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Kurzfassung

Die vorliegende Arbeit befasst sich mit Abbildungen des Raumes der konvexen
Körper Kn in sich, die mit gewissen algebraischen Strukturen auf Kn verträglich
sind. Das Studium von Operatoren, welche mit der wichtigsten Addition auf Kn,
der Minkowski Addition, verträglich sind, ist ein natürliches Anliegen. Aus geo-
metrischer Sicht besonders interessant sind Abbildungen, welche mit der Gruppe
der Rotationen SO(n) vertauschen. Minkowski Endomorphismen, das sind stetige
Selbstabbildungen von Kn, die Minkowski additiv und drehäquivariant sind, wurden
von Schneider [43], [44] und Kiderlen [20] systematisch untersucht. Kiderlen gibt
in [20] ebenfalls eine vollständige Charakterisierung von Blaschke Endomorphismen
(stetige, drehäquivariante und additive Abbildungen bzgl. der Blaschke Addition
konvexer Körper) an und zeigt, dass diese als Adjungierte von schwach monotonen
Minkowski Endomorphismen aufgefasst werden können.

In dieser Dissertation werden Blaschke Minkowski Homomorphismen, das sind
stetige, drehäquivariante und Blaschke Minkowski gemischt additive Abbildungen,
untersucht. Eines der Hauptresultate zeigt, dass diese Operatoren eine Darstellung
mit Hilfe eines sphärischen Faltungsoperators erlauben, in Analogie zu Minkowski
und Blaschke Endomorphismen. Wir geben eine vollständige Charakterisierung ge-
rader Blaschke Minkowski Homomorphismen an und stellen Verbindungen zu der
von Schneider und Kiderlen entwickelten Theorie her. Der bekannteste Vertreter
dieser Operatoren ist die Abbildung, welche einem konvexen Körper seinen Projek-
tionenkörper zuordnet. Die erzielten Ergebnisse zeigen, dass allgemeine Blaschke
Minkowski Homomorphismen in verschiedener Hinsicht ein diesem Prototyp ähn-
liches Verhalten aufweisen. Diese Resultate sind [48] entnommen.

Motiviert durch wichtige Volumsungleichungen für Projektionenkörper unter-
suchen wir das Verhalten des Volumens (und allgemeinerer Quermaßintegrale) der
Bilder von Blaschke Minkowski Homomorphismen. Wir zeigen, dass diese Opera-
toren ein dem Volumen analoges Verhalten in Bezug auf Minkowski Linearkombi-
nationen aufweisen und für die wesentlichen Ungleichungen der Brunn Minkowski
Theorie analoge Relationen für das Volumen der Bilder von Blaschke Minkowski
Homomorphismen gelten. Die erzielten Resultate verallgemeinern Ergebnisse von
Lutwak [28], [33] für Projektionenkörper und entstammen [49].

In den letzten Jahren wurde eine zur Brunn Minkowski Theorie duale Theorie für
Stern körper entwickelt. Für Ungleichungen der klassischen Theorie konvexer Körper
gelten (oft einfacher zu beweisende) analoge Ungleichungen für Sternkörper. Für
viele unserer Ergebnisse können solche dualen Resultate gezeigt werden. Motiviert
durch Eigenschaften der wohlbekannten Schnittkörper, die das duale Gegenstück zu
Projektionenkörpern darstellen, definieren wir radiale Blaschke Minkowski Homo-
morphismen. Wir geben eine vollständige Charakterisierung dieser Abbildungen an
und zeigen, dass zu den von uns bewiesenen Volumensungleichungen für Blaschke
Minkowski Homomorphismen duale Relationen gelten.
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Der Aufbau der vorliegenden Arbeit gestaltet sich wie folgt: Im ersten Kapitel
präsentieren wir die Grundlagen zur Faltung sphärischer Funktionen und Maße,
sowie das benötigte Material über Kugelfunktionen. Danach geben wir eine kurze
Einführung in die Brunn Minkowski Theorie konvexer Körper und in die dazu duale.
Theorie für Sternkörper.

Im zweiten Kapitel erläutern wir zunächst bekannte Ergebnisse zu Minkowski
und Blaschke Endomorphismen und beweisen anschließend den Darstellungssatz
für allgemeine Blaschke Minkowski Homomorphismen. Danach zeigen wir, wie
sich daraus eine vollständige Charakterisierung aller geraden Blaschke Minkowski
Homomorphismen ergibt. Als weitere Anwendung geben wir Charakterisierungen
des Projektionenkörpers, sowie des Minkowski und Blaschke Differenzenkörpers
an. Schließlich folgern wir, dass die Bilder von Minkowski Linearkombinationen
unter Blaschke Minkowski Homomorphismen ein dem Volumen analoges Verhalten
aufweisen, speziell erfüllen diese Operatoren eine Steiner Formel. Analoge Resultate
für radiale Blaschke Minkowski Homomorphismen von Sternkörpern beweisen wir
ani Ende dieses Abschnitts.

Im dritten Kapitel wenden wir uns geometrischen Ungleichungen für die Bilder der.
betrachteten Abbildungen zu. Wir zeigen zunächst ein Resultat für schwach mono-
tone Minkowski Endomorphismen, welches eine Schar von verschärften Ungleichun-
gen zwischen den zwei aufeinanderfolgenden Quermaßintegralen Wn-l und Wn-2

impliziert. Danach beweisen wir zu klassichen Ungleichungen der Brunn MinkO\vski
Theorie analoge Relationen für das Volumen der Bilder von ßlaschke Minkowski
Homomorphismen und deren Polarkörper. Auch dieses Kapitel beschließen wir mit
dualen Resultaten für Abbildungen von Sternkörpern .
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Abstract

In this thesis \ve study mappings of the space of convex bodies Kn into itself which
are compatible with certain natural algebraic structures on Kn. The investigation
of mappings, which are compatible with the most important addition on Kn, the
Minkowski addition, is a natural concern. Of a particular interest from a geometrical
point of view are maps which intertwine the group of rotations SO(n). Minkowski
endomorphisms, i.e. continuous, rotation intertwining and Minkmvski additive maps
of Kn into itself, have been investigated systematically by Schneider [43], [44] and
Kiderlen [20]. Kiderlen also establishes in [20] a complete classification of all Blaschke
endomorphisms, i.e. continuous, rotation intertwining and additive maps with re-
spect to Blaschke addition of convex bodies, and shows that these can be interpreted
as adjoint maps of weakly monotone Minkowski endomorphisms.

In this work we investigate Blaschke Minkowski homomorphisms, i.e. continuous,
rotation intertwining and Blaschke Minkowski mixed additive maps. One of the main
results shows that these operators admit a representation via a spherical convolution
operator in analogy to Minkowski and Blaschke endomorphisms. Moreover we give
a complete classification of all even Blaschke Minkowski homomorphisms and form
connections to the theory of endomorphismsdeveloped by Schneider and Kiderlen.
The most widely known example of these maps is the projection body operator. The
established results show that general Blaschke Minkowski homomorphisms behave
in many respects similar to this prototype. These results are taken from [48].

Motivated by important volume inequalities for projection bodies we study the be-
havior of the volume (and more general quermassintegrals) of the images of Blaschke
Minkowski homomorphisms. We show that these operators behave similar to the
volume functional with respect to Minkowski linear combinations and that for funda-
mental inequalities of the Brunn Minkowski theory there are analogous inequalities
satisfied by the volume of the images of Blaschke Minkowski homomorphisms. The
established theorems generalize results by Lutwak [28], [33] for projection bodies
and are taken from [49].

In recent years a theory for star bodies dual to the Brunn Minkowski Theory of
convex bodies was developed. For inequalities of the classical theory of convex bod-
ies there are analogous relations( often easier to prove) satisfied by star bodies. For
many of ourresults there are corresponding dual counterparts. Motivated by prop-
erties of the well known intersection body operator, the dual to the projection body
operator, we define radial Blaschke Minkowski homomorphisms. We give a com-
plete classification of these operators and show that they satisfy volume inequalities
analogous to the inequalities we proved for Blaschke Minkowski homomorphisms.

This thesisis organized as follows: In the first chapter we collect thebasic material
on spherical convolution of functions and measures as well as spherical harmonics.
We also give a brief introduction to the Brunn Minkowski Theory of convex bodies
and the dual theory of star bodies.
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In the second chapter we first explain known results on Minkowski and Blaschke
endomorphisms. Then we prove the representation theorem for general Blaschke
Minkowski homomorphisms and show how this makes a complete classification of
all even Blaschke Minkowski homomorphisms possible. As further applications we
obtain characterizations of the projection body operator and the Minkowski and
Blaschke difference body operators. Finally we deduce that the image of a Minkowski
linear combination of convex bodies under Blaschke Minkowski homomorphisms
behaves similar to the volume functional, in particular these operators satisfy a
Steiner formula. Analogous results for radial Blaschke Minkowski homomorphisms
of star bodies will also be proved at the end of this part.

In the third chapter we turn to geometric inequalities for the images of the map-
pings under consideration. We first show a result for weakly monotone Minkowski
endomorphisms which implies a strengthened version of the classical inequality be-
tween the two consecutive quermassintegrals Wn-1 and Wn-2. We will then prove
analogs oftheclassical inequalities from the Brunn Minkowski Theory for the volume
of the images of Blaschke Minkowski homomorphisms and their polar bodies. We
conclude also this chapter with corresponding results for mappings of star bodies.
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Chapter 1

Introduction

1.1 Harmonic Analysis on the Unit Sphere

In the following sections we collect the material from harmonic analysis and convex
geometry that will be needed later. Let SO(n) denote the group of rotations in
n dimensions. We will deal with different kinds of analytical representations of
convex bodies by functions and measures on the unit sphere sn-lof n-dimensional
Euclidean space ]Rn, n ~ 3. As we will often identify sn-l with the homogeneous
space SO(n)jSO(n-l), where SO(n-l) denotes the group of rotations leaving the
point ê (the pole) of sn-I fixed, we will first introduce some basic notions connected
to SO(n) and sn-I. Using the identificationSn-1 3:! SO(n)jSO(n-l), it is possible
to introduce a convolution structure on C(sn-I), the space of continuous functions
with the uniform topology. A special role play convolution operators generated by
SO(n - 1) invariant (or zonal) functions and measures. In particular these are an
important notion in the theory of spherical harmonics, for which we will collect the
most important material. As general reference for this section we recommend the
article by Grinberg and Zhang [15] and the book by Groemer [16].

1.1.1 Convolution of Spherical Functions and Measures

The identification of sn-I with SO(n)j SO(n - 1) is for u E sn-l given by

u = {}ê t-+ {}SO(n - 1).

The projection from SO(n) onto sn-I is {} t-+ :;9 := {}ê. The unity e E SO(n) is
mapped to the pole of the sphere ê E sn-I. SO(n) and sn-l will be equipped with
the invariant probability measures denoted by d{} and du.

Let C(SO(n)) denote the set of continuous functions on SO(n) with the uniform
topology and M(SO(n)) its dual space of signed finite measures on SO(n) with the
weak* topology. Let M+(SO(n)) be the set ofnonnegative measures on SO(n). For
pE M(SO(n)) and I E C(SO(n)), the canonical pairing is

(p,/) = (J,p) = r I({})dp({}).JSO(n)
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Sometimes we will identify a continuous function f with the absolute continuous
measure with density f and thus view C(SO(n)) as a subspace of M(SO(n)}. The
canonical pairing is then consistent with the usual inner product on C(SO(n)).

For {J E SO(n), the left translation {Jf of fE C(SO(n)) is defined by

(1.1)

For 11 E M(SO(n)), we set
(1.2)

then {J/.Lis just the image measure of /.L under the rotation {J. For f E C(SO(n)) the
function j E C(SO(n)) is defined by

(1.3)

For a measure /.L E M(SO(n)), we set

(1.4)

As SO(n) is a compact Lie group the space C(SO(n)) carries a natural convolution
structure. For f, 9 E C(SO(n)), the convolution f * gE C(SO(n)) is defined by

I

For /.L E M(SO(n)), the convolutions /.L * f E C(SO(n)) and f * /.L E C(SO(ri))
with a function f E C(SO(n)) are defined by

. i

(1.5)

With these definitions f * /.L and /.L * f are real analytic if f is real analytic.
Using (1.5), one easily checks that for a E M(SO(n)) and f, 9 E C(SO(n))

(1.6)

This leads to the definition of the convolution of two measures /.L,a E M(SO(n))

(1.7)

The convolution on M (SO(n)) has the usual properties of a convolution structure,
it is associative, and if 11.IITv denotes the total variation norm of measures, then for
nonnegative measures /.L, a, we have 1111 * aliTv = II/.LIITV IlaliTv. Since for n 2: 3, the
group of rotations is not abelian, the convolution on M(SO(n)) is not commutative.
For the following lemma see [15], p.85.

Lemma 1.1 Let /l'm, /.L E M(SO(n)), m = 1,2, ... and let f E C(SO(n)). If
/.Lm -t /.L weakly, then f * /.Lm -t f * /.L and /.Lm * f -t 11* f uniformly.
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In order to define a convolution structure on C(sn-l), we will use the method
from Grinberg and Zhang [15] identifying sn-l with SO(n)jSO(n - 1). This leads
to the identification ofC(sn-l) with right SO(n-l)-invariant functions in C(SO(n))
by setting

!(f}) = f(iJê), (1.8)

Conversely, every f E C(SO(n)) induces a continuous function 7 on sn-I, defined
by

fUi) = r f(T}iJ)diJ.
}sO(n-l)

If r E C(SO(n)) is right SO(n - 1) invariant and 9 E C(sn-I), then f = fand

9 = g. Thus C(sn-l) is isomorphic to the subspace of right SO(n - 1) invariant
functions in C(SO(n)). For a measure /-l E M(sn-l) and a function f E C(SO(n)),
we set

(fj, f) = (/-l, f).

In this way the one-ta-one correspondence of functions on sn-l with right SO( n -1)
invariant functions on SO(n) carries over to the space M(sn-l) and right SO(n-l)
invariant measures in M(SO(n)). The following relation between integrals over
SO(n) and spherical integration will be used frequently:

r f(iJ)diJ = r r f(iJT})dT}d~.
}SO(n) }sn-l }SO(n-l)

(1.9)

Note that definitions (1.1), (1.2) and (1.3), (1.4) become now meaningful for
spherical functions and measures. Convolution on c(sn-l) can be defined via the
identification (1.8). For example the convolution of a function f E c(sn-l) with a
measure Il E M (sn-I) is given by

(f * Il)(Tj) = a * fj)(T}) = r f(T}iJ-1ê)dfj(iJ).
} SO(n)

In ananalogous way, convolutions of functions or measures can be defined. In
particular the convolution /-l * f E C(sn-l) of a measure Il E M(SO(n)) and a
function f E C(sn-l) is defined by

(1.10)

Thus, if /-l E M(SO(n)) is a nonnegative measure, /-l * f can be interpreted as a
weighted rotation mean of f.

Note that the Dirac measure 6ê is the unique rightneutral element for the convo-
lution on sn-l while the convolution with 6_ê represents the reflection in the origin,
i.e., for f E c(sn-l)

(1.11)
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1.1.2 Zonal Functions and Measures

An essential role among spherical functions play SO(n-l) invariant functions. Such
a function with the property that {JI = I for every {J E SO(n - 1), is called zonal.
A zonal function is by definition constant on every parallel circle

S~-2:= {u E sn-I: U = {Jv,{J E SO(n -I)}, (1.12)

(1.13)

where v E sn-l with v . ê = t E [-1,1]. Thus these functions depend only on the
distance of u to ê, i.e., on the value u . ê. Zonal functions can be identified with
SO(n - 1)-biinvariant functions on SO(n).

Of course the notion of SO( n - 1) invariance carries over to measures as well. We
call a measure fJ, E M(sn-l) zonal, if {JfJ,= J.L for every {J E SO(n - 1). The space
of all continuous, zonal functions will be denoted by C(sn-l, ê), and M(sn-1, ê)
denotes the space of zonal measures on sn-I.

Spherical convolution becomes simpler for zonal measures. Using (1.9) we get for
IE C(sn-l) and fJ, E M(sn-l, ê)

(J * fJ,)(Tj) = (J,17fJ,) = in-. 1(17U)dfJ,(u).

For I E C(sn-l), the rotational symmetrization 1E C(sn-l, ê) is defined by

1=6ê*l= { {Jld{J.
}SO(n-l)

Since 6ê is the right invariant clement for the convolution on sn-I, we get

I * 9 = I * 6ê * 9 = I * g. (1.14)

Thus, for spherical convolution from the right, it suffices to consider zonal functions
and measures. Note that, if fJ, E M(sn-1, ê),then by (1.13) for every IE C(sn-1)

({JI) * fJ,= {J(J * fJ,) (1.15)

for every {J E SO(n). Thus the spherical convolution from the right is a rotation
intertwining operator on C(sn-l) and M(sn-1).

We note here that several authors, see [1], [20], [41], used spherical convolution in
a disguised version as a generalized Radon transform (with Parameter t E [-1, 1]),
defined in our notation for I E C(sn-l) by

Rd = 1* fJ,sn-2,
t

where fJ,sn-2 is the invariant probability measure concentrated on the parallel circle
t

S~-2 given by (1.12). For t = 0, this becomes the classical spherical Radon trans-
form. The connection between this integral transform and spherical convolution is
for I E c(sn-1) and fJ,E M(sn-1) given by, see [20],

1*fJ,= ( Rê.vldfJ,(v).}sn-I

10



As a zonal function on sn-l depends only on the value of u . ê, there is a natural
isomorphism between functions and measures on [-l,11 and zonal functions and
measures on sn-I. Define a map A : C(S71-1, ê) -t C([-l, 1]), I f---7 AI, by

A/(t) = I(tê + V1=t2v), V E êJ. n sn-I. (1.16)

Then it is easy to see that A is an isomorphism with inverse

A-I: C([-l, 1]) -t C(sn-l, ê), I f---7 I(ê .. ).

For a zonal measure {t E M (sn-I, ê) and a function I E C([-l, 1]) define

The map A: M(sn-l, ê) -t M([-l, 1]) is the extension ofthe map defined in (1.16)
and it is again an isomorphism between M(sn-cl, ê) and M([-l, 1]) with inverse

-I -(A {t, I) = ({t, AI), {tE M([-l, 1]), IE C(sn-l).

(1.17)

The isomorphism A allows us to identify the dual space of C(sn-I, ê) with the
space M(sn-I, ê). Using this identification, we obtain for {t,1/ E M(sn-l, ê) and
I E C(sn-l, ê),

({t * 1/, I) = ln-l ln-l A/(u, v)d{t(u)dl/(v) = (1/ * {t, I).

Thus, the convolution of zonal functions and measures is abelian and M(sn-I, ê),
with the convolution structure, becomes an abelian Banach algebra.

Another important property of zonal measures {t E M (sn-I, ê) is

{t = {to (1.18)

As a consequence of (1.6) and(1.18) we obtain the following very usefullemma.

Lemma 1.2 Let {t, 1/ E M(sn-l) and f E C(sn-l), then

Using Lemma 1.2 and (1.17) we get for {t E M(sn-l) and I E C(sn-l, ê)

({t * J)(u) = ln-l Af(u. v)d{t(v). (1.19)

We will frequently use zonal approximate identities ('Pk)kE!\!' These are non-
negative functions in coo(sn-l). They have already been considered by Berg [1] and
we just briefly recall their construction.

11



Let 11.11 denote the standard Euclidean norm in ]Rnand let (fk)kEN be nonnegative
functions in Coo(]Rn) such that for each kEN

(a) fk(x) = 0 if IJxl1 ~ t,
(b) fk(x) = fk(y) if Ilxll = Ilyl!'
(c) IIRn fk(x)dx = 1.

Then the sequence of functions (<Pk)kEN from coo(sn-I, ê) defined by

00

<Pk(U) =!fk(u - rê)rn-Idr
o

is called zonal approximate identity. We summarize their most important properties
in the following lemma, see [1]:

Lemma 1.3 Let (<pkhEN be a zonal approximate identity. Then

(a) f * <PkE COO(sn-l) and limk-too f * <Pk= f uniformly for every f E C(sn-I).

(b) /-l * <PkE COO(sn-l) and limk-too/.l * <Pk= /-l weakly for every /-l E M(sn-I).

1.1.3 Spherical Harmonics

We now collect some facts from the theory of spherical harmonics. A spherical
harmonic of dimension n and order k is the restriction to sn-Iof a harmonic poly-
nomial of order k in n variables. Let Hk denote the space of spherical harmonics
of dimension n and order k. Hn will denote the space of all finite sums of spherical
harmonics of dimension n. HI.. is a finite dimensional vector space of dimension

N(n, k) = n +2k - 2 (n + k - 2).
n+k-2 k

The spaces Hk are pairwise orthogonal with respect to the usual inner product on
C(sn-I). By definition, Hk is invariant with respect to rotations. Moreover, Hk is
irreducible, i.e. {O} and Hk are the only subspaces invariant under SO(n). As a
consequence we have the following version of Schur's Lemma for spherical harmonics.

Lemma 1.4 Let <I> : Hk -t M (sn-I) be a linear map that intertwines rotations.
Then <I> is either injective or the zero map.

If HI, ... , H N(n,k) is an orthonormal basis of Hk' then there is a unique polynomial
Pk E C([-I, 1]) of degree k such that

N(n,k)
L Hi(u)Hi(v) = N(n, k)Pk(u, v).
i=1

12
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The polynomial PI: is called the Legendre polynomial of dimension n and order k.
The zonal function U i--f PI:(ê . u) is up to a multiplicative constant the unique zonal
spherical harmonic in 1{'r Moreover for any given nand k there are N (n, k) points
Vi E sn-I such that

span{P!:(vl .. ), ... , P!:(VN(n,k) .. )} = 1-l~. (1.21)

The collection {HI,"" HN(n,k) : kEN} forms a complete orthogonal system in
£2(sn-I), i.e. for every square integrable function f the series

converges in quadratic mean to J, where 7rkf E 1-lk is the orthogonal projection of
f on the space 1-lk. Using (1.20) and (1.13), we obtain

N(n,k)
7rkf = L (I, Hi)Hi = N(n, k)(J * P!:(ê .. )).

i=l

This leads to the definition of the spherical expansion of a measure J-LE M(sn-I)

where 7rkJ-LE 1-lk is defined by

7rkJ-L= N(n, k)(J-L * PI:(ê .. )).

We note here two specialcases of (1.23)

(1.22)

(1.23)

7roJ-L = J-L* 1 and (1.24)

By Lemma 1.2, we have for every f E C(sn-l)

which, by the completeness of the system of spherical harmonics, immediately gives:

Lemma 1.5 Let J-LE M(sn-I). If J-L* PI:(ê .. ) = 0 for every kEN then J-L= O.

By Lemma 1.5, J-LE M(sn-I) is uniquely determined by its series expansion
(1.22). Zonal functions and measures are even determined by a sequence of real
numbers. To see this, note that

0-e * P!:(u .. ) = P!:(ê . u)P!:(ê .. )

and thus by (1.19) and (1.7)

(Il, * P!:(ê .. ))(u) = (J-L,P!:(u .. )) = (/1,,0-e * P!:(u .. )) = (J-L,P!:(ê .. ))PI:(ê . u).
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Hence the series expansion of a zonal measure Mbecomes
00

J-L '" LN(n, k)(/l', P;:(ê .. ))P;:(ê .. ).
k=O

The numbers J-Lk := (M,P;:(ê .. )) are called Legendre coefficients of ME M(sn-l, ê).
Using 7rkH = H for every H E 1£k and the fact that spherical convolution of zonal
measures is commutative, weget a version of the Funk-Heeke Theorem.

Corollary 1.6 If ME M(sn-I, ê) and HE 1£1. then H * M= MkH.

We are now ready to give the definition of multiplier operators.

Definition 1.7 We call a map <P : Q ç M(sn-I) ---* M(sn-I) a multiplier trans-
formation if there is a sequence of real numbers Ck such that, for every kEN,

VJ-L E Q. (1.25)

The numbers co, Cl, C2, ... are called the multipliers of <P.

Using again the fact that spherical convolution of zonal measures is commutative,
we see that for ME M(sn-l, ê) the map <Ptt: M(sn-I) ---* M(sn-I)

l/ f--t l/ *J-L

is a multiplier transformation. The sequence of multipliers of these convolution
operators is just the sequence of Legendre coefficients of the measure J-L.

By definition (1.23) of the orthogonal projection 7rkand (1.15), it is easy to see
that multiplier transformations intertwine rotations and that, by definition (1.25),
they are linear on the space 1£n. The following corollary to Schur's Lemma estab-
lishes the converse statement, see [43], p.67.

Theorem 1.8 If <P: 1£n ---* M (sn-I) is an intertwining linear map, then <P is a
multiplier transformation.

Proof: Let <Pmbe the restriction of<P to 1£r:n. The map H f--t 7rk<PmH from 1£r:n to
Hk is intertwining and linear. By Lemma 1.4, 7rk<Pmis either injective or the zero
map. Since 7rk<Pm1£r:n is invariant under rotations and 1£1. is irreducible it follows
from N(n, k) i: N(n, m) that 7rk<Pm= 0 or k = m and 7rk<Pmis an isomorphism.

Using the fact that pr( u .. ) is up to a multiplicative constant the unique function
in 1£1. invariant under rotations leaving the point u E sn-I fixed, it is easy to see
that there is a constant Ck(U) such that

7rk<PkP;:(U' . ) = Ck(U)P;:(u, .).

By replacing u with rJu for rJ E SGen), it follows that Ck is independent of u E sn-I.
Thus (1.21) implies

7rk<PkH = CkH

for every H E 1£1.. The linearity of<P and 7rkfinally gives the desired result. •

Note that in Theorem 1.8 we did not impose any continuity assumptions on <P.
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1.2 Convex Bodies and Star Bodies

This section collects material on convex bodies and star bodies, see the books by
Schneider [46] and Gardner [10] and the article [27] by Lutwak. We present the
notion of support functions and area measures and introduce the Steiner point map
and projection bodies. We discuss mixed volumes and state for quick reference the
most important relations among them. Then we turn to star bodies and introduce
radial functions, the intersection body operator and dual mixed volumes, for which
we state the inequalities from the dual Brunn Minkowski Theory.

1.2.1 Support Functions and Surface Area Measures

For n 2': 3 let Kn be the space of convex bodies in !Rn, i.e., nonempty, compact,
convex sets, equipped with the Hausdorff topology. Let Ki be the subset of Kn
consisting of convex bodies whose dimension is at least n - i. Then Kö are the
convex bodies with interior points. If K E Köcontains the origin in its interior, the
convex body

K* = {x E !Rn : X . Y ~ 1 for all y E K}

is called the polar body of K. A convex body K E KTL is uniquely determined by
the values of its support function h(K, .), defined on !RTL by

h(K,x) = max{x. y: y E K}.

Support functions are positively homogeneous of degree one and sublinear. Con-
versely, every function with these properties is the support function of a convex
body. We consider mostly their restrictions to sn-l which are elements of C(sn-l).
The uniform topology on Kn induced by identifying a convex body with its support
function on the sphere coincides with the Hausdorff topology. By (1.1), we have
{)h(K,.) = h({)K,.) for {) E SO(n). Thus, the support function of a convex body K
is zonal if and only if K is invariant under rotations of SO( n - 1). We will then call
K a body of revolution.

The most important algebraic structure on the set of convex bodies is Minkowski
or vector addition. For KI, K2 E Kn and ÀI, À2 2': 0, the Minkowski linear combina-
tion ÀIKI + À2K2 is

Using support functions, the Minkowski linear combination can be defined by

By Minkowski's existence theorem, a convex body K E Kö is also uniquely de-
termined up to translation by its surface area measure Sn-I(K, .). The measure
of a Borel set w ç sn-l is the n - 1 dimensional Hausdorff measure of the set of
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all boundary points of K at which there exists a normal vector of K belonging to
w. Sn-I(K,.) is an element of Mt(sn-I), the space of nonnegative measures on
sn-I having their center of mass in the origin, equipped with the weak* topology.
The topology on the set of translation classes of convex bodies with nonempty inte-
rior [Kö] induced by identifying a convex body with its surface area measure again
coincides with the Hausdorff topology. Every element of Mt (sn-I) that is not con-
centrated on any great sphere is the surface area measure of a convex body with
interiOl. points. For {J E SO(n), we have {JSn_I(K,') = Sn-I ({JK, .) and the surface
area measure of a convex body K is zonal if and only if K is a body of revolution.

For KI, K2 E Kö and )'1, À2 2': 0 (not both 0), the Blaschke linear combination
ÀI . /(1 # À2 . K2 is defined (up to translation) by

Sn_I(ÀI . KI # À2' K2") = ÀISn_I(KI,') + À2Sn-I(K2, .).

With Minkowski and Blaschke addition, Kn and [Kg] are abelian semi-groups.
The surface area measure of a Minkowski linear combination of convex bodies

KI, ... , Km can be expressed as a polynomial homogeneous of degree n - 1:

Sn-I(ÀIK1 + ... + ÀmKm,') = L Àil'" Àin_lS(Kil":" Kin_I' .). (1.26)

The coefficients S(Kill ... , Kin'-l' .) E Mt (sn-I) are called the mixed area measures
of Ki(, ... ,I<ïn. They are symmetric in their arguments and multilinear with respect
to Minkowski addition. The measures Sj(K,.) := S(K, ... , K, E, ... , E, .), where
Kappears j times and the Euclidean unit ball B appears n - 1 - j times, are called
the area measures of order j of K. The area measure of order one 51(K, .) is related
to the support function h(K, .) by the linear second order differential operator

ßI = ßo + (n - 1),
where ßo denotes the Laplace Beltrami operator on sn-I, see [15], p.87. We have

h({s(K)},.) = nh(K,.) * (ê .. ) = 7rlh(K, .).

(1.27)

(1.29)

There is no nonzero vector valued map from the set of translation classes of
convex bodies [Kö] = Kg /IRn that is continuous, rotation intertwining and additive
with respect to Blaschke addition. This fact is reflected by the relation

(1.30)
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1.2.2 Mixed Volumes and Projection Bodies

The volume of a Minkowski linear combination ÀII(I + ... + ÀnJ<m of convex bodies
1(1, ... ,I(m is a homogeneous polynomial of degree n in the Ài

The coefficients V(Kill ... , KiJ are called mixed volumes of Kill ... ' Kin. These
functionals are symmetric in their arguments, nonnegative, translation invariant
and monotone (with respect to set inclusion). Moreover, they have the following
properties:

(i) They are multilinear with respect to Minkowski linear combinations.

(ii) Their diagonal form reduces to ordinary volume:

V(K, ... ,K) = V(K).

(iii) They are invariant under simultaneous volume preserving linear transforma-
tions, i.e. if A E 5L(n), then

Denote by Vi(K, L) the mixed volume V(K, ... , K, L, ... , L), where Kappears
n - i times and Lappears i times. For 0 ::; i ::; n - 1, we write ltVi(K, L) for
the mixed volume V(K, ... , K, B, ... , B, L), where I( appears n - i-I times and
B appears i times. The mixed volume Wi(K, K) will be written as Wi(K) and is
called the ith quermassintegral of K. If C = (KI, ... , Ki), then Vi(K, C) denotes
the mixed volume V(K, ... , K, KI, ... , Ki) with n - i copies of 1(.

For any convex body 1(, we have the following integral representation:

1V(K, 1(1, ... , Kn-d = -(h(K, .), 5(K1, ... , Kn-I, .)).
n

In particular, for the functional VI (K, L), we have

1VI(K, L) = -(h(L,.), 5n_I(K, .)).
n

(1.31)

(1.32)

Hence VI : [Kö] x Kn -7 lR is bilinear with respect to Blaschke and Minkowski
addition. By (1.24) and (1.31), we get for K E Kn

and (1.33)

We will now present the fundamental inequalities of the Brunn Minkowski Theory.
In order to simplify the equality cases, we will state most of them only for convex
bodies with interior points. One of the most general and fundamental inequalities
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for mixed volumes is the Aleksandrov Fenchel inequality: If KI,' .. , Kn E K~ and
1 :S m :S n, then

m

\1([(1"", [(n)m 2 II \I(I<j, ... , Kj, Km+I"'" Kn).
j=1

(1.34)

Unfortunately, the equality conditions of this inequality are, in general, unknown.
An important special case of inequality (1.34), where the equality conditions are

known, is the Minkowski inequality: If K, L E K~, then

(1.35)

with equality if and only if K and Lare homothetic. In fact, a more general version
of Minkowski's inequality holds: If 0 :::;i :::;n- 2 and K, L E Ki, then

(1.36)

with equality if and only if K and Lare homothetic.
The classical inequality between two consecutive quermassintegrals states that

for K E Kn and 0 :S i :S n - 2,

IV. (K)n-i > "" IV.(K)n-i-11+1 _ n 1 , (1.37)

where ""n is the volume of the Euclidean unit ball B. If K E Ki~l' there is equality
in (1.37) if and only if K is a ball. By repeated application of (1.37) one obtains: If
K E JC~ and 0 :S i < j :S n - 1, then

W.(K)n-i > ""j-iW(K)n-jJ - n 1 , (1.38)

(1.39)

with equality if and only if K is a ball.
A consequence of the Minkowski inequality is the Brunn Minkowski inequality:

If K, L E K~, then

with equality if and only if K and Lare homothetic. This is a special case of the
more general inequality: If 0 :::;i :::;n - 2, then

(1.40)

with equality if and only if K and Lare homothetic.
A further generalization of inequality (1.39) is also known (but without equality

conditions): If 0 :S i :S n - 2, K, L, KI"," Ki E Kn and C = (KI, ... , Ki), then

Vi(K + L, C)I/(n-i) 2 \1i(K, C)I/(n-i) + Vi(L, c)I/(n-i). (1.41 )

The projection body 11K of K E Kn is the convex body whose support function
is given for u E sn-I by

(1.42)

where VOln_1 denotes (n - I)-dimensional volume and KluJ.. is the image of the
orthogonal projection of K onto the subspace orthogonal to u.
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Projection bodies and their polars have received considerable attention over the
last decades due to their connection to different areas such as geometric tomography,
stereology, combinatorics, computational and stochastic geometry, see [2], [3], [10],
[14], [15], [25], [26], [28], [33], [47], [54].

Definition (1.42) can be rewritten using mixed volumes and spherical convolution:

h(OK,u) = \l1(K, [-u,u]) = ~(Sn-1(K,.) * h([-ê, ê], .))(u),
2

(1.43)

(1.44)

where [-u, u] denotes the segment with endpoints -u and u. Note that by (1.10),
this can be interpreted as a weighted (Minkowski) rotation mean of the segment
[-':ê, ê]. In fact, 0 maps polytopes to finite Minkowski linear combinations of rotated
and dilated copies of [- ê, ê], and general convex bodies to zonoids, i.e., limits of
Minkmvski sums of line segments.

From formula (1.43), Lemma 1.1 and (1.15), we obtain the following wellknown
properties of the projection body operator 0 : Kn -t Kn:

(a) 0 is continuous.

(b) 0 is Blaschke Minkowski additive, i.e. O(K #L) = OK +OL for all K, L E Ka.

(c) 0 intertwines rotations, i.e. O('l9K) = 'l90K for all K E Kn and all 'l9E SO(n).

An important volume inequality for the polars of projection bodies is the Petty
projection inequality [39]: If K E Ko, then

\I(O*K)::; (~)n V(K)l-n,
Kn-1

with equality if and only if K is an ellipsoid. To prove the corresponding result for
the volume of the projection body itself is a major open problem in convex geometry,
see [34]. Petty conjectured that

n-l
K~ V(OK) ~ Kn V(Kt-1,
Kn-l

(1.45)

with equality if and only if K is an ellipsoid.
The polarization of volume under Minkowski linear combinations and (1.42) imply

an analogous behavior of the projection body operator

OP'lK1 + ... + ÀrnKrn) =L Ài1 ••• Àin_l O(Ki1, ... , Kin_I)'

where the sum is with respect to Minkowski addition. The bodies n(Ki1, ... , Kin_I)
are called mixed projection bodies and were introduced already in the classic volume
of Bonnesen-Fenchel [4]. Mixed projection bodies are symmetric in their arguments
and are multilinear with respect to Minkowski addition.

In [28] and [33], Lutwak considered the volume of mixed projection bodies and
their polars and established analogs of the classical mixed volume inequalities. We
will show in Chapter 3 that properties (a), (b) and (c) of the projection body oper-
ator are responsible not only for its behavior under Minkowski linear combinations,
but also for most of the inequalities established in [28] and [33].
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1.2.3 Radial Functions, Dual Mixed Volumes and
Intersection Bodies

A compact set L in ]Rn which is starshaped with respect to the origin 0 is uniquely
determined by the values of its radial function p(L, .), defined on JRn\{o} by

p(L,x) = max{,\;::: 0: Àx EL}.

Radial functions are positively homogeneous of degree -1. Thus we can identify
them with their restriction on sn-I. If p(L,.) is continuous on sn-l, we callL a
star body. With this definition the set of radial functions of star bodies coincides
with the nonnegative continuous functions on sn-I. Every J( E K.~ containing the
origin in its interior is a star body. We have the relation

h(K,.) = p-l(K*, .). (1.46)

Let sn denote the space of star bodies endowed with the uniform topology induced
by identifying a star body with its radial function on the sphere. For L], L2 E sn
and )1), À2 ;:::0, the radial Minkowski linear combination Àl LI + À2L2 is the star
body defined by

(1.47)

If À], À2 ;::: 0, then the radial Blaschke linear combination Àl . LI # À2 • L2 of the star
bodies LI and L2 is the star body whose radial function satisfies

(1.48)

For star bodies LI," ., Lm and Àl"'" Àm 2: 0, it is obvious from(1.47) that
pn-l(Àl . LI + ... +Àm . Lm,') can be expressed as a polynomial homogeneous of
degree n - 1

~ À ... À. p(L .. ) ... p(L .).b tl tn-I tl' tn-I'

il, ... ,in-l

(1.49)

The volume of a radial Minkowski linear combination ÀlLl + ... +ÀmLm of star
bodies L], ... , Lm admits a polarization formula of the form

The coefficients 1/ (Li!, ... , Li,.) are called dual mixed volumes of Lil, ... , Lin' They
are nonnegative, symmetric and monotone (with respect to set inclusion). They are
also multilinear with respect to radial Minkowski addition, 1/(L, ... , L) = V(L), and
they are invariant under simultaneous volume preserving transformations of their
arguments. The following integral representation of dual mixed volumes holds:
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(1.50)

(1.51)

where du is the spherical Lebesgue measure of sn-I. The definitions of \Îi(K, L),
11!i(K, L), etc. are analogous to the ones for mixed volumes. A slight extension of
the notation \Îi(K, L) is for r E IR

- 11Vr(K, L) = - pn-r(K, u)pr(L, u)du.
n sn-l

Obviously, we have \I,.(L, L) = VeL) for every r E IR and every LE sn.
The most general inequality for dual mixed volumes is the dual Aleksandrov

Fenchel inequality: If LI, ... , Ln E sn and 1 ~ m ~ n, then
m

V(Ll" .. , Ln)m ~ IIV(Lj, ... , Lj, Lm+l"'" Ln)
j=l

with equality if and only if LI,"" Lm are dilates. A special case of inequality (1.51)
is the dual Minkowski inequality: If K, L E sn, then

Vl(K, Lt ~ V(Kt-lV(L),

with equality if and only if K and L are dilates. A more general version of the dual
Minkowski inequality is: If a ~ i ~n - 2, then

(1.52)

with equality if and only if K and L are dilates.
We will also need the following Minkowski type inequality: If K, L E sn, then

(1.53)

with equality if and only if K and L are dilates.
The inequality between two consecutive dual quermassintegrals states that, for

LE sn and 0 ~ i ~n - 2,

Wi+l(Lt-i ~ KnWi(Lt-i-l,
with equality if and only if L is a centered ball.

A consequence of the dual Minkowski inequality is the dual Brunn Minkowski
. inequality: If K, L E sn then

V(K -+ L)I/n ~ V(K)l/n + V(L)I/n,

with equality if and only if K and L are dilates. Using Minkowski's integral inequal-
ity, this can be further generalized: If 0 ~ i ~n - 2, then

WieK -+- L)l/(n-i) ~ l¥i(K)I/(n-i) + Wi(L)I/(n-i),

with equality if and onlyif K and L are dilates. If 0 ~ i ~n - 2, K,L, LI, ... , Li E
sn and C = (LI, ... , Li), then

'~(1(+ L, C)l/(n-i) ~ \Îi(K, c)I/(n-i) + \Îi(L, c)l/(n-i),

with equality if and only if K and L are dilates.
The intersection body IL of L E sn is the star body whose radial function is

given for u E sn-l by
(1.54)

21



Using spherical convolution, we can rewrite definition (1.54) as

(1.55)

where asn-2 is the invariant measure concentrated on the parallel circle S~-2 with
o

total mass I);n-\' Intersection bodies appear already in a paper by Busemann [6],
but were first explicitly defined and named by Lutwak [30]. Intersection bodies
turned out to be critical for the solution of the Busemann-Petty problem, see [8],
[9], [11], [19], [21], [22], [56]. The fundamental volume inequality for intersection
bodies is the Busemann intersection inequality [6]: Among bodies of given volume
the intersection bodies have maximal volume precisely for ellipsoids centered in the
origin. To prove a correspondingresult for the minimal volume of intersection bodies
of a given volume is another major open problem in convexgeometry.

From (1.55), we candeduce the following properties of the operator I :S1I ---t S1I:

(a)d I is continuous.

(b)d I(K if L) = IK -+ IL for all K,L E sn.
(c)d I intertwines rotations.

Moreover (1.55) implies the following behavior of the intersection body with re-
spect to radial Minkowski addition

where the sum is with respect to radial Minkowski addition. The star bodies
I(Li1, .•. , Lin_1) are called mixed intersection bodies. They were introduced by
Zhang [55]. Mixed intersection bodies are symmetric in their arguments and are
multilinear with respect to radial Minkowski addition.

In [23] and [24], it was shown that for the fundamental inequalities of the dual
Brunn Minkowski Theory, the volume of these mixed intersection bodies satisfies
analogous inequalities. In Chapter 3 we will generalize these results to operatorse . sat.isfying properties (a)d' (b)d and (C)d of the intersection body operator.
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Chapter 2

Intertwining Additive Maps

2.1 Endomorphisms of Kn

In this section, we give an overview of the known results on Minkowski and Blaschke
endomorphisms of convex bodies by Schneider [43], [44] and Kiderlen [20]. We first
collect a few lemmas on intertwining maps of continuous functions and measures
and prove a strengthened version of a very usefullemma by Schneider and Kiderlen.
This will allow us to give short proofs of Kiderlen's characterization theorems of
weakly monotone Minkowski and general Blaschke endomorphisms. Finally, we will
explain Kiderlen 's notion of adjointness of Minkowski and Blaschke endomorphisms
and make a few remarks on the open problem concerning the classification of general
Minkowski endomorphisms.

2.1.1 Some Useful Lemmas

In [7], Dunkl considered continuous, rotation intertwining and linear mapsof c(sn-I)
into itself. We call a map <l> : C(sn-I) -t C(sn-I) with thesepropertiesan endo-
morphism of C(sn-I) and state the following rcsultdue to Dunkl [7] as a lemma:

Lemma 2.1 A map <P isan endomorphism of C( sn-I) if and only if there is a
unique measure J-l E M (sn-I, ê) such that

<P f = f * IL, f E C(sn-l). (2.1 )

Proof From Lemma 1.1 and (1.15) it follows that mappings of the form (2.1) are
endomorphisms. The uniqueness of the measure J-l follows from the multiplier prop-
erty of zonal convolution and the completeness of the system of spherical harmonics.

For an endomorphism <P of C(sn-I) consider the map

r.p: C(sn-I) -t JR, f ~ <l>f(ê).
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By the properties of <I>, the functional <p is continuous and linear on C (sn-I). Thus,
by the Riesz representation theorem, there is a measure fl E M(sn-l) such that

<pU) = (J, /1,).

Since <p is SO(n - 1) invariant, the measure p is zonal. Thus, we have for Ti E sn-l

The theorem follows now from (1.13). •
Note that, in the proof of Lemma 2.1, we only need the continuity of the map

f f---1 <I> f (ê). Lemma 2.1 illustrates the use of classifications of linear functionals
to obtain results on intertwining linear maps. We will draw on this idea in a more
geometric context later on. The following corollary shows that also endomorphisms
of M(sn-l), i.e., continuous, rotation intertwining and linear maps of M(sn-l) into
itself, are generated by zonal measures, see [20].

Corollary 2.2 A map '11 is an endomorphism of M(sn-l) if and only if there is a
unique measure fl E M (sn-l, ê) such that .

'I1v = v * p, (2.2)

Proof: By Lemma 1.1 and (1.15), mappings ofthe form of (2.2) arc endomorphisms.
The uniqueness of the measure fl follows again from the multiplier property of zonal
convolution and from the completeness of the system of spherical harmonics.

Conversely, let '11 be an endomorphism of M (sn-I). It is easy to see that also
the adjoint 'II. of '11 is rotation intertwining. Moreover, we have

Thus, Ill. is continuous and hence an endomorphism of C(sn-l). By Lemma 2.1,
there is a unique measure fl such that 'II.f = f * fl. Thus, by Lemma 1.2, we have

('I1v,1) = (v, 'II. f) = (v,f * p) = (v * fl, 1). •
We call a map <I> : C(sn-l) ---t C(sn-l) monotone ifit maps nonnegative functions

to nonnegative ones. The following lemma is a slight variation of Lemma 2.1. It can
be proved, using the Riesz representation theorem for positive linear forms:

Lemma 2.3 A map <I> : c(sn-l) ---t C(sn-l) is a monotone, linear map that inter-
twines rotations if and only if there is a unique measure p E M+(sn-l, ê) such that

<I> f = f * p, f E c(sn-l).

We now turn to mappings of convex bodies. By (1.29), the Steiner point map can
be interpreted as a convolution operator on the cone of support functions. In the
following we will consider more general transformations of convex bodies induced
by convolution operators.
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By (1.5), the convolution from the left with measures J-LE M+(50(n)) can be
interpreted as (weighted) rotation means. In particular we have for every convex
body K E K71

J-L* h(K,.) = r h('19K, .)dJ-L('19),
}sO(n)

The following consequences of this interpretation appear in [15].

Lemma 2.4 Let J-LE M+(50(n)).

(a) For K E Kn, the function 11, * h(K, .) is the support function of a convex body.

(b) For' LE Ka and J-Li= 0, the measure J-L*5n-1(L,.) is the surface area measure
of a convex body with interior points.

Let K E Ka. Then, by (1.30) we have 'Tr15n-l(K,.) = 0, i.e., the center of mass
of surface area measures is the origin. By (1.14) and the remarks after Definition
1.7, spherical convolution operators from the right are multiplier transformations.
Thus, we have for a nonnegative measure J-LE M(5n-1, ê)

'TrI (5n-l (K, .) * J-L)= o.

Hence the convolution of surface area measures with nonnegative zonal measures
from the right again give nonnegative measures with center of mass in the origin. It
is also not hard to see that 5n-1(K,.) * J-Lis not concentrated on any great sphere.
Thus, the measure 5n-l (K, .) * J-Lis again a surface area measure of a convex body.
Noting (1.30), we see that in fact it is sufficient that the measure J-Lis positive up to
addition of a measure with density c(ê .. ). We capture this property ofa measure
in the following definition:

Definition 2.5 A measure J-LE M(5n-1, ê) is called a linear measure if J-Lhas a
density of the form c(ê .. ), cE IR.
The measure J-LE M (5n-1 , ê) is called weakly positive if it is nonnegative up to
addition of a linear' measure.

It was shown in [20] that also the cone of support functions is invariant under
convolution of zonal weakly positive measures. We summarize these results in

Lemma 2.6 Let J-LE M(5n-1, ê) be weaklypositive.

(a) For K E Kn, the function h(K,.) * J-Lis the support function of a convex body.

(b) For L E Ka and J-Lnot linear, the measure 5n-1(L,.) * 11, is the surface area
measure of a convex body with interior points.

\Ve will need a criterion to determine if a measure 11, E M (5n-1, ê) is weakly
positive. Let .c = {h(K,.) - h(L,.) : K, L E Kn} denote the vector space of
differences of support functions. The following lemma is in a slightly weaker form
due to Schneider [44] for n = 2 and Kiderlen [20] for n 2: 3.
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Lemma 2.7 Let gEI:- and let N be a dense subset of Mt(sn-l). Then

if and only if there is an x E ]Rn such that

g(u) + x' u ::::0

(2.3)

(2.4)

Proof: Obviously, (2.4) for some x E ]Rn implies (2.3). Conversely, assume that (2.3)
holds. Since N is dense in Mt(sn-l), (2.3) holds for every measure in Mt(sn-l).
Let

g = h(L,.) - h(M,.)

with convex bodies L, M E Jeo' Define the inradius of L relative to M by

r(L, M) = max{>. ::::0 : >'M ç L + x for some x E ]Rn}.

Choose x E ]Rn, with r(L, M)M ç L + x. By the definition of r(L, A1), the contact
points of r(L, A1)M and L + x are distributed on their respective boundaries such
that

oE conv{N(L, y) n sn-I: y E r(L, A1)M n L + x},

where N(L, y) is the normal cone of L in y. Otherwise we could move the body
r(L, M)M inside L + x away from the contact points and blow it up, in contradic-
tion to the definition of r(L, M). Let J1 E Mt(sn-l) be concentrated in the set
{N(L, y) n sn-I: y E r(L, M)M n L + x}. By (2.3),

r(L, M)(h(M, .), J1) = (h(L, .), /1) = (g + h(M,.), /1) :::: (h(A1, .), J1).

Thus r(L, A1) ::::1, and hence we have for every u E sn-l

g(u) + h(M, u) + x . u = h(L + x, u) ::::r(M, L)h(M,u) ::::h(M, u). •
Using (1.32), and noting that the setof surface area measures of convex bodies

is a dense subset of Mt (sn-I), we obtain the following geometric consequence of
Lemma 2.7 which' was proved differently by Weil in [50].

Corollary 2.8 Let K,L E Jen, If V1(M,K) ~ V1(M,L) for every M E Jeo, then
there is a vector x E ]Rn such that K + x ç L.

Note that, if the function g in Lemma 2.7 is zonal, then the vector x in (2.4) can
be chosen as a multiple of ê. The following consequence of Lemma 2.7, which we
will use frequently, is due to Kiderlen [20].

Corollary 2.9 Let Il E M(sn-l, ê), and let N be a dense subset ojMt(sn-l).
Then

v* J1 E Mt(sn-l)

if and only if J1 is weakly positive.
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Proof: It is clear that (2.5) holds if J1 is weakly positive. Conversely, assume that
(2.5) holds. Let (tpkhEN be a zonal approximate identity. Then 1/*J1*tpk 2 0, and by
Lemma 1.3, we have J1 * tpk E coo(sn-l). Using (1.13), we see that (1/ * J1 * <Pk)(ê) =
(f.L * <Pk,1/) 2 0 für every 1/ EN. As COO(sn-l) ç £, see [46] p.27, by Lemma 2.7 and
the remark after Corollary 2.8, there are Ck E IR such that

Thus, for nonnegative f E c(sn-l), we have by (1.24)

f * J1 * <Pk 2 -ckf * (ê .. ) = - Ck ni!.. n

By Lemma 1.3, we have J1 * <Pk -+ J1 weakly, and thus f * J1 * <Pk -+ f * J1 uniformly
by Lemma 1.1. Hence there exists b E IR such that b 2 -ckni!. Since ni! is a lin-
ear functional, the sequence Ck is bounded. Therefore we can assume that Ck -+ c.•

2.1.2 Kiderlen's Characterization Theorems

We now use the tools that were prepared in the last subsection to give short proofs
of the classification results on rotation intertwining and additive maps from [20].

Definition 2.10 We call a map <I> : !Cn -+ !Cn that is continuous, rotation inter-
twining and Minkowski additive a Minkowski endomorphism. A Blaschke endo-
morphism is a map W : [!Cô] -+ [!Cô] that is continuous, rotation intertwining and
additive with respect to Blaschke addition.

Let K, L E !Cn. Then K ç L if and only if h(K,.) ::; h(L, .). Thusby (1.29) a
map <I> : !Cn -+ !Cn defined by

h(<I>K,.) = h(K,.) * J1,

with a weakly positive measure J1 E M(sn-l, ê) is monotone (with respect to set
inclusion) on the set of convex bodies having their Steiner point in the origin. We
call a Minkowski endomorphism with this property weakly monotone.

A classification of weakly monotone Minkowski and general Blaschke endomor-
phisms was established by Kiderlen in [20]. We summarize his results in

Theorem 2.11 A map <I> : !Cn -+ !Cn is a weakly monotone Minkowski endomor-
phism if and only if there is a unique weakly positive measure J1 E M (sn-l, ê) such
that

h(<I>K,.) = h(K,.) * J1, (2.6)

A map W : [!Cô] -4 [!Cô] is a Blaschke endomorphism if and only if there is a weakly
positive measure 1/ E M(sn-l, ê), unique up to addition of a linear measure, such
that
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Proof By Lemma 2.6, mappings of the form of (2.6) and (2.7) are intertwining
endomorphisms of the respective additive structures. Thus, we only need to show
that there are weakly positive measures J-L,V E M(sn-l, ê) such that (2.6) and (2.7)
hold for every weakly monotone Minkowski and general Blaschke endomorphism.

Let <P be a weakly monotone Minkowski endomorphism. Since the Steiner point
map is uniformly continuous, it is easy to show that the monatanicity property of
<P implies uniform continuity of <P. Thus the induced map on the vector space of
differences of support functions <Ï> : I:- -7 C(sn-l) defined by

<Ï>(h(I<I") - h(K2, .)) = h(<pKl") - h(<pK2")

is continuous, additive and intertwining. Since I:- is dense in C(sn-l), the map <Ï>
can be extended uniquely to an endomorphism of C(sn-l). By Theorem 2.1, there
is a unique zonal measure 11E M(sn-l, ê) such that

•

Since <P is weakly monotone, for every nonnegative f E c(sn-l) with 7rlJ = 0 we
have

(J * J-L)(ê)= (I, J-L) ~ O.

These functions form a dense subset in the weak* topology of Mt(sn-l). Hence,
by Lemma 2.7, the measure J-L is weakly positive. _

Let \II be a Blaschke endomorphism. Then \II induces a linear map \II on the
vector space Mo(sn-l) of differences of surface area measures of convex bodies by

~(Sn-l(Kl") - Sn-I(K2, .)) = Sn-l(\IIK1,') - Sn-l (\IIK2, .).

~ can be further extended to the space M (sn-I) by

~O' = ~(O' - 7rlO'),

Define a map r: C(sn-l) -7 c(sn-l)

(rJ)(u) := (I, ~6u)'

By the properties of ~ and Theorem 2.1, the map r is an endomorphism of C(sn-I),
hence there is a measure v E M (sn-I, ê) such that rf == f * v for f E C( sn-I).

We thus have for every fEe (sn-I) and every u E sn-l

By the linearity of ~ and of the convolution, it follows that ~O' = a * v for every
a E Mo(sn-l) with finite support. Hence, for every polytope P E K~,

By the continuity of \II, of the convolution and by the weak continuityof surface
area measures, this implies (2.7) for every K E Kg. By Corollary 2.9 and (1.30),
the measure v is weakly positive and unique up to addition of a linear measure. •

Kiderlen noted in [20] the following nice application of Theorem 2.11:
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Corollary 2.12 Let<I>:Kn ~ Kn be a weakly monotone Minkowski endomorphism,
which is not a combination of the identity and the reflection in the origin. If J( E Kn
is homothetic to <I> 1<, then 1< is a ball.

The major open problem concerning Minkowski endomorphisms is a classification
without the extra assumption of weak monotonicity. For n = 2, Schneider obtained
in [44] such a result by showing that every Minkowski endomorphism is weakly
monotone. The following conjecture appears implicitly in [44] and [20].

Conjecture 2.13 Every Minkowski endomorphism is weakly monotone.

In the course of this chapter we will give several reformulations of this conjecture.
In [20], a natural notion of adjointness between Minkowski and Blaschke endo-

morphisms was introduced.

Definition 2.14 A Minkowski endomorphism <I> and a Blaschke endomorphism \l1
are called adjoint if for every 1< E Kô and every L E Kn

Using (1.32), Lemma 1.2 and Theorem 2.11, we see that a Blaschke and a
Minkowski endomorphism are adjoint if and only if they have the same generat-
ing measure up to addition of a linear measure. By Theorem 2.11, every Blaschke
endomorphism has an adjoint weakly monotone Minkowski endomorphism. The
converse statement is equivalent to Conjecture 2.13:

Conjecture 2.131 Every Minkowski endomorphism has an adjoint Blaschke
endomorphism.

2.2 Blaschke Minkowski Homomorphisms

As a continuation of the work by Schneider and Kiderlen, we investigate Blaschke
Minkowski homomorphisms, i.e., continuous mappings from the space Kn into itself,
that are rotation intertwining and Blaschke Minkowski mixed additive. The main
results in this section are a representation theorem for general Blaschke Minkowski
homomorphisms and a complete classification of all even Blaschke Minkowski homo-
morphisms. Moreover, we give characterizations of the projection body operator
and the Minkowski and Blaschke difference body operators. In the last part of this
section, we investigate the behavior of Blaschke Minkowski homomorphisms under
Minkowski linear combinations and show that they admit a polarization formula
analogous to that of the ordinary volume functional. The results of this section are
mainly taken from [48].
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2.2.1 Representation and Characterization Theorems

Since endomorphisms of Kn are more or less well understood, the question arises
how homomorphisms between the two natural additive structures, Minkowski and
Blaschke addition, look like. This motivates the following definition:

Definition 2.15 A map <P : [Kô] -+ Kn is called a Blaschke Minkowski homo-
mOTphism if it satisfies the following conditions:

(i) 1> is continuous.

(ii) FOT all K, L E [Kg]
<P(K # L) = <PK + <PL.

(iii) 1> is rotation intertwining, i.e. for all K E [Kô] and eveTY 'l9E SO(n)

<P('l9K) = 'l9<PK.

(2.8)

By the properties (a), (b) and (c) of the projection body operator, see Section 1.2.2,
TI is a first example of a Blaschke Minkowski homomorphism. Later on we will see
that there are many more examples, see also [13], [18] and [48]. We call the operator
that maps every convex body to the origin tTivial.

The representation formulas for Minkowski and Blaschke endomorphisms ob-
tained in Theorem 2.11 show that the respective endomorphisms ind uce multiplier
transformations on the cone of support functions and surface area measures, re-
spectively. This fact has been deduced before for Minkowski endomorphisms by
Schneider in [43] using a different method. In the following we will adapt the tech-
nique by Schneider to show that also Blaschke Minkowski homomorphisms induce
multiplier transformations.

Every Blaschke Minkowski homomorphism <P : [Kô] -+ Kn induces a map on the
set of surface area measures by

K E K~. (2.9)

Using Theorem 1.8, we obtain:

Theorem 2.16 Let 1> : [Kö] -+ Kn be a Blaschke Minkowski homomoTphism. Then
the induced map on the set of surface area measures is a multiplier transformation,
i. e., there is a sequence Ck E IR such that, for every K E Kô,

For the proof of Theorem 2.16, we need some well known facts on the vector space
of differences of surface area measures, see [53] and [16], p.70.

Lemma 2.17 Let Q ç M~(sn-l) denote the set of surface area measures of convex
bodies with interior points. Then

(a) Q is dense in Mt(sn-l) and Mo(sn-l) = Q - Q.

(b) Q n 1{n is dense in Q.
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PROOF OF THEOREM 2.16: By the additivity property of Blaschke Minkowski
homomorphisms, the induced map (2.9) on the cone Q of surface area measures
of convex bodies is linear, and hence by Lemma 2.17 (a), there is a unique linear
extension <Î> to the vector space M (sn-I) given by

where /.l- Kill, ~ Sn-I (I(+, .) - Sn_I(K_,.) E Mo(sn-I) for some K+, ICE J(o.
The restriction of <Î> to 1{n is by definition linear and intertwines rotation~. Thus,

by Theorem 1.8, it is a multiplier transformation. The result follows since <I> and <I>
coincide on the set Q n 1{n which is dense in Q by Lemma 2.17 (b). •

By Cauchy's surface area formula, the mean width of the projection body of a
convex body K E J(o is a constant multiple of the surface area of K. The following
corollary to Theorem 2.16 is a generalization of this fact.

Corollary2.18 Let<I>: [Jeo]-T J(n be a Blaschke Minkowski homomor'phism. Then

where r<l>E IR+ is the radius of the ball <I> B.

Proof We will first show that <I>Bis a ball. To see this note that KkSn-I(B,.) = a
for k ~ 1. Thus by Theorem 2.16, we have Kkh(<I>B,.) = a for k ~ 1, hence <I>Bis a
ball. By Theorem 2.16, the radius 1'<1> of <I>Bis given by

where Co denotes the first multiplier of <I> and Wn is the surface area of B . By (1.33),
we have Wn_I(<I>K) = KnKoh(<I>K) and thus, again by Theorem 2.16 and (1.33),

•
From now on we will view a map <I> : [J(o] -T J(n via the obvious identification

as a translation invariant map on J(o. The next lemma shows that every Blaschke
Minkowski homomorphism has a continuous extension to J(n.

Lemma 2.19 Let <I> : J(o -T Jen be a Blaschke Minkowski homomorphism. Then
there is a unique continuous extension of<I> to J(n.

Proof Let Km E J(o be a sequence converging to K E J(n. Then we define

<I>K= lim <I>Km.
711-+00

To see that this limit exists, note that, by Corollary 2.18, Wn_I(<I>Km) = r'<I>Mll(I(m).
Thus, M1n_I(<I>Km) -T r<l>WI(K) as m -T 00. Hence the sequence <I>](m is bounded.
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Let épKrnj be a convergent subsequence of épKm with limit L E ICn. By Theorem
2.16 and (1.23),

By Lemma 1.1, this converges uniformly to Ck7fkSn-l(K, .). Onthe other hand,
7fkh( épKrnj , .) ~ 7fkh( L, .) as j -+ 00. By the completeness of spherical harmonics,
the limits of every convergent subsequence épKmj of épKm coincide and thus épKm
itself is convergent. •

In the following, we will not distinguish between a Blaschke Minkowski homo-
morphism ép : ICö -+ ICn and its continuous extension to ICn.

In order to establish a representation theorem for Blaschke Minkowski homomor-
phisms, we will drawon the idea by Dunkl [7] and use a classification of real valued
funetionalsto obtain a representation for rotation intertwining linear maps, see also
[44]. A map ép defined on ICn and taking values in an abelian semigroup is called a
valuation if for all K, LE ICn such that also KU L E ICn,

ép(K U L) +ép(K n L) = épK + épL.

Since the map K t---+ Sn-l(K,.) is a translation invariant valuation, see [46], p.201,
we obtain from the definition of Blaschke addition that for all K, L E ICö such that
K U L E ICö and K n L E lCD'

(K U L) # (K n L) = K # L.

Thus, if ép is a Blaschke Minkowski homomorphism, we have by Lemma 2.19 for all
K, L E ICn such that Ku LE ICn

ép(K U L) + ép(K n L} = épK + épL. (2.10)

Hence, ép is a valuation with respect to Minkowski addition. For further information
on valuations of this type, see [25] and [26].

The following characterization is due to Hadwiger [17] and McMullen [35]:

Theorem 2.20 A map <p: ICn -+ lR is a continuous translation invariant valuation
homogeneous of degree n - 1 if and only if there is a function g E C( sn-I), unique
up to addition of a linear function, such that

<p(K) = (g,Sn-l(K, .)).

Using Theorem 2.20 and (2.10), we can derive a representation theorem for
Blaschke Minkowski homomorphisms.

Theorem 2.21 If ép : ICn -+ ICn is a Blaschke Minkowski homomorphism, then
there is a weakly positive g E C( sn-l, ê), unique up to addition of a linear function,
such that

h(épK,.) = Sn-l(K,.) * g.
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Proof: Define a functional cp : Kn -t !R by

cp(K) = h(if?K, ê).

Since Sn-l (>,K, .) = Àn-ISn_I(K,.) for À ~ 0 and K E J(n, we have by (2.8)

if?ÀK = Àn-1if?K. (2.12)

Using (2.12) and (2.10), we see that the map cp is a continuous valuation on J(n
homogeneous of degree n - 1. By Theorem 2.20, there is a function 9 E c(sn-I),
unique up to addition of a linear function, such that

cp(K) = (g, Sn-l(K, .)).

Since cp is invariant under rotations leaving ê fixed, the function 9 is zonal, and
thus, by (1.1) and (1.2),

h(if?K,Tj) = h(if?K,TJê) = (g,Sn_I(TJ-1K,.)) = (TJg,Sn-l(K,.)). (2.13)

(2.11) follows now from (1.13) and (1.19). To see that 9 is weakly positive, note
that by (1.29), (1.30) and the commutativity of the convolution of zonal functions,

h({s(if?K)},.) = nh(if?K,.) * (ê .. ) = nSn-l(K,.) * (ê .. ) * 9 = O.

Since s( if?K) E relint if?K, see [46], p.43, we have h( if?K, .) ~ O. Thus, noting that
the set of surface area measures is a dense subset of M;;-(sn-l), it follows from
Corollary 2.9 that 9 is weakly positive. •

For later applications, we state further properties of thegenerating functions of
Blaschke Minkowski homomorphisms in the following lemma.

Lemma 2.22 Let 9 E c(sn-l, ê) be the generating function of a Blaschke Minkowski
homomorphism.

(a) gis a difference of support functions, i.e. gEL.

(b) There is a symmetric body ojrevolution L E Kn such that, for every u E sn-I,

g(u) + g( -u) = h(L, u).

Proof By Lemma 2.17 (a), there are convex bodies K+,K_ E Kô such that

Since the Dirac measure o~ is the neutral element for zonal convolution, and ase
(7rlOê)(u) = nê. u by (1.24) we obtain

(Öê - 7rlÖê) * 9 = 9 - 7rlg = h(if?K+,.) - h(if?K_, .).

Since 7rlg is a linear functional on !Rn, there is a vector x E !Rn such that

(7rlg)(U) = x. u = h({x}, u).

Hence 9 = h(if?K+ + x,.) - h(if?K_,.), which proves (a).
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To see (b), let {bi, ... , bn} be an orthonormal basis in ]Rn such that ê = bn- For
a vector X E ]Rn let Xl, ... , Xn, denote its coordinates with respect to bl, ... , bn.
Choose ß E IR+ such that the ellipsoid EQ defined by

2 2 2
Xl + ... + Xn-l Xn

a2 + ß2 :::;1

has surface area S(EQ) = 1. It was shown in [15], p.l03, that as a --t 00, we have
ß --t 0 and

weakly. By Lemma 1.1,

uniformly in u E sn-I. Since h( <P EQ, .) converges uniformly, it converges to a sup-
port function of a convex body, which proves (b). •

We call a map <P : ;en --t ;en even if <PK = <P(~K) for all K E ;en. An
immediate consequence of Lemma 2.22 is the completeclassification of all even
Blaschke Minkowski homomorphisms.

Theorem 2.23 A map <P : ;en --t ;en is an even Blaschke Minkowski homomorphism
if and only if there is a centrally symmetric body of revolution L E ;en, unique up
to translation, such that

h(<PK,.) = Sn-I(K,.) * h(L, .).

Proof: A Blaschke Minkowski homomorphism is even if and only if its generating
function is even. Thus the result follows from Lemma 2.22 (b). •

Then e is an even Blaschke Minkowski homomorphism whose images are (limits
of) Minkowski sums of rotated and dilated copies of the disc B n ê.L. The value
h(8K, u) is up to a factor the integrated surface area of parallel hyperplane sections
of K in the direction u.
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If 9 = h( L, .) for some body of revolution L E Kn is the generating function of a
Blaschke Minkowski homomorphism <I>, then by (2.13) and (1.32),

(2.14)

Since KI ç K2 if and only if h(I<I' .) ~ h(K2' .), the monotonicity of mixed volumes
together with (2.14) implies

Corollary 2.24 A Blaschke Minkowski homomorphism whose generating function
is given by h(L, .) for some L E Kn, is monotone with respect to set inclusion.

Note that by Theorem 2.23 and Corollary 2.24, every even Blaschke Minkowski
homomorphism is monotone.

By Lemma 1.10, every map <I> : Kn -+ Knof the form

h(<I>K,.) = Sn-I (I<, .) * h(L,.)

for some L E Kn is a Blaschke Minkowski homomorphism, but in general there are
generating functions 9 of Blaschke Minkowski homomorphisms that are not support
functions. An example of such a map is the (normalized) second mean section
operator M2 introduced in [13] and further investigated in [18]: Let Di be the affine
Grassmanian of two-dimensional planes in !Rn and /12 its motion invariant measure,
normalized such that /12 ( {E E Di : E n B =J. 0}) = K-n-2. Then

h(M2K,.) = (n-l) J h(KnE,.)d/12(E)-h({zn_I(K)},.) = Sn-l(I<,.)*g2, (2.15)
En

2

where Zn-l (K) is the (n - l)st intrinsic moment vector of K, see [46], p.304, and
where Ag2 is given by

Ag2(t) = arccos( -t)vl - t2.

The function g2 is not a support function. Note that the operator M2 is not mono-
tone but that it has the following weak monotonicity property: M2 is monotone
on those convex bodies which have their (n - l)st intrinsic moment vector in the
origin. This is similar to the monotonicity property of weakly monotone Minkowski
endomorphisms.

We note here that the function g2 has appeared in convexity before, but in a
different context. In [1], Berg showed that for every n 2': 2 there are functions gn
such that, for every K E Kn with 8(K) = 0,

h(K, .) = SI (I<, .) * gn' (2.16)

The generating function of the operator Nh is up to a factor precisely the function
appearing in (2.16) for dimension 2.

We will give now a complete characterization of generating functions of Blaschke
Minkowski homomorphisms in the spirit of a classification result of Weil [52] of
generating measures of generalized zonoids. For this, we need the extension of area
measures of convex bodies to the space .c of differences of support functions.
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Definition 2.25 Let gi E L, i = 1, , n - 1, with gi = h(l<P,.) - h(Kl, .). Then
the mixed surface area measure of gl, , gn-I is defined by

S(gl"", gn-I,') =
0:1 , ... ,O:n-I E{O,1}

For a function f E C(sn-I), define

\I(J,gl, ... ,gn-l) = (1,S(gl, ... ,gn-I"))'

For gEL and j = 1, ... , n - 1, the measure Sj(g,.) = 5(g, ... , g, 1, ... , 1,.) wher'e 9
appears j times and 1 appeal's n - j - 1 times, is called the surface area measure of
order' j of g.

If <I> is a Blaschke Minkowski homomorphism, then by Lemma 2.22 (a),

h(<I>K,.) = Sn-I (I<, .) * 9 = Sn_I(K,.) * h(L+,.) - Sn-I(K,.) * h(L_, .),

where 9 = h(L+,.) - h(L_, .). Thus defining Blaschke Minkowski homomorphisms
<1>+ and <1>_ with generating functions h(L+,.) and h(L_,.), we get

(2.17)

In the light of (2.17), we need a criterion to determine whether a difference of support
functions is in fact a support function. This was established by Weil in [51].

Theorem 2.26 A function gEL is the support function of a convex body K if and
only if, for all j E {I, ... , n - I},

Sj(g,.) EM:(sn-I).

In order to use Theorem 2.26, we need to determine the area measures Sj (<I> K, .).
In [15], p.l05, the area measures ofthe convex body with support function l.L*h(K, .),
jj, E M+(SO(n)) were calculated. The result established there extends easily to
differences of support functions. Identifying spherical measures with right SO( n - 1)
invariant measures on SO(n), we get the following lemma.

Lemma 2.27 Let <I> be a Blaschke Minkowski homomorphism with generating func-
tion gEL, Then (1, Sj(<I>K, .)) is given by

1 .V(J, Ag(ul .. ), ... , Ag(uj .. ),1, ... , l)dSn-1 (K, ud ... dSn-1 (K, Uj).
(sn-l )1

Using Lemma 2.27, Theorem 2.26 and the fact that the set of surface area mea-
sures of convex bodies forms a dense subset of Mt (sn-I), we obtain the following
characterization of generating functions of Blaschke Minkowski homomorphisms.

Theorem 2.28 A function gEL is the generating function of a Blaschke Minkowski
homomorphism if and only if, for every j = 1, , n - 1,

1 V(J, Ag(ul .. ), ... , Ag(Uj .. ),1, , l)djj,(uI) '" djj,(uj) 2: 0
(sn-l)i

for every nonnegative f EC(sn-I) and every jj, E Mt (sn-I).
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2.2.2 Endomorphisms and Homomorphisms

We now establish a connection between adjoint Minkowski and Blaschke endomor-
phisms and Blaschke Minkowski homomorphisms.

Theorem 2.29 Let \II be a Minkowski and \II. a Blaschke endomorphism. Then the
following statements are equivalent:

(1) \II and \II. are adjoint endomorphisms.

(2) For every Blaschke Minkowski homomorphism <I>

<I> 0 \II. = \II 0 <I>.

(3) (2.18) holds for some injective Blaschke Minkowski homomorphism <I>.

(2.18)

Proof: If \II and \II. are adjoint, then \II is weakly monotone and they have the same
generating measure I.L E M (sn-I, ê). Let <I> be a Blaschke Minkowski homomor-
phism with generating function g E C(sn-l, ê). From the commutativity of zonal
convolution, it follows that

h(<I>\II.1<,.) Sn-l (\II. 1<, .) * g = Sn~l (1<, .) * J.L * g
Sn-l(1<,.) * g * J.L = h(<I>1<,.)* Il, = h(\II<I>1<,.).

Thus (1) implies (2) and obviously (2) implies (3).
By the multiplier property, a Blaschke Minkowski homomorphism <I> is injective

if and only if all the multipliers of g are nonzero.' Thus, the multipliers of \II. and
\II can be determined from <I> 0 \II. and \II 0 <I> and are equal if (2.18) holds. By the
completeness of the system of spherical harmonics it follows that (3) implies (1) .•

Theorem 2.29 shows that the following conjecture is equivalent to Conjecture 2.13:

Conjecture 2.132 There exists an injective Blaschke Minkowski homomorphism
whose range is invar'iant under every Minkowski endomorphism.

In [13], Goodey and Weil showed that the second mean section operator M2 is
injective. Thus, another formulation of Conjecture 2.13 is:

Conjecture 2.133 For every Minkowski endomorphism <I> there exists a Blaschke
endomorphism \II such that

Motivated by Conjecture 2.132, we further investigate the range of Blaschke
Minkowski homomorphisms.

Theorem 2.30 The range of every Blaschke Minkowski homomorphism is nowhere
dense in Kn.
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(2.19)

Proof: We call K E }(~ Blaschke decomposable ifthere exist two bodies KI, K2 E }(~
not homothetic to K such that K = KI # K2. By a result of Bronshtein [5], the
only Blaschke indecomposable bodies in }(~ are the simplices. Thus, every body in
the range of a Blaschke Minkowski homomorphism with the only possible exception
of the image of simplices is decomposable with respect to Minkowski addition.

Since the image of simplices is nowhere dense in }(n and since, on the other hand,
the indecomposable bodies with respect to Minkowski addition form a dense subset
of }(n, the desired result follows. •

In the next part of this section we will see that mostof the geometric convolution
operators we encountered so far do not attain values in the set of polytopes.

Theorem 2.31 Let <I> : }(n -7 }(n be a Blaschke Minkowski homomorphism whose
generating function is the support function h(L, .) of a body of revolution L E }(n. If
there is a convex body K E }(~ such that <I> K is a polytope, then there is a constant
e E ]R+ such that

<I> = cD.

Proof: Let P = <I>K= conv{xl"", xd be a polytope with vertices Xl, ... , Xk. Then

h(P,.) = Sn-l(K,') * h(L, .).

Since the body L E }(n is unique up to translation, wecan assume that h( L, .) 2: O.
Let J-l =Sn-l (K,.) E M+(SO(n)), then by (2.11)

h(P,.) = r h(iJL, .)dp,(iJ).
} SO(n)

From now on, we consider support functions as positivehomogeneous functions on
]Rn. Let Cl, ... ,Ck denote the normal cones of the vertices of P. Then the support
function h(P,.) is linear in every Ci, i = 1, ... , k. Thus, by (2.19), we have

(2.20)

for all VI, V2 E Ci' Since support functions are sublinear, the integrand in (2.20) is
nonnegative. Thus, as J-l is nonnegative, h(iJL, vd + h(iJL, V2) = h(iJL, VI + V2) for
all iJ in the support of J-l. For each such iJ, we thus have

for all VI, V2 E iJCi. Hence L is a polytope itself. But since L is a body of revolution
and the only polytopes that are bodies of revolution are the multiples of the segment
[-ê, ê], the desired result follows from (1.43). •

Note that Theorem 2.23 and Theorem 2.31 imply the following characterization of
the projection body operator. For a corresponding result in dimension two see [44].

38



Corollary 2.32 Let <I> : Kn ---t Kn be an even Blaschke Minkowski homomorphism.
If there exists a convex body /( E Kö such that <I>/( is a polytope, then there is a
constant e E IR+ such that

<I> = err.
The Difference body operator D is the Minkowski endomorphism defined by

D/( = /( + (-/().
The Blaschke body operator \7 is the Blaschke endomorphism defined by

\7/( = /( # (-/().

Our characterization of the projection body operator from Corollary 2.32 implies
the following characterizations of the Difference and Blaschke body operators:

Corollary 2.33 The only even Blaschke endomorphisms taking values in the set of
polytopes are constant multiples of \7.

If an even Minkowski endomorphism maps a zonoid onto a polytope, then it is a
constant multiple of D.

Proof Let W be an even Blaschke endomorphism and let wI( = P be a polytope for
some /( E Kö. By (2.8), the map rr 0 w is an even Blaschke Minkowski homomor-
phism such that rrw /( is a polytope. By Corollary 2.32 and Theorem 2.23, there is
a constant e E IR+ such that

rr 0 w = err. (2.21)

Since rr is injective, all the even multipliers of rr are nonzero. Thus, by (2.21),
all even multipliers of Ware equal to e. Noting that the odd multipliers of even
multiplier operators are zero the result follows.

An analogous argument leads to the second statement. •

2.2.3 Polarization Formulas and Induced Operators

At the end of Section 1.2.2, we noted that. the projection body operator admits a
polarization formula under Minkowski linear combinations. In this way, it induces
mixed projection operators. For the remainder of this section let <I> : Kn ---t Kn
always denote a Blaschke Minkowski homomorphism. The following theorem gen-
eralizes the notion of mixed projection bodies:

Theorem 2.34 There is a continuous operator

<I> : Kn x ... x Kn ---t Kn
"'- .J'

v

n-1

symmetric in its arguments such that, for /(1, ... , /( m E Kn and À 1, ... , Àm 2:: 0,

<I>(À1/(1 + ... + Àm/(rn) = L Àil ... Àin_1 <I>(/(il , ... , /(in-l),

where the sum is with respect to Minkowski addition.
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Proof Let 9 E c(sn-I, ê) be the generating function of the Blaschke Minkowski
homomorphism <I>. If we define an operator

n-I

by
h(<I>(KI, ... , Kn-d,.) = S(KI, ... , Kn-I") * g, (2.23)

then (1.26) and the linearity of convolution together imply (2.22). The mixed opera-
tor <I> is well defined, as by Minkowski's existence theorem, the mixed area measure
5(1<1"'" Kn-I") is the surface area measure of a convex body [KI,"" Kn-d,
called the mixed body of KI,"" Kn-I, see [29], and thus

(2.24)

By Lemma 1.1 and by the weak continuity of mixed area measures, see [46], p.276,
the mixed operators defined by (2.23) are continuous and symmetric. •

Further properties of mixed Blaschke Minkowski homomorphisms, which are im-
mediate consequences of the corresponding properties of mixed area measures and
the convolution representation (2.23), are:

(i) They are multilinear with respect to Minkowski linear combinations.

(ii) Their diagonal form reduces to the Blaschke Minkowski homomorphism:

<I>(K, ... , K) = <I>K.

(iii) They intertwine simultaneous rotations, i.e. if 13E SO(n), then

From the fact that S(KI, ... , Kn-I") * (ê .. ) = 0 for KI"", Kn-I E ;cn, see [46],
p.281, we get by (1.29), (2.23) and by the commutativity of zonal convolution

h( {s( <I>(KI' ... , Kn-d)}, .) = nS(KI, ... , Kn-I, .) * (ê .. ) * 9 = O.

Hence,
S(<I>(KI"'" Kn-d) = o. (2.25)

Since s(<I>(KI, ... , Kn-d) E reI int <I>(KI, ... , Kn-d, see [46], p.43, we see that
<I>(KI, ... , Kn-I) contains the origin.

Lemma 2.35 If<I> is nontrivial and if KI"", Kn-I E ;cn have nonempty interior',
then <I>(KI"'" Kn-d E ;Cö.
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Proof Assume that <I>(KI"'" Kn-d ç H for some hyperplane H through the
origin. Then also -<P(K1, ... , Kn-d ç H, and thus

(2.26)

Denote by 9 E C(sn-I, ê) the generating function of <I>. Then, by (1.11) and (2.23),

By Lemma 2.22, there is a convex body of revolution L E Kn such that

Since <P is nontrivial, L is not a singleton, and we have

h(<I>(K1,... , Kn-I, ri) + h( -<I>(KI"'" Kn-d, Ti) = V(KI, ... , Kn-I, T}L).

Since KI, ... ,Kn-I E Ka and L is not a singleton, we have V(I(I, ... , I(n-I, T}L) > 0
for every T} E SO(n), see [46], p.277, which is a contradiction to (2.26). •

Let KI, , I(n-I E Kö, then <I>(KI"'" Kn~d E Kö. Thus, S(<P(I(I"'" Kn-I)) E
int <P(KI' , Kn-d and <P(KI, , Kn-d contains the origin in its interior by (2.25).
Hence the polar body <P*(K1, ,Kn-d, in particular for K E Kö the body <P*K,
is well defined.

By (1.46) and (2.23), we get for the polar of a mixed Blaschke Minkowski homo-
morphism <P with generating function 9 E C(sn-I, ê) the representation:

(2.27)

Of particular interest for us is the following special case of Theorem 2.34:

Corollary 2.36 The map <P satisfies the Steiner type formula

Theoperators <Pi : Kn -+ Kn, i = 0, ... , n - 1, are continuous, rotation intertwining
with <Po = <P.

If 9 E C(sn-I, ê) again denotes the generating function of<p then, by (2.23),

(2.28)

Since the mappings I( t---t Si(K, .) are valuations, the <Pi are valuations with respect
to Minkowski addition. We will consider only the operators <Pi, i = 0, ... ,n - 2,
since <I>n-I maps every body K to <I>Bbecause So(K,.) = Sn-I(B,.) is independent
of K. Using the argument from the proof of Lemma 2.35, we obtain

Lemma 2.37 If<p is nontrivial, then for I( E Ki we have <PiK E Kö and <PiL= 0

if L E Ki+2 \K:~I'
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By (2.28), the <Pi are multiplier operators, but apart from <Po = <P and <Pn-2 they can
not be interpreted as additive transformations of convex bodies, since the set of area
measures Sj(I<,.) of order j does not form a cone in Mt(sn-1) for j = 2, ... , n - 2,
see [12]. The operator <Pn-2 is by (1.28) a Minkowski endomorphism.

As the Laplace Beltrami operator ~o is an intertwining operator, so is the oper-
ator 61 appearing in (1.27). Thus by Lemma 1.8, ~1 is a multiplier operator. For
the following lemma, see [15], p.86, and note that multiplier transformations are
obviously commutative.

Lemma 2.38 Let J.l,E M(sn-1, ê) and 1/ E M(sn-1). Then

61 (1/ * J.l,)= 1/ * (~1J.l,) = (611/) * J.l,

in the sense of distributions.

Using Lemma 2.38, we get the following result.

Theorem 2.39 The operator <Pn-2 is a weakly monotone Minkowski endomorphism.

Proof: By Theorem 2.11, we have to show that there is a weakly positive measure
J.l, E M(sn-1, ê) such that h(<pn-2K,.) = h(K,.) * J.l,. If 9 E C(sn-1, ê) is the
generating function of <P, then by Lemma 2.38 and (1.27),

thus we need to show that ~1g is a weakly positive measure. Using Lemma 2.22
(a), we have 9 = h(L1'.) - h(L2") for two convex bodies L1,L2 E Kn. Hence by
(1.27),

~1g = S1(L1,') - S1(L2, .).
Using again Lemma 2.38 and (1.27), we obtain

Thus, the desired result follows from Lemma 2.9 and from the fact that the set of
surface area measures is a dense subset of Mt(sn-1). •

2.3 Endomorphisms and Homomorphisms of sn

In this last section of this chapter, we will discuss rotation intertwining additive
maps of star bodies. We give complete classifications of endomorphisms and homo-
morphisms of star bodies, now with respect to radial Minkowski and radial Blaschke
addition. Since the cone of radial functions coincides with the nonnegative continu-
ous functions the proofs are much simpler than the corresponding results for convex
bodies. Finally we will see that radial Blaschke Minkowski homomorphisms satisfy a
polarization formula analogous to the one for Blaschke Minkowski homomorphisms
of convex bodies.
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2.3.1 Dual Classifications and Consequences

We call a map W : sn -7 sn that is rotation intertwining and radial Minkowski
additive a radial Minkowski endomorphism. The definition of radial Blaschke endo-
morphisms is analogous. Note that, in the definitions of radial Minkowski and radial
Blaschke endomorphisms, we do not assume continuity. The following consequence
of Theorem 2.3 is a dual version of Theorem 2.11:

Theorem 2.40 A map W : sn -7 sn is a radial Minkowski endomorphism if and
only if there is a unique nonnegative measure M E M + (sn-I, ê) such that

p(WL,.) = p(L,.) * M. (2.29)

A map Y : sn -7 sn is a radial Blaschke endomorphism if and only if there is a
unique nonnegative measure M E M+(sn-l, ê) such that

(2.30)

Proof: From Lemma 1.1, (1.15) and the properties of spherical convolution, it is
clear that mappings of the form of(2.29) and (2.30) are radial Minkowski respec-
tively radial Blaschke endomorphisms. Thus, it suffices to show that for every such
operator, there is a measure M E M+(sn-l, ê) such that (2.29) and (2.30) holds.

Consider first a radial Minkowski endomorphism W. Since the cone of radial
functions of star bodies coincides with the set of nonnegative continuous functions
on sn-I, the vector space {p(K,.) - p(L,.) : K,L E sn} coincides with C(sn-l).
The operator 1ÎI : C(sn-l) -7 C(sn-l) defined by

1ÎI f = p(\IlLI,.) - p(\IlL2, .),

where f = P(LI") - p(L2, .), is a linear extension of \II to C(sn-l) that intertwines
rotations. Since the cone of radial functions is invariantunder 1ÎI, it is also monotone.
Hence by Theorem 2.3, there is a nonnegative measure M E M+(sn-l, ê) such that
1ÎIf = I * IL. The statement now follows from 1ÎIp( L, .) = p( \IIL, .).

If Y is a radial Blaschke endomorphism, formula' (2.30) follows in the same way
since the vector space {pn-l(K,.) - pn-l(L,.) : K, L ESn} coincides with c(sn-l)
as well, which was the critical point in the argument above. •

By Theorem 2.40, radial Minkowski and radial Blaschke endomorphisms are contin-
uous. This is a consequence of the fact that these operators are monotone. We can
also introduce a natural notion of adjointness between them:

Definition 2.41 A radial Minkowski endomorphism \II and a Blaschke endomor-
phism Yare called adjoint if, for all K, L E sn,

Vl(YK,L) = Vl(K, \I1L).

Again it is easy to see that a radial Minkowski and a radial Blaschke endomorphism
are adjoint if and only if they have the same generating measure. This time, every
radial Minkowski endomorphism has an adjoint radial Blaschke endomorphism and
vice versa.
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Motivated by the properties (a)d' (b)d' (C)d of the intersection body operator I,
we also define radial Blaschke Minkowski homomorphisms:

Definition 2.42 A map W : sn ---t sn is called radial Blaschke Minkowski homo-
morphism iJ it satisfies the Jollowing conditions:

(2)d w(K #= L) = wK -+ wL Jor all K, LE sn.

(3)d W intertwines rotations.

The same arguments as in the proof of Theorem 2.40 yield:

Theorem 2.43 A map W : sn ---t sn is a radial Blaschke Minkowski homomorphism
iJ and only iJ there is a nonnegative measure Il E M+(sn-l, ê) such that

p(w L, .) = p(L, .)n-l * Il.

As a consequence of Theorem 2.43, we see that every radial Blaschke Minkowski
homomorphism W also satisfies:

(l)d W is continuous.

The notion of mixed intersection bodies is generalized by:

Theorem 2.44 Let W : sn ---t sn be a radial Blaschke Minkowski homomorphism,
then ther.e is a continuous operator

W : sn X . . . X sn ---t sn
'- ~,
---'v

n-I

symmetric in its arguments such that, Jor LI, ... , Lm E sn and )'1, ... , Àm ~ 0,

where the sum is with respect to radial Minkowski addition.

Proof Let Il E M+(sn-I, ê) be the generating measure of wand define a mixed
operator W : sn X ... X sn ---t sn by

The map defined in this way is symmetric and by Lemma 1.1 continuous. The po-
larization formula is a direct consequence of Theorem 2.43 and (1.49). •

The properties (ii) and (iii) of mixed Blaschke Minkowski homomorphisms also
hold for mixed radial Blaschke Minkowski homomorphisms but property (i) has to
be replaced by:

(i)d They are multilinear with respect to radial Minkowski linear combinations.
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Chapter 3

Volume Inequalitiesand
Intertwining Additive Maps

3.1 Variants of a Conjecture by Petty

An important open problem in the field of affine isoperimetric inequalities is Petty's
conjectured projection inequality (1.45). In this section we investigate analogous
problems for general Blaschke Minkowski homomorphisms and their induced op-
erators. We will first collect several useful identities for mixed volumes of mixed
Blaschke Minkowski homomorphisms which will be used throughout the chapter.
We will then prove an inequality for weakly monotone Minkowski endomorphisms,
providing a strengthened version of the classical inequality between the two con-
secutive querrnassintegrals Wn-l and Wn-'-2' The proofs are based on techniques
developed by Lutwak in [32] and are taken from [48].

3.1.1 Some Useful Identities

Throughout this chapter let <I> : K,n -+ K,n denote a nontrivial Blaschke Minkowski
homomorphism with generating function 9 E C(sn-l, ê). For /(, L E K,n, denote by
<l>i(/(, L) the mixed operator <1>(/(, ... , /(, L, ... , L) with i copies of Land n - i - 1
copies of /(. The body <l>i(K, B) then simply becomes <l>i/('

For our further investigations we state the following geometric consequences of
Lemma 1.2.

In particular, for K, L E K,n and 0 ~ i, j ~ n - 2,

vVi(K, <I>(Ll"'" Ln-d) = V(Ll, ... , Ln-l, <l>J()
and
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Proof: By (1.31), we have

V(KI"'" Kn-I, <I>(LI"", Ln-d) = (h(<I>(LI, ... , Ln-I),'), S(KI, ... , Kn-d).

Hence, identity (3.1) follows from (2.23) and Lemma 1.2.
For KI = ... = Kn-i-I = K and Kn-i = ... = Kn-I = B, identity (3.1) reduces

to (3.2). Finally put LI = ... = Ln-j-I = Land Ln-j = ... = Ln-I = B in (3.2),
to obtain identity (3.3). •

In the next lemma we summarize further special cases of identity (3.1). These
make use of the fact that the image of a ball under a Blaschke Minkowski homo-
morphism is again a ball; this was shown in the proof of Lemma 2.18. Let ret> denote
the radius of the ball <I> B.

Lemma 3.2 If KI, ... ,Kn-I E Kn, then

Wn-1(<I>(KI, ... , Kn-d) = ret>V(KI, ... , Kn-I, B).

In particular, for K, L E Kn,

and, for 0 ::; i ::;n - 2,

(3.4)

(3.5)

•

H1n_I(<I>iK) = ret>Wi+I(K). (3.6)

The Shephard problem asks whether for K,L E Kö,
voln_l(Klu.L) = h(IlK, u) ::; h(IlL, u) = voln_I(Llu.L) (3.7)

for every u E sn-I, implies
V(K) ::; V(L).

Obviously (3.7) is equivalent to 11K ç IlL. As was shown independently by Petty
[38] and Schneider [40], the answer to Shephard's problem is no in general, but if
the body L is a projection body, the answer is yes. The crucial tool in the proof of
the latter statement is a special case of identity (3.3). In fact, an analogous result
can be shown for general BlaschkeMinkowski homomorphisms.

Corollary 3.3 Let K E Ki and L E <I>iKi. Then, for i = 0,.;., n -2,

<I>iKç <I>iL =} Wi(K)::; lVi(L)

and Wi (K) = Wi (L) if and only if K and L are translates.

Proof: From the monatanicity of mixed volumes, (3.3) and the fact that L = <I>iLo
for some convex body Lo E Ki, it follows that

Hli (K, <I> iLo) = lVi (Lo, <I>J{) ::;Wi (Lo, <I> iL) = Wi (L, <I> i Lo) = lVi (L ) .

Using the generalized Minkmvski inequality (1.36), we thus get

Wi(K) ::; Wi(L),

with equality only if K and Lare homothetic. But homothetic bodies of equal ith
quermassintegral must be translates of each other. •

The special case i = 0, <I> = Il of Corollary 3.3 is the result of Schneider and Petty.
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3.1.2 An Inequality for Minkowski Endomorphisms

The following theorem provides an upper bound for the ith quermassintegral of cI>J<.

Theorem 3.4 FOT i = 0, ... ,n - 2 and K E Kn,
n-l-i

Wi+l(Kt-i ~ "'nn_i Wi(cI>iK),
T<t>

with equality if and only if ipiK is a ball.

Proof Let K E Kn and 0 :::; i :::;n - 2. From inequality (1.37), we get by repeated
application, the inequality

~v (K)n-i > ",n-l-iW ..(K)n-l _ n 1 ,

where,for K E K~_l' equality holds if and only if K is a ball. By setting K = <'PJ<,
(3.6) gives the desired result. •

We now turn to a generalized version of Petty's projection problem:

Definition 3.5 Define 'l/Ji : Ki --T R by

Note that Wi(K) > 0 if and only if K E Ki. Thus 'l/Ji is well defined. Moreover,
by Lemma 2.37, we have 'l/Ji(K) > 0 for every K E Ki. From the properties of <'Pi,
it follows that 'l/Ji is similarity invariant. Petty's conjectured projection inequality is
that for <'P = IT the functional 'l/Jo attains a minimum precisely for ellipsoids. The
following theorem generalizes results for the projection body operator by Schneider
[45] and Lutwak [32]

Theorem 3.6 If K E Ki and 0:::; i :::;n - 2, then

with equality if and only if K and ipTKaTe homothetic.

Proof: Let K, L E Ki. From the generalized Minkowski inequality (1.36) together
with (3.3), we get

Wi(L, <'PiKt-i = Wi(K, ipiLt-i ~ Wi(Kt-l-ilVi(cI>iL),

with equality if and only if K and ipiL are homothetic. Setting L = cI>iKgives

W.(<'P.K)n-i > W.(K)n-l-ilV(<'P2K)
11 _ 1 tt'

withequality if and only if K and ip; Kare homothetic. •
In the case i = n - 2, Corollary 2.12 and Lemma 2.39 can be used to deduce the

following generalization of an inequality for ITn-2 by Lutwak [32]:
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Theorem 3.7 If K E Kn, then

Wn_I(K)22:: /'i;;Wn_2(<Pn_2K) 2:: /'i;n1Vn-2(K). (3.8)
ref>

If K is not a singleton, there is equality on theleft hand side only if <pn-2K is a ball
and equality on the right hand side only if K is ball.

Proof: The left hand side of inequality (3.8) is a consequence of Theorem 3.4. From
Lemma 2.39 and Corollary 2.12, it follows that K and <pn-2K are homothetic if
and only if K is a ball. This fact combined with Theorem 3.6 implies that for the
functional 'l/Jn-2 : K~_2 -7 IR,

'l/Jn-2(K) 2::'l/Jn-2(<Pn-2K), (3.9)

•

with equality if and only if K is a ball. Hence, only for balls can 'l/Jn-2 attain a
minimum on K~_2' To complete the proof of the right hand side of (3.8), it suffices
to show that 'l/Jn-2 actually attains a minimum on K~-2' To do this, let

Co := inf {'l/Jn-2(K) : K E K~_2}'

From (3.9) and from the fact that <Pn-2 : K~_2 -7 Kn by Lemma 2.37, it follows that

Co = inf{'l/Jn-2(K) : K E K~}.

From the translation invariance of 'l/Jn-2, it follows that only bodies with Steiner
point in the origin need to be considered, i.e.,

Co = inf{'l/Jn-2(K) : K E K~, s(K) = o}.

For j > 0, let
Ci:= {KE K~ : s(K) = o,j-IB ç K ç jB},

and let
Cj :=inf{'l/Jn_2(K): KE Cj}. (3.10)

Clearly, Co = limj-too Cj' Fix j and choose a sequence Km E Ci with 1/Jn-2(Km) -7 Cj'
By the Blaschke selection theorem, it may be assumed that Km converges to some
Kj E Cj. Since 'l/Jn-2 is continuous on K~_2' we have Ci = 'l/Jn-2(Ki). As j-I B ç
Kj ç jB and s(K) = 0, it follows from Lemma 2.39 that j-I B ç r;pl<pn_2Kj ç jB.
Hence,

r;pl<pn_2K E Cj.
Thus, by the dilatation invariance of 'l/Jn-2 and by the definition of Cj, we have

'l/Jn-2(<Pn-2Ki) = 'l/Jn-2(r;pl<Pn-2Kj) ~ Ci = 'l/Jn-2(I<j).

From (3.9) thus follows that Ki is a ball, and hence, Ci = r~. Since each Ci = r~,
we conclude that Co = r~ = 'l/Jn-2(B). Hence, 'l/Jn-2 attains a minimum on K~_2' •

In the proof of Theorem 3.7, we have used only that <Pn-2 is a weakly monotone
Minkowski endomorphism which is not a combination of the identity and the reflec-
tion in the origin. Thus, inequality (3.8) with equality cases is valid for every such
operator, compare also [43], p.70, for a related result:
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Corollary 3.8 Let W: Kn -7 Kn be a weakly monotone Minkowski endomorphism.
If K E Kn, then

\Vn-1 (K)2 2: K; Wn-2(w K) 2: KnWn-2(K).
r\l1

If K is not a singleton and W not a combination of the identity and the reflection in
the origin, equality holds on the left hand side only if W K is a ball and on the right
hand side only if K is ball.

Note that by (1.37) inequality (3.8) provides a strengthened version of the classical
inequality between the two consecutive querrnassintegrals vVn-1 and \Vn-2. It is the
author's belief that Petty's conjectured projection inequality which would provide a
strengthened version of the classical isoperimetric inequality, holds in a more general
form for every Blaschke Minkowski homomorphism and its induced operators:

Conjecture 3.9 If K E Ki, then

K~-2-iWi(<I>iK) 2: r~-iWi(Kr-l-i. (3.11)

Inequality (3.11) would yield a family of strengthened versions of the classical in-
equalities (1.37) between all consecutive querrnassintegrals.

If inequality (3.11) is correct in the case i = 0, then the conjectured inequality
(3.11) holds for all other values ori. To see this, recall that by (2.24) we have for
0~i~n-2

<I>iK =<I>[K]i, (3.12)
where [K]i E K~ is the mixed body, see [29], defined by Sn-l([K]i,') = Sn-l-i(K, .).
By repeated application of (1.37), we obtain Wi(K)n 2: K~\I(K)n-i and in particular,

Wi(<I>iKr 2: K~V(<I>iKr-i. (3.13)

In [29], it was shown that

V([K]i)(n-i)(n-l) 2: K~Wi(Kr(n-l-i). (3.14)

Suppose inequality (3.11) holds for i = O. Using (3.12), we obtain

K~-2V(<I>iK) = K~-2V(<I>[K]d 2: r~V([K]ir-i. (3.15)

Now combine (3.13), (3.14) and (3.15) to get inequality (3.11) for all values of i.

3.2 The Volume of Mixed Blaschke Minkowski
Homomorphisms

In this section, analogs of the classical inequalities from the Brunn Minkowski The-
ory for the volume of mixed Blaschke Minkowski homomorphisms and of their polars
are developed. As a corollary, we obtain a new Brunn Minkowski inequality for the
volume of polar projection bodies. In order to simplify the equality conditions,
we will state all our results only for convex bodies with interior points. In this
case, equality holds in our inequalities if and only if equality holds in the classical
theorems. The results generalize results of Lutwak [33] and are taken from [49].
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3.2.1 A Minkowski Type Inequality

We establish the following Minkowski type inequality: For K, L E Kô,

(3.16)

with equality if and only if K and Lare homothetic. In fact, more general inequal-
ities are shown:

Theorem 3.10 If K, L E JCô and 0 ::; i ::;n - 1, then

(3.17)

with equality if and only if K and Lare homothetic,

Proof: By (3.5) and (3.6), the case i = n - 1 follows from inequality (1.36). Let
therefore 0 ::; i ::;n - 2 and Q E Kô. By (3.2) and (1.34),

V(K, ... , K, L, <l>iQt-1 ?:: VI(K, <l>iQt-2VI(L, <l>iQ)
Wi(Q, <l>Kt-2Wi(Q, <l>L).

Inequality (1.36) implies

and thus,

with equality if and only if Q, <l>Kand <l>Lare homothetic. Setting Q = <1>1 (K, L), we
obtain the desired inequality. Ifthere is equality in (3.17), we have equality in (3.18).
From the fact that the Steiner point of mixed Blaschke Minkowski homomorphisms
is the origin, compare (2.25), it follows that there exist 'x1,'x2 > 0 such that

(3.19)

From the equality in (3.17), it follows that

\n-2\ - 1Al A2 - .

Moreover, (3.5), (3.6) and (3.19) give

Hence, we have
vVI(K,Lt-1 = WI(Kt-2WI(L),

which implies by (1.36) that K and Lare homothetic.

Of course, inequality (3.16) is the special case i= 0 of Theorem 3.10.
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3.2.2 An Aleksandrov Fenchel Type Inequality

Much more general than the Minkowski inequality is the Aleksandrov Fenchel type
inequality for the volume of mixed operators: If KI, ... , Kn-l E !en, then

m

V(<P(K1, ... , Kn_d)m ~ IIV(<P(Kj, ... , Kj, Km+l"'" Kn-l))'
.-1 ~J- m

This is the special case i = 0 of

Theorem 3.11 If KI,"" Kn-l E !en and 1 :::;m:::; n - 1, then

m

VVi(<P(1<l'" ., Kn_d)m ~ IIWi(<P(Kj, ... , Kj, Km+l"'" Kn-l))'
j=l

(3.20)

PlOOf: The case i = n - 1 reduces by (3.4) to inequality (1.34). Hence, we can
assume i :::;n - 2. From (3.2) and (1.34), it follows that for Q E !en,

m

> IIV(Kj, ... , Kj, Km+l"'" Kn-1, <PiQ)
j=l
m.

IIlVi(Q, <P(Kj, ... , Kj, Km+l"'" Kn-d).
j=l

Write <Pm'(Kj, C) for the mixed operator <P(Kj, ... , Kj, Km+1, .•. , Kn-d. Then, by
inequality (1.36), we have

Hence, we obtain

m

vVi(Q, <P(KI"'" Kn_d)m(n-i) ~ Wi(Q)m(n-i-l) II vVi(<I>m,(1<j,C)).
j=l

By setting Q = <P(K1, ... , Kn-l), this becomes the desired inequality.

From the case m = n - 2 of Theorem 3.11, it follows that

By combining this inequality and Theorem 3.10, we obtain

Corollary 3.12 If KI"", Kn-l E !e~ and 0:::; i :::;n - 1, then

with equality if and only if the Kj are homothetic.
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The special case KI = .. , = Kn-1-j = K and Kn-j = ... = Kn-l L of
Corollary 3.12 leads to a generalization of Theorem 3.10:

Corollary 3.13 If K, L E ICa and 0 :S i :S n - 1, 1 :S j :S n - 2, then

Wi(<Pj(K, L)t-1 2 Wi(<PKt-j-lVVi(<pL)j,

with equality if and only if K and Lare homothetic.

An immediate consequence of Corollary 3.13 is: If K E ICa, 0 :S i :S n - 1 and
1 :S j :S n - 2, then

11l:(<p .K)n-l > r(n-i)j K,jVV(<PK)n-j-l (3.21)
t) _<I> nt ,

with equality if and only if K is a ball. However, the equality conditions for a more
general inequality can be obtained.

Theorem 3.14 If K E ICo and 0 :S i < j :S n - 2, while 0 :S m :S n - 1, then

vVm(<pjK)n-i-l 2 r~n-m)(j-i)K,~-iWm(<PiKt-j-l, (3.22)

with equality if and only if Kis a ball.

Proof: From (3.6), it follows that the case m = n - 1 of inequality (3.22) reduces to
(1.38). Hence, we may assume that m :S n - 2. Suppose Q E ICa. From (3.3) and
inequality (1.34), it follows that

1Vm(Q, <PjKt-i-1 = vVj(K, <PmQt-i-1 2 Wn-1 (<pmQ)j-iWi(K, <PmQt-j-1

= Wn_l(<PmQ)j-iWm(Q, <PiKt-j-1.

By (3.6) and inequality (1.37), we have

l¥n_I(<PmQt-m = r~-mWm+l(Qt-m 2 r~-mK,nWm(Qt-m-l,

with equality if and only if Q is a ball. On the other hand, by inequality (1.36),

Wm(Q, <PiKt-m 2 Wm(Qt-m-lWm(<PiK),

with equality if and only if Q and <PiK are homothetic. Thus, we obtain
l¥m(Q, <pjK)(n-i-l)(n-m) 2 r~n-m)(j-i)K,~-iWm(Q)(n-i-l)(n-m-l)Wm(<PiKt-j-l,

with equality if and only if Q and<PiK are balls. Now set Q = <pjK, and the result
is the promised inequality of the theorem. Suppose there is equality in inequality
(3.22). Then <PiK and <PjK must be centered balls. Thus, there exist À1, À2 > 0
such that

and

<PiK = À1B and <pjK = À2B.
From equality in (3.22), it follows that

À~-i-l = ri-i À~-j-l.

Moreover, (3.6) and (3.23) imply

r<l>Wi+1 (K) = À1K,n

Hence, we have
W. (K)n-i-l - j-iW. (K)n-j-l

)+1 - K,n t+l ,
which implies by (1.38) that K and Lare homothetic.
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3.2.3 A Brunn Minkowski Type Inequality

The Brunn Minkowski inequality for the volume of Blaschke Minkowski homo-
morphisms which will be established, is: If /(, L E Kô, then

V(<p(I< + L))l/n(n-l) 2' V(<pK)l/n(n-l) + V(<pL)I/n(n-I), (3.24)

with equality if and only if K and Lare homothetic. In fact, a considerably more
general inequality will be proven:

Theorem 3.15 If K, L E Kô and 0 SiS n - l,OS j S n - 3, then

lVi (<p j (K +L)) l/(n-i)(n-j-l) 2' Wi( <PjKr/(n-i)(n-j-l) +Wi (<pjL) I/(n-i)(n-j-I), (3.25)

with equality if and only if K and Lare homothetic.

Proof: By (3.3) and (1.41), we have for Q E Kô,
vVi(Q, <Pj(K + L))I/(n-j-l) Wj(K + L, <PiQ)l/(n-j-l)

> lVj(K, <PiQr/(n-j-'l) + Wj(L, <PiQ)l/(n-j-l)

Wi(Q, <pjK)l/(n-j-l) + vVi(Q, <pjL)l/(n-j-l).

By inequality (1.36),

with equality if and only if Q and <PjK are homothetic and

Wi(Q, <PjLt-i 2' Wi(Qt-i-1Wi(<pjL),

with equality if and only if Q and <pjL are homothetic. Thus, we obtain

vVi(Q, <Pj(K + L))l/(n-j-l)Wi(Q)-(n-i-l)/(n-i)(n-j-l)
> W.(<p .K)l/(n-i)(n~j-l) + W.(<p .L)I/(n-i)(n-j-l)
- 1 J 1 J ,

with equality if and only if Q, <PjK and <PjL are homothetic. Ifwe set Q = <pj(K +L),
we obtain (3.25). If there is equality in (3.25), then, by (2.25), there exist À1, À2 > 0
such that

<Pj/{ = Àl<Pj(/{ + L) and

From equality in (3.25), it follows that

À~/(n-j-l) + À~/(n-j-l) = 1.

(3.26)

Moreover, (3.6) and (3.26) imply

Wj+l(K) = À1Wj+l(K + L) and

Hence, we have

lVj+I(K + L)l/(n-j-l) = Wj+I(/{)l/(n-j-l) + Wj+l(L)I/(n-j-l),

which implies by (1.40) that /{ and Lare homothetic. •

The most interesting cases of Theorem 3.15 are the cases where i = 0 or j = O.
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Corollary 3.16 If K, L E JCô and a :S j :S n - 3, then

\I(<I>j(I( + L))l/n(n-j-'.l) ~ \I(<I>jK)l/n(n-j-l) + V(<I>jL)l/n(n-j-l),

with equality if and only if K and L ar'e homothetic.

Corollary 3.17 If K, L E JCö and a :Si :S n - 1, then

lVi (<I>(I( + L))l/(n-i)(n-l) ~ lVi(<I>K)l/(n-i)(n-l) + l¥i(<I>L)l/(n-i)(n-l),

with equality if and only if K and Lare homothetic.

Of course inequality (3.24) is the special case i = a and j = a of Theorem 3.15.

3.2.4 Polar Bodies of Blaschke Minkowski Homomorphisms

In the following we will prove analogs of the inequalities of Sections 3.2.1, 3.2.2
and 3.2.3 for polars of mixed Blaschke Minkowski homomorphisms. To this end,
we restrict ourselves to BlaschkeMinkowski homomorphisms <I> with a generating
function of the form 9 = h(F, .), where F E JCn is a body of revolution which is not a
singleton. Note that by Lemma 2.4, every support function is generating function of
a l3laschke Minkowski homomorphism. In particular, by Theorem 2.23, every even
Blaschke Minkowski homomorphism has a generating function of that type.

We now associate with each such Blaschke Minkowski homomorphism <I> two new
operators:

Definition 3.18 Define Mcf> : sn ---t JCn by

and let rcf> : sn ---t JCn be defined by

rcf>L = 2 Mcf>L
(n + l)V(L) .

(3.28)

By Lemma 2.4, the operator Mcf>, and hence also rcf>, is well defined. Note that
Mcf>depends, in contrast to <I>, on the position of F but that by Theorem 2.21, we
may assume that s(F) = o. In this way we associate to each Blaschke Minkowski
homomorphism a unique operator Mèp.

If <I> is the projection body operator Il, the map Mcf> becomes a multiple of the
moment body operator. The normalization in (3.28) is chosen in such a way that the
body rn becomes the well known centroid body operator r : sn ---t JCn. Centroid
bodies were defined and investigated by Petty [37]. They have proven to be an
important tool in establishing fundamental affine isoperimetric inequalities, see [la],
[31], [36], [39]. The Busemann-Petty centroid inequality, for example, states that

v(r L) ~ ( 2Kn_1 ) n V(K).
(n + l)Kn
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It is critical for the proof of Petty's projection inequality (1.44). At the end of this
section, we will investigate similar problems for Blaschke Minkowski homomorphisms
which are generated by support functions. Before that we will prove analogs of the
inequalities (3.16), (3.20) and (3.24) for the polars of these operators. Recall that
the crucial tool in the proofs of inequalities (3.16), (3.20) and (3.24) is Lemma 3.1.
For the proofs in this section, the critical tool will be the following lemma:

Lemma 3.19 If KI, ... , Kn-l E Kn and £ E sn, then

In particular, for K E Kn,

(3.31)

Proof: By (1.50), we have

Y_l(K, <I>*(K1, ••. , Kn-d) = (pn+l(K, .), p-l(<I>*(K1, •.• , Kn-d, .)).

Hence, identity (3.30) follows from (2.27) and Lemma 1.2. For KI = ... = Kn-i-l =
K and Kn-i = ... = Kn-l = B, identity (3.30) reduces to (3.31). •

By definition (3.28) of the operator rep, Lemma 3.19 implies:

Lemma 3.20 If K E KT! and £ E SI, then

(3.32)

(3.33)

In particular,
V1(K,rep<I>*K) = _2_.

n+l

From Lemma 3.19, we immediately get the following Minkowski type inequality
for the volume of polar Blaschke Minkowski homomorphisms <I> with a generating
function of the form 9 = h( F, .).

Theorem 3.21 If K, £ E Kö, then

(3.34)

with equality if and only if K and £ are homothetic.

Proof: Let Q E sn. Then, by (3.30) and (1.34),

V(K, ... , K, £, MepQt-1 ~ VI (K, MepQt-2V1 (£, A1epQ)
V-I (Q, <I>* K)n-2Y_l (Q, <1>* £).

By inequality (1.53), we have

,i_I (Q, <1>* K)(n-2)nY_l (Q, <I>* £t ~ V(Q)(n+l)(n-l)V(<I>* K)-(n-2)V(<I>* £)-1.
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and thus

with equality if and only if Q, <1>. K and <1>. L are dilates. Setting Q = <I>~(J(,L), we
obtain the desired inequality. If there is equality in (3.34), then there exist Àl' À2 > 0
such that

(3.35)

For every convex body J( E K,n containing the origin and for every À > 0, we have
(ÀJ()* = À-IJ(., and Ums

From the equality in (3.34), it follows that

By (3.5), (3.6) and (3.35), weobtain

lVI (K, L) = ÀilWI (K) = À;-IWI(L).

Hence, we have
WI(K,Lr-1 = lVI (J(r-2WI(L),

which implies, by (1.36), that J( and Lare homothetic. •
Theorem 3.21 is the polar version of inequality (3.16). The next result provides a
polar version of the Aleksandrov Fenchel type inequality (3.20).

Theorem 3.22 If KI,'." Kn-I E K,n and 1 :::;m :::;n - 1, then

ProoJ: From (3.30), it follows that for Q E sn,

m

> II V(Kj, ... , Kj, Km+I' ... ' J(n-I, Mq,Q)
j=1
m

IIV_I(Q,<I>.(Kj, ... , Kj, Km+I' ... ' J(n-d).
j=1

Write <I>:n,(Kj, C) for the mixed operator <I>.(Kj, ... , Kj, Km+I' ... ' Kn-d. Then,
by inequality (1.53), we have
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Hence, wc obtain

m

V( Q, <1>* (KI, ... , Kn-d )mn 2: V( Q)m(n+l) IIV( <1>:n,(Kj, C)t I.

j=1

Setting Q = <1>*(KI,... , Kn-d, this becomes the desired inequality. •
Combinc the special case m = n - 2 of Theorem 3.22 and Theorem 3.21, to obtain:

Corollary 3.23 If KI' ... ' Kn-I E I(ö, then

with equality if and only if the Kj are homothetic.

The special case, KI = ... = Kn-I-j = K and Kn-j = ... = Kn-I = L, of Corollary
3.23 leads to a generalization of Theorem 3.21:

Corollary 3.24 If K, L E I(ö and 1 ~ j ~n -'-2, then

with equality if and only if K and Lare homothetic.

A polar version of Theorem 3.14 in the case m = 0 is provided by:

Theorem 3.25 If K E I(~ and 0 ~ i < j ~n - 2, then

with equality if and only if K is a ball.

Proof Suppose Q E sn. From (3.31) and inequality (1.34), it follows that

(3.36)

From the definition of Wn-I and Lemma 1.2, it follows that

Thus, we obtain, by (1.53),

Wn-I (M<t>Qt = r~V_I(Q, B)n 2: T~~;;IV(Q)n+l,

with equality if and only if Q is a centered ball. Also, by inequality (1.53),
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with equality if and only if Q and <P; I< are dilates. Thus, we obtain

\i_1 (Q, <P; I<)(n-i-I)n ~ r;(j-i) K~-jV (Q)(n-i-I)(n+ I) V (<p:I<) -(n-j-l) ,

_with equality if and only if Q and <P; I< are centered balls. Set Q = <P; I<, to
obtain the desired inequality. Suppose that equality holds in (3.36). Then, <P; I<
and <P; I< are centered balls. Thus, there exist )1}, À2 > 0 such that <P; I< = À 1Band
<P;I< = À2B, and hence,

and (3.37)

From the equality in (3.36), it follows that

\n-i-l _ i-j \n-j-l
A2 - ret> Al .

Moreover, (3.6) and (3.37) imply

and

Hence, we have
W. (I<)n-i-l - j-iw. (I<)n-j-l

J+l -Kn 1+1 ,

which implies, by (1.38), that I< and Lare homothetic. •
The next theorem provides a Brunn Minkowski inequality for the volume of the

polar Blaschke Minkowski homomorphisms under consideration:

Theorem 3.26 If I<, LE Kö and 0 :S j :S n - 3, then

V(<p;(I< + L)tl/n(n-j-l) ~ V(cI>;I<)-l/n(n-j-l) + V(<p;L)-l/n(n-j...cI), (3.38)

with equality if and only if I< and Lare homothetic.

Proof: By (3.31) and (1.41), we have for Q E sn,

\i_l (Q, <p;(I< + L))l/(n-j-l) Wj(I< + L, Met>Q)l/(n-j-l)

> vVj(I<, Met>Q)l/(n-j-l) + Wj(L, Met>Q)l/(n-j-l)
V_l(Q,<p;I<)l/(n-j-l) + V_l(Q,<P;L)l/(n-j-l).

By inequality (1.53),

with equality if and only if Q and <P;I< are dilates and

with equality if and only if Q and <p;L are dilates. Thus, we obtain

V-I (Q, <p;(I< + L))l/(n-j-I)V(Q)-(n+l)/n(n-j-I)

~ V(<p;I<)-I/n(n-j-l) + V(<p;L)-l/n(n-j-l),
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with equality if and only if Q, <'PjK and <'PjL are dilates. If we set Q = <'P;(K + L),
we obtain (3.38). Suppose equality holds in (3.38), then there exist )'1, À2 > 0 such
that <'P;K = ÀI<'P;(K + L) and <'P;L = À2<'P;(K + L), and thus,

<'PjK = À1l<'Pj(K + L) and <'PjL = À21<'Pj(K + L). (3.39)

From the equality in (3.38), it follows that

\ -l/(n-j-l) \ -1/(n-j-l) _ 1
Al +A2 - ,

and (3.6) and (3.39) imply

Wj+l(K) = À1IWj+I(K + L)

Hence, we have

and

vVj+1(K + L) l/(n-j-l) = Wj+l (K) 1/(n-j-l) + Wj+l (L) l/(n-j-l)

which implies, by (1.40), that K and Lare homothetic. •
Theorem 3.26 is the polar version of inequality Corollary 3.16. Note that the special
case <'P = TI of Theorem 3.21 provides a new Brunn Minkowski inequality for the
volume of polar projection bodies:

Corollary 3.27 If K, LE ICa, then

\I(TI*(K + L)tl/n(n-l) ~ \I(TI* K)-l/n(n-l) + V(TI* Lt1/n(n-I),

with equality if and onlyif K and Lare homothetic.

In Theorems 3.21 to 3.26, we restrict ourselves to Blaschke Minkowski homo.,
morphisms <'P with a generating function 9 that is a support function. We do this
to ensure that star bodies are mapped to convex bodies by the operators Mcp. An
example of a Blaschke Minkowski homomorphism whose generating function is not
a support function is provided by the second mean section operator (2.15). The
question arises if Theorems 3.21 to 3.26 hold for general Blaschke Minkowski homo-
morphisms. In view of Lemma 2.22, inequalities for the extended mixed volumes
from Definition 2.25 might be used to obtain such results. Unfortunately, very little
is known in this direction.

We now turn to the investigation of the volume of the images under theoperators
fcp. To this end, we introduce the following notation: Let F E ICn again be a bodyof
revolution with s(F) = 0 whose support function generates the Blaschke Minkowski
homomorphism <'P. For x E JRn\{o}, we denote by Fx the body Ilxll'l9F, where
'l9ê = II~II' By using spherical polar coordinates it is easy to see that

h(fcpL,.) = \I~L) i h(Fx, .)dx (3.40)

is an equivalent definition of the operator f cp. The next lemma establishes a formula
for the volume of the images under f cp.
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Lemma 3.28 If L E sn, then

V(r<l>L) = v~~)n 1"'1 V(Fxll"" FxJdxI ... dXn.

Proof: Let E > 0 and let {EI,' .. , Em} be a partition of L into nonempty disjoint
Borel sets of diameters less than E. Since SO(n) and L are compact, the integral
(3.40) can be approximated uniformly by a Riemann sum, i.e., there are Xj E Ej, 1 ~
j ~ m such that

< E,

<

for all u E sn-I. The convex body Kô with

is up to the normali"ation factor the Minkowski stirn of the bodies V(Ej)Fxi' 1 ~
j ~ m. As E -t 0, the body Kô converges to f <l>L. Using the polarization .formula
for volume and taking the limit E -t 0, we obtain the desired expression. •

If <I> is the projection body operator, then the body F is a segment, and the mixed
volume V(FX1"'" FxJ becomes, up to a factor, the absolute value.of the determi-
nant of the Xi. Using Steiner symmetrization and the multilinearity of deterrninants,
the BusemaIInPettycentroidinequalitycanbederivedfromLemma3.28.Itis the
author's belief that a result corresponding to (3.29) holds for the operators f <1>:

Conjecture 3.29 If K E ICö, then

V(f <l>K) ~ (( 2r<l» ) n V(K).
n + 1 Kn

A positive answer to Conjecture 3.29 would immediately provide a generaliza-
tion of Petty's projection inequality (1.44) to Blaschke Minkowski homomorphisms
generated by support functions:

V(<I>*K) ~ (;:) n V(K)I-n.

To see this, use identity (3.33) and Minkowski's inequality (1.36) to obtain

((n+ l)Kn)n V(Kt-IV(f<l><I>*K)
2r<l>

((n ;r~)Kn) n V1(K, f<l><I>* Kt

(
(n + 1)Kn ) n (_2 ) n ( Kn ) n

2r<l> n + 1 r<l>
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3.3 The Dual Inequalities

In analogy to the inequalities of Sections 3.2.1, 3.2.2 and 3.2.3, we will establish
dual inequalities for radial Blaschke Minkowski homomorphisms in this last part.
As Lutwak shows in [30], see also [10], there is a duality between projection and
intersection bodies which, at present, appears to be not well understood. Our results
illustrate that there is a similar duality for general Blaschke Minkowski and radial
Blaschke Minkowski homomorphisms. The inequalities of this section generalize
results of Leng and Zhao [23], [24] for the intersection body operator.

3.3.1 Dual Identities and Consequences

In the following let \11 : sn ---t sn denote a radial Blaschke Minkowski homomor-
phism. For K, L E sn, the defini tions of \11 i (K, L) and \11 iK are analogous to the
ones for mixed Blaschke Minkowski homomorphisms. The main tools in the proofs
of Sections 3.2.1, 3.2.2 and 3.2.3 are Lemmas 3.1 and 3.2. These were immediate
consequences of the convolution representation of Blaschke Minkowski homomor-
phisms provided by Theorem 2.21. In Section 2.3.1, we have shown that there is a
corresponding representation for radial Blaschke Minkowski homomorphisms, which
will now lead to dual versions of Lemmas 3.1 and 3.2. In the same way as Lem-
mas 3.1 and 3.2 were consequences of Theorem 2.21 and Lemma 1.2, we get from
Theorem 2.43:

Lemma 3.30 If KI,"" Kn-I, LI"", Ln-I E sn, then

In particular, for K, L E sn and 0 :::;i, j :::;n -2,

Wi(K, W(LI, ... , Ln-d) = V(LI, ... , Ln-l, \I1iK)

and
(3.42)

It follows from Theorem 2.43 that the image of the Euclidean unit ball under
a radial Blaschke Minkowski homomorphism \11 is again a ball. Let rq, denote the
radius of this ball. Then the dual version of Lemma 3.2 is:

Lemma 3.31 If LI,"" Ln-I E sn, then

Wn-I (\I1(LI, ... , Ln-d) = rq,lï(LI, ... , Ln-I, B).

In particular, f07' K, L E sn,

and, for 0 :::;i :S n - 2,
(3.43)
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The Busemann-Petty problem asks whether for centered convex bodies J{, L E K~,

(3.44)

for every u E sn-I, implies
V(J{) ~ V(L).

Obviously, (3.44) is equivalent to I J{ ç IL. As was shown by Lutwak [30], the
answer to the Busemann-Petty problem is yes, if the body J{ is an intersection
body. This is the special case i = 0, \lJ = I of

Corollary 3.32 Let J{ E \lJßn and L E sn. Then, for i = 0, ... , n - 2,

\lJiJ{ ç \lJiL => Wi(J{) ~ Wi(L)

and Wi(J{) = l¥i(L) if and only if J{ = L.

Proof: From the monatanicity of dual mixed volumes, (3.42) and J{ = \lJiJ{O for
some star body J{o E sn, it follows that

Using the generalized dual Minkowski inequality (1.52), we thus get

with equality only if J{ and L are dilates, but dilated bodies of equal ith dual quer-
massintegrals must be equal. •

The proofs of the following theorems are analogous to the proofs of the results
from Sections 3.2.1, 3.2.2 and 3.2.3. We just have to replace Lemmas 3.1 and 3.2
by Lemmas 3.30 and 3.31, and to use the inequalities for dual mixed volumes from
Section 1.2.3 instead of the inequalities for mixed volumes from Section 1.2.2. For
this reason we will omit all proofs except one in this section:

Theorem 3.33 If LI, ... , Ln-I E sn and 2 ~ m ~ n - 1, then
m

Wi(\lJ(LI, ... , Ln_d)m ~ IlWi(\lJ(Lj, ... , Lj, Lm+I"" ,Ln-d)'
. I '-----v-"'
J= m

with equality if and only if LI, ... , Lm are dilates.

Proof: The case i = n - 1 reduces by (3.30) to inequality (1.51). Hence, assume
i ~ n - 2. From (3.43), it follows that for Q E sn,

7n

< Il V(Lj, ... , Lj, Lm+I"'.' Ln-l, 'l1iQ)
j=1
m

Ilvl1i(Q, \lJ(Lj, ... , Lj, Lm+I"'" Ln-d)'
j=1
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with equality if and only if LI, ... , Lm are dilates. Let wm' (Lj, C) denote the body
W(Lj, ... , Lj, Lm+I"'" Ln-d. Then, by inequality (1.52), we have

with equality if and only if Q and wm,(Lj, C) are dilates. Hence,

m

l~fi(Q, W(LI"'" Ln_d)m(n-i) ~l¥i(Q)m(n-i-l) IT l/ifi(wm,(Lj, C)).
j=1

By setting Q = W(LI"'" Ln-I), the statement follows. •
Special cases of Theorem 3.33 are summarized in the following two corollaries

which are dual counterparts of Theorems 3.13 and 3.14.

Corollary 3.34 If I<, LE sn and 0 ~ i ~n - 1, 1 ~ j ~ n - 2, then

with equality if and only if I< and L are dilates.

Corollary 3.35 If I< E sn and 0 ~ i < j ~ n - 2, while 0 ~ m ~ n - 1, then

Wm(WjI<t-i-1 ~ r~n-m)(j-i)K~-iWm(WiI<t-j-l,

with equality if and only if I< is a centered ball.

A further consequence of Theorem 3.33 is the dual version of Corollary 3.12:

Corollary 3.36 If LI, ... , Ln-I E sn and 0 ~ i ~n - 1, then

with equality if and only if the Lj are dilates.

The dual counterpart of Theorem 3.15 is:

Theorem 3.37 If I<, LE sn and 0 ~ i ~n - 1, 0 ~ j ~ n - 3, then

l~fi(Wj(I( + L))I/(n-i)(n-j-I) ~ Wi(WjI<)I/(n-i)(n-j-l) + vVi(<I>jL)I/(n-i)(n-j-I),

with equality if and only if I< and L are dilates.
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