
Universal Asynchronous Receiver/Transmitters:
A Software Implementation Approach

Diploma Thesis
by

Herbert Valerio Riedel

submitted to the

Faculty of Computer Science
Vienna University of Technology

in partial fullfillment of the requirements for the degree

Diplom-Ingenieur (Dipl.-Ing.)

written at the

Institute of Computer Aided Automation
Research Group Industrial Software

supervised by

Ao.Univ. Prof. Dipl. Ing. Dr. Techn. Thomas Grechenig
Dipl. Ing. Dr. Techn. Philipp Tomsich

Vienna,
7th December 2005

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Abstract

Universal Asynchronous Receiver/Transmitters (UART) are hardware compo-
nents usually required to handle serial communication protocols; protocols that are
widely in use, ranging from implementing low-cost communication paths between
peripherals on embedded systems to connecting hosts to external peripherals or
other host systems.

With the continued growth of CPU performance it becomes viable to emulate
UARTs traditionally implemented as dedicated hardware components in software.
Software implementations allow for more flexibility with respect to upgrade-ability,
potentially shorter time to market, and cost savings at the expense of higher CPU
utilisation. When the host system is expected to service other processes while the
software UART is active, challenges are faced for the implementation, depending
on the real time constraints imposed by the serial protocol.

This thesis gives an overview of various serial protocols in use and discusses
the difficulties arising when emulating the corresponding UART in software. Fur-
thermore, different common software UART approaches for the implementation of
ISO7816 serial protocol are presented in the context of the general purpose non-
real-time Linux kernel, and discussed with respect to reliability and (whole system)
performance. Finally, a novel algorithm is presented which meets the posed require-
ments of a portable, response-conserving, reliable, good performing, and protocol
conforming implementation.

ii

Zusammenfassung

Universal Asynchronous Receiver/Transmitters (UART) sind verbreitet im Ein-
satz befindliche serielle Schnittstellenbausteine, die üblicherweise zur Unterstützung
von seriellen Kommunikationsprotokollen eingesetzt werden. Dies sind Protokolle,
die breite Anwendungen finden: vom Einsatz auf Mikroprozessorplatinen zur ko-
steneffizienten Realisierung der Kommunikation zwischen den Komponenten, über
die Anwendung zur Verbindung von Computern mit externen Periphäriegeräten bis
hin zur Verbindung von Computersystemen untereinander.

Mit dem kontinuierlichen Anstieg der Rechenleistung ist es praktikabel geworden,
UARTs, die traditionellerweise als eigenständige Hardware Bausteine ausgeführt
sind, als Software-Komponenten zu implementieren. Software-Implementationen
bieten höhere Flexibilität in Bezug auf die Aufrüstbarkeit und Fehlerbehebung,
potentiell kürzere Produkteinführungszeiten und nicht zuletzt Kostenersparnisse –
alles auf Kosten höherer Beanspruchung der Zentraleinheit. Wenn das System –
während der Software UART aktiv ist – noch weitere Aufgaben erfüllen können
soll, so ergeben sich je nach Beschaffenheit der Echtzeit-Erfordernisse des seriellen
Protokolls entsprechende Herausforderungen für die Implementation des Software
UARTs.

Diese Diplomarbeit gibt einen Überblick über einige verbreitete serielle Proto-
kolle und erörtert die mit der Software-Emulation verbundenen Schwierigkeiten.
Darüberhinaus werden einige übliche Software UART Implementationsmethoden
vor dem Hintergrund des Einsatzes mit dem Mehrzweck Nicht-Echtzeit Betriebs-
systemkerns Linux vorgestellt und in Hinblick auf ihre Verlässlichkeit und das Lei-
stungsverhalten des Komplettsystems diskutiert. Schliesslich wird ein neuartiger
Algorithmus vorgestellt, der die Anforderungen an eine leicht portierbare, reakti-
onszeiterhaltende, zuverlässige, leistungsstarke und protokollkonforme Implemen-
tation erfüllt.

Contents

List of Figures v

List of Tables vii

Listings ix

Preface xi

1 Introduction 1

1.1 Serial Communications and UARTs . 2
1.2 Replacing Hardware with Software . 7
1.3 Real-Time Correctness . 9
1.4 The Challenge . 10
1.5 Road-Map . 11

2 The UART Problem 13

2.1 The Physical Layer . 13
2.2 The Data Frame . 14
2.3 The ISO7816 Serial Transmission Protocol 17
2.4 Sampling the Bits . 20

2.4.1 Sampling with Clock Drift . 21
2.4.2 Sample Point Jitter . 22
2.4.3 Start Bit Synchronisation . 23

3 Approaching a Solution 25

3.1 Dedicated Polling . 25
3.2 Timer Interrupt Triggered Processing 27
3.3 Edge Interrupt Triggered Bit Detection 29
3.4 Summary . 32

iii

iv Contents

4 The Implementation 35
4.1 The Host Environment . 35

4.1.1 The Hardware . 35
4.1.2 The Software . 36

4.2 The Driver . 38
4.2.1 Constraints . 38
4.2.2 The Hybrid Approach . 39
4.2.3 Actual Implementation . 41

5 Experiments in Latency and Time 43
5.1 Interrupt Latency . 43

5.1.1 Idle System . 45
5.1.2 Network Stress . 45
5.1.3 Cache-Disabled System . 45
5.1.4 System Under Combined Stress 46

5.2 Achieved Data Rates . 52
5.2.1 Idle System . 54
5.2.2 System under Stress . 54

6 Analysis of the Results 59

7 Conclusion 63
7.1 Future Work . 64

7.1.1 Protocol Conformance . 64
7.1.2 Latency Improvements . 64
7.1.3 Performance Improvements . 65
7.1.4 Reliability Improvements . 65
7.1.5 Full-duplex support . 65

A ISO7816 Software UART Driver Source Code 67

B Latency Measurement Kernel Module Source Code 91

Glossary 95

Bibliography 99

Colophon 103

List of Figures

1.1 PC16550D UART Block diagram . 5

2.1 Binary line codes . 15
2.2 ISO7816 character frame . 19
2.3 Binary signal s(t) waveform with periods of undefined state 20
2.4 Bit cell with sampling point . 22

3.1 Timer interrupt triggered receiver state machine 31

4.1 Block diagram of card terminal embedded system 36
4.2 Sample positions with hybrid implementation 41

5.1 Interrupt latencies for idle system . 47
5.2 Interrupt latencies for system with network stress applied 48
5.3 Interrupt latencies for idle system with disabled i-cache 49
5.4 Interrupt latencies for idle system with disabled d- and i-cache 50
5.5 Interrupt latencies for combined stress 51
5.6 ISO7816 T=1 block-frame sequence of ISO READ BINARY transaction 52
5.7 ICMP Ping round-trip-times for idle system during communication . . . 56
5.8 ICMP Ping round-trip-times for stressed system during communication 57

v

List of Tables

1.1 Comparison of ISO7816, RS232, and I2C 8

2.1 Allowed values for D according to the ISO7816 specification 17
2.2 Allowed values for F and max f according to ISO7816 17
2.3 Bit-rates for combinations of D and F 18
2.4 Comparison of ISO7816 T=0 and T=1 protocols 19

5.1 Interrupt latencies for idle system . 47
5.2 Interrupt latencies for system with network stress applied 48
5.3 Interrupt latencies for idle system with disabled i-cache 49
5.4 Interrupt latencies for idle system with disabled d- and i-cache 50
5.5 Interrupt latencies for combined stress 51
5.6 Bit-rates for implemented combinations of DIVCLK, D, and F 53
5.7 Communication benchmark for idle system 55
5.8 Communication benchmark for stressed system 55

vii

Listings

3.1 Dedicated polling transmitter implementation 26
3.2 Dedicated polling receiver implementation 27
3.3 Timer interrupt triggered transmitter 29
3.4 Timer interrupt triggered receiver . 30
3.5 Edge interrupt triggered receiver implementation 33

4.1 Simplified frames tx implementation . 37
4.2 Simplified hybrid sampling implementation 40

A.1 ISO7816 software UART driver source code 67

B.1 Latency measurement kernel module source code 91

ix

Preface

“Humour and knowledge are the
two great hopes of our culture.”

(Konrad Lorenz)

This document has been the hopefully successful result of several months attempting
to put some meaningful content down to paper, while trying to eschew obfuscation.
The pain associated with this experience was alleviated by the use of LATEX and other
invaluable tools1 distracting from the actual task of filling countless pages with words,
which put in the correct order may form a so-called master’s thesis; a task which can
be proved2 that a monkey hitting keys at random on a keyboard could achieve as well,
given an infinite amount of time. . .

However, I have to admit that I was surprised that the topic of software UARTs, which
at first seemed to me like a topic already exhausted in the 1980s, still offered enough
material for a master’s thesis. Far from it! I have discovered in the course of the work on
this thesis that the topic of software peripherals is still a very active area of research, as
the primary goal seems to be to get rid of most specialised silicon components in favour
of general one-fits-all chips, which are produced in high volumes with the associated
cost benefits. So in the end, it seems once again, it’s all just about the money. But
still, imagine a world, where you only need to buy a device whose appearance matches
your furniture at home—or at least your taste—and the functionality of this device
is provided by uploading the corresponding software. Maybe, you could even reuse
old hardware modules you have just lying around, and breath new life into them by
uploading new software. On the other hand, I have to admit, this sounds a bit like
playing Frankenstein. . .

Acknowledgements. The impact of working on this thesis was not confined only to
yours truly; therefore acknowledgements are due to various people I had to involve—

1See the Colophon on page 103 for more information about the document preparation and typeset
process.

2Based on the second Borel-Cantelli lemma, of which the notorious “infinite monkey theorem” is a
special case.

xi

xii Preface

that is, annoy—in order to obtain highly honourable contributions such as proof-reading,
feedback, or even emotional support. For this, thanks go to T. Hirsch, J. Hetzl, P. Tom-
sich, T. Volpini, K. Goger, C. Brem, and to everyone else I forgot to mention here
explicitly.

Finally, I hope I haven’t been responsible for too many dead trees.

Herbert Valerio Riedel
December 2005

CHAPTER 1

Introduction

By using software routines to emulate dedicated logic circuitry, i.e. hardware, the func-
tion of the emulated circuit can be taken over by a general-purpose circuit, for instance
a micro-controller. In other words, specific hardware (components) can be replaced by
software (being executed on general-purpose hardware components).

The ability to replace hardware components with software routines allows for addi-
tional flexibility, since the logic behaviour can be modified without the need to replace
hardware components. Furthermore, the omission of hardware components, such as
communication controllers, simplifies the hardware design as a result of circuit paths
and possibly auxiliary components not being required anymore. This simplification can
lead to smaller Printed Circuit Boards (PCB) and cost-savings.

When a multitasking operating system is involved in the process of emulating hard-
ware by means of software, the implementation becomes more complex as it has to
be taken into account that usually the software execution has to be distributed sen-
sibly among various tasks, one of which is the hardware-emulation routine. Since the
function of most hardware-components involves reacting to logic signals within certain
time-frames, the software emulation has to respect these timing constraints as well. To
this end, so-called Real-Time Operating Systems (RTOS) are usually deployed as they
provide response-time guarantees and therefore facilitate the implementation of real-
time processes. However, real-time operating systems are not always available for the
chosen target platform; and on the other hand, even if available, their use might not be
appropriate if the provided Application Programming Interface (API) complicates the
implementation of the complete application.

The goal of this thesis is to show how to replace a hardware component—specifically
a component for communicating with smart-cards—by a software driver being executed
in the context of a widely available general-purpose multitasking operating system such
as Linux, i.e. without relying on real-time facilities.

This chapter gives a general overview about the problem domain by discussing se-

1

2 Chapter 1. Introduction

rial protocols, the respective serial communications controllers, and their application
(among others) for communicating with smart-cards. Smart-cards are often associated
with credit card shaped (although other form factors are defined as well) identification
cards carrying under a metallic contact pad an embedded microprocessor which controls
the access to the information stored therein. Next, the discussion will be narrowed to
the class of universal asynchronous serial communication protocols, and furthermore to
the smart-card related serial protocols.

Then hardware-to-software migration is discussed and the associated problem of real-
time correctness and latencies is brought up. Finally, the problem tackled by this thesis
and the motivation to do so is restated explicitly.

The chapter concludes with a road-map of the rest of this thesis.

1.1 Serial Communications and UARTs

Serial communication protocols were used long before computers were available. An
example for such an early serial protocol developed in the 19th century for use in teleg-
raphy is known as the Morse code[16], which uses variable length sequences of short and
long pulses (traditionally called dots and dashes respectively) to encode characters.

Today in the age of computer technology, many communication protocols of serial
nature are in use for connecting various kinds of devices ranging from:

• on-board components, e.g. I2C[27] or System Management Bus (SMBus)[31];

• local external devices, e.g. Universal Serial Bus (USB)[36]; up to

• long distance connections between computer host systems, e.g. RS232C or even
Ethernet.

Furthermore, serial communication protocols exist for different topologies:

• point-to-point connections (RS232C);

• single-master/slave bus systems (RS422, RS4851); and

• multi-master bus systems (I2C, SMBus, Ethernet).

According to the Glossary of Telecommunication Terms[23], the term serial trans-
mission is generally defined as:

The sequential transmission of the signal elements of a group representing a
character or other entity of data. Note: The characters are transmitted in
a sequence over a single line, rather than simultaneously over two or more
lines, as in parallel transmission.

1Actually it is possible to implement a multi-master RS422 or RS485 bus, if bus arbitration is imple-
mented in software, as RS422/RS485 is only specified for single-master configurations.

1.1. Serial Communications and UARTs 3

The following discussion will assume those signal elements to be binary digits (or simply
bits), i.e. signal elements each representing one of two possible states; thus, with serial
transmission, one bit at a time is transmitted. To put it differently, serial communication
protocols are characterised by using one communication path per data transmission
direction at most. Moreover, the data frame, i.e. a character or other entity of data,
needs to be serialised into a single data stream, as opposed to parallel communication,
where data is sent in parallel over multiple links, thus sending data through multiple
data streams. Therefore, parallel data transmission extends into the space dimension
(by using multiple data paths), whereas serial communication makes use of the time
dimension (by sequential transmission).

With respect to the direction of data flow on the transmission path, communication
protocols can allow for:

• one-way operation (unidirectional or simplex), having a fixed transmission direc-
tion (e.g. RC-5, a popular unidirectional remote control protocol for televisions);

• time interleaved one-way operation (half- or semi-duplex), allowing to speak only
in one direction at a time (e.g. I2C, ISO7816); while others allow for

• two-way (full-duplex) communication by having separate data links for each di-
rection by use of Space Division Duplex (SDD), e.g. RS232C or Fast Ethernet
(with respect to separate wires for reception and transmission), or Frequency Di-
vision Duplex (FDD) and Time Division Duplex (TDD) which are commonly used
together for wireless communication protocols (e.g. WiMAX[6]).

When multiple masters are involved, bus access control becomes necessary in order
to avoid multiple masters attempting to transmit on the physical transmission medium
at the same time, which would cause data corruption through interference. In order
to avoid such collisions on a shared medium techniques such as Carrier Sense Multiple
Access (CSMA) exist, which basically work by listening on the shared medium for the
presence of ongoing transmissions before initiating the transmission.

Another parameter of serial communications is the distinction between synchronous
operation and asynchronous operation. This parameter defines whether there is a sep-
arate clock signal used for synchronising the transmitter and receiver clocks (i.e. syn-
chronous); or whether the receiving party is required to detect the protocol timing only
by the received data, e.g. by using the signal edges for synchronisation.

Finally, the data frame format is to be defined, which encapsulates the data pay-
load. Data framing is especially important for asynchronous operation, to aid protocol
synchronisation.

According to the OSI reference model[38], a communication system can be described
by subdividing its functions into seven architectural layers. The layers describe all
functions of a system from the physical medium up to the application, with each layer

4 Chapter 1. Introduction

interacting directly only with adjacent layers. The lowest layer is the physical layer
and is responsible for all electrical and physical properties of the system. This includes
properties such as the voltages used for data encoding on the communication medium
(for an electrical medium), as well as the medium itself, i.e. the cabling and the physical
connectors. The next layer is the data link layer, which provides the functionality for
transferring data frames between the entities connected through the communication
medium.

For handling the serial communication at the logic level (i.e. the data link layer) a
digital component is required. For asynchronous serial communication protocols this is
commonly called an Universal Asynchronous Receiver/Transmitter (UART). Further-
more, there are UARTs which also support synchronous communications, in which case
they are referred to as Universal Synchronous Asynchronous Receiver/Transmitter (US-
ART). Sometimes, the term Serial Communications Interface (SCI) is used instead of
UART.

Serial communication standards such as the RS232C specification which define the
physical layer specify other voltage levels as those usually provided by UARTs, as these
are commonly implemented as Transistor-Transistor Logic (TTL) or Complementary
Metal-Oxide-Semiconductor (CMOS) type digital circuits. In order to convert from the
TTL/CMOS levels to the required voltage levels on the medium and provide additional
amplification, electrical components called line drivers are used; examples for such
driver components are the MAX232[34] or the TDA8023[28] Integrated Circuits (IC).
When applying the OSI reference model, these components represent a part of the
physical layer.

The principal components of hardware UARTs are shift registers, which are used
for conversion between the serial and parallel representations of the data frames; data
frames to be transmitted are placed into the shift register, and subsequently emitted bit-
by-bit on the serial interface; bits received from the serial interface are shifted into the
shift-register until the frame is received complete, at which point the CPU is notified.

Some UARTs, if required by the protocol, can handle flow control, e.g. request the
other communication endpoint to temporarily stop sending data frames, or honour such
requests signalled by the other endpoint. Also, when required by the serial protocol,
UARTs can be required to perform error handling, e.g. request data frame retransmis-
sion on bad frame reception, or react to such a retransmission request. These tasks are
typically handled by UARTs, as they usually require to react within short time periods
in the range of bit-lengths in order to avoid data frame loss.

Often, UARTs also contain First In First Out (FIFO) buffers for reducing the fre-
quency at which the CPU has to interact with the UART, by allowing the UART to
handle multiple data-frames on its own before requiring intervention from the CPU
again. The use of FIFO buffers allows the CPU to react with higher latencies, to avoid
data frames to get lost if no flow control was available, or in general for higher data
rates.

1.1. Serial Communications and UARTs 5

Figure 1.1: PC16550D UART Block diagram (taken from the PC16550D data-sheet[24])

6 Chapter 1. Introduction

An alternative to FIFOs for reducing the interrupt load is the use of Direct Memory
Access (DMA) operations to transfer the data frames between main memory and UART
independently of the CPU. With DMA, the CPU initiates the transmission by pointing
the UART to the memory location where the data frames to be sent are located, and
gets notified (e.g. by interrupts) on completion of the transmission; for reception, the
UART is provided with a target location in memory to store the received data frames
and notifies the CPU when data has arrived and/or the provided memory buffer has
been completely filled. In other words, by using DMA the FIFO which would be part
of the UART is moved to main memory. DMA is commonly deployed where high
data-rates occur.

The block diagram of a typical standard UART hardware component is shown in
figure 1.1 on the preceding page. The UART is controlled by the host CPU through
various hardware registers, of which the transmitter holding register and the receiver
buffer register (when the FIFO buffer is not enabled) are the most frequently used
ones during actual communication; the data frames to be transmitted are placed in the
transmitter holding register and then moved into the transmitter shift register, which
is then shifted by the transmitter timing & control unit to produce the serialised bit-
pattern of the data-frame on the SOUT pin. For data frame reception, the process
is reversed and accomplished by sampling the bits on SIN and shifting them into the
receiver shift register, which on completion moves its content to the receiver buffer
register ; from where it can be retrieved by the host CPU, which can poll the UART
for the availability of new frames, or alternatively be notified by an interrupt signal.
The shown block-diagram shows various other registers and logic units, of which some
are used for managing the parameters of the serial communication, such as bit-rate or
data-frame format.

Smart-cards and the ISO 7816 Specification

The ISO7816 specification describes all standardised properties and parameters of
smart-cards. Smart-cards, or Integrated Circuit(s) Card (ICC) as they are referred
to in the ISO7816 standards, are usually credit card shaped plastic cards with an em-
bedded microprocessor accessible through metal contact pads located on the surface of
the smart-card. The embedded microprocessor controls the access to the data stored
on the smart-card, which therefore can be used to securely store passwords or other
sensitive information, or even perform cryptographic operations such as signatures or
data encryption.

The metal contacts on the ICC are used for communication with the embedded micro-
processor and for supplying the necessary power for operation. The signals, as named
by the ISO7816 Specification, and their purpose are as follows:

GND Signal ground and reference voltage for the other signals/supplies.

1.2. Replacing Hardware with Software 7

VCC Primary power supply for the embedded microprocessor.

I/O Semi-duplex serial data signal.

CLK Clock signal; used as time-base for deriving the serial data bit-rate and for pro-
viding2 a clock signal to the microprocessor.

RST Reset signal; used for activation and deactivation signalling.

VPP Additional programming power supply; required seldom, as ICCs have become
less power consuming.

All signals are input to the smart-card, except for the I/O signal which is also output
from the smart-card.

The ISO7816 standard[15] specifies two variants of 1-wire semi-duplex asynchronous3

serial protocols used to communicate with the embedded microprocessor on the smart-
card. These protocols are referred to as T=0 and T=1, specifying character-oriented
and block-oriented variants of the asynchronous serial protocol respectively.

The physical layer is usually provided by ICC interface components such as the
TDA8023 which handles the electrical requirements (e.g. voltage level conversion) for
interfacing with smart-cards, including card power-up and power-down. Additionally,
the TDA8023 takes over part of the digital handling during the card power-up phase to
assist enforcing the ISO7816 specified protocol timings by deactivating the Smart-card
again in case of protocol failure.

For handling the data link layer, specific ISO7816 UARTs have to be used, as the
ISO7816 specification has requirements with respect to the character framing format
and timing which usually are unsupported by standard UARTs. Single-chip solutions
exist which embed a micro-controller implementing the ISO7816 UART and provide a
convenient interface to the upper layer, possibly even resulting in an USB interface.

Table 1.1 on the following page shows a comparison between the ISO7816 protocols
with two other serial communication systems—RS232 and I2C.

1.2 Replacing Hardware with Software

The currently available general purpose Central Processing Units (CPU), as used in
personal computers or even embedded systems, have enough spare CPU cycles left over,
which can be put to use for taking over the tasks traditionally assigned to dedicated

2In the past, the provided clock source directly drove the microprocessor, which allowed for overclocking
the smart-card. However, current smart-cards often generate their own clock signal independently
of the supplied clock signal, in which case the signal is only used as a time-base.

3Actually, it is not a strictly asynchronous protocol as there is a separate clock signal wire from which
the bit length is derived; as will be explained in more detail in section 2.3 on page 17.

8 Chapter 1. Introduction

Property ISO7816 T=0/T=1 RS232 I2C
Scope Smart-cards computer peripherals on-board electronic

components
Topology point to point point to point bus
Master/Slave single fixed master both endpoints can be

master
multi master, multi
slave

I/O signals 1 2 1
Clock signal yes no yes

asynchronous asynchronous synchronous
half-duplex full-duplex half-duplex

Max. bit rate 344086 bit/s 115200 bit/s 3.4 Mbit/s

Table 1.1: Comparison of the serial protocols ISO7816, RS232, and I2C with respect to
their application domain and characteristics

hardware components[21, 22]. This has already been done in the past, with a prominent
example being software modems, where the tasks of DSP chips is taken over by the CPU
of the host system[19, 37]. Other examples include General Purpose Input Output
(GPIO) based drivers for serial protocols such as I2C or Philips RC-5[3, 26] as seen in
the Linux kernel[10].

When designing a product with traditional hardware components, this usually leads
to hardware designs with specialised microprocessors and/or ICs which serve the need of
the specific embedded application. On the other hand, by relaying on software emulated
hardware, one can choose a more general microprocessor for multiple products and
exploit the associated volume discount. Moreover, each new hardware component causes
additional hardware development costs, which can be avoided by reusing known-to-work
hardware designs with minor modifications, as opposed to, for instance, complete re-
designs incurred when switching to another microprocessor.

In the following text the specific hardware class of UARTs will be discussed whereas
some of the arguments used apply to other classes of “software implemented hardware”
as well.

Depending on the real-time requirements imposed by the serial protocol, the imple-
mentation of the functionality in hardware while retaining responsiveness of the host
system becomes a challenging task—especially with multitasking/processing operating
systems such as Linux.

The main benefit of implementing an UART in software—apart from saving the
costs of an additional hardware component—is the resulting flexibility. Especially when
complex protocols such as ISO7816 are involved, or when the protocol is subject to
changes/amendments, or if the functionality is only required during manufacture, or
even due to lack of availability of hardware components combined with time-to-market

1.3. Real-Time Correctness 9

pressure, implementing the serial protocol logic in software might become a necessity.
With components implemented in software it is possible to “upgrade the hardware”
by means of a simple software (firmware) upgrade—as opposed to replacing actual
electrical components, if possible at all. While this kind of flexibility could also be
achieved to some extent by using Field-Programmable Gate Arrays (FPGA) or Complex
Programmable Logic Devices (CPLD), which would represent a compromise between
a pure hardware implementation and a pure software implementation, a pure software
approach might still be more cost effective in many cases.

1.3 Real-Time Correctness

The term real-time refers to the requirement of the correctness of an operation to be
performed at a certain time; furthermore, a distinction between hard real-time and soft
real-time can be made; the former denotes operation for which meeting the deadline
is of crucial importance for the correctness, while the latter refers to operations which
may incur performance degradation when missing the deadline, but still being able to
recover from the deadline-miss.

When assigning the burden of an UART to the host CPU while it is running a general
purpose multi-tasking operating system—especially one lacking the real-time facilities
to provide deterministic response times and scheduling latencies—the host is expected
to perform other tasks as well besides serving as an UART, i.e. keeping response latency
low. This implies that the code providing the UART functionality should block the CPU
(and thus keeping the CPU from servicing other processes, such as network or user input
processing, while UART operation is ongoing) only as long as absolutely needed in order
to provide the required protocol accuracy and reliability.

In preemptive multi-tasking operating systems such as Linux most events to which a
real-time response is required are notified to the operating system by triggering hard-
ware interrupts. Interrupts are a mechanism provided by the CPU to react to external
signals by suspending the execution of the currently executing code and execute instead
a specifically written interrupt handler, after whose completion the previously executing
task is resumed. Events causing such an interrupt can be the reception of an Ether-
net frame requiring a buffer to be read before it gets overwritten by the next frame,
or a timer underflow calling for a keep-alive signal to the hardware watchdog. Thus
the interrupt latency, i.e. the time between the event triggering the interrupt and the
interrupt handler being executed, is a key quantity in determining the overall response
latency.

The interrupt latency is caused by hardware related issues such as signal propagation
delays within logic circuits as well as software issues, a few of which are listed below:

• The signal propagation delay between the event source and the interrupt controller
caused by the electronic circuits in-between.

10 Chapter 1. Introduction

• In case of multiple interrupt sources, the interrupt controller might have to serialise
(possibly according to defined priorities) and thus cause delays.

• Interrupts can be disabled by software, usually as a measure to protect currently
executing critical code regions.

• The platform dependant interrupt entry routine might need to save the currently
executing context and in the case of non-vectored interrupts determine the actual
interrupt number.

• Memory accesses—instruction as well as data—might stall the CPU, especially
when the required memory content is not cached and needs to be fetched from
slower memory.

The ability of the system to process interrupt events quickly also determines how
many events the system can handle within a certain time-frame. Therefore, when it is
required to have multiple concurrently active software UARTs running, the number of
UART processes is limited by the amount of CPU time slices the software implementa-
tion uses up and what the exact real-time requirements are.

Usually the receiving part of the UART is the more demanding part with respect to
CPU resources, as it might be necessary to react to events originating outside the control
of the host CPU within hard real-time constraints; otherwise, communication protocol
failures can occur, e.g. frame reception errors caused by missing the start of the frame
or failing to request frame retransmission within the protocol-specified time-window.

Also the task of sampling (and storing) input data and eventually performing error
detection is usually more demanding than writing output data. The availability of flow
control in the protocol can help lowering the real-time constraints, but it has also the
potential to hurt the overall protocol performance; however, the constraint of correctness
outweighs that of performance.

Error handling and flow control can cause the sending part to become a receiver as
well, as it results in the need to react to external events, such as the error and flow
control signalling of the listening party.

1.4 The Challenge

As already mentioned at the beginning of this chapter, the problem tackled by this
thesis is to implement a software ISO7816 UART for the smart-card communication
protocol for a general-purpose multi-tasking non-real-time operating system such as
Linux. The implementation shall conform to the following requirements:

• Be suitable for the target-platform; and yet sufficiently generic to be portable with
little effort to other architectures (portability);

1.5. Road-Map 11

• perform (persistent-)error free communication with the smart-card, if necessary
by exploiting error recovery facilities provided by the protocol (reliability);

• conform to the ISO7816 protocol, e.g. respect intra- and inter-frame timings (cor-
rectness);

• support the default ISO7816 bit rate, i.e. 9600 bps (performance); and

• keep system responsive for other services with hard or soft real-time requirements
(responsiveness).

The motivation for replacing a hardware component by its software emulation can be
one or more of the following:

• Simplified or smaller PCB design, enabled by omitting the hardware component
and associated circuit paths.

• Cost-savings, by omitting the hardware component.

• Flexibility, as the logic behaviour can be modified later, contrary to a traditional
hardware component.

• Shorter time-to-market, especially when the hardware component in question is
not available (yet) or would have to be developed in the first place.

The choice of targeting a non-real-time operating system is motivated by the fact,
that for a given target-platform a real-time operating system may have to be ported to
first, whereas a non-real-time operating system is more likely to be readily available.

1.5 Road-Map

The remainder of this thesis is outlined below:

Chapter 2 Starting out with the basic principles of serial data transmission, this chapter
provides a presentation of the tasks performed (and the problems involved) by
UARTs, with special attention to the ISO7816 protocol.

Chapter 3 This chapter explores three commonly used generic implementation tech-
niques for sampling and emitting bits and (serial protocol) character frames com-
posed thereof. The properties (requirements, limitations, and strengths) of each
algorithm are described and compared to each other.

Chapter 4 In this chapter the target host environment (hardware and software) is pre-
sented, for which the software UART implementation was implemented.

12 Chapter 1. Introduction

The additional requirements imposed on the implementation are described, and
the generic techniques from chapter 3 are evaluated according to these require-
ments.

Finally, an hybrid approach based on the algorithms discussed in chapter 3 is
presented.

Chapter 5 This chapter presents measurements showing the behaviour of the interrupt
latency under various stress conditions on the target hardware. Based on the
measured data, estimates for the theoretically expected achievable bit-sampling
rates for the software UART implementation are provided.

Finally, the actual software UART implementation is bench-marked with respect
to the achievable bit-rates and the respective error-rates.

Chapter 6 The data presented in chapter 5 is analysed.

Chapter 7 After a short summary of the thesis, conclusions are drawn based on the
results from the previous two chapters, and the limitations of the implementation
are exposed. Finally, this chapter concludes with suggested areas for future work,
where the implementation could be improved.

Appendix A This appendix contains the source code for the software UART implemen-
tation presented in this thesis.

Appendix B This appendix contains the source code for the kernel module used for the
latency measurements in chapter 5.

Glossary, Bibliography, Colophon Following the appendices, the terms and abbrevia-
tions used throughout this thesis are explained, the thesis references are listed,
and finally a colophon describing the document preparation completes this thesis.

CHAPTER 2

The UART Problem

As outlined in the introduction, serial communication protocols represent an important
class of communication protocols due to their widespread use in computer systems.
Hardware components called UARTs are commonly employed to aid in the protocol
handling of universal asynchronous serial protocols at the data link layer.

This chapter provides an in-depth discussion of the tasks and problems handled by
UARTs.

2.1 The Physical Layer

From the mathematical perspective, the serial-data communication channel can be seen
as a medium transporting a continuous bit-stream of binary zeros and ones. However,
physically on the medium, the information is transported by means of a waveform; for
the case of electrical conductors the voltage waveform over time, v(t), is commonly
used to convey information, but one can also use the waveform of other state variables
such as electrical current, i(t). The format used for encoding binary bits to the actual
physical signal is called line code[20].

Line codes can be divided into the following two major categories according to their
waveform structure:

Return to zero (RZ) line codes, meaning the waveform signal returns regularly to the
zero amplitude (usually for at least half a bit-period), in order to avoid long
periods of staying at a non-zero value, which can lead to build-up of DC voltages,
and more importantly to potential loss of bit-synchronisation if no separate clock
signal is provided for synchronisation.

Non return to zero (NRZ) line codes, which in contrast to RZ coding can result in
arbitrarily long sustained non-zero signal levels. In order to cause more level

13

14 Chapter 2. The UART Problem

transitions, variants such as NRZ-I are used where equal subsequent logic values
cause a transition of the signal level.

With respect to the polarity of the waveform, the encoding can be distinguished
according to the following two interpretations:

Positive-logic defining that the positive or higher signal level is regarded as a logic one,
whereas the negative, zero or lower signal state maps to the logic zero value; or

Negative-logic which represents the opposite interpretation of positive-logic.

Together with the distinction whether the signal returns to zero and the polarity inter-
pretation, the actual encoding can be further subdivided into the following incomplete
list of line code formats:

Unipolar signalling A zero and a non-zero signal state are used for encoding. For
example, an unipolar positive-logic NRZ coding would represent a straightforward
mapping of the logic “waveform” alternating the logic states zero and one, to
the signal waveform alternating between the zero and the non-zero signal state
respectively.

Polar signalling A positive and a negative signal amplitude of equal magnitude is used
for representing binary states. When using RZ coding, this leads to three signal
levels, which provides a perfectly self-clocked signal, as each bit can be clearly
distinguished from each other by the zero signal level.

Manchester signalling As opposed to the previous line codes, the Manchester encod-
ing uses level transitions to represent the logic value; whereas for positive logic
a transition from the high to the low signal level represents the binary logic one
value, and vice versa. Therefore, Manchester signalling is sometimes called edge
signalling or phase signalling, in contrast to level signalling, expressing that the
information is not represented by the signal level but rather by the signal transi-
tions.

Figure 2.1 on the next page provides a visual side-by-side comparison of the resulting
waveforms resulting form encoding the same binary data with different line codes.

The encoding can be subject to signal inversion due to inverting line drivers, effectively
switching between positive-logic and negative-logic. To simplify matters, the following
discussion will assume an idle communication state, signifying that no data is being
transmitted, represented by a bit-stream consisting of logic ones.

2.2 The Data Frame

The smallest information unit which can be transmitted is usually the binary digit,
except for line codes which encode multiple bits to form an atomic data unit called

2.2. The Data Frame 15

Binary data 1 0 1 1 0 1 0 1 1 1

NRZ Unipolar

NRZ Polar

NRZ Manchester

RZ Unipolar

RZ Polar

Figure 2.1: Comparison of the resulting signal waveforms of some binary line codes

symbol. In order to reduce communication overhead, multiple bits are grouped to form
a so-called data frame. The data frame format is part of the protocol specification.
Frames can range from sizes as large as a few KiB, e.g. Ethernet frames, to the size of
a character of only a few bits.

For the purpose of synchronisation, the beginning of a data frame is marked by a start
bit(pattern) and terminated by an end bit(pattern). In order to detect transmission
errors at the frame level, a simple parity bit or check-sum field can be part of the data
frame.

The following discussion will concentrate on the class of universal asynchronous serial
communication protocols using a non-return-to-zero level-signalling line code.

The serial line is said to be in idle state (which is logically valued one) when no
data frames are currently being transmitted. In order to mark the beginning of a new
data frame, the start-bit needs to be represented by a state different from the one
representing the idle state; consequently, the start-bit is represented by a logic zero
which “interrupts” the constant bit-stream of ones representing the idle state.

After the start bit follows the sequence of data bits, in turn followed by an optional
parity bit; finally a number of stop bits terminate the data frame. Stop bits are logic
ones, just as the idle-state. Therefore, the idle-state can be regarded as a prolongation
of the stop bits. Alternatively, the mandated amount of stop bits can be seen as

16 Chapter 2. The UART Problem

the minimum amount of time the line should rest in idle state before starting the
transmission of the next data frame. An example for a data frame composed of one
start bit, eight data bits, one parity bit, and finally two stop bits is shown in figure 2.2
on page 19.

A common short format specification scheme for universal asynchronous data frames
is: “number of data bits {N|E|O|M|S} number of stop bits”. When using this notation,
one start bit is assumed implicitly. The single character between the numbers represent
the parity modes none, even, odd, mark, and space respectively, which are explained
below:

None parity, i.e. the parity bit is omitted.

Even parity bit and data bits are required to contain an even number of ones.

Odd parity bit and data bits are required to contain an odd number of ones.

Mark parity bit is always mark, i.e. one.

Space parity bit is always space, i.e. zero.

One of the most frequently used data frame formats is 8N1, specifying one start bit
(implicitly), eight data bits, no parity, and finally one stop bit.

Communication Failures

Communication failures are the lack of ability to reliably transmit the data in question;
this can have various causes, ranging from noise distorting the signal too much to the
communication equipment being unable to handle the amount of information at the
required speed.

Errors at the receiving endpoint that can occur during serial communication can be
subdivided into the following types:

Overrun errors happen when data frames have to be dropped, i.e. ignored, due to
limited resources such as processing power and/or buffer space.

Framing errors emerge when data-frames are received with invalid framing, i.e. the
start- and stop-pattern.

Parity errors occur when the data-frame contains an invalid parity bit.

The errors listed above are those which can be detected at the receiver, although
the detection of those is not guaranteed; for instance, if an even number of data bits
are received incorrectly, the parity is unchanged and consequently no parity error will
occur even though the data frame has been received incorrectly. Thus, even when no

2.3. The ISO 7816 Serial Transmission Protocol 17

D 1 2 4 8 16 32 12 20

Table 2.1: Allowed values for D according to the ISO7816 specification

F 372 558 744 1116 1488 1860 512 768 1024 1536 2048
max f [MHz] 5 6 8 12 16 20 5 7,5 10 15 20

Table 2.2: Allowed combined values for F and max f according to the ISO7816 specifica-
tion

frame error is detected the data frame received might still be corrupted. In order to
improve the error detection efficiency, additional measures such as generating Cyclic
Redundancy Check (CRC) check-sums over blocks of data frames can be employed.

2.3 The ISO 7816 Serial Transmission Protocol

The ISO7816 standard defines a semi-duplex asynchronous serial protocol for informa-
tion exchange over the I/O contact.

Each ISO7816 data frame is made up of one start bit, 8 data bits, one even parity
bit, and at least 2 stop bits1 (8E2 in short notation) for the T=0 transmission protocol
(see figure 2.2 on page 19). The T=1 protocol allows reduction to only one stop bit,
i.e. 8E1, as no per-character error signalling is possible.

Two coding conventions are defined for the data bits and parity bits, direct convention
and inverse convention; the encoding of the start, guard bits, and the idle-line “bits”
remain unaffected. The direct convention defines the high signal state to map to logic
ones (i.e. positive-logic), and the least significant data bit to be transmitted first in
the data frame, while the inverse convention assigns the high state to logic zeros (i.e.
negative logic) and requires the most significant bit to be transmitted first.

The duration of a bit2, denoted as Elementary Time Unit (etu), is defined by the
ISO7816 standard as

1 etu =
F

D

1
f

with f being the clock frequency supplied to the smart-card through the CLK contact,
with specified values ranging from 1MHz to a maximum of 20 MHz and a typical default
value of approximately 3,7 MHz. The variables F and D are negotiable parameters
called the clock rate conversion factor and the baud rate adjustment factor respectively,
with a default value of 372 for F and 1 for D, resulting in a typical initial communication

1The standard uses the term guard-time to refer to what is referred to in this thesis as stop bits.
2The ISO7816 specification uses the term moment to refer to the duration of a bit at the current

bit-rate.

18 Chapter 2. The UART Problem

F D = 1 D = 2 D = 4 D = 8 D = 12 D = 16 D = 20 D = 32
512 7200 14400 28800 57600 86400 115200 144000 230400
372 9910 19819 39639 79277 118916 158554 198194 317110

Table 2.3: Resulting bit/s for combinations of D and F at frequency f = 3.6864 MHz

bit rate near 9600 bits per second. The values allowed by the specification for the
parameter D range from 1 to 20 (see table 2.1 on the preceding page). For F and
max f the combined values supported by the specification are shown in table 2.2 on the
previous page. The resulting bit-rates for a selected set of combinations of D and F at
a frequency of about 3.7 MHz are provided in table 2.3.

When a smart-card is reset, which includes powering up, the card answers with the
so-called Answer-To-Reset (ATR). This sequence of maximum 32 character frames is
transmitted at the already mentioned default initial bit-rate of about 9600 bits per
second using the T=0 protocol. The content of the ATR describes various properties
of the smart-card, such as the supported communication protocols (e.g. T=0 or T=1),
supported maximum values for D and F , programming voltage and current, etc. If the
ATR states that the card supports protocol negotiation, a Protocol-and-Parameters-
Selection (PPS) request can be sent to the smart-card, consisting of up to 6 character
frames, specifying the preferred protocol and transmission factors D and F . The smart-
card then expresses its inability to operate at the requested parameters by not replying
at all, affirmatively acknowledges the request by echoing the received PPS sequence, or
suggests alternative parameters by sending a PPS sequence containing an alternative
proposal of parameters acceptable to the smart-card. Upon reception of the PPS reply
(or the lack thereof), the card-terminal can in turn reject the received parameters by
resetting the smart-card, thus causing a restart of the PPS negotiation process. After
a successful PPS handshake, the subsequent communication with the smart-card is
performed with the negotiated values.

For the T=0 transmission protocol, error detection is provided at character level by
verifying the parity bit. In case of a detected parity error, this is signalled to the sender
by the receiving party during the guard time (i.e. during stop bits) by pulling the signal
line to the low state, thus requesting a retransmission of the failed data frame from the
sender.

As regards the T=1 protocol, errors are detected and signalled on block frame level,
by verifying the check-sum (which can be a simple 1-byte exclusive-or check-sum or
a 2-byte CRC check-sum) contained at the end of the block frame, and if necessary
requesting the block received containing errors again. The T=0 protocol requires a
faster response to reception errors compared to the T=1 protocol since signalling needs
to be performed while the first stop bit is still being received, whereas for the T=1
protocol the receiver simply re-requests the same block frame without any upper time

2.3. The ISO 7816 Serial Transmission Protocol 19

Property T=0 T=1
Transmission asynchronous, half-duplex,

character oriented
asynchronous, half-duplex,
block oriented

Protocol complexity low high
Timing critical high medium
Error detection character parity bit character parity bit, block

frame checksum
Error signalling during character guard time

window
by request same block again

Segmentation not available available
OSI layer separation no clear separation physical, data link, applica-

tion layer

Table 2.4: Comparison of the ISO7816 specified T=0 and T=1 protocol variants with
regard to characteristic properties

I/O start data data data data data data data data parity guard guard

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

Figure 2.2: ISO7816 character frame composed of one start-bit, eight data-bits, one parity
bit, and two guard-bits

constraint. On the other hand, when only a single frame is corrupted, the T=1 protocol
causes the entire block to be retransmitted until the complete block is received error-
free (at least according to the check-sum and parity bits), while with T=0 only the bad
frame is retransmitted until no parity error is detected.

The actual communication, after card initialisation has been successfully performed,
follows a master-slave scheme. The card terminal initiates the communication by send-
ing a series of frames and waits for a response from the ICC. For the T=1 protocol,
the T=1 block frame is the smallest sent data unit after which a response from the
ICC is required. Whereas for the T=0 protocol, the smallest data unit to require an
acknowledgement from the ICC can become as small as a single character frame—if
requested so by the ICC.

At the application layer, the communication with the ICC is seen as sending Applica-
tion Protocol Data Units (APDU) back and forth between card terminal and smart-card;
the card terminal sends a command APDU, which is processed by the smart-card, and
on completion of the request the card terminal receives a response APDU from the
smart-card. The APDU command-response pairs follow a message structure defined in
the ISO7816 specification[14]. For the actual transmission with T=0, the APDUs get

20 Chapter 2. The UART Problem

Shigh

Slow

s(t)

t

low

un
de

f.

high undef. low

Figure 2.3: Binary data signal s(t) waveform, demonstrating periods of undefined state,
resulting from transitions between the low- and high-state representing areas
(denoted as Slow and Shigh respectively)

transformed into Transmission Protocol Data Units (TPDU); this step is required, since
the T=0 protocol maps the APDU message structure almost directly to the transmis-
sion message structure to avoid size overhead incurred by wrapping the APDU into an
enclosing transmission data structure. By contrast, the T=1 protocol does incur that
overhead, and wraps the APDU verbatim within a T=1 block-frame structure, splitting
the APDU into multiple block-frames if necessary. The T=1 block-frame consists of
a 3-byte prologue field, an (optional) up to 254-byte information field, and is termi-
nated by a 1- or 2-byte epilogue field. In figure 5.6 on page 52 an example for a T=1
transmission transaction is shown.

See table 2.4 on the preceding page for a side-by-side comparison of the properties of
the T=0 and T=1 protocol variants.

2.4 Sampling the Bits

The data serialised into a bit-stream can be seen as a continuous signal over time,
s(t). In order to reconstruct the original (discrete) bit-stream it is necessary to sample
the continuous signal. Formally, this is expressed by forming the inner product of the
signal s(t) with an orthonormal set of functions ϕn(t) representing the different bit cells,
yielding the orthogonal series coefficients sn:

sn =
∫

s(t)ϕn(t)dt (2.1)

We are restricting the discussion to binary digital signals, which means that sn in
order to be well defined needs to be in one of the two distinct value ranges, Shigh

or Slow, representing the high or low state logic level respectively. Thus in order to

2.4. Sampling the Bits 21

obtain binary values, the resulting coefficients sn need to be mapped to the bit values
dn according to the rule:

dn =
{

0 if sn ∈ Slow

1 if sn ∈ Shigh
(2.2)

In the case that sn is neither in one of Shigh or Slow, the value of dn is not defined.
When dealing with actual hardware an undefined state results in an non-deterministic
assignment of the values 0 or 1 to dn.

The functions used for ϕn(t) are usually pulse-shaped functions. In the case of
UARTs, the sampling itself takes far less time compared the duration of a bit period,
therefore pulse-shapes of infinitesimal width as provided by Dirac’s delta function will
be assumed for the following discussion:

ϕn = δ(ntp + ξ − t) (2.3)

which substituted in (2.1) results in

sn = s(ntp + ξ) (2.4)

Thus assigning sn the value of the signal s(t) at the time-position t = ntp + ξ.
In actual electronic circuits, the state transition between low and high logic state

levels takes a certain amount of time, thus causing s(t) (and therefore dn) to be of
undefined state for a certain amount of time as is shown in figure 2.3 on the preceding
page. In order to avoid undefined states, the signal is sampled at the midpoint of the
bit interval. Figure 2.4 on the following page shows a bit cell with a sample point at
offset ξ from the start of the bit cell (for which 0 < ξ < tp holds), ε representing the
time at both ends of the bit-cell the signal needs to stabilise (for which 0 ≤ 2ε < tp
holds), and finally tp being the bit length. In order to reliably sample a bit during its
defined-state window, the following condition needs to hold:

ε < ξ < tp − ε (2.5)

2.4.1 Sampling with Clock Drift

In general, when considering universal asynchronous communications, the communica-
tions endpoints are clocked by separate clock sources, causing a drift rate ρ:

ρ =
tp,receiver

tp,transmitter
− 1 (2.6)

For perfect clock synchronisation ρ would have a value of 0. By generalising (2.5) to
take into account clock drift (2.6) and assuming that both clocks are synchronised at

22 Chapter 2. The UART Problem

bit

ξ

sample point

ε ε

tp

Figure 2.4: Bit cell with sampling point at offset ξ and transition-width ε

t = 0 and both endpoints use the same values for ε and tp in their respective time scales,
we get for the nth bit (with the bit index starting at 0):

ntp + ε︸ ︷︷ ︸
transmitter

< (ntp + ξ)︸ ︷︷ ︸
receiver

(1 + ρ) < (n + 1)tp − ε︸ ︷︷ ︸
transmitter

(2.7)

By resolving (2.7) for ρ we get:

ε− ξ

ntp + ξ
< ρ <

(tp − ε)− ξ

ntp + ξ
(2.8)

Requiring (2.8) for all bits up to the Nth bit, i.e. for the case of N + 1 bit frames with
synchronisation at start bit, while assuming that (2.7) still holds:

N∧
n=0

(
ε− ξ

ntp + ξ
< ρ <

(tp − ε)− ξ

ntp + ξ

)
⇐⇒ ε− ξ

Ntp + ξ
< ρ <

(tp − ε)− ξ

Ntp + ξ
(2.9)

If multiple sample points ξn within a test zone delimited by ξα and ξβ are required,
i.e. (∀n)(ε < ξα < ξn < ξβ < tp − ε), then (2.9) becomes:

ε− ξα

Ntp + ξα
< ρ <

(tp − ε)− ξβ

Ntp + ξβ
(2.10)

If either of Ntp → ∞, ε → tp/2 or ξβ − ξα → tp − 2ε, the allowed range for ρ
gets smaller while always including 0, with the limit being only 0 allowed for ρ, i.e.
max |ρ| → 0.

2.4.2 Sample Point Jitter

Due to technical reasons the actual sampling point is only close to the ideal sampling
point—especially when the clocks are not synchronised. The deviation of the actual
sampling instant ξ′ from the ideal sampling instant ξ is commonly called jitter (denoted
by σξ), and usually its upper bound is of interest.

2.4. Sampling the Bits 23

Starting from (2.5) given an ideal sampling point ξ one can ask for an upper bound
for the jitter, σξ = max |ξ′ − ξ|, in order to guarantee sampling to occur within stable
zones:

ε + σξ < ξ < (tp − ε)− σξ (2.11)

This leads to the upper bound for σξ:

σξ < min{ξ − ε; (tp − ε)− ξ} (2.12)

By expressing the sample instant as the absolute distance from the middle of the bit
cell, λ = |ξ − tp/2|, the following inequality results:

σξ <
tp
2
− ε− λ (2.13)

Consequently, by moving the sample point as close as possible to the bit-cell midpoint,
thus letting λ → 0, the maximum allowable jitter σξ can be increased. On the other
hand, the upper bound for allowed jitter σξ decreases the larger the signal-transition-
width ε becomes.

2.4.3 Start Bit Synchronisation

The previous two sections were concerned with sampling in the middle of bit-cells,
assuming the knowledge of when the bit-cell actually starts; this knowledge is available if
the receiver’s and the sender’s clock are perfectly synchronised with regard to frequency
and phase, and furthermore the bit-cells’ boundaries are aligned with the signal edges
of the clock signals. In contrast, for asynchronous communication clocks, the clock
frequency might be reasonably synchronised, whereas the clock phase might still be out
of sync.

In order to synchronise the phases of the receiver clock with the phase of the trans-
mitter clock, it’s necessary to detect the leading edge of the start bit as accurately as
possible. The detection can be performed by oversampling—i.e. sampling the bit cell at
multiple instants—which performed at k-fold nominal bit rate, leads to a sample period
of tp/k. When detecting a possible leading edge by having a different logic state at
the current sample compared to the previous sample, the edge has occurred some time
between these two sample instants. By assuming the event to have occurred exactly in
the middle of the two sample instants, this leaves us with an upper bound σ0 for the
uncertainty (neglecting any sample instant jitter, which would add to σ0):

|tassumed − treal| < σ0 =
tp
2k

(2.14)

When detecting the beginning of the start-bit within an accuracy of σ0, this needs
to be taken into account when elaborating an upper bound for σξ. For the findings

24 Chapter 2. The UART Problem

of the previous sections, the formulae can be adapted by adding σ0 to the occurrences
of ε, which can be interpreted as the uncertainty σ0 additionally contributing to the
transition-width ε. For instance, (2.13) is extended to:

σξ <
tp
2
− σ0 − ε− λ (2.15)

which by substituting σ0 leads to

σξ <
tp
2

(1− 1
k
)− ε− λ (2.16)

and finally resolving for k yields

k >
1

1− 2σξ+ε+λ
tp

(2.17)

From the last inequation follows that oversampling is always required, i.e. k needs to
be larger than one, even for almost ideal conditions where the term σξ + ε + λ → 0.
This result is in accordance with the Nyquist-Shannon Sampling Theorem[18, 32, 25]
which states that the sampling frequency must be greater than twice the input signal
bandwidth (i.e. the data bit-rate in our case) in order to be able to reliably reconstruct
the original signal from the sampled data.

CHAPTER 3

Approaching a Solution

At the end of the previous chapter, the formal timing requirements for the correctness
of sampling character frames in serial protocol communications were presented.

In this chapter three commonly used algorithms for sampling and emitting bits are
presented and discussed with respect to their properties and requirements.

3.1 Dedicated Polling

The simplest method for implementing a software UART is to perform the reception
and transmission of the character frames regardless of any other operations the system
might have to perform; if necessary, even prevent the system from performing other
tasks while the communication is ongoing.

The basic algorithm for character reception is provided in listing 3.2 on page 27; the
algorithm for character transmission in listing 3.1 on the following page.

For simplicity, it is assumed that all instructions—except for usleep ()—have negligible
execution times compared to BIT PERIOD. Otherwise, this would lead to continuous
shifting of the sampling point with each iteration if no compensation by reducing the
time spent in usleep () was done. The transmission algorithm signals the value of each bit
in the frame for the length of a bit-cell, BIT PERIOD. For the reception, the algorithm
works by busy-waiting for the occurrence of a start-bit, i.e. the leading signal edge of the
frame, after which the sampling points are performed in the middle of the subsequent
bit-cells. If it is necessary to compensate for signal noise, the reception algorithm can be
modified to sample multiple times during a bit-cell, and use a majority vote to reduce
to a resulting bit-value.

The shown algorithms are suitable for environments which provide real-time prop-
erties, e.g. exclusive CPU access by disabling interrupts and preemption in order to
guarantee the above-mentioned timing assumption, or when a dedicated microproces-
sor is available solely for the task of handing serial communication.

25

26 Chapter 3. Approaching a Solution

vo id t r a n sm i t f r ame (uns igned f rame)
{

s e t t x (0) ; // s i g n a l s t a r t−b i t
u s l e e p (BIT PERIOD) ; // wa i t f o r the du r a t i o n o f one b i t−c e l l

// t r a n sm i t the DBITS data b i t s
f o r (uns igned TxBitCnt = 0 ; TxBitCnt < DBITS ; ++TxBitCnt)

{
s e t t x (f rame & 1) ; // put l e a s t s i g n i f i c a n t frame b i t on the w i r e
f rame >>= 1 ; // s h i f t f rame by one b i t
u s l e e p (BIT PERIOD) ;

}

s e t t x (1) ; // s i g n a l s top b i t
u s l e e p (BIT PERIOD) ;

}

Listing 3.1: Dedicated polling transmitter implementation

The given implementation is rather simple, since it is intended for exclusive execution,
and therefore the state is kept implicitly in the local execution context. This makes the
implementation suitable for single channel half-duplex operation, where at most one of
the two routines is executing at the same time.

On the other hand, when full-duplex operation is required, or even multiple serial
communication paths need to be served concurrently, the implementation becomes in-
creasingly complex since multiple threads need to be intertwined into a single function.
For the purpose of intertwining multiple threads of control, techniques such as Asyn-
chronous Software Thread Integration (ASTI) can be used[1].

Since this UART algorithm requires to be executed exclusively by the CPU, this
causes the algorithms’ routines to be cache-resident with a high probability and ad-
ditionally not subject to preemption; this leads to highly time-deterministic and fast
instruction execution. Therefore, this implementation variant represents the highest
possible bit-rates and most accurate signal timings that can be achieved with a soft-
ware UART implementation on the given platform; this good performance is achieved
at the cost of reduced responsiveness of the rest of the system during execution of the
UART routines.

To summarise, the dedicated polling technique presented in this section is simple in its
implementation (for single-channel half-duplex operation), and shows good performance
at the same time. On the other hand, the responsiveness of the system is effectively
disabled for other services while transmission is on-going (including start-bit detection)
because of the required execution-exclusivity of the UART routines; especially when
frames can arrive at any time, this would require the system to be busy-waiting for a
start-bit most of the time, effectively causing the system to be unusable for other tasks
beyond serving the serial communication channel.

3.2. Timer Interrupt Triggered Processing 27

i n t r e c e i v e f r am e (uns igned &frame)
{

f rame = 0 ; // c l e a r r e c e i v e b u f f e r

wh i l e (g e t t x () != 0) {} ; // busy wa i t i n g f o r s t a r t−b i t

u s l e e p (BIT PERIOD /2) ; // wa i t u n t i l m idpo in t o f s t a r t−b i t

i f (g e t t x () != 1) // v e r i f y s t a r t−b i t
r e t u rn −1; // s t a r t−b i t e r r o r

u s l e e p (BIT PERIOD) ;

// sample the DBITS data b i t s
f o r (uns igned TxBitCnt = 0 ; TxBitCnt < DBITS ; ++TxBitCnt)

{
f rame |= ge t t x () << TxBitCnt ;
u s l e e p (BIT PERIOD) ;

}

i f (g e t t x () != 1) // v e r i f y s top b i t
r e t u rn −2; // s top b i t e r r o r

}

Listing 3.2: Dedicated polling receiver implementation

3.2 Timer Interrupt Triggered Processing

This approach mimics the usual hardware implementation of UARTs which consists of
executing a process triggered at each tick of a clock running at a multiple frequency of
the communication bit-rate. Let k denote the multiplier by which the UART’s clock
runs faster than the nominal bit-rate. Standard hardware UART implementations such
as the PC16550D[24] have typical values of up to k = 16 in order to achieve the required
start-bit synchronisation timing accuracy (see section 2.4.3 on page 23).

The task of transmitting a character frame is straightforward. In terms of a simplified
description, the character frame to be transmitted is placed in the transmit register,
including the start-bit. The end of the transmit register, where the start-bit is located,
is connected to the transmit line, therefore causing the transmit line to always get the
value of the bit currently being at the initial start-bit-position. On every kth clock tick
(relative to the clock tick when the transmit register was loaded to ensure the proper
start-bit length), a logic one is shifted into the register at the opposite end to the one
connected to the transmit line, causing all bits previously in the register to be shifted
towards the transmit line. Finally, when all bits have been transmitted, the transmit
register is consequently filled with logic ones and stays that way (emitting logic ones)
until a new frame is to be transmitted.

In contrast to the dedicated polling technique from the previous section, the timer
interrupt triggered process needs to keep the state of the character frame transmission

28 Chapter 3. Approaching a Solution

or reception across process invocations. For the process of frame transmission the state
is simply the transmit register which gets shifted on each process activation (assuming
the process being activated only every kth clock tick), and additionally a bit-count
register for detecting when the character frame transmission has finished. Listing 3.3
on the facing page shows such a simple implementation in VHSIC Hardware Description
Language (VHDL) for the frame transmission process. The CLK DIV K signal denotes
the clock signal divided by k. The code requires simultaneously the register TxReg to
be loaded and TxStart to be set at the rising edge of the CLK DIV K. The end of frame
transmission, and thus the readiness for the next character frame to be loaded into the
transmit register, is signalled by TxReady getting set to one.

Data reception is more complicated due to start-bit detection and error handling. As
a result, the state to be kept across process activations is more complex as well. See
listing 3.4 on page 30 for a simple implementation in VHDL for the receive process
together with the related finite state machine depicted in figure 3.1 on page 31. In the
implementation, the constant BIT TICKS denotes the multiplier k and DBITS the number
of data bits. The actual sampling occurs at the middle of each bit cell.

As mentioned for the dedicated polling algorithm already, in order to compensate for
line noise, the receiving process can take additional samples—i.e. oversample—around
the midpoint of each bit cell at clock-tick distance, and use a simple majority vote over
the uneven number of samples in order to decide the bit value.

When implementing a software UART with this design pattern in a multitasking
environment, the VHDL process would be mapped to a routine which would be called
at regular intervals—for instance an interrupt service routine—being triggered by a
periodic timer interrupt.

As an optimisation, the timer interrupt frequency could be adapted; when not over-
sampling, only a timer interrupt frequency matching the nominal bit-rate is required.
Therefore, only while waiting for the start-bit a sampling frequency higher than the
nominal bit-rate is required. On the other hand, if character frame reception can occur
at any time, this would mean that the system is waiting most of the time for a start-bit
at the higher interrupt frequency, which would limit the usefulness of this optimisation.

Since interrupts are involved for triggering the bit sampling, the interrupt latency
becomes an issue, as the sampling point depends on it. The relation between the
nominal bit-rate and the resulting constraints on the interrupt latency for error-free
frame reception have been discussed in section 2.4 on page 20.

By using timer interrupts for activating the UART routines, the CPU can perform
other tasks between the interrupt service routine calls and thus, compared to the previ-
ous polling algorithm, allowing the system to be responsive to a certain degree while the
UART routines are active. On the other hand, the interrupt handling overhead, the in-
terrupt latency, and the need to oversample cause this algorithm to perform significantly
worse than the dedicated polling algorithm.

In summary, this timer interrupt based algorithm solves the responsiveness problem

3.3. Edge Interrupt Triggered Bit Detection 29

s i g n a l CLK DIV K , Tx , TxReady : s t d l o g i c ;
s i g n a l TxReg , TxCnt : s t d l o g i c v e c t o r (BITS downto 0) ;

Tx <= TxReg (0) ; −− connect LSB o f TxReg to Tx
TxReady <= TxCnt (0) ; −− connect LSB o f TxCnt to TxReady

p roce s s (CLK DIV K , TxStar t)
beg in

i f TxStar t = ’1 ’ then
TxStar t <= ’0 ’ ; −− r e s e t f l a g
TxCnt <= (othe r s => ’ 0 ’) ; −− r e s e t b i t−count s h i f t − r e g i s t e r

e l s i f r i s i n g e d g e (CLK DIV K) then
TxReg <= ’1 ’ & RxReg (RxReg ’ h igh downto 1) ; −− s h i f t r e g i s t e r
TxCnt <= ’1 ’ & RxCnt (RxReg ’ h igh downto 1) ; −− s h i f t r e g i s t e r

end i f ;
end p roce s s ;

Listing 3.3: Timer interrupt triggered transmitter

of the dedicated polling algorithm at the cost of additional complexity and significantly
poorer performance, i.e. lower achievable bit-rate.

3.3 Edge Interrupt Triggered Bit Detection

The primary problem of the previous two algorithms is the start-bit detection, which
consumes considerable amounts of CPU time, and requires a higher sampling rate than
for the remaining part of the character frame. The algorithm presented in this section
tries to improve the start-bit detection. It handles only the character frame reception,
and must therefore be combined with one of the frame transmission routines presented
in the previous sections.

This variant for the character reception implementation tries to improve the start-bit
detection by having the hardware detect signal edges by means of interrupts triggered
by signal transitions; thus requiring that the hardware supports this mode of operation.
Additionally a timer is required which allows to associate signal edges with a time-
stamp; the timer is also required to be able to trigger an interrupt on timeout, in order
to detect the end of frame since the trailing stop bit(s) are set to high state just as the
idle state and therefore no terminating signal transition occurs at the end of the frame.

Listing 3.5 on page 33 shows a possible implementation of this sampling scheme. This
algorithm works by“sampling” the signal transitions, rather than the bit-cell midpoints.
The rx handler () is to be registered as the interrupt handler for the signal transitions as
well as the timer timeout triggered interrupts. At each detected signal transition the
preceding bits since the previous transition are known to be of the previous signal value
and therefore updated accordingly in the receive variable holding the current frame.

30 Chapter 3. Approaching a Solution

s i g n a l CLK, Rx , RxReady : s t d l o g i c ;
s i g n a l RxReg : s t d l o g i c v e c t o r (DBITS downto 0) ;

p roce s s (CLK)
v a r i a b l e RxDelay : i n t e g e r range 0 to (BIT TICKS − 1) := 0 ;
v a r i a b l e RxState : RxSta te s := RxS t a t e I d l e ;

beg in
i f r i s i n g e d g e (CLK) then

i f RxReady = ’1 ’ and RxState /= RxS t a t e I d l e then
RxReady <= ’0 ’ ; −− RxReady on l y he l d up wh i l e i n R xS t a t e I d l e

end i f ;

i f RxDelay /= 0 then −− countdown RxDelay u n t i l 0
RxDelay := RxDelay − 1 ;

end i f ;

case RxState i s
when RxS t a t e I d l e =>

i f Rx = ’0 ’ then
RxState := RxSta t eP r eS ta r t ;
RxBitCnt <= 0 ;
RxDelay := BIT TICKS/2−1; −− wa i t f o r s t a r t−b i t m idpo in t

end i f ;

when RxSta t eP r eS ta r t =>
i f RxDelay = 0 then RxState := RxS ta t eS t a r t ; end i f ;

when RxSta t eS t a r t =>
i f Rx = ’1 ’ then −− s t a r t−b i t f a i l u r e

RxState := RxS t a t e I d l e ; −− back to squa r e 1
e l s e

RxReg <= (othe r s => ’ 0 ’) ; −− c l e a r r e g i s t e r
RxDelay := BIT TICKS−1; −− wa i t f o r nex t b i t m idpo in t
RxState := RxSta tePreB i t ;

end i f ;

when RxSta tePreB i t =>
i f RxDelay = 0 then RxState := RxSta teB i t ; end i f ;

when RxSta t eB i t =>
RxDelay := BIT TICKS−1;
RxReg <= Rx & RxReg (RxReg ’ h igh downto 1) ; −− s h i f t r e g i s t e r
i f (RxBitCnt = DBITS−1) then

RxState := RxStatePreStop ;
e l s e

RxBitCnt <= RxBitCnt + 1 ;
end i f ;

when RxStatePreStop =>
i f RxDelay = 0 then RxState := RxStateStop ; end i f ;

when RxStateStop =>
i f Rx = ’1 ’ then −− on l y s i g n a l r e c e p t i o n when v a l i d s top b i t

RxReady <= ’1 ’ ;
end i f ;
RxState := RxS t a t e I d l e ;

end case ;
end i f ;

end p roce s s ;

Listing 3.4: Timer interrupt triggered receiver

3.3. Edge Interrupt Triggered Bit Detection 31

Idle Rx = 1

PreStart

Rx = 0

RxDelay > 0

Start

RxDelay = 0

Rx = 1

PreBit

Rx = 0

RxDelay > 0

Bit

RxDelay = 0 RxBitCnt < DBITS-1

PreStop

RxBitCnt = DBITS-1

RxDelay > 0

Stop

RxDelay = 0

Figure 3.1: Timer interrupt triggered receiver state machine

32 Chapter 3. Approaching a Solution

Finally, when the timeout interrupt is triggered, the frame reception is completed and
the algorithm returns to waiting for the next data frame. In order to reliably associate
a detected signal edge to the corresponding bit-cell boundary, the interrupt jitter needs
small than tp

2 − ε (see section 2.4.2 on page 22).

3.4 Summary

This chapter presented three common implementation schemes for software UARTs; all
of which had advantages and disadvantages which are concisely visualised below:

Dedicated Polling Timer Interrupt Triggered Edge Interrupt Triggered

Advantages

• simple implementation

• state kept implicitly in ex-
ecution context

• highest possible bit-rates
achievable

• execution takes place only
at sample point

• protocol handler routines
gets executed the least
possible

Disadvantages

• requires exclusive execu-
tion or real-time facility
from the underlying OS

• busy waiting

• state needs to be managed
explicitly

• requires bounded inter-
rupt delay jitter

• state needs to be managed
explicitly

• requires bounded inter-
rupt delay jitter

Characteristic Properties

• requires periodic timer in-
terrupt

• applicable only to data re-
ception

• requires edge sensitive
hardware interrupt

• requires readable timeout
timer for timekeeping

However, none of the presented variants meets all of the requirements stated in sec-
tion 1.4 on page 10 for the target implementation; the shortcomings of each of the
presented algorithms with respect to the stated requirements are discussed in more
detail in section 4.2.1 on page 38 and furthermore a novel algorithm is presented in
chapter 4 on page 35.

3.4. Summary 33

vo id r x h a n d l e r (vo id)
{

s t a t i c uns igned f rame ; // b u f f e r f o r c o n s t r u c t i n g c u r r e n t l y r e c e i v i n g frame

s t a t i c boo l i d l e s t a t e = t r u e ; // c u r r e n t s t a t e s e l e c t o r
s t a t i c uns igned l a s t r x = 0 ; // p r e v i o u s s t a t e s ’ g e t r x () v a l u e
s t a t i c uns igned BitCnt = 0 ; // l a s t s t a t e s ’ b i t i nd e x

i f (i d l e s t a t e)
{

i f (g e t r x () == 0) // v e r i f y s t a r t−b i t
{

l a s t r x = 0 ; // s t a r t−b i t

t im e r s e t a l a rm (BIT2TICKS (DBITS+2)) ; // s e t t imeout on end o f stop−b i t
t i m e r r e s t a r t () ; // s t a r t t ime r from 0

f rame = 0 ; // c l e a r b u f f e r
BitCnt = 0 ; // r e s e t b i t coun t e r

i d l e s t a t e = f a l s e ; // l e a v e i d l e s t a t e
}

}
e l s e

{ // i n frame s t a t e
const uns igned NewBitCnt = TICKS2BIT (g e t t im e r ()) ; // round ing f u n c t i o n

wh i l e (B i tCnt < NewBitCnt) { // s e t b i t i n d i c e s i n [BitCnt , NewBitCnt)
f rame |= l a s t r x << BitCnt ; // to l a s t r x
++BitCnt ;

}

l a s t r x = g e t r x () ; // update s t a t e

i f (B i tCnt == DBITS) // i . e . t ime r a larm caused t h i s h and l e r e x e c u t i o n
{

i d l e s t a t e = t r u e ; // back to i d l e s t a t e

i f (l a s t r x) // v e r i f y s top b i t
// s i g n a l r e c e p t i o n o f masked data b i t s
r x c omp l e t e (f rame >> 1 & (1<<DBITS) − 1) ;

}
}

}

Listing 3.5: Edge interrupt triggered receiver implementation

CHAPTER 4

The Implementation

After having presented various possible generic implementation techniques for simple
serial protocol implementations in chapter 3, this chapter will concentrate on the actual
implementation for the T=0/T=1 protocol specified in ISO7816, after having described
the target host environment.

4.1 The Host Environment

4.1.1 The Hardware

The goal was to implement an ISO7816 software UART using GPIO pins on a Cirrus
EP9301[4] based embedded system, see figure 4.1 on the next page.

The Cirrus EP9301 is a 32-bit RISC 166MHz ARM920T processor with a 5-stage
pipeline, a Memory Management Unit (MMU), and a non-unified 32 KiB cache. The
core-internal memory system follows the Harvard architecture, i.e. separating the in-
struction paths from the data paths to allow parallel access to instructions and data.
Therefore, the Cache is divided into separate 16 KiB instruction and data caches (pro-
grammable as write-through or write-back) with a cache-line length of 32 bytes, resulting
in 512 cache-lines for each cache. Also the Translation Look-aside Buffer (TLB) are a
divided, providing 64 entries for each of the data TLB and the instruction TLB. The
TLBs as well as the caches allow for individual lock-down of their entries, in order to
keep selected entries from being replaced.

The EP9301 provides various GPIO pins which can be programmed to trigger hard-
ware interrupts, these can configured either edge or level sensitive.

Furthermore, the EP9301 features four hardware timers of which the most precise
is the 40-bit upward-counting time stamp debug timer, being clocked directly by the
14.7456MHz clock source and divided by 15 to yield 983040 clock ticks per second. The
time stamp debug timer is free-running, i.e. automatically wraps over on overflow; it

35

36 Chapter 4. The Implementation

EP9301
TDA8023 ICC Slot

FGPIO2 INT
HGPIO2 SDA
HGPIO3 SCL
FGPIO1 I/OµC

XTALI CLKIN

14.745MHz

C1...C8

PRES SW

Figure 4.1: Block diagram of card terminal embedded system

can be enabled and disabled, which clears it back to zero; however, it cannot be set to
trigger interrupts.

The only component apart from the contacting unit used for interfacing with the
smart-card is the TDA8023 IC[28], the smart-card analog interface which handles
the physical layer—i.e. power supply, protection and power-up/down functions. The
TDA8023 is provided with the same 14.7456 MHz clock source as the CPU in order to
avoid clock drifts. The CPU is connected to the TDA8023 over an I2C bus in addition
to the passed-through smart-card I/O signal, and an interrupt line for signalling events
such as card insertion/removal.

4.1.2 The Software

The software UART has been developed as a kernel device driver for the 2.4.x branch
of the Linux kernel[10], a free Unix-like operating system kernel. The specific kernel
version used was a vanilla 2.4.26 version of Linux, with ARM specific patches[30] and
EP9301 specific patches from Cirrus applied.

A by-product of the software UART implementation process was the creation of a
generic ISO7816 T=0/T=1 protocol stack and card terminal device driver framework
for Linux. The kernel/user-space interface is accomplished by providing character de-
vices on which the standard I/O Portable Operating System Interface (POSIX) system
calls are to be applied, which are subsequently mapped to smart-card operations. The
semantics for the character device based smart-card user-space interface have been for-
malised in the UX/SC specification[35].

In order to register a card terminal with the protocol stack, a low-level device driver
has to be written, which implements at least the following methods:
i n t s t a r t (s t r u c t i f d d e v i c e ∗dev , i n t warm , i f d d e v i c e c l a s s t c l a s s) ;
i n t s top (s t r u c t i f d d e v i c e ∗dev) ;

4.1. The Host Environment 37

i n t f r ame s t x (s t r u c t i f d d e v i c e ∗dev , const u8 f rames [] , uns igned l en , i n t more)
{

a s s e r t (! more) ;
// assume more i s a lways f a l s e , thus f rames [] c o n t a i n s a l l f r ames to send

// send a l l f r ames
f o r (uns igned i d x = 0 ; i d x < l e n ; ++i d x)

s e n d f r am e t o i c c (f rames [i d x]) ;

// wa i t f o r answer and pas s up f rames one by one when r e c e i v e d
do {

u8 frame ;

i f (r e c e i v e f r am e f r om i c c w i t h t im e o u t (&frame , TIMEOUT))
break ; // l e a v e l oop on t imeout

// r e p o r t r e c e i v e d frame to p r o t o c o l s t a c k
// i f d f r a m e r x () r e t u r n s non−z e r o when f u r t h e r f rames a r e expec t ed

} wh i l e (i f d f r a m e r x (frame)) ;

// e i t h e r t imeout o c cu r r e d or end o f message s i g n a l l e d by p r o t o c o l s t a c k

// s i g n a l t imeout / acknowledge end o f r e c e p t i o n to p r o t o c o l s t a c k
i f d n o t i f y (dev , IFD EVENT RX TIMEOUT) ;

}

Listing 4.1: Simplified frames tx implementation

i n t s e t r a t e (s t r u c t i f d d e v i c e ∗dev , uns igned F , uns igned D, i n t t r y) ;
i n t f r ame s t x (s t r u c t i f d d e v i c e ∗dev , const u8 f rames [] , uns igned l en , i n t more) ;

The functions start (), stop() and set rate () are used for session initialisation and
finalisation. Function frame tx() is the primary entry point for the protocol stack for
initiating a transmission cycle, consisting of a request being transmitted to the ICC
and a reply being received. The reply is signalled asynchronous frame by frame to the
protocol stack concluded by an end of frame notification by means of the API functions
ifd frame rx () and ifd notify (, IFD EVENT RX TIMEOUT) respectively.

Listing 4.1 shows a simplified implementation of the frames tx() method. This trans-
action scheme exploits the property of smart-card communication that the ICC only
answers when asked, since the ICC is a communication slave endpoint; therefore, it is
only needed to expect character frames from the ICC within defined time-windows, and
thus the reception routine is only activated for limited time windows.

38 Chapter 4. The Implementation

4.2 The Driver

4.2.1 Constraints

Apart from having to fit into the described software and hardware host environment,
the software UART implementation was required to meet the following requirements
(as already stated in section 1.4 on page 10):

• Suitable for the target-platform; and yet generic enough to be portable with little
effort to other architectures (portability);

• perform (persistent-)error free communication with the smart-card, if necessary
by exploiting error recovery facilities provided by the protocol (reliability);

• conform to the ISO7816 protocol (correctness);

• support bit rate of at least 9600 bps (performance); and

• keep system responsive for other services (responsiveness).

When applying the techniques presented in chapter 3 to the problem, the following
issues arose:

dedicated polling Real-time context created by disabling interrupts. Using third party
real-time patches to Linux would have required major modification to the standard
Linux source tree; in addition, at the time writing there was no support for the
used platform yet. For the purpose of transmission tolerable, since each character
takes up only about 1.2 ms at the default rate, and scheduling could be allowed
between each frame sent to the ICC. As for frame reception disabling interrupts
is not acceptable, since for the time waiting for the start bit of the first reply
frame, and also the time between each subsequent frame, can extend to a couple
of seconds; to make that worse, the protocol allows for extending the time the
ICC has to respond, by using so-called waiting time extension, which can lead to
several minutes spent waiting for a start-bit.

Since this variant has the least overhead, it also provides the best performance,
at the cost of responsiveness.

timer interrupt triggered This technique effectively avoids the problem of spending
large amounts of time with disabled interrupts busy waiting for the next start bit
to show up. But, it requires the interrupt latency to be small enough compared
with the sampling interval. Also the sampling needs to be a sufficient multiple of
the bit rate, in order to detect the start bit with enough precision to be able to
sample subsequent bit cells at the midpoint. The overhead incurred by using high

4.2. The Driver 39

frequency interrupts can easily grow beyond the time spent within the interrupt
handler, effectively causing the system to use up all CPU time for serving the
frequent interrupts and maybe even miss interrupts.

edge interrupt triggered bit detection This variant would cause less frequent inter-
rupts than the timer interrupt triggered variant, but still relays on low and con-
stant latency for proper operation. Furthermore, the T=0 protocol error signalling
requires low latency jitter in order to meet the timing constraints. Requires hard-
ware to be able to detect negative as well as positive signal edges.

Therefore, satisfying a subset of these constraints could be easily accomplished by
using one of the approaches presented in chapter 3, satisfying all of them at once, given
the host environment at hand, requires a new approach.

4.2.2 The Hybrid Approach

The approach taken to fulfil the requirements was to combine ideas into the following
implementation:

• Dedicated polling for character transmission

• Hybrid algorithm based upon edge detection for start bit and subsequent auto-
aligning dedicated bit sampling.

By auto-aligning, the act of compensating for the start-bit detection delay, caused
by the interrupt latency, is meant, by means of waiting for the next bit-change within
the frame; in the best case this will occur with the first data bit after the start-bit, in
the worst case this happens with the stop-bit. See listing 4.2 on the following page and
figure 4.2 on page 41. This approach leads to the following combined properties:

• responsiveness, due to asynchronous start-bit detection by use of negative edge
triggered interrupt

• good performance and timing accuracy thanks to dedicated polling

However, the unsynchronised sampling point offset ξ0 needs to stay within ξα and
ξβ (0.2 etu and 0.8 etu respectively for ISO7816) in order to guarantee correctness;
otherwise the timer could be aligned on signal edge detection. For the lower boundary,
ξα, this can be avoided by delaying a certain amount of time, LATENCY OFFSET, at
entry of the interrupt handler based on the absolute minimum interrupt delay possible
and the current bit-rate dependent ξα value; This leaves us with a timing constraint
for the correctness of the algorithm, requiring the interrupt latency to be less than
ξβ+LATENCY OFFSET.

40 Chapter 4. The Implementation

vo id r x e d g e i r q h a n d l e r (vo id) // n e g a t i v e edge i n t e r r u p t h and l e r
{

// assume a l l i n t e r r u p t s a r e d i s a b l e d , i . e . code below runs e x c l u s i v e l y

i f (g e t r x () != 0) // v e r i f y s t a r t b i t
r e t u rn ; // l a t e n c y too h igh or g l i t c h −−− i g n o r e

ude l a y (LATENCY OFFSET) ; // move i n i t i a l s amp l ing po i n t

i f (g e t r x () != 0) // re−check s t a r t b i t
r e t u rn ; // l a t e n c y too h igh or g l i t c h −−− i g n o r e

t i m e r r e s t a r t a t (0) ; // r e s t a r t t ime r at i n i t i a l o f f s e t

uns igned c u r r f r ame = 0 ; // frame format : SDDDDDDDDPG

uns igned i d x ;

// un s yn ch r on i s e d samp l i ng t ime base

// scan f o r f i r s t edge
f o r (i d x = 0 ; i d x < 1+8+1+1; ++id x)
{

wh i l e (t im e r g e t () <= idx ∗ETU + ETU)
i f (g e t r x () == 1) // edge occu r r ed , so l e a v e wh i l e l oop

goto edg e d e t e c t e d ;
}

edg e d e t e c t e d :
// b i t 0 up to b i t i d x a r e c l e a r e d
t i m e r r e s t a r t a t (i d x ∗ETU + ETU) ; // a l i g n t ime r v a l u e

// s y n c h r o n i s e d samp l ing t ime base

// s i n c e we now know where the b i t s t a r t s , we can sample at mid−po i n t
// next b i t to be sampled i s a t i ndex i d x+1
f o r (++i d x ; i d x < 1+8+1+1; ++id x)
{

i n t c u r r b i t = 0 ;

// de l a y u n t i l i n the midd le o f the b i t c e l l
wh i l e (t im e r g e t () <= idx ∗ETU + ETU/2) {}

c u r r b i t = g e t r x () ; // now sample i t

c u r r f r ame |= c u r r b i t << i d x ; // i n s e r t b i t i n t o frame
}

// cu r r f r ame now con t a i n s complete frame i n c l u d i n g f r am ing

// v e r i f y f r am ing / p a r i t y , do e r r o r s i g n a l l i n g i f needed ,
// submit c u r r f r ame to r e c e p t i o n b u f f e r
. . .

// i n t e r r u p t s w i l l be enab l ed aga in o u t s i d e the hand l e r
r e t u rn ;

}

Listing 4.2: Simplified hybrid sampling implementation

4.2. The Driver 41

I/O start data data data data data data data data parity guard guard

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

ξ0 etu etu etu/2 etu etu etu etu etu etu etu

Figure 4.2: Hybrid sampling algorithm: Signal waveform with sample positions shown
as arrows; the numerous light arrows depict the polling phase leading to the
detection (indicated by the dashed line) of the first low-high signal transition,
at which the algorithm is synchronised, and consequently switches over to
sampling at the subsequent bit-cell midpoints; ξo denotes the leading edge
detection delay caused by interrupt latency

4.2.3 Actual Implementation

The actual driver implemented according to the algorithm presented in section 4.2.2 on
page 39 to provide a proof of concept for this thesis is reproduced in appendix A on
page 67.

Platform Dependencies

The driver implementation requires the following capabilities from the hardware, which
were assumed to be available on most platforms:

• GPIO Port for the I/O data line.

• (Negative) signal-edge triggered I/O data interrupt.

• Timer counter for time-keeping with the resolution required the targeted bit-rates.

• Smart-card controller interfaced with I2C and interrupt line, and clock source
synchronised with time counter.

The driver was implemented with the intent of being easily ported to other platforms,
nevertheless, due to the low-level nature of the task and the lack of hardware abstraction
facilities in the Linux kernel at this level, it is still necessary to make modifications
beyond simply changing a few constants to port the driver. Therefore, in order to port
the given implementation to other platforms, the following changes would be required,
assuming the same smart-card controller interface chip was used:

• Modify the functions controlling the interrupt handling used for communicating
with the smart-card controller: tda8023tt ctl irq on (), tda8023tt ctl irq off (), and
tda8023tt ctl irq clear ().

42 Chapter 4. The Implementation

• Adapt the functions for managing the I/O edge interrupt: tda8023tt io irq on (),
tda8023tt io irq off (), and tda8023tt io irq clear ().

• Adapt the functions for initialising and managing the state of the I/O data line:
iouc init (), iouc get (), and iouc set .

• Adapt the functions for retrieving and managing the hardware timer counter value:
ep93xx timer init (), ep93xx timer reset (), and ep93xx timer reset ().

• Adapting the integer arithmetic to convert from the timer time-base to the current
bit-rate time-base expressed in half-ETUs in the functions: ep93xx ticks2timer ,
ep93xx timer2ticks , and tda8023tt timer setup ().

Limitations

As the primary goal of this thesis is to provide a proof of concept, rather than to
implement a production-grade certified ISO7816 software UART, the presented imple-
mentation suffers from deliberately chosen limitations:

• As the smart-cards are assumed to show much better timings than required by
ISO7816, the implementation behaves as if compensation delay LATENCY OFFSET

was always 0.

• Only the protocol timings absolutely required for allowing the basic character
reception and transmission to work at all are (approximately) implemented.

• The DIVCLK parameter supports only the dividers 4 and 5, and can only be
selected at compile time.

• The implementation announces only support for cards providing (at least) class
A (5 Volt) operation in order to workaround potential reentrancy issues with the
card initialisation routines.

• Signalling badly received character frames, thus requesting character frame re-
transmission, and subsequently re-sampling the resent frame for the T=0 protocol
is not implemented.

Eliminating these deficiencies and making further improvements is reserved for future
work, which is addressed in section 7.1 on page 64.

CHAPTER 5

Experiments in Latency and Time

In order to evaluate the presented algorithm for practical applications, it is necessary
to acquire empirical data. This chapter presents measurements performed on the tar-
get system described in the previous chapter related to the devised software UART
implementation.

5.1 Interrupt Latency

The interrupt latency is one of the main limiting factors for the performance of the
software UART. Therefore, it is of interest to determine its magnitude under various
conditions in order to estimate what performance to expect from a software UART
implementation based on interrupt-based signal-edge detection.

The interrupt latency, i.e. the time between the interrupt being triggered and the
interrupt service routine being executed, was measured using the Linux kernel module
listed in appendix B on page 91. The basic idea was to use a periodic timer to generate
interrupts, and to determine the time taken to reach the interrupt service routine—i.e.
the interrupt latency—with the help of a second high precision timer.

By programming the TC3 timer with a count-down frequency of 1993.9 Hz to peri-
odically trigger on counter underflow, interrupt trigger frequencies f between 1 Hz and
1 kHz could be achieved. The interrupt latency was determined by measuring with the
free-running TC4, which is counting up with a frequency of 983040 Hz, the time un-
til TC3 changes its value again; this all happens in the interrupt service routine with
interrupts disabled, thus causing interrupts being disabled by this module for up to
approximately 1 ms. This procedure allows for detecting the latency with a precision of
about 1µs. The interrupt service routine’s assembly text size is 160 bytes, which would
take up five 32-byte cache-lines if cached as a whole.

For each trigger frequency, f , of 1 Hz, 10Hz, 100 Hz, and 1 kHz, the latencies, t,
were measured and collected for n consecutive interrupt triggers. Due to the discrete

43

44 Chapter 5. Experiments in Latency and Time

resolution of the TC4 counter, the latency values were assigned into time-buckets with
a length of 1/983040 s ≈ 1.017 µs. For each test-condition, the resulting distributions of
the interrupt latencies have been condensed in tabular form, and plotted as normalised
histograms over the interrupt latencies.

To estimate the maximum achievable bit-rates, the interrupt latency is assumed to be
the main determining factor for the maximum achievable error-free sampling bit-rate.
It has been shown in section 2.4 on page 20, that in order to ensure correct bit sampling,
the sampling point time-offset from the signal edge, ξ, has to satisfy ε < ξ < tp − ε.
For ISO7816 this results in 0.2 etu < ξ < 0.8 etu for the sampling time-offset, which
directly results from the interrupt latency for the leading edge detection, i.e. ξ = t. The
data tables contain four columns related to the expected achievable bit-rates based on
the determined latencies. The columns are calculated as follows:

min bitrate = εISO7816
tp min t =

0.2
min t

max bitrate = tp−εISO7816

tp max t =
0.8

max t

maxofsbitrate = tp−2εISO7816

tp(max t−min t) =
0.6

max t−min t

maxε→0bitrate = limε→0
tp−ε

tp max t =
1

max t

The columns min bitrate and maxbitrate represent the theoretical minimum and
maximum bit-rates possible (without adopting latency offset compensation measures)
for the measured t distribution, based on the worst-case timings as permitted by the
tolerances in the ISO7816 specification.

The maxofs bitrate column gives the upper limit for the bit-rate, this time by using
an additional bit-rate dependant sampling offset, ofs = ε − min t, which modifies the
inequality for the edge detection latency to ε < ofs + ξ < tp − ε.

Finally, the column denoted by maxε→0 bitrate shows the theoretical maximum bit-
rate, when assuming perfect incoming signal bit timings without jitter, i.e. ε = 0.

The common setup for the measurements consisted of the target-platform (see sec-
tion 4.1.1) connected to a workstation through a null-modem cable to the targets’ serial
console, and through a Fast Ethernet switched network. The target was booted over
the network, and used a NFS root file-system containing a minimal Debian GNU/Linux
3.1/ARM[33] system served from the workstation.

The System was controlled by logging in on the serial console. The measurement was
performed by loading the latency measurement kernel module, sleeping for a certain
amount of time by use of the sleep(1) standard Unix tool, and finally removing the
kernel module. The kernel messages appearing on console after removing the kernel
module, which contained the latency measurement results, were monitored and saved
for later processing, which resulted in the tables and plots presented in this chapter.

5.1. Interrupt Latency 45

The diagrams use a logarithmic vertical density axis, as the density around the latency
density peak declines fast, and would otherwise look like a 0-line around the density
peak.

5.1.1 Idle System

An idle system, that is a system which has no user tasks to execute, is expected to
represent the ideal case with respect to low latency, since only few context switches
happen and therefore few cache replacements and high cache hit-rates are expected;
also expected is little driver activity, which could cause interrupt processing, which in
turn would lead to additional context switches, and also to time periods where other
interrupts would be delayed due to temporarily disabled interrupt processing.

Table 5.1 on page 47 and figure 5.1 on page 47 show the data acquired for such an idle
system. The range for the interrupt latencies is roughly the same for all frequencies1,
i.e. from about 2 µs up to about 29µs. Most latencies measured to be below 10 µs, with
typical latencies between 3 µs and 4 µs.

5.1.2 Network Stress

For the purpose of analysing the impact of interrupt-stress on the interrupt latency,
the system was bombarded with network packets, which caused the network driver’s
interrupt handler to be called for each received packet.

These measurements were taken while the System was exposed to ping flooding with a
default packet-size of 56 bytes, i.e. sending ICMP ECHO REQUESTs as fast as possible
to the target system, with a flood rate between 1 and 2 packets per ms. During the
whole measurement no packet-loss was detected.

The measured data is reported in table 5.2 on page 48 and figure 5.2 on page 48.
The latency distribution resembles the one determined for an idle system, except for
being dilated towards slightly higher (about a few µs) latencies. There is an isolated
density point at 32 µs for the 105 Hz distribution whose apparent isolation is caused by
an insufficient amount of samples for the latency range above 14µs: that density point
corresponds to a single latency sample.

5.1.3 Cache-Disabled System

The previous measurement determined the impact of interrupt processing on the la-
tency; This time the objective is on another latency inducing effect, namely cache-
misses.

1In the case of the 1Hz interrupt trigger frequency, the maximum value is expected to be reach the
same maximum as the other frequencies, given enough samples; but due to limited time resources
it was not possible to acquire more samples.

46 Chapter 5. Experiments in Latency and Time

The most demonstrative way to determine the effect of cache-misses is to cause all
memory operations to be cache-misses which can be achieved by simply disabling the
caches. On the target-platform it was possible to disable the instruction and data cache
individually, therefore allowing to observe the individual effect of each of the caches on
the latencies.

To begin with, only the instruction cache was disabled, which resulted in the data in
table 5.3 on page 49 and figure 5.3 on page 49. For the next measurement, the data
cache was disabled as well, and lead to the results in table 5.4 on page 50 and figure 5.4
on page 50. As expected, the results show a latency distribution very different from the
ones previously measured; the distribution is shifted and dilated significantly towards
higher latencies. The largest increase in latency, about 50 µs, was caused by disabling
the instruction cache, the data cache only added around 10 µs to the latency minima
detected; most latencies were determined around 110 µs for disabled instruction cache,
whereas disabling the data cache again added around 10 µs to the latency density peak.

5.1.4 System Under Combined Stress

In order to get values for realistic real-world worst-case scenarios, a continuous mem-
ory test over 1 MiB was performed while running the measurements, which is expected
to stress the data cache. Moreover, the frequently updating memory testing progress
displayed on the standard error file descriptor was transmitted over the network by the
ssh session connected to the embedded system; this is expected to cause the instruc-
tion cache to be polluted by the network handling code and the executed encryption
routines in the ssh daemon. Therefore, this setup was expected to cause frequent cache-
line replacements as well as frequently executing the network driver code and causing
network-induced interrupt processing.

Depending on whether the cache-pressure caused by the additional stress is enough
to cause the few cache-lines required by the interrupt handling path for the latency
measurement module to get expunged from the cache, the latency should be either
unaffected, i.e. comparable to the one on an idle system, or in case of a completely
non-cached code-path, somewhere near the cache-disabled latency values.

The measured data is reported in table 5.5 on page 51 and figure 5.5 on page 51,
showing the distribution lying (as expected) between the one of an idle system and the
one of a totally non-cached system. The measured data shows, as expected, increasing
maximum latencies for increasing trigger frequencies; however, at the same time, a
clearly visible decrease in the average and peak latencies is observed, which is caused
by cache effects.

5.1. Interrupt Latency 47

rate samples latency t [µs] achievable bit-rate [bps]
f [Hz] n [1] min µ max σ2 peak min max maxofs maxε→0

1 3541 2.0 4.2 15.3 2.6 3.1 393216 52429 45371 65536
10 17742 1.0 3.6 25.4 1.1 3.1 786432 31457 24576 39322

105 30999 2.0 3.9 27.5 0.7 4.1 393216 29127 23593 36409
997 294583 2.0 3.1 28.5 0.2 3.1 393216 28087 22686 35109

Table 5.1: Distribution of the interrupt latency t for idle system at different interrupt
trigger frequencies f , together with the predicted ranges of achievable bit-rates

1× 10−6

1× 10−5

1× 10−4

1× 10−3

1× 10−2

1× 10−1

1

0 5 10 15 20 25 30

no
rm

al
is

ed
de

ns
it
y

latency t [µs]

1 Hz
10 Hz

105 Hz
997 Hz

Figure 5.1: Resulting logarithmic histogram of the interrupt latency distribution for idle
system at different interrupt trigger frequencies

48 Chapter 5. Experiments in Latency and Time

rate samples latency t [µs] achievable bit-rate [bps]
f [Hz] n [1] min µ max σ2 peak min max maxofs maxε→0

1 3540 3.1 5.3 14.2 1.8 5.1 262144 56174 53620 70217
10 3549 2.0 4.4 17.3 0.7 4.1 393216 46261 39322 57826

105 30985 1.0 4.2 32.6 0.6 4.1 786432 24576 19027 30720
997 294654 2.0 4.2 26.4 0.3 4.1 393216 30247 24576 37809

Table 5.2: Distribution of the interrupt latency t for system with network stress applied
at different interrupt trigger frequencies f , together with the predicted ranges
of achievable bit-rates

1× 10−6

1× 10−5

1× 10−4

1× 10−3

1× 10−2

1× 10−1

1

0 5 10 15 20 25 30 35

no
rm

al
is

ed
de

ns
it
y

latency t [µs]

1 Hz
10 Hz

105 Hz
997 Hz

Figure 5.2: Resulting logarithmic histogram of the interrupt latency distribution for system
with network stress applied at different interrupt trigger frequencies

5.1. Interrupt Latency 49

rate samples latency t [µs] achievable bit-rate [bps]
f [Hz] n [1] min µ max σ2 peak min max maxofs maxε→0

1 3541 57.0 119.1 224.8 59.6 117.0 14043 3559 — 4448
10 17748 52.9 117.2 217.7 55.2 116.0 15124 3675 3641 4594

105 31065 52.9 118.3 215.7 54.3 117.0 15124 3710 3686 4637
997 296607 52.9 118.4 267.5 54.1 118.0 15124 2990 2795 3738

Table 5.3: Distribution of the interrupt latency t for idle system with disabled i-cache at
different interrupt trigger frequencies f , together with the predicted ranges of
achievable bit-rates

1× 10−6

1× 10−5

1× 10−4

1× 10−3

1× 10−2

1× 10−1

1

0 50 100 150 200 250 300

no
rm

al
is

ed
de

ns
it
y

latency t [µs]

1 Hz
10 Hz

105 Hz
997 Hz

Figure 5.3: Resulting logarithmic histogram of the interrupt latency distribution for idle
system with disabled i-cache at different interrupt trigger frequencies

50 Chapter 5. Experiments in Latency and Time

rate samples latency t [µs] achievable bit-rate [bps]
f [Hz] n [1] min µ max σ2 peak min max maxofs maxε→0

1 3541 63.1 132.3 275.7 146.3 129.2 12684 2902 2822 3627
10 17750 63.1 131.8 279.7 148.3 130.2 12684 2860 2769 3575

105 31088 62.1 131.4 278.7 148.6 129.2 12892 2870 2769 3588
997 297423 62.1 132.8 378.4 154.5 129.2 12892 2114 1897 2643

Table 5.4: Distribution of the interrupt latency t for idle system with disabled d- and i-
cache at different interrupt trigger frequencies f , together with the predicted
ranges of achievable bit-rates

1× 10−6

1× 10−5

1× 10−4

1× 10−3

1× 10−2

1× 10−1

1

0 50 100 150 200 250 300 350 400

no
rm

al
is

ed
de

ns
it
y

latency t [µs]

1 Hz
10 Hz

105 Hz
997 Hz

Figure 5.4: Resulting logarithmic histogram of the interrupt latency distribution for idle
system with disabled d- and i-cache at different interrupt trigger frequencies

5.1. Interrupt Latency 51

rate samples latency t [µs] achievable bit-rate [bps]
f [Hz] n [1] min µ max σ2 peak min max maxofs maxε→0

1 3541 8.1 18.8 54.9 25.1 15.3 98304 14564 12822 18204
10 17742 5.1 18.9 84.4 26.4 15.3 157286 9475 7562 11844

105 31010 3.1 17.6 84.4 29.9 13.2 262144 9475 7373 11844
997 294754 2.0 9.1 68.2 11.8 8.1 393216 11738 9074 14672

Table 5.5: Distribution of the interrupt latency t for combined stress at different interrupt
trigger frequencies f , together with the predicted ranges of achievable bit-rates

1× 10−6

1× 10−5

1× 10−4

1× 10−3

1× 10−2

1× 10−1

1

0 10 20 30 40 50 60 70 80 90

no
rm

al
is

ed
de

ns
it
y

latency t [µs]

1 Hz
10 Hz

105 Hz
997 Hz

Figure 5.5: Resulting logarithmic histogram of the interrupt latency distribution for com-
bined stress at different interrupt trigger frequencies

52 Chapter 5. Experiments in Latency and Time

Prologue read command E

Prologue 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue next 32 bytes of read result E

Prologue E

Prologue SW E

sent by card terminal sent by smart card

Figure 5.6: ISO7816 T=1 block-frame sequence representing a 256-byte ISO READ BI-
NARY transaction

5.2 Achieved Data Rates

The measurements in this section have the purpose to determine the data rates from
table 5.6 on the next page at which error-free communication can be achieved with the
implementation presented in this thesis. Additionally, the responsiveness of the system
was determined—during ongoing communication—by requesting echo replies from the
target system over the network and measuring the round-trip-times for the responses.

In this measurements only the character reception has been focused upon, since the
frame sending part is implemented by disabling interrupts processing for the whole
duration of sending a block-frame to the ICC and no errors were detected while sending
frames for data rates at which receiving was error free as well.

The benchmark was performed by repeatedly issuing the ISO READ BINARY com-
mand to the ICC, yielding a response of 256 frames together with the 2-frame status-
word. The transaction was encapsulated and packetised by the T=1 protocol layer as
shown in figure 5.6. Thus an iteration of the test consisted in sending one 9-byte block-
frame and eight 4-byte block-frames, interleaved with the reception of eight 36-byte
block-frames and one final 6-byte block-frame. Therefore, the maximum duration for

5.2. Achieved Data Rates 53

F DIVCLK D = 1 D = 2 D = 4 D = 8

512
5 5760 11520 23040 46080
4 7200 14400 28800 57600

372
5 7928 15855 31711 63422
4 9910 19819 39639 79277

Table 5.6: Resulting bit-rates per second for the combinations of DIVCLK, D, and F
supported by the implementation

which interrupts were disabled was for the single 9-byte block-frame sent to the ICC in
each iteration; the duration of which is visualised in the response latency plots as an
additional curve.

The smart-card used for the measurements was the author’s personal Austrian elec-
tronic national health insurance card, also known as the e-card, which is manufactured
by Giesecke & Devrient. The e-card supports T=1 and all combinations supported by
the ISO7816 UART implementation under test—see table 5.6—except for F=512/D=1
and F=372/D=8.

The number of frames received whose parity did not match the data bits’ parity was
counted during all iterations, and then divided by the total number of frames received
to yield the relative error-rate.

Additionally, the response latency at the tested communication bit-rates was mea-
sured by using the standard UNIX tool ping(8) from the iputils package[9]. The
operation principle of ping(8) is to send ICMP ECHO REQUESTs to a given host
over the network and then wait for ICMP ECHO REPLYs from the contacted host;
for each received reply, ping(8) reports the round-trip-time to the user. The resulting
round-trip-time is the sum of all propagation and processing delays involved, including

• the delay incurred at the originating host for actually placing the echo request
packet on the network;

• the time required for the network packet to travel through the network to the
destination host;

• the actual response time at the destination host, i.e. the time from the reception
of the packet to the emission of the reply packet;

• the time it takes the packet to travel back to the requesting host;

• the delay incurred on the requesting host for receiving and processing the packet.

Thus, the measured value of interest, i.e. the response time of the target system, is only
one of the factors making up the round-trip-time measured. In order to minimise the
influence of the factors other than the target system response time, it was taken care

54 Chapter 5. Experiments in Latency and Time

to avoid any disturbing load on the network and the host performing the round-trip-
time measurements. For the purpose of providing a base-line for the response-times,
the round-trip-times were also measured for an idle system with no active software
UART communication (hence denoted as “0 bit-rate” round-trip-time in the diagrams).
Nevertheless, the round-trip-times should be taken only as a rough estimate for the
actual responsiveness of the target system.

The measured round-trip-time distribution for each tested communication bit-rate is
summarised in tabular form; together with the number of total frames read and the
relative amount of the badly received ones thereof. The diagrams show the round-trip-
times distributions as error-bars based on the minimum, mean, and maximum times,
together with the herein before mentioned nine 12-etu curve.

5.2.1 Idle System

To begin with, measurements were performed with an unloaded system. Table 5.7 on
the facing page and figure 5.7 on page 56 show the results for a system with no load
except for the program exercising the ISO READ BINARY requests. This setup should
provide a picture for the performance that can be achieved with the presented algorithm
under ideal conditions.

5.2.2 System under Stress

Again, in order to get values for worse case scenarios, a continuous memory test over
1 MiB was performed while running the measurements. Moreover, the frequently up-
dating memory testing progress display on standard error was transmitted over the
network by the ssh session connected to the embedded system. The measured data is
reported in table 5.8 on the facing page and figure 5.8 on page 57.

5.2. Achieved Data Rates 55

bit-rate frames read ping round-trip-times [ms]
[bps] DIVCLK F D total bad [ppm] min avg max sdev

(0) 0.185 0.249 0.957 0.062
7928 5 372 1 1176360 — 0.310 2.610 13.811 1.467
9910 4 372 1 1176360 — 0.333 2.822 11.208 1.161

11520 5 512 2 1176360 — 0.333 2.600 9.648 1.008
14400 4 512 2 1176360 — 0.350 2.657 7.653 0.911
15855 5 372 2 1176360 — 0.332 2.554 6.672 0.799
19819 4 372 2 1176360 — 0.285 2.421 5.824 0.843
23040 5 512 4 1176360 — 0.384 2.488 5.506 0.819
28800 4 512 4 1176360 — 0.309 2.377 4.663 0.820
31711 5 372 4 11760432 — 0.324 2.362 5.029 0.938
39639 4 372 4 11784551 10.8 0.303 2.354 5.345 1.058
46080 5 512 8 1181305 116.8 0.293 2.043 5.195 1.211

Table 5.7: Communication benchmark for idle system showing error rates and responsive-
ness in terms of ICMP Ping round-trip-times at the various tested bit-rates

bit-rate frames read ping round-trip-times [ms]
[bps] DIVCLK F D total bad [ppm] min avg max sdev

(0) 0.307 0.420 1.322 0.048
7928 5 372 1 11760356 — 0.274 2.687 14.290 1.448
9910 4 372 1 1176360 — 0.307 2.939 11.012 1.147

11520 5 512 2 1176360 — 0.281 2.615 9.136 0.968
14400 4 512 2 1176360 — 0.384 2.679 7.421 0.868
15855 5 372 2 11760356 — 0.294 2.590 7.161 0.871
19819 4 372 2 1176360 — 0.303 2.592 5.866 0.945
23040 5 512 4 1176396 — 0.319 2.536 5.005 0.911
28800 4 512 4 1178079 14.4 0.389 2.531 4.441 0.961
31711 5 372 4 11800317 79.1 0.360 2.355 5.079 1.104
39639 4 372 4 1239648 447.7 0.269 1.662 3.983 1.315

Table 5.8: Communication benchmark for stressed system showing error rates and respon-
siveness in terms of ICMP Ping round-trip-times at the various tested bit-rates

56 Chapter 5. Experiments in Latency and Time

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000

ro
un

d-
tr

ip
-t

im
e

[m
s]

bit-rate [bps]

ICMP Ping round-trip-time
9 12-etu-frames

Figure 5.7: ICMP Ping round-trip-times for idle system plotted as error-bars for the various
bit-rates during communication

5.2. Achieved Data Rates 57

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000

ro
un

d-
tr

ip
-t

im
e

[m
s]

bit-rate [bps]

ICMP Ping round-trip-time
9 12-etu-frames

Figure 5.8: ICMP Ping round-trip-times for stressed system plotted as error-bars for the
various bit-rates during communication

CHAPTER 6

Analysis of the Results

The aim of this thesis was to present a proof-of-concept implementation of a software
UART, in the context of a non-real-time general purpose multi-tasking operating system
such as Linux, capable of error-free operation with fair performance while not sacrificing
too much responsiveness.

The implementation approach taken to accomplish these goals was to use edge sensi-
tive interrupts in order to detect the beginning of a new character frame being received,
without having to resort to actively search the data line for start-bits by polling and
thus harming the responsiveness of the system.

In the previous chapter, after having measured the interrupt latency of the target
system at various stress conditions, the performance of the presented implementation
was bench-marked.

Interrupt Latency

It has been shown that the interrupt latency is the main determining factor for the
maximum achievable error-free sampling bit-rate. Therefore, the interrupt latency was
measured under various stress conditions to identify how it is influenced.

The interrupt latencies measurements in section 5.1 on page 43 have shown, that
cache-misses have a major impact on the interrupt latency. By comparing the various
interrupt latency measurements, the following observations can be made:

• For higher sample-taking frequencies f , the maximum of the latency increases,
while at the same time, the mean latency decreases slightly. This is assumed to
be caused by an increasing probability of the interrupt handling code path (or
parts thereof) being still cached for higher frequencies.

• By disabling the caches, the latency distribution curves become less affected by
the trigger rate of the latency samples, i.e. they look the same for different trigger

59

60 Chapter 6. Analysis of the Results

rates. This sustains the assumption, that the effect observed of decreasing mean
latency values for increasing interrupt frequencies, is caused by cache-effects.

• The use of memory caches improves the interrupt latency by between one to two
orders of magnitude, caused by the major difference of the memory access times
of main memory compared with cache memory.

• If the memory data rates are known, the amount of instructions necessary for
reaching the interrupt handler can be estimated by dividing the lowest time mea-
sured (with disabled instruction caches) to reach the handler (which has been
measured to take 53 µs) by the value for the memory read transfer-rate.

• The instruction cache-misses seem to have an impact about 5 times greater than
data cache-misses, since disabling the data cache added only 10 µs to the minimum
latency, which was at 53 µs with only instruction cache disabled.

• The network stress applied had only little effect on the interrupt latency compared
to the impact of cache-misses. That is, cache-misses do more harm to the latency
than hardware interrupts (which occur frequent with network stress applied); On
the contrary, it might have caused the common interrupt handling code path to
be cached with a higher probability, as it is executed more often and therefore be
less likely to have been replaced by a least-recently-used cache-line replacement-
strategy.

• The measured interrupt latencies were used to calculate the theoretically achiev-
able bit-rates. The limits calculated by assuming worst-case exploitation of the tol-
erances allowed by the specification (bit-rate columns min and max in the tables)
and no use of sampling-offset-shifting (as explained in section 4.2.2 on page 39),
predicts that bit-errors are possible, as no bit-rate exists since min > max; there-
fore, error-free operation can not be guaranteed and thus was not expected with
the tested implementation. On the other hand, when using sampling-offset-
shifting (bit-rate column maxofs) error-free communication at the default com-
munication rates defined by the ISO7816 specification seemed possible.

Achieved Data Rates

So, while giving some insight into the interrupt latency behaviour, the measurements
also predicted that the communication could not be guaranteed to be error-free. Nev-
ertheless, it was attempted to benchmark the software UART implementation, which
surprisingly—according to the prediction made based on the interrupt latency measure-
ments done—would seem to allow for error free communication.

61

The reason for this is that actual smart-cards show significantly more accurate timings
than the tolerance ε of up to 0.2 etu as mandated by the ISO7816 specification[29].
Therefore, a column was added to the tables for the results of the performed interrupt
latency tests, for estimating the theoretically maximum achievable bit-rate for negligible
ε → 0 values, in order to compare it with the maximum achieved error-free data-rates
of the implementation.

The actual results of benchmarking the implementation in section 5.2 on page 52 lead
to the following observations:

• The predicted maximum achievable bit-rate for negligible ε → 0 values matches
the actually achieved error free maximum for an idle system.

• For the stressed system, the actually achieved maximum error-free bit-rate was
slightly higher than predicted. It is assumed that the interrupt latencies are not
as bad as measured in the latency test, or alternatively, the maximum interrupt
latency is reached with such a small probability that the measurements resulted
error-free. Repeating the measurements with an order of magnitude more test
samples might have shown results more in line with the predicted maximum bit-
rate; due to limited time resources, the measurements could not be repeated with
the necessary amount of test samples, as they would have taken several days to
complete.

• It is important to point out that we cannot prove error-free operation as we cannot
even prove that the interrupt latency is really bounded by the maximum value
encountered during the measurements. We can only make statements about the
predicted probabilities for future values, based on the samples of the quantity in
question taken. If bounded interrupt latencies are required, a real-time operating
system is needed to guarantee those.

• The maximum ping round-trip-times for low bit-rates are mainly influenced by the
maximum time the interrupts are disabled, which is mainly caused by the sender-
algorithm disabling the interrupts for the duration of the transmission of up to
nine 12-etu-frames at once for the ISO READ BINARY command; curiously,
the bit-rates for which the max round-trip-times diverge from the curve are also
those for which communication errors where observed. It seems, that when the
interrupt rate begins to cause congestion, the system becomes more and more non-
deterministic. Moreover, the interrupt handling overhead increases relative to the
time spent in the interrupt handler, which decreases for higher bit-rates—and thus
shorter bit-lengths.

CHAPTER 7

Conclusion

This thesis has introduced universal asynchronous serial protocols, described the role of
UARTs, defined the basic conditions for successful data transmission, and specifically
addressed the application as the T=0/T=1 protocol in the ISO7816 standard.

It has been made the case, that it is possible to implement a software ISO7816 UART
in such a way, that a general purpose non-real-time multi-tasking operating system such
as Linux would still be responsive while the software UART is active.

The motivation for software UART implementation is the increased flexibility com-
pared to hardware UART components, and potential cost-savings by eliminating a hard-
ware component; additionally, real-time enhanced Linux is not always available for the
required target platform, thus a Linux version lacking real-time enhancements was used
as implementation target.

A few common software implementation patterns have been presented, which are
unsuitable in the context of the target platform at hand. In particular, those would
either require deterministic interrupt latencies—which is not guaranteed by standard
Linux—, or disabling all processing except for the software UART routines; the latter
would cause a decrease in responsiveness of the operating system, and harm other
(soft or hard) real-time requiring services (such as network processing or even user
interaction) being provided by the system. In the first place, the software UART is
required to provide error-free operation.

To this end, a software UART implementation meeting the requirements has been
proposed in this thesis, derived as a combination of the common implementation pat-
terns. The proposed implementation uses edge-sensitive GPIO interrupts for start-bit
detection, and disables interrupts for the subsequent bits within the frame. Further-
more, the algorithm detects the edge transition in order to synchronise the receiver
clock with the sender clock, i.e. compensating for the interrupt latency jitter.

As the presented implementation relies primarily on the interrupt latency to be within
certain boundaries, the interrupt latency was measured under various conditions in order

63

64 Chapter 7. Conclusion

to determine the operational conditions for which error-free software UART operation
is to be expected. Finally the actual software UART implementation was bench-marked
with respect to error rates and network responsiveness at various communication rates.

The data analysis has shown, that basically the stated goals have been attained
in principle, albeit under the favourable condition of accurate protocol timings of
the smart-card used; if the smart-card had exploited the tolerances conceded by the
ISO7816 specification, the results would have been significantly worse, possibly result-
ing in having missed the stated goals with the current implementation.

Furthermore, the dominant effect of the memory system on the interrupt latency has
been clearly demonstrated by the measurements, outweighing other effects simulated
during the latency tests. On the one hand, memory caches allow for lower interrupt
latencies, but on the other hand, when cache-line replacement is not controlled, caches
introduce interrupt latency indeterminism.

While avoiding real-time operating systems for tasks having real-time requirements
has been shown to be viable under favourable conditions, the motivation for doing
so will decrease though; especially, given the long-term intent by the developers of
operating systems such as Linux to provide low latency event handling and even real-
time facilities in the standard Linux kernel tree. For real-time operating systems, the
proposed hybrid algorithm would not provide any gain over the timer- or signal-edge-
interrupt based algorithms, as a RTOS provides low bounded interrupt latencies, and
would only suffer from algorithms which perform busy-waiting.

7.1 Future Work

As the implementation presented served only as a proof of concept, it suffers from
various limitations, which were identified in section 4.2.3 on page 42. Eliminating
those limitations is regarded as future work, and there is also room left for various
other optimisations and improvements. Some of these candidates for future work are
highlighted in this chapter.

7.1.1 Protocol Conformance

This thesis has only presented a proof of concept, without thoroughly adhering to
timing requirements mandated by the ISO7816 specification. In order to pass smart-
card terminal certification test cases, this would have to be made up for.

7.1.2 Latency Improvements

As this thesis has focused on character reception rather than character transmission,
for simplicity, the presented implementation disables interrupt processing and context
switching for the complete duration of transmitting frames to the smart-card. By

7.1. Future Work 65

re-enabling interrupt processing between the character frames—while taking necessary
steps to ensure keeping the inter-frame timings within protocol constraints—the latency
penalties incurred by the frame sending process can be reduced, at the cost of possibly
lower effective data rates due to possible additional inter-frame delays.

7.1.3 Performance Improvements

The EP9301 has support for so-called fast interrupts, which are processed with higher
priority than regular interrupts, and have a set of private registers at their disposition.
These fast interrupts are intended for use in data channel input/output routines.

Moreover, since cache effects are one major cause of increased and non-deterministic
timing latency, the ARM920T core allows for cache lock-down, i.e. to keep certain
cache lines from being replaced, thus providing lower memory access times in a more
deterministic manner.

By making use of these two latency decreasing—albeit platform dependent—facilities,
it should be possible to improve the software UART’s performance.

7.1.4 Reliability Improvements

The provided implementation does not make use of minimum latency offset compensa-
tion in order to shift the sampling point into the sampling zone where the data signal
is guaranteed by the specification to be reliable. Implementing the offset compensation
would improve the ISO7816 conformance with respect to worst-case timing scenarios.

7.1.5 Full-duplex support

Although not required for the ISO7816 protocol, especially given that only one wire is
used for both data transmission directions, extending the algorithm presented in this
thesis to the generic case of full-duplex operation might be desirable for other protocols.

APPENDIX A

ISO 7816 Software UART Driver Source
Code

/∗
∗ So f tware ISO7816 UART imp l ementa t i on f o r EP9301 CPU
∗
∗ w r i t t e n by

5 ∗ Herbe r t V a l e r i o R i e d e l <hv r@ in so . tuwien . ac . at>
∗
∗/

/∗
10 ∗ TODOS/ISSUES (i n comp l e t e l i s t) :

∗ − T=0 RX r e t r a n s m i s s i o n s not implemented
∗ − p rope r RX t imeout imp l ementa t i on (e . g . use hw t ime r i n s t e a d o f k e r n e l t ime r)
∗ − wors t ca s e f o r au tosync a r e nu l l−by t e s !
∗ − on l y c l a s s A suppo r t ed

15 ∗ − on l y CLKDIV4 and CLKDIV5 supported , by comp i l e t ime s e l e c t i o n
∗ − poweron/ o f f not r e e n t r a n c y s a f e
∗
∗/

20 #inc l u d e < l i n u x / c o n f i g . h>

#i f ! d e f i n e d (CONFIG ARCH EP9301)
e r r o r This d r i v e r works on l y w i th the c i r r u s ep9301 (arm920t) a rch
#end i f

25

#inc l u d e < l i n u x /module . h>
#inc l u d e < l i n u x / k e r n e l . h>
#inc l u d e < l i n u x / i n i t . h>
#inc l u d e < l i n u x / d e l a y . h>

30 #inc l u d e < l i n u x / i n t e r r u p t . h>
#inc l u d e < l i n u x / sched . h>
#inc l u d e < l i n u x / s l a b . h>
#inc l u d e < l i n u x / p o l l . h>
#inc l u d e < l i n u x / tqueue . h>

35 #inc l u d e < l i n u x / t ime r . h>

67

68 Appendix A. ISO 7816 Software UART Driver Source Code

#inc l u d e < l i n u x / i2c−i d . h>
#inc l u d e < l i n u x / i 2 c . h>

40 #inc l u d e <asm/ i r q . h>
#inc l u d e <asm/ i o . h>
#inc l u d e <asm/ uacc e s s . h>
#inc l u d e <asm−arm/arch−ep93xx / regmap . h> /∗ EP93XX r e g i s t e r d e f i n e s ∗/

45 #inc l u d e ” i f d . h ”
#inc l u d e ”ep93−wd . h ”

#warning TODO: r e s e r v e 0x21 as we l l , i . e . c r e a t e a 2nd i 2 c c l i e n t o b j e c t
s t a t i c uns igned sho r t no rma l i 2 c [] = { 0x20 , I2C CLIENT END } ;

50 s t a t i c uns igned sho r t no rma l i 2 c r a n g e [2] = { I2C CLIENT END , I2C CLIENT END } ;

I2C CLIENT INSMOD ;

#de f i n e TICKS SHIFT 1
55 #de f i n e TICKS PER ETU (1 << TICKS SHIFT)

#de f i n e ETU(b i t , samp) (((b i t) << TICKS SHIFT) + (samp))

//#d e f i n e USE TICKS TIMEBASE
#de f i n e DEFAULT CLKDIV 5

60 //#d e f i n e DEFAULT CLKDIV 4
#de f i n e I2C DRIVERID TDA8023 0 x f021

s t a t i c i n t tda8023t t debug = 1 ;
const s t a t i c i n t t d a 8 0 2 3 t t i o i r q = IRQ GPIO1 ; // FPGIO [1]

65 const s t a t i c i n t t d a 8 0 2 3 t t c t l i r q = IRQ GPIO2 ; // FPGIO [2]

s t a t i c uns igned t d a 8 0 2 3 t t i n s t a n c e s = 0 ;
s t a t i c s t r u c t t d a8023 t t da t a ∗ t d a 8 0 2 3 t t i n s t a n c e d a t a [1] = { 0 } ;

70 #de f i n e IFD OUTBUF MAXSIZE (3+255+2) // f o r T=1: 3 byte p ro log ,
// 255 by t e s pay load , 1−2 e p i l o g ;
// f o r T=0: 5 command header , 255 pay load

s t a t i c i n l i n e vo id
75 d i s t r a c t w a t c h d o g (vo id)

{
#i f d e f i n e d (CONFIG EP93 WD) | | d e f i n e d (CONFIG EP93 WD MODULE)

ep93 wd feed () ; // f e ed watchdog
#end i f

80 }

s t r u c t t d a8023 t t da t a {
s t r u c t i f d d e v i c e i f d ;

85 s t r u c t i 2 c c l i e n t ∗ c l i e n t ;
s t r u c t t a s k l e t s t r u c t t a s k l e t b h ;
s t r u c t t a s k l e t s t r u c t t a s k l e t i o b h ;

s t r u c t t q s t r u c t t a s k s t a r t ;
90 s t r u c t t q s t r u c t t a s k t x ;

s t r u c t t q s t r u c t t a s k r x t o ;
s t r u c t t i m e r l i s t t i m e r r x t o ;

i f d d e v i c e c l a s s t s t a r t c l a s s ;

69

95 char s t a r t wa rm : 1 ;
char c a r d i n s e r t e d : 1 ;
char tx commit : 1 ; // see i f d f r a m e s t x

u8 d i v i s o r ; /∗ n = {1 ,2 ,4 ,5} ∗/
100

u16 outbu f [IFD OUTBUF MAXSIZE] ;
u16 o u t b u f l e n ; // p roduce r pos

// s t a t s
105 u16 wr e t r an s ;

u16 r r e t r a n s ;

u16 f r am e s p e r r o r s ;
u16 f r ames bad f r ames ;

110 u16 f r ame s r x ;
u16 f r ame s t x ;

} ;

// reg0 / reg1 a c c e s s o r methods − hack to workaround l i m i t a t i o n i n i 2 c framework
115 s t a t i c i n l i n e s32

t d a 8 0 2 3 t t w r i t e r e g (s t r u c t t d a8023 t t da t a ∗data , uns igned reg , u8 v a l u e)
{

s t r u c t i 2 c c l i e n t ∗ const c l i e n t = data−>c l i e n t ;
BUG ON(reg > 1) ;

120 r e t u rn i 2 c smbu s x f e r (c l i e n t −>adapte r , c l i e n t −>addr + reg , c l i e n t −>f l a g s ,
I2C SMBUS WRITE , va lue , I2C SMBUS BYTE ,NULL) ;

}

s t a t i c i n l i n e s32
125 t d a 8 0 2 3 t t r e a d r e g (s t r u c t t d a8023 t t da t a ∗data , uns igned r eg)

{
s t r u c t i 2 c c l i e n t ∗ const c l i e n t = data−>c l i e n t ;
union i 2 c smbus da ta i 2 c d a t a ;
BUG ON(reg > 1) ;

130 i f (i 2 c smbu s x f e r (c l i e n t −>adapte r , c l i e n t −>addr + reg , c l i e n t −>f l a g s ,
I2C SMBUS READ , 0 , I2C SMBUS BYTE , &i 2 c d a t a))

r e t u rn −1;
e l s e

r e tu rn 0x0FF & i 2 c d a t a . by te ;
135 }

#de f i n e MAX RETRANS 100
// imp l ementa t i on

140 // I /OuC r e l a t e d
s t a t i c v o l a t i l e u32 ∗ const g p i o p f d r = (u32 ∗) IO ADDRESS(GPIO PFDR) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o p f d d r = (u32 ∗) IO ADDRESS(GPIO PFDDR) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o f i n t e n = (u32 ∗) IO ADDRESS(GPIO INTEN) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o f i n t t y p e 1 = (u32 ∗) IO ADDRESS(GPIO INTTYPE1) ;

145 s t a t i c v o l a t i l e u32 ∗ const g p i o f i n t t y p e 2 = (u32 ∗) IO ADDRESS(GPIO INTTYPE2) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o f d b = (u32 ∗) IO ADDRESS(GPIO FDB) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o f e o i = (u32 ∗) IO ADDRESS(GPIO FEOI) ;
s t a t i c v o l a t i l e u32 ∗ const g p i o f i n t s t a t u s = (u32 ∗) IO ADDRESS(GPIO INTSTATUS) ;

150 s t a t i c const u32 g p i o p f i o u c ma s k = (1<<1); // FGPIO [1]
s t a t i c const u32 g p i o p f c t l m a s k = (1<<2); // FGPIO [2]

70 Appendix A. ISO 7816 Software UART Driver Source Code

s t a t i c i n l i n e i n t
i o u c g e t (vo id)

155 {
∗ g p i o p f d d r &= ˜ gp i o p f i o u c ma s k ;
r e t u rn (∗ g p i o p f d r & gp i o p f i o u c ma s k) != 0 ;

}

160 s t a t i c i n l i n e vo id
i o u c s e t (i n t s t a t e)

{
∗ g p i o p f d d r |= gp i o p f i o u c ma s k ;

165 i f (s t a t e)
∗ g p i o p f d r |= gp i o p f i o u c ma s k ;

e l s e
∗ g p i o p f d r &= ˜ gp i o p f i o u c ma s k ;

}
170

s t a t i c i n l i n e vo id
i o u c i n i t (vo id)

{
∗ g p i o f i n t e n &= ˜ gp i o p f i o u c ma s k ; // d i s a b l e IRQ c a p a t i b i l i t i e s

175 i o u c s e t (1) ; // s e t I /O s i g n a l h i gh
}

s t a t i c i n t t d a 8 0 2 3 t t p r o b e c l i e n t (s t r u c t i 2 c a d a p t e r ∗ adapte r , i n t addre s s ,
uns igned sho r t f l a g s , i n t k ind) ;

180

s t a t i c i n t
t d a 8 0 2 3 t t a t t a c h a d a p t e r (s t r u c t i 2 c a d a p t e r ∗ adap t e r)
{

r e t u rn i 2 c p r o b e (adapte r , &addr data , t d a 8 0 2 3 t t p r o b e c l i e n t) ;
185 }

//
// Hardware t ime r a b s t r a c t i o n
//

190 #de f i n e EP93XX TIMER FREQ 983040 // 14.7456/15 Mhz = 983.04 KHz

/∗ e n ab l e s the t ime r i f s e t , d i s a b l e s o t h e rw i s e ∗/
#de f i n e EP93XX TIMER ENABLE 0x100

195 /∗ Se t s up a f a s t hardware t ime r w i th 983 .04 KHz f r e quenc y
∗ i n f r e e runn ing mode
∗/

s t a t i c vo id
e p 9 3 x x t i m e r i n i t (vo id)

200 {
/∗ r e s e t the t ime r ∗/
o u t l (0 x0 , TIMER4VALUEHIGH) ;

/∗ enab l e the t ime r ∗/
205 o u t l (EP93XX TIMER ENABLE , TIMER4VALUEHIGH) ;

}

/∗ Returns the c u r r e n t v a l u e o f the t ime r which
∗ must have been s e t up p r e v i o u s l y ; o the rw i s e , the r e s u l t

210 ∗ i s unde f i n ed

71

∗/
s t a t i c i n l i n e u32
ep93 x x t ime r g e t (vo id)
{

215 // o v e r f l ow i n the low 32 b i t s o c cu r s e v e r y ˜4369 s (˜73m)
r e t u rn i n l (TIMER4VALUELOW) ;

}

/∗ Rese t s the t ime r to the i n i t i a l v a l u e ∗/
220 s t a t i c i n l i n e vo id

e p 9 3 x x t im e r r e s e t (vo id)
{

e p 9 3 x x t i m e r i n i t () ;
}

225

//
// End o f hardware t ime r a b s t r a c t i o n
//

230 s t a t i c i n l i n e vo id t d a 8 0 2 3 t t r e s e t c o u n t e r (vo id) ;

s t a t i c i n l i n e i n t
t d a 8 0 2 3 t t t im e r s e t u p t r y (const uns igned c l k d i v , const uns igned F ,

const uns igned D)
235 {

i f (c l k d i v != DEFAULT CLKDIV)
r e t u rn −1;

sw i t ch (F) {
240 case 512 :

i f (D == 1) r e t u rn 0 ;
i f (D == 2) r e t u rn 0 ;
i f (D == 4) r e t u rn 0 ;
i f (D == 8) r e t u rn 0 ;

245 break ;
case 372 :

i f (D == 1) r e t u rn 0 ;
i f (D == 2) r e t u rn 0 ;
i f (D == 4) r e t u rn 0 ;

250 i f (D == 8) r e t u rn 0 ;
break ;

}

r e t u rn −1;
255 }

s t a t i c i n t c o u n t e r s h i f t = 0 ;
s t a t i c i n t c oun t e r 3 7 2 = 1 ;

260 s t a t i c i n l i n e i n t
t d a 8 0 2 3 t t t im e r s e t u p (const uns igned c l k d i v , const uns igned F , const uns igned D)
{

i f (! c l k d i v)
r e t u rn 0 ; // j u s t d i s a b l e t ime r

265

i f (c l k d i v != DEFAULT CLKDIV) {
p r i n t k (KERN ERR ”%s : unsuppor ted / i n v a l i d CLKDIV (%d) pas sed \n ” ,

f u n c , c l k d i v) ;

72 Appendix A. ISO 7816 Software UART Driver Source Code

r e t u rn −1;
270 }

i f (t d a 8 0 2 3 t t t im e r s e t u p t r y (c l k d i v , F , D) < 0) {
p r i n t k (KERN ERR ”%s : unsuppor ted F/D comb inat i on (%d/%d) pas sed \n ” ,

f u n c , F , D) ;
275 r e t u rn −1;

}

c oun t e r 3 7 2 = (F == 372) ;

280 i f (F == 372)
sw i t ch (D) {
case 1 : c o u n t e r s h i f t = 4 ; break ;
case 2 : c o u n t e r s h i f t = 3 ; break ;
case 4 : c o u n t e r s h i f t = 2 ; break ;

285 case 8 : c o u n t e r s h i f t = 1 ; break ;
d e f a u l t : BUG() ; r e t u rn −1;
}

e l s e i f (F == 512)
sw i t ch (D) {

290 case 1 : c o u n t e r s h i f t = 10 ; break ;
case 2 : c o u n t e r s h i f t = 9 ; break ;
case 4 : c o u n t e r s h i f t = 8 ; break ;
case 8 : c o u n t e r s h i f t = 7 ; break ;
d e f a u l t : BUG() ; r e t u rn −1;

295 }
e l s e {

BUG () ;
r e t u rn −1;

}
300

t d a 8 0 2 3 t t r e s e t c o u n t e r () ;

r e t u rn 0 ;
}

305

// h igh p r e c i s i o n mdelay ()
// wa i t f o r x msec (f o r x < 1000)

s t a t i c i n l i n e u32
310 ep93xx msec2t imer (uns igned msec)

{
r e t u rn (msec ∗ EP93XX TIMER FREQ) / 1000 ;

}

315 // funny i n t e g e r a r i t hm e t i c to ge t from CLK/15 to D∗CLK/4/F
// f o r D={1 ,2 ,4 ,8} (c au s e s wrapover a t ˜7 .3m, due to l o s i n g h igh b i t s)
// g e t t i n g to CLK/512/D f o r D={1 , 2 , 4 , 8 , . . . , 5 12} (wrapover @ ˜4 .9m)
s t a t i c i n l i n e u32
e p 9 3 x x t i c k s 2 t im e r (uns igned t i c k s)

320 {
#i f DEFAULT CLKDIV==4

r e t u rn (c o un t e r 3 7 2
? ((t i c k s << c o u n t e r s h i f t) ∗ 31 + 5)/ 10
: ((t i c k s << c o u n t e r s h i f t) + 7)/ 15) ;

325 #e l i f DEFAULT CLKDIV==5
r e t u rn (c o un t e r 3 7 2

73

? ((t i c k s << c o u n t e r s h i f t) ∗ 31 + 4)/8
: ((t i c k s << c o u n t e r s h i f t) + 6)/ 12) ;

#e l s e
330 # e r r o r CLKDIV not implemented

#end i f
}

s t a t i c i n l i n e uns igned
335 e p 9 3 x x t im e r 2 t i c k s (u32 t)

{
#i f DEFAULT CLKDIV==4

r e t u rn (c o un t e r 3 7 2
? ((t ∗ 10 + 15) / 31) >> c o u n t e r s h i f t

340 : (t ∗ 15) >> c o u n t e r s h i f t) ;
#e l i f DEFAULT CLKDIV==5

r e t u rn (c o un t e r 3 7 2
? ((t ∗ 8 + 15) / 31) >> c o u n t e r s h i f t
: (t ∗ 12) >> c o u n t e r s h i f t) ;

345 #e l s e
e r r o r CLKDIV not implemented
#end i f
}

350 // //
s t a t i c i n l i n e vo id
tda8023 t t mde l ay (uns igned msec , i n t now)
{

u32 d e a d l i n e = now ? ep93 x x t ime r g e t () : 0 ;
355 d e a d l i n e += ep93xx msec2t imer (msec) ;

wh i l e (e p93 x x t ime r g e t () < d e a d l i n e) {} ;
}

360 s t a t i c i n l i n e u32
e p 9 3 x x t im e r g e t t i c k s (vo id)
{

r e t u rn e p 9 3 x x t im e r 2 t i c k s (e p93 x x t ime r g e t ()) ;
}

365

// //
// some t im ing r e l a t e d p r i m i t i v e s

// wa i t u n t i l ’ t i c k s ’ t i c k s have pas sed
370

#de f i n e ZERO OFS 0
s t a t i c u32 c o u n t e r d e a d l i n e = ZERO OFS ;

#i f ! d e f i n e d (USE TICKS TIMEBASE)
375 # de f i n e ZERO OFS TICKS 0

s t a t i c u32 c o u n t e r d e a d l i n e t i c k s = ZERO OFS TICKS ;
#end i f

s t a t i c i n l i n e vo id
380 t d a 8023 t t c on s ume t i c k s nowa i t (const u32 t i c k s)

{
BUG ON(! t i c k s) ;

#i f d e f i n e d (USE TICKS TIMEBASE)
c o u n t e r d e a d l i n e += t i c k s ;

74 Appendix A. ISO 7816 Software UART Driver Source Code

385 #e l s e
c o u n t e r d e a d l i n e t i c k s += t i c k s ;
c o u n t e r d e a d l i n e = ep 9 3 x x t i c k s 2 t im e r (c o u n t e r d e a d l i n e t i c k s) ;

#end i f
}

390

s t a t i c i n l i n e i n t
t d a 8 023 t t c o un t e r s y n c e d (vo id)
{
#i f d e f i n e d (USE TICKS TIMEBASE)

395 r e t u rn (ZERO OFS + e p 9 3 x x t im e r g e t t i c k s ()) >= co u n t e r d e a d l i n e ;
#e l s e

r e tu rn (ZERO OFS + ep93 x x t ime r g e t ()) >= co u n t e r d e a d l i n e ;
#end i f
}

400

s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t s y n c d e a d l i n e (vo id)
{

wh i l e (! t d a 8023 t t c o un t e r s y n c e d ()) {/∗noop∗/}
405 }

s t a t i c i n l i n e vo id
t d a 8023 t t c on s ume t i c k s (const u32 t i c k s)
{

410 t d a 8023 t t c on s ume t i c k s nowa i t (t i c k s) ;
t d a 8 0 2 3 t t s y n c d e a d l i n e () ;

}

s t a t i c i n l i n e vo id
415 t d a 8 0 2 3 t t r e s e t c o u n t e r (vo id)

{
c o u n t e r d e a d l i n e = ZERO OFS ;

#i f ! d e f i n e d (USE TICKS TIMEBASE)
c o u n t e r d e a d l i n e t i c k s = ZERO OFS TICKS ;

420 #end i f
e p 9 3 x x t im e r r e s e t () ;

}

// //
425

s t a t i c i n l i n e i n t
t d a 8 0 2 3 t t c t l i r q p e n d i n g (vo id)
{

r e t u rn (∗ g p i o f i n t s t a t u s & g p i o p f c t l m a s k) != 0 ;
430 }

s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t c t l i r q o n (vo id)

435 {
∗ g p i o p f d d r &= ˜ g p i o p f c t l m a s k ;
∗ g p i o f i n t e n &= ˜ g p i o p f c t l m a s k ;
∗ g p i o f i n t t y p e 1 |= gp i o p f c t l m a s k ; // edge
∗ g p i o f i n t t y p e 2 &= ˜ g p i o p f c t l m a s k ; // f a l l i n g

440 ∗ g p i o f e o i = g p i o p f c t l m a s k ; // c l e a r i r q
∗ g p i o f d b &= ˜ g p i o p f c t l m a s k ;
∗ g p i o f i n t e n |= gp i o p f c t l m a s k ;

75

}

445 s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t c t l i r q c l e a r (vo id)
{

∗ g p i o f e o i = g p i o p f c t l m a s k ; // c l e a r i r q
}

450

s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t c t l i r q o f f (vo id)
{

∗ g p i o f i n t e n &= ˜ g p i o p f c t l m a s k ;
455 }

s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t i o i r q o n (vo id)
{

460 ∗ g p i o p f d d r &= ˜ gp i o p f i o u c ma s k ;
∗ g p i o f i n t e n &= ˜ gp i o p f i o u c ma s k ;
∗ g p i o f i n t t y p e 1 |= gp i o p f i o u c ma s k ; // edge
∗ g p i o f i n t t y p e 2 &= ˜ gp i o p f i o u c ma s k ; // f a l l i n g
∗ g p i o f e o i = gp i o p f i o u c ma s k ; // c l e a r i r q

465 ∗ g p i o f d b &= ˜ gp i o p f i o u c ma s k ;
∗ g p i o f i n t e n |= gp i o p f i o u c ma s k ;

}

s t a t i c i n l i n e vo id
470 t d a 8 0 2 3 t t i o i r q c l e a r (vo id)

{
∗ g p i o f e o i = gp i o p f i o u c ma s k ; // c l e a r i r q

}

475 s t a t i c i n l i n e vo id
t d a 8 0 2 3 t t i o i r q o f f (vo id)
{

∗ g p i o f i n t e n &= ˜ gp i o p f i o u c ma s k ;
}

480

s t a t i c i n t
t d a 8 0 2 3 t t d e t a c h c l i e n t (s t r u c t i 2 c c l i e n t ∗ c l i e n t)
{

s t r u c t t d a8023 t t da t a ∗ data = c l i e n t −>data ;
485 i n t e r r ;

t d a 8 0 2 3 t t i n s t a n c e s −−;

//BUG ON (t d a 8 0 2 3 t t d e t a c h c l i e n t != 0) ;
490

f r e e i r q (t d a 8 0 2 3 t t i o i r q , c l i e n t −>data) ;
f r e e i r q (t d a 8 0 2 3 t t c t l i r q , c l i e n t −>data) ;

i f ((e r r = i 2 c d e t a c h c l i e n t (c l i e n t)))
495 {

p r i n t k (KERN WARNING ”%s : i 2 c d e t a c h c l i e n t () f a i l e d \n ” , f u n c) ;
r e t u rn e r r ;

}

500 i f d u n r e g i s t e r d e v (&data−> i f d) ;

76 Appendix A. ISO 7816 Software UART Driver Source Code

k f r e e (c l i e n t −>data) ;
k f r e e (c l i e n t) ;

505 r e t u rn 0 ;
}

s t a t i c s t r u c t i 2 c d r i v e r t d a 8 0 2 3 t t d r i v e r = {
. name = ”tda8023 t t ” ,

510 . i d = I2C DRIVERID TDA8023 ,
. f l a g s = I2C DF NOTIFY ,
. a t t a c h a d ap t e r = tda8023 t t a t t a c h adap t e r ,
. d e t a c h c l i e n t = t d a 8 0 2 3 t t d e t a c h c l i e n t ,

} ;
515

#de f i n e TDA8023TT REG0 R PRES (1<<0)
#de f i n e TDA8023TT REG0 R PRESL (1<<1)
#de f i n e TDA8023TT REG0 R CLKSWE (1<<2)
#de f i n e TDA8023TT REG0 R SUPL (1<<3)

520 #de f i n e TDA8023TT REG0 R PROT (1<<4)
#de f i n e TDA8023TT REG0 R MUTE (1<<5)
#de f i n e TDA8023TT REG0 R EARLY (1<<6)
#de f i n e TDA8023TT REG0 R ACTIVE (1<<7)

525 #de f i n e TDA8023TT REG0 W START (1<<0)
#de f i n e TDA8023TT REG0 W WARM (1<<1)
#de f i n e TDA8023TT REG0 W 5V3V (1<<2)
#de f i n e TDA8023TT REG0 W PDOWN (1<<3)
#de f i n e TDA8023TT REG0 W REG0 (1<<4)

530 #de f i n e TDA8023TT REG0 W REG1 (1<<5)
#de f i n e TDA8023TT REG0 W IOEN (1<<6)
#de f i n e TDA8023TT REG0 W 18V (1<<7)

#de f i n e TDA8023TT REG1 CLKDIV1 (1<<0)
535 #de f i n e TDA8023TT REG1 CLKDIV2 (1<<1)

#de f i n e TDA8023TT REG1 CLKPD1 (1<<2)
#de f i n e TDA8023TT REG1 CLKPD2 (1<<3)
#de f i n e TDA8023TT REG1 C4 (1<<4)
#de f i n e TDA8023TT REG1 C8 (1<<5)

540 #de f i n e TDA8023TT REG1 RSTIN (1<<6)
#de f i n e TDA8023TT REG1 TEST (1<<7)

#de f i n e TDA8023TT REG1 CLKIN 1 0
#de f i n e TDA8023TT REG1 CLKIN 2 TDA8023TT REG1 CLKDIV1

545 #de f i n e TDA8023TT REG1 CLKIN 4 TDA8023TT REG1 CLKDIV2
#de f i n e TDA8023TT REG1 CLKIN 5 (TDA8023TT REG1 CLKDIV1 | TDA8023TT REG1 CLKDIV2)

#de f i n e TDA8023TT REG1 INIT \
(TDA8023TT REG1 CLKPD1 | TDA8023TT REG1 CLKPD2 | TDA8023TT REG1 RSTIN)

550

/∗
∗ may be r e p l a c e d by t a b l e lookup , i f we r e a l l y need to save some
∗ c y c l e s (w i th the t r a d e o f f to r e q u i r e ˜200 byte more memory)
∗/

555 s t a t i c i n l i n e u8
r e v e r s e 8 (u8 byte)

{
byte = ((byte & 0x55) << 1) | ((byte & 0xaa) >> 1) ;

77

byte = ((byte & 0x33) << 2) | ((byte & 0 xcc) >> 2) ;
560 byte = ((byte & 0 x0 f) << 4) | ((byte & 0 x f0) >> 4) ;

r e t u rn byte ;
}

565 s t a t i c i n t
tda8023t t powerup (s t r u c t t d a8023 t t da t a ∗ const data)
{

u8 cmd0 = TDA8023TT REG0 W START | TDA8023TT REG0 W IOEN ;
u8 cmd1 = TDA8023TT REG1 INIT ;

570

sw i t ch (data−> s t a r t c l a s s) {
case IFD DEVICE CLASS A :

cmd0 |= TDA8023TT REG0 W 5V3V ;
break ;

575 case IFD DEVICE CLASS B :
// noop
break ;

case IFD DEVICE CLASS C :
cmd0 |= TDA8023TT REG0 W 18V ;

580 break ;
d e f a u l t :

BUG() ;
}

585 i f (data−> s t a r t wa rm)
cmd0 |= TDA8023TT REG0 W WARM;

sw i t ch (data−>d i v i s o r) {
case 1 : cmd1 |= TDA8023TT REG1 CLKIN 1 ; break ;

590 case 2 : cmd1 |= TDA8023TT REG1 CLKIN 2 ; break ;
case 4 : cmd1 |= TDA8023TT REG1 CLKIN 4 ; break ;
case 5 : cmd1 |= TDA8023TT REG1 CLKIN 5 ; break ;
d e f a u l t :

p r i n t k (KERN ERR ”%s : i n v a l i d d i v i s o r (%d) de t e c t e d \n ” ,
595 f u n c , data−>d i v i s o r) ;

r e t u rn 1 ; // break ;
}

i o u c s e t (1) ;
600

p r i n t k (KERN DEBUG ”%s : i n i t i a t i n g powerup (s end i ng cmd %.2x %.2x)\n ” ,
f u n c , cmd0 , cmd1) ;

i f (t d a 8 0 2 3 t t w r i t e r e g (data , 1 , cmd1)) {
605 p r i n t k (KERN ERR ”%s : w r i t e r e g 1 f a i l e d , a b o r t i n g \n ” , f u n c) ;

r e t u rn 1 ;
}
i f (t d a 8 0 2 3 t t w r i t e r e g (data , 0 , cmd0)) {

p r i n t k (KERN ERR ”%s : w r i t e r e g 0 f a i l e d , a b o r t i n g \n ” , f u n c) ;
610 r e t u rn 1 ;

}

r e t u rn 0 ;
}

615

s t a t i c vo id

78 Appendix A. ISO 7816 Software UART Driver Source Code

tda8023tt powerdown (s t r u c t t d a8023 t t da t a ∗ const data)
{

u8 cmd = 0 ;
620

p r i n t k (KERN DEBUG ”%s : pe r f o rm ing powerdown (s end i ng cmd %.2x)\n ” ,
f u n c , cmd) ;

i f (t d a 8 0 2 3 t t w r i t e r e g (data , 0 , cmd))
625 p r i n t k (KERN ERR ”%s : w r i t e r e g 0 f a i l e d \n ” , f u n c) ;

}

/∗ much o f s t a t e−hand l i n g g e t s i n he r e e v e n t u a l l y . . . ∗/
s t a t i c vo id

630 t d a 8 0 2 3 t t t a s k l e t b h (uns igned long d e v l)
{

s t r u c t t d a8023 t t da t a ∗ const data = (vo id ∗) d e v l ;
const s32 s t a t u s = t d a 8 0 2 3 t t r e a d r e g (data , 0) ;

635 i f (s t a t u s < 0)
{

p r i n t k (KERN ERR ”%s : f a i l e d to read s t a t u s (e r r n o=%d)\n ” ,
f u n c , s t a t u s) ;

r e t u rn ;
640 }

p r i n t k (KERN DEBUG ”%s : s t a t u s = %.2x\n ” , f u n c , s t a t u s) ;

i f (s t a t u s & TDA8023TT REG0 R PRESL)
645 {

i f (s t a t u s & TDA8023TT REG0 R PRES)
{

i f (data−> c a r d i n s e r t e d)
i f d n o t i f y (&data−> i f d , IFD EVENT CARD OUT) ;

650 e l s e
data−> c a r d i n s e r t e d = 1 ;

i f d n o t i f y (&data−> i f d , IFD EVENT CARD IN) ;
}

655 e l s e
{

i f (! data−> c a r d i n s e r t e d)
i f d n o t i f y (&data−> i f d , IFD EVENT CARD IN) ;

e l s e
660 data−> c a r d i n s e r t e d = 0 ;

i f d n o t i f y (&data−> i f d , IFD EVENT CARD OUT) ;
}

}
665

i f ((s t a t u s & (TDA8023TT REG0 R MUTE | TDA8023TT REG0 R EARLY))
== (TDA8023TT REG0 R MUTE | TDA8023TT REG0 R EARLY))

{
p r i n t k (KERN WARNING ”tda8023 : ATR f a i l e d , I /O was low du r i ng r e s e t \n ”) ;

670 }
e l s e i f (s t a t u s & TDA8023TT REG0 R MUTE)

{
p r i n t k (KERN WARNING ”tda8023 : ATR not s t a r t e d w i t h i n t i m e l i m i t \n ”) ;
BUG ON (s t a t u s & TDA8023TT REG0 R EARLY) ;

79

675 }
e l s e i f (s t a t u s & TDA8023TT REG0 R EARLY)

{
p r i n t k (KERN WARNING ”tda8023 : ATR s t a r t e d to e a r l y ? ! ?\ n ”) ;
BUG ON (s t a t u s & TDA8023TT REG0 R MUTE) ;

680 }

i f (s t a t u s & TDA8023TT REG0 R PROT)
{

#warning TODO
685 p r i n t k (KERN WARNING ”tda8023 : o v e r l o a d / ov e r h ea t d e t e c t e d \n ”) ;

}
}

s t a t i c vo id
690 t d a 8 0 2 3 t t i n t e r r u p t (i n t i r q , vo id ∗dev , s t r u c t p t r e g s ∗ r e g s)

{
s t r u c t t d a8023 t t da t a ∗ data = dev ;

t a s k l e t s c h e d u l e (&data−>t a s k l e t b h) ;
695

t d a 8 0 2 3 t t c t l i r q c l e a r () ;
}

s t a t i c i n l i n e i n t
700 p a r i t y 8 (u8 byte)

{
byte ˆ= byte >> 1 ;
by te ˆ= byte >> 2 ;
by te ˆ= byte >> 4 ;

705 r e t u rn byte & 1 ;
}

s t a t i c i n l i n e u16
r aw c f r ame (const u8 c , const i n t i n v e r s e)

710 {
r e t u rn i n v e r s e

? (0 x f c00
| ((1 ˆ p a r i t y 8 (c)) << 9)
| ((0 x f f ˆ r e v e r s e 8 (c)) << 1))

715 : (0 x f c00
| (p a r i t y 8 (c) << 9)
| (c << 1)) ;

}

720 s t a t i c i n t
i f d s t a r t (s t r u c t i f d d e v i c e ∗dev , i n t warm , i f d d e v i c e c l a s s t c l a s s)

{
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;

725 i f (! data−> c a r d i n s e r t e d)
{

p r i n t k (KERN ERR ”%s : c a l l e d , but no ca rd i n s e r t e d \n ” , f u n c) ;
r e t u rn −1;

}
730

sw i t ch (c l a s s) {
case IFD DEVICE CLASS A :

80 Appendix A. ISO 7816 Software UART Driver Source Code

case IFD DEVICE CLASS B :
case IFD DEVICE CLASS C :

735 data−> s t a r t c l a s s = c l a s s ;
break ;

d e f a u l t :
r e t u rn −1;

}
740

data−> s t a r t wa rm = warm ? 1 : 0 ;

s c h e d u l e t a s k (&data−> t a s k s t a r t) ;

745 r e t u rn 0 ;
}

// //
// i r q hand l i n g fun

750

#de f i n e FIFO SIZE (1<<9) // must be 2ˆn
s t a t i c u16 i o b u f [FIFO SIZE] = { 0 , } ;
s t a t i c uns igned i o w i d x = 0 , i o r i d x = 0 ;

755 s t a t i c vo id
b h f i f o f l u s h (vo id)

{
memset (i o bu f , 0x00 , s i z e o f (i o b u f)) ;
i o w i d x = i o r i d x = 0 ;

760 }

s t a t i c vo id
b h f i f o p u t (u16 c)

{
765 i o b u f [i o w i d x & (FIFO SIZE −1)] = c ;

wmb() ;
++i o w i d x ;
mb () ;

}
770

s t a t i c i n l i n e i n t
b h f i f o g e t (u16 ∗c)

{
i f (i o r i d x < i o w i d x) {

775 ∗c = i o b u f [i o r i d x++ & (FIFO SIZE −1)] ;
r e t u rn 0 ;

}
r e t u rn 1 ;

}
780

s t a t i c vo id t a s k r x t o (vo id ∗ dev) ;

// g e t s c a l l e d from t ime r
s t a t i c vo id

785 t i m e r r x t o (uns igned long d e v l)
{

s t r u c t t d a8023 t t da t a ∗ const data = (vo id ∗) d e v l ;

t d a 8 0 2 3 t t i o i r q o f f () ;
790 s c h e d u l e t a s k (&data−> t a s k r x t o) ;

81

// ˆˆˆˆ d e f e r r e d i f d n o t i f y (&data−> i f d , IFD EVENT RX TIMEOUT) ;
}

s t a t i c vo id
795 t d a 8 0 2 3 t t t a s k l e t i o b h (uns igned long d e v l)

{
s t r u c t t d a8023 t t da t a ∗ const data = (vo id ∗) d e v l ;

u16 c ;
800

wh i l e (! b h f i f o g e t (&c)) {
data−>f r ame s r x++;

i f (u n l i k e l y ((c & 0x601) != 0x400)) { // p a r i t y / f r am ing e r r o r
805 // p r i n t k (”bad frame %.2x\n ”, c << 3) ;

i f (c & 0x200)
data−>f r am e s p e r r o r s++;

e l s e
data−>f r ames bad f r ames++;

810 }

c >>= 1 ;
c &= 0 x 1 f f ;

815 i f (! i f d f r a m e r x (&data−> i f d , c))
{

t d a 8 0 2 3 t t i o i r q o f f () ;
d e l t i m e r s y n c (&data−> t i m e r r x t o) ;
s c h e d u l e t a s k (&data−> t a s k r x t o) ;

820 // ˆˆˆˆ d e f e r r e d i f d n o t i f y (&data−> i f d , IFD EVENT RX TIMEOUT) ;
break ;

}
}

}
825

// //

s t a t i c vo id
t d a 8 0 2 3 t t i o i n t e r r u p t (i n t i r q , vo id ∗dev , s t r u c t p t r e g s ∗ r e g s)

830 {
// a l l i r q s a r e d i s a b l e d , s i n c e we a r e SA INTERRUPT!
s t r u c t t d a8023 t t da t a ∗ data = dev ;

uns igned c u r r f r ame = 0 ;
835 uns igned i d x ;

// t d a 8 0 2 3 t t i o i r q c l e a r () ;
t d a 8 0 2 3 t t i o i r q o f f () ;
t d a 8 0 2 3 t t r e s e t c o u n t e r () ;

840

// ude l a y ()

//BUG ON (i o u c g e t ()) ;

845 // scan f o r f i r s t edge . . .

f o r (i d x = 0 ; i d x < 1+8+1+1; ++id x)
{

82 Appendix A. ISO 7816 Software UART Driver Source Code

t d a 8023 t t c on s ume t i c k s nowa i t (ETU(1 , 0)) ;
850

wh i l e (! t d a 8023 t t c o un t e r s y n c e d ())
i f (i o u c g e t ())

goto edg e d e t e c t e d ;
}

855

edg e d e t e c t e d :
t d a 8 0 2 3 t t r e s e t c o u n t e r () ;

// move i n t o b i t−c e l l m idd l e
860 t d a 8023 t t c on s ume t i c k s nowa i t (ETU(0 ,TICKS PER ETU /2)) ;

f o r (++i d x ; i d x < 1+8+1+1; ++id x)
{

i n t c u r r b i t = 0 ;
865

t d a 8 0 2 3 t t s y n c d e a d l i n e () ;

c u r r b i t = i o u c g e t () ;

870 c u r r f r ame |= c u r r b i t << i d x ;

c u r r f r ame ˆ= c u r r b i t << 9 ; // xor p a r i t y on the f l y

t d a 8023 t t c on s ume t i c k s nowa i t (ETU(1 , 0)) ;
875 }

c u r r f r ame ˆ= (cu r r f r ame >> 1) & (1<<9); // un−p a r i t y stop−b i t

// i f (c u r r f r ame & 0x401 != 0x400) { . . . } // f raming e r r o r
880

i f (u n l i k e l y (c u r r f r ame & (1<<9))
&& data−> i f d . parm . f l a g p a r i t y s i g n a l i n g)

{
// per fo rm e r r o r s i g n a l l i n g , and re−sample frame

885 // data−>f r ame s t x++;
}

b h f i f o p u t (c u r r f r ame) ;
t d a 8 0 2 3 t t i o i r q o n () ;

890 t a s k l e t s c h e d u l e (&data−>t a s k l e t i o b h) ;
}

s t a t i c vo id
t a s k s t a r t (vo id ∗ dev)

895 {
s t r u c t i f d d e v i c e ∗dev = dev ;
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;
uns igned long f l a g s ;

900 BUG ON(i n i n t e r r u p t ()) ;

// t r y to avo i d do ing r e s e t s b e f o r e 5ms have pas sed s i n c e l a s t o p e r a t i o n
tda8023 t t mde l ay (5 , 0) ;

905 i f (! data−> c a r d i n s e r t e d)
{

83

p r i n t k (KERN ERR ”%s : ca rd removed unexpec t ed l y , a b o r t i n g c a l l . . . \ n ” ,
f u n c) ;

r e t u rn ;
910 }

l o c a l i r q s a v e (f l a g s) ;

// r e s e t s t a t e
915 b h f i f o f l u s h () ;

data−>wre t r an s = data−>r r e t r a n s = 0 ;
data−>f r ame s t x = data−>f r ame s r x = 0 ;
data−>f r ames bad f r ames = data−>f r am e s p e r r o r s = 0 ;

920 data−>tx commit = 1 ;
data−>o u t b u f l e n = 0 ;

t d a 8 0 2 3 t t t im e r s e t u p (data−>d i v i s o r , 372 , 1) ; // Dd = 1 , Fd = 372
i f (! i o u c g e t ())

925 p r i n t k (KERN WARNING ”I /O l i n e i s down\n ”) ;

i f (tda8023t t powerup (data)) {
p r i n t k (KERN ERR ”%s : tda8023t t powerup f a i l e d \n ” , f u n c) ;
r e s t o r e f l a g s (f l a g s) ;

930 i f d n o t i f y (&data−> i f d , IFD EVENT RX TIMEOUT) ;
r e t u rn ;

}

t d a 8 0 2 3 t t r e s e t c o u n t e r () ;
935 t d a 8 0 2 3 t t i o i r q o n () ; // −−> i o i r q h and l e r . . .

r e s t o r e f l a g s (f l a g s) ;
}

s t a t i c i n t
940 i f d s t o p (s t r u c t i f d d e v i c e ∗dev)

{
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;

tda8023tt powerdown (data) ;
945

r e t u rn 0 ;
}

s t a t i c i n t
950 i f d e j e c t (s t r u c t i f d d e v i c e ∗dev)

{
p r i n t k (KERN WARNING ”tda8023 : warn ing : ca rd e j e c t i o n emulated !\ n ”) ;

r e t u rn 0 ;
955 }

s t a t i c i n t
i f d f r a m e s t x (s t r u c t i f d d e v i c e ∗dev , const u8 f rames [] , uns igned l en ,

i n t more)
960 {

s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;
uns igned i d x ;

i f (data−>tx commit) {

84 Appendix A. ISO 7816 Software UART Driver Source Code

965 data−>o u t b u f l e n = 0 ;
data−>tx commit = 0 ;

}

i f (data−>o u t b u f l e n + l e n > IFD OUTBUF MAXSIZE)
970 {

p r i n t k (KERN ERR ”%s : output b u f f e r space exhaus ted (%d > %d)\n ” ,
f u n c , data−>o u t b u f l e n + len , IFD OUTBUF MAXSIZE) ;

data−>tx commit = 1 ;
r e t u rn −1;

975 }

f o r (i d x = 0 ; i d x < l e n ; ++i d x)
data−>outbu f [data−>o u t b u f l e n++] =

raw c f r ame (f rames [i d x] , dev−>parm . f l a g i n v e r s e) ;
980

i f (! more) {
data−>tx commit = 1 ;
s c h e d u l e t a s k (&data−> t a s k t x) ;

}
985

r e t u rn 0 ;
}

s t a t i c i n t
990 i f d s e t r a t e (s t r u c t i f d d e v i c e ∗dev , uns igned F , uns igned D, i n t t r y)

{
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;
r e t u rn (t r y ? t d a 8 0 2 3 t t t im e r s e t u p t r y : t d a 8 0 2 3 t t t im e r s e t u p)

(data−>d i v i s o r , F , D) ;
995 }

s t a t i c vo id
t a s k t x (vo id ∗ dev)
{

1000 s t r u c t i f d d e v i c e ∗dev = dev ;
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;
uns igned long f l a g s ;

BUG ON(i n i n t e r r u p t ()) ;
1005

i f (! data−> c a r d i n s e r t e d)
{

p r i n t k (”%s : ca rd removed unexpec t ed l y , a b o r t i n g c a l l . . . \ n ” , f u n c) ;
r e t u rn ;

1010 }

l o c a l i r q s a v e (f l a g s) ;

// r e s e t s t a t e
1015 b h f i f o f l u s h () ;

data−>wre t r an s = data−>r r e t r a n s = 0 ;
data−>f r ame s t x = data−>f r ame s r x = 0 ;
data−>f r ames bad f r ames = data−>f r am e s p e r r o r s = 0 ;

1020 i f (! i o u c g e t ())
p r i n t k (” I /O l i n e i s down !\ n ”) ;

85

// w r i t e r o u t i n e
{

1025 uns igned o u t b u f i d x ;

const u16 g u a r d t i c k s = ETU(dev−>parm . gua r d b i t s , 0) ;

i f (dev−>parm . d e l a y b i t s > 0)
1030 t d a 8023 t t c on s ume t i c k s (ETU(dev−>parm . d e l a y b i t s , 0)) ;

t d a 8 0 2 3 t t r e s e t c o u n t e r () ;

f o r (o u t b u f i d x = 0 ; o u t b u f i d x < data−>o u t b u f l e n ; ++ou t b u f i d x)
1035 {

const u16 c f rame = data−>outbu f [o u t b u f i d x] ;
i n t i d x ;

d i s t r a c t w a t c h d o g () ;
1040

r e s end :
t d a 8 0 2 3 t t s y n c d e a d l i n e () ;

f o r (i d x = 0 ; i d x != 10 ; ++id x) {
1045 i o u c s e t ((c f r ame >> i d x) & 1) ;

t d a8023 t t c on s ume t i c k s (ETU(1 , 0)) ;
}

i o u c s e t (1) ; // s top b i t (s)
1050

data−>f r ame s t x++;

i f (dev−>parm . f l a g p a r i t y s i g n a l i n g)
{

1055 t d a 8023 t t c on s ume t i c k s (ETU(1 , 0)) ; // check s t a t e at 11+/−0.2 etu
i f (l i k e l y (i o u c g e t ()))
{ // no e r r o r s i g n a l −−> consume rema in i ng g u a r d t i c k s

t d a 8023 t t c on s ume t i c k s nowa i t (g u a r d t i c k s − ETU(1 , 0)) ;
}

1060 e l s e
{ // e r r o r s i g n a l l i n g :−(

i f (data−>wre t r an s > MAX RETRANS)
break ; // too many r e t r a n s m i s s i o n s

data−>wre t r an s++;
1065

// wa i t a t l e a s t 2 etu ’ s a f t e r d e t e c t i o n o f e r r o r s i g n a l
t d a 8023 t t c on s ume t i c k s nowa i t (ETU(2 , 0)) ;

goto r e s end ;
1070 }

}
e l s e // no p a r i t y e r r o r s i g n a l l i n g n e c e s s a r y

t d a 8023 t t c on s ume t i c k s nowa i t (g u a r d t i c k s) ;
}

1075

// no t d a 8 0 2 3 t t s y n c d e a d l i n e () i n o r d e r to ca tch IRQ and improve l a t e n c y

d i s t r a c t w a t c h d o g () ;
} // d o w r i t e ()

1080

86 Appendix A. ISO 7816 Software UART Driver Source Code

mod timer (&data−> t im e r r x t o , j i f f i e s + HZ) ; // 1 sec t imeout (i n c o r r e c t)

t d a 8 0 2 3 t t r e s e t c o u n t e r () ;

1085 t d a 8 0 2 3 t t i o i r q o n () ;
l o c a l i r q r e s t o r e (f l a g s) ;

// i r q based samp l i ng t a k e s ove r he r e . . .

1090 // at end o f r x t r a n sm i s s i o n t a s k r x t o () g e t s c a l l e d
}

s t a t i c vo id
t a s k r x t o (vo id ∗ dev)

1095 {
s t r u c t i f d d e v i c e ∗dev = dev ;
s t r u c t t d a8023 t t da t a ∗ const data = dev−>p r i v a t e d a t a ;

// h o p e f u l l y t h e r e shou ld be on l y one t a s k r x t o () c a l l
1100 // s chedu l ed . . . but t h i s d r i v e r i s a hack−of−concept anyway

// FIXME − check t h i s i s r e a l l y t r u e . . .

data−> i f d . s t a t s . f r ame s t x += data−>f r ame s t x ;
1105 data−> i f d . s t a t s . f r a m e s t x e r r o r s += data−>wre t r an s ;

data−> i f d . s t a t s . f r ame s r x += data−>f r ame s r x ;
data−> i f d . s t a t s . f r a m e s r x e r r o r s += data−>f r ames bad f r ames

+ data−>f r am e s p e r r o r s ;
1110

i f d n o t i f y (&data−> i f d , IFD EVENT RX TIMEOUT) ;
}

s t a t i c i n t
1115 t d a 8 0 2 3 t t p r o b e c l i e n t (s t r u c t i 2 c a d a p t e r ∗ adapte r , i n t addre s s ,

uns igned sho r t f l a g s , i n t k ind)
{

i n t e r r = −1;
s t r u c t i 2 c c l i e n t ∗ n ew c l i e n t = 0 ;

1120 s t r u c t t d a8023 t t da t a ∗new data = 0 ;

p r i n t k (KERN DEBUG ”t d a 8 0 2 3 t t p r o b e c l i e n t (,%d,%d,%d)\n ” ,
addre s s , f l a g s , k i nd) ;

1125 i f (t d a 8 0 2 3 t t i n s t a n c e s > 0)
{

p r i n t k (KERN ERR ”on l y one tda8023 d r i v e r i n s t a n c e suppo r t ed \n ”) ;
goto f a i l o u t ;

}
1130

n ew c l i e n t = kma l l oc (s i z e o f ∗ new c l i e n t , GFP KERNEL) ;

i f (! n ew c l i e n t) {
p r i n t k (”kma l l oc f a i l e d \n ”) ;

1135 goto f a i l o u t ;
}

new c l i e n t−>addr = add r e s s ;

87

new c l i e n t−>adap t e r = adap te r ;
1140 new c l i e n t−>d r i v e r = &t d a 8 0 2 3 t t d r i v e r ;

n ew c l i e n t−> f l a g s = 0 ;
s t r c p y (n ew c l i e n t−>name , ”tda8023 c l i e n t ”) ;

n ew c l i e n t−>data = new data = kma l l oc (s i z e o f ∗new data , GFP KERNEL) ;
1145

i f (! new data) {
p r i n t k (”kma l l oc f a i l e d \n ”) ;
goto f a i l o u t ;

}
1150

memset (new data , 0 , s i z e o f ∗new data) ;
new data−>c l i e n t = n ew c l i e n t ;

{
1155 s t r u c t i f d d e v i c e ∗ const i f d = &new data−> i f d ;

i f d −>owner = THIS MODULE ;
s t r c p y (i f d −>name , ”tda8023 t t ”) ;

i f d −>p r i v a t e d a t a = new data ;
1160 i f d −>s t a r t = i f d s t a r t ;

i f d −>s top = i f d s t o p ;
i f d −>e j e c t = i f d e j e c t ;
i f d −>f r ame s t x = i f d f r a m e s t x ;
i f d −>s e t r a t e = i f d s e t r a t e ;

1165 i f d −>s u p p o r t e d c l a s s e s = IFD DEVICE CLASS A ;
}

PREPARE TQUEUE (&new data−> t a s k s t a r t , t a s k s t a r t , new data) ;
PREPARE TQUEUE (&new data−> t a s k t x , t a s k t x , new data) ;

1170 PREPARE TQUEUE (&new data−> t a s k r x t o , t a s k r x t o , new data) ;
i n i t t i m e r (&new data−> t i m e r r x t o) ;
new data−> t i m e r r x t o . data = (uns igned long) new data ;
new data−> t i m e r r x t o . f u n c t i o n = &t i m e r r x t o ;
t a s k l e t i n i t (&new data−>t a s k l e t b h , t d a 8 0 2 3 t t t a s k l e t b h ,

1175 (uns igned long) new data) ;
t a s k l e t i n i t (&new data−>t a s k l e t i o b h , t d a 8 0 2 3 t t t a s k l e t i o b h ,

(uns igned long) new data) ;

new data−>d i v i s o r = DEFAULT CLKDIV ; /∗ s a f e c ho i c e ∗/
1180

i f ((e r r = i 2 c a t t a c h c l i e n t (n ew c l i e n t)))
goto f a i l o u t ;

i f ((e r r = r e q u e s t i r q (t d a 8 0 2 3 t t c t l i r q , t d a 8 0 2 3 t t i n t e r r u p t ,
1185 SA INTERRUPT ,

”TDA8023TT s t a t u s ” , new data)))
{

p r i n t k (” f a i l e d to r e q u e s t s t a t u s i r q %d\n ” , t d a 8 0 2 3 t t c t l i r q) ;
goto f a i l o u t ;

1190 }

i f ((e r r = r e q u e s t i r q (t d a 8 0 2 3 t t i o i r q , t d a 8 0 2 3 t t i o i n t e r r u p t ,
SA INTERRUPT ,
”TDA8023TT I /OuC” , new data)))

1195 {
p r i n t k (” f a i l e d to r e q u e s t I /OuC i r q %d\n ” , t d a 8 0 2 3 t t i o i r q) ;

88 Appendix A. ISO 7816 Software UART Driver Source Code

goto f a i l o u t ;
}

1200 i f ((e r r = i f d r e g i s t e r d e v (&new data−> i f d))) {
p r i n t k (KERN ERR ” i f d r e g i s t e r d e v () f a i l e d (r c=%d)\n ” , e r r) ;
goto f a i l o u t ;

}

1205 /∗ s e tup I /OuC p in ∗/
i o u c i n i t () ;

/∗ r e s e t tda8023 ∗/
i f (t d a 8 0 2 3 t t w r i t e r e g (new data , 0 , 0 x00))

1210 p r i n t k (”w r i t e r e g 0 f a i l e d \n ”) ;

i f (t d a 8 0 2 3 t t w r i t e r e g (new data , 1 , TDA8023TT REG1 INIT))
p r i n t k (”w r i t e r e g 1 f a i l e d \n ”) ;

1215 i f (! i o u c g e t ())
{

p r i n t k (KERN ERR ”tda8023 : I /OuC not h igh !\ n ”) ;
goto f a i l o u t ;

}
1220

i f (t d a 8 0 2 3 t t w r i t e r e g (new data , 0 , TDA8023TT REG0 W IOEN))
p r i n t k (”w r i t e r e g 0 f a i l e d \n ”) ;

/∗ enab l e i r q ∗/
1225 t d a 8 0 2 3 t t c t l i r q o n () ;

t d a 8 0 2 3 t t i n s t a n c e d a t a [t d a 8 0 2 3 t t i n s t a n c e s] = new data ;
t d a 8 0 2 3 t t i n s t a n c e s++;

1230 {
const s32 s t a t u s = t d a 8 0 2 3 t t r e a d r e g (new data , 0) ;

p r i n t k (KERN DEBUG ”tda8023 : s t a t u s = 0x%.2x/0x%.2x\n ” , s t a t u s ,
t d a 8 0 2 3 t t r e a d r e g (new data , 1)) ;

1235

i f (s t a t u s & TDA8023TT REG0 R PRES) {
p r i n t k (KERN INFO ”card de t e c t e d a l r e a d y i n s e r t e d \n ”) ;
new data−> c a r d i n s e r t e d = 1 ;
i f d n o t i f y (&new data−> i f d , IFD EVENT CARD IN) ;

1240 } e l s e
new data−> c a r d i n s e r t e d = 0 ;

}

r e t u rn 0 ;
1245

f a i l o u t :
/∗ FIXME ∗/
f r e e i r q (t d a 8 0 2 3 t t c t l i r q , new data) ;
f r e e i r q (t d a 8 0 2 3 t t i o i r q , new data) ;

1250 k f r e e (new data) ;
k f r e e (n ew c l i e n t) ;

r e t u rn e r r ;
}

89

1255

s t a t i c i n t i n i t
t d a 8 0 2 3 t t i n i t (vo id)
{

i f (tda8023t t debug)
1260 p r i n t k (KERN INFO ”%s : $Rev : 737 $, i r q %d , CLKDIV%d , compi l ed %s %s \n ” ,

f u n c , t d a 8 0 2 3 t t c t l i r q , DEFAULT CLKDIV , TIME , DATE) ;

r e t u rn i 2 c a d d d r i v e r (& t d a 8 0 2 3 t t d r i v e r) ;
}

1265

s t a t i c vo id e x i t
t d a 8 0 2 3 t t e x i t (vo id)
{

tda8023tt powerdown (t d a 8 0 2 3 t t i n s t a n c e d a t a [0]) ;
1270

/∗ d i s a b l e i r q ∗/
t d a 8 0 2 3 t t c t l i r q o f f () ;

i 2 c d e l d r i v e r (& t d a 8 0 2 3 t t d r i v e r) ;
1275 }

MODULE AUTHOR(”He rbe r t V a l e r i o R i e d e l <hv r@ in so . tuwien . ac . at>”) ;
MODULE DESCRIPTION(”TDA8023TT/ep930x d r i v e r ”) ;
MODULE PARM(tda8023t t debug , ” i ”) ;

1280 MODULE PARM DESC(tda8023t t debug , ”debug l e v e l ”) ;
MODULE LICENSE(”GPL”) ;

modu l e i n i t (t d a 8 0 2 3 t t i n i t) ;
modu l e e x i t (t d a 8 0 2 3 t t e x i t) ;

Listing A.1: ISO7816 software UART driver source code

APPENDIX B

Latency Measurement Kernel Module
Source Code

1 // s imp l e l i n u x 2 .4 k e r n e l module f o r i n t e r r u p t l a t e n c y measurements
// dumps l a t e n c y t ime h i s tog ram to c on s o l e on module un load

#inc l u d e < l i n u x / c o n f i g . h>
#inc l u d e < l i n u x / k e r n e l . h>

6 #inc l u d e < l i n u x / s p i n l o c k . h>
#inc l u d e < l i n u x / i n t e r r u p t . h>
#inc l u d e < l i n u x / i n i t . h>
#inc l u d e < l i n u x / d e l a y . h>
#inc l u d e < l i n u x / sched . h>

11 #inc l u d e < l i n u x / v e r s i o n . h>
#inc l u d e < l i n u x / d e l a y . h>
#inc l u d e < l i n u x /module . h>
#inc l u d e <asm/ i o . h>
#inc l u d e <asm/ arch / regmap . h>

16 #inc l u d e <asm/ arch / i r q s . h>
#inc l u d e <asm/ arch / system . h>

s t a t i c i n t DIV = 1 ;
s t a t i c u32 c a l i b r a t e d t c 3 t c 4 = 0 ; // about 493

21

#de f i n e EP93XX TIMER3 FREQ 1994UL
#de f i n e TRIGGER INTERVAL (EP93XX TIMER3 FREQ/DIV) // DIV pe r s e c

#de f i n e EP93XX TIMER4 FREQ 983040UL // 14.7456/15 Mhz = 983.04 KHz
26 #de f i n e TRIGGER INTERVAL TC4 (EP93XX TIMER4 FREQ/DIV) // DIV pe r s e c

#de f i n e EP93XX TIMER4 ENABLE 0x100

/∗ Se t s up a f a s t hardware t ime r w i th 983 .04 KHz f r e quenc y
31 ∗ i n f r e e runn ing mode

∗/
s t a t i c vo id
e p 9 3 x x t im e r 4 i n i t (vo id)
{

36 /∗ r e s e t the t ime r ∗/

91

92 Appendix B. Latency Measurement Kernel Module Source Code

o u t l (0 x0 , TIMER4VALUEHIGH) ;

/∗ enab l e the t ime r ∗/
o u t l (EP93XX TIMER4 ENABLE , TIMER4VALUEHIGH) ;

41 }

s t a t i c vo id
e p 9 3 x x t im e r 3 i n i t (u32 i n t e r v a l) // i n t e r v a l=0 ==> d i s a b l e d
{

46 o u t l (0 x0 , TIMER3CONTROL) ; // d i s a b l e tc3 . . .
o u t l (i n t e r v a l , TIMER3LOAD) ; // pre−l o ad wi th i n t e r v a l . . .

i f (i n t e r v a l)
o u t l (0 xc0 , TIMER3CONTROL) ;

51 }

s t a t i c i n l i n e u32
ep93x x t ime r 4 g e t (vo id)
{

56 // r e t u r n i n l (TIMER4VALUEHIGH) << 32 | i n l (TIMER4VALUELOW) ;
//
// a l a s 64 b i t a r i t hm e t i c seems to take too l ong to be u s e f u l , so we
// s imp l y i g n o r e the upper 8 b i t s o v e r f l ow i n the l owe r 32 b i t s
// oc cu r s e v e r y ˜4369 s (˜73m) , l ong enough f o r our pu rpo s e s

61 r e t u rn i n l (TIMER4VALUELOW) ;
}

s t a t i c i n l i n e u32
ep93x x t ime r 3 g e t (vo id)

66 {
r e t u rn i n l (TIMER3VALUE) ;

}

s t a t i c i n l i n e vo id
71 e p 9 3 x x t i m e r 3 c l e a r i r q (vo id)

{
o u t l (0 x0 , TIMER3CLEAR) ;

}

76 #de f i n e MAX DELAY 500
v o l a t i l e s t a t i c uns igned bucke t s [MAX DELAY] = { 0 , } ;
v o l a t i l e s t a t i c uns igned samples = 0 ;

s t a t i c i r q r e t u r n t
81 l a t t i m e r 3 i s r (i n t i r q , vo id ∗data , s t r u c t p t r e g s ∗ r e g s)

{
const u32 t ime r 4 = ep93x x t ime r 4 g e t () ;
const u32 t ime r 3 = ep93x x t ime r 3 g e t () ;

86 e p 9 3 x x t i m e r 3 c l e a r i r q () ;

wh i l e (t ime r 3 == ep93x x t ime r 3 g e t ()) {} ; // wa i t t i l l nex t count . . .

91 const u32 n t ime r4 = ep93x x t ime r 4 g e t () ;
const uns igned t im e r 4 d e l t a = c a l i b r a t e d t c 3 t c 4 − (n t ime r4 − t ime r 4) ;

++samples ;

93

96 i f (t ime r 3 == 0 && t im e r 4 d e l t a < MAX DELAY)
++bucke t s [t im e r 4 d e l t a] ;

r e t u rn IRQ HANDLED ;
}

101

s t a t i c i n t i n i t
e p 9 3 l a t i n i t (vo id)
{

106 p r i n t k (”%s [comp i l ed %s %s]\ n ” , f u n c , TIME , DATE) ;

i f (r e q u e s t i r q (IRQ TIMER3 , l a t t i m e r 3 i s r , SA INTERRUPT ,
”ep93 l a t t ime r i r q ” , 0))

{
111 p r i n t k (” f a i l e d to r e q u e s t s t a t u s i r q %d\n ” , IRQ TIMER3) ;

r e t u rn −1;
}

// r e s e t data
116 i n t i d x ;

f o r (i d x = 0 ; i d x < MAX DELAY; ++id x)
bucke t s [i d x] = 0 ;

samples = 0 ;

121 p r i n t k (” c a l i b r a t i n g . . . \ n ”) ;

l o c a l i r q d i s a b l e () ;

e p 9 3 x x t im e r 3 i n i t (TRIGGER INTERVAL−1); // t r y w i th DIV i r q / s ec r a t e . . .
126 e p 9 3 x x t im e r 4 i n i t () ;

const u32 t ime r 3 = ep93x x t ime r 3 g e t () ;
wh i l e (t ime r 3 == ep93x x t ime r 3 g e t ()) {} ;

131 const u32 n t ime r4 = ep93x x t ime r 4 g e t () ;

const u32 n t ime r3 = ep93x x t ime r 3 g e t () ;
wh i l e (n t ime r3 == ep93x x t ime r 3 g e t ()) {} ;

136 const u32 mtimer4 = ep93x x t ime r 4 g e t () ;

// c a l i b r a t e d t c 3 t c 4 r e p r e s e n t s the number o f TC4 t i c k s f o r one TC3 t i c k
c a l i b r a t e d t c 3 t c 4 = mtimer4 − n t ime r4 ;

141 l o c a l i r q e n a b l e () ;

p r i n t k (”c a l i b r a t e d t c 3 t c 4 = %u\n ” , c a l i b r a t e d t c 3 t c 4) ;

r e t u rn 0 ;
146 }

s t a t i c vo id e x i t
e p 9 3 l a t e x i t (vo id)
{

151 p r i n t k (”%s \n ” , f u n c) ;

94 Appendix B. Latency Measurement Kernel Module Source Code

e p 9 3 x x t im e r 3 i n i t (0) ; // d i s a b l e . . .
ude l a y (5) ; // t r y to avo i d r a c e c o n d i t i o n

156 uns igned ov e r f l owed = samples ;

p r i n t k (” l a t e n c y h i s tog ram (%u samples @ i n t e r v a l %d/1993.9Hz) : \ n ” ,
samples , (uns igned)TRIGGER INTERVAL) ;

161 uns igned i d x ;
f o r (i d x = 0 ; i d x < MAX DELAY; ++id x) {

i f (bucke t s [i d x])
p r i n t k (”%3d %8u\n ” , idx , bucke t s [i d x]) ;

o v e r f l owed −= bucke t s [i d x] ;
166 }

p r i n t k (”>%d %8u\n ” , MAX DELAY−1, o v e r f l owed) ;
p r i n t k (”EOF\n ”) ;

171 f r e e i r q (IRQ TIMER3 , 0) ;
}

MODULE LICENSE(”GPL”) ;
MODULE DESCRIPTION(” l a t e n c y measurements f o r ep93xx \n ”) ;

176 MODULE AUTHOR(”He rbe r t V a l e r i o R i e d e l <hv r@ in so . tuwien . ac . at>”) ;

modu l e i n i t (e p 9 3 l a t i n i t) ;
modu l e e x i t (e p 9 3 l a t e x i t) ;

181 MODULE PARM DESC(DIV , ”DIV ”) ;
MODULE PARM(DIV , ” i ”) ;

Listing B.1: Latency measurement kernel module source code

Glossary

Application Protocol Data Unit (APDU) Message structure at application level (can be either
command APDU or response APDU)[14], 19

Application Programming Interface (API) Set of defined functions representing the program-
ming interface to a library or operating system services, 1, 37

Asynchronous Software Thread Integration (ASTI) Software Transformation Technique for
inlining multiple threads of control into a single routine, 26

Answer-To-Reset (ATR) The sequence of bytes sent by a smart-card on reset, 18

Complementary Metal-Oxide-Semiconductor (CMOS) Major class of integrated circuits, see
also TTL, 4

Complex Programmable Logic Device (CPLD) A programmable logic device, see also FPGA,
9

Central Processing Unit (CPU) Component of a microprocessor responsible for software exe-
cution, 7

Cyclic Redundancy Check (CRC) A type of hash function used for generating a check-sum
over a block of data, 16, 18

Carrier Sense Multiple Access (CSMA) non-deterministic media access protocol based on de-
tecting absence of other carriers before initiating transmission on a shared medium, 3

Direct Memory Access (DMA) The use of DMA allows subsystems direct access to memory
independently from the CPU, 6

Elementary Time Unit (etu) The basic time unit denoting the bit-duration in the ISO7816-3
standard[15], 17

Frequency Division Duplex (FDD) FDM used for direction duplexing, 3

First In First Out (FIFO) The way data is handled in data structures or hardware components
resembling a queue which store data items of which the items added first are also the ones
to be removed first, 4

95

96 Glossary

Field-Programmable Gate Array (FPGA) An integrated circuit which contains programmable
logic components and interconnects, see also CPLD, 9

General Purpose Input Output (GPIO) Flexible hardware component whose pins can be con-
figured to either input or output signals, 8, 35

I2C Serial bus standard[27] for connecting on-board components, 2

Integrated Circuit (IC) miniaturised electronic (semiconductor) circuit, also called microchip,
4

Integrated Circuit(s) Card (ICC) The technical term used in the ISO7816 specification to refer
to small plastic cards with embedded integrated circuits, sometimes also called Smart-
cards, 6, 19

ISO/IEC 7816 International standard[15, 14] defining contact-type ICCs, 6

Jitter Deviation from the ideal timing of an event, 22

Memory Management Unit (MMU) Computer component handling memory accesses, 35

Printed Circuit Board (PCB) Board on which electronic components are attached and inter-
connected, 1, 11

Portable Operating System Interface (POSIX) IEEE Standard which defines the user-space
API for Unix-like operating systems, 36

Protocol-and-Parameters-Selection (PPS) The handshake protocol for negotiating communi-
cation protocol parameters with smart-cards, 18

Real-Time Operating System (RTOS) Operating system providing facilities to facilitate the
implementation of real-time applications, 1

Serial Communications Interface (SCI) Synonymous with UART, 4

Space Division Duplex (SDD) SDM used for direction duplexing, 3

System Management Bus (SMBus) Serial bus standard[31] based on the I2Cprotocol used for
low-speed system management communications, 2

Time Division Duplex (TDD) TDM used for direction duplexing, 3

Translation Look-aside Buffer (TLB) Cache component of the MMU for accelerating memory
address translation, 35

Transmission Protocol Data Unit (TPDU) APDU transformed for transmission[15, 14], 19

Transistor-Transistor Logic (TTL) Common type of digital circuit which is composed of tran-
sistors, 4

Glossary 97

Universal Asynchronous Receiver/Transmitter (UART) Serial asynchronous communication
protocol controller component, i, ii, 4, 7–10, 13, 25–28, 35, 36

Universal Synchronous Asynchronous Receiver/Transmitter (USART) An UART with addi-
tional support for synchronous operation, 4

Universal Serial Bus (USB) Serial bus standard[36] for connecting devices to a host-system in
a tree-like topology, 2

VHSIC Hardware Description Language (VHDL) Commonly used design-entry language for
FPGAs and ASICs, 28

Bibliography

[1] Vasanth Asokan and Alexander G. Dean. Providing time- and space- efficient proce-
dure calls for asynchronous software thread integration. In CASES ’04: Proceedings
of the 2004 international conference on Compilers, architecture, and synthesis for
embedded systems, pages 167–178, New York, NY, USA, 2004. ACM Press.

[2] Atmel. AVR304: Half Duplex Interrupt Driven Software UART, August 1997.

[3] Atmel. AVR310: RC5 IR Remote Control Receiver, May 2002.

[4] Cirrus Logic, Inc. EP9301 User’s Guide, February 2004.

[5] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly & Associates, Inc., Sebastopol, CA, USA, third edition, 2005.

[6] CORPORATE IEEE, Inc. Staff, New York, NY, USA. IEEE Std 802.16-2004
IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface
for Fixed Broadband Wireless Access Systems, 2004.

[7] C. Ebner. Description and comparision of selected UARTs. Technical Report
22/1994, TU Vienna, Institut fuer Technische Informatik, 1994.

[8] Wilfried Elmenreich and Martin Delvai. Time-triggered communication with
UARTs. In Proceedings of the 4th IEEE International Workshop on Factory Com-
munication Systems, pages 97–104, Aug. 2002.

[9] Alexey Kuznetsov et al. Iputils package. ftp://ftp.inr.ac.ru/ip-routing/
iputils-ss020927.tar.gz.

[10] Linus Torvalds et al. Linux kernel. http://www.kernel.org/.

[11] Scott George. HC05 MCU Software-Driven Asynchronous Serial Communication
Techniques using the MC68HC705J1A. Freescale Semiconductor, 1995.

[12] Greg Goodhue. A software duplex UART for the 751/752. Philips Semiconductors,
June 1993.

99

ftp://ftp.inr.ac.ru/ip-routing/iputils-ss020927.tar.gz
ftp://ftp.inr.ac.ru/ip-routing/iputils-ss020927.tar.gz
http://www.kernel.org/

100 BIBLIOGRAPHY

[13] Steve Heath. Embedded Systems Design. Butterworth-Heinemann, Newton, MA,
USA, 2002.

[14] International Organization for Standardization, Geneva, Switzerland.
ISO/IEC 7816-4:1995: Identification cards — Integrated circuit(s) cards
with contacts — Part 4: Interindustry commands for interchange, first edition,
September 1995.

[15] International Organization for Standardization, Geneva, Switzerland.
ISO/IEC 7816-3:1997: Identification cards — Integrated circuit(s) cards with
contacts — Part 3: Electronic signals and transmission protocols, second edition,
December 1997.

[16] International Telecommunication Union, Geneva, Switzerland. ITU-R Recommen-
dation M.1677: International Morse Code, May 2004.

[17] Adrienne Prahler Jaffe. Implementation of a Software UART on TMS320C54x
Using General-Purpose I/O Pins. Texas Instruments, July 1999.

[18] A.J. Jerri. The Shannon Sampling Theorem - Its Various Extensions and Applica-
tions: A Tutorial Review. In Proceedings of the IEEE, volume 65, pages 1565–1596,
November 1977.

[19] Michael B. Jones and Stefan Saroiu. Predictability requirements of a soft modem.
In SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 37–49, New
York, NY, USA, 2001. ACM Press.

[20] II Leon W. Couch. Digital and Analog Communication Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, sixth edition, 2001.

[21] D. Lioupis, A. Papagiannis, and D. Psihogiou. A systematic approach to software
peripherals for embedded systems. In CODES ’01: Proceedings of the ninth in-
ternational symposium on Hardware/software codesign, pages 140–145, New York,
NY, USA, 2001. ACM Press.

[22] D. Lioupis, A. Papagiannis, D. Psihogiou, and M. Stefanidakis. Software periph-
erals requirements and constraints for real-time embedded systems. In IEEE Real-
Time Embedded System Workshop, December 2001.

[23] National Communications System. Federal Standard 1037C: Telecommunications:
Glossary of Telecommunication Terms, August 1996.

[24] National Semiconductor. PC16550D Universal Asynchronous Receiver/Transmit-
ter with FIFOs, June 1995.

BIBLIOGRAPHY 101

[25] H. Nyquist. Certain topics in telegraph transmission theory. In Proceedings of the
IEEE, volume 90, pages 280–305, 2002.

[26] Philips Semiconductors. SAA3010 Infrared remote control transmitter RC-5, June
1989.

[27] Philips Semiconductors. The I2C-Bus Specification Version 2.1, January 2000.

[28] Philips Semiconductors. TDA8023 – Low power IC card interface, April 2004.

[29] Wolfgang Rankl and Wolfgang Effing. Handbuch der Chipkarten — Aufbau – Funk-
tionsweise – Einsatz von Smart-Cards. Carl Hanser Verlag Munchen Wien, fourth
edition, 2002.

[30] Vincent Sanders. Linux 2.4.26-vrs1 kernel patch. ftp://ftp.arm.linux.org.uk/
pub/armlinux/kernel/v2.4/patch-2.4.26-vrs1.bz2.

[31] SBS Implementers Forum. System Management Bus (SMBus) Specification, Ver-
sion 2.0, August 2000.

[32] C.E. Shannon. Communication in the presence of noise. In Proceedings of the
IEEE, volume 86, pages 447–457, 1998.

[33] Inc. Software in the Public Interest. Debian GNU/Linux 3.1. http://www.debian.
org/releases/sarge/.

[34] Texas Instruments, Inc. MAX232, MAX232I – Dual EIA-232 Drivers/Receivers,
February 1989.

[35] Philipp Tomsich. UX/SC Proposal. 2004.

[36] USB Implementers Forum, Inc. Universal Serial Bus Revision 2.0 Specification,
2000.

[37] Dave Walsh. Reducing system cost with software modems. IEEE Micro, 17(4):37–
43, 1997.

[38] Hubert Zimmermann. The ISO reference model for open systems interconnection.
In Proceedings on Kommunikation in Verteilten Systemen, pages 39–57, London,
UK, 1981. Springer-Verlag.

ftp://ftp.arm.linux.org.uk/pub/armlinux/kernel/v2.4/patch-2.4.26-vrs1.bz2
ftp://ftp.arm.linux.org.uk/pub/armlinux/kernel/v2.4/patch-2.4.26-vrs1.bz2
http://www.debian.org/releases/sarge/
http://www.debian.org/releases/sarge/

Colophon

This thesis was prepared and typeset using LATEX2ε. No proprietary software has been
used, nor have any animals been harmed—except for those few that have been sacrificed
for nourishment of the author. For the purpose of this thesis a document-class of its
own has been created, based on the versatile KOMA-Script Scrbook LATEX class. The
following additional LATEX packages have been used:

afterpage With afterpage, one can specify a command that will be executed after the
current page is finished.

caption The caption package provides many ways to customise the captions in floating
environments.

glossary The glossary in this thesis was automatically generated with the help of this
package, which has support for managing acronyms as well.

hyperref A package for adding PDF related meta data and navigational information.

listings Package for typesetting source code listings with syntax highlighting.

titlesec Allows for customisation of the LATEX chapter and section titles. This was used
for creating the fancy headings at the beginning of each chapter.

titletoc With this, one is enabled to precisely control the table-of-contents entries.

varioref Standard package that provides “decorative intelligent” cross-references.

All of the figures, except the PC16550D block-diagram which was extracted from
the corresponding data-sheet, where created with the help of METAPOST, a tool for
describing technical diagrams geometrically—which admittedly needs getting used to,
just as TEX does.

The data used for the diagrams was extracted from log-files and processed with the
help of python scripts, which transformed it into the appropriate input-files for Gnuplot,
a tool for plotting graphs from functions and data series. Gnuplot was instructed to
output the diagrams in METAPOST format, in order to have a uniform work-flow with

103

104 Colophon

respect to figure inclusion, furthermore this also facilitated the use of LATEX typesetting
commands in the diagrams.

The state machine diagram (figure 3.1 on page 31) was created with the help of
Graphviz, a tool for automatic graph visualisation, which was instructed to output in
METAPOST format as well.

All of the tools above were held together by the use of a sophisticated Make-script,
which triggered the execution of each of the above mentioned tools in the build process
as required by the dependencies specified in the makefile.

Combined with the AUCTEX package (which includes the Preview-LATEX mode) and
the Flyspell mode, GNU Emacs provided an invaluable editing environment. The doc-
ument source files were kept under revision control with the help of Subversion.

This thesis is typeset using the Computer Modern fonts designed by Donald E. Knuth,
which is also the creator of the TEX system upon which LATEX is based.

	List of Figures
	List of Tables
	Listings
	Preface
	Introduction
	Serial Communications and UARTs
	Replacing Hardware with Software
	Real-Time Correctness
	The Challenge
	Road-Map

	The UART Problem
	The Physical Layer
	The Data Frame
	The ISO7816 Serial Transmission Protocol
	Sampling the Bits
	Sampling with Clock Drift
	Sample Point Jitter
	Start Bit Synchronisation

	Approaching a Solution
	Dedicated Polling
	Timer Interrupt Triggered Processing
	Edge Interrupt Triggered Bit Detection
	Summary

	The Implementation
	The Host Environment
	The Hardware
	The Software

	The Driver
	Constraints
	The Hybrid Approach
	Actual Implementation

	Experiments in Latency and Time
	Interrupt Latency
	Idle System
	Network Stress
	Cache-Disabled System
	System Under Combined Stress

	Achieved Data Rates
	Idle System
	System under Stress

	Analysis of the Results
	Conclusion
	Future Work
	Protocol Conformance
	Latency Improvements
	Performance Improvements
	Reliability Improvements
	Full-duplex support

	ISO7816 Software UART Driver Source Code
	Latency Measurement Kernel Module Source Code
	Glossary
	Bibliography
	Colophon

