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Abstract

Massive amounts of complex time-dependent information arise in various areas of business,
science and engineering. These time series data sets commonly result from the measure-
ment, modeling or the simulation of dynamic processes and contain multiple attributes
changing over time. Examples are meteorological data, climate data, financial data, cen-
sus data, or medical data, to name a few.

In this thesis the CurveView for the enhanced interactive visual analysis of multidimen-
sional and large time series data is presented. Two approaches are proposed, one for the
interactive visual representation of the data, and so-called brushing techniques allowing
the user to select certain interesting subsets of the data (i. e., features) in an intuitive and
interactive way. The goals are to enable analysts to gain insight into their data sets, to
create, verify or reject hypotheses based on the data, and to explore the temporal evolution
of different attributes in order to detect expected structures and to discover unexpected
features. The presented solution is integrated into SimVis, a multiple-views system for the
visual analysis of time-dependent simulation results.

The data is visualized using focus+context visualization techniques: important or se-
lected portions of the data (focus) are visually accented, while the rest of the data (con-
text) is shown in a less prominent style. In doing so, enhanced navigation and orientation
is provided to the user. By the application of customizable transfer functions, general data
trends, visual structures and patterns can be emphasized even within dense regions of
the visualization. On the other hand, so-called outliers, which denote time series in low
populated areas of the display or important (i. e., brushed) data items hidden in regions of
context information, are discriminable in the visualization. By the application of binning
techniques large amounts of time-dependent information are transformed into a reduced
but still meaningful representation which can be depicted at interactive frame rates.

Furthermore, interactive brushing techniques are provided to the user for analysis pur-
poses. Thus, complex time-dependent features can be specified by applying fuzzy classifica-
tion to the time series data. Two kinds of brushes exist in the CurveView: similarity-based
brushes where time series are classified according to their similarity to a user-defined pat-
tern directly sketched in the view; and time step brushes, which select time series running
through a certain area of the view. In SimVis, the interrelations between the specified
features in multiple time-dependent dimensions can be analyzed visually using multiple
linked views that show different attributes (i. e., dimensions) of the data.
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Kurzfassung

Riesige Mengen an zeitabhängigen Daten entstehen in den unterschiedlichsten Bereichen
von Wirtschaft, Wissenschaft und Technik (z. B. meteorologische Daten, Klimadaten, Akti-
enkurse, Daten aus der Meinungsforschung oder Medizin). Die entsprechenden Datensätze
enthalten so genannten Zeitreihen und resultieren aus der Messung, der Simulation oder
der Modellierung von dynamischen Prozessen. Oft sind mehrere Attribute (Dimensionen)
enthalten, welche sich über die Zeit verändern.

In dieser Arbeit wird der CurveView vorgestellt, eine Möglichkeit zur interaktiven visu-
ellen Analyse von multidimensionalen und großen Datensätzen mit Zeitreihen. Ein spezi-
eller Ansatz zur interaktiven Datenvisualisierung wird präsentiert, außerdem so genannte
Brushing-Techniken, welche es dem/der BenutzerIn erlauben interessante Merkmale (engl.
features) direkt am Bildschirm zu selektieren (z. B. mit der Maus). AnalytikerInnen wird es
damit erleichtert Einblicke in ihre Datensätze zu erlangen, um neue Hypothesen aufstellen
zu können oder bestehende zu verifizieren. Strukturen innerhalb der zeitlichen Entwicklung
von unterschiedlichen Datenattributen können visuell erkannt werden, ebenso können un-
bekannte Merkmale entdeckt werden. Der vorgestellte Ansatz ist in das bestehende SimVis
System integriert, eine Anwendung zur visuellen Analyse von zeitabhängigen Simulations-
daten, wobei unterschiedliche Darstellungsarten (engl. views) zur Verfügen stehen, die
untereinander verlinkt sind.

Die Zeitreihen werden mittels Fokus+Kontext Visualisierung dargestellt, wobei inter-
essante und wichtige Datenmengen (Fokus) visuell hervorgehoben sind, wohingegen der
Rest (Kontext) in abgeschwächter Form dargestellt wird. Diese Vorgehensweise erleichtert
es dem/der BenutzerIn durch die Darstellung zu navigieren, ohne dabei die Orientierung
zu verlieren. Durch die Verwendung von Transferfunktionen können z. B. generelle Da-
tentrends sowie Strukturen und Muster in dichten Bildschirmbereichen verstärkt werden.
Außerdem können Sonderfälle hervorgehoben werden – das sind z.B. einzelne Zeitreihen
in Bereichen der Visualisierung die nur wenige Daten darstellen oder selektierte Merkma-
le, die in Regionen mit unselektierten Daten verborgen sind. Durch die Verwendung von
speziellen Binning-Techniken wird die Datenmengen reduziert, wobei die Bedeutung (Cha-
rakteristik) erhalten bleibt – das erleichtert die interaktive Darstellung der zeitabhängigen
Information.

Selektionstechniken erlauben die interaktive Analyse der dargestellten Daten. So kön-
nen komplexe zeitabhängige Merkmale klassifiziert werden, wobei so genannte fuzzy sets
verwendet werden. Im CurveView stehen Brushes zur Verfügung, die Zeitreihen aufgrund
ihrer Ähnlichkeit zu einem festgelegten Muster klassifizieren – dieses kann vom Benut-
zer direkt am Bildschirm als Linienzug gezeichnet werden. Außerdem gibt es so genannte
Time Step Brushes mit denen Zeitreihen selektiert werden, die durch eine bestimmtes
Intervall an einem Zeitschritt laufen. In SimVis können dann die Beziehungen zwischen
unterschiedlichen Datenattributen (Dimensionen) – und den dort spezifizierten Merkmalen
– in unterschiedlichen verlinkten Views analysiert werden.
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1 Introduction

In our modern society we are confronted with rapidly increasing amounts of complex infor-
mation. Massive streams of time-dependent data arise in various areas of science, business
and engineering. They commonly result from the observation (e. g., measurements), mod-
eling, or simulation of dynamic processes. Examples are historical data, meteorological
data, climate data, financial data (e. g., stock prices), sensor logs, medical data (e. g., com-
puter tomography (CT) or patient histories), or simulation data such as computational
fluid dynamics (CFD), to name a few.

Analysts, engineers, and scientists want to investigate how their information changes
over time in order to uncovering interesting and unknown spatial and temporal relation-
ships, to detect patterns of change, major data trends, and outliers (i. e., anomalies) in
their data. Being able to understand time-related developments and changes, allows one
“to learn from the past to predict, plan, and build the future” [2]. This can play a ma-
jor role, when thinking of examples as noticing warning signs (e. g., climate change), the
analysis of critical process workflows and developments, forecasts (e. g., project planning
or process simulation) and to find and develop alternative scenarios if required.

In this context, the research discipline of visualization has proved to be very helpful
in order to gain insight into large and complex amounts of (time-oriented) data. Thereby,
the information is presented in a visual form to the observer (e. g., in a static image
or an interactive application). One takes advantage of the phenomenal capability of the
human eye and the brain to process the visual information and to detect interesting visual
structures and relationships (e. g., anomalies, patterns, or trends) amongst the depicted
data within short time.

The rapid advancement in computer and graphics hardware allows the development of
highly interactive visual analysis systems that process the information (semi-)automati-
cally and depict it at interactive frame rates. The user is commonly enabled to zoom into
and navigate through the depicted information, furthermore, to specify his/her interest
on certain aspects (i. e., smaller subsets) of the data by selecting or querying. This is then
reflected immediately in the visualization, e. g., via highlighting, or filtering. In this context,
the integration of proper interaction facilities into the analysis and/or visualization system
is a key issue.

In section 1.1 an overview on the field of visualization is given. Then, the taxonomy and
terms commonly used in this thesis is briefly described (see Sec. 1.2). Finally the problems
addressed in this work are described in section 1.3, which also gives an overview of the
structure of this thesis.

1
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Figure 1.1: A simple model of visualization, where ellipses denote processes that transform
inputs to outputs, and boxes denote containers (adapted from van Wijk [92]).

1.1 Visualization

The purpose of visualization is to gain insight into large and complex amounts of data by
presenting the information in a visual form to the observer. In the following, a model is
presented giving a simplified view on visualization. Then, further aspects of visualization
will be discussed, such as the different application areas of visualization (see Sec. 1.1.2),
as well as different visualization purposes (see Sec. 1.1.3).

1.1.1 A Simple Model of Visualization

In figure 1.1 a simple and generalized model of visualization (compare to van Wijk [92]) is
shown, where boxes denote containers, and ellipses denote processes that transform inputs
to outputs. Here, visualization is shown as a dynamic process, which transforms data into a
(time-varying) visual representation, such as an image, or the output on the display screen,
according to some specifications. Thereby, the term data has to be understood in a broader
sense (e. g., spatial oriented 3D information, and/or time-dependent information, abstract
information, etc.), which will be considered later in Section 1.1.2. The particular specifi-
cation can include certain (user-defined) parameters affecting the visualization, or issues
related to the hardware, as well as the application of different visualization approaches,
which can be chosen by the user.

Then, from the users’ perspective, perception and cognition of the resulting data visual-
ization leads to further knowledge and (new) insight into the data (see Fig. 1.1). Thereby,
the prior knowledge of the user reflects back on the gained knowledge using visualiza-
tion. This means that an expert in the respective field can extract more information from
a visual representation—due to his/her background knowledge—than a normal person.
Thereby, the domain expert can gain new insight into certain aspects of the depicted data.
On the other hand, someone being new to an area can learn more from the visual rep-
resentation than an expert. However, the perceptual and cognitive skills of the observer
highly influence the amount of gained knowledge.
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In the course of the interactive exploration process of the data, the user may want to
adapt the specification (e. g., adapt parameters, zoom, filter) affecting the visualization,
based on his/her respective knowledge. This process is an important aspect in visualization,
consider for instance the field of visual analytics [83, 82] (described later in Sec. 2.1.1), or
the seminal paper of Shneiderman [79] introducing the visual information seeking mantra
(“overview first, zoom and filter, then details-of-demand”). Thereby, the user focuses on
further aspects of the data, such as certain features (i. e., smaller subsets of the data of
special interest), which correspond to some user-defined constraints (e. g., data selection,
querying, or filtering). Moreover, he/she may want to zoom and navigate through the
data representation, to apply other visualization methods on the data, or to adapt the
parameters affecting the visualization, revealing further visual structures (e. g., patterns,
trends, or outliers).

1.1.2 Different Application Areas for Visualization

The field of visualization is traditionally classified into two sub-fields, namely the area of
scientific visualization (SciVis) and information visualization (InfoVis). In SciVis, the data
has commonly an inherent connection to the spatial domain, i. e., 2D or 3D data, often
given with respect to the time domain. In InfoVis, the respective data is more abstract
and has commonly no inherent spatial connection (e. g., see Schumann and Müller [78]).

According to Hauser [31], however, this classification is not always very lucky as the
terms are misleading themselves, i. e., information is also represented in SciVis, and Info-
Vis is also scientific. In addition to that, many example exist where the respective char-
acteristics intermix, e. g., where InfoVis techniques are used to visualize data with spatial
connection, or InfoVis techniques are incorporated into a SciVis application. Thus, it is
important to note that the terms InfoVis and SciVis rather discriminate different visualiza-
tion communities, than they separate different fields. In the following, several application
areas for visualization are described.

Volume Visualization (VolVis): In this sub-field of visualization one deals with the explo-
ration and analysis of 3D volume data, as they can be found in the medical area (e. g.,
computer tomography (CT)) but also in the fields of industry or material science.
In figure 1.2 (a) a sample visualization of a human head (CT scan) is shown, using
direct volume rendering. Thereby, a ray of sight is cast into the 3D volume for each
pixel in the final image, where the sample points along the ray are composited using
a transfer function, which maps opacity and color to the samples (this approach is
similar to Levoy’s [55]).

Flow Visualization (FlowVis): In this application area, vector data computed by flow
simulation (e. g., computational fluid dynamics (CFD)) or measured using appropri-
ate setups is visualized. In figure 1.2 (b) the fuel injection at the surface of a piston
cylinder is shown at a certain point in time (see Laramee et al. [54]).
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(a) (b) (c)

Figure 1.2: Examples for different applications of visualization: (a) volume visualization
(VolVis) of a human head (CT scan); (b) flow visualization (FlowVis) of the fuel injection
at the surface of a piston cylinder (image taken from Laramee et al. [54]); (c) information
visualization (InfoVis) of categorical data using parallel set (image taken from Bendix et
al. [6]).

Information Visualization (InfoVis): This sub-field of visualization usually deals with the
visualization of abstract and heterogeneous data, which includes many different di-
mensions. As the data is commonly not related to the spatial domain it is challenging
to represent it in an insightful way to the observer. In this context, the usage of appro-
priate visual metaphors and interaction techniques is very important. In figure 1.2 (c)
a sample information visualization is shown, where a categorical data set is depicted
using parallel sets (see Bendix et al. [6]).

The above mentioned application areas are kind of standard, however, also others exist,
such as the visualization of tensor fields or molecular data visualization.

1.1.3 Different Purposes of Visualization

In the following, several purposes of visualization are briefly described (compare to Schu-
mann and Müller [78]). However, it is important to mention, that in nowadays visualization
systems these purposes commonly overlap and intermix, since various techniques and as-
pects are combined.

Exploration: This is commonly the first step in data investigation, where no a-priory in-
formation about the data is know (e. g., no prior knowledge or hypothesis). Thereby,
interaction and flexibility of the application are of high importance. The goal is, to
discover unknown and unexpected (visual) structures and information within the
data (e. g., certain data characteristics, trends, outliers, relations), which lead to
insight into the data, and the generation of (new) hypotheses.

Analysis: The (emerged or existing) hypothesis and statements on the data, build the
basis for visual data analysis (see also Sec. 2.1). Here, the goal is to prove or reject
the hypothesis where interaction is a key issue. Thereby, the user commonly selects
or queries for certain subsets of the data, which are of high interest (see brushing
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and feature specification in Sec. 2.1.2). In doing so, the visual data representation is
affected instantly, i. e., the respective matches are highlighting, and irrelevant infor-
mation is filtered out, or depicted in a reduced style (see focus+context visualization
in Sec. 2.1.2). In this thesis an approach for the interactive visual analysis of time-
dependent data is proposed.

Presentation: In this purpose of visualization, the results gained during the analysis
process are visually presented for communication (e. g., static images, animations).
Thereby, a high visual quality of the data representation is commonly desirable, to
present the findings to some audience (e. g., decision makers, scientists), while inter-
action is not important. Accordingly, applications focusing on the data analysis are
commonly not providing good visual results (e. g., “nice-looking images”).

1.2 Taxonomy

In the following some basic notations are described and considered, which are used through-
out this thesis. According to Müller and Schumann [64], when speaking about data “the
term multidimensional refers to the dimensionality of the independent variables, while
the term multivariate refers to the dimensionality of the dependent variables of a data
set”. In this thesis time-dependent data is considered where all variables are given for the
independent dimension of time, i. e., multivariate data is given over time. However, as the
time-oriented data is also dependent on the spatial position (i. e., each data item is given
for a certain 3D position, in relation to time), the term multidimensional is used as well.
In section 1.2.1, time series data is formally described, and then the task taxonomy is
presented (see Sec. 1.2.2).

1.2.1 Time Series Data

According to the definition of Müller and Schumann [64], a time series Di represents the
evolution of data over time where the time-dependent data values xi,j ∈ Di are given at
N discrete time steps tj and where j = 1, . . . , N . Consequently, the data elements in the
time series are dependent on (i. e., a function of) the respective discrete time step, i. e.,

xi,j = datai(tj), (1.1)

and form a tuple (tj , xi,j) each. In the context of multi-variate data, the function in equa-
tion 1.1 can represent different attributes (e. g., dimensions), therefore, the data items xi,j

can also represent different types of data [64]. Moreover, the data values can be given for
discrete points in time, or for certain spans of time having a duration (i. e., time intervals),
which will be further discussed in section 2.2.1.

Given a time-dependent data set S consisting of a number of M time series Di, the set
can be expressed as

S = {Di = {(t1, xi,1), (t2, xi,2), . . . , (tN , xi,N )} | i = 1, . . . ,M} . (1.2)
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The time series are given on a static sampling or simulation grid, i. e., the spatial position
of the 3D cells where the attributes are measured or simulated does not change over time.
Accordingly, the time series Di represents the data evolution in the ith cell of the grid.
Equation 1.2 also defines that the data values xi,j of different time series Di are given
at equal time steps tj within S. Furthermore, that the data elements belong to the same
attribute in the data set and are constrained by the interval I = [xmin , xmax ], where

xmin = min {xi,j | xi,j ∈ S} and xmax = max {xi,j | xi,j ∈ S}. (1.3)

Note, however, that it is not required, that the time series are sampled in regular time
intervals, which has to be considered in the proposed approach.

1.2.2 Task Taxonomy

Müller and Schumann [64] apply the following low-level task taxonomy in their survey
on time-oriented data, which was introduced by MacEachren [59]. A good system for the
visual analysis of time-oriented information has to answers to the following questions at a
glance:

• Existence of data element: Does a data element exist at a specific point in time?

• Temporal location: When does a certain data element (e. g., pattern) exist in time?
Is there any cyclic behavior?

• Time interval: How long is the time span from beginning to end of the data element?

• Temporal texture: How often does a data element occur?

• Rate of change: How fast does a data element change over time, and/or how much
difference is there from element to element?

• Sequence: In what order do the data elements appear?

• Synchronization: Are there data elements, which exist together?

There are also some high-level tasks related to the analysis of time-dependent data (com-
pare to Daassi [14]). These tasks are further considered in conjunction with the field of
visual analytics in chapter 2.

Navigation: The user has to be able to search and browse through the depicted time-
oriented data by means of interaction (e. g., zooming, panning).

Observation: Certain characteristics within a single time series should be visible in the
visualization, such as discontinuities, anomalies, or the distribution of the values of a
time series. Furthermore, the observer should be able to visually search for patterns
(e. g., motifs).

Comparison: Here, multiple time series are compared to each other in the visualization.
One should be able to search for the effects of causality, and to analyze the correlation
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of different time series to each other. Furthermore to measure the similarity between
a subsequences in a time series and a reference pattern (this task is addressed in the
proposed approach in Sec. 4.3).

Data Manipulation: Here, the raw information is transformed into another data repre-
sentation, e. g., aggregating, or segmenting data values into smaller subsets (see
Sec. 2.2.2 and Sec. 2.2.3).

1.3 Problem Statement

The interactive visual analysis of time-dependent information is a challenging task, es-
pecially when very large data sets, containing multiple dimensions and several hundred
thousands or even millions of data items, are to be visualized and analyzed at interactive
frame rates. Thereby, one is commonly interested in the evolution of the data over time, to
detect interesting patterns, general data trends, data outliers, and anomalies. These goals
are addressed in the task taxonomy (e. g., data existence, comparison, observation, etc.),
which was briefly described in section 1.2.2.

According to Aigner et al. [2], there are certain data characteristics, which have to
be considered, when visualizing time-dependent data. The time domain itself has many
theoretical aspects, which are addressed in detail in section 2.2.1. Time can, for instance,
show cyclic behavior, such as the seasons, the changing between day and night, or reoc-
curring temporal patterns. Furthermore, many different kinds of time-related data exist
in various research areas, e. g., climate data, financial data, medical data, etc. All of them
have their own characteristics, accordingly, many different approaches exist, addressing
the certain nature of the data. Moreover, several attributes (i. e., dimensions) are com-
monly given within the data sets. Here, analysts are interested, how these time-oriented
attributes are interrelated, e. g., how does the increasing oil price affect business, or how
is the CO2 output related to the climate change, etc.

There are also other issues related to the visual representation of time-oriented
data. Displaying a large number of data items (e. g., several millions) commonly results
in overcrowded, and visually cluttered displays, where data items overlap each other.
Here, it is very difficult for the observer to identify the interesting visual structures (e. g.,
patterns and trends) in dense areas. Moreover, the depiction of the massive amount of
data commonly takes a few seconds (or minutes), even on nowadays graphics hardware.

Contribution and Structure of the Thesis

The objective of this thesis is to present the CurveView approach for the enhanced inter-
active visual analysis of different kinds of multidimensional time-dependent data
from various areas (e. g., climate data, meteorological data, simulation data). The approach
is seamlessly integrated into SimVis [15, 21, and others], a multiple-views system for
the visual analysis of complex, time-dependent simulation results and, therefore, applies
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the most important concepts. For analysis purpose, SimVis provides brushing techniques
allowing the user to select certain interesting subsets of the data (feature specification) in an
intuitive manner, directly in the view. Thereby, fuzzy classification of the data (according
to the terminology of fuzzy logic [96]) is applied, called smooth brushing [17]. Fractional
degree-of-interest (DOI) values from the unit interval, which represent the importance of
each data item, are altered. Based on these DOI values, the specified features are depicted
in multiple linked SimVis views, using focus+context visualization [16, 30]. Thereby,
important data items (focus) are visually highlighted, while the rest of the data (context)
is shown in a reduced style for orientation.

The CurveView being part of the SimVis system integrates the above mentioned con-
cepts. For the interactive visualization of large time-dependent data sets, the amount
of data is reduced—while preserving its characteristics—by the application of binning tech-
niques (compare to Novotny and Hauser [67]). The resulting representation can then be
visualized in real-time. Moreover, visual clutter reduction is applied using focus+context
visualization. Using customizable transfer functions, visual structures (e. g., general trends,
interesting patterns) can be revealed—even within dense regions of the visualization—and
outliers are preserved.

In addition to the visual approach, the user is able to specify complex time-dependent
features in an intuitive manner, brushing time series being similar to user-defined pat-
terns, which are directly sketched in the CurveView, called . In this context, several types
of similarity-based brushes were deployed, which also cope with unevenly-spaced time-
dependent data. Moreover, time series running through a certain region of the view (i. e.,
a specified data interval at a time step) can be brushed by the user. The respective features
are then depicted instantly in all linked SimVis views using focus+context visualization.
Thereby, the interrelations between different data dimensions can be analyzed visually
using multiple linked views, which show different aspects (i. e., dimensions) of the data.
Based on the visual response of the system, the specified features can be refined in an
interactive and iterative brushing process.

The thesis is structured as following: In the next chapter the current state-of-the-art in
the visualization and analysis of time-dependend information is presented. Moreover, the
science of visual analytics and the SimVis system are described. The visualization approach
is presented in chapter 3, and the brushing techniques for interactive feature specification
are described in chapter 4. Then, some application examples are described (see Chap. 5),
several details related to the implementation and performance of the approaches are pre-
sented in chapter 6. Finally, the thesis is concluded in chapter 8 where also further working
plans are described.



2 State of the Art

This chapter gives an overview of the current (2007) state-of-the-art in the visualization
and analysis of time-oriented information and other work related to this thesis. First, the
science of visual analytics is presented, which integrates techniques from various research
disciplines for enhanced interactive visual analysis of complex data. Then, SimVis is pre-
sented as a sample application for visual analytics integrating several important concepts
(see Sec. 2.1.2). Section 2.2 deals with certain aspects related to the visualization (see
Sec. 2.2.1) and analysis (see Sec. 2.2.2) of time-oriented data. Two recently published
works build the basis for section 2.2, namely “Visualizing Time-Oriented Data: A System-
atic View” [2] and “Visual Methods for Analyzing Time-Oriented Data” [1], both done by
Aigner et al.

2.1 Interactive Visual Analysis

In the introduction of this thesis, the field of visualization was presented in a general
manner (see Sec. 1.1). In the current section, the focus is set on the analytical aspects
of visualization. In this context, the science of visual analytics (also known as interac-
tive visual analysis) is presented in section 2.1.1. Then, SimVis is described as an example
application of visual analytics (see Sec. 2.1.2), where several important concepts are inte-
grated, which are also related to the approach presented in this thesis.

2.1.1 The Interdisciplinary Science of Visual Analytics

Thomas and Cook [83, 82] define visual analytics as the interdisciplinary science of ana-
lytical reasoning facilitated by interactive, visual and analytical methods. The objective
is allowing individuals to gain insight and understanding of rapidly growing and huge
amounts of complex data which arise in various areas from business, sciences and engineer-
ing. Analysts should be enabled to “detect the expected and discover the unexpected” by
interactively and visually examining large datasets. Visual analytics allows them [83, 82]:

• to find interesting patterns, relationships and interconnections within the datasets;

• to draw conclusions and build hypotheses with the examined information;

• to verify or reject these hypotheses; and

• to communicate and present the results of the analytical process in order to make
better decisions based on the respective data.

9



Chapter 2. State of the Art 10

Historically, the science of visual analytics was developed from the field of visualization,
which was already described in section 1.1. The basic idea is combining the phenomenal
ability of the human mind for understanding complex information visually with auto-
mated methods for data analysis and processing. In order to generate, depict and extract
information from heterogeneous data sources, visual analytics include sophisticated tech-
niques from various research disciplines, e. g., scientific and information visualization (see
Sec. 1.1.2), statistics, cognitive and perceptual science, decision science, knowledge dis-
covery in databases (KDD), human-computer interaction, knowledge representation and
many others (compare to Keim et al. [40]).

The Knowledge Discovery Process—Keim’s Visual Analytics Mantra [40]

Within an iterative process—called the knowledge discovery process—analysts gain insight
into complex and huge data sets using visualization (see also Sec. 1.1.1). Due to the fact
that the raw data is often too complex and large to be represented in a direct manner—the
massive amount of data would simply hide the important information—, one has to apply
higher levels of data abstraction before visualizing the data. For this purpose, techniques
from data preprocessing and automated analysis, knowledge and information represen-
tation, interaction, and decision making are included into an iterative data exploration
process [40]. This is also true for the visual analysis of time-dependent data, which will be
discussed later in section 2.2.2.

The knowledge discovery process in visual analytics can be summed up in Keim’s en-
hancement of Shneiderman’s visual information seeking mantra (“overview first, zoom and
filter, then details-on-demand”, [79]), which is called the visual analytics mantra [40]:

“Analyze First – Show the Important – Zoom, Filter and Analyze Further –
Details on Demand”.

In the context of this iterative process, interaction is a key feature of visual analytics. One
takes advantage of human factors such as intuition, creativity, expert and background
knowledge, the excellent ability of the eye to detect visual structures and patterns and
the flexibility of dealing with unexpected situations. Initially, massive and complex data
sets are processed in an automatic analysis step, resulting in a condensed representa-
tion containing the important aspects of the data which can be visualized at interactive
frame rates. The user gets an overview where he/she can interactively zoom and browse
through the representation, select and filter certain data items of special or no interest,
respectively. One may also want to trigger further analysis tasks, which provide other as-
pects and details on demand. These are again visualized, and so on. In the course of this
iterative process, the information is revealed step by step, called information drill down.
Therefore, the user gets deeper and deeper insight into further details of the data.
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2.1.2 SimVis—an Application for Interactive Visual Analysis

The work presented in this thesis, is integrated into the existing framework of the SimVis
system [15, 17, 18, 16, 21, and others], which has been developed recently at the VRVis
Research Center in Vienna, Austria, and has gained a lot of international scientific ac-
ceptance (e. g., winner of the IEEE Visualization Contest 2004 [20], best paper at SimVis
2005 [18], many successful case studies).

SimVis is a multiple-views system for the interactive visual analysis (visual analytics)
and exploration of multi-variate, time-dependent 3D data, such as simulation data from
the field of engineering [19, 53] or meteorology [20]. Several concepts from visual analyt-
ics, which are incorporated in SimVis—and are therefore also relevant for the work in this
thesis—, are briefly introduced in the following: multiple-views visualization, focus+context
visualization, linking and brushing, and smooth brushing for interactive feature specifica-
tion. However, a general discussion on systems using coordinated and multiple views in
exploratory visualization lies beyond the scope of this thesis, hence the interested reader
is referred to a current state-of-the-art report by Roberts [74], including many references
and example applications.

In figure 2.1 a typical SimVis session is shown, where simulated flow though a diesel
particle filter (DPF) is analyzed visually. Features are specified by the user, brushing
(selecting) data items directly in a 2D scatterplot (lower left). Here, two components of
a multi-dimensional data point are interpreted as coordinates in a Cartesian coordinate
system. The selection is refined to hot regions in the histogram view (middle). The 3D
view (right) shows the DPF, where the brushed data items are visually highlighted in color
using focus+context visualization.

Focus+Context Visualization: When visualizing large amounts of information, one is
commonly limited by the properties of the output devices, e. g., resolution, available color
space or brightness levels. A well-established technique in information visualization to
overcome these restrictions is focus+context visualization (F+C visualization), which was
introduced 1981 by Furnas in his work about fisheye views [26]. The basic idea is to
give a general overview of the data (context part) while—at the same time, within the
same view/image—visually highlighting certain subsets of data of special interest for the
observer (focus part of the data). This interest can be specified, e. g., by brushing the
respective data items (see below).

Many enhancements of this technique were developed within the last decades (for an
overview, see Hauser [30] or Keim et al. [38]). According to Hauser [30], one can generalize
focus+context visualization techniques as the “uneven use of graphics resources (space,
opacity, color, etc.) for visualization” which allows the user to visually distinguish between
the focus and context portions of the presented data. The details in focus can be inspected
while still retaining the roughly represented context data for orientation.
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Figure 2.1: A sample SimVis scenario: simulated flow through a diesel particle filter (DPF)
is visualized—the flow is shown at the time of 35 secs. after the start of the simulation.
The user has expressed his/her interest in flow regions of heavy oxidation by interactively
brushing data items which exhibit a lot of carbon-oxides in the 2D scatterplot (lower left)
and then refining this specification to only apply to hot regions (in the histogram, middle).
The 3D view on the right shows a focus+context visualization of the DPF with the brushed
data items highlighted in color (color shows velocity magnitudes). Example and image taken
from Doleisch [15].

Multiple-Views Visualization: In the visual analysis of multi-dimensional data (e.g., with
several dozens of dimensions) one is often interested in different aspects of the information,
such as different dimensions or attributes: those which are more related to the spatial
dependency of the data (e. g., 3D aspects), and those which are more dependent on abstract
dimensions or derived attributes of the information, e. g., gradients or velocity. Thus,
the SimVis approach combines attribute views, such as time-dependent histograms [50],
2D/3D scatterplots [68], parallel coordinates [32]—these are more suitable for feature
specification1, where the user interactively marks data items in a view, called brushing
(described later)— and 3D views. These, in most cases, deal with 3D rendering aspects of
the data, e. g., visualization of volume data [62], feature representation using focus+context
visualization (described below) and the handling of occlusion.

Linking and Brushing: Brushing [94, 5, and others] is an important concept in almost
every interactive visualization system which enables the user to interactively select a subset
of the presented data. Usually this is done by directly marking the data items on the two-
dimensional display (e. g., with the mouse). In linked views [8, and others], the changes in
one view are reflected instantly in all other (linked) views. The combination of multiple
linked views and brushing techniques allows the user to interactively explore and analyze
the interrelations of the selected information (in different views) and is therefore a well-

1Features are subsets of data where certain user-defined constraints apply [18, 16].
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accepted and useful concept in InfoVis (for an overview see the work of Roberts [73]).
According to Roberts and Wright [75], a brush can be specified through a bounding

box, a freehand lasso, a line, points or other areas. Various kinds of brushing techniques
exist, including standard brushing [5] as well as more advanced approaches, such as com-
pound brushing [12] using hierarchical combinations of multiple brushes joined by logical
operations, or high dimensional brushes [60], where the brushes are defined in data space
rather than in screen space. SimVis uses smooth brushing [17], which is explained below.
For an overview of brushing techniques with many references and examples see the work
done by Roberts and Wright [75].

Smooth Brushing for Interactive Feature Specification: Many visualization and ex-
ploration applications in literature only use a binary classification scheme to represent
data selections. However, when dealing with simulation data (e. g., computational fluid
dynamics (CFD)), it is often not possible to find a certain (clear) threshold which dis-
criminates interesting from uninteresting data (i. e., focus data from the context). Thus,
SimVis uses smooth brushing (see Doleisch and Hauser [17]) for a fuzzy classification of
the data (according to the terminology of fuzzy logic [96]).

As described above, the user actively specifies his/her interest on a certain subset
of the data displayed in a view via brushing (the associated process is commonly called
feature specification). In SimVis, this interest is formally represented as a fractional degree-
of-interest (DOI) value (compare to Furnas [27]) from the unit interval assigned to each
data entry. A border region where the DOI values gradually change between data of
maximal user interest (DOI value of one, or data in focus) and completely uninteresting
data (DOI value of zero, or data in context) is assumed in smooth brushing. The selection
is immediately reflected visually in all (linked) SimVis views through the propagation of
the DOI values and by the use of focus+context visualization (see Fig. 2.1).

The Feature Definition Language (FDL) tree: SimVis allows the logical combination of
multiple brushes using fuzzy-logic operations for complex feature specifications. Thereby,
smooth brushes (from multiple views) are organized in a hierarchical feature definition lan-
guage (FDL) tree-like structure, which can be saved to and loaded from XML-files2.
Amongst others, the following FDL nodes are used in the FDL tree [16]:

Feature Component: Each SimVis view with brushing enabled has an associated feature
component node. All individual brushes (leaves in the FDL tree) in the view are
merged using fuzzy set operations (AND, OR, NOT) on the respective DOI values.

Feature Description: In a feature description node an arbitrary number of feature com-
ponents can be combined using an implicit-AND operation.

2Extensible Markup Language, see http://www.w3.org/XML/

http://www.w3.org/XML/
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Feature Set: Several description nodes can be subsumed in a feature set node using an
implicit-OR operation. The feature set nodes are located directly below the root
node of the FDL tree.

According to the DOI values given at the different levels (nodes) of the FDL tree, the
coloring of the data items displayed in an attribute view is altered (pure colors for focus
data, gray colors for the context). Thereby, importance-driven color coding is used for fo-
cus+context visualization of the specified features, where relevant colors obliterate (cover)
those less important. In a 3D view in SimVis, moreover, the opacity of the displayed data
items is altered, according to the respective interestingness for the user (DOI information).
Thereby, high opaqueness and saturated colors are used to emphasize focus data while the
context is depicted as more transparent and uncolored.

2.2 The Visualization and Analysis of Time-Dependent Data

According to Keim [40], the visualization and analysis of time-related information is one
of the key challenges in visual analytics described in section 2.1.1. Huge streams of time-
oriented data arise in various areas of business, science and technology, such as financial
data, meteorological data, climate data, network monitoring, sensor logs, etc. Analysts
commonly want to investigate how this data evolves over time, uncovering spatial and
temporal relationships, detecting interesting and unknown patterns, major data trends,
and outliers (anomalies) as well. Being able to understand time-related developments and
changes allows one “to learn from the past to predict, plan, and build the future” [2].
This can play a major role in such examples as indicators of climate change, analysis of
critical process workflows and developments, forecasts, and the discovery and development
of alternative scenarios.

A large number of publications dealing with the visualization and analysis of time-
oriented data exists. Related surveys on this topic are, for instance, the work done by
Silva and Catarci in 2000 [80] giving an overview on techniques for interactive exploration
of linear, time-oriented (historical) information. Furthermore, Müller and Schumann [64],
who set their focus on multivariate time-dependent data, are of importance. In a book
written by Andrienko and Andrienko [4] (published 2006), a systematic approach for the
exploratory analysis of spatial and temporal data is given, including many examples and
related methods, moreover, generic procedures for data exploration are presented.

Two recent publications done by Aigner et al. in 2007 [2, 1] deal with the visualiza-
tion of time-oriented information, and also build the basis for the aspects discussed in the
current section. In the first article [1], the advantages of combining visual and analytical
methods into the interactive visual analysis of time-oriented data are illustrated. The im-
portance of the user is pointed out (user-centered visual analysis), e. g., proper interaction
methods and using event-based visualization [84]. In the second article of Aigner et al. [2],
a systematic view on the variety of visualization methods for time-dependent data is given.
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A categorization which aims to be helpful for users and researchers to identify future tasks
in the visual analytics of time-oriented information is proposed.

The following section deals with certain aspects related to the visualization of time-
dependent information. Thereby, the characteristics of the time dimension itself, and issues
related to the data are discussed. Section 2.2.2 describes techniques for the interactive
visual analysis of time-oriented data. Finally, brushing and querying techniques for the
specification of time-dependent features are presented in section 2.2.3.

2.2.1 The Visualization of Time-Dependent Data

Different Graphical Representations for Time-Oriented Data

Müller and Schumann [64] discriminate between static and dynamic representation. This
discrimination is also crucial in visual analytics, as different tasks and goals which will be
discussed in the following are addressed (compare to Aigner et al. [2]). Moreover, 2D or
3D graphical representation can also be used in the visualization.

Static representation vs. dynamic representation: Initially it has to be noted that the fa-
cility of interaction and parametrization in a visualization tool does not influence whether it
is considered to be a static or dynamic representation. In this context, static representation
means still images that are modified only manually by user interaction. In dynamic repre-
sentations, however, the visualization changes automatically over time without the needs
of interaction (e. g., slide show or animation). Both are important classes of visualization
techniques (see Schumann and Müller [78, Chap. 6.2]) and can therefore also be applied
to the visualization of time series data [64, 2]:

Static representation: Many visualization techniques known from literature use static
representations to display the time-dependent information on a screen while provid-
ing proper interaction techniques for exploration. This allows the user to focus on
the displayed data, to compare different time spans on the time axis, and to search
for patterns and data trends over time. Therefore, one can conclude quantitative
statements from the observations [64]. On the other hand, these visualization tech-
niques have to cope with know issues when visualizing massive amounts of data,
e. g., visual cluttering and overcrowded displays. Advanced techniques have to be
deployed to cope with these problems, e. g., data aggregation and segmentation by
the use of analysis techniques (these techniques will be discussed later in Sec. 2.2.2
and Sec. 2.2.3).

One very early but excellent example of static representation is an image by Charles
Joseph Minard, created 1869, which shows Napoleon’s army on its march toward
Moscow in 1812 (see Fig.2.2 (a)). Tufte considers it as one of the “best statistical
graphics ever drawn” [87]. The width of the trails corresponds to the size of the
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French army placed over a graphic map, the temperature is displayed below related
to dates during the retreat.

Dynamic representation: The idea behind dynamic visualization of time-related infor-
mation is to use the physical dimension of time for representing the data’s time
dependency. An example is the animated visualization of two-dimensional fluid flow
shown in Figure 2.2 (b), which is depicted as moving textures using line integral
convolution and spot noise (compare to van Wijk [91]). The animation is generated,
blending a warped version of the previous image and a number of background im-
ages (i. e., white noise images filtered in time and space in order to remove high
frequencies).

In the course of an animation, analysts can follow the general development of the
displayed data and perceive how it changes over time (e. g., size, color, shape, tex-
ture). Therefore, qualitative statements can be concluded from the observation [64].
Dynamic representations of time-related data animations can be: faster than the
original speed (time-lapse); unchanged (real-time); and in slow motion. However,
it is especially difficult to follow long term data changes (e. g., weather) when the
animation plays to slowly in relation to the data changes [2].

2D vs. 3D representation: The general decision whether to use a 2D or 3D graphical
data representation in information visualization is not easy and depends on the specific
task (see Schumann and Müller [78, Chap. 6.2]). It is often argued that a 2D represen-
tation is sufficient for data analysis as data items can be depicted and interpreted more

(a) (b)

Figure 2.2: Static vs. dynamic representation: (a) Napoleon’s march on Moscow in 1812
by Charles Joseph Minard (from Tufte [87]); (b) Animated flow visualization (compare to
van Wijk [91]).
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directly. Furthermore, using a third spatial dimension introduces additional complexity,
such as perspective distortion, occlusion, or lost information on back faces. On the other
hand, humans experience their environment in three dimensions and are therefore used to
perceiving and interpreting 3D information. Additional information can be encoded in the
third dimension of the representation, which requires advanced interaction and navigation
techniques for exploring the data. Also, some data types inherently require a 3D represen-
tation (e. g., 3D flow data [72, 19], volume data [55]).

Several Characteristics of Time

Aigner et al.[2, 1] as well as Müller and Schuman [64] consider certain characteristics of
time in their surveys. These are based on a taxonomy done by Frank [25], which will be
discussed in the following.

Temporal primitives: discrete time points vs. time intervals: A discrete time point
is considered as a moment in time which has no extent. In contrast, a time interval is
bounded by a starting and an ending point and has a certain duration. According to
Aigner et al. [2], the discrimination of these two temporal primitives (time points and
time intervals, respectively) is an important aspect in visual analytics. This is due to the
fact that data validity is designated by the corresponding temporal primitive. This will be
briefly discussed in the following:

Discrete time points: When data is given at discrete points on the time axis (e. g., time
steps) it can be regarded valid only at the respective instants in time and one does not
know how it behaves between adjacent time points. For instance, an account balance
does not gradually change amongst two transactions, which should be expressed in
the visualization to avoid wrong assessments. Natural phenomenons, like the weather,
usually change gradually, therefore it can make sense to interpolate between given
time points in the visualization, e. g., by visually connecting the points with a line as
it is done in standard line graphs (see Harris [29]). In the visualization of time-related
data given at discrete time points the focus is usually set on the representation of
the data using a rather simple time axis. In most cases, quantitative values (but
also qualitative attributes) are displayed, allowing the observer to make quantitative
statements based on the data.

The TimeWheel [85] is such an example where multivariate time-dependent data is
visualized using multiple axes, which are arranged circularly around the time axis
(see Fig. 2.3 (a)). Thereby, lines are drawn for each point in time, interconnecting
the multivariate data values on the different attribute axes to the respective values
on the time axis. Patterns, correlations and trends can be explored best when the
respective axes stand parallel to each other. Therefore, the user can rotate the radial
arrangement of the axes. Moreover, one can zoom into data ranges of interest on the
axes using a slider.
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(a) (b)

Figure 2.3: Time points vs. time intervals: (a) TimeWheel [85] visualizing multivariate
time-related data; (b) PlanningLines [3] for the visualization of time intervals, their relations
and uncertainties.

Time intervals: On the other hand, when data is defined for certain time intervals, an
interval scaled time domain is applied (e. g., days, months, years). Examples appli-
cations are project planning where different tasks have a certain duration or patient
histories in the medical domain. In these cases it makes sense to focus on the rep-
resentation of the time domain itself, depicting the temporal primitives and the
relations among them, while using rather simple data representations.

For instance in PlanningLines [3], temporal intervals (e. g., certain activities) and
related uncertainties are visualized as shown in Figure 2.3 (b). Each task consists
of two encapsulated bars representing the the minimum and maximum duration,
which are bounded by two caps depicting the start and end intervals. Thereby, also
uncertainties can be visualized, i. e., when planning future activities one often does
not know exactly how long a task can take or when it will start or end.

Structure of time: Linear time vs. cyclic time vs. branching time: Aigner et al. [2] in-
corporate the following structure of time from Frank’s taxonomy [25] into their systematic
view on the visualization of time-oriented data (compare also to Müller and Schuman [64]).

Linear time, as illustrated in Fiure 2.4 (a), adopts a linear time axis where the temporal
primitives are ordered sequentially (but not necessarily evenly spaced) from past to future,
which corresponds to the human perception of time. Note that the temporal primitives
need not be evenly spaced. Conversely, cyclic time (see Fig. 2.4 (b)) is based on the fact
that many natural processes follow a cycle (e.g., day and night, seasons of the year).
Thereby temporal order—with respect to the cyclic time domain—has no meaning, e. g.,
sunrise comes before sunset, but sunset also comes before sunrise. Note that a cyclic
time axis can also be unrolled to a linear time axis. Figure 2.4 (c) illustrates branching
time which splits the time axis into alternative scenarios where sequences of actions can
happen simultaneously. For this purpose the time axis is represented as a graph.
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(a) (b) (c)

Figure 2.4: Structures of time: (a) linear time; (b) cyclic time; (c) branching time. Adapted
from Aigner et al. [2].

(a) (b)

Figure 2.5: Linear time vs. cyclic time: (a) ThemeRiver for analyzing temporal trends of
topics in large document collections (image taken from Havre et al. [33]); (b) Helix icons
for analyzing cyclic time-dependent patterns of two selected diseases. Using a “tunnel view”
reveals hidden information for a selected icon (from Tominski et al. [86]).

Linear time vs. cyclic time: A linear time axis is suited very well for the analysis of major
data trends and developments over time. The ThemeRiver [33] is a related approach,
which was originally designed for the visualization of thematic changes in large doc-
ument collections (see Fig. 2.5 (a)). Thereby, the width of each colored river band
represents the strength of a certain theme (i. e., the respective number of occur-
rences in the media) over time. As the topics are not equally treated (e. g., those
near the middle are less distorted), interaction techniques such as re-arrangement
are required. The approach is also suitable for other kinds of data (e. g., clustered
climate data [65]), which will be considered later in Section 2.2.2.

However, when searching for repetitive (cyclic) temporal patterns (e.g., seasonal ef-
fects), the use of a cyclic time axis often makes sense. For instance, 3D helix glyphs
on maps [86] are used to represent the spatio-temporal relations of health data (see
Fig. 2.5 (b)). The time-dependent data values are color coded and mapped to the
ribbons, which increases in angle and height for each time step in order to create a
“tunnel view” (see the left, bottom visualization in Fig. (b)). Thereby, multiple data
attributes can be represented by subdividing each ribbon into smaller sub-ribbons.
Interaction techniques such as altering the helix’ diameter (in order to reveal cyclic
behavior) and navigating through the 3D representation are also incorporated.
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Branching time and multiple perspectives: Branching time is especially useful for deci-
sion making, planning applications or the development and evaluation of alternative
future scenarios, all of which are essential tasks in visual analytics. For planning it
is also required to represent temporal uncertainty (e. g., the task will take 3–4 days)
and simultaneous tasks as it was mentioned previously in connection with Planning-
Lines [3]. In the context of branching time, Frank [25] suggests time with multiple
perspectives as an additional categorization which enables several (concurrent) points
of view on the same event.

2.2.2 Visual Analytics of Time-Dependent Data

The visualization approaches for time-dependent data presented in section 2.2.1, are well
suited for datasets with several thousand entries. However, when really large amounts
of data with, e. g., several hundred thousand or even millions of data entries have to
be visually analyzed, the bigger part of these techniques reach their limits resulting in
overdrawing and visual clutter. In addition to that, the usability of the application for the
purpose of visual analytics (see Sec. 2.1.1) is highly affected, when the response time to
the interactions of the user is relatively long (e. g., data selection, drag an item, zoom,
pan, etc.), or when updates of the display take longer than a certain time (e. g., 100–200
milliseconds [67]).

According to Keim’s visual analytics mantra [40], which was briefly described in sec-
tion 2.1.1, (semi-)automated data reduction and abstraction techniques have to be applied
in the visualization process. These techniques transform the time-dependent data into a
compressed but still representative form, which enables the observer to better understand
the information. Then, this reduced data representation is depicted in real-time, instead
of the original (raw) data. The user can explore further details, for instance, by inter-
actively changing the level of data abstraction (e. g., level of details), by zooming, or
by browsing through the visualization. Additionally, certain subsets of the data of spe-
cial interest (features) can be selected by the user (see Sec. 2.2.3) for further analysis or
enhanced visualization. Additional information or the original data can be displayed on
demand, even though only a small subset of the data (e. g., selected features). These de-
tails on demand (see Shneiderman [79]) are another important concept in visual analytics
(compare to Keim et al. [40]).

In the remainder of this chapter, the focus will be set on two important aspects of
data manipulation for the purpose of effective visualization and interactive visual anal-
ysis of time-oriented data: data abstraction is presented in this section and manual time-
dependent feature and event specification (e. g., selection, brushing) is considered later in
section 2.2.3.
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Data Abstraction for Effective Visualization

The objective of data abstraction is to derive meaningful qualitative values or patterns from
raw data, which still “convey key ideas while suppressing irrelevant details” [1]. Then the
representative form of the data is visualized instead of the original data. Many techniques
dealing with the abstraction of temporal data come from the field of data mining (see
Keogh et al. [44]), such as temporal data classification [71], temporal aggregation [58],
motifs and anomaly detection [43, 13], indexing techniques [46] or principle component
analysis (PCA) [63], to name just a few. Other approaches transform the data from the
time domain into another (abstract) domain, which represents certain data aspects (e. g.,
trends, frequency) more directly [57]. Examples are Wavelets [11], or spectral techniques
such as Discrete Fourier Transform (DFT) [22] or Discrete Cosine Transform (DCT).

Generally speaking, the mentioned data mining techniques are not only useful for ef-
fective visualization (i. e., to accomplish the desired goals) and efficient visualization (i. e.,
use a minimal amount of resources)—in this context, the reader is referred to the work
of Keim et al. [38] on visual data mining. Moreover, these techniques can also be used for
fast and automated pattern matching and similarity-based comparison of huge time se-
ries data. However, a detailed discussion of the data mining approaches lies beyond the
scope of this thesis, since this section focuses on the visualization and manual selection
of the data. The interested reader is referred to Keogh et al. [44], wherein several data
mining techniques are presented and discussed, or the work of Roddick and Spiliopoulou
[76] on temporal knowledge discovery. Stacey and McGregor [81] present an overview of
temporal abstraction in intelligent clinical data analysis. In the following data aggregation
techniques, such as clustering or binning are discussed.

Temporal Data Aggregation

Data aggregation is an important example of data abstraction, where data is summarized
in smaller subsets by means of an aggregate function. When data aggregation is based on
the temporal context this is called temporal aggregation, i. e., data items are summarized
into time intervals (granules such as days, months) according to their temporal affiliation.
In spatiotemporal aggregation data tuples (data+time values) sharing the same spatial and
temporal domain are grouped. For a survey on spatiotemporal aggregation the interested
reader is referred to the work of López et al. [58].

According to Andrienko and Andrienko [4], data aggregation can be done either by
calculating data characteristics (e. g., sum of data values, arithmetic mean and variance,
minimum or maximum values) or by grouping techniques such as clustering or binning.
Note that when simplifying the data, important information (e. g., outliers or anomalies
that differ from the general data trend) can get lost, which is not desirable. In the following
two grouping techniques, namely clustering and binning, will be briefly discussed:
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Figure 2.6: Cluster-based visualization: (a) Calendar View of the number of employees
(image taken from van Wijk and van Selow [93]); (b) ThemeRiver for visualizing time-
dependent climate data (from Nocke et al [65]).

Clustering: Dividing data into a certain number of aggregations (clusters) of similar
distance is called clustering. The goal is that data items within the same cluster are as
similar as possible, while data items from different clusters are as different as possible.
Depending on the particular data, different similarity and distance measurements can be
applied (see Xu and Wunsch [95] for a survey of clustering algorithms). Known visualiza-
tion approaches for clustered time dependent-data are for instance the Rectangular View
[66], where clustered data is arranged as color-coded squares according to their temporal
position allowing rearrangement to investigate time patterns, or the Clustered Calender
View and the ThemeRiver which will be briefly presented and discussed in the following:

The Cluster Calendar View [93] is an example for the visualization of clustered time-
dependent data. The data evolution over a certain time period (e. g., day or month) is
grouped into several clusters which each represent the respective pattern. In figure 2.6 (a)
the number of employees over a day is aggregated into the most significant seven clusters,
each visualized by a line graph representing the clusters mean value (right). The clusters
are also color coded in the calendar representation (left). This allows the observer to see
the frequency of occurrence of each cluster while also seeing daily trends and patterns.



2.2. The Visualization and Analysis of Time-Dependent Data 23

Figure 2.7: Outlier-preserving focus+context visualization of flow simulation data: brushed
data items are highlighted in color (red polylines), the context information is depicted in
green. Major trends and several outliers are well visible. Image taken from the work of
Novotny and Hauser [67].

Additional interaction techniques such as brushing (and highlighting) of certain clusters
or the visualization of the values of a single day are also possible with this approach.

In the work of Nocke et al. [65] a simplified version of the Theme River [33] approach
(which was previously described in Sec. 2.2.1) was used to visualize the centroids of clusters
for related parameters of climate data, which were normalized to the interval [0, 1]. Fig-
ure 2.6 (b) shows the visualization of the normalized cluster centroids for five parameters of
meteorological data from the Potsdam observation station over 100 years. The parameters
are based on several characteristics of the respective summer: p1: “total heat—sum of daily
max. temperatures tmax ≥ 20C” (orange); p2, p3: number of hot days where tmax ≥ 25C
and ≥ 30C, respectively (green, purple); p4: “summer mean temperature of daily mean
temperatures” (dark green); and p5: mean of extreme temperature (yellow) [65]. A thin
river band indicates a cold summer, in contrast, a broad river characterizes an extremely
hot summer. Also major trends are well represented in the ThemeRiver. As the param-
eters are not equally treated (e. g., those near the middle are less distorted), interaction
techniques such as parameter re-arrangement are integrated.

Binning: Binning divides the data space into several intervals (bins), each data item
that belongs to a bin increases the respective occupancy value (e. g., histogram). Therefore
binning gives a frequency-based representation of the data. BinX [7] uses binning along the
time axis (temporal aggregation) at different levels of aggregation (dynamic aggregation)
to display long time series (e. g., 50.000 timesteps). The mean, minimum and maximum
value, and the standard deviation per bin are visualized to give the observer visual cues
about the distribution of the aggregated data.

Novotny and Hauser [67] use two-dimensional bin maps for 2D data aggregation in
parallel coordinates, in conjunction with outlier detection and clustering in the bin maps.
This allows the interactive focus+context visualization (the concept was described in sec-
tion 2.1.2) of large data sets, showing data trends while preserving outliers (see Fig. 2.7).
For this purpose, an output-oriented approach is used, where only those parts of the visu-
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(a) (b)

Figure 2.8: Segmented CurveViews [48]: (a) Global binning creates equal size bins for all
time step, which facilitates direct comparison. (b) Local binning creates the same number
of bins for each individual time step (according to the respective min./max. values), which
reveals more details in dense populated areas.

alization process are executed which affect the final image. Although Novotny and Hauser
apply this technique to parallel coordinates, it is also suitable for spatial data aggregation
over time. Our visualization approach is inspired by the bin map technique, which will be
explained in detail in section 3.2.

Konyha et al. [48] use Segmented CurveViews for the visualization of time-oriented
data where vertical binning is applied. Thereby, each time step is handled individually in
order to avoid misleading suggestions of continuity of the data in-between. The number
of time series aggregated per bin is represented using color coding (see Fig. 2.8 where
black corresponds to the largest and orange to the smallest number of aggregated curves).
The user can decide whether (a) global or (b) local binning is applied. Accordingly, the
respective vertical interval, which is subdivided into a certain number of equally sized
bins, is defined by the minimum and maximum data value (a) over all time steps or (b) for
each individual time step, respectively. Optionally, empty bins can also be hidden. For
analysis purpose, brushing techniques and multiple linked views are combined, e. g., using
LineBrushes in CurveViews [49], which is described later in Section 2.2.3.

Further related approaches

Further approaches related to the visualization and analysis of time-dependent information
are, e. g., symbolic representations or pixel-based techniques: VizTree [56] transforms the
time series into a symbolic representation, encoding data in an augmented suffix tree. Here,
global and local structures of time series data are summarized in a compact overview
image. The user can interactively explore the data, by adding more details and discover
non-trivial patterns. Moreover, space filling pixel-based techniques (compare to Keim [39])
aim to represent a maximal number of data items on the available amount of screen space.
The work of Hao et al. [28] is such an example were time series data is represented at
multiple resolutions according to degree-of-interest (DOI) values (also used in SimVis).
Other related approaches are discussed in the following in the context of data selection
(i. e., feature specification).
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2.2.3 Time-Dependent Feature and Event Specification

As it was already mentioned, features are subsets of data which follow certain user-defined
constraints. According to Post et al. [70], feature extraction can be done (semi-)automat-
ically (e. g., [69]) or manually, for instance via brushing (e. g., Doleisch et al. [16, 18, etc.]).
The later was briefly described in conjunction with SimVis in section 2.1.2.

In the context of time-dependent data, the term event is commonly used for happen-
ings of special interest in the evolution of data over time which trigger some automatic
reaction (compare to the work done by Tominski [84]). Examples for event types are: the
body temperature rises over 37◦C (this can be evaluated at any time step); or the oil-prices
increases more than 2 cent between three successive days (here a pattern is specified over
a time sequence). After the event is specified, the time series is queried to find matches
(i. e., detect the event instances) and the result is then represented in the visualization,
called event representation (compare to Aigner et al. [1]).

Feature and event based visualization has proven to be a useful technique when repre-
senting huge data sets, e. g., by excluding (filtering) uninteresting data from the visualiza-
tion (e. g., Hochheiser and Shneiderman [36]) or via focus+context visualization [30]. In the
following, selected brushing and querying techniques for time series data are briefly pre-
sented and discussed. Note that these techniques can be considered as intuitive approaches
for event specification. The interested reader is also referred to the work of Andrienko and
Andrienko [4, Chap. 4.6], where several querying techniques for spatial and temporal data
are presented and discussed.

Brushing and Querying Techniques for Time-Dependent Feature and Event

Specification

As briefly described in section 2.1.2, feature visualization and specification via linking and
brushing in multiple views is an integral part of the SimVis System and has also been
used for the visual analysis of complex, time-dependent simulation data [19]. Raw data
or derived higher-order attributes (e. g., velocity or local flow properties such as vorticity)
are displayed and brushed in 2D views (e. g., scatterplots, histograms) and the respective
features are visualized in other linked views (e. g., in a 3D view [62]).

ComVis [49, 48, 61, etc.] is another application providing multiple linked views (e. g.,
histograms, parallel coordinates, 2D scatterplots) and brushing functionalities for anal-
ysis purpose. In the context of time-dependent data, Konyha et al. [49] introduce Line
Brushes to select function graphs (i. e., time series) intersecting with a simple line seg-
ment drawn in a CurveView (see Fig. 2.9 (a)). The time series are depicted as polylines,
which is similar to the proposed approach. Using logical combinations of the line brushes
enables the user to select outliers or to specify shapes of similarity (e. g., polylines have
to intersect with several line brushes that are combined with a logical-AND, but may not
intersect with other line brushes (logical-NOT)). Additionally, Rectangular Brushes
can be used to select curves that enter and leave the rectangular brush at a certain edge
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(a) (b)

Figure 2.9: Feature specification in ComVis [49, 48, 61, etc.] using multiple brushes in
multiple linked views: (a) Logical combinations of several line brushes are used to select
time series, which are represented as polylines in a CurveView. A selection is performed
with brush 1, time series intersecting with the brushes 2 and 3 are subtracted (image
taken from Konyha et al. [49]); (b) Composite brushing in multiple linked views includ-
ing color lines views (left, top) curve views (right, top), a bar chart (left, bottom), a 2D
scatterplot (middle, bottom) and parallel coordinates (right, bottom)—image taken from
Matkovic et al. [61].

(e. g., to find a local maximum or minimum). In the context of time-dependent data, also
Segmented CurveViews [48] (described in Sec. 2.2.2) and Color Lines Views [61] have be to
be pointed out. The later represent each time series as a horizontal line (a row of pixels) in
a rectangular view where the time-dependent data values are color coded (see Fig. 2.9 (left,
top). Thereby, the time series (lines) are sorted according to their values at a user-defined
time step.

The TimeSearcher [36, 35, 9, and others] is an application especially designed for the vi-
sual analysis of time series using several techniques from (information) visualization such
as focus+context visualization, linking and brushing (in this context the term dynamic
querying is used), and multiple views—these techniques were briefly explained in conjunc-
tion with SimVis in Sec. 2.1.2. By the use of (multiple) rectangular Timeboxes and/or
Angular Query Widgets (compare to Hochheiser and Shneiderman [36, 35]) data items
in the visualization can be brushed (i. e., selected data is visually highlighted) or filtered
out (i. e., unselected data is removed). Using for instance angular query widgets, time se-
ries having a similar slope on a sequence of time steps are selected, i. e., the respective
angles between the time series and the base line is within a certain range. The technique
is inspired by Angular Brushing [32] which is used for brushing parallel coordinates in
SimVis (see Fig. 2.10).

Figure 2.11 shows a screenshot from a further enhancement of the TimeSearcher [9],
which allows the Similarity-based Querying for temporal patterns (events). This ap-
proach is similar to the brushing techniques presented in this thesis. In the bottom view
an overview of the whole time sequence is given, in the middle and top view different
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Figure 2.10: Angular Brushing is used to select line-segments which go down in-between
the second and third axis (image taken from Hauser et al. [32]).

attributes are displayed. In this version of TimeSearcher, patterns can be specified by the
user in three steps (compare to Buono et al. [9]): initially, the query scope is reduced by
drawing timeboxes; then, a pattern is specified by selecting an item from the dataset (i. e.,
a polyline representing a single time series) and by restricting the pattern with a search-
box (the red box in Fig. 2.11); a tolerance value can be specified and iteratively refined
for the similarity-based queries. The start of each match is indicated by a red triangle,
and the respective matching polyline is drawn in red (see Fig. 2.11). For similarity mea-
surement Euclidean distance is used, additional transformations (e. g., offset translation,
magnitude scaling, linear trend removal and noise reduction, see Keogh [41]) were imple-
mented to make the matching process more robust. Recent developments allow for data
driven forecasting by using river plots [10] which are similar to the ThemeRiver approach
[33] previously presented.

QuerySketch [88] allows the user to sketch the shape of a pattern directly in the view,
which is then used for similarity matching based on Euclidean distance. Inspired by this
technique, QueryLines [77] allows the graphical specification of approximate queries of
time series, where soft constraints and preferences are used for fuzzy pattern description
and ranking of the query results, respectively. Curves that differ from the soft constraints
increase their“penalty score”by the amount of violation. Four penalty types for QueryLines
exist: minimum or maximum allow curves to pass above or below the line, respectively; the
goal-type requires an exact match and any difference is penalized; the trend-type requires
a similar direction (eg, increasing or decreasing). Additionally the lines can be chosen to
be invariant against horizontal and/or vertical translation.
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Figure 2.11: The TimeSearcher: (top, middle) Different attributes are mapped to the views.
A pattern is specified (red box/curve in top view). All matches are indicated by a red triangle
an a red polyline (top, middle); (bottom) An overview of the complete time series is given
(image taken from Buono et al. [9]).



3 The CurveView

Interactive Visual Analysis of large Time Series Data

In this chapter the visualization approach proposed in this thesis is described. Section 3.1
addresses the challenges and goals when depicting large amounts of time series data for
visual analytics purpose. An outline on the visualization approach is given at the end of
this section. The issue of data reduction is addressed in section 3.2 were also the applied
technique is described. section 3.3 deals with the depiction of the binned data. Finally, the
proposed visualization approach is reflected and discussed in section 3.4.

3.1 Challenges and Goals when Visualizing large Amounts of

Time-Dependent Data

When analyzing time-oriented information, one is commonly interested in the evolution
of the data over time. In the context of interactive visual analysis—also known as the
science of visual analytics [82, 83] (see Sec. 2.1.1)—several issues have to be considered
when depicting large amounts of time-dependent data. These issues were briefly described
in the introduction (see Sec. 1.3), and in conjunction with the related state-of-the-art in
section 2.2.2. They will be reconsidered in the following, motivating the visual analytics
approach presented in this thesis:

• for the depiction of multi-variate data a generic visualization approach is desirable,
which is suitable for different kinds and attributes of data;

• this approach has to enable the user to search for visual structures in the visualiza-
tion, such as temporal data trends and visual patterns;

• therefore, the visualization approach has to deal with the issue of clutter reduction
in the visualization; on the other hand, time series that differ highly from the trends,
called outliers, still have to be represented in the visualization;

• and finally, user interaction (e. g., brushing and querying, zooming and panning)
and the depiction of the data have to occur at interactive frame rates (i. e., real-time
visualization).

29
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Using an intuitive and generic approach

According to Aigner et al. [2], a generic approach for the static representation of time-
dependent data is to display polylines or curves, which interconnect the data values of
a time series (compare to Sec. 2.2.1). This technique is well known from standard line
graphs (compare to Harris [29]) and is commonly used due to its advantages (e. g., in
the TimeSearcher [36] or the Cluster Calendar View [93]): The mapping of the discrete
time steps, where the data values of a time series are given, to a linear time axis is very
intuitive and self-explaining—thereby, time is considered to be a quantitative dimension.
As a result, the technique is relatively easy to learn and comprehensible to a large audience.
Moreover, the same generic approach can be applied to the visualization of different kinds
and types of data, e. g., financial data, meteorological data, climate data, or simulation
data, to name just a few.

On the other hand, when visualizing a multi-variate data set, this technique does not
establish a direct visual connection between different attributes which evolve over time.
This is due to the fact that commonly only one time-dependent attribute (e. g., one dimen-
sion) is depicted in a view. This issue is addressed in the SimVis approach by combining
multiple linked views [8] visualizing different attributes of the data set. Thereby, the user
is able to explore the interrelations between different attributes, e. g., by brushing data
items in one view and observing the associated data highlighted in the other views (and
dimensions). According to Aigner et al. [2]), the application of multiple linked views is
beneficial for the visual analysis of time-dependent data.

Visual Structures and Visual Clutter Reduction in Static Images

When depicting the line segments which interconnect the time-dependent data values
in a line graph (described above), the primitives cross and overlap each other. Thereby,
they form visual structures in the visualization, e. g., visual data trends, or patterns (see
Fig. 3.1 (b)). These structures are significant for visual analytics, as they represent im-
portant information about the evolution of the data over time. Moreover, one is often
interested in time series which do not behave like the general trends, called outliers or
anomalies. Using these observations one can conclude quantitative statements about the
visualized data (compare to Müller and Schumann [64] and Aigner et al.[2]).

In the visualization illustrated in figure 3.1 (b) and (c) the observer is able to compare
different positions on the time axis, to search for the described visual data trends and
to detect conspicuous visual patterns. However, the depiction of a large data sets with
several hundred thousands of time series quickly ends in overcrowded and visually clut-
tered displays, as it is shown in figure 3.1 (a). Here, a data set with 30.930 time series
given at 100 time steps is displayed using polylines, where each line is drawn with the
same intensity. The amount of overlapping graphical primitives is much higher than the
visually discriminable gray levels available in the image. Therefore, it is very difficult for
the observer to identify visual structures in dense regions of the depiction. On the other
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(a) (b)

(c) (d)

Figure 3.1: Visualization of 30.930 time series (curves) given at 100 time steps. (a) visual
structures (i. e., general data trends) are hidden in dense regions by the massive amount of
data; (b) focus is set on the trends, therefore, outliers in less populated areas disappear;
(c) focus is set on the outliers while also trends are preserved; (d) features specified in
multiple linked views are color coded.

hand, outliers are very well represented in this visualization, e. g., several single time series
are visible in the top left area of figure 3.1 (a).

Using Preattentive Graphical Features for Focus+Context Visualization

According to Fekete and Plaisant [23], preattentive graphical features (e. g., width, size,
color (hue), intensity, etc.) are commonly used in information visualization for effective
visualization of large data sets. This is due to the fact that these features “are processed by
the [human] low level visual system and can be recognized ‘at a glance’ without effort” [23].
Preattentive graphical features are also well suited for focus+context visualization (see
the work of Hauser [30]), where data items being interesting to the user (i. e., the focus
portion of data) are visually emphasized, while the rest of the data (context) is displayed
in a reduced style for orientation (see also Sec. 2.1.2). Such focus+context techniques are
incorporated into the visualization approach presented in this thesis, as it is shown in
figure 3.1 (b), (c), and (d).

In figure 3.1 (b) the focus is set on the general data trends, visible in the illustration. A
linear mapping of the number of overlapping primitives (density) to the intensity values in
the visualization is applied. In other words, the semi-transparent primitives are depicted
using a transfer function1, which maps the density values to the opacity (or transparency)

1Transfer functions are commonly used in volume visualization (VolVis) for nonlinear mapping of density

values to opacity values in the 3D volume (e. g., Computed Tomography (CT) Scan) [55].
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values of the primitives (compare to the work done by Johansson et al. [37]). However, the
individual time series which diverge from the trends (i. e., visual outliers) and are visible
in the top-left area in figure 3.1 (a) have disappeared in (b) because of the linear scaling.
Here, the intensity of these lines is to low to be visible in the image.

In contrast to the linear mapping, a logarithmic mapping is applied in figure 3.1 (c),
which emphasizes outliers while showing general data trends. Thereby, the linear inter-
relation of the intensity and density values does no longer exist, i. e., a pixel with twice
the intensity of another pixel does not represent twice the amount of primitives passing
through the pixel. According to Fekete and Plaisant [23], however, transparency is “not
sufficient by itself to understand the number of overlaps. [. . . ] Therefore, transparency is
only useful when it can be varied interactively to reveal overlaps and density of overlapping
items”.

Figure 3.1 (d) shows features specified in multiple linked SimVis views (and the Curve-
View itself) using importance-driven color coding—this coloring is applied in all SimVis
attribute views and was briefly described in section 2.1.2. Thereby, user-defined colors are
assigned to the different hierarchies in the feature definition language (FDL) tree (i. e., fea-
ture description, component and set). For instance, the green curves are brushed in another
CurveView (feature set), the red time series are selected in the CurveView itself and in
another 2D scatterplot view (feature component), whereas the time series depicted yellow
are only selected in the CurveView (feature desciption). The process of this focus+context
visualization of the time series will be detailed later in section 3.3.

Real-Time Visualization and Interaction

When really large amounts of data (e. g., data sets containing several hundred thousand
or millions of data entries) need to be depicted the process can take up to a few seconds,
even on modern graphics hardware. In this context, user interactions such as navigating
through the displayed information (e. g., zooming or panning), manual data selection (e. g.,
brushing [75], dynamic querying [36], or event specification [84]), can take relatively long.
This is, however, not sufficient for the purpose of visual analytics of time-dependent data,
where, in general, interactive frame rates are required (compare to the work done by Aigner
et al. [1, 2]).

According to Keim’s visual analytics mantra [40], techniques for (semi-)automated data
reduction and abstraction (e. g., temporal data aggregation [58], or time-series classifica-
tion [71]) have to be applied before visualization. These techniques transform the data
into a compressed but still meaningful representation, which can then be visualized more
efficiently in real-time. The data reduction process applied in the presented visualization
approach uses 2D bin maps (compare to Novotny and Hauser [67]), which will be described
in section 3.2.
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Summary and Approach Outline

Different dimensions of multi-variate time-dependent data can be visualized using a rel-
atively intuitive and easy to learn generic approach. Focus+context visualization enables
the user, for instance, to visually assess how many time series run through a certain region
on the screen (see Fig. 3.1 (b), (c) and (d)), or how relevant these time series are (see
Fig. 3.1 (d) where importance-driven color coding is applied). Visual structures such as
patterns and/or trends are visible even in overcrowded areas of the image—depending on
the parametrization done by the user. Moreover, visual outliers (e. g., single time series or
low populated areas) are still represented in the visualization. In addition to the visual
issues, data reduction using binning is applied, transforming the time series data into a
compressed but still meaningful representation which can be visualized in real-time.

3.2 Real-Time Visualization of large Time Series Data via 2D

Binning

The visualization approach presented in this thesis uses 2D bin maps (compare to Novotny
and Hauser [67]) for the aggregation of the lines connecting the time-dependent data
values given at two successive time steps. This allows the depiction of the reduced data
representation at interactive frame rates (i. e., in real-time). Additionally, the degree-of-
interest (DOI) values [27] associated with the data items are aggregated into DOI bin maps,
as these values are required for focus+context visualization in SimVis (compare Doleisch
et al. [15, 17, 16, and others] and Hauser [30]). Instead of visualizing the raw data, the
binned data is then depicted in real-time which will be described later in section 3.3. In
doing so, the visualization is independent of the number of time series in the data set,
which can be very large (e. g., several hundred thousand or even millions of time series),
but dependent on the resolution of the (DOI) bin maps, which is determined by the user.
In the following data aggregation using 2D bin maps (see Sec. 3.2.1) and DOI bin maps
(see Sec. 3.2.2) is detailed.

3.2.1 Time Series Data Aggregation using 2D Bin Maps

In data aggregation, raw data is merged into smaller subsets by an aggregate function
reducing the data volume [58] which can be used for means of interactive visualization (see
the examples given in Sec. 2.2.2). In this context, binning is an aggregation technique where
data items are transformed into a frequency distribution (e. g., histogram) by subdividing
the data domain covered by the data values into a sequence of non-overlapping intervals
called bins. A value is assigned to each bin (bin count), counting the number of data items
that belong to it. In the following the procedure of building two-dimensional bin maps [67]
from the time series data will be described and formalized (compare to the work done by
Novotny and Hauser [67]).
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Figure 3.2: The interval [xmin , xmax ] is subdivided into L = 7 bins of equal width w. The
line segments connecting the data values xi,j = datai(tj) given at two successive time steps
ts and ts+1 in (a) are transformed into a 2D bin map Ms in (b). The xi,s values given at
time step ts are mapped to the u-axis, and the xi,s+1 values at ts+1 are mapped to the v-axis
in the bin map, respectively. The illustration is adapted from Novotny and Hauser [67].

Constructing a 2D Bin Map between two successive Time Steps

The visualization approach presented in this thesis applies two-dimensional bin maps [67]
with each L×L bins—the resolution of the map, determined by the user—for aggregating
the line segments which connect the data values of the time series between two consec-
utive time steps in the data set, namely ts and ts+1. These maps can be thought as 2D
histograms of the distribution of these line segments. When binning the data the inter-
val I = [xmin , xmax ] (see Eq. 1.3 in Sec. 1.2.1), containing all time-dependent data values
of a data set S, is subdivided into a set of L non-overlapping bins Bk (k = 1, . . . , L) of
equal bin width w = xmax−xmin

L , which is illustrated in figure 3.2, and can be expressed as

I = [xmin , xmax ] = [xmin , xmin + w[︸ ︷︷ ︸
B1

∪ [xmin + w, xmin + 2w[︸ ︷︷ ︸
B2

∪ . . . ∪ [xmax − w, xmax [︸ ︷︷ ︸
BL

.

In this context, a bin map Ms is a two-dimensional function of integer coordinates (u, v)
which counts the number of time series Di ∈ S (see Eq. 1.2) where the respective data
values xi,s = datai(ts) given at the time step ts (see Eq. 1.1) are contained in the interval Bu

(bin), and the data values xi,s+1 = datai(ts+1) given at an subsequent time step ts+1 belong
to the bin Bv. The resulting set of time series fulfilling the described property between
the time steps ts and ts+1 is denoted as Smatchs(u, v). The bin count of each discrete entry
(bin) in the map Ms can be formally described as

Ms(u, v) = bin counts(u, v) =
∣∣∣{Di ∈ S | datai(ts) ∈ Bu ∧ datai(ts+1) ∈ Bv}︸ ︷︷ ︸

Smatchs (u,v)

∣∣∣, (3.1)

with u = 1, . . . , L and v = 1, . . . , L, where L×L is the resolution of the bin map determined
by the user, and Bu and Bv are the associated bins (compare to Novotny and Hauser [67]).

The principle of constructing a bin map is illustrated in figure 3.2: In (a) two time series
are represented as polylines, each connecting the corresponding data values of a time se-
ries given at discrete time steps over the time axis t. In (b) the bin map is represented,
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aggregating the line segments (e. g., green, orange) between the adjacent time steps ts and
ts+1 in (a). Each line segment in (a) can be mapped to a certain point with continuous
coordinates (u, v) in (b) and vice versa—in projective geometry this property is known as
duality. Accordingly, the green line segment can be mapped to the green point and the
orange line segment to the orange point.

The interval [xmin , xmax ] is subdivided into L = 7 bins of equal width w, thus the bin
map in figure 3.2 (b) consists of 7×7 (L×L) bins. Each bin represents the number of lines
that belong to the respective parallelogram between the adjacent time steps in figure (a),
e. g., the light green rhomboid contains the green line segment and the light orange one
comprises the orange line segment. Therefore, the bin map is a discrete representation of
the frequency distribution of the coordinates (u, v) of these points in the map (b) and
is just as well a discrete frequency-based representation of the line segments within the
parallelograms in (a).

3.2.2 Aggregating Users Interest into 2D DOI Bin Maps

As it was already described in section 2.1.2, SimVis uses several well established concepts
from visual analytics: One of them is the usage of fractional degree-of-interest (DOI) values
(compare to Furnas [27]) from the unit interval which are associated with each data item
in a SimVis view and represent a measurement of user’s interest in a subset of the data.
DOI values also build the basis for focus+context visualization [30] which is integrated in
all (linked) SimVis views to visually discriminate interesting from uninteresting portions of
the data (feature visualization). Thus the DOI information has to be preserved during the
binning process as it is required for visualization. This will be described in the following:

In a SimVis view being part of the feature definition language (FDL) tree [16], three
types of DOI values are associated with each data item xi,j of a time series (see Sec. 2.1.2):
the values doi comp

i,j are associated to the respective feature component node in the FDL
tree; the values doidesci,j belong to the particular feature description node; and the val-
ues doi seti,j are related to the respective feature set node in the tree. These values build a
DOI vector doii,j determined by a function

doii(tj) = doii,j = (doi comp
i,j , doi desci,j , doi seti,j )T, where doii,j ∈ [0, 1]3, (3.2)

which assigns doii,j to each time-dependent data element xi,j = datai(tj) in a view.
Consequently, each tuple in a time series Di from the data set in equation 1.2 is enhanced
with a DOI vector doii,j, i. e.,

D′
i = {(t1, xi,1,doii,1), (t2, xi,2,doii,2), . . . , (tN , xi,N ,doii,N)}.

Similar to the approach of aggregating the number of line segments between two succes-
sive time steps ts and ts+1 in a bin in the map Ms (see Eq. 3.1), the DOI values belonging
to the respective line segments in Smatchs(u, v) in (3.1) are averaged in a bin. As the DOI
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Figure 3.3: Aggregating the number of line segments and the associated DOI values in a
bin map and two DOI bin maps, respectively: The interval [xmin , xmax ] is subdivided into
L = 7 bins of equal width w. The line segments connecting the data values xi,s and xi,s+1

given at two successive time steps ts and ts+1 of a time series D′
i (a) are transformed into a

2D bin map Ms (b). The associated DOI values doii,s given at time step ts are averaged in
a bin of the DOI bin map DMleft

s (c), and the DOI values doii,s+1 given at the subsequent
time step ts+1 are averaged in a bin in the DMright

s (d). Each of the DOI bin maps (c, d)
consists of three layers for the different types of doii,j = (doi comp

i,j , doidesci,j , doi seti,j )T.

values doii,s = doii(ts) and doii,s+1 = doii(ts+1) given at the time step ts and ts+1, re-
spectively, need not be equal, they have to be subsumed in separate DOI bin maps, namely
DMleft

s and DMright
s . These DOI maps can be considered as two-dimensional functions

DMleft
s (u, v) =

⎛
⎜⎝ doi lcomp

u,v

doi ldescu,v

doi lsetu,v

⎞
⎟⎠ =

1
Ms(u, v)

∑
Di∈Smatchs(u,v)

doii(ts) and (3.3)

DMright
s (u, v) =

⎛
⎜⎝ doi rcomp

u,v

doi rdescu,v

doi rsetu,v

⎞
⎟⎠ =

1
Ms(u, v)

∑
Di∈Smatchs(u,v)

doii(ts+1), (3.4)

where Ms(u, v) is the bin count and Smatchs(u, v) is the set of matching time series, both
defined in (3.1), between the time steps ts and ts+1. The coordinates of the elements in
the DOI bin maps DMleft

s and DMright
s , as well as the coordinates in the bin map Ms,

are denoted as u = 1, . . . , L and v = 1, . . . , L, where L × L is the resolution of each map.
Hence, a number of 3L2 bins are required for one DOI bin map to aggregate the tree
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DOI values of the vectors. In figure 3.3 the process of constructing a bin map and two
DOI bin maps is illustrated.

Aggregating the whole data set S including DOI information (i. e., all time series D′
i ∈ S

over all time steps tj where j = 1, . . . , N) means constructing a bin map Ms and two
DOI bin maps DMleft

s and DMright
s for each pair of consecutive time steps ts and ts+1

where s = 1, . . . , N − 1, and N is the number of time steps per time series2. Accordingly,
the binning approach uses a number of (N − 1) · (L2 + 2 · 3L2) = (N − 1) · 7L2 bins for
the aggregation of the data set3. The visualization of the binned data instead of the raw
data (see Sec. 3.3) is therefore independent of the number of time series D′

i ∈ S, which
can be very high (e. g., several hundred thousand or even millions of data entries), but is
dependent on the resolution of the bin map and DOI bin maps determined by the user.

3.3 Focus+Context Visualization Based on Binned Data

In section 3.2 it was just described how 2D bin maps [67] and DOI bin maps, which ag-
gregate the time dependent data values and the associated degree-of-interest (DOI) values
(compare to Furnas [27]), are built, both given at two successive time steps in the time se-
ries data. This section deals with the issue of visualizing the binned data instead of the
original data, including the degree-of-interest information, and using focus+context visu-
alization. As it was briefly described in section 3.1, preattentive graphical features, such
as size, width, color (hue) or transparency (intensity), are commonly used for effective
visualization of large data sets [23]. These features are well suited for focus+context vi-
sualization (compare to Hauser [30]), where interesting data items (focus) are visually
highlighted while the rest of the data (context) is depicted only in a reduced style for
orientation.

The idea of the proposed visualization approach is to reverse the binning process, i. e., to
draw for each non-empty bin in the bin map Ms the associated parallelogram containing
all possible line segments which could have been aggregated in the 2D bin during the
binning process (compare to the work of Novotny and Hauser [67] and see Fig. 3.2).
Moreover, the bin count is mapped to some preattentive visual feature of the primitives
(e. g., intensity/transparency). This allows the observer to easily count or estimate the
number of time series—represented as polygons—that pass through a certain region in
the visualization. Therefore, it is important that the user can interactively change the
transparency mapping to reveal the number of overlapping items (compare to Fekete and
Plaisant [23]). In addition to that, the DOI values from the DOI bin maps DMleft

s and
DMright

s belonging to the line segments binned in Ms are represented by another visually
discriminable feature. For this purpose, SimVis uses importance-driven color coding, where

2Note that each time series in the data set has the same number of time steps N .
3Giving an example: a time dependent data set, with N = 100 time steps, where the user selects the

resolution of the maps L × L = 256 × 256, and 32 bit are used per bin count (L2) and 8 bit per DOI

bin (2 · 3L2), requires approximately 62 MB for aggregating the whole data set.
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the DOI values are an importance measure for each data item (compare to the work done
by Doleisch et al. [15, 17, 21, etc.]).

Representing Visual Structures for Visual Analytics

To reduce visual cluttering, Johansson et al. [37] use high-precision density maps (compare
to Wegman and Lou [89]) in their work on parallel coordinates to count the number of
primitives that pass though each element on the screen (pixel). During the visualization
an opacity value is mapped to each element in the density map, utilizing a user-defined
transfer function4 to overcome the restricted precision of the output device (e. g., only a
limited number of different intensity levels are available per pixel). Using this nonlinear
mapping, regions containing only few primitives can be visually emphasized, for instance,
while general data trends can be suppressed, or trends can be highlighted while outliers are
depicted with reduced opacity [37]. The visualization presented in this thesis uses a similar
approach which additionally incorporates importance information (i. e., DOI values) about
the displayed data.

3.3.1 Generating a DOI Density Map including Density and DOI Information

In the following the generation of high-precision density maps [89] is described, as it is also
applied in the work of Johansson et al. [37] for the representation of structures in parallel
coordinates visualization. In connection with feature representation using focus+context
visualization in SimVis, the degree-of-interest (DOI) values [27] need to be incorporated
into the density map—the resulting map will be denoted as DOI density map and combines
both density and DOI information:

For our purpose, a high-precision DOI density map can be defined as a two-dimensional
function of integer coordinates N × N on a set of values P:

T (u, v) = (ρu,v, dcomp
u,v , ddesc

u,v , dset
u,v︸ ︷︷ ︸

du,v

)T ∈ P
4 and u, v ∈ N. (3.5)

The idea is to represent each pixel on the display device with an element in the DOI
density map T at the coordinates (u, v), which each contains four entries (see also Fig. 3.4):
(1) the number of geometric primitives that pass though that pixel divided by the overall
number of time series—representing the density value ρu,v; and (2–4) the vector du,v =
(dcomp

u,v , ddesc
u,v , dset

u,v )T ∈ P
3 which sums up the associated DOI values of the primitives

running through the map entries. Note that the sum of DOI values is averaged later when
depicting the map (see Sec. 3.3.2). Here the elements representing the feature component,
the feature description and the feature set are contained in the vector (compare to Eq. 3.2).
Thereby, the precision (i. e., codomain) of P has to be high enough, allowing the lossless

4Transfer functions are commonly used in Volume Visualization for nonlinear mapping of opacity values

to density values in the 3D volume (e. g., Computed Tomography (CT) Scan) [55].
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Figure 3.4: A DOI density map T (u, v) where an element is associated with each
pixel on the screen, consisting of a density value ρu,v (gray bar) and a vector du,v =
(dcomp

u,v , ddesc
u,v , d set

u,v )T (red, green, yellow bars) which accumulates the three DOI values rep-
resenting the different node types in the FDL tree in SimVis. The attributes of the orange
parallelogram are determined by the bin count in the bin map M and the DOI values in the
DOI bin maps DMleft and DMright , each given at the discrete coordinates of the bins (ũ, ṽ).

aggregation of all four component parts of the geometric primitives that pass through the
respective elements in the DOI density map.

In figure 3.4 such a map is illustrated. An orange parallelogram is magnified, whose
attributes are defined by the bins given at the coordinates (ũ, ṽ) in the bin map M and
in the DOI bin maps DMleft and DMright , which will be described in the following:

• The vertical coordinates of the rhomboid are derived from (ũ, ṽ) and refer back to
the vertical start and end position of the intervals (bins) Bũ and Bṽ during the
binning process (see Sec. 3.2). The horizontal coordinates represent the position of
the successive time steps on a linear time axis. Note that the distance between these
time steps is not equal if time is sampled in irregular intervals.

• The bin count given at M(ũ, ṽ) is directly associated with the weight of the geometric
primitive, as it represents the number of line segments that are aggregated in it.
The weights of all parallelograms running through the elements in the DOI density
map T (u, v) are summed up in the respective density values ρu,v. For implementation
purpose, the respective division by the overall number of time series is assumed
implicitly and performed as a final step.

• The averaged DOI values from the DOI bin maps DMleft(ũ, ṽ) and DMright(ũ, ṽ) are
each multiplied with the respective bin count M(ũ, ṽ) to represent the accumulated
DOI values of the time series aggregated in the respective bin. The multiplied values
are then mapped to the corners (vertices) of the orange parallelogram (see Fig. 3.4).
The DOI values at an arbitrary position within the geometric primitive are obtained
by (bi-)linear interpolation of the values given at its vertices. The DOI values are
summed up in the vectors du,v of the affected DOI density map entries T (u, v).

The usage of the high-precision DOI density map assures that no information in the data
is lost, apart from the data which is lost during binning, of course. This means that even
regions where only a few time series pass through or regions with small DOI values are
both represented in the map.
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3.3.2 Depicting the DOI Density Map using Focus+Context Visualization

After the DOI density map is constructed as it was just described, the following deals
with the final rendering of the map which results in the depiction of the data on the out-
put device: As the precision of the output device is usually lower than the map, only a
limited number of colors (hues) and intensity levels can be displayed. Thus, one has to de-
ploy techniques (e. g., focus+context visualization) to overcome this issue when visualizing
huge data sets. Thus, the proposed approach maps the number of overlapping primitives
(density) to opacity values, and DOI information to color values.

Mapping Density to Opacity Values

In the work of Johannson et al. [37] on parallel coordinates opacity transfer functions are
used for non-linear mapping of the values in the density map to opacity/transparency
in the final image—in volume visualization (VolVis) these functions are used from the
very beginning for similar purposes (e. g., the work of Levoy [55] in 1988). Such an one-
dimensional opacity transfer function can be defined as tfα : ρ → α, i. e.,

α(ρ) = tfα(ρ), where α(ρ) ∈ [0, 1] and ρ ∈ [0, ρmax ] ⊆ P. (3.6)

Here, ρ represents the density value (i. e., number of overlapping time series divided by
the overall number) taken from the (DOI) density map T , which has to be within the
codomain P of the map. The resulting opacity/transparency value α is within to the unit
interval, where 1 denotes completely opaque and 0 means fully transparent. This also
corresponds with the minimal and maximal intensity value, which can be displayed by the
output device. As the transfer function can be an arbitrary (non-linear) mapping, it allows
to visually amplify certain parts of the density map (e. g., dense regions), while suppressing
the visual appearance of other areas in the map. According to Hauser [30], the usage of
an opacity transfer functions for data representation fits well with the requirements of
focus+context visualization. Giving the user the facility to change the transfer function
interactively, transparency is very useful to reveal the number of overlapping primitives
(compare to Fekete and Plaisant [23]).

In the visualization approach presented in this thesis, two kinds of opacity mapping
exist, namely linear and logarithmic, where the user can chose between the two. A linear
mapping is illustrated in figure 3.5 (a), which focuses on the general data trends highlighted
in figure (b). Thereby, the observer gets an intuitive (linear) impression of the amount of
time series passing through certain areas. On the other hand, a logarithmic mapping (see
Fig. 3.5 (c)) emphasizes the outliers, while preserving the data trends, as it is shown in
figure (d). Both opacity transfer functions in figure (a) and (c) are dependent on an user-
defined scale factor (see the different slopes of the orange line and curve, respectively). To
ensure, that outliers are preserved in the visualization (independent of linear or logarithmic
mapping), a constant opacity offset α0 ∈ [0, 1], specified by the user, is added to the
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Figure 3.5: Mapping density ρ to opacity values: (a) linear transfer function αlin(ρ) with
different slopes (i. e., scale factors) and constant offset α0; (b) trends are highlighted ac-
cording to the scale factor, and outliers are preserved, because of the offset; (c) logarithmic
transfer function αlog(ρ) using different scale factors (orange curves) and offset α0; (d) the
outliers are highlighted, while preserving the trends.

respective opacity values (see Fig. 3.5 (a) and (c)). Note, that the functions are clamped
at the maximal available opacity value (one).

When the resolution of the (DOI) bin maps is reduced, the average bin count increases
proportionally, i. e., then more line segments are aggregated in a single bin, and vice versa.
To keep the (linear or logarithmic) mapping of the transfer function tfα(ρ) (see Eq. 3.6)
independent of the resolution of the (DOI) bin maps, the respective density value ρ from
the density map is multiplied with the number of bins currently used. Moreover, the user-
defined scale factor is divided by the overall number of time series in the data set (i. e., for
implementation purpose this division is performed as a final step), adapting the function
to different amounts of data and in order to fulfill the requirements for the density values
(i. e., number of overlapping time series divided by the overall number).

Mapping DOI Values to Color Values for Feature Visualization

In conjunction with feature based techniques and focus+context visualization [30], SimVis
uses importance-driven color coding using a transfer function tfdoi to represent the user’s
degree-of-interest (DOI) [27] in a subset of the displayed data briefly described in sec-
tion 2.1.2. As this color coding is also incorporated in the visualization approach presented
in this thesis, it will be detailed in the following:

In SimVis the user can assign an arbitrary color to each of the three kinds of feature
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nodes in the hierarchical feature definition language (FDL) tree [16], i. e. to the feature
component, the feature description, and the feature set node (see Sec. 2.1.2)—by default,
the colors red, green, and yellow are assigned. Additionally, the user can decide whether
the data is depicted on a black or a white background. Thereby, the base color, which is
associated to data where the DOI values are close or equal to zero, is implicitly defined
(i. e., white base color on black background, and black on white background).

For the importance-driven mapping of DOI values to Red-Green-Blue (RGB) color val-
ues, commonly used on display devices, a transfer function tfdoi : doi → CRGB is applied:

CRGB (doiu,v) = tfdoi (doiu,v), where CRGB , doiu,v ∈ [0, 1]3. (3.7)

Here, CRGB denotes the resulting RGB color values from the RGB color space5 which
is scaled to the unit cube. Furthermore, the three feature nodes in the FDL tree are
represented in the values of the DOI vector doiu,v = (doi comp

u,v , doi descu,v , doi setu,v)T, which
is also contained within the unit cube (compare to Eq. 3.2). The transfer function tfdoi
combines the colors assigned to the FDL tree nodes by the user, weighting each with the
importance represented by the respective DOI value in doiu,v as it is illustrated in figure 3.6
and detailed below. To avoid that the user-specified colors mix additively amongst each
other (e. g., green + red becomes yellow when combined additively) the transfer function
has to assure that more important colors obliterate those less important, according to the
hierarchy of the associated feature node in the FDL tree. Thereby, the color assigned to
the feature description node covers the color associated with the feature set node and both
obliterate the color assigned to the feature component node6.

The computation of the resulting color—considering the mentioned restrictions—is il-
lustrated in figure 3.6: At the lowest hierarchical level in color coding, a linear interpolation
is performed between the base and the feature component color. Thereby, the weight λ1 is
the difference of the respective DOI values of the feature component and the feature set
node, which has to be greater or equal to zero (i. e., doi setu,v reduces doi comp

u,v in order to
avoid the mixing of the colors). Using the same principle, λ2 is computed and used when
interpolating between the previously computed color and the feature set color. Finally,
the resulting color is calculated using another linear interpolation between the previously
interpolated color(s) and the feature description color. As one can see from the figure,
the DOI value of the feature description node has the highest influence on the final color.
From top to bottom, each hierarchical level affects the lower hierarchies by subtracting
the respective DOI values. Thus, the transfer function represents a non-linear color map-
ping. The concept will be illustrated in the following on the example of depicting the
DOI density map.

5See the website of the International Color Consortium (ICC) http://www.color.org/
6Note that the hierarchy in color coding does not correspond to the hierarchy of the nodes in the FDL tree.

This is due to the fact, that the feature description nodes are combined using a fuzzy OR-operation (in

the feature set node), and the feature component nodes are combined using a fuzzy AND-operation (in

the feature description node).

http://www.color.org/
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Figure 3.6: Importance-driven color mapping of the DOI values, which are associated to
the nodes at different hierarchies in the FDL tree. Three (hierarchical) linear interpolations
are performed between the respective colors, the corresponding weights are formalized in the
right box.
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Figure 3.7: The values du,v and ρu,v, from the DOI density map T (u, v) (a) are used to
calculate the respective enhanced DOI values doiu,v in (b), using a (non-)linear gamma
function (see Eq. 3.8). The cases were γ = 1 (straight orange line), γ = 0.5 (square root
function, green), and γ = 0.25 (orange curve) are illustrated.

When visualizing the DOI density map T , each element T (u, v) corresponds to a pixel
on the output screen and contains three values in the vector du,v and a density value ρu,v

(see Eq. 3.5 and Fig. 3.7 (a)). When creating the map T , the DOI values from the passing
through geometric primitives are added up (see Fig. 3.4 in Sec. 3.3.1). Consequently, the
values in the vector du,v are no longer restricted to the unit cube and therefore have to
be normalized to the codomain of the DOI values [0, 1] before applying the transfer func-
tion tfdoi , i. e., du,v

ρu,v
. Due to this normalization, however, it can happen that DOI outliers

are not represented in the visualization. For instance, when a single time series with a max-
imal DOI value (= 1) is running through a region with several thousand time series with
zero DOI (context). Then, the respective average DOI value would be 1

1.000 . Accordingly,
the important time series would be hardly discriminable from the context. Thus, again a
(non-)linear mapping is applied to calculate the (emphasized and) normalized DOI vec-
tor doiu,v used for the importance-driven color mapping in equation 3.7:

doiu,v =
(

du,v

ρu,v

)γ

, where doiu,v ∈ [0, 1]3 and γ ∈]0, 1]. (3.8)

The respective function graphs for different gamma values are illustrated in figure 3.7 (b).
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Figure 3.8: In SimVis different colors are assigned to the feature set (green), the feature
description (red), and the feature component (yellow) nodes, which are organized in a hi-
erarchical feature definition language (FDL) tree (left view). The CurveView (middle) and
the scatterplot view (right, top) are both child-nodes of the same feature description node.
The other scatterplot (right, bottom) belongs to another feature description node. All views
represent feature component nodes, and are child-nodes of the same feature set node in
the FDL tree. Complex features are specified by brushes (green rectangles) in the views,
and are depicted using focus+context visualization via importance-driven coloring and DOI
enhancement (γ ≈ 0.5, middle).

Note that, however, no constant offset is is added to the DOI values in order to retain the
(relative) ratios of the different feature nodes in the FDL tree (i. e., feature component,
description and set). In the CurveView, the user can adjust the gamma value using a
slider.

In figure 3.8 (middle), an example visualization of time series in a CurveView with
features encoded in color is shown. Thereby, the color red is assigned to the feature de-
scription nodes, green to the feature set nodes and yellow to the feature component nodes
in the FDL tree (left view). Note that each attribute view providing brushing function-
ality in SimVis (i. e., all views in Fig. 3.8) represents a feature component node (in the
FDL tree). Data items, which are only selected in the CurveView (middle), are colored
in yellow (representing the feature component node). Unselected data items (i. e., the re-
spective DOI values are equal or close to zero) are depicted in a color close to the base
color (white). The red highlighted time series are selected in the CurveView (middle) using
a time step brush (represented as a green rectangle and described later in Sec. 4.2). The
red curves are selected additionally—in other dimensions—in a 2D scatterplot view (right,
top) using a smooth brush (green rectangle). Since the two views are both child-nodes
(i. e., feature component nodes) of the same feature description node (see the FDL tree,
left), the features specified in both views (the respective DOI values are combined in the
FDL tree by a fuzzy AND-operation) are colored in red.

All displayed attribute views in figure 3.8 are also child-nodes of the same feature set
node (green color assigned) where the DOI values from the feature description nodes are
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combined using an implicit (fuzzy) OR-operation. Therefore, the data items, which are
selected in the other scatterplot view (right, bottom) but are not brushed in the Curve-
View and the first scatterplot (right, top)—the latter are colored red—, are depicted in
green color (middle view). To point out (and summarize) what was mentioned before,
the color (e. g., red) assigned to the feature description node—here the feature compo-
nent (child-)nodes are combined using a fuzzy AND-operation—obliterates the color (e. g.,
green) associated with the feature set node—here the feature description (child-)nodes are
combined using a fuzzy OR-operation. Both cover the color assigned to the feature compo-
nent node (e. g., yellow), i. e., the features specified only in the respective attribute view.
Combining focus+context visualization and brushing in multiple views, organized in a hi-
erarchical FDL tree, allows the user to specify and visually analyze complex features in
the data.

3.4 Discussion of the Visualization Approach

In the following, several aspects related to the visualization approach will be discussed
briefly: these are issues regarding the binning approach such as the granularity (quality)
of the visual output when zooming into the visualization (see Sec. 3.4.1); and different
mappings, which accent certain aspects of the time-dependent data (e. g., trends, outliers
or features) using focus+context visualization are compared in section 3.4.2.

3.4.1 Two-dimensional Binning

The 2D bin map approach (compare to Novotny and Hauser [67]) turns out to be very
useful for the purpose of data reduction allowing the real-time visualization of a large
number of time series (e. g., 500.000–1.000.000 time series given at about 70 time steps,
see the performance evaluation in Sec. 6.3). Thereby, the rendering time for the binned
data representation is rather independent of the number of time series in the data set, but
dependent on the resolution of the bin maps, which is determined by the user, and the
number of time steps in the visible area of the view.

Granularity of the Visualization

As this approach depicts parallelograms instead of polylines, connecting the original data
values, the granularity of the visual output is highly dependent on the number of bins
used per bin map and DOI bin map, respectively. Imagine the width w of each 2D bin in
the map would strive against zero, then the map contains a number of N ×N bins, where
N → ∞. Then, roughly spoken, each drawn rhomboid associated to such a bin would
become a line representing the number of line segments passing through the respective
bin. The visual output of this procedure would be identically with a visualization where
the raw data is displayed using line segments to connect the time series data. Although this
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(a) (b) (c)

Figure 3.9: Comparison of the granularity of the visualization. (a) 64 × 64 bins per map;
(b) 128 × 128 bins per map; (c) 256 × 256 bins per map.

example is illusory, it demonstrates that the granularity of the output is highly dependent
on the number of bins used.

Therefore, the decision is left to the user, allowing him/her to interactively alter the
resolution of the maps, which makes the approach scalable. One can, for instance, advance
the level of details in the visualization, by incrementing the resolution of the bin maps.
On the other hand, the user can reduce the number of bins per map, to shorten rendering
time and enhance interaction. In figure 3.9 different resolutions are used for the bin maps,
which affects the granularity of the visualization. Several highlighted time series (red),
which are discriminable in Fig. (c) merge in the visualization in the figures (b) and (a).
The smooth and continuous appearance of the curves represented in Fig. (c) highly suffers
when the bin map resolution is reduced (e. g., see Fig. (a)). Per default, a resolution of
256 × 256 bins per map are used.

Zooming into the Visualization and Re-Binning:

One may have the idea to re-bin the data when the user vertically zooms into the visual
representation. In this case, only the time series having values inside the visible area of the
CurveView (indicated by the red rectangle in Fig. 3.10 (a)) would be aggregate to keep
the granularity of the visualization constant. However, as one can see in figure 3.10, then
time series crossing the visible area would be lost in the visualization (e. g., see the green
line segment). Hence, the data is not re-binned in the proposed approach, and the bin
maps can be re-used while zooming and panning.

On the other hand, when depicting the binned data representation, certain areas in the
bin map can be skipped, indicated by the gray squares in figure 3.10 (a). This is due to the
fact, that these regions represent time series, where the respective data values are both
outside the visible area, but do not cross it. A possible advancement for future research
is, to aggregate the values outside the zoomed area applying a different (lower) resolution,
and to increase the number of bins used for the visible area.
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Figure 3.10: (a) The user has zoomed into the CurveView, the visible area is indicated
by a red rectangle. When aggregating only the zoomed area using 2D bin maps, time series
crossing this area would be lost (e. g., the green line segment). (b) When depicting the binned
data, the gray squares can be skipped, as the respective line segments are not visible.

3.4.2 Comparing Different Mappings in Focus+Context Visualization

In figure 3.11 different mappings in the CurveView are illustrated, showing the sample
feature specification previously described (see Fig. 3.8 in Sec. 3.3.2). Thereby, a linear
opacity transfer function is applied in figure 3.11 (a) and (b), which maps the number of
time series, running through a pixel, to the respective opacity (intensity) value. Thereby,
a steep slope is used in the figures (a) and (b), to emphasize the main portion of the
time series, and to make the color coding (feature visualization) visible. However, this has
the drawback, that visual structures (due to intensity) in dense areas of the visualization
are hardly discriminable. When scaling down the linear mapping the trends are revealed,
while the features disappear. On the other hand, a logarithmic opacity mapping is used
in figure 3.11 (c) and (d). Here, the outliers are enhanced, while preserving the general
data trends in the visualization. However, due to the non-linear mapping, one can not
intuitively estimate the number of overlapping time series from the color intensities. For
this purpose, a linear mapping is recommendable.

In figure 3.11 (a) and (c) a linear function is used (i. e., γ = 1 in Eq. 3.8), to calculate the
normalized DOI values, applied in the importance-driven color coding. Accordingly, the
red and green time series (i. e., the features) are hardly discriminable in the visualization.
On the other hand, a square-root function is applied (i. e., γ = 0.5 in Eq. 3.8) in the
CurveViews shown in figure (b) and (d). Therefore, the DOI values (and the features)
are represented in an enhanced manner, i. e., the red and green time series are revealed.
However, this does not correspond to the real amount of important time series in the
visualization, which is better represented using a linear mapping.

These examples illustrate, that it is quite difficult to convey all the important informa-
tion (features, patterns, data trends, etc.) within one static image. Different specifications
emphasize different aspects of the data. Therefore, interaction is a key issue in visual an-
alytics, which is also true when analyzing time series data. The switching between the
different combinations of mappings, and the interactive modification of the specifications
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(a) linear opacity mapping, linear DOI comp. (b) linear opacity mapping, enhanced DOI comp.

(c) log. opacity mapping, linear DOI comp. (d) log. opacity mapping, enhanced DOI comp.

Figure 3.11: Comparison of different opacity transfer functions and DOI enhancement: In
the upper row a linear mapping of density to opacity values is applied, while a logaritmic
mapping is applied in the bottom row. In the left column the normalized DOI information is
representation, while this information is shown in an enhanced manner (using a square root
function) in the right column.

affecting the visualization, allow the user to gain insight into the nature of the data (com-
pare to Sec. 1.1.1 and Sec. 2.1.1).



4 Brushing Time-Series Data

Interactive Specification of Time-Dependent Features

The following chapter proposes several smooth brushing approaches: Time step brushes
(see Sec. 4.2) where time series are selected that run through a specified interval at a certain
time step; and similarity-based approaches where time series are classified according to
their similarity to a user-defined pattern, which is directly sketched in the CurveView (see
Sec. 4.3). In section 4.4 different kinds of these brushes are proposed, where the similarity
is measured based on the gradients of the time series and the brush. The related state-of-
the-art of techniques allowing the specification of time-dependent features was described
previously in section 2.2.3.

4.1 Interactive Feature Specification

In the context of visual analytics [83, 82] (see Sec. 2.1.1) and Keim’s visual analytics mantra
[40] (see Sec. 2.1.1), interaction and human factors are of major importance when spec-
ifying features via brushing. These factors are, for instance, human intuition, domain
knowledge of the expert using the application, as well as the excellent ability to detect
visual structures, which appear during brushing or when altering the specifications of the
visualization (e. g., the parameters described in Sec. 3.4, such as linear/logarithmic map-
ping, scale factor, constant offset, number of bins). In this context, feature specification
is an interactive and iterative process where the user searches for unknown and interest-
ing patterns in the data, and furthermore aims to extract these features using brushing
techniques.

As it was described in section 2.1.2, the SimVis system [15, 21] uses smooth brushes [17]
for fuzzy classification [96] of the data items displayed in a view. The brushes are orga-
nized and combined using fuzzy-logic operations in a hierarchical feature definition lan-
guage (FDL) tree-like structure [15]. Via brushing [94, 5] the user actively specifies his/her
interest on a subset of the displayed data—called manual feature specification (compare to
the work done by Doleisch et al. [18])—by directly marking the data items on the display
screen. As a result, fractional degree-of-interest (DOI) values (compare to Furnas [27]),
which are assigned to each data entry in a SimVis view, from the interval [0, 1] are altered.
DOI values also build the basis for focus+context visualization in SimVis (compare to the
work of Hauser [30] and Doleisch et al. [16, 17, etc.]), where data items with maximal user
interest—the focus portion of the data with DOI values equal to 1—are represented in an

49
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enhanced manner. The rest of the data, where the DOI is 0 (context portion of the data),
is depicted in a reduced style for orientation. Thereby, a continuous border region, where
the DOI gradually changes between one (i. e., 100% user interest) and zero (no interest),
is assumed between focus and context.

4.2 Smooth Time Step Brushes

In the context of smooth brushing, a time step brush represents a (smooth) vertical selec-
tion in the CurveView on a certain time step (e. g., see Fig 4.1 or Fig. 4.2 where multiple
brushes are logically combined). A single brush is specified by a time step ts (in the
time-dependent data set S in Sec. 1.2.1) and a tuple of scalar thresholds (b1, b2, b3, b4) in
the codomain of the data [xmin , xmax ]. When evaluating the brush, the data value xi,s =
datai(ts) of each time series Di ∈ S (given at the time step of the brush ts) is considered
and the resulting fractional degree-of-interest (DOI) value is assigned to all data items of
the respective time series Di. The calculation of the DOI values is illustrated in figure 4.1,
and can be defined as a one-dimensional (trapezoidal) function (compare to the work of
Doleisch [15] or Hauser [30]).

doii,j(xi,s, b1, b2, b3, b4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if xi,s ≤ b1 ∨ xi,s ≥ b4 (context)
xi,s−b1
b2−b1

if b1 < xi,s < b2

1 if b2 ≤ xi,s ≤ b3 (focus)
b4−xi,s

b4−b3
if b3 < xi,s < b4

, (4.1)

were xmin ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ xmax . The data values xi,s of the time series that fall
into the interval [b2, b3], which specifies the inner region of the brush (orange rectangle in
Fig. 4.1 (a)), receive a maximal DOI value (1 ↔ 100% user interest) and are considered to
be in focus. Time-dependent data values at time step ts that lie outside of the boundaries
of the time step brush (i. e., xi,s ≤ b1 or xi,s ≥ b4) receive a DOI value of zero (no user
interest) from the function and are considered to belong to the context portion of the data
(see Fig. 4.1 (b)). Data values xi,s belonging to the interval ]b1, b2[ or ]b3, b4[, which define
the outer regions of the smooth time step brush (light orange rectangles in Fig. 4.1 (a)),
get a DOI value from the interval ]0, 1[ from the function in (4.1). These regions are the
boundaries between focus and context, where a gradually increasing or decreasing degree-
of-interest (DOI) is assumed (see the trapezoidal shape in Fig. 4.1 (b)).

As it was already mentioned, the resulting fractional DOI values from (4.1) are then
assigned to all data items xi,j ∈ Di in the SimVis view, where j = 1, . . . , N and N is the
number of discrete time steps in the data set S (and the time series). The CurveView allows
the creation of an arbitrary number of time step brushes, which are logically combined
in the hierarchical feature definition language (FDL) tree in SimVis [15], both described
in the following. The (smooth) selections of the brushes are reflected immediately in all
linked views by the propagation of the DOI values along the FDL tree and the depiction
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Figure 4.1: Brushing time series data using a time step brush: (a) The time-dependent
data values xi,j = datai(tj) of the time series Di are given at discrete time steps tj and
are interconnected with gray polylines. At a certain time step ts the data set is selected
using a smooth time step brush (orange rectangle). The illustration in (b) is adapted from
Doleisch [15].

of the data and the associated DOI information using importance-driven color coding
(focus+context visualization [30]) as it was described in section 3.3.2.

Other approaches known from literature, similar to this kind of brushing were briefly
described in section 2.2.3: Timeboxes are rectangular querying widgets in the TimeSearcher
application [36, 35] which are used to select all time series running through the rectangular
query box drawn in a view. Another brushing approach is line brushing [49], simple line
segments connecting two arbitrary points in a view, which are used to select families of
function graphs that intersect with the line brush. However, both applications use binary
classification to discriminate whether a time series is selected or not. In contrast to that,
time step brushes in SimVis apply fuzzy classification [96]. All the mentioned applications
have in common that multiple brushes can be combined using logical operations (e. g.,
AND, OR, NOT). A more in depth description is provided in section 4.2.2.

4.2.1 Intuitive Creation and Modification of Time Step Brushes

The creation of a time step brush in the CurveView is a straight-forward action performed
by the user: By clicking with the left mouse button on the desired starting position in
the view and dragging the mouse pointer to the end position of the brush, the inner
region (b2, b3) and the time step ts are specified, which denote the parameters used in
the DOI evaluation in (4.1). Initially, the smooth outer regions are limited to the inner
region of the brush, i. e., b1 = b2 and b3 = b4. The process of creating a time step brush is
quite similar to the construction of simple geometric primitives (e. g., rectangle, straight
line) in commonly used drawing applications (e. g., Adobe Illustrator1) or the creation of
Timeboxes in TimeSearcher [36], for instance.

The smooth bounds of the outer regions of the time step brush can be altered by the

1http://www.adobe.com/

http://www.adobe.com/
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user by clicking on the desired upper or lower edge and dragging it while the “Shift”-key is
pressed. All edges of the brush (b1, b2, b3, b4) are sensitive to the mouse pointer—the cursor
shape changes when an edge is touched by the mouse pointer—and can be easily modified
with click-and-drag operations. In addition to that, the parameters of the brush can be
altered numerically using a corresponding pop-up dialogue, which can be selected from a
pop-up menu when the user right-clicks on the brush. Furthermore, the whole component
can be moved to a new location in the view by clicking inside the visual representation of
the brush and dragging it.

While creating and modifying a time step brush the user gets continuous visual feedback
from the SimVis system on the features specified by one or more brushes. The smooth
selections are visually highlighted in all (linked) views using focus+context visualization.
Based on the visual response, the brushes can be further refined in order to explore the
interrelations of the data items, or the temporal evolution of time series intersecting with
the brush.

4.2.2 Combining multiple Time Step Brushes in the FDL Tree

As it was already described in section 2.1.2, the brushes (and views) in SimVis [15, 21]
are organized in a hierarchical feature definition language (FDL) tree-like structure. Here,
multiple smooth brushes are interpreted as fuzzy sets [96] and can be combined using
fuzzy-logic operations (AND, OR, NOT) realized as T-norms and T-conorms (compare to
Klement et al. [47]). This allows the specification of complex features using multiple smooth
brushes in multiple views. The CurveView also allows the combination of multiple time step
brushes (and similarity brushes described in Sec.4.3). Three types can be described (see
Fig. 4.2):

Smooth AND-brushes: All brushes assigned to this type within a view—each SimVis
view which allows brushing, is represented as a feature component node in the FDL
tree (see Fig. 4.2 (left))—are combined using an implicit (fuzzy) AND-operation. In
other words, time series which are selected smoothly in a view have to intersect with
all respective AND-brushes, depicted yellow in figure 4.2 (right).

Smooth OR-brushes: This type of time step brush is realized in the FDL tree with a
fuzzy OR-operation (see Fig. 4.2 (left)). Time series that pass through a time step
OR-brush (depicted green in Fig. 4.2) receive a DOI value > 0 if the selection is not
restricted by other brushes of a different type (e. g., AND, NOT).

Smooth NOT-brushes: Finally, the user can also exclude data items from the selection
using NOT-brushes, which are first combined in the FDL tree by a fuzzy OR-
operation and then excluded from the fuzzy set using a NOT-AND operation (see
Fig. 4.2 (left)). The respective brushes in the CurveView are depicted pink in fig-
ure 4.2 (right).
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Figure 4.2: Illustration of the logical combination of multiple types of time step brushes in
the FDL tree: OR-brushes are depicted green, AND-brushes yellow, and NOT-brushes pink.
For simplicity only a part of the FDL tree is illustrated (left), namely the child nodes of
the feature component node, which represents the CurveView (right). Features are amplified
using a nonlinear DOI computation (γ ≈ 0.4 in Eq. 3.8).

4.3 Similarity-based Smooth Brushing of Time-Dependent

Features

The idea of the proposed similarity-based brushing approach is that the user sketches
a time-dependent pattern directly in the CurveView by specifying an arbitrary number
of control points. The points are then interconnected by a polyline which represents the
shape of the similarity brush used for querying (see Fig 4.3). Time series are classified
smoothly (compare to fuzzy classification [96]) according to their similarity to the user-
defined reference pattern. The brush is evaluated based on a similarity measure between
the pattern and the respective time series, which results in a fuzzy classification of the
time series. This means, that an adequate degree-of-interest (DOI) value is assigned to
the data items of the time series, according to the similarity measurement. Based on the
respective features visualization during the analysis session, the user can further extend
or refine the similarity brush.

Humans have a subjective sensation of whether two patterns (e. g., curves or time series)
are similar or not. Three examples are illustrated in figure 4.4: In (a) the two sequences
are very much alike, although they are not equal. In figure (b) a constant (vertical) offset
is added to one of the pattern from (a). In (c) the two patterns are similar at many spots,
but there is a single outlier in the orange pattern. One could start arguing, whether the
figures (b) and (c) show similar patterns or not. However, in the context of visual analytics
and brushing, certain metrics have to be considered, which quantify the similarity between
two patterns and, therefore, build the basis for the approach proposed later in section 4.4.

In the following a similarity brush is described in a general manner (see Sec. 4.3.1),
moreover, how such a brush can be created and modified in the CurveView (see Sec. 4.3.2).
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Figure 4.3: Similarity-based brushing example: Time series are highlighted in the Curve-
View, according to their alikeness to a similarity brush. The visual representation of the
brush is a polyline. Two thresholds, which are used for similarity-based DOI computation of
the time series, are mapped to the vertical dimension (height) of the inner and outer region
of the similarity brush.

offset
outlier

(a) (b) (c)

Figure 4.4: Are these patterns similar? (a) two patterns; (b) a constant offset is added to
one of the patterns; (c) the orange pattern contains an outlier.

Then the issue of similarity measurement between time series and a brush is considered in
section 4.3.3, and how this can be related to smooth brushing of time-dependent features.

4.3.1 Defining a Similarity Brush

A similarity brush is defined by an arbitrary number of control points, which are explicitly
specified by the user, and by two thresholds. Such a brush can be created, for instance,
by clicking with the mouse on the desired screen positions of the control points (in the
CurveView), or by numerically altering the point values. Thus, a similarity brush SBk is
defined by a sequence of P tuples of data values x̂k,l and time values t̂k,l, i. e.,

SBk = {(x̂k,1, t̂k,1), (x̂k,2, t̂k,2), . . . , (x̂k,P , t̂k,P )}. (4.2)

The data values x̂k,l are specified in the data domain of the time-dependent attribute
(i. e., the dimension assigned to the CurveView) and the corresponding time values t̂k,l

are defined in the associated time domain. Moreover, each t̂k,l has to be less than t̂k,l+1,
to avoid invalid patterns. To simplify the evaluation of the brushes the time values t̂k,l

in (4.2) are restricted to the discrete time steps ts of the time-dependent data set S (see
Sec. 1.2.1). When sampling the similarity brush at discrete brush time steps t̃j—these are
normally equivalent to the time steps ts of the time series—the corresponding brush values
are denoted as x̃k,j = brushk(t̃j).
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The visual representation of a similarity brush in a CurveView is a sequence of line
segments (i. e., polyline) connecting the control points, as depicted in the brushing example
in figure 4.3. Two thresholds used for similarity-based smooth brushing of time series—
this will be described and formalized later in this section (see Eq. 4.5)—are mapped to
the height of the brush. As it is shown in figure 4.3, the first threshold is mapped to the
inner region of the brush and the second threshold to the (upper and lower) outer regions.

4.3.2 Creating and Modifying a Similarity Brush

Also the creation of a similarity brush is a straight-forward action performed by the user
(compare to time step brushes): By clicking with the left mouse button on the desired po-
sition of a control point in the view and dragging the mouse pointer to the next position,
the first line segment of the brush is specified. In a special creation mode the brush can be
extended interactively, adding further control points to it. Thereby, the new point continu-
ously follows the current mouse pointer until the user clicks down. Then, the new position
of the point is specified. Pressing the “Enter” or “Escape”-key the creation mode can be
left. Then, single control points can be modified by clicking and dragging them. Thereby,
the points are always interconnected from left to right according to their horizontal po-
sition, to avoid invalid patterns (as defined in Sec. 4.3.1). While modifying or creating a
brush, the corresponding feature is continuously evaluated (i. e., the DOI values), which
affects the FDL tree and the visualization in the linked SimVis views. Therefore, the user
gets immediate visual response to the feature currently specified.

Both thresholds of the brush can be altered by the user by clicking on the desired
upper or lower edge at an arbitrary control point and dragging it while the “Shift”-key
is pressed (compare to time step brushes). In addition to that, the thresholds and single
control points can be altered numerically using a corresponding pop-up dialogue, which
can be selected from a pop-up menu when the user right-clicks on the brush. Furthermore,
the whole component can be moved to a new location in the view by clicking inside the
visual representation of the brush and dragging it.

4.3.3 Similarity Measurements and Smooth Brushing on Time Series Data

To measure whether two sequences of values (e. g., subsequences in time series) are similar
or not, a scalar value, called the distance, is used to quantify the amount of similarity or
dissimilarity. Distance metrics play a central role in many applications of data mining [44]
(of time series), such as clustering [95], time series classification [71], anomaly detection [43]
or temporal pattern matching [9, 13]. Moreover, they build the basis for similarity-based
querying of time series where the distance of a subsequence of time-dependent data values
to a certain reference sequence is computed—the reference sequence is commonly denoted
as signature, pattern or template. Then, the distance value is compared to a tolerance
threshold, specified by the user, to discriminate whether the time series is considered to be
similar or not (see Hetland [34] for a survey, or Andrienko and Andrienko [4, Chap. 4.6]).
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Several metrics exist for quantifying similarity between (sub-)sequences of (e. g., time-
dependent) values. In many cases it is beneficial to apply data transformations on the
raw data values before similarity measurement (compare to Keogh and Kasetty [42]),
which will both be described in general in the following. After that, the remainder of
this section deals with the issue of similarity-based classification of time series—in SimVis
fuzzy classification is incorporated as smooth brushing using fractional degree-of-interest
(DOI) values.

Distance Measurements between two Sequences of Values

In the following the general basics related to distance measurements will be described.
Note that, however, the proposed approach computes similarity based on relative (derived)
attributes, such as the distance of gradients, slopes or angles, rather than on absolute
data values (see Sec. 4.4).

According to the work of Andrienko and Andrienko [4, Chap. 4.6], some commonly used
distance measurements in literature can be generalized in the family of Minkowski metrics,
also called LP norms. These metrics quantify the distance between two sequences of an
equal number of N values (e. g., subsequences in time series), namely x = {x1, x2, . . . , xN}
and y = {y1, y2, . . . , yN}, and are defined as

distLP
(x,y) =

[ N∑
i=1

|xi − yi|P
] 1

P
. (4.3)

In the case of P = 1, equation 4.3 represents the so called Manhattan or city block distance,
where the respective absolute differences of the values are summed up. The Euclidean
distance is represented in (4.3), if P = 2. According to Keogh and Kasetty [42], this
metric has a very low error rate and is used in the bigger part of published work on
time series data mining2 because of its formal properties.

Another method for computing the distance between the sequences x and y is to con-
sider only the maximal absolute difference between the particular values, i. e.,

distmax (x,y) = max
i=1,...,N

|xi − yi| . (4.4)

Thereby, a sequence is considered to be dissimilar if only one absolute difference between
the values of the time series and the pattern is greater than the tolerance threshold.
Hence, this approach is very sensitive to time series with outliers concerning similarity, as
illustrated in figure 4.4 (c). On the other hand, using a Minkowski metric, time series can
be considered to be similar if most of their values are very much related to the reference
pattern and only a few variations (e. g., outliers, noise) exist, as depicted in figure 4.4 (a)
and (c).

2According to a survey on time series data mining done by Keogh and Kasetty in 2002 [42], about 80%

of the accounted work uses Euclidean distance.
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offset

(a) (b)

Figure 4.5: Value Transformations for similarity measurement: (a) If a constant offset
is added to the values of the time series (or pattern) the calculated distance (grey lines)
can become meaningless for the purpose of (subjective) similarity measurement. (b) The
respective mean values are subtracted from the values of the time series and the pattern,
called value transformation. Then the distance (similarity) is calculated on the resulting
values. The illustration is adapted from Keogh and Kasetty [42].

Value Transformations for Similarity-based Brushing

When computing the similarity (distance) on the original values of the reference pattern
and the corresponding subsequence in the time series (as it was just described), this can
have some unwanted drawbacks: If, for instance, a constant scalar offset is added to the
values of the time series (or the pattern), which is called offset translation, the resulting
distance between pattern and time series increases in proportion to the length of the
gray lines in figure 4.5 (a). According to Keogh and Kasetty [42], the distance can then
become meaningless for the purpose of (subjective) similarity measurement, as it overrates
the distance perceived by an observer. It is therefore advantageous to transform the raw
data values into a normalized representation and to apply distance measurement on the
normalized values instead of the original ones (see Fig. 4.5 (b)). Such a value transformation
can be done by subtracting the respective mean value from both the values in the pattern
and in the time series subsequence before computing their distance, for example.

There are also other issues when evaluating the similarity of the raw data values, such
as magnitude scaling, linear trends removal or noise reduction (see Keogh [41]). The ap-
proach for similarity-based brushing presented in this thesis, however, focuses on the offset
translation problem illustrated in figure 4.5, as this is relatively obvious to the user when
searching for time series which are (subjectively) similar to a user-defined pattern. There-
fore, the distance measurement is applied on derived attributes of the time series data
(e. g., gradients or the slope between the values given at certain time steps), which are
robust against offset translation of the raw values. This approach will be described later
in section 4.4.

Fuzzy Time Series Classification according to their Similarity

For similarity-based querying a scalar tolerance threshold specified by the user, is com-
monly used to discriminate whether a subsequence of a time series is similar to a certain
(user-defined) reference sequence (e. g., called signature, pattern or template). If the par-
ticular (calculated) distance value is equal or less than the threshold, the time series is
classified as similar, otherwise it is considered to be dissimilar, which corresponds to a



Chapter 4. Brushing Time-Dependent Features 58

0

1

b1 b2 disti,L:M

focus

contextDOI

(a) (b)

Figure 4.6: Fuzzy classification of a time series according to its distance to a user-defined
similarity brush: (a) The distance disti,L:M between the time series (green curve) and the
specified reference pattern (orange curve) is evaluated. (b) A fractional degree-of-interest
(DOI) value from the interval [0, 1] is assigned to the time series, according to its dis-
tance disti,L:M .

binary classification [34].
As SimVis, however, uses smooth brushing [17] (see Sec. 2.1.2), two thresholds, namely

b1 and b2, are applied for the similarity-based fuzzy classification [96] of time series in a
data set S. When evaluating a smooth similarity brush, a scalar degree-of-interest (DOI)
value [27] from the unit interval is assigned to the items of a certain time series Di ∈ S,
according to its (dis-)similarity to the reference pattern (the shape of the brush). The
DOI assignment is illustrated in figure 4.6 and can be formalized as

doi similarityi(disti,L:M , b1, b2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ disti,L:M ≤ b1 (focus)
b2−disti,L:M

b2−b1
if b1 < disti,L:M < b2

0 if b2 ≤ disti,L:M (context)

(4.5)

where disti,L:M denotes the computed distance between a subsequence of time-dependent
data values in Di, and the corresponding values in the reference template. Note that only
the time-dependent values of the time series Di, which are given between the time steps tM

and tN (inclusive), are considered when evaluating the distance. Thereby, tM and tN denote
the first and last time step in Di where the similarity brush is specified, respectively. An
example of brushing time series according to similarity to a user-defined similarity brush
is depicted in figure 4.3. The two thresholds are mapped to the height of the inner and
outer region of the similarity brush.

In equation 4.5 and figure 4.6, time series having a distance disti,L:M , which is less
or equal to the threshold b1, are considered belonging to the focus portion of the data
(inner region of brush in Fig. 4.3). Accordingly, the associated data items in Di receive a
maximal DOI value of one. If the distance is equal or greater than the second threshold b2

the elements in the time series receive a DOI value of zero (context portion of the data).
Time series with a distance inside of the interval ]b1, b2[ get a DOI value from ]0, 1[ in (4.5).
Thereby, the range between b1 and b2 (outer region of the brush in Fig. 4.3) is considered
to be the boundary between focus and context, where a gradually increasing DOI value
applied, as illustrated in figure 4.6 (also compare to smooth time step brushes in Sec. 4.2).

In the similarity based brushing approach presented in this thesis, the sum of absolute
differences (P = 1 in Eq. 4.3) is applied to quantifying similarity. This forms a useful
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compromise between a relatively low error rate and a distance measurement incorporating
all values of the pattern and the subsequence of the time series. Moreover, the linear
behavior of the city block distance fits very well with the gradually increasing DOI values
at the boundary between the focus and context portion of the data (see Eq. 4.5 and
Fig. 4.6). As mentioned before, the distance is computed on derived attributes of the
time series (e. g., data gradients or slopes) to deal with the offset translation problem
illustrated in figure 4.5.

4.4 Types of Gradient-Based Smooth Similarity Brushes for

Time-Dependent Feature Specification

The proposed gradient-based smooth similarity brushing approach aims to select time se-
ries similar to a user-defined pattern, which is directly sketched in the CurveView. Thereby,
similarity measurement is based on the respective gradients of the brush and the time se-
ries. The fractional degree-of-interest (DOI) values assigned to each data item of a time se-
ries are altered according to the similarity to the reference pattern. The resulting time-
dependent features are depicted in real-time (in multiple linked views) using focus+context
visualization (see Chap. 3). As the time series are not necessarily sampled at regular time
intervals (i. e., at evenly spaced time steps), the respective differences are weighted prop-
erly before adding them up. In the context of smooth brushing, the resulting distance is
then compared to two thresholds discriminating focus from context. Thereby, a DOI value
for the time series is computed (see Eq. 4.5).

The approach presented in this section is inspired by brushing techniques, such as an-
gular query widgets [36, 35], angular brushig [32] or pattern search in TimeSearcher [9] (see
Sec. 2.2.3), where items are brushed based on ranges of differences, rather than on absolute
values. Three types of similarity-based brushes were integrated, such as gradient-Distance-
sum (GDS), angular-distance-sum (ADS) and point-sampled-slope (PSS) brushes, de-
scribed later. In the following gradient estimation, and weighting in order to cope with the
unevenly spaced time steps are described.

4.4.1 Calculating Gradients and Weights for Similarity-Based Brushing

As done in previous work (see Doleisch et al. [15, 16]), smooth brushing is applied on the
gradients (x′

i(t) = dxi
dt ) of a time-dependent attribute xi = fi(t), in order to detect temporal

patterns of changes. This enables the user to brush similar time-series, which exhibit, for
instance, the offset translation problem previously described in section 4.3. However, up to
now the derived attributes (e. g., gradients) could only be brushed in a separate attribute
view, e. g., using a rectangular smooth brush in a scatterplot or histogram view. The
presented gradient-based similarity brushing approach, allows the user to implicitly brush
time series gradients in a very intuitive way by specifying complex patterns (e. g., an
arbitrary polyline) directly in the CurveView, where the time series data is visualized.
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ts−1 ts ts+1

Δ̂ts−1 Δ̂ts Δ̂ts+1

fi(t)

datai(ts)
time series Di

1

∇datai(ts)

Figure 4.7: Calculating gradients and weights on time series data: An attribute being a
continuous function of time (grey curve fi(t)) is sampled at discrete time steps, which builds
the time series Di. The gradient datai(ts) (red line) at a certain time step ts in Di can be
calculated as a weighted sum of the three successive time steps, namely ts−1, ts, and ts+1.
Each gradient at a time step ts is considered to be valid (and constant) for a certain time
interval Δ̂ts, which is also the weight of the associated gradient.

Gradient Estimation: As the time-dependent data values xi,j = datai(tj) of the time se-
ries Di are sampled at discrete time steps tj over time (see Eq. 1.2), three types of gradient
estimation are commonly applied as linear filter functions3: forward, backward, or central
differences. Because of its formal properties (e. g., relatively low error rate, data smooth-
ing), central differences are used in SimVis, illustrated in figure 4.7, which can be calculated
as

∇datai(ts) =
1
2

(datai(ts+1) − datai(ts)
ts+1 − ts︸ ︷︷ ︸

right slope

+
datai(ts) − datai(ts−1)

ts − ts−1︸ ︷︷ ︸
left slope

)
(4.6)

Roughly speaking, the gradient ∇datai() at a certain time step ts in the time series is
calculated as the mean value of the right and the left slope (compare to Doleisch [15]).
The right slope is between the data values datai(ts+1) and datai(ts) given at the successive
time steps ts+1 and ts, respectively, and the left slope is between the data values given at
the time steps ts and ts−1 (see Fig. 4.7). This compensates for unevenly spaced time steps
in the time series data, and performs data smoothing due to the width of the filter, i. e.,
multiple data values are incorporated into the gradient estimation.

Calculating Weights: The estimated gradient ∇datai(ts) is considered to be valid (and
constant) for a certain time interval Δ̂ts on the time axis, illustrated in figure 4.7. The
interval Δ̂ts is also the weight of the gradient, which will be used later when calculating
similarity, and can be computed as

weight(ts) = Δ̂ts =
1
2
(ts+1 − ts−1). (4.7)

3A linear filter function is a weighted sum of discrete data samples, where the data and a filter kernel

of certain size (containing weights) are incorporated, i. e., the data samples within the filter region are

multiplied with the associated weight and summed up.
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Here ts+1 and ts−1 denote the time values of the time steps, which are adjacent to ts. If the
time steps of the time series Di are evenly spaced, equation 4.6 represents the commonly
used form of central differences (datai(ts+1)−datai(ts−1)

2(ts+1−ts−1) ) and all weights in (4.7) are equal.

4.4.2 Gradient-Distance-Sum (GDS) Smooth Similarity Brushes

The first type of smooth similarity brushes applied in the brushing approach presented
here, is the gradient-distance-sum (GDS) similarity brush, which is illustrated in figure 4.8.
As implied by its name, the absolute differences between the gradients of a GDS similarity
brush GSk and a time series Di are weighted and summed up. This corresponds to a
slightly modified version of the Manhattan or city block distance (P = 1 in Eq. 4.3),
where every gradient difference is weighted in order to “recreate” the (offset) transformed
(and smoothed) time series data values4. The metric is used due to the fact that the sum
of absolute distances, in contrast to other metrics (e. g., Euclidean Distance), has a linear
behavior. This corresponds well with the linearly increasing/decreasing DOI values at the
boundary between the focus and context portion of the data (see Eq. 4.5 and Fig. 4.6).

Evaluating Similarity: The calculation of the distance (dissimilarity) between the subse-
quence of a time series Di and a GDS similarity brush GSk can be formalized as

distgrad (Di,GSk) =
M∑

s=L

Δ̂ts · |∇datai(ts) −∇brushk(ts)|︸ ︷︷ ︸
distgrad (Di,GSk,ts)

. (4.8)

The gradient of the brush ∇brushk(ts) and of the respective time series ∇datai(ts) are both
calculated at a certain time step ts ∈ Di using central differences (compare to Eq. 4.6).
The two gradients are considered to be representative (and constant) for a certain time
interval Δ̂ts, which is associated with a time step ts of the time series subsequence (see
Fig. 4.8). The absolute difference between both gradients is denoted as distgrad (Di,GSk, ts)
in (4.8) and is also illustrated in figure 4.8 (b). As the time intervals Δ̂ts need not be of
equal length (i. e., the data is sampled at irregularly space time steps), each gradient
distance is weighted with the duration of the associated time interval (weight(ts) = Δ̂ts),
which was previously defined in equation 4.7.

Then, the weighted gradient distance is summed up for each time step ts of the subse-
quence in the time serie Di containing the similarity brush GSk, as shown in equation 4.8.
The first time step is referred to as tL and the last one as tM , as illustrated in figure 4.8.
Note that an arbitrary number of time steps can be located between tL and tM , and that
the intervals Δ̂tL and Δ̂tN , as well as the gradients of the brush and the time series, are
truncated at the time steps tL and tM , respectively.

4In their work on time series data mining Keogh and Pazzani [45] apply a similar approach using weighted

partial differences for similarity measurement.
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Figure 4.8: Evaluating a gradient-distance-sum (GDS) similarity brush: (a) The distances
(red horizontal lines) between the gradients of the time series Di (thick green lines) and of
the similarity brush GSk (thick black lines) are weighted properly, and added up. (b) Ex-
ample distance calculation at a time step ts. The gradients of the brush ∇brushk(ts) and
of the time series ∇datai(ts) are calculated. Both are considered to be valid for the time
interval Δ̂ts, which is also the weight of the distance distgrad(Di,GSk, ts). The latter is the
absolute difference of both gradients.

Generalization: In the following the general case, where the sampling time steps of the
brush t̃j (see Sec. 4.3.1) and of the time series ts do not correspond, will be considered and
briefly discussed5: One can, for instance, calculate (sample) the gradients of the similarity
brush at an arbitrary number of discrete sampling time steps t̃j—including the control
time steps t̂l, which are explicitly specified by the user (see Eq. 4.2). In other words, this
means calculating all gradients ∇brushk(t̃j) from the sampled brush values, using central
differences as formalized in equation 4.6. These brush gradients are again considered to
be valid for a corresponding time interval Δ̂t̃j . Then ∇brushk(ts) in (4.8) represents an
aggregated gradient at a certain time step ts of the time series, which is calculated as a
weighted sum of the brush gradients ∇brushk(t̃j) belonging to the associated interval Δ̂ts.
Thereby, the sum of the weights has to be equal to one. This can be formalized as

∇brushk(ts) =
1

Δ̂ts
·

∑
t̃j∈Δ̂ts

Δ̂t̃j · ∇brushk(t̃j),

where the intervals Δ̂t̃j are truncated at the borders of Δ̂ts. Another approach would be
to sample the GDS similarity brush GSk at the time steps of the time series Di, however,
this causes some precision problems.

5This can happen, for instance, when the brush (pattern) is automatically (and horizontally) shifted over

the time series data in order to reveal cyclic patterns. This approach is subject of future research and

is described briefly in Sec. 8.
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As the number of time series Di, i = 1, . . . , N in the data set is commonly much
greater than the number of similarity brushes GSk, k = 1, . . . , R (i. e., N � R), the
evaluation of the GDS brush can be done very efficiently, only considering the time steps ts
of the time series Di, and calculating the (aggregated) brush gradients ∇brushk(ts), e. g.
in a preprocessing step. Thus, time steps of the time series which are wider spaced (and
assumed constant), than the brush’s time steps can be evaluated efficiently using the
respective aggregated brush gradients.

DOI Evaluation: The two thresholds for the similarity-based DOI computation (see
Eq. 4.5) can be specified by the user in the data domain of the time series. This al-
lows an intuitive mapping of these thresholds to the visual representation of the similarity
brushes. Thus, the gradient-distance-sum similarity brush represent a very intuitive and
effective way of selecting time series according to their similarity to a user defined reference
pattern (e. g., polyline). A more detailed discussion of the different similarity brushes is
presented later in section 4.5.

4.4.3 Angular-Distance-Sum (ADS) Smooth Similarity Brushes

The angular-distance-sum (ADS) smooth similarity brush, illustrated in figure 4.9, is the
second type of similarity brush presented in this thesis. ADS brushes are very similar
to the gradient-distance-sum (GDS) similarity brush (see Sec. 4.4.2). However, instead
of summing up the weighted distances of the gradients, as it was done in the evaluation
of a GDS brush, now the absolute differences of the angles between an ADS similarity
brush ASk and a time series Di are each weighted properly and then summed up. Finally,
the sum is divided by the sum of the weights in order to calculate the average angular
distance between the time series and the brush. The angles are calculated as the arc tangent
of the respective gradients, where the fact has to be considered that the time and data
values are usually given in different data domains, e. g., temperature is given in ◦C and
time is given in seconds. Therefore, the time, data and brush values are transformed to
the same data domain, i. e., the gradients are normalized as described below.

The main difference between this and the gradient based distance measure is illustrated
in figure 4.9 (a). Each one of two gradients (green and black thick lines in the left and
right illustration) that have the same gradient distance (red lines) can enclose different
angles (blue arcs). In the depiction left, where the two gradients have a steep slope, they
comprise a relatively acute angle, whereas the two gradients that have a lower increase
include a rather obtuse angle (right illustration). An observer would normally perceive
the two gradients on the left to be more similar than the two on the right, depicted in
figure 4.9 (a). This is the motivation for measuring similarity with the angles included
between the time series and brush gradients in angular-distance-sum (ADS) similarity
brushes.
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Figure 4.9: Evaluating a angular-distance-sum (ADS) similarity brush: (a) The angular
distances (blue arcs) computed on the normalized gradients of the time series Di (thick
green lines) and of the the similarity brush ASk (thick black lines) are weighted and added
up. (b) Example angular distance calculation at a time step ts. The normalized gradients
of the brush ∇̃brushk(ts) and of the time series ∇̃datai(ts) are calculated. Both are con-
sidered to be valid for the time interval Δ̂ts, which is also the weight of the angular dis-
tance dist∠(Di,ASk, ts). The latter denotes the angle between both gradients.

Gradient normalization: Before the arc tangent can be applied on the gradients, they
need to be normalized. This is due to the fact that the time and data values are from
different data domains, which was already mentioned. Accordingly, the gradients of the
brush and the time series calculated using central differences (see Eq. 4.6) are scaled to
the interval [−1, 1] in order to restrict the resulting angle to the interval [−45◦, 45◦]:

∇̃datai(ts) =
Δ̂tmax

Δ̂xmax

· ∇datai(ts) and ∇̃brushk(ts) =
Δ̂tmax

Δ̂xmax

· ∇brushk(ts),

where Δ̂tmax = max{Δ̂tj = weight(tj) | tj ∈ S}, thus the maximum weight or time
interval Δ̂tj of the time steps tj in the time dependent data set S (see Eq. 4.7), and Δ̂xmax

is the absolute distance between the maximum and minimum data value in S, thus |xmax −
xmin | (see Eq.1.3). As a result, the maximal angle between the normalized gradients of a
time series and a brush is 90 ◦.

Evaluating Similarity: With these normalized gradients, the angular distance between
the subsequence of a time series Di and an ADS similarity brush ASk, which is illustrated
in figure 4.9 (b), can be formalized as dist∠(Di,ASk) =

1
tM − tL︸ ︷︷ ︸

normalize

·
M∑

s=L

Δ̂ts ·
∣∣∣arctan (

∇̃datai(ts)
)
− arctan

(
∇̃brushk(ts)

)∣∣∣︸ ︷︷ ︸
dist∠(Di,ASk,ts)

. (4.9)
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xthresh · Δ̂tmax
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Figure 4.10: For the visual representation the angular threshold β is mapped to the height
of the similarity brush xthresh with respect to Δ̂xmax and Δ̂tmax .

Thereby, at each time step ts of the time series Di where the ADS similarity brush ASk

is contained, the weighted absolute difference of the angle included between the nor-
malized gradient of the brush and the time series is summed up, namely ∇̃brushk(ts)
and ∇̃datai(ts), respectively. This angular distance, which is emphasized in figure 4.9 (c),
is denoted as dist∠(Di,ASk, ts). The two normalized gradients are both calculated for the
time step ts and are considered to be representative for the associated time interval Δ̂ts
in (4.9). As done for the GDS brushes each angular difference is weighted with the dura-
tion of the associated time interval (weight(ts) = Δ̂ts, defined in Eq. 4.7) before summing
them up. In order to calculate the average angle between the time series and the brush,
the sum is divided by the the sum of the respective weights Δ̂ts, which is equivalent to the
difference of the time values tM and tL. The first time step is denoted as tL and the last one
as tM (see Fig. 4.9 (b)). An arbitrary number of time steps can be located in-between tL
and tM .

As the angular-distance-sum is evaluated on normalized gradients in (4.9), it is inde-
pendent of the visual representation of the time dependent data. When the user zooms
into the visualization, the observed angles between the depicted time series and the brush
change according to the respective scale factor. This does not affect the evaluation of the
ADS similarity brush, however.

DOI Evaluation: The user-defined (angular) thresholds (b1 and b2) for the DOI evalua-
tion are specified as the average angle between the normalized gradients calculated on the
brush and data values and are applied in equation 4.5. For the visual representation of the
angular thresholds the gradient normalization is reversed, i. e., xthresh(β) = tan β · Δ̂xmax

Δ̂tmax
.

Thereby, the visual distance is computed in a right angle triangle where the adjacent has a
length of 1 and the opposite is xthresh · Δ̂tmax

Δ̂xmax
, both including a right angle (see Fig. 4.10).

4.4.4 Point-Sampled-Slope (PSS) Smooth Similarity Brushes

Both similarity brushes presented beforehand, namely gradient-distance-sum (GDS) and
angular-distance-sum (ADS) brushes, require that the values of the time series are similar
at all sampled time steps contained by the brush. In contrast to that, a point-sampled-
slope (PSS) similarity brush evaluates the time series only at the control points explicitly
specified by the user. These are tuples of values (x̂l, t̂l), l = 1, . . . , P , where x̂l is the brush
value defined in the data space of the time series, and t̂l is the corresponding time value
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Figure 4.11: Evaluating a point-sampled-slope (PSS) similarity brush: (a) The slopes of
the time series Di (thick green lines) and of the similarity brush PSk (orange) are only
calculated at the control points explicitly specified by the user (orange dots). (b) Example
slope distance calculation in-between the time step t̂l and t̂l+1.

which is specified in the time domain (compare to Eq. 4.2). As long as the time series
agree with the PSS brush in the control points, variations of the data values in-between
are tolerated.

Evaluating Similarity: The distance between a PSS similarity brush PSk and a time se-
ries Di can be computed as illustrated in figure 4.11. In the process, the differences of
the slopes of the time series and the brush, which are each computed between two con-
trol time steps of the brush t̂l and t̂l+1, are summed up. As a result, the distance can be
formalized as distpoints (Di,PSk) =

P−1∑
l=1

∣∣∣ (
datai(t̂l+1) − datai(t̂l)

)
︸ ︷︷ ︸

Δ̂xi,l

−
(
brushk(t̂l+1) − brushk(t̂l)

)
︸ ︷︷ ︸

Δ̂x̂k,l

∣∣∣, (4.10)

where Δ̂x̂k,l is the difference of the values x̂k,l = brushk(t̂l) and x̂k,l+1 = brushk(t̂l+1)
of the brush PSk, and Δ̂xl is the difference of the associated data values xi,l = datai(t̂l)
and xi,l+1 = datai(t̂l+1) of the time series Di. Thereby, the time steps t̂l+1 and t̂l correspond
to the user-defined control points.

Generalization and DOI Evaluation: The general case, where the time steps of the con-
trol points do not necessarily correspond to the time steps of the time series, will now again
be considered. The time series data values in (4.10), namely datai(t̂l+1) and datai(t̂l), are
each computed using linear interpolation of the adjacent data values given in Di. The two
thresholds used to derive a DOI from this metric (see Eq. 4.5) can be specified in the data
domain of the attribute, displayed in the CurveView.
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4.5 Discussion of the Brushing Approach

In addition to the visual data representation (see Chap. 3), the CurveView enables the
user to interactively specify complex time-dependent features using brushing techniques.
Features are specified in an interactive and iterative process and visualized immediately in
all linked SimVis views using focus+context visualization. Based on the visual feedback,
the user can further extend or refine the respective brushes. The combination of multiple
brushes (within a view or in the hierarchical FDL tree) using fuzzy-logic operations (i. e.,
AND, OR, NOT) allows the specification of complex time-dependent features in SimVis.

The proposed time steps brushes are very useful, e. g., to restrict (or extend) specified
features to a certain data range or to explore the evolution of time series that run through
a certain area of the CurveView. Furthermore, similar trends and patterns within the
time series data can be revealed using gradient-based similarity brushes. Each one of the
different types of similarity brushes has its own characteristics which address different
issues and tasks, as it is illustrated6 in figure 4.12:

Gradient-distance-sum brushes: This type suites very well to select even time series that
have a relatively low curvature. As it is shown in figure 4.12 (a) and (d) the high-
lighted time series are very similar to the shape of the user-defined pattern. The direct
mapping of the threshold(s) to the height of the brush is quite intuitive. When the
user, for instance, vertically moves the similarity brush above the selected curves,
they are contained within the shape of the brush.

Angular-distance-sum brushes: This kind fits well to brush time series having a steep
slope. Since the similarity is evaluated based on angles, the time series can be rather
curved (see the red time series indicated by an arrow in figure (b)). The mapping of
the threshold(s) is not as intuitive as with GDS brushes, since an averaged angular
distance computed on normalized gradients is specified (see Sec. 4.4.3). However,
the behavior when interactively altering the threshold(s) (e. g., by dragging) is very
similar to the GDS brushes.

Point-sampled-slope brushes: This brush type is valuable for common tasks were the
user is only interested in the slopes of the time series over certain periods of time.
For instance, when brushing temperature curves that have a rising of 2 − 5◦C over
ten years, where it is irrelevant whether the time series vary in-between. Such an
example is shown in figure 4.12 (c) and (f) where the time series indicated by the
arrows vary from the bigger part of the highlighted curves. In this brush type, also
the direct mapping of the threshold(s) to the height is relatively intuitive.

6For illustration purpose, the outer region of the brush (second threshold) is set to zero.
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Comparing the types of gradient-based similarity brushes with different
thresholds (i. e., in the top row a larger threshold is used). (a, d) gradient-distance-
sum (GDS) brushes; (b, e) angular-distance-sum (ADS) brushes; (c, f) point-sampled-
slope (PSS) brushes. Since the brushed time series (features) are visual outliers in areas
of context information, the respective DOI values were amplified in order to make the fea-
tures better discriminable.



5 Application Examples

In this chapter sample applications using the CurveView in combination with other linked
SimVis views are described. In the context of visual analytics [83, 82] (see Sec. 2.1.1) and
Keim’s visual analytics mantra [40] (see Sec. 2.1.1), there are two issues, which are of
major importance, when analyzing data visually and specifying features via interactive
brushing. These are facilities for interaction (e. g., changing parameters affecting the visu-
alization or navigating through the data) and human factors (e. g., intuition, expert and
domain knowledge, the ability to detect visual structures and patterns in short time). Vi-
sual structures appear or disappear, for instance, when altering the visualization mapping
of a CurveView (e. g., linear/logarithmic mapping, scale factor, constant offset, number
of bins) or when features are specified via brushing and visualized using focus+context
visualization. In this context, feature specification is an interactive and iterative process
where the user searches for unknown and interesting patterns in the data, and furthermore
aims to extract these features which will be described in the following.

In the following, a detailed visual analysis of the hurricane Katrina is presented (see
Sec. 5.1). Then, an analysis of climate research data is briefly presented in section 5.2.
Finally, the application aspects of the CurveView are discussed and summarized in sec-
tion 5.3.

5.1 Interactive Visual Analysis of Hurricane Katrina

Hurricane Katrina was one of the strongest hurricanes ever recorded that made landfall
in the United States. It hit the south coast near New Orleans, Louisiana, in August 2005,
and caused enormous floods and fatal damage along the north-central Gulf Coast. More
than 1,800 people lost their lives in the hurricane and the subsequent flooding1. The data
set is provided by the Mesoscale and Microscale Meteorology (MMM) division at NCAR
(National Center for Atmospheric Research).

In the simulation data set the position of the eye of the hurricane is centered over all
time steps. This is done by centering the model at the the region with lowest pressure
values. As a result the geographical context of the data set changes over simulation time,
i. e., the land is shifted to keep the hurricane in the middle. The data set contains 73 time
steps which are evenly spaced in one-hour intervals and 18 dimensions, such as wind
speed, pressure, temperature or water vapor. Thereby, a static grid is used to calculate

1http://en.wikipedia.org/wiki/Hurricane Katrina (accessed Sept. 2007)
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Figure 5.1: Visualization of the evolution of the wind speed (velocity) over time. A linear
transfer function is applied, mapping density values (number of overlapping time series) to
color intensities. Moreover, a constant offset is added, to emphasize the regions with high
velocity (dark red) in the upper area of the View. The general data trends are depicted as
a red band with high color intensity (lower area of the view). Applying an info box (yellow
tooltip), further details about the original time series data can be inspected.

the simulation data at each time step. For the purpose of interactive analysis the original
data set was downsampled to a static grid with 411, 026 cells, i. e., a time series represents
the evolution of the data in a spatial area (simulation cell) over time.

5.1.1 Visual Analysis of the Wind Speed using a CurveView

First of all, we want to analyze the evolution of the wind speed (velocity) over time,
since a strong wind is an important and destructive characteristic of a hurricane. For
this purpose, a CurveView is opened to depict the “Velocity” attribute of the hurricane
data set, which is shown in figure 5.1. Thereby, a resolution of 256 × 256 bins per bin
map is used, and a linear mapping of density to opacity values (see Sec. 3.3.2) is applied,
where the scale factor is altered interactively by the user. Initially, the regions with high
wind speeds (dark red) are barely visible in the CurveView. Therefore, a constant offset is
added to the intensity values of the time series (using a slider), to emphasize the portion of
the data, which is sparsely populated—the result is already depicted in figure 5.1. When
using a CurveView, the observer gets a very good impression about the general evolution
of the data values—and their distribution—over time. One is moreover enabled to make
quantitative statements on the data, which is illustrated in the following.

Making Quantitative Statements on the Velocity Data

The general trend of the velocity data stays rather constant in the lower area of the
CurveView in figure 5.1, while simulation time proceeds. This can be seen from the broad
red band, depicted with high color intensity in the view, which is vertically centered
around a velocity value of 8 meters per second (m/s). Furthermore, the time series with
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high wind speed, which are located in the upper area of the view (above the trends) close
to the respective maximum velocity values, are approximately evenly distributed. This
(vertical) distribution of the velocity values at certain time steps can also be inspected, e. g.,
in a histogram view. However, using the CurveView gives a very good impression about
the data evolution and (vertical) distribution over time. Considering, how the velocity data
evolutes in figure 5.1, the maximum values vary from 23 to 59 m/s between the time steps
(hours)2 0 and 24. Then the max. wind speed accelerates, and reaches its peak around
hour 58 with 84.5 meters per second (indicated by the arrow). From hour 60 to 71, the
high velocity decreases continuously, and then rapidly decelerates at the end of the data
set.

Enabling a tooltip (the yellow info box ) in the CurveView in figure 5.1 one can ex-
plore further details of the original data located close to or at the current mouse position
(represented as a white cross) in the visualization. These details on demand [79] in the
info box are (see Fig. 5.1): the coordinates of the mouse pointer in data space (“dataval.”
and “timeval.”); the closest time step to the cursor position and its time value; the number
of time series passing through the respective vertical data interval (bin) at the closest time
step (“sum time series”)—this is calculated, adding up the bin counts in the respective row
(or column) of the associated bin map; and the respective averaged DOI information of the
feature nodes in the hierarchical FDL tree (see Sec. 2.1.2), aggregated for the time series
running through the vertical interval (bin), i. e., the DOI values of the feature component,
the feature description, and the feature set nodes.

To refine the information displayed in the info box or to increase the precision of the
visual output the user can interactively alter the resolution of the bin maps. Furthermore,
one can change the opacity mapping (e. g., linear/logarithmic mapping, alter scale factor,
constant offset) in order to reveal the number of overlapping time series. In addition to
that the user can navigate through the visualization by zooming and panning, enlarging
interesting looking visual structures for more detailed observation.

Brushing Time-Dependent Features with High Velocity Values

In the following we want to focus on spatial grid cells (i. e., time series) where high wind
speeds occur—this is an important feature of a hurricane or thunderstorm. Therefore, a
smooth time step brush is created in the CurveView which depicts the velocity data (de-
scribed above), the result is shown in figure 5.2 (a). Thereby, all time series with high ve-
locity values at time step 61 are brushed and visually highlighted in red color. To put it
another way, this means that all cells of the grid which have a data value belonging to
the specified interval (at the certain time step), receive a high DOI value at all of their

2Only a few sample time steps are represented as long vertical lines crossing the CurveView in figure 5.1,

while each time step is depicted as a tick below the time axis. Moreover, the number of the time steps

is depicted above, and the respective time value below the view. Thereby, these values are equal in

figure 5.1, i. e., the time-series data is regularly sampled in one-hour intervals.
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(a) (b)

Figure 5.2: (a) High velicity values are brushed at time step 61; (b) the corresponding
feature is visualized using a 3D view where the pressure values are color coded.

time steps3. The evolution of the time series, intersecting with the time step brush, can be
examined in the view (see Fig. 5.2 (a)). Thereby, the DOI values are additionally empha-
sized, applying a gamma function with γ ≈ 0.4 (see Eq. 3.8), otherwise the colors would
be barely visible4. As one can see in figure 5.2 (a) the general trend of the selected time
series (depicted in red color) is highly related to the maximum velocity values. This is
because of the fact that the data set (i. e., the sampling grid) is aligned with the center
of the hurricane. Furthermore, one can see that the brushed time series have a high vari-
ance, i. e., the velocity increases and decreases over simulation time (see the red outliers
in Fig. 5.2 (a)). This is because of the circular winds around the center of the hurricane.

Using a 3D view, one can see the spatial position of the selected time series at a certain
point in the simulation time. The user can pass through the time steps of the simulation
by the use of a slider and observe how the associated data in the 3D representation change.
In the 3D view in figure 5.2 (b) the hurricane is shown at time step (hour) 61 where the
respective pressure values are mapped to the color values of the data items. Thereby,
green corresponds to low pressure, yellow to mean, and red to high pressure (see the
color gradient, left). Moreover, the DOI information is mapped to the color saturation
and opacity values of the data items, i. e., important data items (focus) are depicted with
high opacity and saturated colors, while the rest (context) is displayed translucent and
uncolored. As it is shown in figure 5.2 (b), the center of the hurricane (not visible or black)
is surrounded by a ring of high velocity (selected in the CurveView) and relatively low
pressure (yellow color).

5.1.2 Interactive Visual Analysis of the Center of the Hurricane

As an next step we visualize the center of the Hurricane Katrina, called the eye, and
explore how it varies over time. Since a low pressure is an important feature of the center

3Remember that a time series represents the temporal evolution of a data attribute in a certain spatial

area, namely the associated grid cell.
4 Due to this non-linear amplification of the DOI information, the observer might get a wrong impression

about the amount of relevance of the represented features. Therefore, it is recommendable to use a

gamma value equal to one, when making quantitative statements on the features.
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(a) (b)

Figure 5.3: (a) Low pressure values are brushed at time step 61; (b) the combined feature
of high velocity and low pressure values is visualized using a 3D view where the pressure
values are again color coded.

of a hurricane, the associated dimension is assigned to another CurveView (i. e., pressure),
which is shown in figure 5.3 (a). Again, a linear opacity mapping and a constant offset
are applied. In doing so, the general data trends are depicted with high intensity close to
the zero line which is indicated as a horizontal blue line in the upper area of the view.
Moreover, the low pressure values (already highlighted in color) in the bottom part of the
view are emphasized, because of the constant intensity offset. Otherwise, these portions of
the data would disappear in the visualization, as they are very sparsely populated by the
time series (i. e., outliers). In addition to that, also the DOI information is strengthened,
using a gamma value close to 0.5 (i. e., a square root function). Note, that the CurveViews
shown in figure 5.2 (a) and 5.3 (a) are both child nodes of the same feature set node (in
the FDL tree), which is important to mention in connection with the color coding of the
specified features.

Brushing Time Series with low Pressure Values

In figure 5.3 (a), time series with a low pressure value at time step 61 are selected by a
time step brush, which is represented as rectangle, with (light green) inner and smooth
outer region (dark green). The respective curves are emphasized in red color, furthermore,
time series being brushed in the other linked CurveView (see Fig. 5.2 (a)), are highlighted
in green color. Since importance-driven color coding is applied in the view (described
in Sec. 2.1.2 and Sec. 3.3.2), the time series with red color (i. e., selected in the view
itself being a child node of a feature description node) cover those with green color (i. e.,
selected in the feature set node by the other CurveView). Note, that the DOI information
is additionally enhanced (γ ≈ 0.4 in Eq. 3.8) to be better visible in the view. As it is
shown in figure 5.3 (a), the trends of the red and green time series are highly correlated.
Furthermore, the green curve form visual patterns among each other, which seem to be
similar (in a subjective way). This issue will be further analyzed in section 5.1.3.

Again, we analyze the spatial relationship of the brushed features in a 3D view. There-
fore, a fuzzy OR-combination of the features, which are specified in the two CurveViews,
namely high velocity (see Fig. 5.2 (a)) and low pressure (see Fig. 5.3 (a)), respectively, is
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shown in the 3D representation of the data at time step 61 in figure 5.3 (b). Thereby, again
the respective pressure values are encoded in color, and the DOI information is mapped
to the color saturation and opacity of the 3D data items (as it is done in the previous
3D view in Fig. 5.2 (b)). The eye of the hurricane is shown as the green area in the middle
of the view in figure 5.3 (b), which is surrounded by the area of high wind speed (yellow
color). The later feature is specified in the first CurveView (see Fig. 5.2 (a)), and also
depicted in the 3D view in figure 5.2 (b). The user can also enable and disable features in
the FDL tree, and thereby observe the respective changes in the visualization.

Specifying other features for orientation

For orientation purpose, we want to depict the geographical context (i. e., the land), and
the structures formed by fast clouds around the center of the hurricane, in the 3D data
representation. The corresponding features are specified in attribute views being child
nodes of the same feature set node as the two CurveView, i. e., the respective DOI values
are combined using a fuzzy OR-operation. This approach, is similar to previous work done
by Doleisch et al. [20], where hurricane Isabel is analyzed in SimVis, and will be described
in what follows.

For the land feature, a 2D scatterplot [68] is opened (see Fig. 5.4 (a)). The attributes
height (“Geometry Z”), representing the absolute height of the simulation cells, and the
relative height of the surface (“HGT”), which is measured with reference to the sea level,
are assigned to the horizontal and vertical axis of the scatterplot, respectively. Then, data
items with a low absolute height, and (in addition to that), a relative surface height,
which is larger than a certain value, are brushed in figure 5.4 (a), using a rectangular
smooth brush. After specifying the geographical feature, now fast clouds are selected in
another 2D scatterplot depicted in figure 5.4 (b). Here, an attributes representing the
clouds (“QCLOUD”), and another representing velocity, is assigned to the two axes of
the view. The data items are brushed using another rectangular smooth brush. Thereby, a
large outer region (dark green color) is specified around the inner region of the brush (light
green), where the DOI values change linearly form zero (context data located outside of
the brush) to one (focus data located inside the inner region of the brush).

As a result, the visual structures representing the fast clouds around the center of hur-
ricane Katrina are represented colorless (similar to white), which is shown in the 3D view
in figure 5.4 (c). This corresponds to the fast clouds feature (see Fig. 5.4 (b)), where many
data items receive a DOI value within ]0, 1]—representing the smooth boundary between
the focus and the context—, and are therefore depicted with low color saturation. More-
over, the land feature is shown in a dark orange color (high pressure) below the hurricane
for orientation. Again pressure is color coded in figure 5.4 (c) (see the color bar, left) and
the 3D view shows the hurricane at hour 61. This visual representation corresponds very
much with pictures of hurricanes, well known from the media.
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(a) (b) (c)

Figure 5.4: (a) The land is selected in a 2D scatterplot view; (b) fast clouds are selected
using another scatterplot; (c) the combination of all specified features is depicted in a 3D view
where the pressure values are color coded.

5.1.3 Revealing Interesting Time-Dependent Patterns and Trends

As it was mentioned in section 5.1.2, when analyzing the pressure data in the CurveView,
several trends of colored time series are visible, which represent the specified features, and
appeared to be similar (see Fig. 5.3 (a)). In the following we want to further explore these
trends and visual structures, using the similarity-based brushing techniques presented in
this thesis (see Sec. 4.4). As it was already mentioned at the beginning of this section,
human intuition and the background knowledge of the expert using the application are of
major importance, when specifying features and analyzing the data visually. In the context
of visual analytics (see Sec. 2.1.1), feature specification is an interactive and iterative
process, where the user searches for unknown and interesting patterns in the data, and
furthermore extracts these features via brushing.

Brushing Similar Trends of Time Series in the Pressure Data

For the purpose of selecting trends of time series, which are similar amongst each other, a
smooth similarity brush (see Sec. 4.4) is created in the CurveView, depicting the pressure
data of the hurricane (see Fig. 5.5). The brush is represented in green color, and covers a
certain (horizontal) period of time. The slope of the brush is altered interactively by the
user, dragging the control points, which define the brush. In doing so, a time-dependent
pattern is specified, and used for interactive feature specification. Thereby, time series being
similar to the brush (i. e., they have a similar slope or gradient), are selected smoothly.
The associated feature is visually reflected immediately, highlighting the respective time
series in color (using focus+context visualization). Moreover, the user can interactively
modify the inner (light green) and smooth outer region (dark green) of the similarity
brush, by dragging the respective edges at the control points of the brush. In doing so,
the thresholds used for the evaluation of the similarity, are altered (see Sec. 4.3.3). Again,
these modifications affect the feature specified by the smooth similarity brush, which is
depicted instantly, using focus+context visualization (also in the linked views).

In the CurveView shown in figure 5.5 the user has zoomed into the pressure data, using
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Figure 5.5: Similar trends in time-dependent pressure values are selected using a similarity
brush.

the horizontal and vertical sliders. Applying a gradient-distance-sum (GDS) similarity
brush (see Sec. 4.4.2), a pattern is specified for similarity-based brushing, which has a
similar slope as the outer hull formed by the minimum pressure values in the data set.
Moreover, the resulting feature is refined to those time series, which have a low pressure
value—this is a feature of the eye of the hurricane—at time step 61, by the use of a smooth
time step AND-brush (yellow rectangle). Several traces of similar pressure curves are visible
in the view—this phenomenon results from the simulation process and is explained below—
, which are highlighted in red color. As one can see from the figure, the traces escalate at
time step 63/64, which indicates that the hurricane makes landfall. Refining the specified
feature to one of these traces (e. g., using another time step AND-brush), one can see in the
linked 3D view, that the associated data belongs to a certain height level of the center of
the hurricane. This is due to the fact, that the time-dependent pressure data is calculated
for different height layers during the simulation process. Thereby, the time series within
one layer are continuously distributed, however, the time series of different height levels
are unevenly distributed (see the white space between the similar time series). Using the
similarity brush, the typical trends of the pressure values within the center of the hurricane
are emphasized. Without the brushing facilities, these patterns would be hard to discover.

Further Similarity-Based Brushing Results

When analyzing other dimensions in the hurricane data set using a CurveView, one comes
across other interesting visual structures formed by the time series. This means, that one
localizes possible (unknown) features such as data trends, patterns, or outliers. As an
example, the water vapor is analyzed, which builds clouds or fog in a condensed form. As
it is done in the previous section, a feature is specified in a scatterplot view, brushing the
simulation cells, which are close to the land, by the use of a rectangular smooth brush (see
Fig. 5.4 (a)). As a result, a visual trend is visible in the CurveView depicting the water
vapor (“QVAPOR”).

Using a point-sampled-slope (PSS) smooth similarity brush (see Sec. 4.4.2), one aims
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(a)

(b)

Figure 5.6: Brushing trends in the evolution of the water vapor. (a) a reoccurring pattern
(indicated by the arrows) is discovered using a similarity brush; (b) the feature is refined
using further similarity and time step brushes.

to select the above mentioned visible trend, as it is done in figure 5.6 (a). This type of
similarity-based brush tolerates variations of the time series in-between its control points.
As a result, the time series, following a downward trend during a certain time span in
the water vapor data, are brushed smoothly. The resulting feature is highlighted in color
using focus+context visualization. The time series shown in red color (i. e., specified in
the feature component node) are brushed in both view (i. e., the CurveView and the
2D scatterplot), those in yellow color (i. e., the feature description node) are only brushed
in the CurveView. As it is shown in figure 5.6 (a), the specified downward trend reoccurs
about 24 hours (time steps) later, which is indicated by the arrows. This is due to the
fact, that the amount of water vapor decreases during night over land, which is also visible
when inspecting the clouds in a 3D view.

Applying further brushes in the CurveView, which are combined in the FDL tree using
fuzzy logic operations (see Sec. 4.2.2), one can interactively refine the selection to the
desired trends and thereby specify a complex feature (see Fig. 5.6 (b)). The similarity
brush previously created is converted to an AND-brush. The two visible trends around
time step 38 are selected interactively using further similarity brushes (green), which are
combined in the FDL tree by a fuzzy OR-operation. Using time step brushes several data
ranges are excluded from the feature (i. e., NOT-brushes depicted pink). The trends visible
in figure 5.6 (a) are specified as a complex time-dependent feature in (b).
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5.2 Visual Analysis of Climate Research Data

In corporation with the Wegener Center for Climate and Global Change in Graz, Austria,
the SimVis system—including the CurveView—was successfully applied to the analysis of
climate research data. In this context, a case study done by Ladstätter et al. [52] has been
presented as a poster at the 3rd Intern. Workshop on Occultations for Probing Atmosphere
and Climate (OPAC-3). Thereby, scatterplots and CurveViews are used to brush derived
time-dependent attributes (e. g., linear trends or signal-noise-ratio (SNR)). The goal was
to localize robust indicators for monitoring climate changes as well as deficiencies within
climate research data set. The topic and the results are briefly discussed in the following
(compare to Ladstätter et al. [52]).

5.2.1 Indicators of Climate Change

In climate research, one is commonly interested in the temporal evolution of certain at-
tributes (e. g., temperature, specific humidity and refractivity) in the upper troposphere and
lower stratosphere (UTLS) domain (5–35 km), which is considered to be a sensitive region
with respect to climate change. Since the second half of the last century, measurements
are performed and due to technical improvements the resulting data becomes increasingly
accurate (e. g., the Radio Occultation (RO) technology available since 1995 using Global
Navigation Satellite System (GNSS) signals [51]). In this context, climate models data sets
(e. g., ECHAM5) aim to provide long-term scenarios, and reanalysis data sets (e. g., ERA-
40) combine the measured data from various sources (e. g., satellite data, radiance data).

In order to find promising indicators for the monitoring of climate change (in the UTLS
region), two data sets, namely ECHAM5 and ERA-40, are explored interactively using the
SimVis system. The basic parameters (e. g., temperature, refractivity, specific humidity and
geopotential height) provide rather trivial and well-known interrelations. Thus, derived
parameters are considered for analysis purpose, such as linear trends calculated as moving
10-years-difference (similar to central differences) or the signal-noise-ration (SNR), which
is defined as the ratio of the linear trend to the detrended (i. e., the trend is subtracted
from the original data) standard deviation [52]. Interesting features with respect to robust
indicators consist of high values for the linear trend and a relatively good SNR.

5.2.2 Analyzing the ERA-40 Reanalysis Data Set

In the following, selected examples from the analysis of the ERA-40 reanalysis data set are
briefly presented and discussed (see the work done by Ladstätter et al. [52]). Since earlier
measurements were not as accurate as nowadays (e. g., radio occultation), the data set
comprises know deficits in southern high latitudes.

In figure 5.7 an example exploration of summer seasons in the time period 1966 to
1997 is shown, where the CurveView is used in a passive manner. High absolute signal-
to-noise (SNR) values of temperature are selected over the whole time span using a
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(a) (b)

Figure 5.7: Analysis of the evolution of temperature in climate research data: (a) The
distribution of the derived linear temperature trends (x-axis) vs. geographical latitude (y-
axis). High SNR values are brushed in another scatterplot, and are highlighted in red in (a).
Here, the latitude region between 60◦N and 60◦S is brushed, since the ERA-40 data set
shows known deficits in southern high latitudes. (b) The evolution of the derived trend
of the temperature from 1966 to 1997 is shown in the CurveView, where a logarithmic
opacity mapping is applied in order to emphasize outliers. The latitude and the SNR feature
are depicted. Most of the outliers (blue) do not belong to this feature. Images taken from
Ladstätter et al. [52].

rectangularNOT-brush in a 2D scatterplot. The resulting feature is highlighted in red
in another 2D scatterplot showing the distribution of the derived trend per decade (ex-
plained above) of the temperature (x-axis) vs. latitude (y-axis) as shown in figure 5.7 (a).
A certain range of latitude is brushed (60◦N to 60◦S) where the data set is supposed to
contain robust indicators for climate change. In the CurveView in figure (b) the temporal
evolution of the derived temperature trend is shown. Furthermore, the latitude and the
SNR feature are depicted using color coding. Most of the outliers (blue) in the upper and
lower part of the view are not highlighted, i. e., they do not correspond to the brushed
range of latitude or their absolute SNR is too small. There is also some discontinuity of
the highlighted (red) curves (indicated by the arrows) which results from the SNR feature.

In the CurveView in figure 5.8 the derived temperature trends with high variations are
selected using a horizontal similarity NOT-brush (gradient-distance-sum, depicted pink).
Accordingly, the regions with outliers are highlighted in red, while the general data trends
(vertically centered around the zero line) are depicted in black. The corresponding feature
is visualized using the 2D scatterplot with the same attributes as in figure 5.7 (a). In
figure 5.8 (b), the bigger part of the highlighted data items (red) appears at high southern
latitudes (bottom, left and right), where the data set comprises known deficits.
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(a) (b)

Figure 5.8: (a) The derived temperature trends are shown in the CurveView. Time series
with high variations are selected using a similarity NOT-brush. (b) The distribution of the
derived linear temperature trends (x-axis) vs. geographical latitude (y-axis) are visualized
using a scatterplot. The bigger part of the highlighted data items (red) appear occurs at
high southern latitudes.

5.3 Discussion

The CurveView allows the user to quickly get insight into the evolution of the data over
time. Different types of multi-variate (or multidimensional) data can be assigned to the
view. The specification of the visualization (i. e., some parameters) can be altered in order
to allow the user to focus on different aspects of the time-dependent data set. One can,
for instance, emphasize general data trends using a linear opacity transfer function, which
mapps the number of overlapping time series (density) to opacity values (i. e., color inten-
sity). On the other hand, low populated regions in the visualization can be accented (i. e.,
visual outliers) applying a logarithmic opacity transfer function or by adding a constant
offset to the intensity values of the time series. Using focus+context visualization both
aspects (trends and outliers) of the data can be represented within one view. This gives a
good overview of the data evolution over time.

In addition to the aspects related to the visualization, the CurveView enables the
user to interactively specify complex time-dependent features applying interactive brushing
techniques. By the use of similarity-based brushes, trends of time series being similar to a
user-defined pattern are brushed smoothly. Thereby, the pattern can be sketched directly
in the CurveView. Time series that pass through a specified interval at a certain time
step, can be selected using data range-driven brushing (i. e., time step brushes). Thereby,
brushing is an interactive and iterative process where the specified features are visualized
immediately in all linked SimVis views using focus+context visualization. As the brushes
are combined within a view using fuzzy-logic operations (i. e., AND, OR, NOT), and/or
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hierarchically combined within the feature-definition-language (FDL) tree, very complex
time-dependent features can be specified and visualized in SimVis and in the CurveView.



6 Implementation Details

6.1 The SimVis Framework

SimVis [15, 21, etc.] consists of a core application and an extensible framework, which al-
lows the development of so-called plugins providing new functionalities to the system (e. g.,
additional views, data converters). The software is designed to run on multiple platforms
(e. g., Linux, Windows) and is written in the C++ programming language. Furthermore,
OpenGL1 and NVIDIA’s C for graphics (Cg) [24] are commonly applied for data visual-
ization, where the graphics hardware is used in order to display the data at interactive
frame rates. The extensions to SimVis are compiled to separate dynamic link libraries
(DLLs), and are loaded at program start-up.

As it was already mentioned in section 2.1.1, the features specified and visualized in
multiple bidirectionally linked views are organized in a hierarchical feature definition lan-
guage (FDL) tree (managed by the SimVis framework), which can also be saved and loaded.
At start-up, a view has to register at the FDL tree and provide certain basic functionalities
to be seamlessly integrated into SimVis, i. e., some graphical user interface (GUI), meth-
ods to display the specified features using focus+context visualization, or functions that
respond to degree-of-interest (DOI) updates, to name a few. Moreover, attribute views
have to provide smooth brushing techniques for interactive feature specification. Each of
these attribute views is represented as a feature component node affecting the FDL tree.

As it was pointed out before, user interaction as well as the real-time visualization of
the data, are both key issues in visual analytics (see Sec. 2.1.1). Hence, several (crucial)
tasks in SimVis are decoupled using multiple threads. For instance, the GUI events and
the graphical data representation in a view are commonly executed in separate threads, in
order to respond immediately to the actions of the user (e. g., dragging a slider, zooming
into the data, panning). Moreover, DOI updates in the FDL tree (e. g., when a brush is
altered) can take up to a few seconds, and are therefore executed in other threads. Another
important features of the SimVis system, is a low-level memory manager, which performs
caching operations and swaps out blocks of data from main memory to the hard disk when
the system runs out of memory. This is due to the fact, that the amount of data handled
during an analysis session can be very high (e. g., several gigabytes).

1Open Graphics Library (OpenGL), see http://www.opengl.org/
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6.2 The CurveView Plugin

The CurveView is written as a plugin (DLL) for the SimVis system, and is available as a
feature component node in the FDL tree. Therefore, it provides brushing functionalities
affecting the tree (see Chap. 4), and enhanced techniques to interactively visualize time
series data (see Chap. 3). Moreover, the CurveView makes use of the basic functionalities
provided by the framework, such as the loading and saving of the corresponding nodes
in the FDL tree, or the loading of large time-dependent data sets. As it is done in other
views, the depiction of the data, the GUI events, and the evaluation of the brushes are
executed in separate threads, in order to decouple these crucial tasks. Moreover, graphics
hardware is used allowing the real-time visualization of the time-dependent data.

6.2.1 Implementation of the Visualization Approach

Several techniques are applied, in order to archive enhanced interaction and interactive
frame rates during rendering. When, for instance, parts of the FDL tree are modified (i. e.,
the DOI values) or the user interactively alters some visualization parameters while the
rendering is being performed (in another thread), it has to be finished as fast as possible.
Therefore, different tasks when depicting the data are performed separately, and each
of them can be skipped, proceeding with the next step. These tasks are: the binning of
the time series; the rendering of the binned data to the DOI density map; and the final
depiction of this map.

Binning: When aggregating the time series data, the 2D (DOI) bin maps are computed
in software, where 32 bit are used per bin count and 8 bit per averaged DOI value
(see Sec. 3.2). Thereby, the amount of data can also become very large, e. g., about
1 GB at a resolution of 1024 × 1024 bins per (DOI) bin map and 100 time steps.
Thefore, the SimVis memory manager is applied for data allocations, which performs
low-level caching or swaps out data blocks, when the system runs out of memory.

Creating the DOI Density Map: For the real-time visualization of the binned data, the
respective geometric primitives (polygons) are depicted using the features of modern
graphics hardware (available since NVIDIA GeForce 6 or ATI Radeon 9000). First,
the data is rendered to a high-precision floating point texture (16 or 32 bit), which
represents the DOI density map (see Sec. 3.3.1), using vertex arrays2. By the ap-
plication of another feature called floating point framebuffer blending, the different
color channels of the texture can be used to aggregate the binned information, i. e.,
the Red-Green-Blue (RGB) channels sum up the respective DOI information, and
the Alpha channel aggregates the number of overlapping time series (density).

Depicting the DOI Density Map: In a final step, the DOI density map (i. e., the texture)

2Vertex arrays are a feature of modern graphics hardware where the geometric data is stored in an array,

which can be processed efficiently.
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is rendered to the output device, in order to depict the time series data. Using pro-
grammable shading (compare to Fernando and Killgard [24]), a Cg fragment program
is applied, which performs certain arithmetic operations or texture look-ups directly
on the graphics hardware, for each output pixel in the CurveView. Thereby, the
transfer functions described in section 3.3.2 are evaluated, which map the respective
density value (from the texture) to the opacity value (color intensity), or perform
the DOI enhancement and the importance-driven color coding.

6.2.2 Allowing enhanced User Interaction

When for instance the DOI information is updated, the number of bins is altered or a differ-
ent dimension is assigned to the CurveView, the time-dependent data and/or the associated
DOI values have to be re-binned (see step 1). Thereby, only the visible (DOI) bin maps
are processed in order to save time. To keep the respective information persistent, a flag
classifies whether the map is up-to-date or not. On the other hand, when changing the view
specifications (i. e., zooming, panning, switching between linear or logarithmic mapping,
altering the intensity offset or scale factor), commonly only the rendering has to performed
and the binned information—if it is up-to-date—can be re-used (see step 2).

The rendering of the binned information to the high-precision floating point texture
(DOI density map) can take a while, even though only a few hundred milliseconds (see
Sec. 6.3). However, for the purpose of visual analytics this can be to long (compare to
Novotny and Hauser [67]), thus, two textures are used. The current data is always ren-
dered to one of these textures, if the task cannot be completed (e. g., interrupted by user
interaction) the previously created texture is used (and eventually scaled or translated)
in the final rendering step (step 3). In doing so, the user gets continuous visual feedback
allowing the enhanced navigating or altering of a brush without losing the orientation. Fur-
thermore, certain areas in the (DOI) bin maps can be skipped when the user has zoomed
into the visualization. Since the respective geometry it is not visible, it need not be sent
to the graphics hardware (see the gray squares in Fig. 3.10 in Sec. 3.4.1), which saves
rendering time.

6.2.3 Hardware Optimized DOI Evaluation

The evaluation of the similarity-based brushes in the CurveView can be highly optimized,
when the distance is computed using special component-based vector arithmetics. Stream-
ing SIMD Extensions (SSE) is a SIMD (Single Instruction, Multiple Data) instruction set,
which is available on commonly used processor architectures, e. g., on Intel processors3 up-
wards the Pentium III and on AMD processors4 (3DNow). Thereby, the same instruction
(e. g., adding, subtracting, multiplying, square root, min/max operations) can be per-
formed simultaneously on four 32-bit floating point values in special registers added to the

3http://www.intel.com/
4http://www.amd.com/

http://www.intel.com/
http://www.amd.com/
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CPU architecture. Using this instruction set, the distance calculation could be advanced.

6.3 Performance Evaluation

The performance of the CurveView was evaluated, measuring the respective time required
to complete a certain task (e. g., rendering, binning, DOI evaluation). Two large time-
dependent data data sets were used for testing: the hurricane Katrina data set, which
contains 411, 026 time series given on 73 time steps; and a large climate data set provided
by the Wegener Center with 921.600 time series and 67 time steps. Only the cases were
considered, where the respective task could be finished without being interrupted (e. g.,
by updates caused by other threads handling user interaction or DOI updates) in order
to measure the required time to perform the complete task. In the cases were certain
tasks could not be finished, however, the DOI density map (texture) previously created
was visualized (taking less than a millisecond), i. e., a visual feedback was continuously
provided to the user.

The results of the evaluation of the visualization approach are shown in table 6.1. As one
can see from the measurements, the rendering time highly increases when the resolution
(L × L) of the (DOI) bin maps is doubled, i. e., O(L2). The resolution, however, does
hardly affect the binning time, which is linearly dependent on the number of time series.
Furthermore, rendering and binning are both linearly dependent on the number of visible
time steps (i. e., the number of (DOI) bin maps to be depicted). In table 6.2 the time
required to evaluate the similarity-based brushes using SSE is shown. Thereby, the angular-
distance-sum (ADS) brush takes much longer to be evaluation than the gradient-distance-
sum (GDS). Moreover, the required time linearly depends on the number of time steps
contained in the brush. Comparing brush evaluation and binning time, one can see that the
most crucial (time demanding) task is the binning of the data. However, when navigating
through the data representation or changing the visualization parameters, the binned
data can be re-used. Moreover, the number of bins can be reduced in order to enhance
interaction.
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Data set Task
#vis.time steps required time (sec)
#bins/map → 256 × 256 128 × 128

Hurricane Katrina
(411, 026 time series)

Rendering
65 t.steps 0.098 0.029
35 t.steps 0.045 0.015

Binning
65 t.steps 1.739 1.485
35 t.steps 0.882 0.770

Climate Data Set
(921, 600 time series)

Rendering
65 t.steps 0.220 0.064
35 t.steps 0.127 0.038

Binning
65 t.steps 3.159 2.965
35 t.steps 1.751 1.594

Table 6.1: Performance Evaluation.

Data set
brush type required time (sec)

#time steps → 25 t.steps 50 t.steps

Hurricane Katrina
(411, 026 time series)

gradient-distance-sum 0.045 0.093
angular-distance-sum 0.380 0.189

Climate Data Set
(921, 600 time series)

gradient-distance-sum 0.105 0.201
angular-distance-sum 0.429 0.849

Table 6.2: Performance when evaluating similarity-based brushes.



7 Summary

7.1 Introduction

Massive and complex amounts of time-dependent information arise in various areas of
business, science and engineering such as climate research, medicine or finance. The data
sets commonly result from measurements, modeling or the simulation of dynamic processes
and contain multiple attributes (i. e., dimensions) evolving over time. In this context, an-
alysts are commonly interested how the data changes over time in order to predict future
developments. Thus, they want to investigate general data trends, to discover interesting
structures and patterns as well as data items which differ from the main trends, called
outliers. In addition to that, one is often interested in the relationships between different
attributes (dimensions) of the data. In order to gain insight and knowledge from such large
and complex data sets, the science of visual analytics [83, 82] (aka. interactive visual anal-
ysis) combines sophisticated methods from different research disciplines. Using interactive,
visual and analytical techniques, analysts are enabled to create, verify or reject hypotheses
based on the data.

However, when dealing with data sets that contain a large number (e. g., several hundred
thousands or millions) of time series, the application of standard visualization approaches
such as bar- or line charts (compare to Harris [29]) is commonly not sufficient and results
in overcrowded and visually cluttered displays. Here, the important information (e. g.,
interesting patterns or features) is simply hidden by the massive amount of data. More-
over, the depiction of this data can take up to a few seconds—even on modern graphics
hardware—which is also not satisfactory for the purpose of interactive visual analysis [1].

The objective of this thesis is to present the CurveView for the enhanced visual anal-
ysis of multidimensional time series data. The approach is seamlessly integrated into
SimVis [15, 21, etc.], a multiple-views system usually dealing with complex time-dependent
simulation results. Smooth brushing techniques [17] allow the user to select certain interest-
ing subsets of the data (features) in an intuitive manner, where fuzzy classification [96] is
applied. Time series are brushed, based on their similarity to a user-defined pattern (e. g.,
polylines) directly outlined in the view. Moreover, the user can select time series running
through a certain area of the CurveView. The data is depicted using focus+context vi-
sualization techniques [30], where important or selected portions of the data (focus) are
visually accented, while the rest of the data (context) is shown in a less prominent style.
Using customizable transfer function, visual structures, patterns and outliers can be em-
phasized in the visualization. Moreover, the amount of data is reduced—while preserving
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its characteristics—using 2D binning techniques [67], which allow the depiction of the data
at interactive frame rates. Using multiple linked SimVis views complex relationships and
features can be visually analyzed.

7.2 Related Work

A large variety of publications deal with the visualization and analysis of time-oriented in-
formation (see the work of Aigner et al. [2, 1] for an overview). In order to reduce vi-
sual cluttering, Johansson et al. [37] use high-precision density maps [89] in their work on
parallel coordinates that count the number of primitives (density) that pass though each
screen pixel. User-defined transfer functions [55] are applied that map density to opacity
values in final output. This allows to emphasize and visually discriminate different portions
of the data (e. g., major trends, outliers). Novotny and Hauser [67] apply 2D bin maps for
data aggregation (reduction) in parallel coordinates, in conjunction with outlier detection
and clustering within the maps. Depicting the binned information allows the focus+context
visualization [30] (described in the introduction) of large data sets showing data trends
while preserving outliers at interactive frame rates.

Several applications exist that allow the analysis of time-dependent data using inter-
active brushing or querying techniques. Feature visualization and specification via linking
and brushing in multiple views is an integral part of SimVis [15, 21, etc.] and has also
been used for the visual analysis of multidimensional time-dependent simulation data [19].
Thereby, scalar degree-of-interest (DOI) values from the unit interval represent the im-
portance of the data items. The values are altered using smooth brushing [17] where a
linear border region is assumed between focus (DOI = 1) and context (DOI = 0), and
focus+context visualization is applied to represent features.

Konyha et al. [49] introduce Line Brushes to select function graphs (e. g., polylines
representing time series), which intersect with a simple line segment drawn in the view.
The TimeSearcher [36, 35, 9, and others] is an application especially designed for the
visual analysis of time series using TimeBoxes or Angular Query Widgets (compare to
Hochheiser and Shneiderman [36, 35]). The later, select time series having a similar slope on
a sequence of time steps (compare to angular brushing [32]). A further enhancement of the
TimeSearcher [9] allows the similarity-based querying for temporal patterns. QuerySketch
[88] enable the user to outline the shape of a pattern used for querying directly in the
view. Inspired by this technique, QueryLines [77] allows the graphical specification of
approximate queries, where soft constraints and preferences are used for fuzzy pattern
description and ranking of the query results, respectively.

7.3 Focus+Context Visualization of Large Time Series Data

The proposed approach allows the interactive focus+context visualization of large time
series data sets. An intuitive visual metaphor is used for the representation of the time se-
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(a) (b)

Figure 7.1: Focus+context visualization of a data set containing 30.000 time series. (a) The
number of overlapping time series is encoded in the color intensity using a logarithmic
mapping; (b) brushed features are encoded in color.

ries, which is comparable to simple line graphs [29]. The visualization process consists of
three steps: Initially, the massive amount of data is reduced using 2D binning techniques
adapted from Novotny and Hauser [67]. Thus, the depiction of the binned information
instead of the raw data can be done in real time; Using graphics hardware the data is
rendered to a high-precision density map (i. e., textures); Finally, customizable transfer
functions are applied on the texture in order to reveal visual structures such as outliers or
general trends (compare to Johansson et al. [37]). Moreover, the DOI information repre-
senting the importance of the data items is incorporated into the visualization using color
coding. Thus, the user is enabled to visually assess how many time series run through a
certain region on the screen and how important this information is (see Fig. 7.1).

7.3.1 Data Binning

Using 2D bin maps [67], the interval [xmin , xmax ] containing all the time-dependent values
of a data set is subdivided into a user-defined number of non-overlapping bins of equal
width w (see Fig.7.2). The data values given at two successive time steps ts and ts+1

are then mapped to the Euclidean coordinates of the bins in an associated 2D bin map,
which counts the number of time series aggregated in a bin (bin count) and, therefore,
represents a discrete 2D frequency-based representation (compare to a histogram) of the
data. The associated scalar DOI information doi, which is given at different hierarchies of
a feature definition language (FDL) tree in SimVis, is also incorporated into the binning
process using separate DOI bin maps, which sum up the respective importance of the data
values given at ts and ts+1, respectively. This process is illustrated and further described
in figure 7.2. Aggregating the whole data set, means to transform the data given at each of
two successive time steps into a reduced representation using associated (DOI) bin maps.

7.3.2 Rendering the Binned Data to a high-precision DOI density map

Using the features of modern graphics hardware, the binned data can be rendered effi-
ciently to a high-precision DOI density map (RGBA texture). Each element in the texture
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Figure 7.2: Aggregating the number of line segments connecting the time-dependent values
and the associated DOI information in a bin map and two DOI bin maps, respectively: (a) At
each time step, the data interval [xmin , xmax ] containing all values of the data set is subdi-
vided into a user-defined number of bins of equal width w. The line segments connecting the
values given at two successive time steps ts and ts+1 of a time series Di in (a) are aggregated
in an associated discrete 2D bin map Ms(u, v) in (b). Each of the DOI bin maps (c, d)
consists of several layers for the DOI vectors doi, which contain DOI values from different
hierarchies in SimVis’ feature definition language (FDL) tree. The associated tuples of DOI
values doii,s given at time step ts are averaged in a bin of the DOI bin map DMleft

s (c),
and the tuple of DOI values doii,s+1 given at the subsequent time step ts+1 are averaged in
a bin in the DMright

s (d).

corresponds to a pixel on the display screen and consisting of a density value ρu,v (alpha
channel of the texture) counting the number of primitives running through it, and a vec-
tor du,v (color channels), which accumulates the DOI values given at different hierarchies
in the FDL tree. Thus, for each bin in each (DOI) bin map an associated parallelogram is
rendered to the texture. Thereby, the coordinates of the graphical primitive are defined by
the time steps and the vertical start and end position of the bin (i. e., coordinates). The
bin count is assigned to the opacity value of the rhomboid affecting the density values,
and the DOI values are encoded in the color values summed up in du,v.

7.3.3 Depicting the DOI density map using Focus+Context Visualization

When depicting the DOI density map, the density information ρ is represented as the
intensity (opacity α) of the respective primitives using a customizable linear or logarith-
mic transfer function (compare to Johansson et al. [37] and see Fig.7.3). This allows the
observer to easily count or estimate the number of time series—represented as polygons—
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Figure 7.3: Mapping density ρ to opacity values: (a) linear transfer function αlin(ρ) with
different slopes (i. e., scale factors) and constant offset α0; (b) trends are highlighted ac-
cording to the scale factor, and outliers are preserved, because of the offset; (c) logarithmic
transfer function αlog(ρ) using different scale factors (orange curves) and offset α0; (d) the
outliers are highlighted, while preserving the trends.

that pass through a certain region in the visualization. In this context, it is important
that the user can interactively change the opacity mapping to reveal the number of over-
lapping items (compare to Fekete and Plaisant [23]). In addition to that, the DOI values
aggregated in the DOI density map are visualized using importance-driven color coding
(compare to Doleisch et al. [15, 17, 21, etc.]). Thereby, more important colors obliterate
those less important, according to the respective hierarchy of the DOI values in the FDL
tree. DOI values can be further amplified in order to emphasized the DOI information
from the DOI density map, i. e.,

doiu,v =
(

du,v

ρu,v

)γ

, where doiu,v ∈ [0, 1]3 and γ ∈]0, 1]. (7.1)

In figure 7.4 different mappings are illustrated. Thereby, a linear opacity transfer func-
tion is applied in figure (a) and (b), which maps the number of time series, running through
a pixel, to the respective opacity (intensity) value. Thereby, a steep slope is used in order
to emphasize the main portion of the time series, and to make the color coding (feature
visualization) visible. However, this has the drawback, that visual structures (due to in-
tensity) in dense areas of the visualization are hardly discriminable. When scaling down
the linear mapping the trends are revealed, while the outliers disappear. On the other
hand, a logarithmic opacity mapping is used in figure 7.4 (c) and (d). Here, the outliers are
enhanced, while preserving the general data trends in the visualization. However, due to
the non-linear mapping, one can not intuitively estimate the number of overlapping time
series from the color intensities. For this purpose, a linear mapping is recommendable.

In figure 7.4 (a) and (c) a linear function is used (i. e., γ = 1 in Eq. 7.1), to calculate the
normalized DOI values, applied in the importance-driven color coding. Accordingly, the
red and green time series (i. e., the features) are hardly discriminable in the visualization.
On the other hand, a square-root function is applied (i. e., γ = 0.5 in Eq. 7.1) in the
CurveViews shown in figure (b) and (d). Therefore, the DOI values (and the features)
are represented in an enhanced manner, i. e., the red and green time series are revealed.
However, this does not correspond to the real amount of important time series in the
visualization, which is better represented using a linear mapping.
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(a) linear opacity mapping, linear DOI comp. (b) linear opacity mapping, enhanced DOI comp.

(c) log. opacity mapping, linear DOI comp. (d) log. opacity mapping, enhanced DOI comp.

Figure 7.4: Comparison of different opacity transfer functions and DOI enhancement: In
the upper row a linear mapping of density to opacity values is applied, while a logaritmic
mapping is applied in the bottom row. In the left column the normalized DOI information is
representation, while this information is shown in an enhanced manner in the right column.

7.4 Brushing Time-Dependent Features

In addition to the visual data representation, the CurveView enables the user to inter-
actively specify complex time-dependent features using brushing techniques. This is done
in an interactive and iterative process where the features are visualized immediately in
all linked SimVis views using focus+context visualization. Based on the visual feedback,
the user can further extend or refine the respective brushes. The combination of multiple
brushes (within a view or in the hierarchical FDL tree) using fuzzy-logic operations (i. e.,
AND, OR, NOT) allows the specification of complex time-dependent features in SimVis.
The CurveView provides time step brushes, which can be used to select time series running
through a certain region of the view, i. e., a specified data interval at a time step (compare
to line brushes [49]). Moreover, time series can be brushed according to their similarity to
a user-defined pattern, which is described in the following.

Similarity-Based Brushing of Derived Attributes

The idea of the proposed similarity-based brushing approach is that the user sketches a
time-dependent pattern directly in the CurveView by specifying an arbitrary number of
control points. The points are then interconnected by a polyline which represents the shape
of the similarity brush used for querying (see Fig 7.5). Time series are classified smoothly
according to their similarity to the pattern, i. e., an adequate degree-of-interest (DOI)
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value is assigned to the respective data items.
The approach uses the sum of absolute differences of the gradients or the angles between

the time series data values and the brush in order to quantifying similarity (i. e., distance
calculation) and to deal with the problem, when an constant offset is added to all data
values of the brush or time series. In the context of smooth brushing, the resulting distance
is then compared to two thresholds discriminating focus from context, where gradually
increasing/decreasing DOI values are assumed at the boundary between the focus and
context. The sum of absolute differences forms a useful compromise between a relatively
low error rate and a distance measurement incorporating all values of the pattern and the
subsequence of the time series. Moreover, the linear behavior of the distance metric fits
very well with the boundary between the focus and context portion of the data in smooth
brushing. As the time series are not necessarily sampled at evenly spaced time steps, the
respective differences have to be weighted properly during evaluation1.

Similar trends and patterns within the time series data can be revealed using gradient-
based similarity brushes. Three different types of similarity brushes are described in this
work, which each have its own characteristics and address different issues and tasks, as it
is illustrated2 in figure 4.12:

Gradient-distance-sum (GDS) brushes: This type evaluates similarity based on the ab-
solute differences between the gradients of the brush and the time series, which
are each weighted (to compensate for unevenly-spaced time series) and summed up.
Thus, the highlighted curves (red) in figure 7.5 (a) are very similar to the shape of
the user-defined pattern. This type is well suited for brushing even time series that
have a relatively low curvature. The threshold(s) used for similarity evaluation can
be direct mapped to the height of the brush, which is quite intuitive. When the user,

1In their work on time series data mining Keogh and Pazzani [45] apply a similar approach using weighted

partial differences for similarity measurement.
2For illustration purpose, the outer region of the brush (second threshold) is set to zero.

(a) (b) (c)

Figure 7.5: Comparing the types of gradient-based similarity brushes. (a) gradient-distance-
sum (GDS) brush; (a) angular-distance-sum (ADS) brush; (c) point-sampled-slope (PSS)
brush. Since the brushed time series (features) are visual outliers in areas of context in-
formation, the respective DOI values were amplified in order to make the features better
discriminable.
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for instance, vertically moves the similarity brush above the selected curves, they are
contained within the shape of the brush.

Angular-distance-sum brushes: This kind of brushes uses the respective angles between
the time series and the brush (i. e., the arc tangent of the respective gradients) to
evaluate similarity. Thereby, the fact has to be considered that the time and data
values are usually given in different data domains. The brushed time series (red) can
be rather curved, which is indicated by an arrow in figure (b). This type also fits
well for querying time series that have a steep slope. The user specifies an averaged
angular distance which is used for similarity evaluation.

Point-sampled-slope brushes: This type evaluates similarity only at the user-defined con-
trol points of the brush, where the respective slopes are computed. Hence, the time
series in-between the control points can vary (indicated by the arrow in Fig.7.5 (c)).
This type is valuable for common tasks where the user is only interested in the
slopes of the time series over certain periods of time, e.g., when brushing tempera-
ture curves that have a rising of 1-2% over ten years. The threshold(s) can also be
mapped directly to the height of the brush, which is relatively intuitive.

7.5 Application Examples

In corporation with the Wegener Center for Climate and Global Change in Graz, Austria,
the SimVis system—including the CurveView—was successfully applied to the analysis
of climate research data. The goal of a related case study done by Ladstätter et al. [52]
was to find robust indicators for climate change as well as deficiencies within climate re-
search data set. Derived parameters of certain attributes (e. g., temperature, refractivity
or specific humidity) are considered for analysis purpose, such as linear trends calculated
as moving 10-years-difference or the signal-noise-ration (SNR), which is defined as the
ratio of the linear trend to the detrended (i. e., the trend is subtracted from the original
data) standard deviation. CurveViews and 2D scatterplots are used to brush the derived
attributes in order to localize robust indicators for climate change. In this context, inter-
esting features consist of high values for the linear trend and a relatively good SNR.

In figure 7.6 an example exploration of a reanalysis data set (ERA-40) where mea-
surements from different sources, such as satellite or radiance data are combined. Only
summer seasons in the time period 1966 to 1997 are considered, where the CurveView is
used in a passive manner. High absolute signal-to-noise (SNR) values of temperature are
selected over the whole time span using a rectangular NOT-brush in a 2D scatterplot. The
resulting feature is highlighted in red in another 2D scatterplot showing the distribution
of the derived trend per decade (explained above) of the temperature (x-axis) vs. latitude
(y-axis) as shown in figure 5.7 (a). A certain range of latitude is brushed (60◦N to 60◦S)
where the data set is supposed to contain robust indicators for climate change. In the
CurveView in figure (b) the temporal evolution of the derived temperature trend is shown.
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(a) (b)

Figure 7.6: Analysis of the evolution of temperature in climate research data: (a) The
distribution of the derived linear temperature trends (x-axis) vs. geographical latitude (y-
axis). High SNR values are brushed in another scatterplot, and are highlighted in red in (a).
Here, the latitude region between 60◦N and 60◦S is brushed, since the ERA-40 data set
shows known deficits in southern high latitudes. (b) The evolution of the derived trend
of the temperature from 1966 to 1997 is shown in the CurveView, where a logarithmic
opacity mapping is applied in order to emphasize outliers. The latitude and the SNR feature
are depicted. Most of the outliers (blue) do not belong to this feature. Images taken from
Ladstätter et al. [52].

Furthermore, the latitude and the SNR feature are depicted using color coding. Most of
the outliers (blue) in the upper and lower part of the view are not highlighted, i. e., they
do not correspond to the brushed range of latitude or their absolute SNR is too small.
There is also some discontinuity of the highlighted (red) curves (indicated by the arrows)
which results from the SNR feature.

7.6 Implementation

The CurveView is integrating into the existing framework of the SimVis system [15, 21,
etc.] and uses several of its features (e. g., memory management, bidirectional linking
between views, crucial tasks are performed in separate threads). It provides additional
brushing functionalities to SimVis affecting the FDL tree, and performs different tasks in
separate threads (e. g., hanlding GUI events, evaluating the brushes).

The generation of the bin maps is realized in software. For the real-time visualiza-
tion of the binned data, the respective geometric primitives (polygons) are depicted us-
ing the features of modern graphics hardware (available since NVIDIA GeForce 6 or
ATI Radeon 9000) such as floating point framebuffer blending in order to create the
DOI density map. The rendering of the map is realized using programmable shading
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(e. g., evaluating transfer functions in a fragment program). Moreover, two high-precision
textures are used, the current data is rendered to one of them, if the task is interrupted
by another thread (e. g., DOI update) the previously stored texture is depicted. In doing
so, the user gets continuous visual feedback allowing the enhanced navigating or altering
of a brush without losing the orientation.

The evaluation of the similarity-based brushes in the CurveView could be highly op-
timized, computing the distance using Streaming SIMD Extensions (SSE)3 available on
commonly used processor architectures (e. g., Intel, AMD). Thereby, the same instruction
(e. g., adding, subtracting, multiplying, square root, min/max operations) can be per-
formed simultaneously on four 32-bit floating point values in special registers added to the
CPU architecture.

7.7 Conclusions

The interactive visual analysis of time-dependent information is a challenging task, when
very large data sets containing multiple dimensions and several hundred thousands or even
millions of data items have to be visualized and analyzed at interactive frame rates. The
binning approach (adapted from Novotny and Hauser [67]) has prooven to be very useful
for the purpose of data reduction, allowing the real-time visualization of the data.

Using focus+context visualization (using color and intensity) the observer gets a very
good impression about the evolution of the data over time and about the features inter-
actively specified by the user. By the application of customizable transfer function a high
degree of flexibility is provided to the user. Thus, general data trends can be revealed in
the visualization as well as regions containing only a few time series, called outliers.

Interactive brushing techniques allow the specification of complex time-dependent fea-
tures where multiple brushes are combined using fuzzy logic operations (AND, OR, NOT).
Patterns of trends can be outlined directly in the CurveView. Time series being similar
to this patterns are then brushed smoothly using fuzzy classification. Moreover, time step
brushes can be applied to select time series that run through a certain area in the Curve-
View.

3Single Instruction, Multiple Data (SIMD)
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The interactive visual analysis of time-dependent information is a challenging task. This
is especially true, when very large data sets containing multiple dimensions and several
hundred thousands or even millions of data items have to be visualized and analyzed at
interactive frame rates. The binning approach (adapted from Novotny and Hauser [67]),
which was integrated into the visualization, has proven to be very useful for the purpose
of data reduction. It allows the real-time visualization of a large number of time series
(e. g., 500.000 − 1.000.000) given at about 75 time steps. The approach is easily scalable
to different tasks and data sets. One can, for instance, advance the level of details in
the visualization (e. g., for presentation purpose) by incrementing the resolution of the
(DOI) bin maps. On the other hand, the user can reduce the resolution in order to shorten
the time required for rendering and binning, while interacting with the application.

By the application of focus+context visualization (using color and intensity) the ob-
server gets a very good impression about the evolution of the data over time and about
the features interactively specified by the user. Using a customizable transfer function
the number of overlapping time series with respect to the overall number (i. e., density)
is mapped to the brightness of the respective pixel. Thus, general data trends can be
revealed in the visualization as well as regions containing only a few time series, called
outliers. Moreover, the features specified in multiple views are color coded according to
their relative importance. The features representation can also be amplified using another
(non-)linear transfer function.

Interactive brushing techniques allow the user to specify complex time-dependent fea-
tures where multiple brushes are combined using fuzzy logic operations (AND, OR, NOT).
In this context, patterns of trends can be outlined directly in the CurveView. Time se-
ries being similar to this patterns are then brushed smoothly using fuzzy classification.
Moreover, time step brushes can be applied to select time series that run through a cer-
tain area in the CurveView. The interrelations between the specified features in multiple
time-dependent dimensions can be analyzed visually using multiple linked views in SimVis,
which show different aspects (i. e., dimensions) of the data.

Discussion

When interacting with the CurveView a relatively high amount of adjustable parameters
is provided to the user (e. g., the thresholds of the similarity brushes, a linear or logarith-
mic opacity mapping, the customizable transfer functions). On the one hand, this makes
the approach very flexible and applicable for different tasks and data sets, i. e., the user
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can adjust certain parameters according to his/her requirements. On the other hand, an
unexperienced user can get confused by the high number of parameters in the beginning.
Therefore, useful default settings are applied initially, which provide relatively good re-
sults in common cases, e. g., the specifications of the visualization when opening a new
CurveView or when assigning a new attribute; or default thresholds when creating a new
similarity brush.

There are also more and less important parameters affecting the CurveView approach.
Relatively important parameters are, for instance, the inner region of the brush (used for
similarity evaluation); the transfer function’s scale factor and the constant offset; or the
feature enhancement (color coding). On the other hand, the smooth outer region (second
threshold) of the similarity or time step brushes or the number of bins used for aggregating
the data set are less important and are rather used for fine tuning.

In most cases, straightforward strategies exist in order to cope with certain problems
in the visualization. For instance, when the trends in the time series visualization are not
visible in densely populated areas of the display it is recommendable to alter the scale factor
of the opacity transfer function. Furthermore, when the outliers are not represented in the
visualization one can change the constant offset or apply a logarithmic opacity mapping.
If the color coded features are barely visible, one can amplify the respective DOI values
using a non-linear transfer function. In case where the system’s response time to user
interaction is to slow, it is also beneficial to reduce the number of bins per map. On the
other hand, the visual precision (i. e., granularity) can be enhanced increasing the number
of bins (e. g., for presentation purpose).

However, it is generally challenging to (quantitatively) evaluate and compare different
approaches and applications for interactive visual analysis. This is due to the fact, that
the search for certain features or the adjustment of the view’s specification (affecting the
visualization) is commonly an interactive and complex process, where human intuition
and domain knowledge are very important. User studies can be performed, for instance,
where certain tasks have to be fulfilled by the test persons. However, since the proposed
CurveView approach is used by our collaboration partner, namely the Wegener Center for
Climate and Global Change in Graz, we have received very positive feedback from the ex-
perts using the application, which was also incorporated into the development process. In
this context, the approach was successfully applied in a case study on climate research data
(see Ladstätter et al. [52]), which was presented at the 3rd Intern. Workshop on Occulta-
tions for Probing Atmosphere and Climate (OPAC-3).

Future Work

The current similarity-based brushing approach has the drawback that the brush is only
evaluated at the time steps where it is originally defined. However, in some cases it can
make sense to search for a reference pattern over all time steps of the time series, for
instance to discover cyclic behavior. For this purpose, the brush can be automatically
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Figure 8.1: Duality between the screen space and the 2D bin maps: (a) The green time
series is transformed to a point in the bin maps (b). On the other hand, all lines running
through the orange point (pixel) in (a) are transformed to points lying on a straight line in
the bin map.

shifted over the time series data, starting with the first and ending with the last time step.
Thereby, similarity is evaluated at each translation step. The resulting DOI values are
then assigned to the involved time steps where the respective DOI information is summed
up. As a result, the matching positions are highlighted using focus+context visualization.
However, performing this process is expected to take a while (e. g., several seconds), hence,
it should be available only on demand.

Another enhancement is to make use of the duality between the screen space and the
(DOI) bin maps, which is illustrated in figure 8.1. All line segments (time series) that pass
through a certain pixel of the display in figure (a) are transformed to points that lie on a
straight line in the bin map (b), and vice versa. Accordingly, one can apply an approach,
which is similar to volume rendering techniques: For each pixel in the final representation,
the entries of the associated line in the (DOI) bin map are sampled (see the orange points
in Fig. 8.1 (b)). In doing so, one gets the density value and the DOI information of the
respective pixel. Using a fragment program and textures representing the (DOI) bin maps,
this approach can be efficiently implemented on graphics hardware.

The (DOI) bin maps currently represent a discrete frequency-based representation of
the time series. In order to cope with the granularity issue, one can rather “splat” than
aggregate the time series into the maps (compare to the work of Westover [90] in the
context of volume rendering). In doing so, each time series would affects multiple adjacent
2D bins in the map.
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