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Kurzfassung der Dissertation

Kandidat: Sebastian Guttenberg
Erstprüfer / Betreuer: Prof. Maximilian Kreuzer
Zweitprüfer: Prof. Ruben Minasian

Superstrings in General Backgrounds

In der vorliegenden Arbeit werden einige Aspekte des Superstrings im allgemeinen Hintergrund betrachtet.
Die Arbeit unterteilt sich in drei Teile: Der erste studiert die Vorraussetzungen, unter denen man bosonische
Strukturgleichungen in graduierte (z.B. im Superraum) übertragen kann und formuliert diese in einem Satz.
Auf diesen Betrachtungen basierend werden Konventionen verwendet, die graduierungsabhängige Vorzeichen
absorbieren und die als Grundlage der Rechnungen des zweiten Teils dienen.

Der zweite Teil beschreibt den Typ II Superstring mithilfe von Berkovits' �pure spinor� Formalismus. Die
darin u.a. enthaltene Einbettung in einen Target-Superraum ermöglicht im Gegensatz zum üblichen Ramond-
Neveu-Schwarz Formalismus eine direkte Kopplung des Strings an Ramond-Ramod-Felder. Er eignet sich damit
gut für ein Studium des Superstrings in allgemeinen Hintergründen. In der Arbeit wird der Formalismus für
eine sorgfältige Rekapitulierung der �Supergravity Constraints�-Herleitung aus der klassischen BRST-Invarianz
verwendet. Diese wurde vor einigen Jahren von Berkovits und Howe beschrieben. Die Herleitung in der vor-
liegenden Arbeit wird sich jedoch in einigen Punkten unterscheiden. So bleibt die Betrachtung im Unterschied
zur ursprünglichen Rechnung vollständig im Lagrange Formalismus und zur besseren Strukturierung der Vari-
ationsrechung wird ein kovariantes Variationsprinzip eingesetzt. Hinzu kommt die Anwendung des im ersten
Teil formulierten Satzes. Auch die Reihenfolge, in der die Constraints erzielt werden, weicht von Berkovits und
Howe ab. Als neues Resultat werden die BRST Transformationen aller Welt�ächen-Felder hergeleitet, die bisher
nur für den heterotischen Fall bekannt waren. Ein entscheidender neuer Schritt ist schlieÿlich die Herleitung
der lokalen Supersymmetrie-Transformation der fermionischen Targetraum-Komponenten-Felder.

Dies liefert einen Anknüpfungspunkt zur sogenannten verallgemeinerten komplexen Geometrie (GCG), die
Bestandteil des letzten Teiles der Arbeit ist. Die vierdimensionale e�ektive Supersymmetrie innerhalb einer
zehndimensionalen Typ-II Supergravitation bedingt eine �verallgemeinerte Calabi Yau Mannigfaltigkeit� als
Kompakti�zierungsraum, welche wiederum mit Methoden der GCG beschrieben werden kann. In der vorliegen-
den Arbeit wird gezeigt, dass Poisson- oder Antiklammern in Sigmamodellen auf natürliche Weise sogenannte
�derived brackets� im Targetraum induzieren, darunter auch die Courant Klammer der GCG. Weiters wird
gezeigt, dass der verallgemeinerte Nijenhuis Tensor der GCG bis auf einen de-Rham geschlossenen Term mit
der �derived bracket� der verallgemeinerten Struktur mit sich selbst übereinstimmt, und eine neuartige Koor-
dinatenform dieses Tensors wird präsentiert. Der Nutzen der gewonnenen Erkenntnisse wird dann anhand von
zwei Anwendungen zur Integrabilität verallgemeinerter komplexer Strukturen demonstriert.

Der Anhang der Arbeit enthält eine Einführung in einige Aspekte von GCG und �derived brackets�. Des-
weiteren werden u.a. das Noether Theorem, Bianchi Identitäten, WZ-Eichung und Γ-Matrizen in zehn Dimen-
sionen besprochen.
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Superstrings in General Backgrounds

In the present thesis, some aspects of superstrings in general backgrounds are studied. The thesis divides
into three parts. The �rst is devoted to a careful study of very convenient superspace conventions which are a
basic tool for the second part. We will formulate a theorem that gives a clear statement about when the signs
of a superspace calculation can be omitted. The second part describes the type II superstring using Berkovits'
pure spinor formalism. Being e�ectively an embedding into superspace, target space supersymmetry is manifest
in the formulation and coupling to general backgrounds (including Ramond-Ramond �elds) is treatable. We
will present a detailed derivation of the supergravity constraints as it was given already by Berkovits and Howe
some years ago. The derivation will at several points di�er from the original one and will use new techniques like
a covariant variation principle. In addition, we will stay throughout in the Lagrangian formalism in contrast to
Berkovits and Howe. Also the order in which we obtain the constraints and at some points the logic will di�er.
As a new result we present the explicit form of the BRST transformation of the worldsheet �elds, which was
before given only for the heterotic case. Having obtained all the constraints, we go one step further and derive
the form of local supersymmetry transformations of the fermionic �elds. This provides a contact point of the
Berkovits string in general background to those supergravity calculations which derive generalized Calabi Yau
conditions from e�ective four-dimensional supersymmetry. The mathematical background for this setting is the
so-called generalized complex geometry (GCG) which is in turn the motivation for the last part.

The third and last part is based on the author's recent paper on derived brackets from sigma models which
was motivated by the study of GCG. It is shown in there, how derived brackets naturally arise in sigma-
models via Poisson- or antibrackets, generalizing an observation by Alekseev and Strobl. On the way to a
precise formulation of this relation, an explicit coordinate expression for the derived bracket is obtained. The
generalized Nijenhuis tensor of generalized complex geometry is shown to coincide up to a de-Rham closed term
with the derived bracket of the structure with itself and a new coordinate expression for this tensor is presented.
The insight is applied to two-dimensional sigma models in a background with generalized complex structure.

The appendix contains introductions to geometric brackets and to aspects of generalized complex geome-
try. It further contains detailed reviews on aspects of Noether's theorem, on the Bianchi identities (including
Dragon's theorem), on supergauge transformations and the WZ gauge and on important relations for Γ-matrices
(especially in ten dimensions). A further appendix is devoted to the determination of the (super)connection
starting from di�erent torsion- or invariance constraints.
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Some remarks in advance

• The part about the superspace conventions is interesting in itself and was a signi�cant part of my research
work. This is why it was not put into the appendix. However, you can read the other parts without this
one. Only if you want to follow some calculations in detail, you might miss some signs. Latest at this
point you should study the part about the superspace conventions before you assume that you have found
a mistake.

• Capital indices M in the part about derived brackets and generalized geometry contain tangent and
cotangent indices, while in the context of superspace they contain bosonic and fermionic indices. In the
latter case we have M = {m,µ, µ̂}. The two fermionic indices are sometimes collected in a capital curly
index M = {µ, µ̂}.

• The thesis-index at the end contains also a list of most of the used symbols. So in case you start somewhere
in the middle of the document and would like to know, where some symbols or notations were introduced,
have a try to look at the index.

• There are a couple of propositions contained in this thesis. They simply contain more or less clear
statements that one could have given in the continuous text as well. In particular, their formulations
and proofs are mostly not of the same rigorousness as one would expect it in mathematical literature. In
addition, there is no clear rule which statements are given as proposition and which are only given in the
text. The ones in propositions are important, but the ones in the text can also be ...

• Everything in this thesis has to be understood as graded. Graded antisymmetrization will just be called
'antisymmetrization' and the square brackets [. . .] will be used to denote this, no matter if the graded
antisymmetrized objects are bosonic or fermionic. Likewise, the supervielbein will often just be called
'vielbein'. Only at some points the terms 'graded' or 'super' will be explicitly used.

• It is a somewhat strange habit to desperately avoid the word �I� in articles, in order to express ones
own modesty. Writing instead �the author� seems unnecessary long and writing instead �we� resembles
the pluralis majestatis, and I don't see how this can possibly express modesty (although one then calls
it pluralis auctoris or even pluralis modestiae). In spite of this, I got used myself to use frequently (and
without thinking) the word �we�. Understanding it as pluralis modestiae is probably only possible if one
can replace �we� with �the reader and myself�, for example in �we will see in the following ...�. However,
you, the reader, would probably loudly protest when I write things like �we think ...� or �we have no
idea why...� and claim that the reader is included. Nevertheless, I am afraid that sentences like this will
appear quite frequently and in order to avoid inconsistencies, they have to be understood as the pluralis
majestatis ...

• The symbol � marks the end of a footnote. If this mark is missing, it means that the footnote is continued
on the next page or that I simply forgot to put it . (This remark was simply copied from my diploma
thesis, but at least I have changed the footnote symbol and the language)

• This document was created with LYX which is based on LATEX.

vi
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This thesis is devoted to superstrings in general backgrounds, but it will of course restrict to only some
aspects, leaving out many important areas.

Apart from a few other simple cases, the quantized superstring is well understood only in a �at background
where the worldsheet �elds have basically free-�eld equations of motion. The physical spectrum of a string in �at
background, however, contains itself �uctuations around this background. A huge number of strings therefore
can sum up to a non-vanishing mean background �eld, for example a curved metric or even Ramond-Ramond
bispinor-�elds. The worldsheet dynamics for the individual strings then has to be adjusted. In other words,
it is very natural to study the superstring in the most general background. Consistency conditions from the
worldsheet point of view implement constraints and/or equations of motion on the background �elds. On the
worldsheet level, the form of the consistency conditions depends very much on the formalism one is using to
describe the superstring. In general, the gauge symmetries or alternatively BRST symmetries of the action in
�at background should be present in some form also for the deformed action (string in general background),
especially after quantization. For the Ramond-Neveu-Schwarz (RNS) string, with worldsheet fermions, this
boils down to the quantum Weyl invariance of the action, which also yields the critical dimension. For the
Green Schwarz (GS) string and for the Berkovits pure spinor string (to be explained later), there are instead
additional conditions. For the Green Schwarz string, the so called κ gauge symmetry has to be preserved, while
for the Berkovits pure spinor string one has to guarantee the existence of a BRST operator which has the form
Q =

∮
dz λαdzα in the �at case. In fact, in the latter two cases, the BRST symmetry and the κ-symmetry

are already strong enough to implement the background �eld equations of motion at lowest order in α′, i.e.
supergravity, such that quantum Weyl invariance does not give additional constraints at this order.

There are of course backgrounds which are more interesting than others for phenomenological reasons. First
of all, as we are observing four spacetime dimensions, we expect to live in a solution to the background �eld
equations where 6 of the 10 dimensions are compacti�ed on a small radius, such that they are e�ectively not
visible. This compacti�cation has to be compatible with the supergravity equations, but without restrictive
boundary conditions there are in�nitely many possibilities. For a long time, people where hoping that there is
a dynamical mechanism, preferring precisely the compacti�cation (or 'vacuum') that corresponds to our world.
By now it seems more and more likely that there is no such mechanism or at least not such a strong one.
Instead, the picture might be that we are simply sitting in a huge 'landscape' of possible vacua, where some of
them are more probable than others. As there is such a huge number of e�ective four dimensional theories, it
seems improbable that 'our world' is not contained in them. Of course, being able to derive the real world from
string theory is a necessary requirement, if this theory is supposed to be more than just interesting mathematics.
By now there exists a huge model building machinery. People are considering orbi- and orientifolds and are
putting intersecting D-branes into the compacti�cation manifold. The number of possibilities is huge. Quite
a lot of models come reasonably close to the standard model, but none of them really matches. But even if
there might be a lot of justi�ed criticism to string theory, this particular problem of �nding the real world is
rather a matter of time. So far, only a very tiny, mathematically treatable subset of solutions has been studied
and it would have been a lucky coincidence to �nd a suitable vacuum in a simple setting. The bigger problem
might show up only after �nding a vacuum which e�ectively reproduces the standard model: there might be
a still big number of di�erent models which likewise reproduce the standard model. Without knowing all of
them and their common properties, one cannot really make predictions about so far unknown physics. This is,
however, not an argument against string theory. If there is another theory, unrelated to string theory, which
also describes correctly the standard model and gravity, then this model simply has to be added to the set of all
models which describe the so far observable physics consistently. There is no reason to throw out the ones that
might have been obtained from string theory. Any approach that can consistently describe the so far observable
physics is of course admissible.

It is not the immediate aim of this thesis, however, to describe observable physics, but to study the string
in a general background in ten dimensions. As argued above, one can be optimistic that someone will �nd real
physics within string theory. But sometimes it is easier to recognize simplifying structures in the general setting
and not in some particular cases. Moreover, considerations like this should survive changes in the communities
opinion of what is an interesting model to look at. This was the idea, but in the end, not everything in this
thesis is as general as it should be. First of all, mainly classical closed strings in a type II background are
considered. At some places we keep boundary terms for later studies of open strings. Secondly a whole part
of the thesis is inspired by generalized complex geometry. This in turn is related to a not very special but still
special type of compacti�cations. Let us recall this in the following lines:

Again for phenomenological reasons, in particular the hierarchy problem, it is reasonable to expect that the
four dimensional e�ective theory resulting from compacti�cation is N = 1 supersymmetric. For that reason,
Candelas, Horowitz, Strominger and Witten introduced in 1985 [1] Calabi Yau manifolds into string theory.
These manifolds are Ricci �at and obey therefore the Einstein �eld equations in vacuum. The supersymmetry
constraint then corresponds to the existence of a covariantly conserved (w.r.t. Levi Civita) Spin(6)-spinor.
Soon after, Strominger realized in [2] that a background B-�eld, in combination with a non-constant dilaton, is
also consistent with supersymmetric compacti�cation. Nevertheless, there has been very little activity on this
more general case while the Calabi-Yau case was intensively studied. This intensive study lead to invaluable
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insights concerning dualities and the form of the landscape in the Calabi-Yau case.
Only quite recently the importance of the general case including �uxes was properly noticed. It was realized

that the Calabi-Yau condition gets replaced by a �generalized Calabi-Yau� condition, which brings the so-called
generalized complex geometry into the game. See the introduction to part III on page 78 for the relevant
references. The derivation of this is mainly based on supergravity calculations. Starting from ten dimensional
type II supergravity one demands e�ective N = 1 supersymmetry in four dimensions after compacti�cation
[3, 4]. The results could in general be modi�ed by string corrections. In order to study this, one has to set up
the problem in the worldsheet language. In other words, the superstring has to be placed into a general type II
background.

The �rst striking fact is that there is so far no treatable way to couple the RNS string to Ramond-Ramond
�elds. Ramond-Ramond �elds can be either seen as bispinors (�elds with two spinorial indices) or equivalently
(expanding in Γ-matrices) as a collection of di�erential p-forms. Pullbacks of p-forms with p bigger than two
vanish on the worldsheet. Likewise we do not have elementary �elds with spacetime spinor indices in the RNS
description. This is in short the reason why coupling to the RR-�elds is an open issue in the RNS formalism.
The natural alternative is the GS string which is basically an embedding of the string into a target superspace.
The fermionic superspace coordinates or their momenta provide natural candidates for the coupling to the
RR-bispinor-�elds. This formalism, however, happens to have a fermionic gauge symmetry whose constraints
are in�nitely reducible and would require an in�nite tower of ghosts for ghosts in the standard BRST covariant
quantization procedure. It can be quantized in �at space in the light cone gauge and shown to be equivalent to
RNS, but higher loop calculations are di�cult because of the lack of manifest covariance.

The problem of covariant quantization of the GS superstring was bothering people for many painful years
without real progress until Berkovits came up in 2000 with an alternative formalism [5], based on commuting
pure spinor ghost variables, which can be covariantly quantized in the �at background. It is similar to the GS
string in that the target space is a supermanifold, but the origin of the pure spinor ghost is still a bit mysterious.
This ghost �eld and the corresponding BRST operator are related to the κ-symmetry of the GS string, but the
relation is not very transparent. In addition, the pure spinor condition is a quadratic constraint on the spinorial
ghosts, which seemed in the beginning not very attractive. For this reason there where several attempts to get
rid of this constraint or at least to explain its occurrence. The beginning of my PhD research was devoted to
a promising approach by Grassi, Porrati, Policastro and van Nieuwenhuizen[6, 7, 8, 9] and I will give a few
remarks about this at a later point. By now the need for an alternative formalism has decreased, as Berkovits
managed to give a consistent multiloop picture in [10]. In any case the pure spinor formalism seems to provide
the adequate tool to study the superstring in curved background. On the classical level this has already been
done in [11]. It was shown that classical BRST invariance of the pure spinor string in general background
already implies the supergravity constraints on the background �elds.

One major subject of the thesis is to rederive this important result with di�erent techniques. All steps will
be carefully motivated and the calculations given in detail. Most importantly the calculation given in this thesis
can be seen as an independent check, as it is done entirely in the Lagrangian formalism in contrast to [11].
Moreover, a covariant variational principle will be established and used to calculate the worldsheet equations
of motion. Some results are obtained in a di�erent order but match in the end. One new result is the explicit
form for the BRST transformations of the worldsheet �elds of the type II string in general background, which
where so far only presented for the heterotic string in [12]. After the derivation of the constraints, we go one
step further and derive the supergravity transformations of the fermionic �elds. The transformations are in
principle well known, but the idea is to obtain them in the parametrization of the �elds in which they enter
the pure spinor string. The supersymmetry transformations of the fermionic �elds are the starting point for
the derivation of the generalized complex Calabi-Yau conditions for supersymmetric compacti�cations. Having
a closed logical line from the pure spinor string to generalized geometry hopefully opens the door for the study
of quantum or string corrections to this geometry. There is still a part missing in this line from the Berkovits
string to generalized complex geometry, as we will end with the presentation of the supergravity transformations
and not proceed with the derivation of the generalized Calabi-Yau conditions. Again, this calculation would
not deliver new results (following [3, 4]), but it would be important to have everything in the same setting and
with the same conventions. One might expect in addition that the superspace formulation will give additional
insight to the geometrical role of the RR-�elds. They are so far only spectators in generalized geometry. A
bispinor is from the superspace point of view just a part of a rank two tensor, and it seems natural to include it
into geometry by establishing some version of generalized supergeometry. See also in the conclusions for other
possible extensions.

Another new feature of the re-derivation of the supergravity constraints from the pure spinor string is
the rigorous (and in some sense very unusual) application of some powerful superspace conventions. To be
more precise, we are going to use conventions where all the signs which depend on the grading are absorbed
via the use of a graded summation convention and a graded equal sign. This a not a completely new idea and
northwest-southeast conventions (NW) or northeast-southwest conventions (NE) already re�ect this philosophy.
Nevertheless most of the authors still write the signs and take the rules of NW and NE only as a check. Only
in [13], I have found an example where the signs where likewise absorbed. However, a careful study, under
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which circumstances this is possible seemed to be missing. This is the subject of part I on page 6. This
part is more than just the declaration of the used conventions. The upshot is the formulation of a theorem
about when the grading dependent signs may be dropped. The application to supermatrices shows that the
underlying ideas lead to slightly di�erent de�nitions of e.g. supertraces or some matrix operations. Using these
de�nitions, all equations take exactly the form they have for bosonic matrices. In particular the equation for
the superdeterminant reduces to an equation which holds in the very same form for purely bosonic matrices.

Applying this philosophy to the Berkovits string calculation has some strange e�ects. Most importantly,
the commuting pure spinor ghosts are treated as anticommuting objects. And likewise confusing, the chiral
blocks γc

αβ of the 10-dimensional Γ-matrices are treated as antisymmetric objects although they are in fact
symmetric. This nevertheless makes perfect sense and the confusion is not, because the conventions themselves
are confusing, but because of the di�erence to what one is used to. It is therefore a very nice con�rmation
of the consistency of the conventions that the quite lengthy calculation with the pure spinor string in general
background went through and led to the same results as the original calculation. No single grading dependent
sign had to be used. The part about the superspace conventions � although very interesting in itself � is not
needed to understand the basic steps and ideas of the other parts. Finally it should be mentioned that the
appendix about Γ-matrices in ten dimensions is written in ordinary conventions for 'historical reasons'. It is,
however, simple to translate the equations to the other convention where needed.

There is �nally part III on page 78 of the thesis, which is dealing basically with so called derived brackets and
how they arise in sigma models. This part is based on my paper [14]. The e�orts to understand some aspects of
the integrability of generalized complex structures have led to the observation that super Poisson brackets and
super anti-brackets of worldsheet-supersymmetric or topological sigma models induce quite naturally derived
brackets in the target space. A more detailed introduction and motivation for this part is given at its beginning.

The structure of the thesis is as follows: We start in part I on page 6 with the discussion of the superspace
conventions. In part II on page 24 we will consider Berkovits pure spinor string. After a short motivation for
the formalism � coming from the Green Schwarz string � the derivation of the supergravity constraints will
be given and the supergravity transformations of the fermionic �elds will be derived. In part III on page 78
the appearance of derived brackets in sigma models and the relation to integrability of generalized complex
structures is discussed. All parts contain their own small introduction. After the Conclusions on page 104 there
are a number of more or less useful appendices. It starts with notations and conventions in appendix A on
page 106. This appendix does of course not contain the superspace conventions which are treated in part I. Note
also that there is an index at the end of the thesis (page 179) which should contain most of the used symbols.
Appendices B on page 109 and C on page 118 give introductions to some aspects of generalized complex geometry
and derived brackets, respectively. Appendix D on page 126 summarizes some important facts and equations
for Γ-matrices with an emphasis on the ten-dimensional case. In particular the explicit representation is given
and the Fierz identities for the chiral submatrices are derived. Appendix E on page 134 presents the Lagrangian
version of the Noether theorem and the Noether identities. Additional statements which are important for
our BRST invariance calculations of the pure spinor string are likewise given. Appendix F on page 140 recalls
the general de�nitions of torsion, curvature and H-�eld (valid as well in superspace) . It likewise recalls the
derivation of the Bianchi identities and gives the proof for a slightly modi�ed version of Dragon's theorem [13]
about the relation of second and �rst Bianchi identities. Appendix G on page 149 contains a general discussion
on how the connection is determined by invariance conditions and certain constraints on torsion components.
The simplest example is of course the Levi Civita connection which is given by invariance of the metric and
vanishing torsion. In ten dimensional superspace there is no canonically given superspace metric. In this
appendix it will be discussed how the connection is reconstructed from more general constraints, like a given
non-metricity or preserved structure constants. In addition the Levi Civita Connection will be extracted from
a given general superspace metric. And �nally, in appendix H on page 154, the Wess Zumino gauge will be
reviewed in a general setting. This gauge is useful and natural to eliminate auxiliary gauge degrees of freedom.
By �xing part of the superdi�eomorphism invariance, one recovers ordinary di�eomorphism invariance and local
supersymmetry. This will be used in part II on page 24 to determine the supergravity transformations of the
fermionic background �elds of the pure spinor string.
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Chapter 1

The general idea and setting

Most bosonic de�nitions or equations have a natural generalization to superspace. There are, however, always
sign ambiguities in the super-extensions of the de�nitions. For this reason, bosonic structural equations only
hold up to signs in the superspace or graded case. The information that they hold up to signs is already a useful
qualitative statement, but it can be very cumbersome to determine the correct signs. Rules like northwest-
southeast or northeast-southwest where introduced to �x the sign ambiguities. These rules in principle allow to
reconstruct the grading dependent signs from the structure of the equation. It is then a natural step to drop
all the signs during the calculations and reintroduce them only at the very end. Or in other words, simply take
over the results from a bosonic calculation and decorate it with the appropriate signs. But as usual, there exist
some subtle cases in which a strict application of the sign rules compromises some other philosophy or is simply
not possible. For this reason a large majority of people working in that �eld prefer to carry along all the signs
and leave them away only in intermediate steps where it is obvious that no problems will occur. A paper by
Dragon [13] is the only example I know, where the parity-dependent signs are left away completely. Nevertheless
a precise formulation of the conditions under which this is possible still seems to be missing. Statements like
�everything works basically the same in the fermionic case, but one has to be careful with the signs� are used
frequently in talks. This is the reason, why we want to �nd out the precise form of the above conditions. In
addition, this idea can probably be applied to much more applications than it was done so far. In this �rst part
of the thesis, we try to �ll part of this gap.

1.1 Leading principle, graded Einstein summation convention

The leading principle of our conventions is that every abstract calculation looks formally excatly the same as in
the bosonic case. All modi�cations (signs etc) which are due to the fact that there are anticommuting variables
involved should be assigned only in the very end, to the result of a purely bosonic calculation.

The conventions will be based on either northwest-southeast (NW for short) or northeast-southwest (NE
for short) conventions, which we will explain a bit below. The NW convention is used for example in standard
references as [15, 16]. It is important, however, that we will in the end have a formalism which looks exactly
the same for NW and NE.

Our considerations will mainly treat objects with indices, for example - but not necessarily - coordinates
or tensor components. We assume that there is an associative product among the objects being distributive
over a likewise present abelian group structure (the sum). Sometimes we have even several of such products
(tensor product or wedge product, product of components, ... ), which all will be treated in the same way. The
described setting simply forms a general associative algebra. But let us start with the motivating example.

Let xM be the coordinates in a local patch of a supermanifold. Assume that the �rst components are bosonic
and the following are fermionic (anticommuting).

xM ≡ (xm, xM) ≡ (xm,θM) (1.1)

The somewhat unusual choice of a curley capital letter for the fermionic indices will be convenient for part II on
page 24. There we have two di�erent spinorial indices that we combine in the capital curled one: xM ≡ (xµ, xµ̂).
As usual, we assign a grading to the indices according to the split into bosonic and fermionic variables.

| xM |≡|M | ≡
{

0 for M = m
1 for M = M (1.2)

For grading-dependent signs we use the shorthand notation

(−)M ≡ (−1)|M | (1.3)

(−)K(M+N) ≡ (−1)|K|(|M |+|N |) (1.4)

6
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A general object of interest is an object with ru upper and rl lower indices (e.g. a rank (ru, rl)-tensor, but
our conventions should also extend to non-tensorial objects like connection-coe�cients). The overall grading of
such an object is

| TM1...Mu
N1...Nl

| ≡ | T | + |M1 | + . . .+ |Mu | + | N1 | + . . .+ | Nl | (1.5)

where a nonvanishing grading | T | of the �body� of the object (let us call it the rumpf , in order not to mix it
up with the body of a supernumber) makes sense when there are ghosts involved, i.e. objects, with the same
index-structure as the coordinates, but opposite grading.

| cM |=| c | + |M | c is a ghost
= 1+ |M |=

{
1 for M = m
0 for M = µ

(1.6)

Also forms will have a nonvanishing grading without indices.
Before we come to our conventions, let us quickly remind the existing ones which already have the basic

idea inherent. The generalization of de�nitions from the commuting (bosonic) case to the graded commuting
case is not unique. A very simple example is the interior product which has in local coordinates the form
ıvω =

∑
m vmωm =

∑
m ωmv

m. If one wants to extend this de�nition to vectors and forms that have graded
components as well, the order makes a di�erence. In the northwest-southeast convention (NW for short)
the extension is chosen in such a way that there is no additional sign if the contraction of the indices is from the
upper left (northwest) to the lower right (southeast), i.e. ıvω ≡

∑
M vMωM =

∑
M (−)MωMvM . Within the

northeast-southwest convention (NE for short) instead, there is no sign when contracting from the lower
left to the upper right: ıvω ≡

∑
M ωMvM =

∑
M (−)MvMωM .

It is also possible and sometimes very convenient to use a mixed convention with di�erent summation
conventions for di�erent index subsets. One could for example de�ne ıvω ≡

∑
m

(
vmωm + vµωµ +(−)µ̂vµ̂ωµ̂

)
.

The above de�nitions are 'de�nitions by examples'. There will be additional examples in what follows. In
any case, the philosophy of NW and NE is that for every new de�nition, possible ambiguities are �xed by the
contraction directions. This should give a unique way of generalizing bosonic equations and already implies
the possibility that one can calculate purely bosonic and reconstruct the signs at the very end, at least under
certain conditions.

In our convention, we will completely omit those signs which are encoded in the structure of the terms. NW,
NE or mixed conventions then formally look the same, and there is no reason to decide a priori for one of them.
During the derivation and motivation we will always give the signs for NW and only in important cases for NE.

One of the main ingredients of our conventions will be what we call the graded Einstein summation
convention: repeated indices in opposite positions (upper-lower) are summed over their complete range, taking
into account additional signs corresponding to either NW, NE or mixed conventions.

aMbM ≡
{ ∑

M (−)bMaMbM for NW∑
M (−)bM+MaMbM for NE

bMaM ≡
{ ∑

M (−)bMaMbM for NW∑
M (−)bM+MbMaM for NE

(1.7)

Or in a more complicated case which should clarify the general treatment:

AM1
KN1N2

M2
N3B

N3N1
M1M2

LN2 ≡ (1.8)

≡
{ ∑

M1,M2,N1,N2,N3
(−)M1(K+N2+M2+B)+M2(B+N1)+N1(1+N2+B)+N2(1+B+L)+N3(1+B)AM1

KN1N2
M2

N3B
N3N1

M1M2
LN2∑

M1,M2,N1,N2,N3
(−)M1(1+K+N2+M2+B)+M2(1+B+N1)+N1(N2+B)+N2(B+L)+N3BAM1

KN1N2
M2

N3B
N3N1

M1M2
LN2

The terrible signs in the lower line of (1.8) are exactly those which we want to omit during calculations. So
we will de�ne every calculational operation in such a way that it is consistent with this graded summation
convention, s.th. one can calculate only with expressions as in the upper line of (1.8) and assign the signs only
in the end of all the calculations.

There are by de�nition two important properties of the graded summation:

• The result is independent of the order of the summations

• The sum is compatible with graded commutation in the sense that signs, depending on the grading of the
dummy-indices, disappear in the equations. From (1.7) it simply follows

aMbM = (−)abbMaM (1.9)

This is in contrast to naked indices, where we have aMbN = (−)(a+M)(b+N)bNa
M . The same simpli�cation

occurs for terms with several contracted indices, like in (1.8):

AM1
KN1N2

M2
N3B

N3N1
M1M2

LN2 = (−)(A+K)(B+L)BN3N1
M1M2

LN2AM1
KN1N2

M2
N3 (1.10)

Using ordinary summation conventions, we would have obtained instead the full
sign factor (−)(A+M1+K+N1+N2+M2+N3)(B+N3+N1+M1+M2+L+N2).



CHAPTER 1. THE GENERAL IDEA AND SETTING 8

1.2 Graded equal sign

The graded summation convention takes care of all dummy indices. But we can still be left with naked indices
and/or graded rumpfs, which likewise produce inconvenient signs. Also the summation convention on its own
might be dangerous. To show this, look at the following example: Consider graded commutative variables
aM , bM , cM and dM with bosonic rumpfs. Then the following equations, which are obviously correct (using our
graded summation convention)

aMbNcNdM − aMbNdMcN = 0 (1.11)

⇒ aMbN (cNdM − dMcN ) = 0 (1.12)

could lead to the � in general � wrong assumption

cNdM − dMcN = 0 (not true in general!) (1.13)

We therefore introduce a graded equal sign =g, which states that the equality holds if for each summand a
mismatch in some common ordering of the indices is taken care of by an appropriate sign factor:

cNdM − dMcN =g 0 :⇐⇒ cNdM − (−)MNdMcN = 0 (1.14)

If we imagine objects like in (1.8), the graded equal sign allows one to write down quickly correct equations
without bothering all the involved signs. And it will also lead as a guiding line for all de�nitions of new objects,
which should all be writable in terms of the graded equal sign, in order to make them compatible with the
graded summation convention.

The idea of how to de�ne the graded equal sign should be clear from (1.14), but in order to be able to write
down a de�nition for the general case, we have to be a little more careful. For practical purposes it should be
enough to have a look at the examples following the general de�nition, to convince yourself that everything is
very natural and intuitive.

Let us introduce the graded equal-sign for the most general case in two steps. At �rst we look at equations
with only bosonic rumpfs, like in (1.8).

Graded equal sign for bosonic rumpfs

Any term T(i) of the equation (which can be a product of a lot of objects with indices) has some nonnegative
integer number k of naked indices (the vertical position of the indices does not play a role for this de�nition,
so we write them all upstairs, but the very same de�nition holds for any position). We take the �rst term
in the equation, call it T(1)

M1...Mk , as reference term. Any other term in the equation has to have the same
index set but perhaps with a di�erent order or permutation P(i) of the indices. A permutation of an index set
{M1, . . . ,Mk} is de�ned via a permutation of the set {1, . . . , k}

P(i)(M1, . . . ,Mk) := (MP(i)(1), . . . ,MP(i)(k)) (1.15)

We assign a signature to this permutation in the following way1: For any index Mi we de�ne a graded commu-
tative object oMi which carries the grading of the index

oMioMj = (−)MiMjoMjoMi (1.16)

and de�ne signP(i)(M1, . . . ,Mk) via

o
MP(i)(1) · · · oMP(i)(k) =: signP(i)(M1, . . . ,Mk)oM1 · · · oMk (1.17)

IfMi are just supercoordinate-indices, then the supercoordinates xM themselves can be taken instead of de�ning
new variables oM .

Using this de�nition of the signature of a permutation of indices, we now de�ne the graded equal sign for
an equation with general terms (but still bosonic rumpfs) as∑

i

T(i)
MP(i)(1)

...MP(i)(k) =g 0 :⇐⇒
∑

i

(−)sign(P(i)(M1,...,Mk))T(i)
MP(i)(1)

...MP(i)(k) = 0 (1.18)

In the following sections we will always give de�nitions and important equations with the graded equal sign and
with the ordinary one. This somewhat long-winded de�nition should therefore become obvious in the further
sections. But let us �rst complete our de�nition to the case involving graded rumpfs. One could get rid of all
graded rumpfs by shifting the grading to the indices (if present), or create a new index with only one possible
value. As this would be notationally not very nice, we stay with graded rumpfs, but we keep in mind that a
graded rumpf is similar to a naked index. Problems for including the rumpfs in the de�nition of the graded
equal sign appear, when the same rumpf appears several times in one term, which is thus similar to to having
coinciding naked indices:

1Note that this signature of the permutation of some given indices does not coincide with the signature of the permuation itself,
which is given by minus one to the number of switches one needs to build the permutation. �
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Problem of coinciding indices:

The graded equal sign above (1.18) is only well de�ned if all naked indices can be distinguished. In general
calculations one usually uses di�erent letters for each index, even if they are allowed to coincide, and then there
is no problem. What, however, if one looks at some special case with two coinciding indices. Consider the
following equivalent relations

(a) T(1)
MN =g T(2)

NM ⇐⇒ T(1)
MN = (−)NMT(2)

NM (1.19)

(b) T(1)
MN =g T(2)

MN ⇐⇒ T(1)
MN = T(2)

MN (1.20)

For M = N (no sum) this reads

(a) T(1)
MM =g T(2)

MM ⇐⇒ T(1)
MM = (−)MT(2)

MM no sum over M (1.21)

(b) T(1)
MM =g T(2)

MM ⇐⇒ T(1)
MM = T(2)

MM no sum over M (1.22)

Now (a) and (b) obviously contradict themselves. There are two options to solve this notational problem. The
�rst is to always rewrite the equation with an ordinary equal sign before looking at any special case. The second is
to make apparent the original name of the index in the following way (this is also useful to suppress summation
over repeated indices if it is not wanted)

(a) T(1)
M(N=M) =g T(2)

(N=M)M ⇐⇒ T(1)
M(N=M) = (−)MT(2)

(N=M)M (1.23)

(b) T(1)
M(N=M) =g T(2)

M(N=M) ⇐⇒ T(1)
M(N=M) = T(2)

M(N=M) (1.24)

Graded rumpfs

A grading of a rumpf is like a naked index grading at the position of the rumpf. The lesson from above is,
that we can only include the rumpfs completely into the de�nition of the graded equal sign, if in each term all
rumpfs are di�erent. As we can't rely that this is the case in all equations of interest, we will include the rumpfs
only partially in the de�nition of the graded equal sign. Namely, the graded equal sign will not compare the
order of the rumpfs, but the position of the indices with respect to the rumpfs. This is again necessary to stay
consistent with the graded summation convention. Consider therefore the same trivial example as in (1.11),
however, now with graded rumpfs

aMbNcNdM − (−)cdaMbNdMcN = 0 (1.25)

⇒ aMbN
(
cNdM − (−)cddMcN

)
= 0 (1.26)

We now want to simply read o�

cNdM − (−)cddMcN =g 0 (1.27)

In order for this to be correct, we have to de�ne =g appropriately. Let us therefore write out the summation
convention in (1.26) explicitely (in NW-conventions):∑

M,N

aMbN
(
(−)M(b+c+d)+NccNdM − (−)M(b+N)+Md+Nd+Nc(−)cddMcN

)
= 0 (1.28)

⇒ (−)MccNdM − (−)MN+Nd(−)cddMcN = 0 (1.29)

⇒ (−)NdcNdM − (−)MN+Mc(−)cddMcN = 0 (1.30)

Comparing the last line with (1.27) we get

cNdM − (−)cddMcN =g 0 :⇐⇒ (−)NdcNdM − (−)MN+Mc(−)cddMcN = 0 (1.31)

The graded equal sign therefore takes care of the order of the naked indices via (−)MN and of the order of
the indices with respect to the rumpfs, i.e. it puts their grading to the very right of all rumpfs via (−)Nd and
(−)Mc. Only the order of the rumpfs is taken care of by hand via (−)cd. As stated before, the correct order
cannot a posteriori be �gured out, when rumpfes coincide. For d = c, the equation is still correct and reads

cNcM − (−)ccMcN =g 0 ⇐⇒ (−)NdcNcM − (−)MN+Mc(−)ccMcN = 0 (1.32)

The (−)c cannot any longer be deduced from the order of the rumpfs and that's why we did not include it in
the de�nition of the graded equal sign. However, we got rid of all index-dependent signs! We will in particular
use the graded equal sign to de�ne composite objects of the form

AMN ≡g B
NKCK

M ⇐⇒ AMN ≡ (−)CN+MNBNKCK
M = (−)CN+MN

∑
K

(−)KCBNKCK
M (1.33)
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This makes sure that the notation AMN is consistent with the position of the gradings. This is again necessary
to guarantee consistency with the graded summation convention. I.e. for every DMN we have (ordinary equal
sign, all indices contracted)

AMNDMN = BNKCK
MDMN (1.34)

which would not be true for the de�nition AMN ≡ BNKCK
M without the graded equal sign or the appropriate

signs in front.
For a more general de�nition of the graded equal sign in the case of graded rumpfs, we can again introduce

graded commuting objects o and de�ne something which we call a grading structure, namely a product of
those objects o with abstract indices of the grading of all involved indices and rumpfs. E.g.

gs(cMcNTKLxP ) ≡ ocoMo′coNoT oKoLoxoP = (−)cM+T (M+N)+x(M+N+K+L)oco′coT ox · oMoNoKoLoP(1.35)

gs(xKAMPNcL) ≡ oxoKoAoMoP oNocoL = (−)AK+c(K+M+P+N)oxoAoc · oKoMoP oNoL = (1.36)

= (−)AK+c(K+M+P+N)(−)MKoxoAoc · oMoNoKoLoP (1.37)

(note that we have to introduce a new graded commuting object (here o′) for every rumpf which appears twice
in a term, as ococ = 0 for | c |= 1). In the grading structure, we can rearrange the objects until all the rumpfs
are in the front (with unchanged relative position) and the naked indices have some common order. We call the
resulting sign the relative sign of the grading structures

signg
cM cN T KLxP

(
xKAMPNcL

)
= (−)cM+T (M+N)+x(M+N+K+L)(−)AK+c(K+M+P+N)(−)MK (1.38)

In order to write down the general de�nition for the graded equal sign, allowing graded rumpfs, we consider
once some composite onjects T(i) (all terms in an equation of interest) which can contain a lot of naked indices.
Then we de�ne ∑

i

T(i) =g 0 :⇐⇒
∑

i

(−)
signg

T(1)
T(i)

T(i) = 0 (1.39)

which specializes to (1.18) in the case of bosonic rumpfs. In our example of above, this reads

cMcNTKLxP − xKAMPNcL =g 0 :⇐⇒ cMcNTKLxP − signcM cN T KLxP

(
xKAMPNcL

)
· xKAMPNcL = 0

(1.40)
Remark: Of course the so de�ned graded equal sign obeys transitivity (X =g Y , Y =g Z ⇒ X =g Z) as

well as re�exivity (X =g X) and symmetry (X =g Y ⇒ Y =g X) and is therefore an equivalence relation.
In cases where we have a clear notion of what we consider to be elementary objects and composite objects

(e.g. elementary and composite �elds in �eld theory), we can also go further and a big graded equal sign =G

which also takes care of the order of as many (elementary) rumpfs as possible. As (in contrast to naked indices)
elementary rumpfs are not visible any longer as soon as one de�nes composite objects, one has to remember the
de�nitions of the composite objects, when one wants to resolve the big graded equal sign. Alternatively one can
obey some reference order of rumpfs in all de�nitions of composite objects. Objects like the energy momentum
tensor, however, in which every summand contains di�erent elementary �elds, e.g.

Tzz = ∂xM∂xM − ∂cMbzM (1.41)

make it impossible to compare the ordering of the rumpfs in the di�erent terms. A graded equal sign therefore
only can take care of a maximum of common (in each term) an distinguishable (among themselves) terms.
Writing down a general de�nition of this idea is hard, but let us show some simple examples:

(AB)T =G BTAT ⇐⇒ (AB)T = (−)ABBTAT (1.42)

(AB)† =G B†A† ⇐⇒ (AB)† = (−)ABB†A† (1.43)

(ab)∗ =G a∗b∗ ⇐⇒ (ab)∗ = a∗b∗ (1.44)

A = abc, B = cab : A =G B ⇐⇒ A = (−)c(a+b)B (1.45)

AB =G BA ⇐⇒ AB = (−)ABBA ⇐⇒ abccab = (−)(a+b+c)(a+b+c)cababc (1.46)

ab =G cd ⇐⇒ ab = cd (1.47)

abcd =G dc ⇐⇒ abcd = (−)cddc (1.48)

aMcKaNdL =G cMaKaLdN ⇐⇒ (−)acaMcKaNdL =g (−)2ad+dcdMaKaLcN ⇐⇒ (1.49)

⇐⇒ (−)ac(−)M(c+a+d)+K(a+d)+NdaMcKaNdL = (−)dc(−)Mc+K(a+c)+Lc+NLdMaKaLcN(1.50)
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1.3 Calculating with fermions as with bosons - a theorem

De�nition 1 (Gradi�able) We call a naked index or rumpf of an algebra element gradi�able in a given
equation i� it either appears in every term of this equation exactly once or it does not appear in the equation at
all. We call it gradi�able in a set of equations i� it is gradi�able in each of them.

De�nition 2 (Gradi�cation) The gradi�cation of an index 'K' or rumpf 'a' assigns an undetermined parity
| K | or | a | to it which will enter the graded summation convention and the graded equal sign. The gradi�cation
of a given set of algebraic equations is de�ned to be a new set of equations with all gradi�able objects gradi�ed,
the equal sign replaced by the big graded equal sign and the sum over dummy indices replaced by the graded sum
(using an arbitrary but well-de�ned sign rule like NW or NE) over graded dummy indices.

More or less by de�nition, the following theorem holds:

Theorem 1 If a set of algebraic equations implies a second set of algebraic equations, then the same holds true
for the gradi�cation of the whole system.

Remarks:

• This theorem makes it possible to use existing tensor manipulation packages for e.g. mathematica also
for the graded case!

• It is not excluded a priori that the original equation was fermionic and is made bosonic. However, one
has to make sure that equations like

θ · θ = 0 (1.51)

are not contained in the set of equations that where needed to derive something. In the above equation,
θ obviously appears twice in one term and is thus not gradi�able.

• The de�nitions where chosen excatly in such a way that the theorem holds. A more rigorous proof will
not be provided here.

Counterexamples

In the rest of this part of the thesis we will give a lot of examples and applications of the theorem. There will,
however, also be some rather subtle examples which seem to be counterexamples at �rst sight. One of those
�counterexamples� is the graded inverse of a matrix with graded rumpf, treated in subsection 2.4 on page 15.
Another �counterexample� is the derivative with respect to Grassmann variables: the bosonic equation

∂

∂x
x = 1 (1.52)

suggests to de�ne
∂

∂θ
θ

?= 1 (1.53)

for fermionic variables. This de�nition makes perfect sense, but results using this derivative cannot be derived
via the theorem from the bosonic case, as the rumpf theta does not appear excatly once in every term. This
problem can be omitted, if one introduces a new index and puts the grading into the index. We treat such
derivatives in subsection 3.1 on page 21.



Chapter 2

Graded matrices (supermatrices) and
graded matrix operations

Supermatrices are the perfect objects to study the e�ects of our considerations. We will drop the word 'super'
or 'graded' in every de�nition, since everything in has to be understood as graded. The equations of this section
will all be written in two ways: once in the left column with the help of the graded equal sign and the implicit
graded summation conventions and once on the righthand side with ordinary equal sign, and the sum written
out explicitely (in NW conventions), in order to make the reader familiar with the new conventions.

Within this chapter, we will always consider four di�erent kinds of matrices, which di�er in their index-
positions:

AMN , BM
N , CM

N , DMN (2.1)

2.1 Transpose and hermitean conjugate

Let us start with the de�nition of a transposed matrix and a hermitean conjugate matrix in each of the four
cases. The simple rule is to take the bosonic de�nition and replace the equal sign by a graded one:

(AT )MN ≡g ANM

(BT )M
N ≡g BN

M

(CT )M
N ≡g CN

M

(DT )MN ≡g DNM

(AT )MN ≡ (−)MNANM (2.2)

(BT )M
N ≡ (−)MNBN

M (2.3)

(CT )M
N ≡ (−)MNCN

M (2.4)

(DT )MN ≡ (−)MNDNM (2.5)

(A†)MN ≡g (ANM )∗

(B†)M
N ≡g (BN

M )∗

(C†)M
N ≡g (CN

M )∗

(D†)MN ≡g (DNM )∗

(A†)MN ≡ (−)MN (ANM )∗ (2.6)

(B†)M
N ≡ (−)MN (BN

M )∗ (2.7)

(C†)M
N ≡ (−)MN (CN

M )∗ (2.8)

(D†)MN ≡ (−)MN (DNM )∗ (2.9)
Clearly we have

(MT )T = M (2.10)

(M†)† = M (2.11)

for all matrices M , which is a simple con�rmation of the theorem.

2.2 Matrix multiplication

We meet a �rst deviation from usual de�nitions when we consider matrix multiplications. The de�nition of the
matrix multiplication will depend on the index structure of the matrix. Both, graded equal sign and the graded
summation convention have an in�uence now:

12
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(AC)MN ≡g AMKCK
N

(AD)M
N ≡g AMKDKN

(ABT )MN ≡g AMK(BT )K
N

= AMKBN
K

(BA)MN ≡g BM
KA

KN

(B1B2)M
N ≡g B M

1 KB
K

2 N

. . .

(AC)MN ≡ (−)MCAMKCK
N =

NW= (−)MC
∑
K

(−)KCAMKCK
N (2.12)

(AD)M
N ≡ (−)MDAMKDKN =

NW= (−)MD
∑
K

(−)KDAMKDKN (2.13)

(ABT )MN ≡ (−)MBAMK(BT )K
N =

= (−)MBAMKBN
K =

NW= (−)MB
∑
K

(−)K(B+N)AMKBN
K (2.14)

(BA)MN ≡ (−)MABM
KA

KN =
NW= (−)MA

∑
K

(−)K+KABM
KA

KN (2.15)

(B1B2)M
N ≡ (−)MB2B M

1 KB
K

2 N =

= (−)MB2
∑
K

(−)K+KB2B M
1 KB

K
2 N (2.16)

. . .

Associativity

Up to now, we have used the graded equality and summation mainly for de�nitions (appart from (2.10) and
(2.11)). Now we can apply our theorem by stating that the (graded) matrix multiplication as de�ned above is
associative

((B1B2)B3)
M

N = B1(B2B3)M
N (2.17)

((C1C2)C3)M
N = C1(C2C3)M

N (2.18)

This is guaranteed by the theorem, because the bosonic equation is true and all conditions to replace indices and
rumpfs by graded naked indices and rumpfs are ful�lled, namely every naked index and every rumpf appears
excatly once in each term and the graded matrix multiplication could be de�ned with the same conditions
ful�lled. For this example it is still quite simple to check the validity explicitly, e.g. in NW

(−)MB3
∑
L

(−)LB3+L

(
(−)MB2

∑
K

(−)KB2+KB1
M

KB2
K

L

)
B3

L
N =

= (−)M(B2+B3)
∑
K

(−)K(B2+B3)+KB1
M

K

(
(−)KB3

∑
L

(−)LB3+LB2
K

LB3
L

N

)
(2.19)

Unit matrix

The de�nition of the unit matrix is

M11 = M (2.20)

which implies via associativity for the matrices of type B and C

11M = M (2.21)

For the di�erent types of matricies A,B,C and D, we have in fact di�erent types of unit matrices:

(A11)MN ≡ AMKδK
N != AMN

(B11)M
N ≡ BM

Kδ
K

N
!= BM

N

(C11)M
N ≡ CM

KδK
N != CM

N

(D11)MN ≡ DMKδ
K

N
!= DMN

(A11)MN NW≡
∑
K

AMKδK
N != AMN (2.22)

(B11)M
N

NW≡
∑
K

(−)KBM
Kδ

K
N

!= BM
N (2.23)

(C11)M
N NW≡

∑
K

CM
KδK

N != CM
N (2.24)

(D11)MN
NW≡

∑
K

(−)KDMKδ
K

N
!= DMN (2.25)
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From the righthand side we can see

δM
N =

{
δN
M for NW

(−)MNδN
M for NE

(2.26)

with δN
M being the numerical Kronecker delta, and

δM
N =g δN

M (2.27) δM
N = (−)MNδN

M (2.28)
This graded Kronecker (the lefthand side shows that both versions are graded equal anyway) of course also full�ls
its task for vectors and arbitrary rank tensors:1

aMδM
N = aN (2.29)

TM1...Mr−1Kδ
K

N = TM1...Mr−1N (2.30)

2.3 Transpose and hermitean conjugate of matrix products

2.3.1 Transpose of matrix products

Another simple application of the theorem are the transpose and the hermitean conjugate of a matrix product:(
(AC)T

)MN
=G

(
CTAT

)MN
(2.31)(

(AD)T
)M

N =G (DTAT )M
N (2.32)(

(BA)T
)MN

=G (ATBT )MN (2.33)

. . .

(
(AC)T

)MN
= (−)AC

(
CTAT

)MN
(2.34)(

(AD)T
)M

N = (−)AD(DTAT )M
N (2.35)(

(BA)T
)MN

= (−)AB(ATBT )MN (2.36)

. . .
Let us again verify explicitly that this is indeed true for e.g. the �rst line (in NW conventions):(

(AC)T
)MN

= (−)MN (AC)NM =

= (−)MN (−)NC
∑
K

(−)CKANKCK
M =

= (−)MN+NC
∑
K

(−)CK+(C+K+M)(A+N+K)CK
MANK =

=
∑
K

(−)CA+KA+KN+K+MA+MKCK
MANK =

= (−)AC(−)MA
∑
K

(−)KA+K(CT )M
K(AT )KN =

= (−)AC(−)MA(CT )M
K(AT )KN =

= (−)AC
(
CTAT

)MN
(2.37)

2.3.2 Complex conjugation of products of (graded) commuting variables

Before we come to the hermitean conjugate, we will have a short look at complex conjugation of graded
commuting variables (we will often call it graded number, or just number) and products of them. The reason
to do so, is that the complex conjugate of a product of two Grassmann variables is often de�ned di�erently
to our way, and we therefore want to motivate it carefully. Consider the (graded) commuting variable a and
decompose it into its real part <(a) and its imaginary part =(a), de�ned by (use of a graded equal sign makes

1If the capital index combines two subsets of (small) indices with di�erent position, we might insist on NW (or any other
convention) for the small indices which leads to di�erent de�nitions for the Kronecker delta:

aM = (am, aµ)

aM δM
N = amδm

N + aµδµN =

mixed conv.
≡

X
m

amδm
N +

X
µ

(−)µaµδµN !
= aN

δm
N = δN

m

δµN = (−)µδ
N
µ �
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no di�erence here)

<(a) ≡ a+ a∗

2
(2.38)

=(a) ≡ a− a∗

2i
(2.39)

Both are real

<(a)∗ = <(a), =(a)∗ = =(a) (2.40)

and we have

a = <(a) + i=(a) (2.41)

a∗ = <(a)− i=(a) (2.42)

We thus can seperate any number in a real and imaginary part, and complex conjugation �ips (as usual) the
sign of the imaginary part. Consider now the complex conjugation of the product of two graded numbers

(ab)∗ = [(<(a)<(b)−=(a)=(b)) + i(<(a)=(b) + =(a)<(b))]∗ =
= (<(a)<(b)−=(a)=(b))− i(<(a)=(b) + =(a)<(b)) (2.43)

a∗b∗ = (<(a)− i=(b)) (<(a)− i=(b)) =
= (<(a)<(b)−=(a)=(b))− i(<(a)=(b) + =(a)<(b)) (2.44)

⇒ (ab)∗ = a∗b∗ (2.45)

From our de�nitions of real and imaginary part in (2.38) and (2.39), which are just graded versions of the
bosonic case, we could have deduced (2.45) as well via our theorem. We just want to stress that in our context
this is the only natural complex conjugation, while in the literature one can often �nd a complex conjugation
with the property (ab)∗ = b∗a∗ = (−)aba∗b∗ which would not �t at all into the philosophy. The same is true
for the hermitean conjugation of the product of graded matrices in the next subsection (as well as of graded
operators in the in�nitedimensional case).

2.3.3 Hermitean conjugate of matrix products

From our de�nition of a hermitean conjugate and of complex conjugation of products of numbers, we get via
the theorem the natural rules for complex conjugation of (graded) matrix products:(

(AC)†
)MN

=G

(
C†A†

)MN
(2.46)(

(AD)†
)M

N =G (D†A†)M
N (2.47)(

(BA)†
)MN

=G (A†B†)MN (2.48)

. . .

(
(AC)†

)MN
= (−)AC

(
C†A†

)MN
(2.49)(

(AD)†
)M

N = (−)AD(D†A†)M
N (2.50)(

(BA)†
)MN

= (−)AB(A†B†)MN (2.51)

. . .
Similarly we expect for operators in the in�nite dimensional case

(ÂB̂)† =G B̂†Â† (2.52) (ÂB̂)† = (−)ABB̂†Â† (2.53)
It is simply a matter of rede�ning the operator product, in order to make contact to the usual de�nition without
sign.

2.4 Graded inverse - a nice �counterexample� to the theorem

Consider for the beginning matrices with even rumpf only

| A |=| B |=| C |=| D |= 0 (2.54)

We say A is the (graded) inverse of D, B2 the inverse of B1 and C2 the inverse of C1 i�

DMKA
KN = δM

N (2.55)

AMKDKN = δM
N (2.56)

BM
1 KB

K
2 N = δM

N (2.57)

C1
M

KC2
K

N = δM
N (2.58)
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with

δM
N = (−)MNδN

M (2.59)

The so de�ned inverses in general do not coincide with the naive inverses.2

From our theorem we can e.g. deduce that for matrices M N of any type (with even rumpf) we have

(MN)−1 =G (N−1M−1) (2.60)
|M |=|N |=0⇒ (MN)−1 = (N−1M−1) (2.61)

This is easily directly veri�ed using associativity of our graded matrix multiplication.

Counterexample

If we however take the rumpfs arbitrarily graded, then we still have3

(MN)−1 = (N−1M−1), for any |M |and | N | (2.62)

as (MN)(N−1M−1) assoz= M(NN−1)M−1 = 11 (2.63)

There is no expected prefactor (−)MN in the upper line! This looks strange in terms of the big graded equal
sign, which should swallow the rumpf-dependend signs, but produces one here:

(MN)−1 =G (−)MN (N−1M−1) (2.64)

The theorem thus is not applicable here! What went wrong? Our de�nition of the inverse

(MM−1) = 11 (2.65)

is a non-valid gradi�cation of the bosonic one: The theorem allows us to assign a grading only to rumpfs which
appear excatly once in each term. The rumpf M appears twice on the lefthand side and not at all on the
righthand side. Thus, the theorem does not allow to give M a grading. If we do so nevertheless, we can't derive
known rules from the bosonic case.
The naked indices in (2.55) to (2.58), however, appear excactly once in each term and can therefore be generalized
to graded indices. We thus cannot base our theorem on de�nitions like this. As the de�nition itself is of course
ok, we thus should better give it a new name, like special graded inverse , in order to make clear that the
de�nition is not simply a gradi�cation of a bosonic one!

2.5 (Super) trace

We know come to another important deviation from usual supermatrix-de�nitions which will enter an interesting
result for superdeterminants. The trace is the sum of the diagonal entries and makes sense for matrices of type

2To verify this statement, write out the equations (2.55)-(2.58) in NW-conventions, using δM
N = δN

M :X
DMK(−)KAKN = δN

MX
AMKDKN (−)N = δM

NX
BM

1 K(−)K+NBK
2 N = δM

NX
C1

M
KC2

K
N = δN

M

Only in the last case C2 is the naive inverse of C1. �
3Note that although a Grassmann-variable has no inverse, a matrix with fermionic rumpf can have an inverse. Take e.g. x, y 6= 0

bosonic and c fermionic, then we have „
c x
y 0

« 
0 1

y
1
x
− c

xy

!
=

„
1 0
0 1

«
(#)

The matrix multiplication above, however, is not according to our graded matrix multiplication rules, which are`
CC−1

´
M

N ≡g CM
K(C−1)K

N =g δM
N

⇒
`
CC−1

´
M

N NW
=

X
K

(−)KA+MACM
K(C−1)K

N = δM
N

The following choice of matrices therefore correspond to the equation (#):

C =

„
c −x
−y 0

«
C−1 =

 
0 1

y
1
x
− c

xy

!
�
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C and B only (matrices with one upper and one lower index, i.e. endomorphisms)

trB ≡ BM
M =

{ ∑
M BM

M NW∑
M (−)MBM

M NE
(2.66)

trC ≡ CM
M =

{ ∑
M (−)MCM

M NW∑
M CM

M NE
(2.67)

The (−)M is familiar from usual de�nitions. We have it here, however, either only for NW or for NE. The
reason is that for B-type matrices in NW (where the trace has no sign factor) the (−)M is implemented in the
matrix multiplication of two matrices. In any case, the graded cyclicity property of the trace holds:

trB1B2 = BM
1 KB2

K
M = (−)B2B1trB2B1 (2.68)

⇐⇒ tr [B1, B2] = 0 (2.69)

For matrices of type A and D, we need a metric, in order to de�ne a meaningful trace:

trA ≡ AMNGMN (2.70)

trD ≡ DMNG
MN (2.71)

2.6 (Super) determinant

We �nally come to the most interesting demonstration of the use of our conventions. Namely the de�nition of
the superdeterminant. As usual, we start from the de�nition via the exponential:

detC ≡ etr ln C (2.72)

Remember that for a matrix of type C, the de�nition of the trace matches the usual de�nition, while the
de�nition of the matrix product di�ers. For NE the situation is just the other way round. In any case, our
de�nition will di�er from the usual one.

Consider now the decomposition of C in bosonic and fermionic blocks:

(
CM

N

)
≡

(
Cm

n Cm
ν

Cµ
n Cµ

ν

)
≡
(
am

n bmν

cµn dµ
ν

)
, | m |= 0, | µ |= 1 (2.73)

Assuming that the matrix (a) is invertible (implies that a (and thus the rumpf of C) is bosonic, as a matrix with
purely fermionic entries cannot be inverted), one can seperate C in a product of two block-triangular matrices

C = C1C2 (2.74)

C1 =
(
a 0
c 11

)(
11 (a−1b)
0 d− ca−1b

)
(2.75)

Now we will use two facts. One is that the trace of ln factorizes:

eF eG BCH= eF+G+ 1
2 [F,G]+... (2.76)

C1C2 = eln C1+ln C2+
1
2 [ln C1,ln C2]+... (2.77)

⇒ tr ln(C1C2)
(2.69)
= tr lnC1 + tr lnC2 (2.78)

And the other fact is that an arbitrary power of a block-triangular matrix stays a blocktriangular matrix with
the powers of the diagonal blocks in the block diagonal:(

a 0
b c

)n

=
(
an 0
∗ cn

)
(2.79)(

a b
0 d

)n

=
(
an ∗
0 dn

)
∀a, b, c, d (2.80)

In particular

(C1 − 11)n =
(

(a− 11)n 0
∗ 0

)
(2.81)

(C2 − 11)n =
(

0 0
∗ (d− ca−1b− 11)n

)
(2.82)
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Now we use the power series for the logarithm

ln(1 + x) =
∞∑

n=1

1
n!

ln(n)(1)xn =
∞∑

n=1

(−)n−1x
n

n
(2.83)

tr ln(C1) =
∞∑

n=1

(−)n−1 tr (C1 − 11)n

n
= (2.84)

=
∞∑

n=1

(−)n−1

n
tr

(
(a− 11)n 0
∗ 0

)
= (2.85)

=
∞∑

n=1

(−)n−1

n
tr (a− 11)n = (2.86)

= tr ln a (2.87)

tr ln(C1) = tr ln(d− ca−1b) (2.88)

We thus get

detC = detC1 · detC2 = (2.89)

= det a · det(d− ca−1b) (2.90)

This result is true for every block-decomposition. a, d do not necessarily have to be bosonic as well as b and
c do not have to be fermionic. It di�ers, however, from what one usually �nds in the literature, namely
detC = det a/det(d− ca−1b).

The reason for this mismatch lies simply in the de�nition of matrix multiplication (or trace) and thus
of the determinant of a bosonic matrix with two fermionic indices. For NE-conventions, the trace of the
submatrix (dµ

ν) gives an extra minus, which produces the 1/d, if one refers to the naive trace when de�ning
the determinant. The same is true, if we consider the corresponding submatrices of a matrix of type B in
NW-conventions. For the determinant of a matrix of type C in NW (or likewise type B in NE), however, the
comparison between our and the usual convention is a bit more subtle. In the following we write terms in the
usual convention in quotation marks. At �rst, let us de�ne the dimension of a matrix as the trace of the
corresponding unit-matrix:

dim(C) ≡ δM
M = ”dim(a)− dim(d)” (2.91)

dim(d) = ”− dim(d)” (2.92)

I.e., fermionic dimensions are negative dimensions!

d2µ
ν = dµ

λd
λ

ν = (2.93)
NW=

∑
λ

dµ
λd

λ
ν(−)λ (2.94)

⇒ dn = ”(−1)n−1dn = −(−d)n” naive matrix mult in quot (2.95)

ln(d) =
∞∑

n=1

(−)n−1

n
(d− 11)n 11=”−11”=

and (2.95)
(2.96)

11=”−11”=
and (2.95)

”−
∞∑

n=1

(−)n−1

n
(−d− 11)n” (2.97)

= ”− ln(−d)” naive matrix mult in quot (2.98)

det(d) = ”1/det(−d) = (−1)dim(d)1/det d ” (2.99)

det(d− ca−1b) a−1=”a−1”=
ca−1b=”ca−1b”

”(−1)dim(d)1/det(d− ca−1b)” (2.100)

detC = ”(−1)dim(d) det a/det(d− ca−1b)” naive matrix mult in quot (2.101)

For matrices of type B in NW-convention, the situation is the same as for matrices of type C in NE-convention:

dn = ”dn” (2.102)

11d = ”11d” (2.103)

ln d = ” ln d” (2.104)

tr ln d = ”− tr ln d” (2.105)
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We thus get

detC = det a · det(d− ca−1b) =
{

”(−1)dim(d) det a/det(d− ca−1b)” NW
” det a/det(d− ca−1b)” NE

(2.106)

for CM
N =

(
a b
c d

)M

N

(2.107)

and

detB = det a · det(d− ca−1b) =
{

” det a/det(d− ca−1b)” NW
”(−1)dim(d) det a/det(d− ca−1b)” NE

(2.108)

for BM
N =

(
a b
c d

)
M

N

(2.109)

As a check, let us take B = CT =
(
aT cT

bT dT

)
= ”

(
aT cT

bT −dT

)
”. Then we expect, following our theorem:

detC = detCT (2.110)

Indeed, in naive matrix-notations this reads

”(−1)dim(d) det(d− ca−1b)” ?= ”det(−dT − bT (a−1)T cT )” = (2.111)

= ”det
(
−dT − (−)cbca−1b

)T
” = (2.112)

= ”det
(
−d+ ca−1b

)
” = (2.113)

= ”(−1)dim(d) det(d− ca−1b)” (2.114)



Chapter 3

Other Applications and Some Subtleties

There are many natural applications. One is the study of supergroups under the aspect of gradi�cation. Another
is the calculus with di�erential forms. There is more to say about that, but for the moment it should be enough
to say that we put the form grading on equal footing to the fermion or ghost grading. A two form e.g. looks as
follows: ω ≡ ωMNdxM ∧ dxN =

∑
(−)MN+NωMNdxM ∧ dxN .

Yet another natural application is the whole business of de�ning conjugate momenta, making a Legendre
transform in order to switch the Hamiltonian formalism, and of de�ning the Poisson bracket. Subtleties arise
only when graded rumpfs are involved, especially for the de�nition of derivatives.

3.1 Left and right derivative

Bosonic rumpfs

In the bosonic case we have for a variation of some function

δf(x) = δxm ∂

∂xm
f = f

←−
∂

∂xm︸ ︷︷ ︸
∂f/∂xm

δxm (3.1)

0 = δxm

(
∂

∂xm
f − ∂f/∂xm

)
(3.2)

0 =
∂

∂xm
f − ∂f/∂xm (3.3)

There is no di�erence between left and right derivative here, except that we write it either on the left or on the
right of the function. For the graded case with bosonic rumpfs, the situation is very similar. We de�ne (using
graded summation; no need for graded equal in the beginning, as there are no naked indices, but in the third
equation it is essential)

δf(x) =g δx
M ∂

∂xM
f =g ∂f/∂xMδxM (3.4)

⇒ 0 =g δxM

(
∂

∂xM
f − ∂f/∂xM

)
(3.5)

⇒ 0 =g
∂

∂xM
f − ∂f/∂xM (3.6)

⇒ 0 =
∂

∂xM
f − (−)fM∂f/∂xM (3.7)

For f = xM we have

δxM = δxK ∂

∂xK
xM = ∂xM/∂xKδxK (3.8)

⇒ ∂

∂xK
xM = δK

M (3.9)

∂xM/∂xK = δM
K (3.10)

20
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In the case of coordinates with bosonic rumpf, we will also use the following symbols for derivatives

∂Mf ≡ ∂f

∂xM
≡ ∂

∂xM
f (3.11)

TMN,K ≡ TMN

←−
∂

∂xK
≡ ∂TMN/∂x

K (3.12)

⇒ TMN,K = (−)K(T+M+N)∂KTMN (3.13)

We will not use the notation ∂M for derivatives with respect to ghosts or objects with undetermined grading,
as the rumpf becomes invisible.

Graded rumpfs

For fermionic indices α the above equations imply

∂

∂xα
f = (−)f∂f/∂xα (3.14)

∂

∂xα
xβ = −∂xβ/∂xα = δα

β (3.15)

This would for fermionic objects without indices also suggest to de�ne

∂

∂c
c

?= −∂c/∂c (3.16)

We prefer however the following de�nition of left derivative and right derivative

δF (c) ≡ δc
∂

∂c
F (c) ≡ ∂F (c)/∂c δc (3.17)

∂

∂c
F (c) = (−)c(−)Fc∂F (c)/∂c (3.18)

∂

∂c
F (c) =?

G (−)c∂F (c)/∂c (3.19)

∂

∂c
c = ∂c/∂c = 1 (3.20)

∂

∂c
c =?

G (−)c∂c/∂c (3.21)

Although (3.17) and (3.20) seem to be quite intuitive, (3.18) unfortunately is less intuitive. The factor (−)Fc

is expected, because we interchange the order of F and the derivative with respect to c. The extra factor (−)c,
however, stems from the fact that in (3.17) the order of ∂/∂c and δc is exchanged. Thus for graded rumpfs,
left and right derivative are not the same operation (just written in a di�erent order), but they di�er by a sign
depending on the grading of the rumpf. The generalization to the case with indices, however, is straight-forward
again

∂

∂cM
cN =g δM

N (3.22)

∂cM/∂cN =g δ
M

N (3.23)

The generalization to the case with general indizes is again straightforward:

δF (c) ≡ δcK
∂

∂cK
F (c) ≡ ∂F (c)/∂cK δcK (3.24)

∂

∂cK
F (c) =g (−)c(−)Fc∂F (c)/∂cK (3.25)

(−)FK ∂

∂cK
F (c) = (−)c+cF∂F (c)/∂cK (3.26)

∂

∂cM
cN =g δM

N ⇐⇒ (−)cM ∂

∂cM
cN = δM

N
(

NW= δN
M

)
(3.27)

∂cM/∂cN =g δM
N =g δM

N ⇐⇒ (−)cM∂cM/∂cN = δM
N (3.28)

∂cM/∂cN =g
∂

∂cN
cM ⇐⇒ (−)cM∂cM/∂cN = (−)cN+NM ∂

∂cN
cM∂z/z̄ (3.29)
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3.2 Remark on the pure spinor ghosts

In part II, we will make frequent use of the presented conventions. In particular, we will always use the graded
summation convention and the small graded equal sign without denoting it explicitely! There are some e�ects
that one needs to get used to. The formalism contains among others the variables xm, θµ, θ̂

µ
and a commuting

ghost variable λµ. When we want to describe the �rst three as just components of a supercoodinate xM , we
have to assign all the grading to the indices: θµ → θµ ≡ xµ. We call that a �rumpf-index grading shift�. The
fermionic variable θµ = θµ can be treated in both ways, either as odd rumpf with even index or as even rumpf
with odd index. The boldface notation should serve as a reminder, which point of view we take. When we are
considering the combining object xM , we have no choice, because all entries share the same rumpf 'x'. Therefore
we have to assign the grading to the index and have to do the same for the ghost index, because it simply is
the same index:

λµ → λµ (3.30)

When we leave away in calculations all index-dependent signs, the pure spinor ghost will e�ectively be treated
as an anticommuting variable, because the rumpf is anticommuting! Another similar e�ect is the switch of the
symmetry properties of bispinors. E.g. the chiral γ-matrices

γc
(αβ) → γc

[αβ] (3.31)

which are symmetric before the grading shift, become e�ectively antisymmetric afterwards. As an example,
consider the following term

(λγc∂λ) = λαγc
(αβ)∂λ

β = ∂λαγc
(αβ)λ

β = (∂λγcλ) (3.32)

The calculation goes through in the same way after the shift, because the antisymmetry of the γ-matrix is
compensated by the �anticommutativity� of the ghosts.

λγc∂λ ≡ λαγc
[αβ]∂λβ = ∂λαγc

[αβ]λ
β = ∂λγcλ (3.33)

Nevertheless, in NW as well as in NE, we get an overall minus sign from the switch, due to the graded summation
convention:

λγc∂λ = −λγc∂λ (3.34)



Part II

Berkovits' Pure Spinor String in General
Background
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Chapter 4

Motivation of the Pure Spinor String in
Flat background

4.1 From Green-Schwarz to Berkovits

The classical type II Green Schwarz (GS) superstring describes the embedding of a string worldsheet into a

target type II superspace with coordinates xM ≡ (xm,θµ, θ̂
µ̂
). The bosonic coordinates xm locally parametrize

the ten-dimensional spacetime manifold, while the fermionic coordinates θµ and θ̂
µ̂
have the dimension of

Majorana Weyl spinors and thus have each 16 real components. The Lorentz transformation of spinors is from
the supermanifold point of view a structure group transformation in the tangent space of the supermanifold. In
the �at case, where one can identify the manifold with its tangent space, the θ's are clearly spinors themselves.
In the context of a curved supermanifold that we will treat later on, this will not be the case a priori. The θ's
then only transform under super-di�eomorphisms and not under structure group transformations. However, the
supergravity constraints will allow to choose a gauge (WZ-gauge) in which the two transformations are coupled
and the θ′s likewise transform under a structure group transformation. This is just a remark on the use of
the �curved index� µ. Objects that transform a priori under the structure group carry the �at index A or in
particular α.

The cases type IIA and IIB will be treated at the same time via the choice θ̂
µ̂
≡ θ̂µ for IIA and θ̂

µ̂
≡ θ̂

µ

for IIB. The supersymmetry transformation in �at superspace reads

δθµ = εµ, δθ̂
µ̂

= ε̂µ̂ (4.1)

δxm = εγmθ + ε̂γmθ (4.2)

The small γ-matrices are discussed in the appendix D. In order to build a supersymmetric theory, it is reasonable
to consider supersymmetric building blocks, in particular supersymmetric one-forms (vielbeins)

EA ≡ dxMEM
A =

(
dxa + dθγaθ + d̂θγaθ̂︸ ︷︷ ︸

Πa

, dθα , d̂θ
α̂)

(4.3)

Its pullback to the worldsheet will be denoted by

ΠA
z/z̄ ≡ ∂z/z̄x

MEM
A (4.4)

We do not distinguish notationally between the coordinates of the superspace and the embedding functions.
The bosonic components Πa

z are known as the supersymmetric momentum

Πa
z/z̄ = ∂z/z̄x

a + ∂z/z̄θγ
aθ + ∂z/z̄θ̂γ

aθ̂ (4.5)

The introduction to the Green Schwarz string and the motivation for the pure spinor formalism will be
rather quick and sketchy. We will be much more careful when we start to discuss the pure spinor string in
general background.

The classical Green Schwarz superstring in �at background consists of the square of this momentum plus a
Wess-Zumino term which establishes a fermionic gauge symmetry. This gauge symmetry, called κ-symmetry,
guarantees the matching of the physical fermionic and bosonic degrees of freedom. The GS action has in
conformal gauge the following form:

SGS =
∫
d2z

1
2
Πa

zηabΠb
z̄ + LWZ (4.6)

LWZ = −1
2
Πzm

(
θγm∂̄θ − θ̂γm∂̄θ̂

)
+

1
2
(θγm∂θ)(θ̂γm∂̄θ̂)− (z ↔ z̄) (4.7)

24
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It is covariant and almost manifestly spacetime supersymmetric. In this last feature it di�ers from the RNS
string, where space time supersymmetry only comes in after GSO projection. The problem for the Green
Schwarz string on the other hand is that a covariant quantization with the standard BRST procedure does
not work. The reason for this misery is a set of 16 mixed �rst and second class constraints dzα that cannot
be split easily into �rst and second class type in a covariant manner. The conjugate momentum pzα of θα

can be entirely expressed in terms of other phase space variables and the corresponding fermionic phase space
constraint is just dzα. It has the following explicit form (the form of conjugate momentum to xm was already
plugged in)

dzα ≡ pzα − (γaθ)α

(
∂xa − 1

2
θγa∂θ − 1

2
θ̂γa∂θ̂

)
(4.8)

Half of these constraints are �rst class and correspond to the above mentioned fermionic κ gauge symmetry.
The fact that they have a second-class part can be seen in a non-closure of the Poisson-algebra, which has the
following schematica form:

{dzα(σ),dzβ(σ′)} ∝ 2γa
αβΠzaδ(σ − σ′) (4.9)

Siegel [17] had the idea to make dzα part of a closed algebra by just adding the generators that arise via the
Poisson bracket, which leads to a (centrally extended), but otherwise closed algebra

{dzα,Πza} ∝ 2γa αβ∂θ
βδ(σ − σ′) (4.10)

{Πza,Πzb} ∝ ηabδ
′(σ − σ′) (4.11){

dzα, ∂θ
β
}
∝ δβ

αδ
′(σ − σ′) (4.12)

The important observation is now that the same chiral algebra can be obtained from a free-�eld Lagrangian,
where the variable pzα is independent and cannot be integrated out:

Sfree =
∫
d2z

1
2
∂xmηmn∂̄x

n + ∂̄θαpzα + ∂θ̂
α̂
p̂z̄α̂ = (4.13)

=
∫
d2z

1
2
Πa

zηabΠb
z̄ + LWZ︸ ︷︷ ︸

LGS

+∂̄θαdzα + ∂θ̂
α̂
d̂z̄α̂ (4.14)

In the second line we have used the original de�nition (4.8) for dzα. Remarkably, this action coincides with the
Green Schwarz action for dα = d̂α̂ = 0. In the above free theory, however, dzα is a priori not a Hamiltonian
constraint, but still a generator of a chiral (not local) symmetry. In any case, the reformulation does not remove
the mixed �rst-second class property of dzα, but it provides a simple free-�eld Lagrangian. Berkovits [5] had
the idea to implement the constraints cohomologically with a BRST operator disregarding its non-closure. The
corresponding current (Q =

∮
dzjz) for the left-moving and the right-moving sector take respectively the simple

form

jz = λαdzα, j z̄ = 0 (4.15)

̂z̄ = λ̂αd̂z̄α̂, ̂z = 0 (4.16)

where λα is a commuting ghost. For �rst class constraints the BRST cohomology can be built, because the
BRST operator is nilpotent due to the closure of the algebra. For second class constraints, however, the non-
closure implies a lack of nilpotency of the BRST operator. To overcome this problem, Berkovits put a constraint
on the ghost �eld λ and λ̂, the so called pure spinor constraint

λγcλ = 0, λ̂γcλ̂ = 0 (4.17)

This enforces nilpotency of the BRST operator and provides a well-de�ned theory. The pure spinor constraint
and the ghost kinetic term have to be added to the original free action:

Sps =
∫
d2z

1
2
∂xmηmn∂̄x

n + ∂̄θαpzα + ∂θ̂
α̂
p̂z̄α̂ + Lgh (4.18)

=
∫
d2z

1
2
Πa

zηabΠb
z̄ + LWZ + ∂̄θαdzα + ∂θ̂

α̂
d̂z̄α̂ + Lgh (4.19)

Πa
z = ∂xa + ∂θγaθ + ∂θ̂γaθ̂ (4.20)

dzα = pzα − (γmθ)α

(
∂xm − 1

2
θγm∂θ − 1

2
θ̂γm∂θ̂

)
(4.21)

LWZ = −1
2
Πzm

(
θγm∂̄θ − θ̂γm∂̄θ̂

)
+

1
2
(θγm∂θ)(θ̂γm∂̄θ̂)− (z ↔ z̄) (4.22)

Lgh = ∂̄λβωzβ + ∂λ̂β̂ω̂z̄β̂ +
1
2
Lzz̄a(λγaλ) +

1
2
L̂zz̄a(λ̂γaλ̂) (4.23)
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The pure spinor constraints seem like a replacement of one problem by another. The constraints turn now out
to be �rst class but in�nitely reducible. They generate antighost gauge symmetries of the form

δ(µ)ωzα = µza(γaλ)α, δ(µ)ω̂z̄α̂ = µ̂z̄a(γaλ̂)α (4.24)

accompanied by some transformation of the Lagrange multipliers. We will discuss this in more detail in the
general background-case. In spite of this, the pure spinor constraint can be better handled than the original
constraint. One can solve the pure spinor constraint explicitely in a U(5)-parametrization and calculate operator
products. Although the U(5) coordinates break manifest ten-dimensional Lorentz-covariance, the resulting
gauge-invariant OPE's all have a Lorentz covariant form and the quantization is e�ectively Lorentz covariant.
Berkovits showed in the above cited papers the equivalence to the ordinary string. In [10] he presented a
consistent description for the calculation of higher loop amplitudes. There are still many conceptual problems.
The pure spinor formalism starts in the conformal gauge and does not have worldsheet di�eomorphism invariance
any longer. Attempts to construct a composite b-ghost (as homotopy for the energy momentum tensor) always
involved inverse powers of the gost �eld. In [18], Berkovits recovered a N = 2 algebra by the introduction of
additional worldsheet �elds, which is now known as �non-minimal formalism�. Multiloop calculations where
described or performed by Berkovits, Mafra, Nekrasov and Stahn in [19, 20, 21, 22]. However, there is still a
clear picture of the origin of the pure spinor constraint missing. Attempts to relate the pure spinor string to
the Green Schwarz string via similarity transformations and rede�nitions where successful in [23], but not very
enlightening. An additional task is the resolving of the tip-singularity of the pure-spinor-cone. These questions
were adressed in [24] and [25].

We should �nally mention that the pure spinor approach of Berkovits di�ers signi�cantly from the hybrid
formalism[26], which was developped by the same author and shares only some of the properties of the pure
spinor approach. Two recent presentations of this formalism including the numerous relevant references can be
found in [27][28].

4.2 E�orts to remove or explain the pure spinor constraint

There where plenty of e�orts to get rid of the pure spinor constraint in the years after Berkovits presented
his approach the �rst time. A quite natural ansatz was followed by Chesterman[29, 30], who implemented the
�rst-class pure spinor constraint cohomologically, via a second BRST operator. Due to the in�nite reducibility
of this constraint, there arises an in�nite number of ghost for ghosts. Nevertheless he was able to extract the
most important information and avoided solving the pure spinor constraint explicitly.

Somehow related are the considerations of Aisaka and Kazama[31, 32, 33]. They were able to construct a
BRST operator with �ve additional ghost �elds and no pure spinor constraint, using however U(5) parametriza-
tion and breaking manifest Lorentz invariance. The relation to Chesterman's approach can be established
as follows: The in�nitely reducible pure spinor constraint can be replaced by an irreducible one in an U(5)
parametrization. This constraint can be implemented cohomologically via a second BRST operator in a relative
cohomology, and via homological perturbation theory one can replace the two operators by a single one. Within
their 'doubled spinor formalism', they provided in [34] a derivation of the pure spinor string from the Green
Schwarz String on the quantum level.

Another enlightening approach by Oda, Tonin et al.[36] was the interpretation of the pure spinor formalism as
a twisted and gauge �xed version of the superembedding formalism. This led to a slightly modi�ed version of the
pure spinior formalism, the Y-formalism, and to new insight about the missing antighost b-�eld[37, 38, 39, 40].

There was �nally yet another approach by Grassi, Policastro, Porrati and van Nieuwenhuizen, at that time
most of them in Stony Brook, which we will discuss shortly in a seperate section, as it was subject of my early
PhD studies.

4.3 Some more words on the Stony-Brook-approach

In a series of papers [6, 43, 44, 7, 8, 45, 46] Grassi, Policastro, Porrati and van Nieuwenhuizen have removed
the pure spinor constraint by adding additional ghost variables. They realized in [8] that their theory has the
stucture of a gauged WZNW model with the complete diagonal subgroup gauged. It is based on the chiral
algebra above. A current can be set to zero by gauging the corresponding symmetry and thus making it a �rst
class constraint. However, dzα does not form a subalgebra and thus cannot be gauged on its own. So if one
starts gauging dzα and tries to make the resulting BRST-operator (4.15) nilpotent by adding further ghosts,
one automatically arrives at a BRST operator that corresponds to a theory where also Πzm and ∂θα are gauged
(see e.g. [7, p.7] or [8, p.4]; this fact was later also used to describe a topological model in [47]). In the gauged
WZNW description this means that the complete diagonal subgroup is gauged. Therefore a grading or �ltration
had to be introduced, in order to obtain the correct cohomology. In [46] it was argued that for any (simple)
Lie algebra one can in general gauge a coset (in our case the algebra that corresponds to dzα, modding out
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the subalgebra) by gauging the complete algebra and later undo the gauging of the subalgebra by building the
relative cohomology with respect to a second BRST operator. This corresponds to the former grading. Despite
its elegance there are some puzzling points about the WZNW action:

• For the heterotic string one starts with a chiral algebra and gets from the WZNW model a chiral as well
as an antichiral algebra. Somehow one has to get rid of the antichiral one.

• For the type II string one starts with a chiral and antichiral algebra. Both of them double and the Jacobi
identity forces one to mix those algebras. Thus it has not been possible yet to produce a WZNW model
for the type II string.

• The classical WZNW theory is not a free �eld theory which might cause problems for calculating OPEs.

For those reasons, we avoided in [9] the WZNW action. Although the cited paper contains the work of the early
stage of my PhD, it will not be presented in this thesis in detail. The reason is that it would open yet another
�eld, whereas the presented parts share some common aim. Let me therefore just sketch the results: We started
in [9] with the free �eld action of above, discussed its o�-shell symmetry algebra generated by the current dzα

and gauged it, in order to turn dzα into a constraint. Before actually gauging the algebra via the Noether
procedure, we had to make it close o�-shell. To this aim we introduced auxiliary �elds Pzm and Pz̄m. There
still remained double poles in the current algebra, which caused trouble in the gauging procedure. They were
be eliminated by doubling all �elds as it was done in [8], in order to establish nilpotent BRST transformations.
Gauge �xing leads to the BRST-transformations as they are given in [8].

Finally, we had a closer look at the �nal BRST operator proposed in [8], which includes di�eomorphism
invariance by adding a topological ghost quartet. We came to the conclusion that this operator has to be
modi�ed via a second quartett of ghost �elds in order to become nilpotent.

A last major progress was achieved in [48] by establishing an N = 4 algebra in this formalism.



Chapter 5

Closed Pure Spinor Superstring in general
type II background

The pure spinor string in general background was �rst studied by Berkovits in [11]. The one-loop conformal
invariance of the heterotic version was studied in [49]. The classical worldsheet BRST transformations of the
heterotic string in general background were derived in [12]. The one-loop conformal invariance of the type II
string �nally was shown in [50] where also the derivation of the supergravity constraints was reviewed. In the
following we will present again the derivation of the supergravity constraints as it was done in [11],[50] but we
will explain in more detail several steps and also we will use a di�erent method to derive the constraints. In
particular we will not go to the Hamiltonian formalism in order to derive the BRST transformations as generated
via charge and Poisson bracket but we will stay in the Lagrangian formalism and will use what we call �inverse
Noether�. In addition we will use a spacetime covariant variation in order to derive the classical equations of
motion in a spacetime covariant manner and we will present the BRST transformations of all the worldsheet
�elds for the type II string in general background. This has so far been done only for the heterotic string in [12].
Having derived the Supergravity constraints we will �nally go to the Wess Zumino gauge and derive the local
supersymmetry transformations of at least the fermionic �elds in order to make contact to generalized complex
geometry.

Note that there was a carefull study in [51] of how to construct type II vertex operators in the pure spinor
formalism. This is at least for massless �elds directly related to the deformations of the action that we are going
to study now.

5.1 Ansatz for action and BRST operators and some EOM's

In the following we will consider the closed pure spinor string coupled to general background �elds. One
can either add small perturbations (integrated vertex operators) to the action or simply consider the most
general classically conformally invariant action with the given �eld content and the same antighost gauge
symmetry (generated by the pure spinor constraint). The action, however, is not enough to specify the string
completely. In addition, we need two (one left-moving and one right-moving) BRST operators in the general
background. The existence of two such BRST operators which have to be nilpotent and conserved (holomorphic
and antiholomorphic respectively) turns out to be equivalent to supergravity constraints on the background
�elds. The important steps of this calculation will be carefully motivated in the following.

The idea is to start from the most general renormalizable action with the given �eld content. It is convenient
to throw away immediately the tachyon term which is allowed by renormalizability, but which is not even BRST
invariant for the undeformed BRST transformations, at least for a non-constant tachyon �eld. The starting
point then reduces to the most general classically conformally invariant action. In order to write down a
classically conformally invariant action (ghost number zero in each sector), we have to combine elementary
�elds to terms with conformal weight (1,1). There are no �elds with negative conformal weight. The a priory
possible elementary building blocks of ghost number (0,0) are thus

weight (0,0) xM

weight (1,0) ∂xM , dzα,λ
αωzβ

weight (0,1) ∂̄xM , d̂z̄α̂, λ̂
α̂
ω̂z̄β̂

weight (1,1) ∂∂̄xM , ∂̄λαωzβ, ∂λ̂
α̂
ω̂z̄β̂, ∂̄dzα, ∂d̂z̄α̂

We now can combine an arbitrary function of xM (background �eld) with either a (1,1)-building block or with
one (1,0) combined with one (0,1) building block. Via partial integration, a ∂∂̄xM -term with an arbitrary x-

28
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dependent coe�cient can always be rewritten as a ∂xM ∂̄xN -term1. Before writing down the resulting action, let
us note that we will immediately absorb the x-dependent coe�cient coming with ∂̄λαωzβ in a reparametrization
of ωzβ so that we simply get the free ghost kinetic term ∂̄λαωzα. Likewise for the hatted variables.

The most general classically conformally invariant (or renormalizable, adding Tachyon term) action with the
same �eld content (including the pure spinor constraint on the ghosts) with independently conserved left and
right ghost number now reads

S =
∫
d2z

1
2
∂xM (GMN (

�
x ) +BMN (

�
x )︸ ︷︷ ︸

≡OMN (
�
x )

)∂̄xN + ∂̄xMEM
α(

�
x ) dzα + ∂xMEM

α̂(
�
x ) d̂z̄α̂ +

+dzαPαβ̂(
�
x ) d̂z̄β̂ + λαCα

βγ̂(
�
x ) ωzβd̂z̄γ̂ + λ̂

α̂
Ĉα̂

β̂γ(
�
x ) ω̂z̄β̂dzγ + λαλ̂

α̂
Sαα̂

ββ̂(
�
x ) ωzβω̂z̄β̂ +

+
(
∂̄λβ + λα∂̄xMΩMα

β(
�
x )
)

︸ ︷︷ ︸
≡∇z̄λβ

ωzβ +
(
∂λ̂

β̂
+ λ̂

α̂
∂xM Ω̂Mα̂

β̂(
�
x )
)

︸ ︷︷ ︸
≡∇̂zλβ̂

ω̂z̄β̂ +

+
1
2
Lzz̄a(λγaλ) +

1
2
L̂z̄zâ(λ̂γâλ̂) (5.1)

Note that we denote with
�
x the complete set xM of superspace coordinates, while

→
x will only denote the

bosonic subset xm. As stated already above, the kinetic ghost term ∂̄λβωzβ can always be brought to this
simple form by a rede�nition of ω. We will discuss this and other worldsheet reparametrizations below in detail.
The motivation for the de�nition of the covariant derivative ∇z̄λ

β will also be given at a later point. For
the moment, ΩMα

β(x) is just an arbitrary coe�cient function or background �eld. Like in the �at case, we
implement the pure spinor constraints via two Lagrange multipliers.

In order to complete the theory, we need two BRST operators which reduce to the well known ones in the �at
case. Their nilpotency and (anti)holomorphicity will be checked later and lead to the supergravity constraints.
For the moment, let us just write down the most general ansatz of their currents, which have to be of conformal
weight (1,0) and (0,1) and ghost number (1,0) and (0,1) respectively

jz = λα
(
dzα + Υ(2)

αM (
�
x ) ∂zx

M + λγΥ(3)
αγ

β(
�
x )ωzβ

)
, j z̄ = 0 (5.2)

̂z̄ = λ̂
α̂
(
d̂z̄α̂ + Υ̂(2)

α̂M (
�
x ) ∂z̄x

M + λ̂
γ̂
Υ̂(3)

α̂γ̂
β̂(

�
x )ω̂z̄β̂

)
, ̂z = 0 (5.3)

Like for the ghost kinetic term, we have immediately absorbed any
�
x -dependent coe�cient Υ(1)

α
β(

�
x ) coming

with λαdzβ and its hatted version in a rede�nition of dzβ and d̂z̄β̂.
2 Of course one can further rede�ne dzα and

d̂z̄α̂, such that we arrive at the standard form jz = λαdzα and ̂z̄ = λ̂
α̂
dz̄α̂. This does not change the general

form of the action. We will discuss the reparametrizations more carefully in the next section.
The following observation is important to reduce the computations one has to do. Let us �rst de�ne

ÔMN ≡ ONM ,
(
Ĝ = G, B̂ = −B, Ĥ = −H

)
(5.4)

P̂ γ̂γ ≡ Pγγ̂ (5.5)

Ŝα̂α
β̂β ≡ Sαα̂

ββ̂ (5.6)

Then � rather obviously � the following statement holds

Proposition 1 (left-right symmetry) The complete theory (action +BRST operators) is invariant under
the exchange of hatted and unhatted objects if at the same time their indices are �ipped from hatted to unhatted
and from z to z̄ and vice verse, and ∂ is exchanged with ∂̄:

d↔ d̂,λ↔ λ̂,ω ↔ ω̂, L↔ L̂, O ↔ Ô,P ↔ P̂, S ↔ Ŝ, C ↔ Ĉ,Ω↔ Ω̂,∇ ↔ ∇̂,Υ(i) ↔ Υ̂(i), j ↔ ̂
∂ ↔ ∂̄, indices: α↔ α̂, z ↔ z̄

(5.7)

In particular the replacement O ↔ Ô implies due to (5.4) that

B ↔ −B, G↔ G (5.8)

1This, however, contributes to the surface term. In the case of open strings, adding a ∂∂̄xM -term is therefore equivalent to the
modi�cation of the boundary part of the action. �

2If one wants to study degenerate limits of the theory, one should remember and reintroduce the coe�cients Υ(1), Υ̂(1) and the
one coming with the ghost kinetic terms. �
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Simple eom's Before we close this section, let us quickly give the equations of motion of those worldsheet
variables (all but xK) which can be seen from the target superspace point of view as tangent or cotangent
vectors. This refers to the form of their reparametrizations that will be discussed on page 34. Their equations
of motion are comparatively simple:

δS

δdzγ
= ∂̄xMEM

γ + Pγγ̂ d̂z̄γ̂ + λ̂
α̂
Ĉα̂

β̂γω̂z̄β̂ (5.9)

δS

δd̂z̄γ̂

= ∂xMEM
γ̂ + dzγPγγ̂ + λαCα

βγ̂ωzβ (5.10)

δS

δωzβ
= −

(
∇z̄λ

β + λα
(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λ

β (5.11)

δS

δω̂z̄β̂

= −
(
∇̂zλ̂

β̂
+ λ̂

α̂
(
Ĉα̂

β̂γdzγ − λαSαα̂
ββ̂ωzβ

))
≡ −D̂zλ̂

β̂
(5.12)

δS

δλα = −
(
∇z̄ωzα −

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

)
ωzβ

)
+ Lzz̄a(γaλ)α ≡ −Dz̄ωzα + Lzz̄a(γaλ)α (5.13)

δS

δλ̂
α̂

= −
(
∇̂zω̂z̄α̂ −

(
Ĉα̂

β̂γdzγ − λαSαα̂
ββ̂ωzβ

)
ω̂z̄β̂

)
+ L̂zz̄a(γaλ̂)α̂ ≡ −D̂zω̂z̄α̂ + L̂zz̄a(γaλ̂)α̂ (5.14)

δS

δLzz̄a
=

1
2
(λγaλ),

δS

δL̂zz̄a

=
1
2
(λ̂γaλ̂) (5.15)

In (5.11)-(5.14) we have introduced yet two other �covariant derivatives� Dz̄ and D̂z:

Dz̄λ
β ≡ ∂̄λβ +Az̄α

βλα, Az̄α
β ≡ ∂̄xMΩMα

β + Cα
βγ̂ d̂z̄γ̂ − λ̂

α̂
Sαα̂

ββ̂ω̂z̄β̂ (5.16)

D̂zλ̂
β̂
≡ ∂λ̂

β̂
+ Âzα̂

β̂λ̂
α̂
, Âzα̂

β̂ ≡ ∂xM Ω̂Mα̂
β̂ + Ĉα̂

β̂γdzγ − λαSαα̂
ββ̂ωzβ (5.17)

These covariant derivatives are introduced simply for calculational convenience and we do not give a geometric
interpretation � although this might be interesting. For the covariant derivatives ∇z̄ and ∇̂z de�ned in (5.1)
instead, there exists a simple geometric interpretation. They are pullbacks of the covariant target super tangent
space derivatives with connection coe�cients ΩMα

β and Ω̂Mα̂
β̂ to the worldsheet. The reason why these two

background �elds can be seen as connections will be given in the following.
Note that the derivation of the still missing variational derivative with respect to xK is quite involved and

will only be given in section 5.5 on page 38 using a covariant variational principle.

5.2 Vielbeins, worldsheet reparametrizations and target space sym-
metries

There are several ways to reparametrize the worldsheet �elds in the above action and the BRST currents. One
can use such reparametrizations to simplify the form of the action (as we did already implicitly in order to get
a simple ghost kinetic term) or of the BRST currents.

Before we come to the �rst convenient reparametrization, let us observe the following: The two background
�elds EM

α and EM
α̂, combined to a 42 × 32 matrix EM

A,A ∈ {α, α̂} have maximal rank 32 in a small
perturbation around the string in �at background. Or in other words, the quadratic block EM

A is invertible3.
It can thus be completed by some EM

a to an invertible 42×42 matrix which we can interpret as (super)vielbein.
The only requirement for EM

a to be a valid completion is that its bosonic sub-matrix Em
a is invertible4. The

�background �eld� EM
a does not appear in the action and nothing should depend on it. Let us from now on

use the completed vielbein EM
A and its inverse EA

M to switch from curved to �at indices and vice verse. In
particular we de�ne

GAB ≡ EA
MGMNEB

N (5.18)

For later usage we denote the components of the pullback of the vielbein EA to the worldsheet as

ΠA
z ≡ ∂xMEM

A (5.19)

ΠA
z̄ ≡ ∂̄xMEM

A (5.20)

In �at space, Πa
z/z̄ will just be the supersymmetric momentum and the fermionic component will reduce to the

worldsheet derivative of the fermionic coordinates: ΠA
z/z̄

�at→ ∂z/z̄θ
A.

Let us now study the possible reparametrizations of the worldsheet variables systematically.
3Again it might be interesting to study also degenerate limits. �
4The bosonic supermatrix

„
Em

a Em
A

EM
a EM

A

«
is invertible, i� its bosonic blocks (Em

a) and
`
EM

A´ are invertible. �
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Possible reparametrizations We denote by φIall the collection of all worldsheet �elds. If we make some
reparametrization φ̃Iall = f [φIall], the Jacobi matrix has to be invertible in order to lead to equivalent equations
of motion:

δS

δφIall(σ)
=
∫
d2σ̃

δφ̃Jall(σ̃)
δφIall(σ)

δS

δφ̃Jall(σ̃)
(5.21)

The following reparametrizations are the most general ones which respect the conformal weight as well as the
left and right-moving ghost numbers (note that the Lagrange multipliers have ghost number (−2, 0) and (0,−2)
respectively):

x̃M = fM (
�
x ) (5.22)

λ̃
α

= Λβ
α(

�
x )λβ,

˜̂
λα̂ = Λ̂β̂

α̂(
�
x )λ̂

β̂
(5.23)

d̃zα = Ξ(1)
α

β(
�
x )dzβ + Ξ(2)

αM (
�
x )∂xM + Ξ(3)

αγ
δ(

�
x )λγωzδ (5.24)

˜̂
dz̄α̂ = Ξ̂(1)

α̂
β̂(

�
x )d̂z̄β̂ + Ξ̂(2)

α̂N (
�
x )∂̄xN + Ξ̂(3)

α̂γ̂
δ̂(

�
x )λ̂

γ̂
ω̂z̄δ̂ (5.25)

ω̃zα = Ξ(4)
α

β(
�
x )ωzβ, ˜̂ωz̄α̂ = Ξ̂(4)

α̂
β̂(

�
x )ω̂z̄β̂ (5.26)

L̃zz̄a = Ξ(5)
a

b(
�
x )Lzz̄b,

˜̂
Lz̄za = Ξ̂(5)

a
b(

�
x )L̂z̄zb (5.27)

fM has to be an invertible function and Λ, Ξ(1),Ξ(4),Ξ(5) and their hatted equivalents have to be invertible
matrices. For a general reparametrization, Λα

β can be a general invertible matrix, but if we want to leave the
form of the action invariant, it has to be an element of the spin group or a simple scaling. We will discuss that
below. Note also, that we have already used Ξ(4) and Ξ(1) and their hatted versions to get a simple ghost-kinetic
term in the action and a simple �rst term of the BRST operator.

Shift reparametrization Let us �rst study the e�ect of the shift-reparametrizations

dzα = d̃zα − Ξ(2)
αM (

�
x )∂xM − Ξ(3)

αγ
δ(

�
x )λγωzδ, Ξ(1)

α
β = δα

β (5.28)

d̂z̄α̂ = ˜̂
dz̄α̂ − Ξ̂(2)

α̂N (
�
x )∂̄xN − Ξ̂(3)

α̂γ̂
δ̂(

�
x )λ̂

γ̂
ω̂z̄δ̂, Ξ̂(1)

α̂
β̂ = δα̂

β̂ (5.29)

on the form of the action. Plugging the above reparametrization into (5.1)-(5.3), the form of the action and the
BRST currents does not change if the background �elds are rede�ned accordingly. The shift-reparametrization
thus induces an e�ective transformation of the background �elds:

ẼN
γ = EN

γ − Pγα̂Ξ̂(2)
α̂BEN

B , ẼM
γ̂ = EM

γ̂ − Ξ(2)
αAEM

APαγ̂ (5.30)

Ω̃Mα
β = ΩMα

β − Cα
βα̂Ξ̂(2)

α̂AEM
A − EM

γΞ(3)
γα

β + Ξ(3)
γα

βPγα̂Ξ̂(2)
α̂AEM

A (5.31)
˜̂ΩMα̂

β̂ = Ω̂Mα̂
β̂ − Ĉα̂

β̂αΞ(2)
αAEM

A − EM
γ̂Ξ̂(3)

γ̂α̂
β̂ + Ξ(2)

αAEM
APαγ̂Ξ̂(3)

γ̂α̂
β̂ (5.32)

C̃α
βγ̂ = Cα

βγ̂ − Ξ(3)
γα

βPγγ̂ ,
˜̂
Cα̂

β̂α = Ĉα̂
β̂α − Pαγ̂Ξ̂(3)

γ̂α̂
β̂ (5.33)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γΞ(3)

γα
β + Cα

βγ̂Ξ̂(3)
γ̂α̂

β̂ − Ξ(3)
γα

βPγγ̂Ξ̂(3)
γ̂α̂

β̂ (5.34)

Υ̃(2)
αM = Υ(2)

αM − Ξ(2)
αM ,

˜̂Υ(2)
α̂N = Υ̂(2)

α̂N − Ξ̂(2)
α̂N (5.35)

Υ̃(3)
αγ

β = Υ(3)
αγ

β − Ξ(3)
αγ

β,
˜̂Υ(3)

α̂γ̂
β̂ = Υ̂(3)

α̂γ̂
β̂ − Ξ̂(3)

α̂γ̂
β̂ (5.36)

Finally we have the transformation of OMN = GMN +BMN which we split after the transformation again into
its symmetric and antisymmetric part:

G̃MN = EM
AEN

B × (5.37)0BBB@
Gab + 2Ξ(2)

γ(a|Pγγ̂ Ξ̂
(2)
γ̂|b) Gaβ − Ξ(2)

βa + 2Ξ(2)
γ(a|Pγγ̂ Ξ̂

(2)
γ̂|β)

Gaβ̂ − Ξ̂
(2)

β̂a
+ 2Ξ(2)

γ(a|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

Gαb − Ξ(2)
αb + 2Ξ(2)

γ(α|Pγγ̂ Ξ̂
(2)
γ̂|b) Gαβ − 2Ξ(2)

(αβ) + 2Ξ(2)
γ(α|Pγγ̂ Ξ̂

(2)
γ̂|β)

Gαβ̂ − Ξ(2)
αβ̂ − Ξ̂

(2)

β̂α
+ 2Ξ(2)

γ(α|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

Gα̂b − Ξ̂
(2)
α̂b + 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)
γ̂|b) Gα̂β − Ξ(2)

βα̂ − Ξ̂
(2)
α̂β + 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)
γ̂|β)

Gα̂β̂ − 2Ξ̂
(2)

(α̂β̂)
+ 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

1CCCA
AB

B̃MN = EM
AEN

B × (5.38)0BBB@
Bab + 2Ξ(2)

γ[a|Pγγ̂ Ξ̂
(2)
γ̂|b] Baβ − Ξ(2)

βa + 2Ξ(2)
γ[a|Pγγ̂ Ξ̂

(2)
γ̂|β]

Baβ̂ + Ξ̂
(2)

β̂a
+ 2Ξ(2)

γ[a|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

Bαb + Ξ(2)
αb + 2Ξ(2)

γ[α|Pγγ̂ Ξ̂
(2)
γ̂|b] Bαβ + 2Ξ(2)

[αβ] + 2Ξ(2)
γ[α|Pγγ̂ Ξ̂

(2)
γ̂|β]

Bαβ̂ + Ξ(2)
αβ̂ + Ξ̂

(2)

β̂α
+ 2Ξ(2)

γ[α|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

Bα̂b − Ξ̂
(2)
α̂b + 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)
γ̂|b] Bα̂β − Ξ(2)

βα̂ − Ξ̂
(2)
α̂β + 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)
γ̂|β]

Bα̂β̂ − 2Ξ̂
(2)

[α̂β̂]
+ 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

1CCCA
AB

Interestingly, looking at (5.37), one can bring GAB to the block diagonal form GAB = diag (Gab, 0, 0) at least
for vanishing Pγγ̂ . For general Pγγ̂ , this is less clear because the equations become at �rst sight quadratic5

5Note that the matrices in (5.37) and (5.38) do not yet correspond to G̃AB and B̃AB given by G̃MN = ẼM
AẼN

BG̃AB and the
equivalent equation for B̃MN , as we have expressed G̃MN and B̃MN in terms of the untransformed vielbeins. Due to (5.30), the
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in the transformation parameters. It is thus more convenient to use the shift reparametrization to bring the
BRST-currents to their standard form, i.e. simply shift Υ(2), Υ(3), and their hatted counterparts to zero. From
now on we will thus use the simple BRST-currents:

jz = λαdzα, j z̄ = 0 (5.39)

̂z̄ = λ̂
α̂
d̂z̄α̂, ̂z = 0 (5.40)

In [11] the authors start with both, the simple form of the BRST currents as well as the above mentioned
special form of GAB and thus a reduced rank of GMN . As we cannot reach both at the same time with the
shift reparametrizations, the simpli�ed form of the symmetric two-tensor has to be a result of BRST invariance
or likewise on-shell holomorphicity of the BRST-current. We will discover this result soon. Only then we will
use the freedom of the choice of the auxiliary vielbein components EM

a (which do not appear in the action),
in order to �x Gab to ηab, or at least proportional to it. For the moment, however, we do not assume any
restrictions on GMN , EM

a and GAB apart from the invertability of Em
a.

Local target space symmetries There are still many reparametrizations left and we could try to further
simplify the form of the action. It is, however, convenient not to �x all freedom. As we do not want to destroy
the form of action and BRST currents that we have already obtained, the freedom consists of 'stabilizing'
reparametrizations. I.e. we have to restrict to those reparametrizations out of (5.22)-(5.27) which leave the form
of the action (5.1) and the simple BRST currents (5.39) and (5.40) invariant if one transforms the background
�elds accordingly. These reparametrizations are in general not symmetries from the worldsheet point of view as
the compensating transformation of the background �elds corresponds to a change of the coupling constants.
However, as the action remains formally invariant, all the constraints on the background �elds which will be
derived later will also remain formally invariant. From the target space point of view the transformations of the
background �elds (going along with the

�
x -dependent reparametrizations) thus correspond to local symmetries

of the target space e�ective theory. What we have done so far by e.g. eliminating the coe�cient �elds Υ(i) in
the BRST operator, corresponds to a target space gauge �xing of auxiliary background �elds.

Residual shift symmetry Any further shift reparametrization of dzα and d̂z̄α̂ changes o�-shell the form
of the BRST currents (5.39) and (5.40). But we may still allow changes of the current up to the pure spinor
constraint. The pure spinor constraint generates a gauge transformation as we will see in the next section. Any
change of the BRST currents proportional to the pure spinor constraint thus can be compensated by a gauge
transformation. Under the reparametrizations

dzα = d̃zα − Ξ(3)
b
δ(

�
x )(γbλ)αωzδ, ⇒ Ξ(3)

αγ
δ ≡ γb

αγΞ(3)
b
δ (5.41)

d̂z̄α̂ = ˜̂
dz̄α̂ − Ξ̂(3)

b
δ̂(

�
x )(γbλ̂)α̂ω̂z̄δ̂, ⇒ Ξ̂(3)

α̂γ̂
δ̂ ≡ γb

α̂γ̂Ξ̂(3)
b

δ̂ (5.42)

the BRST currents change to

jz = λαd̃zα − Ξ(3)
b
δ(

�
x )(λγbλ)ωzδ, j z̄ = 0 (5.43)

̂z̄ = λ̂
α̂ ˜̂
dz̄α̂ − Ξ̂(3)

b
δ̂(

�
x )(λ̂γbλ̂)ω̂z̄δ̂, ̂z = 0 (5.44)

Global symmetries like the BRST transformation can always be rede�ned by a gauge transformation without
changing their physical meaning. Doing this brings us back to the simple form of the BRST currents. The
transformation of the background �elds under this reparametrization is

Ω̃Mα
β = ΩMα

β − EM
γγb

γαΞ(3)
b
β (5.45)

˜̂ΩMα̂
β̂ = Ω̂Mα̂

β̂ − EM
γ̂γb

γ̂α̂Ξ̂(3)
b

β̂ (5.46)

C̃α
βγ̂ = Cα

βγ̂ − γb
γαΞ(3)

b
βPγγ̂ ,

˜̂
Cα̂

β̂α = Ĉα̂
β̂α − Pαγ̂γb

γ̂α̂Ξ̂(3)
b

β̂ (5.47)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γγb

γαΞ(3)
b
β + Cα

βγ̂γb
γ̂α̂Ξ̂(3)

b
β̂ − γa

γαΞ(3)
a

βPγγ̂γb
γ̂α̂Ξ̂(3)

b
β̂ (5.48)

This target space gauge symmetry will be �xed at a later point in section 5.11 on page 54.

vielbeins transformation has the form

ẼM
A =

“
EM

c, EM
γ , EM

γ̂
”0BB@

δc
a −Pαδ̂Ξ̂

(2)

δ̂c
−Ξ(2)

δcPδα̂

0 δγ
α − Pαδ̂Ξ̂

(2)

δ̂γ
−Ξ(2)

δγPδα̂

0 −Pαδ̂Ξ̂
(2)

δ̂γ̂
δγ̂

α̂ − Ξ(2)
δγ̂Pδα̂

1CCA
For non-vanishing Pγγ̂ , the inverse of this matrix would enter the �nal form of G̃AB and make the problem of �nding a
reparametrization with G̃AB = diag (G̃ab, 0, 0) more complicated. �
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Superdi�eomorphisms Let us now consider the general reparametrizations (5.22) of the superspace-
embedding functions xM which correspond to target space super-di�eomorphisms.

x̃M = fM (
�
x ) (5.49)

The worldsheet derivatives of the embedding functions transform like target space vectors

∂̄x̃M = ∂x̃M/∂xN · ∂̄xN (5.50)

For the action and the BRST-operators to remain form-invariant, the background �elds have to transform

tensorial according to the appearance of the curved index M , e.g. Ω̃Mα
β(

�̃
x) = ΩNα

β(
�
x ) ∂xN/∂x̃M . All

objects with only �at indices or no indices have to transform like scalars. In this way we observe that the
resulting e�ective equations for the background �elds will be superdi�eomorphism invariant.

Gauge transformation of the B-�eld One of the gauge transformations of the background �elds is a bit
special, as it is not related to a worldsheet reparametrization. It is the shift B 7→ B + dΛ with some one-form
Λ. This does not change the action at all, as the total derivative term simply drops out (for closed strings). It
is, however, again not a worldsheet symmetry, as we do not transform the worldsheet �elds but the coupling
constants. The background �eld-constraints will in the end be the same for the transformed B and we thus
have again a gauge symmetry from the target space point of view.

Local Lorentz transformations and local scale transformations Next we consider reparametrizations
of the ghost λα. An admissible reparametrizations (5.23) of λα turns the pure spinor term Lzz̄a(λT γaλ) into
Lzz̄a(λ̃

T
Λ−1γaΛT −1λ̃). In order to obtain the old pure spinor term also in the new variables, the reparametriza-

tion of the ghosts has to be accompanied by an appropriate reparametrization Lzz̄b = Λb
a(

�
x ) · L̃zz̄a of the

Lagrange multiplier Lzz̄a. The condition for the invariance of the pure spinor term under the reparametrization
then reads6

γa
αβ

!= Λb
a(Λ−1)α

γγb
γδ(Λ−1)β

δ (5.51)

For in�nitesimal reparametrizations we can rewrite it as

2L[α|
δγa

δ|β]
!= Lb

aγb
αβ (in�ni) (5.52)

with Λα
β ≡ δα

β + Lα
β, Λa

b ≡ δb
a + La

b (5.53)

6The fact that we use the index structure Λβ
α instead of Λα

β is only for later notational convenience. It is not necessarily

related to using NW-conventions, although λ̃
α

= λβΛβ
α contains a nice NW-contraction. For us the reason is simply that the

alternative index position would be very inconvenient for the associated connection. The symbol ΩMβ
α is just much simpler to

type (and looks better) than ΩM
α

β. �
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To obey this, both reparametrizations are restricted to local Lorentz transformations and local scale transfor-
mations7. The in�nitesimal generators thus have the following explicit form:

Lα
β = L(D)

α
β + L(L)

α
β, La

b = L(D)
a

b + L(L)
a

b (5.54)

L(D)
α

β ≡ 1
2
L(D)δα

β, L(L)
α

β =
1
4
L

(L)
ab γ

ab
α

β, L
(L)
ab = −L(L)

ba (5.55)

L(D)
a

b ≡ L(D)δb
a, L(L)

a
b = L

(L)
cd δ

[c
a η

d]b, L
(L)
cd = −L(L)

dc (5.56)

The reparametrization so far reads

λ̃
α

= Λβ
αλβ (5.57)

L̃zz̄a = Λ−1
a

bLzz̄b (5.58)

Note that in our notation Λ contains both, Lorentz transformations and scale transformations (dilatations).
In order to maintain the special form of the ghost kinetic term and of the BRST-operator, we likewise have

to transform

d̃zα = (Λ−1)α
βdzβ (5.59)

ω̃zα = (Λ−1)α
βωzβ (5.60)

with in�nitesimally (Λ−1)α
β = δα

β − Lα
β. The background �elds can again be reparametrized in a way that

the complete action plus the BRST operators remain form-invariant: Just transform every background �eld
with unhatted spinorial indices accordingly. E.g.

C̃α
βγ̂ = (Λ−1)α

γΛδ
βCγ

δγ̂ , . . . (5.61)

Only the �eld ΩMα
β must not transform like a tensor, but like a connection, in order to keep the form-invariance

of the action

Ω̃Mα
β = −∂MΛα

β + (Λ−1)α
γΛδ

βΩMγ
δ (5.62)

This is exactly the reason why we have combined it to a covariant derivative in the ghost kinetic term right
from the beginning. For the e�ective �eld equations all this means that they will be invariant under a local
Lorentz transformation and dilatation acting on all the indices of the background �elds which are coupled to
the ghosts, the ghost-momenta and the variables dzα, or in other words, acting on all unhatted �at spinorial
indices.

7The 32×32 unity and the antisymmetrized Γ-matrices Γa1...ap (see appendix D on page 126�) form a basis of the vector space
of all 32 × 32 matrices. The 16 × 16 sub-matrices δα

δ , γa1a2α
δ , . . . , γa1...a10α

δ in the block-diagonal (they vanish for an odd
number p of bosonic antisymmetrized indices, see (D.67) on page 131) therefore span all the 16 × 16 matrices. And due to the
relations (D.79)-(D.82) on page 131, i.e. γ[p] ∝ γ[n−p], already the matrices δα

δ , γa1a2α
δ and γa1...a4α

δ form a complete basis of
all 16× 16-matrices. We thus can expand the in�nitesimal generator Lα

δ of the reparametrization matrix (i.e. Λα
δ = δα

δ + Lα
δ)

as follows:

Lα
δ =

1

2
L(D)δα

δ +
1

4
L

(L)
a1a2γa1a2

α
δ + La1...a4γa1...a4

α
δ

Plugging this expansion into the condition (5.52) yields

Lb
aγb

αβ
!
= 2L[α|

δγa
δ|β] = L(D)γa

αβ +
1

2
L

(L)
a1a2 γa1a2

[α|
δγa

δ|β]| {z }
∝γ

[1]
αβ

+γ
[3]
[αβ]| {z }
0

+2La1...a4 γa1...a4
[α|

δγa
δ|β]| {z }

∝γ
[3]
[αβ]| {z }
0

+γ
[5]
αβ

(∗)

Below the curly bracket, we have indicated the schematic expansion (D.69) of page 131. Due to (D.68), all the γ[3]'s vanish because
of the graded antisymmetrization. We can thus concentrate on the γ[1] and γ[5]-part:

γa1a2
[α|

δγa
δ|β]

(D.71)
= 2γ[a1

αβηa2]a

γa1...a4
[α|

δγa
δ|β]

(D.71)
= γa1...a4a

αβ

The righthand side of (*) has to be a linear combination of γa's which is not true with a remaining γ[5]-term La1...a4γa1...a4a
αβ.

We thus have to demand

La1...a4
!
= 0

With this condition, (*) and therefore (5.52) are ful�lled and the relation between the reparametrization of the ghosts and of the
Lagrange multipliers is given by

Lα
δ =

1

2
L(D)δα

δ +
1

4
L

(L)
a1a2γa1a2

α
δ

Lb
a = L

(D)
M δa

b + L
(L)
M bcηca �

.
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We get an equivalent but in the beginning completely independent local Lorentz transformation and scaling
Λ̂α̂

β̂ acting on the hatted indices. In addition we may rede�ne the bosonic vielbein Ea = dxMEM
a, which we

introduced by hand. Remember, it is related to GAB via GMN = EM
AGABEN

B and we did not yet restrict
GAB . The matrices EM

a (of maximal rank 10) can thus be rede�ned by an arbitrary GL(10) transformation
on the index a, accompanied by a compensating transformation of GAB . At a later point, we will obtain a
restriction on GAB which then allows only Lorentz and scale transformations Λ̌a

b acting on the index a of EM
a.

This transformation, acting on bosonic �at indices only, is again independent of the other two local structure
group transformations (acting on the spinorial indices). The relation of the three transformations will in the end
be �xed by a convenient gauge �xing of some torsion components. In contrast to the fermionic transformations,
the bosonic local Lorentz transformation is not coupled to a reparametrization of an elementary �eld (from the
worldsheet point of view), but only to the transformation of Gab:

ẼM
a = Λ̌c

aEM
c (5.63)

G̃ab = (Λ̌−1)a
cGcd(Λ̌−1)b

d (5.64)

The transformation of the background �elds is determined by their �at indices. Combining the bosonic and
fermionic �at indices to A ≡ (a,α, α̂), we have a block diagonal structure group transformation acting on
the target super tangent space:

ΛA
B ≡

 Λ̌a
b 0 0

0 Λα
β 0

0 0 Λ̂α̂
β̂

 (5.65)

All three blocks are independent. Λa
b instead, which is acting on the Lagrange multiplier (but on no background

�eld!), was induced by Λα
β via the invariance of γa

αβ. Also keep in mind that Λ̌a
b is so far not restricted to

Lorentz transformations or scalings. It will be so at a later point.

5.3 Connection

We have seen in equation (5.62) on the preceding page that ΩMα
β and Ω̂Mα̂

β̂ transform like connections under
structure group transformations. Let us introduce some auxiliary target space �eld Ω̌Ma

b which transforms like
a connection under the transformation Λ̌a

b of the bosonic tangent space. As the �eld Ω̌Ma
b does not appear

in the worldsheet action, nothing should depend on it in the end. We can now combine the three objects to a
structure group connection on the target super tangent space (let's call it the mixed connection)

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

 (5.66)

The underline will help us later to distinguish this connection from alternative choices. This underline will
decorate all objects referring to this connection. The corresponding superspace connection coe�cients ΓMN

K

are now given via

0 != ∇MEN
A ≡ ∂MEN

A − ΓMN
KEK

A + ΩMB
AEN

B (5.67)

Due to the block-diagonal form of the connection, the curvature RA
B ≡ dΩA

B −ΩA
C ∧ΩC

B is block diagonal
as well

RA
B =

 Řa
b 0 0

0 Rα
β 0

0 0 R̂α̂
β̂

 (5.68)

and the upper index of the torsion TA ≡ dEA − EC ∧ ΩC
A tells us by which block of the connection it is

determined:

TA = (Ť a, Tα, T̂ α̂) (5.69)

Remark Although the connection coe�cients which act on the spinorial indices have the correct transforma-
tion properties, we did not yet check that they are Lie algebra valued, i.e. that the matrices ΩM ·

· and Ω̂M ·
· are

not general matrices, but are restricted to the structure group algebra of Lorentz and scale transformations. We
will show this partwise below in section 5.4 when we discuss the antighost gauge symmetry and will complete



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 36

the argument when we study the holomorphicity of the BRST current in section 5.7. Let us already here give
the result for completeness:

ΩMα
β =

1
2
Ω(D)

M δα
β +

1
4
Ω(L)

Ma1a2
γa1a2

α
β, Ω̂Mα̂

β̂ =
1
2
Ω̂(D)

M δα̂
β̂ +

1
4
Ω̂(L)

Ma1a2
γa1a2

α̂
β̂ (5.70)

The labels (D) and (L) distinguish the dilatation (or scaling) part from the Lorentz part. The major part of
the covariant derivation of the last equation of motion in section 5.5 does not refer to a special form of the
connection. Only the variation of the pure spinor term will be a�ected and this will be discussed carefully.

5.4 Antighost gauge symmetry

The pure spinor constraints λγaλ = λ̂γaλ̂ = 0 are �rst class constraints at least in the �at case and thus
generate gauge symmetries. The same should be true in the curved case. We can see this fact, however, without
referring to the Hamiltonian language, simply as a consistency condition on the equations of motion.

For the ghost �eld we have two equations of motion which have to be consistent in order to allow any
solutions:

δS

δωzβ
= −

(
∂̄λβ + λα

(
∂̄xMΩMα

β + Cα
βγ̂ d̂z̄γ̂ − λ̂

α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λ

β (5.71)

δS

δLzz̄a
=

1
2
(λγaλ) (5.72)

Every linear combination of the second line, µa

2 (λγaλ), obviously is still on-shell zero for any set of local
parameters µa. When we act with ∂̄ on this expression, the result still has to vanish on-shell. I.e. for any µa,
we need to have:

0 !=
on-shell

∂̄
(µa

2
λγaλ

)
= ∀µa(z, z̄)

(5.16)
= ∂̄µa ·

1
2
(λγaλ)︸ ︷︷ ︸

δS
δLzz̄a

+µa(λγa)β Dz̄λ
β︸ ︷︷ ︸

− δS
δωzβ

−µaλα
(
ΠC

z̄ ΩC[α|
δ + C[α|

δγ̂ d̂z̄γ̂ − λ̂
α̂
S[α|α̂

δβ̂ω̂z̄β̂

)
︸ ︷︷ ︸

Az̄[α|δ

γa
δ|β]λ

β (5.73)

The �rst two terms in the last line vanish on-shell, so we may concentrate on the rest. Following footnote 7 on
page 34 (with Az̄[α|

δ taking the role of L[α|
δ) we can expand Az̄[α|

δ in antisymmetrized γ-matrices and obtain
for the last term in (5.73)

− µaλαAz̄[α|
δγa

δ|β]λ
β = −µaλα

(
1
2
A

(D)
z̄ γa

αβ +
1
2
A

(L)
z̄ a1a2

γ[a1
αβη

a2]a +Az̄ a1...a4γ
a1...a4a

αβ

)
λβ =

= −
(
A

(D)
z̄ δb

a +A
(L)
z̄ a

b
)

︸ ︷︷ ︸
≡Az̄ a

b

µb ·
1
2
(λγaλ)︸ ︷︷ ︸

δS
δLzz̄a

−µaAz̄ a1...a4(λγ
a1...a4aλ) (5.74)

It is natural to view Az̄ a
b as the connection coe�cients corresponding to Dz̄ when acting on bosonic indices.

It is built from the expansion coe�cients of Az̄α
β which are in turn built from the expansion coe�cients of

ΩMα
β, Cα

βγ̂ and Sαα̂
ββ̂ (all seen as matrices in α and β � compare again to footnote 7 on page 34)8

Dz̄µa ≡ ∂̄µa −Az̄a
bµb, Az̄a

b ≡ ∂̄xMΩMa
b︸ ︷︷ ︸

ΠC
z̄ ΩCa

b

+Ca
bγ̂ d̂z̄γ̂ − λ̂

α̂
Saα̂

bβ̂ω̂z̄β̂ (5.75)

with ΩMa
b ≡ Ω(D)

M δb
a + Ω(L)

Ma
b ⇐ ΩMα

β =
1
2
Ω(D)

M δα
β +

1
4
Ω(L)

Mabγ
ab

α
β + ΩMa1...a4︸ ︷︷ ︸

=0 (later)

γa1...a4
α

β (5.76)

Ca
bγ̂ ≡ C γ̂δb

a + C γ̂
acη

cb ⇐ Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂

abγ
ab

α
β + C γ̂

a1...a4︸ ︷︷ ︸
=0 (later)

γa1...a4
α

β (5.77)

Saα̂
bβ̂ ≡ Sα̂

β̂δb
a + Sα̂

β̂
acη

cb ⇐ Sαα̂
ββ̂ =

1
2
Sα̂

β̂δα
β +

1
4
Sα̂

β̂
acγ

ab
α

β + Sα̂
β̂

a1...a4︸ ︷︷ ︸
=0 (later)

γa1...a4
α

β (5.78)

8The coe�cients Ω
(D)
M and Ω

(L)
M a1a2

can be extracted from the given ΩMα
β using δα

α = −16 and γa1a2α
βγb2b1 β

α = −32δa1a2
b1b2

(graded version of (D.88) on page 132)

ΩM = −
1

8
ΩMα

α

ΩMa1a2 = −
1

8
γa1a2 β

αΩMα
β �
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The coe�cient ΩMa1...a4 and the other γ[4]-coe�cients do not enter the de�nitions of ΩMa
b, Ca

bγ̂ and Saα̂
bβ̂.

At a later point we will �nd that the γ[4]-coe�cients actually have to vanish, which then implies Dz̄γ
a
αβ = 0.

This is the actual motivation for this choice of bosonic connection. It is tempting to argue that

Az̄ a1...a4 ≡ ΠC
z̄ ΩCa1...a4 + d̂z̄γ̂C

γ̂
a1...a4 + λ̂

α̂
Sα̂

β̂
a1...a4ω̂z̄β̂ (5.79)

has to vanish already at this point, in order for all the terms in (5.73) to vanish on-shell. But the condition
will be a bit weaker, as there is yet another equation of motion applicable9. We can replace Πγ

z̄ (appearing in

((5.79)) and (5.75), and de�ned in (5.20)) with the equation of motion (5.9):Πγ
z̄ = δS

δdzγ
−Pγγ̂ d̂z̄γ̂− λ̂

α̂
Ĉα̂

β̂γω̂z̄β̂

. Putting now all the last equations together, we arrive at

∂̄
(µa

2
λγaλ

)
= Dz̄µa ·

δS

δLzz̄a
− µa(λγa)β

δS

δωzβ
− µaΩγa1...a4(λγ

a1...a4aλ)
δS

δdzγ
+

−µa

[
Π{c,γ̂}

z̄ Ω{c,γ̂}a1...a4 + d̂z̄γ̂

(
C γ̂

a1...a4 − Pγγ̂Ωγa1...a4

)
+

+λ̂
α̂
(
Sα̂

β̂
a1...a4 − Ĉα̂

β̂γΩγa1...a4

)
ω̂z̄β̂

]
(λγa1...a4aλ) (5.80)

The dummy indices in curly brackets {c, γ̂} in the second line simply should indicate a sum over c and γ̂
only, and not over γ. The �rst line on the righthand side vanishes on-shell. The next two lines also have to
vanish for every µa, because the left-hand side vanishes on-shell. At this point we cannot make use of further
equations of motion. In particular the equation of motion for xK , which we have not yet derived, would be of
conformal weight (1,1) (containing terms like ∂∂̄xM ) and would therefore not be applicable. For consistency of
the equations of motion, we thus get the following restrictions on the background �elds

Ωc a1...a4 = Ωγ̂ a1...a4 = 0 (5.81)

C γ̂
a1...a4 = Pγγ̂Ωγa1...a4 (5.82)

Sα̂
β̂

a1...a4 = Ĉα̂
β̂γΩγa1...a4 (5.83)

This condition is weaker as the one given in [11] (see footnote (9)). It coincides exactly i� we impose in addition
Ωγ a1...a4 = 0 (see the remark at the end of this section). This additional restriction will, however, only be a
result of BRST invariance.

According to Noether, every symmetry transformation corresponds to a divergence free current and vice
verse. For a given current jζ , we can calculate the corresponding transformations by reading of the coe�cients
of the variational derivatives of S in the o�-shell divergence of the current (see (E.7)):

∂ζj
ζ
(ρ) = −δ(ρ)φ

I
all

δS

δφIall
(5.84)

If we take jz ≡ µza

2 (λγaλ), jz̄ ≡ 0, the condition (5.73) tells that the current is on-shell divergence free. We
have chosen a parameter of weight (1, 0), in order to get a current of correct weight. From (5.80) we can now
read o� the corresponding symmetry transformations:

δ(µ)ωzα = µza(λγa)α (5.85)

δ(µ)Lzz̄a = −Dz̄µza (5.86)

δ(µ)dzγ = µzaΩγa1...a4(λγ
a1...a4aλ) (5.87)

The current is divergence free for arbitrary (local) µza and we therefore have a gauge symmetry. This is
the antighost gauge symmetry generated by the pure spinor constraint. For a �at background we have
Ωγa1...a4 = 0 and the transformation reduces to the usual form. As stated several times already, we will obtain
Ωγa1...a4 = 0 also in the curved background, but only later as a result of BRST invariance.

With the same reasoning we get a gauge transformation corresponding to the pure spinor constraint on the
hatted ghost �elds. This leads to equivalent restrictions on the hatted connection Ω̂Mα̂

β̂ and also on Ĉα̂
β̂β

(seen as matrix in α̂ and β̂). The background �eld Sαα̂
ββ̂ is special, because the hatted version of (5.83) is

again a condition on S. Once it is seen as matrix in α and β and once as matrix in α̂ and β̂. This is better
treatable in the special case considered in the remark.

9In the original derivation of the supergravity constraints from Berkovits' pure spinor string in [11] it is argued that the action
has to be invariant under the gauge transformation δωα = µa(γaλ)α (the gauge symmetry generated by the pure spinor constraint
in �at space). In our notation this implies exactly Az̄ a1...a4 = 0. However, there is no reason a priory, why the form of the gauge
symmetry should not be modi�ed in curved space, as long as this modi�cation vanishes for the �at case. We will indeed discover
such a modi�cation in the following, and with this modi�cation the restriction on the background �elds is weaker. Nevertheless we
will obtain the same result in the end, as Az̄ a1...a4 = 0 will be a consequence of BRST invariance later. �
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Remark on Ωγa1...a4 = Ω̂γ̂a1...a4 = 0: Although we will discover these two additional constraints only later

in (5.148) on page 45, it is nice to have everything at one place. So let us continue the discussion of Sαα̂
ββ̂ in

this case. As indicated above, we can expand it in two steps:

Sαα̂
ββ̂ =

1
2
Sα̂

β̂δα
β +

1
4
Sα̂

β̂
a1a2γ

a1a2
α

β =

=
1
2

(
1
2
Sδα̂

β̂ +
1
4
Sa1a2γ

a1a2
α̂

β̂

)
δα

β +

+
1
4

(
1
2
Ŝa1a2δα̂

β̂ +
1
4
Sa1a2b1b2γ

b1b2
α̂

β̂

)
γa1a2

α
β (5.88)

Let us summarize the result for all the involved �elds:

ΩMα
β =

1
2
Ω(D)

M δα
β +

1
4
Ω(L)

Ma1a2
γa1a2

α
β, Ω̂Mα̂

β̂ =
1
2
Ω̂(D)

M δα̂
β̂ +

1
4
Ω̂(L)

Ma1a2
γa1a2

α̂
β̂ (5.89)

Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂

a1a2
γa1a2

α
β, Ĉα̂

β̂γ =
1
2
Ĉγδα̂

β̂ +
1
4
Ĉγ

a1a2
γa1a2

α̂
β̂ (5.90)

Sαα̂
ββ̂ =

1
4
Sδα

βδα̂
β̂ +

1
8
Sa1a2δα

βγa1a2
α̂

β̂ +

+
1
8
Ŝa1a2γ

a1a2
α

βδα̂
β̂ +

1
16
Sa1a2b1b2γ

a1a2
α

βγb1b2
α̂

β̂ (5.91)

Seen as a matrix in α and β (or α̂ and β̂ respectively), they are sums of generators of Lorentz and scale
transformations. Remembering the de�nition of Dz̄ given in (5.16) and its extension to bosonic indices in
(5.75), it leaves invariant the γ-matrices:10

Dz̄γ
a
αβ = 0, D̂zγ

a
α̂β̂

= 0 (5.92)

The expressions λαωzα and λαγa1a2
α

βωzβ are the only gauge invariant quantities (on the constraint
surface λγaλ = 0) which are linear in ghost and antighost. The reasoning is as follows: the most general
combination is λαXα

βωzβ with some general matrix Xα
β which can be expanded in γ[0], γ[2] and γ[4]. Upon

acting with a gauge transformation on this term, we get the products γ[0]γ[1] = γ[1], γ[2]γ[1] ∝ γ[1] + γ[3], and
γ[4]γ[1] ∝ γ[3] + γ[5]. As γ[5] does not vanish when contracted with two ghosts, the γ[4]-part of the expansion
has to vanish and we have shown the above statement. The gauge invariant expression λαωzα is nothing but
the ghost current (5.138), while λαγa1a2

α
βωzβ is part of the Lorentz current, which is discussed in Berkovits'

papers.

5.5 Covariant variational principle & EOM's

Remember the form of the action (5.1):

S =
∫
d2z

1
2
ΠA

z (GAB +BAB)︸ ︷︷ ︸
≡OAB

ΠB
z̄ + Πγ

z̄ dzγ + Πγ̂
z d̂z̄γ̂ + dzγPγγ̂ d̂z̄γ̂ +

+λαCα
βγ̂ωzβd̂z̄γ̂ + λ̂

α̂
Ĉα̂

β̂γω̂z̄β̂dzγ + λαλ̂
α̂
Sαα̂

ββ̂ωzβω̂z̄β̂ +

+∇z̄λ
βωzβ + ∇̂λ̂

β̂
ω̂z̄β̂ +

1
2
Lzz̄a(λγaλ) +

1
2
L̂zz̄a(λ̂γaλ̂) (5.93)

In order to check if the BRST currents (5.39) and (5.40) are on-shell conserved (holomorphic and antiholomorphic
respectively), it is �rst of all necessary to calculate the remaining classical equation of motion, the variation
with respect to xK . Remember, the other equations of motion where given already in (5.9)-(5.15) on page 30.

Covariant variation Deriving the variational derivative with respect to xK is quite involved if we do not
organize it properly. In the end we want to have equations which transform covariantly under superdi�eomor-
phisms and local structure group transformations. We therefore want to introduce a method where we stay

10

Dz̄γa
αβ = ∂̄γa

αβ| {z }
=0

+
“
∂̄xMΩMb

a + Cb
aγ̂ d̂z̄γ̂ − λ̂

α̂
Sbα̂

aβ̂ω̂z̄β̂

”
γb

αβ − 2
“
∂̄xMΩM [α|

δ + C[α|
δγ̂ d̂z̄γ̂ − λ̂

α̂
S[α|α̂

δβ̂ω̂z̄β̂

”
γa

δ|β] �
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covariant right from the beginning, e.g. a target space covariant variation of the action. In order to motivate the
following de�nitions, let us consider only the variation of one simple term of the Lagrangian, e.g. the RR-term:

δ
(
dzγPγγ̂(

�
x )d̂z̄γ̂

)
=

= δdzγPγγ̂ d̂z̄γ̂ + dzγδx
M∂MPγγ̂ d̂z̄γ̂ + dzγPγγ̂δd̂z̄γ̂ = (5.94)

=
(
δdzγ − δxMΩMγ

βdzβ

)︸ ︷︷ ︸
≡δcovdzγ

Pγγ̂ d̂z̄γ̂ + dzγ δx
M∇MPγγ̂︸ ︷︷ ︸
≡δcovPγγ̂

d̂z̄γ̂ + dzγPγγ̂
(
δd̂z̄γ̂ − δxM Ω̂M γ̂

α̂d̂z̄α̂

)
︸ ︷︷ ︸

≡δ ˆcovdz̄γ̂

(5.95)

In order to arrive at the target space covariant expression ∇MPγγ̂ , it is thus convenient to group part of the
xK-variation to the variation of dzγ or d̂z̄γ̂ as done above. Of course we could have chosen any connection for
the above rewriting, as long as we use for each contracted index pair the same connection. For the variation of
the complete action, however, it is most convenient to choose the mixed connection, de�ned in (5.66),

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

 (5.96)

Like for the structure group transformation, the connection ΩMα
β acts on the unhatted fermionic indices and

(!) on Lzz̄a, while Ω̂Mα̂
β̂ acts on the hatted indices and (!) on Lz̄za. The third independent block Ω̌Ma

b acts
only on the bosonic indices that appear via the bosonic vielbein and not on elementary �elds.

Similar considerations as for the RR-term hold for the other terms of the action. This motivates the de�nition
of the covariant variation of the elementary �elds in the above spirit:

δcovλα ≡ δλα + δxMΩMβ
αλβ, δcovωzα ≡ δωzα − δxMΩMα

βωzβ (5.97)

δcovdzα ≡ δdzα − δxMΩMα
βdzβ, δcovLzz̄a ≡ δLzz̄a − δxMΩMa

bLzz̄b (5.98)

δ ˆcovλ̂
α̂
≡ δλ̂

α̂
+ δxM Ω̂Mβ̂

α̂λ̂
β̂
, δ ˆcovω̂z̄α̂ ≡ δωz̄α̂ − δxM Ω̂Mα̂

β̂ω̂z̄β̂ (5.99)

δ ˆcovd̂z̄α̂ ≡ δd̂z̄α̂ − δxM Ω̂Mβ̂
α̂d̂z̄α̂, δ ˆcovL̂z̄za ≡ δL̂z̄za − δxM Ω̂Ma

bL̂z̄zb (5.100)

δcovx
K ≡ δxK (5.101)

Unfortunately this idea is not completely new. Similar versions of covariant variations have been presented in
[52, 53] which in turn refer to [54, 55]. As already indicated in (5.95), we understand the covariant variation
acting on arbitrary background tensor �elds TNB

MA(
�
x ) as

δcovT
NB
MA(

�
x ) ≡ δxK∇KT

NB
MA = (5.102)

= δTNB
MA + δxK

(
ΓKL

NTLB
MA + ΩKC

BTNC
MA − ΓKM

LTNB
LA − ΩKA

CTNB
MC

)
(5.103)

In the last line we discover that the covariant variation acts on background �elds in the same way as it acts on
elementary �elds if the index structure is the same. Note that the covariant variation cannot be understood as
a variation (of e.g. xK) in the ordinary sense. The covariant variation is simply a derivation which only reduces
to an ordinary variation when acting on target space scalars, e.g. on the Lagrangian.

From the target space point of view, also objects like ∇z̄λ
β (target space covariant worldsheet derivatives

of worldsheet variables) transform tensorial under structure group transformations and di�eomorphisms. The
covariant variation is then simply de�ned according to their target space transformation properties:

δcov∇z̄λ
β ≡ δ∇z̄λ

β + δxKΩKα
β∇z̄λ

α (5.104)

δ ˆcov∇̂zλ̂
β̂
≡ δ∇̂zλ̂

β̂
+ δxKΩ̂Kα̂

β̂∇̂zλ̂
α̂

(5.105)

This is also the reason why the Lagrange multiplier is varied with help of the connection ΩMa
b (de�ned in (5.76)

on page 36) which is induced by ΩMα
β, and not with the independent Ω̌Ma

b that we have introduced to act
on the bosonic vielbein indices: In the reparametrization corresponding to the structure group transformations,
the transformation of the Lagrange multiplier is directly coupled to the transformation of the ghost.

Next we de�ne the covariant variational derivatives δcovS
δφIall

via

δS ≡
∫

Σ

d2z δcovφ
I
all(z, z̄)

δcovS

δφIall(z, z̄)
(5.106)

We will soon give a statement about the relation to the ordinary variational derivative. But let us �rst collect
some tools to calculate it. In order to arrive at the righthand side of (5.106), we need to extract the covariant
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variations of the elementary �elds. In expressions like δcov∇z̄λ
β in (5.104) this would require to commute

e.g. the covariant variation δcov with the covariant derivative ∇z̄ and then do some partial integration. It
was probably already noticed by the reader that the covariant variation resembles very much the target space
covariant worldsheet derivative ∇z/z̄ anyway. In fact the latter can be seen as a special case of it, namely when
we have δφIall = ∂z/z̄φ

I
all. Let us therefore consider the commutators of two arbitrary covariant variations which

will contain the desired commutator [δcov,∇z̄] in the mentioned special case:[
δ(1)cov, δ

(2)
cov

]
xK =

[
δ(1), δ(2)

]
xK + 2δ(1)xMTMN

Kδ(2)xN (5.107)[
δ(1)cov, δ

(2)
cov

]
ϕAM

B =
[
δ(1), δ(2)

]
cov

ϕAM
B +

+2δ(1)xKδ(2)xL
(
RKLC

AϕCM
B +RKLN

MϕAN
B −RKLB

CϕAM
C

)
(5.108)

Here ϕAM
B is just a representative example for some elementary or composite �eld which transforms tensorial

under the target space transformations (super-di�eomorphisms and local structure group transformations).
The covariant variation of the complete action coincides with the ordinary one as all indices are contracted.

However, the covariant variational derivative de�ned in (5.106), di�ers from the ordinary variational derivatives.
The important thing is, that nevertheless they de�ne a set of equations of motion which is equivalent the usual
one � and target space covariant. Let us see the equivalence explicitly and reformulate the ordinary variation
into the covariant one:

δS =
∫
d2z δdzγ

δS

δdzγ
+ δd̂z̄γ̂

δS

δd̂z̄γ̂

+ δλα δS

δλα + δλ̂
α̂ δS

δλ̂
α̂

+ δωzβ
δS

δωzβ
+ δω̂z̄β̂

δS

δω̂z̄β̂

+

+δLzz̄a
δS

δLzz̄a
+ δL̂z̄za

δS

δL̂z̄za

+ δxK δS

δxK
= (5.109)

=
∫
d2z δcovdzγ

δS

δdzγ
+ δ ˆcovd̂z̄γ̂

δS

δd̂z̄γ̂

+ δcovλα δS

δλα + δ ˆcovλ̂
α̂ δS

δλ̂
α̂

+ δcovωzβ
δS

δωzβ
+ δ ˆcovωz̄β̂

δS

δω̂z̄β̂

+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂zz̄a

δS

δL̂zz̄a

+ δxK
( δS

δxK
+ ΩKγ

δdzδ
δS

δdzγ
+ Ω̂Kγ̂

δ̂d̂z̄δ̂

δS

δd̂z̄γ̂

− ΩKβ
αλβ δS

δλα +

−Ω̂Kβ̂
α̂λ̂

β̂ δS

δλ̂
α̂

+ ΩKβ
αωzα

δS

δωzβ
+ Ω̂Kβ̂

α̂ωz̄α̂
δS

δω̂z̄β̂

+ ΩKa
bLzz̄b

δS

δLzz̄a
+ Ω̂Ka

bL̂zz̄b
δS

δL̂zz̄a

)
(5.110)

We can now read o� the covariant variational derivative δScov

δxK w.r.t. xK as the coe�cient of δxK :11

δcovS

δxK
=

δS

δxK
+ ΩKγ

δdzδ
δS

δdzγ
+ Ω̂Kγ̂

δ̂d̂z̄δ̂

δS

δd̂z̄γ̂

− ΩKβ
αλβ δS

δλα − Ω̂Kβ̂
α̂λ̂

β̂ δS

δλ̂
α̂

+

+ΩKβ
αωzα

δS

δωzβ
+ Ω̂Kβ̂

α̂ωz̄α̂
δS

δω̂z̄β̂

+ ΩKa
bLzz̄b

δS

δLzz̄a
+ Ω̂Ka

bL̂zz̄b
δS

δL̂zz̄a

(5.111)

All the other variational derivatives (5.9)-(5.15) remain untouched:

δcovS

δdzα
=

δS

δdzα
, . . . ,

δcovS

δL̂z̄za

=
δS

δL̂z̄za

(5.112)

According to (5.111), δcovS/δx
K coincides with δS/δxK when all the other equations of motion are ful�lled.

This leads to the following obvious but important statement:

Proposition 2 Setting the covariant variational derivatives de�ned via (5.111) and (5.112) to zero, leads to a
set of equations which is equivalent to the equations of motion obtained by the ordinary variational derivatives:

δcovS

δ
(
xK , dzα,λ

α,ωzα, d̂z̄α̂, λ̂
α̂
, ω̂z̄α̂, Lzz̄a, L̂z̄za

) = 0 ⇐⇒ δS

δ
(
xK , dzα,λ

α,ωzα, d̂z̄α̂, λ̂
α̂
, ω̂z̄α̂, Lzz̄a, L̂z̄za

) = 0

(5.113)
The covariant variational derivatives in turn are obtained by using the covariant variation de�ned in (5.97)-
(5.104) and the commutators (5.107) and (5.108).

11Note the analogy to the tangent space covariant derivative of some multivector valued form

K(x, e, ẽ) ≡ Ka1...ak
b1...bk′ (x) · ea1 · · · eak ẽb1 · · · ẽbk′

written in the following way

∇mK = ∂mK(x, e, ẽ)− eaΩma
b ∂

∂eb
K + ẽaΩmb

a ∂

∂ẽb
K �
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The last equation of motion We are now ready to calculate the last equation of motion, the variation with
respect to xK . Admittedly introducing a new tool like the covariant variation for just one equation seems a bit
of overkill. However, in any case we would have been forced during the calculation to organize the result into
covariant expressions and the covariant variation gives a general recipe how to do that. Although we described
the covariant variation for the Berkovits string, it is a tool which is very useful in any other nonlinear sigma
model. In addition it should be noted that the above concept works for an arbitrary connection and not only
for the connection ΩMA

B or the corresponding ΓMN
K . The calculation just simpli�es at some points, if one

restricts to connections with special properties, or to connections which are already present in the action. E.g.
only because we are choosing ΩMA

B , we can make use of (5.107) and (5.108) in order to commute the covariant
variation with the target space covariant worldsheet derivative. In addition we will make use of the fact that
the covariant variation annihilates the vielbein:

δcovEM
A(

�
x ) = 0 (5.114)

Note also how the antisymmetrized covariant derivative of the B-�eld can be written in terms of its exterior
derivative H and the torsion:

∇B ≡ ∇MBMM = dB − ıTB = HMMM − 2TMM
KBKM (5.115)

The important contributions to the (covariant) variation of the action come from the covariant variation of the
(spacetime covariant) worldsheet derivatives of the elementary �elds, like δcov∇z̄λ

α and δcovΠA
z/z̄. For the latter

we have (compare to the equation before (2.12) in [50])

δcovΠA
z/z̄

(5.114)
= δcov∂z/z̄x

K · EK
A = (5.116)

(5.107)
= ∇z/z̄δx

K · EK
A + 2δxMTMN

A∂z/z̄x
N (5.117)

For the ghost terms we obtain curvature expressions instead of torsion expressions:

δcov∇z̄λ
β (5.108)

= ∇z̄δcovλβ + 2δxK ∂̄xLRKLα
βλα (5.118)

δ ˆcov∇̂zλ̂
β̂ (5.108)

= ∇̂zδ ˆcovλ̂
β̂

+ 2δxK∂xLR̂KLα̂
β̂λ̂

α̂
(5.119)

As a last ingredient, before we vary the action, we should note a specialty of the pure spinor term. The covariant
variation on the Lagrange multiplier is chosen in such a way that the covariant variation of γa

αβ is almost zero.
But as we discussed at length in section 5.4 on page 36 the structure group is not yet for all components of
the connection reduced to Lorentz plus scale transformations and we have in general a non-vanishing γ[4]-part
Ωγa1...a4 . At least formally we therefore obtain a non-vanishing covariant derivative on γa

αβ (with ΩMα
β acting

on the spinorial indices and ΩMa
b of (5.76) acting on the bosonic one):

∇Mγa
αβ = −2EM

γΩγ a1...a4γ
a1...a4

[α|
δγa

δ|β]

(D.71)
= −2EM

γΩγ a1...a4γ
a1...a4a

αβ (5.120)

Due to (5.111) and (5.112) we know already that only the variational derivative with respect to xK gets
modi�ed while the others remain untouched. We therefore collect the terms which are proportional to the xK-
variation only. In particular we do not need to consider the �rst term respectively of the above two equations.
For completeness, however, we keep the total derivatives coming from the corresponding partial integration.

Apart from the variation of ΠA
z/z̄, ∇z̄λ

β and ∇̂zλ̂
β̂
we only have covariant variations of the background �elds.
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The (covariant) variation of the action (5.93) thus takes the following form

δS =
∫
d2z δxK

[1
2
ΠA

z ∇KOABΠB
z̄ + dzγ∇KPγγ̂ d̂z̄γ̂ +

+λα∇KCα
βγ̂ωzβd̂z̄γ̂ + λ̂

α̂
∇KĈα̂

β̂γω̂z̄β̂dzγ + λαλ̂
α̂
∇KSαα̂

ββ̂ωzβω̂z̄β̂

]
+

+
1
2
(
∇zδx

K · EK
A + 2δxMTMN

A∂zx
N
)︸ ︷︷ ︸

δcovΠA
z

OABΠB
z̄ +

1
2
ΠA

z OAB

(
∇z̄δx

K · EK
B + 2δxMTMN

B∂z̄x
N
)︸ ︷︷ ︸

δcovΠB
z̄

+

+
(
∇z̄δx

K · EK
γ + 2δxMTMN

γ∂z̄x
N
)︸ ︷︷ ︸

δcovΠγ
z̄

dzγ +
(
∇zδx

K · EK
γ̂ + 2δxMTMN

γ̂∂zx
N
)︸ ︷︷ ︸

δcovΠγ̂
z

d̂z̄γ̂ +

+2δxK ∂̄xLRKLα
βλα︸ ︷︷ ︸

δcov∇z̄λβ−∇z̄δcovλβ

ωzβ + 2δxK∂xLR̂KLα̂
β̂λ̂

α̂︸ ︷︷ ︸
δ ˆcov∇̂zλ̂

β̂−∇̂zδ ˆcovλ̂
β̂

ω̂z̄β̂ +

−δxKEK
γΩγ a1...a4(λγ

a1...a4aλ) · Lzz̄a − δxKEK
γ̂Ω̂γ̂ a1...a4(λ̂γ

a1...a4aλ̂) · L̂z̄za +

+δcovdzα
δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α

+ δcovλα δS

δλα + δ ˆcovλ̂
α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za

+ ∂z̄

(
δcovλβωzβ

)
+ ∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂

)
(5.121)

We �nally make a partial integration for the terms in the third and fourth line (keeping again the total derivatives
as a reference for future studies of the open string) and arrive at

δS =
∫
d2z δxKEK

C
[
− 1

2
OCB∇zΠ

B
z̄ −

1
2
∇z̄Π

A
z OAC +

+
1
2
ΠA

z

(
∇COAB −∇AOCB −∇BOAC + 2TCA

DODB + 2OADTCB
D
)
ΠB

z̄ +

−δCγ∇z̄dzγ − δC γ̂∇z d̂z̄γ̂ + 2TCB
γΠB

z̄ dzγ + 2TCA
γ̂ΠA

z d̂z̄γ̂ +

+2ΠB
z̄ RCBα

βλαωzβ + 2ΠA
z R̂CAα̂

β̂λ̂
α̂
ω̂z̄β̂ +

+dzγ∇CPγγ̂ d̂z̄γ̂ + λα∇CCα
βγ̂ωzβd̂z̄γ̂ + λ̂

α̂
∇CĈα̂

β̂γω̂z̄β̂dzγ +

+λαλ̂
α̂
∇CSαα̂

ββ̂ωzβω̂z̄β̂ − δC
γΩγ a1...a4(λγ

a1...a4aλ) · Lzz̄a − δC γ̂Ω̂γ̂ a1...a4(λ̂γ
a1...a4aλ̂) · L̂z̄za

]
+

+δcovdzα
δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α

+ δcovλα δS

δλα + δ ˆcovλ̂
α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za

+

+∂z̄

(
δcovλβωzβ +

1
2
ΠA

z OAKδx
K + δxK · EK

γdzγ

)
+

+∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂ +

1
2
δxKOKBΠB

z̄ + δxK · EK
γ̂ d̂z̄γ̂

)
(5.122)

Now we can read o� the covariant variational derivative with respect to xK . But let us note two further relations
�rst:

∇COAB −∇AOCB −∇BOAC =
(5.115)

= 3HCAB − 2TAB
DBDC − 2TCA

DBDB − 2TBC
DBDA +∇CGAB −∇AGCB −∇BGAC (5.123)

and

∇zΠ
D
z̄

(5.107)
= ∇z̄Π

D
z + 2ΠA

z ΠB
z̄ TAB

D (5.124)

In addition we de�ne

TAB|C ≡ TAB
DGDC (5.125)

Note that we use the symmetric rank two tensor GAB only to pull indices down. Pulling them up again is in
general not possible as GAB might be degenerate. In fact we will learn soon that it has to be degenerate.
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The �nal result of the variation now reads

δS =
∫
d2z δxK δcovS

δxK
+ δcovdzα

δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α

+

+δcovλα δS

δλα + δ ˆcovλ̂
α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za

+

+∂z̄

(
δcovλβωzβ +

1
2
ΠA

z OAKδx
K + δxK · EK

γdzγ

)
+

+∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂ +

1
2
δxKOKBΠB

z̄ + δxK · EK
γ̂ d̂z̄γ̂

)
(5.126)

with the following covariant variational derivatives or equations of motion (remember (5.9)-(5.15)):

δcovS

δxK
= EK

C
[
−∇z̄Π

D
z︸ ︷︷ ︸

−∇zΠD
z̄ +2ΠA

z ΠB
z̄ T AB

D

GDC + ΠA
z

(
3
2
HCAB − TAB|C + 2TC(A|B) +

1
2
∇CGAB −∇(AGB)C

)
ΠB

z̄ +

−δCγ∇z̄dzγ − δC γ̂∇̂z d̂z̄γ̂ + 2TCB
γΠB

z̄ dzγ + 2T̂CA
γ̂ΠA

z d̂z̄γ̂ +

+dzγ∇CPγγ̂ d̂z̄γ̂ + λα∇CCα
βγ̂ωzβd̂z̄γ̂ + λ̂

α̂
∇CĈα̂

β̂γω̂z̄β̂dzγ +

+λαλ̂
α̂
∇CSαα̂

ββ̂ωzβω̂z̄β̂ − δC
γΩγ a1...a4(λγ

a1...a4aλ) · Lzz̄a − δC γ̂Ω̂γ̂ a1...a4(λ̂γ
a1...a4aλ̂) · L̂z̄za +

+2ΠB
z̄ RCBα

βλαωzβ + 2ΠA
z R̂CAα̂

β̂λ̂
α̂
ω̂z̄β̂

]
(5.127)

δS

δdzγ
= Πγ

z̄ + Pγγ̂ d̂z̄γ̂ + λ̂
α̂
Ĉα̂

β̂γω̂z̄β̂ (5.128)

δS

δd̂z̄γ̂

= Πγ̂
z + dzγPγγ̂ + λαCα

βγ̂ωzβ (5.129)

δS

δωzβ
= −

(
∇z̄λ

β + λα
(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λ

β (5.130)

δS

δω̂z̄β̂

= −
(
∇̂zλ̂

β̂
+ λ̂

α̂
(
Ĉα̂

β̂γdzγ − λαSαα̂
ββ̂ωzβ

))
≡ −D̂zλ̂

β̂
(5.131)

δS

δλα = −
(
∇z̄ωzα −

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

)
ωzβ

)
+ Lzz̄a(γaλ)α ≡ −Dz̄ωzα + Lzz̄a(γaλ)α (5.132)

δS

δλ̂
α̂

= −
(
∇̂zω̂z̄α̂ −

(
Ĉα̂

β̂γdzγ − λαSαα̂
ββ̂ωzβ

)
ω̂z̄β̂

)
+ L̂zz̄a(γaλ̂)α̂ ≡ −D̂zω̂z̄α̂ + L̂zz̄a(γaλ̂)α̂ (5.133)

δS

δLzz̄a
=

1
2
(λγaλ),

δS

δL̂zz̄a

=
1
2
(λ̂γaλ̂) (5.134)

Note that we used for the covariant variation an independent connection Ω̌Ma
b for the bosonic subspace. This

connection is a priory not a background �eld of the string metric. We are free to choose it in a convenient way.

5.6 Ghost current

Let us assign ghost numbers (1, 0) and (−1, 0) to the �elds λα and ωzα. The corresponding transformation
(with some global transformation parameter ρ) is

δλα = ρλα, δωzα = −ρωzα (5.135)

For the action to remain unchanged, we also need to transform the Lagrange multiplier

δLzz̄a = −2ρLzz̄a (5.136)

which therefore has ghost number −2. Varying the action with a local parameter, we arrive at

δS =
∫

Σ

d2z ∂̄ρ · (λβωzβ) + bdry-terms (5.137)
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According to (E.42) and footnote 4 on page 139, we can read o� the ghost current as

jgh = λαωzα (5.138)

It has the same form as in �at space.
In section 5.7, we will derive the BRST transformations of the worldsheet �elds from the given BRST current

via �inverse Noether� (see (E.7)). The idea is to calculate the divergence of the current and try to express it
in terms of the equations of motion. The transformations of the worldsheet �elds can then be read o� as
coe�cients. This avoids switching to the Hamiltonian formalism and using the Poisson bracket to generate the
transformations. It might be instructive to see, how �inverse Noether� works for the simple example of the ghost
current before we come to the BRST current later:

− δφIall
δS

δφIall

!= ∂̄(λαωzα) =

= Dz̄λ
α · ωzα + λαDz̄ωzα =

= − δS

δωzα
ωzα + λα

(
− δS

δλα + La(γaλ)α

)
=

= ωzα
δS

δωzα
− λα δS

δλα + 2Lzz̄a
δS

δLzz̄a
(5.139)

From this one can read o� the transformations with which we had begun.
The ghost current and the corresponding transformations for the hatted variables are obtained via proposi-

tion 1 on page 29.

5.7 Holomorphic BRST current

We now come to the main part of the derivation of the supergravity constraints from the pure spinor string.
The pure spinor string in �at background had two (graded) commuting and nilpotent BRST di�erentials which
de�ned the physical spectrum. Putting the string in a curved background is a matter of consistent deformation.
I.e., gauge symmetries and BRST symmetries have to survive. They may be deformed, but the number of
physical degrees of worldsheet variables cannot simply change as soon as there is a backreaction from the back-
ground that was produced by the strings themselves. This is a similar consistency like the demand for vanishing
quantum anomalies. It is therefore legitimate to demand (apart from the two antighost gauge symmetries) also
two (graded) commuting BRST symmetries. Remember, we already have simpli�ed in (5.39) and (5.40) the
general ansatz for the BRST currents by reparametrizations to the simple form

jz = λγdzγ , j z̄ = 0 (5.140)

̂z̄ = λ̂
γ̂
d̂z̄γ̂ , ̂z = 0 (5.141)

Instead of deriving the corresponding BRST transformations in the Hamiltonian formalism using the Poisson
bracket, we stay in the Lagrangian formalism and apply Noether's theorem (see (E.15)) inversely in the sense
that we try to express the divergence of the given currents as linear combinations of the equations of motion in
order to derive the corresponding transformations:

∂̄jz
!= −sφIall

δS

δφIall
= −scovφ

I
all

δcovS

δφIall
(5.142)

∂̂z̄
!= −ŝφIall

δS

δφIall
= −ŝcovφ

I
all

δcovS

δφIall
(5.143)

Here φIall is the collection of all the worldsheet �elds. BRST invariance of the action is according to Noether
equivalent to having this special form of the divergences of the currents. These two equations thus do three
things at the same time: The possibility to write the divergence of the currents as linear combinations of the
equations of motion �xes the precise form of the BRST current. At the same time it puts constraints on the
background �elds: all terms not proportional to equations of motion have to vanish. And �nally it determines
the form of the (covariant) BRST transformations.

After determining the BRST transformation, the nilpotency conditions s2 = 0, [s, ŝ] = 0 and ŝ2 = 0 put
further constraints on the background �elds including the torsion. Some torsion components can then be
further simpli�ed by using two of the three local Lorentz transformations and scale transformations which leads
to only one remaining local Lorentz transformation and one local scale transformation. Putting these restrictions
on some torsion components induces via the Bianchi identities further constraints on other components. All
the constraints on the torsion and other functionals of the background �elds combine �nally to the target space
supergravity equations of motion. Note that our approach di�ers from the one in [11] in two major points.
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First of all we stay in the Lagrangian formalism throughout. Second, we �rst check the holomorphicity and
then the nilpotency. In fact, we need to do so, because only in the �rst step we can determine the BRST
transformations of the worldsheet �elds which we need in the Lagrangian formalism to check nilpotency. The
BRST transformations have so far been given only for the heterotic string in [12], so that the transformations
in the type II case are a new result.

Let us now perform in more detail the program sketched above:

∂̄jz = Dz̄λ
γdzγ + λγDz̄dzγ = (5.144)

= −dzγ
δS

δωzγ
+ λγDz̄dzγ (5.145)

In the following we will replace all occurrences of Dz̄dzγ , Πγ̂
z , Π

γ
z̄ , Dz̄λ

α, D̂zλ̂
α̂
, Dz̄ωzα, D̂zω̂z̄α̂, λγaλ and λ̂γaλ̂

by the equations of motion (5.127)-(5.134). In the end, all terms which are not proportional to the equations of
motion have to vanish which leads to some of the supergravity constraints while the terms proportional to the
equations of motion tell us the BRST transformation of the elementary �elds. In order to extract Dz̄dzγ from
the xK-equation of motion (5.127), let us project (5.127) to a �at spinorial index α using some index relabeling:

Dz̄dzα = −Eα
K δcovS

δxK
−∇z̄Π

D
z GDα +

+ΠC
z

(
3
2
HαCD − TCD|α + 2Tα(C|D) +

1
2
∇αGCD −∇(CGD)α

)
ΠD

z̄ +

+2TαD
γΠD

z̄ dzγ + 2T̂αC
γ̂ΠC

z d̂z̄γ̂ +

+dzγ

(
∇αPγγ̂ − Cα

γγ̂
)
d̂z̄γ̂ + λα2∇αCα2

βγ̂ωzβd̂z̄γ̂ + λ̂
α̂
(
∇αĈα̂

β̂γ + Sαα̂
γβ̂
)

ω̂z̄β̂dzγ +

+λα2λ̂
α̂
∇αSα2α̂

ββ̂ωzβω̂z̄β̂ − Ωα a1...a4(λγ
a1...a4aλ) · Lzz̄a +

+2ΠD
z̄ RαDα2

βλα2ωzβ + 2ΠC
z R̂αCα̂

β̂λ̂
α̂
ω̂z̄β̂ (5.146)

Already at this point we can determine some constraints on the background �elds. The divergence of the BRST
current given in (5.145) has to become a linear combination of the equations of motion. The term ∇z̄Π

D
z GDα

in (5.146) cannot be compensated by any other term and it also cannot be replaced by a further equation of
motion. The same is true for our beloved Ωα a1...a4(λγ

a1...a4aλ) · Lzz̄a. Using in addition proposition 1 for the
constraints from the antiholomorphicity of the right-mover BRST current, we can demand

GAB
!= 0 (only Gab 6= 0) (5.147)

Ωα a1...a4

!= 0, Ω̂α̂ a1...a4

!= 0 (5.148)

With (5.148) we have �nally obtained the missing ingredient for the reduction of the spinorial connection
coe�cients to Lorentz plus scale transformations as it was summarized already in the remark on page 38 at the
end of the section 5.4 about the antighost gauge symmetry.

Equation (5.147) allows us to choose a frame where Gab = e2Φηab, such that we reduce also the bosonic
structure group to Lorentz plus scale transformations. Let us discuss this in more detail in the following
intermezzo.

Intermezzo about the reduced bosonic structure group

Due to (5.147) we know that GAB is of the block-diagonal form GAB = diag (Gab, 0, 0). This means that the
symmetric rank two tensor is of the form

GMN = EM
aGabEN

b (5.149)

In particular we have Gmn = Em
aGabEn

b. As the EM
a where introduced by hand, we may choose Em

a

orthonormal as usual, i.e. such that Gab becomes the Minkowski metric. This is at least for the leading
component Gmn(

→
x ) (i.e. ~θ = 0) a familiar thing to do, but it holds also in the ~θ-dependent case:

Proposition 3 For all symmetric rank two tensor �elds Gmn(

{→x , ~θ}︷︸︸︷
�
x ) whose real body (~θ = 0-part) has signature

(1,9), there exists locally a frame Em
a(

�
x ), such that

Gmn(
�
x︸︷︷︸
{→x , ~θ}

) = Em
a(

�
x )ηabEn

b(
�
x ) (5.150)
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Note: In contrast to the ordinary bosonic version, the entries of the matrices are supernumbers.

Proof Due to usual linear algebra, there is an orthonormal basis with respect to the real symmetric matrix
Gmn(

→
x ), i.e. we can always �nd locally Em

a(
→
x ), s.t. (5.150) is ful�lled for ~θ = 0. In order to prove the same

for ~θ 6= 0, we will make a ~θ-expansion of (5.150) and show that we can always construct a solution Em
a(

→
x ,~θ)

for arbitrary ~θ from the bosonic solution Em
a(

→
x ). Remember the notations xM ≡ θM and Gmn| = Gmn|~θ=0.

The ~θ-expansion of (5.150) then reads∑
n≥0

1
n!
xM1 · · ·xMn (∂M1 . . . ∂Mn

Gmn)| !=

!=
∑

k,l≥0

1
k!
xK1 · · ·xKk (∂K1 . . . ∂Kk

Em
a)| ηab

1
l!
xL1 · · ·xLl (∂L1 . . . ∂Ll

En
b)
∣∣ =

=
∑
n≥0

1
n!
xM1 · · ·xMn

n∑
m=0

(
n
m

)
(∂M1 . . . ∂MmEm

a)| ηab (∂Mm+1 . . . ∂MnEn
b)
∣∣ (5.151)

At n = 0 we have the solvable bosonic equation Gmn(
→
x ) != Em

a(
→
x )ηabEn

b(
→
x ) to start with. At higher orders

n we have

(∂M1 . . . ∂MnGmn) !=
∣∣∣

!=
n∑

m=0

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂MnEn

b)
∣∣ =

= 2 Em
a| ηab (∂M1 . . . ∂MnEn

b)
∣∣ + n−1∑

m=1

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂MnEn

b)
∣∣ (5.152)

We thus have the iterative explicit expression for the n-th ~θ-derivative of the vielbein in terms of the (n− 1)-th
and all lower derivatives.

(∂M1 . . . ∂MnEn
d) =

∣∣ (5.153)

=
1
2
ηcd Ec

m|
[

(∂M1 . . . ∂MnGmn)| −
n−1∑
m=1

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂MnEn

b)
∣∣ ]

This completes the proof of the proposition. �

In spite of the above proposition, we will not �x Gab to ηab, but only up to a conformal factor. This is of
course possible by a rede�nition of EM

a with the square root of this conformal factor. The reason for us to
do this is the fact that we have for the spinorial indices not only Lorentz-, but also scale transformations. It
seems natural to keep this scale invariance also for the bosonic indices, as long as we do not �x the fermionic
one (in particular if we aim at structure group invariant γ-matrices γa

αβ). We thus introduce an auxiliary

compensator �eld Φ(
�
x ) and choose Em

a such that

Gab = e2Φηab (5.154)

As soon as Em
a(

�
x ) is chosen appropriately, the remaining vielbein components EM

a are uniquely determined
via:

GMn
!= EM

aηabEn
b ⇒ EM

a = GMnEb
nηba (5.155)

In summary this means that there is locally always a choice for the bosonic 1-form Ea = dxMEM
a, such that

GMN = EM
ae2ΦηabEN

b or GMN = EM
aηabEN

b, if one does not introduce the compensator �eld. The latter
form of GMN was the starting point in [11], probably motivated by the integrated vertex operator of the �at
space.

With the compensator �eld included, the bosonic structure group with in�nitesimal generator Ľa
b (compare

to page 35 with Λ̌a
b = δb

a + Ľa
b) is � like the fermionic ones � restricted to Lorentz plus scale transformations.

We should of course also restrict the auxiliary connection accordingly.

Ľa
b = Ľ(D)δb

a + Ľ(L)
a

b, Ľab ≡ Ľa
cηcb = −Ľba (5.156)

Ω̌Ma
b = Ω̌(D)

M δb
a + Ω̌(L)

a
b, Ω̌Mab ≡ Ω̌Ma

cηcb = −Ω̌Mba (5.157)

The compensator �eld is a scalar with respect to superdi�eomorphisms. With respect to the structure group,
however, it has to transform in a special way, in order to make Gab transforming covariantly. The in�nitesimal
transformation of Gab under structure group transformations is δGab = −2Ľ(a|

cGc|b) = −2Ľ(D)Gab (see (5.64)
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on page 35). This transformation results in a simple shift of the compensator �eld. For the same reason, also
the covariant derivative contains a shift of Φ:

δΦ = −Ľ(D) (5.158)

∇̌MΦ ≡ ∂MΦ− Ω̌(D)
M (5.159)

∇MGAB = 2∇̌MΦGAB (= ∂MGAB − 2ΩM(A|
CGC|B)) (5.160)

Let us return to the calculation of the divergence of the BRST current and let us �nally replace Dz̄dzαin
(5.145) by the xK equation of motion given in (5.146) (already using (5.147) and (5.148))12:

∂̄jz = −dzγ
δS

δωzγ
− λαEα

K δcovS

δxK
+

+λαΠC
z

(
3
2
HαCD + 2Tα(C|D) + ∇̌αΦGCD

)
︸ ︷︷ ︸

≡YαCD

ΠD
z̄ +

+2λαTαD
γΠD

z̄ dzγ + 2λαT̂αC
γ̂ΠC

z d̂z̄γ̂ +

+λαdzγ

(
∇αPγγ̂ − Cα

γγ̂
)
d̂z̄γ̂ + λαλα2∇αCα2

βγ̂ωzβd̂z̄γ̂ + λαλ̂
α̂
(
∇αĈα̂

β̂γ + Sαα̂
γβ̂
)

ω̂z̄β̂dzγ +

+λαλα2λ̂
α̂
∇αSα2α̂

ββ̂ωzβω̂z̄β̂ +

+2λαΠD
z̄ RαDα2

βλα2ωzβ + 2λαΠC
z R̂αCα̂

β̂λ̂
α̂
ω̂z̄β̂ (5.161)

Before we plug in further equations of motion (replacing Πδ
z̄ and Πγ̂

z ) we should notice that we can already read
o� some more constraints. Namely Yαcd = Yαcδ̂ = Yαγd = Yαγδ̂ = 0. The �rst constraint Yαcd = 0 can be
separated into symmetric and antisymmetric part of the indices c and d. In addition, we already add everywhere
the constraints coming from the right-moving BRST current , using proposition 1 on page 29 (H → −H, Ť → Ť ,
∇̌ → ∇̌)13.

12The comparison of the rewritten bosonic xK -equation

1

2
∇z̄(Πe

zGea) +
1

2
∇z(Πe

z̄Gea) =

= −Ea
K δcovS

δxK
+ ΠC

z

„
3

2
HaCD + 2T a(C|D) + ∇̌aΦGCD

«
ΠB

z̄ + 2TaD
γΠD

z̄ dzγ + 2T̂aC
γ̂ΠC

z d̂z̄γ̂ +

+dzγ∇aP
γγ̂ d̂z̄γ̂ + λα∇aCα

βγ̂ωzβ d̂z̄γ̂ + λ̂
α̂∇aĈα̂

β̂γ ω̂z̄β̂dzγ +

+λαλ̂
α̂∇aSαα̂

ββ̂ωzβω̂z̄β̂ + 2ΠD
z̄ RaDα

βλαωzβ + 2ΠC
z R̂aCα̂

β̂λ̂
α̂

ω̂z̄β̂

with ∇z̄dzα = −Eα
K δcovS

δxK
+ ΠC

z

„
3

2
HαCD + 2T α(C|D) + ∇̌αΦGCD

«
ΠD

z̄ + 2TαD
γΠD

z̄ dzγ + 2T̂αC
γ̂ΠC

z d̂z̄γ̂ +

+dzγ∇αP
γγ̂ d̂z̄γ̂ + λα2∇αCα2

βγ̂ωzβ d̂z̄γ̂ + λ̂
α̂∇αĈα̂

β̂γ ω̂z̄β̂dzγ +

+λα2 λ̂
α̂∇αSα2α̂

ββ̂ωzβω̂z̄β̂ + 2ΠD
z̄ RαDα2

βλα2ωzβ + 2ΠC
z R̂αCα̂

β̂λ̂
α̂

ω̂z̄β̂

and with ∇̂z d̂z̄α̂ suggests the introduction of

dza ≡
1

2
Πe

zGea, dz̄a ≡
1

2
Πe

z̄Gea �

��
13At �rst we should remember that T AC

B = diag (ŤAC
b, TAC

β, T̂AC
β̂). As Gbd are the only non-vanishing components of GBD,

the contraction of the upper torsion index with GBD projects out the �rst block-diagonal and we can write

T AC|D = ŤAC|D

The next important observation is that the constraints are independent of the choice of the auxiliary bosonic connection Ω̌Ma
b, as

it should be . The only condition is that it obeys Ω̌M(a|b) = Ω̌
(D)
M Gab which we used during the derivation by taking ∇MGAB =

2∇̌MΦGAB (see (5.160)). Remember also that ∇̌αΦ = Eα
M∂MΦ−Ω̌

(D)
α (5.159). Ω̌Ma

b enters the terms YαCD (de�ned in (5.161)

and containing the constraints) only in the combination 2Ťα(C|D) − Ω̌
(D)
α GCD, where it completely cancels:

2Ťα(C|D) − Ω̌
(D)
α GCD = 2(dEb)α(C|Gb|D) + Ω̌α(C|D) − Ω̌(C|α|D)| {z }

=0

−Ω̌
(D)
α GCD =

= 2Eα
ME(C|

N∂[MEN ]
bGb|D)

In particular the connection does not enter at all the following torsion component:

Ťαδ̂|c = (dEd)αδ̂Gdc
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HAcd = 0 (5.162)

ŤA(c|d) = −1
2
∇̌AΦGcd (5.163)

3
2Hαcδ̂ + Ťαδ̂|c = 0
− 3

2Hα̂cδ + Ťα̂δ|c = 0

}
⇒ Hαδ̂c = Ťαδ̂|c = 0 (5.164)

3
2
Hαγd + Ťαγ|d = 0, −3

2
Hα̂γ̂d + Ťα̂γ̂|d = 0 (5.165)

Hαγδ̂ = 0, Hα̂γ̂δ = 0 (5.166)

So far we have used only the equations of motion obtained by the variational derivative with respect to the
antighosts and with respect to xK . There still remain the ones with respect to the ghosts, with respect to the
Lagrange multipliers and with respect to dzα and d̂z̄α̂. The �rst ones simply will not enter the calculation and
the pure spinor constraints (coming from the Lagrange multipliers) will be used at the very end. So let us
remind ourselves the variational derivatives with respect to dzα and d̂z̄α̂ ((5.129) and (5.128)):

Πδ
z̄ =

δS

δdzδ
− Pδγ̂ d̂z̄γ̂ − λ̂

α̂
Ĉα̂

β̂δω̂z̄β̂, Πγ̂
z =

δS

δd̂z̄γ̂

− dzγPγγ̂ − λαCα
βγ̂ωzβ (5.167)

Together with the new constraints (5.162)-(5.166) we plug them into the divergence (5.161) of the BRST current
In a last e�ort we sort all the terms with respect to the appearance of the elementary �elds and �nally arrive at

∂̄jz = −dzγ
δS

δωzγ
− λαEα

K δcov

δxK
S +

+λα
(3

2
Πγ

zHαγδ + 2Tαδ
γdzγ − 2λα2Rα2δα

βωzβ + Πc
z 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

) δS

δdzδ
+

+λα
(
2T̂αγ̂

δ̂d̂z̄δ̂ + 2λ̂
α̂
R̂αγ̂α̂

β̂ω̂z̄β̂

) δS

δd̂z̄γ̂

+

+λαΠc
z

(
− 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

Pδγ̂ + 2T̂αc
γ̂
)
d̂z̄γ̂ + λαΠγ

z

(
2T̂αγ

γ̂ − 3
2
HαγδPδγ̂

)
d̂z̄γ̂ +

+λαdzγ (2Tαd
γ) Πd

z̄ + 2λαdzγ

(
Tαδ̂

γ
)
Πδ̂

z̄ +

+λαdzγ

(
∇αPγγ̂ − Cα

γγ̂ − 2Tαδ
γPδγ̂ − 2T̂αδ̂

γ̂Pγδ̂
)
d̂z̄γ̂ +

+λαλ̂
α̂
Πc

z

(
− 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

Ĉα̂
β̂δ + 2R̂αcα̂

β̂
)
ω̂z̄β̂ + λαλ̂

α̂
Πγ

z

(
2R̂αγα̂

β̂ − 3
2
HαγδĈα̂

β̂δ

)
ω̂z̄β̂ +

+λαλ̂
α̂
dzγ

(
∇αĈα̂

β̂γ + Sαα̂
γβ̂ − 2Tαδ

γĈα̂
β̂δ − 2R̂αγ̂α̂

β̂Pγγ̂
)

ω̂z̄β̂ + λα1λα2Xα1α2 (5.168)

where we de�ned an extra symbol for the terms coming quadratic in the ghost λα:

Xα1α2 ≡ 2
(
R[α1|d|α2]

β
)
Πd

z̄ωzβ + 2Πδ̂
z̄

(
R[α1|δ̂|α2]

β
)

ωzβ +

+
(
∇[α1

Cα2]
βγ̂ − 2T̂[α1|δ̂

γ̂C|α2]
βδ̂ − 2R[α1|δ|α2]

βPδγ̂
)
d̂z̄γ̂ωzβ +

+λ̂
α̂
(
∇[α1

Sα2]α̂
ββ̂ + 2R̂[α1|γ̂α̂

β̂C|α2]
βγ̂ + 2R[α1|δ|α2]

βĈα̂
β̂δ
)

ωzβω̂z̄β̂ (5.169)

Summarizing, we observe that we managed � with the help of the equations of motion � to turn the simple
equation (5.145) into a quite lengthy one ... We are not going to copy the whole long equation again for the
next step. The only equation of motion that we may still apply, is the pure spinor constraint

δS

δLzz̄a
=

1
2
(λγaλ) (5.170)

We therefore can concentrate on the term λα1Xα1α2λ
α2 , where the pure spinor combination λγaλ might

appear. As discussed in footnote 7 on page 34 (see also the appendix-subsection D.3.3 on page 132), all graded

The constraints (5.163)-(5.165) are therefore independent of the choice of Ω̌Ma
b. In particular, we can choose ΩMa

b (de�ned by

ΩMα
β via ∇Mγc

αβ = 0) or Ω̂Ma
b (de�ned by Ω̂Mα̂

β̂ via ∇̂Mγc
α̂β̂

= 0). �
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antisymmetric 16× 16 matrices can be expanded in γ[1] and γ[5]:

Xα1α2 ≡ Xaγ
a
α1α2

+Xa1...a5γ
a1...a5
α1α2

(5.171)

Xa =
1
16
γα2α1

a Xα1α2

(
= − 1

16
γα1α2

a Xα1α2

)
(5.172)

Xa1...a5

(D.87)
=

1
16 · 5!

γα2α1
a5...a1

Xα1α2 (5.173)

We can use this to rewrite the quadratic ghost term as follows:

λα1Xα1α2λ
α2 = −1

8
γα1α2

a Xα1α2

δS

δLzz̄a
+

1
16 · 5!

γα2α1
a1...a5

Xα1α2(λγ
a1...a5λ) (5.174)

This was the last ingredient to determine all remaining constraints on the background �elds and also to be able
to read o� all BRST transformations (including the one for the Lagrange multiplier). Let us start with the
constraints. In addition to (5.162)-(5.166), we get the following constraints on the background �elds:

T̂αc
γ̂ = Ťαδ|c︸ ︷︷ ︸

3
2 Hαcδ

Pδγ̂ , Tα̂c
γ = Ťα̂δ̂|c︸ ︷︷ ︸

− 3
2 Hα̂cδ̂

Pγδ̂ (5.175)

T̂αγ
γ̂ =

3
4
HαγδPδγ̂ , Tα̂γ̂

γ = −3
4
Hα̂γ̂δ̂P

γδ̂ (5.176)

Tαd
γ = 0, T̂α̂d

γ̂ = 0 (5.177)

Tαδ̂
γ = 0, T̂α̂δ

γ̂ = 0,
(5.164)⇒ Tαα̂

K = 0 (5.178)

Cα
γγ̂ = ∇αPγγ̂ − 2Tαδ

γPδγ̂ − 2 T̂αδ̂
γ̂︸ ︷︷ ︸

=0 (5.178)

Pγδ̂ (5.179)

Ĉα̂
γ̂γ = ∇α̂Pγγ̂ − 2T̂α̂δ̂

γ̂Pγδ̂ (5.180)

R̂αcα̂
β̂ =

3
2
Hαcδ︸ ︷︷ ︸
Ťαδ|c

Ĉα̂
β̂δ, Rα̂cα

β = −3
2
Hα̂cδ̂︸ ︷︷ ︸

Ťα̂δ̂|c

Cα
βδ̂ (5.181)

R̂αγα̂
β̂ =

3
4
HαγδĈα̂

β̂δ, Rα̂γ̂α
β = −3

4
Hα̂γ̂δ̂Cα

βδ̂ (5.182)

Sαα̂
γβ̂ = −∇α Ĉα̂

β̂γ︸ ︷︷ ︸
∇α̂Pγβ̂−2T̂α̂δ̂

β̂Pγδ̂

+2Tαδ
γĈα̂

β̂δ + 2R̂αγ̂α̂
β̂Pγγ̂ (5.183)

Sαα̂
βγ̂ = −∇α̂ Cα

βγ̂︸ ︷︷ ︸
∇αPβγ̂−2Tαδ

βPδγ̂

+2T̂α̂δ̂
γ̂Cα

βδ̂ + 2Rα̂γα
βPγγ̂ (5.184)

γα1α2
a1...a5

Rdα1α2
β = 0, γα̂1α̂2

a1...a5
R̂dα̂1α̂2

β̂ = 0 (5.185)

γα1α2
a1...a5

Rδ̂α1α2

β = 0, γα̂1α̂2
a1...a5

R̂δα̂1α̂2
β̂ = 0 (5.186)

γα1α2
a1...a5

(
∇α2

Cα1
βγ̂
)

= 2γα1α2
a1...a5

Rα2δα1
βPδγ̂ − T̂α1δ̂

γ̂︸ ︷︷ ︸
=0

Cα2
βδ̂

 , plus hatted version . . . (5.187)

γα1α2
a1...a5

(
∇α2

Sα1α̂
ββ̂
)

= 2γα1α2
a1...a5

(
R̂α1γ̂α̂

β̂Cα2
βγ̂ −Rα2δα1

βĈα̂
β̂δ
)
, plus hatted version . . . (5.188)

Note that on the constraint surface the condition γα1α2
a1...a5

Xα1α2 = 0 is equivalent to the vanishing of Xα1α2

when contracted with two ghost �elds:

γα1α2
a1...a5

Xα1α2 = 0
(5.171)−(5.173)⇐⇒ X[α1α2] =

1
16

(γα4α3
a Xα3α4)γ

a
α1α2

(λγaλ)=0⇐⇒ λα1Xα1α2λ
α2 = 0

(5.189)
The above equivalences hold for general bispinors, not only for the one de�ned in (5.169). It is not necessary to
memorize the constraints ( 5.187) and ( 5.188) as they will be implemented by other constraints anyway. We
will show this fact at the end of section 5.11 on page 54.

Let us now devote a new section to the BRST transformations that we can likewise read o� from (5.168).

5.8 The covariant BRST transformations

Remember that we started on page 44 with the demand ∂̄jz
!= −scovφ

I
all

δcovS

δφIall
. The covariant BRST transfor-

mations scovφ
I
all have to be understood in the sense of the covariant variation de�ned in (5.97)-(5.101). We have
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for example scovλ̂
α̂

= s ˆcovλ̂
α̂

= ŝλ
α̂

+sxM Ω̂Mβ̂
α̂λ̂

β̂
. When the constraints of the end of last section are ful�lled,

we can read o� the covariant BRST transformations scovφ
I
all from equation (5.168) together with (5.174). Again

we give at the same time (using proposition 1 on page 29) the results for the right-mover BRST-symmetry ŝ,

de�ned via14 ∂̂z̄
!= −ŝcovφ

I
all

δcovS

δφIall
:

sxM = λαEα
M , ŝxM = λ̂

α̂
Eα̂

M (5.190)

scovλα = 0 = ŝcovλα, ŝ ˆcovλ̂
α̂

= 0 = s ˆcovλ̂
α̂

(5.191)

scovωzα = dzα, ŝcovωzα = 0, ŝ ˆcovω̂z̄α̂ = d̂z̄α̂, s ˆcovω̂z̄α̂ = 0 (5.192)

scovdzδ = −λαΠc
z 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

−3
2
λαΠγ

zHαγδ − 2λαTαδ
γdzγ + 2λαλα2Rα2δα

βωzβ (5.193)

ŝ ˆcovd̂z̄δ̂ = λ̂
α̂
Πc

z̄ 3Hα̂cδ̂︸ ︷︷ ︸
−2Ťα̂δ̂|c

+
3
2
λ̂

α̂
Πγ̂

z̄Hα̂γ̂δ̂ − 2λ̂
α̂
T̂α̂δ̂

γ̂ d̂z̄γ̂ + 2λ̂
α̂
λ̂

α̂2
R̂α̂2δ̂α̂

β̂ωz̄β̂ (5.194)

s ˆcovd̂z̄γ̂ = −2λα T̂αγ̂
δ̂︸ ︷︷ ︸

=0

d̂z̄δ̂ − 2λαλ̂
α̂
R̂αγ̂α̂

β̂ω̂z̄β̂ (5.195)

ŝcovdzγ = −2λ̂
α̂
Tα̂γ

δ︸ ︷︷ ︸
=0

dzδ − 2λ̂
α̂
λαRα̂γα

βωzβ (5.196)

scovLzz̄a =
1
8
γα1α2

a Xα1α2 , ŝcovLzz̄a = 0, ŝ ˆcovL̂z̄z a =
1
8
γα̂1α̂2

a X̂α̂1α̂2 , s ˆcovL̂z̄z = 0 (5.197)

The composite object Xα1α2 is given in (5.169). Let us for completeness also give the BRST transformation of
the supersymmetric momentum

scovΠA
z/z̄

(5.117 )
= ∇z/z̄λ

αδα
A + 2λαΠB

z/z̄TαB
A (5.198)

ŝcovΠA
z/z̄

(5.117 )
= ∇̂z/z̄λ̂

α̂
δα̂

A + 2λ̂
α̂
ΠB

z/z̄T α̂B
A (5.199)

All these BRST transformations are similar to those for the heterotic string, given in [12]. There it was also noted
that the BRST transformations always contain a Lorentz transformation (multiplication with the connection).
We have absorbed this term into the de�nition of the covariant variation. The advantage is that we then have
expressions all the time that are covariant with respect to the target space structure group. Although the
ordinary BRST di�erential s is needed to calculate the cohomology (as it squares to zero), the calculations are
simpler if they are performed with scov and only in the end transferred to s. When acting on a target space
scalar, the two coincide anyway.

14Another way to write down the BRST transformations for dzδ and d̂z̄γ̂ is the following

scovdzδ = −
3

2
λαΠ

{c,γ}
z Hα{c,γ}δ − λαT αδ

{c,γ}{GcdΠd
z , 2dzγ}+ 2λαλα2Rα2δα

βωzβ

s ˆcov d̂z̄γ̂ = −
3

2
λαΠ

{d,δ̂}
z̄ Hα{d,δ̂}γ̂| {z }

=0

−λα T αγ̂
{d,δ̂}| {z }

=0

{GdcΠ
c
z̄ , 2d̂z̄δ̂} − 2λαλ̂

α̂
R̂αγ̂α̂

β̂ω̂z̄β̂

In the second line for the �rst two terms, we have just used a complicated way to write zero. The reason was to bring it to a form
similar to the one in the �rst line. In any case, at least the �rst line suggests again the introduction of the variables

dzc ≡
1

2
GcdΠd

z , dz̄c ≡
1

2
GcdΠd

z̄

that we already proposed in footnote 12 on page 47. Indeed, their BRST transformation takes the form

s ˇcovdz c = −
3

2
λαΠβ

z Hαβc − 2λαŤαc
ddz d

Using Haβc = Tαc
δ = 0 and at (least for λγaλ = 0) λαλα2Rα2dα

β = 0, the transformation of dz c takes the same form as the
one of dzδ and we can write

scovdz{d,δ} = −
3

2
λαΠ

{c,γ}
z Hα{c,γ}{d,δ} − 2λαT α{d,δ}

{c,γ}dz{c,γ} − 2λα1λα2R{d,δ}α2α1
βωzβ for (λγaλ) = 0

We suggest to introduce dzd as an independent variable into the action, with an on-shell value dzc ≡ 1
2
GcdΠd

z . Doing this, one
would arrive at a formalism where the GMN term is replaced by a �rst order term, while the BMN term remains. This would
therefore be a mixed �rst-second order formalism which would be suitable to couple it to e.g. the components of a generalized
complex structure. �
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5.9 Graded commutation of left- and right-moving BRST di�erential

We have started in �at background with two independent BRST symmetries, the left-moving and the right-
moving one, which both squared to zero and graded commuted. As they de�ne the physical spectrum and
identify physically equivalent states, these facts should not change in a consistent theory, at least on-shell. This
is similar to the fact that gauge symmetries should not be broken. We have already derived the constraints
coming from a vanishing divergence of the BRST currents. The ansatz for the currents was such that this
corresponds to holomorphicity for jz and antiholomorphicity for ̂z̄. Having on-shell a holomorphic jz and an
antiholomorphic ̂z̄ is in a conformal theory already enough to make the corresponding symmetries commute.
For example on the level of operators, the operator product between a holomorphic and an antiholomorphic
current always vanishes on-shell. The same is true for the charges which generate the symmetry. The on-shell
vanishing of the commutators is all that we can demand for consistency. Therefore we do not expect any
additional information from the graded commutation of left- and right-moving BRST di�erential. Nevertheless
it is instructive to calculate the graded commutators and consider it as a further check. In particular it is
interesting to see the terms which prevent an o�-shell commutation of the di�erentials. The starting point is
the request that we have

[̂s, s]φIall
!= δ(µ)φ

I
all + δ(µ̂)φ

I
all + δtrivφ

I
all (5.200)

where δtrivφ
I
all is a trivial and thus on-shell vanishing gauge transformation (see page 139 in the appendix).

Spelled out in words, (5.200) means that the graded commutator [̂s, s] has to vanish on shell up to antighost
gauge transformations. There are at least two ways to check this. Either we calculate the commutator of the
transformations on each worldsheet �eld or we calculate the transformations of the Noether currents. This is
directly related to calculating the Poisson brackets of the generating charges in the Hamiltonian formalism.

Determining [s, ŝ] via the transformation of the currents Let us see, how the reasoning goes in the
Lagrangian formalism. We start with the de�ning equations of the BRST currents

∂̄jz = −sφIall
δS

δφIall
(5.201)

∂̂z̄ = −ŝφIall
δS

δφIall
(5.202)

If we consider the combination ŝ(5.201) + s(5.202), we discover the Noether current for the graded commutator
[s, ŝ]:

∂̄(̂sjz) + ∂(ŝz̄) = −[̂s, s]φIall
δS

δφIall
(5.203)

In order to calculate the lefthand side, remember the form of the BRST current jz = λαdzα (5.39) and also
note that it is a target space scalar. The BRST di�erential can be replaced by the covariant one:

ŝjz = −λγ ŝcovdzγ = −2λ̂
α̂
λγλαRα̂γα

βωzβ
(5.186)
=

(5.189)
−1

8
λ̂

α̂
γαγ

a Rα̂γα
βωzβ (λγaλ)︸ ︷︷ ︸

2 δS
δLzz̄

(5.204)

Using the left-right-symmetry of proposition 1 on page 29 we get the corresponding expression for ŝz̄. Both
vanish on the pure spinor constraint surface (λγaλ) = (λ̂γaλ̂) = 0 and as they are the components of the
Noether current belonging to [̂s, s], this is again a sign that this commutator will vanish on-shell up to gauge

transformations. Indeed, if we take µza = − 1
4 λ̂

α̂
γαγ

a Rα̂γα
βωzβ and µ̂z̄a correspondingly and remember the

antighost gauge transformations (5.85) and (5.86) with corresponding current (5.73), we arrive at

∂̄(̂sjz) + ∂(ŝz̄) = −µza(λγa)α
δS

δωzα
+Dz̄µza

δS

δLzz̄a
(5.205)

Having a current that coincides with the one of a gauge transformation, the form of [s, ŝ] can only di�er by a
trivial gauge transformation. In any case we have obtained the result that the commutator vanishes up to gauge
transformations. A safe way to �gure out potentially appearing trivial gauge transformations in the commutator
is to calculate it on each single worldsheet �eld separately.

Acting on each �eld separately Although this method would lead to the precise o�-shell form of all the
commutators, we are for now satis�ed with the result we already obtained and give the explicit commutator only
for the most simple cases. Starting with the covariant BRST transformations of the elementary �elds (given in
(5.190)-(5.197) on page 50), we will �rst calculate the commutator [̂scov, scov] and only after that determine the
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ordinary commutator via the relations (5.107) and (5.108). For the embedding functions xK , the ghosts λα, λ̂
α̂

and the antighosts ωzα and ω̂z̄α̂ the calculation is very simple and we immediately obtain[̂
scov, scov

]
xK = 0 (5.206)[̂

scov, scov

]
λγ = 0,

[
scov, ŝcov

]
λ̂

γ̂
= 0 (5.207)[̂

scov, scov

]
ωzγ = ŝcovdzγ = −2λ̂

α̂
λαRα̂γα

βωzβ,
[
scov, ŝcov

]
ω̂z̄γ̂ = −2λαλ̂

α̂
R̂αγα̂

β̂ω̂z̄β̂ (5.208)

The transformations of the remaining �elds are much more complicated and we prefer not to study them. Let
us now derive the ordinary commutators:

[̂s, s]xK (5.107)
=

[̂
scov, scov

]
xK︸ ︷︷ ︸

=0

−2λ̂
α̂
T α̂α

K︸ ︷︷ ︸
=0 (5.178)

λα = 0 (5.209)

[s, ŝ]cov λγ (5.108)
=

[
scov, ŝcov

]
λγ︸ ︷︷ ︸

=0

−2 λαλ̂
α̂
Rαα̂β

γλβ︸ ︷︷ ︸
=0 (5.186)

= 0 (5.210)

[s, ŝ]cov ωzγ
(5.108)

=
[̂
scov, scov

]
ωzγ︸ ︷︷ ︸

=−2λ̂
α̂

λαRα̂γα
βωzβ

+2λαλ̂
α̂
Rαα̂γ

βωzβ =

= 4λ̂
α̂
λαRα̂[αγ]

βωzβ (5.211)

Again we get the corresponding equations for λ̂
α̂
and ω̂z̄γ̂ . The last line corresponds excactly to the gauge

transformation with gauge parameter µza = − 1
4 λ̂

α̂
γαγ

a Rα̂γα
βωzβ that we found already above. It is interesting

to see in (5.209), that some holomorphicity constraints like T α̂α
K = 0 are needed for the commutation. In

fact, in [50] this constraint was derived by demanding a vanishing Poisson bracket between the two genera-
tors of the BRST symmetries. The constraint T α̂α

K = 0 did not appear in our derivation via the currents
above. The reason is that we already started the derivation in (5.201) from an equation which assumes on-shell
holomorphicity.

5.10 Nilpotency of the BRST di�erentials

While the last section was rather a check than bringing much new information, the nilpotency of the BRST
di�erentials will give us additional constraints on the background �elds. The nilpotency is essential to de�ne
the physical spectrum as in the �at case via the cohomology. It would be inconsistent if this prescription brakes
down, as soon as a nonvanishing background is generated by the strings. Demanding nilpotency at least on-shell
and up to gauge transformations is thus legitimate.

Nilpotency constraints from the BRST transformation of the current In the same way as in the
previous section, we can examine the BRST-transformation of the BRST-current instead of studying nilpotency
on every single worldsheet �eld. Start from the de�ning equation of the BRST current

∂̄jz = −sφIall
δS

δφIall
(5.212)

and act with s for a second time

∂̄(sjz) = −s2φI
δS

δφI
+ sφIsφJ

δ2S

δφJ δφI︸ ︷︷ ︸
≡0

(5.213)

The BRST transformation of the BRST current is therefore the Noether current for the transformation s2. As
the BRST current is a target space scalar, we can replace the BRST di�erential with the covariant one when
calculating sjz:

sjz = scov

(
λδdzδ

)
= −λδscovdzδ =

(5.193)
= −λδλα 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

Πc
z −

3
2
λδλαHαγδΠγ

z − 2λδλαTαδ
γdzγ + 2λδλαλα2Rα2δα

βωzβ (5.214)

We want to demand that s2, whose current is sjz, vanishes up to gauge transformations. Due to proposition 4 on
page 137 in the appendix, every gauge transformation has (up to trivially conserved terms) an on-shell vanishing
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Noether current. Instead of deriving the form of s2 on the �elds by taking the divergence of this current, we
can simply demand that it vanishes on-shell. This is a necessary condition.15 Also due to proposition 4 it is a
su�cient condition, as we know already that sjz is a Noether current for a symmetry transformation and if this
current vanishes on-shell, the transformation can be extended to a local one, i.e. it is a gauge transformation.
The only equations of motion, which can make sjz vanish on-shell are the pure spinor constraints λγaλ = 0.
We therefore get the following conditions on the background �elds

⇒ λδHαCδλα = 0, λδλαTαδ
γ = 0, λδλα1λα2Rα2δα1

β = 0, (on shell) (5.215)

Remembering that we have the constraints Ťαδ|c = 3
2Hαcδ (5.165) and T̂αδ

γ̂ = 3
4HαδβPβγ̂ , we can extend the

above condition on the torsion on all indices

λδλαTαδ
C = 0 (on-shell) (5.216)

All these on-shell conditions can be formulated in an o�-shell version with the help of γ-matrices by using
(5.189) on page 49. Either we write that the terms are linear combinations of γ[1]'s, or equivalently we can
write that the γ[5]-part vanishes. In particular the constraint on HαCδ can then be further simpli�ed. We have

HCαβ = HCaγ
a
αβ for HCa ≡ −

1
16
HCδεγ

εδ
a (5.217)

In particular for C = γ, due to the (graded) total antisymmetry of Hγαβ, this should at the same time be
proportional to γa

γα and γa
βγ :

Hγαβ
(5.217)

= H[γ|aγ
a
|αβ]

(5.217)
=

1
16
H[γ|δεγ

εδ
a γa
|αβ]

(5.217)
=

1
16
Hεbγ

b
[γ|δγ

εδ
a γa
|αβ]

(D.65)
=
(D.103)

1
8
H[γ|aγ

a
|αβ](5.218)

In the last step we used the Cli�ord algebra (D.65) for the �rst two γ's and then the Fierz identity (D.103)
to throw away one of the resulting terms. Remember that the appendix about Γ-matrices doesn't use the
graded summation convention. For the Fierz identity we thus have a (graded) antisymmetrization, instead of
the symmetrization and for the Cli�ord algebra we get an extra minus sign because of the NW-de�nition of the
Kronecker-delta.

The second and the last term of the above equation (5.218) contradict each other if they do not vanish and
thus Hεαβ has to vanish. The components Hε̂αβ where constraint to be zero already before. Of the components
in (5.217), we thus have only Hcαβ nonvanishing.

Hεαβ = 0, Hcαβ = Hcaγ
a
αβ (5.219)

Hcαβ is a linear combination of γa
αβ and in �at space the two indeed coincide up to a constant factor. We

can now analyze in a similar way the constraint on the curvature in (5.215). As the pure spinor constraint is
quadratic it can be equivalently written as λα1λα2R[α2δα1]

β = 0 (on-shell). For this expression, one can do
the same reasoning as above with Hεαβ and arrives at

R[α2δα1]
β = 0 (5.220)

We will get the same constraint from the Bianchi identities later in case one feels uncomfortable with that line
of arguments.

Of course we get all the constraints also in the hatted version from the right-mover BRST current. We will
explicitely write them when we are collecting all constraints in section 5.13 on page 56.

Nilpotency on the single �elds Just to get a �avour of how the calculation would work if we act on each
�eld twice with the BRST di�erential, we perform this for the simplest cases. One discovers immediately that
acting on xK and λα twice with the covariant BRST transformation yields zero. The reformulation of s2cov in
terms of the square of the ordinary di�erential s2 gives a torsion or a curvature term respectively. These terms
have to vanish on-shell in order to have an on-shell vanishing s2:

0 = s2covx
K = s2xK︸ ︷︷ ︸

!
=0 (on− shell)

+2λαTαβ
Kλβ ⇒ λαTαβ

Kλβ != 0 (on− shell) (5.221)

0 = s2covλα = (s2)covλα︸ ︷︷ ︸
!
=0 (on− shell)

+2λγλδRγδβ
αλβ ⇒ λγλδRγδβ

αλβ != 0 (on− shell) (5.222)

15There are no trivially conserved parts in sjz . A trivially conserved part is of the form ∂ζS[ζξ] for some rank two tensor Sζξ.
In the conformal gauge this would take the form ∂zS[z̄z] which is of conformal weight (2,1). Such a term is certainly not present
in our current. �



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 54

On the antighosts we have s2covωzα = scovdzα which will not vanish, but which will correspond to a gauge
transformation. The same should be true for Lzz̄a. The calculation of s2dzγ is quite involved to calculate and
will probably contain also constraints that follow from the earlier ones via Bianchi identities. We will calculate
the identities anyway in sections 5.A on page 62 and 5.B on page 67.

5.11 Residual shift-reparametrization

Before we are going to collect all the constraints on the background �elds which we have obtained so far, let us
eventually make use of the residual shift-symmetry discussed in the paragraph on page 32 (which in turn refers
to the paragraph about shift-reparametrization on page 31). It is a target space symmetry that is based on a
residual shift reparametrization of the fermionic momenta:

dzα = d̃zα − Ξ(3)
b
δ(

�
x )(γbλ)αωzδ (5.223)

The BRST current gets changed under this reparametrization by a linear combination of the pure spinor
constraints (5.43), but this change can be undone by a rede�nition of the BRST transformations with the
corresponding antighost gauge transformations. This does of course not change the on-shell holomorphicity of
the BRST current, as the pure spinor term vanishes on-shell.

Apart from the change of the BRST current, we have the following induced transformations of the background
�elds coming along with this reparametrization:

Ω̃Mα
β = ΩMα

β − EM
γγb

γαΞ(3)
b
β (5.224)

C̃α
βγ̂ = Cα

βγ̂ − γb
γαΞ(3)

b
βPγγ̂ (5.225)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γγb

γαΞ(3)
b
β (5.226)

Note that the transformations of Cα
βγ̂ and Sαα̂

ββ̂ are in agreement with the holomorphicity constraints (5.179)
and (5.184), relating them to ΩMα

β. It is thus enough to memorize the transformation of the connection ΩMα
β.

Remember now the de�nition of the torsion as TA = dEA−EB∧ΩB
A. This implies the following transformation

of the corresponding torsion component (see also (F.56) in the appendix on page 143):

T̃α1α2
β = Tα1α2

β − γb
α1α2

Ξ(3)
b
β (5.227)

Due to the nilpotency constraints we have Tα1α2
β ∝ γb

α1α2
. In addition, the left-right symmetry of proposition 1

on page 29 induces the same statements for T̂α̂1α̂2
β̂ and the second residual shift symmetry related to the

reparametrization of d̂γ̂ . We can therefore completely �x the two residual gauge symmetries by choosing the
(obviously accessible) gauge

Tαβ
γ = 0, T̂α̂β̂

γ̂ = 0 (5.228)

We can now immediately take advantage of this additional (conventional) constraint and check the validity of
the constraints (5.187) and (5.188) on page 49.

5.12 Further discussion of some selected constraints

There are some constraints which deserve further examination, before we move on to study the Bianchi identities.
First, the four constraints (5.187), (5.188) and their hatted versions on page 49 do not look very useful as they
stand. We will show that they are actually consequences of other constraints. Second, with (5.183) and (5.184)
we have two equations for Sαα̂

ββ̂ and it is interesting to know whether they are equivalent or not. Let us start
with this last problem:

Consistency of (5.183) and (5.184) In the following we will (actually just for convenience) frequently use
the new conventional constraint Tαβ

γ = 0 = T̂α̂β̂
γ̂ (5.228). Starting with (5.183), the tensor of interest is given

by

Sαα̂
ββ̂ (5.183)

=
(5.179)

−∇α∇α̂Pββ̂ + 2R̂αγ̂α̂
β̂Pβγ̂ =

(F.28)
= −∇α̂∇αPββ̂ + 2Tαα̂

D︸ ︷︷ ︸
=0 (5.178)

∇DPβδ̂ − 2Rαα̂δ
βPδβ̂ − 2R̂αα̂δ̂

β̂Pβδ̂ + 2R̂αγ̂α̂
β̂Pβγ̂ (5.229)
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In order for this to be compatible with (5.184), i.e. with

Sαα̂
ββ̂ (5.184)

=
(5.180)

−∇α̂∇αPββ̂ + 2Rα̂γα
βPγβ̂ (5.230)

the curvature has to obey
Rα̂[αδ]

βPδβ̂ − R̂α[α̂δ̂]
β̂Pβδ̂ = 0 (5.231)

In fact, this condition will be a simple consequence of the torsion Bianchi identities that we will obtain in (5.428)
and (5.429).

Check of (5.187) The constraint (5.187) contains the covariant derivative of Cα
βγ̂ for which we can use in

turn the constraint (5.179) together with our new constraint (5.228).

∇[α2
Cα1]

βγ̂ − 2R[α2|δ|α1]
βPδγ̂ =

(5.179)
= ∇[α2

∇α1]P
βγ̂ − 2R[α2|δ|α1]

βPδγ̂ =
(F.28)

= −Tα2α1

D∇DPβγ̂ + 3R[α2α1δ]
β︸ ︷︷ ︸

=0 (5.220)

Pδγ̂ + R̂α2α1δ̂
γ̂︸ ︷︷ ︸

=0 (5.182),(5.219)

Pβδ̂ (5.232)

Only the �rst term remains, but recalling the nilpotency constraint (5.216) in combination with (5.189), we
observe that also this term vanishes, when contracted with γα1α2

a1...a5
. The constraint (5.187) therefore does not

give new information and will be omitted in future listings. The same is true of course for its hatted version
due to the left-right symmetry.

Relating (5.188) to a Bianchi identity For the constraint (5.188) we have to consider the following
combination

∇[α2
Sα1]α̂

ββ̂ − 2R̂[α1|γ̂α̂
β̂C|α2]

βγ̂ + 2R[α2|δ|α1]
βĈα̂

β̂δ =
(5.183)
=

(5.179)
−∇[α2|

(
∇|α1]∇α̂Pββ̂ − 2R̂|α1]γ̂α̂

β̂Pβγ̂
)
− 2R̂[α1|γ̂α̂

β̂∇|α2]
Pβγ̂ + 2R[α2|δ|α1]

β∇α̂P β̂δ =

(F.28)
= Tα2α1

C∇C∇α̂Pββ̂ + R̂α2α1α̂
γ̂︸ ︷︷ ︸

=0 (5.182),(5.219)

∇γ̂Pββ̂ − R̂α2α1γ̂
β̂︸ ︷︷ ︸

=0 (5.182),(5.219)

∇α̂Pβγ̂ +

+2∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ + 2R[α2δα1]

β︸ ︷︷ ︸
=0 (5.220)

∇α̂Pδβ̂ =

= Tα2α1

C∇C∇α̂Pββ̂ + 2∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ (5.233)

The �rst term vanishes again when contracted with γα1α2
a1...a5

((5.216) and (5.189)) and the constraint (5.188)
reduces to

γα1α2
a1...a5

∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ = 0 (5.234)

We will see in a second that this equation is automatically ful�lled when the Bianchi identity for the curvature
is ful�lled. We will study the Bianchi identities at a later point, but not all of those for the curvature, because
we intend to make use of Dragon's theorem, relating second to �rst Bianchi identity. Let us therefore write
down at this point the Bianchi identity that we have in mind (see (F.48) on page 143):

0 != ∇[α2|R̂|α1γ̂]α̂
β̂ + 2T [α2α1|

DR̂D|γ̂]α̂
β̂ =

=
2
3
∇[α2|R̂|α1]γ̂α̂

β̂ +
1
3
∇γ̂ R̂α2α1α̂

β̂︸ ︷︷ ︸
=0 (5.182),(5.219)

+
4
3
T γ̂[α2|

D︸ ︷︷ ︸
=0 (5.178)

R̂D|α1]α̂
β̂ +

2
3
Tα2α1

DR̂Dγ̂α̂
β̂ (5.235)

Once again the last torsion term vanishes when contracted with γα1α2
a1...a5

, so that the above Bianchi identity
implies

γα1α2
a1...a5

∇[α2|R̂|α1]γ̂α̂
β̂ = 0 (5.236)

which is even stronger than (5.234). Of course we also get a hatted version of this constraint.
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5.13 BI's & Collected constraints

The next step ist to study all the Bianchi identities. The logic is as follows: We have obtained certain constraints
on the H-�eld, on the torsion and on the curvature. As these objects are de�ned in terms of B-�eld, vielbein
and connection, the constraints can be seen as di�erential equations for the elementary �elds. If one solved
these equations and calculated again H-�eld, torsion and curvature, one would observe additional constraints
that one had not seen in the beginning. Being too lazy to solve for the elementary �elds, one studies instead the
Bianchi identities which deliver the additional constraints as consistency conditions. Depending on the point of
view, they are a direct consequence of either the nilpotency of the de Rham di�erential d2 = 0 (see appendix F
on page 140) or of the Jacobi identity for the commutator. Their explicit form, using the schematic index
notation of 108, reads:

∇AHAAA + 3TAA
CHCAA

!= 0 (5.237)

∇ATAA
D + 2TAA

CTCA
D != RAAA

D (5.238)

∇ARAAB
C + 2TAA

DRDAB
C != 0 (5.239)

Repeated bold indices at the same altitude are simply antisymmetrized ones. Dragon's theorem (see page 147)
tells us that � when the torsion Bianchi identity is ful�lled � we can replace the curvature Bianchi identity by
the weaker condition

RCCB
ATCC

B =
= [∇C ,∇C ]TCC

A + TCC
D∇DTCC

A + 2
(
∇CTCC

B + 2TCC
DTDC

B
)
TBC

A (5.240)

We will anyway concentrate on the Bianchi identities for H-�eld and torsion, because they provide new algebraic
constraints. The corresponding calculations are lengthy but not very elluminating and we put them into the
local appendices, at the end of this part of the thesis.

We will now collect all the constraints on the background �elds that we have obtained so far plus the ones
that we will obtain from the Bianchi identities. We label those by (BI). If we later make use of some explicit
form of one of the background �elds without giving the explicit equation number, the corresponding equation
should be among the following ones.

Not all equations we write are independent. It is sometimes convenient to have them in di�erent versions.
In particular, some constraints for H are at the same time constraints for the torsion and will be listed in both
paragraphs.

Restricted structure group constraints The �rst set of constraints is related to the restriction of the
structure group (of the supermanifold) to a a block diagonal form with three copies of Lorentz and scale
transformations. This was discussed in a paragraph on pages 35-33, in the remark on page 38 and in the
intermezzo on page 45. The following equations are taken from (5.89)-(5.91), (5.147) or (5.149) and (5.154)

ΩMα
β =

1
2
Ω(D)

M δα
β +

1
4
Ω(L)

Ma1a2
γa1a2

α
β, Ω̂Mα̂

β̂ =
1
2
Ω̂(D)

M δα̂
β̂ +

1
4
Ω̂(L)

Ma1a2
γa1a2

α̂
β̂ (5.241)

Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂

a1a2
γa1a2

α
β, Ĉα̂

β̂γ =
1
2
Ĉγδα̂

β̂ +
1
4
Ĉγ

a1a2
γa1a2

α̂
β̂ (5.242)

Sαα̂
ββ̂ =

1
4
Sδα

βδα̂
β̂ +

1
8
Sa1a2δα

βγa1a2
α̂

β̂ +

+
1
8
Ŝa1a2γ

a1a2
α

βδα̂
β̂ +

1
16
Sa1a2b1b2γ

a1a2
α

βγb1b2
α̂

β̂ (5.243)

GMN = EM
aGabEN

b, Gab = e2Φηab (5.244)

Constraints on H Due to (5.162)-(5.166), (5.219) and the total antisymmetry of H, its only nonvanishing
components are

Habc 6= 0 (in general) (5.245)

Hαβc = −2
3
Ťαβ|c ≡ −

2
3
γa

αβ

≡− 3
2 Hac︷︸︸︷
fac (5.246)

Hα̂β̂c =
2
3
Ťα̂β̂|c ≡

2
3
γa

α̂β̂
f̂ac (5.247)

The vanishing components are thus (written a bit redundantly)

HabC = HαβC = Hα̂β̂C = Hαβ̂C = HABC = 0 (5.248)
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The only additional algebraic constraint that we get from the Bianchi identities for the components of H is that
fa

c and f̂a
c have to be Lorentz plus scale transformations respectively. This is a very important point, because

it �nally provides a possibility to gauge �x two of the three local structure group transformations by �xing
fa

c and f̂a
c to the Kronecker delta.

(BI) + g.-�x. : fac = f̂ac = Gac (5.249)

This has, however, also other important consequences: the mixed connection that we used is not a suitable
connection any longer, as it would not preserve this gauge. We will discuss this issue at the beginning of
section 5.14 on page 59.

The derivative Binachi identities on H read:

(BI) : ∇δ̂Habc = −4T̂[ab|
ε̂γ|c]ε̂δ̂ (5.250)

∇̂δHabc = 4T[ab|
εγ|c]εδ (5.251)

∇[aHbcd] =
9
2
H[ab|

eHe|cd] (5.252)

Constraints on the torsion Let us now collect the information of the constraints (5.163)-(5.165), (5.175)-
(5.178) and (5.216). The only (a priori) nonvanishing components of the torsion TAB

C are

ŤA(c|d) = −1
2
∇̌AΦGcd (5.253)

Ťαβ|c = −3
2
Hαβc = γd

αβ fdc︸︷︷︸
Gdc (BI)

, Ťα̂β̂|c =
3
2
Hα̂β̂c = γd

α̂β̂
f̂dc︸︷︷︸

Gdc (BI)

(5.254)

T̂αc
γ̂ = Ťαδ|cPδγ̂ = γd

αδ fdc︸︷︷︸
Gdc (BI)

Pδγ̂ , Tα̂c
γ = Ťα̂δ̂|cP

γδ̂ = γd
α̂δ̂

f̂dc︸︷︷︸
Gdc (BI)

Pγδ̂ (5.255)

T ab
C 6= 0 (in general) (5.256)

With the help of the Bianchi identities, the �rst and the last line become more precise:

(BI) : Tαb
c = −1

2
∇αΦδc

b −
1
2
γb

c
α

β∇βΦ (5.257)

T̂α̂b
c = −1

2
∇̂α̂Φδc

b −
1
2
γb

c
α̂

β̂∇̂β̂Φ (5.258)

Tab
γ =

1
16

(
∇γ̂Pγδ̂ + 8∇̂γ̂ΦPγδ̂

)
γ̃ab δ̂

γ̂ (5.259)

T̂ab
γ̂ =

1
16
(
∇γPδγ̂ + 8∇γΦPδγ̂

)
γ̃ab δ

γ (5.260)

Tab
c =

3
2
Hab

c, T̂ab
c = −3

2
Hab

c (5.261)

The remaining components do vanish already without BI's, which can be written (again a bit redundantly) as

TAB
C = Tαα̂

C = Tαd
γ = T̂α̂d

γ̂ = 0 (5.262)

We are �nally able to write down explicitely the antisymmetrized di�erence tensor between left and right-mover
connection

(BI) ∆[AB]
c =

 −3Hab
c −Taβ

c T̂aβ̂
c

−Tαb
c 0 0

T̂α̂b
c 0 0

 (5.263)

Constraints on C and S and others The constraints on C and S can be regarded as de�ning equations.
We have already shown in that the two equations for S are equivalent up to Bianchi identities.

Cα
γγ̂ = ∇αPγγ̂ (5.264)

Ĉα̂
γ̂γ = ∇α̂Pγγ̂ (5.265)

Sαα̂
γβ̂ = −∇α Ĉα̂

β̂γ︸ ︷︷ ︸
∇α̂Pγβ̂

+2R̂αγ̂α̂
β̂Pγγ̂ (5.266)

Sαα̂
βγ̂ = −∇α̂ Cα

βγ̂︸ ︷︷ ︸
∇αPβγ̂

+2Rα̂γα
βPγγ̂ (5.267)



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 58

In addition we have from the Bianchi identities

(BI) 0 = ∇α̂Φ = ∇̂αΦ ⇐⇒ Ωa = Ω̂a = Ea
M∂MΦ (5.268)

⇒ ∆(D)
a = 0 (5.269)

∆(D)
α = ∇αΦ (5.270)

∆(D)
α̂ = −∇̂α̂Φ (5.271)

∇α̂Pδα̂ = 8Pδα̂∇̂α̂Φ (5.272)

∇αPαδ̂ = 8Pαδ̂∇αΦ (5.273)

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page 35 and (F.77),(F.79) and (F.81) on page
F.79. The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

RABC
D = diag (ŘABc

d, RABγ
δ, R̂ABγ̂

δ̂) (5.274)

ŘABc
d = F̌

(D)
AB δd

c + Ř
(L)
AB c

d, F̌
(D)
AB =

1
10
ŘABc

c (5.275)

RABγ
δ =

1
2
F

(D)
AB δγ

δ +
1
4
R

(L)
ABa1

bηba2γ
a1a2

γ
δ, F

(D)
AB = −1

8
RABγ

γ (5.276)

R̂ABγ̂
γ̂ =

1
2
F̂ (D)δα̂

β̂ +
1
4
R̂

(L)
ABa1

bηba2γ
a1a2

α̂
β̂, F̂

(D)
AB = −1

8
R̂ABγ̂

γ̂ (5.277)

with the scale �eld strength

F̌ (D) ≡ dΩ̌(D), F (D) ≡ dΩ(D), F̂ (D) ≡ dΩ̂(D) (5.278)

Finallly we had a couple of holomorphicity and nilpotency constraints:

R̂αcα̂
β̂ = Ťαδ|c︸ ︷︷ ︸

γ̃c αδ (BI)

Ĉα̂
β̂δ︸ ︷︷ ︸

∇α̂Pδβ̂

, Rα̂cα
β = Ťα̂δ̂|c︸ ︷︷ ︸

γ̃c α̂δ̂

Cα
βδ̂︸ ︷︷ ︸

∇αPβδ̂

(5.279)

R̂αγα̂
β̂ = 0, Rα̂γ̂α

β = 0 (5.280)

γα1α2
a1...a5

Rdα1α2
β = 0, γα̂1α̂2

a1...a5
R̂dα̂1α̂2

β̂ = 0 (5.281)

γα1α2
a1...a5

Rδ̂α1α2

β = 0, γα̂1α̂2
a1...a5

R̂δα̂1α̂2
β̂ = 0 (5.282)

R[α1α2α3]
β = 0, R[α̂1α̂2α̂3]

β̂ = 0 (5.283)

Taking the trace of the �rst two curvature constraints gives further informations on Dilatation-Field-strength
and Lorentz curvature

F̂ (D)
αc = −1

8
Ťαδ|c∇α̂Pδα̂, F

(D)
α̂c = −1

8
Ťα̂δ̂|c∇αPαδ̂ (5.284)

F̂ (D)
αγ = 0, F

(D)
α̂γ̂ = 0 (5.285)

The Bianchi identities provide more information about the third and the fourth curvature constraint

(BI) Rc[αβ]
γ = γd

αβTdc
γ , R̂c[α̂β̂]

γ̂ = γd
α̂β̂
T̂dc

γ̂ (5.286)

Rγ̂[αβ]
δ = −γe

αβγ̃e γ̂δ̂P
δδ̂, R̂γ[α̂β̂]

δ̂ = −γe
α̂β̂
γ̃e γδPδδ̂ (5.287)

Remaining di�erential BI's

Rbcα
δ = ∇αTbc

δ
∣∣
Ω̌=Ω̂

+ 4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ (5.288)

R̂bcα̂
δ̂ = ∇α̂T̂bc

δ̂
∣∣∣
Ω̌=Ω

+ 4γ̃[b| α̂γ̂Pεγ̂ γ̃|c] εδPδδ̂ (5.289)

∇α̂Tbc
δ = −2γ̃[b| α̂δ̂∇|c]P

δδ̂ − 3Hbceγ
e
α̂δ̂
Pδδ̂ (5.290)

∇̂αT̂bc
δ̂ = −2γ̃[b|αδ∇|c]Pδδ̂ + 3Hbceγ

e
αδPδδ̂ (5.291)
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∇[aTbc]
δ = −3H[ab|

eTe|c]
δ − 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.292)

∇̂[aT̂bc]
δ̂ = 3H[ab|

eT̂e|c]
δ̂ − 2T[ab|

εγ̃|c] εδPδδ̂ (5.293)

Rαβc
d != 2∇[αTβ]c

d + 3γe
αβHec

d + 4T[α|c
eT|β]e

d (5.294)

R̂α̂β̂c
d != 2∇̂[α̂T̂β̂]c

d − 3γe
α̂β̂
Hec

d + 4T̂[α̂|c
eT̂|β̂]e

d (5.295)

Rαβ̂c
d = ∇β̂Tcα

d − 2γ̃c αβPβε̂γd
ε̂β̂

+ 2γ̃c β̂δ̂P
εδ̂γd

εα (5.296)

R̂α̂βc
d = ∇̂βT̂cα̂

d − 2γ̃c α̂β̂P
εβ̂γd

εβ + 2γ̃c βδPδε̂γd
ε̂α̂ (equivalent) (5.297)

R̂α[bc]
d = −3

4
∇̂αHbc

d + 2γ̃[b|αδPδε̂T̂ε̂|c]
d + Tbc

εγd
εα (5.298)

Rα̂[bc]
d =

3
4
∇α̂Hbc

d + 2γ̃[b| α̂δ̂P
εδ̂Tε|c]

d + T̂bc
ε̂γd

ε̂α̂ (5.299)

R̂
(L)
dαb

d =
1
8
∇γ̂Pεε̂γ̃bc ε̂

γ̂γc
εα (5.300)

R
(L)
dα̂b

d =
1
8
∇γPεε̂γ̃bc ε

γγc
ε̂α̂ (5.301)

R[abc]
d =

3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d (5.302)

R̂[abc]
d = −3

2
∇̂[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T̂[ab|

ε̂T̂ε̂|c]
d (5.303)

−R(L)
d[ab]

d =
3
4
∇dHab

d − Tab
γ∇γΦ + 2Td[a|

εTε|b]
d (5.304)

−R̂(L)
d[ab]

d = −3
4
∇̂dHab

d − T̂ab
γ̂∇γ̂Φ + 2T̂d[a|

ε̂T̂ε|b]
d (5.305)

5.14 Local SUSY-transformation of the fermionic �elds

In order to make contact to generalized complex geometry, we are interested in the local supersymmetry trans-
formations of the fermionic �elds, i.e. the gravitino and the gauge �eld. In the appendix H on page 154, we
carefully derive the supergravity transformations in Wess-Zumino gauge in general, following roughly [15]. The
fermionic �elds are the gravitino and the dilatino.

5.14.1 Connection to choose

In the appendix H on page 154 we describe the ususal procedure of going to the Wess Zumino gauge EM
A
∣∣ =

δM
A and ΩMA

B
∣∣ = 0 (see (H.100) and (H.127)). This gauge �xing is possible with any connection as long as

it takes the same values (in the Lie algebra) as the gauge transformations (Remember, a connection is a Lie
algebra valued one form). However, the present case is a bit special in the following sense: We have derived the
supergravity constraints using the connection

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

 (5.306)

After that we have coupled the independent structure group transformations of the three blocks by a gauge �xing
s.t. Tαβ

c = γc
αβ and Tα̂β̂

c = γc
α̂β̂

. The remaining gauge symmetry has to leave this gauge �xing invariant which
reduces the structure group to only one copy of the Lorentz group plus one scale group. The above connection
however does not leave the gauge �xing invariant (the covariant derivatives do not vanish in general). In order
to be consistent, we thus have to reformulate the equations in terms of a connection which leaves γc

αβ and
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γc
α̂β̂

invariant. Possible choices are either ΩMA
B (de�ned by ΩMα

β and ∇Mγc
αβ = ∇Mγc

α̂β̂
= 0) or by Ω̂MA

B

(de�ned by Ω̂Mα̂
β̂) or by the average connection

Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)

= ΩMA
B +

1
2
∆MA

B (5.307)

We will study the choices ΩMA
B and Ω←→MA

B . The �rst has the advantage that at least the left mover equations
stay simple while the second has the advantage that the symmetry between left and right movers is preserved.
Corresponding to the the �rst choice the connection part of the WZ gauge simply reads

ΩM A
B
∣∣ = 0 (gauge I) ⇐⇒ ΩM A

B
∣∣
Ω̌=Ω,θ=0

= diag (0, 0, ∆M α̂
β̂
∣∣∣) (5.308)

In this gauge all the equations derived in appendix H on page 154 hold literally. The average connection becomes

Ω←→M A
B
∣∣∣ =

1
2

∆MA
B
∣∣ (gauge I) (5.309)

Alternatively to gauge-I we could put Ω̂M A
B
∣∣∣ = 0 or equivalently Ω←→M A

B
∣∣∣ = − 1

2 ∆MA
B
∣∣ which would be

the same type of gauge with simply the role of hatted and unhatted variables interchanged.
However, a di�erent natural gauge �xing (being symmetric in hatted and unhatted variables) is

Ω←→M A
B
∣∣∣ = 0 (gauge II) ⇐⇒ ΩMA

B
∣∣
Ω̌=Ω,θ=0

= diag (−1
2
∆Ma

b,−1
2
∆Mα

β,
1
2
∆Mα̂

β̂)
∣∣∣∣ (5.310)

In this gauge we have to replace in all equations of appendix H on page 154 ΩMA
B with Ω←→MA

B and TMN
Aby

T←→MN
A.

5.14.2 The dilatino transformation

The dilatino is part of the dilaton-super�eld Φ(ph). We de�ne it as

λµ ≡ ∂µΦ(ph)

∣∣ (5.311)

λ̂µ̂ ≡ ∂µ̂Φ(ph)

∣∣ (5.312)

In [11] and in [50] there are quantum arguments that ∇αΦ(ph) = 4Ωα and ∇α̂Φ(ph) = 4Ω̂α̂. Because of the
introduction of our compensator �eld Φ, the relations modify in our case to

Eα
M∂M (Φ(ph) + 4Φ) = 4Ωα ⇐⇒ −4∇αΦ = ∇αΦ(ph) (5.313)

Eα̂
M∂M (Φ(ph) + 4Φ) = 4Ω̂α̂ ⇐⇒ −4∇̂α̂Φ = ∇̂α̂Φ(ph) (5.314)

Let us summarize the covariant derivatives of the compensator �eld using the di�erent connections

∇aΦ = 0 ∇̂aΦ = 0 ∇←→aΦ = 0
∇αΦ = − 1

4∇αΦ(ph) ∇̂αΦ = 0 ∇←→αΦ = − 1
8 ∇←→αΦ(ph)

∇α̂Φ = 0 ∇̂α̂Φ = − 1
4∇̂α̂Φ(ph) ∇←→α̂Φ = − 1

8 ∇←→α̂Φ(ph)

(5.315)

The dilatino therefore is also related to the ~θ-component of the compensator �eld Φ and the leading component
of the scaling connections.16

5.14.2.1 Gauge I

In gauge I we can take the equations literally. We can directly plug in the torsion constraints in the �rst and
the last line. For the second line we need TCM

α̂ = T̂CM
α̂ −∆[CM]

α̂ which implies

TCM
α̂
∣∣ = −∆[CM]

α̂
∣∣ =

(
0 1

4 Tγd
e| γd

eµ̂
α̂

− 1
4 Tµd

e| γd
eγ̂

α̂ − 1
2 T̂[γ̂|d

eγd
e|µ̂]

α̂

)
(5.316)

According to (H.237) and (H.193) L(D)
A

B
∣∣∣ != ξC

0 φC we have

δλA = εC ∇C∇AΦ(ph)

∣∣ − 1
2
εCφCλA (5.317)

16

Ωµ = φµ +
1

4
λµ + xN ∂N Ωµ| + . . .

Ω̂µ̂ = φµ̂ +
1

4
λ̂µ̂ + xN ∂N Ω̂µ̂

˛̨̨
+ . . . �
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5.14.2.2 Gauge II

In gauge II we have to replace everywhere T with T←→ = 1
2 (T + T̂ ). We have

T←→CM
a
∣∣∣ =

1
2

(
TCM

a + T̂CM
a
)∣∣∣ =

(
γa

γµ 0
0 γa

γ̂µ̂

)
(5.318)

T←→CM
α
∣∣∣ =

1
2

∆CM
α| =

 − 1
4 T[γ|d

e
∣∣ γd

e|µ]
α − 1

8 T̂µ̂d
e
∣∣∣ γd

eγ
α

1
8 T̂γ̂d

e
∣∣∣ γd

eµ
α 0

 (5.319)

T←→CM
α̂
∣∣∣ = −1

2
∆CM

α̂
∣∣ =

(
0 1

8 Tγd
e| γd

eµ̂
α̂

− 1
8 Tµd

e| γd
eγ̂

α̂ − 1
4 T̂[γ̂|d

e
∣∣∣ γd

e|µ̂]
α̂

)
(5.320)

These transformations are invariant under the exchange of hatted and unhatted indices if at the same time T
is replaced by T̂ and ε by ε̂.

According to (H.237) and (H.193) L(D)
A

B
∣∣∣ != ξC

0 φC we have

δλA = εC ∇←→C ∇←→AΦ(ph)

∣∣∣ − 1
2
εCφCλA (5.321)

Remember from footnote 21 that F←→
(D)
MN = 1

2

(
E[M

α∇←→N ]∆
(D)
α − T←→MN

α∆(D)
α −E[M

α̂∇←→N ]∆
(D)
α̂ + T←→MN

α̂∆(D)
α̂

)
and that ∇←→αΦ = 1

2∆(D)
α , ∇←→α̂Φ = − 1

2∆(D)
α̂ , so that we get

F←→
(D)
BC = δ[B

A∇←→C]∇←→AΦ− T←→BC
A∇←→AΦ (5.322)

F←→
(D)
bc = − T←→bc

A∇←→AΦ

F←→
(D)
bC = −1

2
∇←→b∇←→CΦ− T←→bC

A∇←→AΦ =

= −1
2
Eb

m∇←→m∇←→CΦ− 1
2
Eb

M∇←→M∇←→CΦ− T←→bC
A∇←→AΦ

F←→
(D)
BC = −∇←→[B ∇←→C]Φ− T←→BC

A∇←→AΦ
(5.315)

= −1
8
T←→BC

a∇←→aΦ(ph)

The second equation is of particular interest to extract information about the ~θ
2
-part of the dilaton Φ(ph)

Eb
M∇←→M∇←→CΦ = −Eb

m∇←→m∇←→CΦ− 2 F←→
(D)
bC − 2 T←→bC

A∇←→AΦ

Alternatively

∇←→[B ∇←→C]Φ = − T←→BC
A∇←→AΦ− F←→

(D)
BC (5.323)

F←→
(D)
bC = − T←→bC

A∇←→AΦ− ∇←→[b∇←→C]Φ (5.324)

Now we make use of ∇←→aΦ = 0 and ∇←→AΦ = − 1
8 ∇←→AΦ(ph)

F←→
(D)
bC =

1
8
T←→bC

A∇←→AΦ(ph) +
1
16

(
Eb

m∇←→m∇←→CΦ + Eb
M∇←→M∇←→CΦ

)
(5.325)

or

− Eb
M∇←→M∇←→CΦ = −16 F←→

(D)
bC + 2 T←→bC

A∇←→AΦ(ph) + Eb
m∇←→m∇←→CΦ (5.326)

At ~θ = 0 we thus can write

ψb
MδM

A ∇←→A∇←→CΦ
∣∣∣ = 16 F←→

(D)
bC

∣∣∣ − 2 T←→bC
A
∣∣∣ λA − eb

m∇←→mλC (5.327)
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5.14.3 The gravitino transformation

For the gravitino we have according to (H.211),(H.212) and (H.193)

δψm
α = ∇←→mε

α + 2εγ T←→γm
α
∣∣∣ =

= ∇←→mε
α + 2εγem

b T←→γb
α
∣∣∣ + 2εγem

β T←→γβ
α
∣∣∣ + 2εγ ψ̂m

β̂ T←→γβ̂
α
∣∣∣ =

= ∇←→mε
α + εγem

b T̂γb
α
∣∣∣ + εγem

β T̂γβ
α
∣∣∣ + εγ ψ̂m

β̂ T̂γβ̂
α
∣∣∣ =

= ∇←→mε
α +

3
8
εγem

b Hbd
e| γd

eγ
α − 1

2
εγψm

β T[γ|d
e
∣∣ γd

e|β]
α +

−1
4
εγ ψ̂m

β̂ T̂β̂d
e
∣∣∣ γd

eγ
α =

= ∇←→mε
α +

3
8
εγem

be−2φhbd
eγd

eγ
α − 1

4
εγψm

βγd
e
[γ|

δλδγ
d

e|β]
α +

−1
8
εγ ψ̂m

β̂γd
e
β̂

δ̂λ̂δ̂γ
d

eγ
α (5.328)

We can then make use of equation (G.47), which relates the superspace connection to the Levi Civita connection
and other objects:

Ωkβ
ε| = ω

(LC)
kβ

ε +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β
ε +

1
2
ek

a Ωa| δβε (5.329)

Ωkβ̂
ε̂
∣∣∣ = ω

(LC)

kβ̂

ε̂ +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β̂
ε̂ +

1
2
ek

a Ωa| δβ̂
ε̂ (5.330)

with

Tmn
d
∣∣ = em

aen
b Tab

d
∣∣ + 2em

aψn
B TaB

d
∣∣ + ψm

Aψn
B TAB

d
∣∣ (5.331)

When we plug (5.329)-(5.331) into (5.328), the gravitino transformation is completely determined. In particular,
our e�orts to extract the Levi-Civita connection allows a comparison to the existing literature. Unfortunately
the obtained expression is very long, especially when we plug in the results for TaB

d and TAB
d, so that a direct

comparison is not yet accessible.

5.A Bianchi identities for H

In this local appendix we will study explicitly all the Bianchi identities for the H-�eld. Note that in this section
all the underbars are replaced by a tilde, which was my former notation for the mixed connection.

ΩA
B → Ω̃A

B ≡

 Ω̌a
b 0 0

0 Ωα
β 0

0 0 Ω̂α̂
β̂

 , T̃AB
C ≡ (ŤAB

c, TAB
γ , T̂AB

γ̂) (5.332)

Another change is that in this and the next local appendix, the symbol ∇AΦ is used with the meaning EA
M∂MΦ

(as if Φ would be a scalar �eld). As it is a compensator �eld, the de�nition ∇AΦ ≡ EA
M (∂MΦ − ΩM ) makes

more sense, and we use this in the main text. The change was of course considered, when taking over the results
into our �collected constraints�-section.

The Bianchi identity of interest has the form

0 != ∇̃AHAAA + 3T̃AA
CHCAA (5.333)

The equations are independent on the precise form of Ω̌, s.th. sometimes it is convenient to calculate with
the left-mover connection Ω̌a

b = Ωa
b (the latter de�ned via ∇Mγa

αβ = 0, see appendix G on page 149) and

sometimes we set Ω̌a
b = Ω̂a

b (de�ned via ∇̂Mγa
α̂β̂

= 0).17 The di�erence one-form between the left-mover

17Let us show that the equations with di�erent Ω̌ are equivalent:

∇̃AHAAA + 3T̃AA
CHCAA

˛̨̨
Ω̌=Ω̂

−
“
∇̃AHAAA + 3T̃AA

CHCAA

”˛̨̨
Ω̌−Ω

=

= −3∆AA
cHcAA + 3∆AA

cHcAA = 0

where ∆AB
C ≡ Ω̂AB

C − ΩAB
C �
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and the rightmover connection is denoted by ∆a
b, or more generally for all connection components (see again

appendix G on page 149):

∆MA
B ≡ Ω̂MA

B − ΩMA
B (5.334)

Every index A of the Bianchi identity can be either a, α or α̂. As all indices are antisymmetrized, we can
distinguish the cases by specifying how often each type of index appears. We denote in brackets �rst the number
of bosonic indices, then the number of unhatted fermionic indices and �nally the number of hatted fermionic
indices:(#a,#α,#α̂). The sum has to add up to four: #a+#α+#α̂ = 4. Each number is in {0, . . . , 4} which
has �ve elements. If #a is 0 there are �ve possibilities left for #α and #α̂ is �xed. If #a is 1, there are four
possibilities left for #α, and so on. Altogether there are 5+4+3+2+1 = 15 distinct cases. However, some of
them are related by the symmetry between hatted and unhatted indices: (#a,#α,#α̂)↔(#a,#α̂,#α). This
map has ��xed points� only for (#α̂,#α)∈ {(0, 0), (1, 1), (2, 2)}. The e�ective number of equations we have
to calculate is thus 15−3

2 + 3 = 9. In the following we go through all these cases. We will frequently make
use of constraints on the background �elds without refering to the corresponding equation numbers. All these
constraints are taken from the collected constraints in section 5.13 on page 56. Of course we will not make use
of those constraints which are marked as coming from the Bianchi identities and which we are just about to
derive (except when we have obtained it already).

• (0,4,0)αβγδ ↔((0,0,4)α̂β̂γ̂δ̂):

0 != ∇[αHβγδ]︸ ︷︷ ︸
=0

+3T[αβ|
CHC|γδ] = (5.335)

= 3T[αβ|
cHc|γδ] = (5.336)

= −2γd
[αβ|fd

cγe
|γ]δfec (5.337)

The last line can only reduce to the Fierz identity γd
[αβ|γd |γ]δ = 0 for18

fd
cgcbfe

b = (f · g · fT )de
!∝ Gde ∝ ηde (5.338)

The same for f̂ :
(f̂ · g · f̂T )ab ∝ Gab (5.339)

That means, f and f̂ are proportional to a Lorentz transformation. If nonzero, we can thus use the local Lorentz
transformation (acting only on the unhatted spinor indices) and the local scale transformation (likewise acting
only on the unhatted spinor indices) to �x f to unity and likewise use the hatted transformations to �x f̂ to
unity:

Tαβ
c = γc

αβ

∆[αβ]
c=0

= T̂αβ
c (5.340)

T̂α̂β̂
c = γc

α̂β̂
= Tα̂β̂

c (5.341)

⇒ Hαβc = −2
3
γd

αβGdc = −2
3
e2Φγd

αβηdc (5.342)

Hα̂β̂c =
2
3
γd

α̂β̂
Gdc =

2
3
e2Φγd

α̂β̂
ηdc (5.343)

This constraint for Tαβ
c is a constraint on the vielbein only. However, now it makes sense to relate Ω̌Ma

b to
ΩMα

β via ∇Mγa
αβ = 0. This implies on the other hand ∇Mγa

α̂β̂
= −∆Mb

aγb
α̂β̂

!

18

0
!
= γβα

a γδγ
b γd

(αβ|fd
cγe
|γ)δfec =

= γβα
a γd

αβγδγ
b γe

γδfd
cfec + γβα

a γd
γαγδγ

b γe
βδfd

cfec + γβα
a γd

βγγδγ
b γe

αδfd
cfec =

= (16)2fa
cfbc + 2 ·

“
δd
aδβ

γ + γa
d β

γ

”“
δe
bδγ

β + γb
e γ

β

”
fd

cfec =

= (16)2fa
cfbc + 32δd

aδe
bfd

cfec + 2 · 32δad
eb fd

cfe
c =

= 16 · 18fa
cfbc − 32Gabfe

cfe
c + 32fb

cfac =

= 16 · 20 · fa
cfbc − 32Gabfe

cfe
c

⇒ fa
cfbc = (

1

10
fe

cfe
c)Gab �
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• (0,3,1)αβγδ̂ ↔((0,1,3)α̂β̂γ̂δ):

0 != ∇[αHβγδ̂] + 3T[αβ|
CHC|γδ̂] = 0 (5.344)

• (0,2,2)αβγ̂δ̂:

0 != ∇[αHβγ̂δ̂] + 3T[αβ|
CHC|γ̂δ̂] = (5.345)

∝ Tαβ
cHcγ̂δ̂ + Tγ̂δ̂

cHcαβ = (5.346)

∝ γa
αβfa

cγb
γ̂δ̂
f̂bc − γb

γ̂δ̂
f̂b

cγa
αβfac = (5.347)

= γa
αβγ

b
γ̂δ̂

(
fa

cf̂bc − f̂b
cfac

)
= 0 (5.348)

• (1,3,0)αβγd↔((1,0,3)α̂β̂γ̂d):19

0 != ∇[αHβγd] + 3T[αβ|
CHC|γd] = (5.349)

=
3
4
∇[αHβγ]d +

3
2
T[β|d

cHc|γα] = (5.350)

= −1
2
∇[α(γc

βγ]Gcd)− T[β|d|cγ
c
|γα] = (5.351)

= −γc
[βγ

(
(∂α]Φ− Ωα])Gcd + Tα]d|c︸ ︷︷ ︸

Tα][d|c]+
1
2 (Ωα−∂αΦ)Gdc=−Tα]c|d+(Ωα−∂αΦ)Gdc

)
= (5.352)

= γc
[βγTα]c|d (5.353)

Let us try to solve this constraint by contracting with γαβ
a :

0 != γαβ
a γc

αβTγc|d + γαβ
a γc

γαTβc|d + γαβ
a γc

βγTαc|d = (5.354)

= 16Tγa|d + 2
(
δc
aδ

β
γ + γc

a γ
β
)
Tβc|d = (5.355)

= 18Tγa|d + 2γc
a γ

βTβc|d (5.356)

Taking the symmetric part in a, d yields

0 != 9 (Ωγ −∇γΦ)Gad + 2γc
(a| γ

βTβc||d) (5.357)

Knowing already the symmetric part20 Tβ(c|d) = 1
2 (Ωβ − ∂βΦ)Gcd the above equation can be written in terms

of the yet unknown antisymmetric part of Tβc|d (let's call it Ṫβcd ≡ Tβ[c|d]):

0 != 9 (Ωγ −∇γΦ)Gad + γc
a γ

βTβc|d + γc
d γ

βTβc|a = (5.358)

= 9 (Ωγ −∇γΦ)Gad + γc
a γ

βṪβcd + γc
a γ

βTβ(c|d) + γc
d γ

βTβ(c|a) + γc
d γ

βṪβca = (5.359)

= 9 (Ωγ −∇γΦ)Gad + γca γ
βṪβ

c
d + γcd γ

βṪβ
c
a (5.360)

19Remember Tα(c|d) = 1
2
(Ωα − ∂αΦ)Gcd. This can be reformulated as a condition only on the vielbein:

Tαc|d = (dEe)αcGed + Ω[αc]
eGed| {z }

≡Ω[αc]|d

Tα(c|d) = (dEe)α(cGd)e +
1

2
Ωα(c|d) =

= (dEe)α(cGd)e +
1

2
ΩαGcd

⇒ (dEe)α(cGd)e = −
1

2
∂αΦ Gcd

⇒ (dE)α(c|d) = −
1

2
∂αΦ Gcd

ẼM
A ≡ eΦEM

A

(dẼ)α(c|d) = ∂[αΦeΦGc]d −
1

2
eΦ∂αΦ Gcd = 0, �

20Note that taking the trace in a, d above, using

γc
(a| γ

β γ̃c|d)β
δ = −2Ga[dδc

c]δ
δ
γ = −9Gadδδ

α

yields

0
!
= 9 · 5 (Ωγ −∇γΦ) + γc

a γ
βTβc

a �
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By contracting with γab
α

γ and using

γabγca = δa
aγ

b
c − δb

aγ
a

c − δa
c γ

b
a + δa

aδ
b
c11− δa

c δ
b
a11 = (5.361)

= 8γb
c + 9δb

c11 (5.362)

γabγcd = γab
cd + δb

cγ
a

d + δa
dγ

b
c − δb

dγ
a

c − δa
c γ

b
d + δa

dδ
b
c11− δa

c δ
b
d11 (5.363)

−γd
bγc

a = γab
cd + δb

cγ
a

d − δa
dγ

b
c + ηbaγdc + ηcdγ

ba − δa
dδ

b
c11 + ηcdη

ba11 (5.364)

⇒ γabγcd = −γd
bγc

a + 2δa
dγ

b
c − δb

dγ
a

c − δa
c γ

b
d − ηbaγdc − ηcdγ

ba +
(
2δa

dδ
b
c − δa

c δ
b
d − ηcdη

ba
)
11 (5.365)

we arrive at (using −γc
a

α
βTβ

c
a = 45 (Ωα −∇αΦ))

0 != 9γab
α

γ (Ωγ −∇γΦ)Gad +
(
8γb

cα
β + 9δb

cδ
β
α

)
Ṫβ

c
d +

+
(
−γd

bγc
a + 2δa

dγ
b
c − δb

dγ
a

c − δa
c γ

b
d − ηbaγdc − ηcdγ

ba +
(
2δa

dδ
b
c − δa

c δ
b
d − ηcdη

ba
)
11
)
α

βṪβ
c
a =(5.366)

= 9γd
b
α

γ (Ωγ −∇γΦ) + 8γb
cα

βṪβ
c
d + 9Ṫα

b
d +

+45γd
b
α

β (Ωβ −∇βΦ) + 2γb
cα

βṪβ
c
d − 45δb

d (Ωα −∇αΦ)− γb
d Ṫ

a
a︸︷︷︸

=0

+

−γdc α
βṪβ

cb − γba
α

βṪβda + 2Ṫα
b
d − δb

d Ṫα
c
c︸︷︷︸

=0

−Ṫαd
b = (5.367)

= −54γb
d α

γ (Ωγ −∇γΦ)− 45δb
d (Ωα −∇αΦ) + 12Ṫα

b
d +

+10γb
cα

βṪβ
c
d + γbc

α
βṪβcd − γdc α

βṪβ
cb (5.368)

The antisymmetric part (in b,d) of this equation reads

0 != −54γb
d α

γ (Ωγ −∇γΦ) + 12Ṫα
b
d + 12γ[b|

cα
βṪβ

c
|d] (5.369)

Taking now the antisymmetric part in a, d of (5.356) yields

0 != 18Ṫγad + γc
a γ

βTβc|d − γc
d γ

βTβc|a = (5.370)

= 18Ṫγad + γc
a γ

βṪβcd + γc
a γ

βTβ(c|d) − γc
d γ

βṪβca − γc
d γ

βTβ(c|a) = (5.371)

= 18Ṫγad + γc
a γ

βṪβcd − γc
d γ

βṪβca + γda γ
β(Ωβ − ∂βΦ) = (5.372)

= 18Ṫγad − 2γ[a|c γ
βṪβ

c
|d] + γda γ

β(Ωβ − ∂βΦ) (5.373)

⇒ 12γ[b|
c α

βṪβ
c
|d] = 6× 18Ṫα

b
d + 6γd

b
α

β(Ωβ − ∂βΦ) (5.374)

⇒ 0 != −60γb
d α

γ
(
Ωγ − Eγ

M∂MΦ
)

+ 6× 20Ṫα
b
d (5.375)

Ṫα
b
d =

1
2
γb

d α
γ
(
Ωγ − Eγ

M∂MΦ
)︸ ︷︷ ︸

−∇γΦ

(5.376)

or combined with the symmetric part:

Tβc
a = −1

2
∇βΦδca − 1

2
γc

a
β

γ∇γΦ (5.377)

and equivalently

T̂β̂c
a = −1

2
∇̂β̂Φδca − 1

2
γc

a
β̂

γ̂∇̂γ̂Φ (5.378)

• (1,2,1)αβγ̂d↔((1,1,2)α̂β̂γd):

0 != ∇̃[αHβγ̂d] + 3T̃[αβ|
EHE|γ̂d] = (5.379)

=
1
4
∇γ̂Hαβd +

1
2
T̂αβ

ε̂Hε̂γ̂d +
1
2
Tγ̂d

eHeαβ = (5.380)

= −1
6
∇γ̂(γc

αβfcd)−
1
3
Tγ̂d

eγc
αβfce = (5.381)

fce=Gce= −1
3
γc

αβ

(
(∇γ̂Φ− Ωγ̂)Gcd + Tγ̂d|c

)︸ ︷︷ ︸
−Tγ̂c|d

(5.382)
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(5.253)⇒ Tγ̂c
d = 0, Ωγ̂ = ∇γ̂Φ (5.383)

Likewise we have
T̂αb

c = 0, Ω̂γ = ∇γΦ (5.384)

According to (5.285) and (5.284) or footnote ?? on page ??, we now get in addition21

Ωa = Ω̂a = ∇aΦ (5.385)

and

∇̃α̂Pδα̂ = 8Pδδ̂
(
∇̃δ̂Φ− Ω̂δ̂

)
(5.386)

∇̃αPαδ̂ = 8Pαδ̂(∂αΦ− Ωα) (5.387)

• (2,2,0)abαβ ↔((2,0,2)abα̂β̂):22

0 != ∇[aHbαβ] + 3T[ab|
CHC|αβ] = (5.388)

=
1
2
∇[aHb]αβ +

1
2
Tab

cHcαβ +
1
2
Tαβ

cHcab = (5.389)

=
1
2
∇[a|(−

2
3
γc

αβfc|b])−
1
2
γd

αβ

(
2
3
Tab

cfdc − fd
cHcab

)
= (5.390)

fcb=Gcb= −1
3
γd

αβ

(
Tab|d −

3
2
Hdab − 2

(
∂[aΦ− Ω[a

)︸ ︷︷ ︸
0 (5.385)

Gb]d

)
(5.391)

Using 1
16γ

d
αβγ

αβ
c = δd

c we get

Tab|d =
3
2
Habd (5.392)

Likewise we have23

T̂ab|d = −3
2
Habd (5.393)

21Let us study in more detail the consequences of (5.383)-(5.385). Remember the di�erence tensor ∆
(D)
M = Ω̂M −ΩM . Using it,

we can seperate the connection in a tensorial part and a total derivative.

Ω
(D)
M = ∂MΦ− EM

α∆
(D)
α , Ω̂

(D)
M = ∂MΦ + EM

α̂∆
(D)
α̂ , Ω←→

(D)
M = ∂MΦ− 1

2
EM

α∆
(D)
α + 1

2
EM

α̂∆
(D)
α̂

or equivalently

∆
(D)
α = ∇αΦ, ∆

(D)
α̂ = −∇̂α̂Φ, ∇←→αΦ = 1

2
∆

(D)
α ∇←→α̂Φ = − 1

2
∆

(D)
α̂

Only the mixed connection has a di�erent dilatation for each block:

Ω
(D)
MA

B =

0B@ Ω̌
(D)
M δb

a 0 0

0 1
2
Ω

(D)
M δα

β 0

0 0 1
2
Ω̂

(D)
M δα̂

β̂

1CA
where Ω̌

(D)
M can be either Ω

(D)
M , Ω̂

(D)
M or Ω←→

(D)
M . The scaling curvatures (�eld strengths) built from these scaling connections read

F
(D)
MN = E[M

α∇N ]∆
(D)
α − TMN

α∆
(D)
α , F̂

(D)
MN = −E[M

α̂∇̂N ]∆
(D)
α̂ + T̂MN

α̂∆
(D)
α̂ ,

F←→
(D)
MN = 1

2

“
E[M

α∇N ]∆
(D)
α − TMN

α∆
(D)
α −E[M

α̂∇̂N ]∆
(D)
α̂ + T̂MN

α̂∆
(D)
α̂

”
F←→

(D)
MN = 1

2

“
E[M

α ∇←→N ]∆
(D)
α − T←→MN

α∆
(D)
α −E[M

α̂ ∇←→N ]∆
(D)
α̂ + T←→MN

α̂∆
(D)
α̂

”
�

22Combinatorically [ab][αβ] arises 4 times in all 24 possibilities⇒ 4
24

= 1
6

�
23As a consitency check, we compute abα̂β̂ explicitely with T (not T̂ ):

0
!
= ∇[aHbα̂β̂] + 3T[ab|

CHC|α̂β̂] =

=
1

2
∇[aHb]α̂β̂ +

1

2
Tab

cHcα̂β̂ +
1

2
Tα̂β̂

cHcab =

=
1

2
∇[a|(

2

3
γc

α̂β̂
f̂c|b]) +

1

2
γd

α̂β̂

„
2

3
Tab

cf̂dc + f̂d
cHcab

«
=

f̂cb=Gcb=
1

3
∇[a|(γ

c
α̂β̂

Gc|b]) +
1

3
γd

α̂β̂

„
Tab|d +

3

2
Hdab

«
=

=
1

3
∇[a|(γ

c
α̂β̂

)Gc|b] +
1

3
γd

α̂β̂

„
Tab|d +

3

2
Hdab + 2(∂[aΦ− Ω[a)Gb]d

«
=

=
1

3
γd

α̂β̂

“
Tab|d +

3

2
Hdab + 2(∂[aΦ− Ω[a)Gb]d −∆[a|d||b]| {z }

+∆[ab]|d−2∆[aGb]d

”
=

=
1

3
γd

α̂β̂

“
T̂ab|d +

3

2
Hdab + 2(∂[aΦ− Ω̂[a)Gb]d

”
�
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Both equations give for the di�erence

∆[ab]|d = −3Habd (5.394)

• (2,1,1)abαβ̂:

0 != ∇̃[aHbαβ̂] + 3T̃[ab|
CHC|αβ̂] = (5.395)

= −T̃[a|α
CHC|b]β̂ − T̃[b|β̂

CHC|a]α = (5.396)

fac=Gac= −2
3
γ̃[a|αδPδγ̂ γ̃|b] γ̂β̂ +

2
3
γ̃[b|β̂δ̂P

γδ̂γ̃|a] γα = (5.397)

=
2
3
γ̃[a|αδγ̃|b] δ̂β̂

(
−Pδδ̂ + Pδδ̂

)
= 0 (5.398)

• (3,1,0)abcδ ↔((3,0,1)abcδ̂):

0 != ∇̃[aHbcδ̂] + 3T̃[ab|
EHE|cδ̂] = (5.399)

= −1
4
∇̌δ̂Habc +

3
2
T̃[ab|

EHE|c]δ̂ −
3
2
T̃δ̂[a|

EHE|bc] = (5.400)

Ω̌=Ω= −1
4
∇δ̂Habc −

3
2
T̂[ab|

ε̂H|c]ε̂δ̂ −
3
2
Tδ̂[a|

eHe|bc] = (5.401)

fab=Gab= −1
4
∇δ̂Habc − T̂[ab|

ε̂γ|c]ε̂δ̂ −
3
2

Tδ̂[a|
e︸ ︷︷ ︸

=0 (5.383)

He|bc] (5.402)

∇δ̂Habc = −4T̂[ab|
ε̂γ|c]ε̂δ̂ (5.403)

likewise ∇̂δHabc = 4T[ab|
εγ|c]εδ (5.404)

Contracting with γd δ̂α̂ yields

∇δ̂Habcγ
d δ̂α̂ = −4

3
T̂ab

ε̂γcε̂δ̂γ
d δ̂α̂ − 4

3
T̂ca

ε̂γbε̂δ̂γ
d δ̂α̂ − 4

3
T̂bc

ε̂γaε̂δ̂γ
d δ̂α̂ = (5.405)

= −4
3
T̂ab

ε̂
(
δd
c δ

α̂
ε̂ + γc

d
ε̂
α̂
)
− 4

3
T̂ca

ε̂
(
δd
b δ

α̂
ε̂ + γb

d
ε̂
α̂
)
− (5.406)

−4
3
T̂bc

ε̂
(
δd
aδ

α̂
ε̂ + γa

d
ε̂
α̂
)

(5.407)

c = d : ∇δ̂Habcγ
c δ̂α̂ = −32

3
T̂ab

α̂ − 4
3
T̂ca

ε̂γb
c
ε̂
α̂ − 4

3
T̂bc

ε̂γa
c
ε̂
α̂ ?? (5.408)

• (4,0,0)abcd :

0 != ∇[aHbcd] + 3T[ab|
eHe|cd] (5.409)

De�ne the bosonic vielbein as
em

a ≡ Em
a (5.410)

and its inverse as

Em
aea

n = δn
m, ea

n 6= Ea
n (5.411)

compare to Em
aEa

n + Em
AEA

n = δn
m (5.412)

Acting with the bosonic vielbeins on the above BI leads to the fact that

dH ′ = 0 (5.413)

H ′mmm ≡ Em
a1Em

a2Em
a3Ha1a2a3 = (5.414)

= Em
a1Em

a2Em
a3Ea1

N1Ea2
N2Ea3

N3HN1N2N3 (5.415)

5.B The Bianchi identities for the torsion

The Bianchi identity for the torsion reads
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0 != ∇̃AT̃AA
D + 2T̃AA

C T̃CA
D − R̃AAA

D ≡ ĨAAA
D (5.416)

Again, depending on what is more convenient, the bosonic part of the connection Ω̌a
b will be chosen to be either

Ωa
b or Ω̂a

b.24 Again A can be either a, α or α̂. For �xed upper index the numbers of their appearance as lower
index are #a, #α, #α̂ ∈ {0, 1, 2, 3}. In analogy to the Bianchi identities for H, we have for each �xed upper
index 4 + 3 + 2 + 1 = 10 possibilities and thus altogether 30 possibilities. The symmetry between hatted and
unhatted indices relates the 10 with upper index δ̂ to the ten with upper index δ. The remaining 10 have again
an internal symmetry with �xed points (#α, #α̂) ∈ {(0, 0), (1, 1)}, so that there remain e�ectively 10−2

2 +2 = 6
of those 10. Altogether we have thus e�ectively 16 equations to study.
• (delta|0,3,0)αβγ

δ ↔((hdelta|0,0,3)α̂β̂γ̂
δ̂),dim1:

0 != ∇[αTβγ]
δ + 2T̃[αβ|

ETE|γ]
δ −R[αβγ]

δ = (5.417)

= 2Ť[αβ|
e Te|γ]

δ︸ ︷︷ ︸
=0

−R[αβγ]
δ (5.418)

R[αβγ]
δ = 0 (5.419)

R[α̂β̂γ̂]
δ̂ = 0 (5.420)

Taking the trace yields

0 != Rαβγ
γ + 2Rγ[αβ]

γ = (5.421)

= −9F (D)
αβ + 2R(L)

γ[αβ]
γ (5.422)

F
(D)
αβ = ∇[αΩβ] + γc

αβΩc
!=

2
9
R

(L)
γ[αβ]

γ (5.423)

and

F̂
(D)

α̂β̂
= ∇̂[α̂Ω̂β̂] + γc

α̂β̂
Ω̂c

!=
2
9
R̂

(L)

γ̂[α̂β̂]

γ̂ (5.424)

• (delta|0,2,1)αβγ̂
δ ↔((hdelta|0,1,2)α̂β̂γ

δ̂)dim1:

0 != ∇̃[αTβγ̂]
δ + 2T[αβ|

ẼTẼ|γ̂]
δ −R[αβγ̂]

δ = (5.425)

=
2
3
Tαβ

eTeγ̂
δ − 2

3
Rγ̂[αβ]

δ = (5.426)

fc
e=δe

c= −2
3
γαβ

eγ̃e γ̂δ̂P
δδ̂ − 2

3
Rγ̂[αβ]

δ (5.427)

24Let us show that both are equivalent. Remember �rst

T̃MM
A
˛̨̨
Ω̌a

b=Ω̂a
b
− T̃MM

A
˛̨̨
Ω̌a

b=Ωa
b

= ∆MM
a

R̃MMA
B
˛̨̨
Ω̌a

b=Ω̂a
b
− R̃MMA

B
˛̨̨
Ω̌a

b=Ωa
b

= ∇̃M∆Ma
b + T̃MM

C∆Ca
b −∆Ma

c∆Mc
b
˛̨̨
Ω̌a

b=Ωa
b

ĨAAA
D
˛̨̨
Ω̌a

b=Ω̂a
b
− ĨAAA

D
˛̨̨
Ω̌a

b=Ωa
b

=

= ∇̃A

“
T̃AA

D + ∆AA
d
”
− 2∆AA

c
“
T̃cA

D + ∆[cA]
d
”

+ ∆Ac
d
“
T̃AA

c + ∆AA
c
”

+

+2
“
T̃AA

C + ∆AA
c
”“

T̃CA
D + ∆[CA]

d
”

+

−
“
∇̃A∆AA

d + T̃AA
C∆CA

d −∆AA
c∆Ac

d
”

+

−
“
∇̃AT̃AA

D + 2T̃AA
C T̃CA

D
”˛̨̨

Ω̌a
b=Ωa

b
=

= ∇̃A∆AA
d − 2∆AA

c
“
T̃cA

D + ∆[cA]
d
”

+ ∆Ac
d
“
T̃AA

c + ∆AA
c
”

+

+2∆AA
c
“
T̃cA

D + ∆[cA]
d
”

+ 2T̃AA
C∆[CA]

d +

−
“
∇̃A∆AA

d + T̃AA
C∆CA

d −∆AA
c∆Ac

d
”˛̨̨

Ω̌a
b=Ωa

b
= 0 �
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Rγ̂[αβ]
δ = −γαβ

eγ̃e γ̂δ̂P
δδ̂ (5.428)

R̂γ[α̂β̂]
δ̂ = −γα̂β̂

eγ̃e γδPδδ̂ (5.429)

Again taking the trace gives additional information on the Dilatation part

Rγ̂αδ
δ −Rγ̂δα

δ = 2γαδ
ePδδ̂γ̃e δ̂γ̂ (5.430)

−8F (D)
γ̂α −

1
2
F

(D)
γ̂α −R

(L)
γ̂δα

δ = 2γαδ
ePδδ̂γ̃e δ̂γ̂ (5.431)

F
(D)
γ̂α = ∇̃[γ̂Ωα] = − 4

17
γe

αδPδδ̂γ̃e δ̂γ̂ −
2
17
R

(L)
γ̂δα

δ (5.432)

F̂
(D)
γα̂ = ∇̃[γΩ̂α̂] = − 4

17
γe

α̂δ̂
Pδδ̂γ̃e δγ −

2
17
R̂

(L)

γδ̂α̂

δ̂ (5.433)

• (delta|0,1,2)αβ̂γ̂
δ ↔((hdelta|0,2,1)α̂βγ

δ̂)dim1:

0 != ∇̃[αTβ̂γ̂]
δ + 2T̃[αβ̂|

ETE|γ̂]
δ −R[αβ̂γ̂]

δ = (5.434)

=
2
3
Tβ̂γ̂

e Teα
δ︸ ︷︷ ︸

=0

−1
2
Rβ̂γ̂α

δ︸ ︷︷ ︸
=0

= 0 (5.435)

• (delta|0,0,3)α̂β̂γ̂
δ ↔((hdelta|0,3,0)αβγ

δ̂)dim1:

0 != ∇̃[α̂Tβ̂γ̂]
δ + 2T̃[α̂β̂|

ETE|γ̂]
δ −R[α̂β̂γ̂]

δ︸ ︷︷ ︸
=0

= (5.436)

= 2T[α̂β̂|
eTe|γ̂]

δ = (5.437)

= −2γ[α̂β̂|
eγ̃e |γ̂]δ̂P

δδ̂ Fierz= 0 (5.438)

• (delta|1,2,0)αβc
δ ↔((hdelta|1,0,2)α̂β̂c

δ̂)dim 3
2 :

0 != ∇̃[αTβc]
δ + 2T̃[αβ|

ETE|c]
δ −R[αβc]

δ = (5.439)

=
2
3
T̃αβ

ETEc
δ +

4
3
T̃c[α|

E TE|β]
δ︸ ︷︷ ︸

=0

−2
3
Rc[αβ]

δ = (5.440)

=
2
3
γαβ

eTec
δ − 2

3
Rc[αβ]

δ (5.441)

Rc[αβ]
δ = γαβ

eTec
δ (5.442)

R̂c[α̂β̂]
δ̂ = γα̂β̂

eT̂ec
δ̂ (5.443)

Taking the trace yields

0 = Rcαδ
δ −Rcδα

δ − 2γαδ
eTec

δ = (5.444)

= −17
2
F (D)

cα −R(L)
cδα

δ − 2γαδ
eTec

δ (5.445)

F (D)
cα = ∇̃[cΩα] + T̃cα

DΩD = − 2
17
R

(L)
cδα

δ − 4
17
γe

αδTec
δ (5.446)

F̂
(D)
cα̂ = ∇̃[cΩ̂α̂] + T̃cα̂

DΩ̂D = − 2
17
R̂

(L)

cδ̂α̂

δ̂ − 4
17
γe

α̂δ̂
T̂ec

δ̂ (5.447)
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• (delta|1,1,1)αβ̂c
δ ↔((hdelta|1,1,1)α̂βc

δ̂)dim 3
2 :

25

0 != ∇̃[αTβ̂c]
δ + 2T̃[αβ̂|

ETE|c]
δ −R[αβ̂c]

δ = (5.448)

Ω̌=Ω̂=
1
3
∇̃α Tβ̂c

δ︸︷︷︸
γ̃c β̂δ̂Pδδ̂

+
2
3
T̂cα

ε̂ Tε̂β̂
δ︸ ︷︷ ︸

=0

+
2
3
T̂cα

e︸︷︷︸
=0

Teβ̂
δ − 1

3
Rβ̂cα

δ︸ ︷︷ ︸
γ̃c β̂δ̂Cα

δδ̂

= (5.449)

=
1
3
∇̃α

(
γ̃c β̂δ̂P

δδ̂
)
− 1

3
γ̃c β̂δ̂∇̃αP

δδ̂ = (5.450)

=
1
3
∇̃α

(
γ̃cβ̂δ̂

)
Pδδ̂ = (5.451)

= 2γ̃c β̂δ̂

(
∇̂αΦ− Ω̂α

)
Pδδ̂ = 0 (5.452)

• (delta|1,0,2)α̂β̂c
δ ↔((hdelta|1,2,0)αβc

δ̂)dim 3
2 :

0 != ∇̃[α̂Tβ̂c]
δ + 2T̃[α̂β̂|

ETE|c]
δ −R[α̂β̂c]

δ = (5.453)

=
2
3
∇̃[α̂ Tβ̂]c

δ︸ ︷︷ ︸
γ̃c β̂]γ̂Pδγ̂

+
2
3
Ťα̂β̂

eTec
δ +

4
3
Ťc[α̂|

eTe|β̂]
δ = (5.454)

Ω̌=Ω̂=
4
3
(∇̂[α̂|Φ− Ω̂[α̂|)γ̃c |β̂]γ̂P

δγ̂ +
2
3
∇̃[α̂Pδγ̂ γ̃c β̂]γ̂ +

2
3
γe

α̂β̂
Tec

δ +
4
3
T̂[α̂|c

eγ̃e |β̂]δ̂P
δδ̂ = (5.455)

=
(

4
3

(
(∇̂[α̂|Φ− Ω̂[α̂|)δe

c + T̂[α̂|c
e
)
Pδγ̂ +

2
3
∇̃[α̂|Pδγ̂δe

c

)
γ̃e |β̂]γ̂ +

2
3
γe

α̂β̂
Tec

δ = (5.456)

=
2
3
(
− 2T̂[α̂|e|c︸ ︷︷ ︸

∆[α̂|e|c

Pδγ̂ + ∇̃[α̂|Pδγ̂Gec

)
γe
|β̂]γ̂

+
2
3
γe

α̂β̂
Tec

δ (5.457)

Contracting the above with γα̂β̂
e (using γα̂β̂

e γf

α̂β̂
= −γα̂β̂

e γf

β̂α̂
= −γα̂β̂

e γf

β̂α̂
= −16δf

e ), we get

Tec
δ =

1
16

(
∇̃[α̂|Pδδ̂Gcd − 2T̂[α̂|d:cPδδ̂

)
γd
|β̂]δ̂

γα̂β̂
e = (5.458)

=
1
16

(
2T̂α̂d|cPδδ̂ − ∇̃α̂Pδδ̂Gcd

)
γd

δ̂β̂
γα̂β̂

e (5.459)

Tec
δ =

1
16

(
2T̂α̂d|cPδδ̂ − ∇̃α̂Pδδ̂Gcd

)
γd

δ̂β̂
γα̂β̂

e (5.460)

T̂ec
δ̂ =

1
16

(
2Tαd|cPδδ̂ − ∇̃αPδδ̂Gcd

)
γd

δβγ
αβ
e (5.461)

The product of γ-matrices can be further expanded.

Tec
δ =

1
16

(
2T̂α̂d|cPδδ̂ − ∇̃α̂Pδδ̂Gcd

) (
δd
eδδ̂

α̂ + γd
e δ̂

α̂
)

= (5.462)

=
1
16
(
2T̂α̂e|cPδα̂ − ∇̃α̂Pδα̂Gce + 2T̂α̂d|cγ

d
e δ̂

α̂︸ ︷︷ ︸
−18T̂δ̂e|c (5.356)

Pδδ̂ − ∇̃α̂Pδδ̂γce δ̂
α̂
)

= (5.463)

25

∇̃M γ̃c αβ

˛̨̨
Ω̌=Ω

= 2γd
αβ (∇MΦ− ΩM ) Gdc = 2γ̃c αβ (∇MΦ− ΩM )

∇̃M γ̃c αβ

˛̨̨
Ω̌=Ω̂

= 2γ̃c αβ (∇MΦ− ΩM )−∆Mc
dγ̃d αβ =

= γd
αβ

ˆ
2 (∇MΦ− ΩM ) Gdc −∆Mc|d

˜
=

= γd
αβ

h“
(∇MΦ− ΩM ) +

“
∇MΦ− Ω̂M

””
Gdc −∆

(L)
Mcd

i
And equivalently

∇̃M γ̃c α̂β̂

˛̨̨
Ω̌=Ω̂

= 2γ̃c α̂β̂

“
∇̂MΦ− Ω̂M

”
∇̃M γ̃c α̂β̂

˛̨̨
Ω̌=Ω

= γd
α̂β̂

h“
(∇MΦ− ΩM ) +

“
∇̂MΦ− Ω̂M

””
Gdc + ∆

(L)
Mcd

i
�
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The result should be antisymmetric in e and c. Remember now

∇̃α̂Pδα̂Gce = 8Pδδ̂
(
∇̃δ̂Φ− Ω̂δ̂

)
Gce = −16Pδδ̂T̂δ̂(c|e) (5.464)

and we get

Tec
δ =

1
16

(
−16T̂δ̂e|cP

δδ̂ + 16Pδδ̂T̂δ̂(c|e) − ∇̃α̂Pδδ̂γce δ̂
α̂
)

= (5.465)

=
1
16

(
−16T̂δ̂[e|c]P

δδ̂ − ∇̃α̂Pδδ̂γce δ̂
α̂
)

(5.466)

Using T̂δ̂[e|c] = 1
2γecδ̂

γ̂
(
Ω̂γ̂ − ∇̂γ̂Φ

)
leads to

Tec
δ =

1
16

(
∇̃γ̂Pδδ̂ − 8

(
Ω̂γ̂ − ∇̂γ̂Φ

)
Pδδ̂

)
γ̃ec δ̂

γ̂ (5.467)

T̂ec
δ̂ =

1
16

(
∇̃γPδδ̂ − 8 (Ωγ −∇γΦ)Pδδ̂

)
γ̃ec δ

γ (5.468)

• (delta|2,1,0)αbc
δ ↔((hdelta|2,0,1))α̂bc

δ̂)dim 4
2 :

0 != ∇̃[αTbc]
δ + 2T̃[αb|

ETE|c]
δ −R[αbc]

δ = (5.469)

=
1
3
∇̃αTbc

δ +
4
3
T̃α[b|

ETE|c]
δ − 1

3
Rbcα

δ = (5.470)

=
1
3
∇̃αTbc

δ +
4
3
Ťα[b|

eTe|c]
δ +

4
3
T̂α[b|

ε̂Tε̂|c]
δ − 1

3
Rbcα

δ = (5.471)

=
1
3
∇̃αTbc

δ +
4
3

Ťα[b|
e︸ ︷︷ ︸

=0 for Ω̌=Ω̂

Te|c]
δ +

4
3
γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P

δδ̂ − 1
3
Rbcα

δ (5.472)

Rbcα
δ = ∇̃αTbc

δ
∣∣∣
Ω̌=Ω̂

+ 4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ (5.473)

R̂bcα̂
δ̂ = ∇̃α̂T̂bc

δ̂
∣∣∣
Ω̌=Ω

+ 4γ̃[b| α̂γ̂Pεγ̂ γ̃|c] εδPδδ̂ (5.474)
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26Plugging in Tbc
δ = 1

16

(
∇̃γ̂Pδδ̂ + 8

(
∇̂γ̂Φ− Ω̂γ̂

)
Pδδ̂

)
γ̃bc

γ̂
δ̂yields

Rbcα
δ =

1
16
∇̃α

(
∇̃γ̂Pδδ̂ + 8

(
∇̂γ̂Φ− Ω̂γ̂

)
Pδδ̂

)
· γ̃bc

γ̂
δ̂ +

+
1
16

(
∇̃γ̂Pδδ̂ + 8

(
∇̂γ̂Φ− Ω̂γ̂

)
Pδδ̂

)
2 (∇αΦ− Ω̂α)︸ ︷︷ ︸

=0

γ̃bc
γ̂

δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ = (5.475)

=
(

1
16
∇̃α∇̃γ̂Pδδ̂ +

8
16
∇̃α

(
∇̂γ̂Φ− Ω̂γ̂

)
Pδδ̂ +

8
16

(
∇̂γ̂Φ− Ω̂γ̂

)
∇̃αPδδ̂

)
· γ̃bc

γ̂
δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ = (5.476)

=
( 1

16
∇̃γ̂∇̃αPδδ̂ − 1

8
Rγ̂αε

δPεδ̂ +
1
8
Rαγ̂ε̂

δ̂Pδε̂ +

+F̂ (D)
γ̂α P

δδ̂ +
1
2

(
∇̂γ̂Φ− Ω̂γ̂

)
∇̃αPδδ̂

)
· γ̃bc

γ̂
δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ (5.477)

Taking the trace yields

− 8F (D)
bc =

( 1
16
∇̃γ̂ ∇̃αPαδ̂︸ ︷︷ ︸

8Pδδ̂(∂δΦ−Ωδ)

−1
8
Rγ̂αε

αPεδ̂ +
1
8
Rαγ̂ε̂

δ̂Pαε̂ +

+F̂ (D)
γ̂α P

αδ̂ +
1
2

(
∇̂γ̂Φ− Ω̂γ̂

)
∇̃αPαδ̂︸ ︷︷ ︸

8Pδδ̂(∂δΦ−Ωδ)

)
· γ̃bc

γ̂
δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
αδ̂ (5.478)

• (delta|2,0,1)α̂bc
δ ↔(hdelta|2,1,0)αbc

δ̂,dim 4
2 :

0 != ∇̃[α̂Tbc]
δ + 2T̃[α̂b|

ETE|c]
δ −R[α̂bc]

δ = (5.479)

=
1
3
∇̃α̂Tbc

δ +
2
3
∇̃[bTc]α̂

δ +
4
3
T̃α̂[b|

ETE|c]
δ +

2
3
T̃bc

ETEα̂
δ = (5.480)

=
1
3
∇̃α̂Tbc

δ − 2
3
∇̃[b

(
γ̃c] α̂δ̂P

δδ̂
)

+
4
3
Ťα̂[b|

eTe|c]
δ +

2
3
Ťbc

eTeα̂
δ = (5.481)

Ω̌=Ω̂=
1
3
∇̃α̂Tbc

δ
∣∣∣
Ω̌=Ω̂

+
2
3
γ̃[b α̂δ̂∇̃c]Pδδ̂ +

4
3
T̂α̂[b|

eTe|c]
δ +Hbc

eγ̃eα̂β̂P
δβ̂ (5.482)

26Taking at this point the trace leads to

0
!
= 8F

(D)
bc + ∇̃δTbc

δ
˛̨̨
Ω̌=Ω̂

+ 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ =

if Ωα=∂αΦ
=

1

16
∇̃δ∇̃γ̂Pδδ̂ γ̃bc

γ̂
δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P

δδ̂ =

=
1

16
∇̃γ̂∇̃δPδδ̂ γ̃bc

γ̂
δ̂ +

1

8
Rδγ̂ε

δPεδ̂ γ̃bc
γ̂

δ̂ +
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂

Remember now R̂γ[α̂β̂]
δ̂ = −γe

α̂β̂
γ̃e γδPδδ̂ and Rγ̂[αβ]

δ = −γe
αβ γ̃e γ̂δ̂P

δδ̂ and ∇̃αPαδ̂ = 8Pαδ̂(∂αΦ− Ωα)
if Ωα=∂αΦ

= 0.

0
!
=

if Ωα=∂αΦ
−

1

8
Rγ̂δε

δPεδ̂ γ̃bc
γ̂

δ̂ +
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ =

= −
1

8
Rγ̂εδ

δPεδ̂ γ̃bc
γ̂

δ̂ −
1

4
Rγ̂[δε]

δPεδ̂ γ̃bc
γ̂

δ̂ +
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ =

= F
(D)
γ̂ε| {z }

1
2∇γ̂ (Ωε−∂εΦ)

Pεδ̂ γ̃bc
γ̂

δ̂ +
1

4
γe

δεγ̃e γ̂ε̂Pδε̂Pεδ̂ γ̃bc
γ̂

δ̂ +
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ =

if Ωα=∂αΦ
=

1

4
γe

δεP
δε̂Pεδ̂ γ̃bcδ̂

γ̂ γ̃e γ̂ε̂| {z }
γbce+Gceγb−Gbeγc

+
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ =

=
1

4
γe

δεP
εδ̂

gr.symz }| {
γbce δ̂ε̂ P

δε̂| {z }
=0

+
1

2
γ[c|δεPεδ̂γ|b]δ̂ε̂P

δε̂ +
1

8
R̂δγ̂ε̂

δ̂Pδε̂γ̃bc
γ̂

δ̂ + 4γ̃[b| δγPγε̂γ̃|c] ε̂δ̂P
δδ̂ ? �
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or

Ω̌=Ω=
1
3
∇̃α̂Tbc

δ
∣∣∣
Ω̌=Ω

− 2
3
γd

α̂δ̂

[( (
∇[b|Φ− Ω[b|

)︸ ︷︷ ︸
=0 (5.385)

+
(
∇̂[b|Φ− Ω̂[b|

)
︸ ︷︷ ︸

=0 (5.385)

)
Gd|c] + ∆[bc]d︸ ︷︷ ︸

−3Hbcd

]
Pδδ̂ +

+
2
3
γ̃[b| α̂δ̂∇̃|c]P

δδ̂ −Hbceγ
e
α̂δ̂
Pδδ̂ = (5.483)

=
1
3
∇α̂Tbc

δ +
2
3
γ̃[b| α̂δ̂∇̃|c]P

δδ̂ +Hbceγ
e
α̂δ̂
Pδδ̂ (5.484)

∇α̂Tbc
δ = −2γ̃[b| α̂δ̂∇|c]P

δδ̂ − 3Hbceγ
e
α̂δ̂
Pδδ̂ (5.485)

∇̂αT̂bc
δ̂ = −2γ̃[b|αδ∇|c]Pδδ̂ + 3Hbceγ

e
αδPδδ̂ (5.486)

• (delta|3,0,0)abc
δ ↔((hdelta|3,0,0)abc

δ̂)dim 5
2 :

0 != ∇̃[aTbc]
δ + 2T[ab|

ETE|c]
δ −R[abc]

δ = (5.487)

= ∇̃[aTbc]
δ + 2Ť[ab|

eTe|c]
δ + 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.488)

∇[aTbc]
δ = −3H[ab|

eTe|c]
δ − 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.489)

∇̂[aT̂bc]
δ̂ = 3H[ab|

eT̂e|c]
δ̂ − 2T[ab|

εγ̃|c] εδPδδ̂ (5.490)

• (d|0,3,0)αβγ
d ↔((d|0,0,3)α̂β̂γ̂

d)dim 1
2 :

0 != ∇̃[αŤβγ]
d + 2Ť[αβ|

cŤc|γ]
d − Ř[αβγ]

d︸ ︷︷ ︸
=0

= (5.491)

= ∇̃[α

(
γβγ]

cfc
d
)

+ 2γe
[αβ|fe

cŤc|γ]
d = (5.492)

fc
d=δd

c= ∇[α

(
γd

βγ]

)
︸ ︷︷ ︸

=0

−2 γc
[αβTγ]c

d︸ ︷︷ ︸
=0 (5.353)

(5.493)

• (d|0,1,2)αβ̂γ̂
a ↔((d|0,2,1)α̂βγ

a)dim 1
2 :

0 != ∇̃[αŤβ̂γ̂]
d + 2T̃[αβ̂|

C ŤC|γ̂]
d − Ř[αβ̂γ̂]

d = (5.494)

=
1
3
∇̃αŤβ̂γ̂

d +
2
3
Ťβ̂γ̂

cŤcα
d = (5.495)

=
2
3
γβ̂γ̂

cT̂cα
d = 0 (5.496)

• (d|1,2,0)αβc
d ↔((d|1,0,2)α̂β̂c

d)dim1:

0 != ∇̃[αŤβc]
d + 2T̃[αβ|

ETE|c]
d − Ř[αβc]

d = (5.497)

=
2
3
∇̃[αŤβ]c

d +
1
3
∇̃cTαβ

d +
2
3
T̃αβ

E ŤEc
d +

4
3
T̃c[α|

E ŤE|β]
d − 1

3
Řαβc

d − 2
3
Rc[αβ]

d︸ ︷︷ ︸
=0

= (5.498)

fe
d=δd

e=
Ω̌=Ω

2
3
∇[αTβ]c

d +
1
3
∇cγ

d
αβ︸ ︷︷ ︸

=0

+
2
3
γe

αβ Tec
d︸︷︷︸

3
2 Hec

d

+
4
3
T[α|c

eT|β]e
d +

4
3
Tc[α|

ε︸ ︷︷ ︸
=0

γd
ε|β] −

1
3
Rαβc

d (5.499)

Rαβc
d != 2∇[αTβ]c

d + 3γe
αβHec

d + 4T[α|c
eT|β]e

d (5.500)

R̂α̂β̂c
d != 2∇̂[α̂T̂β̂]c

d − 3γe
α̂β̂
Hec

d + 4T̂[α̂|c
eT̂|β̂]e

d (5.501)
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taking the trace (using RMMa
b = F (D)

MMδb
a +R

(L)
MMa

b) yields

10F (D)
αβ

!= 10∇[α

(
Ωβ] −∇β]Φ

)
(5.502)

∇[αΩβ] + Tαβ
cΩc

!= ∇[α

(
Ωβ] −∇β]Φ

)
, true (5.503)

• (d|1,1,1)αβ̂c
ddim1:

0 != ∇̃[αŤβ̂c]
d + 2T̃[αβ̂|

E ŤE|c]
d − Ř[αβ̂c]

d = (5.504)

=
1
3
∇̃αŤβ̂c

d +
1
3
∇̃β̂Ťcα

d +
2
3
T̃cα

E ŤEβ̂
d +

2
3
T̃β̂c

E ŤEα
d − 1

3
Řαβ̂c

d = (5.505)

Ω̌=Ω=
1
3
∇β̂Tcα

d +
2
3
T̂cα

ε̂Tε̂β̂
d +

2
3
Tβ̂c

eTeα
d +

2
3
Tβ̂c

εTεα
d − 1

3
Rαβ̂c

d = (5.506)

=
1
3
∇β̂Tcα

d − 2
3
γ̃c αβPβε̂γd

ε̂β̂
+

2
3
γ̃c β̂α̂P

εα̂γd
εα −

1
3
Rαβ̂c

d (5.507)

Rαβ̂c
d = ∇β̂Tcα

d − 2γ̃c αβPβε̂γd
ε̂β̂

+ 2γ̃c β̂δ̂P
εδ̂γd

εα (5.508)

R̂α̂βc
d = ∇̂βT̂cα̂

d − 2γ̃c α̂β̂P
εβ̂γd

εβ + 2γ̃c βδPδε̂γd
ε̂α̂ (equivalent) (5.509)

Rαβ̂c
d = −1

2
∇β̂(Ωα − ∂αΦ)δd

c −
1
2
γc

d
α

γ∇β̂(Ωγ − ∂γΦ)− 2γ̃c αβPβε̂γd
ε̂β̂

+ 2γ̃c β̂δ̂P
εδ̂γd

εα (5.510)

Taking the trace of (5.508) yields

10F (D)

αβ̂
= 5∇β̂ (∇αΦ− Ωα)− 2γ̃c αβPβε̂γc

ε̂β̂
+ 2γ̃c β̂δ̂P

εδ̂γc
εα = (5.511)

= 5∇β̂ (∇αΦ− Ωα) (5.512)

∇α Ωβ̂︸︷︷︸
∇β̂Φ

−∇β̂Ωα = ∇β̂∇αΦ−∇β̂Ωα (5.513)

∇α∇β̂Φ−∇β̂∇αΦ = 2Tαβ̂
C∇CΦ = 0 (5.514)

and does not give new information27.

27From the untraced equation, we can also derive a further constraint on some spinorial components. Remember, we have

Rαβ̂γ
δ =

1

2
F

(D)

αβ̂
δγ

δ +
1

4
R

(L)

αβ̂c

dγc
d γ

δ =

=
1

2
F

(D)

αβ̂
δγ

δ +
1

4

“
Rαβ̂c

d − F
(D)

αβ̂
δd
c

”
γc

d γ
δ =

=
1

4
∇β̂(∂αΦ− Ωα)δγ

δ +
1

4

„
Rαβ̂c

d +
1

2
∇β̂(Ωα − ∂αΦ)δd

c

«
γc

d γ
δ =

=
1

4
∇β̂(∂αΦ− Ωα)δγ

δ +

+
1

4

„
−

1

2
∇β̂(Ωα − ∂αΦ)δd

c −
1

2
γc

d
α

ε∇β̂(Ωε − ∂εΦ)− 2γ̃c αβPβε̂γd
ε̂β̂

+ 2γ̃c β̂δ̂P
εδ̂γd

εα +
1

2
∇β̂(Ωα − ∂αΦ)δd

c

«
γc

d γ
δ =

=
1

4
∇β̂(∂αΦ− Ωα)δγ

δ −
1

8
∇β̂(Ωα − ∂αΦ)γd

d γ
δ −

1

8
γc

d
α

εγc
d γ

δ| {z }
Fierz:11+γ[4]γ[4]

∇β̂(Ωε − ∂εΦ) +

+
1

4

„
−2γ̃c αβPβε̂γd

ε̂β̂
+ 2γ̃c β̂δ̂P

εδ̂γd
εα +

1

2
∇β̂(Ωα − ∂αΦ)δd

c

«
γc

d γ
δ

Is this consistent with Rγ̂[αβ]
δ = −γαβ

eγ̃e γ̂δ̂P
δδ̂ ? At least for Ωα = ∂αΦ we have

Rβ̂[αγ]
δ =

1

2

“
γ̃c [α|εγd

δ̂β̂
− γ̃c β̂δ̂γd

ε[α|

”
γc

d |γ]
δPεδ̂

which suggests an identity of the form

1

2

“
γ̃c [α|εγd

δ̂β̂
− γ̃c β̂δ̂γd

ε[α|

”
γc

d |γ]
δ ?

= −γαγ
eγ̃e β̂δ̂δε

δ �
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• (d|2,1,0)αbc
d ↔((d|2,0,1)α̂bc

d)dim 3
2 :

0 != ∇̃[αŤbc]
d + 2T̃[αb|

E ŤE|c]
d − Ř[αbc]

d = (5.515)

=
1
3
∇̃αŤbc

d +
2
3
∇̃[b Ťc]α

d︸ ︷︷ ︸
=0 for Ω̌=Ω̂

+
4
3
T̃α[b|

E ŤE|c]
d +

2
3
T̃bc

E ŤEα
d − 2

3
Řα[bc]

d = (5.516)

Ω̌=Ω̂= −1
2
∇̂αHbc

d +
4
3
T̂α[b|

ε̂T̂ε̂|c]
d +

2
3
Tbc

εγd
εα −

2
3
R̂α[bc]

d (5.517)

R̂α[bc]
d = −3

4
∇̂αHbc

d + 2γ̃[b|αδPδε̂T̂ε̂|c]
d + Tbc

εγd
εα (5.518)

Rα̂[bc]
d =

3
4
∇α̂Hbc

d + 2γ̃[b| α̂δ̂P
εδ̂Tε|c]

d + T̂bc
ε̂γd

ε̂α̂ (5.519)

Taking the trace yields

9
2
F̂

(D)
αb −

1
2
R̂

(L)
αdb

d != γ̃b αδPδε̂T̂ε̂c
c − γ̃c αδPδε̂T̂ε̂b

c + Tbc
εγc

εα = (5.520)

= 5γ̃b αδPδε̂
(
Ω̂ε̂ − ∂ε̂Φ

)
− γ̃c αδPδε̂T̂ε̂b

c + Tbc
εγc

εα (5.521)

with F̂ (D)
αb = ∇̃[α∂b]Φ + T̃αb

CΩ̂C = T̃αb
C
(
Ω̂C − ∂CΦ

)
= γ̃b αβPβγ̂

(
Ω̂γ̂ − ∂γ̂Φ

)
0 !=

1
2
γ̃b αβPβγ̂

(
Ω̂γ̂ − ∂γ̂Φ

)
− γ̃c αδPδε̂T̂ε̂b

c + Tbc
εγc

εα +
1
2
R̂

(L)
αdb

d (5.522)

Use now the explicit expressions for the remaining torsion components

0 !=
1
2
γ̃b αβPβγ̂

(
Ω̂γ̂ − ∂γ̂Φ

)
− 1

2
γ̃b αδPδε̂(Ω̂ε̂ − ∂ε̂Φ)− 1

2
γ̃c αδPδε̂γb

c
ε̂

δ̂(Ω̂δ̂ − ∂δ̂Φ) +

+
1
16

(
∇̃γ̂Pεε̂ − 8(Ω̂γ̂ − ∂γ̂Φ)Pεε̂

)
γ̃bc ε̂

γ̂γc
εα +

1
2
R̂

(L)
αdb

d =

=
1
16
∇̃γ̂Pεε̂γ̃bc ε̂

γ̂γc
εα +

1
2
R̂

(L)
αdb

d

R̂
(L)
dαb

d =
1
8
∇̃γ̂Pεε̂γ̃bc ε̂

γ̂γc
εα (5.523)

R
(L)
dα̂b

d =
1
8
∇̃γPεε̂γ̃bc ε

γγc
ε̂α̂ (5.524)

• (d|3,0,0)abc
ddim2:

0 != ∇̃[aŤbc]
d + 2T̃[ab|

E ŤE|c]
d − Ř[abc]

d = (5.525)

Ω̌=Ω= ∇[aTbc]
d + 2T[ab|

eTe|c]
d + 2T[ab|

εTε|c]
d −R[abc]

d = (5.526)

=
3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d −R[abc]

d (5.527)

R[abc]
d =

3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d (5.528)

R̂[abc]
d = −3

2
∇̂[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T̂[ab|

ε̂T̂ε̂|c]
d (5.529)

Taking the trace yields

0 !=
1
2
∇dHab

d + 3Hd[a|
eHe|b]

d︸ ︷︷ ︸
=0

+
2
3
Tab

εTεd
d +

+
4
3
Td[a|

εTε|b]
d − 8

3
F

(D)
ab +

2
3
R

(L)
d[ab]

d = (5.530)

=
1
2
∇dHab

d +
10
3
Tab

ε(Ωε − ∂εΦ) +
4
3
Td[a|

εTε|b]
d − 8

3
F

(D)
ab (5.531)
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with F (D)
ab = ∇[a∇b]Φ + Tab

CΩC = Tab
γ (Ωγ − ∂γΦ)

−R(L)
d[ab]

d =
3
4
∇dHab

d + Tab
γ (Ωγ − ∂γΦ) + 2Td[a|

εTε|b]
d (5.532)

R̂
(L)
d[ab]

d likewise...



Part III

Derived Brackets in Sigma-Models

"Don't make a break, make a bracket" (Kathi S.)
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Introduction to the Bracket Part

This part of the thesis describes the content of [14]. See also [56] for a short article which contains some of the
basic ideas.

There are quite a lot of di�erent geometric brackets �oating around in the literature, like Schouten bracket,
Nijenhuis bracket or in generalized complex geometry the Dorfman bracket and Courant bracket, to list just
some of them. They are often related to integrability conditions for some structures on manifolds. The vanishing
of the Nijenhuis bracket of a complex structure with itself, for example, is equivalent to its integrability. The
same is true for the Schouten bracket and a Poisson structure. The above brackets can be uni�ed with the
concept of derived brackets [57]. Within this concept, they are all just natural extensions of the Lie-bracket of
vector �elds to higher rank tensor �elds.

It is well known that the antibracket appearing in the Lagrangian formalism for sigma models is closely
related to the Schouten-bracket in target space. In addition it was recently observed by Alekseev and Strobl
that the Dorfman bracket for sums of vectors and one-forms appears naturally in two dimensional sigma models1

[58]. This was generalized by Bonelli and Zabzine [60] to a derived bracket for sums of vectors and p-forms
on a p-brane2. These observations lead to the natural question whether there is a general relation between
the sigma-model Poisson bracket or antibracket and derived brackets in target space. Working out the precise
relation for sigma models with a special �eld content but undetermined dimension and dynamics, is the major
subject of the present part of the thesis.

One of the motivations for this part of the thesis was the application to generalized complex geometry. The
importance of the latter in string theory is due to the observation that e�ective spacetime supersymmetry after
compacti�cation requires the compacti�cation manifold to be a generalized Calabi-Yau manifold [61, 59, 4, 3,
62, 63]. Deviations from an ordinary Calabi Yau manifold are due to �uxes and also the concept of mirror
symmetry can be generalized in this context. There are numerous other important articles on the subject, like
e.g. [64, 65, 66, 67, 68, 69, 70, 71, 72, 73] and many more. A more complete list of references can be found
in [63]. A major part of the considerations so far was done from the supergravity point of view. Target space
supersymmetry is, however, related to an N = 2 supersymmetry on the worldsheet. For this reason the relation
between an extended worldsheet supersymmetry and the presence of an integrable generalized complex structure
(GCS) was studied in [74] (the reviews [75, 76] on generalized complex geometry have this relation in mind).
Zabzine clari�ed in [77] the relation in a model independent way in a Hamiltonian description and showed that
the existence of a second non-manifest worldsheet supersymmetry Q2 in an N = 1 sigma-model is equivalent to
the existence of an integrable GCS J . It is the observation that the integrability of the GCS J can be written
as the vanishing of a generalized bracket [J ,J ]B = 0 which leads to the natural question, whether there is a
direct mapping between [J ,J ]B = 0 &J 2 = −1 on the one side and {Q2,Q2} = 2P on the other side. This
will be a natural application in subsection 7.2 of the more general preceding considerations about the relation
between (super-)Poisson brackets in sigma models with special �eld content and derived brackets in the target
space.

A second interesting application is Zucchini's Hitchin-sigma-model [78]. There are up to now three more
papers on that subject [79, 80, 81], but the present discussion refers only to the �rst one. Zucchini's model is a
two dimensional sigma-model in a target space with a generalized complex structure (GCS). The sigma-model
is topological when the GCS is integrable, while the inverse does not hold. The condition for the sigma model
to be topological is the master equation (S,S) = 0. Again we might wonder whether there is a direct mapping
between the antibracket and S on the one hand and the geometric bracket and J on the other hand and it will
be shown in subsection 7.1 how this mapping works as an application of the considerations in subsection 6.5. In
order to understand more about geometric brackets in general, however, it was necessary to dive into Kosmann-
Schwarzbach's review on derived brackets [57] which led to observations that go beyond the application to the
integrability of a GCS .

The structure of this part of the thesis is as follows: The general relation between sigma models and derived
brackets in target space will be studied in the next section. The necessary geometric setup will be established
in 6.1. Although there are no new deep insights in 6.1, the unconventional idea to extend the exterior derivative
on forms to multivector valued forms (see (6.34) and (6.37)) will provide a tool to write down a coordinate
expression for the general derived bracket between multivector valued forms (6.51) which to my knowledge does
not yet exist in literature. The main results in section 6, however, are the propositions 1 on page 89 and 1b
on page 100 for the relation between the Poisson-bracket in a sigma-model with special �eld content and the
derived bracket in the target space, and the proposition 3b on page 94 for the relation between the antibracket
in a sigma-model and the derived bracket in target space. Proposition 2 on page 91 is just a short quantum
consideration which only works for the particle case. In section 7 the propositions 1b and 3b are �nally applied
to the two examples which were mentioned above.

Another result is the relation between the generalized Nijenhuis tensor and the derived bracket of J with

1In [58], the non-symmetric bracket is called 'Courant bracket'. Following e.g. Gualtieri [59] or [57], it will be called 'Dorfman
bracket' in this thesis, while 'Courant bracket' is reserved for its antisymmetrization (see (B.31) and (B.38)). �

2The Vinogradov bracket appearing in [60] is just the antisymmetrization of a derived bracket (see footnote 8 on page 123). �
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itself, given in (7.12). The derivation of this can be found in the appendix on page 115. In addition to this,
there is a new coordinate form of the generalized Nijenhuis tensor presented in (B.58) on page 114, which might
be easier to memorize than the known ones. There is also a short comment in footnote 3 on page 112 on a
possible relation to Hull's doubled geometry.

This part of the thesis makes use of only three of the appendices. Appendix A on page 106 summarizes the
used conventions, while appendix C on page 118 is an introduction to geometric brackets. Finally, appendix B
on page 109 provides some aspects of generalized complex geometry which might be necessary to understand
the two applications of above.



Chapter 6

Sigma-model-induced brackets

6.1 Geometric brackets in phase space formulation

In the following some basic geometric ingredients which are necessary to formulate derived brackets will be given.
Although there is no sigma model and no physics explicitly involved in this �rst subsection, the presentation
and the techniques will be very suggestive, s.th. there is visually no big change when we proceed after that with
considerations on sigma-models.

6.1.1 Algebraic brackets

Consider a real di�erentiable manifold M . The interior product with a vector �eld v = vk∂k (in a local
coordinate basis) acting on a di�erential form ρ is a di�erential operator in the sense that it di�erentiates with
respect to the basis elements of the cotangent space:1

ıvρ
(r) = r · vkρ

(r)
km1...mr−1

(x) dxm1 · · ·dxmr−1 = vk ∂

∂(dxk)
(ρm1...mr

dxm1 · · ·dxmr ) (6.1)

Let us rename2

cm ≡ dxm (6.2)

bm ≡ ∂m (6.3)

The vector v takes locally the form v = vmbm and when we introduce a canonical graded Poisson bracket
between cm and bm via {bm, c

n} = δn
m , we get

ıvρ = {v, ρ} (6.4)

Extending also the local x-coordinate-space to a phase space by introducing the conjugate momentum pm

(whose geometric interpretation we will discover soon), we have altogether the (graded) Poisson bracket

{bm, c
n} = δn

m = {cn, bm} (6.5)

{pm, x
n} = δn

m = −{xn, pm} (6.6)

{A,B} = A

←−
∂

∂bk

∂

∂ck
B +A

←−
∂

∂pk

∂

∂xk
B − (−)AB

(
B

←−
∂

∂bk

∂

∂ck
A+B

←−
∂

∂pk

∂

∂xk
A

)
(6.7)

and can write the exterior derivative acting on forms as generated via the Poisson-bracket by an odd phase-space
function o(c, p)

o ≡ o(c, p) ≡ ckpk (6.8){
o, ρ(r)

}
= ck {pk, ρm1...mr (x)} cm1 · · · cmr = dρ(r) (6.9)

The variables cm,bm,xm and pm can be seen as coordinates of T ∗(ΠTM), the cotangent bundle of the tangent
bundle with parity inversed �ber.

1Note, that a convention is used, were the prefactor 1
r!

which usually comes along with an r-form is absorbed into the de�nition
of the wedge-product. The common conventions can for all equations easily be recovered by rede�ning all coe�cients appropriately,
e.g. ρm1...mr → 1

r!
ρm1...mr . �

2The similarity with ghosts is of course no accident. It is well known (see e.g. [82]) that ghosts in a gauge theory can be seen
as 1-forms dual to the gauge-vector �elds and the BRST di�erential as the sum of the Koszul-Tate di�erential (whose homology
implements the restriction to the constraint surface) and the longitudinal exterior derivative along the constraint surface. In that
sense the present description corresponds to a topological theory, where all degrees of freedom are gauged away. But we will not
necessarily always view cm as ghosts in the following. So let us in the beginning see cm just as another name for dxm. We do not
yet assume an underlying sigma-model, i.e. bm and cm do not necessarily depend on a worldsheet variable. �
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Interior product and �quantization�

Given a multivector valued form K(k,k′) of form degree k and multivector degree k′, it reads in the local
coordinate patch with the new symbols

K(k,k′) ≡ K(k,k′)(x, c, b) ≡ Km1...mk

n1...nk′ (x) cm1 · · · cmkbn1 · · · bnk′ ≡ Km...m
n...n (6.10)

The notation K(x, c, b) should stress, that K is locally a (smooth on a C∞ manifold) function of the phase
space variables which will later be used for analytic continuation (x will be allowed to take c-number values of
a superfunction). The last expression in the above equation introduces a schematic index notation which is
useful to write down the explicit coordinate form for lengthy expressions. See in the appendix A at page 108 for
a more detailed description of its de�nition. It should, however, be self-explanatory enough for a �rst reading
of the thesis

One can de�ne a natural generalization of the interior product with a vector ıv to an interior product
with a multivector valued form ıK acting on some r-form (in fact, it is more like a combination of an interior
and an exterior product � see footnote 6 on page 122 �, but we will stick to this name)

ıK(k,k′)ρ(r) ≡ (k′)!
(

r
k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

= (6.11)

= Km1...mk

n1...nk′cm1 · · · cmk

{
bn1 ,

{
· · · ,

{
bnk′ , ρ

(r)
}}}

(6.12)

= Km1...mk

n1...nk′cm1 · · · cmk
∂

∂cn1
· · · ∂

∂cnk′
ρ(r) (6.13)

It is a derivative of order k′ and thus not a derivative in the usual sense like ıv. The third line shows the reason
for the normalization of the �rst line, while the second line is added for later convenience. The interior product
is commonly used as an embedding of the multivector valued forms in the space of di�erential operators acting
on forms, i.e. K → ıK , s.th. structures of the latter can be induced on the space of multivector valued forms.
In (6.13) the interior product ıK can be seen, up to a factor of ~/i, as the quantum operator corresponding
to K, where the form ρ plays the role of a wave function. The natural ordering is here to put the conjugate
momenta to the right. We can therefore �x the following �quantization� rule (corresponding to b̂ = ~

i
∂
∂c )

K̂(k,k′) ≡
(

~
i

)k′

ıK(k,k′) (6.14)

with ıK(k,k′) = Km...m
n1...nk′

∂k′

∂cn1 · · · ∂cnk′
(6.15)

The (graded) commutator of two interior products induces an algebraic bracket due to Buttin [83], which is
de�ned via

[ıK(k,k′) , ıL(l,,l′) ] ≡ ı[K,L]∆ (6.16)

A short calculation, using the obvious generalization of ∂n
x (f(x)g(x)) =

∑n
p=0

(
n
p

)
∂p

xf(x)∂n−p
x g(x) leads to

ıK ıL =
∑
p≥0

ı
ı
(p)
K L

= ıK∧L +
∑
p≥1

ı
ı
(p)
K L

(6.17)

where we introduced the interior product of order p

ı
(p)

K(k,k′) ≡
(
k′

p

)
Km...m

n...nl1...lp
∂p

∂cn1 · · · ∂cnp
= (6.18)

=
1
p!
K

←−
∂ p

∂bnp · · · ∂bn1

∂p

∂cn1 · · · ∂cnp
(6.19)

⇒ ı
(p)

K(k,k′)L
(l,l′) = (−)(k

′−p)(l−p)p!
(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (6.20)

which contracts only p of all k′ upper indices and therefore coincides with the interior product of above when
acting on forms for p = k′ and with the wedge product for p = 0.

ı
(k′)

K(k,k′)ρ = ıK(k,k′)ρ, ı
(0)
K L = K ∧ L (6.21)

Using (6.17) the algebraic bracket [ , ]∆ de�ned in (6.16) can thus be written as

[K(k,k′), L(l,l′)]∆ =
∑
p≥1

ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆(p)

(6.22)
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(6.20) provides the explicit coordinate form of this algebraic bracket. From (6.19) we recover the known fact
that the p = 1 term of the algebraic bracket is induced by the Poisson-bracket and therefore is itself an algebraic
bracket, called the big bracket [57] or Buttin's algebraic bracket [83]

[K,L]∆(1) = ı
(1)
K L− (−)(k−k′)(l−l′)ı

(1)
L K

(6.19)
= {K,L} = (6.23)

(6.20)
= (−)(k

′−1)(l−1)k′l Km...m
n...nl1Ll1m...m

n...n + (6.24)

−(−)(k−k′)(l−l′)(−)(l
′−1)(k−1)l′k Lm...m

n...nl1Kl1m...m
n...n

For k′ = l′ = 1 it reduces to the Richardson-Nijenhuis bracket (C.63) for vector valued forms. In [57] the big
bracket is described as the canonical Poisson structure on

∧•(T ⊕ T ∗) which matches with the observation in
(6.23). The bracket takes an especially pleasant coordinate form for generalized multivectors as is presented in
equation (B.77) on page 115.

The multivector-degree of the p-th term of the complete algebraic bracket (6.22) is (k′ + l′ − p), so that we
can rewrite (6.16) in terms of �quantum�-operators (6.14) in the following way:[

K̂(k,k′), L̂(l,l′)
]

=
∑
p≥1

(
~
i

)p
̂[K,L]∆(p) = (6.25)

=
(

~
i

)
{̂K,L}+

∑
p≥2

(
~
i

)p
̂[K,L]∆(p) (6.26)

The Poisson bracket is, as it should be, the leading order of the quantum bracket.

6.1.2 Extended exterior derivative and the derived bracket of the commutator

In the previous subsection the commutator of di�erential operators induced (via the interior product as em-
bedding) an algebraic bracket on the embedded tensors. Also other structures from the operator space can be
induced on the tensors. Having the commutator at hand, one can build the derived bracket (see footnote
3 on page 121) of the commutator by additionally commuting the �rst argument with the exterior derivative.
Being interested in the induced structure on multivector valued forms, we consider as arguments only interior
products with those multivector valued forms

[ıK ,dıL] ≡ [[ıK ,d] , ıL] (6.27)

One can likewise use other di�erentials to build a derived bracket, e.g. the twisted di�erential [d+H, . . .] with
an odd closed form H, which leads to so called twisted brackets. Let us restrict to dfor the moment. The derived
bracket is in general not skew-symmetric but it obeys a graded Jacobi-identity and is therefore what one calls
a Loday bracket. When looking for new brackets, the Jacobi identity is the property which is hardest to check.
A mechanism like above, which automatically provides it is therefore very powerful. The above derived bracket
will induce brackets like the Schouten bracket or even the Dorfman bracket of generalized complex geometry
on the tensors. In general, however, the interior products are not closed under its action, i.e. the result of
the bracket cannot necessarily be written as ıK̃ for some K̃. An expression for a general bracket on the tensor
level, which reduces in the corresponding cases to the well known brackets therefore does not exist. Instead
one normally has to derive the brackets in the special cases separately. In the following, however, a natural
approach is discussed including the new variable pm, introduced in (6.6), which leads to an explicit coordinate
expression for the general bracket. This expression is of course tensorial only in the mentioned special cases,
that is when terms with pm vanish. This is not an arti�cial procedure, as the conjugate variable pm to xm is
always present in sigma-models, and it will in turn explain the geometric meaning of pm.

The exterior derivative dacting on forms is usually not de�ned acting on multivector valued forms (otherwise
we could build the derived bracket of the algebraic bracket (6.22) by d without lifting everything to operators via
the interior product). But via {o,K(k,k′)} we can, at least formally, de�ne a di�erential on multivector valued
forms. The result, however, contains the variable pk which we have not yet interpreted geometrically. After
extending the de�nition of the interior product to objects containing pm, we will get the relation [d, ıK ] = ı{o,K},
i.e. {o, . . .} can be seen as an induced di�erential from the space of operators. For forms ω(q), this simply reads
[d, ıω] = ıdω. The de�nition dK ≡ {o,K} thus seems to be a reasonable extension of the exterior derivative to
multivector valued forms. Let us �rst provide the necessary de�nitions.

Consider a phase space function, which is of arbitrary order in the variable pk

T (t,t′,t′′)(x, c, b, p) ≡ Tm1...mt

n1...nt′k1...kt′′ (x) cm1 · · · cmtbm1 · · · bmt′pk1 · · · pkt′′ (6.28)

T is symmetrized in k1 . . . kt′′ ,while it is antisymmetrized in the remaining indices. Using the usual quantization
rules b→ ~

i
∂
∂c and p→ ~

i
∂
∂x with the indicated ordering (conjugate momenta to the right) while still insisting
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on (6.14) as the relation between quantum operator and interior product, we get an extended de�nition of the
interior product (6.12,6.13):

ıT (t,t′,t′′) ≡
(
i

~

)t′+t′′

T̂ (t,t′,t′′) ≡ (6.29)

≡ Tm1...mt

n1...nt′k1...kt′′cm1 · · · cmt
∂t′

∂cn1 · · · ∂cnt′

∂t′′

∂xk1 · · · ∂xkt′′
= (6.30)

ıT (t,t′,t′′)ρ(r) = Tm1...mt

n1...nt′k1...kt′′cm1 · · · cmt

{
bn1 ,

{
· · · ,

{
bnt′ ,

{
pk1 ,

{
· · · ,

{
pkt′′ , ρ

(r)
}}}}}}

= (6.31)

= (t′)!
(

r
t′

)
Tm...m

n1...nt′k1...kt′′
∂t′′

∂xk1 · · · ∂xkt′′
ρ(r)

nt′ ...n1m...m (6.32)

The operator ıT will serve us as an embedding of T (a phase space function, which lies in the extension of the
space of multivector valued forms by the basis element pk) into the space of di�erential operators acting on
forms. Because of the partial derivatives with respect to x, the last line is not a tensor and T in that sense not a
well de�ned geometric object. Nevertheless it can be a building block of a geometrically well de�ned object, for
example in the de�nition of the exterior derivative on multivector valued forms which we suggested above.
Namely, if we de�ne3

dK(k,k′) ≡
{

o,K(k,k′)
}

= (6.33)

= ∂mKm...m
n...n − (−)k−k′k′ ·Km...m

n...nkpk (6.34)

We get via our extended embedding (6.32) the nice relation 4

ıdKρ = [d, ıK ] ρ
(C.48)

= −(−)k−k′LKρ (6.35)

with LKρ = (k′)!
(

r
k′ − 1

)
Km...m

l1...lk′∂lk′ρlk′−1...l1m...m +

−(−)k−k′(k′)!
(

r
k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (6.36)

LKρ is the natural generalization of the Lie derivative with respect to vectors acting on forms, which is given
similarly Lvρ = [ıv,d]ρ. As ıK is a higher order derivative, also LK is a higher order derivative. Nevertheless, it
will be called Lie derivative with respect to K in this thesis. Let us again recall this fact: if pk appears in a
combination like dK, there is a well de�ned geometric meaning and dK is up to a sign nothing else than the Lie
derivative with respect to K, when embedded in the space of di�erential operators on forms. The commutator
with the exterior derivative is a natural di�erential in the space of di�erential operators acting on forms, and
via the embedding it induces the di�erential d on K. It should perhaps be stressed that the above de�nition
of dK corresponds to an extended action of the exterior derivative which acts also on the basis elements of the
tangent space

d(∂m) = pm (6.37)

This approach will enable us to give explicit coordinate expressions for the derived bracket of multivector valued
forms even in the general case where the result is not a tensor: In the space of di�erential operators on forms,
we have the commutator [ıK , ıL] and its derived bracket (C.51) [ıK ,dıL] ≡ [[ıK ,d], ıL], while on the space of
multivector valued forms we have the algebraic bracket [K,L]∆ and want to de�ne its derived bracket up to
a sign as [dK,L]∆. To this end we also have to extend the de�nition (6.18,6.19) of ı(p), which appears in the

3This can of course be seen as a BRST di�erential, which is well known to be the sum of the longitudinal exterior derivate plus
the Koszul Tate di�erential. However, as the constraint surface in our case corresponds to the con�guration space (pk would be the
�rst class constraint generating the BRST-transformation), it is reasonable to regard the BRST di�erential as a natural extension
of the exterior derivative of the con�guration space. �

4The exterior derivative on forms has already earlier (6.9) been seen to coincide with the Poisson bracket with o, which can be
used to demonstrate (6.35):

[d, ıK ] ρ = d(ıKρ)− (−)|K|ıK(dρ) =

= {o, ıKρ} − (−)|K|ıK {o, ρ} =

(6.12)
= ∂m1Km2...mk+1

n1...nk′ cm1 · · · cmk+1
n

bn1 ,
n

bn2 ,
n
· · · ,

n
bnk′ , ρ

(r)
ooo

+

+(−)kk′ ·Km1...mk
n1...nk′ cm1 · · · cmk

n
{o, bn1}| {z }

pn1

,
n

bn2 ,
n
· · · ,

n
bnk′ , ρ

(r)
oooo

(6.31)
=

(6.34)
ıdKρ �
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explicit expression of the algebraic bracket in (6.22) to objects that contain pk. This is done in a way that the
old equations for the algebraic bracket remain formally the same. So let us de�ne5

ı
(p)

T (t,t′,t′′) ≡

≡
p∑

q=0

(
t′

q

)(
t′′

p− q

)
Tm...m

n...ni1...iq , iq+1...ipk1...kt′′−p+qpk1 · · · pkt′′−p+q

∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(6.38)

=
1
p!

p∑
q=0

(
p
q

)
T

←−
∂ p

∂pip . . . ∂piq+1∂biq . . . ∂bi1

∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(6.39)

For p = t′+ t′′ it coincides with the full interior product (6.32): ı(t
′+t′′)

T (t,t′,t′′) = ıT (t,t′,t′′) . In addition we have with

this de�nition (after some calculation) ı(p)
dT = [d, ı(p)

T ] and in particular

ı
(p)
dK = [d, ı(p)

K ] (6.40)

and the equations for the algebraic bracket (6.16)-(6.22)) indeed remain formally the same for objects containing
pm

[ıT (t,t′,t′′) , ıT̃ (t̃,t̃′,t̃′′) ] ≡ ı[T,T̃ ]∆ (6.41)

ıT ıT̃ =
∑
p≥0

ı
ı
(p)
T T̃

(6.42)

[T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)]∆ ≡
∑
p≥1

ı
(p)
T T̃ − (−)(t−t′)(t̃−t̃′)ı

(p)

T̃
T︸ ︷︷ ︸

≡[T,T̃ ]∆(p)

(6.43)

[T, T̃ ]∆(1) =
{
T, T̃

}
(6.44)

which we can again rewrite in terms of �quantum�-operators (6.14) as

[
T̂ (k,k′), ˆ̃T (l,l′)

]
=

∑
p≥1

(
~
i

)p ̂[
T, T̃

]∆
(p)

= (6.45)

=
(

~
i

) {̂
T, T̃

}
+
∑
p≥2

(
~
i

)p ̂[
T, T̃

]∆
(p)

(6.46)

It should be stressed that � although very useful � ı(p) is unfortunately NOT a geometric operation any longer
in general, in the sense that ı(p)

dKL and also ı(p)
L dK do not have a well de�ned geometric meaning, although dK

and L have. ıdKρ and ı(p)
K L are in contrast well de�ned. ı(p)

dKL, for example, should rather be understood as a
building block of a coordinate calculation which combines only in certain combinations (e.g. the bracket [ , ]∆)
to s.th. geometrically meaningful.

We are now ready to de�ne the derived bracket of the algebraic bracket for multivector valued forms (see
footnote 3 on page 121)[
K(k,k′),L(l,l′)

]
≡ [K,d L]∆ ≡ −(−)k−k′ [dK,L]∆ = (6.47)

=
∑
p≥1

−(−)k−k′ ı
(p)
dKL+ (−)(k+1−k′)(l−l′)+k−k′ ı

(p)
L dK = (6.48)

=
∑
p≥1

−(−)k−k′ ı
(p)
dKL+ (−)(k−k′+1)(l−l′+1)(−)l−l′ ı

(p)
dLK + (−)(k−k′)(l−l′)+k−k′d(ı(p)

L K) (6.49)

The result is geometrical in the sense that after embedding via the interior product it is a well de�ned operator
acting on forms. This is the case, because due to our extended de�nitions we have for all multivector valued
forms the relation

[[ıK ,d], ıL] = ı[K(k,k′),L(l,l′)] (6.50)

and the lefthand side is certainly a well de�ned geometric object. A considerable e�ort went into getting a
correct coordinate form for the general derived bracket and for that reason, let us quickly have a glance at the

5Note that
Pp

q=0

„
t′

q

«„
t′′

p− q

«
=

„
t′ + t′′

p

«
�
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�nal result, although it is kind of ugly:6

[K,L] =
∑
p≥1

−(−)k−k′(−)(k
′−p)(l−p)p!

(
l
p

)(
k′

p

)
∂mKm...m

n...nl1...lpLlp...l1m...m
n...n +

+(−)k+k′l+k′+p+pl+pk′p!
(
k
p

)(
l′

p

)
∂mKm...mkp...k1

n...nLm...m
k1...kpn...n +

−(−)k′l+k′+pl+pk′p!
(

k
p− 1

)(
l′

p

)
∂lKm...mkp−1...k1

n...nLm...m
k1...kp−1ln...n +

+(−)(k
′−p)(l−p+1)p!

(
l

p− 1

)(
k′

p

)
Km...m

n...nl1...lp−1k∂kLlp−1...l1m...m
n...n +

+(−)(k
′−1−p)(l−p)p!(k′ − p)

(
l
p

)(
k′

p

)
Km...m

n...nl1...lpkLlp...l1m...m
n...npk +

−(−)k′l+l+pk′+lpk′ · p!
(
k
p

)(
l′

p

)
Km...mkp...k1

n...nkLm...m
k1...kpn...npk (6.51)

The result is only a tensor, when both terms with pk on the righthand side vanish, although the complete
expression is in general geometrically well-de�ned when considered to be a di�erential operator acting on forms
via ı[K,L] as this equals per de�nition the well-de�ned [[ıK ,d], ıL]. The above coordinate form reduces in the
appropriate cases to vector Lie-bracket, Schouten-bracket, and (up to a total derivative) to the (Fröhlicher)-
Nijenhuis-bracket. If one allows as well sums of a vector and a 1-form, we get the Dorfman bracket, and also
the sum of a vector and a general form gives a result without p.

Due to our extended de�nition of the exterior derivative, we can also de�ne the derived bracket of the
big bracket (the Poisson bracket) via[

K(k,k′),d L
(l,l′)

]∆
(1)

≡ −(−)k−k′ [dK,L]∆(1) = (6.52)

= −(−)k−k′ {dK,L} (6.53)

which is just the p = 1 term of the full derived bracket with the explicit coordinate expression

[K,d L]∆(1) = −(−)k−k′(−)(k
′−1)(l−1)lk′∂mKm...m

n...nl1Ll1m...m
n...n +

−(−)k+k′l+lkl′∂mKm...mk1
n...nLm...m

k1n...n +

−(−)k′l+ll′∂lKm...m
n...nLm...m

ln...n +

+(−)(k
′−1)lk′Km...m

n...nk∂kLm...m
n...n +

+(−)k′(l−1)(k′ − 1)lk′Km...m
n...nl1kLl1m...m

n...npk +

−(−)k′l+k′k′kl′Km...mk1
n...nkLm...m

k1n...npk (6.54)

[K,L] = [K,d L]∆(1) − (−)k−k′
∑
p≥2

[dK,L]∆(p) (6.55)

Like the big bracket itself, also its derived bracket takes a very pleasant coordinate form for generalized multi-
vectors (see (B.79) on page 115). In contrast to the full derived bracket, we have no guarantee for this derived
bracket to be geometrical itself.

6The building blocks are

ı
(p)
dKL = (−)(k

′−p)(l−p)p!

„
k′

p

«„
l
p

«
∂mKm...m

n...ni1...ipLip...i1m...m
n...n +

−(−)k−k′ (−)(k
′−1−p)(l−p)(p + 1)!

„
k′

p + 1

«„
l
p

«
Km...m

n...ni1...ipkLip...i1m...m
n...npk +

−(−)k−k′ (−)(k
′−p)(l−p+1)p!

„
k′

p

«„
l

p− 1

«
Km...m

n...ni1...ip−1ip∂ipLip−1...i1m...m
n...n

ı
(p)
L dK = (−)(l

′−p)(k+1−p)+pp!

„
k
p

«„
l′

p

«
Lm...m

n...nk1...kp∂mKkp...k1m...m
n...n +

+(−)(l
′−p)(k+1−p)p!

„
k

p− 1

«„
l′

p

«
Lm...m

n...nk1...kp−1l∂lKkp−1...k1m...m
n...n +

−(−)k−k′ (−)(l
′−p)(k−p)k′ · p!

„
k
p

«„
l′

p

«
Lm...m

n...nk1...kpKkp...k1m...m
n...nkpk �
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Let us eventually note how one can easily adjust the extended exterior derivative to the twisted case:

[d+H∧ , ıK ] ≡ ıdHK (6.56)

dHK = dK + [H,K]∆ = dK − (−)k−k′
∑
p≥1

ı
(p)
K H (6.57)

with H being an odd closed di�erential form. It should be stressed that d+ H∧ is not a di�erential, but on
the operator level its commutator [d+H∧, . . .] is a di�erential and thus the above de�ned dH is a di�erential
as well.

6.2 Sigma-Models

A sigma model is a �eld theory whose �elds are embedding functions from a world-volume Σ into a target
space M , like in string theory. So far there was no sigma-model explicitly involved into our considerations.
One can understand the previous subsection simply as a convenient way to formulate some geometry. The
phase space introduced there, however, is like the phase space of a (point particle) sigma model with only one
world-volume dimension � the time � which is not showing up in the o�-shell phase-space. Let us now naively
consider the same setting like before as a sigma model with the coordinates xm depending on some worldsheet
coordinates7 σµ. The resulting model has a very special �eld content, because its anticommuting �elds cm(σ)
have the same index structure as the embedding coordinate xm(σ). In one and two worldvolume-dimensions,
cm can be regarded as worldvolume-fermions, and this will be used in the stringy application in 7.2. In general
worldvolume dimensions, cm could be seen as ghosts, leading to a topological theory. In any case the dimension
of the worldvolume will not yet be �xed, as the described mechanism does not depend on it.

A multivector valued form on a C∞-manifoldM can locally be regarded as an analytic function of xm,dxm ≡
cm and ∂m ≡ bm

K(k,k′)(x,dx,∂) = Km1...mk

n1...nk′ (x)dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′ = (6.58)

≡ Km1...mk

n1...nk′ (x)cm1 · · · cmkbn1 · · · bnk′ = K(k,k′)(x, c, b) (6.59)

For sigma models, xm → xm(σ), pm → pm(σ), cm → cm(σ) and bm → bm(σ) become dependent on the
worldvolume variables σµ. They are, however, for every σ valid arguments of the function K. Frequently only
the worldvolume coordinate σ will then be denoted as new argument of K, which has to be understood in the
following sense

K(k,k′)(σ) ≡ K(k,k′) (x(σ), c(σ), b(σ)) = Km1...mk

n1...nk′ (x(σ)) · cm1(σ) · · · cmk(σ)bn1(σ) · · · bnk′ (σ) (6.60)

Also functions depending on pm, like dK(x, c, b, p) in (6.34), or more general a function T (t,t′,t′′)(x, c, b, p) as in
(6.28) are denoted in this way

T (t,t′,t′′)(σ) ≡ T (t,t′,t′′) (x(σ), c(σ), b(σ), p(σ)) (see (6.28)) (6.61)

e.g. dK(σ) ≡ dK (x(σ), c(σ), b(σ), p(σ)) (see (6.34)) (6.62)

or o(σ) ≡ o (c(σ), p(σ)) = cm(σ)pm(σ) (see (6.8)) (6.63)

The expression dK(σ) should NOT be mixed up with the world-volume exterior derivative of K which will be
denoted by dwK(σ).8 Every operation of the previous section, like ı(p)

K L or the algebraic or derived brackets
leads again to functions of x, c, b and sometimes p. Let us use for all of them the notation as above, e.g. for the
derived bracket of the big bracket (6.52,6.54)[

K(k,k′),d L
(l,l′)

]∆
(1)

(σ) ≡
[
K(k,k′),L(l,l′)

](∆)

(1)
(x(σ), c(σ), b(σ), p(σ)) (6.64)

And even dxm = cm and dbm = pm will be seen as a function (identity) of cm or bm, s.th. we denote

dxm(σ) ≡ cm(σ) (6.65)

dbm(σ) ≡ pm(σ) (6.66)

Although dacts only in the target space on x, b, c and p, the above obviously suggests to introduce a di�erential
� say s � in the new phase space, which is compatible with the target space di�erential in the sense

s(xm(σ)) = dxm(σ) ≡ cm(σ) (6.67)

s(bm(σ)) = dbm(σ) ≡ pm(σ) (6.68)
7The index µ will not include the worldvolume time, when considering the phase space, but it will contain the time in the

Lagrangian formalism. As this should be clear from the context, there will be no notational distinction. �
8 It is much better to mix it up with a BRST transformation or with something similar to a worldsheet supersymmetry

transformation. We will come to that later in subsection 7.2. To make confusion perfect, it should be added that in contrast it is
not completely wrong in subsection 6.5 to mix up the target space exterior derivative with the worldsheet exterior derivative... �
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We can generate swith the Poisson bracket in almost the same way as dbefore in (6.8):

Ω ≡
∫

Σ

d
dw−1
σ o(σ) =

∫
d

dw−1
σ cm(σ)pm(σ), s(. . .) = {Ω, . . .} (6.69)

The Poisson bracket between the conjugate �elds gets of course an additional delta function compared to
(6.5,6.6).

{pm(σ′), xn(σ)} = δn
mδ

dw−1(σ′ − σ) (6.70)

{bm(σ′), cn(σ)} = δn
mδ

dw−1(σ′ − σ) (6.71)

The �rst important (but rather trivial) observation is then that for K(σ) being a function of x(σ), c(σ), b(σ) as
in (6.60) (and not a functional, which could contain derivatives on or integrations over σ) we have

s(K(σ)) =
(

cm(σ)
∂

∂(xm(σ))
+ pm(σ)

∂

∂(bm(σ))

)
K (x(σ), c(σ), b(σ)) = dK(σ) (6.72)

The same is true for more general objects of the form of T in (6.61). Because of this fact the distinction between
dand s is not very essential, but in subsection 6.5 the replacement of the arguments as in (6.61) will be di�erent
and the distinction very essential in order not to get confused.

The relation between Poisson bracket and big bracket (6.23,6.44) gets obviously modi�ed by a delta function{
K(k,k′)(σ′), L(l,l′)(σ)

}
=

[
K(k,k′), L(l,l′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.73)

or more general
{
T (t,t′,t′′)(σ′), T̃ (t̃,t̃′,t̃′′)(σ)

}
=

[
T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.74)

The relation between the derived bracket (using s) on the lefthand side and the derived bracket (using d) on
the righthand side is (omitting the overall sign in the de�nition of the derived bracket){

sK(k,k′)(σ′), L(l,l′)(σ)
}

(6.72)
=

{
dK(k,k′)(σ′), L(l,l′)(σ)

}
(6.74)
=

[
dK(k,k′), L(l,l′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.75)

The worldvolume coordinates σ remain so far more or less only spectators. In the subsection 6.5, the world-
volume coordinates play a more active part and already in the following subsection a similar role is taken by an
anticommuting extension of the worldsheet.

Before we proceed, it should be stressed that the replacement of x, c, b and p by x(σ), c(σ), b(σ) and p(σ)
was just the most naive replacement to do, and it will be a bit extended in the following section until it can
serve as a useful tool in an application in 7.2. But in principle, one can replace those variables by any �elds with
matching index structure and parity (even composite ones) and study the resulting relations between Poisson
bracket on the one side and geometric bracket on the other side. Also the di�erential s can be replaced for
example by the twisted di�erential or by more general BRST-like transformations. In this way it should be
possible to implement other derived brackets, for example those built with the Poisson-Lichnerowicz-di�erential
(see [57]), in a sigma-model description. In 6.5, a di�erent (but also quite canonical) replacement is performed
and we will see that the di�erent replacement corresponds to a change of the role of σ and an anticommuting
worldvolume coordinate θ which will be introduced in the following.

6.3 Natural appearance of derived brackets in Poisson brackets of
super�elds

In the application to worldsheet theories in section 7, there appear super�elds, either in the sense of worldsheet
supersymmetry or in the sense of de-Rham super�elds (see e.g. [84, 78]). Let us view a super�eld in general
as a method to implement a fermionic transformation of the �elds via a shift in a fermionic parameter θ which
can be regarded as fermionic extension of the worldvolume. In our case the fermionic transformation is just
the spacetime de-Rham-di�erential d, or more precisely s, and is not necessarily connected to worldvolume
supersymmetry. In fact, in worldvolumes of dimension higher than two, supersymmetry requires more than one
fermionic parameter while a single θ is enough for our purpose to implement s. In two dimensions, however, this
single theta can really be seen as a worldsheet fermion (see 7.2). But let us neglect this knowledge for a while,
in order to clearly see the mechanism, which will be a bit hidden again, when applied to the supersymmetric
case in 7.2.

As just said above, we want to implement with super�elds the fermionic transformation s and not yet a
supersymmetry. So let us de�ne in this section a super�eld as a function of the phase space �elds with
additional dependence on θ, Y = Y (x(σ), p(σ), c(σ), b(σ),θ), which obeys 9

sY (x(σ), p(σ), c(σ), b(σ),θ) != ∂θY (x(σ), p(σ), c(σ), b(σ),θ) (6.76)

with sxm(σ) = cm(σ), sbm(σ) = pm(σ) (sθ = 0) (6.77)
9If this seems unfamiliar, compare with the case of worldsheet supersymmetry, where one introduces a di�erential operator

Qθ ≡ ∂θ +θ∂σ and the de�nition of a super�eld is, in contrast to here, δεY
!
= εQθY , where δε is the supersymmetry transformation

of the component �elds (compare 7.2). �
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With our given �eld content it is possible to de�ne two basic conjugate10 super�elds Φm and Sm

which build up a super-phase-space11

Φm(σ,θ) ≡ xm(σ) + θcm(σ) = xm(σ) + θsxm(σ) (6.78)

Sm(σ,θ) ≡ bm(σ) + θpm(σ) = bm(σ) + θsbm(σ) (6.79){
Sm(σ,θ),Φn(σ′,θ′)

}
=

{
bm(σ),θ′cn(σ′)

}
+ θ {pm(σ), xn(σ′)} = (6.80)

= (θ − θ′)︸ ︷︷ ︸
≡δ(θ−θ′)

δ(σ − σ′)δn
m (6.81)

Φ and S are obviously super�elds in the above sense

∂θΦm(σ,θ) = sxm(σ)︸ ︷︷ ︸
cm(σ)

+θscm(σ)︸ ︷︷ ︸
=0

= sΦm(σ,θ) (6.82)

∂θSm = sbm(σ)︸ ︷︷ ︸
pm(σ)

+θspm(σ)︸ ︷︷ ︸
0

= sSm(σ,θ) (6.83)

as well as sΦ(σ,θ) = c(σ) and sS(σ,θ) = p(σ) are super�elds, and every analytic function of those �elds will be
a super�eld again.

We will convince ourselves in this subsection that in the Poisson brackets of general super�elds, the derived
brackets come with the complete δ-function (of σ and θ) while the corresponding algebraic brackets come with
a derivative of the delta-function. The introduction of worldsheet coordinates σ was not yet really necessary for
this discussion, but it will be useful for the comparison with the subsequent subsection. Indeed, we do not specify
the dimension dw of the worldsheet yet. An argument sigma is representing several worldsheet coordinates σµ. It
should be stressed again that the di�erential dshould NOT be mixed up with the worldsheet exterior derivative
dw, which does not show up in this subsection.

Similar as in 6.2, equations (6.60)-(6.66),we will view all geometric objects as functions of local coordinates
and replace the arguments not by phase space �elds but by the just de�ned super-phase �elds which reduces
for θ = 0 to the previous case.

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) θ=0= T (t,t′,t′′)(σ) (see (6.61)) (6.84)

10The super�elds Φ and S are conjugate with respect to the following super-Poisson-bracket˘
F (σ′, θ′), G(σ, θ)

¯
≡

Z
d

dw−1
σ̃

Z
dθ̃

`
δF (σ′, θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
G(σ, θ)− δF (σ′, θ′)/δΦk(σ̃, θ̃)

δ

δSk(σ̃, θ̃)
G(σ, θ)

´
=

=

Z
d

dw−1
σ̃

Z
dθ̃

`
δF (σ′, θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
G(σ, θ)− (−)FGδG(σ′, θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
F (σ, θ)

´
which, however, boils down to taking the ordinary graded Poisson bracket between the component �elds (as can be seen in (6.80)).
The functional derivatives from the left and from the right are de�ned as usual via

δSA ≡
Z

d
dw−1

σ̃

Z
dθ̃ δA/δSk(σ̃, θ̃) · δSk(σ̃, θ̃) ≡

Z
d

dw−1
σ̃

Z
dθ̃ δSk(σ̃, θ̃) ·

δ

δSk(σ̃, θ̃)
A

and similarly for Φ, which leads to

δ

δSm(σ̃, θ̃)
Sn(σ, θ) = δm

n (θ − θ̃)δdw−1(σ − σ̃) = −δSn(σ, θ)/Sm(σ̃, θ̃)

δ

δΦm(σ̃, θ̃)
Φn(σ, θ) = δn

m(θ̃ − θ)δdw−1(σ − σ̃) = δΦn(σ, θ)/δΦm(σ̃, θ̃)

The functional derivatives can also be split in those with respect to the component �elds

δ

δSm(σ̃, θ̃)
=

δ

δpm(σ̃)
− θ̃

δ

δbm(σ̃)
,

δ

δΦm(σ̃, θ̃)
=

δ

δcm(σ̃)
+ θ̃

δ

δxm(σ̃)
�

11For Grassmann variables δ(θ′ − θ) = θ′ − θ in the following senseZ
dθ′(θ′ − θ)F (θ′) =

Z
dθ′(θ′ − θ)

`
F (θ) + (θ′ − θ)∂θF (θ)

´
=

=

Z
dθ′ θ′F (θ)− θ′θ∂θF (θ)− θθ′∂θF (θ) =

= F (θ)

We have as usual

θδ(θ′ − θ) = θ(θ′ − θ) = θθ′ = θ′(θ′ − θ) =

= θ′δ(θ′ − θ)

Pay attention to the antisymmetry

δ(θ′ − θ) = −δ(θ − θ′) �
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For example for a multivector valued form we write

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ), sΦm(σ,θ)︸ ︷︷ ︸

cm(σ)

,Sm(σ,θ)
)

= (6.85)

= Km1...mk

n1...nk′ (Φ(σ,θ)) sΦm1(σ,θ)︸ ︷︷ ︸
cm1 (σ)

. . . sΦmk(σ,θ)Sn1(σ,θ) . . .Snk′ (σ,θ) θ=0=
(6.60)

K(k,k′)(σ) (6.86)

Likewise for all the other examples of 6.2:

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) (6.87)

or o(σ,θ) ≡ o (sΦ(σ,θ), sS(σ,θ)) = cm(σ)pm(σ) = o(σ) (6.88)[
K(k,k′),d L

(l,l′)
]∆
(1)

(σ,θ) ≡
[
K(k,k′),L(l,l′)

](∆)

(1)
(Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) θ=0=

(6.64)

[
K(k,k′),L(l,l′)

](∆)

(1)
(σ) (6.89)

dxm(σ,θ) ≡ sΦm(σ,θ) = cm(σ) (6.90)

dbm(σ,θ) ≡ sSm(σ,θ) = pm(σ) (6.91)

For functions of the type T (t,t′,t′′)(σ,θ) we clearly have

dT (t,t′,t′′)(σ,θ) = s
(
T (t,t′,t′′)(σ,θ)

)
(6.92)

in particular dK(k,k′)(σ,θ) = s
(
K(k,k′)(σ,θ)

)
(6.93)

As all those analytic functions of the basic super�elds are super�elds (in the sense of 6.76) themselves, ∂θ can
be replaced by s in a θ-expansion, so that we get the important relation

T (t,t′,t′′)(σ,θ) = T (t,t′,t′′)(σ) + θdT (t,t′,t′′)(σ) (6.94)

K(k,k′)(σ,θ) = K(k,k′)(σ) + θdK(k,k′)(σ) (6.95)

This also implies that dT (σ,θ) and in particular dK(σ,θ) do actually not depend on θ:

dK(k,k′)(σ,θ) = dK(k,k′)(σ) (6.96)

Now comes the nice part:

Proposition 1 For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m as in (6.10), the following equation holds for the corresponding
super�elds (6.85)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)} = δ(θ′ − θ)δ(σ − σ′) · [dK,L]∆(1)︸ ︷︷ ︸
−(−)k−k′ [K,dL]∆(1)

(σ,θ) + ∂θδ(θ − θ′)︸ ︷︷ ︸
=1

δ(σ − σ′)[K,L]∆(1)(σ,θ) (6.97)

where [K,L]∆(1) is the big bracket (6.23) (Buttin's algebraic bracket, which was previously just the Poisson bracket,

being true now up to a δ(σ−σ′) only after setting θ = θ′) and [K,dL]∆(1) is the derived bracket of the big bracket

(6.52).

Proof Using (6.95), we can simply plug K(σ′,θ′) = K(σ′) + θ′dK(σ′) and L(σ,θ) = L(σ) + θdL(σ) into
the lefthand side:{
K(σ′,θ′), L(σ,θ)

}
=

= {K(σ′), L(σ)}+ θ′ {dK(σ′), L(σ)}+ (−)k−k′θ {K(σ′),dL(σ)}+ (−)k−k′θθ′ {dK(σ′),dL(σ)} = (6.98)

= {K(σ′), L(σ)}+ (θ′ − θ) {dK(σ′), L(σ)}+ θd{K(σ′), L(σ)} − θθ′d{dK(σ′), L(σ)} = (6.99)
(6.23)
= δ(σ − σ′)

(
[K,L]∆(1) (σ) + θd[K,L]∆(1) (σ)

)
+ (θ′ − θ)δ(σ − σ′)

(
[dK,L]∆(1) (σ) + θd[dK,L]∆(1) (σ)

)
= (6.100)

(6.94)
= δ(σ − σ′) [K,L]∆(1) (σ,θ) + (θ′ − θ)δ(σ − σ′) [dK,L]∆(1) (σ,θ) � (6.101)

There is yet another way to see that the bracket at the plain delta functions is the derived bracket of the
one at the derivative of the delta-function, which will be useful later: Denote the coe�cients in front of the
delta-functions by A(K,L) and B(K,L):{

K(σ′,θ′), L(σ,θ)
}

= A(K,L) · δ(θ′ − θ)δ(σ − σ′) +B(K,L)(σ,θ) ∂θδ(θ − θ′)︸ ︷︷ ︸
=1

δ(σ − σ′) (6.102)
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In order to hit the delta-functions, it is enough to integrate over a patch U(σ) containing the point parametrized
by σ. We can thus extract A and B via

A(K,L)(σ,θ) =
∫

dθ′
∫

U(σ)

d
dw−1
σ′
{
K(σ′,θ′), L(σ,θ)

}
= (6.103)

=
∫

dθ′
∫
d

dw−1
σ′
{
K(σ′) + θ′dK(σ′), L(σ,θ)

}
= (6.104)

=
∫
d

dw−1
σ′{ dK(σ′)︸ ︷︷ ︸

(6.96)
= dK(σ′,θ)

, L(σ,θ)} (6.105)

B(K,L)(σ,θ) =
∫

dθ′
∫

U(σ)

d
dw−1
σ′(θ′ − θ)

{
K(σ′,θ′), L(σ,θ)

}
= (6.106)

=
∫
d

dw−1
σ′
{
K(σ′,θ′), L(σ,θ)

}
|θ′=θ (6.107)

⇒ A(K,L) = B(dK,L) (6.108)

It is thus enough to collect in a direct calculation the terms at the derivative of the delta-function and verify
that it leads to the big bracket. �

6.4 Comment on the quantum case

In (6.14) the embedding via the interior product into the space of operators acting on forms was interpreted as
quantization . In the presence of world-volume dimensions, the partial derivative as Schroedinger representation
for conjugate momenta is no longer appropriate and one has to switch to the functional derivative. Remember

Φm(σ,θ) = xm(σ) + θcm(σ), dΦm(σ,θ) = cm(σ) = dΦ(σ) (6.109)

Sm(σ,θ) = bm(σ) + θpm(σ), dSm(σ,θ) = pm(σ) = dS(σ) (6.110)

The quantization of the super�elds in the Schroedinger representation (conjugate momenta as super functional
derivatives) is consistent with the quantization of the component �elds (see also footnote 10)

Ŝm(σ,θ) ≡ ~
i

δ

δΦm(σ,θ)
=

~
i

δ

δcm(σ)
+ θ

~
i

δ

δxm(σ)
(6.111)

⇒
[
Ŝm(σ,θ), Φ̂n(σ′,θ′)

]
=

~
i

(
δ

δcm(σ)
+ θ

δ

δxm(σ)

)(
xn(σ′) + θ′cn(σ′)

)
= (6.112)

=
~
i
δn
m

(
θ − θ′

)
δ(σ − σ′) (6.113)

The quantization of a multivector valued form, containing several operators Ŝ at the same worldvolume-point,
however, leads to powers of delta functions with the same argument when acting on some wave functional. This
is the usual problem in quantum �eld theory and requires a model dependent regularization and renormalization.
We will stay model independent here and therefore will not treat the quantum case for a present worldvolume
coordinate σ. Nevertheless it is instructive to study it for absent σ, but keeping θ and considering �worldline-
super�elds� of the form

Φm(θ) = xm + θcm, dΦm(θ) = cm (6.114)

Sm(θ) = bm + θpm, dSm(θ) = pm (6.115)

Quantum operator and commutator simplify to

Ŝm(θ) ≡ ~
i

δ

δΦm(θ)
=

~
i

∂

∂cm
+ θ

~
i

∂

∂xm
(6.116)

⇒
[
Ŝm(θ), Φ̂n(θ′)

]
=

~
i
δn
m

(
θ − θ′

)
(6.117)[

Ŝm(θ), d̂Φ
n
(θ′)

]
=

~
i
δn
m (6.118)

In contrast to σ, products of θ-delta functions are no problem.
The important relation K(θ) = K + θdK (6.95) can be extended to the quantum case as seen when acting

on some r-form.

ıK(k,k′)ρ(r)(θ)
(6.94)
= ıKρ+ θd(ıKρ) = (6.119)
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(6.35)
= ıKρ+ θ

(
ıdKρ+ (−)k−k′)ıKdρ

)
= (6.120)

= ıK(θ) (ρ(θ)) (6.121)

with ıK(θ) ≡ ıK + θ [d, ıK ] (6.122)

In that sense we have (remember K̂ =
(~

i

)k′
ıK)

K̂(k,k′)(θ) = K̂(k,k′) + θd̂K (6.123)

with d̂K
(6.35)
=

[
d, K̂

]
(6.124)

where the explicit form of this quantized multivector valued form reads

K̂(k,k′)(θ) ≡
(

~
i

)k′

Km1...mk

n1...nk′ (Φ(θ)) dΦm1(θ)︸ ︷︷ ︸
cm1

. . .dΦmk(θ)
δ

δΦn1(θ)
. . .

δ

δΦnk′ (θ)
(6.125)

In the derivation of (6.122), ıK and ρ both were evaluated at the same θ. Let us eventually consider the general
case:

K̂(k,k′)(θ′)ρ(r)(θ) =
(
K̂ + θ′d̂K

)
(ρ+ θdρ) = (6.126)

= K̂ρ+ θ′d̂Kρ+ (−)k−k′θK̂dρ+ (−)k−k′θθ′d̂Kdρ = (6.127)

= K̂ρ+ θd
(
K̂ρ
)

+ (θ′ − θ)
(
d̂Kρ+ θd

(
d̂Kρ

))
(6.128)

The relation between quantum operators acting on forms and the interior product therefore becomes modi�ed
in comparison to (6.14) and reads

K̂(k,k′)(θ′)ρ(r)(θ) =
(

~
i

)k′ (
ıKρ(θ) + (θ′ − θ) ıdKρ(θ)︸ ︷︷ ︸

(−)k−k′LKρ

)
(6.129)

Proposition 2 For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m as in (6.10), the following equations holds for the corresponding
quantized worldline-super�elds (6.125) K̂(θ) and L̂(θ):

[K̂(k,k′)(θ′), L̂(l,l′)(θ)] =
∑
p≥1

(
~
i

)p (
∂θδ(θ − θ′)︸ ︷︷ ︸

=1

̂[K,L]∆(p)(θ) + δ(θ′ − θ) ̂[dK,L]∆(p)(θ)
)

(6.130)

[K̂(k,k′)(θ′), L̂(l,l′)(θ)]ρ(θ̃) =

=
(

~
i

)k′+l′ (
ı[K,L]∆ρ

(r)(θ̃) + δ(θ − θ̃)ıd[K,L]∆ρ
(r)(θ̃) +

+δ(θ′ − θ)
(
ı[dK,L]∆ρ

(r)(θ̃) + δ(θ − θ̃)ıd[dK,L]∆ρ
(r)(θ̃)

))
(6.131)

Again the algebraic bracket (C.44) comes with the derivative of the delta function while the derived bracket (6.47)

comes with the plain delta functions. But this time the algebraic bracket is not only the big bracket [ , ]∆(1), but
the full one.

Proof Let us just plug in (6.123) into the lefthand side:

[K̂(θ′), L̂(θ)] = [K̂ + θ′d̂K , L̂+ θd̂L] = (6.132)

= [K̂, L̂] + θ′[d̂K , L̂] + (−)k−k′θ[K̂ , d̂L]− (−)k−k′θ′θ[d̂K , d̂L] = (6.133)
(6.124)

= [K̂, L̂] + θ
[
d, [K̂ , L̂]

]
+ (θ′ − θ)

(
[d̂K , L̂] + θ

[
d, [d̂K , L̂]

])
= (6.134)

= [K̂, L̂](θ) + (θ′ − θ)[d̂K , L̂] (6.135)

Remember now the algebraic bracket (C.43)

[ıK(k,k′) , ıL(l,,l′) ] = ı[K,L]∆ =
∑
p≥1

ı[K,L]∆(p)
(6.136)
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with [K,L]∆(p) ≡ ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K (6.137)

or likewise written in terms of K̂ and L̂

[K̂(k,k′), L̂(l,l′)] =
∑
p≥1

(
~
i

)p
̂[K,L]∆(p) (6.25=6.138)

Due to (6.45) we have exactly the same equation for [d̂K , L̂]. Plugging this back into (6.135) completes the
proof of (6.130). The second equation in the proposition is just a simple rewriting, when acting on a form,
which enables to combine the p-th terms of algebraic and derived bracket to the complete ones. �

6.5 Analogy for the antibracket

In the previous subsection the target space exterior derivative d (realized in the σ-model phase-space by s) was
induced by the the derivative ∂θ with respect to the anticommuting coordinate. But thinking of the pullback of
forms in the target space to worldvolume-forms, dcan of course also be induced to some extend by the derivative
with respect to the bosonic worldvolume coordinates σµ (including the time, because we are in the Lagrangian
formalism now) or better by the worldvolume exterior derivative dw. To this end, however, we have to make a
di�erent identi�cation of the basis elements in tangent- and cotangent-space of the target space with the �elds
on the worldvolume than before, namely12

dxm → dwxm(σ) = dwσµ∂µx
m(σ), ∂m → x+

m(σ) (6.139)

where x+
m is the anti�eld of xm, i.e. the conjugate �eld to xm with respect to the antibracket13. Let us rename

θµ ≡ dwσµ (6.140)

For a target space r-form

ρ(r)(xm,dxm) ≡ ρm1...mr (x)dx
m1 · · ·dxmr (6.141)

we de�ne (in analogy to (6.85), but indicating that we allow in the beginning only a variation in σ)

ρ
(r)
θ (σ) ≡ ρ(r)(xm(σ),dwxm(σ)) = ρm1...mr (x(σ))dwxm1(σ) · · ·dwxmr (σ) (6.142)

Attention: this vanishes identically for r > dw (worldvolume dimension).
The worldvolume exterior derivative then induces the target space exterior derivative in the following sense

dwρ
(r)
θ (σ) = (dρ(r))θ(σ) (6.143)

Again both sides vanish identically for now r + 1 > dw, which means that in this way one can calculate with
target space �elds of form degree not bigger than the worldvolume dimension. If we want to have the same
relation for K(k,k′)

θ (σ) (de�ned in the analogous way), we have to extend the identi�cation in (6.139) by

pm → dwx+
m(σ) (6.144)

12This identi�cation resembles the one in [58] with ∂m → pm(z) and dxm → ∂xm(z), or dxm1 · · ·dxmp →
εµ1...µp∂µ1xm1 (σ) · · · ∂µpxmp (σ) in [60]. It is observed in [58] that the Poisson bracket induces the Dorfman bracket between
sums of vectors and 1-forms (in generalized geometry) and in [60] more generally that the Poisson-bracket for the p-brane induces
the corresponding bracket between sums of vectors and p-forms (which is called, Vinogradov bracket in [60]). As ∂xm and pm are
commuting phase space variables, higher rank tensors would automatically be symmetrized (only volume forms, i.e. p-forms on a
p-brane, can be implemented, using the epsilon-tensor). Symmetrized tensors and brackets inbetween (e.g. the Schouten bracket
for symmetric multivectors) make sense and one could transfer the present analysis to this setting, but in general a natural exterior
derivative is missing. Therefore the analysis for the above identi�cations is done in the anti�eld-formalism. The appearing derived
brackets will also contain the Dorfman bracket and the corresponding bracket for sums of vectors and p-forms and in that sense
the present approach is a generalization of the observations above. �

13The antibracket looks similar to the Poisson-bracket, but their conjugate �elds have opposite parity, which leads to a di�erent
symmetry (namely that of a Lie-bracket of degree +1 (or -1), i.e. the one in a Gerstenhaber algebra or Schouten-algebra, see
footnote 1)

(A,B) ≡
Z

d
dw
σ̃

`
δA/x+

k (σ̃)
δ

δxk(σ̃)
B − δA/δxk(σ̃)

δ

δx+
k (σ̃)

B
´

=

=

Z
d

dw
σ̃

`
δA/x+

k (σ̃)
δ

δxk(σ̃)
B − (−)(A+1)(B+1)δB/x+

k (σ̃)
δ

δxk(σ̃)
A
´

(A,B) = −(−)(A+1)(B+1) (B,A)`
x+

m(σ),B
´

=
δ

δxm(σ)
B = −

`
B,x+

m(σ)
´

(xm(σ),B) = −
δ

δx+
m(σ)

B = (−)B (B,xm(σ)) �
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and get

dwK
(k,k′)
θ (σ) = (dK(k,k′))θ(σ) (6.145)

with

K
(k,k′)
θ (σ) ≡ K(k,k′)

(
xm(σ),dwxm(σ),x+

m(σ)
)

(6.146)

(dK(k,k′))θ(σ) ≡ dK(k,k′)
(
xm(σ),dwxm(σ),x+

m(σ),dwx+
m(σ)

)
(6.147)

The analysis is thus very similar to that of the previous section.

Proposition 3a For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m, the following equation holds for the corresponding sigma-model
realizations (6.146,6.147)

(Kθ(σ′),Lθ(σ)) =
(
[K,dL]∆(1)︸ ︷︷ ︸

−(−)k−k′ [dK,L]∆(1)

)
θ
(σ)δdw(σ − σ′)− (−)k−k′θµ∂µδ

dw(σ − σ′)
(
[K,L]∆(1)

)
θ
(σ) (6.148)

Proof The proof is very similar to that one of proposition 3b (6.168) and is therefore omitted at this
place. �

Conjugate Super�elds With θµ = dwσµ we have introduced anticommuting coordinates and it would be nice
to extend the anti-bracket of the �elds xm and x+

m to a super-antibracket of conjugate super�elds. Remember,
in the previous subsection we had the super�elds Φm = xm + θcm and its conjugate Sm. There we had one θ
and two component �elds. In general the number of component �elds has to exceed the worldvolume dimension
dw (the number of θ's) by one, s.th. we have to introduce a lot of new �elds to realize conjugate super�elds.
But before, let us de�ne the fermionic integration measure µ(θ) via∫

µ(θ)f(θ) =
∂

∂θdw
· · · ∂

∂θ1 f(θ) =
1
dw!

εµ1...µdw
∂

∂θµ1
· · · ∂

∂θµdw
f(θ) (6.149)

The corresponding dw-dimensional δ-function is

δdw(θ′ − θ) ≡ (θ′1 − θ1) · · · (θ′dw − θdw) = (6.150)

=
1
dw!

εµ1...µdw
(θ′µ1 − θµ1) · · · (θ′µdw − θµdw ) = (6.151)

=
dw∑

k=0

1
k!(dw − k)!

εµ1...µdw
θ′µ1 · · ·θ′µkθµk+1 · · ·θµdw (6.152)∫

µ(θ′)δdw(θ′ − θ)f(θ′) = f(θ) (6.153)

δdw(θ′ − θ) = (−)dwδdw(θ − θ′) (6.154)

For the two conjugate super�elds, call them Φm and Φ+
m, we want to have the canonical super anti bracket(

Φ+
m(σ′,θ′),Φn(σ,θ)

)
= δn

mδ
dw(σ′ − σ)δdw(θ′ − θ) = −

(
Φn(σ,θ),Φ+

m(σ′,θ′)
)

(6.155)

From the above considerations about the fermionic delta function it is now clear, how these super�elds can
be de�ned (they are known as de Rham super�elds, because of the interpretation of θµ as dwσµ; see e.g.
[84, 78]):

Φm(σ,θ) ≡ xm(σ) + xm
µdw

(σ)θµdw + xm
µdw−1µdw

(σ)θµdw−1θµdw + . . .+ xm
µ1...µdw

(σ)θµ1 · · ·θµdw(6.156)

Φ+
m(σ′,θ′) ≡ 1

dw!
εµ1...µdw

θ′µ1 · · ·θ′µdwx+
m(σ′) +

1
(dw − 1)!1!

εµ1...µdw
θ′µ1 · · ·θ′µdw−1x+

m
µdw (σ′) +

+
1

(dw − 2)!2!
εµ1...µdw

θ′µ1 · · ·θ′µdw−2x+
m

µdw−1µdw (σ′) + . . .+
1
dw!

εµ1...µdw
x+

m
µ1...µdw (σ′) (6.157)

The component �elds with the matching number of worldsheet indices are conjugate to each other, e.g.(
x+

m
µ1µ2(σ′),xn

ν1ν2
(σ)
)

= δn
mδ

µ1µ2
ν1ν2

δdw(σ − σ′) (6.158)
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For the notation with boldface symbols for anticommuting variables, the worldvolume was assumed to be even-
dimensional. In this case, one can analytically continue the coordinate form of multivector-valued forms of the
form

K(k,k′)(x,dx,∂) ≡ Km1...mk

n1...nk′dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′ (6.159)

to functions of super�elds (in odd worldvolume dimension one would get a symmetrization of the multivector-
indices) and rede�ne K(σ,θ) of (6.85) to

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φ(σ,θ),dwΦ(σ,θ),Φ+(σ,θ)

)
= (6.160)

= Km1...mk

n1...nk′ (Φ)dwΦm1 · · ·dwΦmkΦ+
n1
· · ·Φ+

nk′
(6.161)

All other geometric quantities have to be understood in this new sense now:

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) θ=0= T (t,t′,t′′)(σ) (see (6.61)) (6.162)

To stay with the examples used in (6.84)-(6.91):

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ),dwΦ(σ,θ),S(σ,θ),dwS(σ,θ)) (compare (6.34)) (6.163)

or o(σ,θ) ≡ o (dwΦ(σ,θ),dwS(σ,θ)) = dwΦm(σ,θ)dwSm(σ,θ) (compare o = cmpm)(6.164)[
K(k,k′),d L

(l,l′)
]∆
(1)

(σ,θ) ≡
[
K(k,k′),L(l,l′)

](∆)

(1)
(Φ(σ,θ),dwΦ(σ,θ),S(σ,θ),dwS(σ,θ)) (6.165)

dxm(σ,θ) ≡ dwΦm(σ,θ) (6.166)

(d∂m)(σ,θ) ≡ (dbm)(σ,θ) ≡ dwSm(σ,θ) (6.167)

Note that the former relation K(σ,θ) = K(σ) + θdK(σ) does NOT hold any longer with those new de�nitions!
Nevertheless we get a very similar statement as compared to propositions 2 on page 89:

Proposition 3b For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coor-
dinate patch seen as functions of xm,dxm and ∂m, the following equation holds for even worldvolume-dimension
dw for the corresponding super�elds (6.160):

(K(σ′,θ′),L(σ,θ)) = δdw(σ′ − σ)δdw(θ′ − θ) [K,dL]∆(1)︸ ︷︷ ︸
−(−)k−k′ [dK,L]∆(1)

(σ,θ)− (−)k−k′θµ∂µδ
dw(σ − σ′)δdw(θ′ − θ) [K,L]∆(1) (σ,θ)

(6.168)
where [K,L]∆(1) is the big bracket (6.23) and [K,dL]∆(1) is the derived bracket of the big bracket (6.52).

Note that σ and θ have switched their roles compared to the previous subsection (6.97), where the algebraic
bracket came together with the derivative with respect to θ of the delta-functions, while now it comes along with
∂µ of the delta-functions.

Proof Let us use again the second idea in the proof of proposition 2, i.e. �rst collect the terms with
derivatives of the delta function, only to show that one gets the algebraic bracket, and after that argue that the
term with plain delta functions is its derived bracket. In doing this, however, we will need to prove an extension
of the above proposition to objects like dK (or more general an object T (t,t′,t′′) as in (6.28)) that contain the
basis element pm, which is then replaced by dwSm as e.g. in (6.163).
(i) The antibracket between two such objects T and T̃ gets contributions to the derivative of the delta-function
only from the antibrackets between dwΦm and Φ+

m and between Φm and dwΦ+
m (compare (6.155))(

Φ+
m(σ′,θ′),dwΦn(σ,θ)

)
= δn

mθµ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.169)(

dwΦn(σ′,θ′),Φ+
m(σ,θ)

)
= δn

mθµ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.170)(

dwΦ+
m(σ′,θ′),Φn(σ,θ)

)
= −δn

mθµ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.171)(

Φn(σ′,θ′),dwΦ+
m(σ,θ)

)
= −θµ

(
Φn(σ′,θ′),∂µΦ+

m(σ,θ)
)

= δn
mθµ∂µδ

dw(σ′ − σ)δdw(θ′ − θ) (6.172)

The last case is the only one where we had to take care of an extra sign stemming from θ jumping over the
graded comma. Comparing this to (6.5), where we had

{bm, c
n} = δn

m (6.173)

{cn, bm} = δn
m (6.174)

{pm, x
n} = δn

m (6.175)

{xn, pm} = −δn
m (6.176)
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one recognizes that the only di�erence is an overall odd factor θµ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (the delta-function

for θ is an even object for even worldvolume dimension dw) and an additional minus sign for the lower two
lines, but the corresponding indices just get contracted like for the Poisson bracket. After such a bracket of
basis elements has been calculated (which happens just between the remaining factors of T (at σ′) on the
left and the remaining factors of T̃ (at σ) on the right) this overall odd factor has to be pulled to the very
left which gives an additional factor of (−)t−t′ (in the notation of (6.28)) plus an additional minus sign for
the upper two lines which compensates the relative minus sign of before and we get just an overall factor of
−(−)t−t′θµ∂µδ

dw(σ′ − σ)δdw(θ′ − θ) in all cases at the very left as compared to the Poisson-bracket. The
remaining terms are still partly at σ and partly at σ′, but using

A(σ)B(σ′)∂µδ(σ − σ′) = A(σ)∂µB(σ)δ(σ − σ′) +A(σ)B(σ)∂µδ(σ − σ′) ∀A,B (6.177)

we can take all remaining factors in T (σ′,θ′) at σ, while θ′ is set to θ anyway by the δ-function. We have thus
veri�ed one of the coe�cients of the complete antibracket:

(T (σ′,θ′), T̃ (σ,θ)) = −(−)t−t′θµ∂µδ
dw(σ − σ′)δdw(θ′ − θ)

[
T, T̃

]∆
(1)

(σ,θ) +

+δdw(σ − σ′)δdw(θ′ − θ)A(σ,θ) (6.178)

with A(σ,θ) yet to be determined.

(ii) It remains to show that A(σ,θ) is a derived expression of
[
T, T̃

]∆
(1)
. A hint to this fact is already given in

(6.177), but this is not enough, as there is also a contribution from the (Φm,Φ+
n )-brackets. In order to get a

precise relation between A(σ,θ) and
[
T, T̃

]∆
(1)

(σ,θ), let us see how one can extract them from the complete

antibracket. In order to hit the delta functions with the integration, it is enough to integrate over the patch
U(σ) containing the point which is parametrized by σµ. The last term in (6.178) is the only one contributing
when integrating over σ′ and θ

A(σ,θ) =
∫

U(σ)

ddwσ′
∫
µ(θ′) (T (σ′,θ′), T̃ (σ,θ)) (6.179)

That the �rst term on the righthand side of (6.178) does not contribute is not obvious as U(σ) might have a
boundary. However, for this term one ends up integrating a dw-dimensional delta-function over a boundary of
dimension not higher than dw − 1, so that one is left with an at least one-dimensional delta-function on the
boundary which vanishes as the boundary of the open neighbourhood U(σ) of σ of course nowhere hits σ.

Extracting the algebraic bracket
[
T, T̃

]∆
(1)

is a bit more tricky. One can do it via

for any �xed

index λ
:
[
T, T̃

]∆
(1)

(σ,θ) = −(−)t−t′
∫

U(σ)

ddwσ′
∫
µ(θ′)

(
eσ′λ

eσλ − 1

)
∂

∂θλ
(T (σ′,θ′),T̃ (σ,θ)) (6.180)

The boundary term proportional to
(

eσ′λ

eσλ − 1
)
δdw(σ − σ′) appearing above on the righthand side after partial

integration vanishes as σ′ in the prefactor is set to σ via the delta function.

The claim is now that A(σ,θ) = −(−)t−t′
[
dT, T̃

]∆
(1)

(σ,θ). So let us calculate the righthand side via (6.180):

[
dT, T̃

]∆
(1)

(σ,θ) = −(−)t+1−t′
∫

U(σ)

ddwσ′
∫
µ(θ′)

(
eσ′λ

eσλ − 1

)
∂

∂θλ
(dT (σ′,θ′),T̃ (σ,θ)) = (6.181)

= −(−)t+1−t′
∫

ddwσ′
∫
µ(θ′)

(
eσ′λ

eσλ − 1

)
∂

∂θλ
θ′µ∂′µ(T (σ′,θ′),T̃ (σ,θ)) (6.182)

(T ,T̃ ) contains in both terms a plain δ-function for the fermionic variables θ, so that we can replace θ′ by θ.
Integration by parts of ∂′µ (where possible boundary terms again do not contribute because of the vanishing of
the delta function and its derivative on the boundary) delivers the desired result[

dT, T̃
]∆
(1)

(σ,θ) = −(−)t−t′
∫

ddwσ′
∫
µ(θ′) (T (σ′,θ′),T̃ (σ,θ)) = −(−)t−t′A(σ,θ) (6.183)

This completes the proof of proposition 3b. �



Chapter 7

Applications in string theory or 2d CFT

In the previous section the dimension of the worldvolume was arbitrary or even dimensional. The appearance
of derived brackets (including e.g. the Dorfman bracket) is thus not a special feature of a 2-dimensional sigma-
model like string theory. There are, however, special features in string theory. Currents in string theory
(which have conformal weight one) naturally are sums of 1-forms and vectors, if one takes the identi�cation
∂1x

m(σ) ↔ dxm and pm(σ) ↔ ∂m, as in [58] (see footnote 12), e.g. ∂xm = ∂1x
m − ∂0x

m=̂dxm − ηmn∂n .
This is closely related to the identi�cation in our previous section in the anti�eld formalism. In addition, only
in two dimensions a single θ can be interpreted as a worldsheet Weyl spinor (in 1 dimension it can be seen as
a Dirac-spinor, but in higher dimensions the interpretation of θ as worldvolume spinor breaks down). As we
ended the last section with the anti�eld formalism, which therefore is perhaps still more present, let us start
this section in the reversed order, beginning with the application in the anti�eld formalism.

7.1 Poisson sigma-model and Zucchini's �Hitchin sigma-model�

Remember for a moment the Poisson-σ-model [85, 84]. It is a two-dimensional sigma-model (dw = 2) of the
form

S0 =
∫

Σ

ηmdwxm +
1
2
Pmn(x)ηmηn (7.1)

where ηm is a worldsheet one-form. This model is topological if and only if the Poisson-structure Pmn(x) is
integrable, i.e. the Schouten-bracket of P with itself vanishes

S0 topological ⇐⇒ [P ,P ] = 0 (7.2)

It gives on the one hand a �eld theoretic implementation of Kontsevich's star product [84] and is on the other
hand related to string theory via a topological limit (big antisymmetric part in the open string metric), which
leads to the relation between string theory and noncommutative geometry.

The necessary ghost �elds for the action can be introduced by extending x and η to de Rham super�elds as
in (6.156,6.157)

Φm(σ,θ) ≡ xm(σ) + xm
µ (σ)︸ ︷︷ ︸

εµνη+νn

θµ + xm
µ1µ2

(σ)︸ ︷︷ ︸
− 1

2 εµ1µ2β+ m

θµ1θµ2 (7.3)

Φ+
m(σ′,θ′) ≡ 1

2!
εµ1µ2x

+
m

µ1µ2(σ′)︸ ︷︷ ︸
≡βm(σ′)

+θ′µ1 εµ1µ2x
+
m

µ2(σ′)︸ ︷︷ ︸
ηµ1m

+
1
2
εµ1µ2θ

′µ1θ′µ2x+
m(σ′) (7.4)

One can use Hodge-duality to rename some component �elds as indicated. βm is then the ghost �eld related
to the gauge symmetry. The action including ghost �elds and anti�elds simply reads

S =
∫
d2σ

∫
µ(θ) Φ+

mdwΦm +
1
2
Pmn(Φ)Φ+

mΦ+
n (7.5)

The expression under the integral corresponds to the tensor −δmndxm∧∂n + 1
2P

mn∂m∧∂n and the antibracket
in the master-equation (S, S) implements the Schoutenbracket on P , which is a well known relation. Therefore
we will concentrate on a second example, which is very similar, but less known.

Zucchini suggested in [78] a 2-dimensional sigma-model which is topological if a generalized complex structure
in the target space is integrable (see subsection B.2 on page 110 and B.4 on page 114 to learn more about
generalized complex structures). His model is of the form

S =
∫
d2σ

∫
µ(θ)

(
Φ+

mdwΦm +
) 1

2
Pmn(Φ)Φ+

mΦ+
n −

1
2
Qmn(Φ)dwΦmdwΦn − Jn

mdwΦmΦ+
n (7.6)
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where Pmn, Qmn and Jm
n are the building blocks of the generalized complex structure (B.22)

JM
N =

(
Jm

n Pmn

−Qmn −Jn
m

)
(7.7)

The �rst term of (7.6) can be absorbed by a �eld rede�nition as already observed in [79]. Ignoring thus the �rst
term and using our notations of before, S can be rewritten as

S =
∫
d2σ

∫
µ(θ)

1
2
J (Φ,dwΦ,Φ+) (7.8)

Calculating the master equation explicitely and collecting the terms which combine to the lengthy tensors for
the integrability condition (see (B.60)-(B.63)) is quite cumbersome, so we can enjoy using instead proposition
3b on page 94. For a worldsheet without boundary its integrated version reads(∫

ddwσ′
∫
µ(θ′)K(σ′,θ′),

∫
ddwσ

∫
µ(θ)L(σ,θ)

)
=
∫
ddwσ

∫
µ(θ) [K,dL]∆(1) (σ,θ) (7.9)

which leads to the relation

(S, S) = 0 ⇐⇒
∫
d2σ

∫
µ(θ) [J ,dJ ]∆(1) (σ,θ) = 0 (7.10)

The derived bracket of the big bracket of J with itself contains already the generalized Nijenhuis tensor (see in
the appendix in equation (B.81) and in the discussion around)

[J ,dJ ]∆(1) = NM1M2M3t
M1tM2tM3 − 4J JIJIM tMpJ = (7.11)

J 2=−1= NM1M2M3t
M1tM2tM3 + 4o (7.12)

tM = (dxm,∂m), pJ = (pj , 0) (7.13)

o(dx, p) = dxmpm (7.14)

For J 2 = −1 the last term is proportional to the generator o (remember (6.8)). In (7.10), however, it appears
with dx and p replaced by the super�elds as in (6.164)

o(σ,θ) = dwΦm(σ,θ)dwSm(σ,θ) = −dw(dwΦm(σ,θ)Sm(σ,θ)) (7.15)

which is a total worldsheet derivative and therefore drops during the integration. We are left with the generalized
Nijenhuis tensor as a function of super�elds

N (σ,θ) = NM1M2M3(Φ)tM1tM2tM3 (7.16)

with tM ≡ (dwΦm,Φ+
m) (7.17)

Written in small indices

N (σ,θ) = Nm1m2m3(Φ) dwΦm1dwΦm1dwΦm1︸ ︷︷ ︸
=0

+3Nn
m1m2(Φ)Φ+

n dwΦm1dwΦm2 +

+3Nn
m1m2(Φ)dwΦnΦ+

m1
Φ+

m2
+Nm1m2m3(Φ)Φ+

mΦ+
mΦ+

m (7.18)

One realizes that the �rst term vanishes identically (as mentioned in [78]) and only the remaining three tensors
are required to vanish in order to satisfy (7.10).

7.2 Relation between a second worldsheet supercharge and general-
ized complex geometry

In [74] the relation between an extended worldsheet supersymmetry in string theory and the presence of an
integrable generalized complex structure was explored. Zabzine clari�ed in [77] the relation in an model in-
dependent way in a Hamiltonian description. The structures appearing there are almost the same that we
have discussed before although we have to modify the procedure a little bit due to the interpretation of θ as a
worldsheet spinor.

Consider a sigma-model with 2-dimensional worldvolume (worldsheet) with manifest N = 1 supersymmetry
on the worldsheet. In the phase space there is only one σ-coordinate left. Let us denote the corresponding
super�elds, following loosely [77], by

Φm(σ,θ) ≡ xm(σ) + θλm(σ) (7.19)
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Sm(σ,θ) ≡ ρm(σ) + θpm(σ) (7.20)

In comparison to section 6.3, there is a change of notation from cm → λm and bm → ρm as b and c suggest the
interpretation as ghosts which is not true in this case, where λ and ρ are worldsheet fermions. Introduce now,
following Zabzine, the generator Qθ of the manifest SUSY and the corresponding covariant derivative Dθ

Qθ ≡ ∂θ + θ∂σ (7.21)

Dθ ≡ ∂θ − θ∂σ (7.22)

with the SUSY algebra

[Qθ,Qθ] = 2∂σ = − [Dθ,Dθ] (7.23)

[Qθ,Dθ] = 0 (7.24)

Qθ is the sum of two nilpotent di�erential operators, namely ∂θ and θ∂σ. Acting on the Super�elds Φm and
Sm, they induce the di�erentials s and s̃ on the component �elds, which are in turn generated via the Poisson
bracket by phase space functions Ω (the same as (6.69)) and Ω̃.

Ω ≡
∫
dσ λkpk (7.25)

Ω̃ = −
∫
dσ ∂σx

kρk (7.26)

sxm ≡ {Ω, xm} = λm ↔ dxm, sρm ≡ {Ω,ρm} = pm ↔ d(∂m), (7.27)

s̃λm ≡
{
Ω̃,λm

}
= −∂σx

m, s̃pk = −∂σρk =
{
Ω̃, pk

}
, (7.28)

sΦm = ∂θΦm, sSm = ∂θSm (7.29)

s̃Φm = θ∂σΦm, s̃Sm = θ∂σSm (7.30)

The Poisson-generator for the SUSY transformations of the component �elds induced by1 Qθ is thus the sum
of the generators of s and s̃:

Q = Ω + Ω̃ =
∫
dσ λkpk − ∂σx

kρk = −
∫
dσ

∫
dθQθΦkSk (7.31)

In (6.76) super�elds were de�ned via ∂θY = sY in order to implement the exterior derivative directly with ∂θ.
In that sense Φ, S, dΦ, dS and all analytic functions of them were super�elds. In the context of worldsheet
supersymmetry, one prefers of course a supersymmetric covariant formulation. Let us therefore de�ne in this
subsection proper super�elds via

Y is a super�led :⇐⇒ QθY
!= {Q, Y } = (s+ s̃)Y (7.32)

which holds for Φ, S,DθΦ, DθS, all analytic functions of them (like our analytically continued multivector
valued forms) and worldsheet spatial derivatives ∂σ thereof (but not for e.g. QθΦ. This means that although we
have QθΦ = (s+ s̃)Φ this does not hold for a second action, i.e. Q2

θΦ 6= (s+ s̃)2Φ, which explains the somewhat
confusing fact that the Poisson-generator Q has the opposite sign in the algebra than Qθ

{Q,Q} = −2P (7.33)

where we introduced the phase-space generator P for the worldsheet translation induced by ∂σ

P ≡
∫
dσ ∂σx

kpk + ∂σλkρk =
∫
dσ

∫
dθ ∂σΦkSk (7.34)

The same phenomenon appears for the di�erentials s and s̃. The graded commutator of ∂θ and θ∂σ is the
worldsheet derivative [∂θ,θ∂σ] = ∂σ, while the algebra for s and s̃has the opposite sign

[s, s̃]Y (σ,θ) = −∂σY (σ,θ) (7.35)

1We have

QθΦm = λm + θ∂σxm, QθSm = pm + θ∂σρm

DθΦm = λm(σ)− θ∂σxm, DθSm = pm − θ∂σρm

δεxm = ελm, δελm = −ε∂σxm

δερm = εpm, δεpm = −ε∂σρm �
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sΩ̃ =
{
Ω, Ω̃

}
= −P = s̃Ω (7.36)

One major statement in [77] is as follows: Making a general ansatz for a generator of a second, non-manifest
supersymmetry, of the form (some signs are adopted to our conventions)

Q2 ≡ 1
2

∫
dσ

∫
dθ (Pmn(Φ)SmSn −Qmn(Φ)DθΦmDθΦn + 2Jm

n(Φ)SmDθΦn) (7.37)

and requiring the same algebra as for Q in (7.33)

{Q2,Q2} = −2P (7.38)(
{Q,Q2} = 0

)
(7.39)

is equivalent to

JM
N ≡

(
Jm

n Pmn

−Qmn −Jn
m

)
(7.40)

being an integrable generalized complex structure (see in the appendix B.2 on page 110 and B.4 on page 114). On
a worldsheet without boundary, the second condition is actually super�uous, because it is already implemented
via the ansatz: The expression in the integral is an analytic function of super�elds and therefore a super�eld
itself. According to (7.32) we can replace at this point the commutator with Q with the action of Qθ and get

{Q,Q2} =
∫
dσ

∫
dθ Qθ(. . .) =

∫
dσ ∂σ(. . .) = 0 (7.41)

For the other condition, the actual supersymmetry algebra (7.38), the aim of the present considerations should
now be clear. The generalized complex structure J itself is a sum of multivector valued forms

J ≡ JMN (x)tM tN ≡ Pmn(x)∂m ∧ ∂n −Qmn(x)dxmdxn + 2Jm
n(x)∂m ∧ dxn (7.42)

which can be seen as a function of x and the basis elements

J = J (x,dx,∂) (7.43)

In 6.3 we replaced the arguments of functions like this with �super�elds� xm → Φm, dxm → ∂θΦm and ∂m → Sm.
The name super�eld might have been misleading, as ∂θΦ is only a super�eld in the sense that it implements
the target-space exterior derivative via ∂θ, but it is not a super�eld in the sense of worldsheet supersymmetry.
In a supersymmetric theory one prefers a supersymmetric covariant formulation. Working with ∂θΦ as before
is therefore not desirable and we replace ∂θΦ by DθΦ, leading directly to Q2 (7.37) which now can be written
as

Q2 =
1
2

∫
dσ

∫
dθJ (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ)) (7.44)

Apart from the change ∂θΦ→ DθΦ we expect from the previous section that the Poisson bracket of Q2 with itself
induces some algebraic and some derived bracket of J with itself which then corresponds to the integrability
condition for J . This is indeed the case, but we �rst have to study the changes coming from ∂θΦ → DθΦ. In
other words, we need a new formulation of proposition 1 (6.97) in the case of two-dimensional supersymmetry
(Proposition 1 is of course still valid, but it is not formulated in a supersymmetric covariant way. It should,
however, be applicable to e.g. BRST symmetries ). Let us rede�ne the meaning of K(σ,θ) in (6.85) for a
multivector valued form K(k,k′)

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ),DθΦm(σ,θ),Sm(σ,θ)

)
= (7.45)

= Km1...mk

n1...nk′ (Φ(σ,θ)) DθΦm1(σ,θ) . . .DθΦmk(σ,θ)Sn1(σ,θ) . . .Snk′ (σ,θ) θ=0=
(6.60)

K(k,k′)(σ) (7.46)

Likewise for all the other examples in (6.84)-(6.91):

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) θ=0= T (t,t′,t′′)(σ) (see (6.61)) (7.47)

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) (7.48)

or o(σ,θ) ≡ o (DθΦ(σ,θ),DθS(σ,θ))
(6.8)
= DθΦm(σ,θ)DθSm(σ,θ) θ=0=

(6.63)
o(σ) (7.49)
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[K(k,k′),d L
(l,l′)]∆(1)(σ,θ) ≡ [K(k,k′),L(l,l′)](∆)

(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) θ=0=
(6.64)

[K(k,k′),L(l,l′)](∆)
(1) (σ) (7.50)

dxm(σ,θ) ≡ DθΦm(σ,θ) = λm(σ)− θ∂σx
m(σ) (7.51)

d∂m(σ,θ) ≡ DθSm(σ,θ) = pm(σ)− θ∂σρm(σ) (7.52)

Expanding K in θ yields

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ
(
∂θ′K

(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
= (7.53)

= K(k,k′)(σ) + θ
(
Qθ ′K

(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
(7.54)

As K is a super�eld, we can replace Qθ by s+ s̃

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ(s+ s̃)K(k,k′)(σ) = (7.55)

= K(k,k′)(σ) + θ
(
(d+ ıv)K(k,k′)

)
(σ)
∣∣∣
vk→−∂σxk

(7.56)

This is the analogue to the non-supersymmetric (6.95) and delivers the exterior derivative which will lead to the
appearance of the derived bracket. The relation between s̃ and the inner product with a vector should perhaps
be clari�ed. Remember that all multivector forms at θ = 0, K(k,k′)(σ), are analytic functions of the component
�elds xm,λm and ρm . But among those �elds, s̃acts only on λm and we can express it with partial derivatives
(instead of functional ones) when acting on K:

s̃K(σ) = −∂σx
m ∂

∂λmK(x,λ,ρ) = ıvK(σ)|vk=−∂σxk (7.57)

in the Poisson bracket of s̃K with another multivector valued form L at θ = 0, nothing acts on vk = −∂σx
k

(which would produce a derivative of a delta function), as L does not contain pk. Therefore we have

{̃sK(σ′), L(σ)} = [ıvK,L](σ)|vk=−∂σxk δ(σ − σ′) (7.58)

which we will need below. For super�elds we have Y (σ,θ) = Y (σ)+θ(s+ s̃)Y (σ). Applying the same to v yields

vk(σ) + θ(s+ s̃)vk(σ) = −∂σx
k − θ(s+ s̃)∂σx

k(σ) = (7.59)

= −∂σx
k − θ∂σλ

k(σ) = −∂σΦk (7.60)

Proposition 1b For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coor-
dinate patch seen as functions of xm,dxm and ∂m, the following equation holds for the corresponding worldsheet-
super�elds (7.45)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)} = Dθ

(
δ(θ − θ′)δ(σ − σ′)

)
[K,L]∆(1) (σ,θ) +

+δ(θ′ − θ)δ(σ − σ′)
(

[dK,L]∆(1)(σ,θ)︸ ︷︷ ︸
−(−)k−k′ [K,dL]∆(1)

+ [ıvK,L]∆(1)(σ,θ)︸ ︷︷ ︸
−(−)k−k′ [K,ıv L]

∣∣∣
vk=−∂σΦk

)
(7.61)

where e.g. [dK,L]∆(1)(σ,θ) ≡ [dK,L]∆(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)).
The integrated version for a worldsheet without boundary readsn Z

dσ′
Z

dθ′K(k,k′)(σ′, θ′),

Z
dσ

Z
dθ L(l,l′)(σ, θ)

o
= (s+ s̃)

Z
dσ

“
[K,dL]∆(1) − (−)k−k′ [ıvK, L]∆(1)

˛̨̨
vk=−∂σxk

”
(σ)

(7.62)

Proof Let us use (7.55) for both multivector valued �elds and plug into the lefthand side of (7.61){
K(σ′,θ′), L(σ,θ)

}
=

=
{
K(σ′) + θ′(s+ s̃)K(σ′) , L(σ) + θ(s+ s̃)L(σ)

}
= (7.63)

= {K(σ′), L(σ)}+ θ′ {(s+ s̃)K(σ′), L(σ)}+ (−)k−k′θ {K(σ′), (s+ s̃)L(σ)}+

+(−)k−k′θθ′ {(s+ s̃)K(σ′), (s+ s̃)L(σ)} = (7.64)

= {K(σ′), L(σ)}+ (θ′ − θ) {(s+ s̃)K(σ′), L(σ)}+ θ(s+ s̃) {K(σ′), L(σ)}+
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+θ′θ(s+ s̃) {(s+ s̃)K(σ′), L(σ)} − θ′θ {(s+ s̃)(s+ s̃)K(σ′), L(σ)} = (7.65)

= (1 + θ(s+ s̃)) {K(σ′), L(σ)}+ (θ′ − θ) (1 + θ(s+ s̃)) {(s+ s̃)K(σ′), L(σ)}+
−θ′θ

{
[s, s̃]︸︷︷︸
−∂σ′

K(σ′), L(σ)
}

= (7.66)

= δ(σ − σ′) (1 + θ(s+ s̃)) [K,L]∆(1) (σ) + (θ′ − θ) (1 + θ(s+ s̃)) {(s+ s̃)K(σ′), L(σ)}+

−(θ′ − θ)θ∂σδ(σ − σ′) [K,L]∆(1) (σ) (7.67)

Now let us make use of (7.58) and (7.60) to arrive at{
K(σ′,θ′), L(σ,θ)

}
=

= Dθ

(
δ(θ − θ′)δ(σ − σ′)

)
[K,L]∆(1) (σ,θ) + δ(θ′ − θ)δ(σ − σ′) [(d+ ıv)K,L]∆(1) (σ,θ)

∣∣∣
vk=−∂σΦk

(7.68)

which is the �rst equation of the proposition. Integrating over θ′ and σ′ results in∫
dσ′
∫
dθ′
{
K(σ′,θ′), L(σ,θ)

}
= [(d+ ıv)K,L]∆(1) (σ,θ)

∣∣∣
vk=−∂σΦk

= (7.69)

= [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk

+ θ(s+ s̃) [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk

(7.70)

A second integration picks out the linear part in θ and adjusting the order of the integrations gives the additional
sign in (7.62). �

Application to the second supercharge Q2

We are now ready to apply the proposition in the integrated form (7.62) to the question of the existence of
a second worldsheet supersymmetry Q2. Remember, we want {Q2,Q2} = −2P . Due to the proposition, the
lefthand side can be written as

{Q2,Q2} =
1
4
(s+ s̃)

∫
dσ
(
[J ,dJ ]∆(1) − [ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

)
(σ) (7.71)

For J 2 = −1, the second term under the integral simpli�es signi�cantly

− 1
4

∫
dσ[ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

= −
∫
dσ vKJK

LJL
M tM

∣∣∣
v=−∂σxkρk

= −
∫
dσ ∂σx

kρk = Ω̃ (7.72)

Recalling that

(s+ s̃)Ω̃ = sΩ̃ = s̃Ω = (s+ s̃)Ω = −P (7.73)

and Ω =
∫
dσ o(σ) (see (6.63)) (7.74)

we can rewrite (7.71) as

⇒ {Q2,Q2} =
1
4
(s+ s̃)

(∫
dσ [J ,dJ ]∆(1) + 4Ω

)
= (7.75)

=
1
4
(s+ s̃)

(∫
dσ
(
[J ,dJ ]∆(1) − 4o

)
(σ)
)

+ 2 s̃Ω︸︷︷︸
−P

(7.76)

The righthand side clearly equals −2P for

[J ,dJ ]∆(1) − 4o = 0 (7.77)

which is again (according to (B.113)) just the integrability condition for the generalized almost complex structure
J .

Conclusions to the Bracket Part

We have seen two closely related mechanisms in sigma-models with a special �eld content which lead to the
derived bracket of the target space algebraic bracket by the target space exterior derivative. This exterior
derivative is implemented in the sigma model in one case via the derivative with respect to a (worldvolume-)
Grassmann coordinate and in the other case via the derivative with respect to the worldvolume coordinate
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itself. In the latter case this derivative has to be contracted with (worldvolume-) Grassmann coordinates in
order to be an odd di�erential. This leads to the problem that higher powers of the basis elements vanish, as
soon as the power exceeds the worldvolume dimension as it happens in Zucchini's application. A big number of
Grassmann-variables is therefore advantageous in that approach. For the other mechanism one rather prefers
to have only one single Grassmann variable as there is no need for any contraction. There is one worldvolume
dimension more in the Lagrangian formalism and for that reason it was preferable to apply there the mechanism
with worldvolume derivatives and use the other one in the Hamiltonian formalism.

If one does not consider antisymmetric tensors of higher rank, but only vectors or one-forms (or forms of
worldvolume-dimension), the partial worldvolume derivative without a Grassmann-coordinate is enough. There
is either no need for antisymmetrization or it can be performed with the worldvolume epsilon tensor. The
nature of the mechanism remains the same and leads to the observations in [58, 60] that the Poisson bracket
implements the Dorfman bracket for sums of vectors and one-forms and the corresponding derived bracket for
sums of vectors and p-forms on a p-brane [60]. In that sense, the present part of the thesis is a generalization
of those observations.

There remain a couple of things to do. It should be possible to implement in the same manner by e.g.
a BRST di�erential other target space di�erentials which can depend on some extra-structure and repeat
the same analysis. Symmetric tensors then become more interesting as well, because they need such an extra-
structure anyway for a meaningful di�erential. From the string theory point of view, the application of extended
worldsheet supersymmetry corresponds to applications in the RNS string. But generalized complex geometry
contains the tools to allow RR-�uxes, which are hard to treat in RNS. It would therefore be nice to �nd some
topological limit in a string theory formalism which is extendable to RR-�elds, like the Berkovits-string [10],
leading to a topological sigma model like Zucchini's, in order to learn more about the correspondence between
string theory and generalized complex geometry.
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After the conclusions on the bracket part, we would like to recall the general idea of what we did. The result
of the supergravity-constraint calculations from Berkovits' pure spinor string in part II is not new in itself. It
is, however, a very important result and our contribution can be seen as an independent check. This is true
in particular, as we used di�erent techniques at several points. We established a covariant variation in this
setting and derived everything in the Lagrangian formalism, using �inverse Noether�. The argumentation and
calculation was done in detail, in order to allow checks by others, and also some subtle points like the antighost
gauge symmetry where discussed carefully. Also our starting point was more general. Last but not least, the
insight from the �rst part about superspace conventions served as a very powerful tool throughout. The aim
of the calculation in part II was to make contact to generalized geometry. The derivation of the generalized
Calabi Yau condition has been done so far from the supergravity point of view, and possible quantum or
string corrections to this geometry require a worldsheet calculation. We have therefore derived the supergravity
transformations of the fermionic background �elds which serve as the starting point of these considerations. We
did not yet calculate any string corrections, but it could already be of big advantage to know the natural form of
the supergravity transformations as they come out from the string and not from old supergravity considerations.
In particular we expect to obtain more insight about the geometric role of the RR-�elds in the super-geometrical
setting. Non-commutativity considerations for the open superstring (e.g. [86, 87, 88]), for example, assign a
similar role to the RR-�elds in superspace as the B-�eld has in bosonic space. And the geometry of the latter
(with the �eld strength H either seen as a twist or a torsion), are understood much better.

There are several directions ahead. One could try to establish the tools of generalized (not necessarily com-
plex) geometry already in ten dimensions, before compacti�cation. Having the superstring in mind (embedded
in superspace), it would be even more appealing to consider some generalized supergeometry, i.e. structures on
T ⊕ T ∗ of the supermanifold. String statements should simplify if one uses a formulation where the structures
of interest appear manifestly. In this context it seems also reasonable to switch to a probably mixed �rst-second
order formalism of the pure spinor string in general background. Topological limits of this formalism might
lead to something like the Hitchin sigma-model [78] or some supersymmetric version of it. This again could
shed light on the geometric role of RR-�elds. Similar to the last point would be the introduction of doubled
coordinates as suggested by Hull[89, 90, 91, 92]. Generalized complex geometry and this doubled geometry
seem to be very closely related. Deriving the �rst via supersymmetry conditions in a formalism with doubled
coordinates certainly could clarify this relation.

For all these considerations, our insight about brackets and sigma-models and the relation to the integrability
of generalized complex geometry that we obtained in the last part of this thesis will be very useful. What we
learned about superspace conventions should even be useful for everybody working with superspace.
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Appendix A

Notations and Conventions

Within the thesis, a lot of di�erent types of tensors have to be denoted. The choices and sometimes some logic
behind, will be presented here.

The bracket part (III) (including appendices B and C) di�ers a bit in the notation from the rest, as it does
not treat a superspace. In any case we denote bosonic target space coordinates via xm. In the bracket part,
however, world-volume-coordinates are denoted by σµ, while in the worldsheet coordinates in the rest are most
often chosen to be complex (z,z̄). At some places we write the real coordinates σξ with an worldsheet index
ξ or ζ, in order to distinguish it from the curved spinorial indices µ, ν, . . .. Our metric signature is 'mostly
plus':ηab = diag (−1, 1, . . . , 1).

Superspace In the superspace parts we have xM ≡ (xm,θµ, θ̂
µ̂
), where θ and θ̂ are anticommuting coordi-

nates with the dimension 16 of a Majorana Weyl spinor in ten dimensions. The hatted index should include

both versions of superspace: IIA (with θ̂
µ̂

= θ̂µ) and IIB (with θ̂
µ̂

= θ̂
µ
). The grading of the coordinate xM

depends on the index. We therefore prefer to write xM ≡ (xm, xµ, xµ̂). Writing the fermionic indices boldface
is just a reminder and will not be substantial. A vielbein EM

A will transform curved indices (from the middle
of the alphabet) into �at indices (from the beginning of the alphabet) and vice verse, e.g. for the pullbacks
of the supersymmetric invariant form ΠA

z = ∂xMEM
A. The entries then have a corresponding index structure

with letters from the beginning of the alphabet: ΠA
z = (Πa

z ,Π
α
z ,Π

α̂
z ). When we want to combine the spinorial

indices only, we write xM ≡ (xµ, xµ̂) or θM ≡ (θµ, θ̂
µ̂
) or ΠA

z ≡ (Πα
z ,Π

α̂
z ). If we want to omit the indices,

(e.g. in functions of the coordinates) we write
�
x for xM ,

→
x for xm, ~θ for θM, θ for θµ and θ̂ for θ̂

µ̂
.

Notation for tensors in the bracket part In the bracket-part, we mainly denote target space vector-
�elds by a, b, . . . or v, w, . . ., 1-forms by small Greek letters α, β, . . . and generalized T ⊕ T ∗-vectors by a, b, . . .
or v,w, . . . . For an explicit split in vector and 1-form, the letters from the beginning of the alphabet are
better suited, as there is a better correspondence between Latin and Greek symbols or one can visually better
distinguish between Latin and Greek symbols. Compare e.g. a = a+ α and v = v + (?ν).
Higher order forms will be in general denoted by α(p), β(q), . . . or ω(p), η(q), ρ(r), . . .. There will be exceptions,
however , for speci�c forms like the B-�eld B = Bmndxm ∧ dxn. Following this logic, we will also denote
multivectors (tensors with antisymmetric upper indices) by small letters, indicating their multivector-degree
in brackets: a(p), b(q), . . . or v(p), w(q), . . .. There are again exceptions, e.g. a Poisson structure will often be
denoted by P = Pmn∂m ∧ ∂n. The most horrible exception is the one of the beta-transformation, which is
denoted by a large beta β

mn
in (B.47), in order to distinguish it from forms.

Tensors of mixed type will be denoted by capital letters where we denote in brackets �rst the number of
lower indices and then the number of upper indices, e.g. T (p,q). Most of the time, we treat multivector valued
forms, e.g. the lower indices as well as the upper indices are antisymmetrized. The letters denoting form degree
and multivector degree will often be adapted to the letter of the tensor, e.g. K(k,k′), L(l,l′), . . .
Attention: k and l are also used as dummy indices! Sometimes (I'm sorry for that) the same letter appears
with di�erent meanings. However, in those situations the dummy indices will carry indices which might even
be one of the degrees k or k′, e.g. K...

k1...kk′Lkk′ ...k1...
....

Working all the time with graded algebras with a graded symmetric product (the wedge product), everything
in this thesis has to be understood as graded. I.e. with commutator we mean the graded commutator and
with the Poisson bracket the graded Poisson bracket. They will not be denoted di�erently than the non-graded
operations. Relevant for the sign rules is the total degree which we de�ne to be form degree minus the
multivector degree. In the �eld language, it corresponds to the total ghost number which is the pure ghost
number minus the antighost number. It will be denoted in the bracket part by

| K(k,k′) | = k − k′ (A.1)
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In the rest of the thesis, | . . . | will only denote the parity, i.e. +1 for commuting and −1 for anticommuting
variables. As only degrees or parities appear in the exponent of a minus sign, a simpli�ed notation is used there

(−)A ≡ (−1)|A|, (−)A+B ≡ (−)|A|+|B|, (−)AB ≡ (−)|A||B| ∀A,B (A.2)

Poisson bracket and derivatives For the Poisson bracket, the following (less common) sign convention is
chosen:

{pm, x
n} = δn

m = −{xn, pm} (A.3)

{bm, cn} = δn
m = −(−)bc {cn, bm} (A.4)

Derivatives with respect to xm are denoted by ∂
∂xm f ≡ ∂mf ≡ f,m. For graded variables left and right derivatives

are denoted respectively by

∂f

∂c
≡ ∂

∂c
f(c) ≡

~∂

∂c
f(c), ∂f(c)/∂c ≡ f

←−
∂

∂c
(A.5)

The corresponding notations are used for functional derivatives δ
δc(σ) .

Boldface philosophy and antisymmetrizations With respect to the wedge product, the basis element
∂m is an odd object (∂m ∧ ∂n = −∂n ∧ ∂m). The partial derivative ∂k acting on some coe�cient function,
however, is an even operator (it does not change the parity as long as it is not contracted with a basis element
dxk). That is why we denote the odd basis element ∂m and dxm as well as the odd exterior derivative d with
boldface symbols. The interior product itself does not carry a grading in the sense that | ıKρ |=| K | + | ρ |,
while for the Lie derivative LK = [ıK ,d] the L carries a grading in the sense | LKρ |=| K | + | ρ | +1. That is
why the Lie derivative is denoted with a boldface L which is also very good to distinguish it from generalized
multivectors K,L, . . .. The philosophy of writing odd objects in boldface style is also extended to the combined
basis element

tM ≡ (∂m,dxm), tM ≡ (dxm,∂m) (A.6)

and to the comma in the derived bracket [ , ] in contrast to the commutator [ , ]. This should be, however, just a
reminder. It will be obvious for other reasons, which bracket is meant. But we do not extend this philosophy to
vectors and 1-forms, where it would be consistent (but too much e�ort) to write the vectors and basis elements
in boldface style and the coe�cients in standard style. We will instead write the vector in the same style as the
coe�cient a = amdxm.

A square bracket is used as usual to denote the antisymmetrization of, say p, indices (including a normaliza-
tion factor 1

p! ). A vertical line is used to exclude some indices from antisymmetrization. An extreme example
would be

A[ab|cd|e|fg|hi] (A.7)

where A is antisymmetrized only in a, b, e, h and i, but not in c, d, f and g. Normally we use only expressions
like A[ab|cd|efg], where a, b, e, f and g are antisymmetrized.

Wedge product A signi�cant di�erence from usual conventions is that for multivectors, forms and general-
ized multivectors we include the normalization of the factor already in the de�nition of the wedge product

dxm1 · · ·dxmn ≡ dxm1 ∧ . . . ∧ dxmn ≡ dx[m1 ⊗ . . .⊗ dxmn] ≡
∑
P

1
n!

dxmP (1) ⊗ . . .⊗ dxmP (n) (A.8)

∂m1 · · ·∂mn ≡ ∂m1 ∧ · · · ∧ ∂mn ≡ ∂[m1 ⊗ · · · ⊗ ∂mn] ≡
∑
P

1
n!

∂mP (1) ⊗ · · · ⊗ ∂mP (n) (A.9)

tM1 . . . tMn
≡ tM1 ∧ . . . ∧ tMn

≡ t[M1 ⊗ . . .⊗ tMn] ≡
∑
P

1
n!

tMP (1) ⊗ . . .⊗ tMP (n) (A.10)

(where we sum over all permutations P ), such that we omit the usual factor of 1
p! in the coordinate expression

of a p-form, or a p-vector

α(p) ≡ αm1...mpdx
m1 ∧ · · · ∧ dxmp ≡ αm1...mpdx

m1 · · ·dxmp (A.11)

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp (A.12)
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Readers who prefer the 1
p! , can easily reintroduce it in every equation by replacing e.g. the coe�cient functions

vm1...mp → 1
p!v

m1...mp . The equation for the Schouten bracket ( C.10), for example, would change as follows:[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1] − qv[m1...mp|

,kw
k |mp+1...mp+q−1](A.13)

→ 1
(p+ q − 1)!

[
v(p),w(q)

]m1...mp+q−1

=
1

(p− 1)!
1
q!
v[m1...mp−1|k∂kw

|mp...mp+q−1] +

− 1
p!

1
(q − 1)!

v[m1...mp|
,kw

k |mp+1...mp+q−1] (A.14)

Schematic index notation For longer calculations in coordinate form it is useful to introduce the following
notation, where every boldface index is assumed to be contracted with the corresponding basis element (at the
same position of the index), s.th. the indices are automatically antisymmetrized.

ω(p) = ωm1...mp
dxm1 · · ·dxmp ≡ ωm...m (A.15)

a(p) = an1...np∂n1 ∧ . . .∂np ≡ an...n (A.16)

K(p) = KM1...MptM1 . . . tMp ≡ KM ...M = (A.17)

= KM1...MptM1 . . . tMp
≡ KM ...M (A.18)

or for products of tensors e.g.

ωm...mηm...m ≡ ω[m1...mp
ηmp+1...mp+q ]dxm1 · · ·dxmp+q = (A.19)

= ωm1...mpηmp+1...mp+qdx
m1 · · ·dxmp+q = (−)pqηm...mωm...m (A.20)

A boldface index might be hard to distinguish from an ordinary one, but this notation is nevertheless easy to
recognize, as normally several coinciding indices appear (which are not summed over as they are at the same
position). Similarly, for multivector valued forms we de�ne1

Km...m
n...n ≡ Km1...mk

n1...nk′dxm1 ∧ . . . ∧ dxmk ⊗ ∂m1 ∧ . . . ∧ ∂mk′ (A.21)

Km...m
n...npLpm...m

n...n ≡ Km1...mk

n1...nk′−1pLpm1...ml−1
n1...nl′dxm1 · · ·dxmk+l−1⊗∂m1 · · ·∂mk′+l′−1

(A.22)

1Upper and lower signs are thus treated independently. For calculational reasons this is not the best way to do. We can interpret
every boldface index on the lefthand side of (A.22) as a basis element sitting at the position of the index, so that the order of the
basis elements on the lefthand side is �rst k × dxm, (k′ − 1)∂m, (l − 1)× dxm and l′ × ∂m, s.th., in order to get the order of the

righthand side, we have to interchange (k′− 1)∂m with (l− 1)×dxm, which gives a sign factor of (−)(k
′−1)(l−1). This is a natural

sign factor which appears all the way in the equations, which could be easily absorbed into the de�nition. However, we wanted
to keep the sign factors explicitly in the equations in order to keep the notation as self-explaining as possible and not confuse the
reader too much. �



Appendix B

Generalized Complex Geometry

For introductions into Hitchin's [61] generalized complex geometry (GCG) see e.g. Zabzine's review [75] or
Gualtieri's thesis [59]. In the appendix of [93] there is another nice introduction with emphasis on the pure
spinor formulation of GCG. For a survey of compacti�cation with �uxes and its relation to GCG see Graña's
review [63].

B.1 Basics

In generalized geometry one is looking at structures (e.g. a complex structure) on the direct sum of tangent
and cotangent bundle T ⊕T ∗. Let us call a section of this bundle a generalized vector (�eld) or synonymously
generalized 1-form, which is the sum of a vector �eld and a 1-form

a = a+ α = (B.1)

= am∂m + αmdxm (B.2)

Using the combined basis elements

tM ≡ (∂m,dxm) (B.3)

a generalized vector a can be written as

a = aM tM (B.4)

aM = (am, αm) (B.5)

There is a canonical metric G on T ⊕ T ∗

〈a, b〉 ≡ α(b) + β(a) = (B.6)

= αmb
m + βma

m ≡ (B.7)

≡ aMGMNbN (B.8)

with

GMN ≡
(

0 δn
m

δm
n 0

)
(B.9)

which has signature (d,-d) (if d is the dimension of the base manifold). The above de�nition di�ers by a factor
of 2 from the most common one. We prefer, however, to have an inverse metric of the same form

GMN ≡
(
G−1

)MN
=
(

0 δm
n

δn
m 0

)
(B.10)

As it is constant, we can always pull it through partial derivatives. Using this metric to lower and raise indices
just interchanges vector and form component. We can equally rewrite a in (B.4) with a basis with upper capital
indices and the vector coe�cients with lower indices

tM ≡ (dxm,∂m) (B.11)

a = aM tM (B.12)

aM = (αm, a
m) (B.13)

109
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Note that in the present text there is no existence of any metric on the tangent bundle assumed. Therefore we
cannot raise or lower small indices. In cases where 1-form and vector have a similar symbol, the position of the
small index therefore uniquely determines which is which (e.g. ωm and wm).

In addition to the canonical metric GMN there is also a canonical antisymmetric 2-form B, s.th. α(b)−
β(a) = aMBMNbN with coordinate form

BMN ≡
(

0 −δn
m

δm
n 0

)
(B.14)

Raising the indices with GMN yields

BM
N =

(
δm
n 0
0 −δn

m

)
= −BN

M (B.15)

BMN =
(

0 δm
n

−δn
m 0

)
(B.16)

We can thus use B and G to construct projection operators PT and PT∗ to tangent and cotangent space

PT M
N ≡ 1

2
(
δM

N +BM
N

)
=
(
δm
n 0
0 0

)
(B.17)

PT ∗M
N ≡ 1

2
(
δM

N −BM
N

)
=
(

0 0
0 δn

m

)
(B.18)

PT a = a, PT ∗a = α (B.19)

B.2 Generalized almost complex structure

A generalized almost complex structure is a linear map from T ⊕ T ∗ to itself which squares to minus the
identity-map, i.e. in components

JM
KJK

N = −δM
N (B.20)

It is called a generalized complex structure if it is integrable (see subsection B.4). It should be compatible
with our canonical metric G which means that it should behave like multiplication with i in a Hermitian scalar
product of a complex vector space1

〈v,Jw〉 = −〈J v,w〉 ⇐⇒ (GJ )T = −GJ ⇐⇒ JMN = −JNM (B.21)

This property is also known as antihermiticity of J . Because of (B.21), J can be written as

JM
N =

(
Jm

n Pmn

−Qmn −Jn
m

)
JMN =

(
−Qmn −Jn

m

Jm
n Pmn

)
(B.22)

where Pmn and Qmn are antisymmetric matrices, and (B.20) translates into

J2 − PQ = −11 (B.23)

JP − PJT = 0 (B.24)

−QJ + JTQ = 0 (B.25)

Here it becomes obvious that the generalized complex structure contains the case of an ordinary almost complex
structure J with J2 = −1 for Q = P = 0 as well as the case of an almost symplectic structure of a non-degenerate
2-form Q with existing inverse PQ = 11 for J = 0. In addition to those algebraic constraints, the integrability
of the generalized almost complex structure gives further di�erential conditions (see subsection B.4) which boil
down in the two special cases to the integrability of the ordinary complex structure or to the integrability of
the symplectic structure.

Because of J 2 = −11, J has eigenvalues ±i. The corresponding eigenvectors span the space of generalized
holomorphic vectors L or generalized antiholomorphic vectors L̄ respectively. This provides a natural splitting
of the complexi�ed bundle

(T ⊕ T ∗)⊗ C = L⊕ L̄ (B.26)

The projector Π to the space of eigenvalue +i (namely L) can be be written as

Π ≡ 1
2

(11− iJ ) (B.27)

1 In a complex vector space with Hermitian scalar product 〈a, b〉 = 〈b, a〉 we have 〈a, ib〉 = −〈ia, b〉. �
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while the projector to L̄ is just the complex conjugate Π̄ = 1
2 (11 + iJ ) = G−1ΠTG. Indeed, for any generalized

vector �eld v we have

JΠv = iΠv (B.28)

L and L̄ are what one calls maximally isotropic subspaces, i.e. spaces which are isotropic

〈v,w〉 = 0 ∀v,w ∈ L (B.29)

(this is because ΠTGΠ = GΠ̄Π = 0) and which have half the dimension of the complete bundle. As the canonical
metric 〈· · · 〉 is nondegenerate, this is the maximal possible dimension for isotropic subbundles.

B.3 Dorfman and Courant bracket

Something which seems to be a bit unnatural in this whole business in the beginning is the introduction of the
Courant bracket, which is the antisymmetrization of the so-called Dorfman-bracket. The Dorfman bracket
in turn is the natural generalization of the Lie bracket from the point of view of derived brackets (C.51)2

[[ıa,d] , ıb] = ı[a,b] (B.30)

where [a,b] ≡ [a,b] + Laβ −Lbα+ d(ıbα) = (B.31)

= [a,b] + Laβ − ıb(dα) = (B.32)

= Lab− ıb(dα) (B.33)

To get a homogeneous coordinate expression, we de�ne

∂M ≡ (∂m, 0) ⇒ ∂M = (0, ∂m) (B.34)

2 The twisted Dorfman bracket is de�ned similarly via

[[ıa,d+ H∧ ] , ıb] ≡ ı[a,b]H

Remembering that H∧ = ıH and using [ıa, ıH ] = ı[a,H]∆ = ı
ı
(1)
a H

, we get

[a,b]H ≡ [a,b]− ıbıaH �



APPENDIX B. GENERALIZED COMPLEX GEOMETRY 112

The Dorfman bracket can then be written as3

[a,b]M = aK∂KbM +
(
∂MaK − ∂KaM

)
bK (B.35)

or [a,b]M = aK∂KbM + 2∂[MaK]b
K (B.36)

Apart from the term in the middle ∂MaK , (B.35) looks formally the same as the Lie bracket of vector �elds
(C.1). The Dorfman bracket is in general not antisymmetric but it obeys a Jacobi-identity (Leibniz from the
left) of the form

[a, [b,c]] = [[a,b] ,c] + [b, [a,c]] (B.37)

Although the Dorfman bracket is all we need, most of the literature on generalized complex geometry so far
works with its antisymmetrization, which is called Courant bracket

[a,b]− ≡ [a,b] + Laβ −Lbα+
1
2
d(ıbα− ıaβ) (B.38)

[a,b]−M = aK∂KbM − ∂KaMbK +
1
2
(
∂MaKbK − aK∂MbK

)
(B.39)

and which does not obey any Jacobi identity. As it is much simpler to go from Dorfman to Courant, than the
other way round, we will only work with the Dorfman bracket. On any isotropic subspace (ıbα + ıaβ = 0) the
two coincide anyway, i.e. they become a Lie bracket, obeying Jacobi and being antisymmetric.

We call a transformation a symmetry of the bracket when the bracket of two vectors transforms in the
same way as the vectors

[(b + δb),(c + δc)] = [b,c] + δ [b,c] (B.40)

δ [b,c] = [δb,c] + [b,δc] + [δb,δc] (B.41)

I.e. in�nitesimal symmetry transformations (where the last term drops) have to obey a product rule. Similar
as for the Lie-bracket of vector �elds, in�nitesimal transformations are generated by the bracket itself. Let us
call the corresponding derivative, in analogy to the Lie derivative, the Dorfman derivative of a generalized
vector with respect to a generalized vector.

δb = Dab ≡ [a, b] (B.42)

These transformations are therefore, due to the Jacobi-identity (B.37) always symmetries of the bracket. From
(B.33) we can see that the Dorfman derivative consists of a usual Lie derivative and second part which acts
only on the vector part of b by contracting it with the exact 2-form dα

Dab = Lab (B.43)

Dαb = −ıb(dα) = bm(∂nαm − ∂mαn)dxn (B.44)

In fact, it is enough for the 2-form to be closed, in order to get a symmetry. If we replace −dα by a closed
2-form B, the transformation is known as B-transform

δBb = ıbB (B.45)

3It is perhaps interesting to note that this notation of the partial derivative with capital index suggests the extension to a
derivative with respect to some dual coordinate

∂m ≡ ∂x̃m

We could understand this as coordinates of a dual manifold whose tangent space coincides in some sense with the cotangent space
of the original space and vice versa. This might be connected to Hull's doubled geometry [92, 90, 91, 89, 94].
To see that such an ad-hoc extension of the Dorfman bracket is not completely unfounded, note that there is a more general

notion of a Dorfman bracket (or Courant bracket) in the context of Lie-bialgebroids (for a de�nition see e.g. [59, p.32,20]). There
we have two Lie algebroids L and L∗ which are dual with respect to some inner product and which both carry some Lie bracket.
(For T and T ∗, only T carries a Lie bracket in the beginning. For a non-trivial Lie bracket of forms on T ∗ we need some extra
structure like e.g. a Poisson structure which would lead to the Koszul bracket on forms.) The Lie bracket on L induces a di�erential
d on L∗ and the Lie bracket on L∗ induces a di�erential d∗ on L. The de�nition for the Dorfman bracket on the Lie bialgebroid
L⊕ L∗ is then

[a,b] ≡ [a,b] + Laβ −Lbα + d(ıbα) +

+ [α,β] + Lαb−Lβa + d∗(ıβa)

The �rst line is the part we are used to from our usual Dorfman bracket on T ⊕ T ∗, while second line is the corresponding part
coming from the nontrivial structure on L∗. Taking now L = T , L∗ = T ∗ and assuming that [α,β] and Lα and d∗ are a Lie bracket,
Lie derivative and exterior derivative built in the ordinary way, but with the new partial derivative w.r.t. the dual coordinates
∂m, the coordinate form of the Dorfman bracket remains exactly the one of (B.35,B.36), but with ∂M = (∂m, 0) replaced by
∂M = (∂m, ∂m). �
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Finally, we should note that the B-transform is part of the O(d, d)-transformations, i.e. the transformations
which leave the canonical metric invariant. As usual for orthogonal groups the in�nitesimal generators are
antisymmetric when the second index is pulled down with the corresponding metric. The generators of an
O(d, d)-transformation can therefore be written as [59, p.6]

ΩMN =
(
Bmn −Am

n

An
m β

mn

)
(B.46)

ΩM
N =

(
An

m β
mn

Bmn −Am
n

)
(B.47)

In addition to the B-transform, acting with Ω on a generalized vector induces the so-called beta-transform on
the 1-form component4 as well as Gl(d)-transformations of vector and 1-form component via A. For constant
tensors, the Lie-derivative is just a Gl(d) transformation. Therefore both symmetries of the Dorfman bracket
are symmetries of the canonical metric G as well. For this reason the canonical metric is invariant under the
Dorfman derivative Dvwith respect to a generalized vector v, which we de�ne on generalized rank p tensors
using (B.35) in a way that it acts via Leibniz on tensor products (like the Lie derivative) and as a directional
derivative on scalars

(DvT )M1...Mp ≡ vK∂KT M1...Mp +
∑

i

(∂MivK − ∂KvMi)TM1...Mi−1KMi+1...Mp (B.48)

Dv(A⊗ B) = DvA⊗ B +A⊗DvB (B.49)

Dv(φ) = vK∂Kφ = vk∂kφ (B.50)

Acting on the canonical metric, one recovers the fact, that the Dorfman derivative contains the isometries of
the metric

DvG = 2(∂M1vK − ∂KvM1)GKM2 = 0 (B.51)

Comparing the role of Lie-derivative and Dorfman-derivative, the B-transform should be understood as an
extension of di�eomorphisms. In string theory it shows up in the Buscher-rules for T-duality ([95, 96]) and
can perhaps be better understood geometrically via Hull's doubled geometry [92, 90, 91] (compare to footnote
3). The beta-transform is not a symmetry of the Dorfman bracket as it stands. However, if we introduce dual
coordinates as suggested in footnote 3, the beta-transform would show up in the symmetry-transformations of
the extended Dorfman bracket generated by itself.5

On an isotropic subspace L (e.g. the generalized holomorphic subspace) Courant- and Dorfman-bracket
coincide and have the properties of a Lie bracket. It is therefore possible to de�ne a Schouten bracket on
generalized multivectors on

∧•
L which have e.g. only generalized holomorphic indices (compare [59, p.21]). If

we use again the notation with repeated boldface indices

A(p) ≡ AM ...M ≡ AM1...MptM1 · · · tM2 (B.52)

we get as coordinate form for this Dorfman-Schouten bracket[
A(p),B(q)

]
= pAM ...MK∂KBM ...M + q

(
p∂MAK

M ...M − ∂KAM ...M
)
BKM ...M (B.53)

In the �rst term in the bracket on the righthand side, the ∂M can as well be shifted with a minus sign to B,
because in

∧•
L we have only isotropic indices in the sense that

AM ...M
KBKM ...M = 0 (B.54)

For this reason, the Dorfman-Schouten bracket has really the required skew-symmetry of a Schouten-bracket[
A(p),B(q)

]
= −(−)(q+1)(p+1)

[
B(q),A(p)

]
(B.55)

On
∧•

L this bracket coincides with the derived bracket of the big bracket, as the extra term with pM in (B.79)
vanishes because of (B.54).

4The letter β for the beta-transformations does not really �t into the philosophy of the present notations, where we use small
Greek letters for 1-forms (or sometimes p-forms) only, but not for multivectors. As the transformation is, however, commonly

known as beta-transformation, we use a large β, in order to distinguish it from the one-forms β, which are �oating around. �
5Taking the Dorfman bracket of footnote 3, we get as Dorfman derivative of a generalized vector c instead of (B.43,B.44) the

extended transformation

Dac ≡ Lac− ıγ(d∗a)

Dαc ≡ −(ıcdα) + Lαc

I.e. the �rst line is extended by a beta-transformation of γ with β = −d∗a and the B-transform of α (B = −dα) in the second line
is extended by a Lie derivative with respect to α. �
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B.4 Integrability

Integrability for an ordinary complex structure means that there exist in any chart dimM /2 holomorphic vector
�elds (with respect to the almost complex structure) which can be integrated to holomorphic coordinates za

in this chart of the manifold and make it a complex manifold. Those vector �elds are then just ∂/∂za. Those
coordinate di�erentials have vanishing Lie bracket among each other (partial derivatives commute). In turn,
every set of vectors with vanishing Lie bracket can be integrated to coordinates. The existence of such a set
of integrable holomorphic vector �elds is guaranteed when the holomorphic subbundle is closed under the Lie
bracket, i.e. the Lie bracket of two holomorphic vector �elds is again a holomorphic vector �eld.

As the Dorfman bracket restricted to the generalized holomorphic subbundle L ⊂ (T ⊕ T ∗) ⊗ C has the
properties of a Lie bracket, we can demand exactly the same for generalized holomorphic vectors as above
for holomorphic ones. The condition for the generalized complex structure to be integrable is thus that the
generalized holomorphic subbundle L is closed under the Dorfman bracket, i.e. in terms of the projectors

Π̄ [Πv,Πw] = 0 (B.56)

⇐⇒ [v,w]− [J v,Jw] + J [J v,w] + J [v,Jw] = 0 (B.57)

In the following two sub-subsections we will show that this is equivalent to the vanishing of a generalized
Nijenhuis-tensor [59, p.25] of the coordinate form6,7

1
4
NM1M2M3 ≡ J [M1|K∂KJ |M2M3] + J [M1|KJK

|M2,M3] != 0 (B.58)

Recalling that

JMN =
(

Pmn Jm
n

−Jn
m −Qmn

)
, JM

N =
(
−Jn

m −Qmn

Pmn Jm
n

)
, ∂M = (0, ∂m) (B.59)

we can rewrite this condition in ordinary tensor components, just to compare it with the conditions given in
literature (for the antisymmetrization of the capital indices we take into account that in the last term of (B.58)
the indices M1 and M2 are automatically antisymmetrized because of J 2 = −1):

1
4
Nm1m2m3 = P [m1|k∂kP

|m2m3] != 0 (B.60)

1
4
Nn

m1m2 =
1
3

(
−Jk

n∂kP
[m1m2] + 2P [m1|k∂kJ

|m2]
n − P [m1|kJ |m2]

k,n + J [m1|
kP

k|m2]
,n

)
!= 0 (B.61)

1
4
Nn

m1m2 =
1
3
(
−Pnk∂kQ[m1m2] + 2Jk

[m1|∂kJ
n
|m2] + 2Jn

kJ
k
[m1,m2] − 2PnkQk[m1,m2]

) != 0 (B.62)

1
4
Nm1m2m3 = Jk

[m1|∂kQ|m2m3] + Jk
[m1|Qk|m2,m3] −Q[m1|kJ

k
|m2,m3]

!= 0 (B.63)

If we compare those expressions with the tensors A,B,C and D given in (2.16) of [78, p.7], we recognize
(replacing Q by −Q) that our �rst line is just 1

3A, the second line is − 1
3B (using (B.24)), the third 1

3C and the
fourth line is − 1

3D. There, in turn, it is claimed that the expressions are equivalent to those originally given in
(3.16)-(3.19) of [74, p.7].

6This looks formally like the generalized Schouten bracket (e.g. [59, p.21]) on
V• L (with L being the generalized holomorphic

bundle) of J with itself (see also the statement below (B.79)), but it is not, as J has neither holomorphic nor antiholomorphic
indices

ΠJ = iΠ 6= J
Π̄J = −iΠ 6= J

In fact, we get zero if we contract both indices with the holomorphic projector

ΠN
LΠM

KJKL = ΠJΠT = iΠΠ̄ = 0

The same happens for two antiholomorphic projectors. But we can project one index with an holomorphic projector and the other
one with an antiholomorphic one. This yields

Π̄N
LΠM

KJKL = ΠJΠ = iΠ

Up to a constant prefactor the bracket of Π with Π coincides with the bracket of J with J . And like for the ordinary complex
structure, where we have the Nijenhuis bracket of the complex structure with itself, which has one index in T and the second in
T ∗, we could here take Π with one index in L and the other in L̄ and regard the bracket as generalized Nijenhuis bracket of Π with
itself. �

7If instead the twisted Dorfman bracket (see footnote 2) is used, one gets the integrability condition for a twisted generalized
complex structure with a twisted generalized Nijenhuis tensor. Consider the closed three form H = HM1M2M3 tM1 tM2 tM3 with
Hm1m2m3 the only nonvanishing components. The twisted generalized Nijenhuis tensor then reads

NH
M1M2M3

= NM1M2M3 + 6HM1M2M3 − 18JM1
KHKM2LJL

M3

Like (B.60)-(B.63) this twisted generalized Nijenhuis tensor as well matches with the tensors given in [78] if one rede�nes Hmnk →
1
3!

Hmnk. �
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B.4.1 Coordinate based way to derive the generalized Nijenhuis-tensor

In this sub-subsection we will see that calculations with capital-index notation is rather convenient. So we
simply calculate (B.57) brute force by using the explicit coordinate formula for the Dorfman-bracket

[v,w]M = vK∂KwM +
(
∂MvK − ∂KvM

)
wK (B.35=B.64)

The brackets of interest are:

[v,Jw]N = vK∂KJN
LwL + JN

LvK∂KwL +
(
∂NvK − ∂KvN

)
(Jw)K (B.65)

(J [v,Jw])M = vKJM
N∂KJN

LwL − vK∂KwM + JM
N

(
∂NvK − ∂KvN

)
(Jw)K (B.66)

[J v,w]N = JK
LvL∂KwN +

(
∂NJKL − ∂KJN

L

)
vLwK +

(
JK

L∂NvL − JN
L∂KvL

)
wK (B.67)

(J [J v,w])M = JM
N (J v)K∂KwN + JM

N

(
∂NJKL − ∂KJN

L

)
vLwK +

−(Jw)LJM
N∂

NvL + ∂KvMwK (B.68)

[J v,Jw]M = JK
NvN∂KJM

LwL + JK
NvNJM

L∂KwL +(
∂MJKNvN − ∂KJM

NvN
)
JK

LwL +
(
JKN∂

MvN − JM
N∂KvN

)
JK

LwL = (B.69)

= (J v)KJM
L∂KwL − JM

N∂KvN (Jw)K +
+
(
JK

L∂
MJKN + 2JK

[N |∂KJM
|L]

)
vNwL + ∂MvLwL (B.70)

The underlined terms sum up in the complete expression to the generalized Nijenhuis tensor, while the rest
cancels

0 != [v,w]M − [J v,Jw]M + (J [J v,w])M + (J [v,Jw])M = (B.71)

=
(
2JM

K∂[NJK
L] − JK

L∂
MJKN + JMK∂KJLN − 2JK

[N |∂KJM
|L]

)
vNwL = (B.72)

= vN

(
3J [M |

KJK|L,N ] + 3J [N |K∂KJ |ML]
)

wL = (B.73)

=
3
4
vNNNMLwL (B.74)

B.4.2 Derivation via derived brackets

Eventually we want to see directly how the generalized Nijenhuis tensor is connected to derived brackets. We
will use our insight from the subsections 6.1.1 and 6.1.2. Remember, our basis tM = (dxm,∂m) was identi�ed
with the conjugate (ghost-)variables tM ≡ (cm, bm). One can de�ne generalized multi-vector �elds of the form

K(k) ≡ KM ...M ≡ KM1...Mk
tM1 · · · tMk (B.75)

They are in fact just sums of multivector valued forms:

KM ...M =
k∑

k=0

(
k

k

)
Km...m︸ ︷︷ ︸

k

n...n︸︷︷︸
k−k

≡
k∑

k=0

K(k,k−k) (B.76)

The big bracket, or Buttin's algebraic bracket is then just the canonical Poisson bracket

[K,L]∆(1) ≡ klKM ...M
ILIM ...M = {K,L} (B.77)

{tM , tN} = GMN (B.78)

The coordinate expression for its derived bracket (compare to (6.52,6.54)) reads

(−)k−1
[
dK(k),L(L)

]∆
(1)

= k · KM ...M
I∂ILM ...M − (−)(k+1)(l+1)

l · LM ...M
I∂IKM ...M +

+(−)k−1
kl∂MKM ...M

ILIM ...M + k (k− 1) lKM ...M
IJLIM ...MpJ (B.79)

with pJ ≡ (pj , 0) and ∂I ≡ (∂i, 0). In the case were both K and L only have generalized holomorphic indices,
the p-term drops and this expression should coincide with the Schouten-bracket on

∧•
L for the holomorphic

Lie-algebroid L (see e.g. [59, p.21] and footnote 6). For two rank-two objects, like the generalized complex
structure J , this reduces to

[K,d L]∆(1) = 2 · KM
I∂ILMM + 2 · LM

I∂IKMM − 4∂MKM
ILIM + 4KIJLIMpJ (B.80)
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which reads for two coinciding tensors J

[J ,d J ]∆(1) = 4 · JM
I∂IJMM − 4∂MJM

IJIM − 4J JIJIMpJ = (B.81)

(B.58)
=

J 2=−1
NM ...M + 4 pM tM︸ ︷︷ ︸

= o (6.8)

(B.82)

where o = dxkpk = −d(dxk ∧ ∂k). We will verify this relation between the generalized Nijenhuis tensor and
the derived bracket in the following calculation, where we calculate N using the big bracket (B.77) all the
time. This bracket is like a matrix multiplication if one of the objects has only one index. We will use this fact
frequently for the multiplication of J with a vector

J v ≡ JM
NvN tM =

1
2
{J , v} (B.83)

⇒ {J , {J , v}} = 4J 2v = −4v = {{v,J } ,J } (B.84)

{{v,J } , {J ,w}} = −4vKwK = −4 {v,w} (B.85)

If both objects are of higher rank, however, antisymmetrization of the remaining indices modi�es the result.
We thus have to be careful with the following examples

{J ,J } = 4JM
KJKM = −4GMM = 0 (! because of antisymmetrization) (B.86)

{J , {J ,dv}} = JM
KJ[K|

L(dv)L|M ] 6= −4dv (B.87)

As mentioned earlier, the Dorfman bracket (B.31) used in our integrability condition is just the derived bracket
of the algebraic bracket. I.e. we have

[v,w] = [dv,w]∆ = (B.88)

= [dv,w]∆(1) +
∑
p≥2

[dv,w]∆(p)︸ ︷︷ ︸
=0

= (B.89)

= {dv,w} (B.90)

where the di�erential d has to be understood in the extended sense of (6.9,6.33), namely as Poisson-bracket
with the BRST-like generator

o = tMpM = cmpm
locally

= d(xmpm) = −d(cmbm) (B.91)

pM ≡ (pm, 0) (B.92)

dv ≡ {o, v} = ∂MvM + vKpK (B.93)

where pm is the conjugate variable to xm. We can now rewrite the integrability condition (B.57) as

{dv,w} − 1
4
{d{J , v} , {J ,w}}+

1
4
{J , {d{J , v} ,w}}+

1
4
{J , {dv, {J ,w}}} != 0 (B.94)

Remember that the Poisson bracket is a graded one, and v,w and d are odd, while J is even.
Let us now start with applying Jacobi to the second term of (B.94)

− 1
4
{d{J , v} , {J ,w}} = −1

4
{{d{J , v} ,J } ,w} − 1

4
{J , {d{J , v} ,w}} (B.95)

so that we get

0 != {dv,w} − 1
4
{{d{J , v} ,J } ,w}+

1
4
{J , {dv, {J ,w}}} = (B.96)

= {dv,w} − 1
4
{{{dJ , v} ,J } ,w} − 1

4
{{{J ,dv} ,J } ,w}+

1
4
{J , {dv, {J ,w}}} = (B.97)

= {dv,w} − 1
4
{{{v,dJ } ,J } ,w}+

1
4
{{{dv,J } ,J } ,w}+

1
4
{J , {dv, {J ,w}}} (B.98)

It would be nice to separate w completely by moving it for the last term into the last bracket like in the �rst
three terms. We thus consider only the last term for a moment and calculate it in two di�erent ways (�rst using
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Jacobi for second and third bracket and after that using Jacobi for �rst and second bracket):

1
4
{J , {dv, {J ,w}}} 1.=

1
4
{J , {{dv,J } ,w}}+

1
4
{J , {J , {dv,w}}} = (B.99)

=
1
4
{J , {{dv,J } ,w}} − {dv,w} (B.100)

2.=
1
4
{{J ,dv} , {J ,w}}+

1
4
{dv, {J , {J ,w}}} = (B.101)

=
1
4
{J , {{J ,dv} ,w}}+

1
4
{{{J ,dv} ,J } ,w} − {dv,w} = (B.102)

= −1
4
{J , {{dv,J } ,w}}+ {dv,w} − 2 {dv,w}+

1
4
{{{J ,dv} ,J } ,w} (B.103)

Comparing both calculations yields

1
4
{J , {dv, {J ,w}}} = −1

8
{{J , {J ,dv}} ,w} − {dv,w} (B.104)

We can plug this back in (B.98) and leave away the outer bracket with w:

0 != dv− 1
4
{{v,dJ } ,J }+

1
4
{{dv,J } ,J } − 1

8
{J , {J ,dv}} − dv = (B.105)

= −1
4
{{v,dJ } ,J }+

1
8
{{dv,J } ,J } = (B.106)

= −1
8
{{v,dJ } ,J }+

1
8
{d{v,J } ,J } = (B.107)

= −1
8
{{v,dJ } ,J }+

1
8
d{{v,J } ,J }+

1
8
{{v,J } ,dJ } = (B.108)

= −1
8
{v, {dJ ,J }} − 1

2
dv = (B.109)

=
1
8

({
[J ,dJ ]∆(1) , v

}
− 4dv

)
= (B.110)

=
1
8
{

[J ,dJ ]∆(1) − 4o, v
}

(B.111)

where we used

dv = {o, v} (B.112)

The integrability condition is thus (explaining the normalization of N of above) as promised in (B.82)

N ≡ [J ,dJ ]∆(1) − 4o
!= 0 (B.113)

The derived bracket [J ,dJ ]∆(1) indeed contains the term 4o = 4tMpM which therefore is exactly cancelled.

Precisely the same calculation can be performed by calculating with the complete algebraic bracket [ , ]∆

instead of the Poisson-bracket, its �rst order part. Similarly to above, we have

J v ≡ 1
2
[J , v]∆ (B.114)

⇒ [J , [J , v]∆]∆ = 4J 2v = −4v (B.115)

In combination with (B.88) this is enough to redo the same calculation and get as integrability condition (using
[J ,J ] ≡ −[dJ ,J ]∆)

N ≡ [J ,J ]− 4o
!= 0 (B.116)

which also proves that the derived bracket bracket of the big bracket (which is not necessarily geometrically
well de�ned) coincides in this case with the complete derived bracket

[J ,dJ ]∆(1) = [J ,J ] (B.117)

As discussed in (C.53) and (C.55), throwing away the d-closed part corresponds to taking Buttin's bracket
instead of the derived one. Remember that o = dxkpk = −d(dxk ∧∂k), s.th. do = 0. We can thus equally write

N = [J ,J ]B (B.118)



Appendix C

Derived Brackets

Mathematics in this section is based on the review article on derived brackets by Kosmann-Schwarzbach [57].
The presentation, however, will be somewhat di�erent and in addition to (or sometimes instead of) the abstract
de�nitions coordinate expressions will be given.

C.1 Lie bracket of vector �elds, Lie derivative and Schouten bracket

This �rst subsection is intended to give a feeling, why the Schouten bracket is a very natural extension of the
Lie bracket of vector �elds. It is a good example to become more familiar with the subject, before we become
more general in the subsequent subsections, but it can be skipped without any harm (note however the notation
introduced before (C.13)).

Consider the ordinary Lie-bracket of vector �elds which turns the tangent space of a manifold into a Lie
algebra or the tangent bundle into a Lie algebroid and which takes in a local coordinate basis the familiar form

[v,w]m = vk∂kw
m − wk∂kv

m (C.1)

We will convince ourselves in the following that numerous other common di�erential brackets are just natural
extensions of this bracket and can be regarded as one and the same bracket. Such a generalized bracket is
e.g. useful to formulate integrability conditions and it can serve via the Jacobi identity as a powerful tool
in otherwise lengthy calculations . In addition it shows up naturally in some sigma-models as is discussed in
section 6.

Given the Lie-bracket of vector �elds, it seems natural to extend it to higher rank tensor �elds by demanding
a Leibniz rule on tensor products of the form [v,w1 ⊗ w2] = [v,w1]⊗ w2 + w1 ⊗ [v,w2]. Remembering that the
Lie-bracket of two vector �elds is just the Lie derivative of one vector �eld with respect to the other

[v,w] = Lvw (C.2)

the Lie derivative of a general tensor T = T
n1...nq
m1...mpdxm1 ⊗ . . .⊗dxmp ⊗∂n1 ⊗· · ·⊗∂nqwith respect to a vector

�eld v can be seen as a �rst extension of the Lie bracket:

[v,T ] ≡ LvT (C.3)

[v,T ]n1...nq

m1...mp
= vk∂kT

n1...nq
m1...mp

−
∑

i

∂kv
niTn1...ni−1k ni+1...nq

m1...mp
+
∑

j

∂mjv
kT

n1...nq

m1...mj−1k mj+1...mp
(C.4)

The Lie derivative obeys (as a derivative should) the Leibniz rule

[v,T1 ⊗ T2] = [v,T1]⊗ T2 + T1 ⊗ [v,T2] (C.5)

In fact, giving as input only the Lie derivative of a scalar φ, namely the directional derivative [v,φ] ≡ vk∂kφ,
and the Lie bracket of vector �elds (C.1), the Lie derivative of general tensors (C.4) is determined by the
Leibniz-rule. Insisting on antisymmetry of the bracket, we have to de�ne

[T ,v] ≡ − [v,T ] (C.6)

Indeed, it can be checked that the above de�nitions lead to a valid Jacobi-identity of the form

[v, [w,T ]] = [[v,w] ,T ] + [w, [v,T ]] for arbitrary tensors T (C.7)

which is perhaps better known in the form

[Lv,Lw]T = L[v,w]T (C.8)

118
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We have now vectors acting via the bracket on general tensors, but tensors only acting on vectors via (C.6) .
It is thus natural to use Leibniz again to de�ne the action of tensors on tensors. To make a long story short,
this is not possible for general tensors. It is possible, however, for tensors with only upper indices which are
either antisymmetrized (multivectors) or symmetrized (symmetric multivectors). We will concentrate in
this paper on tensors with antisymmetrized indices (the reason being the natural given di�erential for forms
which also have antisymmetrized indices), but the symmetric case makes perfect sense and at some points we
will give short comments. (See e.g. [97] for more information on the Schouten bracket of symmetric tensor
�elds.)

Given two multivector �elds (note that the prefactor 1/p! is intentionally missing (see page 107).

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp , w(q) ≡ wm1...mq∂m1 ∧ . . . ∧ ∂mq (C.9)

their Schouten(-Nijenhuis) bracket, or Schouten bracket for short, is given in a local coordinate basis by[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1] − qv[m1...mp|

,kw
k |mp+1...mp+q−1] (C.10)

Realizing that the Lie-derivative (C.4) of a multivector �eld w(q) with respect to a vector v(1) is[
v,w(q)

]n1...nq

= vk∂kw
n1...nq − q∂kv

[n1|wk |n2...nq ] (C.11)

one recognizes that (C.10) is a natural extension of this, obeying a Leibniz rule, which we will write down below
in (C.18). However, as the coordinate form of generalized brackets will become very lengthy at some point, we
will �rst introduce some notation which is more schematic, although still exact. Namely we imagine that every
boldface index m is an ordinary index m contracted with the corresponding basis vector ∂m at the position
of the index:

v(p) = vm1...mp∂m1 ∧ . . . ∧ ∂mp ≡ vm...m (C.12)

This saves us the writing of the basis vectors as well as the enumeration or manual antisymmetrization of the
indices. As a boldface index might be hard to distinguish from an ordinary one, we will use this notation only for
several indices, s.th. we get repeated indices m . . .m which are easily to recognize (and are not summed over,
as they are at the same vertical position). See in the appendix A on page 108 for a more detailed explanation.
The Schouten bracket then reads[

v(p),w(q)
]

= pvm...mk∂kw
m...m − qvm...m

,kw
k m...m = (C.13)

= pvm...mk∂kw
m...m − (−)p(q−1)qwk m...mvm...m

,k = (C.14)

= pvm...mk∂kw
m...m − (−)(p−1)(q−1)qwm...mk∂kv

m...m (C.15)

In the last line it becomes obvious that the bracket is skew-symmetric in the sense of a Lie algebra of degree1

−1: [
v(p),w(q)

]
= −(−)(p−1)(q−1)

[
w(q),v(p)

]
(C.16)

1A Lie bracket
ˆ

,(n)

˜
of degree n in a graded algebra increases the degree (which we denote by | . . . |) by n˛̨ˆ

A,(n) B
˜˛̨

=| A | + | B | +n

It can be understood as an ordinary graded Lie-bracket, when we rede�ne the grading ‖ . . . ‖ ≡| . . . | +n, such that the Lie bracket
itself does not carry a grading any longer ‚‚ˆA,(n) B

˜‚‚ = ‖A‖+ ‖B‖

The symmetry properties are thus (skew symmetry of degree n)ˆ
A,(n) B

˜
= −(−)(|A|+n)(|A|+n)

ˆ
B,(n) A

˜
and it obeys the usual graded Jacobi-identity (with shifted degrees)ˆ

A,(n)

ˆ
B,(n) C

˜˜
=

ˆˆ
A,(n) B

˜
,(n) C

˜
+ (−)(|A|+n)(|A|+n)

ˆ
B,(n)

ˆ
A,(n) C

˜˜
In addition there might be a Poisson-relation with respect to some other product which respects the original grading. To be
consistent with both gradings, this relation has to readˆ

A,(n) B · C
˜

=
ˆ
A,(n) B

˜
· C + (−)(|A|+n)|B|B ·

ˆ
A,(n) C

˜
This is consistent with B ·C = (−)|B||C|C ·B on the one hand and the skew symmetry of the bracket on the other hand. One can
imagine the grading of the bracket to sit at the position of the comma.
For the bracket of multivectors we have as degree the vector degree. Later, when we will have tensors of mixed type (vector

and form), we will use the form degree minus the vector degree as total degree. Then the Schouten-bracket is of degree +1, which
should not confuse the reader. �
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It obeys the corresponding Jacobi identity[
v
(p1)
1 ,

[
v
(p2)
2 ,v

(p3)
3

]]
=

[[
v
(p1)
1 ,v

(p2)
2

]
,v

(p3)
3

]
+ (−)(p1−1)(p2−1)

[
v
(p2)
2 ,

[
v
(p1)
1 ,v

(p3)
3

]]
(C.17)

Our starting point was to extend the bracket in a way that it acts via Leibniz on the wedge product. A Lie
algebra which has a second product on which the bracket acts via Leibniz is known as Poisson algebra. However,
here the bracket has degree −1 (it reduces the multivector degree by one) while the wedge product has no degree
(the degree of the wedge product of multivectors is just the sum of the degrees). According to footnote 1, we
have to adjust the Leibniz rule. The resulting algebra for Lie brackets of degree -1 is known as Gerstenhaber
algebra or in this special case Schouten algebra (which is the standard example for a Gerstenhaber algebra).
The Leibniz rule is[

v
(p1)
1 , v

(p2)
2 ∧ v(p3)

3

]
=

[
v
(p1)
1 , v

(p2)
2

]
∧ v(p3)

3 + (−)(p1−1)p2v
(p2)
2 ∧

[
v
(p1)
1 , v

(p3)
3

]
(C.18)

The standard example in �eld theory for a Poisson algebra is the phase space equipped with the Poisson bracket
or the commutator of operators or matrices.2 The Schouten algebra is naturally realized by the antibracket
of the BV anti�eld formalism (see subsection 6.5).

C.2 Embedding of vectors into the space of di�erential operators

The Leibniz rule is not the only concept to generalize the vector Lie bracket to higher rank tensors. The major
di�culty in the de�nition of brackets between higher rank tensors is the Jacobi-identity, which should hold for
them. It is therefore extremely useful to have a mechanism which automatically guarantees the Jacobi identity.
A way to get such a mechanism is to embed the tensors into some space of di�erential operators, as for the
operators we have the commutator as natural Lie bracket which might in turn induce some bracket on the
tensors we started with. Vector �elds e.g. naturally act on di�erential forms via the interior product

ıvω
(p) ≡ p · vkωkm...m (C.19)

This can be seen as the embedding of vector �elds in the space of di�erential operators acting on forms, because
the interior product with respect to a vector is a graded derivative with the grading -1 of the vector (we take
as total degree the form degree minus the multivector degree, which for a vector is just -1)

ıv

(
ω(p) ∧ η(q)

)
= ıvω

(p) ∧ η(q) + (−)qω(p) ∧ ıvη(q) (C.20)

Taking the idea of above we can take the commutator of two interior products. We note, however, that it only
induces a trivial (always vanishing) bracket on the vector�elds

[ıv, ıw] = 0 = ı0 (C.21)

As the interior product (C.19) does not include any partial derivative on the vector-coe�cient, it was clear from
the beginning that this ansatz does not lead to the Lie bracket of vector �elds or any generalization of it. We
have to bring the exterior derivative into the game, in our notation

dω(p) = ∂mωm...m (C.22)

There are two ways to do this

• Change the embedding: Instead of embedding the vectors via the interior product acting on forms, we
can embed them via the Lie-derivative acting on forms. When acting on forms, the Lie derivative can be
written as the (graded) commutator of interior product and exterior derivative

Lv = [ıv,d] (C.23)

Lvω
(p) = vk∂kωm...m + p · ∂mvkωk m...m (C.24)

Indeed, using the Lie derivative as embedding v 7→ Lv, the commutator of Lie derivatives induces the Lie
bracket of vector �elds (a special case of (C.8)

[Lv,Lw] = L[v,w] (C.25)

2In fact, working with totally symmetric multivector �elds would have lead to a Poisson algebra instead of a Gerstenhaber
algebra. �
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• Change the bracket: In the space of di�erential operators acting on forms, the commutator is the most
natural Lie bracket. However, the existence of a nilpotent odd operator acting on our algebra, namely the
commutator with the exterior derivative, enables the construction of what is called a derived bracket3.

[ıv,dıw] ≡ [[ıv,d] , ıw] (C.26)

This derived bracket (which is in this case a Lie bracket again, as we are considering the abelian subalgebra
of interior products of vector �elds) indeed induces the Lie bracket of vector �elds when we use the interior
product as embedding

[ıv,dıw] = ı[v,w] (C.27)

The above equations plus two additional ones are the well known Cartan formulae

[ıv, ıw] = 0 = [d,d] (C.28)

Lv = [ıv,d] (C.29)

[Lv,d] = 0 (C.30)

[Lv,Lw] = L[v,w] (C.31)[
[ıv,d]︸ ︷︷ ︸

Lv

, ıw
]
] = ı[v,w] (C.32)

(C.25) can be rewritten, using Jacobi's identity and [d,d] = 0, as

[[[ıv,d] , ıw] ,d] =
[
ı[v,w],d

]
(C.33)

Starting from (C.27), one thus arrives at (C.25) by simply taking the commutator with d. We will therefore
concentrate in the following on the second possibility, using the derived bracket, as the �rst one can be deduced
from it. Let us just mention that the generalization in the spirit of the derived bracket (C.27) (or more precise
its skew-symmetrization) is known as Vinogradov bracket [100, 101] (see footnote 8), while the generalization
in the spirit of (C.25) is known as Buttin's bracket [83].

C.3 Derived bracket for multivector valued forms

Let us now consider a much more general case, namely the space of multivector valued forms, i.e. tensors
which are antisymmetric in the upper as well as in the lower indices. With the Schouten bracket we have
a bracket for multivectors, which are antisymmetric in all (upper) indices. There exists as well a bracket
for vector valued forms, namely tensors with one upper index and arbitrary many antisymmetrized lower
indices. This bracket (which we have not yet discussed) is the (Fröhlicher-) Nijenhuis bracket (see (C.67)),
which shows up in the integrability condition for almost complex structures. Multivector valued forms have
arbitrary many antisymmetrized upper and arbitrary antisymmetrized lower indices and thus contain both cases.
The antisymmetrization appears quite naturally in �eld theory (we give only a few remarks about completely
symmetric indices, which appear as well, but which will not be subject of this paper). It makes also sense to
de�ne brackets on sums of tensors of di�erent type (e.g. the Dorfman bracket for generalized complex geometry).
Those brackets are then simply given by linearity.

3Given a bracket
ˆ
,(n)

˜
of degree n (not necessarily a Lie bracket. It can be as well a Loday bracket where the skew-symmetry

property as compared to footnote 1 is missing, but the Jacobi identity still holds) and a di�erential D (derivation of degree 1 and
square 0), its derived bracket [98, 99, 57] (which is of degree n + 1) is de�ned byˆ

a,(D) b
˜

= (−)n+a+1
ˆ
Da,(n) b

˜
We put the subscript (D) at the position of the comma, to indicate that the grading of D is sitting there. The strange sign is just
to make the de�nition nicer for the most frequent case of an interior derivation, where Da =

ˆ
d,(n) a

˜
with d some element of the

algebra with degree | d |= 1− n and
ˆ
d,(n) d

˜
= 0, s.th. we have

[a,d b] =
ˆˆ

a,(n) d
˜
,(n) b

˜
The derived bracket is then again a Loday bracket (of degree n + 1) and obeys the corresponding Jacobi-identity (that is always
the nontrivial part). If a, b are elements of a commuting subalgebra ([a,(n) b] = 0), the derived bracket even is skew-symmetric and
thus a Lie bracket of degree n + 1.
In the case at hand we start with a Lie bracket of degree 0 (the commutator) and take as interior derivation the commutator with

the exterior derivative [d, . . .]. Note that the exterior derivative itself is a derivative on forms, but not on the space of di�erential
operators on forms. Therefore we need the commutator. �
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So let us consider two multivector valued forms (we denote the number of lower indices and the number of
upper indices in this order via superscripts)4

K(k,k′) ≡ Km...m
n...n ≡ Km1...mk

n1...nk′dxm1 · · ·dxmk ⊗ ∂n1 · · ·∂nk′ (C.34)

L(l,l′) ≡ Lm...m︸ ︷︷ ︸
l

n...n︸︷︷︸
l′

(C.35)

Note the use of the schematic index notation, which we used for upper indices already in subsection C.1 and
which is explained in the appendix A on page 108. Following the ideas of above, we want to embed those
vector valued forms in some space of di�erential operators. As we have upper as well as lower indices now, it is
less clear why we should choose the space of operators acting on forms and not on some other tensors for the
embedding. However, the space of forms is the only one where we have a natural exterior derivative without
using any extra structure5. Therefore we will de�ne again a natural embedding into the space of di�erential
operators acting on forms as a generalization of the interior product. Namely, we will act with a multivector
valued form K on a form ρ by just contracting all upper indices with form-indices and antisymmetrizing the
remaining lower indices s.th. we get again a form as result. The formal de�nition goes in two steps. First one
de�nes the interior product with multivectors. For a decomposable multivector v(p) = v1 ∧ . . . ∧ vp set

ıv1∧...∧vpρ
(r) ≡ ıv1 · · · ıvpρ

(r) (C.36)

This �xes the interior product for a generic multivector uniquely (contracting all indices with form-indices).
The next step is to de�ne for a multivector valued form K(k,k′) = η(k) ∧ v(k′) which is decomposable in a form
and a multivector, that it acts on a form by �rst acting with the multivector as above and then wedging the
result with the form

ıη(k)∧v(k′)ρ ≡ η(k) ∧ ıv(k)ρ = (−)k′kıv(k′)∧η(k)ρ (C.37)

It is kind of a normal ordering that ıv(k′) acts �rst:

ıηıv = ıη(k)∧v(k′) = (−)kk′ ıv(k′)∧η(k) 6= ıvıη (C.38)

For a generic multivector valued form, the above de�nitions �x the following coordinate form of the interior
product6 with a multivector valued form

ıK(k,k′)ρ(r) ≡ (k′)!
(

r
k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

(C.39)

So we are just contracting all the upper indices of K with an appropriate number of indices of the form and
are wedging the remaining lower indices. The origin of the combinatorial prefactor is perhaps more transparent
in the phase space formulation (6.13) in subsection 6.1. For multivectors v(p) and w(q) the operator product of
ıv(p) and ıw(q) induces, due to (C.36) simply the wedge product of the multivectors

ıv(p) ıw(q) = ıv(p)∧w(q) (C.40)

But for general multivector-valued forms we have instead7

ıK(k,k′) ıL(l,l′) =
k′∑

p=0

ı
ı
(p)
K L

= ıK∧L +
k′∑

p=1

ı
ı
(p)
K L

(C.41)

4One can certainly map a tensor Km
ndxm⊗∂n to one where the basis elements are antisymmetrized Km

ndxm∧∂n
see page 107
≡

1
2
Km

ndxm⊗∂n− 1
2
Km

n∂n⊗dxm and vice versa. In the �eld theory applications we will always get a complete antisymmetrization.
This mapping is the reason why we take care for the horizontal positions of the indices. It should just indicate the order of the
basis elements which was chosen for the mapping. �

5One can de�ne an exterior derivative � the Lichnerowicz-Poisson di�erential � on the space of multivectors as well (via
the Schouten bracket), but for this we need an integrable Poisson structure: dP N(q) ≡

ˆ
P (2),N(q)

˜
, with

ˆ
P (2),P (2)

˜
= 0 �

6The name 'interior product' is misleading in the sense that the operation is (for decomposable tensors) a composition of interior
and exterior wedge product. It will, however, in the generalizations of Cartan's formulae play the role of the interior product. We
will therefore stick to this name. We can also see it as a short name for 'interior product of maximal order' in the sense that all
upper indices are contracted as opposed to an interior 'product of order p', where we contract only p upper indices. 'Order' is in
the sense of the order of a derivative. While ıv is a derivative for any vector v, the general interior product acts like a higher order
derivative. �

7The product of interior products in (C.41) induces a noncommutative product (star product) for the multivector-valued forms,
whose commutator is the algebraic bracket, namely

K ∗ L ≡
X
p≥0

ı
(p)
K L

[K, L]∆ = K ∗ L− (−)(k−k′)(l−l′)L ∗K �
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with

ı
(p)

K(k,k′)L
(l,l′) ≡ (−)(k

′−p)(l−p)p!
(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (C.42)

For p = k′, ı(p)
K reduces to the interior product (C.39). Both are in general not a derivative any longer. ı(p)

is, however, a p-th order derivative, as contracting p indices means taking the p-th derivative with respect to p
basis elements (see 6.18 in subsection 6.1). Our embedding ıK(k,k′) in (C.39) is therefore a k′-th order derivative.

For p = 0 on the other hand, ı(p)
K is just a wedge product with K

While for vectors the commutator of two interior products (C.21) did only induce a trivial bracket on vectors,
which is the same for multivectors due to (C.40), this is di�erent for multivector-valued forms.

[ıK(k,k′) , ıL(l,,l′) ] = ı[K,L]∆ (C.43)

[K,L]∆ ≡
∑
p≥1

ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆(p)

= (C.44)

=
∑
p≥1

(−)(k
′−p)(l−p)p!

(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n +

−(−)(k−k′)(l−l′)(−)(l
′−p)(k−p)p!

(
l′

p

)(
k
p

)
Lm...m

n...nl1...lpKlp...l1m...m
n...n (C.45)

where we introduced an algebraic bracket [K,L]∆ in the second line, which is is due to Buttin [83], and
which is a generalization of the Nijenhuis-Richardson bracket for vector-valued forms (C.63). As it was induced
via the embedding from the graded commutator, it has the same properties, i.e. it is graded antisymmetric
and obeys the graded Jacobi identity. Actually, the term with lowest p, so [K,L]∆(p=1), is itself an algebraic
bracket, which appears in subsection 6.1.1 as canonical Poisson bracket. It is known under the name Buttin's
algebraic bracket ([83], denoted in [57] by [ , ]0B) or as big bracket

[K,L]∆(1) = ı
(1)
K L− (−)(k−k′)(l−l′)ı

(1)
L K = (C.46)

= (−)(k
′−1)(l−1)k′l ·Km...m

n...nl1Ll1m...m
n...n +

−(−)(k−k′)(l−l′)(−)(l
′−1)(k−1)l′k · Lm...m

n...nl1Kl1m...m
n...n (C.47)

But as for the vector �elds in subsection C.2, we are rather interested in the derived bracket of [K,L]∆, or
at the bracket induced via an embedding based on the Lie derivative. An obvious generalization of the Lie
derivative is the commutator [ıK ,d], which will be a derivative of the same order as ıK and therefore is not a
derivative in the sense that it obeys the Leibniz rule. Although it is common to use this generalization, I am
not aware of an appropriate name for it. Let us just call it the Lie derivative with respect to K (being a
derivative of order k′)

LK(k,k′) ≡ [ıK(k,k′) ,d] (C.48)

LK(k,k′)ρ = (k′)!
(
r + 1
k′

)
Km...m

l1...lk′∂[lk′
ρlk′−1...l1m...m] +

−(−)k−k′(k′)!
(

r
k′

)
∂m

(
Km...m

l1...lk′ρlk′ ...l1m...m

)
= (C.49)

= (k′)!
(

r
k′ − 1

)
Km...m

l1...lk′∂lk′ρlk′−1...l1m...m +

−(−)k−k′(k′)!
(

r
k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (C.50)

The Lie derivative above is an ingredient to calculate the derived bracket (remember footnote 3 on page 121)
which is given by8

[ıK ,dıL] ≡ [[ıK ,d] , ıL] ≡ ı[K,L] if possible (C.51)

8 The Vinogradov bracket [101, 100] (see also [57]) is a bracket in the space of all graded endomorphisms in the space of
di�erential forms Ω•(M)

[a,b]V =
1

2

“
[[a, d] , b]− (−)b [a, [b, d]]

”
∀a, b ∈ Ω•(M)

It is the skew symmetrization of a derived bracket. The embedding of the multivector valued forms into the endomorphisms Ω•(M)
via the interior product which we consider is neither closed under the Vinogradov bracket nor under the derived bracket in the
general case. �
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One should distinguish the derived bracket on the level of operators on the left from the derived bracket on the
tensors [K,L] on the right. Only in special cases the result of the commutator on the left can be written as the
interior product of another tensorial object which then can be considered as the derived bracket with respect to
the algebraic bracket [ , ]∆. Therefore one normally does not �nd an explicit general expression for this derived
bracket in literature. In 6.1.2, however, the meaning of exterior derivative and interior product are extended in
order to be able to write down an explicit general coordinate expression (6.51) which reduces in the mentioned
special cases to the well known results (see e.g. C.4.2).

Closely related to the derived bracket in (C.51) of above is Buttin's di�erential bracket, given by

[LK ,LL] ≡ L[K,L]B
if possible (C.52)

Because of [d,d] = 0 and LK = [ıK ,d] we have (using Jacobi)

[LK ,LL] = [[ıK ,dıL] , d] = [[ıK ,dıL] , d] != [ı[K,L]B
, d] (C.53)

Comparing with (C.51) s.th. in cases where [K,L] exists, the brackets have to coincide up to a closed term, or
locally a total derivative

ı[K,L] = ı[K,L]B
+ [d, . . .] (C.54)

Using again the extended de�nition of exterior derivative and interior product of 6.1.2, this relation can be
rewritten as

[K,L] = [K,L]B + d(. . .) (C.55)

The Nijenhuis bracket (C.74) is the major example for this relation.

C.4 Examples

C.4.1 Schouten(-Nijenhuis) bracket

Let us shortly review the Schouten bracket under the new aspects. For multivectors v(p), w(q) the algebraic
bracket vanishes

[ıv(p) , ıw(q) ] = 0 (C.56)

The Schouten bracket
[
v(p),w(q)

]
coincides with the derived bracket as well as with Buttin's di�erential

bracket, i.e. we have

[[ıv(p) ,d] , ıw(q) ] = ı[v(p),w(q)] (C.57)

[Lv(p) ,Lw(q) ] = L[v(p),w(q)] (C.58)

Its coordinate form � given already before in (C.15) � is[
v(p),w(q)

]
= pvm...mk∂kw

m...m − (−)(p−1)(q−1)qwm...mk∂kv
m...m (C.59)

The vector Lie bracket is a special case of the Schouten bracket as well as of the Nijenhuis bracket.

C.4.2 (Fröhlicher-)Nijenhuis bracket and its relation to the Richardson-Nijenhuis
bracket

Consider vector valued forms, i.e. tensors of the form

K(k,1) ≡ Km1...mk

ndxm1 ∧ · · · ∧ dxmk ∧ ∂n
∼= Km1...mk

ndxm1 ∧ · · · ∧ dxmk ⊗ ∂n (C.60)

The algebraic bracket of two such tensors, de�ned via the graded commutator (note that | ıK |=| K |= k − 1)

[ıK , ıL] = ı[K,L]∆ (C.61)

consists only of the �rst term in the expansion, because we have only one upper index to contract.[
K(k,1), L(l,1)

]∆
=

[
K(k,1), L(l,1)

]∆
(1)

= ı
(1)
K L− (−)(k−1)(l−1)ı

(1)
L K = (C.62)

=
(C.47)

= l Km...m
jLjm...m

n − (−)(k−1)(l−1)k Lm...m
jKjm...m

n (C.63)
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It is thus just the big bracket or Buttin's algebraic bracket but in this case it is known as Richardson-
Nijenhuis-bracket.

The Lie derivative of a form with respect to K (in the sense of (C.48)) is because of k′ = 1 really a (�rst
order) derivative and takes the form

LK(k,1) ≡ [ıK(k,1) ,d] (C.64)

LK(k,1)ρ(r) = Km...m
l∂lρm...m + (−)kr∂mKm...m

lρlm...m (C.65)

The (Froehlicher-)Nijenhuis bracket is de�ned as the unique tensor [K,L]N , s.th.

[LK ,LL] = L[K,L]N (C.66)

It is therefore an example of Buttin's di�erential bracket. Its explicit coordinate form reads

[K,L]N ≡ Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +
−(−)klLm...m

j∂jKm...m
n − (−)kl(−)lk∂mLm...m

jKjm...m
n (C.67)

= ”LKL− (−)klLLK” (C.68)

A di�erent point of view on the Nijenhuis bracket is via the derived bracket on the level of the di�erential
operators acting on forms:

[ıK ,d ıL] ≡ [[ıK ,d] , ıL] (C.69)

It induces the Nijenhuis-bracket only up to a total derivative (the Lie-derivative-term)

[ıK ,d ıL] ≡ ı[K,L]N
− (−)k(l−1)LıLK (C.70)

Using the extended de�nition of the exterior derivative in the sense of (6.37) and of the interior product (6.32),
one can write the Lie derivative as an interior product (see 6.35) LıLK = −(−)l+kıd(ıLK) and [[ıK ,d] , ıL] =
(−)k [ıdK , ıL] = (−)kı[dK,L]∆ , so that we can rewrite (C.70) as

[K,L] ≡ [K,L]N + (−)(k−1)ld(ıLK) (C.71)

with [K,L] ≡ (−)k [dK,L]∆ (C.72)

In that sense, [K,L] is the derived bracket of the Richardson Nijenhuis bracket while the Nijenhuis bracket
di�ers by a total derivative. The explicit coordinate form can be read o� from (6.49,6.51) (with only the p = 1
term surviving)

[K,L] = (−)kı
(1)
dKL+ (−)kl(−)lı

(1)
dLK + (−)(k−1)ld(ı(p)

L K) = (C.73)

= Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +
−(−)klLm...m

j∂jKm...m
n − (−)kl(−)lk∂mLm...m

jKjm...m
n +

+(−)(k−1)ld
(
kLm...m

jKjm...m
n︸ ︷︷ ︸

ıLK

)
(C.74)

where the last part is non-tensorial due to the appearance of the basis element pi (see subsection 6.1.2):

d(ıLK) = d
(
kLm...m

jKjm...m
n
)

= k∂m

(
Lm...m

jKjm...m
n
)
− (−)l+kLm...m

jKjm...m
ipi (C.75)

The remaining part coincides with the coordinate form of the Nijenhuis bracket as given in (C.67).
One can nicely summarize the algebra of graded derivations on forms as[

L
K

(k1)
1

+ ı
L

(l1)
1

, L
K

(k2)
2

+ ı
L

(l2)
2

]
=

= L[K1,K2]N+ıL1K2−(−)(l2−1)k1 ıL2K1
+ ı[K1,L2]N−(−)(l1−1)k2 [K2,L1]N+[L1,L2]

∆ (C.76)



Appendix D

Gamma-Matrices in 10 Dimensions

D.1 Cli�ord algebra, Fierz identity and more for the Dirac matrices

In the following we will collect some general relations for Dirac-Γ-matrices in d dimensions. In contrast to
the rest of this document, we are not using graded conventions in most of this appendix. In other words,
the spinorial indices are not understood to carry a grading and we are thus using neither graded summation
conventions nor the graded equal sign. The reason is that a lot of people (me included) are used to calculate
with Γ-matrices in ordinary conventions, and it therefore seemed to be simpler for me to translate only the
results into the graded conventions, which will be done in the last section of this appendix. This does not mean,
however, that calculating in the graded conventions would be more complicated.

Remember the form of the Cli�ord algebra

{Γa,Γb} = 2ηab11 ⇐⇒ Γ(aΓb) = ηab11 (D.1)

De�ne as ususal Γa1...ap ≡ Γ[a1 · · ·Γap]. The set {ΓI} ≡ {11,Γa,Γa1a2 , . . . ,Γa1...a10} then builds a basis of
Gl(2[d/2]) where 2[d/2] is the dimension of the representation space.

Product of antisymmetrized products of Γ-matrices One can in particular expand any product of
antisymmetrized gamma matrices in the basis {ΓI}:

Γa1...apΓb1...bq =
min{p,q}∑

k=0

k!
(
p
k

)(
q
k

)
η[ap|

[b1
|
η|ap−1|

|b2
|
· · · η|ap+1−k|

|bk
|
Γ|a1...ap−k]

|bk+1...bq
]

(D.2)

The antisymmetrization brackets on the righthand side shall indicate that all the ai's and all the bi's are
independently antisymmetrized. The expressions become quite lengthy, if one spells out the antisymmetrization
explicitely. Let us write down the �rst terms only, using the notation where a hat on an index means that this
index is omitted:1

Γa1...akΓb1...bl = Γa1...akb1...bl +
k∑

i=1

l∑
j=1

(−)k−i+j−1ηaibj Γa1...ǎi...akb1...b̌j ...bl +

+
k∑

i1=1

l∑
j1=1

i1−1∑
i2=1

( j1−1∑
j2=1

(−)k−i1+j1−1+k−1−i2+j2−1︸ ︷︷ ︸
−(−)2k+i1+i2+j1+j2

ηai1bj1 ηai2bj2 Γa1...ǎi2 ...ǎi1 ...akb1...b̌j2 ...b̌j1 ...bl +

+
l∑

j2=j1+1

(−)k−i1+j1−1+k−1−i2+j2−2︸ ︷︷ ︸
(−)2k+i1+i2+j1+j2

ηai1bj1 ηai2bj2 Γa1...ǎi2 ...ǎi1 ...akb1...b̌j1 ...b̌j2 ...bl

)
+ . . . (D.3)

For some applications the precise coe�cients are not important, and a schematic version is enough. Let us
denote Γa1...ak schematically simply by Γ[k]. Neglecting all coe�cients, we can write

Γ[k]Γ[l] ∝ Γ[|k−l|] + Γ[|k−l|+2] + . . .+ Γ[k+l] (D.4)

Some simpler cases are of particular interest for us:

1For the proof of (D.2) one can simply study independently the cases of how many indices ai and bi coincide. For a nonvanishing
lefthand side all the a's are di�erent and all the b's are di�erent. If even none of the a's coincides with one of the b's, we have simply
Γa1...akΓb1...bl = Γa1...akb1...bl . If a1 = b1 and all others are di�erent, we have Γa1...akΓb1...bl = (−)k−1ηa1b1Γa2...akb2...bl . If two
indices coincide, e.g. a1 = b1, a2 = b2, then we have Γa1...akΓb1...bl = (−)k−1+k−2ηa1b1ηa2b2Γa3...akb3...bl . And so on... �
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Γa1Γb1...bl = Γa1b1...bl + l · ηa1[b1Γb2...bl] (D.5)

Γa1a2Γb1...bl = Γa1a2b1...bl − l · ηa1[b1|Γa2|b2...bl] + l · ηa2[b1|Γa1|b2...bl] − l(l − 1)ηa1[b1|ηa2|b2Γb3...bl] (D.6)

Γa1a2Γb1b2 = Γa1a2b1b2 + ηa2b1Γa1b2 + ηa1b2Γa2b1 − ηa1b1Γa2b2 − ηa2b2Γa1b1 +
+ηa1b2ηa2b1 − ηa1b1ηa2b2 (D.7)

Contracting (D.5) with Γa1 from the left yields

(d− l)Γb1...bl = Γa1Γ
a1b1...bl (D.8)

Acting instead from the righthand side yields

ΓaΓb1...blΓa = Γab1...blΓa + lηa[b1Γb2...bl]Γa =
= (−)l(d− 2l) · Γb1...bl (D.9)

In particular for l = 0 and l = 1, we have

ΓaΓa = d (D.10)

ΓaΓbΓa = −(d− 2) · Γb (D.11)

For even dimensions the righthand side of (D.9) vanishes for l = d/2. We will need this fact for ten dimensions:

ΓaΓb1...b5Γa = 0 for d = 10 (D.12)

Chirality matrix as a �Hodge star� Remember the de�nition and the basic properties of the chirality
matrix in even dimensions:

Γ# ≡ ε(d)Γ0 · · ·Γd−1 =
1
d!
ε(d)εc1...cd

Γc1...cd , with

{
ε01...(d−1) ≡ 1

ε(d) ≡ ∓i1+d(d−1)/2 d=10= ±1
(D.13)

(Γ#)2 = 11 (D.14)

{Γa,Γ#} = 0 ∀a ∈ {0, 1, . . . , d− 1}, for even d (D.15)

There is a natural isomorphism between the antisymmetrized product of Γ-matrices Γa1...ap and the wedge
product of the cotangent basis elements (vielbeins) ea1 ∧ . . .∧ eap . The multiplication with the chirality matrix
on the one side then corresponds to Hodge duality on the other. It maps p-forms to (d−p)-forms in the following
sense:

Γ#Γa1...ap =
1
d!
ε(d)εcd...c1Γ

cd...c1Γa1...ap =

(D.2)
=

1
d!
ε(d)εcd...c1p!

(
p
p

)(
d
p

)
ηc1a1 · · · ηcpapΓcdcd−1...cp+1 =

=
1

(d− p)!
ε(d)Γcd...cp+1εcd...cp+1

ap...a1 (D.16)

Up to a sign the same result is obtained when acting from the right, s.t. we can summarize

Γ#Γa1...ap =
1

(d− p)!
(−)p(p+1)/2ε(d)ε

a1...ap
c1...cd−p

Γc1...cd−p = (−)pΓa1...apΓ# (D.17)

In particular we have

Γ#Γa1...ap ⊗ Γap...a1Γ
# = (−)pΓ#Γa1...ap ⊗ Γ#Γap...a1 =

= (−)p

(
ε(d)

(d− p)!

)2

εcd...cp+1
ap...a1Γcd...cp+1 ⊗ εbd...bp+1a1...apΓbd...bp+1 (D.18)

Using2

εc1...cdεb1...bd
= −d!δc1...cd

b1...bd
(D.19)

εcd...cp+1
ap...a1εbd...bp+1a1...ap = −(−)p(p−1)/2p!(d− p)!ηcd...cp+1,bd...bp+1 (D.20)

with ηcd...cp+1,bd...bp+1 ≡ ηcd[bd| · · · ηcp+1|bp+1] (D.21)

2Remember the de�nition of the antisymmetrized Kronecker symbols

δc1...cn
d1...dn

≡ δc1
[d1
· · · δcn

dn]



APPENDIX D. GAMMA-MATRICES IN 10 DIMENSIONS 128

we get

Γ#Γa1...ap ⊗ Γap...a1Γ
# = −(−)p(p+1)/2ε2(d)

p!
(d− p)!

Γbd...dp+1 ⊗ Γbd...dp+1 (D.22)

Reversing the order of the indices of one of the Γ's, we arrive at3

Γ#Γa1...ap ⊗ Γap...a1Γ
# = (−)dp p!

(d− p)!
Γb1...bd−p ⊗ Γbd−p...b1 (D.23)

In particular in ten dimensions, we get for p = 5:

Γ#Γa1...a5 ⊗ Γa5...a1Γ
# = Γb1...b5 ⊗ Γb1...b5 for d = 10 (D.24)

Trace The trace of all antisymmetrized products of Gamma-matrices vanishes in even dimensions:

trΓa1...a2k+1 = trΓa1...a2k+1Γ#Γ# even d= ±trΓ#Γa1...a2k+1Γ# ⇒ trΓa1...a2k+1 = 0
trΓa1...a2k = ±trΓa2ka1...a2k−1 ⇒ trΓa1...a2k = 0

trΓa1...ap = 0 ∀p ≥ 1 for even d (D.25)

Fierz identity The Fierz identity is simply a completeness relation. Given a basis
{
|ek >

}
of a vector space,

de�ne its dual basis via < ek||el >= δl
k. The completeness relation then reads∑

k

|ek >< ek| = 11 (D.26)

In our case the vector space is the space of all 2[d/2] × 2[d/2]-matrices and the antisymmetrized products of
Γ-matrices form a basis of it: {11,Γa,Γa1a2 , . . . ,Γa1...ad} ≡ {ΓI}. Its dual basis is simply given by 2−[d/2] ·
{11,Γa,Γa2a1 , . . . ,Γad···a1} ≡ {ΓI} (acting on the original basis by contracting all spinor indices). One can
convince oneself that we have indeed (using trΓa1...ap = 0)

2−[d/2]δ
α
β δ

β
α = 1 (D.27)

2−[d/2]

p!
Γap...a1

α
βΓb1...bq β

α = δq
pδ

b1...bp
a1...ap

≡ δq
pδ

b1
[a1
· · · δbp

ap] (D.28)

The completeness relation or Fierz identity thus reads

10∑
p=0

2−[d/2]

p!
Γa1...ap α

βΓap...a1
γ

δ = δ
α
δ δ

γ

β (D.29)

If we contract one index pair, we arrive at

δ
c1...cn−1cn

d1...dn−1cn
=

d− (n− 1)

n
δ

c1...cn−1
d1...dn−1

Contracting several indices leads to

δ
c1...cn−pa1...ap

d1...dn−pa1...ap
=

„
d− n + p

p

«
„

n
p

« δ
c1...cn−p

d1...dn−p

In particular, if all indices are contracted (p = n) or if the original number of indices matches the dimension (n = d), we end up
with

δ
a1...ap
a1...ap =

„
d
p

«
, δ

c1...cd−pa1...ap

d1...dd−pa1...ap
=

„
d
p

«−1

δ
c1...cd−p

d1...dd−p

(see also [102, p.456]) �
3To verify the sign in (D.23), remember �rst that

ε2(d) = (−)1+d(d−1)/2

In addition we have reversed the order of (d− p) indices which gives another sign factor with exponent

(d− p)(d− p− 1)

2
=

d(d− 1)

2
+

p(p− 1)

2
− dp

Collecting all signs, we get

(−)

evenz }| {
p(p− 1)+

evenz }| {
d(d− 1)+dp = (−)dp �
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In even dimension we can use (D.23) to rewrite the identity as

d/2−1∑
p=0

2−d/2

p!

(
Γa1...ap α

βΓap...a1
γ

δ + (Γ#Γa1...ap)α
β(Γap...a1Γ

#)γ
δ

)
+

2−d/2

(d/2)!
Γa1...ad/2 α

βΓad/2...a1
γ

δ = δ
α
δ δ

γ

β

(D.30)

D.2 Explicit 10d-representation

In the following we will give an explicit representation of the Dirac-Γ-matrices in 10 dimensions which we are
using throughout this document. The presentation is based on the one given in the appendix of [7].

D.2.1 D=(2,0): Pauli-matrices (2x2)

We start with the 3 Pauli matrices

τ1 ≡
(

0 1
1 0

)
, τ2 ≡

(
0 −i
i 0

)
, τ3 ≡

(
1 0
0 −1

)
(D.31)

τ iτ j = iεijkτk + δij11 (D.32)

[τ i, τ j ] = 2iεijkτk (D.33)

{τ i, τ j} = 2δij11 (D.34)

tr τ i = 0, det(σi) = −1 (D.35)

(τ i)† = τ i (D.36)

D.2.2 D=(3,1), 4x4

De�ne γk ≡ τk ⊗ τ2, γ4 ≡ 11⊗ τ1,γ5 ≡ 11⊗ τ3. The tensor product can be understood in di�erent ways when
writing down the resulting matrices. We understand it as plugging the lefthand matrix into the righthand one:

γk ≡
(

0 −iτk

iτk 0

)
, γ4 ≡

(
0 11
11 0

)
≡ iγ0, γ5 ≡

(
11 0
0 −11

)
(D.37)

{γµ, γν} = 2δµν11 (D.38)

tr (γµ) = 0 (D.39)

(γµ)† = γµ (D.40)

γ1γ2γ3γ4 =
(

0 −iτ1τ2τ3

iτ1τ2τ3 0

)(
0 11
11 0

)
=
(

11 0
0 −11

)
= γ5 (D.41)

γ2, γ4 and γ5 are real and symmetric, while γ1 and γ3 are imaginary and antisymmetric.

D.2.3 D=(7,0), 8x8

We can de�ne seven purely imaginary 8× 8 matrices λi as follows:

λi =
{
γ2 ⊗ τ2, γ4 ⊗ τ2, γ5 ⊗ τ2, γ1 ⊗ 11, γ3 ⊗ 11, iγ2γ4γ5 ⊗ τ1, iγ2γ4γ5 ⊗ τ3

}
(D.42)

with iγ2γ4γ5 = iτ2 ⊗ τ2τ1τ3 = τ2 ⊗ 11 =
(
τ2 0
0 τ2

)

{λi, λj} = 2δij11 (D.43)

tr (λi) = 0 (D.44)

(λi)† = λi (D.45)

λ1 · · ·λ6 = (γ2γ4γ5γ1γ3iγ2γ4γ5)⊗ τ2τ1 = −(γ1γ3)⊗ τ3 = (iτ2 ⊗ 11)⊗ τ3 = iiγ2γ4γ5 ⊗ τ3 = iλ7(D.46)
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D.2.4 D=(8,0), 16x16

Now we can de�ne 8 real symmetric 16× 16 matrices σµ ≡ {λi ⊗ τ2, 11⊗ τ1}

σi ≡
(

0 −iλi

iλi 0

)
, σ8 ≡

(
0 11
11 0

)
(D.47)

{σµ, σν} = 2δµν11 (D.48)

(σµ)† = σµ (D.49)

tr (σµ) = 0 (D.50)

χ ≡ σ1 · · ·σ8 = λ1 · · ·λ7 ⊗ τ2τ1 = 11⊗ τ3 =
(

11 0
0 −11

)
(D.51)

D.2.5 D=(9,1),32x32

Finally we de�ne the real Dirac-matrices for 10-dimensional Minkowski-space as Γa ≡
{
11⊗ iτ2, σµ ⊗ τ1, χ⊗ τ1

}
Γ0 ≡

(
0 11
−11 0

)
≡ −iΓ10, Γµ ≡

(
0 σµ

σµ 0

)
,Γ9 ≡

(
0 χ
χ 0

)
(D.52)

Γa α
β ≡

(
0 γa αβ

γa
αβ 0

)
, with γa αβ ≡ {δαβ , σµ α

β , χ
α

β}, γa
αβ ≡ {−δαβ , σ

µ α
β , χ

α
β} (D.53)

The small γa (chiral gamma matrices) are thus all real and symmetric! The Dirac matrices obey

{Γa,Γb} = 2ηab11 (D.54)

Γ# ≡ Γ0 · · ·Γ9 = iΓ1 · · ·Γ10 = σ1 · · ·σ8χ⊗ iτ2(τ1)9 = 11⊗ τ3 =
(

11 0
0 −11

)
(D.55)

(Γ#)2 = 11, Γ#Γa = −ΓaΓ# (D.56)

(Γa)† = Γa, (Γ#)† = Γ# (D.57)

trΓa = 0, trΓ# = 0 (D.58)

Intertwiners The unitary intertwiners A, B and C are de�ned via

(Γa)† = AΓaA†, −(Γa)∗ = B†ΓaB, −(Γa)T = C†ΓaC (D.59)

We can choose

Aαβ = −Γ0Γ# =
(

0 δβ
α

δα
β 0

)
(D.60)

B = Γ# (D.61)

C = BA† = −Γ#Γ0Γ# = Γ0 (D.62)

The Dirac conjugate is ψ̄ ≡ ψ†A. In the Lorentz-covariant expression ψ̄Γmφ, there appears therefore the
combination

(AΓm)αβ =
(
γa

αβ 0
0 γa αβ

)
, γa

αβ sym and real (D.63)

The other conjugate is the charge conjugate spinor ψc ≡ Cψ̄T = CATψ∗ = Bψ∗ = Γ#ψ∗.

D.3 Cli�ord algebra, Fierz identity and more for the chiral blocks in
10 dimensions

Above we have de�ned

Γa α
β =

(
0 γa αβ

γa
αβ 0

)
(D.64)

The Cli�ord algebra for the Γ′s reads in terms of the smallo γ′s:

γ(a|αγγ
|b)
γβ = ηabδα

β (D.65)

γ(a|αβγ
|b)
βα = 16ηab (D.66)
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D.3.1 Product of antisymmetrized products of gamma-matrices

Antisymmetrized products of Γ′s are block-diagonal for even number of factors and block-o�diagonal for odd
number of factors4. The chiral blocks read:

γa1...a2k α
β ≡ γ[a1|αγ1γ|a2|

γ1γ2
· · · γ|a2k]

γ2k−1β = (−)kγa1...a2k
β

α (D.67)

γ
a1...a2k+1
αβ = (−)kγ

a1...a2k+1
βα , γa1...a2k+1 αβ = (−)kγa1...a2k+1 βα (D.68)

The schematic expansion of antisymmetrized products of Γ-matrices given in (D.4) has the same form for the
chiral blocks, if we suppress the index structure:

γ[k]γ[l] ∝ γ[|k−l|] + γ[|k−l|+2] + . . .+ γ[k+l] (D.69)

Indeed, without the spinorial indices, even the exact equations (including the correct prefactors) look identically
for the small γ′s:

γa1...apγb1...bq =
min{p,q}∑

k=0

k!
(
p
k

)(
q
k

)
η[ap|

[b1
|
η|ap−1|

|b2
|
· · · η|ap+1−k|

|bk
|
γ|a1...ap−k]

|bk+1...bq
]
(D.70)

In particular we have

γa1γb1...bl = γa1b1...bl + l · ηa1[b1γb2...bl], γb1...blγa1 = γb1...bla1 + l · γ[b1...bl−1ηbl]a1 (D.71)

γa1a2γb1...bl = γa1a2b1...bl − l · ηa1[b1|γa2|b2...bl] + l · ηa2[b1|γa1|b2...bl] +
−l(l − 1)ηa1[b1|ηa2|b2γb3...bl] (D.72)

γa1a2γb1b2 = γa1a2b1b2 − 2ηa1[b1|γa2|b2] + 2ηa2[b1|γa1|b2] − 2ηa1[b1|ηa2|b2] =
= γa1a2b1b2 + ηa2b1γa1b2 + ηa1b2γa2b1 − ηa1b1γa2b2 − ηa2b2γa1b1 +

+ηa1b2ηa2b1 − ηa1b1ηa2b2 (D.73)

Reintroducing the spinorial indices for the last line yields (remember that we do not use our graded conventions
in this part of the appendix):

γa1a2
α

γγb1b2
γ

β = γa1a2b1b2
α

β + ηa2b1γa1b2
α

β + ηa1b2γa2b1
α

β − ηa1b1γa2b2
α

β − ηa2b2γa1b1
α

β +
+ηa1b2ηa2b1δβ

α − ηa1b1ηa2b2δβ
α (D.74)

D.3.2 Hodge duality

Remember

Γ# α
β ≡ Γ0...9 α

β =
(

11 0
0 −11

)
(D.75)

Γ#Γa1...ap =
1

(10− p)!
(−)p(p+1)/2εa1...ap

c1...c10−pΓc1...c10−p =
1

(10− p)!
Γc10...cp+1εc10...cp+1

ap...a1 (D.76)

This means for the chiral matrices

γ# α
β ≡ γ0...9 α

β = δα
β =

1
10!

εc1...c10γ
c1...c10 α

β with ε01...9 ≡ 1 (D.77)

γ#
α

β ≡ γ0...9
α

β = −δβ
α =

1
10!

εc1...c10γ
c1...c10

α
β (D.78)

And γ[p] is therefore always equal (not only �Hodge-dual�) to a γ[10−p]:

γa1...a2k α
β =

1

(10− 2k)!
(−)kεa1...a2k c1...c10−2kγc1...c10−2k α

β =
1

(10− 2k)!
γc10...c2k+1 α

βεc10...c2k+1
a2k...a1 (D.79)

−γa1...a2k α
β =

1

(10− 2k)!
(−)kεa1...a2k c1...c10−2kγc1...c10−2k α

β =
1

(10− 2k)!
γc10...c2k+1α

βεc10...c2k+1
a2k...a1 (D.80)

γa1...a2k+1 αβ =
1

(9− 2k)!
(−)(k+1)εa1...a2k+1c1...c9−2kγc1...c9−2k αβ =

1

(9− 2k)!
γc10...c2k+2 αβεc10...c2k+2

a2k+1...a1 (D.81)

−γ
a1...a2k+1
αβ =

1

(9− 2k)!
(−)(k+1)εa1...a2k+1c1...c9−2kγ

c1...c9−2k

αβ =
1

(9− 2k)!
γ

c10...c2k+2
αβ εc10...c2k+2

a2k+1...a1 (D.82)

4

Γa1a2 α
β ≡ Γ[a1|α

γΓ|a1] γ
β =

=

 
γ[a1|αγγ

|a2]
γβ 0

0 γ
[a1
αγ γa2] γβ = −γ[a1| βγγ

|a2]
γα

!
≡
„

γa1a2 α
β 0

0 γa1a2α
β

«
γa1a2 α

β = −γa1a2
β

α

γ[0] α
β ≡ δα

β = δβ
α (no index-grading here!) �
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For the �ve-form we had Γ#Γa1...a5 ⊗ Γa5...a1Γ
# = Γd1...d5 ⊗ Γd1...d5 , which turns into −γa1...a5 αβγγδ

a5...a1
=

γαβ
d1...d5

γd1...d5 γδ and −γa1...a5
αβ γa5...a1 γδ = γd1...d5 αβγ

d1...d5
γδ and thus

γa1...a5 αβγγδ
a5...a1

= γa1...a5
αβ γa5...a1 γδ = 0 (D.83)

D.3.3 Vanishing of gamma-traces and projectors for the gamma-matrix expansion

For any even p (2 ≤ p ≤ 8) we have

γa1...ap α
α = 0, 2 ≤ p ≤ 8, p even (D.84)

The reason is that there is no invariant constant tensor with p antisymmetrized indices apart from the ε-tensor
for p = 10 and the Kronecker delta for p = 0:

γa1...a10 α
α = −16εa1...a10 , γ[0] α

α ≡ δα
α = 16 (D.85)

With the same argument we get γa
αβγ

αβ
b ∝ δa

b and �xing the proportionality by taking the trace yields

γa
αβγ

βα
b = 16δa

b (D.86)

In the same manner we get for all other forms (using (D.70))

γ
a1...ap

αβ γβα
bp...b1

= 16p!δa1...ap

b1...bp
for p odd (D.87)

γa1...ap α
βγbp...b1

β
α = 16p!δa1...ap

b1...bp
for p even (D.88)

This can be used to project to the coe�cients of some γ-matrix expansion:

Aαβ = Aaγ
a
αβ +Aa1a2a3γ

a1a2a3
αβ +Aa1...a5γ

a1...a5
αβ , Aa1...ap =

1
16p!

γβα
ap...a1

Aαβ (D.89)

Bα
β = B[0]δ

α
β +Ba1a2γ

a1a2 α
β +Ba1a2a3a4γ

a1a2a3a4 α
β , Ba1...ap =

1
16p!

γap...a1
β

αB
α

β (D.90)

D.3.4 Chiral Fierz

Remember
10∑

p=0

1
32p!

Γa1...ap α
βΓap...a1

γ
δ = δ

α
δ δ

γ

β (D.91)

or

4∑
p=0

1
32p!

(
Γa1...ap α

βΓap...a1
γ

δ + (Γ#Γa1...ap)α
β(Γap...a1Γ

#)γ
δ

)
+

1
32 · 5!

Γa1...a5 α
βΓa5...a1

γ
δ = δ

α
δ δ

γ

β (D.92)

We want to make a distinction of the di�erent cases corresponding to the chiral indices:∑
p∈{0,2,4}

1
16p!

(
γa1...ap α

βγap...a1
γ

δ

)
= δα

δ δ
γ
β (D.93)

0 ·
∑

p∈{1,3}

1
16p!

γa1...ap αβγap...a1
γδ +

1
32 · 5!

γa1...a5 αβγa5...a1
γδ︸ ︷︷ ︸

=0

= 0 (D.94)

0 ·
∑

p∈{1,3}

1
16p!

γa1...ap
αβγap...a1 γδ +

1
32 · 5!

γa1...a5
αβγa5...a1 γδ︸ ︷︷ ︸
=0

= 0 (D.95)

∑
p∈{1,3}

1
16p!

γa1...ap αβγap...a1 γδ +
1

32 · 5!
γa1...a5 αβγa5...a1 γδ = δα

δ δ
β
γ (D.96)

Only the �rst and the last give nontrivial information.

δα
β δ

γ
δ +

1
2
γa1a2 α

βγa2a1
γ

δ +
1
4!
γa1a2a3a4 α

βγa4a3a2a1
γ

δ = 16δα
δ δ

γ
β (D.97)

γa αβγa γδ +
1
3!
γa1a2a3 αβγa3a2a1 γδ +

1
2 · 5!

γa1...a5 αβγa5...a1 γδ = 16δα
δ δ

β
γ (D.98)
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Contracting γ, δ in (D.97) yields 16δα
β = 16δα

β , contracting γ, β instead, yields5

δα
δ +

1
2
γa1a2 α

γγa2a1
γ

δ +
1
4!
γa1a2a3a4 α

γγa4a3a2a1
γ

δ = (16)2δα
δ (D.99)

γa αβγa βδ︸ ︷︷ ︸
10δα

δ

+
1
3!
γa1a2a3 αβγa3a2a1 βδ +

1
2 · 5!

γa1...a5 αβγa5...a1 βδ = (16)2δα
δ (D.100)

We can also contract (D.97) with γb
αργb γσ to arrive at

0 = γb
βργb δσ +

1
2
γa1a2 α

βγ
b
αρ︸ ︷︷ ︸

γ[3]+γ[1]

γb γσγa2a1
γ

δ︸ ︷︷ ︸
γ[3]+γ[1]

+
1
4!
γa1a2a3a4 α

βγ
b
αρ︸ ︷︷ ︸

γ[5]+γ[3]

γb γσγa4a3a2a1
γ

δ︸ ︷︷ ︸
γ[5]+γ[3]

−16γb
δργb βσ (D.101)

Now we use that γ[3]is antisymmetric in βρ and that γ[5]γ[5] = 0 (mixed terms like γ[5]γ[3] also vanish, because
some η are contracted with antisymmetric indices of γ[5]). Symmetrizing the above equation in βρ yields

0 = γb
βργb δσ + 2ηb[a1γ

a2]
ρβ ηb[a2γa1] σδ − 16γb

δ(ρ|γb |β)σ =

= γb
βργb δσ + 2δ[a1

a2
γ

a2]
ρβ γa1 σδ − 16γb

δ(ρ|γb |β)σ =

= γb
βργb δσ + δa1

a2
γa2

ρβγa1 σδ − δa2
a2
γa1

ρβγa1 σδ − 16γb
δ(ρ|γb |β)σ =

= γb
βργb δσ + γa

ρβγa σδ − 10γa1
ρβγa1 σδ − 16γb

δ(ρ|γb |β)σ =

= −8γb
βργb δσ − 16γb

δ(ρ|γb |β)σ (D.102)

γb
(βρ|γb |δ)σ = 0 (D.103)

5As a consitency check we can in addition contract α, δ and get for the �rst Fierz

16 + 16
1

2
2!δa1a2

a1a2
+ 16

1

4!
4!δa1...a4

a1...a4
= (16)3

1 +

„
10
2

«
| {z }

45

+

„
10
4

«
| {z }

210

= (16)2 = 256

and for the second one

10 +

„
10
3

«
| {z }

120

+
1

2

„
10
5

«
| {z }

252

= 256 �



Appendix E

Noether

E.1 Noether's theorem and the inverse Noether method

Most of the following presentation is based on [82, p.67f, p.95], although somewhat modi�ed. Consider an action
of the quite general form

S[φIall] ≡
∫
dnσ L(φIall, ∂µφ

I
all, ∂µ1∂µ2φ

I
all, . . .) (E.1)

In most of the applications there appear no higher derivatives than ∂µφ
I
all. Let us treat global and local sym-

metries at the same time and consider a symmetry transformation with in�nitesimal transformation parameter
ρ(σ).The transformation can be expanded in derivatives of the transformation parameter:

δ(ρ)φ
I
all ≡ ρaδaφ

I
all︸ ︷︷ ︸

δ0
(ρ)φ

I
all

+ ∂µρ
aδµ

aφ
I
all︸ ︷︷ ︸

δ1
(ρ)φ

I
all

+ ∂µ1∂µ2ρ
aδµ1µ2

a φIall︸ ︷︷ ︸
δ2
(ρ)φ

I
all

+ . . . (E.2)

In order to de�ne properly the variational derivatives for this more general case, consider �rst the variation of
the Lagrangian1

δL = δφIall

(
∂L
∂φIall

− ∂µ
∂L

∂(∂µφIall)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ

I
all)
− . . .

)
+

+∂µ1

(
δφIall ·

∂L
∂(∂µ1φ

I
all)

+
(
δ(∂µ2φ

I
all) ·

∂L
∂(∂µ1∂µ2φ

I
all)
− δφIall · ∂µ2

∂L
∂(∂µ1∂µ2φ

I
all)

)
+ . . .

)
(E.3)

1 In (E.3) we have reformulated the variations containing derivatives of the �elds φIall using

δ(∂µ1 . . . ∂µkφIall) ·
∂L

∂(∂µ1 . . . ∂µkφIall)
=

= ∂µ1

h
δ(∂µ2 . . . ∂µkφIall) ·

∂L
∂(∂µ1 . . . ∂µkφIall)

− δ(∂µ2 . . . ∂µk−1φIall) · ∂µk

∂L
∂(∂µ1 . . . ∂µkφIall)

+ . . .

. . . + (−)k−1δφIall · ∂µ2 . . . ∂µk

∂L
∂(∂µ1 . . . ∂µkφIall)

i
+ (−)kδφIall · ∂µ1 . . . ∂µk

∂L
∂(∂µ1 . . . ∂µkφIall)

The indices of the partial derivatives are all contracted and symmetrized, such that this relation can be considered as a special case
of the following schematic relation of iterated 'partial integration':

∂ka · b = ∂
“
∂k−1a · b

”
− ∂k−1a · ∂b =

= ∂
“
∂k−1a · b

”
− ∂

“
∂k−2a · ∂b

”
+ ∂k−2a · ∂2b =

= ∂
h
∂k−1a · b− ∂k−2a · ∂b + . . . + (−)k−1a · ∂k−1b

i
+ (−)ka · ∂kb =

= ∂

"
k−1X
i=0

(−)i∂k−1−ia · ∂ib

#
+ (−)ka · ∂kb �
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The total derivative term reduces to a boundary term in the variation of the action, while the remaining term
de�nes the variational derivative:2

δS =
∫

Σ

dnσ δφIall

(
∂L
∂φIall

− ∂µ
∂L

∂(∂µφIall)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ

I
all)
− . . .

)
︸ ︷︷ ︸

≡ δS

δφI
all

+

+
∫

∂Σ

δφIall

(
∂L

∂(∂µφIall)
− 2∂µ2

∂L
∂(∂µ∂µ2φ

I
all)

+ 3∂µ2∂µ3

∂L
∂(∂µ∂µ2∂µ3φ

I
all)
− . . .

)
︸ ︷︷ ︸

(bc)µ
I

×

× 1
(n− 1)!

εµν1...νn−1dσ
ν1 ∧ · · · ∧ dσνn−1 (E.4)

A general variation δφIall determines via δS = 0 the equations of motion δS
δφIall(σ)

= 0 (and the boundary conditions

nµ(bc)µ
I = 0 with nµ the normal one form), while for a symmetry transformation δ(ρ)φ

I
all the variation of the

action has to vanish o�-shell. Then the variation of the Lagrangian has to be a total derivative independent
from the equations of motion:

δ(ρ)L
!= ∂µK

µ
(ρ) with nµK

µ
(ρ)

∣∣∣
∂Σ

= 0 (E.5)

Let us de�ne

jµ
(ρ) ≡ δ(ρ)φ

I
all ·

∂L
∂(∂µφIall)

+
(
δ(ρ)(∂µ2φ

I
all) ·

∂L
∂(∂µ∂µ2φ

I
all)
− δ(ρ)φ

I
all · ∂µ2

∂L
∂(∂µ∂µ2φ

I
all)

)
+ . . .−Kµ

(ρ) (E.6)

Note that Kµ
(ρ) is determined only up to o�-shell divergence free terms. The same is of course true for the

current. Using this de�nition, we can deduce from the above (E.3) that

∂µj
µ
(ρ) = −δ(ρ)φ

I
all

δS

δφIall
(E.7)

This equation shows one direction of Noether's theorem:

Theorem 2 (Noether) To every transformation δ(ρ)φ
I
all

which leaves the action S invariant, there is an on-
shell divergence-free current jµ

(ρ) whose explicit form is given in (E.6). Its o�-shell divergence is given in (E.7).

The such de�ned Noether current is unique up to trivially conserved terms of the form ∂νS
[νµ].

In turn, for any given on-shell divergence-free current j̃µ (see (E.8)), which is furthermore itself on-shell
neither vanishing nor trivial, there is a corresponding nonzero symmetry transformation δφI

all
of the form given

in (E.12) .

2Stokes' theorem reads Z
Σ(n)

dω =

Z
∂Σ

ω(n−1)

For any Σ that can be covered by one single coordinate patch, we can writeZ
Σ

dσµ1 ∧ . . . ∧ dσµn∂[µ1ωµ2...µn] =

Z
∂Σ

dσµ1 ∧ . . . ∧ dσµn−1ωµ1...µn−1

where on the righthand side the coordinate di�erentials dσµ have to be understood as pulbacks dτ i∂iσ
µ(τ) on the boundary.

For the integral of a divergence term likeZ
Σ

dnσ ∂µvµ ≡
Z
Σ

dσ1 ∧ . . . ∧ dσn ∂µvµ

we can use the fact that

dσ1 ∧ . . . ∧ dσn ∂µvµ = dω

with

ω ≡
1

(n− 1)!
vµεµµ1...µn−1dσ

µ1 ∧ . . . ∧ dσµn−1

Applying Stokes then leads to Z
Σ

dnσ ∂µvµ =

Z
∂Σ

1

(n− 1)!
vµεµµ1...µn−1dσ

µ1 ∧ . . . ∧ dσµn−1 �
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Remark: The equation (E.7) for the o�-shell divergence can serve for reconstructing the symmetry transfor-
mations for a given current. In the Hamiltonian formalism , the current (or better the charge) generates the
transformations via the Poisson bracket. In the Lagrangian formalism one can simply calculate all functional
derivatives δS

δφIall
(i.e. the equations of motion) and try to express the divergence of the current as a linear

combination of them. This method � let's call it inverse Noether � determines the transformations up to
trivial gauge transformations (see e.g. [82, p.69]) and we are using it frequently in the main part, in particular
to derive the BRST transformations.

Proof of the theorem: We have already shown the �rst part (every symmetry transformation induces a
conserved current) by deriving (E.7). The uniqueness up to trivial terms follows from the algebraic Poincaré
lemma. This does not yet show the inverse. For a given on-shell divergence-free current j̃µ we do not necessarily
have the form (E.7), but its o�-shell divergence can also depend on derivatives of the equations of motion:

∂µj̃
µ = −yI(0)

δS

δφIall
− yIµ1

(1) ∂µ1

δS

δφIall
− . . .− yIµN ...µ1

(N) ∂µ1 . . . ∂µN

δS

δφIall
(E.8)

However, one can always rede�ne the current such that we get the form (E.7). This is achieved by performing
the iterated 'partial integration' of footnote 1 on page 134. We have schematically

yI(k)∂
k δS

δφIall
= ∂

[
k−1∑
i=0

(−)i∂iyI(k) · ∂
k−1−i δS

δφIall

]
+ (−)k∂kyI(k) ·

δS

δφIall
(E.9)

We can then rewrite schematically the divergence of the current as follows

∂µj̃
µ = −

N∑
k=0

yI(k)∂
k δS

δφIall
=

= −∂

[
N∑

k=1

k−1∑
i=0

(−)i∂iyI(k) · ∂
k−1−i δS

δφIall

]
−

N∑
k=0

(−)k∂kyI(k) ·
δS

δφIall
(E.10)

To summarize, if we de�ne

jµ ≡ j̃µ +
N∑

k=1

k−1∑
i=0

(−)i∂µ1 . . . ∂µiy
Iµ µ1...µk−1

(k) · ∂µi+1 . . . ∂µk−1

δS

δφIall
(E.11)

δφIall ≡
N∑

k=0

(−)k∂µ1 . . . ∂µk
yI µ1...µk

(k) (E.12)

we get ∂jµ = −δφIall δS
δφIall

and thus discover that the above de�ned δφIall is a symmetry transformation. We

assumed that the current was on-shell neither vanishing nor trivial, while we rede�ned it with on-shell zero
terms only. Therefore the new current will not be trivial and its divergence is o�-shell non-zero. The symmetry
transformations constructed above are therefore (at least o�-shell) non-zero as well. This completes the proof.
�

We should add that an on-shell vanishing current does not in general imply vanishing transformations. In
fact all Noether currents of gauge transformations are vanishing on-shell. The gauge transformations will be
discussed in the following, where one discovers that the equations of motion are not independent but are related
via the Noether identities. Going back to our construction of the transformations from an arbitrarily conserved
current one can make use of these dependencies instead of only rede�ning the current. This avoids ending up
with an identically vanishing current after the rede�nitions.

E.2 Noether identities and on-shell vanishing gauge currents

Equation (E.7) is valid for any symmetry transformation, global as well as local ones. For local ones, however, the
relation has to hold for any local parameter ρa which is much more restrictive and allows to extract additional
information. Let us assume that there is some highest component jµN µN−1...µ1

a , or in other words ∃N , s.t.
j

µk µk−1...µ1
a = 0 ∀k > N . The expansion of jµ

(ρ) in derivatives of the transformation parameter ρ takes the
form

jµ
(ρ) ≡ ρajµ

a + ∂µ1ρ
ajµ µ1

a + . . .+ ∂µ1 . . . ∂µN−1ρ
ajµ µ1...µN−1

a (E.13)
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Now we plug this expansion and the one of δ(ρ)φ
I
all (E.2) into the equation for the current-divergence (E.7):

ρa∂µj
µ
a + ∂µ1ρ

a (jµ1
a + ∂µj

µµ1
a ) + ∂µ1∂µ2ρ

a
(
j(µ1µ2)
a + ∂µj

µµ1µ2
a

)
+ . . . =

= −ρaδaφ
I
all

δS

δφIall
− ∂µ1ρ

aδµ1
a φIall

δS

δφIall
− ∂µ1∂µ2ρ

aδµ1µ2
a φIall

δS

δφIall
− . . . (E.14)

Depending on whether we have a local or global symmetry, we get a number of recursive relations:

∂µ1j
µ1
a = −δaφIall

δS

δφIall
if ρa 6= 0 (E.15)

∂µ2j
µ2µ1
a = −jµ1

a − δµ1
a φIall

δS

δφIall
if ∂µ1ρ

a 6= 0 (E.16)

∂µ3j
µ3µ2µ1
a = −j(µ2µ1)

a − δµ2µ1
a φIall

δS

δφIall
if ∂µ1∂µ2ρ

a 6= 0 (E.17)

. . .

∂µN
jµN µN−1...µ1
a = −j(µN−1 µN−2...µ1)

a − δµN−1...µ1
a φIall

δS

δφIall
if ∂µ1 . . . ∂µN−1ρ

a 6= 0 (E.18)

0 = −j(µN µN−1...µ1)
a − δµN ...µ1

a φIall
δS

δφIall
if ∂µ1 . . . ∂µN

ρa 6= 0 (E.19)

The �rst equation (E.15) is present already for a global symmetry and corresponds to the Noether's theorem
for global symmetries. If the transformation parameters are instead local and arbitrary, the complete set of
equations is forced. Taking then the divergence of the second equation, the double divergence of the third and
so on, and adding them with appropriate signs, we can remove all currents from the equations and arrive at a
version of the Noether's identities:

δaφ
I
all

δS

δφIall
− ∂µ1

(
δµ1
a φIall

δS

δφIall

)
+ . . .+ (−)N+1∂µ1 . . . ∂µN+1

(
δµN+1...µ1
a φIall

δS

δφIall

)
= 0 (E.20)

From the recursive equations above, one can also obtain an interesting statement about the current of a gauge
symmetry (compare [82, p.95]):

Proposition 4 : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms
(see (E.21)). In turn, if a given global symmetry transformation has an on-shell vanishing current (see (E.35)),
then one can extend the transformation to a local one (see (E.40)).

Proof Start with a given gauge symmetry δ(ρ)φ
I
all and its corresponding current jµ

(ρ) with the expansion given
in (E.13), which de�nes the number N of the highest derivative on ρ. We want to show that the current of a
local symmetry is of the form

jµ
(ρ) =

N∑
k=0

λµIµ1...µk

(ρ) ∂µ1 . . . ∂µk

δS

δφIall
+ tµ(ρ) (E.21)

for some coe�cients λµIµ1...µk

(ρ) and with a term tµ whose divergence vanishes o�-shell: ∂µt
µ
(ρ) ≡ 0. (Due to the

algebraic Poicaré lemma, this means that there is some antisymmetric tensor S[µν]
(ρ) such that tµ(ρ) = ∂νS

[µν]
(ρ) . )

In order to reduce the length of the equations, de�ne �rst3

Eµk...µ1
a ≡ δµk...µ1

a φIall
δS

δφIall
, Eµk...µ1

a = E(µk...µ1)
a (E.22)

Aµk+1 µk...µ1
a ≡ jµk+1 µk...µ1

a − j(µk+1 µk...µ1)
a , Aµk+1 µk...µ1

a = Aµk+1 (µk...µ1)
a , A(µk+1 µk...µ1)

a = 0 (E.23)

3Note that from

k · j(µk µk−1...µ1)
a = j

µk µk−1...µ1
a + (k − 1)j

(µk−1 µk−2...µ1)µk
a

one can deduce

j
µk µk−1...µ1
a − j

(µk µk−1...µ1)
a =

2

k

k−1X
i=1

j
[µk|µk−1...|µi]...µ1
a �
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The �rst object is symmetric in all indices and the second is symmetric in the last k indices and vanishes when
symmetrized in all indices. Using this notation, we can rewrite the recursive equations (E.16)-(E.19) in the
following form

jµ1
a = −Eµ1

a − ∂µ2j
µ2µ1
a (E.24)

jµ2 µ1
a = Aµ2 µ1

a − Eµ2µ1
a − ∂µ3j

µ3µ2µ1
a (E.25)

. . .

jµN−1 µN−2...µ1
a = AµN−1 µN−2...µ1

a − EµN−1...µ1
a − ∂µN

jµN µN−1...µ1
a (E.26)

jµN µN−1...µ1
a = AµN µN−1...µ1

a − EµN ...µ1
a (E.27)

This set of equations can now formally be solved for all components of the current, starting from the N -th
equation. We end up with

jµ1
a = −∂µ2A

µ2 µ1
a + ∂µ2∂µ3A

µ3 µ2µ1
a − ∂µ2∂µ3∂µ4A

µ4 µ3µ2µ1
a + . . .+

−Eµ1
a + ∂µ2E

µ2µ1
a − ∂µ2∂µ3E

µ3 µ2µ1
a + ∂µ2∂µ3∂µ4E

µ4 µ3µ2µ1
a − . . . (E.28)

jµ2 µ1
a = Aµ2 µ1

a − ∂µ3A
µ3 µ2µ1
a + ∂µ3∂µ4A

µ4 µ3µ2µ1
a − . . .+

−Eµ2µ1
a + ∂µ3E

µ3 µ2µ1
a − ∂µ3∂µ4E

µ4 µ3µ2µ1
a + . . . (E.29)

. . .

jµk µk−1...µ1
a = Aµk µk−1...µ1

a − ∂µk+1A
µk+1 µk...µ1
a + . . .+ (−)N−k∂µk+1 . . . ∂µN

AµN µN−1...µ1
a +

−Eµk...µ1
a + ∂µk+1E

µk+1...µ1
a − . . .− (−)N−k∂µk+1 . . . ∂µN

EµN ...µ1
a (E.30)

. . .

jµN−1 µN−2...µ1
a = AµN−1 µN−2...µ1

a − ∂µN
AµN µN−1...µ1

a − EµN−1...µ1
a + ∂µN

EµN ...µ1
a (E.31)

jµN µN−1...µ1
a = AµN µN−1...µ1

a − EµN ...µ1
a (E.32)

In order to obtain the complete current jµ1
(ρ) we have to contract the k-th term jµ1 µk...µ2

a (with interchanged
µ1 ↔ µk!) with ∂µ2 . . . ∂µk

ρa and then add all the terms. Interchanging µk and µ1 for the k-th equation a�ects
(because of the symmetries) only the term A

µk µk−1...µ1
a 7→ Aµ1 µk...µ2

a . We will sort the Aa-terms with respect
to the number of indices on Aa and the Ea-terms with respect to the number of derivatives on ρa:

ja
(ρ) =

N∑
k=2

(
k−2∑
i=0

−(−)k−i∂µ2 . . . ∂µ2+i−1ρ
a∂µ2+i . . . ∂µk

Aµk µk−1...µ1
a + ∂µ2 . . . ∂µk

ρaAµ1 µk...µ2
a

)
︸ ︷︷ ︸

≡t
µ1
(ρ,k)

+

−
N∑

k=1

∂µ2 . . . ∂µk
ρa

N−k∑
i=0

(−)i∂µk+1 . . . ∂µk+i
Eµk+i...µk+1µk...µ1

a (E.33)

The second line vanishes on-shell, but it remains to show that the �rst line tµ1
(ρ) ≡

∑N
k=2 t

µ1
(ρ) has trivially

vanishing divergence. The second term in the �rst line is written seperately (not in the sum over i), because
in contrast to the other terms it has the µ1 index at the �rst position (which is not symmetrized like the other
positions). This di�erence in treatment disappears in the divergence with contracted µ1. We use this fact to
show the trivial vanishing (without the use of equations of motion) of the divergence of for every single tµ1

(ρ,k):

∂µ1t
µ1
(ρ,k) =

=
k−1∑
i=0

(−)k−i+1∂µ1 . . . ∂µi+1ρ
a∂µi+2 . . . ∂µk

Aµk µk−1...µ1
a −

k−1∑
i=0

(−)k−i∂µ2 . . . ∂µ2+i−1ρ
a∂µ2+i . . . ∂µk

∂µ1A
µ1 µk...µ2
a

=
k−1∑
i=1

−(−)k−i+1∂µ1 . . . ∂µi
ρa∂µi+1 . . . ∂µk

Aµk µk−1...µ1
a −

k−1∑
i=1

(−)k−i∂µ1 . . . ∂µiρ
a∂µi+1 . . . ∂µk

Aµk µk−1...µ1
a +

−(−)k−i∂µ1 . . . ∂µk
ρaA(µk µk−1...µ1)

a︸ ︷︷ ︸
=0

−(−)kρa∂µ1 . . . ∂µk
A(µk µk−1...µ1)

a︸ ︷︷ ︸
=0

= 0 (E.34)

This completes the proof of (E.21) or of one direction of the proposition.
Now consider that we have a global transformation (constant parameter ρc) δ0(ρc)

φIall = ρa
cδaφ

I
all with Noether
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current jµ
(ρc)

= ρa
c j

µ
a , which itself vanishes on-shell

jµ
a =

N∑
k=0

λµIµ1...µk
a ∂µ1 . . . ∂µk

δS

δφIall
(E.35)

∂µj
µ
a = −δaφIall

δS

δφIall
(E.36)

If we plug (E.35) into (E.36) we already discover relations between the equations of motion, which look like
the Noether identities for local symmetries. Indeed, if jµ

a vanishes on-shell, also ρajµ
a vanishes on-shell, even

for local ρa. For consistent equations of motion (some which have solutions at all) certainly also its derivative
vanishes on-shell. The combination j0(ρ) ≡ ρajµ

a therefore corresponds to a symmetry transformation with a
local parameter, i.e. a gauge symmetry, although this current is in general not yet in the standard form of
a Noether current (where its divergence does not contain derivatives of δS

δφIall
, but only the plain equations of

motion):

∂µ(ρajµ
a ) = ∂µρ

a · jµ
a + ρa∂µj

µ
a = (E.37)

=
N∑

k=1

∂µρ
aλµIµ1...µk

a ∂µ1 . . . ∂µk

δS

δφIall
−
(
ρaδaφ

I
all − ∂µρ

aλµI
a

) δS

δφIall
(E.38)

In order to get a proper Noether current (where the righthand side does not contain any derivatives of the
equations of motion) we can use our insights from the proof of Noether's theorem, i.e. equations (E.8)-(E.12).
We learn that if we de�ne the whole current to be

jµ
(ρ) ≡ ρajµ

a −
N∑

k=1

k−1∑
i=0

(−)i∂µ1 . . . ∂µi∂νρ
aλνIµµ1...µk−1

a · ∂µi+1 . . . ∂µk−1

δS

δφIall
(E.39)

we get a proper Noether current with corresponding symmetry transformations

δ(ρ)φ
I
all ≡ ρaδaφ

I
all − ∂µρ

aλµI
a +

N∑
k=1

(−)k+1∂µ1 . . . ∂µk

(
∂νρ

aλνI µ1...µk
a

)
(E.40)

The transformation (E.40) is a local symmetry transformation which completes the proof of the proposition. �

Theorem 3 Every on-shell vanishing symmetry transformation is a trivial gauge transformation as de�ned
below:

δφI
all

on−shell= 0, δS = 0 ⇒ δφI
all

=
∫
ddσ AIJ (σ, σ′)

δS

δφI
all

(σ′)
withAIJ (σ, σ′) = −AJI(σ′, σ) (E.41)

See in [82] (theorem 17.3 on page 414 or theorem 3.1 on page 17) for a proof of this theorem. See [82, p.69]
for a discussion of trivial gauge transformations.

E.3 Shortcut to calculate the Noether current

There is a nice shortcut to calculate the current: multiply both sides of (E.7) with some local parameter η(σ),
integrate over the worldvolume Σ and perform a partial integration to arrive at∫

Σ

dnσ ∂µη · jµ
(ρ) +

∫
∂Σ

(. . .) = δ(η,ρ)S (E.42)

where δ(η,ρ)φ
I
all ≡ η · δ(ρ)φ

I
all. One thus obtains the current by multiplying the variation with an independent

local parameter η and reading o� the coe�cient of ∂µη. This trick is better known for global symmetries4

calculating just jµ
a .

4If one is just interested in jµ
a one can consider a variation not with the full variation δ(ρ)φ

I
all, but only with its derivative free

part δ0
(ρ)

φIall ≡ ρaδaφIall (see (E.2)) and allow local ρa even in the case of a global symmetry. Multiplying both sides of (E.15) with

ρa we get ρa∂µjµ
a = −δ0

(ρ)
φIall

δS
δφI

all

. Integrating over Σ and partially integrating �nally yields

δ0
(ρ)S =

Z
Σ

dnσ ∂µρa jµ
a +

Z
∂Σ

(. . .)

The (conserved) Noether current thus can be read o� from the derivative-free variation of the action as the coe�cient of ∂µρa. We
could then proceed with a variation δ1

(ρ)
φIall ≡ ∂µρaδµ

a φIall to derive jµµ1
a from the coe�cient of ∂µ∂µ1ρa, and so on. All this is

done at the same time in (E.42). �



Appendix F

Torsion, Curvature H-�eld and their
Bianchi identities

In the following we are frequently making use of the (super)vielbein and its inverse, i.e. a local frame in
(co)tangent space di�erent from the coordinate basis. We denote it via

EA ≡ dxMEM
A (F.1)

EA
KEK

B ≡ δA
B (F.2)

EA ≡ EA
K∂K (F.3)

The one forms EA are chosen in such a way that they obey nice properties, i.e. in a Riemannian space it is natural
to choose an orthonormal frame, while if no metric is present, it can be replaced by other requirements like e.g.
invariance under supersymmetry for �at superspace. The structure group is then the set of transformations of
the vielbein which do not change these properties.

To be a useful concept, the frame should be invariant under the covariant derivative.

0 != ∇MEN
A ≡ ∂MEN

A + ΩMB
AEN

B − ΓMN
KEK

A (F.4)

This relates the spacetime connection to the structure group connection.

F.1 De�nition of torsion and curvature and H-�eld

F.1.1 Torsion

There are at least three ways to de�ne the torsion. Let us start with the component based one and derive
from this the more geometric (coordinate independent) de�nintion. So at �rst we de�ne the (super) torsion
components simply as the antisymmetric part of the connection coe�cients

TMN
K ≡ Γ[MN ]

K (F.5)

The structure group connection ΩMA
B is given by demanding that the covariant derivative of the vielbein

vanishes

0 != ∇MEN
A = ∂MEN

A − ΓMN
KEK

A + ΩMB
AEN

B (F.6)

Antisymmetrizing in (M,N) and comparing with (F.5) yields1

TA = dEA − EB ∧ ΩB
A (F.7)

This can be used as an alternative de�nition to (F.5). Consider now the commutator of two covariant derivatives
on a scalar (super) �eld (with ∇Kϕ = ∂Kϕ)

[∇M ,∇N ]ϕ = 2∇[M∂N ]ϕ = (F.8)

= −2Γ[MN ]
K∂Kϕ (F.9)

1Note that in the present text form components are de�ned as e.g. T A = TMN
AdxM ∧dxN with no (!) factor 1

2
in front which

corresponds to a de�nition of the wedge product as dxMdxN ≡ dxM ∧ dxN ≡ dx[M ⊗ dxN ] ≡ 1
2

`
dxM ⊗ dxN − dxM ⊗ dxN

´
. You

will thus usually �nd in literature a factor of 2 on the righthand side of (F.5) and a factor 1
2
in (F.10). To go from one convention

to the other, simply replace TMN
K by 2TMN

K in all equations in component form. (For a p-form the factor is of course p!).
Coordinate independent equations like (F.7) remain untouched because of the compensating rede�nition of the wedge product and
the resulting rede�nition of the exterior product. �
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or simply

∇[M∇N ]ϕ = −TMN
K∇Kϕ (F.10)

which is yet an alternative and equivalent de�nition of the torsion.

F.1.2 Curvature

For the curvature, let us start with the de�nition via the commutator of covariant derivatives acting on vector
�elds

∇[M∇N ]v
A = −TMN

K∇Kv
A +RMNB

AvB (F.11)

This is not only a de�nition, but also a proposition that the commutator takes this form. Let us check this and
by doing this get a de�nition of the curvature in component form

∇[M∇N ]v
A =

= ∂[M (∂N ]v
A + ΩN ]B

AvB) + Ω[M |C
A(∂|N ]v

C + Ω|N ]B
CvB)− Γ[MN ]

K(∂Kv
A + ΩKB

AvB) = (F.12)

= ∂[MΩN ]B
AvB + Ω[N |B

A∂|M ]v
B + Ω[M |C

A(∂|N ]v
C + Ω|N ]B

CvB)− T[MN ]
K∇Kv

A = (F.13)

= −T[MN ]
K∇Kv

A +
(
∂[MΩN ]B

A + Ω[M |C
AΩ|N ]B

C
)
vB (F.14)

We can thus read o�

RMNB
A = ∂[MΩN ]B

A − Ω[M |B
CΩ|N ]C

A (F.15)

which in form language reads

RA
B = dΩA

B − ΩA
C ∧ ΩC

A (F.16)

We �nally can rewrite this in terms of Γ by using (F.6) in the simpli�ed form

ΩMB
A = ΓMB

A − EB
R∂MER

A (F.17)

⇒

RMNB
A = ∂[M |

(
Γ|N ]B

A − EB
R∂|N ]ER

A
)
−
(
Γ[M |B

C − EB
R∂[M |ER

C
) (

Γ|N ]C
A − EC

S∂|N ]ES
A
)

(F.18)

RMNK
L = ∂[M |Γ|N ]K

L + EK
B∂[M |EB

RΓ|N ]R
L + EA

L∂[M |ES
AΓ|N ]K

S − EK
BEA

L∂[M |EB
R∂|N ]ER

A +

−
(
Γ[M |K

C − ∂[M |EK
C
) (

Γ|N ]C
L − EC

S∂|N ]ES
AEA

L
)

= (F.19)

= ∂[M |Γ|N ]K
L − Γ[M |K

P Γ|N ]P
L (F.20)

RMNK
L = ∂[M |Γ|N ]K

L − Γ[M |K
P Γ|N ]P

L (F.21)

The same expression can be derived (even simpler) by acting with the commutator of covariant deriavtives on
a vector vM with a curved index instead of the �at index.

F.1.3 Summary, including H-�eld-strength

Let us add the �eld strength H of the antisymmetric tensor �eld B to our considerations. We then have

H ≡ dB (F.22)

TA ≡ dEA − EC ∧ ΩC
A (F.23)

RA
B ≡ dΩA

B − ΩA
C ∧ ΩC

B (F.24)

In coordinate basis ('curved indices') we have

HMNK ≡ ∂[MBNK] (F.25)

TMN
K ≡ Γ[MN ]

K (F.26)

RMNK
L ≡ ∂[M |Γ|N ]K

L − Γ[M |K
CΓ|N ]C

L (F.27)

The commutator of covariant derivatives on an arbitrary rank (p,q)-tensor �elds (as a generalization of (F.10)
and (F.11)) reads

∇[M∇N ]t
A1...Aq

B1...Bp
=

= −TMN
K∇Kt

A1...Aq

B1...Bp
+

q∑
i=1

RMNC
Ait

A1...Ai−1CAi+1...Aq

B1...Bp
−

q∑
i=1

RMNBi

Ct
A1...Aq

B1...Bi−1CBi+1...Bp
(F.28)
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Using the de�nition of the torsion, exterior derivatives of p-forms η(p) can be rewritten with covariant derivatives,
thus allowing to switch to �at coordinates

∂[M1ηM2...Mp+1] = ∇[M1ηM2...Mp+1] + pT[M1M2|
KηK|M3...Mp+1] (F.29)

In particular
H = ∂MBMM = ∇ABAA + 2TAA

CBCA (F.30)

F.2 The Bianchi identities

Bianchi identities all base on the nilpotency of the exterior derivative d2 = 0. The objects H, TA and RA
B are

all de�ned using the exterior derivative. Acting a second time with the exterior derivative (using d2 = 0) yields
consitency conditions (the Bianchi identities) which have to be ful�lled by any valid H, TAor RA

B . While these
identities are trivially ful�lled, if the original de�nitions for these objects are used, the imposure of constraints
on them makes a check necessary.2

F.2.1 BI for HABC

The most simple Bianchi identity is the one of the H-�eld H = dB (F.22). It just reads

dH != 0 (F.31)

The supergravity constraints onH that we will obtain, however, are all in �at coordinates, so that it is convenient
to rewrite the Bianchi identity (using (F.29)) with covariant derivatives and then contract with vielbeins in order
to turn the curved indices into �at ones:

∇AHAAA
!= −3TAA

CHCAA (F.32)

Regarding the torsion as a vector valued 2-form and using the generalized de�nition of the interior product, this
can also be written as

∇H ≡ dH − ıTH
!= −ıTH (F.33)

F.2.2 BI for TA

Remember TA = dEA − EC ∧ ΩC
A (F.7). Acting on this equation with the exterior derivative yields

dTA = −dEC ∧ ΩC
A + EC ∧ dΩC

A = (F.34)
(F.16)
= −TC ∧ ΩC

A − ED ∧ ΩD
C ∧ ΩC

A + EC ∧RC
A + EC ∧ ΩC

D ∧ ΩD
A = (F.35)

= −TC ∧ ΩC
A + EC ∧RC

A (F.36)

The Bianchi identity for the torsion (sometimes also called the �rst Bianchi identity) thus reads

dTA + TC ∧ ΩC
A != EC ∧RC

A (F.37)

Again we want to rewrite it in terms of the covariant derivative. The �exterior� covariant derivative of T reads

∇MTMM
A = ∂MTMM

A − 2TMM
KTKM

A + ΩMB
ATMM

B (F.38)

∇TA = dTA + TB ∧ ΩB
A − ıTTA (F.39)

The above Bianchi-identity can thus be rewritten as

∇ATAA
D + 2TAA

CTCA
D != RAAA

D (F.40)

∇TD + ıTT
D != RD ≡ EC ∧RC

D (F.41)

2Let us look at an example to make this point clear: one of the supergravity constraints that we get is Hαβγ = 0. As H was

de�ned via H = dB in the beginning, this is actually a di�erential equation for B of the form Eα
MEβ

NEγ
K
`
∂[MBNK]

´
= 0. One

could try to calculate the general solution for this equation (which might be quite hard) and then calculate the H-�eld via H = dB
which will of course trivially obey the Bianchi identities. However, one prefers not to solve for B, but to calculate additional
constraints on H using the Bianchi identities. The idea is to get the full information about H without solving for B. The same
story holds for the other objects. �
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F.2.3 BI for RA
B

Remember RA
B = dΩA

B − ΩA
C ∧ ΩC

B (F.16). Acting on it with the exterior derivative yields

dRA
B = −dΩA

C ∧ ΩC
B + ΩA

C ∧ dΩC
B = (F.42)

= −RA
C ∧ ΩC

B − ΩA
D ∧ ΩD

C ∧ ΩC
B + ΩA

C ∧RC
B + ΩA

C ∧ ΩC
D ∧ ΩD

B = (F.43)

= −RA
C ∧ ΩC

B + ΩA
C ∧RC

B (F.44)

The Bianchi identity for the curvature (also called second Bianchi identity) thus reads

dRA
B +RA

C ∧ ΩC
B − ΩA

C ∧RC
B︸ ︷︷ ︸

[R,Ω]AC

!= 0 (F.45)

Again we want to rewrite this in terms of covariant derivatives and �at indices and therefore consider the
antisymmetrized covariant derivative

∇MRMMA
B = ∂MRMMA

B − 2TMM
KRKMA

B − ΩMA
CRMMC

B + ΩMC
BRMMA

C (F.46)

∇RA
B = dRA

B − ΩA
C ∧RC

B +RA
C ∧ ΩC

B − ıTRA
B (F.47)

We thus can rewrite the above Bianchi-identity as

∇MRMMA
B + 2TMM

KRKMA
B = 0 (F.48)

∇RA
B + ıTRA

B = 0 (F.49)

If the structure group is restricted to e.g. Lorentz plus scale transformations (see section F.4 on the next page),
we get

RMMa
b = F (D)δb

a +R
(L)
MMa

b (F.50)

and RMMα
β =

1
2
F (D)δα

β +
1
4
R

(L)
MMabγ

ab
α

β (F.51)

The above Bianchi identity then has to hold seperately for Lorentz and Dilatation part. In particular we have

∇MF
(D)
MM + 2TMM

KF
(D)
KM = 0 (F.52)

F.3 Shifting the connection

Some expressions might look simpler if one changes the connection ΩMA
B to some new connection Ω̃MA

B . As
usual, the di�erence

∆MA
B ≡ Ω̃MA

B − ΩMA
B (F.53)

transforms as a tensor (the inhomogenous term in the transformation cancels). The new torsion looks as follows:

T̃A = dEA − EC ∧ Ω̃C
A = (F.54)

= TA − EC ∧∆C
A = (F.55)

Or simply

T̃MM
A = TMM

A + ∆MM
A (F.56)
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The expression for the new curvature is a bit more involved and reads3

R̂A
B = dΩ̃A

B − Ω̃A
C ∧ Ω̃C

B = (F.57)

= RA
B + d∆A

B −∆A
C ∧ ΩC

B − ΩA
C ∧∆C

B −∆A
C ∧∆C

B = (F.58)

= RA
B + ∇∆A

B + TK∆KA
B −∆A

C ∧∆C
B (F.59)

R̃MMA
B = RMMA

B +∇M∆MA
B + TMM

K∆KA
B −∆MA

C∆MC
B (F.60)

Proposition 5 The Bianchi identities for TA and RA
B on the one hand and T̃A and R̃A

B on the other hand
are equivalent if the objects are related via (F.56) and (F.60).

Proof Remember the �rst Bianchi identity (F.40) for which we temporarily introduce the symbol J :

JAAA
D ≡ ∇ATAA

D + 2TAA
CTCA

D −RAAA
D != 0 (F.61)

The transformed J reads

J̃AAA
D (F.56)(F.60)(F.61)

= JAAA
D +∇A∆AA

D + ∆AC
D(TAA

C + ∆AA
C)− 2∆AA

C(TCA
D + ∆[CA]

D) +

+2∆AA
C(TCA

D + ∆[CA]
D) + 2TAA

C∆[CA]
D +

−∇A∆AA
D − TAA

C∆CA
D + ∆AA

C∆AC
D = (F.62)

= JAAA
D (F.63)

This proves the proposition for the �rst Bianchi identity. The proof for the second is left to the reader as an
exercise ;-) �

F.4 Restricted structure group

As we discussed earlier, the (in�nitesimal) local structure group transformations in the type II supergravity con-
text are block-diagonal ΛA

B = diag (Λa
b,Λα

β,Λα̂
β̂) and are in addition restricted to Lorentz transformations

and scale transformations in order to leave invariant the supersymmetry structure constants γc
αβ:

Λa
b = Λ(D)δb

a + Λ(L)
a1

a2 (F.64)

Λα
β =

1
2
Λ(D)δα

β +
1
4
Λ(L)

a1a2
γa1a2

α
β (F.65)

Λα̂
β̂ =

1
2
Λ(D)δα̂

β̂ +
1
4
Λ(L)

a1a2
γa1a2

α̂
β̂ (F.66)

Also the connection is a sum of a scaling connection and a Lorentz connection which makes perfect sense as it
is supposed to be a Lie algebra valued one form:

ΩMa
b = Ω(D)

M δb
a + Ω(L)

Ma1

a2 (F.67)

ΩMα
β =

1
2
Ω(D)

M δα
β +

1
4
Ω(L)

M a1a2
γa1a2

α
β (F.68)

ΩMα̂
β̂ =

1
2
Ω(D)

M δα̂
β̂ +

1
4
Ω(L)

M a1a2
γa1a2

α̂
β̂ (F.69)

with
Ω(L)

M a1a2
≡ Ω(L)

Ma1

cηca2 = −Ω(L)
M a2a1

(F.70)

3Of similar interest is a change in the de�nition of the vielbein. Note that local structure group transformations of the vielbein
which go along with a structure group transformation of torsion and curvature also include a corresponding transformation of
the connection. Instead we want to look at an independent transformation of the vielbein and consider general local Gl(n)
transformations.

ẼA = EBJB
A

with ∇̃M ẼA = 0. For the new torsion, we get

T̃ A = dẼA − ẼC ∧ ΩC
A =

= dEBJB
A − EB ∧ dJB

A − EBJB
C ∧ ΩC

A =

= T BJB
A − EB ∧∇JB

A

or

T̃MM
B = TMM

BJB
A +∇M JM

A

The curvature remains untouched

R̃A
B = RA

B

Alternatively one might be interested in shifts of the vielbein (resulting in T̃ = T +d(∆E)A−(∆E)C∧ΩC
A) or linear transformations

of the connection of the form Ω̃ = JΩJ−1 �
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F.4.1 Curvature

It is well known that the curvature is a Lie algebra valued two form. Let us quickly recall the reason. The
curvature is de�ned to be

RA
B = dΩA

B − ΩA
C ∧ ΩC

B (F.71)

If ΩA
B is Lie algebra valued, dΩA

B is still Lie algebra valued, as the exterior derivative acts only on the
coe�cient functions and not on the Lie algebra generator. In addition, the term ΩA

C ∧ΩC
B can be written as

1
2 [Ω,Ω]AB , and the commutator of two Lie algebra elements is again a Lie algebra element.

Let us now see how the structure group reduces into irreducible parts or in particular how the curvature
decays into the Lorentz part and the scaling part. First of all, the result is clearly block diagonal if the connection
is of this type

RA
B = diag (Ra

b, Rα
β, Rα̂

β̂) (F.72)

such that the curvature de�nition (F.71) decays into the three blocks

Ra
b = dΩa

b − Ωa
c ∧ Ωc

b (F.73)

Rα
β = dΩα

β − Ωα
γ ∧ Ωγ

β (F.74)

Rα̂
β̂ = dΩα̂

β̂ − Ωα̂
γ̂ ∧ Ωγ̂

β̂ (F.75)

For the bosonic part of the curvature the seperation of scaling part and Lorentz part is quite obvious

Ra
b = d

(
Ω(D)δb

a + Ω(L)
a

b
)
−
(
Ω(D)δc

a + Ω(L)
a

c
)
∧
(
Ω(D)δb

c + Ω(L)
c

b
)

= (F.76)

= dΩ(D)︸ ︷︷ ︸
≡F (D)

δb
a +

(
dΩ(L)

a
b − Ω(L)

a
c ∧ Ω(L)

c
b
)

︸ ︷︷ ︸
R

(L)
a

b

(F.77)

Where the Lorentz curvature R(L)
a

b is antisymmetric if we pull down the index b with the Minkowski metric.
We can thus extract from the complete curvature the scale part and the Lorentz part (here for 10 spacetime
dimensions)

F (D) =
1
10
Ra

a (F.78)

For the fermionic parts we get similarly (δαα = −16 in our conventions)4

Rα
β =

1
2
F (D)δα

β +
1
4
R(L)

a1
bηba2γ

a1a2
α

β (F.79)

F (D) = −1
8
Rα

α (F.80)

and

Rα̂
β̂ =

1
2
F (D)δα̂

β̂ +
1
4
R(L)

a1
bηba2γ

a1a2
α̂

β̂ (F.81)

F (D) = −1
8
Rα̂

α̂ (F.82)

4In order to see how the curvature decays into Lorentz and scale part, let us �rst consider the building blocks seperately:

∂MΩMα
β =

1

2
∂MΩM δα

β +
1

4
∂MΩMa1a2γa1a2

α
β

ΩMα
γΩMγ

β =

„
1

2
ΩM δα

γ +
1

4
ΩMa1a2γa1a2

α
γ

«„
1

2
ΩM δγ

β +
1

4
ΩMb1b2γb1b2

γ
β

«
=

=
1

16
ΩMa1a2ΩMb1b2| {z }

antisym in (a1a2)↔(b1b2)

γa1a2
α

γγb1b2
γ

β =

(D.74)
=

1

4
ΩMa1cηcdΩMda2γa1a2

α
β

The curvature thus takes the form

⇒ RMMα
β =

1

2
∂MΩ

(Dil)
M δα

β +
1

4

“
∂MΩ

(Lor)
Ma1a2

− Ω
(Lor)
Ma1cηcdΩ

(Lor)
Mda2

”
γa1a2

α
β ≡

≡
1

2
F (Dil)δα

β +
1

4
R(Lor)

a1
bηba2γa1a2

α
β �
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F.4.2 Alternative version of the �rst Bianchi identity

The ordinary Riemannian curvature (without torsion) obeys Rabcd = −Rbacd = −Rabdc, R[abc]d = 0 and
Rabcd = Rcdab (The last is a consequence of the others). For the bosonic components of our curvature we have
(using Gab = e2Φηab with ∇MGab = 2(∂MΦ− Ω(Dil)

M )Gab to pull down bosonic indices)

Rabcd = −Rbacd, R(ab)cd = 0 (F.83)

Rabcd = −Rabdc + 2F (Dil)
ab Gcd, Rab(cd) = F

(Dil)
ab Gcd (F.84)

R[abc]d = ∇[aTbc]|d − 2(∂[aΦ− Ω(Dil)
[a )Tbc|d + 2T[ab|

ETE|c]|d (F.85)

Let us write down the antisymmetrization of the indices in R[abc]d explicitely and several times, with permuted
indices:

R[abc]d = Rabcd +Rcabd +Rbcad (F.86)

R[dab]c = Rdabc +Rbdac +Rabdc (F.87)

R[cda]b = Rcdab +Racdb +Rdacb (F.88)

R[bcd]a = Rbcda +Rdbca +Rcdba (F.89)

From this we learn, how we can express the di�erence Rabcd −Rcdab (which vanishes in the Riemannian case),
in terms of antisymmetrized and symmetrized terms. Consider the sum (F.86)-(F.87)-(F.88)+(F.89):

R[abc]d −R[dab]c −R[cda]b +R[bcd]a =
= 2Rabcd − 2Rab(cd) − 2Rcdab + 2Rcd(ab) + 2R(ca)bd − 2Rac(db) + 2Rbc(da) − 2Rda(bc) − 2Rbd(ac) + 2R(db)ca =
= 2 (Rabcd −Rcdab) + 2 (−FabGcd + FcdGab − FacGdb + FbcGda − FdaGbc − FbdGac) (F.90)

The identity corresponding to Rabcd = Rcdab in the Riemannian case thus reads

2 (Rabcd −Rcdab) = (F.91)

= 2 (FabGcd − FcdGab + FacGdb − FbcGda + FdaGbc + FbdGac) +R[abc]d −R[dab]c −R[cda]b +R[bcd]a

with R[abc]d = ∇[aTbc]|d − 2(∂[aΦ− Ω(Dil)
[a )Tbc|d + 2T[ab|

ETE|c]|d.

F.4.3 Scaling-curvature

A covariant way to calculate the scaling �eld strength F
(D)
MN is as follows: Consider the covariant derivative

∇MΦ = ∂MΦ− Ω(D)
M of a compensator �eld Φ (a �eld transforming with a shift under scaling transformations

δΦ = −Λ(D)). We can calculate F (D)
MN via the ususal commutator of covariant derivatives5

∇[M∇N ]Φ = −TMN
K∇KΦ −F (D)

MN︸ ︷︷ ︸
R

“
F

(D)
MN

”
Φ

(F.92)

Note that the curvature (or �eld strength) appears �naked� in di�erence to any action on tensor �elds. The
above equation will be particularly useful when we have constraints on ∇MΦ which then determine the scaling
curvature via

F
(D)
MN = −∇[M∇N ]Φ− TMN

K∇KΦ (F.93)

F.5 Dragon's theorem

In the following we will need the commutator of two covariant derivatives acting on the torsion with afterwards
all lower indices antisymmetrized. Due to (F.28), it is given by6

[∇M ,∇M ]TMM
A = −TMM

K∇KTMM
A − 2RMMM

KTKM
A +RMMB

ATMM
B (F.94)

5Let us check explicitely the validity of (F.92):

∇[M∇N ]Φ = ∂[M∇N ]Φ− Γ[MN ]
K∇KΦ =

= ∂[M (∂N ]Φ− Ω
(D)
N ]

)− T[MN ]
K∇KΦ =

= −F
(D)
MN − T[MN ]

K∇KΦ �

6Of course (F.28) implies a more general relation than (F.94), namely one of the form [∇M ,∇N ]TKL
A = . . .. However, the

lower indices are intentionally antisymmetrized in (F.94), in order to get the weakest possible condition that we need to proof the
theorem later on. You'll see... �
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and can, using the �rst Bianchi identity (F.40), be rewritten as

RMMB
ATMM

B =
= [∇M ,∇M ]TMM

A + TMM
K∇KTMM

A + 2
(
∇MTMM

K + 2TMM
LTLM

K
)
TKM

A (F.95)

It is convenient to introduce a new symbol for the terms of the curvature Bianchi identity

IA
B ≡ ICCCA

B ≡ ∇CRCCA
B + 2TCC

DRDCA
B (F.96)

so that the Bianchi identity (F.48) simply reads IAB != 0. Then the following theorem holds (originally due to
Dragon in [13]; slightly modi�ed in order to include dilatations):

Theorem 4 (Dragon) Given a block diagonal structure group consisting of Lorentz transformation and dilata-
tion in a type II superspace, the torsion Bianchi identity (F.40) together with the algebra (F.94) or equivalently
(F.95) imply the curvature Bianchi identities (F.48) IA

B = 0 up to one remaining equation for the scale part,

namely I
(D)
γγ̂c

!= 0 or equivalently

∇[γF
(D)
γ̂c] + 2T[γγ̂|

DF
(D)
D|c]

!= 0 (F.97)

where F
(D)
MN is the �eld strength of the scale connection Ω(D)

M .

It is natural to proof this theorem in two steps, the �rst being useful enough to write it as a seperate
proposition. Let us include one more index into the antisymmetrization of IAB and de�ne

IB ≡ ICCCC
B ≡ ∇CRCCC

B + 2TCC
DRDCC

B (F.98)

so that we can make direct use of the torsion-Bianchi-identity (F.40) due to the appearance of RCCC
B . Clearly

IB != 0 is a consequence of IAB != 0 and is in general a weaker condition. The following proposition treats this
weaker condition:

Proposition 6 In any dimension and for any structure group, the equation IB != 0 (with IB given by (F.98))
is implied by the �rst Bianchi identity (F.40) and the algebra (F.94) or equivalently (F.95).

Proof of the proposition:

IB = ∇MRMMM
B + 2TMM

KRKMM
B = (F.99)

(F.40)
= ∇M

(
∇MTMM

B + 2TMM
CTCM

B
)

+ 2TMM
KRKMM

B = (F.100)
(F.94)

= −TMM
C∇CTMM

B − 2RMMM
CTCM

B +RMMC
BTMM

C + (F.101)

+2∇MTMM
CTCM

B + 2TMM
C∇MTCM

B + 2TMM
KRKMM

B = (F.102)

= 3TMM
C
(
R[CMM ]

B −∇[CTMM ]
B
)
− 2

(
RMMM

C −∇MTMM
C
)
TCM

B = (F.103)
(F.40)

= 6TMM
CT[CM |

DTD|M ]
B − 4TMM

DTDM
CTCM

B = (F.104)

= 2TMM
CTMM

DTDC
B = 0 (F.105)

Indeed IB = 0 is a consequence of the torsion Bianchi identity (F.40) RMMM
B = ∇MTMM

B +2TMM
CTCM

B

and (F.94). �

Proof of the theorem: Let us now show that in the case of the type II superspace the antisymmetrized
version already implies (up to one term) the complete one. Remember the object ICCCA

B ≡ ∇CRCCA
B +

2TCC
DRDMA

B introduced in (F.96). It is Lie algebra valued and thus has (for our block diagonal structure
group) no mixed components in A,B:

ICCCA
B = diag (ICCCa

b, ICCCα
β, ICCCα̂

β̂) (F.106)

In addition it splits into dilatation and Lorentz part

ICCCA
B = I

(D)
CCCδA

B + I
(L)
CCCA

B (F.107)

with the latter term being antisymmetric in A,B for bosonic a, b. The complete object is �xed by determing7

ICCCa
b. Given the equation ICCCC

B = 0, we want to show that ICCCA
B = 0. Consider �rst B = b:

0 = 4I[CCCa]
b = ICCCa

b (F.108)

7The following proof is based on a block-diagonal connection of the form ΩMA
B = diag (ΩMa

b, ΩMα
β, ΩMα̂

β̂) where the three

entries are related by ∇Mγa
αβ = ∇Mγa

α̂β̂
= 0 which in turn is equivalent to ΩMα

β = 1
4
ΩMa

bγa
b α

β and ΩMα̂
β̂ = 1

4
ΩMa

bγa
b α̂

β̂.

The Bianchi identity for its torsion T A = (T a, T α, T α̂) is equivalent to the one for the Torsion T A = (Ť a, T α, T̂ α̂) when information
about the connection-di�erence ∆MA

B is available. �
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Similarly, for B = β:

0 = 4I[γ̂γ̂γ̂α]
β = Iγ̂γ̂γ̂α

β = 0 (F.109)

0 = 4I[cγ̂γ̂α]
β = Icγ̂γ̂α

β = 0 (F.110)

0 = 4Iccγ̂α]
β = Iccγ̂α

β = 0 (F.111)

0 = 4Icccα]
β = Icccα

β = 0 (F.112)

This implies

Icγ̂γ̂a
b = 0 (F.113)

Iccγ̂a
b = 0 (F.114)

Iccca
b = 0 (F.115)

Equivalently we get from the equations for B = β̂:

Icγγa
b = 0 (F.116)

Iccγa
b = 0 (F.117)

There is thus only one component of Iγγ̂ca
b left to determine. For this we get

0 = Iγγ̂[ca]
b = (F.118)

= I
(D)
γγ̂[cδ

b
a] + I

(L)
γγ̂[ca]

b (F.119)

Taking the trace in (a,b) yields

0 = 9I(D)
γγ̂c + I

(L)
γγ̂ac

a (F.120)

In order that they vanish independently, it is thus enough to check only one equation, namely I(D)
γγ̂c

!= 0 which
reads explicitely

∇[γF
(D)
γ̂c] + 2T[γγ̂|

DF
(D)
D|c]

!= 0 (F.121)



Appendix G

About the Connection

Let us refer to both, spacetime and structure group connection, simply as �the connection�. Properties of the
one are translated to the other via the condition of covariantly constant vielbeins ∇MEN

A = 0:

ΓMN
A = ∂MEN

A + ΩMN
A (G.1)

We will use symbols without any decoration (like hats or whatever) to describe a general connection and objects
derived from it. In our application to the Berkovits string, however, we use the undecorated symbol ΩMα

β

for the leftmoving connection only, which hopefully does not lead to confusions. To be more explicit, in the
application we work with several di�erent connections which are all blockdiagonal. In the action there appear
only ΩMα

β and Ω̂Mα̂
β̂. The spinorial ΩMα

β induces via ∇Mγc
αβ a connection ΩMa

b for the bosonic subspace

which in turn induces a connection ΩMα̂
β̂ via ∇Mγc

α̂β̂
= 0. The collection of those will be denoted by ΩMA

B

(left-mover connection). The same can be done for Ω̂Mα̂
β̂ leading to a connection Ω̂MA

B which we call the
right-mover connection.

ΩMA
B =

 ΩMa
b 0 0

0 ΩMα
β 0

0 0 ΩMα̂
β̂

 , Ω̂MA
B =

 Ω̂Ma
b 0 0

0 Ω̂Mα
β 0

0 0 Ω̂Mα̂
β̂

 (G.2)

The supergravity constraints are derived from the Berkovits string using a mixed connection

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

 (G.3)

where Ω̌Ma
b is an a priori independent connection for the bosonic part which is only at some parts of the

calculation set to either the right or the left mover connection. In order to have covariant constant structure
constants (γc

αβ, γ
c
α̂β̂

) the latter connection is inadequate and we need to use either one of the �rst two or s.th.
inbetween, an average connection, which we denote by

Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)

(G.4)

Please note again that the considerations in the following sections are for a general connection and not speci�c
to the leftmoving one. In particular the block diagonality and also ∇Mγc

αβ = ∇Mγc
α̂β̂

= 0 are only used if this
is explicitely mentioned.

G.1 Connection in terms of torsion and vielbein (or metric)

A given torsion and vielbein do not determine yet the connection completely. It can be determined by having
additional structures (like metric or some group structure constants) that one wants to be covariantly constant.
In the case where a metric is present, the connection is uniquely determined by the torsion and the (non)metricity
of the metric. Remember the form of the torsion:

TA = dEA − EC ∧ ΩC
A (G.5)

TMM
A = ∂MEM

A + ΩMM
A (G.6)

149
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Assume that there is some given symmetric tensor �eld GAB (call it metric, although it might be degenerate).
In �at indices, (non)metricity (metricity for MABC = 0) reads

MABC ≡ ∇AGBC = (G.7)

= EA
M
(
∂MGBC − 2ΩM(B|

DGD|C)

)
= (G.8)

≡ EA
M
(
∂MGBC − 2ΩM(B|C)

)
(G.9)

Here we used GAB to pull down indices, although there might be no inverse to pull indices up. Nonmetricity
is thus part of the symmetric part (in the last two indices) of ΩMB|C only. Turning to �at indices and pulling
down one index with GAB in (G.6) and solving (G.9) for the connection term yields

ΩA(B|C) =
1
2
(
EA

M∂MGBC −MABC

)
(G.10)

Ω[AB]|C = TAB|C − EA
MEB

N∂[MEN ]
DGDC︸ ︷︷ ︸

(dED)ABGDC

(G.11)

From those two equations we can derive the ΩAB|C without any symmetrization. To this end, write down the
antisymmetrized connection three times with permuted indices

ΩAB|C − ΩBA|C = 2Ω[AB]|C (G.12)

ΩBC|A − ΩCB|A = 2Ω[BC]|A (G.13)

ΩCA|B − ΩAC|B = 2Ω[CA]|B (G.14)

Note that

ΩAB|C = −ΩAC|B + 2ΩA(B|C) (G.15)

and consider 1
2 ((G.12) + (G.14)− (G.13)):

ΩAB|C − ΩA(C|B) + ΩC(B|A) − ΩB(C|A) = Ω[AB]|C + Ω[CA]|B − Ω[BC]|A (G.16)

or
ΩAB|C = Ω[AB]|C + Ω[CA]|B − Ω[BC]|A + ΩA(C|B) + ΩB(C|A) − ΩC(B|A) (G.17)

with ΩAB|C ≡ EA
MΩMB

DGDC . Now one can plug in (G.10) and (G.11), in order to get the relation to non-
metricity and torsion. For our purpose it is, however, more convenient to use only the torsion (G.11) and leave
ΩA(B|C) instead of replacing it by nonmetricity.

ΩAB|C = TAB|C + TCA|B − TBC|A − (dED)ABGDC − (dED)CAGDB + (dED)BCGDA +
+ΩA(C|B) + ΩB(C|A) − ΩC(B|A) (G.18)

Some readers might be more familiar with the derivation in curved indices (de�ning ΓMN |K ≡ ΓMN
LGLK):

Γ[MN ]|K = TMN |K (G.19)

ΓK(M |N) =
1
2
(
∂KGMN −∇KGMN︸ ︷︷ ︸

≡MKMN

)
(G.20)

Equation (G.17) of course holds likewise for the spacetime connection

ΓMN |K = Γ[MN ]|K + Γ[KM ]|N − Γ[NK]|M + ΓM(N |K) + ΓN(K|M) − ΓK(M |N) (G.21)

This time we replace not only the terms antisymmetrized in the �rst two indices with the torsion (G.19) but
also the terms symmetrized in the last two indices with the (non)metricity (G.20):

ΓMN |K =
1
2

(∂MGNK + ∂NGKM − ∂KGMN ) + TMN |K + TKM |N − TNK|M −
1
2

(MMNK +MNKM −MKMN )

(G.22)
If the metric GMN is nondegenerate, one can raise the index and the connection is completely determined.

In ten-dimensional superspace, however, the situation is di�erent as we have a nondegenerate metric only in the
bosonic subspace.
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Consider �nally a second connection

Ω̃MA
B ≡ ΩMA

B + ∆MA
B (G.23)

Due to (G.1), we also have

Γ̃MK
L = ΓMK

L + ∆MK
L (G.24)

⇒ T̃MK
L = TMK

L + ∆[MK]
L (G.25)

The equations (G.17) and (G.21) certainly also hold for ∆:

∆AB|C = ∆[AB]|C + ∆[CA]|B −∆[BC]|A + ∆A(C|B) + ∆B(C|A) −∆C(B|A) (G.26)

The vielbein part of (G.18) drops out in the di�erence of two connections and we get with (G.25)1

∆AB|C = (T̃ − T )AB|C + (T̃ − T )CA|B − (T̃ − T )BC|A + ∆A(C|B) + ∆B(C|A) −∆C(B|A) (G.27)

G.2 Connection in Superspace

At least in the ten dimensional type II superspace, there is no natural nondegenerate superspace metric. Only
the bosonic part GMN can be inverted and the remaining undetermined connection coe�cients have to be
�xed by additional conditions. The expression (G.18) for the structure group connection in �at indices is more
appropriate than (G.22), because in �at indeces we have a clear split of the bosonic and fermionic subspace
of the tangent space and the only nonvanishing components of the metric GAB is the bosonic (and invertible)
metric Gab. The connection is from now on block diagonal of the form ΩMA

B = diag (ΩMa
b,Ωmα

β,Ωmα̂
β̂).

Equation (G.18) can thus be rewritten as

ΩAb|c = TAb|c + TcA|b − Tbc|A − (dEd)AbGdc − (dEd)cAGdb + (dEd)bcGdA + ΩAGcb + ΩbGcA − ΩcGbA (G.28)

or

Ωab|c = Tab|c + Tca|b − Tbc|a − (dEd)abGdc − (dEd)caGdb + (dEd)bcGda + ΩaGcb + ΩbGca − ΩcGba(G.29)

Ωαb|c = Tαb|c + Tcα|b − (dEd)αbGdc − (dEd)cαGdb + ΩαGcb (G.30)

Ωα̂b|c = Tα̂b|c + Tcα̂|b − (dEd)α̂bGdc − (dEd)cα̂Gdb + Ωα̂Gcb (G.31)

which determines ΩMa
b via

ΩMa
b = EM

CΩCa|dG
db with GacG

cb ≡ δb
a (G.32)

In order to determine the remaining components ΩMα
β and ΩMα̂

β̂, we have to give additional information
on what our properties we want our connection to have. In supergravity it is a reasonable demand that the
structure constants of the supersymmetry algebra, i.e. the gamma matrices, are covariantly constant:

∇Mγa
αβ

!= 0 (G.33)

∇Mγa
α̂β̂

!= 0 (G.34)

This does not only �x uniquely the form of ΩMα
β and ΩMα̂

β̂ in terms of ΩMa
b, but it also restricts the latter

to be the sum of a Lorentz connection and a scale (or dilatation) connection:2

ΩMα
β =

1
4
ΩMa

bγa
b α

β +
1
2
Ω(D)

M δα
β (G.35)

ΩMα̂
β̂ =

1
4
ΩMa

bγa
b α̂

β̂ +
1
2
Ω(D)

M δα̂
β̂ (G.36)

1Some of our supergravity constraints will determine ∆[ab]|c = −3Habc, ∆[αb]|c = −Tαb|c, ∆[α̂b]|c = T̂α̂b|c, ∆a(b|c) = 0,

∆α(b|c) = (∂αΦ− Ωα)Gbc and ∆α̂(b|c) = (Ω̂α̂ − ∂α̂Φ)Gbc, so that the di�erence tensor reads

∆ab|c = −3Habc (= −2Tab|c = 2T̂ab|c)

∆αb|c = −2Tα[b|c] + (∂αΦ− Ωα)Gbc = −2Tαb|c

∆α̂b|c = 2T̂α̂[b|c] + (Ω̂α̂ − ∂α̂Φ)Gbc = 2T̂α̂b|c �

2Let us give at this point only a short argument for this. According to (D.2)-(D.4) we have schematically Γ[k]Γ[1] ∝ Γ[|k−1|] +
Γ[k+1] ∀k, if Γ[k] denotes a term proportional to a completely antisymmetrized product of k gamma matrices. Let us restrict now
to ten dimensions. The same schematic equation then holds for the chiral submatrices γ[k]. The connection can due to its index
structure be expanded in even antisymmetrized products:

ΩMα
β ∝ γ[0] + γ[2] + γ[4]
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with

ΩMa
b ≡ ΩM [ac]G

cb︸ ︷︷ ︸
≡Ω

(L)
Ma

b

+Ω(D)
M δb

a (G.37)

Let us in the following calculate ΩMa
b more explicitely in the WZ gauge in order to extract the Levi Civita

connection of the bosonic subspace.

G.3 Extracting Levi Civita from whole superspace connection (in
WZ-gauge)

Remember our de�nition GMN = EM
a e2Φηab︸ ︷︷ ︸

Gab

EN
b and the Wess Zumino gauge (H.131,H.132):

EM
A
∣∣ =

 em
a ψm

α ψ̂m
α̂

0 δµ
α 0

0 0 δµ̂
α̂

 (G.38)

We de�ne the metric of the bosonic subspace as

gmn ≡ em
aηaben

b (G.39)

which is by construction covariantly conserved (in contrast to GMN because of Φ). We want to write the
superspace connection at ~θ = 0 as the Levi Civita connection w.r.t. gmn plus additional terms.

The superspace connection was derived above starting from (G.17) or (G.28), arriving at the equations
(G.29-G.31) for Ωab|c,Ωαb|c and Ωα̂b|c in terms of the torsion and the exterior derivative of the supervielbein
dEd. We can also use the general equation (G.17), in order to determine the form of the Levi Civita connection
in terms of the bosonic vielbein. We just have to set the torsion and symmetric part (in the last two indices)
to zero. However, as we already use the supervielbein in order to switch from �at to curved indices and vice
versa, we have to write the bosonic vielbeins explicitely in the resulting equation:

ea
mωLC

mb
dηdc = −ea

meb
n(ded)mnηdc − ec

mea
n(ded)mnηdb + eb

mec
n(ded)mnηda (G.40)

It is now clear that the Levi Civita connection is hidden in the terms with dEd in (G.29-G.31) at ~θ = 0. Indeed
one can write3

(dEa)mn| = (dea)mn (G.41)

(dEa)MN | = TMN
a| (G.42)

When this connection acts on another gamma matrix, we get schematically

ΩM [α|
γγc

γ|β] ∝ (γ[0] + γ[2] + γ[4])γ[1] ∝ γ[1] + (γ[1] + γ[3]|{z}
0

) + (γ[3]|{z}
0

+γ[5])

The γ[3]-parts vanish due to the graded antisymmetrization of the indices. The γ[1] parts are �ne because they can be absorbed
by acting with the bosonic connection on the bosonic index. Only the γ[5] part remains and cannot be removed. As it stems from
the γ[4]-part in ΩMα

β, we conclude that the corresponding coe�cient has to vanish and only scale and Lorentz connection remain.
The sketched argumentation can be done rigorously which leads to the stated results for the relation between bosonic and fermionic
connection. �

3In the Wess Zumino gauge we can express dEa| by dea plus torsion terms as we will see in the following. Remember the

de�nition of the torsion T A = dEA − EB ∧ ΩB
A which reads for fermionic form indices at ~θ = 0 in the Wess-Zumino gauge

(H.131,H.132):

∂[MEN ]
A
˛̨̨

= TMN
A
˛̨̨
− Ω[MN ]

A
˛̨̨

(H.132)
= TMN

A
˛̨̨

Similarly we have

∂[MEn]
A
˛̨̨

= TMn
A
˛̨̨
− Ω[Mn]

A
˛̨̨

(H.132)
= TMn

A
˛̨̨
+

1

2
δM

B ΩnB
A
˛̨̨

For A = a, we can thus write in summary

(dEa)MN | = TMN
a|

(dEa)mn| = (dea)mn �
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With these relations, Ωαb|c
∣∣ and Ωα̂b|c

∣∣ as given in (G.30) and (G.31) vanish. This was clear already directly
from the Wess-Zumino gauge ΩMA

B
∣∣ = 0. In order to calculate Ωab|c

∣∣ as given in (G.29), we need the above
equations with �at bosonic indices:

(dEd)ab

∣∣ = ea
meb

n
(
(ded)mn − Tmn

d
∣∣)+ Tab

d
∣∣ (G.43)

Pluging this into (G.29) yields

Ωab
e| ηec = −ea

meb
n
(
(ded)mn − Tmn

d
∣∣) ηdc − ec

mea
n
(
(ded)mn − Tmn

d
∣∣) ηdb +

+eb
mec

n
(
(ded)mn − Tmn

d
∣∣) ηda +

+ Ωa| ηcb + Ωb| ηca − Ωc| ηba (G.44)

As we have in the Wess-Zumino gauge Ωmb
e| = em

a Ωab
e|, the obtained equation is simply the bosonic version

of (G.18). Taking Ωmb
e| as bosonic connection, however, would not be a good choice, as the terms in the last

line show the nonmetricity with respect to the �at metric ηab. It is reasonable to leave such structure constants
covariantly constant. The remaining connection (without the last line) would instead be a better choice with
induced bosonic torsion

Tmn
d
∣∣ = em

aen
b Tab

d
∣∣ + 2em

aψn
B TaB

d
∣∣ + ψm

Aψn
B TAB

d
∣∣ (G.45)

In any case we can now express Ωmb
e| completely in terms of the Levi Civita connection plus torsion terms

plus scale part

Ωkb
e| = ω

(LC)
kb

e + ηecek
a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb − eb

mec
n Tmn

d
∣∣ ηda +

+ Ωa| ηcb + Ωb| ηca − Ωc| ηba

]
(G.46)

The components with fermionic group indices, �nally, have the following form

Ωkβ
ε| = ω

(LC)
kβ

ε +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β
ε +

1
2
ek

a Ωa| δβε (G.47)

Ωkβ̂
ε̂
∣∣∣ = ω

(LC)

kβ̂

ε̂ +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β̂
ε̂ +

1
2
ek

a Ωa| δβ̂
ε̂ (G.48)



Appendix H

Supergauge Transformations, their
Algebra and the Wess Zumino Gauge

The supergravity transformation (local supersymmetry) is in some sense a special class of superdi�eomorphism
transformations. If the general superdi�eomorphisms are parametrized by a vector �eld ξA(

�
x ) ≡ ξA(x,~θ), the

local supersymmetry will be parametrized by only ξα(x, 0). Likewise, general coordinate transformations in
10d-Minkowski are parametrized by ξa(x, 0), while all the higher ~θ-components of ξA correspond to additional
auxiliary gauge degrees of freedom. Similarly, the local Lorentz-transformations Lab(

�
x ) and local dilatations

ω(
�
x ) have auxiliary gauge degrees in the higher ~θ-parts. Following roughly [15, p.127-144], we want to bring e.g.

the vielbein into a particular form, using (and thereby �xing) some of those shift symmetries, and identify the
10d di�eomorphisms and the local supersymmetry transformations with the bosonic and fermionic stabilizers
of this (Wess-Zumino-like) gauge respectively. But let us at �rst have a look at the general transformation
properties of all the super�elds.

H.1 Supergauge transformations of the super�elds

H.1.1 In�nitesimal form

In the following, we make frequent use of some structure group connection ΩMA
B and the corresponding

covariant derivative ∇M . As long as nothing else is announced, the equations are valid for any connection (in
particular, it is not meant to be the left-moving connection only). At some points, however, we plug in the

�mixed connection� ΩMA
B =

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

, as it is this connection that we need most frequently

in the text. The corresponding covariant derivative, curvature and torsion are obviously denoted by ∇M ,TMN
A

and RMNA
B .

Transformation of a general tensor �eld We are interested in a combination of an in�nitesimal su-
perdi�eomorphism transformation (or better the corresponding Lie derivative) and a local structure group
transformation. For an object with only curved indices, the transformation reduces to the Lie derivative. The
Lie derivative of a vector �eld

��
v ≡ vM∂M e.g. reads as usual

L��
ξ
vM ≡ (L��

ξ

��
v )M = (H.1)

= ξK∂Kv
M − ∂Kξ

MvK (H.2)

It can be rewritten in terms of covariant derivatives as

L��
ξ
vM = ξK∇Kv

M −∇Kξ
MvK − 2ξKTKL

MvL (H.3)

For one-forms the covariant expression of the Lie derivative contains a torsion term with opposite sign:

L��
ξ
ωM ≡

(
L��

ξ
(ωNdxN )

)
M

(H.4)

= ξK∂KωM + ∂MξKωK = (H.5)

= ξK∇KωM +∇MξKωK + 2ξKTKM
LωL (H.6)
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In contrast to the above, it is convenient for objects with �at indices, not to consider them as being contracted
with basis elements, when acting with the Lie derivative, but to really only act on the component functions,
which transform like scalars under di�eomorphisms1.

L��
ξ
vA = ξK∂Kv

A = (H.7)

= ξK∇Kv
A − ξKΩKB

AvB (H.8)

This is a covariant object from the di�eomorphism point of view, but the connection transforms inhomogenously
under the structure group transformations. The entire gauge transformation of vA, however, contains also a
local structure group transformation:

δvA = L��
ξ
vA + L̃B

AvB (H.9)

As the structure group connection itself is Lie algebra valued, the second term in (H.8) can be absorbed in the
structure group transformation:

LB
A ≡ L̃B

A − ξKΩKB
A (H.10)

The combined di�eomorphism and local structure group transformation can thus be written as

δvA = ξK∇Kv
A + LB

AvB (H.11)

The �rst term is a covariantized (w.r.t. the structure group) version of the Lie derivative (H.7), and we will
therefore denote it by

L(cov)
��
ξ

vA ≡ ξK∇Kv
A (H.12)

In general L(cov)
��
ξ

will be de�ned as the LA
B = 0 part of the complete transformation, i.e. a Lie derivative w.r.t.

��

ξ , accompanied by a structure group transformation with L̃A
B = ξKΩKA

B :

L(cov)
��
ξ
≡ L��

ξ
+R

(
ξKΩK·

·) (H.13)

On one forms we thus have L(cov)
��
ξ

ωA ≡ ξK∇KωA, while on objects with curved index the structure group

transformation has no e�ect and the covariantized Lie derivative reduces to the ordinary Lie derivative. When
acting on a more general tensor with curved and �at indices, L(cov)

��
ξ

thus takes the following form:

1Note the (common) convention used in (H.1) to de�ne L��
ξ

vM as the M -th component of the Lie derivative of
��
v and not the

Lie derivative of the M -th component function! This convention is extended to objects with an arbitrary number of curved indices,
i.e.

L��
ξ

t
N1...Nq

M1...Mp
≡
„

L��
ξ

`
t
L1...Lq

K1...Kp
dxK1 ⊗ . . .⊗ dxKp ⊗ ∂L1 ⊗ . . .⊗ ∂Lq

´«N1...Nq

M1...Mp

In cases where we want to act explicitely on e.g. the component functions, we can denote it with e.g. L��
ξ

(vM ) = ξK∂KvM . This is

of course not the component of a tensor, but it makes sense in calculations like L��
ξ

(vM∂M ) = L��
ξ

(vM ) ·∂M + vML��
ξ

(∂M ). From

the Lie derivatives for general vectors (H.2) and one forms (H.5) we can in turn read o� the transformation of the basis elements

L��
ξ

(∂M ) = −∂M ξN ∂N

L��
ξ

(dxM ) = ∂N ξM dxN

For �at indices, however, we use just the opposite convention, i.e. we do not regard the �at index to be contracted with any basis
element when acting with the Lie derivative. The action on an object with both, �at and curved indices will thus be de�ned as
follows

L��
ξ

tNB
MA ≡

„
L��

ξ

`
tLB
KAdxK ⊗ ∂L

´«N

M

In cases where we want to calculate something di�erent we will use a more explicit notation like on the righthand side in the above
equation.
Let us �nally give the Lie derivative of the local vielbein and its inverse (using (H.3) and (H.6)) which will also be discussed in

the equations (H.16) and following:

L��
ξ

(EA) =
“
ξKΩKA

B −∇AξB − 2ξKTKA
B
”

EB

L��
ξ

(EA) =
“
−ξKΩKB

A +∇BξA + 2ξKTKB
A
”

EB �
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L(cov)
��
ξ

tNB
MA = ξK∂Kt

NB
MA − ∂Kξ

N tKB
MA + ∂MξKtNB

MA + ξKΩKC
BtNC

MA − ξKΩKA
CtNB

MC = (H.14)

= ξK∇Kt
NB
MA −

(
∇Lξ

N + 2ξKTKL
N
)
tLB
MA +

(
∇MξL + 2ξKTKM

L
)
tNB
LA (H.15)

This transformation is usually called a supergauge transformation [15, chapter XVI]. As it reduces for
curved indices to the ordinary Lie derivative, its action on tensor components (given above) is determined by
the Lie derivative, the Leibniz rule and the transformation of the supervielbein. In addition the transformation
of the structure group connection will be of interest, as it transforms inhomogenously under the structure group
transformation. For completeness (even if the given information will be a bit redundant), let us write down
explicitely the transformations (supergauge + structure group) for all the type II supergravity super�elds of
our interest:

Supervielbein A general in�nitesimal gauge transformation (a Lie derivative corresponding to a superdi�eo-
morphism plus a local structure group transformation) of the supervielbein EM

A looks as follows:

δEM
A = ξK∂KEM

A + ∂MξKEK
A + EM

BL̃B
A (H.16)

Rede�ning the local structure group transformation parameter, this can be written in terms of covariant deriva-
tives

δEM
A = ξK ∇KEM

A︸ ︷︷ ︸
0

+∇MξKEK
A + ξK

(
ΓKM

L − ΓMK
L
)
EL

A︸ ︷︷ ︸
2TKM

A

+EM
B
(
L̃B

A − ξKΩKB
A
)

︸ ︷︷ ︸
LB

A

= (H.17)

= ∇MξA + 2ξCTCM
A︸ ︷︷ ︸

≡L(cov)
��
ξ

EM
A

+LB
AEM

B (H.18)

For some purposes, also the explicit form with partial derivatives (but in the new parametrization) will be
useful:

δEM
A =

∇M ξA︷ ︸︸ ︷
∂MξA + ΩMC

AξC +2ξCTCM
A︸ ︷︷ ︸

L(cov)
��
ξ

EM
A

+LB
AEM

B︸ ︷︷ ︸
R(L)EM

A

(H.19)

For the inverse vielbein we get likewise (or via δE−1 = −E−1δE · E−1)

δEA
M = ξK∂KEA

M − ∂Kξ
MEA

K − L̃A
BEB

M (H.20)

or δEA
M = −∇Aξ

M − 2ξCTCA
M − LB

AEA
N (H.21)
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The structure group connection transforms tensorial with respect to the superdi�eomorphisms but of
course not like a tensor (but inhomogenous) with respect to the structure group transformation.2

δΩMA
B = ξK∂KΩMA

B + ∂MξKΩKA
B − ∂M L̃A

B︸︷︷︸
LA

B+ξKΩKA
B

−[L̃,ΩM ]AB = (H.22)

= ξK∂KΩMA
B + ∂MξKΩKA

B − ∂MLA
B − ∂MξKΩKA

B − ξK∂MΩKA
B +

−[L+ ξKΩK ,ΩM ]AB = (H.23)

= 2ξK∂[KΩM ]A
B − ξK [ΩK ,ΩM ]AB − ∂MLA

B − [L,ΩM ]AB (H.24)

⇒
δΩMA

B = 2ξKRKMA
B︸ ︷︷ ︸

L(cov)
��
ξ

ΩMA
B

−∂MLA
B − [L,ΩM ]AB︸ ︷︷ ︸
R(L)ΩMA

B

(H.25)

The scale connection in principle is the trace part of the connection. In our case, however, we seperate the
super tangent space in three parts (bosonic, left-moving fermionic and right-moving fermionic) and each has its
own (a priori independent) trace part. In detail we have

ΩMA
B =

 Ω̌Ma
b 0 0

0 ΩMα
β 0

0 0 Ω̂Mα̂
β̂

 = (H.26)

=

 Ω̌(D)
M δb

a 0 0
0 1

2Ω(D)
M δα

β 0
0 0 1

2 Ω̂(D)
M δα̂

β̂

+

 Ω̌(L)
Ma

b 0 0
0 1

4Ω(L)
Mabγ

ab
α

β 0
0 0 1

4 Ω̂(L)
Mabγ

ab
α̂

β̂

 (H.27)

RMNA
B =

 F̌
(D)
MNδ

b
a 0 0

0 1
2F

(D)
MNδα

β 0
0 0 1

2 F̂
(D)
MNδα̂

β̂

+

 Ř
(L)
MNa

b 0 0
0 1

4R
(L)
MNabγ

ab
α

β 0
0 0 1

4 R̂
(L)
MNabγ

ab
α̂

β̂

(H.28)
The scale connection (or dilatation connection) simply transforms as

δΩ(D)
M = ξK∂KΩ(D)

M + ∂MξKΩ(D)
K − ∂M L̃(D), δΩ̂(D)

M = ξK∂KΩ̂(D)
M + ∂MξKΩ̂(D)

K − ∂M
˜̂
L(D)(H.29)

δΩ(D)
M = 2ξKF

(D)
KM − ∂ML(D), δΩ̂(D)

M = 2ξK F̂
(D)
KM − ∂M L̂(D) (H.30)

with F (D)
KM = ∂[KΩM ], F̂

(D)
KM = ∂[KΩ̂M ] (H.31)

The superspace connection We will not need the superspace connection ΓMN
K as frequently as the

structure group connection, but let us discuss its transformation for completeness. As it is inert under structure
group transformations, the supergauge transformation reduces to the Lie derivative. Remember the relation

ΓMN
K = ΩMN

K + ∂MEN
A · EA

K (H.32)

which is a direct consequence of ∇MEM
A = 0. The Lie derivative of ΓMN

K can thus be derived from the
Lie derivative (or alternatively from the supergauge transformation) of the structure group transformation and
the vielbein. Both, vielbein and structure group transformation are tensorial with respect to di�eomorphisms

2Let us quickly rederive the correct structure group transformation of the connection via the transformation property of the
covariant derivative:

δ(L)v
A = vBLB

A

δ(L)∇MvA = δ(L)

“
∂MvA + ΩMB

AvB
”

=

= ∂M

“
vBLB

A
”

+ δLΩMB
AvB + ΩMB

AδLvB =

= ∂MvB · LB
A + vB∂MLB

A + δLΩMB
AvB + ΩMB

AvCLC
B =

=
“
∂MvB + ΩMC

BvC
”
· LB

A + vC
“
∂MLC

A + δLΩMC
A + LC

BΩMB
A − ΩMC

BLB
A
”

For ∇MvA to transform covariantly, we need to have

δ(L)ΩMC
A = −∂MLC

A−LC
BΩMB

A + ΩMC
BLB

A| {z }
≡−[L,ΩM ]C

A

=

= −∇MLC
A �
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and thus the inhomogenity in the transformation of ΓMN
K can only result from the inhomogenity of the Lie

derivative of ∂MEN
A, which is (using commutativity of partial and Lie derivative3) ∂M∂Nξ

LEL
A. The Lie

derivative of the connection thus reads

L��
ξ
ΓMN

K = ξL∂LΓMN
K + ∂MξLΓLN

K + ∂Nξ
LΓML

K − ∂Lξ
KΓMN

L + ∂M∂Nξ
K︸ ︷︷ ︸

[∂ξ,ΓM ]N L+∂M (∂ξ)N
K

(H.33)

The �rst two terms are just the Lie derivative of a matrix valued one form dxMΓMN
K , while the last three

terms are the usual inhomogenous transformation of a structure group connection (compare (H.25)), here with
the Gl(n)-matrix M̃N

K ≡ −∂Nξ
K . The same transformation can be derived by comparing e.g. the tensorial

transformation of L��
ξ
∇MvK on the one side with ∂M (L��

ξ
vK)+L��

ξ
ΓMN

K ·vK +ΓMN
KL��

ξ
vK on the other side

(using again that Lie and partial derivative commute). The Lie derivative of the connection is in some sense the
di�erence of two connections and is therefore a tensor. This can be seen by expressing the partial derivatives
on ξM in terms of covariant ones and discover that the remaining connection terms combine to curvature and

3For a scalar �eld Φ(ph), whose partial derivative becomes the component of a vector �eld, it is quite obvious that partial and
Lie derivative commute:

L��
ξ

∂MΦ(ph) = ξK∂K∂MΦ(ph) + ∂M ξK∂KΦ(ph) = ∂M (ξK∂KΦ(ph)) = ∂MΦ(ph)

For a nontensorial object like ∂M t
N1...Nq

M1...Mp
(or also the connection) it is less clear whether it makes sense to de�ne a Lie derivative

on it. However, it will be very convenient to do so, and we will simply take the de�nition coming from in�nitesimal di�eomorphisms

(with x′ = x + ξ). Note that ∂′M t′
N1...Nq

M1...Mp
(x′)

˛̨̨
x′=x

= ∂M t′
N1...Nq

M1...Mp
(x), which leads to

L��
ξ

∂M t
N1...Nq

M1...Mp
(x) ≡ ∂M t

N1...Nq

M1...Mp
(x)− ∂′M t′

N1...Nq

M1...Mp
(x′)

˛̨̨
x′=x

= ∂M (L��
ξ

t
N1...Nq

M1...Mp
(x))

We can likewise extend the de�nition of L(cov)
��
ξ

= L��
ξ

+R
`
ξKΩK ·

·´ to nontensorial objects by de�ning e.g.

R(L) ∂P tNB
MA ≡ ∂P

“
R(L) tNB

MA

”
The structure group transformation R(L) thus commutes with the partial derivative by de�nition and we thus have the same
property for the covariantized Lie derivative

L(cov)
��
ξ

∂P tNB
MA = ∂P (L(cov)

��
ξ

tNB
MA)

Note that this is also consistent with a proper transformation property of the covariant derivative:

L(cov)
��
ξ

∇P tNB
MA = L(cov)

��
ξ

“
∂P tNB

MA + ΓPK
N tKB

MA − ΓPM
KtNB

KA +R(ΩP ·
·) tNB

MA

”
=

= ∂P

 
L(cov)

��
ξ

tNB
MA

!
+

 
L(cov)

��
ξ

ΓPK
N

!
tKB
MA + ΓPK

NL(cov)
��
ξ

tKB
MA −

 
L(cov)

��
ξ

ΓPM
K

!
tNB
KA − ΓPM

KL(cov)
��
ξ

tNB
KA +

+R
 

L(cov)
��
ξ

ΩP ·
·

!
tNB
MA +R(ΩP ·

·) L(cov)
��
ξ

tNB
MA =

= ∇P

 
L(cov)

��
ξ

tNB
MA

!
+

„
L��

ξ
ΓPK

N

«
tKB
MA −

„
L��

ξ
ΓPM

K

«
tNB
KA +R

 
L(cov)

��
ξ

ΩP ·
·

!
tNB
MA =

= ∇P

“
ξK∇KtNB

MA +
“
∇M ξK + 2ξLTLM

K
”

tNB
KA −

“
∇KξN + 2ξLTLK

N
”

tKB
MA

”
+

+
“
2ξLRLPK

N +∇P (∇KξN + 2ξLTLK
N )
”

tKB
MA −

“
2ξLRLPM

K +∇P (∇M ξK + 2ξLTLM
K)
”

tNB
KA +

+R
“
2ξLRLP ·

·
”

tNB
MA =

= ξK ∇P∇KtNB
MA| {z }

∇K∇P tNB
MA

−2TP K
L∇LtNB

MA
+2RPKL

N tLB
MA − 2RPKM

LtNB
LA +R(2RPK ·

·) tNB
MA

+
“
∇M ξK + 2ξLTLM

K
”
∇P tNB

KA −
“
∇KξN + 2ξLTLK

N
”
∇P tKB

MA +

+∇P ξK∇KtNB
MA +∇P

“
∇M ξK + 2ξLTLM

K
”

tNB
KA −∇P

“
∇KξN + 2ξLTLK

N
”

tKB
MA

+
“
2ξLRLPK

N +∇P (∇KξN + 2ξLTLK
N )
”

tKB
MA −

“
2ξLRLPM

K +∇P (∇M ξK + 2ξLTLM
K)
”

tNB
KA +

+R
“
2ξLRLP ·

·
”

tNB
MA =

= ξK∇K∇P tNB
MA +

“
∇P ξK + 2ξLTLP

K
”
∇KtNB

MA +
“
∇M ξK + 2ξLTLM

K
”
∇P tNB

KA −
“
∇KξN + 2ξLTLK

N
”
∇P tKB

MA �
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torsion.4

L��
ξ
ΓMN

K = 2ξLRLMN
K +∇M

(
∇Nξ

K + 2ξLTLN
K
)︸ ︷︷ ︸

≡−MN
K

(H.34)

Remember that above we have seen the Lie derivative of the superspace connection as a combination of a Lie
derivative on its form index (the �rst lower index) plus a Gl(n) structure group transformation with transfor-
mation matrix M̃N

K ≡ −∂Nξ
K . Equivalently it can be seen as a combination of a supergauge transformation

(regarding only the �rst index as curved one) plus a modi�ed Gl(n) transformation with the matrix (compare
(H.10))

MN
K ≡ −∂Nξ

K − ξP ΓPN
K = (H.35)

= −∇Nξ
K − 2ξPTPN

K (H.36)

Indeed the above Lie transformation can be written as

L��
ξ
ΓMN

K = 2ξLRLMN
K −∂MMN

K − [M,ΓM ]N K︸ ︷︷ ︸
=−∇M MN

K

(H.37)

which perfectly agrees with the form of a gauge transformation of a structure group connection given in (H.25).
Let us �nally note that

[L��
ξ
,∇M ]vK = (L��

ξ
ΓMN

K)vN (H.38)

which provides another way to calculate the Lie derivative of the connection. For the Levi Civita connection

this equation implies that the Lie derivative commutes with the covariant derivative, if
��

ξ is a killing vector.

Compensator �eld and dilaton The compensator �eld Φ � as we introduced it � is a compensator �eld
and in the beginning independent from the physical dilaton. It is not invariant under scale transformations.
Instead we have5

δΦ = ξK∂KΦ− L̃(D) = (H.39)

= ξK

”∇KΦ”︷ ︸︸ ︷(
∂KΦ− Ω(D)

K

)
︸ ︷︷ ︸

L(cov)
��
ξ

Φ

−L(D) (H.40)

In contrast, the �physical� dilaton transforms just as a scalar

δΦ(ph) = ξK∂KΦ(ph) = ξK∇KΦ(ph) (H.41)

A possible gauge �xing of Φ would be to simply set it to Φ(ph) which was the original motivation to choose a

similar name. However, other gauge �xings like Φ = 0 or Ω(D)
M = 0 turn out to be more useful.

The derivative ∂MΦ of the compensator �eld transforms in the same way as the scale connection:

δ∂MΦ = ∂M (ξK∂KΦ)− ∂M L̃(D) = (H.42)

= ξK∂K(∂MΦ) + ∂MξK(∂KΦ)− ∂M L̃(D) (H.43)

4Alternatively we can use the covariant expressions of the supergauge transformation of ΩMA
B and EM

A and write

L��
ξ

ΓMN
K = L(cov)

��
ξ

(ΩMA
BEN

AEB
K) + ∂M (L(cov)

��
ξ

EN
A) · EA

K + ∂MEN
A ·L(cov)

��
ξ

EA
K

which leads to the same result. �
5In order to understand the transformation of the compensator �eld, consider the transformation of the conformally �at metric

GAB = e2ΦηAB under scale transformations

δLGAB = −2L(A|
CGC|B) =

= −2L(D)GAB =

= −2L(D)e2ΦηAB

⇒ G̃AB = e2ΦηAB

“
1− 2L(D)

”
≈ e2(Φ−L(D))ηAB

⇒ δΦ = −L(D) �



APPENDIX H. SUPERGAUGE TRANSFORMATIONS, THEIR ALGEBRA AND THE WZ GAUGE 160

Or in terms of L(D) :

δ∂MΦ = ξK∂K∂MΦ− ξK∂MΩ(D)
K + ∂MξK(∂KΦ− Ω(D)

K )− ∂ML(D) = (H.44)

= 2ξKF
(D)
KM + ξK∂K

(
∂MΦ− Ω(D)

M

)
+ ∂MξK(∂KΦ− Ω(D)

K )− ∂ML(D) (H.45)

Local scale transformations thus cannot (!) be used to �x at least some θ-components of Ω(D)
M to ∂MΦ or s.th.

similar. Instead only one of them can be related to e.g. the physical dilaton as mentioned above.

The RR-bispinors (containing the RR �eld strength forms) transform as

δPαα̂ = ξK∂KPαα̂ + L̃β
αPβα̂ + ˜̂

Lβ̂
α̂Pαβ̂ = (H.46)

= ξK∇KPαα̂︸ ︷︷ ︸
L(cov)

��
ξ

Pαα̂

+Lβ
αPβα̂ + L̂β̂

α̂Pαβ̂ (H.47)

The H-�eld �nally transforms as

δHABC = ξK∇KHABC︸ ︷︷ ︸
L(cov)

��
ξ

HABC

+R(L)HABC (H.48)

H.1.2 Algebra of Lie derivatives and supergauge transformations

H.1.2.1 Commutator of Lie derivatives

The SUSY algebra on scalar �elds and tensors with curved indices should be entirely implemented in the su-
perdi�eomorphisms (independent from any accompanying local structure group transformation which appeared
above). The commutator of two di�eomorphisms yields the vector Lie bracket of the transformation parameters

[Lξ1 ,Lξ2 ] = L[ξ1,ξ2] (H.49)

where the vector Lie bracket reads

[ξ1, ξ2]
M = ξK

1 ∂Kξ
M
2 − ξK

2 ∂Kξ
M
1 = (H.50)

= ξK
1 ∇Kξ

M
2 − ξK

2 ∇Kξ
M
1 − 2ξK

1 TKL
MξL

2 (H.51)

If we plug in the local basis elements
��

EA ≡ EA
M∂M , the covariant derivative acts only on the curved index so

that we do not only get the torsion term, as one would naively expect, but instead

[
��

EA ,
��

EB ] =
(
2Ω[AB]

C − 2TAB
C
) ��

EC = (H.52)

= −2(dEC)AB

��

EC (H.53)

For objects with �at indices it is thus convenient to extend the Lie derivative to the supergauge transformation,
which is covariantized with respect to the structure group.

H.1.2.2 Algebra of covariant Lie derivative and structure group action

Let us restrict our considerations for a moment to a structure group vector vA. We �rst want to study the
commutator of two covariantized Lie derivatives.

[L(cov)
��
ξ

,L(cov)
��
η

]vA = ξL∇L

(
ηK∇Kv

A
)
− (ξ ↔ η) = (H.54)

=
(
ξL∇Lη

K − ηL∇Lξ
K
)
∇Kv

A + ξLηK [∇L,∇K ] vA = (H.55)

=
(
ξL∇Lη

K − ηL∇Lξ
K − 2ξLTLP

KηP
)
∇Kv

A + 2ξLηKRLKB
AvB = (H.56)

= L(cov)

[
��
ξ ,

��
η ]
vA + 2ξLηKRLKB

AvB (H.57)

For a one form we arrive likewise at

[L(cov)
��
ξ

,L(cov)
��
η

]ωA = L(cov)

[
��
ξ ,

��
η ]
ωA − 2ξLηKRLKA

BωB (H.58)
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On curved indices, however, the super gauge transformation reduces to the Lie derivative[
L(cov)

��
ξ

,L(cov)
��
η

]
vM =

[
L��

ξ
,L ��

η

]
vM = L

[
��
ξ ,

��
η ]
vM = L(cov)

[
��
ξ ,

��
η ]
vM (H.59)[

L(cov)
��
ξ

,L(cov)
��
η

]
ωM = L(cov)

[
��
ξ ,

��
η ]
ωM (H.60)

On a more general tensor tNB
MA we therefore have the following commutator of supergauge transformations

(remember footnote 1)[
L(cov)

��
ξ

,L(cov)
��
η

]
tNB
MA = L(cov)

[
��
ξ ,

��
η ]
tNB
MA + 2ξKηLRKLC

BtNC
MA − 2ξKηLRKLA

CtNB
MC︸ ︷︷ ︸

R
„
−ı��

ξ
ı ��

η
(R··)

«
tNB
MA

(H.61)

In particular we have for supergauge transformations along the coordinate basis

[L(cov)
∂K

,L(cov)
∂L

]tNB
MA = 2RKLC

BtNC
MA − 2RKLA

CtNB
MC = R

(
−ı∂K

ı∂L
(RC

D)
)
tNB
MA (H.62)

The algebra of two in�nitesimal structure group transformations is rather simple6

[R(L1) ,R(L2)] = −R([L1, L2]) (H.63)

The commutator between supergauge transformation and structure group transformation �nally reads[
L(cov)

��
ξ

,R(L)
]

= R
(

(L(cov)
��
ξ

L)
)

(H.64)

which is easily checked by acting e.g. on a vector vA. The complete algebra can be written in one single equation
as [

L(cov)
��
ξ

+R(L1) , L(cov)
��
η

+R(L2)
]

= L(cov)

[
��
ξ ,

��
η ]

+R
(
ξKηLRKL·

· + L(cov)
��
ξ

L2 −L(cov)
��
η

L1 − [L1, L2]
))

(H.65)

H.1.2.3 Commutator of covariantized Lie derivative (supergauge) and covariant derivative

In Riemannian geometry the commutator of Lie derivative and covariant derivative vanishes, if the vector along
which the Lie derivative is taken is a killing vector. We want to see what relation there is for a more general
connection. Let us �rst consider the commutator of the Lie derivative and the covariant derivative with curved
index on a superspace vector [

L��
ξ
,∇M

]
vK =

[
L��

ξ
, ∂M

]
vK + L��

ξ
ΓMN

K · vN (H.66)

According to footnote 3, the �rst term vanishes and we have[
L��

ξ
,∇M

]
= 0 ⇐⇒ 0 = L��

ξ
ΓMN

K

(
(H.34)

= 2ξLRLMN
K +∇M

(
∇Nξ

K + 2ξLTLN
K
))

(H.67)

In the case of a Levi Civita connection, the Lie derivative of the connection vanishes, if the Lie derivative of the

metric vanishes, i.e. if
��

ξ is a killing vector7. In general, however, we have the condition that the Lie derivative

6The minus sign comes from our de�nition how the structure group matrix acts on vectors and forms. E.g. on a vector we have
R(L1)R(L2) vA = R(L1) (L2 B

AvB) = L1 C
AL2 B

CvB = (L2L1)B
AvB = R(L2L1) vA⇒ [R(L1) ,R(L2)]vA = −R([L1, L2]) vA.

Similarly for one forms R(L1)R(L2) ωA = R(L1) (−L2 A
BωB) = L1 A

CL2 C
BωB = (L1L2)A

BωB = −R(L1L2) ωA⇒
[R(L1) ,R(L2)]ωA = −R([L1, L2]) ωA. If one prefers, one can get rid of the minus sign by either rede�ning the action of
R(L) with a minus sign or with a transposed L (not only for antisymmetric L). This is because [LT

1 , LT
2 ]T = −[L1, L2] and

−[−L1,−L2] = −[L1, L2]. �
7This is quite natural, as the Levi Civita connection is built only out of the metric. Nevertheless, let us check this statement

explicitly with the derived formula, in order to see whether it is consistent. In the Riemannian case we have

L →→
ξ
Γmn

k = 2ξlRlmn
k +∇m∇nξk

and the killing vector condition reads (pulling down the indices with the covariantly conserved metric gmn)

∇(mξn) = 0
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of the connection has to vanish. How does this condition modify for a �at index of the covariant derivative
(using the covariantized Lie derivative)?[

L(cov)
��
ξ

,∇A

]
(. . .) =

[
L(cov)

��
ξ

, EA
M∇M

]
(. . .) = (H.68)

=
(
ξK∇KEA

M −
(
∇Kξ

M + 2ξLTLK
M
)
EA

K
)
∇M (. . .) +

+EA
M

[
L(cov)

��
ξ

,∇M

]
(. . .) (H.69)

Let us introduce just for the moment the symbol R̃ to denote the action of a Gl(n) matrix (like the superspace
action ΓM ·

·) on the curved indices, and allow for an additional structure group transformation:

[
L(cov)

��
ξ

+R(L··) , ∇A

]
=

(
−(∇Aξ

D + 2ξCTCA
D)− LA

D
)︸ ︷︷ ︸

(L(cov)
��
ξ

EA
M )EM

D

∇D +

+R̃
(
2ξLRLA ·

· +∇A

(
∇·ξ· + 2ξLTL ·

·))︸ ︷︷ ︸
EA

M L��
ξ

ΓM ··

+R
(
2ξCRCA ·

· −∇AL·
·)︸ ︷︷ ︸

EA
M L(cov)

��
ξ

ΩM ··

(H.70)

When acting on scalar �elds, only the �rst term remains.

H.1.2.4 Algebra of the gauge transformations

The algebra in the previous section was assuming that the variation acts on all objects, including the transfor-
mation parameter of the �rst transformation. This is not true for �eld-independent transformation parameters.
Having a local symmetry, the transformation parameters may or may not depend on the varied �elds. We thus
have to treat their variation seperately. A general gauge variation has the form δtNB

MA = L(cov)
��
ξ

tNB
MA+R(L · ·) tNB

MA,

where
��

ξ and the structure group matrix L are local and may or may not depend on the �elds of the theory.
Acting a second time with such a variation yields

δ1δ2(. . .) =

= δ1

(
L(cov)

��
ξ2

+R(L2 ·
·)
)

= (H.71)

= δ1

(
L ��

ξ2

+R
(
ξK
2 ΩK·

· + L2 ·
·)) (. . .) = (H.72)

=
(

L
δ1

��
ξ2

+R
(
δ1ξ

K
2 ΩK·

· + ξK
2 δ1ΩK·

· + δ1L2 ·
·)) (. . .) +

(
L ��

ξ2

+R
(
ξK
2 ΩK·

· + L2 ·
·)) δ1(. . .) = (H.73)

=
(

L(cov)

δ1
��
ξ2

+R
(
ξK
2

(
L(cov)

��
ξ1

ΩK·
· − ∂KL1 ·

· − [L1,ΩK ]··
)

+ δ1L2 ·
·
))

(. . .) +

+
(

L(cov)
��
ξ2

+R(L2 ·
·)
)(

L(cov)
��
ξ1

+R(L1)
)

(. . .) = (H.74)

=
[
L(cov)

δ1
��
ξ2

+R
(
2ξK

2 ξ
L
1 RLK·

· − ξK
2 ∇KL1 + δ1L2 ·

·)+
(

L(cov)
��
ξ2

+R(L2 ·
·)
)(

L(cov)
��
ξ1

+R(L1 ·
·)
)]

(. . .)(H.75)

We can rewrite the above Lie derivative as

L →→
ξ
Γmn|k = 2ξlRlmnk +∇m∇nξk =

= 2ξlRlmnk +
1

2
∇m∇nξk +

1

2
∇n∇mξk −Rmnk

lξl =

= 2ξlRlmnk −
1

2
∇m∇kξn −

1

2
∇n∇kξm −Rmnk

lξl =

= 2ξlRlmnk −
1

2
∇k∇mξn + Rmkn

lξl −
1

2
∇k∇nξm + Rnkm

lξl −Rmnk
lξl

= 2ξl Rlmnk| {z }
−Rnkml

−Rkmn
lξl + Rnkm

lξl −Rmnk
lξl =

= −
“
Rnkm

l + Rkmn
l + Rmnk

l
”

ξl = 0 �
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Finally we take the commutator and use the commutation relation (H.65) of above

[δ1, δ2] = R
(
4ξK

2 ξ
L
1 RLK·

· + ξK
1 ∇KL2 − ξK

2 ∇KL1 + δ1L2 · · − δ2L1

)
+

+L(cov)

[
��
ξ2 ,

��
ξ1 ]+δ1

��
ξ2 −δ2

��
ξ1

+R
(

2ξK
2 ξ

L
1 RKL·

· + L(cov)
��
ξ2

L1 −L(cov)
��
ξ1

L2 − [L2, L1]
)

(H.76)

[δ1, δ2] = L(cov)

[
��
ξ2 ,

��
ξ1 ]+δ1

��
ξ2 −δ2

��
ξ1

+R
(
2ξK

1 ξ
L
2 RKL ·

· + [L1, L2]·· + δ1L2 ·
· − δ2L1 ·

·) (H.77)

If
��

ξ and L are �eld dependent and transform like all the other �elds, we have δ1
��

ξ2 = [
��

ξ1 ,
��

ξ2 ] and δ1L2 =
L(cov)

��
ξ1

L2− [L1, L2] and the above equation is the same as (H.65), while if both parameters do not transform we

have a similar, but still di�erent algebra with some di�erent signs and some terms missing.

Let us now consider transformation vector �elds of the form
��

ξ1/2 = εA
1/2qA

M∂M , with εA being inert under

variations, while qAM is built from the �elds and transforms in the way its indices indicate. The transformation

of
��

ξ then reads

δ1ξ
M
2 = εB

2

(
L(cov)

��
ξ1

qB
M − L1 B

CqC
M

)
= (H.78)

= εB
2

(
εA
1 qA

K∇KqB
M −

(
∇L(εA

1 qA
M ) + 2εA

1 qA
KTKL

M
)
qB

L − L1 B
CqC

M
)

(H.79)

δ1ξ
M
2 − δ2ξM = 2εA

1 ε
B
2

(
qA

K∇KqB
M − qBL∇LqA

M − 2qAKTKL
MqB

L
)
− 2εB

[2qB
L∇Lε

A
1]qA

M +

−εB
2 L1 B

CqC
M + εB

1 L2 B
CqC

M (H.80)

On the other hand we have[
��

ξ1 ,
��

ξ2

]M

= ξK
1 ∇Kξ

M
2 − ξK

2 ∇Kξ
M
1 − 2ξK

1 TKL
MξL

2 = (H.81)

= εA
1 qA

K∇K(εB
2 qB

M )− εB
2 qB

K∇K(εA
1 qA

M )− 2εA
1 ε

B
2 qA

KTKL
MqB

L = (H.82)

= εA
1 ε

B
2

(
qA

K∇KqB
M − qBK∇KqA

M − 2qAKTKL
MqB

L
)

+ 2εA
[1qA

K∇Kε
B
2]qB

M (H.83)

which means that

δ1ξ
M
2 − δ2ξM =

= 2
[

��

ξ1 ,
��

ξ2

]M

− 2εA
[1qA

K∇Kε
B
2]qB

M − εB
2 L1 B

CqC
M + εB

1 L2 B
CqC

M = (H.84)

=
[

��

ξ1 ,
��

ξ2

]M

+ εA
1 ε

B
2

(
qA

K∇KqB
M − qBK∇KqA

M − 2qAKTKL
MqB

L
)

+ 2εB
[1L2] B

CqC
M (H.85)

The gauge algebra thus becomes

[δ1, δ2] = L(cov)

εA
1 εB

2 (qA
K∇KqB

M−qB
K∇KqA

M−2qA
KTKL

M qB
L)∂M+2εB

[1L2] B
C ��

qC

+

+R
(
2εA

1 ε
B
2 qA

LqB
KRLK·

· + [L1, L2]·· + δ1L2 ·
· − δ2L1 ·

·) (H.86)

In particular for εC
1 = δC

A and εD
2 = δD

B and qAM = EA
M (corresponding to

��

ξ1 =
��

EA ,
��

ξ2 =
��

EB ) we get

[δA, δB ] = L(cov)

(−2TAB
C+L2 A

C−L1 B
C)

��
EC

+R(2RAB·
· + [L1, L2]·· + δ1L2 ·

· − δ2L1 ·
·) (H.87)

which is for L1 = L2 = 0 (at least when acting on objects with �at indices) the algebra of covariant derivatives.

H.1.3 Finite gauge transformations

In order to choose an explicit gauge it is useful to know the �nite form of the gauge transformations (only
then you can decide whether a particular gauge is accessible or not). For superdi�eomorphisms, Lorentz
transformations and dilatations, we know the �nite form anyway. Let us denote the transformed �elds by
a prime (for superdi�eomorphisms) and by a tilde (for structure group transformations).

E′M
A(

�
x ′) =

∂xN

∂x′M
EN

A(
�
x ′) (H.88)

ẼM
A(

�
x ) = EM

B(
�
x )ΛB

A(
�
x ) (H.89)

Ẽ′M
A(

�
x ′) =

∂xN

∂x′M

(
EN

B(
�
x )ΛB

A(
�
x )
)

=
(
∂xN

∂x′M
EN

B(
�
x )
)

Λ′B
A(

�
x ′) (H.90)
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Likewise we have for the other super�elds8

Ω̃′MA
B(

�
x ′) =

∂xN

∂x′M

(
−∂NΛA

B + (Λ−1)A
DΩND

C(
�
x )ΛC

B
)

(H.91)

Ω̃′M (
�
x ′) =

∂xN

∂x′M

(
ΩN (

�
x )− ∂NΛ(

�
x )
)

(H.92)

P̃ ′δδ̂(
�
x ′) = Pγγ̂(

�
x )Λγ

δΛ̂γ̂
δ̂ (H.93)

Φ̃′(
�
x ′) = Φ(

�
x )− Λ̌(D)(

�
x ), Φ̃(ph)

′
(

�
x ′) = Φ(ph)(

�
x ) (H.94)

∂M Φ̃′(
�
x ′) =

∂xN

∂x′M

(
∂NΦ(

�
x )− ∂NΛ(

�
x )
)
, ∂M Φ̃(ph)

′
(

�
x ′) =

∂xN

∂x′M
∂NΦ(ph)(

�
x ) (H.95)

For the RR-super�eld Pδδ̂ (where the indices do not have the full superspace range), we replaced the general
structure group transformation ΛA

B by the blockdiagonal ΛA
B , consisting of Lorentz and scale transformations:

ΛA
B ≡

 Λ̌a
b 0 0

0 Λα
β 0

0 0 Λ̂α̂
β̂

 =

 Λ̌(D)δb
a 0 0

0 1
2Λ(D)δα

β 0
0 0 1

2 Λ̂(D)δα̂
β̂

+

 Λ̌(L)
a

b 0 0
0 1

4Λ(L)
ab γ

ab
α

β 0
0 0 1

4 Λ̂(L)
ab γ

ab
α̂

β̂


(H.96)

How are Λ and Λ̂ connected? They should respect the gaugings Tαβ
c = γc

αβ and T̂α̂β̂
c = γc

α̂β̂
.

δTαβ
c = 0 = δT̂αβ

c (H.97)

which means that Λ = Λ̂ = Λ̌. That does not mean the same for the corresponding connections (they are not
equal), but in fact � if the gauge �xings should remain the same under parallel transport � it tells us that one
should take only one of the connections as the one which de�nes parallel transport and rewrite the other in
terms of this one plus a di�erence tensor. The equations written in terms of the mixed connection are still valid,
but should be taken as an abbreviation for the interpretation that we just have given.

H.2 Wess-Zumino gauge

H.2.1 WZ gauge for the vielbein

Superdi�eomorphisms x′M = FM (
�
x )

inf
= xM + ξM (

�
x ) with

�
x = (

→
x ,θ, θ̂) parametrise many more gauge

degrees of freedom than just the bosonic di�eomorphisms x′m = fm(
→
x )

inf
= xm + ξm(

→
x ,~θ = 0). Let us write

�
x ′ as

x′M = x′
M
0 (

→
x ) + xµ︸︷︷︸

θµ

x′
M
µ (

→
x ) + xµ̂︸︷︷︸

θ̂
µ̂

x′
M
µ̂ (

→
x ) +O(~θ

2
) (H.98)

We have

∂x′M

∂xN
=

 ∂x′m

∂xn
∂x′m

∂xν
∂x′m

∂xν̂

∂x′µ

∂xn
∂x′µ

∂xν
∂x′µ

∂xν̂

∂x′µ̂

∂xn
∂x′µ̂

∂xν
∂x′µ̂

∂xν̂

 ~θ=0=


∂x′m0
∂xn x′

m
ν x′

m
ν̂

∂x′µ0
∂xn x′

µ
ν x′

µ
ν̂

∂x′µ̂0
∂xn x′

µ̂
ν x′

µ̂
ν̂

 (H.99)

In the following we will see that it is possible to �x the vielbein for vanishing ~θ to

EM
A
∣∣ =

 em
a ψm

α ψ̂m
α̂

0 δµ
α 0

0 0 δµ̂
α̂

 (H.100)

8De�ning ΩM ≡ 1
dim

ΩMa
a and Λ ≡ 1

dim
Λa

a yields the transformation (H.92) in the second line. However, having in mind the

de�nitions (H.96) and (H.27) yields the same transformation for each of the scale connections ΩM (with Λ), Ω̂M (with Λ̂) and Ω̌M

(with Λ̌) respectively.
The dilaton was introduced as a compensating �eld for the scale transformation of Gab = e2Φηab. It thus transforms under the

bosonic scale transformations Λ̌. The distinction, however, is not important, as Λ, Λ̂ and Λ̌ get coupled by the gauge �xing of
Tαβ

c = γc
αβ and Tα̂β̂

c = γc
α̂β̂

anyway. �
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with inverse

EA
M
∣∣ =

 ea
m −ψa

µ −ψ̂a
µ̂

0 δα
µ 0

0 0 δα̂
µ̂

 (H.101)

where ψa
µ ≡ ea

mψm
αδα

µ (H.102)

ψa
µ̂ ≡ ea

mψm
α̂δα̂

µ̂ (H.103)

em
aea

n = δn
m (H.104)

Multiplying from the left with the transposed (~θ = 0)-Jacobian without ordinary di�eos (∂x′m0
∂xn = δm

n ) yields δm
n

∂x′µ0
∂xn

∂x′µ̂0
∂xn

x′
m
ν x′

µ
ν x′

µ̂
ν

x′
m
ν̂ x′

µ
ν̂ x′

µ̂
ν̂


 em

a ψm
α ψ̂m

α̂

0 δµ
α 0

0 0 δµ̂
α̂

 =

=


en

a
(
ψn

α + ∂x′µ0
∂xn δµ

α
) (

ψ̂n
α̂ + ∂x′µ̂0

∂xn δµ̂
α̂
)

x′
m
ν em

a
(
x′

m
ν ψm

α + x′
µ
ν δµ

α
) (

x′
m
ν ψ̂m

α̂ + x′
µ̂
ν δµ̂

α̂
)

x′
m
ν̂ em

a
(
x′

m
ν̂ ψm

α + x′
µ
ν̂ δµ

α
) (

x′
m
ν̂ ψ̂m

α̂ + x′
µ̂
ν̂ δµ̂

α̂
)
 != (H.105)

!= EN
A
∣∣ (H.106)

This �xes some of the auxiliary gauge parameters:

x′
m
ν = ea

m Eν
a| (H.107)

x′
m
ν̂ = ea

m Eν̂
a| (H.108)

x′
µ
ν =

(
Eν

α − x′mν ψm
α
)
δα

µ (H.109)

x′
µ
ν̂ =

(
Eν̂

α − x′mν̂ ψm
α
)
δα

µ (H.110)

x′
µ̂
ν̂ =

(
Eν̂

α̂ − x′mν̂ ψ̂m
α̂
)
δα̂

µ̂ (H.111)

x′
µ̂
ν =

(
Eν

α̂ − x′mν ψ̂m
α̂
)
δα̂

µ̂ (H.112)

So all the x′MN are �xed which likewise �xes all x′AN . In contrast, x′M0 (
→
x ) are still free and they parametrize

bosonic di�eomorphisms and local supersymmmetry.

H.2.2 Calculus with the gauge �xed vielbein

Before we proceed with the gauge �xing of the connection, let us have a look at some consequences of the special
vielbein gauge. The new bosonic vielbein em

a(
→
x ) = Em

a(
→
x , 0) o�ers a second possibility to switch from curved

to �at indices and one has to be careful, in order not to mix up things.
De�ne

gmn ≡ em
aηaben

b (H.113)

so that we have

Gmn| = e2φgmn (H.114)

We are thus in the Einstein frame for φ = φ(ph) and in the string frame for φ = 0.
The inverse of the supervielbein behaves di�erently than the inverse of the bosonic vielbein:

EM
AEB

M = δA
B ⇒ EM

A
∣∣ EB

M
∣∣ = δA

B (H.115)

Em
a| eb

m = δa
b (H.116)

Therefore we have for any supervector VM :

Vm| ea
m = VCEm

C
∣∣ ea

m = (H.117)

= VcEm
c| ea

m + VCEm
C∣∣ ea

m (H.118)

or
Vm| ea

m = Va| + VC| ψm
Cea

m (H.119)
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For the metric in particular, this means
Gmb| ea

m = Gab| (H.120)

Likewise

va| ea
m = vNEN

a
∣∣ ea

m = (H.121)

= vnEn
a| ea

m + vNEN
a
∣∣ ea

m = (H.122)

= vm| (H.123)

De�ne

GMN ≡ Ea
MEb

N e−2Φηab︸ ︷︷ ︸
Gab

(H.124)

Then we have in particular

Gmn| = Ea
m| Eb

n| e−2φηab = ea
meb

ne−2φηab = e−2φgmn (H.125)

Gan| ea
m = Gmn| (H.126)

H.2.3 WZ gauge for the connection

Similar to the supervielbein-case it is likewise possible to reach a special gauge for the connection componets
with fermionic form-index, where the ~θ = 0 is set to zero

ΩM A
B
∣∣ = 0 (H.127)

Let us show that this gauge �xing is really accessible. We would like to reach the gauge (H.127) using the higher
order ~θ local Lorentz transformations (with ΛA

B
∣∣ = δA

B). Remember the structure group transformation of
the connection

Ω̃MA
B(x) = −∂MΛA

B + (Λ−1)A
DΩMD

C(x)ΛC
B (H.128)

Reaching the gauge �xing condition (H.127) is thus possible by simply choosing

ΛMA
B ≡ ∂MΛA

B
∣∣ = (H.129)

!= ΩMA
B(x)

∣∣ (H.130)

H.2.4 Gauge �xing the remaining auxiliary gauge freedom

In addition to the ordinary Wess Zumino gauge

EM
A
∣∣ = δM

A (H.131)

ΩMA
B
∣∣ = 0 (H.132)

we can demand the gauge �xing condition ∂(MEN )
A
∣∣ != 0 using the gauge parameter ∂M∂N ξA

∣∣. Indeed all
the other higher components of ξA and LA

B can be �xed by imposing9

∂(M1 . . . ∂MnEMn+1)
A
∣∣ != 0 (H.133)

∂(M1 . . . ∂MnΩMn+1)A
B
∣∣ != 0 ∀n ∈ {1, . . . , 31} (H.134)

Actually the above equations even hold for n = 32 (the highest components of E and Ω), but then trivially, as the
total graded symmetrization of 33 fermionic indices (which is an antisymmetrization in fact) in 32 dimensions
always vanishes. For n > 32 even the derivative without graded symmetrization vanishes trivially as usual. The

9Looking at the in�nitesimal transformations

δ
“
∂M1 . . . ∂MnEMn+1

A
”˛̨̨

= ∂M1 . . . ∂Mn

“
∂Mn+1ξA + ΩMn+1B

AξB + 2ξCTCM
A
”˛̨̨

=

δ
“
∂M1 . . . ∂MnΩMn+1A

B
”˛̨̨

= −∂M1 . . . ∂Mn

“
∂Mn+1LA

B + [L, ΩMn+1 ]
”˛̨̨

it seems quite obvious that the parameters ∂M1 . . . ∂Mn+1ξA
˛̨̨

and ∂M1 . . . ∂Mn+1LA
B
˛̨̨

can be used to shift

∂(M1 . . . ∂MnEMn+1)
A
˛̨̨
and ∂(M1 . . . ∂MnΩMn+1)A

B
˛̨̨
to whatever value one likes. A rigorous proof that (H.133) and (H.134)

are accessible, however, should consider the �nite transformations. �
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second equation is even true for n = 0 (due to (H.132)) while the �rst is modi�ed for n = 0 to EM
A
∣∣ = δM

A

(H.131).
This gauge is useful to calculate explicitely higher orders in the ~θ-expansion of the vielbein or the connection

in terms of torsion and curvature. Let us consider at �rst the connection. For the n-th partial derivative of the
component with fermionic form index we can write

∂M1 . . . ∂MnΩMn+1A
B
∣∣ =

= ∂(M1 . . . ∂MnΩMn+1)A
B
∣∣︸ ︷︷ ︸

=0 (H.134)

+
2

n+ 1

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂MnΩ|Mn+1]A
B
∣∣ = (H.135)

=
2

n+ 1

n∑
i=1

∂M1 . . . ∂Mi−1∂Mi+1 . . . ∂Mn

(
RMiMn+1A

B + Ω[Mi|A
CΩ|Mn+1]C

B
)∣∣ = (H.136)

=
n

n+ 1
∂(M1 . . . ∂Mn−1|

(
2R|Mn)Mn+1A

B + Ω|Mn)A
C · ΩMn+1C

B − ΩMn+1A
C · Ω|Mn)C

B
)∣∣(H.137)

(H.134)⇒ ∂M1 . . . ∂MnΩMn+1A
B
∣∣ =

2n
n+ 1

∂(M1 . . . ∂Mn−1RMn)Mn+1A
B
∣∣ ∀n ≥ 1 (H.138)

It is tempting to think that in the Taylor expansion of ΩMA
B these terms sum up to xNRNMA

B which is,
however, not the case.10 The calculation for the components of the vielbein is very similar

∂M1 . . . ∂Mn
EMn+1

A
∣∣ =

= ∂(M1 . . . ∂MnEMn+1)
A
∣∣︸ ︷︷ ︸

=0 (H.133)

+
2

n+ 1

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂MnE|Mn+1]
A
∣∣ = (H.139)

=
2

n+ 1

n∑
i=1

∂M1 . . . ∂Mi−1∂Mi+1 . . . ∂Mn

(
TMiMn+1

A + E[Mi

BΩMn+1]B
A
)∣∣ = (H.140)

=
n

n+ 1
∂(M1 . . . ∂Mn−1|

(
2T|Mn)Mn+1

A + E|Mn)
BΩMn+1B

A − EMn+1
BΩ|Mn)B

A
)∣∣ (H.141)

For the second and third term in the bracket we can use (H.133) and (H.134) again, so that the third term
will vanish while from the second term we get a contribution only when all derivatives act on the connection,
because EMn

B
∣∣ = δMn

B . Using (H.138), we arrive at

∂M1 . . . ∂MnEMn+1
A
∣∣ = ∀n ≥ 1

=
2n
n+ 1

∂(M1 . . . ∂Mn−1TMn)Mn+1
A
∣∣ + 2(n− 1)

n+ 1
δ(M1

B ∂M2 . . . ∂Mn−1RMn)Mn+1B
A
∣∣ (H.142)

In particular we get for n = 1

∂MEN
A
∣∣ = TMN

A
∣∣

∂MΩNA
B
∣∣ = RMNA

B
∣∣

The higher ~θ-components of the vielbein and connection parts with bosonic form index (Em
A and ΩmA

B)
can likewise be expressed in terms of torsion and curvature:

∂M1 . . . ∂MnΩmA
B
∣∣ =

2
n

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂MnΩ|m]A
B
∣∣ + ∂m ∂(M1 . . . ∂Mn−1ΩMn)A

B
∣∣︸ ︷︷ ︸

=0 (H.134)

= (H.143)

= 2 ∂(M1 . . . ∂Mn−1|

(
R|Mn)mA

B +
1
2
Ω|Mn)A

CΩmC
B − 1

2
ΩmA

CΩ|Mn)C
B

)∣∣∣∣(H.144)
10The Taylor expansion of ΩMA

B reads

ΩMA
B(

→
x , ~θ) = ΩMA

B(
→
x , 0) +

X
n≥1

1

n!
xM1 · · ·xMn∂M1 . . . ∂Mn ΩMA

B
˛̨̨

=

= ΩMA
B(

→
x , 0) +

X
n≥1

1

n!

2n

n + 1
xM1 · · ·xMn ∂M1 . . . ∂Mn−1RMnMA

B
˛̨̨

=

= ΩMA
B(

→
x , 0) + 2

X
n≥1

1

(n + 1)!
xM1 · · ·xMn ∂M1 . . . ∂Mn (xN RNMA

B)
˛̨̨

�
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(H.134)⇒ ∂M1 . . . ∂Mn
ΩmA

B
∣∣ = 2 ∂(M1 . . . ∂Mn−1|R|Mn)mA

B
∣∣ ∀n ≥ 1 (H.145)

∂M1 . . . ∂MnEn
A
∣∣ =

2
n

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂Mn
E|m]

A
∣∣ + ∂m ∂(M1 . . . ∂Mn−1EMn)

A
∣∣︸ ︷︷ ︸

=0 (H.133),(H.131)

= (H.146)

= 2 ∂(M1 . . . ∂Mn−1|

(
T|Mn)m

A +
1
2
E|Mn)

BΩmB
A − 1

2
Em

BΩ|Mn)B
A

)∣∣∣∣ = (H.147)

(H.133),(H.134)
=

(H.131)
2 ∂(M1 . . . ∂Mn−1TMn)m

A
∣∣ + δ(Mn

B ∂M1 . . . ∂Mn−1)ΩmB
A
∣∣ (H.148)

In particular for n = 1 we get

∂M Em
A
∣∣ = 2 TMm

A
∣∣ + δM

B ΩmB
A
∣∣ (H.149)

while for n > 1 we can use (H.145) to arrive at

∂M1 . . . ∂Mn
En

A
∣∣ = 2 ∂(M1 . . . ∂Mn−1TMn)m

A
∣∣ + 2δ(M1

B ∂M2 . . . ∂Mn−1RMn)mB
A
∣∣ ∀n ≥ 2 (H.150)

In practice we are given constraints on torsion and curvature components with only �at indices. Rewriting
the equations (H.138),(H.142),(H.145),(H.149) and (H.150) with �at components yields the following rekursion
realtions

∂M1 . . . ∂MnΩMn+1A
B
∣∣ =

2n
n+ 1

δ(Mn

C∂M1 . . . ∂Mn−1)(EMn+1
DRCDA

B)
∣∣ ∀n ≥ 1 (H.151)

∂M1 . . . ∂Mn
EMn+1

A
∣∣ =

2n
n+ 1

δ(Mn

C∂M1 . . . ∂Mn−1)(EMn+1
DTCD

A)
∣∣ + (∀n ≥ 1)

+
2(n− 1)
n+ 1

δ(Mn−1
CδMn

B ∂M1 . . . ∂Mn−2)(EMn+1
DRCDB

A)
∣∣ (H.152)

∂M1 . . . ∂MnΩmA
B
∣∣ = 2δ(Mn

C ∂M1 . . . ∂Mn−1)(Em
DRCDA

B)
∣∣ ∀n ≥ 1 (H.153)

∂M Em
A
∣∣ = 2δMC Em

DTCD
A
∣∣ + δM

B ΩmB
A
∣∣ (H.154)

∂M1 . . . ∂MnEn
A
∣∣ = 2δ(Mn

C ∂M1 . . . ∂Mn−1)(Em
DTCD

A)
∣∣ +

+2δ(Mn

BδMn−1
C ∂M1 . . . ∂Mn−2)(Em

DRCDB
A)
∣∣ ∀n ≥ 2 (H.155)

H.3 Stabilizer

H.3.1 Stabilizer of the Wess Zumino gauge

In order to recover the supergravity transformations, we need to determine those supergauge transformations
which leave the Wess-Zumino-gauge untouched. Let us start with the vielbein which was �xed to EM

A
∣∣ = δM

A

(H.100), and remember the general transformation (H.19)

δEM
A = ∂MξA + ΩMC

AξC︸ ︷︷ ︸
∇M ξA

+2ξCTCM
A + LB

AEM
B (H.156)

The ~θ = 0 component of EM
A in the present WZ gauge thus transforms as

δ EM
A
∣∣ = ξA

M + ΩMC
A
∣∣︸ ︷︷ ︸

=0 (H.127)

ξC
0 + 2ξC

0 TCM
A
∣∣ + L0 B

A EM
B
∣∣︸ ︷︷ ︸

δMB (H.100)

= (H.157)

= ξA
M + 2ξC

0 TCM
A
∣∣ + L0 B

AδM
B (H.158)

In order to preserve the gauge of the vielbein, we thus need that the above variation vanishes

ξA
M = −2ξC

0 TCM
A
∣∣ − δMBL0 B

A (H.159)

This can be made more explicit by splitting the index A in (a,α, α̂). The vector ξA can then be written as

ξa = ξa
0 − 2xMξC

0 TCM
a| +O(~θ

2
) (H.160)

ξα = ξα
0 − xµ

(
2ξC

0 TCµ
α| + δµ

βL0 β
α
)
− 2xµ̂ξC

0 TCµ̂
α| +O(~θ

2
) (H.161)

ξα̂ = ξα̂
0 − 2xµξC

0 TCµ
α̂
∣∣ − xµ̂

(
2ξC

0 TCµ̂
α̂
∣∣ + δµ̂

β̂L0 β̂
α̂
)

+O(~θ
2
) (H.162)
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So far we have not made use of any torsion constraints.
The gauge �xing condition of the connection was ΩMA

B
∣∣ = 0, while its general gauge transformation reads

(H.25)
δΩMA

B = 2ξKRKMA
B − ∂MLA

B − [L,ΩM ]AB (H.163)

The gauge is thus preserved if

LMA
B != 2ξK

0 RKMA
B
∣∣ (H.164)

or

LA
B(

→
x ,~θ) = L0 A

B(
→
x ) + 2xMξK

0 RKMA
B
∣∣ +O(~θ

2
) (H.165)

H.3.2 Stabilizer of the additional gauge �xing conditions

Remember the additional gauge �xing conditions (H.133) and (H.134)

∂(M1 . . . ∂MnEMn+1)
A
∣∣ != 0, ∂(M1 . . . ∂MnΩMn+1)A

B
∣∣ != 0 ∀n ≥ 1 (H.166)

Stabilizing the �rst condition

δ ∂(M1 . . . ∂MnEMn+1)
A
∣∣ =

= ∂(M1 . . . ∂Mn|
(
∂|Mn+1)ξ

A + Ω|Mn+1)C
AξC + 2ξCTC|Mn+1)

A + LB
AE|Mn+1)

B)∣∣ = (H.167)

= ∂(M1 . . . ∂Mn|
(
∂|Mn+1)ξ

A + 2ξCTC|Mn+1)
A
)∣∣ (H.168)

implies

∂M1 . . . ∂Mn+1ξ
A
∣∣ = −2∂(M1 . . . ∂Mn|

(
ξCTC|Mn+1)

A
)∣∣ ∀n ≥ 1 (H.169)

Stabilizing �nally the second additional condition (the one on the connection)

δ ∂(M1 . . . ∂MnΩMn+1)A
B
∣∣ =

= ∂(M1 . . . ∂Mn|
(
2ξKRK|Mn+1)A

B − ∂|Mn+1)LA
B − [L,Ω|Mn+1)]A

B
)∣∣ = (H.170)

= ∂(M1 . . . ∂Mn|
(
2ξKRK|Mn+1)A

B − ∂|Mn+1)LA
B
)∣∣ (H.171)

implies

∂M1 . . . ∂Mn+1LA
B
∣∣ = 2 ∂(M1 . . . ∂Mn|

(
ξKRK|Mn+1)A

B
)∣∣ ∀n ≥ 1 (H.172)

The two conditions (H.169) and (H.172) a�ect only terms of order 2 and higher in ~θ of the transformation
parameters ξA and LA

B and therefore do not a�ect our earlier result (H.160)-(H.162) and (H.165) for the
stabilizer of the WZ gauge.

H.3.3 Local Lorentz transformations as part of the stabilizer

For a reasonable gauge �xing we should still have local Lorentz invariance and the bosonic di�eomorphism as
part of the stabilizer group. We recover the local structure group transformations, if we set

ξC
0 = 0 (H.173)

which leads to

LA
B(

→
x ,~θ) = L0 A

B(
→
x ) +O(~θ

2
) (H.174)

ξa = O(~θ
2
) (H.175)

ξα = −xµδµ
βL0 β

α +O(~θ
2
) (H.176)

ξα̂ = −xµ̂δµ̂
β̂L0 β̂

α̂ +O(~θ
2
) (H.177)

Acting with such a transformation for example on a scalar super�eld like the dilaton Φ(ph) yields

δΦ(ph) = ξC∇CΦ(ph) = −xµδµ
βL0 β

γ∇γΦ(ph) (H.178)

That means for the θ-component λµ, that it transforms, as if µ was a spinor index.

δλµ = ∂µδ(Φ(ph)) = (H.179)

= −δµβL0 β
γ ∇γΦ(ph)

∣∣ = (H.180)

= −δµβL0 β
γδγ

νλν (H.181)

Although this might seem intuitive, it is important to note that this is only due to the WZ-gauge, which couples
part of the superdi�eomorphisms to the local structure group transformations. Originally, the curved index µ
does not transform under structure group transformations.
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H.3.4 Bosonic di�eomorphisms as part of the stabilizer

The equations for the stabilizer are given in �at indices ξA. We will need this to extract the local supersymmetry
transformations. But in order to see whether the transformation with parameter ξM (

�
x ) = (ξm

0 (
→
x ), 0, 0),

corresponding to bosonic di�eomorphisms, is contained in the stabilizer, a change to curved indices preferable.
Instead of using the vielbein to switch from �at to curved index, we check this directly. The transformation of
the vielbein components with this parameter is

δ EM
A
∣∣ = ξk

0∂k EM
A
∣∣︸ ︷︷ ︸

δMA

+ ∂MξK
∣∣︸ ︷︷ ︸

=0

EK
A
∣∣ = 0 (H.182)

δ∂(M1 . . . ∂MnEMn+1)
A
∣∣ = ∂(M1 . . . ∂Mn|

(
ξk∂kE|Mn+1)

A + ∂|Mn+1)ξ
kEk

A
)∣∣ = (H.183)

= ξk∂k∂(M1 . . . ∂Mn|E|Mn+1)
A
∣∣ = 0 (H.184)

The same is true for the connection

δ ΩMA
B
∣∣ = ξk

0∂k ΩMA
B
∣∣ + ∂MξK

∣∣︸ ︷︷ ︸
=0

ΩKA
B
∣∣ = 0 (H.185)

δ∂(M1 . . . ∂MnΩMn+1)A
B
∣∣ = . . . = 0 (H.186)

H.4 Local SUSY-transformation

H.4.1 The transformation parameter

This section could actually be another subsection of the �stabilizer� section. But as we have special interest in
the local SUSY transformations, we make it a seperate section. The supersymmetry transformations are de�ned
to be the set of transformations within the stabilizer with

SUSY: ξc
0 = L0 A

B = 0, 0 6= ξγ
0 ≡ εγ , 0 6= ξγ̂

0 ≡ ε̂γ̂ (H.187)

From (H.159) and (H.164) we thus get

ξM
A = −2ξC

0 TCM
A
∣∣ , LMA

B = 2ξC
0 RCMA

B
∣∣ (H.188)

Or more explicitely (compare (H.160)-(H.162) and (H.165)):

ξa = −2xµ
(
εγ Tγµ

a| + ε̂γ̂ Tγ̂µ
a|
)
− 2xµ̂

(
εγ Tγµ̂

a| + ε̂γ̂ Tγ̂µ̂
a|
)

+O(~θ
2
) (H.189)

ξα = εα − 2xµ
(
εγ Tγµ

α| + ε̂γ̂ Tγ̂µ
α|
)
− 2xµ̂

(
εγ Tγµ̂

α| + ε̂γ̂ Tγ̂µ̂
α|
)

+O(~θ
2
) (H.190)

ξα̂ = ε̂α̂ − 2xµ
(
εγ Tγµ

α̂
∣∣ + ε̂γ̂ Tγ̂µ

α̂
∣∣)− 2xµ̂

(
εγ Tγµ̂

α̂
∣∣ + ε̂γ̂ Tγ̂µ̂

α̂
∣∣)+O(~θ

2
) (H.191)

LA
B = 2xµ

(
εγ RγµA

B
∣∣ + ε̂γ̂ Rγ̂µA

B
∣∣)+ 2xµ̂

(
εγ Rγµ̂A

B
∣∣ + ε̂γ̂ Rγ̂µ̂A

B
∣∣)+O(~θ

2
) (H.192)

Note that L0 A
B = 0 as part of the stabilizer of the gauge �xing is not possible any longer if (part of) the local

structure group transformation (e.g. the local scale transformation) is �xed. In the case where we �x for example

Φ| != 0 or Φ| != Φ(ph)

∣∣, we get the additional stabilizer condition ξC”∇CΦ”− L(D)
∣∣ != 0 or equivalently

L
(D)
A

B
∣∣∣ != ξC

0 φC (H.193)

.

H.4.2 The supersymmetry algebra

In order to read of the algebra of the local supersymmetry transformations from (H.77), we need the transfor-

mation of
��

ξ itself under a supersymmetry transformation

δηξ
A
∣∣ = −2xMξC

0 δηTCM
A
∣∣ = (H.194)

= −2xMξC
0 δM

B L(cov)
��
η

TCB
A

∣∣∣∣ = (H.195)

= −2xMδM
DξC

0 η
B
0 ∇BTCD

A
∣∣ (H.196)

δξM
∣∣ = δξA · EA

M + ξa
0δEa

M (H.197)
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and also the transformation of LA
B under supersymmetry:

δLA
B = 2xMξC

0 δRCMA
B
∣∣ = (H.198)

= 2xMξC
0 δM

D L(cov)
��
η

RCDA
B

∣∣∣∣ = (H.199)

= 2xMξC
0 δM

D ηE∇ERCDA
B
∣∣ (H.200)

The algebra (H.77) then becomes

[δ1, δ2] = L(cov)

[
��
ξ2 ,

��
ξ1 ]+δ1

��
ξ2 −δ2

��
ξ1

+R
(
2ξK

1 ξ
L
2 RKL ·

· + [L1, L2]·· + δ1L2 ·
· − δ2L1 ·

·) (H.201)

The Lie bracket of the vector �elds reads

[
��

ξ ,
��
η ]A = ξC∇Cη

A − ηC∇Cξ
A − 2ξCTCB

AηB (H.202)

[
��

ξ ,
��
η ]A

∣∣∣∣ = ξC
0 ηC

A − ηB
0 ξB

A − 2ξC
0 TCB

A
∣∣ ηB

0 = (H.203)

= −2ξC
0 η

B
0 TBC

A
∣∣ + 2ηB

0 ξ
C
0 TCB

A
∣∣ − 2ξC

0 TCB
A
∣∣ ηB

0 = (H.204)

= 2ξC
0 TCB

A
∣∣ ηB

0 (H.205)

[
��

ξ ,
��
η ]A

∣∣∣∣ + δηξ
A − δξηA = 2ξC

0

(
TCB

A
∣∣ − xMδM

D ∇BTCD
A
∣∣) ηB

0 (H.206)

H.4.3 Transformation of the �elds

The supersymmetry transformation of the �elds is simply given by

δε = L(cov)
��
ξ (ε)

+R(L(ε)··)

where ξA(ε) and LA
B(ε) are of the special form given in (H.187)-(H.192). Let us derive the transformations

of all the �elds that we will need. In order to extract the transformation of the (leading) components, we will
again make frequent use of the Wess Zumino gauge (H.100) and (H.127) (using Em

a| ≡ em
a, Em

A
∣∣ ≡ ψm

A).
In any supergravity theory we have a vielbein and a structure group connection which we will consider �rst.

H.4.3.1 Vielbein (bosonic vielbein and gravitino)

Remember, the vielbein transforms according to (H.19) as

δEM
A = ∂MξA + ΩMC

AξC︸ ︷︷ ︸
∇M ξA

+2ξCTCM
A + LB

AEM
B (H.207)

Using (H.187) and (H.188) the transformation of the nonvanishing leading vielbein components (the bosonic
vielbein and the gravitino) becomes

δem
a = 2ξC

0 TCm
a| (H.208)

δψm
A = ∂mε

A + ΩmC
A∣∣ εC + 2εC TCm

A∣∣ (H.209)

In practice, we will be given constraints on torsion components with �at indices, s.t. it is useful to rewrite the
equations in those components:

δem
a = 2εγ

(
em

b Tγb
a| + ψm

β Tγβ
a| + ψ̂m

β̂ Tγβ̂
a
∣∣∣)+

+2ε̂γ̂
(
em

b Tγ̂b
a| + ψm

β Tγ̂β
a| + ψ̂m

β̂ Tγ̂β̂
a
∣∣∣) (H.210)

δψm
α = ∂mε

α + Ωmγ
α| εγ +

+2εγ
(
em

b Tγb
α| + ψm

β Tγβ
α| + ψ̂m

β̂ Tγβ̂
α
∣∣∣)+

+2ε̂γ̂
(
em

b Tγ̂b
α| + ψm

β Tγ̂β
α| + ψ̂m

β̂ Tγ̂β̂
α
∣∣∣) (H.211)

δψ̂m
α̂ = ∂mε̂

α̂ + Ωmγ̂
α̂
∣∣ ε̂γ̂ +

+2εγ
(
em

b Tγb
α̂
∣∣ + ψm

β Tγβ
α̂
∣∣ + ψ̂m

β̂ Tγβ̂
α̂
∣∣∣)+

+2ε̂γ̂
(
em

b Tγ̂b
α̂
∣∣ + ψm

β Tγ̂β
α̂
∣∣ + ψ̂m

β̂ Tγ̂β̂
α̂
∣∣∣) (H.212)
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For the transformation of the gravitinos we need additional information about the connection. So far, we
assumed in the derivation only that the connection is blockdiagonal and did not make use of any torsion
constraints or something similar. Right now, let us assume that we have a connection with

∇Mγc
αβ

!= ∇Mγc
α̂β̂

!= 0 (H.213)

which relates the three blocks of ΩMA
B and restricts the structure group to local Lorentz and local scale

transformations. We can then make use of equation (G.47), which relates the superspace connection to the Levi
Civita connection and other objects:

Ωkβ
ε| = ω

(LC)
kβ

ε +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β
ε +

1
2
ek

a Ωa| δβε (H.214)

Ωkβ̂
ε̂
∣∣∣ = ω

(LC)

kβ̂

ε̂ +
1
4
ek

a
[
ea

meb
n Tmn

d
∣∣ ηdc + ec

mea
n Tmn

d
∣∣ ηdb

−eb
mec

n Tmn
d
∣∣ ηda + Ωb| ηca − Ωc| ηba

]
γbc

β̂
ε̂ +

1
2
ek

a Ωa| δβ̂
ε̂ (H.215)

with

Tmn
d
∣∣ = em

aen
b Tab

d
∣∣ + 2em

aψn
B TaB

d
∣∣ + ψm

Aψn
B TAB

d
∣∣ (H.216)

H.4.3.2 Connection

Remember the general gauge transformation of the structure group connection (H.25)

δΩMA
B = 2ξKRKMA

B − ∂MLA
B − [L,ΩM ]AB (H.217)

In the case where a scale part of the connection is present, this transforms accordingly as (see (H.30))

δΩ(D)
M = 2ξCF

(D)
CM − ∂ML(D) (H.218)

For the stabilizer of WZ-gauge with ΩMA
B
∣∣ = 0 and δ ΩMA

B
∣∣ = 0 and for the choice ξc

0 = L0 A
B (corre-

sponding to local supersymmetry (H.187) and (H.188)) the nontrivial part of the above equations becomes (for
~θ = 0):

δ ΩmA
B
∣∣ = 2ξC

0 RCmA
B
∣∣ (H.219)

δ Ω(D)
m

∣∣∣ = 2ξC
0 F

(D)
Cm

∣∣∣ (H.220)

More explicitely (replacing εγ ≡ ξγ
0 , ε̂γ̂ ≡ ξγ̂

0 ) this reads

δ Ωma
b
∣∣ = 2εγ

(
em

d Rγda
b
∣∣ + ψm

δ Rγδa
b
∣∣ + ψ̂m

δ̂ Rγδ̂a
b
∣∣∣)+

+2εγ̂
(
em

d Rγ̂da
b
∣∣ + ψm

δ Rγ̂δa
b
∣∣ + ψ̂m

δ̂ Rγ̂δ̂a
b
∣∣∣) (H.221)

δ Ω(D)
m

∣∣∣ = 2εγ
(
em

d F
(D)
γd

∣∣∣ + ψm
δ F

(D)
γδ

∣∣∣ + ψ̂m
δ̂ F

(D)

γδ̂

∣∣∣)+

+2εγ̂
(
em

d F
(D)
γ̂d

∣∣∣ + ψm
δ F

(D)
γ̂δ

∣∣∣ + ψ̂m
δ̂ F

(D)

γ̂δ̂

∣∣∣) (H.222)

H.4.3.3 Compensator �eld

A compensator �eld is not necessarily present in a supergravity theory. In our context such a �eld Φ is used to
allow a scale transformation of the metric in �at indices:

GAB ≡ e2ΦηAB (H.223)

Where ηAB is some constant metric which is invariant under the orthogonal transformations. In our case, its
bosonic part is just the Minkowski metric and the rest is zero. There is no way, how a constant metric can
scale. Therefore the compensator �eld Φ takes over the scaling of GAB under scale transformation by simply
getting shifted with the scale parameter

R(L) Φ = Φ− L(D) (H.224)
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Similarly, the covariant derivative will be de�ned to act only on Φ (and not on ηAB) in such a way that the
covariant derivative of GAB has the form that is indicated by its indices.

∇MGAB = 2(∂MΦ− ΩM )GAB (H.225)

⇒ ”∇MΦ” = 2(∂MΦ− ΩM ) (H.226)

The general gauge transformation of the compensator �eld thus reads (H.40)

δΦ = ξK
(
∂KΦ− Ω(D)

K

)
︸ ︷︷ ︸

”∇KΦ”

−L(D) (H.227)

De�ne

φ ≡ Φ| (H.228)

φM ≡ ∂MΦ| (H.229)

For the lowest component , this implies the following local SUSY transformation in the WZ gauge

δφ = εγφγ + ε̂γ̂φγ̂ (H.230)

The transformation is zero, if we combine it with an additional scale stabilizer transformation (H.193)

L(D) = ξC
0 φC (H.231)

H.4.3.4 Scalar �eld (e.g. Dilaton and dilatino)

The Dilaton �eld is a scalar and thus has the simple transformation

δΦ(ph) = ξC ∇CΦ(ph)︸ ︷︷ ︸
EC

M ∂MΦ(ph)

= L��
ξ
Φ(ph) (H.232)

De�ne now the dilatino to be

λA ≡ ∇AΦ(ph)

∣∣ = δA
M ∂MΦ(ph)

∣∣ (H.233)

λM = ∂MΦ(ph)

∣∣ (H.234)

⇒ Φ(ph) = φ(ph) + xµλµ + xµ̂λ̂µ̂ +
1
2
xMxN ∂M∂N Φ| + . . . (H.235)

For the transformation of the dilaton we use the fact that the variation of a covariant derivative is simply the
covariantized Lie derivative (supergauge transformation) plus the structure group transformation of the new
tensor according to the new index structure (see footnote 3 on page 158 and (H.15)). We thus have

δ(∇AΦ(ph)) = ξC∇C∇AΦ(ph) − LA
B∇BΦ(ph) (H.236)

For the fermionic components at ~θ = 0, this reads simply

δλA = εC ∇C∇AΦ(ph)

∣∣ (H.237)

Apparently, we need some equations of motion at this point, in order to say more. We can, however, relate this

expression explicitely to the ~θ
2
component ∂M∂N Φ(ph)

∣∣ of the dilaton:
δλA = εCδC

M ∂M(EA
K∂KΦ(ph))

∣∣ = (H.238)

= εCδC
M (

∂MEA
K
∣∣ ∂KΦ(ph)

∣∣ + δA
K ∂M∂KΦ(ph)

∣∣) (H.239)

Now we can use that

∂MEA
K
∣∣ = − EA

L
∣∣ ∂MEL

B
∣∣ EB

K
∣∣ = (H.240)

= − EA
L∣∣ ∂MEL

B
∣∣︸ ︷︷ ︸

∂[MEL]
B|

EB
K
∣∣ = (H.241)

= −δAL TML
B
∣∣ EB

K
∣∣ (H.242)

δλA = −εC TCA
b
∣∣ eb

k∂kφ(ph) + εC TCA
b
∣∣ ψb

KλK − εC TCA
B∣∣ λB +

+εCδC
MδA

K ∂M∂KΦ(ph)

∣∣ (H.243)
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H.4.3.5 Bispinor �elds (RR-�elds)

Apart from that we will be interested in the transformation of RR-�elds

δPαβ̂ = ξC∇CPαβ̂ + Lγ
αPγβ̂ + Lγ̂

β̂Pαγ̂ (H.244)

The leading component transforms as

δpαβ̂ = εγ pγ
αβ̂︸ ︷︷ ︸

cγ
αβ̂

H.4.3.6 Three form (e.g. H-�eld)

Finally we consider the transformation of a three form �eld, the H-�eld HABC or HMNK

δHABC = ξD∇DHABC − 3L[A|
DHD|BC] (H.245)

δHMNK = ξD∇DHMNK + 3(∇[M |ξ
L + 2ξPTP [M |

L)HL|NK] (H.246)

It makes some di�erence whether we consider the H-�eld with �at coordinates or the one with curved ones.
The di�erence lies in the transformation of the vielbeins. Physically, we are interested in the transformation of
the bosonic H-�eld.

δ Hmnk| = εD ∂DHmnk| + (∇[m|ε
CHC|nk] + 2εPTP[m|

CHC|nk]) (H.247)



Bibliography

[1] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, �Vacuum con�gurations for superstrings,�
Nucl. Phys. B258 (1985) 46�74. (pages 2.)

[2] A. Strominger, �Superstrings with torsion,� Nucl. Phys. B274 (1986) 253. (pages 2.)

[3] M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, �Generalized structures of n=1 vacua,� JHEP 11
(2005) 020, hep-th/0505212. (Cited on pages 3 and 78.)

[4] M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, �Supersymmetric backgrounds from generalized
Calabi-Yau manifolds,� JHEP 08 (2004) 046, hep-th/0406137. (Cited on pages 3 and 78.)

[5] N. Berkovits, �Super-Poincare covariant quantization of the superstring,� JHEP 04 (2000) 018,
hep-th/0001035. (Cited on pages 3 and 25.)

[6] P. A. Grassi, G. Policastro, M. Porrati, and P. van Nieuwenhuizen, �Covariant quantization of
superstrings without pure spinor constraints,� JHEP 10 (2002) 054, hep-th/0112162. (Cited on
pages 3 and 26.)

[7] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, �An introduction to the covariant quantization of
superstrings,� Class. Quant. Grav. 20 (2003) S395�S410, hep-th/0302147. (Cited on pages 3, 26,
and 129.)

[8] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, �The quantum superstring as a WZNW model,�
Nucl. Phys. B676 (2004) 43�63, hep-th/0307056. (Cited on pages 3, 26, and 27.)

[9] S. Guttenberg, J. Knapp, and M. Kreuzer, �On the covariant quantization of type II superstrings,�
JHEP 06 (2004) 030, hep-th/0405007. (Cited on pages 3 and 27.)

[10] N. Berkovits, �Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the
superstring,� JHEP 09 (2004) 047, hep-th/0406055. (Cited on pages 3, 26, and 102.)

[11] N. Berkovits and P. S. Howe, �Ten-dimensional supergravity constraints from the pure spinor formalism
for the superstring,� Nucl. Phys. B635 (2002) 75�105, hep-th/0112160. (Cited on pages 3, 28, 32, 37,
44, 46, and 60.)

[12] O. Chandia, �A note on the classical brst symmetry of the pure spinor string in a curved background,�
JHEP 07 (2006) 019, hep-th/0604115. (Cited on pages 3, 28, 45, and 50.)

[13] N. Dragon, �Torsion and curvature in extended supergravity,� Z. Phys. C2 (1979) 29�32. (Cited on
pages 3, 4, 6, and 147.)

[14] S. Guttenberg, �Brackets, sigma models and integrability of generalized complex structures,�
hep-th/0609015. (Cited on pages 4 and 78.)

[15] J. Wess and J. Bagger, �Supersymmetry and supergravity,�. Princeton, USA: Univ. Pr. (1992) 259 p.
(Cited on pages 6, 59, 154, and 156.)

[16] P. Van Nieuwenhuizen, �Supergravity,� Phys. Rept. 68 (1981) 189�398. (pages 6.)

[17] W. Siegel, �Classical superstring mechanics,� Nucl. Phys. B263 (1986) 93. (pages 25.)

[18] N. Berkovits, �Pure spinor formalism as an n = 2 topological string,� JHEP 10 (2005) 089,
hep-th/0509120. (pages 26.)

[19] N. Berkovits and C. R. Mafra, �Equivalence of two-loop superstring amplitudes in the pure spinor and
rns formalisms,� Phys. Rev. Lett. 96 (2006) 011602, hep-th/0509234. (pages 26.)

175

http://www.arXiv.org/abs/hep-th/0505212
http://www.arXiv.org/abs/hep-th/0406137
http://www.arXiv.org/abs/hep-th/0001035
http://www.arXiv.org/abs/hep-th/0112162
http://www.arXiv.org/abs/hep-th/0302147
http://www.arXiv.org/abs/hep-th/0307056
http://www.arXiv.org/abs/hep-th/0405007
http://www.arXiv.org/abs/hep-th/0406055
http://www.arXiv.org/abs/hep-th/0112160
http://www.arXiv.org/abs/hep-th/0604115
http://www.arXiv.org/abs/hep-th/0609015
http://www.arXiv.org/abs/hep-th/0509120
http://www.arXiv.org/abs/hep-th/0509234


BIBLIOGRAPHY 176

[20] N. Berkovits and C. R. Mafra, �Some superstring amplitude computations with the non- minimal pure
spinor formalism,� hep-th/0607187. (pages 26.)

[21] N. Berkovits and N. Nekrasov, �Multiloop superstring amplitudes from non-minimal pure spinor
formalism,� hep-th/0609012. (pages 26.)

[22] C. Stahn, �Fermionic superstring loop amplitudes in the pure spinor formalism,� JHEP 05 (2007) 034,
arXiv:0704.0015 [hep-th]. (pages 26.)

[23] N. Berkovits and D. Z. Marchioro, �Relating the Green-Schwarz and pure spinor formalisms for the
superstring,� JHEP 01 (2005) 018, hep-th/0412198. (pages 26.)

[24] N. A. Nekrasov, �Lectures on curved beta-gamma systems, pure spinors, and anomalies,�
hep-th/0511008. (pages 26.)

[25] N. Berkovits, �Explaining pure spinor superspace,� hep-th/0612021. (pages 26.)

[26] N. Berkovits, �Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background,�
Nucl. Phys. B431 (1994) 258�272, hep-th/9404162. (pages 26.)

[27] J. Kappeli, S. Theisen, and P. Vanhove, �Hybrid formalism and topological amplitudes,�
hep-th/0607021. (pages 26.)

[28] I. Linch, William D. and B. C. Vallilo, �Hybrid formalism, supersymmetry reduction, and ramond-
ramond �uxes,� hep-th/0607122. (pages 26.)

[29] M. Chesterman, �Ghost constraints and the covariant quantization of the superparticle in ten
dimensions,� JHEP 02 (2004) 011, hep-th/0212261. (pages 26.)

[30] M. Chesterman, �On the cohomology and inner products of the Berkovits superparticle and superstring,�
hep-th/0404021. (pages 26.)

[31] Y. Aisaka and Y. Kazama, �A new �rst class algebra, homological perturbation and extension of pure
spinor formalism for superstring,� JHEP 02 (2003) 017, hep-th/0212316. (pages 26.)

[32] Y. Aisaka and Y. Kazama, �Operator mapping between RNS and extended pure spinor formalisms for
superstring,� JHEP 08 (2003) 047, hep-th/0305221. (pages 26.)

[33] Y. Aisaka and Y. Kazama, �Relating Green-Schwarz and extended pure spinor formalisms by similarity
transformation,� JHEP 04 (2004) 070, hep-th/0404141. (pages 26.)

[34] Y. Aisaka and Y. Kazama, �Origin of pure spinor superstring,� JHEP 05 (2005) 046, hep-th/0502208.
(pages 26.)

[35] Y. Aisaka and Y. Kazama, �Towards pure spinor type covariant description of supermembrane: An
approach from the double spinor formalism,� JHEP 05 (2006) 041, hep-th/0603004. (Not cited.)

[36] M. Matone, L. Mazzucato, I. Oda, D. Sorokin, and M. Tonin, �The superembedding origin of the
Berkovits pure spinor covariant quantization of superstrings,� Nucl. Phys. B639 (2002) 182�202,
hep-th/0206104. (pages 26.)

[37] I. Oda and M. Tonin, �On the b-antighost in the pure spinor quantization of superstrings,� Phys. Lett.
B606 (2005) 218�222, hep-th/0409052. (pages 26.)

[38] I. Oda and M. Tonin, �Y-formalism in pure spinor quantization of superstrings,� hep-th/0505277.
(pages 26.)

[39] I. Oda and M. Tonin, �The b-�eld in pure spinor quantization of superstrings,� hep-th/0510223.
(pages 26.)

[40] I. Oda and M. Tonin, �Y-formalism and b ghost in the non-minimal pure spinor formalism of
superstrings,� Nucl. Phys. B779 (2007) 63�100, arXiv:0704.1219 [hep-th]. (pages 26.)

[41] J. Kluson, �Note about classical dynamics of pure spinor string on AdS(5) x S**5 background,� Eur.
Phys. J. C50 (2007) 1019�1030, hep-th/0603228. (Not cited.)

[42] G. Gotz, T. Quella, and V. Schomerus, �The WZNW model on PSU(1,1|2),� JHEP 03 (2007) 003,
hep-th/0610070. (Not cited.)

http://www.arXiv.org/abs/hep-th/0607187
http://www.arXiv.org/abs/hep-th/0609012
http://www.arXiv.org/abs/arXiv:0704.0015 [hep-th]
http://www.arXiv.org/abs/hep-th/0412198
http://www.arXiv.org/abs/hep-th/0511008
http://www.arXiv.org/abs/hep-th/0612021
http://www.arXiv.org/abs/hep-th/9404162
http://www.arXiv.org/abs/hep-th/0607021
http://www.arXiv.org/abs/hep-th/0607122
http://www.arXiv.org/abs/hep-th/0212261
http://www.arXiv.org/abs/hep-th/0404021
http://www.arXiv.org/abs/hep-th/0212316
http://www.arXiv.org/abs/hep-th/0305221
http://www.arXiv.org/abs/hep-th/0404141
http://www.arXiv.org/abs/hep-th/0502208
http://www.arXiv.org/abs/hep-th/0603004
http://www.arXiv.org/abs/hep-th/0206104
http://www.arXiv.org/abs/hep-th/0409052
http://www.arXiv.org/abs/hep-th/0505277
http://www.arXiv.org/abs/hep-th/0510223
http://www.arXiv.org/abs/arXiv:0704.1219 [hep-th]
http://www.arXiv.org/abs/hep-th/0603228
http://www.arXiv.org/abs/hep-th/0610070


BIBLIOGRAPHY 177

[43] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, �The massless spectrum of covariant
superstrings,� JHEP 11 (2002) 001, hep-th/0202123. (pages 26.)

[44] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, �The covariant quantum superstring and
superparticle from their classical actions,� Phys. Lett. B553 (2003) 96�104, hep-th/0209026. (pages 26.)

[45] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, �Superstrings and WZNW models,�
hep-th/0402122. (pages 26.)

[46] P. A. Grassi and P. van Nieuwenhuizen, �Gauging cosets,� hep-th/0403209. (pages 26.)

[47] P. A. Grassi and G. Policastro, �Super-chern-simons theory as superstring theory,� hep-th/0412272.
(pages 26.)

[48] P. A. Grassi and P. van Nieuwenhuizen, �N = 4 superconformal symmetry for the covariant quantum
superstring,� hep-th/0408007. (pages 27.)

[49] O. Chandia and B. C. Vallilo, �Conformal invariance of the pure spinor superstring in a curved
background,� JHEP 04 (2004) 041, hep-th/0401226. (pages 28.)

[50] O. A. Bedoya and O. Chandia, �One-loop conformal invariance of the type ii pure spinor superstring in a
curved background,� JHEP 01 (2007) 042, hep-th/0609161. (Cited on pages 28, 41, 52, and 60.)

[51] P. A. Grassi and L. Tamassia, �Vertex operators for closed superstrings,� JHEP 07 (2004) 071,
hep-th/0405072. (pages 28.)

[52] A. V. Minkevich and F. Karakura, �On the relativistic dynamics of spinning matter in space-time with
curvature and torsion,� J. Phys. A: Math. Gen. (1983) 1409�1418. (pages 39.)

[53] H. Luckock and I. Moss, �The quantum geometry of random surfaces and spinning membranes,� Class.
Quant. Grav. 6 (1989) 1993. (pages 39.)

[54] A. Minkevich and F. I. Fedorov Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. 5 (1968) 35. (pages 39.)

[55] A. Minkevich and A. A. Sokolski Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. 4 (1975) 72. (pages 39.)

[56] S. Guttenberg, �Derived brackets from super-poisson brackets,� hep-th/0703085. (pages 78.)

[57] Y. Kosmann-Schwarzbach, �Derived brackets,� Lett. Math. Phys. 69 (2004) 61�87, math.dg/0312524.
(Cited on pages 78, 82, 87, 118, 121, and 123.)

[58] A. Alekseev and T. Strobl, �Current algebra and di�erential geometry,� JHEP 03 (2005) 035,
hep-th/0410183. (Cited on pages 78, 92, 96, 102, and 185.)

[59] M. Gualtieri, �Generalized complex geometry,� Oxford University DPhil thesis (2003) 107,
math.DG/0401221. (Cited on pages 78, 109, 112, 113, 114, and 115.)

[60] G. Bonelli and M. Zabzine, �From current algebras for p-branes to topological m- theory,� JHEP 09
(2005) 015, hep-th/0507051. (Cited on pages 78, 92, 102, and 185.)

[61] N. Hitchin, �Generalized Calabi-Yau manifolds,� Quart. J. Math. Oxford Ser. 54 (2003) 281�308,
math.dg/0209099. (Cited on pages 78 and 109.)

[62] M. Grana, J. Louis, and D. Waldram, �Hitchin functionals in N=2 supergravity,� hep-th/0505264.
(pages 78.)

[63] M. Grana, �Flux compacti�cations in string theory: A comprehensive review,� Phys. Rept. 423 (2006)
91�158, hep-th/0509003. (Cited on pages 78 and 109.)

[64] A. Kapustin and Y. Li, �Topological sigma-models with H-�ux and twisted generalized complex
manifolds,� hep-th/0407249. (pages 78.)

[65] V. Pestun and E. Witten, �The Hitchin functionals and the topological B-model at one loop,�
hep-th/0503083. (pages 78.)

[66] V. Pestun, �Topological strings in generalized complex space,� hep-th/0603145. (pages 78.)

[67] C. Jeschek, �Generalized Calabi-Yau structures and mirror symmetry,� hep-th/0406046. (pages 78.)

[68] C. Jeschek and F. Witt, �Generalised geometries, constrained critical points and ramond-ramond �elds,�
math.dg/0510131. (pages 78.)

http://www.arXiv.org/abs/hep-th/0202123
http://www.arXiv.org/abs/hep-th/0209026
http://www.arXiv.org/abs/hep-th/0402122
http://www.arXiv.org/abs/hep-th/0403209
http://www.arXiv.org/abs/hep-th/0412272
http://www.arXiv.org/abs/hep-th/0408007
http://www.arXiv.org/abs/hep-th/0401226
http://www.arXiv.org/abs/hep-th/0609161
http://www.arXiv.org/abs/hep-th/0405072
http://www.arXiv.org/abs/hep-th/0703085
http://www.arXiv.org/abs/math.dg/0312524
http://www.arXiv.org/abs/hep-th/0410183
http://www.arXiv.org/abs/math.DG/0401221
http://www.arXiv.org/abs/hep-th/0507051
http://www.arXiv.org/abs/math.dg/0209099
http://www.arXiv.org/abs/hep-th/0505264
http://www.arXiv.org/abs/hep-th/0509003
http://www.arXiv.org/abs/hep-th/0407249
http://www.arXiv.org/abs/hep-th/0503083
http://www.arXiv.org/abs/hep-th/0603145
http://www.arXiv.org/abs/hep-th/0406046
http://www.arXiv.org/abs/math.dg/0510131


BIBLIOGRAPHY 178

[69] D. Cassani and A. Bilal, �E�ective actions and n=1 vacuum conditions from su(3) x su(3)
compacti�cations,� arXiv:0707.3125 [hep-th]. (pages 78.)

[70] P. Grange and R. Minasian, �Modi�ed pure spinors and mirror symmetry,� Nucl. Phys. B732 (2006)
366�378, hep-th/0412086. (pages 78.)

[71] A. Tomasiello, �Reformulating supersymmetry with a generalized dolbeault operator,� arXiv:0704.2613
[hep-th]. (pages 78.)

[72] N. Ikeda and T. Tokunaga, �Topological membranes with 3-form h �ux on generalized geometries,�
hep-th/0609098. (pages 78.)

[73] N. Ikeda and T. Tokunaga, �An alternative topological �eld theory of generalized complex geometry,�
arXiv:0704.1015 [hep-th]. (pages 78.)

[74] U. Lindstrom, R. Minasian, A. Tomasiello, and M. Zabzine, �Generalized complex manifolds and
supersymmetry,� Commun. Math. Phys. 257 (2005) 235�256, hep-th/0405085. (Cited on pages 78, 97,
and 114.)

[75] M. Zabzine, �Lectures on generalized complex geometry and supersymmetry,� hep-th/0605148. (Cited
on pages 78 and 109.)

[76] U. Lindstrom, �A brief review of supersymmetric non-linear sigma models and generalized complex
geometry,� hep-th/0603240. (pages 78.)

[77] M. Zabzine, �Hamiltonian perspective on generalized complex structure,� Commun. Math. Phys. 263
(2006) 711�722, hep-th/0502137. (Cited on pages 78, 97, and 99.)

[78] R. Zucchini, �A sigma model �eld theoretic realization of Hitchin's generalized complex geometry,�
JHEP 11 (2004) 045, hep-th/0409181. (Cited on pages 78, 87, 93, 96, 97, 104, and 114.)

[79] R. Zucchini, �Generalized complex geometry, generalized branes and the Hitchin sigma model,� JHEP
03 (2005) 022, hep-th/0501062. (Cited on pages 78 and 97.)

[80] R. Zucchini, �A topological sigma model of bikaehler geometry,� JHEP 01 (2006) 041, hep-th/0511144.
(pages 78.)

[81] R. Zucchini, �The hitchin model, poisson-quasi-nijenhuis geometry and symmetry reduction,�
arXiv:0706.1289 [hep-th]. (pages 78.)

[82] M. Henneaux and C. Teitelboim, Quantization of gauge systems. Princeton, USA: Univ. Pr. (1992) 520
p. (Cited on pages 80, 134, 136, 137, and 139.)

[83] C. Buttin, �Théorie des opérateurs di�érentiels gradués sur les formes di�érentielles,� Bull. Soc. Math.
Fr. 102 (1974) 49�73. (Cited on pages 81, 82, 121, and 123.)

[84] A. S. Cattaneo and G. Felder, �A path integral approach to the Kontsevich quantization formula,�
Commun. Math. Phys. 212 (2000) 591�611, math.qa/9902090. (Cited on pages 87, 93, and 96.)

[85] P. Schaller and T. Strobl, �Poisson structure induced (topological) �eld theories,� Mod. Phys. Lett. A9
(1994) 3129�3136, hep-th/9405110. (pages 96.)

[86] J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen, �Non-commutative superspace from string theory,�
Phys. Lett. B574 (2003) 98�104, hep-th/0302078. (pages 104.)

[87] N. Berkovits and N. Seiberg, �Superstrings in graviphoton background and N = 1/2 + 3/2
supersymmetry,� JHEP 07 (2003) 010, hep-th/0306226. (pages 104.)

[88] H. Ooguri and C. Vafa, �The C-deformation of gluino and non-planar diagrams,� Adv. Theor. Math.
Phys. 7 (2003) 53�85, hep-th/0302109. (pages 104.)

[89] C. M. Hull, �A geometry for non-geometric string backgrounds,� JHEP 10 (2005) 065, hep-th/0406102.
(Cited on pages 104 and 112.)

[90] C. M. Hull, �Global aspects of T-duality, gauged sigma models and T- folds,� hep-th/0604178. (Cited
on pages 104, 112, and 113.)

[91] C. M. Hull, �Doubled geometry and T-folds,� hep-th/0605149. (Cited on pages 104, 112, and 113.)

http://www.arXiv.org/abs/arXiv:0707.3125 [hep-th]
http://www.arXiv.org/abs/hep-th/0412086
http://www.arXiv.org/abs/arXiv:0704.2613 [hep-th]
http://www.arXiv.org/abs/arXiv:0704.2613 [hep-th]
http://www.arXiv.org/abs/hep-th/0609098
http://www.arXiv.org/abs/arXiv:0704.1015 [hep-th]
http://www.arXiv.org/abs/hep-th/0405085
http://www.arXiv.org/abs/hep-th/0605148
http://www.arXiv.org/abs/hep-th/0603240
http://www.arXiv.org/abs/hep-th/0502137
http://www.arXiv.org/abs/hep-th/0409181
http://www.arXiv.org/abs/hep-th/0501062
http://www.arXiv.org/abs/hep-th/0511144
http://www.arXiv.org/abs/arXiv:0706.1289 [hep-th]
http://www.arXiv.org/abs/math.qa/9902090
http://www.arXiv.org/abs/hep-th/9405110
http://www.arXiv.org/abs/hep-th/0302078
http://www.arXiv.org/abs/hep-th/0306226
http://www.arXiv.org/abs/hep-th/0302109
http://www.arXiv.org/abs/hep-th/0406102
http://www.arXiv.org/abs/hep-th/0604178
http://www.arXiv.org/abs/hep-th/0605149


BIBLIOGRAPHY 179

[92] A. Dabholkar and C. Hull, �Generalised T-duality and non-geometric backgrounds,� JHEP 05 (2006)
009, hep-th/0512005. (Cited on pages 104, 112, and 113.)

[93] M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, �A scan for new n=1 vacua on twisted tori,�
JHEP 05 (2007) 031, hep-th/0609124. (pages 109.)

[94] S. Morris, �Doubled geometry versus generalized geometry,� Class. Quant. Grav. 24 (2007) 2879�2900.
(pages 112.)

[95] T. H. Buscher, �A symmetry of the string background �eld equations,� Phys. Lett. B194 (1987) 59.
(pages 113.)

[96] T. H. Buscher, �Path integral derivation of quantum duality in nonlinear sigma models,� Phys. Lett.
B201 (1988) 466. (pages 113.)

[97] M. Dubois-Violette and P. W. Michor, �A common generalization of the Fröhlicher-Nijenhuis bracket
and the Schouten bracket for symmetric multivector �elds,� alg-geom/9401006. (pages 119.)

[98] Y. Kosmann-Schwarzbach, �From Poisson algebras to Gerstenhaber algebras,� Ann. Inst. Fourier
(Grenoble) 46 (1996) 1241�1272. (pages 121.)

[99] Y. Kosmann-Schwarzbach, �Derived brackets and the gauge algebra of closed string �eld theory,�
Quantum Group Symposium at GROUP 21 (Goslar,1996), H.-D. Doebner and V. K. Dobrev, eds.,
Heron Press, So�a (1997) 53�61. (pages 121.)

[100] A. M. Vinogradov, �Unication of the Schouten and Nijenhuis brackets, cohomology, and superdi�erential
operators,� Mat. Zametki 47 (6) (1990) 138�140. not translated in Math. Notes. (Cited on pages 121
and 123.)

[101] A. Cabras and A. M. Vinogradov, �Extensions of the Poisson bracket to di�erential forms and
multi-vector �elds,� J. Geom. Phys. 9 (1992) 75�100. (Cited on pages 121 and 123.)

[102] T. Kugo, Eichtheorie. Berlin/Heidelberg, Germany: Springer (1997) 522 P. (pages 128.)

http://www.arXiv.org/abs/hep-th/0512005
http://www.arXiv.org/abs/hep-th/0609124
http://www.arXiv.org/abs/alg-geom/9401006


Index

Symbols∧•
L, 113

∧, wedge, 81, 107
(−)AB , 107
(−)K(M+N), 6
〈. . . , . . .〉, canonical inner product on T ⊕ T ∗, 109
[. . . ,(D) . . .], derived bracket by D, 121
[. . . ,(n) . . .], Lie bracket of degree n, 119
[. . . ,d . . .], derived bracket by D= [d, . . .], 121
[. . . , . . .]V , Vinogradov bracket, 123
[. . . , . . .], commutator, 81

[d, ıK ], LK , 83
[d, ıv], Lv, 83
[K̂, L̂], 82

[T̂ (k,k′), ˆ̃T (l,l′)], 84
[ıK , ıL], 81
[ıT (t,t′,t′′) , ıT̃ (t̃,t̃′,t̃′′) ], 84

[. . . , . . .]∆, algebraic bracket, 81, 123
[K,L]∆, 81, 81, 123
[T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)]∆, 84

[. . . , . . .]∆(1), big bracket, 82, 123

[K,L]∆(1), 82, 123
[T, T̃ ]∆(1), 84

[. . . ,d. . .]∆, see [. . . , . . .]
[. . . ,d. . .]∆(1), derived bracket of the big bracket by d, 85
[. . . ,d. . .], 123
[. . . , . . .], derived bracket of [. . . , . . .]∆ by d , 84, 123

[K(k,k′),L(l,l′)], 84
[K,L], coordinate expression, 85

[. . . , . . .]B , Buttin's di�erential bracket, 124
[. . . , . . .]N , Nijenhuis bracket, 125
[. . . , . . .]−, Courant bracket, 112
[ıK ,dıL], derived bracket of the commutator by d, 82
{. . . , . . .}, Poisson bracket, 80

{K,L} ↔ [K,L]∆(1), 82
{o, ρ(r)} = dρ(r), 80

11, 13
=G, big graded equal sign, 10
=g, graded equal sign, 8
A(p), generalized multivector, 113
AM ...M , 113
AMN , BM

N , CM
N , DMN , supermatrices, 12

B, B-�eld 2-form, 141
BMN , 29, 56, B-�eld components, 141
BMN , 110
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~θ, 106
θM, 106
θµ, 24, 92, 106

θ̂
µ̂
, 106

θ, 87
ξA(

�
x ), 154

a = aM tM , generalized vector �eld, 109
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ı
(p)

T (t,t′,t′′) , 84
ıvρ, interior product, 80
ıvω, 7
jz, BRST current, 29
jz, 25
̂z̄, right-moving BRST current, 29
̂z̄, 25
jµ
(ρ), Noether current, 135

o, generator for exterior derivative, 80
o(σ), 86
o(σ,θ), 89, 99
oMi , 8
pm, =̂∂m, 80, 83
pzα, 25
p̂z̄α̂, 25
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coinciding indices, 9
collected constraints, 56
combined basis element tM , 109
combined basis element tM , 107
commutator, 81

of covariant derivatives, 141
of covariant derivatives on compensator, 146

compensator �eld
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getting rid o� the ps-constraint, 26
ghost, 7

as form, 80
kinetic term, 29

ghost current, 43
gauge invariant, 38

graded
complex conjugation, 10
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Kronecker delta
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Noether current, 135
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shift-reparametrization

residual, 54
shortcut

to calculate the Noether current, 139
sigma-model, 86

Hitchin ∼, 96
Poison ∼, 96

sign
relative ∼ of grading structures, 10

signature
of the canonical metric on T ⊕ T ∗, 109

signature of the metric, 106
signs

terrible ∼, 7
skew symmetry of degree n, 119
skew-symmetric, 119
stabilizer

of additional connection gauge, 169
of additional vielbein gauge, 169
of connection WZ gauge, 169
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super-Poisson bracket, 88
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theorem

Dragon's ∼, 147
gradi�cation, 11
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[νµ] , 135, 137
trivially conserved current, 53
twisted

Dorfman bracket, 111
exterior derivative, 86

U

unit matrix
graded ∼, 13

V

vanishing current, 137
vanishing transformation, 139
variation

covariant ∼, 39
variational derivative

covariant ∼, 40
vector �eld
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