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Abstract

This thesis deals with a heuristic approach based on Lagrangian relaxation to the string
barcoding (SB) problem, a close cousin to the well-known combinatorial set cover (SC)
problem. It has recently been proven to be NP-hard and has many real-world applica-
tions, particularly in the fields of medicine and biology.

Given a set of sequences over some alphabet, DNA for instance, we aim at finding a set
of short sequences, so-called probes, such that we are able to identify an unknown sample
sequence as one of the input sequences by determining which probes are subsequences of
the sample, and which are not. The problem is twofold: the determination of all possible
probes and the selection of a suitable subset of minimum cardinality.

The problem has been dealt with under various other names and has in this form been
introduced by Rash and Gusfield in 2002. They proposed an exact approach based
on integer linear programming and the use of suffix trees to generate a complete, non-
redundant set of candidate probes.

We evaluated several approaches for the SB as well as the SC problem. One of the leading
heuristics for the SC problem, based on Lagrangian relaxation, has been proposed by
Caprara et al. in 1999. We adapted the algorithm to see if it works equally well when
applied to the structurally very similar SB problem. Though the results we obtained
are somewhat mixed, the heuristic shows its strength with very complex instances and
delivers much better results compared to simpler heuristics.
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1 Introduction

A common task in medical and biological applications is the identification of biological
agents like bacteria, viruses, proteins, and the like. Basically, the problem is the same
regardless of the exact kind of agent we are dealing with. To keep things simple we will
consider only nucleotide sequences hereinafter. Nucleotides are the structural units of
deoxyribonucleic and ribonucleic acids, commonly known as DNA and RNA, which carry
the genetic code of all living organisms and viruses. They consist of a sugar group (ribose
or deoxyribose), one or more phosphate groups, and one base. The four bases you may
find in a DNA molecule are adenine (A), cytosine (C), guanine (G), and thymine (T).
The same goes for RNA molecules with the only exception being that uracil (U) takes
the place of thymine. Each base has a complementary counterpart to which it bonds
exclusively. Accordingly, the bases can be divided into the complementary pairs A-T
and C-G. The reaction that takes place when two complementary nucleotide sequences
bond to each other is called hybridization.

Let us assume we are given a sample containing the DNA or RNA of some unknown virus
and a list of viruses that we think may be contained in the sample. The most common
techniques to match a genomic sample against a list of candidates rely on sequence align-
ments to find a perfect or near-perfect match and often incorporate heuristic elements
for the sake of efficiency. A very widespread representative of this class of procedures is
BLAST [29], which is short for basic local alignment search tool. These methods, how-
ever, can be very time consuming and require the sequence we want to identify to be
available explicitly, i. e. we must perform a comprehensive sequence analysis to deter-
mine the exact succession of comprising nucleotides. Unfortunately, this is most often
technically complex and expensive.

A similar problem arises when one strives to determine the gene expression of a cell, i. e.
the genes that are active in the cell and the degree of activity. A gene is basically just a
part of the DNA that encodes a particular protein. If a gene is active, it is transcribed
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1 Introduction

into messenger RNA (mRNA) molecules which are complementary the the respective
gene. The mRNA molecules are transferred to the cell’s ribosome where the protein is
actually build. Thus, the kinds and amount of mRNA molecules found in a cell gives
insight to its gene expression. When it comes to the identification of a particular mRNA
molecule we face the exact same problem as stated above.

Instead of comparing the complete sample se-

c© 2004 Medical Research Council

Figure 1.1: A DNA microarray

quence with possible candidates, we may alter-
natively check the sample for the presence or
absence of short nucleotide sequences, so-called
oligonucleotides, which are typically between
five and 50 nucleotides long. Modern microar-
ray technology enables us to efficiently perform
many such tests in parallel. Microarrays are
small glass microscope slides, sometimes also
silicon chips or nylon membranes, onto which
many thousands of nucleotide sequences are at-
tached at fixed locations. Before we apply our
sample to the microarray, it has to be tagged
with a fluorescent marker. This provides for a visible feedback on the hybridization pro-
cess so that we can easily determine to which oligonucleotides on the array our sample
hybridizes. Figure 1.1 exemplifies the outcome of this procedure, where the different col-
ors are due to the different markers used. Special scanner devices are used for computer
aided evaluation of the strength of the fluorescent reaction at each spot on the array.

From a more formal perspective the outcome of these tests provides some kind of binary
signature, each binary digit of which tells us if a particular subsequence occurs as part
of the sample sequence or not. The goal is to find a set of such subsequences, which
we will call probes further on, so that the corresponding signature associated with each
candidate sequence is unique over all sequences. The problem of finding a set of minimal
cardinality that satisfies this condition has been introduced by Rash and Gusfield [32]
and is referred to as the string barcoding (SB) problem. They provide a straight-forward
integer linear programming formulation of the problem and propose a sophisticated
method for generating a complete set of probes to choose from.

The same problem has been addressed by Borneman et al. [8]. They did, however,
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factor out the problem of probe generation and assume a given set of candidate probes
as part of the input. Moreover, the algorithm they propose for solving the problem is
a heuristic based on Lagrangian relaxation. It should be noted, that the problem has
been considered well before theses publications, in one form or another under the names
probe selection, oligonucleotide fingerprinting, and the like. However, the vast majority
of these publications puts the main focus on the biological and application-side aspects of
the problem. This thesis focuses on the underlying combinatorial optimization problem
and algorithmic approaches to solve it.

SB can be seen as a special case of both the well-known set covering (SC) problem and
the minimum test collection (MTC) problem, which have been shown to be NP-hard
combinatorial optimization problems. The question whether SB itself is NP-hard or
not was left open in [32]. The authors did only state that the problem was NP-hard if
an additional maximum length constraint was imposed on the probes. However, in the
meantime it has been proven to be NP-hard [6, 25].

Scope and outline. Chapter 2 introduces some basic theoretical concepts like linear
programming and Lagrangian relaxation, which are important for the understanding of
later parts. Chapter 3 defines the SB problem and its relatives formally and presents
complexity and inapproximability results. Chapter 4 describes in detail how complete
probe sets can be generated using suffix trees as has been proposed in [32]. Chapter 5
summarizes previous work related to SB and some state-of-the-art SC approaches, which
may be applied to SB instances as well. We decided to adapt one of the most cited and
best performing heuristics for the SC problem, hoping that it would be equally successful
in solving SB instances. A comprehensive description of the heuristic, including the
adaptations we applied to accommodate for the peculiarities of the SB problem, and
details on the implementation are given in Chapter 6. Computational results on selected
real-world benchmark instances can be found in Chapter 8. Chapter 9 summarizes the
results of this work.
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2 Preliminaries

The following sections introduce fundamental theoretical concepts, which are essential
for the understanding of forthcoming parts. Section 2.1 defines linear programs and the
notion of relaxation, Section 2.2 introduces the concept of Lagrangian relaxation, and
Section 2.3 presents the subgradient optimization technique.

2.1 Linear Programming

This section defines linear programs and lists some of their properties. A comprehensive
discourse on the topic can be found in [28]. Linear programs (LP) are optimization
problems with a linear objective function that can be expressed as follows

min
x

cT x (2.1)

s. t. Ax ≥ b (2.2)

x, b, c ∈ Rn, A ∈ Rm×n

Each linear inequality (2.2) defines a half-space of Rn, the intersection of which forms
a convex polytope. There are several efficient algorithms to solve problems of this kind
to optimality. One of them is the simplex algorithm, which has been introduced by
George Dantzig in 1947. The key idea of this method is to move along the polytope’s
facets from one vertex to the next. If we ensure that the objective function does not
decrease when moving to an adjacent vertex, we will eventually reach the optimum.
While very efficient in practice, the worst-case complexity is exponential. On the other
hand, the more recent interior point methods like the predictor-corrector algorithm [27]
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2 Preliminaries

have polynomial worst-case complexity and are also in practice competitive with the
simplex method.

When dealing with combinatorial optimization problems like those presented in this
thesis, we concern ourselves with discrete entities like the probes in an instance of the
SB problem. Many of these problems can be formulated as LPs as well, but in this case
some or all decision variables are are required to be integer. Accordingly, these problems
are called mixed integer linear programs (MIP), or integer linear programs (ILP) if all
variables are required to be integer. In contrast to LPs, finding the optimal solution of a
MIP is in general a NP-hard problem and therefore no polynomial-time algorithm exists
for this task.

2.2 Lagrangian Relaxation

Given some ILP

min cT x (2.3)

s. t. Ax ≥ b (2.4)

x ∈ Zn (2.5)

we may drop (relax) some of its constraints, thereby enlarging the feasible region of
the problem. If we, for instance, relax the integrality constraints (2.5), we get what is
called the LP relaxation (LPR) of an ILP. As every feasible solution to the ILP is also a
feasible solution to its LPR, the optimal solution of the LPR is guaranteed to be better
or exactly as good as the optimal solution of the ILP itself. Thus, the LPR if often used
to derive a lower bound for a given ILP.

In practice, the LPR might nevertheless be impractical, either because its optimal solu-
tion is too resource consuming to compute, or because the computed solution provides
an inferior lower bound to the underlying ILP. In these cases, there are other relax-
ations which can be used to compute a valid, and potentially better, lower bound, one
of them being the Lagrangian relaxation (LGR). This method is based on splitting the
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2.2 Lagrangian Relaxation

constraints into two disjoint sets:

min cT x (2.6)

s. t. Ax ≥ b (2.7)

Cx ≥ d (2.8)

x ∈ Zn (2.9)

Matrix A together with vector b represent the constraints we want to keep, matrix C

in companion with vector d those that make the problem hard to solve and that we
want to relax. However, when performing Lagrangian relaxation, we do not just drop
the constraints but move them into the objective function. We do this by associating
a Lagrangian multiplier 0 ≤ ui ∈ R with each relaxed constraint and adding a penalty
term to the objective function:

min LGR(u) := cT x + uT (d− Cx) (2.10)

s. t. Ax ≥ b (2.11)

x ∈ Zn (2.12)

That the optimal solution to this ILP constitutes a valid lower bound for the originating
ILP stems from the fact that, given a valid solution x of the ILP defined by (2.6) - (2.9)
with objective value vILP, we can state two things:

• x is also a feasible solution of (2.10) - (2.12), because only a subset of constraints
has to be satisfied

• Let vLGR be the objective value of x with respect to (2.10). Since x satisfies
constraint (2.8), uT (d− Cx) ≤ 0 holds for any 0 ≤ u ∈ Rm, which in turn implies
that vLGR ≤ vILP

Given a set of multipliers, the LGR should be easy to solve to be useful. However, now
we need to find a set of multipliers u that yields the highest possible objective value.
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2 Preliminaries

This problem is called the Lagrangian dual and is formally defined as

max
0≤u∈R

minLGR(u) (2.13)

The optimal objective value v∗LGR of the LG relaxation is guaranteed to be greater than
or equal to the optimal objective value v∗LPR of the LP relaxation. This can be proven
as follows:

v∗LGR = max
u∈Rm

min
x∈Zn
{cT x + uT (d− Cx) : Ax ≥ b} (2.14)

≥ max
u∈Rm

+

min
x∈Rn
{cT x + uT (d− Cx) : Ax ≥ b} (2.15)

= max
u∈Rm

+

max
y∈Rm

+

{bT y + uT d : AT y = c− uT C} (2.16)

= max
u,y∈Rm

+

{bT y + dT u : AT y = c− CT u} (2.17)

= min
z∈Rn
{cT z : Ax ≥ b, Cx ≥ d} (2.18)

= v∗LPR (2.19)

where R+ denotes the set {x ∈ R : x ≥ 0}. In (2.15) we relax the integrality constraints
(2.12), which results in a solution with a possibly lower objective value. Equalities (2.16)
and (2.18) are valid due to the the strong duality theorem, which is beyond the scope of
this work – for an introduction to the topic see Nemhauser and Wolsey [28].

If the relaxation of the integrality constraints does not change the objective value of
the solution, the Lagrangian relaxation is said to exhibit the integrality property. In
this case, we can infer from (2.14) through (2.18) that we cannot derive a lower bound
superior to that provided by the LP relaxation.

There are several techniques to solve the Lagrangian dual. One of the most prominent
ones is called subgradient optimization and will be described in further detail in Sec-
tion 2.3. A different and more recent approach is the volume algorithm introduced by
Barahona and Anbil [2].
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2.3 Subgradient Optimization

2.3 Subgradient Optimization

Subgradient optimization is an iterative procedure to find Lagrangian multipliers that
yield a high lower bound. It is motivated by the fact that the Lagrangian dual is a
piecewise linear, convex problem, from which we can infer that the optimum is located
at a non-differentiable point. The technique was first introduced by Held and Karp
[19, 20], who applied it to the traveling salesman problem.

In each iteration, we try to update the current set of multipliers u so as to reach a higher
lower bound than before. To decide on the direction of our move, we use a subgradient.
Given some function f : Rn 7→ R, a vector v ∈ Rn is called a subgradient at point
x0 ∈ Rn if

f(x)− f(x0) ≥ v · (x− x0) (2.20)

holds for any x ∈ Rn. Note that a subgradient is defined at non-differentiable points,
too.

Consider the generic LGR given in (2.10) through (2.12). Let u be a given multiplier
vector and x∗ the corresponding optimal solution. Then, we can define the following
subgradient

s(u) := b−Ax∗ (2.21)

The basic procedure is depicted in Algorithm 1. The step size parameter λ controls
how far we move along the subgradient and it will usually be adapted throughout the
procedure to avoid moving past the optimum. Moreover, we have to decide on initial
values of the Lagrangian multipliers, define the conditions that need to be satisfied to
terminate the process, and provide a heuristic that produces feasible solutions to derive
valid upper bounds.
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2 Preliminaries

Algorithm 1 Subgradient optimization
Initialize step size parameter λ ∈ (0, 2]
Initialize the set of multipliers u
Find some upper bound U
repeat

L← minLGR(u)
Let x∗ be the corresponding solution
T ← λ(U − L)/‖s(u)‖2
ui ← max{0, ui + T · si(u)}

until termination criterion met
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3 Formal Problem Definition

This chapter defines SB and related optimization problems more formally. Section 3.1
provides an ILP formulation of SB and proposes possible extensions, which may arise in
real-world applications. Sections 3.2 and 3.3 define the well-known set covering (SC) and
minimum test collection (MTC) problems, and state how they relate to SB. Section 3.4
deals with the complexity aspects of SB.

3.1 String Barcoding

Given sequences s1, . . . , sn over some finite alphabet Σ and a set of probes p1, . . . , pm,
each probe being a subsequence of at least one sequence si. A probe pk is said to
distinguish sequences si and sj if and only if pk is a subsequence of si or sj , but not
both. Accordingly, we define

δi,j(k) =

1 if pk distinguishes si and sj

0 otherwise

and denote the set of probes distinguishing sequences si and sj by ∆i,j .

We aim at finding a minimum cardinality subset of probes such that every pair of
sequences is distinguished by at least r probes in this subset. This can be formulated as
the following ILP:

11



3 Formal Problem Definition

min
m∑

i=0

xi (3.1)

s. t.
m∑

i=0

δi,j(k) · xk ≥ r ∀(i, j) : 1 ≤ i < j ≤ n (3.2)

xi ∈ {0, 1} (3.3)

The value of decision variable xi determines if the corresponding probe pi is to be part
of the solution (xi = 1) or not (xi = 0). The redundancy parameter r defines by how
many probes each sequence pair has to be distinguished. In real-world applications
a higher redundancy may be suitable, because we cannot expect the outcome of each
single subsequence test to be 100% accurate. Setting r > 1 compensates, at least to
some degree, for false negatives or positives, thereby enlarging our safety margin and
making the resulting probe set more robust. One very fortunate effect of requiring a
higher redundancy is that the ILP might become easier to solve. This is because, as r

increases, the number of possibilities to satisfy constraints (3.2) usually decreases.

Another possibility to make the generated probe set more robust, particularly with
regard to small mutations, is to require the minimum pairwise distance between probes
in the solution to be above a particular threshold. One possible metric for measuring
the distance between two strings or probes is the edit or Levenshtein distance. It defines
the distance between two strings s and t as the minimum number of unit operations –
character insertion, deletion, or substitution – required to transform s into t or vice versa.
Note that it is a symmetric metric and that, depending on the particular application,
the unit operations may be weighed differently. To enforce a minimum pairwise edit
distance, we add one additional constraint to ILP (3.1) - (3.3) for each pair of candidate
probes pi and pj whose edit distance from one another is below the required threshold:

pi + pj ≤ 1 (3.4)

Thus we assure that at most one probe of each such pair will show up in the solution.
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3.2 Set Cover

3.2 Set Cover

Set cover (SC) is one of Karp’s 21 NP-complete problems [22]. The problem is defined
by a set of items S = {s1, . . . , sn} and a collection C = {C1, . . . , Cm : Ci ⊆ S} of subsets
of S with each subset Ci having associated cost 0 < ci ∈ R. The goal is to determine a
collection C∗ ⊆ C of minimum total cost that covers all items in S:

min
C′⊆C

∑
Ci∈C′

ci

s. t.
⋃

C∈C′
C = S

We restrict our discussion to the unicost case where ci = 1 for all 1 ≤ i ≤ m. It
is easy to see that SB is a special case of SC and can therefore be stated in these
terms. In this case, set S comprises all sequence pairs and collection C the sets of
sequence pairs distinguished by the candidate probes. This relationship enables us to
apply algorithms originally designed to solve SC instances to SB instances as well, which
will be demonstrated in Chapter 6.

3.3 Minimum Test Collection

The minimum test collection (MTC) problem is very similar to the SB problem and
can even be regarded as a higher-level formulation of the latter. It is defined by a
set of items D and a collection T = {T1, . . . , Tn : Ti ⊆ D} of subsets of D, called
tests. We aim at finding a collection T ∗ of minimum size such that for each pair of
elements (di, dj) ∈ D × D there is at least one test Ti ∈ T ∗ with |{di, dj} ∩ Ti| = 1.
Garey and Johnson [17] have shown that the problem is NP-complete by reduction
from 3-dimensional matching. As is the case with SC, any SB instance can easily be
transformed into an MTC instance in a straight-forward manner.
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3.4 Complexity and Inapproximability

Rash and Gusfield [32] state that the max-length string barcoding problem, which adds
the additional constraint that no candidate probe exceeds a given maximum length, is
NP-complete. However, they did not answer the question for the unconstrained case.
In the meantime, Lancia and Rizzi [25] and Berman et al. [6] have proven this. Their
findings rely on previous work that has shown that SC cannot be approximated in
polynomial time within a factor of (1 − ε) log n, with ε > 0 and n being the number
of items to be covered. More precisely, this means that no polynomial approximation
algorithm exists that produces a solution of size z ≤ z∗ · (1−ε) log n, where z∗ is the size
of the optimal solution. Lancia and Rizzi [25] provide polynomial time transformations,
which preserve this property, from SB to a special subclass of MTC and from there to
SC.

Borneman et al. [8] claim, though without proof, that NP-completeness can be shown
by reduction from vertex cover.
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4 Probe Generation

As shown in Section 3.4, SB is a NP-hard optimization problem for which no polynomial
time algorithm is likely to exist (unless P=NP). For this reason, it is strongly advisable
to keep the number of candidate probes as low as possible. On the other hand, it is
important not to leave out any essential probe as this would change the solution space
and we may end up with a suboptimal solution. A rather naive approach would be to
enumerate all possible substrings of all given input sequences. This would, however,
result in a large number of redundant probes that distinguish the same set of sequence
pairs. Fortunately, there is a much more sophisticated way to generate a complete set
of probes in a very efficient manner by means of a suffix tree. Section 4.1 will outline
this method and Section 4.2 presents a clarifying example.

4.1 Suffix Trees

A suffix tree is a data structure which encodes all suffixes of a number of strings; Gusfield
[18] provides an in-depth coverage of the topic. The suffix tree for a number of strings
S = {s1, . . . , sn} has the following properties:

• It is a directed tree with a designated root node

• Each edge is labeled with a non-empty string that must be a substring of at least
one si

• Each leaf node is associated with one input string si. The concatenation of the
edge labels on the path from the root node to this node is a suffix of si

• Each internal node has at least 2 children
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4 Probe Generation

• The labels of all outgoing edges of a node start with different characters

As any possible substring is the prefix of some suffix, it can be found on a unique path,
starting at the root node and ending either at some node or inside an edge (label).
According to the properties of a suffix tree, the substring occurs in every string that is
associated with one of the leaf nodes that are located below this point in the tree.

The defining property of a probe pk is the set of strings Sk ⊆ S in which it occurs
as substring and, derived from that, the set of sequence pairs it distinguishes. Thus,
two probes pi and pj can be considered equivalent if either Si = Sj or Si = S \ Sj .
As a consequence, each suffix tree node v represents a whole set of substrings that are
equivalent in this regard. This set comprises all substrings that we get by concatenating
the labels of the edges on the path from the root node to the parent node of v plus a
non-empty suffix of the label of the edge from the parent node to v.

To exploit this fact, we assign a unique binary signature b0b1 . . . bn−1, bi ∈ {0, 1}, to
each node, with bi = 1 if the corresponding set of strings occurs in input string si, and
bi = 0 otherwise. Note that two nodes with different signatures might still be equivalent
to each other, namely if one signature is the binary complement of the other. To get rid
of this special case, we require the first binary digit of every signature to be 1 and flip
signatures starting with 0. Apart from this, we can ignore nodes with a signature 11 . . . 1
because probes that occur in every sequence do not distinguish any sequence pairs and
are of no use.

The probe generation procedure can be summarized as follows: we build the suffix tree
for the given set of sequences; this can be done in linear time. Then, we traverse the
tree bottom-up and determine the signature of each node as defined above. For each
distinct signature we choose as many probes as necessary. Compared to more naive
approaches like the complete enumeration of all distinct substrings this method yields
75% less probes on average, in some cases the reduction exceeds 90%.

4.2 Example

To make things clearer, we will present a simple example. Consider the strings s0 =
CAGTGC, s1 = CAGTTC, and s2 = CATGGA. The corresponding suffix tree is depicted in
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4.2 Example

Fig. 4.1 with the black node being the root. Equivalent nodes, which distinguish the
same pairs of strings, are labeled with identical Greek letters. Our example gives rise to
three different classes of nodes with the following signatures

Class Signature

α 1 0 1
β 1 0 0
γ 1 1 0

If we choose one substring per node class, we get three probes. On the other hand there
are 41 distinct substrings of s0, s2, and s2, so we save about 93%.

β

γ
γ γ

α β

γ

γ

β α

α

α

α
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γ
γ

γ

α β
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T
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Figure 4.1: Suffix tree for the strings CAGTGC, CAGTTC, and CATGGA
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4.3 Pitfalls

There are some issues as to what subsequences to associate with a particular signature.
Especially if a redundancy r ≥ 1 or a minimum edit distance d ≥ 1 is required, we have
to take special care to not artificially restrict the solution space. Otherwise we risk to
cut off the optimal solution. If we aim at a solution with a higher redundancy r ≥ 1,
it is not anymore sufficient to choose one probe for each distinct signature as described
above. In this case we need to select r or, in case the total number of possible probes
for this signature is smaller than r, as many probes as possible. If we do not do this, the
problem may still be feasible but incomplete in the sense that the optimal solution may
not be reachable anymore. For the sake of completeness, Figure 4.2 displays a counter
example comprising six input sequences and the ILP it translates to when we require a
redundancy of r = 2.

The xi are binary variables because we selected one only probe per signature. One
optimal solution to this ILP with objective value 6 is given by x0 = x1 = x2 = x3 =
x6 = x8 = 1 and xi = 0 for all other variables. However, if we do not restrict ourselves
to one probe per signature but generate r = 2 probes per signature instead, the binary
constraint changes to xi ∈ {0, 1, 2} and we are able to achieve a better solution with
objective value 5, given by x1 = 2, x2 = x3 = x7 = 1 and xi = 0 otherwise.
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s1 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTAAATAACTACC

s2 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTAAATAAGTACG

s3 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTAAGTAGA

s4 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTAAATAATACATAGC

s5 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTAACTAGG

s6 = GGTAATAATACTACTAGTAGTACTCATCATAGTCCTCGTGATGCTGGTACTACATCAAww�
minimize x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

subject to x0 + x2 + x7 ≥ 2
x0 + x1 + x2 + x7 + x8 ≥ 2
x0 + x2 + x3 + x6 ≥ 2
x0 + x1 + x5 ≥ 2
x0 + x1 + x2 + x3 + x4 ≥ 2

x1 + x8 ≥ 2
x3 + x6 + x7 ≥ 2

x1 + x2 + x5 + x7 ≥ 2
x1 + x3 + x4 + x7 ≥ 2
x1 + x3 + x6 + x7 + x8 ≥ 2

x2 + x5 + x7 + x8 ≥ 2
x3 + x4 + x7 + x8 ≥ 2

x1 + x2 + x3 + x5 + x6 ≥ 2
x1 + x4 + x6 ≥ 2

x2 + x3 + x4 + x5 ≥ 2
xi ∈ {0, 1}

Figure 4.2: SB instance and corresponding ILP, showing effect of redundancy on probe
generation
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This chapter presents a selection of approaches to solve the SB and SC problems, which
have been defined in Sections 3.1 and 3.2. For each algorithm, we will give a short
summary and try to convey the underlying key idea. Being one of the classic NP-
hard combinatorial optimization problems, the extent of scientific coverage of the SC
problem is enormous. For this reason, we picked out those approaches that seemed
most promising, with respect to both efficiency and solution quality, and suitable for
our purpose. Section 5.1 addresses approaches specific to the SB problem, whereas
Section 5.2 summarizes several algorithms targeted at the more general SC problem.
With the exception of the ILP approach of Rash and Gusfield [32], all algorithms are of
heuristic nature because none of the exact approaches we came across appeared to be
powerful enough to solve large-scale instances as those presented in Chapter 8.

5.1 String Barcoding

Rash and Gusfield [32] introduced the problem as described in Section 3.1. They
describe how a complete set of candidate probes can be generated using suffix trees as a
means to ensure that no two probes distinguish the same set of sequence pairs; Chapter 4
explains this procedure in full detail. Applied to real-world instances, the reduction in
the number of generated probes, compared to the number of all distinct subsequences,
exceeds 75% on average and reaches over 90% in many cases.

Given a set of sequences s1, . . . , sn and a valid solution, comprising probes pi1 , . . . , pik ,
we can assign a unique binary signature σi = bi

1b
i
2 . . . bi

k to each sequence si with bi
j = 1

if probe pij is a subsequence of si, and bi
j = 0 otherwise. Obviously, the number of

possible signatures of length l is 2l, so the number of digits, which in turn corresponds
to the number of probes, must be greater than or equal to log2(n). This can be used to
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make the ILP formulation slightly stronger by adding the constraint

m∑
i=1

xi ≥
⌈
log2 n

⌉
(5.1)

Doing so does not affect the problem structure but may help to accelerate the branch-
and-bound procedure employed by ILP solvers to find the optimal solution. During our
computational experiments (Chapter 8), however, the observed effect on the running
time was negligible.

The computational results presented by Rash and Gusfield were generated from real-
world instances by solving the ILP given in (3.1) through (3.3) and (5.1). All bench-
mark instances were derived from biological data available through the GenBank [31]
database. They considered only probes between 15 and 40 nucleotides long and re-
quired the minimum edit distance and the redundancy r to be greater than 1 for most
benchmark instances.

As described in Chapter 4, it is sufficient to take r probes per node class in the suffix tree.
Unfortunately, this is no longer true if we want to produce a probe set with a minimum
pairwise edit distance greater than 1. In this case there is no way but to include all
possible probes at each suffix tree node, which in most cases makes the resulting ILP
so large that it is not solvable anymore – at least not with the computational resources
available to us. Most probably, Rash and Gusfield made some kind of preselection instead
of taking all probes per node. If this is true, they did not state on which criteria this
selection was based.

Another issue is the handling of degenerate bases. Since sequence analysis techniques
are not perfectly accurate, the resulting sequence data usually contains some positions
for which we cannot state the nucleotide with certainty. For this reason, real-word data
often contains degenerate bases, which represent the non-empty subsets of nucleotides
that are possible for a particular sequence position (see Table 5.1 for a complete list).
They are, however, not treated differently from simple nucleotides in [32].

Borneman et al. [8] present a heuristic approach based on Lagrangian relaxation.
They factor out the problem of probe generation and assume a given set of predeter-
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5.1 String Barcoding

Degenerate base Set of possible nucleotides

R {A,G}
Y {C, T}
M {A,C}
K {G, T}
S {C,G}
W {A, T}
B {C,G, T}
D {A,G, T}
H {A,C, T}
V {A,C, G}
N {A,C, G, T}

Table 5.1: List of degenerate bases

mined probes like all distinct subsequences of a particular length. Furthermore, the
computational results cannot be compared to those published in [32] because different
benchmark instances have been used. Two of the four data sets used are considerably
larger with respect to the number of contained sequences than any benchmark instance
used in [32].

The heuristic uses Lagrangian relaxation of all constraints (3.2) and subgradient op-
timization to find Lagrangian multipliers that yield a high lower bound. Due to the
integrality property, the solution of the relaxation is integral, albeit not necessarily fea-
sible, so at each step of the subgradient optimization procedure a new partial solution is
generated. It is greedily extended by iteratively adding the probe with maximum score
to the solution until all sequence pairs are covered. The score of a probe is derived from
its Lagrangian cost and the number of undistinguished sequence pairs it distinguishes –
the same measure has been used by Caprara et al. [10].

To speed up the procedure, a clustering technique is used. Similar sequences build a
cluster, out of which we select one representative sequence. The set of representatives
defines a subproblem that can be solved faster and whose solution can be used as an
initial solution for the original instance.

They additionally propose a simulated annealing approach for a problem variant where
the size of the probe set is fixed and the number of distinguished sequence pairs is to be
maximized.
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Berman et al. [6] have shown that no polynomial time approximation algorithm for
SB can guarantee an approximation factor of (1 − ε) log n for any ε > 0 unless NP =
DTIME(nlog log n) and present an information content heuristic with an approximation
factor of 1 + log n.

Each partial solution defines a partition of the set of sequences into disjoint classes. Two
sequences belong to the same class if and only if they cannot be distinguished by any
probe in the solution. Let n be the number of sequences and C1, . . . , Ck the classes
defined by the current solution. The entropy of the solution is defined as

H :=
1
n

log2

(
k∏

i=1

|Ci|!

)

Starting with an empty solution, the algorithm iteratively adds the probe that maximizes
the decrease in entropy, until the solution is feasible.

The problem of probe generation is not addressed.

DasGupta et al. [13] describe another greedy algorithm with an approximation factor
of 2 log n which, compared to [6], allegedly produces results of virtually identical quality.
The algorithm has two phases: a probe generation phase and a probe selection phase.
To keep the number of generated probes low, those that appear in all sequences are
discarded. On the other hand, for each sequence only one probe is generated that
appears exclusively in that sequence. While being faster than the suffix tree approach,
this procedure may produce redundant candidate probes, which appear in the same set
of sequences.

The selection phase is a very simple iterative procedure, which is executed until all
sequence pairs are distinguished. At each iteration we select the probe that distinguishes
the highest number of yet undistinguished sequences. The source code as well as an online
server is publicly available at http://dna.engr.uconn.edu/~software/DNA-BAR.
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5.2 Set Cover Approaches

As has been noted in Chapter 3, SB is a special case of SC. This gives us the opportunity
to use any of the numerous SC approaches to solve SB instances as well. Note, however,
that the structure of SB instances, at least of those used by Rash and Gusfield, differs
from those commonly used for benchmarking SC algorithms. The instances in Beasley’s
OR-Library [5], which are often used for benchmarking purposes, range in size from 500
to 5,000 items and from 10,000 to 1,000,000 sets per instance, the density of the ILP
matrices ranges from below 1% to up to 20%.

On the other hand, the number of columns of the ILP representation of an SB instance
grows quadratically with the number of input sequences. The benchmark instances used
by Rash and Gusfield [32] give rise to constraint matrices with 5,000 - 50,000 rows,
500 - 2,000 columns, and a density of about 20%. Note too, that the number of columns
depends very much on the length constraints, which may be imposed on the probes. The
numbers given result from an allowed probe length of 15 to 40 nucleotides.

Many of the approaches outlined below have been designed to handle weighted SC in-
stances, where each set incurs some cost and the goal is to minimize the total cost
instead of the number of sets contained in the solution. The following summary, how-
ever, considers the unicost case only, because the SB problem as discussed in this thesis
is unweighted, too.

When we refer to an SC instance further on in this chapter, we will denote the set of
items to be covered by S := {s1, . . . , sn} and the collection of subsets of S as C :=
{C1, . . . , Cm}

Caprara et al. [10] propose one of the most cited and seemingly most successful heuris-
tic approaches to date to tackle large-scale SC instances. Like many others, it is based
on Lagrangian relaxation and uses several well-known techniques to improve its perfor-
mance.

The algorithm has three parts, all of which rely on information derived from Lagrangian
relaxation. The first part is the most important and produces actual heuristic solutions.
The second part examines the best solution produced by the first part and tries to
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determine sets in the solution that are highly likely to be part of an optimal solution.
These will be fixed, which means we will make them a mandatory part of the solution
and discard all items that are covered by them. As a result, we get a new subinstance of
smaller size to which we reapply the whole procedure. The third part is responsible for
keeping the size of an instance manageable. This is achieved by making only a subset of
sets visible to the algorithm. This subset is updated regularly.

The complete procedure is used repeatedly until we either exceed a predefined time limit
or produce a solution of sufficient quality.

The algorithm’s main part uses subgradient optimization to find a near-optimal set
of Lagrangian multipliers. Then, a set of multiplier vectors of comparable quality is
generated, and for each of them we build a solution by means of a simple greedy heuristic,
which is guided by the Lagrangian costs of the sets. Finally, we select some promising
sets, fix them as part of the solution, and remove from the instance all items covered by
these sets. We repeat this procedure until either all items are covered by fixed sets, or
until we can conclude that no further improvement is possible.

This thesis focuses on the adaptation of this algorithm for the SB problem, so a more
detailed description will be given in Chapter 6.

Beasley and Chu [3] propose a steady-state genetic algorithm (GA). Inspired by the
natural evolutionary process, a genetic algorithm operates on a pool of solutions (popula-
tion) whose average quality improves over time. In each iteration, solutions are selected
based on their quality (fitness) and pairwise recombined into new solutions (parents and
children), to which, with a certain probability, slight random modifications are applied
(mutation). There are many variants of genetic algorithms which differ from each other
in the number of solutions selected, the criteria on which the selection is based, and which
solutions go into the population of the next iteration. In case of the steady-state GA at
hand, we select only two solutions per iteration, recombine them, apply the mutation
operator, and substitute the result for the worst solution in the current pool.

Beasley and Chu represent solutions as binary strings x1x2 . . . xm, with xi = 1 if and only
if set Ci is part of the solution. They use binary tournament selection, which means that
they randomly choose two solutions from the population and select the one with better
fitness. The recombination operator randomly takes the value for each xi from either
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parent, with a selection probability proportional to the fitness of the respective parent
solution. The mutation probability is variable and increases as the algorithm converges.
Mutation as well as recombination operators may yield infeasible solutions, so a repair
operation is applied if necessary. This is done by greedily extending the partial solution
until all items are covered and heuristically removing redundant sets afterward.

Eremeev [14] proposes another steady-state GA, which uses a non-binary represen-
tation. A valid solution C∗ = {Ci1 , . . . , Cik} is represented as a vector 〈g1, g2, . . . , gn〉,
where gi = j, j ∈ {i1, . . . , ik}, means that item si is covered by set Cj , and maybe some
others too. This mode of representation is not unique in that a particular solution may
have more than one representation. On the other hand, it has the advantage that both
the recombination and mutation operators always yield feasible solutions, so a repair
operator is not necessary.

The selection operator picks solutions randomly from the population with each solution
having a probability to be chosen proportional to its fitness. Accordingly, this is often
called fitness-proportional selection.

The recombination operator constructs a subproblem, which depends on the two solu-
tions on which it is applied, and tries to solve the corresponding LP relaxation. If the
number of constraints is above a certain threshold, solving the LP relaxation takes too
long, or if the solution is not integral, the first parent solution will be taken without
further modification.

Given two solutions C1 ⊆ C and C2 ⊆ C, the recombination operator performs the
following steps to construct the subproblem:

1. Let C′ := C1 ∪ C2 and S′ ⊆ S be the set of items that are covered by exactly one
set from C′

2. Determine the set C′′ := {C ∈ C′ : C ∩ S′ 6= ∅}

3. Remove from the instance all sets in C′′ as well as all items covered by C′′

The mutation operator takes as input a single element gi of a solution’s representa-
tion vector and merely assigns a new value to that element. From all sets covering
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the corresponding item si one is chosen randomly, with more expensive sets having a
lower probability to be picked. The mutation operator is applied to each element in
turn, although only with a fixed probability. Note, however, that the solution does not
necessarily change when its representation does.

The solution produced by the successive application of the recombination and mutation
operators is always feasible but may contain redundant sets. Eremeev proposes two
different greedy heuristics to eliminate redundant elements from a solution. Both of
them are applied independently, and the better result goes into the next population.

Marchiori and Steenbeek [26] introduce an iterative heuristic. The heuristic oper-
ates on a dynamic subproblem only, which is recomputed every 100 iterations. Each
iteration starts with a partial solution, which is empty in the beginning and is derived
non-deterministically from the best solution found so far after each iteration. At each
iteration, we alternately add and remove some elements to or from the solution until it
is feasible and does not contain any redundant sets.

When adding elements, we do so in a greedy manner by repeatedly adding a set that
covers a maximum number of yet uncovered items. The removal of elements is done un-
conditionally if the solution contains redundant sets, by removing one of them arbitrarily,
or otherwise, only with a particular probability, by removing a random set.

Finally, a local optimization procedure identifies and adds sets that make two or more
sets of the current solution redundant, which are removed in consequence.

Yagiura et al. [37] describe a local search approach combined with a variable fixing
scheme, which is particularly useful when solving large scale instances. Both local search
and variable fixing are guided by information derived from Lagrangian relaxation.

The neighborhood of a solution S is defined as the set of solutions that differ from S

in at most three sets. The neighborhood has size O(n3), so its complete exploration
is very expensive. Accordingly, the proposed implementation searches only part of the
neighborhood, yet without sacrificing solution quality.

As another key point, they allow infeasible solutions by use of a penalized objective
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function. A penalty weight is assigned to each item to be covered, which determines
the extent by which the objective value of a solution increases if the respective item is
uncovered.

The procedure repeatedly performs local search, until a local optimum is reached, fol-
lowed by an update to the penalty weights. This update allows us to control the degree
of infeasibility allowed and is used to intensify the search around the border of the fea-
sible region. The rationale behind this is that any optimal solution S∗ must be located
in this region as removing a single set from S∗ would render it infeasible.

Brusco et al. [9] propose a simulated annealing algorithm, supplemented with a mor-
phing procedure. They target SC instances that exhibit a high degree of coverage cor-
relation, which measures the extent to which the sets of an instance cover the same
items.

Simulated annealing [23, 35] is inspired by a conceptually similar technique used in ma-
terials science, which involves heating followed by controlled cooling of a material like
metal or glass to improve its quality. It is an iterative procedure which repeatedly de-
termines the best neighbor of the incumbent solution, substituting it for the current
solution if it is either superior or otherwise with a certain probability. This probabil-
ity depends on the current temperature which decreases over time. The probabilistic
acceptance of inferior solutions provides a means of escaping local optima.

Brusco et al. define the neighborhood of a solution by means of a non-deterministic
algorithm, which first removes a set from the current solution, then adds sets to make
the solution feasible again, and finally removes redundant sets. The set to be removed
in the first step is either a random one or the set that would leave the least number of
items uncovered if removed. During the repair step we greedily add sets that have a low
cost and cover many items that are not covered yet.

The proposed morphing procedure involves maintaining for each set in the solution a list
of sets that cover similar items. In each iteration we replace a set of the solution with
one from the respective morphing list if this leads to an improvement.
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Caprara et al. [11] give an extensive survey of further SC approaches, which covers
several exact algorithms, too.
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6 A Lagrangian Heuristic for the String

Barcoding Problem

6.1 Outline

In essence, the heuristic presented in this chapter conforms to the CFT algorithm pub-
lished by Caprara et al. [10]. Apart from some minor extensions to improve overall
performance, we merely made changes that enabled the algorithm to deal with instances
of the SB problem as defined in Section 3.1. Note that the original algorithm was de-
signed to handle weighted SC instances, where each subset incurs some fixed cost and
the goal is to find a cover of minimum total cost. Although the same concept could be
applied to the SB problem as well, we will restrict the discussion to the unicost variant
as presented in [32]. At some sites the original algorithm uses set costs as a sorting or
selection criterion. In these cases, we use random perturbation or selection instead.

The algorithm, which we will refer to as the CFTSB heuristic, relies heavily on the con-
cept of Lagrangian relaxation, which has been introduced in Section 2.2. Caprara et al.
propose the use of subgradient optimization (Section 2.3) to compute good Lagrangian
multipliers. However, when starting from scratch, finding satisfactory multipliers can be
a very time-consuming process. We have found that an initial set of optimal multipliers
can be computed in reasonable time by solving the LP relaxation instead. In general,
this approach may not scale very well because the required effort to solve a particular
LP is hard to estimate. With regard to our benchmark instances, however, this modifi-
cation of the original algorithm leads to considerably lower run times without sacrificing
solution quality.

The heuristic pursues a two-level, iterated approach. At the top level, we repeatedly
generate feasible solutions for the given instance, each time starting from a different
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partial solution. This partial solution is empty at the beginning of the first iteration
and is subsequently derived from the solution generated in the previous iteration. We
repeat this procedure until we either reach a predefined time limit or find a solution that
is good enough for our purposes.

The actual solutions are generated at the lower level, which is conceptually similar to the
top level procedure. We perform a series of iterations, each one starting from a partial
solution, which is empty at the very beginning. As the first step of each iteration, we
try to find good Lagrangian multipliers for the subproblem defined by the given partial
solution. These are used to produce a set of heuristic solutions, each one extending the
current partial solution. At the end of each iteration, some further probes are chosen to
extend the partial solution, which serves as a starting point for the next iteration. We
repeat this procedure until either the partial solution itself has become feasible, or until
it is evident that we cannot find a solution better than the best one found so far.

To improve overall performance, especially with regard to large-scale instances, a pricing
scheme is applied to the whole procedure. This means that, at any time, the algorithm
takes into account only a subset of all available candidate probes; this subset will be
dynamically updated at regular intervals. The use of this technique may reduce the run
time considerably, even for medium-sized instances. We will discuss this topic in more
detail in Section 6.2.4.

Before we delve further into the details, we introduce some notational conventions, which
will be used throughout the chapter, and present specifics on the application of La-
grangian relaxation and subgradient optimization to the SB problem.

Each SB instance I = (S, P, r, F ) is defined by a set S of sequences, for which we seek
a probe set of minimum size, a set P of possible probes to choose from, the number r

of probes by which each sequence pair must be distinguished, and an optional partial
solution F ⊆ P . Obviously, the set F affects the number probes by which a particular
sequence pair must be distinguished; for any sequence pair (si, sj) ∈ S × S, i 6= j, this
number is given by:

ri,j(F ) = max

r −
∑
pk∈F

δi,j(k), 0

 (6.1)
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Any sequence pair (si, sj) with ri,j(F ) = 0 is distinguished by the required number
of probes and therefore needs not to be taken into consideration anymore. Thus, any
partial solution F defines a subinstance IF of the original instance. For convenience, we
will denote the set of sequence pairs that need further probes to distinguish them by

S2(F ) := {(si, sj) ∈ S × S : i 6= j, ri,j(F ) > 0} (6.2)

We apply Lagrangian relaxation to the ILP formulation of the SB problem given in
(3.1) through (3.3) and additionally relax the integrality constraints. This leads to the
following minimization problem:

min L(u) :=
m∑

k=1

xk +
∑

1≤i<j≤n

ui,j

(
m∑

k=1

δi,j(k) · xk

)
(6.3)

=
m∑

k=1

xk

1−
∑

1≤i<j≤n

δi,j(k) · ui,j


︸ ︷︷ ︸

Lagrangian cost ck(u)

+r
∑

1≤i<j≤n

ui,j

=
m∑

k=1

ck(u) · xk + r
∑

1≤i<j≤n

ui,j

subject to 0 ≤ xk ≤ 1, k = 1, . . . ,m (6.4)

Each variable xi corresponds to probe pi. Recall that the term ci denotes the Lagrangian
cost of variable xi or probe pi, respectively.

Given some Lagrangian multiplier vector u, an optimal solution x∗ to (6.3) - (6.4) can
be derived easily as follows:

x∗i (u) =

1 if ci(u) < 0

0 if ci(u) ≥ 0

Note that the Lagrangian relaxation defined by (6.3) through (6.4) has the integrality
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property (see Section 2.2). As a consequence, any optimal solution is integral, which is
the reason why we relax the integrality constraints too. Unfortunately, this does also
imply that we will not be able to find a lower bound higher than that provided by the
optimal solution of the LP relaxation.

When using subgradient optimization as a means to find good Lagrangian multipliers,
we define the subgradient s as

si,j(u) := r −
m∑

k=1

δi,j(k) · x∗k(u) (6.5)

Accordingly, the update formula for the Lagrangian multipliers is given by

uk+1
i,j := max

{
uk

i,j + λ
U − L(uk)
‖s(uk)‖2

si,j(uk), 0
}

(6.6)

where U is a valid upper bound, derived from any feasible solution, and λ denotes the
step size parameter, which will be updated periodically.

Algorithm 2 depicts the top level procedure in pseudocode. In line 7, we produce a valid
solution for subinstance IF defined by partial solution F . This is the most important
part of the complete heuristic and will be addressed in Section 6.2. In addition to a
feasible probe set, function CoreOpt returns the best set of Lagrangian multipliers it
has found. Observe that the multipliers returned are associated with subinstance IF
and do not necessarily yield a good lower bound for the original problem. Therefore,
we use the returned multiplier vector only if F is empty, in which case I = IF holds,
and if it results in a better lower bound for I than the best multiplier vector found so
far (lines 12 - 14). Parameter π controls the size of subinstance IF derived from F and
is updated in lines 15 - 19. Section 6.2.5 is dedicated to the inner workings of function
Refine that computes partial solution F at the end of each iteration.
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Algorithm 2 CFTSB heuristic – top level perspective
1: function CFTSB(S, P, r)
2: Q← P + Best known solution
3: F ← ∅ + Fixed probes
4: u← 0 + Lagrangian multiplier vector
5: π ← πmin

6: repeat
7: (Q′, u′)← CoreOpt(S, P, r, F, u)
8: Q′ ← Q′ ∪ F
9: if |Q′| < |Q| then

10: Q← Q′

11: end if
12: if F = ∅ then
13: u← u′

14: end if
15: if |Q′| = |Q| or F = ∅ then
16: π ← πmin

17: else
18: π ← 1.1 · π
19: end if
20: F ← Refine(Q′, π)
21: until L(u) = |Q| or time limit exceeded
22: return Q
23: end function
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6.2 Core Algorithm

Actual solutions for a given instance, or a subinstance thereof, are generated at the lower
level of the CFTSB heuristic. The complete process is illustrated in Algorithm 3 and
can be broken down into three steps:

Step 1 In lines 4 - 7, we attempt to find a near-optimal set of Lagrangian multipliers.
In the first iteration, we achieve this by solving the LP relaxation to optimality.
Subsequently, a slightly modified subgradient optimization procedure is employed
for this purpose. Details on this step will be presented in Section 6.2.1.

Step 2 In the next step (line 8) we attempt to generate feasible solutions for the given
problem instance using a simple greedy heuristic that iteratively adds probes to an
initially empty set of probes until it constitutes a feasible solution. The decision
which probe to add next is guided by the number of still insufficiently distinguished
sequence pairs a probe covers in relation to its Lagrangian cost. A detailed rundown
will be given in Section 6.2.2.

Step 3 During the third step (line 16), we select probes which have a presumably high
likelihood of appearing in an optimal solution and add them to partial solution F .
Details on how the selection is performed can be found in Section 6.2.3. Before we
loop back to step one, we perturb the Lagrangian multipliers randomly so as to
facilitate the generation of diverse solutions (line 17).

Function CoreOpt terminates when either F itself constitutes a feasible solution –
observe that we never remove a probe from it – or when we can infer that we will not
be able to construct a solution that is better than the best one found so far; this is the
case if the number of probes in F plus the lower bound for the remaining subproblem is
equal to or greater than the current best solution.

6.2.1 Lagrangian Multiplier Optimization

In this section, we describe two possible methods that can be used to find good or even
optimal Lagrangian multipliers for a given problem instance I = (S, P, r, F ). An initial
set of optimal multipliers is computed by solving the LP corresponding to instance I.
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6.2 Core Algorithm

Algorithm 3 Core component of CFTSB heuristic
1: function CoreOpt(S, P, r, F, u)
2: Q← P + Best known solution
3: repeat
4: u′ ←MultOpt(u) + Find (near-)optimal multipliers
5: if L(u′) < L(u) then
6: u← u′

7: end if
8: (Q′, u′)← HeurOpt(S, P, r, F, u) + Generate heuristic solution
9: Q′ ← Q′ ∪ F

10: if |Q′| < |Q| then + Update solution
11: Q← Q′

12: end if
13: if L(u′) < L(u) then
14: u← u′

15: end if
16: Extend F ′ by fixing additional probes
17: Choose r ∈ [−0.1, 0.1] randomly + Perturb multipliers
18: ui,j ← (1 + r) · ui,j

19: until F = P or |F |+ L(u) > |Q|
20: return (Q \ F, u)
21: end function
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6 A Lagrangian Heuristic for the String Barcoding Problem

Subgradient optimization is used to compute ensuing multipliers, starting from the most
recent set of multipliers.

LP Relaxation Method

This method computes optimal Lagrangian multipliers. We have shown in Section 2.2
that, if the integrality property holds, the dual values associated with an optimal solution
to the LP relaxation pose an optimal solution to the Lagrangian relaxation as well. Given
some optimal solution to the LP relaxation, let y∗ be the corresponding dual solution.
If we assign the value of y∗i,j to Lagrangian multiplier ui,j , both relaxations yield the
same objective value. This is optimal because the objective value of the Lagrangian
dual cannot exceed that of the LP relaxation due to the integrality property.

The main disadvantage of this approach is that it is hard to estimate the computational
effort required to solve the LP relaxation to optimality. State-of-the-art LP solvers,
however, may be able to solve the LP relaxation faster than the subgradient optimization
process takes. At least this is the case with the benchmark instances we use.

Subgradient Method

Caprara et al. propose the use of subgradient optimization, which has been introduced
in Section 2.3, to find high quality Lagrangian multipliers. It is particularly useful when
tackling very large instances but, on the other hand, there is no guarantee as to the
quality of the multipliers it produces. For the most part, the procedure conforms to the
pseudocode given in Algorithm 1.

As has been noted above, we do not use this technique to compute Lagrangian multipliers
from scratch. Instead, we take the best multipliers found during the previous iteration,
perturb them randomly, and use the result as a starting point.

In each iteration the current multiplier vector u will be updated according to (6.6).
As for the upper bound U , we use the size of the best known solution for the current
subproblem. Prior to the first iteration, we compute an initial solution by means of
the greedy heuristic described in Section 6.2.2. Caprara et al. propose to use u = 0 as
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6.2 Core Algorithm

input when computing the initial solution but we decided to initialize the Lagrangian
multipliers beforehand, as this seems more reasonable to us.

The step size parameter λ controls how far we move along the subgradient. If we are still
far from the optimum, its value should be high. If we come closer to the optimum, its
value should get smaller because otherwise we risk to overshoot. We use an initial value
of λ = 0.1. In the classical approach, the step size is halved if the lower bound cannot
be improved for a particular number of iterations. We use a slightly different method
which, according to Caprara et al., makes for faster convergence. Every p = 20 iterations
we compare the best and worst lower bounds, Lmax and Lmin, achieved in this period.
If these two values are within 0.1% of other, we assume that we either are very close to
an optimum or the low improvement is due to the step size being to small. Either way,
we will enlarge the step size by a factor of 1.5. Even if we were already very close to the
optimum, we do not loose much, because near-optimal multipliers are good enough for
our purposes. If, on the other hand, Lmin and Lmax differ by more than 1%, we decrease
the step size by a factor of 2 to prevent moving past the optimum. In summary, this
amounts to the following updating scheme:

λ =


1.5 · λ if Lmax ≤ 1.001 · Lmin

0.5 · λ if Lmax ≥ 1.01 · Lmin

λ otherwise

In practice, a large number of probes will have Lagrangian costs very close to zero, which
usually implies the existence of many almost optimal solutions each of which can be ob-
tained by including different subsets of those probes into the solution. Correspondingly,
there are just as many subgradients (6.5) to choose from. Although it is theoretically
possible to determine the subgradient providing the steepest ascent, it is computationally
onerous to do so.

Instead, Caprara et al. [10] propose the use of a heuristically selected small-norm sub-
gradient direction, which can be computed quickly and, compared to the subgradient
defined in (6.5), leads to faster convergence of the subgradient optimization procedure
in most cases.

We start with a partial solution G := {pi ∈ P : ci(u) ≤ 0.001}. Let QG be the set of
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Figure 6.1: Comparison between alternative subgradient definitions

sequence pairs that are distinguished by at least one probe in G. Let R denote the set of
redundant probes in G, i. e. those which can be removed safely from G without affecting
set QG. We walk through set R in arbitrary order, removing a probe from G if this does
not affect set QG. Thus, we need to check for each probe in turn if its removal would
leave any sequence pair in QG undistinguished. However, for reasons of efficiency we do
not update set R after having deleted a probe from G. The small-norm subgradient is
defined with respect to set G, after removing redundant elements as described above, as
follows:

ṡi,j(u) := r −
∑

pk∈G

δi,j(k) (6.7)

Note that, strictly speaking, ṡ(u) may not qualify as a subgradient anymore. Figure 6.1
contrasts the standard subgradient as defined in (6.5) with the reduced-norm variant
(6.7). It exemplifies the evolution of the lower bound for both subgradient variants,
when applied to one of our benchmark instances. As one can see, the use of the small-
norm subgradient causes the subgradient procedure to converge to a higher lower bound.
When applied to other benchmark instances, the results look similar.

We terminate the subgradient optimization when the lower bound does not improve
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anymore, or only to a very small extent. This is the case if the absolute and relative lower
bound improvement over the the last 300 iterations is below 1.0 and 0.1%, respectively.
Furthermore, to be on the safe side we impose a hard limit of 10 · |QG| on the number
of iterations.

6.2.2 Greedy Heuristic

Given a set of Lagrangian multipliers, the greedy heuristic presented in this section
produces a feasible solution for a given SB instance. More precisely, we compute a
series of Lagrangian multipliers, starting with the best known multiplier vector. For
each multiplier vector in this series, we generate a feasible solution and return the best
solution found.

We perform a fixed number of iterations of the subgradient optimization procedure given
in Algorithm 1 to generate a series of Lagrangian multiplier sets. Apart from the fixed
number of iterations, we also use the standard subgradient definition given in (6.5). Note
that, as we are basically continuing the subgradient optimization procedure, we may as
well find some better Lagrangian multipliers. See Algorithm 4 for the corresponding
pseudocode.

Algorithm 4 Iterative heuristic
1: function HeurOpt(S, P, r, F, u)
2: Q← P \ F
3: u∗ ← u
4: for i = 1, . . . , 250 do
5: Q′ ← Greedy(S, P, r, F, u)
6: if |Q′| < |Q| then
7: Q← Q′

8: end if
9: Update u according to (6.6)

10: if L(u) > L(u∗) then
11: u∗ ← u
12: end if
13: end for
14: return (Q, u∗)
15: end function

The greedy procedure we use to compute a feasible solution for a given set of Lagrangian
multipliers is depicted in Algorithm 5. We start with a given, possibly empty, partial
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solution Q, which we extend probe by probe until we reach a feasible solution. The key
point is the way we select the probes to add to the partial solution. For this, we assign
to each candidate probe pi a score σi, which is based on the number sequence pairs not
yet completely distinguished by the probes in Q that pi distinguishes and its Lagrangian
cost. More formally:

µi :=
∑

(sj ,sk)∈S2(Q)

δj,k(i)

γi := 1−
∑

(sj ,sk)∈S2(Q)

δj,k(i) · uj,k

σi :=


γi

µi
if γi > 0

γiµi if γi ≤ 0

In each iteration we add the probe pi with minimum score σi to Q.

As soon as Q has become feasible, we try to remove as many redundant probes from
it as possible. A probe is considered redundant if Q is still feasible after its removal.
As long as there are more than 10 of them, we choose one of them randomly, remove it
from the solution and update the set of redundant probes. As soon as there are only 10
or less left we perform an exhaustive search to find a subset of redundant probes with
maximum cardinality that can be removed safely from our solution without affecting its
feasibility.

6.2.3 Probe Fixing

Especially when tackling large instances, the solution available at the end of an iteration
of function CoreOpt can be further improved by fixing some probes, that is we require
some probes to be part of the solution, and re-applying the function to the resulting
subinstance.

Our goal is to fix probes which are highly likely to be member of an optimal solution.
To find probes that match this criterion, we employ a simple greedy procedure.
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Algorithm 5 Greedy heuristic
1: function Greedy(S, P, r, F, u)
2: Q← F
3: while S2(Q) 6= ∅ do
4: Let p∗ ∈ P \Q be the probe with minimum score σ
5: Q← Q ∪ {p∗}
6: end while
7: Let R be the set of redundant probes in Q
8: while |R| > 10 do
9: Remove random probe r ∈ R from Q

10: Update R
11: end while
12: Remove the maximum number of redundant probes from Q
13: return Q \ F
14: end function

First, we compute the Lagrangian costs of all probes with respect to the best Lagrangian
multipliers found for the current subproblem. Let F ′ be to set of probes with Lagrangian
costs below -0.001 and Q the set of sequence pairs distinguished by at least one probe in
F ′. From set F ′ we remove those probes that do not distinguish at least one sequence
pair that is not distinguished by any other probe in F ′. In other words, we remove a
probe from F ′ if and only if this does not affect set Q.

We apply the greedy heuristic presented in Section 6.2.2 to the subinstance defined by
F ′. Let F ′′ be the generated solution. In addition to the probes in F ′, we fix at most
b|Q|/200c probes of F ′′; if F ′′ contains more probes, we select a random subset.

6.2.4 Pricing

The computationally most expensive parts of the overall algorithm are the multiplier
optimization (Section 6.2.1) and the greedy heuristic (Section 6.2.2). Especially in case
of very large instances, these parts should be implemented as efficient as possible to keep
the run time low. Inspired by similar techniques used to solve very large LPs, we use
a pricing technique to achieve this goal. According to Caprara et al., this has not been
done before in combination with Lagrangian relaxation.

Basically, pricing makes only a subset of the available probes visible to the two afore-
mentioned parts of the algorithm. This subset, which we will refer to further on as
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the core, will be updated regularly. The dynamic nature of the core is meant to avoid
missing very good or even optimal solutions due to this artificial restriction.

The choice of the probes that make up the core is once more based on their Lagrangian
costs. In the beginning, we randomly choose five distinguishing probes for each sequence
pair. When updating the core subsequently, the selection process works like this: Let I =
(S, P, r, F ) be the instance we are operating on. We start by computing the Lagrangian
costs based on the current multiplier vector uk and initialize the new core with set
C1 := {pi ∈ P : ci(u) < 0.1}. Additionally, we select for each sequence pair five
distinguishing probes at random, just like we did during initialization, and denote this
set by C2. If C1 contains more than l := 5 · |S2(F )| elements, we keep only the l probes
with the lowest Lagrangian costs and remove all others. The updated core is defined as
the union of C1 and C2.

We also have to decide on the pricing frequency T , which tells us after how many
subgradient iterations to update the core. We initially set T := 10. After each core
update, we compute the lower bound, once with respect to all available probes and once
with respect to the probes that are part of the current core Ck, subtract the first from
the second, and divide the result by the best known upper bound U , i. e. the size of the
best known solution for instance I:

Θ := −

∑
pi∈P\Ck

min{ci(uk), 0}

U

A small Θ indicates that the core has settled, and that changing it will most probably
not lead to any improvements. Thus, increasing T is the right thing to do. On the other
hand, if Θ is large, it is advisable to make the update interval smaller. This leads to the
following update formula:

T :=



10 · T if Θ ≤ 10−6

5 · T if Θ ≤ 0.02

2 · T if Θ ≤ 0.2

10 otherwise
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6.2 Core Algorithm

6.2.5 Solution Refinement

Although the solutions produced at the lower level procedure as implemented by function
CoreOpt are mostly of high quality, we can often find an even better solution by
fixing part of the returned solution and rerun the complete algorithm on the resulting
subinstance. Similar to the probe fixing procedure described in Section 6.2.3, we intent
to determine those probes of the solution that are most likely to be part of an optimal
solution.

The procedure has one parameter π that affects the size of the subinstance that results
from fixing the probes we are going to select. Let u∗ be the best Lagrangian multiplier
vector, Q∗ the best solution found for the original input instance I = (S, P, r, ∅), without
any fixed probes, and let ζi,j , 1 ≤ i < j ≤ n, denote the number of probes in Q∗ that
distinguish sequence pair (si, sj). The gap ∆ between the corresponding lower and upper
bound, that is the size of the best overall solution found so far, is given by:

∆ = |Q∗| −

 ∑
1≤i<j≤n

u∗i,j +
m∑

i=1

min{ci(u∗), 0}



=
∑

pi∈Q∗

ci(u∗) +
∑

1≤j<k≤n

δj,k(i) · u∗i,j︸ ︷︷ ︸
=1

−
∑

1≤i<j≤n

u∗i,j −
m∑

i=1

min{ci(u∗), 0}

=
∑

pi∈Q∗:ci(u∗)>0

ci(u∗)−
∑

pi 6∈Q∗:ci(u∗)<0

ci(u∗) +
∑

1≤i<j≤n

u∗i,j (ζi,j − 1)

We estimate the extent to which any single probe pi ∈ Q∗ contributes to this gap,
denoted by ηi, as follows:

ηi := max{ci(u∗), 0}+
∑

1≤j<k≤n

δj,k(i) · u∗j,k
(

1− 1
ζj,k

)
(6.8)

Based on the assumption that probes with a small η are more likely to be part of an
optimal solution, we consider the elements of solution Q∗ = {pq1 , . . . , pql

} in ascending
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order with respect to their gap estimate, i. e. ηq1 ≤ . . . ≤ ηql
. Depending on parameter

π, the set of probes to fix is the smallest subset F := {pq1 , . . . , pqi}, i ≤ l, such that
the percentage of sequence pairs fully distinguished by F is greater than or equal to
parameter π:

1− 2 · |S2(F )|
|S| · (|S| − 1)

≥ π (6.9)
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This chapter provides details on our implementation of the CFTSB heuristic. We imple-
mented the complete algorithm in C++ under the Linux operating system, with notable
use of the standard template (STL) and the Boost [1] libraries. Section 7.1 summarizes
the overall workflow of computing a probe set for a given set of sequences, Section 7.2
specifies the data formats of the input files, Section 7.3 addresses some implementation
details, and Section 7.4 gives an overview of the classes of our design.

7.1 Workflow

Given a set of sequences, the workflow to compute a high-quality probe set is as follows.
A separate program, which we will refer to as probe generator hereinafter, is used to
compute an exhaustive set of candidate probes according to the description in Chapter 4.
The probe generator also enforces any length constraints. The generated probes, along
with the information in which sequences each probe occurs, will be handed as input to
the actual implementation of the CFTSB heuristic. The separation of these two stages
has the advantage that we do not need to repeat the probe generation phase when
running the CFTSB heuristic multiple times on the same instance. However, when we
change the length constraints or the redundancy parameter, we have to call the probe
generator again.

Figures 7.1 and 7.2 summarize the command line options accepted by the probe generator
and the main heuristic, respectively.
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--help Display list of supported command line options along with a short
description.

--ifile file Read instance from file.
--ofile file Write output to file.
--redundancy n Set the number of probes in the solution by which each sequence

pair has to be distinguished to n. As pointed out in Section 4.3,
we have to generate at least this number of candidate probes per
signature (or as many as possible).

--pmin n Set the minimum probe length to n. If omitted, assume n = 1.
--pmax n Set the maximum probe length to n.
--compress Automatically gzip compress the output file.

Figure 7.1: Command line options of the probe generator

--help Display list of supported command line options along with a short
description.

--seed n Seed the pseudo-random number generator with n
--ifile file Read instance from file.
--redundancy n Set the number of probes in the solution by which each sequence

pair has to be distinguished to n.
--maxrt n Set the maximum run time to n seconds.
--optimum n Set the size of the optimal solution, if known, to n. If not omitted,

the algorithm terminates as soon as it finds a solution of this size.
Chiefly useful for benchmarking.

Figure 7.2: Command line options of the CFTSB implementation
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>gi|2769620|emb|Y16151.1|HIVY16151 HIV-1 pol gene, isolate RO-BCI9
ATGGGTGCGAGAGCGTCAGTATTAAGTGGGGGAAAATTAGATGCATGGGAAAAAATTCGGTTACGGCCAG
GGGGAAAGAAAAAATATAGGATAAAACATTTAGTATGGGCAAGCAGAGAGTTAGAAAGATTCGCTCTTAA
CCCTGGCCTTTTAGAAACAGCAGAAGGATGTCAACAAATACTAGAACAGTTACAGTCAACTCTCAAGACA
GGATCAGAAGAACTTAAATCATTATTTAATACAATAGCAACCCTCTGGTGCGTACACCAAAGGATAGATG
TAAAAGACACCAAGGAAGCTTTAGATAAAATAGAGGAAGTACAAAAGAAAAGCCAGCAAAAGACACAGCA
GGCAGCAGCTGGCCCAGGAAGCAGCAGCAAAGTCAGCCAAAATTATCCTATAGTGCAAAATGCACAACCA
CAAATGGTACAC

Figure 7.3: Single DNA sequence in FASTA format

7.2 Data Formats

The probe generation application operates on plain text files that comply with the
FASTA format [30]. Each file contains a set of sequences, and each sequence starts
with a single line description, followed by lines of sequence data. Description lines al-
ways start with a > symbol. Figure 7.3 provides an example.

The probe generator produces a plain text file with the following structure. The first
line contains the number of input sequences found in the original input file. As described
in Section 4.1, each node in the suffix tree is associated with a binary signature that
tells us which sequences contain the probes that correspond to this node. For each such
set of probes the output file contains a sequence of lines, each containing a probe and
its minimum length, followed by the indices of the sequences, which these probes occur
in. An example can be found in Figure 7.4. The first line represents 15 distinct probes,
namely all prefixes of length at least 22:

• AGCCTGGGAGCTCTCTGGCTAG

• AGCCTGGGAGCTCTCTGGCTAGC

• AGCCTGGGAGCTCTCTGGCTAGCT

• . . .
• AGCCTGGGAGCTCTCTGGCTAGCTAGGGAACCCACT

The same goes for the second line. The third line tells us, that all these probes are
contained exclusively in sequences 0, 8, and 19.
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7.3 Implementation Details

One task that we have to accomplish over and over again during the course of the
algorithm is to iterate over all sequence pairs distinguished by a particular probe or,
vice versa, over all probes distinguishing a particular sequence pair. To make this as
efficient as possible, we have to keep this information in memory. Unfortunately, this
information changes whenever we are fixing or hiding some probes. To solve this problem,
we represent each probe as a dynamic vector containing references to those sequence
pairs it distinguishes. Correspondingly, each sequence pair is represented as a dynamic
vector containing references to those probes by which it can be distinguished. The set of
all candidate probes and sequence pairs are held in globally available dynamic vectors,
which are implemented as singleton objects [36].

A dynamic vector offers the possibility to hide and unhide elements at any time. It
is implemented as a continuous array with all hidden elements located at the end; we
maintain the index Ihidden of the first hidden element. When hiding an element, we
actually exchange it with the last active element, i. e. the predecessor of the first hidden
element, and decrement Ihidden. Reactivation of a previously hidden element works
accordingly. While these operations can be accomplished in constant time, the overall
process takes linear time. This is due to the fact that we know the containing vector of
an element but have to traverse all elements to find its actual position therein. The main
disadvantage of this approach is that hiding or reactivating an element changes the order
of elements in the data structure. In contrast to the implementation of the original CFT
heuristic, the possibility to efficiently hide probes and sequence pairs temporarily frees us
from the necessity to construct subinstances explicitly in memory. Since memory usage
is an important issue, especially as instances become larger, this is a great advantage.

At any point in time, we operate on exactly one subinstance, defined by the set of hidden
probes and sequence pairs. This subinstance changes

AGCCTGGGAGCTCTCTGGCTAGCTAGGGAACCCACT 22
AGCTAGGGAACCCACT 15
0 8 19

Figure 7.4: Sample probe specification
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• during probe fixing (Section 6.2.3) and solution refinement (Section 6.2.5), where
we choose some probes to be fixed as part of the forthcoming solution. In this
case, we need to hide the respective probes as well as all sequence pairs that are
fully distinguished by these probes. After doing so, we need to recompute the
Lagrangian costs and the lower bound.

• when we initialize or update the core during the pricing procedure (Section 6.2.4).
In this case, we hide some probes to make the algorithm faster. However, as we
do not hide any sequence pairs, only the lower bound is invalidated and needs to
be recomputed.

Contrary to the original CFT algorithm, some of the decisions inside the CFTSB heuris-
tic are random. In these cases, we use a SIMD-oriented Fast Mersenne Twister [33] as
pseudo-random number generator (PRNG). This kind of PRNG is known for its speed
and provides a very high degree of equidistribution.

7.4 Class overview

This section gives an overview of the most important classes of our implementation. An
UML class diagram depicting the inheritance relations between these classes is shown in
Figure 7.5. Below, we describe briefly the capabilities of each class. Note that, out of all
listed classes, class Instance is missing from Figure 7.5. Although it bears no inheritance
relation to any of the other classes it is used by the majority of them, so its inclusion
would have cluttered the diagram unnecessarily.

DynamicElement Abstract superclass representing objects that can be active or hidden.
Objects that are to be stored in a DynamicList must be instances of a subclass of
this class. Accordingly, both Probe and SequencePair derive from it.

DynamicList A vector of instances of DynamicElement or a subclass thereof. When the
state of any contained element changes, either from hidden to active or vice versa,
we need to call updateActive if we hid elements, updateHidden if we reactivated
elements, or update if we did both. It is not until the appropriate update method
has been called,that the actual masking takes effect. This class offers the possibility
to iterate over either all, only the hidden, or only the active elements.
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DynamicList

Probe SequencePair

DynamicElement

SequencePairManagerProbeManager

*

1

*

1

CFTHeuristic

GreedySolver

ImprovedSubgradientOptimizer

SubgradientOptimizer

LPSolver

RedProbeCleaner

SubInstance

TriPhase

Core

Figure 7.5: UML class diagram
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Probe Derives from DynamicElement and DynamicList. Each instance of this class rep-
resents a particular candidate probe and holds a list of all sequence pairs that this
probe distinguishes. Additionally provides a method to query its Lagrangian cost.

SequencePair Derives from DynamicElement and DynamicList. Each instance of this
class represents a particular sequence pair. Provides methods to query the cur-
rently assigned Lagrangian multiplier and the number of probes that are required
to distinguish the sequence pair. Note that this number changes whenever probes
are fixed as part of the solution.

ProbeManager Derives from DynamicList. There is exactly one instance that holds a
list of all candidate probes of an instance. This instance is globally available as
singleton object.

SequencePairManager Derives from DynamicList. There is exactly one instance that
holds a list of all sequence pairs of an instance. This instance is globally available
as singleton object.

Instance This class maintains important data pertaining to the instance as a whole.
This includes the required number of probes by which each sequence pair must
be distinguished, the minimum and maximum probe length, and the number of
sequences. Moreover, it provides methods to recompute Lagrangian costs and the
lower bound. Moreover, this classes handles the parsing of input instances. There
is exactly one instance, globally available as singleton object.

SubInstance Represents a subinstance. Provides methods fixProbes, restoreFixed,
hideProbes, and restoreHidden to fix, hide, or reactivate a subset of probes.

Core This class implements all aspects, that is initialization and update, of the pricing
technique addressed in Section 6.2.4.

GreedySolver Implements the greedy heuristic described in Section 6.2.2.

RedProbeCleaner Implements the removal of redundant probes from a given solution as
described in Section 6.2.2. A recursive method enumerates all subsets of redundant
probes and eventually removes one with maximum cardinality.

LPSolver Computes an optimal solution to the current subinstance, we are operating
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on. This is accomplished by constructing the corresponding ILP and solving its
LP relaxation using the ILOG CPLEX LP solver.

SubgradientOptimizer This class encapsulates the implementation of the subgradient
optimization procedure using the standard subgradient definition (6.5) as it is used
by the greedy heuristic, which has been presented in Section 6.2.2. Method run

launches the subgradient optimization procedure, whereas method step performs
a single iteration only. The latter will be used when we are computing heuristic
solutions (Section 6.2.2). The constructor accepts an optional Core object that will
be used throughout its lifetime.

ImprovedSubgradientOptimizer Subclass of SubgradientOptimizer that employs the small-
norm subgradient definition given in Section 6.2.1.

TriPhase Encompasses the complete lower level part of the CFTSB heuristic according
to its description in Section 6.2.

CFTHeuristic Realization of the top level part of the CFTSB heuristic as outlined in
Algorithm 2.
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8 Computational Results

This chapter presents the computational results obtained from a selection of benchmark
instances and compares the quality of the solutions computed by the CFTSB heuristic to
those of the simpler DNA-BAR heuristic [13] as well as to optimal solutions. Section 8.1
describes the benchmark instances we used, where we obtained them from or how they
have been generated. The actual results are presented in Section 8.2 with a detailed
discussion following in Section 8.3.

8.1 Instances

For our benchmark runs, we selected some of the instances on which the results presented
by Rash and Gusfield [32] were based. These are derived from real-world genomic data of
4,548 different HIV strains publicly available through the GenBank [31]. Each instance
class (hiv0, hiv1, hiv4) contains 25 instances. To assess the quality of the solutions pro-
duced by the CFTSB heuristic, we compared our results to the optimal solutions, which
we computed by solving the corresponding ILPs. We found that the computational effort
to solve these instances to optimality tends to grow as the required level of redundancy r

decreases. For r = 1 we were not able to compute optimal solutions for any of the given
instances within reasonable time or had to abort the runs due to excessive memory con-
sumption. Therefore, we additionally constructed a set of smaller instances from those
in instance class hiv1 – we chose this instance class arbitrarily. From each original in-
stance, we selected a random subset of sequences, containing between 30 and 75% of the
sequences of the original instance. For each instance we tried different percentages until
the resultant instance could be solved to optimality in reasonable time. The resulting
24 instances constitute instance class hiv1a . All instances are available for download at
http://www.ads.tuwien.ac.at/phil/mthesis/instances.tar.bz2.
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8 Computational Results

CPU 2 × Intel Xeon 5150
Clock speed . . . 2.66GHz
L2 cache . . . . . . 4MB
Cores . . . . . . . . . 2

Memory 8GB

Operating System Debian Linux 4.0 amd64

Compiler GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)

Optimization Flags -O2 -march=nocona -funroll-loops -ftree-vectorize
-msse2 -mfpmath=sse -fomit-frame-pointer

LP Solver ILOG CPLEX 10.0.1

Table 8.1: Hard- and software environment

8.2 Results

In addition to the results provided by the CFTSB heuristic, we computed an optimal
solution for each instance using an ILP solver and compared the result to that of the
simpler DNA-BAR heuristic [13]. We chose the latter primarily because out of the SB
approaches summarized in Section 5.1, this is the only one for which the source code
is publicly available. Due to the non-deterministic nature of the CFTSB heuristic, we
performed ten runs per instance, each time with a different PRNG seed between 0 and
9. Accordingly, the reported values below are averages over these runs.

Like Rash and Gusfield, we required the generated probes to be at least 15 and at most
40 nucleotides long. This corresponds to restrictions as they are applied in practice and
results in instances that can still be solved optimally. As noted in Section 5.1, requiring
a minimum pairwise edit distance greater than one increases the number of candidate
probes to an extent that makes computing an optimal solution impossible. For this
reason, we refrained from doing so.

For details on the used hard- and software, we refer to Table 8.1. Note that, though the
benchmark runs have been performed on a multi-core machine, our implementation uses
only one core at a time. The computational results are presented in Tables 8.2 through
8.6. The column labels and their meaning are:

seqs number of sequences
len average sequence length
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pgen CPU time in seconds spent for probe generation
opt size of the optimal solution
dbar size of the solution produced by the DNA-BAR heuristic
cft0 size of the first solution encountered by the CFTSB heuristic
cft* size of the best solution found by the CFTSB heuristic

We restricted the maximum run time for each CFTSB run to one hour. For each solution,
we also provide the CPU time spent to compute it (hours, minutes, and second, separated
by colons) and, in case of the heuristic solutions, the relative distance to the optimal
solution in percentages (gap). Given the size ω∗ of an optimal solution, the gap for a
heuristic solution of size ω is given by (ω − ω∗)/ω.

We also provide the standard deviation (column sdev) for the CFTSB results. The last
row of each table shows the mean, or median in case of run times, over all instances of
a class.

Figures 8.1 through 8.5 provide a more visual comparison of the quality of the solutions
computed by each algorithm. Each bar represents a single instance, and its total height
corresponds to the size of the solution produced by the DNA-BAR heuristic. Each
algorithm is associated with a different color, black for the optimal solution and different
shades of gray for the other algorithms. The size of a solution produced by an algorithm
is given by the total height of the part of the bar with the color that corresponds to the
respective algorithm and all the parts below that. Due to this layout, it is easy to see
that the the following relation holds for all results: opt ≤ cft* ≤ cft0 ≤ dbar.

8.3 Discussion

It is noticeable that the solutions generated by the CFTSB heuristic are less than sat-
isfactory if we require a redundancy greater than one. For many instances, finding the
best solution takes longer than computing the optimal solution by solving the ILP. The
average gap for benchmark runs with a redundancy greater than one is about 2%. With
the exception of instance class hiv4, redundancy 2, the median run times for computing
optimal solutions lie between 44.99 and 187.97 seconds. For the same instances, the
median run times of the CFTSB heuristic lie between about 10 and 20 minutes, which
is nearly 4 to 26 times as much. Moreover, the algorithm reaches an optimal solution
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Figure 8.1: Results for instance class hiv0, probe length ∈ [15, 40], redundancy 4
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Figure 8.2: Results for instance class hiv1, probe length ∈ [15, 40], redundancy 2

60



8.3 Discussion

in
st

seq
s

len
p
gen

op
t

tim
e

d
b
ar

gap
tim

e
cft

0
sd

ev
gap

tim
e

cft
*

sd
ev

gap
tim

e

00
92

652.9
0.21

48
0:26:23.49

83
72.92

0:00:00.32
57.9

1.91
20.62

0:00:03.12
49.5

1.08
3.13

0:12:36.68
01

94
619.3

0.2
52

4:26:16.49
81

55.77
0:00:00.36

63.6
3.17

22.31
0:00:01.51

54.3
1.06

4.42
0:13:17.96

02
95

926.7
0.48

51
0:07:29.96

83
62.75

0:00:00.55
61.5

1.51
20.59

0:00:01.54
52.1

0.32
2.16

0:04:07.34
03

115
536.4

0.15
63

95:58:15.04
97

53.97
0:00:00.60

78.2
2.15

24.13
0:00:02.19

65.2
0.79

3.49
0:17:41.48

04
97

737.6
0.34

57
0:08:38.17

99
73.68

0:00:00.36
68.8

1.03
20.70

0:00:01.12
58.5

0.71
2.63

0:18:22.72
05

85
539.7

0.16
48

0:22:23.19
74

54.17
0:00:00.22

55.4
1.58

15.42
0:00:00.92

48.3
0.48

0.62
0:20:00.60

06
97

658.6
0.28

56
0:17:51.22

92
64.29

0:00:00.39
69.6

2.67
24.29

0:00:00.87
56.8

1.23
1.43

0:24:27.80
07

87
565.2

0.13
46

0:59:33.26
74

60.87
0:00:00.30

54.4
1.35

18.26
0:00:01.01

47.1
0.32

2.39
0:12:25.49

08
79

689.3
0.19

44
0:03:44.24

70
59.09

0:00:00.26
54.8

1.75
24.55

0:00:00.77
45.0

0.00
2.27

0:07:30.27
09

75
728.3

0.24
43

0:00:40.04
71

65.12
0:00:00.28

51.9
1.29

20.70
0:00:00.51

43.1
0.32

0.23
0:01:43.60

10
101

566.0
0.15

55
22:41:35.07

91
65.45

0:00:00.40
66.7

2.63
21.27

0:00:02.71
55.3

0.48
0.55

0:10:32.14
11

83
782.5

0.28
46

0:01:41.43
73

58.70
0:00:00.26

56.5
1.78

22.83
0:00:00.98

46.6
1.07

1.30
0:11:43.08

12
106

760.4
0.38

56
0:47:39.89

88
57.14

0:00:00.61
68.3

3.13
21.96

0:00:02.46
56.8

0.42
1.43

0:17:21.57
13

86
636.1

0.19
47

14:30:38.43
83

76.60
0:00:00.28

59.0
1.70

25.53
0:00:01.12

47.7
0.67

1.49
0:22:35.52

14
95

706.8
0.29

50
0:40:54.60

77
54.00

0:00:00.31
62.7

2.11
25.40

0:00:01.51
51.0

0.67
2.00

0:14:15.77
15

88
576.2

0.18
48

0:04:14.55
71

47.92
0:00:00.26

55.6
1.96

15.83
0:00:01.30

48.9
0.32

1.87
0:05:24.79

16
90

674.7
0.24

44
0:00:25.12

70
59.09

0:00:00.31
51.6

1.71
17.27

0:00:01.63
44.8

1.03
1.82

0:08:30.36
17

105
1645.5

5.68
62

0:37:57.02
110

77.42
0:00:00.90

76.4
2.17

23.23
0:00:01.69

64.8
0.42

4.52
0:12:33.13

18
78

626.6
0.16

47
0:00:16.01

74
57.45

0:00:00.25
55.3

2.21
17.66

0:00:00.56
47.4

0.52
0.85

0:26:29.76
19

87
553.3

0.17
51

0:01:36.19
83

62.75
0:00:00.40

65.4
2.46

28.24
0:00:00.86

52.8
0.42

3.53
0:28:12.31

20
109

949.6
1.04

57
0:22:24.60

85
49.12

0:00:00.72
70.6

2.12
23.86

0:00:02.44
58.6

1.17
2.81

0:18:40.10
21

84
918.0

0.41
49

0:01:29.06
77

57.14
0:00:00.34

58.1
1.37

18.57
0:00:01.07

50.0
0.47

2.04
0:05:59.97

22
71

640.3
0.16

44
0:00:20.40

73
65.91

0:00:00.20
51.8

1.87
17.73

0:00:00.33
44.0

0.00
0.00

0:08:10.54
23

78
474.5

0.07
48

1:02:19.06
75

56.25
0:00:00.16

54.8
1.99

14.17
0:00:00.51

48.0
0.00

0.00
0:02:25.11

24
93

708.1
0.32

51
0:03:37.63

85
66.67

0:00:00.40
63.8

2.30
25.10

0:00:00.92
51.1

0.32
0.20

0:22:52.22

∅
90.8

714.9
0.21

50.5
0:17:51.22

81.6
61.44

0:00:00.32
61.3

21.35
0:00:01.12

51.5
1.96

0:12:36.68

T
able

8.4:
R

esults
for

instance
class

hiv4,
probe

length
∈

[15,40],
redundancy

2

61



8 Computational Results

in
st

seq
s

len
p
gen

op
t

tim
e

d
b
ar

gap
tim

e
cft

0
sd

ev
gap

tim
e

cft
*

sd
ev

gap
tim

e

00
92

652.9
0.22

93
0:25:07.05

159
70.97

0:00:00.48
107.6

1.90
15.70

0:00:02.49
94.3

0.48
1.40

0:28:21.76
01

94
619.3

0.2
100

0:06:51.91
165

65.00
0:00:00.56

122.2
3.61

22.20
0:00:01.38

102.9
0.74

2.90
0:14:23.12

02
95

926.7
0.47

99
0:01:36.95

162
63.64

0:00:00.89
126.7

1.42
27.98

0:00:01.58
101.1

0.57
2.12

0:22:12.12
03

115
536.4

0.15
119

0:06:31.80
185

55.46
0:00:00.88

151.7
1.70

27.48
0:00:02.68

123.7
1.34

3.95
0:23:11.58

04
97

737.6
0.34

110
0:00:15.86

199
80.91

0:00:00.60
132.7

2.58
20.64

0:00:01.54
112.6

1.17
2.36

0:17:32.86
05

85
539.7

0.16
92

0:01:55.03
149

61.96
0:00:00.33

105.0
3.13

14.13
0:00:00.92

93.0
0.00

1.09
0:08:28.43

06
97

658.6
0.26

108
0:00:20.42

177
63.89

0:00:00.65
138.0

2.58
27.78

0:00:00.98
111.7

0.95
3.43

0:29:44.17
07

87
565.2

0.12
88

9:36:20.02
143

62.50
0:00:00.42

106.0
2.58

20.45
0:00:01.07

90.1
0.57

2.39
0:15:49.24

08
79

689.3
0.19

84
0:00:26.06

139
65.48

0:00:00.39
102.6

1.96
22.14

0:00:00.80
85.2

0.63
1.43

0:15:16.14
09

75
728.3

0.25
82

0:00:09.21
142

73.17
0:00:00.44

95.5
1.35

16.46
0:00:00.51

82.7
0.67

0.85
0:19:45.35

10
101

566.0
0.16

104
0:00:24.36

174
67.31

0:00:00.63
127.5

3.31
22.60

0:00:02.87
106.3

0.48
2.21

0:35:19.27
11

83
782.5

0.28
87

0:03:54.52
150

72.41
0:00:00.42

108.7
2.98

24.94
0:00:01.19

88.9
0.74

2.18
0:15:04.00

12
106

760.4
0.37

106
0:02:51.23

178
67.92

0:00:00.95
138.3

3.20
30.47

0:00:01.99
111.3

0.82
5.00

0:30:47.00
13

86
636.1

0.2
87

0:49:25.43
162

86.21
0:00:00.44

106.7
2.21

22.64
0:00:01.03

89.2
0.79

2.53
0:26:57.59

14
95

706.8
0.29

96
0:12:59.81

161
67.71

0:00:00.49
118.2

3.22
23.13

0:00:01.68
97.6

0.70
1.67

0:14:23.68
15

88
576.2

0.17
95

0:00:29.24
141

48.42
0:00:00.40

106.3
1.89

11.89
0:00:01.43

95.1
0.32

0.11
0:07:49.93

16
90

674.7
0.24

87
0:01:01.05

142
63.22

0:00:00.46
100.2

3.05
15.17

0:00:01.81
87.3

0.48
0.34

0:09:47.37
17

105
1645.5

5.61
120

0:02:38.05
197

64.17
0:00:01.46

152.5
4.06

27.08
0:00:01.73

123.3
1.06

2.75
0:32:08.67

18
78

626.6
0.17

90
0:00:25.10

143
58.89

0:00:00.41
109.3

3.40
21.44

0:00:00.42
91.0

0.00
1.11

0:10:16.64
19

87
553.3

0.17
96

0:00:20.94
154

60.42
0:00:00.62

117.7
3.62

22.60
0:00:00.73

99.9
1.10

4.06
0:33:02.01

20
109

949.6
1.01

110
0:01:21.06

168
52.73

0:00:01.09
134.8

3.82
22.55

0:00:02.39
112.7

0.48
2.45

0:20:03.86
21

84
918.0

0.43
94

0:00:03.57
155

64.89
0:00:00.55

111.7
2.06

18.83
0:00:00.84

95.5
0.71

1.60
0:23:56.81

22
71

640.3
0.17

85
0:00:01.26

141
65.88

0:00:00.31
96.8

1.93
13.88

0:00:00.48
85.2

0.42
0.24

0:19:37.59
23

78
474.5

0.08
91

0:00:13.60
157

72.53
0:00:00.26

110.0
2.71

20.88
0:00:00.47

92.6
0.84

1.76
0:08:57.95

24
93

708.1
0.32

99
0:00:14.06

169
70.71

0:00:00.64
120.0

2.79
21.21

0:00:00.93
101.6

0.97
2.63

0:23:46.87

∅
90.8

714.9
0.22

96.9
0:01:01.05

160.5
65.65

0:00:00.49
117.9

21.66
0:00:01.19

99.0
2.18

0:19:45.35

T
able

8.5:
R

esults
for

instance
class

hiv4,
probe

length
∈

[15,40],
redundancy

4

62



8.3 Discussion

30

40

50

60

70

80

90

100

110

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

s
o
lu

ti
o
n

s
iz

e

instance

OPT

CFTSB
*

CFTSB
0

DNABAR

Figure 8.3: Results for instance class hiv4, probe length ∈ [15, 40], redundancy 2
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Figure 8.5: Results for instance class hiv1a, probe length ∈ [15, 40], redundancy 1

in few cases only. On the other hand, the run times for the CFTSB heuristic differ to a
much lesser extent. Whereas the run times for computing optimal solutions vary wildly,
even within one instance class, the run times of the CFTSB heuristic are all within the
same order of magnitude. The low variance of the results over several runs is another
advantage. Thus, for complex instances, where solving the ILP takes very long, the
CFTSB heuristic provides a viable alternative.

If we look at the runs for instance class hiv1a, where we lower the redundancy to one,
the picture changes. The CFTSB heuristic is able to compute an optimal solution for
the majority of the instances in a very short time. Computing optimal solutions takes
more than one hour for more than half of the instances. For some instances (2, 14 – 16,
and 19) we experienced run times between 10 and 80 hours. In these cases, the CFTSB
shines as it is able to produce optimal results (with the exception of instance 2) in under
one second.

We assume that the heuristic works best when used with a redundancy parameter of one.
A reason for this might be that the original approach has been designed for the stan-
dard set cover problem, which does not address the aspect of solution redundancy. We
extended the original algorithm in a very straight-forward manner to handle this addi-
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tional requirement, but as it seems, the performance seems to deteriorate with increasing
redundancy values.

The DNA-BAR heuristic stands out by its speed, which seems to be independent of the
particular instances it operates on. On the other hand, the solutions it produces are
considerably worse than the first ones found by the CFTSB heuristic. Since in most
cases it takes seldom more than a few seconds to find the first solution, it seems to be a
better alternative wherever the focus does not lie on speed alone. Note, however, that
you have to take into account the time spent for probe generation, which increases with
the number and length of the input sequences.
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9 Conclusions

The string barcoding problem is a variant of the well-known set cover problem. Like the
latter, it is provably NP-hard and has many practical applications, especially in biology
and medicine. In general, we want to identify an unknown sample sequence as one of
a set of known sequences without inspecting the sample as a whole. Instead, we are
seeking a set of short subsequences (probes) whose presence or absence in the sample we
can check efficiently. We are seeking a set of probes of minimum cardinality such that
the outcome of these tests allows us to identify the sample sequence uniquely. For each
pair of input sequences, a feasible solution contains a predefined number (redundancy)
of probes that is part of exactly one of the two sequences.

The problem can be divided into two parts. First, we need to identify the set of possible
candidate probes. Each probe must be subsequence of at least one input sequence
and must satisfy optional minimum or maximum length constraints. The set of all
subsequences is in most cases much too large and contains lots of redundant elements,
which appear in the same set of input sequences. A suffix tree can be used to identify a
complete set of probes without redundant elements. It can be constructed in linear time
and also has linear space complexity.

Few exact and many heuristic approaches address the problem. We adapted a very
successful algorithm from literature that targets the set cover problem. It grounds
on Lagrangian relaxation and proposes subgradient optimization for finding good La-
grangian multipliers. It is an iterative procedure which uses a Lagrangian heuristic to
repeatedly solve different subproblems. Each subproblem is the result of setting up a
partial solution of probes with a presumably high probability to appear in an optimal
solution. Contrary to the original design, we solve the LP relaxation to find optimal
initial Lagrangian multipliers for each subproblem.

We tested our implementation on a set of real-world instances derived from genomic data.
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9 Conclusions

Unfortunately, the heuristic did not deliver results as good as the original approach did
for the set cover problem. Especially when a higher solution redundancy was required,
the solution quality deteriorated with optimal solutions being found in rare cases only.

On the other hand, our algorithm scales well with regard to instance size and offers a
much greater degree of run time predictability. Though the computation of an optimal
solution was sometimes even faster than the CFTSB heuristic, the run time over all
instances showed an enormous variance. In contrast, the CFTSB heuristic produced
good, though in most cases suboptimal, solutions in reasonable time. It was able to
compute high quality solutions for very hard instances for which the computation of
an optimal solution was excessively resource consuming, with respect to time as well
as memory usage. Compared to the much simpler DNA-BAR heuristic proposed by
DasGupta et al., our adaptation consistently produced results of superior quality within
the same time frame.
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