example
shows:

1 // Original // Simple Call -String

2

3 $x = foo (3); $x = foo1 (3);

4 $y = foo (4); $y = foo2 (4);

5

6 function foo(p) { function foo1($p) {

7 $z = bar(p); $z = bar1($p);

8 return $z; return $z;

9 } }

10

11 function foo2($p) {

12 $z = bar1($p);

13 return $z;

14 }

15

16 function bar($p) { function bar1($p) {

17 return $p; return $p;

18 } }

In this program, there are two calls to “foo”, and one call to “bar”. Hence,
the analysis creates two clones for “foo”, and one clone for “bar”. Note that
the resulting code still contains two calls to the same function (“bar1”). Con-
sequently, running a context-insensitive analysis on this would again merge the
interprocedural information related to this function, and eventually compute the
value > for both $x and $y. To prevent this, it would be necessary to perform
an additional cloning step, such that the two invocations to “bar1” are replaced
by two invocations to separate clones of “bar1”. In this case, a single addi-
tional cloning step is sufficient, because the involved call chain had the length 2.

CHAPTER 3. STATIC VULNERABILITY DETECTION 15

Longer call chains require more cloning steps. The most significant limitation
of the call-string approach is that an unlimited number of cloning steps would
be necessary for call chains whose length cannot be determined statically (e.g.,
in the case of recursive calls). Hence, it is necessary to define a number of steps
after which the cloning process shall terminate. This number is traditionally
denoted as the k-bound, and can be used to determine the trade-off between
precision and performance for call-string analyses.

In terms of precision, the functional approach is superior to the call-string
approach. As far as performance is concerned, a general comparison is difficult,
because the actual time spent for the analysis depends on the structure of the
program and the k-bound that is used. The functional approach can only by
used if the data flow lattice has a finite breadth (if displayed as Hasse diagram),
as the analysis would not terminate otherwise. An example for this is shown in
the following script:

1 foo (1);

2 function foo($p) {

3 if ($c) {

4 foo($p+1);

5 }

6 }

Here, function “foo” contains a recursive call that increments its parameter
by 1 each time it is called. A functional analysis would create a new clone
for every call in this unbounded call chain, and hence, never terminate. This
also demonstrates another difference between the two approaches. Functional
analysis performs the cloning during the actual data flow analysis, whereas call-
string analysis is able to generate the clones in advance, and initiate the data
flow analysis afterwards. For more information about context-sensitive analyses,
the reader is referred to Florian Martin’s PhD thesis [49].

Path-Sensitivity. The term path-sensitivity denotes the ability to recognize
impossible paths through the program, and to prevent that these paths reduce
the precision of the analysis. For example, consider the following code:

1 if ($c) {

2 $x = 3;

3 } else {

4 $x = 4;

5 }

6 if ($c) {

7 echo $x;

8 }

For a human, it is obvious that variable $x holds the value 3 on Line 7. Due
to the check of the guard variable $c on Lines 1 and 6, it is impossible that
the program executes both Lines 4 and 7. A path-sensitive analysis is able to
deduce this fact, and uses it to increase the precision of its results.

Soundness / Completeness. An analysis is sound if the information it gen-
erates is a safe approximation of the real information. In the context of vulner-
ability scans, a sound analysis must report all vulnerabilities that are present

CHAPTER 3. STATIC VULNERABILITY DETECTION 16

in the inspected program. Completeness denotes the opposite notion, meaning
that a complete analysis must not generate any false alarms (false positives).
Sometimes, the terms “sound” and “complete” are used in a reversed way, de-
pending on how the underlying mathematical notions are translated into the
context of vulnerability analysis. In this thesis, we follow the interpretation
used by Johnson and Wagner in [34], and by Shankar et al. in [70], which cor-
responds to the explanations given above.

Attributes of our system. Our system achieves a high level of precision
by being flow-sensitive, interprocedural, and context-sensitive. Precision could
be further enhanced by equipping our scanner with path-sensitivity. However,
during our empirical evaluation, we found that the current configuration per-
forms well in practice. Our scanner is unsound with respect to the language
features mentioned in Section 3.7.5 (most notably, object-orientation), because
these features are modeled in an optimistic way. That is, we apply a simple
approximation of these language constructs, assuming that no tainted values
can originate from there. At the same time, our system is incomplete, as it may
generate false warnings due to the conservative nature of data flow analysis.

Finally, note that the theory of abstract interpretation is closely related to data
flow analysis, although it is formulated on a higher level. A comprehensive
overview of abstract interpretation, data flow analysis, and other program anal-
yses is given by Nielson et al. in [56], and a vivid introduction to the topic can
be found at [57].

3.2 PHP Front-End

In order to conduct static analysis, the input program has to be parsed and
transformed into a form that makes the following analysis as easy as possible.
This first step includes the linearization of arbitrarily deep expressions in the
original language as well as the reduction of various loop and branch constructs
such as foreach and switch to combinations of if’s and goto’s. The result-
ing intermediate representation, P-Tac, resembles the classic three-address code
(TAC) presented by Aho et al. in [1]. TAC is an assembly-like language charac-
terized by statements with at most three operands and the general form “x = y
op z”. For example, the input statement “a = 1 + b + c” would be translated
into the corresponding TAC sequence “t1 = 1 + b; t2 = t1 + c; a = t2”. The
variables t1 and t2 are temporaries introduced in the course of the translation,
and do not appear elsewhere in the program.

3.2.1 Parse Tree Construction

As the first step towards the desired intermediate representation, the input PHP
code is parsed and stored as a parse tree for further processing. PhpParser [61],
our tool for generating parse trees for PHP code, is a combination of the Java
lexical analyzer JFlex [32], the Java parser Cup [13], and the Flex and Bison
specification files from the sources of the PHP interpreter [59]. Due to a few
incompatibilities of Flex and Bison with their Java counterparts, we carefully
modified JFlex and Cup in order to accept the original specification files and

CHAPTER 3. STATIC VULNERABILITY DETECTION 17

CFG Node Shape / Description
Simple Assignment {var} = {place}
Unary Assignment {var} = {op} {place}
Binary Assignment {var} = {place} {op} {place}
Array Assignment {var} = array()
Reference Assignment {var} &= {var}
Unset unset({var})
Global global {var}
Call Preparation A call node’s predecessor.
Call Represents a function call.
Call Return A call node’s successor.

Table 3.1: Main types of CFG nodes in P-Tac.

to permit the convenient definition of Java actions for constructing the parse
tree. The PhpParser package contains a more detailed documentation of these
modifications.

3.2.2 Intermediate Representation: P-Tac

As mentioned previously, the constructed parse tree is transformed into P-Tac,
a linearized form of the original PHP script resembling three-address code [1],
and kept as a control flow graph for each encountered function. The code in
the global scope (external to all user-defined functions) is moved into a special
“main” function, which represents the starting point of the PHP script. All
loop constructs (while, for, switch) are replaced by equivalent if branches in
order to prevent unnecessary redundancies in the following analysis. Constants
in PHP are specified with the built-in define function, whereas values such as
77 or “foo” will be termed as literals. Table 3.1 gives an overview of the most
important CFG nodes created by the P-Tac converter. The place abstraction
denotes variables, constants, and literals and was introduced to permit more
concise specifications. Function calls are represented by three CFG nodes to
make the design of interprocedural transfer functions easier (a call preparation
node, the actual call node, and a call return node). Calls to functions for which
no definition was found are replaced by calls to the special unknown function.
During taint analysis, calls to this function are approximated in a conservative
way, meaning that the return value is considered to be tainted. Analogously,
literal analysis considers the return value to be unknown (>). Alias analysis
treats such calls as no-op statements, which have no effect on the computation
of alias information.

3.3 Analysis Back-End

A straightforward approach to solving the problem of detecting taint-style vul-
nerabilities would be to immediately conduct a taint analysis on the intermedi-
ate representation generated by the front-end. This taint analysis would identify
points where tainted data can enter the program, propagate taint values along
assignments and similar constructs, and inform the user of every sensitive sink

CHAPTER 3. STATIC VULNERABILITY DETECTION 18

that receives tainted input. However, to enable the analysis to produce cor-
rect and precise results, significant preparatory work is required. For instance,
whenever a variable is assigned a tainted value, this taint value must not be
propagated only to the variable itself, but also to all its aliases (variables point-
ing to the same memory location). Hence, information about alias relationships
has to be provided by a preceding alias analysis. Moreover, the dynamic nature
of PHP’s file inclusion mechanism requires a literal analysis for resolving the
names of the files that are to be included (see Section 3.8). These three com-
ponents (literal analysis, alias analysis, and taint analysis) are discussed in the
following sections separately.

One of the key features of our analysis is its high precision, since it is flow-
sensitive, interprocedural, and context-sensitive. Moreover, we are the first to
give a detailed description of how to perform an alias analysis for an untyped,
reference-based scripting language such as PHP. Although there exists a rich
literature on C pointer analysis, it is questionable whether these techniques
can be directly applied to the semantically different problem of alias analysis
for PHP references. As mentioned by Xie and Aiken in [86], static analysis
of scripting languages is regarded as a difficult problem and has not achieved
much attention so far. In this context, even apparently trivial issues such as the
simulation of the effects of a simple assignment require careful considerations.
For instance, multi-dimensional arrays can contain elements that are neither
explicitly addressed nor declared. To correctly handle the assignment of such a
multi-dimensional array to another array variable, these hidden elements must
be taken into account. The following sections address these issues in detail.

3.4 Literal Analysis: Basics

The purpose of literal analysis is to determine, for each program point, the
literal that a variable or a constant can hold. This information can be used for
improving the precision of the overall analysis in various ways. For instance,
our prototype uses the computed information for resolving the names of files
to be included. Other potential uses of literal information are the resolution of
variable variables, variable array indices, and variable function calls.

3.4.1 Carrier Lattice Definition

As mentioned in Section 3.1, an important building block for data flow analyses
is the underlying lattice. The lattice used for literal analysis basically resembles
the simple lattice for our toy programming language that was introduced in
Figure 3.2, with two differences. First, the literal analysis lattice does not
provide mappings for a single variable, but for all variables and constants that
appear in the scanned program. Second, it is able to describe the mapping to
any possible literal, and not just to the literals 3 and 4. Since the number of
possible literals is infinite, this means that the “breadth” of the lattice (when
shown as Hasse diagram [84]) is infinite as well. Figure 3.5 shows a fragment
of a lattice for a program with two variables ($a and $b) and one constant
(CONST) to provide an intuitive feeling for the ordering among lattice elements.
Note that the lower two elements differ only in the value that the variable $a
is holding. Hence, the least upper bound of these two elements is identical

CHAPTER 3. STATIC VULNERABILITY DETECTION 19

except that it maps $a to >. The top element of the whole lattice (which is
not depicted in Figure 3.5) maps all variables and constants to the unknown
literal >, meaning that we know “absolutely nothing”. As in the previous simple
lattice, the bottom element (not depicted either) is just a special placeholder
element needed by the analysis algorithm.

$a:T
$b:'foo'
CONST:8

$a:'xyz'
$b:'foo'
CONST:8

$a:'bar'
$b:'foo'
CONST:8

Figure 3.5: Fragment of a literal analysis lattice.

3.4.2 Transfer Functions Definition

After defining the underlying lattice for the analysis, each CFG node has to be
associated with a transfer function. These transfer functions determine how the
analyzed information is affected when control flows through the corresponding
CFG node. That is, it takes the lattice element entering the node as input,
and returns a lattice element reflecting the node’s semantics as output. The
most straightforward example for literal analysis is a node of the form “sim-
ple variable = literal”, with the term simple variable denoting a variable that
is neither an array nor an array element. For such a node, the transfer func-
tion only has to adjust the literal mapping of that variable. For example, the
statement “$a = 5” assigns the literal value 5 to the variable $a in the lat-
tice. For CFG nodes like “simple variable = variable”, the assigned literal is
not immediately available, but has to be extracted from the incoming lattice
element by inspecting the mapping of the variable on the right side. Nodes like
“simple variable = constant” can be treated analogously to “simple variable =
variable”.

Additional complexity arises when taking arrays, array elements, and non-
literal array indices into account. The reason is that PHP is an untyped language
without explicit type declarations. That is, it provides no explicit information
about whether a variable is an array or not. A possible solution to this problem
would be to perform an additional type inference step. In our system, we take
an alternative approach, which has turned out to be sufficient in practice. It is
based on a simple, syntax-based detection of arrays and array elements. More
precisely, our analysis considers a variable to be an array if it is indexed at
some point in the program. For instance, if the expression “$a[2]” appears
somewhere in the program, then variable $a certainly is an array. At the same
time, the corresponding index to the array ($a[2]) obviously is an array element.
Unfortunately, the absence of such expressions does not necessarily imply that
a variable is not an array. This is demonstrated in Figure 3.6. Here, $b is never
indexed, but is still an array due to the assignment of array $a. This means
that the intuitive introductory examples involving “simple variable” need to be
extended to deal with this issue, as we have no guarantee that a variable is

CHAPTER 3. STATIC VULNERABILITY DETECTION 20

Left Variable Literal Analysis Taint Analysis
Not an array element
and not known as array
(“normal variable”).

strong update for must-
aliases, weak update
for may-aliases

strong update (taint,
CA flag) for must-
aliases, weak update
(taint, CA flag) for
may-aliases

Array, but not an array
element.

strong overlap target.caFlag =
source.caFlag; strong
overlap (taint)

Array element (and
maybe an array)
without non-literal
indices.

strong overlap target.root.caFlag t=
source.caFlag; strong
overlap (taint)

Array element (and
maybe an array) with
non-literal indices.

weak overlap for all MI
variables

target.root.caFlag t=
source.caFlag; weak
overlap (taint) for all
MI variables

Table 3.2: Actions performed by literal analysis and taint analysis for simple
assignment nodes depending on the left-hand variable.

really simple. Array elements do not suffer from this uncertainty: While $a[1]
surely is an array element, $a is not.

1 $a[1] = 7; // $a obviously is an array

2 $b = $a; // $b is a hidden array:

3 // it is not indexed anywhere

4 $c = $b;

5 echo $c[1]; // $c obviously is an array

Figure 3.6: Arrays can be hidden.

In the course of our work, we found that the problem space regarding arrays
and array elements can be divided into four cases. These cases depend only on
characteristics of the variable on the left side of the assignment. An overview
of these cases is given in Table 3.2, which also contains information about taint
analysis and aliases. These topics are dealt with later in this chapter and can be
ignored for the moment. Note that the four cases cover all possible situations
that can occur in a program (modulo the limitations with regard to object-
orientation discussed in Section 3.7.5). In the rest of this section, we discuss the
four cases in order of increasing complexity.

The simplest, first case applies when the left variable is not an array ele-
ment (which can be easily decided because there is no array subscript) and not
known as array2. Here, the analysis proceeds just as in the introductory “sim-
ple variable” example, without taking into account whether the variable on the
right side might have array elements or not. This punctual overwrite operation
is called strong update. Note that when using this simple approach, precision
might suffer. For instance, in Figure 3.6, the analysis cannot determine that

2Note that we use the phrase “not known as array” to include the possibility that a variable
might be a “hidden” array.

CHAPTER 3. STATIC VULNERABILITY DETECTION 21

$c[1] is mapped to the literal 7 at the end of the program. In Chapter 4, we de-
scribe an improved analysis architecture that allows us to eliminate this source
of imprecision.

The second of the four cases that need to be distinguished is when the left
variable is an array, but not an array element. A useful concept in this respect
is that of an array tree, which describes an array and its contents as a tree. The
array variable itself is the tree’s root, the array’s elements are interior nodes and
leaves, and its indices are edge labels. For example, Figure 3.7 shows the tree
for a two-dimensional array with the elements $a[$i][2] and $a[3][4]. Literals can
be associated with each node to represent the current mappings. Intuitively, the
analysis has to “overlap” the array tree of the left variable with the array tree
of the right variable such that literals for matching nodes are overwritten. For
instance, in the course of the assignment of array $b to array $a ($a = $b),
the literal of $b[1] must overwrite the literal of $a[1]. The literals of nodes on
the left side for which there is no matching node on the right side generally
have to be set to > because it is uncertain whether there really is no matching
node (due to the possibility that the array might contain hidden elements). In
Figure 3.6, for example, $c[1] is set to > after the assignment in Line 4 because
the analysis cannot determine whether there is an element $b[1] or not. An
exception to this rule can be made if there is a literal or a constant on the right
side of the assignment. Since literals and constants can never be arrays, the
analysis is free to set the literals of all array elements on the left side to NULL
(which corresponds to the actual semantics in PHP). A recursive algorithm for
performing all these operations is given in Figure 3.8, where the term direct
element denotes an array element that is retrieved by adding a single index (the
direct index) to its enclosing array.

$a

$a[$i] $a[$i][2]

$a[3] $a[3][4]
4

2

$i

3

Figure 3.7: Array Tree Example.

To understand cases three and four, one has to consider that array elements
can have one or more non-literal indices. An example would be $a[1][$i][2], which
has one non-literal and two literal indices. Such non-literal array elements have
to be treated in a special way because they can represent multiple variables
(such as $a[1][8][2] or $a[1][9][2] for the given example). Our analysis handles
them in a pessimistic way in that they are mapped to >. Otherwise, it would be
necessary to track the non-literal indices of these elements and recompute the
taint value of a non-literal array element whenever one of its indices changes. For
example, if the variable $i changes at some point in the program, the analysis
would have to recompute the values for all array elements with at least one index
containing $i (such as $a[$i] or $b[$a[$i]]). Our experiments did not suggest that
this additional complexity would lead to a significant gain in precision.

In the third case, the left variable is an array element without non-literal
indices. This variable may also be an array (i.e., it does not matter whether it is
known as array or not). This case is handled in the same way as case two, using

CHAPTER 3. STATIC VULNERABILITY DETECTION 22

1 strongOverlap(Variable target , Place source) {

2 if source known as array

3 if target known as array

4 for all direct elements of target

5 if there is a direct element of source

6 with the same direct index

7 strongOverlap(target element , source element)

8 else

9 set the array tree of the direct element to >
10 else if source is literal or constant

11 set the array tree below target to NULL

12 else

13 set the array tree below target to >
14

15 set the target literal to the source literal

16 }

Figure 3.8: Strong Overlap Algorithm.

the strong overlap algorithm. Note, however, that taint analysis (discussed in
Section 3.7) will perform different operations for cases two and three.

In the fourth and last case, the left variable is an array element with non-
literal indices and maybe an array. As already mentioned, this case has to
be treated separately, because it is not certain which array element is actually
meant by the non-literal array element. For instance, when assigning the literal
3 to $a[$i], the analysis has to consider that this might affect $a[8], $a[9], or any
other element. So, instead of overwriting the literals of the possibly affected
variables with the literal 3, we have to conservatively replace them with the
least upper bound of the old and the new literal. For example, if the old literal
of $a[8] was 7, it becomes >. If it was 3, it remains 3. This approach can be
formulated in a succinct way using the terms MI variables and weak overlap.
The MI variables of a non-literal array element are all variables that are maybe
identical to this array element. For example, $a[8] and $a[9] are MI variables
of $a[$i]. These are the variables that might be affected by an assignment, and
hence, have to be conservatively updated by the analysis. The weak overlap
algorithm is analogous to the strong overlap algorithm, with the difference that
all overwrite operations are replaced by least upper bound operations. This
way, the analysis can handle assignments of the fourth type by performing a
weak overlap for all MI variables.

3.4.3 Dependence on Alias Analysis

In the explanations given so far, we omitted an important problem. PHP allows
the creation of aliases, which means that two or more variables can point to
the same memory location. If one of these variables is assigned a new value, it
also affects the aliases of the variable. Ignoring this issue would prevent literal
analysis from producing correct results in a number of cases. The following Sec-
tion 3.5 provides a more detailed introduction to PHP references and describes
an alias analysis that collects the alias information required by literal analysis.
Section 3.6 revisits literal analysis when alias information is taken into account,
and presents transfer functions for the remaining CFG nodes.

Note that in our current approach, we employ literal analysis only for resolv-
ing file inclusions (Section 3.8). Judging from the experiences we made during

CHAPTER 3. STATIC VULNERABILITY DETECTION 23

our empirical evaluation, the names used in file inclusion operations never de-
pend on aliasing in practice. This is why our literal analysis does not make use
of the fully-fledged alias analysis that is described in the next section, resulting
in a performance boost without loss of precision. In spite of this fact, we de-
scribe how literal analysis can benefit from alias analysis. One reason is that we
believe this description to be useful for other researchers. The other reason is
that the underlying concepts are analogous to those necessary for feeding alias
information into taint analysis (Section 3.7).

3.5 Alias Analysis

Two or more variables are aliases at a certain program point if their values
are stored at the same memory location. Two variables are must-aliases if
they are aliases regardless of the actual path that is taken by the program
during runtime. If these variables are aliases only for some program paths,
while not for others, they are called may-aliases. We give a short introduction
to aliases in PHP to demonstrate why alias information is required for precise
results, and to highlight the differences between PHP aliases and pointers in
other programming languages. After this problem definition, we specify the
workings of our alias analysis, which is responsible for computing the desired
information.

3.5.1 Aliases in PHP

In PHP, aliases between variables can be introduced by using the reference op-
erator ‘&’. This operator can be applied directly in assignments, or in combina-
tion with formal and actual function parameters to perform a call-by-reference.
Figure 3.9 shows a simple example for creating an alias relationship between
variables $a and $b (on Line 2). This figure also demonstrates why taint analy-
sis requires access to alias information. Without this information, taint analysis
would not be able to decide that the assignment on Line 3 does not only affect
$a, but also the aliased variable $b. As a result, we would miss the fact that $b
eventually holds a tainted value, which leads to the XSS vulnerability on Line 4.
Analogously, the lack of aliasing information can cause false positives.

1 $b = ’nice ’; // $b: untainted

2 $a =& $b; // $a and $b: untainted

3 $a = $evil; // $a and $b: tainted

4 echo $b; // XSS vulnerability

Figure 3.9: Simple aliasing in PHP.

In the past, extensive work has been devoted to the area of alias analysis
(e.g., [4, 11, 45, 76, 85], to mention only a few). An overview of existing so-
lutions and open issues is given by Hind in [26]. During our investigations on
how to solve the problem of computing alias information for PHP programs, we
were considering to use one of these existing analyses. However, many of the
existing approaches had some particular limitation that made sense in the con-
text of C programs, but which we were not willing to accept for PHP programs.
For instance, the well-known analyses of Andersen [4], Steensgaard [76] and

CHAPTER 3. STATIC VULNERABILITY DETECTION 24

Das [15] are flow-insensitive. While this considerably speeds up the analysis,
the generated results are less precise than with a flow-sensitive analysis, which
can lead to false positives. Apart from their mere existence, a major problem
with such false positives is that it can be difficult to determine their cause (i.e.,
flow-insensitivity) during the manual inspection of the generated vulnerability
reports.

Another problem with reusing existing approaches is that there seems to
be no straightforward translation of alias analysis techniques designed for C to
a technique that can be used for PHP programs. One reason for the current
absence of such a translation is that there are semantic differences between refer-
ences and pointers. The PHP manual [59] devotes a whole chapter to explaining
references and highlighting the differences to C pointers. In essence, while C
pointers are special variables that contain memory addresses, PHP references
are symbol table aliases [59] that do not directly address memory locations.
That is, alias relationships between variables in PHP are represented internally
through equivalence in the context of symbol tables, and not through identi-
cal pointer values (i.e., memory addresses). Furthermore, PHP is dynamically
typed, which means that the types of variables are not declared explicitly in the
program’s source code. Instead, the types of variables are decided at runtime,
and can change during program execution. Moreover, PHP does not provide a
separate data type for references. Instead, all variables are references by nature,
even those containing only scalar values.

Figure 3.10 illustrates another difference, which occurs in combination with
parameter passing. When entering function “a” on Line 6, the formal parameter
$p has been aliased with the actual parameter $x1. However, since $x1 and $p
are now only symbol table aliases, the reference assignment on Line 7 only re-
references $p, leaving $x1 unmodified. In C, passing and modifying a pointer
in this way would make the pointer corresponding to $x1 point to $x2 after
returning from the function call on Line 3. Also note that PHP references are
mutable, as opposed to references in C++.

1 $x1 = 1;

2 $x2 = 2;

3 a($x1);

4 echo $x1; // $x1 is still ’1’

5

6 function a(&$p) {

7 $p =& $GLOBALS[’x2 ’];

8 }

Figure 3.10: References in contrast to pointers.

To the best of our knowledge, the issues discussed above have not been ad-
dressed in the literature so far. Minamide [50] and Huang et al. [30] briefly
mention their use of alias analysis for PHP, but without providing details. Sim-
ilarly, Liu et al. [47] only briefly mention that they have applied existing pointer
analysis algorithms to Python programs.

3.5.2 Intraprocedural Alias Analysis

Figure 3.11 shows a program snippet annotated with alias information that is
valid after the execution of the corresponding code line. In this figure (and in

CHAPTER 3. STATIC VULNERABILITY DETECTION 25

the following ones), we represent must-alias (“u”) and may-alias (“a”) infor-
mation separately. At the beginning of the program on Line 1, there exist no
aliases yet. After the reference assignment on Line 2, variables $a and $b are
aliases. We encode this fact by adding a new must-alias group to the must-alias
information. Must-alias groups are unordered and disjoint sets of variables that
are must-aliases. On Line 4, a second group is created after redirecting $c to
$d. This new group is extended by variable $e as result of the statement on
Line 5. Finally, we have to merge the information entering from two different
paths after the if-construct on Line 7. Intuitively, it is clear that all must-aliases
created inside the if-construct must be converted into may-aliases. Instead of
using sets of variables, we encode may-aliases by means of unordered variable
pairs. Hence, the must-alias group (c,d,e) is split into the three may-alias pairs
(c,d), (c,e), and (d,e). The reason for this asymmetric encoding of must-alias
and may-alias information is that it simplifies the algorithms necessary for inter-
procedural analysis. Figure 3.12 shows the combination operator algorithm that
is used for merging alias information at the meeting point of different program
paths (based on the construction of complete graphs). Note that this combi-
nation operator does not simply compute must-aliases through intersection and
may-aliases through union (although these steps are performed as parts of the
algorithm). For instance, using such a straightforward procedure to combine the
information from Lines 2 and 5 of Figure 3.11 would result in empty may-alias
information, which deviates from the correct result shown on Line 7.

1 skip; // u{} a{}

2 $a =& $b; // u{(a,b)} a{}

3 if (...) {

4 $c =& $d; // u{(a,b) (c,d)} a{}

5 $e =& $d; // u{(a,b) (c,d,e)} a{}

6 }

7 skip; // u{(a,b)} a{(c,d) (c,e) (d,e)}

Figure 3.11: Intraprocedural analysis information.

The separate tracking of must-alias and may-alias information (instead of
using only may-alias information) is motivated by the resulting precision gain.
Consider the case where variables $a and $b are must-aliases and tainted. When
encountering an operation that untaints $a, our analysis is able to correctly
untaint $b as well. If the analysis only possesses may-alias information, it would
have to make a conservative decision and leave $b tainted.

3.5.3 Interprocedural PHP Concepts

Before going into the details of our interprocedural alias analysis, we give a
brief overview of the PHP concepts necessary for understanding the following
sections. In terms of scoping, there are two types of variables in PHP: local
variables, which appear in the local scope of functions, and global variables,
which are located in the global scope (i.e., outside every function). Note that
formal function parameters belong to the class of local variables. From inside
functions, global variables can be accessed in two ways. The first method is
using the global keyword. A statement such as “global $x” has the effect that
the local variable $x is aliased with the global variable $x. The other way is
to access global variables directly via the special “$GLOBALS” array, which

CHAPTER 3. STATIC VULNERABILITY DETECTION 26

function combine (AliasInfo input -1, AliasInfo input -2) {

- AliasInfo output;

- output.may -aliases =

union of may -alias pairs of input -1 and input -2

- foreach must -alias group in input -1:

- create an auxiliary complete graph where the nodes

correspond to the group members (i.e., an undirected

graph where every node has an edge to every other node)

- foreach must -alias group in input -2:

- in the auxiliary graph , create a complete graph

consisting of the group members; if an edge to

be drawn already exists , promote it to a double edge

- foreach normal (i.e., single) edge in the graph:

- add the may -alias pair containing the corresponding nodes

to the output information

- foreach complete graph that contains only double edges:

- add the must -alias group containing the corresponding

nodes to the output information

- return output information

}

Figure 3.12: Algorithm for the combination operator.

is visible at every point in the program. Using this array, global variables can
even be re-referenced from inside functions, whereas the global keyword does
not offer this possibility.

3.5.4 Interprocedural Alias Analysis

The main problem that arises with interprocedural analysis is the handling of
recursive function calls. Every instance of a called function contains its own
copies of its local variables (variable incarnations). In most cases, it is not
possible to decide statically how deep recursive call chains can become since
the depth may depend on dynamic aspects, such as values originating from
databases, or user input. Hence, static analysis would be faced with an infinite
number of variable incarnations. Since this would mean that the underlying
lattice would not satisfy the ascending chain condition [56] (i.e., it would have
an infinite height), the analysis would not terminate in such cases. Our solution
to this problem is the following:

Inside functions, the analysis only tracks information about global
variables and its own local variable incarnations.

In the global scope, only global variables are considered. This important rule
leads to a finite number of variables during the analysis and forms the basis for
our alias analysis approach.

When encountering a function call during the analysis, the following two
questions arise:

1. What alias information has to be propagated into the callee?

2. What alias information is valid after control flow returns to the caller?

We first give a brief overview of the answers to these questions. A more detailed
treatment is presented afterwards. From the callee’s point of view, the analysis
has to provide the following information:

CHAPTER 3. STATIC VULNERABILITY DETECTION 27

• Aliases between global variables.

• Aliases between the callee’s formal parameters.

• Aliases between global variables and the callee’s formal parameters.

From the caller’s point of view, the following information has to be obtained
after the function returned:

• Aliases between global variables.

• Aliases between global variables and the caller’s local variables.

The aliases between the caller’s local variables cannot be modified by the callee.
Note that this does not imply that the values of the caller’s locals cannot be
modified by the callee (but such changes of values are not relevant for alias
analysis). Similarly, the aliases between the callee’s local variables are always
the same on function entry.

The alias relationships listed above cover all possible cases that can occur
in an application. Thus, they represent a complete partitioning of the prob-
lem space, making our approach sound with regard to the currently supported
language constructs (i.e., modulo the limitations discussed in Section 3.7.5). In
the following sections, we discuss each of the above issues in detail, ordered by
increasing complexity of the necessary concepts.

Aliases between Global Variables

The alias relationships between global variables are important for both the caller
and the callee. On the one hand, the callee must know about how global vari-
ables are aliased at the time the function call is performed. On the other hand,
the caller must be informed about how the global aliasing information was modi-
fied by the callee. These aspects can be treated in a straightforward way, similar
to the method applied by Sharir and Pnueli in their classic treatment of interpro-
cedural analysis [71]. This means that alias information about global variables
is propagated verbatim into the callee. Inside the callee, this information can be
modified analogously to the modification of local aliases. Finally, the (perhaps
modified) global alias information is propagated back to the caller.

An example for the handling of global variables is given in Figure 3.13. In
this figure, we extend our notation by prefixing variable names with the name
of the containing function. Global variables are considered to be contained
in the special “main” function, abbreviated with “m”. When calling function
“a” on Line 2, there is no aliasing at all. This empty alias information is
propagated into the function. From the function’s entry until the call to “b” on
Line 10, we simply apply our intraprocedural techniques. As mentioned above,
each function only tracks information about global variables and its own local
variables. Therefore, the information about the local variables of “a” is removed
prior to propagation into “b”. The information about global variables, however,
is propagated as it is. Inside function “b”, the global aliases are modified by
the statement on Line 15. On Line 11, this modified information is returned to
function “a”, which also restores the alias information for its own local variables.
May-aliases between global variables, which have not occurred in this example,
are treated analogously.

CHAPTER 3. STATIC VULNERABILITY DETECTION 28

1 skip; // u{} a{}

2 a();

3 skip; // u{(m.x1 , m.x2 , m.x3)} a{}

4

5 function a() { // u{} a{}

6 $a1 =& $a2; // u{(a.a1,a.a2)} a{}

7 $GLOBALS[’x1 ’] =&

8 $GLOBALS[’x2 ’];

9 skip; // u{(a.a1 ,a.a2) (m.x1, m.x2)} a{}

10 b();

11 skip; // u{(a.a1 ,a.a2) (m.x1, m.x2, m.x3)} a{}

12 }

13

14 function b() { // u{(m.x1 , m.x2)} a{}

15 $GLOBALS[’x3 ’] =&

16 $GLOBALS[’x1 ’];

17 skip; // u{(m.x1 , m.x2 , m.x3)} a{}

18 }

Figure 3.13: Aliases between global variables.

Aliases between the Callee’s Formal Parameters

Aliases between formal parameters appear when there exists an alias relation-
ship between the corresponding actual call-by-reference parameters. For in-
stance, function “b” in Figure 3.14 has two call-by-reference parameters, $bp1
and $bp2. The corresponding actual parameters are $a1 and $a2, which are
must-aliases at the time of the call to function “b”. As a result, the formal
parameters $bp1 and $bp2 are must-aliases on function entry.

1 a();

2

3 function a() { // u{} a{}

4 $a1 =& $a2; // u{(a.a1, a.a2)} a{}

5 b(&$a1 , &$a2);

6 }

7

8 function b(&$bp1 , &$bp2) {

9 skip; // u{(b.bp1 , b.bp2)} a{}

10 }

Figure 3.14: Must-aliases between formal parameters.

For the treatment of may-aliases between formal parameters, additional con-
siderations are necessary. First, recalling that may-alias pairs are unordered, we
can identify three types of may-alias pairs that can exist at the time of a function
call: (local, local), (global, global), and (local, global). Next, we can distinguish
several cases depending on how many elements of a may-alias pair are used as
actual call-by-reference parameter (either one or both). Of course, if no element
of a may-alias pair is used as parameter, it cannot induce aliases between formal
parameters. Table 3.3 provides an overview of all possible cases and the may-
alias pairs resulting for the callee. The table shows the may-aliases between the
formal parameters of a function with signature b(&bp1, &bp2) that result from
different calls to this function (given in the first column) and different may-
aliases at the time of the function call (given by the second column, labeled
with “Entering may-aliases”). An example for the case in the second row of

CHAPTER 3. STATIC VULNERABILITY DETECTION 29

Table 3.3 is shown in Figure 3.15. Here, the may-alias pair ($a1, $a2), which
consists of two local variables, reaches the call to function “b” on Line 8. Both
of these local variables are used as actual call-by-reference parameters. Hence,
this initially results in three may-alias pairs: ($bp1, $bp2), ($bp1, $a2), and
($bp2, $a1). The last two pairs are not propagated to the callee, since they
contain local variables of the caller. Figure 3.16 shows the exact algorithm that
was applied in this case.

Function call Entering Resulting Resulting

may-aliases relevant irrelevant

may-aliases may-aliases

b(&$local 1, –) (local 1, local 2) none (bp1, local 2)
b(&$local 1, (local 1, local 2) (bp1, bp2) (bp1, local 2),

&$local 2) (bp2, local 1)
b(&$global 1, –) (global 1, global 2) (bp1, global 2) none
b(&$global 1, (global 1, global 2) (bp1, global 2), none

&$global 2) (bp2, global 1),
(bp1, bp2)

b(&$local, –) (local, global) (bp1, global) none
b(&$global, –) (local, global) none (bp1, local)
b(&$local, (local, global) (bp1, bp2), (bp2, local)

&$global) (bp1, global)

Table 3.3: May-aliases between formal parameters resulting from calls to a
function with signature b(&bp1, &bp2)

1 a();

2

3 function a() { // u{} a{}

4 if (...) {

5 $a1 =& $a2; // u{(a.a1 ,a.a2)} a{}

6 }

7 skip; // u{} a{(a.a1 ,a.a2)}

8 b(&$a1 , &$a2);

9 }

10

11 function b(&$bp1 , &$bp2) {

12 skip; // u{} a{(b.bp1 ,b.bp2)}

13 }

Figure 3.15: May-aliases between formal parameters.

Aliases between Global Variables and the Callee’s Formal Parameters

For detecting aliases between global variables and the callee’s formal param-
eters, we have to consider the following cases for the actual call-by-reference
parameter:

• The parameter is a must-alias of a global variable.

• It is a global variable (and hence, a trivial must-alias of a global variable).

CHAPTER 3. STATIC VULNERABILITY DETECTION 30

- foreach call -by -reference pair:

- create a placeholder variable for the formal parameter

and add it to the actual parameter ’s must -alias group

- foreach may -alias pair that contains the actual parameter:

- copy this pair , replace the actual parameter in the

new pair by the formal parameter ’s placeholder , and

add the new pair to the set of may -aliases

- remove all local variables that belong to the caller

- remove all must -alias groups and may -alias pairs that

have only one element

- replace the placeholders by the corresponding

formal parameters

Figure 3.16: Algorithm for adjusting the alias information that is propagated
into a callee.

• It is a may-alias of a global variable.

Fortunately, these cases are quite simple and can be handled with the same
means as those that have been applied in the previous section. Figure 3.17
shows an example for the first case. At the call to function “b” on Line 5,
variable $a is a must-alias of the global variable $x1. Since $a is used as actual
call-by-reference parameter, this means that the formal parameter $bp1 becomes
a must-alias of $x1 on function entry.

1 a();

2

3 function a() { // u{} a{}

4 $a1 =& $GLOBALS[’x1 ’]; // u{(a.a1 ,m.x1)} a{}

5 b(&$a1);

6 }

7

8 function b(&$bp1) { // u{(m.x1,b.bp1)} a{}

9 skip;

10 }

Figure 3.17: Must-aliases between formal parameters and global variables.

Aliases between Global Variables and the Caller’s Local Variables

As mentioned previously, the aliases between local variables of a caller cannot
be changed by a callee. However, the aliases between the caller’s local variables
and global variables can be modified by the callee in the following ways:

1. If a local variable is aliased with a global variable at the time of the
function call:

(a) Other global variables can be redirected to this global variable, and
hence, to the local variable. That is, the alias information of other
global variables can be changed such that these other global variables
are now aliasing the aforementioned global variable (and thus, the
local variable as well).

(b) This global variable can be redirected to something else, and hence,
away from the local variable.

CHAPTER 3. STATIC VULNERABILITY DETECTION 31

2. If a local variable is aliased with a formal parameter through call-by-
reference:

(a) Global variables can be redirected to this formal parameter, and
hence, to the local variable.

Note that each of these cases implies a number of subcases depending on whether
must- or may-aliasing is performed. Our basic rule for interprocedural analyses
forbids the propagation of aliasing information about local variables to other
functions. Hence, another mechanism is necessary to be able to collect infor-
mation about changes of aliasing relations between global variables and local
variables. For this purpose, we present the notion of shadow variables.

Shadow Variables. Our analysis uses two types of special variables for solv-
ing the problem mentioned previously. The first type, called formal-shadows
(or f-shadows), are introduced at the beginning of every function. There is one
f-shadow for each formal parameter of a function, and each f-shadow is aliased
with its corresponding formal parameter at the beginning of this function. For
instance, consider the function with signature “a($ap1, $ap2)”. The analysis
introduces the f-shadows $ap1 fs and $ap2 fs at the beginning of the function,
and aliases them with their formal parameters. Therefore, $ap1 fs references
the same memory location as $ap1, and $ap2 fs references the same memory lo-
cation as $ap2. Analogously, the second type of shadows are the global-shadows
(or g-shadows), which are also introduced at the beginning of every function.
For each global variable, there is one g-shadow per function, and each g-shadow
is aliased with its corresponding global variable at the beginning of the func-
tion. For instance, if there are two global variables $x1 and $x2 in the program,
then each function is assigned its own shadow variable $x1 gs for $x1, as well
as a shadow variable $x2 gs for $x2. These definitions lead to the following
properties of shadow variables:

• Shadow variables are local variables.

• Shadow variables cannot be accessed by the programmer, since they are
fresh variables introduced during the analysis. This implies that they are
never re-referenced after their initialization performed by the analysis.

Intuitively, the f-shadows of a function have the purpose of representing local
variables of the caller that were aliased with a formal parameter of the function
at the time of the call. Analogously, g-shadows represent local variables of the
caller that were aliased with a global variable at the time of the function’s invo-
cation. This provides us with the means to determine how the aliases between
the caller’s local variables and global variables are modified by function calls.

To illustrate the benefit of shadow variables, consider Figure 3.18, which
shows a code snippet covered by Case 1b. At the time of the call to function
“b” on Line 8, the local variable $a1 is a must-alias of the global variable $x1.
Inside the called function on Line 13, this global variable is re-referenced to
another global variable. Without using g-shadows, the analysis would not be
able to determine that $a1 is no longer aliased with $x1 when control flow
returns to function “a” (remember that propagating local variables into the
callee is not allowed). With the g-shadow, however, the analysis is able to

CHAPTER 3. STATIC VULNERABILITY DETECTION 32

extract this important fact: In the information flowing back from function “b”,
the g-shadow of $x1 is not aliased with $x1 any more. Recalling the purpose
of g-shadows, we know that the g-shadow of $x1 is indirectly representing $a1
(since $a1 was an alias of $x1 at the time of the call). Hence, we can deduce
that $a1 is no longer aliased with $x1. Also, note that the fact that the global
variable $x1 becomes an alias of the global variable $x2 is returned to the caller
as well.

1 a();

2 skip; // u{(m.x1 , m.x2)} a{}

3

4 function a() { // u{(m.x1 , a.x1_gs) (m.x2 , a.x2_gs)} a{}

5 $a1 =&

6 $GLOBALS[’x1 ’];

7 skip; // u{(m.x1 , a.x1_gs , a.a1) (m.x2, a.x2_gs)} a{}

8 b();

9 skip; // u{(m.x1 , m.x2 , a.x2_gs) (a.a1, a.x1_gs)} a{}

10 }

11

12 function b() { // u{(m.x1 , b.x1_gs) (m.x2 , b.x2_gs)} a{}

13 $GLOBALS[’x1 ’] =&

14 $GLOBALS[’x2 ’];

15 skip; // u{(m.x2 , b.x2_gs , m.x1)} a{}

16 }

Figure 3.18: Aliases between local variables and global variables.

The detailed algorithm covering all presented cases can be found in Fig-
ure 3.19. The interested reader is referred to Pixy, the open-source implemen-
tation of our concepts, which contains a comprehensive collection of examples
that have been used to test our algorithms in practice. These examples clearly
demonstrate the ability of our analysis to solve even difficult aliasing problems.

3.5.5 Complexity

Since we have integrated our alias analysis into a standard data flow analy-
sis framework, the worst case for the number of basic operations (least upper
bound operations and transfer function applications) applied by the underlying
iterative algorithm is O(n · h), where n denotes the number of CFG nodes, and
h denotes the height of the used lattice [56]. In this rare worst case, the analysis
information for every node in the program moves only one step up in the lattice
for each pass of the algorithm, and eventually reaches the top element. In our
alias analysis, the top element (i.e., the element that holds the least precise
information) represents the information that every variable in the program is a
may-alias of every other variable. In this top element, the number of may-alias
pairs equals

∑v−1
i=1 i = (v−1)·v

2 , where v denotes the number of variables in the
program. Note that the actual number of variables that the analysis operates
on (v) is higher than the number of variables in the scanned program (V), due
to the introduction of shadow variables. In the worst case, the program has
only global variables, which results in v = 2 · V . The precision of the infor-
mation of the top lattice element can be improved by removing one alias pair
after the other, which is equivalent to moving down the lattice step by step,
until the empty lattice element is reached. As a result, the height of the lattice

CHAPTER 3. STATIC VULNERABILITY DETECTION 33

- origInfo: the information entering the call node

- localInfo: contains only the aliasing information between

locals of the caller (extracted from origInfo)

- interInfo: contains only the aliasing information between globals

(taken from the information at the end of the callee)

- outputInfo: initialized with localInfo and interInfo;

the following steps compute and add the aliases between

global variables and local variables;

results in the information at the local exit of the call node

// G-Shadows: Must -Aliases

- foreach must -alias group in origInfo:

- if it contains at least one local variable v

and at least one global variable g:

- mark this group as visited

- if the g-shadow of g has at least one

global must -alias g_u at the end of the called function:

- in outputInfo , merge the must -alias group containing v

with the must -alias group containing g_u (also

considering implicit one -element groups)

- foreach global may -alias g_a of the g-shadow at

the end of the called function:

- add the may -alias -pair (v, g_a) and all

may -alias -pairs (v_u , g_a) to outputInfo ,

where v_u denotes "each local must -alias of v"

// G-Shadows: May -Aliases

- foreach may -alias pair containing a local and a global

in origInfo:

- foreach global alias (both must and may)

of the global ’s g-shadow at the end of the callee:

- add the may -alias pair (local , alias) to outputInfo

// F-Shadows: Must -Aliases and May -Aliases

- foreach local actual call -by -reference parameter p:

- determine the corresponding formal ’s f-shadow fs

- find p’s must -alias group in origInfo

(also considering implicit one -element groups)

- if this group is not marked as visited:

- mark the group as visited

- if the f-shadow fs has at least one global must -alias f_u

at the end of the callee:

- in outputInfo , merge the must -alias group containing

p with the must -alias group containing f_u

(also considering implicit one -element groups)

- foreach global may -alias f_a of the f-shadow at

the end of the callee:

- add the may -alias pair (p, f_a) and the may -alias -pairs

(p_u , f_a) to outputInfo , where p_u denotes

"each local must -alias of p"

- foreach local may -alias lma of p:

- foreach global alias (both must and may) of

the f-shadow at the end of the called function:

- add the may -alias pair (lma , alias) to outputInfo

Figure 3.19: Algorithm for computing the alias information after a function call.

CHAPTER 3. STATIC VULNERABILITY DETECTION 34

is identical to the number of may-alias pairs in the top lattice element, leading
to a quadratic number O(n · v2) of basic operations in the worst case. The
basic operations are linear in the size of their input elements, and hence, do not
change the quadratic runtime behavior.

Regarding space requirements, the worst case occurs when every CFG node
is associated with the largest possible lattice element. Thus, the worst-case
space complexity is O(n · s), where s denotes the maximum lattice element size.
The largest element is the top lattice element, which requires (v−1)·v

2 space,
leading to a worst case space complexity of O(n · v2). Note that our empirical
results indicate that the practical time and space requirements are typically
significantly lower than in the worst case, since complex alias relationships are
not frequent in real-world PHP programs.

3.6 Literal Analysis Revisited

Using the information collected by alias analysis, we can extend the basic con-
cepts for literal analysis presented in Section 3.4 to correctly take into account
alias relationships. For a simple assignment of the form “$a = $b”, the aliases of
the variable on the left side are relevant for literal analysis. The reason is that
all aliases of variable $a are also affected by the assignment. Of the four cases
that literal analysis had to distinguish in Section 3.4, all but the first involved
an array or array element on the left side. Since we only consider references to
simple variables, there cannot exist aliases for the variable on the left side in the
last three cases. Hence, no further extensions are necessary. In the first case,
however, the left variable is not an array element (and not known as array), and
therefore, might possess aliases. Must-aliases of this variable are treated by the
transfer function with a strong update, i.e., their literals are simply overwritten
with the literal obtained from the right side of the assignment. As there is no
sufficient certainty for may-aliases, they must be handled conservatively by a
weak update. That is, all aliases of the variable on the left-hand side are as-
signed the least upper bound of their literal and the literal from the right side.
An overview of the possible cases and actions for simple assignment nodes is
given in Table 3.2 (on page 20).

Now that the transfer function for simple assignment nodes is defined, the
transfer functions for the other relevant CFG nodes can be introduced. For
unary assignment nodes such as “$a = -$b”, the literal resulting from the
application of the operator on the right side is computed first, and then the
presented technique for simple assignment nodes is used. For example, if $b
evaluates to 3, $a is assigned -3. Special care was taken to reflect PHP’s implicit
type conversion mechanisms (described in the PHP Manual [60]). The treatment
of binary assignment nodes such as “$a = $b + $c” is analogous to unary
assignments, with the sole difference that the operator on the right side takes
two input arguments instead of one. Note that when we do not possess specific
information for an operand (i.e., if it is >), the result of the operation is also
>. In essence, the actions performed by the transfer functions introduced above
correspond to the classic combination of constant propagation and constant
folding.

For reference assignment nodes such as “$a =& $b”, it is sufficient to
overwrite the literal of $a with the literal of $b, since reference statements have

CHAPTER 3. STATIC VULNERABILITY DETECTION 35

been restricted to simple variables. Global nodes can be handled as normal
assignments, with the operand variable on the left side and an equally-named
variable from the global scope on the right side. In the case of unset nodes,
the unset variable and all its literal array elements are set to the NULL literal,
which represents the PHP null value. As far as literal analysis is concerned,
array assignment nodes have the same semantic effects as unset nodes, and
can be treated in the same way.

What remains to be specified are the interprocedural transfer functions. At
call preparation nodes, we iterate through each formal parameter of the
callee. If there exists a corresponding actual parameter, the analysis captures
the value transfer by simulating an assignment with the shape “formal param-
eter = actual parameter”. When the programmer specifies default values for
formal parameters, an invocation does not have to provide actual parameters
for these. For example, a function with the signature “foo($p = 7)” does not
have to be called with any actual parameters at all. In such cases, the anal-
ysis simply performs assignments with the shape “formal parameter = default
value”. Afterwards, local variables are reset to their initial values (i.e., those
values that the variables were assigned at the very beginning of the analysis).
The reason is that, analogous to the interprocedural rule given in Section 3.5.4,
values of local variable incarnations must only be tracked inside the function
that these variables belong to.

At the call return node, the analysis must make sure that both global and
local variables of the caller receive correct values, based on the operations in the
callee. For global variables, this is straightforward: We simply propagate the
values at the end of the callee back to the caller (as done by Sharir and Pnueli
in [71]). For local variables, the situation is more complicated. There are two
ways how a callee can affect the value of a caller’s local variable:

• If a local variable of the caller was aliased with a global variable at call-
time, the callee can modify this local variable by modifying the global
variable.

• If a local variable of the caller was used as actual call-by-reference param-
eter at call-time, the callee can modify this local variable by modifying
the corresponding formal parameter.

Note that it is necessary to be aware of the possibility that the aliased global
or formal variable could be redirected to some other variable inside the callee.
Hence, it is not safe to simply assign the value of the global or formal to the
local variable. Instead, we have to make use of the already introduced shadow
variables. Remember that shadow variables serve as representatives of local
variables involved in alias relationships with globals or formals. As a result,
they are perfectly suited for the task at hand. For both of the above cases,
we must further distinguish whether the local variable was involved in a must-
or a may-alias relation. We will now discuss the treatment of each of the four
resulting cases in detail.

Global Must-Aliases. For each local variable of the caller that has a global
must-alias at the time of the function call, we choose one of these globals (it
does not matter which one we choose, as they must all hold the same literal

CHAPTER 3. STATIC VULNERABILITY DETECTION 36

value). In accordance to our previous remark about the usage of shadow vari-
ables, the analysis now sets the literal of the local variable to the literal of the
corresponding g-shadow. Then, the local variable is marked as having been vis-
ited, informing the following steps that it is not necessary to perform any further
computations for this variable’s literal. An example for this computation step
is given in Figure 3.20. When reaching the call to function “b” on Line 7, the
local variable $a1 of function “a” has a must-alias relation with global variable
$x1. Hence, function “b” has the power to modify the value $a indirectly by
modifying $x1, and does so on Line 12. On Line 13, $x1 is redirected away
from $a1 and the g-shadow $x1 gs to another global variable ($x2). This is the
reason why the assignment on Line 15 does not affect $a1, which is reflected by
$x1 gs keeping its old value. When the function returns, we simply set $a1 to
the value of $x1 gs, obtaining the desired result.

1 $x1 = 1;

2 $x2 = 2;

3 a();

4

5 function a() {

6 $a1 =& $GLOBALS[’x1 ’]; // a1:1, x1:1

7 b();

8 skip; // a1:7, x1:8

9 }

10

11 function b() {

12 $GLOBALS[’x1 ’] = 7; // x1:7, x1_gs:7

13 $GLOBALS[’x1 ’] =&

14 $GLOBALS[’x2 ’]; // x1:2, x1_gs:7

15 $GLOBALS[’x1 ’] = 8; // x2:8, x1_gs:7

16 }

Figure 3.20: Modification of caller locals due to a global must-alias.

Formal Must-Aliases. For each local variable that was used as actual call-
by-reference parameter at call-time, the literal is set to that of the corresponding
f-shadow (which is analogous to what we did in the previous step). In addition,
we do the same for all local must-aliases of these local variables, since the local
must-aliases are also must-aliases of the corresponding formal parameters. Note
that we skip local variables that have already been marked as visited, and mark
those local variables that are processed. On Line 5 in Figure 3.21, local variables
$a1 and $a2 of function “a” are aliased. On the next line, function “b” is called
with $a1 as actual call-by-reference parameter. Hence, the assignment to the
corresponding formal parameter $bp1 on Line 11 affects both $a1 and $a2. The
assignment on Line 14 has no effect on these two local variables since $bp1
was redirected to $b2 on Line 13. Again, the use of a shadow variable (in this
case, the f-shadow $bp1 fs) has enabled the algorithm to deal with this situation
correctly.

Global May-Aliases. Now we turn our attention towards the modification
of local variables enabled by the presence of may-alias relationships. For each
local variable that was a may-alias of a global variable at call-time, its literal
is set to the least upper bound of its literal at call-time and the literal of the

CHAPTER 3. STATIC VULNERABILITY DETECTION 37

1 a();

2

3 function a() {

4 $a1 = 1; // a1:1

5 $a2 =& $a1; // a1:1, a2:1

6 b(&$a1);

7 skip; // a1:7, a2:7

8 }

9

10 function b(&$bp1) { // bp1:1, bp1_fs :1

11 $bp1 = 7; // bp1:7, bp1_fs :7

12 $b2 = 2; // bp1:7, bp1_fs:7, b2:2

13 $bp1 =& $b2; // bp1:2, bp1_fs:7, b2:2

14 $bp1 = 8; // bp1:8, bp1_fs:7, b2:8

15 }

Figure 3.21: Modification of caller locals due to a formal must-alias.

corresponding g-shadow. As before, we can skip local variables that have been
marked as visited. However, we do not mark any variables as visited in this
step, since the flow of values due to may-aliases is not definitive and might be
changed by the following step. When control flow reaches the call on Line 9 of
Figure 3.22, there exists a may-alias relationship between $a1 and $x1. Inside
function “b”, the value of $x1 is changed from 1 to 7. Since $a1 is only a may-
alias of $x1, we have to compute the least upper bound of 1 and 7 instead of
setting the value of $a to 7, resulting in a1:> on Line 10.

1 $x1 = 1;

2 a();

3

4 function a() {

5 $a1 = 1;

6 if (*)

7 $a1 =& $GLOBALS[’x1 ’]; // a1:1

8 skip; // a1:1

9 b();

10 skip; // a1:>
11 }

12

13 function b() { // x1:1, x1_gs :1

14 $GLOBALS[’x1 ’] = 7; // x1:7, x1_gs :7

15 }

Figure 3.22: Modification of caller locals due to a global may-alias.

Formal May-Aliases. A local variable is a may-alias of a formal parameter
if it is a may-alias of an actual call-by-reference parameter at call-time. The
case where this actual parameter is a global variable can be ignored here, as it
has already been handled by the previous step. Hence, we only focus on local
variables that are may-aliases of local actual call-by-reference parameters. For
each of these variables that has not been marked as visited, we compute its
literal value as the least upper bound of its literal value at call-time and that
of the corresponding f-shadow. When control flow reaches the call on Line 8
of Figure 3.23, there exists a may-alias relation between $a1 and $a2. While
the assignment to $bp1 on Line 13 directly overwrites the value of the actual

CHAPTER 3. STATIC VULNERABILITY DETECTION 38

call-by-reference parameter $a1, computing the least upper bound is necessary
for the may-alias $a2, resulting in a2:> on Line 9.

1 a();

2

3 function a() {

4 $a1 = $a2 = 1; // a1:1, $a2:1

5 if (*)

6 $a2 =& $a1; // a1:1, $a2:1

7 skip; // a1:1, $a2:1

8 b(&$a1);

9 skip; // a1:7, a2:>
10 }

11

12 function b(&$bp1) { // bp1:1, bp1_fs :1

13 $bp1 = 7; // bp1:7, bp1_fs :7

14 }

Figure 3.23: Modification of caller locals due to a formal may-alias.

Finally, the return value of the callee is passed back to the caller by assigning
it to the temporary variable provided by the P-Tac conversion for representing
the function’s expression value.

Functions that are built into PHP are conservatively modeled as returning
>, since the increased precision is expected to be rather small compared to the
required work necessary for simulating these functions. For a safe approach, the
analysis can additionally set all reference parameters to > as well. The only
built-in function that is modeled precisely is the frequently used define, which
is needed for the definition of constants.

3.7 Taint Analysis

Taint analysis strongly resembles literal analysis. Its purpose is to determine,
for each program point, the taint value (instead of the literal) of a variable
or constant. Once these results have been computed, it is possible to inspect
whether any sensitive sink in the program is receiving malicious data, and hence,
to detect vulnerabilities.

3.7.1 Carrier Lattice Definition

A variable or constant is said to be tainted if it can hold a malicious value
(with regard to XSS) originating from user input that has not been sanitized.
Since literals can never hold user input, they are always untainted. The basic
lattice for taint analysis resembles that of literal analysis, with the difference
that it does not map to literals and >, but to the taint values tainted and un-
tainted. Note that we take a conservative (safe) approach in that a variable
being mapped to tainted means “this variable might be tainted”, whereas a
mapping to untainted means “this variable is untainted.” Hence, whenever the
analysis cannot determine whether a variable is tainted or not, it is conserva-
tively assumed to be tainted. In the context of data flow analysis, being tainted
is therefore less precise than being untainted, which is illustrated by the lattice
fragment in Figure 3.24. Just like for the previous analyses, less precise lattice

CHAPTER 3. STATIC VULNERABILITY DETECTION 39

elements are located above more precise elements. In practice, the lattice ele-
ments do not only contain a mapping for one single variable, but for all variables
that occur in the program. This lattice corresponds to the typical taint lattice
that has already been used by other researchers [30, 70].

$a:tainted

$a:untainted

Figure 3.24: Fragment of a taint analysis lattice.

Recall that literal analysis treats non-literal array elements (such as $a[$i]) in
a pessimistic way in that they are always mapped to >. For the same reasons,
taint analysis maps non-literal array elements to tainted. In the context of
taint analysis, however, this leads to undesirable false positives in certain cases.
For example, declaring a variable with the built-in array function clears all its
content, including all values possibly injected by an attacker (see Figure 3.25).
That is, the array function is considered to belong to the built-in sanitization
functions of PHP. Whenever an array is cleared in such a manner, we would
like to treat its content as untainted, even though taint analysis might yield a
different result. This is why we track an additional clean array flag (CA flag) for
each variable that is not an array element. An active CA flag overrides the taint
information for the whole array tree, meaning that all its elements (including
those with non-literal indices) are untainted. The CA flag of an array element
is implicitly considered to be equal to the CA flag of its enclosing array.

1 $a = <user input >;

2

3 // $a[1] can be controlled by an attacker

4

5 $a = array ();

6

7 // now $a[1] is no longer controlled by an attacker

Figure 3.25: Untainting with array.

3.7.2 Transfer Functions Definition

Due to its similarity to literal analysis, the transfer functions for taint analysis
will sound familiar. For the simple assignment node, the same distinction
of cases with regard to the left variable has to be made, and the operations
affecting the taint values are completely analogous to those for literal values.
The only difference is that taint analysis also has to consider the “CA flag”
extension to its lattice. An overview of the necessary operations is given in the
rightmost column of Table 3.2 (on page 20). The “root” field used in Table 3.2
denotes the variable itself if it is not an array element (e.g., $a.root == $a) and
the root node of the corresponding array tree otherwise (e.g., $b[1][2].root ==
$b).

As mentioned in Section 3.6, special care was taken to handle PHP’s implicit
type conversion mechanisms for unary assignment nodes. Doing this in the

CHAPTER 3. STATIC VULNERABILITY DETECTION 40

context of taint analysis has the desirable effect that sanitization through type
casting is handled correctly. For instance, implicitly casting a tainted variable
into an integer (with unary operators such as +, -, and (int)) untaints this
variable, since cross-site scripting attacks require to display more data than
just simple integers in order to work properly. The same holds for binary
assignment nodes.

For reference assignment nodes such as “$a =& $b”, we can adapt the
literal analysis transfer function in a straightforward fashion: It is sufficient to
overwrite the taint value and CA flag of $a with the taint value and CA flag
of $b. At unset nodes, the operand variable and all literal array elements
are set to untainted. If the operand variable is not an array element, its CA
flag is set to “clean” (recall that CA flags are not tracked explicitly for array
elements). Array assignment nodes and global nodes are treated as usual,
i.e., analogous to unset nodes and reference assignment nodes, respectively.

The interprocedural operations necessary for taint analysis are completely
analogous to literal analysis, with the differences for handling CA flags already
discussed.

In contrast to literal analysis, it is important for taint analysis to correctly
model built-in PHP functions in order to reduce the number of false positives.
For this purpose, our analyzer processes a specification file on startup which
describes the semantics of built-in PHP functions. For instance, the effect of
the built-in function htmlentities, which is effective in sanitizing input against
cross-site scripting attacks, is implemented by simply letting it return an un-
tainted value.

3.7.3 Using the Analysis Results

Generating warnings that point the developer to possible cross-site scripting
vulnerabilities at the end of the analysis is straightforward. The analysis in-
formation for each sensitive sink (such as calls to echo and print) is searched
for tainted input variables, and a warning message indicating the corresponding
line is issued if such a violation is discovered.

3.7.4 Detecting Stored XSS Attacks

Currently, our tool is primarily targeted at the detection of reflected XSS vul-
nerabilities. However, it is straightforward to use it for the detection of stored
XSS as well, given a certain program policy with regard to the taint status of
persistently stored data. For instance, it is possible that data is not sanitized
before it is stored to a database or to the filesystem, which means that it has
to be sanitized after its later retrieval. In our system, this can be modeled
by adding the corresponding data retrieval functions to the set of taint sources.
Analogously, the application’s policy can demand that all data is sanitized before
it is stored. In this case, data storage functions have to be defined as sensitive
sinks. Mixed policies are more difficult to handle. For instance, an application
could expect a certain database table to contain only sanitized values, whereas
some other table might also be allowed to contain unsanitized values. Here, the
analysis would also have to resolve the names of the tables that are used for
storage and retrieval. To the best of our knowledge, there exist no studies that
answer the question which of these policies is prevalent in real-world programs.

CHAPTER 3. STATIC VULNERABILITY DETECTION 41

3.7.5 Limitations

Currently, our analyzer does not completely support object-oriented features of
PHP. It attempts to resolve method calls by means of a simple type analysis,
and treats unresolved calls in an optimistic way, meaning that they are consid-
ered to return untainted data. Analogously, it is assumed that object member
variables are always untainted. In alias analysis, object or member variables
never appear as elements of alias relationships. Besides, reference statements
that contain arrays or array elements are not considered by the alias analysis.
However, this restriction did not appear to impact the results in our experi-
ments. Also, note that this limitation only applies to alias analysis, whereas
literal and taint analysis invest significant efforts into precisely tracking the at-
tributes of arrays and their elements. These limitations are the reason why our
analysis is unsound (i.e., it may generate false negatives). For instance, a taint
value that is propagated through alias relationships between array elements is
not detected.

3.8 Resolving Includes

Virtually all web applications written in scripting languages such as PHP di-
vide their code over several source files. These files are combined at runtime by
means of file inclusion. A major difference compared to file inclusion in C and
other languages is that the names of the included files need not be represented
by static literals. Instead, these names can be composed of arbitrary expres-
sions. Therefore, it is necessary to compute information about the value of these
expressions to be able to take into account included files during static analysis.
Straightforwardly applying a simple preprocessor such as the one used for C
programs would not suffice, as it would leave a significant number of includes
unresolved.

Basically, the task of resolving includes can be performed by literal analysis.
A straightforward approach would be to include successfully resolved files “on
the fly” during literal analysis. However, this results in the problem of having
to modify the lattice of a running data flow analysis, which is both conceptually
demanding and difficult to implement. Another issue is performance: It would
be desirable to immediately resolve literal includes without the need to perform
a fully-fledged literal analysis first.

Our solution is to apply an iterative two-stage preprocessing step that is
fast, precise, and easy to implement. In the first stage, we transitively resolve
and include files whose names are directly given by literals (strings). In the
second stage, if there are any non-literal include statements, we perform a literal
analysis on the code that resulted from the first stage. This second stage may
lead to the inclusion of additional files, which may again contain simple literal
includes. Hence, we continue with the next iteration of the first stage and
handle literal includes again. The process eventually terminates when there are
no resolvable includes left.

PHP also permits the definition of recursive include relationships, which are
used very rarely in practice. A simple approximative solution to this problem
would be to include every file not more than once. Unfortunately, this would
be highly imprecise because real-world applications often include the same files

CHAPTER 3. STATIC VULNERABILITY DETECTION 42

multiple times, even if there are no recursive includes. This practice is analogous
to calling a function multiple times without calling it recursively. Therefore,
during our include resolution process, we build an include graph that is used to
determine whether an encountered include is recursive or not. Only in case of
real recursive includes, we approximate such statements by treating them like
no-ops.

3.9 Empirical Results

We performed a series of experiments with our prototype implementation (writ-
ten in Java, and called Pixy) to demonstrate its ability to detect previously
unknown cross-site scripting vulnerabilities. To this end, Pixy was run on the
current versions of six open-source PHP programs. In contrast to C or Java
programs, which have one clearly defined entry point where the execution starts
(i.e., the main function), web applications written in PHP usually have several
different entry points. These entry points correspond to the files visible in the
browser’s location bar while interacting with the web application. We provided
these entry points as input files to Pixy, which automatically resolved further
file inclusions. Table 3.4 shows a summary of our results, including the number
of entry points and the total lines of code that were analyzed. To determine
the line count, we do not factor out files that were analyzed multiple times in
different contexts. For example, if an entry file “a.php” includes a file “b.php”
twice, the lines of “b.php” are counted twice. Most entry files (together with
their transitively included files) were analyzed in less than a minute using a
3.0 GHz Pentium 4 processor with 1GB RAM, even though our prototype still
presents many opportunities for performance tuning. There was no analysis run
that took longer than five minutes.

In total, we discovered 161 exploitable XSS vulnerabilities in the latest ver-
sions of the analyzed programs. In all cases, we informed the authors about
the issues and posted security advisories to the BugTraq mailing list [9]. The
false positive rate of about 28 % (calculated as 64

161+64) is relatively low and
further alleviated by the fact that many false positives are similar, which makes
their recognition easier (see Section 3.9.2 for more details). Pixy also reported
a few programming bugs not relevant for security, such as function calls with
too many arguments. Since these bugs have no influence on program security,
they were counted neither as vulnerabilities nor as false positives. These re-
sults clearly show that our analysis is capable of efficiently finding previously
unknown vulnerabilities in real-world applications.

Note that for QaTraq, there were actually 209 additional reports not listed
in Table 3.4. The programmers of QaTraq frequently reused large parts of code
through copy-and-paste. As a result, the places that these additional reports re-
fer to strongly resemble those for which we constructed working exploits. Even
though we are confident that these reports correspond to real vulnerabilities, we
did not bother to write exploits for them (due to a certain repetitiveness that
would have been connected with this task). To remain sincere, we abstained
from listing these reports as vulnerabilities. Note that copy-and-paste program-
ming is also the reason for the relatively high number of entry files and lines of
code for QaTraq.

CHAPTER 3. STATIC VULNERABILITY DETECTION 43

Program Entry LOC T V FP BugTraq

Files ID

DCP Portal 6.1.1 22 61,617 6.0 61 15 427,175
MyBloggie 2.1.3beta 6 20,326 58.3 13 5 427,182
Open Searchable 14 14,281 1.5 6 0 435,380
Image Catalogue 0.7
QaTraq 6.5 146 4,275,234 10.7 48 14 438,151
Qdig 1.2.9.2 4 5,385 54.5 2 3 18,653
TxtForum 1.0.4-dev 15 4,398 1.3 31 17 427,186

427,188
Totals 206 4,381,241 11.1 161 64

Table 3.4: Summary of vulnerability reports (T = Time in seconds per file, V
= Vulnerabilities, FP = False Positives).

3.9.1 A Case Study: MyBloggie

Detailed descriptions of the discovered vulnerabilities are given in the corre-
sponding BugTraq postings. In this section, we will take a closer look at an
interesting vulnerability that we discovered in MyBloggie. This vulnerability is
rather complex, especially when inspected in its original, unsimplified form. The
relevant code spans three different source files and two functions, and includes
value flows between parameters, arrays, and variables from different scopes.
Finding such a vulnerability without the assistance of an automated analysis
tool would be quite difficult.

Figure 3.26 shows the code in a simplified and condensed form. The sen-
sitive sink on Line 11 receives a tainted value as input, which is held by the
function’s second formal parameter ($message). This function is called from
Line 8 with $tbstatus as actual parameter. Inside the branches of the preced-
ing if-construct, $tbstatus is either set to the empty string on Line 5 (which
is untainted), or is built up from the variable $tbreply on Line 3 (the “.” is
PHP’s string concatenation operator). The value of the global variable $tbreply
is set by the call to function “multi tb” on Line 2. A closer look at this function
reveals that $tbreply is tainted whenever the first parameter $post urls of func-
tion “multi tb” is tainted. First, $post urls is split into an array on Line 16.
Afterwards, this array is traversed by the loop starting on Line 17. Inside the
loop, $tbreply is assembled from the elements of the array $tb urls. In effect,
since $post urls can be controlled directly by the attacker (through including
the appropriate parameter in a request), this means that the described data flow
chain eventually leads to control of the critical $message variable on Line 11.

As already mentioned in Section 3.5.3, the global keyword has the effect
that a local variable is aliased with the corresponding global variable. Thus,
without the help of alias analysis, we would not have been able to detect the
value flow from $post urls to $tbreply, leaving the described vulnerability un-
detected.

CHAPTER 3. STATIC VULNERABILITY DETECTION 44

1 if (...) {

2 multi_tb($post_urls , ...);

3 $tbstatus = $tbstatus . $tbreply;

4 } else {

5 $tbstatus ="";

6 }

7

8 message (..., $tbstatus);

9

10 function message (..., $message) {

11 echo $message;

12 }

13

14 function multi_tb($post_urls , ...) {

15 global $tbreply;

16 $tb_urls = split(’()+’, $post_urls , 10);

17 foreach($tb_urls as $tb_url) {

18 $tbreply .= $tb_url;

19 }

20 }

Figure 3.26: Vulnerability in MyBloggie (simplified).

3.9.2 False Positives

A majority of the reported false positives (41 of 64) were due to “impossible”
program paths. Figure 3.27 shows a simplified example of such a case, taken
from DCP Portal. The analysis reported that the sensitive sink on Line 4 re-
ceives tainted input, namely the value returned by the call to function “Select-
Member”. The return value of this function may be equal to the global variable
$site name (Line 11). This global variable is initialized with an untainted value
on Line 2 only if the condition on Line 1 evaluates to true. Closer inspection
revealed that, in fact, this condition always evaluates to true in practice. Other-
wise, it would mean that the underlying database would be seriously corrupted,
which would hardly remain unnoticed by the administrators. This particular
case was responsible for 13 false positives. As soon as we determined the reason
for the first of these reports, it was easy to identify the remaining ones as false
positives as well.

1 while ($row = mysql_fetch_array($result)) {

2 $site_name = $row[" site_name "];

3 }

4 echo SelectMember (..., ...)

5

6 function SelectMember($id , $opt) {

7 global $site_name;

8 if (...) {

9 ...

10 } else {

11 return $site_name;

12 }

13 }

Figure 3.27: False positive due to impossible path (simplified).

The second largest group consisting of 14 false positives was due to more or
less complex if constructs that are responsible for untainting a critical variable.

CHAPTER 3. STATIC VULNERABILITY DETECTION 45

From a syntactic point of view, since these constructs had no else branch,
it might be possible that none of the branches is taken, leaving the variable
tainted. However, although syntactically incomplete, the constructs appeared
to be semantically complete, as we did not find a way to induce a bypassing
condition.

Five false positives were caused by variable array indices. For instance,
the predefined PHP variables $ SERVER[‘PHP SELF’] and $ SERVER[‘HTTP
HOST’] are untainted, since they cannot be controlled by an attacker. However,
the value of some variable entries of $ SERVER (such as $ SERVER[$v]) are
conservatively assumed to be tainted because there exist a few entries that can
be controlled by an attacker (such as ’HTTP REFERER’). Using literal analysis
to resolve such variable array indices could eliminate this type of false positive.

As described by Sharir and Pnueli in [71], there are two types of context-
sensitive interprocedural analyses, namely call-string analysis and functional
analysis. Functional analysis usually provides more precise results than call-
string analysis. In general, none of the two analyses is faster than the other per
se, since their performance largely depends on the call graph of the analyzed
program. However, for one entry point to MyBloggie, it turned out that func-
tional analysis created a large number of contexts during the interprocedural
analysis. To address this problem, we performed taint analysis as instance of a
call-string analysis with one-element call-strings for scanning MyBloggie (while
for the other programs, the functional approach worked fine), which resulted in
two additional false positives. We believe that the imposed performance penalty
of performing a functional analysis can be effectively reduced by refining some
of the internal mechanisms of our analysis (such as the workset order, or the
merging of equivalent contexts into one).

The remaining two false positives resulted from validation using regular ex-
pressions, which is currently not supported by our prototype. Figure 3.28 shows
an example from TxtForum. On Line 1, the programmer validates the variable
$ POST[reg username] by checking whether it contains three to 20 word char-
acters (i.e., letters, digits, or underscores) and hyphens. If the variable does not
conform to this specification, the program exits on Line 3. As a result, the echo
statement on Line 6 is harmless, as control flow reaches this point only if the
variable has passed the validation check.

1 if (preg_match (’#^[\w-]{3 ,20}$#’, $_POST[reg_username]) == 0) {

2 echo "Invalid username !";

3 die ();

4 }

5 ...

6 echo "User " . $_POST[reg_username] . " created !";

Figure 3.28: False positive due to regular expression validation.

3.9.3 File Inclusion Effectiveness

Table 3.5 summarizes our observations concerning the applied file inclusion al-
gorithm. The second column lists the average number of iterations that were
necessary for processing the entry files of a program (along with all their transi-
tive inclusions). There was no entry file that required more than four iterations,

CHAPTER 3. STATIC VULNERABILITY DETECTION 46

and each entry was processed in less than 15 seconds. The third and fourth
columns show the average number of literal and non-literal includes that were
resolved per file. This demonstrates that non-literal includes generally occur
more frequently than literal includes, and, as a result, the need for an intelli-
gent resolution algorithm that is able to handle non-literal cases. Otherwise, a
significant number of inclusions would be missed, leading to both false positives
and false negatives.

Program Iterations Resolved Includes Unresolved
literal non-literal Includes

DCP Portal 6.1.1 3.9 0.9 5.8 1.9
MyBloggie 2.1.3beta 3 6.5 12.3 0
TxtForum 1.0.4-dev 1.5 1.8 2.6 1.7
Open Searchable 1.0 2.8 0.0 0.0
Image Catalogue 0.7
QaTraq 6.5 1.0 125.2 0.0 0.0
Qdig 1.2.9.2 1.0 0.0 0.0 0.0

Table 3.5: Summary of file inclusions (average numbers).

All non-literal includes that could not be resolved assemble the names of the
files to be included from dynamic input (mostly from user input, such as cookie
fields and POST values, and sometimes from file contents). A close manual
inspection of such cases is advisable, since they represent potential security
leaks. If an attacker has control over the names of the files that are to be
included, it might be possible to inject arbitrary scripts (i.e., arbitrary PHP
code) into the program. Most of the cases we encountered are harmless and
similar in structure to the first inclusion shown in Figure 3.29. In this example,
it is impossible to include a remote file (e.g., located on the attacker’s server)
because the name of the included file starts with “lib”, and not with a protocol
specifier such as “http://”. However, it would still permit path traversal attacks
through the use of path strings containing elements such as “../..”. For instance,
an attacker could trick the statement into including the server’s “/etc/passwd”
file, which would be returned verbatim by PHP. This threat is mitigated by the
provided suffix “.inc.php”, resulting in the restriction that only files with this
extension are included. In one case, however, an include statement such as the
second one shown in Figure 3.29 was encountered. Here, an attacker can cause
the inclusion of an arbitrary remote script with the name “somefile.php”. By
placing such a file on a web server under the attacker’s control and providing
this file’s URL in the POST parameter “path”, the code contained inside this
file (written by the attacker) is executed with the privileges of the running PHP
server.

include(’lib/’ . $_POST[’fname ’] . ’.inc.php ’);

include($_POST[’path ’] . ’/somefile.php ’);

Figure 3.29: A harmless and a dangerous unresolvable inclusion.

CHAPTER 3. STATIC VULNERABILITY DETECTION 47

3.10 Summary

Manual security audits targeted at the detection of web application vulnerabil-
ities are labor-intensive, costly, and error-prone. Therefore, we propose a static
analysis technique that is able to detect taint-style vulnerabilities automatically.
This broad class includes many types of common vulnerabilities such as SQL
injection or cross-site scripting. Our analysis is based on data flow analysis,
a well-understood and established technique in computer science. To improve
the correctness and precision of our taint analysis, we conduct a supplementary
alias analysis using shadow variables. This alias analysis is specifically tar-
geted at the reference semantics of PHP and generates precise results even for
conceptually difficult aliasing problems. Moreover, we presented an iterative,
two-stage preprocessing step based on literal analysis for the automatic resolu-
tion of file inclusions. All our analyses are interprocedural, context-sensitive and
flow-sensitive for providing a high degree of precision and keeping the number
of false positives low, making our tool useful for real-world applications.

We tested our concepts by running Pixy, our open-source prototype im-
plementation, on six open-source PHP web applications. The empirical results
show that we are able to efficiently and automatically detect vulnerabilities with
a low false positive rate.

Chapter 4

Taint-Aware String
Analysis

In Chapter 3, we have shown that the problem of detecting taint-style web
application vulnerabilities in PHP programs can be solved by means of data
flow analysis [1, 56]. The presented concepts combined high precision with
good performance, and allowed us to detect numerous XSS vulnerabilities in
real-world applications using our open-source vulnerability scanner called Pixy.
In this chapter, we improve and extend the existing analysis in several points,
and achieve the following key contributions:

SQLI Analysis. First, we broaden the coverage of the system by equipping
it with an additional SQLI analysis, demonstrating the feasibility of providing
extensions for previously undetected classes of vulnerabilities. The precision of
the SQLI analysis has been enhanced such that it is able to detect a subtle, but
dangerous type of vulnerability. For this type of vulnerability, an attacker is able
to launch successful attacks against an application even though its programmer
was careful enough to sanitize user-provided values. The reason is that the
effectiveness of standard sanitization techniques depends on the exact location
of user-provided values within an SQL query. Existing detection techniques
are focused on the computation of taint information, which is not sufficient for
solving this problem. Instead, it is necessary to augment taint information with
information about the structure of the generated SQL queries, and the precise
location of user-provided input within these queries. We show how this goal
can be achieved by generating finite state automata that are labeled with taint
qualifiers. This approach is supported by the use of an extended taint qualifier,
which can take one of three values (in contrast to the traditional, binary taint
qualifiers).

Program Capability Analyses. We also perform two program capability
analyses that provide information about how an application interacts with a
back-end database or the filesystem. Database capability analysis reuses the in-
formation about the structure of SQL queries computed by SQLI analysis. By
determining the way in which database tables are accessed by an application,
it presents interesting opportunities for enhancing the application’s resilience

48

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 49

against attacks. For instance, this knowledge can be effectively used to restrict
an application’s database access privileges to a required minimum. As a con-
sequence, even when an attacker is able to successfully exploit a novel class
of vulnerabilities, the negative effects of this attack attack can be constrained
or even eliminated. This is beneficial even for carefully audited applications,
as there exists no technique to prove the absence of all vulnerabilities. Like-
wise, filesystem capability analysis inspects the application’s interactions with
filesystem objects, and can support the prevention of directory traversal attacks.

Dependence Information. The system described in the previous chapter
had a strong emphasis on a specific vulnerability type (XSS), and was charac-
terized by a tight integration of vulnerability-specific parameters into the core
analysis. For the detection of XSS vulnerabilities, it performed a data flow
analysis that had to be aware of the specific properties of XSS, such as:

• the source of XSS taint values

• the way how these taint values can be propagated or modified throughout
the program

• the points where these taint values can lead to vulnerabilities (“sensitive
sinks”)

This blending of vulnerability attributes with data flow analysis has a number
of disadvantages. For instance, if the system shall be used to additionally de-
tect SQLI vulnerabilities, it would be necessary to design and run a completely
new data flow analysis, resulting in many redundant computations. Also, even
though the definition of SQLI-specific parameters might appear to be straight-
forward from a high-level view, integrating these parameters into a data flow
analysis requires a lot of knowledge about the internal workings of the system,
as well as a considerable amount of work. In this chapter, we present a solu-
tion to this problem by decoupling data flow analysis from the actual security
analysis. Now, data flow analysis is only responsible for calculating dependence
information and for providing dependence graphs to subsequent security anal-
yses. This way, it is possible to specify the data flow analysis in a completely
generic way, such that it is unaware of the type of vulnerability that will even-
tually be searched for. A key advantage of this approach is that the generated
dependence graphs correspond to taint flow traces, which provide valuable in-
sights about why a security analysis reports a vulnerability. They show, in an
intuitive way, where the tainted value initially originates from (e.g., a value
submitted through an HTML form), and how this value eventually reaches a
sensitive sink (e.g., across assignments and function calls). This considerably
speeds up the necessary manual inspection of vulnerability reports by a human
operator. Moreover, dependence graphs permit a higher precision in detecting
flows of taint values between array variables. Another advantage is that by
decoupling the security analysis from the data flow analysis engine, the specifi-
cations for security analysis become smaller, easier to understand, and easier to
maintain. All that the security analysis needs is a dependence graph provided
by the data flow analysis. No knowledge about the inner workings of data flow
analysis is required. Also, data flow analysis can be performed once, and reused
for an arbitrary number of client security analyses. In addition to SQLI and

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 50

capability analysis, we show how the XSS analysis from our previous system
can be rephrased to operate on the newly generated dependence graphs.

Evaluation. To test our concepts in practice, we have integrated them into
Pixy, our web application vulnerability scanner. We performed a comprehen-
sive evaluation of four security analyses (SQLI, XSS, database capability, and
filesystem capability analysis) by analyzing seven real-world PHP applications,
improving the coverage and quality of recent results in the literature. During
our experiments, we have detected 197 SQLI and 172 XSS vulnerabilities with
a low false positive rate. The capability analyses have extracted the desired
information with a high precision, and provide useful insights into the scanned
applications.

4.1 Architectural Overview

For achieving the contributions mentioned above, we improve our system’s archi-
tecture by introducing an additional abstraction layer before the actual security
analysis. An overview of our previous system’s architecture is shown in Fig-
ure 4.1. The converter front-end is responsible for transforming a program into
a set of control flow graphs (CFGs) suitable for data flow analysis. For this,
it requires the name of an entry file, which corresponds to the file that would
be displayed in the browser’s location bar during a normal web session. Files
included by this entry point (using statements such as include and require)
are parsed and transformed recursively. After a CFG representation has been
generated, it is passed to an alias analysis for extracting supplementary alias
information. Finally, an analysis specialized on tracking the flow of XSS taint
qualifiers is invoked. This XSS analysis tracks the flow of data to determine
which variables hold tainted values at which program points. Our XSS analysis
is a data flow analysis with several precision-enhancing features. More precisely,
it is flow-sensitive, interprocedural, and context-sensitive. In addition, special
care was taken to precisely capture data flows that involve the use of array
variables (which happens frequently in PHP programs).

Alias
Analysis

XSS
Analysis

Entry
File

CFG
Converter

Include
Files

CFGs
CFGs

Alias
Info

Figure 4.1: Architectural overview of our previous system.

In this chapter, we decouple the computation of data flow from the flow
of taint qualifiers, as shown in Figure 4.2. That is, instead of performing an
integrated XSS data flow analysis, the results of the alias analysis are first
passed to a dependence analysis. This dependence analysis is responsible for

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 51

Dependence
Graphs

Alias
Analysis

Dependence
Analysis

Entry
File

CFG
Converter

XSS
Analysis

SQLI
Analysis

Capability
Analyses

Include
Files

CFGs
CFGs

Alias
Info

Figure 4.2: Architectural overview of our improved system.

associating every program point with dependence information for each variable.
The advantages of a separate dependence analysis phase are the increased ease
when developing subsequent security analyses, improved analysis precision, and
the fact that dependence graphs help a user to quickly distinguish between false
positives and real security vulnerabilities (see Section 4.2). After dependence
analysis has finished, it provides subsequent security analyses (which are termed
as client analyses in the rest of this chapter) with an interface for the retrieval
of dependence graphs. These dependence graphs contain all the information
necessary for the detection of taint-style vulnerabilities.

4.2 Dependence Analysis

Dependence analysis is a data flow analysis with the purpose of computing, for
every variable and every program point, the set of statements upon which the
value of this variable may depend. In this sense, it resembles the classic def-
use analysis [1]. The information provided by dependence analysis can be used
to generate dependence graphs, which enable us to bridge the gap between the
control flow graph representation of the input program on the one side, and the
needs of our security analyses on the other side. Obviously, the notions of data
flow analysis and dependence graphs are not new, as they have been used for
compiler construction and program optimization for decades. Interestingly, in
spite of their maturity and power, Pixy is the only analysis tool that extensively
benefits from their advantages for the detection of security problems. These ad-
vantages include a reduction of the time necessary for the manual inspection of
the generated reports, and an increased precision in the computation of data
flows between arrays. Later in this chapter, we discuss how dependence graphs
can be used as a building block in a system that detects SQLI and XSS vul-
nerabilities (Sections 4.3 and 4.5, respectively), and that extracts information
about a program’s capabilities with respect to database and filesystem accesses
(Section 4.4). By extracting data dependence information from a program and
representing it in a generic way, subsequent client analyses become smaller, more
efficient, and easier to understand.

Figure 4.3 shows a simple code example, together with the information com-
puted by dependence analysis. In the beginning, all variables are uninitialized,
which we encode with the symbol uninit. Note that the skip command rep-
resents a no-op statement that does not change data flow information. After

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 52

1 skip; // a:uninit b:uninit

2 $a = ’h’; // a:2 b:uninit

3 $a = $x; // a:3 b:uninit

4 skip; // a:3 b:uninit

5 if (..)

6 $a = ’j’; // a:6 b:uninit

7 skip; // a:3,6 b:uninit

8 $b = $a; // a:3,6 b:8

9 echo $b; // a:3,6 b:8

Figure 4.3: Dependence analysis example.

analyzing the assignment statement on Line 2, the data flow fact “the value of
variable $a depends on the statement on Line 2” is recorded (indicated by the
comment on the right side of this line). On Line 3, the value of $a is overwrit-
ten, which leads to the new data flow fact “a:3” for this line. On Line 4, there
is another skip statement, and hence, the data flow information remains un-
changed - the value of $a still depends on the assignment on Line 3. Inside the
if-construct on Line 6, $a is overwritten again. On Line 7, two possible paths
through the program merge (the path through the if-construct, and the path
that bypasses it). Hence, the analysis has to conservatively combine the infor-
mation from both paths, resulting in “the value of $a may depend on Line 3 or
Line 6”. Finally, note that on Line 8, the assignment of $a to $b does not result
in “b:3,6”, but simply in “b:8”. This is because the alternative would destroy
valuable information that is later required for the construction of dependence
graphs. Of course, our analysis is also capable of dealing with more sophisticated
language features, including arrays, aliases, function calls with parameters, and
return values. More specifically, it possesses all precision-enhancing features
that were already presented for the previous XSS analysis in Chapter 3.

$b, 9

$a, 8

j, 6 $x, 3

uninit

Figure 4.4: Dependence graph for Figure 4.3.

Whenever a client security analysis requests information from the depen-
dence analysis, this information is returned in the form of a dependence graph.
This graph abstracts away control flow and only focuses on the data dependen-
cies between variables. For instance, if a client analysis requests information
about the data dependencies of $b on Line 9 of Figure 4.3, the dependence
graph shown in Figure 4.4 is returned. Its root corresponds to the query issued
by the client analysis (“$b on Line 9”). The edge leading to the node labeled
with “$a, 8” indicates that the value of $b on Line 9 depends on the value of

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 53

$a on Line 8. Since the value of $a on Line 8 conditionally depends on one
of two different statements, there are two outgoing edges from this node. The
node “j, 6” has no further outgoing edges, as the value of the literal “j” does
not depend on anything. The edge from “$x, 3” to the uninit node encodes
the information that $x is an uninitialized variable on Line 3.

Note that the dependence graph described in the previous example is only
one of several dependence graphs that can be extracted from the code in Fig-
ure 4.3. The choice of the dependence graph is given by the parameters of the
client’s query (i.e., variable and line number). In this sense, there exists an
implicit whole-program dependence graph for the complete code in Figure 4.3.
Every single dependence graph returned to a client is a slice from this larger
graph, and contains only the information that is required by the client.

4.3 SQLI Analysis

Previous approaches to the detection of SQLI vulnerabilities (see Chapter 6)
were based on the propagation of binary taint qualifiers (tainted or untainted)
through the program. Moreover, they did not attempt to extract and make
use of information about the syntactic structure of the generated SQL queries.
Unfortunately, these straightforward analyses might miss certain types of SQLI
vulnerabilities. To see this, consider the example shown in Figure 4.5.

1 $id = mysql_escape_string($_GET[’id ’]);

2 $pw = mysql_escape_string($_GET[’pw ’]);

3 $sql = "SELECT * FROM users WHERE id=$id AND pw=’$pw ’";

4 mysql_query($sql);

Figure 4.5: SQLI vulnerability despite sanitization.

On Line 1 of Figure 4.5, a GET parameter is sanitized and copied into variable
$id. This variable is used to construct an SQL query on Line 3, which is sent to
the database on Line 4. The problem here is that even though the programmer
was careful enough to sanitize the user-provided value, this code is still vulner-
able to SQL injection. The reason is that $id is not enclosed in quotes when
constructing the query string (probably because the programmer expected it
to be numeric). The sanitization function mysql escape string only escapes
a small set of special characters, such as quotes and line breaks. As a result,
an attacker is still able to alter the syntactic structure of the query [78]. For
example, the attacker could provide the value “1 OR 1=2” for the id parameter
and some arbitrary string (e.g., “abc”) for the pw parameter, resulting in the
following query:

SELECT * FROM users WHERE id=1 OR 1=2 AND pw=’abc’

This has the effect that the part of the WHERE clause that was initially re-
sponsible for checking the user’s password now becomes ineffective due to the
injected “OR” keyword. Thus, the authentication mechanism is bypassed, and
the attacker can trick the program into retrieving an arbitrary row from the
accessed database table (based on the value of id).

Systems that are based on simple taint propagation treat the mysql escape -
string function as sufficient to sanitize input. Hence, the use of the variable $sql

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 54

on Line 4 is considered safe. However, SQL vulnerabilities are typically critical
enough to allow an attacker to compromise the entire back-end database. For
this reason, it would be beneficial to design an SQLI analysis that is sufficiently
precise to detect the type of attack described in the previous paragraph. We
tackle this problem with two additional mechanisms.

Additional taint qualifier. First, we introduce an additional taint qualifier.
In traditional taint propagation engines, a variable can be either tainted or un-
tainted. In our solution, we distinguish between strongly tainted, weakly tainted,
and untainted variables. Strongly tainted values are considered to hold unsani-
tized values that can be controlled by an attacker. Weakly tainted variables are
those that have been sanitized using mysql escape string or similar functions.
To be more precise, a variable is weakly tainted if the sanitization that has been
applied to it implicitly assumes that the variable will not be embedded into
unquoted regions of an SQL query. All other variables are untainted.

Unfortunately, this more precise distinction between three taint qualifiers is
still insufficient for solving our problem. Using the improved mechanism, an
SQLI analysis would be able to determine that the variable $sql holds a weakly
tainted value on Line 4. However, it would have no information about the
location of this weakly tainted value inside the constructed SQL query. That is,
it could not determine whether the weakly tainted value is inside quotes or not.
Thus, it is required to extract more information about the possible structure of
the string variable $sql. To this end, we employ an analysis that can approximate
the string values that a certain variable might hold at a certain program point,
using a finite automaton. Commonly, automata are used as acceptors, that is,
they are applied for deciding whether a string belongs to a certain language. For
our purposes, we make use of another property of automata (or, equivalently,
regular expressions), namely the ability to describe an arbitrary set of strings.

Labeled Automata. Intuitively, a labeled automaton such as the one shown
in Figure 4.6 would allow us to precisely identify even subtle SQLI vulnerabili-
ties. In this automaton, which represents the possible string values of variable
$sql on Line 4 in Figure 4.5, every edge denotes a single-character transition,
and the “〈.〉” label stands for an arbitrary character (as the exact string values of
$id and $pw cannot be determined statically). Solid edges represent untainted
values, whereas dashed edges represent weakly tainted values. Strongly tainted
values will be represented by dotted edges later in this chapter (the depicted
automaton does not contain any edges of this type). It can be seen that this au-
tomaton provides information about the points in the query that might contain
tainted values. With this knowledge, it is easy to determine that the weakly
tainted variable $id (indicated by the first shaded state in Figure 4.6) is not en-
closed by quotes and hence, represents an SQLI vulnerability. In contrast, note
that the weakly tainted variable $pw is not dangerous because it is enclosed by
quotes.

To find SQLI vulnerabilities, our main task is to extract labeled automata
that describe the structure of the queries that can be sent to the database by
the application. More precisely, the following steps have to be performed for
each sensitive sink (i.e., for each SQL query):

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 55

<.>

S E L E
...

i d =
<.>

A N D p w = ' '

Figure 4.6: Labeled automaton for the query in Figure 4.5.

1. From dependence analysis, retrieve a dependence graph that represents
the dependencies of the variable used in the SQL query.

2. Use this dependence graph to compute a labeled automaton for this vari-
able.

3. Decide whether the labeled automaton represents a vulnerability.

Step 1 is the obvious starting point for all security analyses in our sys-
tem. Without this step, the analysis would not have any information about
the scanned program at all. Given a working dependence analysis, this first
step is straightforward. Figure 4.7 shows the dependence graph that is returned
when the SQLI analysis requests information about variable $sql on Line 4 of
Figure 4.5. The graph’s root node, “$sql, 5”, represents the database query.
The edge leaving the root node encodes the fact that variable $sql depends on
the concatenation operation on Line 3. The rest of the graph can be explained
analogously. Note that the two GET variables ($ GET[‘id’] and $ GET[‘pw’])
are not explicitly initialized by the program, which is encoded by an edge to a
node containing the symbol uninit.

$sql, 5

mysql..., 2

', 3

$pw, 3

concat, 3

concat, 3

$_GET[pw], 2

concat, 3

AND pw=', 3concat, 3

SELECT ... id=, 3 $id, 3

mysql..., 1

$_GET[id], 1

uninit

uninit

Figure 4.7: Dependence graph for the query in Figure 4.5.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 56

Assume for the moment that the dependence graph does not contain cycles.
To compute the automaton, we apply the algorithm shown in Figure 4.8. This
algorithm receives the root of the dependence graph as input, and recursively
processes all nodes of the graph in a postorder traversal. During this traversal,
each processed node is associated (decorated) with a separate automaton. Each
of these automata describes the possible string values of the corresponding node.
For computing such an automaton, the automata of all successor nodes are
required as input, which explains the postorder traversal. Once all successors
of a node have been successfully decorated, the way how the current node is
decorated depends on the type of this node.

1 decorate(Node n) {

2 decorate all successors of n;

3 if n is a string node:

4 decorate n with an automaton describing this string

5 else if n is an <uninit > node:

6 look at n’s predecessor and decorate n accordingly

7 else if n is an operation node:

8 simulate the operation ’s semantics

9 else if n is an SCC node:

10 decorate n with a star automata

11 (the taint value of its transition depending

12 on the successor nodes)

13 else

14 decorate n with the union of n’s successor automata

15 }

Figure 4.8: Dependence graph decoration algorithm.

In the simplest case, the current node represents a string literal. Such nodes
are simply decorated with an automaton that describes exactly this string.

For an uninit node, it is necessary to take a look at its predecessor. If the
predecessor node represents a variable whose value is taken from user input,
such as $ GET[‘a’], the automaton shown in Figure 4.9 is used for decoration.
This automaton represents the set of all possible strings (we will refer to such au-
tomata as “star automata” from now on). Its sole transition is strongly tainted
to reflect the fact that the user input can be malicious. If the predecessor of the
uninit node is not user-controlled, such as $ SERVER[‘REMOTE ADDR’], the
same automaton is used, but its transition is untainted. Alternatively, it would
also be possible to decorate such nodes with a symbolic value instead (e.g.,
“server remote addr”) to retain more of the information from the dependence
graph.

 <.>

Figure 4.9: Automaton representing a user-controlled value (strongly tainted).

If the node to be processed is an operation node (i.e., a call to a built-in
function), then the semantics of this operation has to be simulated. In case
of a string concatenation operation, this is simply done by concatenating the
automata of the successor nodes. All other operations can be roughly divided
into the following categories:

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 57

• Weak sanitization functions.

• Strong sanitization functions.

• All other functions (i.e., non-sanitization functions).

Our system is equipped with a list that assigns built-in functions to one of
these categories. If a function is not contained in this list, it is conservatively
treated as non-sanitization function, such that no vulnerabilities are missed due
to missing specifications.

Weak sanitization functions, such as mysql escape string, are approxi-
mated by a star automaton with a weakly tainted transition. For strong san-
itization functions, we create a star automaton with an untainted transition.
Typical representatives of strong sanitization functions are those that always
return a numeric value, such as intval. For all other functions (i.e., for all
non-sanitization functions), a conservative approximation is to return a star au-
tomaton whose transition depends on the taint status of the the function’s ac-
tual parameters. For example, the function str replace($search, $replace,
$subject) replaces every occurrence of the string $search inside the string $sub-
ject with the replacement $replace, and returns the result. The taint status of
the returned string depends on the parameters $replace and $subject. That is,
if either of these parameters is strongly tainted, then the return value is strongly
tainted as well. Otherwise, if either of them is weakly tainted, the return value
is weakly tainted. Note that the $search parameter does not affect the returned
taint value, as it can never appear inside the returned string. To be more pre-
cise, the taint status for such functions is the least upper bound over the taint
status of some of their parameters.

The approximation of most operation nodes by means of star automata may
appear overly conservative at first glance. To achieve a higher degree of preci-
sion, an alternative would be to model string operation functions with trans-
ducers (i.e., automata that also produce output). Transducers have already
been used for string analysis by Minamide [50], and implicitly by Christensen
et al. [12]. In Section 4.6, we will present a transducer-based approach for
the recognition of custom sanitization routines. Our empirical results (see Sec-
tion 4.8) indicate that this partial use of transducers is sufficient for achieving
good results in practice.

The final case in the algorithm of Figure 4.8 (Line 13) applies if the current
node is a node representing a variable. In a dependence graph, the successor
nodes of a variable node represent the values that this variable may possess.
Different successor nodes correspond to different paths through the program
(an example for this was given in our introduction to dependence analysis in
Section 4.2). This fact can be translated into an automaton by creating the
union of the successor nodes’ automata. For example, if a variable $a depends
on the two string literals “b” and “c”, it means that $a can hold one of these
two strings at runtime. An automaton that encodes this information is cre-
ated by computing the union of the two automata that represent “b” and “c”,
respectively.

Cyclic Dependence Graphs. The previously described algorithm for trans-
forming dependence graphs into automata is not directly applicable to graphs

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 58

that contain cycles. For example, the algorithm encounters a problem when a
concatenation operation appears inside a cycle. Such a case is shown in Fig-
ure 4.10, with the corresponding dependence graph in Figure 4.11. The cycle is
caused by the while loop on Lines 2 to 4, which contains a concatenation oper-
ation that appends a literal to variable $a. In general, the precise modeling of
cyclic string operations is a difficult problem [12, 50]. Our solution is to replace
strongly connected components (SCCs) in the dependence graph with special
SCC nodes, which results in a dependence graph without cycles. This explains
Lines 9 to 12 of our decoration algorithm in Figure 4.8. Here, SCC nodes are
treated analogously to non-sanitization functions. That is, they are decorated
with a star automaton, and the taint value of this automaton’s transition is
given by the taint values of the SCC node’s successors. Our experience and the
experimental results presented in Section 4.8 show that this approximation is
sufficient for useful results in practice.

1 $a = ’h’;

2 while ($x) {

3 $a = $a . ’i’;

4 }

5 echo $a;

Figure 4.10: Cycle in the depen-
dence graph.

$a, 5

i, 3

h, 1

concat, 3

$a, 3

Figure 4.11: Dependence graph
for Figure 4.10.

Vulnerability Assessment. When the labeled automaton has been extracted,
we analyze this automaton to determine whether there exists a potential SQLI
vulnerability. If the automaton contains a strongly tainted transition, there def-
initely is a vulnerability, independent of the location of these transitions in the
automaton. If the automaton contains weakly tainted transitions, we perform
a simple data flow analysis on the automaton that determines for each state
whether it is “inside quotes” or “outside quotes.” If any of the weakly tainted
transitions has a source state that is outside quotes, we have successfully de-
tected the subtle kind of vulnerability that has been discussed at the beginning
of this section. In the example automaton in Figure 4.6, there is only one state
inside quotes (the second shaded node). Hence, the weakly tainted transition
that originates from this state is not dangerous in terms of SQLI. However,
the other weakly tainted transition in this automaton originates from a state
that is not inside quotes (the first shaded node), and thus, indicates an SQLI
vulnerability.

4.4 Program Capability Analyses

The SQLI analysis discussed in the previous section offers interesting oppor-
tunities for gathering additional information about the behavior of an applica-

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 59

tion, and installing protective measures based on this information. When the
SQLI analysis is performed, it creates a list of all SQL queries that the appli-
cation can send to the database, represented as automata. These queries, or
automata, capture the application’s capabilities with respect to its interaction
with the back-end database. Of course, the extracted capabilities are not di-
rectly comparable to a simple list of strings. For example, the single automaton
in Figure 4.6 (on page 55) encodes an infinitely large set of strings. Based on
database capability information, we can determine how an application interacts
with certain database tables. By associating every table with the set of SQL
operations that the application performs on it (e.g., SELECT, or INSERT), the
application’s developer is presented with useful opportunities.

Leveraging Capability Information. An immediate advantage of the ex-
tracted capability information is that the developer is able to compare his mental
model of how the application interacts with the database with the application’s
actual capabilities. Conflicts between these two models indicate that there is
either a bug in the application, or that the programmer’s understanding of the
application is faulty. Another advantage of the extracted capabilities is that
they can be an aid for writing specification documents. A more immediate ben-
efit in terms of security can be achieved by using the results for enforcing the
principle of least privilege. For example, if a table is always accessed by queries
that do not change the table’s contents, the programmer (or the administra-
tor) can restrict the privileges of the application’s database user to read-only
access for this table. An even tighter protection can be established by creating
database users with different levels of privileges on different tables, and em-
ploying these users at the corresponding points in the program. Thus, when an
attacker compromises the application, all tables for which the program requires
read-only access can be protected from modifications, as well as the tables that
cannot be accessed by the compromised database user.

Query Prefixes. To draw a benefit from the extraction of database capabili-
ties, the computed automata have to contain prefixes that describe finite strings
with a sufficient length. More precisely, the prefixes have to contain the name
of the SQL operation (such as SELECT), and the name of the tables that it is
applied on. While analyzing the empirical results in Section 4.8, we will refer
to such prefixes as “complete”. Shorter prefixes (i.e., those that either lack the
table or the operation name) will be considered as “incomplete”.

Filesystem Capabilities. In analogy to the extraction of database capabil-
ities, we can also calculate which filesystem objects are accessed by the appli-
cation. That is, when analyzing functions that access the filesystem (such as
readfile), we can extract automata that represent the objects (file or directory
names) that these functions operate on. With this knowledge, it is possible to
restrict the access rights of the application to only the required parts of the
filesystem. Again, we are interested in prefixes of sufficient length. Here, the
prefixes can denote either directories or files. In addition, it is also beneficial
to take a look at the suffixes of the extracted automata, as they might reveal
information about the types (extensions) of the accessed files.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 60

Clarifying Remarks. A possible misunderstanding with regard to the use of
capability analysis is the following: If the static analysis determines that, for
instance, the application can only access files located inside a certain directory,
and given that the programmer agrees with this behavior, why should it be nec-
essary to take additional restrictive measures for enforcing this behavior? One
answer is that the results of capability analysis do not take into account the pos-
sibility of exploiting security vulnerabilities. Consider the code in Figure 4.12.
In this example, the programmer intends to read a file inside directory “/xyz”,
with the file name provided by the client. As expected, filesystem capability
analysis extracts the prefix “/xyz/” for this case. However, an attacker is still
able to exploit the directory traversal vulnerability contained in the code. For
instance, by providing a file name such as “../etc/passwd”, he would trick the
application into reading the system’s password file. Another reason for restric-
tive measures is that future changes to the code could unintentionally modify the
application’s capabilities in a harmful way. The damage of such programming
bugs would then be limited by the restrictions that were installed previously.
And finally, leveraging the extracted capability information for enforcing the
principle of least privilege makes the application more secure even under the as-
sumption that it has been carefully audited for vulnerabilities. Currently, there
exists no technique that is capable of reliably proving the absence of security
problems in an application. Hence, it is essential to create a second line of
defense, in case that an attacker discovers a vulnerability that has passed the
security audits undetected.

1 $file = $_GET[’file ’];

2 $c = file_get_contents (’/xyz/’ . $file);

Figure 4.12: A directory traversal vulnerability.

4.5 XSS Analysis

In this section, we extend our system by an additional analysis for the detection
of XSS vulnerabilities. Compared to the XSS analysis applied in the previous
version of Pixy, the key advantage of our new XSS analysis is that it provides
the user with information about the flows of taint values, which considerably
eases the manual inspection of vulnerability reports. Moreover, the additional
XSS analysis demonstrates that our improved system can be easily extended to
detect new types of taint-style vulnerabilities.

The purpose of XSS analysis is to check every sensitive sink (with regard
to XSS) in the program for a potential XSS vulnerability. More precisely, the
analysis has to determine whether it is possible that user input reaches a sensi-
tive sink without prior sanitization. In the context of XSS, sensitive sinks are
those functions that return data to the user (such as print or echo). To achieve
this goal, the analysis repeats the following steps for each of the sensitive sinks
present in the program:

1. Query dependence analysis for an appropriate dependence graph for the
current sensitive sink.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 61

2. Transform this graph into an XSS taint dependence graph, taking into
account the semantics of built-in PHP functions with regard to the prop-
agation of taint values.

3. Locate tainted variables in the resulting graph. If there are such variables,
a potential XSS vulnerability has been discovered.

Step 1 is identical to the first step applied by SQLI analysis (Section 4.3). In
Step 2, the dependence graph has to be transformed into an XSS taint depen-
dence graph. This is necessary because a data dependence between two variables
does not always imply that both variables possess the same taint status. That
is, one variable $x can be tainted, while another variable $y can be untainted,
even though there is a data dependence between $x and $y. This fact is due to
sanitization routines, which can interrupt the flow of the taint status from one
variable to the other. For instance, consider the example shown in Figure 4.13,
with its dependence graph in Figure 4.14. Even though the value of $a depends
on the value of $ GET[‘a’], the taint qualifier of the GET parameter does not
flow to $a because the XSS sanitization function htmlentities is invoked on
Line 3. For the dependence graph in Figure 4.14, the XSS taint dependence
graph that results from it (shown in Figure 4.15) is identical except for the
nodes that are enclosed in a dashed frame. In the XSS taint dependence graph,
these nodes are replaced by a special “sanitization” node that indicates the use
of a sanitization function.

1 $a = $_GET[’a’];

2 $b = $_GET[’b’];

3 $a = htmlentities($a);

4 $out = $_SERVER[’REMOTE_ADDR ’] . ’: ’ . $a . $b;

5 echo $out;

Figure 4.13: XSS analysis example.

After the transformation of the original dependence graph into an XSS taint
dependence graph, the XSS analysis reaches Step 3. In this step, the analysis
checks whether there are any remaining tainted variables in the graph. To this
end, it takes a closer look at all those variables that have not been explicitly
initialized by the scanned program (that is, all variables that have an edge lead-
ing to an uninit node in the XSS taint dependence graph). The reason is that
for all variables that have not been initialized by the application, the implicit
default values set by the PHP environment become effective. For example, the
PHP environment implicitly sets the variable $ SERVER[‘REMOTE ADDR’]
to the IP address of the client host before the program is run. If this variable
is not explicitly initialized by the program, it retains this implicit default value,
which poses no threat with regard to XSS. However, the variable $ GET[‘b’] is
set to the value of the user-provided GET parameter b by the PHP environment.
Hence, this variable is tainted, since it can be given an arbitrary value by an
attacker. The mere presence of such a tainted variable in an XSS dependence
graph indicates an XSS vulnerability, because it means that the taint status of
this variable can eventually reach a sensitive sink.

Compared to the previous XSS analysis of Pixy (see Chapter 3), our analysis
has an increased precision with regard to arrays. As we noticed during our
experiments, Pixy experienced a loss of precision when analyzing code such as

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 62

$out, 5

htmlentities, 3

$b, 4

$a, 4

concat, 4

concat, 4

$a, 3

$_GET[a], 1

concat, 4

$_SERVER[REMOTE_ADDR], 4

:, 4

$_GET[b], 2

uninit

uninit

uninit

Figure 4.14: Dependence graph for Figure 4.13.

$out, 5

<sanitization>

$b, 4

$a, 4

concat, 4

concat, 4

concat, 4

$_SERVER[REMOTE_ADDR], 4

:, 4

$_GET[b], 2

uninit

uninit

Figure 4.15: XSS taint dependence graph for Figure 4.13.

the example shown in Figure 4.16. On Line 1, $x is assigned to element 1 of
array $a. On Line 2, the entire content of $a is copied to $b. A similar copy
assignment from $b to $c takes place on Line 3. Finally, on Line 4, element 1
of $c is echoed. Here, it is obvious that $c[1] on Line 4 holds the same value as
$x on Line 1. The problem is that $b is never explicitly accessed with an array
index. Since PHP is dynamically typed, an additional type analysis would be
necessary to determine that $b is also an array, and that it contains an element
with index 1. Without such a type analysis, information about $a[1] is lost on its
way to $c[1], because $b[1] is never explicitly declared in the code. The reason is
that it is not possible to simply create a new variable during a running data flow

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 63

analysis, since this could lead to an infinite loop in the underlying fixed-point
algorithm [56]. In our system, this information loss problem can be solved easily
during the graph construction phase, without the overhead of an additional type
analysis. For instance, imagine that a dependence graph for $c[1] on Line 4 is
requested. By consulting the information provided by the dependence analysis
(c:3), the graph construction algorithm moves on to Line 3. There, it can deduce
that $c[1] depends on $b[1], even if dependence analysis has not provided an
explicit entry for $b[1]. This way, graph construction eventually reaches Line 1,
and successfully generates the graph shown in Figure 4.16.

1 $a[1] = $x; // a[1]:1

2 $b = $a; // b:2

3 $c = $b; // c:3

4 echo $c[1]; // c:3

Figure 4.16: Dynamic typing of
arrays.

$c[1], 4

uninit

$a[1], 2

$x, 1

$b[1], 3

Figure 4.17: Dependence graph
for Figure 4.16.

One of the advantages of decoupling the XSS analysis from the underlying
dependence analysis is that all XSS-specific parameters can be encapsulated
within the XSS analysis. These parameters include sensitive sinks, the semantics
of built-in PHP functions with regard to XSS taint flow, and the taint value
of uninitialized variables. This encapsulation permits the dependence analysis
to be generic, such that it can be reused for other types of security analyses.
Another advantage is that developers of additional security analyses do not
have to deal with the conceptual complexities of data flow analysis, making
these extensions more light-weight and easier to understand.

4.6 Custom Sanitization Awareness

In the previous sections, we have described an analysis that recognizes sanitiza-
tion that is performed by means of built-in functions (such as htmlentities).
However, an interesting aspect in the detection of web application vulnerabilities
is how custom sanitization attempts are handled by the analysis. For instance,
consider the example code in Figure 4.18. On Line 1, the value of parameter
‘x’, which is provided by a user through a corresponding HTTP GET request,
is assigned to the variable $input. On Line 3, this input is sanitized using the
standard sanitization function htmlentities, and the result is assigned to the
variable $standard. On Line 4, the string “Hello” is prepended, and the result
is then returned to the user’s browser through the echo statement on Line 5.
On Line 7, an alternative, custom form of sanitization is applied. Here, the
character ‘<’, which is usually essential to perform XSS attacks, is replaced by
the empty string. As a result, the echo statement on Line 9 is harmless as well.
Finally, on Lines 11 and 12, the input is directly appended to the string “Hello”
and returned to the browser. This case constitutes an XSS vulnerability, as an
attacker can inject malicious script code via the parameter ‘x’, which is echoed
without any sanitization.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 64

1 $input = $_GET[’x’];

2

3 $standard = htmlentities($input);

4 $standard = ’Hello ’ . $standard;

5 echo $standard;

6

7 $custom = str_replace(’<’, ’’, $input);

8 $custom = ’Hello ’ . $custom;

9 echo $custom;

10

11 $missing = ’Hello ’ . $input;

12 echo $missing;

Figure 4.18: Standard, custom, and missing sanitization.

When analyzing the code in Figure 4.18, our techniques described so far will
find the vulnerability that is due to the complete absence of sanitization. Our
tool identifies that there is a data flow from the user-supplied parameter ‘x’ to
the variable $input (on Line 1) that propagates to the variable $missing (on
Line 11), which is eventually output on Line 12. Also, Pixy is equipped with
a policy that specifies that all values processed by htmlentities can be safely
sent back to a user. Thus, the use of variable $standard in Line 5 is correctly
flagged as safe.

The situation is more complicated when the function str replace is used for
performing custom sanitization. In principle, a static analyzer can choose be-
tween two simple strategies when encountering such functions. The first strategy
would be to interpret the application of any function that modifies an input (e.g.,
through string replacement) as an indication that the programmer performed
sanitization. If this strategy is used, the analysis would correctly consider the
application of the str replace function on Line 7 as a form of sanitization. Of
course, this approach suffers from two drawbacks. First of all, the program-
mer might have simply applied this function to alter the string based on some
requirement implied by the program’s logic, and changing the string does not
imply that the result is safe to be used by a sensitive sink. Second, the pro-
grammer could have made a mistake. Even when the input is modified with the
intention to make it safe, there is no guarantee that the result is correct, as in
the following example:

$x = str_replace(’<script >’, ’’, $_GET[’x’]);

echo $x;

In this program, the variable $ GET[‘x’] is insufficiently sanitized by deleting
all contained script tags. This simple sanitization technique can be easily
circumvented by embedding JavaScript code in HTML event handlers, which
do not require the use of script tags. For instance, the event handler onload
has the effect that the contained JavaScript code is executed as soon as the
HTML page is loaded by the user’s browser. That is, an attacker could launch
an XSS attack by providing the following input:

<body onload =" alert(’XSS ’)"/>

To avoid that such vulnerabilities are missed, Pixy follows the second strategy.
That is, it conservatively regards all custom sanitization operations as incorrect.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 65

Even though this approach cannot lead to missed vulnerabilities, it can result
in additional false positives whenever a programmer correctly applies custom
sanitization to user input.

In this section, we describe an analysis that allows us to assess the effec-
tiveness of custom sanitization attempts. This way, it is possible to eliminate
those false positives that were caused by the conservative treatment of custom
sanitization mentioned above. To achieve this goal, we present a technique that
leverages transducer-based, implicit taint propagation.

Basic Automata Computation. Our improved analysis is based on the
taint-aware string analysis for SQLI vulnerabilities described in Section 4.3. In
this section, our focus is on detecting that the custom sanitization on Line 7 of
Figure 4.18 is correct. Since this sanitization is performed with regard to XSS
analysis, our first step is to adjust the taint-awareness of our string analysis from
SQLI to XSS taint values, which is a straightforward engineering task. After
this step has been accomplished, our analysis is able to compute the automata
shown in Figure 4.19, which represent the static string value “Hello”, and the
value of the user-controlled variable $ GET[‘x’].

 any'Hello'

Figure 4.19: Automata for the string “Hello”, and for an unknown, tainted
string.

Precise Function Modeling. For the analysis of custom sanitization, it is
necessary to introduce a precise modeling of string-modifying functions (such
as str replace) and replacement functions using regular expressions (such as
ereg replace and preg replace). A suitable algorithm was presented in the
natural language processing community by Mohri and Sproat [52]. This al-
gorithm is based on the use of finite state transducers. A transducer is an
automaton whose transitions are associated with output symbols. This way, it
is not only able to accept (or reject) input strings, but it also produces output
for each input string. By replacing the conservative and imprecise modeling of
str replace with Mohri and Sproat’s algorithm, the effect of applying string-
modifying operations on a set of strings (represented by an automaton) can be
captured.

For example, when using Mohri and Sproat’s algorithm to analyze the string
operations on Lines 7 and 8 in Figure 4.18, we receive the automaton shown
in Figure 4.20. This automaton precisely captures the possible values of the
variable $custom. That is, it describes the set of strings that start with the
prefix “Hello”, and end with a suffix that does not contain the ‘<’ character.
Unfortunately, the computed automaton does not distinguish between tainted
and untainted transitions anymore. Instead, it simply assumes all transitions to
be untainted. This is because Mohri and Sproat’s algorithm is not designed to
work on taint-aware automata. We will present a solution to this problem later
in this section.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 66

'Hello' not(<)

Figure 4.20: Automaton after the replacement of “<”.

Vulnerability Detection Through Intersection. To check whether a pro-
gram is vulnerable at some sensitive sink, it is necessary to determine whether
it is possible that the input to this sensitive sink contains any malicious char-
acters or strings. For instance, an XSS attack requires characters such as ‘<’ to
be successful, as they are needed to construct JavaScript or HTML code (even
if the JavaScript code is contained in an event handler, as was demonstrated
earlier in this section with an example using the onload event handler). In
our approach, we verify this requirement by intersecting the automaton that
represents the sink’s input with an automaton that encodes the set of undesired
strings (the target automaton). If the automaton that results from this inter-
section is empty1, it means that none of the undesired strings can be contained
in the input, and that this sink is safe.

A simple example automaton that represents a conservative approximation
of the undesired strings with respect to XSS is shown in Figure 4.21. This
target automaton represents all strings that contain at least one ‘<’ character.
Intersecting this automaton with the automaton from Figure 4.20 yields an
empty automaton, which means that this input cannot be used to successfully
perform an attack. By doing this, we have successfully identified that the applied
custom sanitization was indeed effective. In contrast, the intersection of the
target automaton with the automaton that represents the potentially dangerous
value of variable $ GET[‘x’] (Figure 4.19) is non-empty, since the unknown value
might contain an arbitrary number of ‘<’ characters.

<

 any not(<)

Figure 4.21: Example target automaton for XSS.

Implicit Taint Propagation. Unfortunately, the techniques for function
modeling and vulnerability detection described above are still lacking an im-
portant ingredient for reaching a sufficient level of precision. The reason is
that the algorithm of Mohri and Sproat does not operate on taint-aware au-
tomata, but, instead, on traditional automata without taint qualifiers associated
to their transitions. That is, the algorithm is not able to propagate taint values
through the modeled functions. Without additional measures, this information
loss would lead to false positives, as taint information is essential for vulnera-
bility detection. For instance, even the following simple example would cause a
false positive:

1To be precise: If the resulting automaton accepts only the empty language.

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 67

$s = "Hello\n";

$x = str_replace ("\n", ’
’, $s);

echo $x;

In this code, all occurrences of the ‘\n’ control character are replaced with an
HTML line break. Intersecting the automaton that is computed for $x with the
XSS target automaton would yield a non-empty result, since $x does contain
a ‘<’ character as part of the
 tag. As a consequence, our analysis would
report a vulnerability for this benign example.

A possible approach to solve the problem of propagating taint values through
custom sanitization functions would be to modify Mohri and Sproat’s algorithm
such that it becomes taint-aware. This modification would ensure that the
algorithm accepts taint-aware automata as input (i.e., the arguments of the
modeled sanitization function), and returns a taint-aware automaton as output.

However, we propose an alternative solution that is efficient, less complex,
and less error-prone than a modification of the existing algorithm. Instead of
explicitly keeping track of both tainted and untainted values, we concentrate our
attention on the tainted parts of the automata. In this implicit taint propagation,
strings that are statically embedded into the application by the programmer
(and hence, untainted) are replaced by the empty string during the automata
computation. This has the effect that only tainted strings are explicitly encoded
in the automata, and that static, untainted strings cannot lead to false positives
any longer.

If used without care, implicit taint propagation can cause false negatives
in certain cases (i.e., vulnerabilities might be missed). Consider the following
(rather contrived) example:

$s = ’a’;

$x = str_replace(’a’, $_GET[’x’], $s);

echo $x;

Here, the program replaces the character ‘a’ inside string $s with a user-provided
value (from $ GET[‘x’]). If our analysis propagates taint values implicitly (and
hence, replaces the value of $s with the empty string), it would incorrectly
deduce that the str replace operation results in the empty string as well. Un-
der the XSS target automaton defined above, an empty string is benign, and,
therefore, the vulnerability would be missed. Consequently, it is necessary to
compensate the information loss due to the implicit taint propagation with a
supplementary “safety net.” This additional mechanism corresponds to checking
whether the second parameter of str replace (or, analogously, the replacement
parameter of similar functions) is tainted by querying the traditional taint anal-
ysis of Pixy. If the parameter is tainted, the result of the function invocation
is conservatively approximated with the automaton that describes the set of all
possible strings. This ensures that implicit taint propagation does not introduce
false negatives into the analysis.

4.7 Implementation

We have integrated our concepts into Pixy, our web application vulnerability
scanner. For the construction of labeled automata, we integrated parts of the

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 68

BRICS automata library [8]. Custom sanitization awareness was achieved by
using the implementation of Mohri and Sproat’s algorithm [52] in the Finite
State Automata Utilities [20].

4.8 Empirical Results

To evaluate our proposed techniques in practice, we performed comprehensive
tests on seven real-world open-source applications (see Table 4.1). More pre-
cisely, we ran a full analysis (including SQLI, XSS, database capability, and
filesystem capability analyses) on all top-level scripts of the applications in
our test set. Note that five of these applications (DCP Portal, MyBloggie,
OSIC, Qdig, and TxtForum) were already analyzed for XSS vulnerabilities in
Chapter 3. Two applications (Qdig and TxtForum) do not possess a database
back-end, which explains their absence in the results for SQL-related analyses.
As Table 4.1 shows, the entire test run on every entry file for all applications
took about two hours (using a 3.0 GHz Pentium 4 processor with 2GB RAM).
Through careful engineering, the performance of our research prototype could
be further enhanced. However, even though there are opportunities for improve-
ment, the current system performs well in practice.

Program Version LOC Entry Files Time (sec)
DCP Portal 6.1.1 121,420 22 1,560
MyBloggie 2.1.3beta 9,200 6 3,540
MyEasyMarket 4.1 2,544 22 20
NewsPro 1.1.4 4,251 22 23
OSIC 0.7 4,114 14 1,620
Qdig 1.2.9 5,412 4 480
TxtForum 1.0.4-dev 2,138 15 25

Totals 149,079 105 7,268

Table 4.1: Applications used for the evaluation.

4.8.1 Results of SQLI Analysis

A summary of our SQLI analysis results is shown in Table 4.2. In total, Pixy
detected 197 SQLI vulnerabilities and additionally reported 63 false positives,
which results in a false positive rate of 24%.

Figure 4.22 shows an SQLI vulnerability from OSIC. In this example, the
variable $file id is retrieved from a user-supplied value by calling the function
getVAR on Line 1. Then, this value is passed to the function getValueFromID
on Line 2, where it leads to an SQLI vulnerability (Line 14). A less experi-
enced programmer might be tempted to fix this problem by applying a stan-
dard weak sanitization routine, such as mysql escape string, to the return
value of getVAR. However, this does not completely remove this vulnerability.
The reason is that $id remains weakly tainted on Line 14 and, in addition, is
not enclosed by quotes, leading to a subtle SQLI vulnerability as explained in
Section 4.3. We simulated the incorrect patch and repeated our analysis for the
affected part of the application. The result was that our vulnerability report

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 69

Program Vulnerabilities False Positives
DCP Portal 83 14
MyBloggie 31 11
MyEasyMarket 4 3
NewsPro 14 34
OSIC 65 1
Qdig n/a n/a
TxtForum n/a n/a

Totals 197 63

Table 4.2: Summary of SQLI vulnerability reports.

still contained this flaw, indicating that the problem of a weakly tainted variable
was detected correctly. A simple taint checker that is unaware of the location
of a weakly tainted value inside an SQL query would not have recognized this
flaw.

1 $file_id = getVAR ("id");

2 $catalogue_id = getValueFromID($file_id);

3

4 function getVAR($nm) {

5 $tmp = "";

6 if (isset($HTTP_GET_VARS[$nm]))

7 $tmp = $HTTP_GET_VARS[$nm];

8 if (isset($HTTP_POST_VARS[$nm]))

9 $tmp = $HTTP_POST_VARS[$nm];

10 return $tmp;

11 }

12

13 function getValueFromID($id) {

14 $result = mysql_query ("

15 SELECT * FROM sometable WHERE ID=$id ");

16 }

Figure 4.22: SQLI vulnerability from OSIC.

Note that we developed working exploits for every SQLI and XSS vulnera-
bility that we report in this thesis. The reason for accepting this considerable
effort is that we believe this approach to be the only reliable method for ver-
ifying whether a suspected vulnerability is a real vulnerability, and not just
another false positive. In several cases during our evaluation, we encountered
reports that appeared to be true vulnerabilities at first glance. However, they
finally turned out to be false positives when we were trying to construct working
exploits.

Under this strict policy, even a case such as the one shown in Figure 4.23 is
counted as false positive. The SQL query on Line 3 is a true vulnerability, since
$val holds a user-defined, unchecked POST value. The query on Line 5, however,
is counted as false positive because we could not think of a way to provide a
meaningful exploit that becomes effective on this line, and not already on Line 3.
In total, 16 false positives fall into this category.

Three of our tested applications (DCP Portal, MyBloggie, and NewsPro)
were also tested by Xie and Aiken for SQL injection in [86]. By comparing
our results to their advisory [68], we found that all vulnerabilities that they

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 70

1 $val = $_POST ["vote "];

2 $sql = "SELECT * FROM $t_poll_ans WHERE aid = ’$val ’";

3 $result = mysql_query($sql);

4 while($row=mysql_fetch_array($result)) {

5 $result1 = mysql_query ("

6 UPDATE $t_poll_ans SET vote = ’$new_val ’

7 WHERE aid = ’$val ’");

8 }

Figure 4.23: Being strict about false positives.

discovered are also reported by our system. In addition, we discovered several
vulnerabilities that were not among Xie and Aiken’s reports. This indicates
that our prototype computes more comprehensive results, at least for the tested
applications. Since our request for the author’s implementation was declined,
we were unfortunately not able to perform an in-depth comparison of the two
tools.

For MyEasyMarket, our analysis initially reported 34 additional false posi-
tives that were due to the use of a regular expressions function for custom saniti-
zation. Our improved sanitization-aware analysis (described in Section 4.6) was
able to successfully remove these false positives. Figure 4.24 shows an example
for the applied sanitization. On Line 1, all characters except letters, digits,
whitespace, and the dot character are removed from the potentially malicious
variable $nume. This variable is then passed as parameter to function “logline”
on Line 2, which uses the variable to assemble and execute an SQL query on
Lines 5 and 6. Due to the regular expressions filter that has been applied on
Line 1, an attacker is not able to launch a successful SQLI attack in this case.

1 $nume=ereg_replace ("[^A-Za -z0 -9 .]","", $nume);

2 logline ("QUEUE: $nume ");

3

4 function logline($line){

5 $sqllog =" insert into shopadm values(’$line ’);";

6 mysql_query($sqllog);

7 }

Figure 4.24: Regular expressions sanitization from MyEasyMarket (simplified).

Of the total of 63 false positives that we observed, we found that 33 of
them (52%) share a common characteristic. Figure 4.25 shows a typical ex-
ample for this class of false positive. At first glance, the query statement on
Line 3 appears to be an obvious SQLI vulnerability, since it directly contains
a user-provided POST variable. However, this value is implicitly validated in
the preceding two lines. The potentially vulnerable query statement is only
reached during runtime if the POST variable is equal to the name of a file in
the “users” directory. Further examination revealed that certain checks in the
program prevent the creation of files with arbitrary names. Hence, given that
the attacker injects a malicious value for the POST variable, the application
can never take the program path that leads to the supposed vulnerability. That
is, the code in Figure 4.25 is not vulnerable because the malicious path is a
conditionally impossible path (i.e., it is impossible given a malicious value for
the injected variable). Apart from implicit validation, conditionally impossible
program paths can also have other reasons. For instance, Line 4 in Figure 4.26

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 71

is secure because it either uses a sanitized value in the query, or an empty value
(if $post id was not set by the attacker). In general, it is a challenging task to
eliminate this kind of false positive with static analysis. On the one hand, such
an effort bears the risk of severely degrading the scanner’s performance, and on
the other hand, too aggressive attempts to suppress false warnings could result
in missing real vulnerabilities.

1 $lower = chop(strtolower($_POST[reg_username]));

2 if (file_exists ("users/$lower.php ")) {

3 mysql_query (... $_POST[reg_username]...);

4 die ();

5 }

Figure 4.25: Impossible paths (1).

1 if (isset($post_id)) {

2 $post_id = intval($post_id);

3 }

4 mysql_query (... $post_id ...);

Figure 4.26: Impossible paths (2).

The false positives in the second largest group (27, or 43%) were due to
validation using regular expression functions, which is currently not supported
by Pixy. 25 of these reports were issued for NewsPro, and an example is given
in Figure 4.27. On Line 1, it is checked whether the the input stored in variable
$newsid matches a regular expression that corresponds to a non-empty sequence
of digits. If this match fails, the program exits. Thus, there is no possibility
for an attacker to inject malicious characters into the query on Line 5. How-
ever, Pixy still considers the variable as potentially dangerous on Line 5, and
issues a corresponding alert. This method of validation is recognized by Xie
and Aiken’s tool by checking the used regular expression against a database of
regular expressions that are known to be effective for validation purposes.

In the remaining three cases of false positives, a variable was set dynamically
by reading its name from a database table. Since our static analysis is not
able to resolve dynamic database content, the value for this variable was set to
unknown.

1 if (!ereg (’^[0 -9]+$’, $newsid)) {

2 unp_msgBox($gp_invalidrequest);

3 exit;

4 }

5 $checknews = $DB ->query (" SELECT * FROM ‘unp_news ‘

6 WHERE newsid=’$newsid ’");

Figure 4.27: Regular expression validation from NewsPro.

4.8.2 Results of Database Capability Analysis

As shown in Table 4.3, the extraction of SQL prefixes from the programs that
use a database back-end was quite successful. Of a total of 1,238 prefixes, only
14 (1.1%) did not contain the desired information (that is, the SQL operation

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 72

or the names of the affected database tables were missing). Four of these 14
“false positives” correspond to a programming bug in MyBloggie, where a piece
of apparently stale code uses an undefined constant as table name. Two other
cases were vulnerabilities, where the table names could not be resolved because
an attacker can provide arbitrary values for them. In MyBloggie, four pre-
fixes could not be extracted because this would have required a path-sensitive
analysis. Figure 4.28 shows the relevant code. On Line 4 of this code sample,
the file viewuser.php is included, but this inclusion only takes place if the vari-
able $mode has been set to a certain value (checked on Lines 1 and 3). Inside
viewuser.php, the variable $sql is set to a resolvable value on Line 10, but only
if $mode has been set previously. Our analysis cannot determine that this is
the case, and conservatively assumes that $sql could also be uninitialized on
Line 12. In two cases, a prefix was incomplete because we have not modeled
PHP’s foreach command precisely. A syntactically incomplete, but semanti-
cally complete if construct was responsible for one false positive. Finally, only
in one single case, a loop in the dependence graph led to an incomplete prefix.

Program Complete Prefixes Incomplete Prefixes
DCP Portal 682 2
MyBloggie 160 9
MyEasyMarket 121 0
NewsPro 141 0
OSIC 120 3
Qdig n/a n/a
TxtForum n/a n/a

Totals 1,224 14

Table 4.3: Summary of database capability analysis.

1 switch ($mode) {

2 ...

3 case "viewuser ":

4 include viewuser.php;

5 ...

6 }

7

8 /* in viewuser.php */

9 if (isset($mode)) {

10 $sql = ...;

11 }

12 mysql_query($sql);

Figure 4.28: Incomplete prefix in MyBloggie.

As an example for how the extracted database capability information can
be used in a security context, we were able to deduce that NewsPro uses eight
database tables. Two of these tables are accessed read-only during normal
operation (they were filled with appropriate values during the installation of
the application). This knowledge can immediately be taken advantage of by
restricting the rights of the application’s database user accordingly. If, at some
point in the future, an SQLI vulnerability is successfully exploited, the attacker
will not be able to corrupt these two tables. Another table is accessed only

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 73

Prefixes Suffixes
Program Complete Incomplete Complete Incomplete
DCP Portal 85 0 85 0
MyBloggie 3 1 3 1
MyEasyMarket 8 2 4 6
NewsPro 49 8 56 1
OSIC 16 14 16 14
Qdig 0 4 2 2
TxtForum 79 0 79 0

Totals 240 29 245 24

Table 4.4: Summary of filesystem capability analysis.

via SELECT and UPDATE queries, meaning that the number of rows in this
table never changes. This invariant can also be enforced to prevent the deletion
or addition of rows. The most comprehensive way of utilizing the extracted
prefix information would be to translate it into an access pattern that rigorously
adheres to the principle of least privilege. For every single access to the database,
the extracted prefix provides enough information to generate an appropriate
database user with minimal rights. By retrofitting the application with these
database users, the damage of future SQL injection attacks can be minimized.

4.8.3 Results of Filesystem Capability Analysis

Table 4.4 lists the results that we obtained from our filesystem capability anal-
ysis. Here, the rate of incomplete extraction is higher than for the database
capability analysis. 29 (10.7%) of the prefixes and 24 (8.9%) of the suffixes
could not be extracted. The majority of these incomplete extractions originates
from OSIC (14 prefixes, 14 suffixes) and NewsPro (8 prefixes, 1 suffix). These
are caused by the loss of information due to the fact that the programs store
values in a database and retrieve them at a later stage. For instance, OSIC
stores the name of a certain directory in a database table. Later, this name is
read from the database to access files within that directory.

By inspecting the extracted prefixes of DCP Portal, it turned out that all
filesystem operations either access objects inside the application’s “themes” di-
rectory, or a specific HTML file in the “modules” directory. Therefore, it would
be possible to restrict the permissions of this web application to these objects.
This way, the potential damage that an attacker can do is limited, even if he
managed to exploit a command injection or directory traversal vulnerability.
A further look at the extracted suffixes shows that all accessed files have the
extension “.htm”, meaning that all accesses to files with other extensions should
be disallowed, or at least, reported as an indication of a security breach.

4.8.4 Results of XSS Analysis

Table 4.5 summarizes the results of our XSS analysis. Initially, we had ex-
pected to discover fewer SQLI than XSS vulnerabilities, since we assumed that
web application developers are more aware of SQLI problems (typically, SQLI

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 74

vulnerabilities are considered to be more critical). To our surprise, every tested
application that uses a database had more SQLI than XSS vulnerabilities. In
total, Pixy detected 172 XSS vulnerabilities and additionally reported 74 false
positives, which amounts to a false positive rate of 30%. Analogously to SQLI
analysis, our improved sanitization-aware XSS analysis was able to eliminate
11 false positives that were initially reported due to the use of custom sanitiza-
tion routines. For the three applications that have been previously examined in
Chapter 3, the results have remained identical for the most part, except for the
discovery of additional vulnerabilities in DCP Portal and OSIC, an increase in
the number of false positives for OSIC and Qdig, and fewer false positives for
MyBloggie and TxtForum. The reasons for these changes include the modeling
of additional built-in functions, the correction of programming bugs, and the
increased precision in array handling due to the use of dependence graphs. For
OSIC, we observed a significant increase of both vulnerabilities and false posi-
tives. A closer examination revealed that this increase was due to the correction
of a subtle programming bug that had previously caused the analysis to silently
skip certain parts of the application. This bug was also the reason for the differ-
ence of eleven false positive reports for Qdig. The generated dependence graphs
turned out to be highly useful during the inspection of Pixy’s reports. In par-
ticular, they allowed us to conveniently trace back the causes of taint values
to their origins, which frequently crossed both function and file borders. This
enabled us to quickly distinguish false positives from real vulnerabilities.

Program Vulnerabilities False Positives
DCP Portal 76 15
MyBloggie 13 3
MyEasyMarket 4 2
NewsPro 4 14
OSIC 42 12
Qdig 2 14
TxtForum 31 14

Totals 172 74

Table 4.5: Summary of XSS vulnerability reports.

From the total of 74 false positives, 47 (64%) fall into the “impossible path”
class previously discussed in Section 4.8.1. The remaining 27 false positives
fall into various categories. Eight reports were caused by an unusual piece of
code in Qdig for which our modeling of the PHP explode function was not
precise enough. The explode function takes two string parameters, $sep and
$string, and returns all substrings of $string that are separated by $sep. Our
current model of this function does not perform a detailed inspection of its
parameters, but conservatively approximates its behavior by returning the taint
status of $string. Six reports were caused by a conceptual limitation of the call
string technique [71], which is used by the dependence analysis. This number
could be reduced by increasing a numeric analysis parameter (the “k-bound”)
that represents analysis precision. The trade-off would be a negative impact on
performance. In four cases, an if construct in the program was syntactically
incomplete (i.e., it had no else branch), but semantically complete. Four times,
a variable was validated using regular expression functions, and another four

CHAPTER 4. TAINT-AWARE STRING ANALYSIS 75

times, a variable was set dynamically by reading its name from a database.
Finally, in one case, a variable was set dynamically using PHP’s eval function.

4.9 Summary

In this chapter, we have presented a comprehensive system for detecting a va-
riety of important web application vulnerabilities. In particular, we have de-
veloped a novel SQLI analysis capable of detecting even subtle types of vulner-
abilities. To improve precision, this analysis combines information about the
syntactic structure of SQL queries with extended taint qualifiers, which can
take one of three values. Moreover, we leveraged the SQLI string analysis to
extract program capabilities with regard to database and filesystem accesses,
and have shown how this information can be used in a security context. Finally,
we demonstrated that our system can be easily extended for the detection of
additional types of taint-style vulnerabilities by equipping it with a new XSS
analysis. In our system, both SQLI and XSS analysis provide the user with
valuable information about the flow of taint values through the program.

We have integrated the presented concepts into Pixy, our open-source web
application vulnerability scanner. Using our implementation, we have performed
a comprehensive evaluation on real-world applications, which shows that our
concepts are feasible and useful in practice.

Chapter 5

Preventing Cross-Site
Request Forgery

In the previous chapters, we presented techniques for the static detection of
taint-style vulnerabilities, and evaluated these techniques by scanning real-world
applications with Pixy, our prototype implemenation. This chapter is devoted
to the mitigation of another threat to web application users. Cross-Site Request
Forgery [66, 72, 80] (abbreviated XSRF or CSRF, sometimes also called “Ses-
sion Riding”) denotes a relatively new class of attack against web application
users. By launching a successful XSRF attack against a user, an adversary is
able to initiate arbitrary HTTP requests from that user to the vulnerable web
application. Thus, if the victim is authenticated, a successful XSRF attack ef-
fectively bypasses the underlying authentication mechanism. Depending on the
web application, the attacker could, for instance, post messages or send mails in
the name of the victim, or even change the victim’s login name and password.
XSRF attacks can be quite subtle and not always easy to understand and avoid.
Furthermore, the damage caused by such attacks can be severe.

In contrast to the well-known web security problems such as SQL injection
and XSS, cross-site request forgery (XSRF) appears to be a problem that is
little known by web application developers and the academic community. As
a result, only few mitigation solutions exist. Unfortunately, these solutions do
not offer complete protection against XSRF, or require significant modifications
to each individual web application that should be protected.

In this chapter, we present a solution that provides protection from XSRF
attacks. More precisely, our approach is based on a server-side proxy that
detects and prevents XSRF attacks in a way that is transparent to users as well
as to the web application itself. One important advantage of our solution is that
there is only minimal manual effort required to protect existing applications.
Our experimental results demonstrate that we can use our prototype to secure a
number of popular open-source web applications against XSRF attacks, without
negatively affecting the applications’ behavior.

76

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 77

5.1 Cross-Site Request Forgery

In this section, we introduce the concepts and mechanisms behind XSRF attacks
in more detail.

5.1.1 User Authentication in Web Applications

HTTP is a stateless protocol that is not able to recognize when a number of
requests all belong to a particular user. This is cumbersome when applications
have to support user authentication, as there is no straightforward mechanism
to identify requests of a user that has already performed a successful login. One
way to overcome this problem is to preserve user-specific state in client-side
cookies [58]. By inserting a Set-Cookie HTTP header into the server’s reply, a
web application can instruct the client browser to create a cookie with a given
name and value (see Figure 5.1). In all subsequent requests to the server, the
browser automatically includes this cookie information, using the Cookie HTTP
header. Based on this cookie information, a web application can then associate
requests with certain clients.

Request

Cookie: NAME=VALUE

Reply

Set-Cookie: NAME=VALUE

Request

C
L
I
E
N
T

S
E
R
V
E
R

Time

Figure 5.1: Using cookies for client-side state.

Of course, using cookies to store information is only suitable for data that
may be freely modified by the client. Because data is stored on the client’s
machine, it is under the user’s direct control. For some web applications, infor-
mation must not be modified between requests. In other cases, the amount of
data that is associated with a certain user is too large to constantly exchange
it between the client and the server. To address these issues, web applications
typically make use of sessions.

A session is established to recognize requests that belong together, and to
associate these requests with (session) data stored at the server. To this end,
each session is assigned a unique identifier (the session ID), and the client is
only provided with this identifier. With each request, the client provides its ID
(see Figure 5.2), which the web application can subsequently use to retrieve the
appropriate session data.

There are two possibilities to have the client attach the session IDs to each
request. The first possibility is to perform URL rewriting. In this case, hy-
perlinks and other request triggers (such as HTML forms) are augmented with
an additional parameter that contains the session ID. For instance, the hy-

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 78

Request

with session ID=12345

Reply

with session ID=12345

Request

C
L
I
E
N
T

S
E
R
V
E
R

Time

create session
with ID=12345

retrieve session
with ID=12345

Figure 5.2: Using sessions for server-side state.

perlink with the relative target location ./index.php might be extended into
./index.php?sessid=12345 to store the session ID with the value “12345”.
URL rewriting can be implemented by the application. However, many appli-
cation runtime and development environments (for example, PHP [59]) already
provide an automatic rewriting mechanism to ease the task for web developers.
The second possibility to include session information is to set cookies, which are
automatically sent by the user browser with each request.

A convenient side-effect of sessions is that they can be used to track the
authentication state of a user. For instance, after a successful authentication of
the client, a web application could store a boolean value auth=true for future
reference. When a user continues the current session by sending subsequent
requests, the web application can easily determine whether that user is already
logged in by consulting this boolean value. As a result, the user is able to
perform privileged actions without the need to explicitly submit a password each
time. Instead, the authentication occurs implicitly by the underlying session
mechanism. That is, the session ID serves as an implicit authentication token.

5.1.2 Exploiting Session Mechanisms

The presented concepts behind web application sessions imply that the session
ID temporarily has the same significance as the user’s original credentials. That
is, as long as the session has not expired, a web application treats requests with
valid session IDs as requests of the user who initially started the session. If an
attacker manages to obtain the session ID of an authenticated user, it is possible
to issue requests with the same privileges as this user. As a result, the session
ID has become a primary target for web application attacks. For instance, one
of the goals of cross-site scripting (XSS) attacks is to inject malicious JavaScript
code into the reply of a vulnerable application with the aim to leak the session
ID to the attacker. In such attacks, the attacker abuses the fact that web appli-
cations cannot reliably distinguish between requests with session IDs originating
from the legitimate user, and requests with stolen session IDs originating from
an attacker.

In contrast, cross-site request forgery (XSRF) is a relatively unknown form
of attack that is not motivated by the attempt to steal the session ID. Instead,
XSRF attacks abuse the fact that most web applications cannot distinguish

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 79

between intended user requests, and requests that the user issued because she
was tricked to do so. For instance, assume that the online banking application
of www.bigbank.com receives the following request from an authenticated user:

GET /transfer.php?amount =10000& to =7777

The application interprets this as a request to transfer 10,000 USD from the
user’s bank account to the account with number 7,777. Since BigBank’s web
application does not take into account the possibility of XSRF attacks (unfortu-
nately, this problem is present in many other web applications), it optimistically
assumes that the request indeed originated from the HTML form designated for
this purpose (shown in Figure 5.3), and faithfully carries out the transaction.
In reality, however, the GET request was generated in the following way: After
paying an invoice via online banking, the user forgets to log out and proceeds
by surfing to some other web sites. One of these sites, evilxsrf.org, contains
the following hyperlink:

Click here

for something really interesting.

As soon as the user clicks on this link, the previously presented GET request is
sent to www.bigbank.com. Since the user forgot to log out, the session has not
been invalidated yet, and the cookie with the session ID still exists. As a result,
the user’s browser automatically appends the cookie to the request, which is
successfully authenticated by the banking application. Without intending so,
the user has just transferred a considerable amount of money to some unknown
bank account.

1 <form action =" transfer.php" method ="get">

2 To: <input type="text" name="to"/>

3 Amount: <input type="text" name=" amount"/>

4 <input type=" submit" value=" Submit"/>

5 </form >

Figure 5.3: Legitimate money transaction form of www.bigbank.com.

The described, simple attack will probably work only against users that are
not security-aware and have limited knowledge about the mechanisms used in
web applications. For instance, the value of the href attribute will appear in
the browser’s status bar as soon as the user moves the mouse pointer above the
link (although this could be avoided by using JavaScript code that hides the
status bar). Also, users become increasingly aware of the security implications
of clicking on links in mails. However, the critical request can also be performed
through the following src attribute of an image tag:

When the user visits the page containing this tag, the browser immediately
attempts to retrieve the image by sending the appropriate GET request to
www.bigbank.com. Compared to the previous case, the user did not even have
to actively follow any link, which clearly makes the attack more dangerous.
Moreover, XSRF attacks are not limited to GET requests. Figure 5.4 demon-

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 80

strates how an equivalent POST request can be assembled through an HTML
form and automatically submitted by a short piece of JavaScript code. Once
again, visiting the malicious HTML page is sufficient for the attack to succeed.
Note that although disabling JavaScript would prevent the automatic submis-
sion of the form in this case, this measure is not suitable as general cure against
XSRF attacks. This underlines the fact that XSRF problems are independent
of XSS vulnerabilities and do not rely on the execution or injection of malicious
JavaScript code.

1 <form action ="http :// www.bigbank.com/transfer.php" method ="post">

2 <input type=" hidden" name="to" value ="7777"/ >

3 <input type=" hidden" name=" amount" value ="10000"/ >

4 <input type=" submit"/>

5 </form >

6 <script type="text/javascript">

7 document.forms [0]. submit ();

8 </script >

Figure 5.4: Malicious XSRF page for POST parameters.

The analysis of the mechanisms behind XSRF attacks leads to the following
observation: As long as a user is logged in to a web application, she is vulnerable.
A single mouse click or just browsing a page under the attacker’s control can
easily lead to unintended requests. Most web applications are not aware of this
fact, leaving their users in danger.

5.2 Existing Mitigation Techniques

A common advice for mitigating the XSRF threat that appears frequently in the
web development community is to use POST instead of GET parameters. How-
ever, as we demonstrated in the previous section, this approach is not adequate
for preventing XSRF attacks. It only raises the bar for the attacker, as it closes
certain attack vectors such as the use of image tags. In addition, completely
removing the use of GET parameters is sometimes not possible when it would
result in applications that are more cumbersome for users to navigate and more
difficult for developers to implement.

Checking the HTTP Referer header would be an effective countermeasure
if the web application could rely on its correctness. In the previous example, the
request that is generated by clicking the malicious link would contain a referrer
to evilxsrf.org. By maintaining a white-list of accepted referrers, the banking
application could deduce that this request was initiated due to an XSRF attack,
and refuse to perform the transaction. Unfortunately, modern browsers can be
configured to send empty or even arbitrary values for this header. Moreover,
sending the referrer header is discouraged, as it may result in leaking sensitive
information to third parties (as mentioned in RFC 2616 [64]). This leads to the
question of how to treat empty referrer headers. When classifying requests with
an empty referrer header as valid, it would become impossible to detect attacks
against users who follow the recommendation and disable the transmission of
the referrer header. On the other hand, when regarding such requests as XSRF
attacks, all requests of these users would be rejected. This dilemma is further

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 81

aggravated by the fact that an attacker can make use of several browser-specific
tricks to trigger an XSRF request with an empty referrer [33].

From the previous explanation, it should become clear that XSRF attacks
only work when a cookie is used to store the session ID. The reason is that the
browser automatically includes cookies into requests, even when a user clicks
on a simple link. In case of URL rewriting, on the other hand, the session
ID has to be embedded into the request trigger (e.g., a hyperlink or a form)
explicitly. Thus, when the attacker attempts to create a page with a hyperlink
that performs the XSRF request, this link will not contain the proper session
ID and thus, will not result in a successful attack. Of course, the adversary
cannot prepare the link with a correct session ID, because he has no knowledge
about this identifier; otherwise he could use this ID directly to impersonate the
authenticated user.

The problem is that cookie-based session management is much more popular
and wide-spread for a number of reasons, some of which are even security-
related [31, 60, 62]. For example, in URL-based solutions, the session ID appears
in the browser’s location bar. One implication is that a user might bookmark a
page together with the session ID. When visiting the web site via this bookmark,
the web server might again associate the session with this ID (this type of session
management is called permissive and is present, for example, in PHP). As a
result, one session ID is used for multiple sessions, increasing the chances for an
attacker to successfully steal and exploit the ID. Another possibility is that an
attacker could simply peek over a victim’s shoulder to steal the session ID (e.g.,
in a public Internet cafe).

The best solution proposed so far is the use of a shared secret (or token)
between the client and the server to identify the actual origin of a request. For
instance, the example banking application from the previous section could be
adapted such that the form shown in Figure 5.3 contains an additional, hidden
token field. This token must be generated by the application (such that it is not
easily guessable by an attacker) and associated with the current session. Re-
quests for financial transactions are only processed if they contain the correct
token. The drawback of this approach is the considerable amount of manual
work that it involves. Many current web applications have evolved into large and
complex systems, and retrofitting them with the mechanisms necessary for token
management would require detailed application-specific knowledge and consid-
erable modifications to the application source code. Even more important, there
is no guarantee that the modified code is indeed free of XSRF vulnerabilities,
as developers tend to make errors and omissions.

XSRF attacks are still relatively unknown to web developers and attack-
ers. Nevertheless, we believe that the attention paid to this class of attacks
will reach that of more traditional XSS attacks in the near future as the at-
tack becomes better known and understood. Unfortunately, current mitigation
techniques have shortcomings that limit their general applicability. To address
this problem, the following section presents a novel and automatic approach for
XSRF protection.

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 82

5.3 A Proxy-Based Solution

To be useful in practice, a mitigation technique for XSRF attacks has to satisfy
two properties. First, it has to be effective in detecting and preventing XSRF
attacks with a very low false negative and false positive rate. Second, it should
be generic and spare web site administrators and programmers from application-
specific modifications. Unfortunately, all existing approaches presented in the
previous section fail in at least one of the two aspects.

Client
Web Server XSRF Proxy

Application

Figure 5.5: Placement of the XSRF proxy.

Our solution to the XSRF problem is to decouple the necessary security
mechanisms from the application, and to provide a separate module that can
be plugged into existing systems with minimal effort. More precisely, we pro-
pose a proxy that is placed on the server side between the web server and the
target application (see Figure 5.5). This proxy is able to inspect and modify
client requests as well as the application’s replies (output) to automatically and
transparently extend applications with the previously sketched shared secret
technique. In particular, the proxy has to

• ensure that replies to an authenticated user are modified in such a way that
future requests originating from this document (i.e, through hyperlinks
and forms) will contain a valid token, and

• take countermeasures against requests from authenticated users that do
not contain a valid token.

An essential prerequisite for this mechanism is the proxy’s ability to associate
a user’s session with a valid token. To this end, the proxy maintains a token
table that maps session IDs to tokens (an example is shown in Table 5.1).

Session ID Token

15f34e112fd38c 21647261

a384d70b8b2f0d 91554762

.

Table 5.1: Example Token Table.

By decoupling the proxy from the actual application, the XSRF protection
can be offered transparently for (virtually) all applications. Note that, alterna-
tively, our proxy could also be located between the client and the web server.
However, this case could lead to problems in combination with SSL connec-
tions. With our proposed architecture, SSL issues are directly handled by the
web server, which eases the tasks that are to be performed by the proxy.

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 83

In the following sections, we present a more detailed description of how
requests to and replies from the web application are handled, along with illus-
trative examples.

5.3.1 Request Processing

Figure 5.6 provides an overview of the steps that the proxy has to take during
request processing. As a first step, we check whether the request contains a
session ID or not. If there is no session ID in the request, it is classified as
benign. The reason is that since the request does not refer to an existing,
authenticated session, it is not able to perform any privileged actions. Thus, we
can safely pass the request to the target application.

Request

request contains
session ID?

session ID exists
in token table?

generate token,
add token table entry,
pass

request contains
valid token?

pass

pass

disable

y

n

y

n

y

n

Figure 5.6: Request processing.

If the request does contain a session ID, we consult the token table to check
whether there already exists an entry with a corresponding token. If there is such
an entry, we require that the request also contains this token. A request that
fails to satisfy this condition is classified as an XSRF attack. This is because
legitimate requests, originating from a document generated by the protected
application, are guaranteed to always contain a token when they use a session
ID. The reason is that the documents produced by the application are modified
such that this token will be present (the exact mechanism to achieve this is
described in Section 5.3.2).

The action to be taken when an XSRF request is detected is configurable by
the site administrator. In our experiments, we generated a warning message to
inform the victim about the attack, together with a (correctly tokenized) link
to the application’s main page. Note that there is no need to terminate the
user’s current session when an XSRF attack is detected. After following the
link provided in the generated warning message, the user can continue her work
normally. An even more convenient, but less educational, alternative would

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 84

be to instantly redirect the user to the main page, without the need for any
additional interaction.

In the case when the request contains a session ID that does not exist in
the token table, we have to assume that a new session was established. The
proxy generates a new, random token and inserts the token, together with the
session ID, into the token table. In addition, the request is passed to the target
application.

5.3.2 Reply Processing

As discussed briefly in the previous section, the task of the reply processing step
(outlined in Figure 5.7) is to extend the output of a web application such that
a subsequent request of the user contains the correct token. This is achieved in
a fashion similar to URL rewriting.

Reply

session
exists?

session ID exists
in token table?

generate token,
add token table entry

extract associated
token from token
table

pass

y

n

y

n

instrument reply
with token, pass

Figure 5.7: Reply processing.

Assume that the proxy has to process an output page of the target applica-
tion containing the following relative hyperlink:

 LogOut

Assume further that the proxy has already determined that the client is authen-
ticated, and that a certain session ID is in use. In this case, it is necessary to
rewrite the hyperlink’s URL such that it contains the token associated with this
session ID:

 LogOut

When the user follows this link, the mechanism has ensured that the proper
token is transmitted.

The name of the parameter that stores the token (“token” in this example)
can be chosen arbitrarily, but must not interfere with the names of other pa-
rameters used by the target application. The token’s value (“99”) is retrieved
from the token table that the proxy maintains.

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 85

At this point, an important question is the following: How can the proxy
determine whether a client is authenticated or not? For our purposes, we treat
the state “a client is authenticated” as equal to “a client has an active session.”
This is a safe assumption, because XSRF attacks cannot succeed when there is
no session information that can be exploited to force the victim into performing
privileged actions (that is, actions which require previous authentication) on
behalf of the attacker.

The next question is how to determine whether a user has an active session or
not. Programming languages such as PHP provide a built-in session infrastruc-
ture that could be consulted about whether there exists such a session. However,
many applications make use of custom session management techniques. Some-
times, session information is even stored in a back-end database. In such cases,
the target application could be instrumented with functions that enable the
proxy to issue appropriate queries about the session state. Unfortunately, this
would lead to the undesirable necessity to perform application-specific modifi-
cations.

We solve the problem of determining whether a session exists in the following
way. Basically, there are two cases that have to be distinguished, depending on
whether the application sets a session cookie while processing a client’s request
or not. We can check this by searching the application’s reply for an HTTP
Set-Cookie header. Of course, this approach requires our system to distinguish
between session cookies (i.e., cookies that store session information) and cookies
that are set for other purposes. While it might be possible to use heuristics to
automatically identify session cookies, we currently require the administrator of
the system to manually specify their names. Typically, this is straightforward,
as many applications make use of the built-in session infrastructure provided
by the runtime environment. For example, when PHP is used, the name of
the session cookie defaults to “PHPSESSID”. If a session cookie is set in the
application’s reply, we assume that there exists a session, and this session has
an ID equal to the session cookie’s value. If a session cookie is not set in the
reply, we further investigate the client’s request that corresponds to the reply. If
this request contains a session ID, we conclude again that there exists a session.
Such a situation arises regularly when a client is already logged in, and her
browser automatically sends the authentication cookie to the server along with
each request.

At this point, note that our approach is safe (i.e., it does not miss any
attacks). On the one hand, assume that there exists no session, and that the
proxy falsely assumes that there is one. In this case, tokens are included into
the applications’ documents, but its regular behavior is not affected. On the
other hand, if we miss an active session, the reply would not be instrumented
with the token. Subsequently, this would lead to a false XSRF alarm for the
next user request.

After determining that there exists an active session, we query the token
table for an associated token. If there is no such entry, it means that the
session has been newly created. Hence, we generate a random token and add
a corresponding entry to the token table. Finally, the reply is instrumented
with the token before returning it to the client. The following fields have to be
modified:

• href attributes of a tags.

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 86

• action attributes of form tags.

• src attributes of frame and iframe tags.

• onclick attributes of button tags.

• refresh attributes of button tags.

• url attributes of refresh meta tags.

During our experiments, we did not encounter any other fields that required
rewriting. However, extending the rewriting engine to take into account more
fields would be straightforward.

5.3.3 Token Table Cleanup

The token table should be freed from stale entries regularly to save memory and
CPU time. To this end, we extended the table by a third column that holds
timestamps, which indicate the point in time when the corresponding entry
was last used. When the time that passed since this point is longer than a
configurable session life-time (which defaults to 24 minutes, in accordance with
PHP’s default session life-time), the entry is removed.

5.3.4 Discussion of Attacks against the System

Our proxy cannot prevent XSRF attacks if the target application fails to defend
against certain other types of attacks. For instance, if insufficient measures are
taken against cross-site scripting (XSS), the adversary could inject malicious
JavaScript into the application that steals the user’s cookies (containing the
session ID). This underlines once more that a reasonable level of security can
only be achieved by preparing against a wide range of possible attack vectors.

Our proxy treats all request triggers sent by the target application as le-
gitimate. Hence, all these triggers are automatically instrumented with valid
tokens. This implies that if an attacker managed to inject an XSRF hyperlink
into the reply of a protected application, our proxy would automatically aug-
ment this hyperlink with a valid token as well. This would allow the adversary
to induce requests to pages that accept GET parameters. Using POST instead
of GET requests would raise the bar for the attacker in this case. However, the
attacker could also point the injected link to a site under his control. When the
victim’s browser requests a page on this site, the Referer header could be used
to extract the token, allowing the attacker to create valid POST requests as
well. To mitigate these problems, the attacker should not be allowed to inject
request triggers into an application, a requirement that should be fulfilled by
security-aware systems in any case. In addition, clients can decrease their ex-
posure by disallowing the transmission of Referer headers (e.g., by configuring
their browser appropriately, or by using a firewall).

Given the design of our system, an attacker can obtain the token for any
session ID that he presents to the proxy. To this end, the attacker can simply
send a request with a particular session ID to the web application and after-
wards simulate an XSRF attack against this session. Then, he can extract the
associated token from the generated reply (for instance, from the link that is
provided along with our warning message). Fortunately, this ability is of no use

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 87

to the attacker because he has no knowledge of the session ID that a client uses.
Otherwise, there would be no need to perform an XSRF attack. Instead, the
attacker could directly impersonate the victim using the session ID. Of course,
the range of possible session IDs must be large enough to thwart any brute-force
guessing attempts.

Finally, the attacker could launch a denial-of-service attack against the
proxy. Recall that the token table is extended by a new entry whenever an
incoming request contains a session ID that does not exist in the token table.
Thus, the adversary could flood the token table with a large number of session
IDs with the intention of significantly degrading the proxy’s performance. How-
ever, the same attack could be launched already against most web servers that
track user sessions. The reason is that many applications start to issue session
IDs at the first visit of a client, and not after the client has logged in. This
corresponds exactly to the behavior of our proxy. Hence, for these systems, the
possibility for such denial-of-service attacks is not originally introduced by the
proxy.

5.3.5 Eliminating State

As mentioned previously, the token table associates session IDs with tokens.
This explicit, stateful mapping can be replaced by a mapping that requires no
state at all to be stored by the proxy. To this end, a token is computed by
applying a hash function based on a secret server key to a session ID. As this
approach does not require the explicit storage of session ID to token mappings
(the token value can always be computed from the session ID), it eliminates
the DoS attack vector sketched in Section 5.3.4. Another major difference com-
pared to the token table approach is that the mappings remain constant over
time. When using a token table, mappings change as they are introduced with
randomly generated tokens and removed when they expire.

At first glance, static mappings might appear dangerous from a security
point of view. An attacker could, in theory, construct an explicit representa-
tion of the hash function that is used by sending all possible session IDs to the
server and writing down the observed tokens in return. By inverting this map-
ping, the attacker could deduce the session ID from the user’s token (modulo
hash collisions). This would turn the token into a piece of information worth
stealing, increasing the attacker’s opportunities. However, reconstructing even
small parts of the hash function is not feasible in practice due to the vast num-
ber of possible session IDs. In PHP, for example, the space for session IDs
comprises 6232 entries (32 digits or case-sensitive characters from a to z). For
harvesting just 0.01% of all possible mappings in one year, an attacker would
have to issue 7∗1045 requests per second. An even higher level of security could
be achieved by changing the hash function each year, invalidating an attacker’s
previous harvesting efforts. The resulting convenience penalty for users with ac-
tive sessions would be minimal, as users with incorrect tokens are immediately
provided with a link containing the correct token.

5.3.6 Limitations

The presented concepts rely on the assumption that all request triggers (such
as hyperlinks and action attributes of forms) are directly available in the out-

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 88

put generated by the target application. If this is not the case, reply process-
ing misses certain request triggers, which can result in subsequent false XSRF
alarms. For instance, assume a client-side JavaScript is responsible for con-
structing a hyperlink that points back into the target application. At the time
of request processing, this hyperlink is not detected. Hence, the link will even-
tually lack the necessary token, and result in a false XSRF warning when the
client follows it. Fortunately, this is a minor issue for a number of reasons.
First, such cases are very rare in practice. During our experiments, we observed
this effect in not more than four select boxes. Moreover, adjusting the involved
JavaScript such that it also integrates the token into the generated link is a triv-
ial task that does not require any application-specific knowledge. For instance,
Figure 5.8 shows such a JavaScript snippet from PhpNuke after our two-line
modification (Lines 3 and 4 have been added). The modified code simply ex-
tracts the token from the xsrf token attribute of the document’s html tag and
appends it to the constructed URL. The token was previously embedded into
the html tag by the proxy’s rewriting engine. By adapting the JavaScript code
at all offending locations, which took less then ten minutes for each application,
we successfully eliminated all false warnings. Finally, note that this issue does
not represent a gap in our security measures. There is no way for the attacker
to exploit this issue and launch a successful XSRF attack.

1 <select onChange ="

2 top.location.href=this.options[this.selectedIndex]. value.

3 concat(’& xsrf_token =’+document.getElementsByTagName(’html ’)[0].

4 getAttribute(’xsrf_token ’))">

Figure 5.8: JavaScript snippet from PhpNuke with modifications.

5.4 Implementation

To demonstrate the feasibility of our concepts, we implemented NoForge, a
server-side proxy that is able to defend PHP applications against XSRF at-
tacks. As explained previously, this proxy is located between the web server
and the protected web applications. To realize this in a straightforward fashion,
we decided to implement the proxy as wrapper functions around those PHP
applications that we intend to protect. These wrapper functions check the in-
put and output of the application and perform the necessary request and reply
processing.

In our test environment, we added simple alias rules to the configuration of
the Apache web server that match requests to protected applications and redi-
rect these requests to the proxy wrapper functions. After an incoming request
is processed, control is passed to the target application. To be able to process
and modify the output generated by the target application before this output is
returned to the client, we make use of the output buffering mechanism supplied
by PHP. This way, all data generated by the target application is redirected
into a buffer that can then be used for the required post-processing step. Note
that PHP’s output buffers are stackable, which means that this solution works
even if the target application performs output buffering itself. During reply
processing, the task of instrumenting the output with a token is taken over by

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 89

a Java program based on the HTMLParser [27] package (a package for parsing
and modifying HTML code).

During the implementation of the proxy wrapper routines, we encountered
the following problem: The detection of an active session requires that the
HTTP headers returned to the client are inspected. Unfortunately, PHP of-
fers no direct mechanisms to access these headers. The output that is written
into the proxy’s output buffer only contains the message body. We solved this
problem by equipping the proxy with additional wrappers around those PHP
functions that are responsible for generating the interesting headers (such as
header(), setcookie(), or session start()). Since it is not possible to over-
write built-in PHP functions, we had to write a simple sed [69] script that
converts calls to these built-in functions into calls to our wrapper functions.
For instance, a call to header() is automatically rewritten into a call to a
wrapper function called xsrf header(). Note that this trivial modification to
the target application is a one-time, fully automatic effort and highly reliable
due to its simplicity. Alternatively, the proxy could also be implemented on the
network level, where it has full access to the complete HTTP stream.

Another implementation issue we encountered was that if the target appli-
cation halted program execution using the exit() or die() function, execution
of our proxy stopped as well. As a result, no reply processing was performed.
In this case, we successfully applied the same solution as before. By providing
additional wrappers around the offending functions, we were able to catch such
calls and initiate proper processing of the reply.

To summarize, here are the steps that are necessary for protecting a web
application with our prototype implementation:

1. Add an appropriate alias to the Apache configuration.

2. Execute the sed script on the target application to enable the proxy’s
wrapper functions.

3. Specify the cookie names that the target application uses to store session
IDs (typically, this defaults to “PHPSESSID”).

4. Specify the page that the user shall be redirected to in case of an XSRF
attack.

These steps typically take less that five minutes for each application. Clearly,
this process is far less time-consuming than manually adapting the whole target
application to prevent XSRF attacks.

5.5 Experimental Results

To test our implementation, we chose the current stable releases of the seven
largest (in terms of all-time downloads) open-source PHP web applications from
SourceForge [74]. The high number of downloads (see Table 5.2) indicates that
these applications are popular and wide-spread. Despite the fact that these
applications are popular and well-maintained, we quickly discovered XSRF vul-
nerabilities in five of the applications. The two remaining ones, Gallery 2.0.4
and XOOPS 2.0.13.2, appeared to be immune to XSRF attacks, although we

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 90

Application Version Downloads Exploits

phpBB 2.0.19 10,483,075 Delete postings.

Send postings.

phpMyAdmin 2.8.0.2 9,494,550 Delete databases.

Create databases.

Gallery 2.0.4 3,937,352 None found.

XOOPS 2.0.13.2 3,448,408 None found.

phpNuke 7.0 2,727,943 Delete messages.

Add messages.

Coppermine Photo 1.4.4 1,981,777 Modify user accounts.

Gallery Make existing albums

world-writable.

Squirrelmail 1.4.6 1,905,277 Change user information.

Send mails.

Table 5.2: Tested Applications.

did not conduct exhaustive tests or source code reviews in pursue of XSRF
vulnerabilities.

For the five vulnerable applications, we constructed a number of XSRF ex-
ploits that modify important data by abusing the privileges of an authenticated
user. For instance, we managed to post and delete messages from a forum in the
name of the victim, send mail, or even change the user name and password of
the current user, resulting in identity theft. A comprehensive list of the created
exploits is provided in Table 5.2.

Our first test evaluated the proxy’s ability to protect vulnerable applica-
tions. After verifying that our exploits were working properly, we installed the
proxy and repeated the attacks. This time, every XSRF attempt was correctly
detected.

Apart from protecting applications, a central requirement that the proxy
has to fulfill is to not interfere with the normal application behavior (both
regular behavior as well as behavior in case of errors). To test this property,
we can observe and compare the application’s behavior without the proxy’s
protection to the behavior with enabled XSRF protection. If the two results are
identical, the proxy succeeded in performing its task transparently. Initially,
we considered to perform this test automatically. Unfortunately, we quickly
encountered a number of difficulties:

• Forms cannot easily be filled with reasonable input without manual guid-
ance.

• Some syntactic details might change even between semantically equivalent
replies (such as date fields or “quotes of the day”), making a straightfor-
ward comparison difficult.

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 91

• The login procedure and cookies have to be supported.

• Problems with frame or style-sheet display must be detected.

Instead, because of these difficulties, we decided to conduct thorough and
systematic manual tests. To this end, we applied the following test procedure
for each application:

1. Log in to the application.

2. On the following page, if there is a request trigger (e.g., a hyperlink) that
was not activated yet:

(a) Activate the next unvisited request trigger. If the trigger is a form,
test it with correct as well as with incorrect input.

(b) Hit the browser’s “back” button.

(c) Continue with Step 2.

3. Log out.

Note that these tests also cover the correct behavior of the browser’s “back”
button, which is a widely used convenience feature that must not be broken
by XSRF countermeasures. Also note that the use cases that were targets of
our demonstration exploits have already been tested in the previous stage (i.e.,
while verifying that the XSRF protection works). In addition to this systematic
procedure, we also chose some random work flows typical for the application in
question. Altogether, we are confident that the coverage of our tests is large
enough to give representative results. There was not a single case in which we
observed deviant behavior caused by the presence of the proxy.

As far as performance is concerned, we observed no noticeable delay when
interacting with the applications protected by our proxy. This is satisfying,
as we implemented our prototype without performance in mind, and it still
represents many opportunities for optimization. Also, by implementing the
proxy and the rewriting engine in a language such as C or C++ instead of in
PHP and Java, an additional gain in performance can be expected. Another
alternative implementation would be to turn the proxy’s application logic into
a module for the Apache web server, or integrate it into the already available
mod security [51] module.

5.5.1 A Case Study: Sending Mails with SquirrelMail

SquirrelMail [75] is a popular and feature-rich web-mail application written in
PHP. Since its initial development release in 1999, the developers fixed several
security-critical bugs, among them the XSRF vulnerability described in [54].
The reason for this vulnerability was that the script responsible for sending
mails extracted the recipient and the subject from GET parameters. Hence,
whenever an authenticated SquirrelMail user at squirrel-server.com visited
a page containing the following specially crafted image tag, the system generated
an email to “x@y.com” with the subject “foo”:

<img src="http :// squirrel -server.com/compose.php?

send_to=x@y.com&subject=foo&send =1"/>

CHAPTER 5. PREVENTING CROSS-SITE REQUEST FORGERY 92

Later versions of SquirrelMail fixed this particular issue by extracting the rel-
evant information only from POST parameters. Although this has raised the
bar for an attacker, a successful attack can still be performed with minimal
user interaction. For instance, the attacker could trick the victim into visiting
a malicious web page, such as the one shown in Figure 5.9. Here, the attacker
can provide arbitrary values to the inputs send to, subject, and body. The
short JavaScript code at the bottom of the page has the effect that the form is
submitted as soon as the browser has finished loading the page, without leaving
the victim any time to react.

1 <form action ="http :// squirrel -server.com/transfer.php"

2 method ="post">

3 <input type=" hidden" name=" send_to" value ="x@y.com"/>

4 <input type=" hidden" name=" subject" value ="foo"/>

5 <input type=" hidden" name="body" value ="bar"/>

6 <input type=" hidden" name="send" value ="Send"/>

7 <input type=" submit"/>

8 </form >

9 <script type="text/javascript">

10 document.forms [0]. submit ();

11 </script >

Figure 5.9: An XSRF exploit page for SquirrelMail (simplified).

When protecting SquirrelMail with our proxy, the previously described at-
tack is detected and successfully mitigated. The proxy checks that the request
to the script responsible for sending mails contains a valid token, which is not
satisfied by the sketched exploit.

5.6 Summary

In a cross-site request forgery (XSRF) attack, the trust of a web application
in its authenticated users is exploited, allowing an attacker to make arbitrary
HTTP requests in the victim’s name. Unfortunately, current XSRF mitigation
techniques have shortcomings that limit their general applicability. To address
this problem, this chapter presented a solution that provides a completely au-
tomatic protection from XSRF attacks. Our approach is based on a server-side
proxy that detects and prevents XSRF attacks in a way that is transparent to
users as well as to the web application itself.

We have successfully used our prototype to secure a number of popular
open-source web applications that were vulnerable to XSRF. Our experimental
results demonstrate that the solution is viable, and that we can secure existing
web applications without adversely affecting their behavior.

Currently, XSRF attacks are relatively unknown to both web developers and
attackers that are on the hunt for easy targets. However, we expect the attention
paid to this class of attacks to soon reach that of more traditional web security
problems (such as XSS or SQL injection), and we hope that our solution will
prove useful in protecting vulnerable web applications.

Chapter 6

Related Work

6.1 Client-Side Techniques

Client-side techniques in the area of web security are characterized by the fact
that they are primarily used by the consumers of web applications, rather than
by the providers. In this sense, client-side techniques are either targeted at the
protection of their users, or at the detection of security flaws in applications for
which no source code is available.

Huang et al. [28] described WAVES, a black-box testing tool for the detection
of SQL injection vulnerabilities. Since it does not make use of source code during
its analysis, it computes its results by means of fault injection and behavior
monitoring. In addition, a machine learning component is applied to guide the
testing process. Similarly, a black-box approach is used by Kals et al. [41] in
their tool called SecuBat. Apart from SQL injection vulnerabilities, they are also
able to detect XSS flaws. One of the main drawbacks of black-box analyses is
that they cannot guarantee full coverage of all execution paths inside a program.
As a result, parts of the application might remain unscanned, which potentially
leads to undetected vulnerabilities.

Noxes by Kirda et al. [43] is a client-side, application-level firewall that offers
protection against cross-site scripting attempts. To this end, the authors present
techniques for the recognition of outgoing browser connections that might be
part of an XSS attack. This recognition process includes the analysis of links
embedded in a web page, and the computation of the amount of information
that might be leaked to an attacker when a link is followed. The main idea
behind this technique is that sensitive information can be transmitted either by
a single link that is constructed dynamically inside the user’s browser, or by
several static links. Based on this information, connection rules are generated
on-the-fly, and the user is prompted when a connection violates the existing set
of rules.

In an alternative approach to the detection and prevention of XSS attacks
on the client side, Vogt et al. [79] enhanced the Firefox web browser with a taint
tracking mechanism. This technique dynamically tracks the flow of sensitive in-
formation (such as user cookies) inside the browser. Whenever such information
is about to be transferred to a third party, an alert is raised. Since it is not

93

CHAPTER 6. RELATED WORK 94

possible to detect all types of information flows dynamically [65], an additional
static analysis of the web page is applied on-demand.

Johns and Winter [33] presented a proxy-based, client-side solution against
XSRF attacks, which is orthogonal to our approach described in Chapter 5.
They also build upon the token approach, and additionally propose the use of
an outside entity for detecting IP-based authentication. For those cases in which
JavaScript code initiates HTTP requests, this code is altered automatically to
contain the token. In contrast to this technique, which requires a certain extent
of automated program understanding, a manual treatment of these rare cases
on the server side appears to provide a more stable and efficient solution.

Apart from the XSRF prevention techniques presented in this thesis, the
approach of Johns and Winter outlined above is, to the best of our knowledge,
the only scientific contribution to this topic. The general class of XSRF attacks
was first introduced by Peter W. in a posting [80] to the BugTraq mailing list,
and has since been picked up by web application developers [73]. The mitigation
mechanisms for XSRF that were proposed so far by the community (discussed
in more detail in Section 5.2) either provide only partial protection (such as
replacing GET requests by POST requests, or relying on the information in the
Referer header of HTTP requests), or require significant modifications to each
individual web application that should be protected (when embedding shared
secrets into the application’s output). Our solution, on the other hand, attempts
to retain the advantage of a solution based on shared secrets, while removing
the need to modify application source code. That is, by using a web proxy, we
can transparently embed secret tokens into the output of web applications.

Client-side solutions are orthogonal to server-side techniques in terms of capa-
bilities and limitations. On the one hand, client-side tools are preferable for
security-aware users who wish to achieve a higher level of protection across a
wide range of visited web sites. In the past, several web providers have reacted
rather slowly to security threats, leaving their clients in danger. For these cases,
an active protection on the client side is able to fill at least a part of the resulting
gap. On the other hand, measures taken on the server side are instantly propa-
gated to all clients, such that there is no need for the users to install additional
programs for their protection.

6.2 Dynamic Server-Side Techniques

Dynamic techniques that operate on the server side can be divided into two
different groups. On the one hand, it is possible to track the flow of tainted val-
ues dynamically (i.e., at runtime), and to disrupt program execution whenever
a malicious value is used at a sensitive point in the application. On the other
hand, approaches based on anomaly detection attempt to recognize suspicious
user request before they reach the vulnerable application, and take measures to
protect the application from potential attacks.

One of the most prominent examples for dynamic taint tracking is Perl’s taint
mode [81]. Analogously, Nguyen-Tuong et al. [55] and Pietraszek et al. [63] de-
scribed modifications to the PHP interpreter that permit the tracking of tainted
values. Haldar et al. [23] adapted the Java virtual machine to achieve a similar

CHAPTER 6. RELATED WORK 95

effect for the execution of Java classfiles, without requiring the corresponding
source code.

Su and Wassermann [78] base their work on a formal definition of SQL in-
jection attacks. In their definition, SQL injection occurs when the intended
syntactic structure of SQL queries is changed by tainted input. To be able to
check whether this policy is violated by a program, they track tainted input
dynamically by enclosing it within randomly generated makers. When the pro-
gram issues an SQL query, the markers indicate the points of the query that
contain potentially malicious values.

The server-side techniques outlined above operate by tracking the flow of
malicious values. Halfond et al. [25] take the opposite approach with their tool
called WASP. In their approach, they identify trusted data sources, and mark
data that originates from these sources as benign. Again, the flow of these
values through the program is tracked dynamically, and only trusted data is
allowed to be used as keywords or operators within issued SQL queries. This
corresponds to a white-listing approach (as opposed to black-listing), and has
the advantage that sources of untrusted data cannot be omitted accidentally.

Techniques based on the dynamic tracking of taint values have the advan-
tage that the rate of generated false positives is generally low. In contrast to
static analyses, they operate on concrete user inputs, and every detected error
path corresponds to a true path that the program can take at runtime. The
disadvantage of dynamic scanners is that they are mainly suitable for runtime
protection of applications, as opposed to pre-release security audits. In the con-
text of pre-release audits, dynamic techniques experience problems regarding
the coverage of all possible paths through the program. The number of these
paths is generally unbounded, and grows exponentially with each branch in the
program. Hence, it is easy to miss vulnerabilities due to program paths that
were not taken into account.

As mentioned above, an alternative to tracking taint values through the ap-
plication is to decide whether user input is malicious before it is passed to the
program. For instance, Almgren et al. [2] present an intrusion detection tool
that compares the signatures of incoming requests to those of known attacks.
The learning process for new attacks is enhanced by keeping track of hosts that
launched attacks in the past. In contrast to signature-based systems, systems
that apply anomaly detection compute a model of regular, benign requests, and
trigger an alert whenever a request does not conform to this model. Kruegel et
al. [44] describe an anomaly detection system that is targeted at the detection
of web-based attacks. This technique is based on the analysis of the parameters
of HTTP queries, which generates parameter profiles for the server-side pro-
grams that the queries are directed to. Anagnostakis et al. [3] combine anomaly
detection with honeypot technology by introducing the notion of shadow hon-
eypots. To decrease the false positive rate of the anomaly detection component,
potentially malicious requests are redirected to an instrumented instance of the
protected software, which acts as a honeypot. Using this instance, it is observed
whether the request exposes any malicious properties when it is processed. If
the request qualifies as benign, the results are passed back to the user, such that
the incorrect classification remains unnoticed by the client.

CHAPTER 6. RELATED WORK 96

6.3 Static Server-Side Detection of Programming
Bugs

This and the following section discuss static server-side techniques, and distin-
guish between techniques targeted at the detection of classic vulnerabilities or
programming bugs, and the detection of typical web application vulnerabilities.

In the past, numerous publications were devoted to the detection of buffer
overflows in C programs. For instance, Larochelle and Evans [46] extend the
LCLint [19] checking tool to identify buffer overflows. Their analysis is light-
weight and efficient, and might miss vulnerabilities. It is annotation-based,
relies on the generation and resolution of constraints, and applies a number of
heuristics for treating loops in the control flow. CSSV by Dor et al. [16] also re-
quires annotations to perform its analysis. More precisely, it is intraprocedural,
such that the user has to provide contracts that specify procedures contained in
the program in terms of pre-conditions, post-conditions, and side effects. Gana-
pathy et al. [22] presented a light-weight static analysis that leverages existing
techniques from the linear programming literature to determine the bounds of
buffers used in an application.

Engler et al. have published various static analysis approaches to finding pro-
gramming bugs in C programs. In [17], the authors describe a system that trans-
lates simple rules into automata-based compiler extensions that check whether a
program adheres to these rules or not. In an extension to this work, they present
techniques for the automatic extraction of such rules from a given program [18].
Finally, tainting analysis is used to identify vulnerabilities in operating system
code where user-supplied integer and pointer values are used without proper
checking [5].

CQual [21] by Foster et al. is a tool that allows the introduction of user-
defined type qualifiers into C programs. This concept can be leveraged for
automatically inferring the taint status (or taint type) of a variable. For in-
stance, this technique was used by by Shankar et al. [70] to detect format string
vulnerabilities in C code. Zhang et al. [87] applied CQual to verify the correct
placement of LSM (Linux Security Modules) authorization hooks. And finally,
Johnson et al. [34] extended CQual with context-sensitivity to detect user/kernel
pointer bugs.

6.4 Static Server-Side Detection of Web Vulner-
abilities

Huang et al. [30] were the first to address the issue of statically detecting vul-
nerabilities in the scope of PHP web applications. They used a lattice-based
analysis algorithm derived from type systems and typestate, and compared it
to a technique based on bounded model checking in their follow-up paper [29].
A limitation of their work is that they operate on the intraprocedural level,
which considerably increases either the number of false positives, or the number
of missed vulnerabilities. Besides, essential language elements such as arrays,
references, and file inclusions are not supported, and a substantial fraction of
PHP files (8% in their experiments) is rejected due to problems with the applied
parser.

CHAPTER 6. RELATED WORK 97

Livshits and Lam [48] applied an interprocedural taint analysis supported
by binary decision diagrams (developed by Whaley and Lam [83]) for finding
security vulnerabilities in Java applications. Their analysis is flow-insensitive
for the most part, which has the effect that the order of program statements is
not taken into account. This means that it is not possible to determine whether
a variable was sanitized before or after it enters a vulnerable program point,
reducing the precision of the computed results.

Xie and Aiken [86] addressed the problem of statically detecting SQLI vul-
nerabilities in PHP scripts by means of a three-tier architecture. In this archi-
tecture, information is computed bottom-up for the intrablock, intraprocedural,
and interprocedural scope. As a result, their analysis is flow-sensitive and inter-
procedural, and comparable in power to Pixy, the system that we described in
Chapters 3 and 4. However, recursive function calls are treated as no-ops, and
no alias analysis is performed. Also, they use traditional taint analysis and do
not calculate any information about the possible strings that a variable might
hold. This makes it impossible to determine where in a string tainted informa-
tion is located. Consequently, certain types of errors (i.e., those subtle SQLI
vulnerabilities described in Section 4.3) are missed by their analysis. Our em-
pirical results (Section 4.8.1) show that the vulnerabilities that they discovered
are a subset of the vulnerabilities discovered by our system. Hence, together
with our XSS and capability analysis, we claim to provide a more precise and
comprehensive security analysis. Besides, their vulnerability reports only return
a reference to the source of the tainted value. This can considerably slow down
the necessary manual inspection process, and make the recognition of complex
vulnerabilities difficult. In our technique, the reports are supported by infor-
mation that allows a reconstruction of the value’s path through the program.

String Analysis. Apart from techniques that are focused on the static prop-
agation of taint values, there exist attempts to solve security-related problems
in web applications using string analysis. Minamide [50] presented PHPSA, an
open-source tool for approximating the string output of PHP programs with
a context-free grammar. While primarily targeted at the validation of HTML
output, the author notes that it can also be used for detecting XSS vulnerabil-
ities. However, without any taint information or additional checks, it appears
to be difficult to distinguish between malicious and benign output. Only one
discovered XSS flaw is reported, and the observed false positive rate is not
mentioned.

In [24], Halfond and Orso applied the Java String Analyzer by Christensen
et al. [12] to statically extract models of a program’s database queries, and used
these models as the basis for a runtime monitoring and protection component.
The main difference compared to our approach is that the extracted models do
not contain information about the taint status of embedded variables. As a
result, it is not possible to detect vulnerabilities statically, which explains the
need for an additional runtime component (including all the limitations that
come with the use of dynamic analysis).

Wassermann and Su [82] extended PHPSA (mentioned above) to incorporate
taint information into the analysis. To this end, they augment context-free
grammars with taint labels, and combine this extension with the SQL policy
check presented in one of their previous papers [78]. During their analysis, they

CHAPTER 6. RELATED WORK 98

use three types of taint values (high, medium, none). Compared to our work,
the additional taint qualifier has a different purpose, and is used to mark data
that is retrieved from the database. Our analysis is more light-weight in that
it uses taint-aware automata instead of context-free grammars. Also, the string
analysis algorithms proposed by the authors are fairly complex, and less efficient
than our approach. The computed grammars are hard to understand compared
to our dependence graphs, which inform the user about the flow of taint values
in an intuitive way.

To summarize the differences between our static analysis and related work, our
approach is aimed at the combination of static taint analysis with string anal-
ysis to achieve a high level of precision. While most previous approaches have
used either taint analysis or string analysis, or relied on a complex and heavy-
weight infrastructure, we present a taint-aware string analysis that embraces
the strengths of both (Section 4.3), while retaining good performance and ease
of use. In addition, we demonstrate how string information can be leveraged
for the extraction of program capabilities, and how the knowledge about these
capabilities can be used for enhancing application security (Section 4.4).

Chapter 7

Conclusions

Web applications have become a popular and wide-spread interaction medium
in our daily lives. At the same time, vulnerabilities that endanger the personal
data of users are discovered regularly. Manual approaches for tackling these
issues are labor-intensive, costly, and error-prone.

This thesis presented automated techniques in two major areas of web appli-
cation security. First, we described static analysis techniques for the detection
of taint-style vulnerabilities in web applications. In this context, we presented
a number of mechanisms for achieving a high level of precision, coverage, and
performance. Second, we presented a server-side system for the dynamic recog-
nition and mitigation of cross-site request forgery attacks. This solution can
be applied to existing applications easily, and does not interfere with regular
program behavior.

To demonstrate the usefulness our concepts in practice, we have conducted
empirical evaluations on several real-world applications. The results show that
our techniques are feasible, and able to significantly contribute to the security
of these programs. Our prototype implementations have been released under an
open-source license, and are freely available for download from our homepage.

99

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[2] Magnus Almgren, Herve Debar, and Marc Dacier. A Lightweight Tool for
Detecting Web Server Attacks. In Network and Distributed System Security
Symposium (NDSS), 2000.

[3] Kostas Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos
Xinidis, Evangelos Markatos, and Angelos Keromytis. Detecting Targeted
Attacks Using Shadow Honeypots. In Usenix Security Symposium, 2005.

[4] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, University of Copenhagen, 1994.

[5] Ken Ashcraft and Dawson Engler. Using Programmer-Written Compiler
Extensions to Catch Security Holes. In IEEE Symposium on Security and
Privacy, 2002.

[6] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, En-
gin Kirda, Christopher Kruegel, and Giovanni Vigna. Saner: Composing
Static and Dynamic Analysis to Validate Sanitization in Web Applications
(Technical Report). To appear, 2007.

[7] Scott Berinato. The Chilling Effect. http://www.csoonline.com/read/
010107/fea vuln.html.

[8] BRICS Automata Library. http://www.brics.dk/automaton.

[9] BugTraq. BugTraq Mailing List Archive. http://www.securityfocus.
com/archive/1.

[10] CERT. CERT Advisory CA-2000-02: Malicious HTML Tags Embedded in
Client Web Requests. http://www.cert.org/advisories/CA-2000-02.
html.

[11] David Chase, Mark Wegman, and F. Ken Zadeck. Analysis of Pointers and
Structures. In ACM Conference on Programming Language Design and
Implementation (PLDI), 1990.

[12] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Pre-
cise Analysis of String Expressions. In International Static Analysis Sym-
posium (SAS), 2003.

100

BIBLIOGRAPHY 101

[13] CUP: LALR Parser Generator in Java. http://www2.cs.tum.edu/
projects/cup/.

[14] CVE - Common Vulnerabilities and Exposures. http://www.cve.mitre.
org.

[15] Manuvir Das. Unification-Based Pointer Analysis with Directional Assign-
ments. In ACM Conference on Programming Language Design and Imple-
mentation (PLDI), 2000.

[16] Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: Towards a Realistic
Tool for Statically Detecting All Buffer Overflows in C. In ACM Conference
on Programming Language Design and Implementation (PLDI), 2003.

[17] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking
System Rules Using System-Specific, Programmer-Written Compiler Ex-
tensions. In Symposium on Operating Systems Design and Implementation
(OSDI), 2000.

[18] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as Deviant Behavior: A General Approach to Inferring Errors
in Systems Code. In ACM Symposium on Operating Systems Principles
(SOSP), 2001.

[19] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint:
A Tool for Using Specifications to Check Code. In ACM Symposium on
Foundations of Software Engineering, 1994.

[20] Finite State Automata Utilities. http://www.let.rug.nl/∼vannoord/
Fsa/.

[21] Jeffrey S. Foster, Manuel Faehndrich, and Alexander Aiken. A Theory of
Type Qualifiers. In ACM Conference on Programming Language Design
and Implementation (PLDI), 1999.

[22] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David
Vitek. Buffer Overrun Detection Using Linear Programming and Static
Analysis. In ACM Conference on Computer and Communications Security
(CCS), 2003.

[23] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic Taint Prop-
agation for Java. In Annual Computer Security Applications Conference
(ACSAC), 2005.

[24] William G.J. Halfond and Alessandro Orso. AMNESIA: Analysis and Moni-
toring for NEutralizing SQL-Injection Attacks. In International Conference
on Automated Software Engineering (ASE), 2005.

[25] William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using
Positive Tainting and Syntax-Aware Evaluation to Counter SQL Injection
Attacks. In Foundations of Software Engineering (FSE), 2006.

[26] Michael Hind. Pointer Analysis: Haven’t We Solved This Problem Yet? In
ACM Workshop on Program Analysis for Software Tools and Engineering
(PASTE), 2001.

BIBLIOGRAPHY 102

[27] HTMLParser. http://htmlparser.sourceforge.net/.

[28] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai.
Web Application Security Assessment by Fault Injection and Behavior
Monitoring. In International Conference on World Wide Web (WWW),
2003.

[29] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D. T. Lee,
and Sy-Yen Kuo. Verifying Web Applications Using Bounded Model Check-
ing. In International Conference on Dependable Systems and Networks
(DSN), 2004.

[30] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing Web Application Code by Static Analysis
and Runtime Protection. In International Conference on World Wide Web
(WWW), 2004.

[31] Java Q & A - Session State in the Client Tier. http://java.sun.com/
blueprints/qanda/client tier/session state.html.

[32] JFlex: The Fast Scanner Generator for Java. http://jflex.de.

[33] Martin Johns and Justus Winter. RequestRodeo: Client Side Protection
against Session Riding. In OWASP Europe Conference, 2006.

[34] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs With
Type Inference. In Usenix Security Symposium, 2004.

[35] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing Cross
Site Request Forgery Attacks. In IEEE International Conference on Secu-
rity and Privacy in Communication Networks (SecureComm), 2006.

[36] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper).
In IEEE Symposium on Security and Privacy, 2006.

[37] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Technical Re-
port). http://www.seclab.tuwien.ac.at/projects/pixy/, 2006.

[38] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Precise Alias
Analysis for Static Detection of Web Application Vulnerabilities. In ACM
Workshop on Programming Languages and Analysis for Security (PLAS),
2006.

[39] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Securing Web
Applications Using Taint-Aware String Analysis and Program Capability
Analysis (Technical Report). To appear, 2007.

[40] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static Analysis
for Detecting Taint-Style Vulnerabilities in Web Applications (Technical
Report). To appear, 2007.

BIBLIOGRAPHY 103

[41] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic.
SecuBat: A Web Vulnerability Scanner. In International Conference on
World Wide Web (WWW), 2006.

[42] Gary A. Kildall. A Unified Approach to Global Program Optimization. In
ACM Symposium on Principles of Programming Languages (POPL), 1973.

[43] Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.
Noxes: A Client-Side Solution for Mitigating Cross-Site Scripting Attacks.
In ACM Symposium on Applied Computing (SAC), 2006.

[44] Christopher Kruegel and Giovanni Vigna. Anomaly Detection of Web-
based Attacks. In ACM Conference on Computer and Communications
Security (CCS), 2003.

[45] William Landi and Barbara G. Ryder. A Safe Approximate Algorithm for
Interprocedural Aliasing. In ACM Conference on Programming Language
Design and Implementation (PLDI), 1992.

[46] David Larochelle and David Evans. Statically Detecting Likely Buffer Over-
flow Vulnerabilities. In Usenix Security Symposium, 2001.

[47] Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel,
and Yanni Ellen Liu. Incrementalization Across Object Abstraction. In
ACM Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2005.

[48] V. Benjamin Livshits and Monica S. Lam. Finding Security Errors in Java
Programs with Static Analysis. In Usenix Security Symposium, 2005.

[49] Florian Martin. Generating Program Analyzers. PhD thesis, University of
Saarland, 1999.

[50] Yasuhiko Minamide. Static Approximation of Dynamically Generated Web
Pages. In International Conference on World Wide Web (WWW), 2005.

[51] ModSecurity. http://www.modsecurity.org/.

[52] Mehryar Mohri and Richard Sproat. An Efficient Compiler for Weighted
Rewrite Rules. In Annual Meeting on Association for Computational Lin-
guistics, 1996.

[53] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[54] Neohapsis Archives (BugTraq): Vulnerabilities in SquirrelMail. http://
archives.neohapsis.com/archives/bugtraq/2002-01/0310.html.

[55] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and
David Evans. Automatically Hardening Web Applications Using Precise
Tainting. In IFIP International Information Security Conference, 2005.

[56] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

BIBLIOGRAPHY 104

[57] PAG/WWW: Static Program Analysis. http://www.program-analysis.
com.

[58] Persistent Client State: HTTP Cookies. http://wp.netscape.com/
newsref/std/cookie\ spec.html.

[59] PHP: Hypertext Preprocessor. http://www.php.net.

[60] PHP Manual. http://www.php.net/manual/en.

[61] PhpParser. http://www.infosys.tuwien.ac.at/staff/enji/
PhpParser.html.

[62] PHP Session Security. http://www.webkreator.com/php/
configuration/php-session-security.html.

[63] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against Injection
Attacks through Context-Sensitive String Evaluation. In Recent Advances
in Intrusion Detection (RAID), 2005.

[64] RFC 2616, Security Considerations. http://www.w3.org/Protocols/
rfc2616/rfc2616-sec15.html.

[65] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. In
IEEE Journal on Selected Areas in Communications, pages 5 – 19, January
2003.

[66] Thomas Schreiber. Session Riding: A Widespread Vulnerability in To-
day’s Web Applications. http://www.securenet.de/papers/Session\
Riding.pdf.

[67] Secure Systems Lab, Technical University of Vienna. http://www.seclab.
tuwien.ac.at.

[68] SecurityFocus: 99 potential SQL injection vulnerabilities. http://www.
securityfocus.com/archive/1/419280/30/0/threaded.

[69] Sed: Stream Editor. http://sed.sourceforge.net/.

[70] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. De-
tecting Format String Vulnerabilities with Type Qualifiers. In Usenix Se-
curity Symposium, 2001.

[71] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data
Flow Analysis. in Program Flow Analysis: Theory and Applications. 1981.

[72] Chris Shiflett. Foiling Cross-Site Attacks. http://www.securityfocus.
com/archive/1/191390.

[73] Chris Shiflett. PHP Security. In O’Reilly Open Source Convention, 2004.

[74] SourceForge. http://sourceforge.net/.

[75] SquirrelMail. http://www.squirrelmail.org/.

[76] Bjarne Steensgaard. Points-to Analysis in Almost Linear Time. In ACM
Symposium on Principles of Programming Languages (POPL), 1996.

BIBLIOGRAPHY 105

[77] Stephen Shankland. Andreessen: PHP succeeding where Java
isn’t. http://www.zdnet.com.au/news/software/soa/Andreessen PHP
succeeding where Java isn t/0,2000061733,39218171,00.htm.

[78] Zhendong Su and Gary Wassermann. The Essence of Command Injec-
tion Attacks in Web Applications. In ACM Symposium on Principles of
Programming Languages (POPL), 2006.

[79] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel,
Engin Kirda, , and Giovanni Vigna. Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. In Network and Distributed
System Security Symposium (NDSS), 2007.

[80] Peter W. Cross-Site Request Forgeries. http://www.securityfocus.com/
archive/1/191390.

[81] Larry Wall, Tom Christiansen, Randal L. Schwartz, and Stephan Potter.
Programming Perl (2nd ed.). O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 1996.

[82] Gary Wassermann and Zhendong Su. Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities. In ACM Conference on Program-
ming Language Design and Implementation (PLDI), 2006.

[83] John Whaley and Monica S. Lam. Cloning-Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In ACM Conference on
Programming Language Design and Implementation (PLDI), 2004.

[84] Wikipedia. Hasse diagram. http://en.wikipedia.org/wiki/Hasse\
diagram.

[85] Robert P. Wilson and Monica S. Lam. Efficient Context-Sensitive Pointer
Analysis for C Programs. In ACM Conference on Programming Language
Design and Implementation (PLDI), 1995.

[86] Yichen Xie and Alex Aiken. Static Detection of Security Vulnerabilities in
Scripting Languages. In Usenix Security Symposium, 2006.

[87] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL for
Static Analysis of Authorization Hook Placement. In Usenix Security Sym-
posium, 2002.

List of Figures

3.1 Example CFG with associated resulting analysis information. . . 10
3.2 A simple lattice. 11
3.3 Context-sensitivity. 13
3.4 Function cloning. 14
3.5 Fragment of a literal analysis lattice. 19
3.6 Arrays can be hidden. 20
3.7 Array Tree Example. 21
3.8 Strong Overlap Algorithm. 22
3.9 Simple aliasing in PHP. 23
3.10 References in contrast to pointers. 24
3.11 Intraprocedural analysis information. 25
3.12 Algorithm for the combination operator. 26
3.13 Aliases between global variables. 28
3.14 Must-aliases between formal parameters. 28
3.15 May-aliases between formal parameters. 29
3.16 Algorithm for adjusting the alias information that is propagated

into a callee. 30
3.17 Must-aliases between formal parameters and global variables. . . 30
3.18 Aliases between local variables and global variables. 32
3.19 Algorithm for computing the alias information after a function call. 33
3.20 Modification of caller locals due to a global must-alias. 36
3.21 Modification of caller locals due to a formal must-alias. 37
3.22 Modification of caller locals due to a global may-alias. 37
3.23 Modification of caller locals due to a formal may-alias. 38
3.24 Fragment of a taint analysis lattice. 39
3.25 Untainting with array. 39
3.26 Vulnerability in MyBloggie (simplified). 44
3.27 False positive due to impossible path (simplified). 44
3.28 False positive due to regular expression validation. 45
3.29 A harmless and a dangerous unresolvable inclusion. 46

4.1 Architectural overview of our previous system. 50
4.2 Architectural overview of our improved system. 51
4.3 Dependence analysis example. 52
4.4 Dependence graph for Figure 4.3. 52
4.5 SQLI vulnerability despite sanitization. 53
4.6 Labeled automaton for the query in Figure 4.5. 55
4.7 Dependence graph for the query in Figure 4.5. 55

106

LIST OF FIGURES 107

4.8 Dependence graph decoration algorithm. 56
4.9 Automaton representing a user-controlled value (strongly tainted). 56
4.10 Cycle in the dependence graph. 58
4.11 Dependence graph for Figure 4.10. 58
4.12 A directory traversal vulnerability. 60
4.13 XSS analysis example. 61
4.14 Dependence graph for Figure 4.13. 62
4.15 XSS taint dependence graph for Figure 4.13. 62
4.16 Dynamic typing of arrays. 63
4.17 Dependence graph for Figure 4.16. 63
4.18 Standard, custom, and missing sanitization. 64
4.19 Automata for the string “Hello”, and for an unknown, tainted

string. 65
4.20 Automaton after the replacement of “<”. 66
4.21 Example target automaton for XSS. 66
4.22 SQLI vulnerability from OSIC. 69
4.23 Being strict about false positives. 70
4.24 Regular expressions sanitization from MyEasyMarket (simplified). 70
4.25 Impossible paths (1). 71
4.26 Impossible paths (2). 71
4.27 Regular expression validation from NewsPro. 71
4.28 Incomplete prefix in MyBloggie. 72

5.1 Using cookies for client-side state. 77
5.2 Using sessions for server-side state. 78
5.3 Legitimate money transaction form of www.bigbank.com. 79
5.4 Malicious XSRF page for POST parameters. 80
5.5 Placement of the XSRF proxy. 82
5.6 Request processing. 83
5.7 Reply processing. 84
5.8 JavaScript snippet from PhpNuke with modifications. 88
5.9 An XSRF exploit page for SquirrelMail (simplified). 92

A.1 A Hasse diagram. 111
A.2 A poset that is not a lattice. 112

List of Tables

3.1 Main types of CFG nodes in P-Tac. 17
3.2 Actions performed by literal analysis and taint analysis for simple

assignment nodes depending on the left-hand variable. 20
3.3 May-aliases between formal parameters resulting from calls to a

function with signature b(&bp1, &bp2) 29
3.4 Summary of vulnerability reports (T = Time in seconds per file,

V = Vulnerabilities, FP = False Positives). 43
3.5 Summary of file inclusions (average numbers). 46

4.1 Applications used for the evaluation. 68
4.2 Summary of SQLI vulnerability reports. 69
4.3 Summary of database capability analysis. 72
4.4 Summary of filesystem capability analysis. 73
4.5 Summary of XSS vulnerability reports. 74

5.1 Example Token Table. 82
5.2 Tested Applications. 90

108

Appendix A

Lattices

This chapter provides an introduction to a number of concepts in lattice theory,
especially to those needed for understanding data flow analysis. It starts with
the basics, requires only little previous knowledge, and tries to illustrate the
topics with concrete examples. Most of these examples will refer to the following
simple set of natural numbers from 1 to 3: {1, 2, 3}.

A.1 Binary Relations

A binary relation R over a set is quite simple: When receiving two elements
from this set as input, it returns “true” or “false” as output. For instance,
consider the relation “lesser than or equal to” (≤) over the set {1,2,3}. If this
relation receives the input (1,2), it returns “true” (since 1 ≤ 2). For (3,2), it
returns “false”.

A.2 Partial Order Relations

Partial order relations belong to the class of binary relations, but additionally
have the following special characteristics:

• Reflexivity: If we take an element a of the underlying set, then the relation
for the pair (a,a) must be true. For instance, the pair (1, 1) returns “true”
for the relation ≤. As a shorthand, we write “aRa” for “relation R returns
’true’ for the input (a,a)”.

• Antisymmetry: If aRb and bRa, then a must be equal to b. For example,
1 ≤ x and x ≤ 1 can only be true if x = 1.

• Transitivity: From aRb and bRc, it follows that aRc (e.g. 1 ≤ 2 and 2 ≤ 3
leads to 1 ≤ 3).

As we saw in the examples for reflexivity, antisymmetry and transitivity, the
relation ≤ satisfies all these properties, and therefore, is a partial order relation.

109

APPENDIX A. LATTICES 110

A.3 Partially Ordered Sets

A set together with a partial order relation is called partially ordered set
(short name: poset). In this context, the word “partial” denotes the fact that
there does not need to be an order for all pairs of elements from the underlying
set. If there is an order for all pairs, we are dealing with a special form of
partially ordered sets, namely the totally ordered set. In fact, the set {1,2,3}
with the relation ≤, or in short written as ({1, 2, 3},≤), is a totally ordered set.
For demonstrating a partially ordered set which is not a totally ordered set,
first consider the powerset of {1,2,3}. This is a set containing all subsets of
{1,2,3}: { {1,2,3}, {1,2}, {1,3}, {2,3}, {1}, {2}, {3}, {} }. Note that a powerset
also includes the empty set, since the empty set is a subset of every set. The
notation for the powerset of some set S is P(S) or 2S . Now we define a partial
order on this set, namely the subset inclusion ⊆. Here are some pairs for which
this relation is true:

({1}, {1,2}) because {1} ⊆ {1,2}
({2}, {1,2,3}) analogous
({2,3}, {1,2,3}) analogous
({}, {1}) because the empty set is subset of every set

This powerset is not totally ordered, but only partially ordered. The reason is
that it contains pairs of elements for which no order exists, such as:

({1}, {2}) because neither {1} ⊆ {2} nor {2} ⊆ {1}
({1,2}, {2,3}) analogous

Up to this point, we have already presented two partial order relations: ≤
and ⊆. From now on, we will write v to denote some arbitrary partial order
relation.

Posets can be depicted graphically. We can represent the poset elements as
nodes and the relation between pairs of elements as directed edges (i.e., edges
with an arrow at one end). However, this method is rather awkward because the
number of edges increases rapidly with the number of elements. A more elegant
way is to use a “Hasse diagram”, which makes some of the explicit information
implicit and hence, becomes smaller. More precisely, it does the following:

• Reflexive edges (i.e., edges whose source and target nodes are identical)
are omitted. Since all elements of a poset have a reflexive relation, this
omission does not lead to a loss of information.

• Transitive edges are omitted, i.e., if there is an edge from {1} to {1,2} and
one from {1,2} to {1,2,3}, there is no need to draw an additional transitive
edge from {1} to {1,2,3}.

• By convention, all edges are directed “upwards”, so it is not necessary to
add arrows to the edges.

Figure A.1 illustrates the Hasse diagram for the poset ({1, 2, 3},⊆).

APPENDIX A. LATTICES 111

{1,2}

{1}

{2,3}

{3}

{1,2,3}

{2}

{}

{1,3}

Figure A.1: A Hasse diagram.

A.4 Bounds

An upper bound u of two elements a and b in a poset is defined in the following
way: Both a v u and b v u must be true. For example, the elements {1,2}
and {1,3} have the upper bound {1,2,3}, which can be easily seen in the Hasse
diagram in Figure A.1. The elements {1} and {1,2} have the following upper
bounds: {1,2}, {1,2,3}. This shows that there can be multiple upper bounds,
and that upper bounds do not have to be different from the elements they are
computed for.

The least upper bound (also called supremum or join) is the upper
bound that is v all other upper bounds. For example, the least upper bound of
{1} and {1,2} (written as {1} t {1, 2}) is {1,2}, and {1, 2} t {1, 3} = {1, 2, 3}.
The least upper bound is always unique (if it exists), but does not have to be
different from the elements it is computed for. The notions of lower bounds
and greatest lower bounds (also known as infimum or meet) are defined
analogously.

Upper and lower bounds (as well as their “least” and “greatest” variants)
can also be computed for multiple elements (i.e., sets of elements) instead of
only for two elements. For example, the least upper bound of {1}, {2}, and {3}
is {1,2,3}. In short:

⊔
({1}, {2}, {3}) = {1, 2, 3}

The greatest element of a set of elements inside a poset has the following
property: It must be among the given set of elements, and all other elements
in the given set must be v this greatest element. For example, the greatest
element of the set {{1}, {1,2}, {1,2,3}} is {1,2,3}. The least element can be
defined analogously to the greatest element.

Note that there also exist maximal and minimal elements, which are differ-
ent from greatest and least elements. However, these notions are not necessary
for the understanding of lattices, and are skipped in this introduction.

A.5 Lattices

A lattice is a poset in which all nonempty, finite subsets have both a least upper
bound and a greatest lower bound. Infinite subsets (as opposed to finite subsets)
will be discussed later in this section. The powerset example presented above
forms a lattice: Regardless of which and how many elements from the underlying
set are considered, it is always possible to compute a least upper bound as well

APPENDIX A. LATTICES 112

{a,b}

{a} {b}

Figure A.2: A poset that is not a lattice.

as a greatest lower bound for these elements. For a better understanding of
the concept of lattices, it is useful to see an example for a poset that is not a
lattice, which is shown in Figure A.2. This figure depicts a poset with three
elements ordered by subset inclusion. Since there is no greatest lower bound for
the elements a and b, this poset does not satisfy the lattice condition.

A complete lattice is a poset in which all subsets have both a least upper
bound and a greatest lower bound. Note the difference between complete lattices
and “normal” lattices: While for complete lattices, the bounds condition has to
be satisfied by all subsets, normal lattices have to satisfy it only for nonempty
finite subsets. It can be shown that all lattices with a finite number of elements
are always complete lattices. Hence, the difference can only be demonstrated
with a lattice that has an infinite number of elements. For instance, consider a
poset with all integers (Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}) as its elements and
the relation ≤ as partial order relation. Obviously, this poset is infinite, and
it satisfies the normal lattice condition. However, one of the subsets in this
lattice is the set Z itself. Since neither a least upper bound nor a greatest lower
bound can be computed for this subset, the condition for a complete lattice
is not satisfied. This normal lattice can be turned into a complete lattice by
adding the elements ∞ and −∞ to the underlying set. Intuitively, this means
that a complete lattice must always have a greatest element (the top element,
written as >) as well as a least element (the bottom element, written as ⊥).

Note that the above definition of a complete lattice can be cut down to
requiring only a least upper bound for all subsets, or only a greatest lower
bound for all subsets. The reason is that one condition automatically implies
the other.

One of the least intuitive aspects of complete lattices has to do with the
empty subset (written as ∅). First, it is important not to confuse the empty
subset of a lattice with a simple element of a lattice. For instance, consider a
powerset lattice with the elements {{}, {1}, {2}, {1,2}}. One of the elements is
the empty set {}, but this is not the empty subset ∅ of this lattice. The empty
subset corresponds to considering nothing of the lattice, not even the element
{}. A second difficulty with regard to complete lattices is understanding the
following equations. These equations are correct, even though this might not
be apparent at first glance: ⊔

∅ = ⊥
l

∅ = >

Until now, we have already computed the least upper bounds for lattice subsets
consisting of two or more lattice elements. The least upper bound of a single
lattice element is straightforward, as it is identical to the element itself. But
in the first of the above equations, the least upper bound of no element is

APPENDIX A. LATTICES 113

computed. The key to understanding the result of this computation is the
interesting fact that virtually every statement about all elements of ∅ is true,
simply because these elements do not exist. For instance, it is possible to say
“every element of ∅ is smaller than 42”, and it would be true because there exists
no element that could refute this statement. Therefore, it is also valid to say
that every element of ∅ is v any element of the complete lattice L. This means
that all elements of L are upper bounds of ∅. Hence, the least upper bound of ∅
is the least element of L, denoted as ⊥. Using an analogous argumentation, it
follows that the greatest lower bound of ∅ is >. Note that ∅ is the only subset
of L for which the greatest lower bound is larger than the least upper bound
(this is the most confusing detail in this respect). Besides, all this also leads
to the insight that complete lattices must always have one or more elements.
Otherwise, the least upper bound of the empty subset would not exist - but
according to the definition of a complete lattice, it has to exist. In the case
of normal lattices, issues related to ∅ are irrelevant, since their definition only
refers to “nonempty” subsets.

In older literature, the term semilattice is used occasionally. As the name
implies, it resembles a normal lattice, with the difference that only one of the two
demands has to be satisfied: It is a poset in which all nonempty finite subsets
have a least upper bound or a greatest lower bound. Compared to the normal
lattice definition, the “and” was replaced by an “or”. Depending on which of
the two conditions a semilattice satisfies, it is either called a join-semilattice,
or a meet-semilattice.

List of Publications

Cross Site Scripting Prevention
with Dynamic Data Tainting and Static Analysis.
Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna.
Network and Distributed System Security Symposium (NDSS).
San Diego, CA, USA, February 2007.

Preventing Cross Site Request Forgery Attacks.
Nenad Jovanovic, Engin Kirda, and Christopher Kruegel.
IEEE International Conference on Security and Privacy in Communication Net-
works (SecureComm).
Baltimore, MD, USA, August 2006.

Precise Alias Analysis for Static Detection of Web Application Vulnerabilities.
Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
ACM Workshop on Programming Languages and Analysis for Security.
Ottawa, Canada, June 2006.

Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper).
Nenad Jovanovic, Christopher Kruegel, and Engin Kirda.
2006 IEEE Symposium on Security and Privacy.
Oakland, CA, USA, May 2006.

SecuBat: A Web Vulnerability Scanner.
Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic.
The 15th International World Wide Web Conference (WWW 2006).
Edinburgh, Scotland, May 2006.

Noxes: A Client-Side Solution for Mitigating Cross Site Scripting Attacks.
Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic.
The 21st ACM Symposium on Applied Computing (SAC 2006), Security Track.
Dijon, France, April 2006.

114

Curriculum Vitae (German)
- Lebenslauf

14.06.1982 geboren in Baden bei Wien (Österreich)

09/1992 - 07/2000 Bundesrealgymnasium Biondekgasse in Baden

10/2000 - 11/2004 Studium der Wirtschaftsinformatik an der TU Wien

08.11.2004 Verleihung des Grades Mag.rer.soc.oec. durch die
TU Wien, Titel der Diplomarbeit:
“Entwicklung eines webbasierten Instituts-Informations-
systems unter besonderer Berücksichtigung der
Websicherheit”

11/2004 - 10/2007 Doktoratsstudium an der TU Wien

08/2005 - 08/2007 Projektassistent am Institut für Informationssysteme,
TU Wien

115

