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Abstract 
 
 
This thesis enhances the indirect adaptive fuzzy control approach in following directions: 
The proposed approach is less conservative concerning the stability of the plant zero 
dynamics and allows an optimal controller design, the attenuation of measurement noise 
and the inclusion of linear observers. An automatic control for a class of nonlinear 
uncertain MIMO systems is developed, which requires only less information about the 
controlled process. However, if there is any linguistic process model description from 
experts available this knowledge in form of fuzzy if-then rules can be included during the 
controller design. The robustness and performance of the proposed tracking control will be 
shown based on fuzzy model error compensation and the attenuation of external 
disturbances as well as measurement noise in their impact on the control error. A 
Lyapunov stability proof is stated which guarantees all included signals to be bounded and 
the fuzzy parameters convergence to their optimal values. Appropriate projection 
algorithms were chosen to restrict the parameters of the adaptive fuzzy systems within 
constraint sets. A SPR Lyapunov design approach allows the inclusion of linear state 
observers in the control concept and a dynamic fuzzy rule activation method remedies the 
phenomenon which is called the curse of dimensionality. Simulations of an inverse 
pendulum system and a magnetic levitation system were carried out to show the 
practicability and high performance of the proposed approach. A short discussion of the 
qualities and limitations of the proposed method concludes the thesis. 
 
 
  

Kurzfassung 
 
 
Diese Doktorarbeit erweitert die Möglichkeiten der Robusten Indirekt Adaptiven Fuzzy 
Regelungen in vielerlei Hinsicht: Die Konservativität des Verfahrens wird reduziert indem 
die betrachteten nichtlinearen MIMO Strecken auf jene Klasse der Eingangs-Ausgangs 
linearisierbaren Systeme erweitert wird bei der zum Nachweis der Stabilität der  
Nulldynamik nur das Anfahren von abgeschlossenen Mengen anstatt der restriktiven 
exponentiellen Stabilität erforderlich ist. Es bietet im weiteren die Möglichkeit der 
Einbringung von Optimalitätskriterien in den Reglerentwurf, der Unterdrückung des 
Messrauschens und der Einbringung von linearen Beobachtern in das Regelkonzept. Durch 
die Flexibilität und Lernfähigkeit des vorgeschlagenen adaptiven Verfahrens ist es im 
Gegensatz zu klassischen robusten Reglungen auch möglich dynamische Systeme mit einer 
vorgegebenen Genauigkeit automatisiert zu regeln bei denen sowohl die funktionelle 
Ausformung der statischen Nichtlinearitäten als auch deren Schranken unbekannt sind. 
Falls linguistische Beschreibungen des Prozessmodells in Form von Expertenwissen 
vorliegen, kann dieses Wissen durch Fuzzy Wenn-Dann Regeln beim Reglerentwurf 
eingebunden werden um dadurch die Performance der Regelung zusätzlich zu erhöhen. Die 
Robustheit und Performance der Folgereglung hinsichtlich der Kompensation von Fuzzy 
Approximierungsfehlern und der Unterdrückung der Auswirkungen von externen 
Störgrößen und des Messrauschens auf die Regelabweichung wird gezeigt. Die Stabilität 
des Verfahrens und die Parameterkonvergenz wird mit Hilfe des Ansatzes von speziellen 
Lyapunov-Funktionen nachgewiesen und es wird die Beschränktheit aller im Regelkonzept 
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vorkommenden Signale gezeigt. Dazu werden geeignete Projektionsalgorithmen 
implementiert, um die veränderlichen Parameter der linear parametrierten Adaptiven Fuzzy 
Systeme zu beschränken. Ein weiterer Ansatz, der strikt positiv reale MIMO Systeme 
berücksichtigt, garantiert bei der Einbindung von linearen Beobachtern in das 
Regelkonzept die Existenz von Lyapunov stabilen Lösungen. Die Implementierung einer 
Methode welche die Fuzzy-Regeln dynamisch aktiviert ermöglicht es, den 
Realisierungsaufwand hinsichtlich notwendiger Rechenleistung und erforderlichem 
Speicherbedarf deutlich zu senken und damit den sogenannten „Fluch der 
Dimensionalität“, der beim Approximieren von MIMO Strecken durch Fuzzy Systeme 
auftritt, zu entschärfen. Die Anwendbarkeit des Verfahrens auf nichtlineare, 
elektromechanische Ein- und Mehrgrößensysteme wird anhand von Simulationen der 
Regelung eines Invertierten Pendels und einer Magnetschweberegelung aufgezeigt. Eine 
kurze Diskussion und Bewertung des Verfahrens schließen die Arbeit ab. 
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Chapter 1 
 
 

1 Introduction 
 

1.1 Motivation 
 
Control of Multi-Input Multi-Output (MIMO) nonlinear dynamic systems is one of the 
most challenging tasks for many control engineers, especially when the system is required 
to manoeuvre very quickly in an environment of uncertainties and imprecision. In the last 
few decades, adaptive control strategies have undergone rapid development leading to 
global stability and tracking results for a reasonably large class of nonlinear systems 
(Sastry,  S., Bodson, M., 1989, Prentice Hall, Slotine, J.J.E. and Li, W., 1991, Ioannou, P.A., and 
Sun, J., 1996). 
 
Conventional adaptive controllers based on nonlinear control laws can achieve fine control 
and compensate partially unknown system dynamics. However, their complexity always 
grows exponentially with the number of unknown parameters, which leads to heavy 
computational burden and hinders real-time applications (Sastry,  S., Bodson, M., 1989, 
Prentice Hall). Although variable-structure control strategy using sliding mode is an 
effective way to deal with uncertainties in nonlinear systems, without modification the 
chattering phenomenon due to switching operations greatly affects the accuracy of the 
tracking performance. Moreover, in the design of a sliding-mode controller, mathematical 
models of the system and the bound of uncertainties need to be known in advance (Ge, S.S., 
et al., 1998). Hence, there is a need for model-free control strategies with learning and 
adaptive ability. 
 
In the last few decades, much research effort has been directed towards design of 
intelligent controllers using fuzzy logic and neural networks. Fuzzy Inference Systems 
(FISs) and Artificial Neural Networks (ANNs) are basically model-free estimators and 
dynamical systems. They share the common capability of improving the intelligence of a 
system, working in an uncertain and imprecise environment. To a certain extent, both 
techniques have been proven to be very powerful in the discipline of system modelling and 
control, especially when the controlled system is hard to be modelled mathematically, or 
when the controlled system has large uncertainties and strong nonlinearities. Therefore, 
fuzzy logic and neural networks have been greatly adopted in model-free adaptive control 
of nonlinear systems (Zadeh, L.A., 1965, Takagi, T., Sugeno, M., 1985, Wang, L.X., 1994). 
 
Although FISs and ANNs are formally similar, there are significant differences between 
them. FISs are structured numerical estimators (Lin, C.T., 1994). They are derived from 
highly formalized insights about the structure of categories found in the real world and 
articulated from fuzzy logic rules as a kind of expert knowledge. They base their decisions 
on inputs in the form of linguistic variables derived from membership functions which are 
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formulas used to determine the fuzzy set to which a value belongs and the degree of 
membership in that set. The variables are then matched with the preconditions of linguistic 
fuzzy logic rules, and the response of each rule is obtained through fuzzy implication. To 
perform compositional rule of inference, the response of each rule is weighted according to 
the confidence or degree of membership of its inputs, and the centroid of the responses is 
calculated to generate the appropriate output. Currently, a major research problem 
concerning fuzzy logic systems is how to determine the fuzzy logic rules and membership 
functions systematically. 
 
The ANNs, on the other hand, are trainable dynamical systems (Lin, C.T., 1994) whose 
learning, noise tolerance, and generalization abilities grow out of their connectionist 
structures, their dynamics, and their distributed data representation. ANNs have a large 
number of highly interconnected processing nodes (neurons) which have the ability to 
learn and generalize from training patterns or data. Like human beings, they can perform 
pattern-matching tasks. Currently, due to the fact that the internal layers of ANNs play an 
extremely important role, the research on ANNs focuses on the determination of the 
structure and the size of a network.    
 
Fuzzy logic systems, e.g. the fuzzy logic systems proposed in this thesis with center 
average defuzzifier, product-inference rule, singleton fuzzifier and Gaussian membership 
functions, can be represented as a three-layer feedforward network. Therefore, adaptive 
fuzzy systems are a promising approach of getting both, the benefits of FISs and ANNs 
and solving their respective problems. An adaptive fuzzy system is a fuzzy logic system 
equipped with a training algorithm, where the fuzzy logic system is constructed from a 
collection of fuzzy if-then rules, and the training algorithm adjusts the parameters of the 
fuzzy logic system based on numerical input-output pairs. Conceptually, adaptive fuzzy 
systems combine linguistic and numerical information in the following way. Because fuzzy 
logic systems are constructed from fuzzy if-then rules, linguistic information (in form of 
fuzzy if-then rules) can be directly incorporated; on the other hand, numerical information 
(in form of input-output pairs) is incorporated by training the fuzzy logic system to match 
the input output pairs. The most fundamental difference between adaptive fuzzy systems 
instead of ANNs is that the former takes linguistic information explicitly into consideration 
and makes use of it in a systematic way, whereas the latter does not.      
 
The theme of this research revolves around such needs of developing an adaptive 
intelligent modelling- and control system, which can cope with very complex uncertain 
nonlinear systems. For modelling and control of a class of input-ouput linearizable 
uncertain nonlinear systems I propose the use of adaptive fuzzy systems. The applied 
adaptive fuzzy systems are incorporating two different rule sets - one rule set in form of 
linguistic fuzzy if-then rules for FIS initialization and a second rule set including (within 
certain limits) arbitrary parameterized fuzzy sets - whose parameters (of both rule sets) are 
then adapted by an appropriate training algorithm. Even if no linguistic descriptions are 
available for FIS initialization the proposed control scheme is still able to perform a good 
tracking control. Hence, an automatic control for a class of nonlinear uncertain MIMO 
systems is developed which requires only less information about the controlled process. 
To maximize the degree of flexibility in the context of modelling unknown plant 
nonlinearities, an indirect (model based) adaptive fuzzy control scheme was chosen as 
basis for this development. The applied adaptive fuzzy systems consist of linear 
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parameterised Fuzzy Basis Functions as proposed in (Wang, L.X., 1994) to guarantee the 
compatibility to linguistic information of human experts in form of fuzzy if-then rules, the 
ability to approximate any given nonlinear function to arbitrary accuracy and to develop 
simple adaptive laws which support a fast parameter convergence and online-learning. 
However, beside the plant estimation also the control aspect is accommodated in this 
thesis. Concepts of classical control schemes like Variable Structure Systems (VSS) 
control, H∞ Control, Optimal Control and Observer-based Control are incorporated in the 
development of the robust indirect adaptive fuzzy control. A Lyapunov stability proof is 
stated which guarantees in combination with appropriate projection algorithms that all 
included signals are bounded as well as the fuzzy parameters convergence to their optimal 
values, respectively. Finally, to consider practical limitations of processor power and 
storage capacity in real-time implementations a dynamic rule activation method is 
proposed to reduce the number of active fuzzy rules. Summarized, the robust indirect 
adaptive control scheme which is introduced in this thesis integrates several concepts, 
each with beneficial properties, to enable a superior tracking control for a class of 
uncertain nonlinear SISO and MIMO plants. Simulations of an inverse pendulum system 
and a magnetic levitation system were carried out to show the practicability and high 
performance of the proposed approach. 
 

1.2 Major Contributions of the Thesis 
 
In this thesis a Robust Indirect Adaptive Fuzzy Controller (RIAFC) is proposed for 
tracking control of a class of technical input-output linearizable, nonlinear SISO and 
MIMO plants which contain large uncertainties. Moreover, in a second step the RIAFC 
concept is extended by a linear state observer to build a novel Observer-based Robust 
Indirect Adaptive Fuzzy Control (ORIAFC). The thesis integrates several concepts, each 
with beneficial properties, to enable a superior tracking control and enhances the indirect 
adaptive fuzzy control approach in following directions: 
 

• The proposed approach is less conservative concerning bounded tracking in 
minimum-phase systems. Instead of calling for exponential stability, a strong form 
of stability, the RIAFC concept weakens that restriction and expands the class of 
controllable plants to systems with exponentially attractive zero dynamics. 

 
• Most of the adaptive fuzzy control schemes proposed in the literature do not take in 

account the influence of measurement noise on the performance of the tracking 
control. During the development of the RIAFC and the ORIAFC the impact of 
measurement noise on the performance of the control is explicitly derived. 
Moreover, with the help of the ORIAFC this impact can be significantly attenuated.  

 
• The RIAFC and the ORIAFC schemes guarantee that all signals involved are 

bounded, and provide the fuzzy modelling error cancellation by a VSS control term 
and the bounded external disturbances as well as measurement noise attenuation 
with H∞ performance, obtained by a Riccati-like equation. A rigorous Lyapunov 
stability proof is stated to show the stability of both schemes.  
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• Linear parameterized adaptive fuzzy systems based on Fuzzy Basis Functions are 
applied to guarantee the ability of incorporating linguistic information of human 
experts for FIS initialization and to develop simple adaptive laws which support a 
fast parameter convergence and online-learning. Special projection algorithms are 
chosen to restrict the parameters of the adaptive fuzzy systems within constraint 
sets. 

 
• The existence of stable solutions for the ORIAFC is shown by a Strict Positive Real 

Lyapunov (SPR-Lyapunov) design approach, based on the famous Kalman-
Yakubovich-Popov lemma. A proof for the MIMO case seems to be unique in H∞ 
based adaptive fuzzy control literature.  

 
• In comparison to many other adaptive fuzzy control schemes the ORIAFC does 

neither require that all system states are available for measurement, nor the 
measured output signals or the reference trajectories to be smooth, necessarily. 

 
• In accompany with increasing complexity of the fuzzy systems also the burden for 

computation and storage effort grows dramatically. Especially concerning the 
hardware realisation of fuzzy controls, where processor power and storage 
capability is limited, the so called “curse of dimensionality” is a critical point in the 
design of fuzzy controls. By applying a Dynamic Fuzzy Rule Activation Method 
this phenomenon can be significantly weakened.  

 
Simulation results of an SISO inverted pendulum system and a MIMO magnetic levitation 
system demonstrate the effectiveness and robustness of the proposed ORIAFC. In 
particular, the MIMO magnetic levitation simulation is considering several hardware 
specifications and constraints of an approved real-time experiment and is therefore very 
close to machine level. 
 

1.3 Outline of the Thesis  
 
This thesis is organized in seven chapters, each of the chapters is devoted to a particular 
sub issue. Much of the material of this thesis is derived from my publications in IJAA 
(Jambrich, G., 2004, Jambrich, G., 2005). A summary of the content of each chapter is given 
here: 
 

• Chapter 1 presents motivations as well as contributions of the thesis and gives a 
brief outline of each chapter in this thesis. 

 
• Chapter 2 introduces briefly the definitions of fuzzy logic, fuzzy sets, fuzzy if-then 

rules and fuzzy inference systems. In this chapter the relevance of FIS in and 
beyond control engineering is shown, and several examples of practical 
applications are listed. The popular FIS-types aree described in detail and compared 
with each other. In particular, the advantages of Fuzzy Basis Function based FIS 
are highlighted.     
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• Chapter 3 gives an overview of the field of adaptive fuzzy control. In this chapter a 
classification scheme is stated within the majority of adaptive fuzzy control 
architectures, inclusive the Robust Indirect Adaptive Fuzzy Controller developed in 
chapter 5, can be arranged. The qualities and limitations of these architectures are 
presented and on the basis of these observations guidelines for the design of an 
adaptive fuzzy control are derived. Also the transitions to Chapter 5 are pointed 
out. 

 
• Chapter 4 describes how a class of input-affine, general nonlinear systems can be 

linearized exactly. By first applying a coordinates transformation to it, and second 
linearizing the system in canonical normal form via special control laws. If the sum 
of relative degrees of the subsystems is equal to the system order the above 
described transformations lead to a linear system, which can be stabilized by 
classical linear controllers. If the sum of relative degrees of the subsystems is less 
than the system order also the internal dynamics of the plant have to be considered. 
In general, systems with stable zero dynamics are assumed to guarantee the 
practicability of the input-output linearization method. 

 
• Chapter 5 represents the kernel of this thesis. This Chapter describes the design of 

the robust indirect adaptive fuzzy control scheme for MIMO nonlinear dynamic 
systems based on the observations of Chapters 1-4, derives the Robust Indirect 
Adaptive Fuzzy Controller (RIAFC) by applying input-output linearization 
combined with H∞- and VSS control techniques, and presents the convergence- and 
stability analysis of the RIAFC. Moreover, the RIAFC is extended by a linear state 
observer to build an Observer-based Robust Indirect Adaptive Fuzzy Control 
(ORIAFC). To guarantee the existence of solutions for the observer-based control, 
a SPR Lyapunov Design Approach is introduced. Modified Adaptation Laws are 
defined to maintain the adaptive parameters of the  adaptive FISs inside predefined 
constraint sets. Finally a Dynamic Rule Activation Method is proposed to remedy 
the phenomenon which is known as “the curse of dimensionality”. Comparisons 
with some existing adaptive fuzzy controllers are also carried out to further 
demonstrate its superior performance. 

 
• Chapter 6 presents simulation examples to show the practicability and high 

performance of the algorithms developed in Chapter 5. First the ORIAFC is applied 
to control an inverted pendulum (SISO model) to track a given reference trajectory. 
Second, the positions of magnet disks of a MIMO magnetic levitation system are 
controlled by the RIAFC, and for comparison the ORIAFC is applied to control the 
MIMO magnetic levitation system. 

 
• Chapter 7 concludes the thesis with a short discussion of the qualities and 

limitations of the proposed method and suggests directions for further research. 
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Chapter 2 
 
 

2 Review of Fuzzy Logic and Fuzzy Inference 
Systems 

 
During the last few decades, Fuzzy Inference Systems (FISs) have emerged as one of the 
most active and fruitful areas for research in the application of fuzzy set theory. Fuzzy 
logic has found a variety of applications in various fields ranging from industrial process 
control to medical diagnostics and securities trading. Most notably, FISs have been applied 
to control nonlinear, time-varying, ill defined systems, and systems whose dynamics are 
not exactly known such as servomotor position control and robot arm control systems. 
Hybrid architectures like Fuzzy-PI / Fuzzy-PD / Fuzzy-PID controllers were proposed 
which can provide better results than the conventional non-fuzzy controllers alone (Yao, L., 
Lin, et al., 2002). Furthermore, FIS have been applied to complex decision making or 
diagnostic systems (Zadeh, L.A., 1965, Takagi, T., Sugeno, M., 1985, Wang, L.X., 1994). FIS 
have strong foundation in mathematical theory. Combining multi-valued logic, probability 
theory and artificial intelligence, it is a control/decision methodology that simulates human 
thinking by incorporating imprecision which is inherent in all physical systems. In general, 
the FIS is best applied to nonlinear, time-varying, ill-defined systems which are too 
complex for conventional control theory to be applied. The FIS is a model-free estimator 
and it deals with the relationship of the output to the input, lumping many parameters 
together.  

2.1 Fuzzy Logic 
 
Fuzzy logic first proposed by Lotfi Zadeh in 1965 (Zadeh, L.A., 1965) is primarily 
concerned with the representation of the sort of imprecise knowledge which is common in 
natural systems. It facilitates representations in digital computers of some kind of 
knowledge through the use of fuzzy sets. On this basis, fuzzy logic uses logical operators 
to collate and integrate the knowledge in order to approximate the kind of reasoning 
common in natural intelligence. 
 
A Fuzzy Inference System (FIS) is a computation framework based on the concepts of 
fuzzy sets, fuzzy if-then rules and fuzzy reasoning. FISs are known by other names such as 
fuzzy rule-based systems, fuzzy models or simply fuzzy systems. The essential part of the 
FIS is a set of linguistic rules related by the dual concepts of fuzzy implication and the 
compositional rule of inference. Intrinsically, the FIS provides an algorithm, which can 
convert the linguistic rules based on expert knowledge into an automatic control action. 
Many experiments have shown that FISs yield results far more superior to those obtained 
by conventional approaches. In particular, the methodology of FISs appears very useful 
when the processes are too complex for analysis by conventional quantitatively techniques 
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or when the available sources of information are interpreted qualitatively, inexactly or 
uncertainly. Thus, FISs may be viewed as a step towards a rapprochement between 
conventional precise mathematical paradigms and human-like decision making (Wang, L.X., 
1994, Passino, K.M. and Yurkovich, S.,1998). 
 

2.2 Fuzzy Set 
 
Conventional set theory is based on the premise that an element either belongs to or does 
not belong to a given set. Fuzzy set theory takes a less rigid view and allows elements to 
have degrees of membership of a particular set such that elements are not restricted to 
either being in or out of a set but are allowed to be “somewhat” in. In many cases, this is a 
more natural approach. For example, consider the case of describing the atmospheric 
temperature as being “hot”. If one was to express this concept in conventional set theory, 
one would be forced to designate a distinct range of temperatures, such as 30°C and over, 
as belonging to the set hot, i.e. hot=[30,∞)°C. This seems contrived because any 
temperature which falls just slightly outside this range would not be a member of the set, 
even though a human being may not be able to distinguish between it and one which is just 
inside the set. 
 
In fuzzy set theory, a precise representation of imprecise knowledge is not enforced since 
strict limits of a set are not required to be defined, instead a membership-function is 
defined. A membership function describes the relationship between a variable and the 
degree of membership of the fuzzy set that corresponds to particular values of that 
variable. This degree of membership is defined in terms of a number between 0 and 1, 
inclusive, where 0 implies total absence of membership, 1 implies complete membership, 
and any value between implies partial membership of the fuzzy set. This may be written as 
mf(x)∈[0  1] for x∈U, where U is the universe of discourse which defines the total range of 
interest over which the variable x should be defined. 
 
For example, to define membership of the fuzzy set, hot, a function which rises from 0 to 1 
over the range 25°C to 35°C may be used, i.e. 
 

C35x
C35x25

C25x

1
10

35x1
0

)x(mf
°>

°≤≤
°<

⎪
⎩

⎪
⎨

⎧
−

+= . ( 2-1 )

 
This implies that 20°C is not hot, 27°C is a bit hot, 30°C is quite hot, and 40°C is truly hot. 
Specific measurable values, such as 27, 30 and 40, are often referred to as crisp values of 
fuzzy singletons, to distinguish them from fuzzy values, such as hot, which are defined by a 
fuzzy set. Fuzzy values are sometimes also called linguistic values. This definition is more 
reflective of human or linguistic interpretations of temperatures and hence better 
approximates such concepts. 
 
Two most commonly used membership functions are: 
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• Triangular Membership Function 
 

⎪⎩

⎪
⎨
⎧

≤−
−

−=
otherwise0

cxif
cx

1)x(mf σ
σ . ( 2-2 )

 
• Gaussian Membership Function 

 

⎥
⎦

⎤
⎢
⎣

⎡ −
−= 2

2)cx(exp)x(mf
σ

, ( 2-3 )

 
where c and σ are called the center and width of the fuzzy set respectively. The 
membership function shapes are shown in Fig. 2-1. 
 
While seeming imprecise to a human being, fuzzy sets are mathematically precise in that 
they can be fully represented by exact numbers. They can therefore be seen as a method of 
tying together human and machine knowledge representation. Given that such a natural 
method of representing information in a computer exists, information processing methods 
can be applied to it by the use of FISs. 
 

 

triangular Gaussian 

0

1

0

1

 
Fig. 2-1: Two common fuzzy membership function shapes 

 

2.3 Fuzzy If-Then Rules 
 
FISs are essentially rule-based expert systems, which comprise a collection of rules. Each 
rule defines a desired action when a particular combination of fuzzy values occurs. The 
rules are defined as “if-then” logical expressions: 
 

)is(then)is(if:rule j j
kk

j
ii GyFx  ( 2-4 )

 
where xi : i=1…Ni and yk : k=1…No are input an output linguistic variables respectively, 

 : i=1…Nj
iF i, j=1…Nr and : k=1… Nj

kG o, j=1…Nr are linguistic variables or labels of 
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fuzzy sets characterized by appropriate membership functions  and  
respectively. An example of the fuzzy if-then rule that describes a simple fact is 

)x(mf i
j

i )y(mf k
j

k

 
if ( pressure is high) then (volume is small) ( 2-5 )
 
where pressure, volume, high and small are all linguistic variables. Besides that, high and 
small are also labels of fuzzy sets that are characterized by membership functions. 
 
Since the output linguistic variables of a Multi-Input Multi-Output (MIMO) system are 
independent, a MIMO FIS can be represented as a collection of Multi-Input Single-Output 
(MISO) FISs by decomposing the above rule into No sub-rules with Gk: k=1…No as the 
single consequence of the kth sub-rule (Wang, L.X., 1994). For notational simplicity, the 
MISO FISs is considered in the rest of the paper. 
 
Another form of fuzzy if-then rules has fuzzy sets direclty involved only in the premise 
part. This form of fuzzy if-then rules can be categorized into two models, namely 
Simplified Model and Takagi-Sugeno-Kang model. 
 
Simplified Model (S-model): In the S-model, a fuzzy singleton is used for the output 
(Wang, L.X., 1994), i.e. 
 

)is(then)is(if:rule j jj
ii CyFx  ( 2-6 )

 
where C j is a fuzzy singleton (center of the fuzzy set ) . jG
A general form of the S-model-type fuzzy if-then rules, including more than one input 
linguistic variable, is the following:  
 

)is(then)is(andand)is(if:rule j jj
NN

j
11 CyFxFx

ii
L . ( 2-7 )

 
Takagi-Sugeno-Kang model (TSK-model): The TSK model was proposed by Takagi, 
Sugeno and Kang (Takagi, T., Sugeno, M., 1985)  in an effort to develop a systematic 
approach for generating fuzzy rules from a given input-output data set. The typical model 
output is a linear combination of the input variables, i.e. 
 

)is(then)is(if:rule j
ii N

j
N1

j
1

j
0

j
ii xk...xkkyFx +++  ( 2-8 )

 
where : i=0,1…Nj

ik i, j=1…Nr are real-valued parameters. If no input variables are 
considered in the consequence part, the TSK-model is exactly the same as the S-model. 
 
Therefore, the S-model can be considered as a special case of the TSK-model. Experiments 
show that the TSK-model has advantages like (MathWorks Inc., Manual of Fuzzy Logic 
Toolbox): computational efficiency, compatibility with linear, adaptive and optimization 
techniques, and continuity of output surface. However, a big weak point of this fuzzy logic 
system is that the then part of the rule is not fuzzy; therefore, it does not provide a natural 
framework to incorporate fuzzy rules from human experts.  

 



CHAPTER 2.  REVIEW OF FUZZY LOGIC AND FUZZY INFERENCE SYSTEMS 10

 
Both types of fuzzy if-then rules have been extensively used in both modelling and control. 
Through the use of linguistic labels and membership functions, a fuzzy if-then rule can 
easily capture the spirit of a “rule of thumb” used by human beings (Jang, J.S.R., et al., 
1997). From another point of view, due to the qualifiers on the premise parts, each fuzzy if-
then rule is actually a local description of the system under consideration as illustrated in 
Fig. 2-2, (Zadeh, L.A., 1965). On the contrary, conventional approaches of system modelling 
operate on the entire scope to find global functional or analytical structure of a nonlinear 
system. 
 

y  

medium 

x

large small

large 

small 

crisp function 
fuzzy graph

 
Fig. 2-2: Fuzzy approximation of a nonlinear system 

 

2.4 Fuzzy Inference Systems (FISs) 
 
A FIS (see Fig. 2-3) can be defined as a system which transforms or maps one collection of 
fuzzy or crisp values to another collection of fuzzy or crisp values. This mapping process is 
performed by five parts: 
 

• Fuzzifier – Converts a set of crisp variables into a set of fuzzy variables to enable 
the application of logical rules. 

 
• Rule Set – Stores a set of logical if-then rules defined on the fuzzy variables. 

 
• Label Set – Stores a set of membership functions of fuzzy rules used in the rule set. 

 
• Inference Mechanism – An algorithm which is used for calculating to which extent 

each rule is activated for a given input pattern. The combination of the rule set, the 
label set and the inference mechanism may be described as the reasoning of the 
FIS. 
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• Defuzzifier – Converts a set of fuzzy variables into crisp values in order to enable 
the output of the FIS to be applied to another non-fuzzy system. If a crisp output is 
not required then defuzzification is not necessary. 

 
The steps of fuzzy reasoning, i.e. inference operations upon fuzzy if-then rules, performed 
by FISs are: 
 

• Compare the input variables with the membership functions on the premise part to 
obtain the membership values or compatibility measures of each linguistic label. 
This step is often called fuzzification. 

 
• Combine (through a specific T-norm operator, usually multiplication or minimum) 

the membership values of the premise part to get firing strength of each rule. 
 

• Generate the qualified consequence (either fuzzy or crisp) of each rule depending 
on the firing strength. 

 
• Aggregate the qualified consequence to produce a crisp output. This step is called 

defuzzification. 
 
Several types of fuzzy reasoning have been proposed in the literature (Takagi, T., Sugeno, 
M., 1985, Lee, C., 1990). Depending on the type of fuzzy reasoning, most FISs can be 
classified into the following four types. 
 
 

 

Fuzzifier Defuzzifier 

Rule Set

input 
Inference Mechanism 

Label Set

output

 
Fig. 2-3: Fuzzy Inference System 

 

2.4.1 Tsukamoto-type FIS 
 
In the Tsukamoto-type FIS (Tsukamoto, Y., 1979), the overall output y is the weighted 
average of the jth rule’s crisp output, w j induced by the jth rule’s firing strength, f j (the 
product or minimum of the degree of match with the premise part) and output monotonic 
membership functions mf j(y), i.e. 
 

∑
∑

=

==
r

r

N

1j
j

N

1j
jj

f

wf
y  ( 2-9 )

 
where f j is calculated by the T-norm operation, e.g. 

 



CHAPTER 2.  REVIEW OF FUZZY LOGIC AND FUZZY INFERENCE SYSTEMS 12

 
• Intersection: 

 
)]x(mf)x(mf)x(mfmin[f

ii N
j

N2
j

21
j

1
j K=  ( 2-10 )

 
• Algebraic Product: 

 

∏
=

=
iN

1i
i

j
i

j )x(mff . ( 2-11 )

 
Fig. 2-4 illustrates the reasoning procedure for a two-input two-rule system. Since each 
rule infers a crisp output, the Tsukamoto-type FIS aggregates each rule’s output by the 
method of weighted average and thus avoids the time-consuming process of 
defuzzification. However, the Tsukamoto-type FIS is not used often since it is not as 
transparent as the FIS-types which are introduced next. Since the reasoning mechanism of 
the Tsukamoto-type FIS does not follow strictly the compositional rule of inference,  the 
output is always crisp even when the inputs are fuzzy. 
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Fig. 2-4: Tsukamoto-type fuzzy reasoning 

 

2.4.2 Mamdani-type FIS 
 
In the Mamdani-type FIS (Mamdani, E.H., Assilian, S.,1975), the overall fuzzy output µ(y) is 
derived by applying a maximum operation to the qualified fuzzy output (each of which is 
equal to the minimum of firing strength f j and the output membership function of each rule 
mf j (y)). Fig. 2-5 shows the fuzzy reasoning procedure for a two-input two-rule Mamdani-
type FIS. Various defuzzification schemes have been proposed to choose the final crisp 
output y based on the overall fuzzy output µ(y); some of them are centroid of area (COA), 
mean of maximum (MOM), bisector of area (BOA), maximum criterion, etc. (Lee, C., 1990, 
Jang, J.S.R., et al., 1997, Mamdani, E.H., Assilian, S.,1975). The COA method is the most 
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widely adopted defuzzification strategy, which is reminiscent of the calculation of 
expected values of probability distributions, i.e. the crisp output y is  
 

∫
∫=

)y(

dyy)y(
y

µ

µ
. ( 2-12 )

 
The calculation needed to carry out any of the above-mentioned defuzzification operations 
is time-consuming unless special hardware support is available (Jang, J.S.R., et al., 1997). 
Furthermore, these defuzzification operations are not easily subject to rigorous 
mathematical analysis, so most of the studies are based on experimental results. This leads 
to the propositions of other types of FISs that do not need defuzzification at all, such as 
Tsukamoto, TSK and Fuzzy Basis Function (FBF)-type FISs. 
 
 
 

max

y (COA) 

consequent partpremise part 

rule1 

rule2 

mf1
1(x1) 

mf1
2(x1) 

mf2
1(x2) 

mf2
2(x2) 

x1 x2

x2x1 

f 1

f 2

y

y

mf 2(y)

mf 1(y)

 
Fig. 2-5: Mamdani-type fuzzy reasoning 

 

2.4.3 TSK-type FIS 
 
TSK-model fuzzy if-then rules (Takagi, T., Sugeno, M., 1985), which are described in Section 
2.3, can be used to implement FISs. The output of each rule is a linear combination of 
input variables plus a constant term, and the final crisp output, y is the weighted average of 
each rule’s output,   w j, i.e. 
 

∑
∑

=
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r

r

N
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jj
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y  ( 2-13 )

 
where the firing strength f j is calculated according to ( 2-11 ) and w j is computed as 
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j

N1
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1
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0
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Fig. 2-6 shows the fuzzy reasoning procedure for a two-input two-rule TSK-type FIS. 
Since each rule has a crisp output, the overall output is obtained via weighted average, thus 
avoiding the time-consuming process of defuzzification required in a Mamdani-type FIS. 
In practice, the weighted average operator is sometimes replaced with the weighted sum 
operator (i.e.  in ( 2-13 )) to reduce computation further, especially in the 

training of a FIS. As mentioned in Section 2.3, a crucial drawback of this fuzzy logic 
system is that the then part of the rule is not fuzzy; therefore, it does not provide a natural 
framework to incorporate fuzzy rules from human experts.  

∑ =
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Fig. 2-6: TSK-type fuzzy reasoning 

 

2.4.4 Fuzzy Basis Function Expansions 
 
Fuzzy Basis Function Expansions were introduced by Wang (Wang, L.X, 1992, Wang, L.X., 
Mendel, J.M., 1992, Wang, L.X., 1993, Wang, L.X., 1994, Wang, L.X.,1998). His work in the last 
decade of the past century was formative for the following research in the field of adaptive 
fuzzy systems and control and has numerously been reflected in the fuzzy control 
literature.   
 

Definition 2-1: The fuzzy logic systems with center average defuzzifier, product-inference 
rule and singleton fuzzifier are of the following form (Wang, L.X., 1994): 

 

∑ ∏

∑ ∏

∑
∑

=
=

=
=

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

==
r

i

r
i

r

r

N

1j

N

1i
i

j
i

jN

1j

N

1i
i

j
i

N

1j
j

N

1j
jj

)x(mf

w)x(mf

f

wf
y  ( 2-15 )

 
where the firing strength f j is calculated according to ( 2-11 ) and w j is the point at which 
mf j(y) achieves its maximum value and we assume that mf j( )=1.   jw
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Theorem 2-1: Universal Approximation Theorem (UAT) [Wang]. For any given real 
continuous function g on a compact set  and arbitrary ε>0, there exists a fuzzy 
logic system f in form of ( 2-15 ) such that  

nRU ⊂

 
ε<−

∈
)(g)(fsup

U
xx

x
. ( 2-16 )

 
For proof and the extension to discrete functions refer also to (Wang, L.X., 1994).   
■ 
 

Remarks 2-1: to UAT (Wang, L.X., 1994): 

• This theorem provides a justification for applying the fuzzy logic systems to almost 
any nonlinear modelling problems. It also provides an explanation for the practical 
successes of the fuzzy logic systems in engineering applications. 

 
• This theorem is just an existence theorem; that is, it shows that there exists a fuzzy 

system ( 2-15 ) that can uniformly approximate any given function to arbitrary 
accuracy. How to find such a fuzzy logic system is another question. Although we 
use this theorem as one justification for using the fuzzy logic systems, the 
importance of this theorem should not be overemphasized because many other 
types of functions are also universal approximators, including the simple 
polynomials. What should be emphasized is the capability of the fuzzy logic 
systems to incorporate linguistic information in a natural and systematic way – a 
unique advantage of the fuzzy logic systems which is not shared by other types of 
universal approximators, including polynomials, neural networks and so on. 

■ 
 

Definition 2-2: Define Fuzzy Basis Functions (FBF) as 
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Then the fuzzy logic system ( 2-15 ) is equivalent to an FBF expansion 
 

∑ =
= rN

1j jjy θϕ  ( 2-18 )
 
where  are constants. j

j w=θ
■ 
 
Fig. 2-7 shows the fuzzy reasoning procedure for a two-input two-rule FBF expansion-type 
FIS. 
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Fig. 2-7: FBF expansion-type fuzzy reasoning 

 
From ( 2-18 ) and ( 2-7 ) we see that an FBF expansion corresponds to a fuzzy if-then rule. 
Specifically, an FBF for a rule can be determined as follows: first, calculate the product of 
all membership functions for the linguistic terms in the if part of the rule, and call it a 
pseudo FBF for the rule; then after calculating the pseudo-FBFs for all Nr rules, the FBF 
for the jth rule is determined by dividing the pseudo-FBF for the jth rule by the sum of all 
the Nr pseudo-FBFs. An FBF can either be determined based on a given linguistic rule as 
previously, or generated based on a numerical input-output pair (Wang, L.X., 1994).  
 

 
Fig. 2-8: An example of Fuzzy Basis Functions 
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We consider now a simple one-dimensional example of Fuzzy Basis Functions (that is, 
Ni=1). Suppose that we have four fuzzy rules in form of ( 2-7 ) with 

))xx(
2
1exp()x(mf 2jj −−= , 3,1,1,3x j −−=  for j=1, 2, 3, 4, respectively (note that 

FBFs are determined only based on the “if parts” of the rules). Therefore,  
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−−−−=

4

1i
2j2j

j ))xx(
2
1exp(/))xx(

2
1exp()x(ϕ , which are plotted in Fig. 2-8 from 

left to right for j=1, 2, 3, 4, respectively. 
From Fig. 2-8 we see an interesting property of the FBFs: the jϕ  whose centers are inside 
the interval [-3, 3] (which contains all the center) look like Gaussian functions whereas the 

jϕ  whose centers are on the boundaries of the interval [-3, 3] look like sigmoid functions 
(Cybenko, G.,1989). It is known in neural network literature that Gaussian radial basis 
functions are good at characterizing local properties, whereas neural networks with 
sigmoid nonlinearities are good at characterizing global properties (Lippmann, R.,  1991). 
Our FBFs seem to combine the advantages of both the Gaussian radial basis functions and 
the sigmoid neural networks. Specifically, for regions in the input space U which have 
sampling points, the FBFs cover them with Gaussian-like functions so that higher 
resolution can be obtained for the FBF expansion over these regions. On the other hand, 
for regions in U which have no sampling points, the FBFs cover them with sigmoid-like 
functions which have been shown to have good global properties (Cybenko, G., 1989, 
Lippmann, R.,  1991).  
Equation ( 2-17 ) defines only one kind of FBF, that is, it defines the FBF for fuzzy 
systems with center average defuzzifier, product-inference, singleton fuzzifier and 
Gaussian membership function. Other fuzzy systems can have other forms of FBFs; for 
example, the fuzzy systems with minimum inference have an FBF in form of ( 2-17 ) with 
product operation replaced by minimum operation; however, the basic idea remains the 
same, that is, to view a fuzzy system as a linear combination of functions which are 
defined as FBFs. Different FBFs have different properties.  
 
The similarity of adaptive fuzzy systems of FBF and TSK-type FISs to neural networks 
were shown in (Jambrich, G., 2004). The most important advantage of using fuzzy basis 
function functions rather than polynomials , radial basis functions, neural networks, and so 
on is that a linguistic fuzzy if-then rule is naturally related to a fuzzy basis function. 
Linguistic fuzzy if-then rules can often be obtained from human experts who are familiar 
with the system under consideration. These linguistic rules are very important and often 
contain information which is not included in the input-output pairs obtained by measuring 
the outputs of a system for test inputs because the test inputs my not be rich enough to 
excite all the modes of a system.  
 
Linguistic rules can be incorporated in FBF expansions as following: 
 

)is(then),is(andand)is(if:rule jj
NN

j
11

j GyFxFx
ii

L  ( 2-19 )
 
where  and G j

iF j are fuzzy sets in R, j=1…Nr. The FBFs jϕ  are constructed according to 
Definition 2-2 and the points at which the output membership functions mf j(y) achieve 
their maximum values are set to jθ .  
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E.g. consider the system u)x,x(g)x,x(fx,xx 2121221 +== && . Suppose that (x1,x2)=(0,0) 
is an equilibrium point of this system and there is no control; that is, u=0. Then the first 
linguistic rule describing can be stated as  )x,x(f 21

 
)is(then),is(and)is(if:rule zeronear)x,x(fzeronearxzeronearx 2121

1 . ( 2-20 )
 
“near zero” is a fuzzy set with center zero, since only the centers of the then part fuzzy sets 
are used in the fuzzy systems, the mf j(y) do not need to be specified in detail; that is, 
knowing their centers is sufficient. More information about incorporating fuzzy 
descriptions of the plant or fuzzy control rules into adaptive fuzzy controllers is given in 
Chapter 3. 
 
Using fuzzy basis function expansions, we can easily combine two sets of rules: 
 

• one rule set generated from measured (sampled) input-output data pairs of the 
unknown plant or an existing stabilizing controller (e.g. over an appropriate Least 
Squares algorithm (Wang, L.X., 1994)), or a rule set created from within constraints 
randomly parameterized fuzzy sets which shall (after training) describe the 
unknown plant or controller (Wang, L.X., 1994),  

 
• and another rule set obtained from linguistic fuzzy if-then rules describing the 

unknown plant or controller (FIS initialization). 
 
into a single fuzzy basis function expansion, which is therefore constructed using both 
numerical and linguistic information in a uniform fashion. Especially, the combination of a 
rule set in form of linguistic fuzzy if-then rules and another rule set including arbitrary 
parameterized fuzzy sets, whose parameters (of both rule sets) are then adapted by an 
appropriate training algorithm is successfully applied in this thesis. 
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Chapter 3 
 
 

3 Review of Adaptive Fuzzy Control 
 
Section 2.4 describes fuzzy inference systems in a general case. This Chapter will explain 
the method by which a FIS may be utilized for the purpose of automatic control. This will 
be done for the purpose of providing a basis from which adaptation methods for fuzzy 
control may be described. Secondly, in this Chapter, an overview of existing methods of 
adaptive fuzzy control will be presented. 
 

3.1 Fuzzy Controller Design 
 
How can a fuzzy controller design be performed? As shown in Fig. 3-1, the procedure of 
fuzzy controller design reflects its pragmatic nature by the reliance upon intuitive 
knowledge and an experimental-oriented approach. Firstly, the objectives of the design 
process are determined. Secondly, an intuitive understanding of the nature of the process to 
be controlled must be obtained. The accuracy of the intuitive understanding is vital since 
the fuzzy controller will be built based upon this. It may be obtained by any means 
available such as personal experience, advice from experts, mathematical analysis and 
experimentation. Once the designer is confident that he or she has sufficient understanding 
of the plant and the method by which it may be controlled, a suitable type of FIS, such as 
Tsukamoto-type, Mamdani-type, TSK-type or Fuzzy Basis Functions Expansions (as used 
in this work), must be selected. Once this has been done, an iterative procedure aimed at 
achieving the original design objectives begins. This iterative procedure begins with the 
selection of sensor signals which the designer feels contain sufficient information about the 
plant to allow the fuzzy controller to infer the correct control signal. The ranges of these 
inputs are then determined and fuzzy sets defining concepts such as high, medium, and 
low, are created. A set of “if-then” rules and a set of appropriate labels are then defined on 
the basis of the fuzzy sets and a defuzzification method, such as the centroid method 
described in Section 2.4, is selected. This completes the definition of a fuzzy controller; 
this controller must then be tested and improved further until the design objectives are met. 
Once the design objectives for the controller have been met, the system may be 
commissioned. 
Unfortunately, there still remain some drawbacks of a conventional (non-adaptive) fuzzy 
controller design. They can be summarized as following: 
 

• While intuitive understanding can provide a good method of initializing 
membership functions and consequences of a fuzzy controller, it usually provides 
clues about how to fine-tune them because there are many independent parameters 
and it may take considerable time to discover ways of altering them to improve a 
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working solution. In addition, a given plant may change its characteristics over time 
and require re-tuning. Re-tuning and fine-tuning may be done automatically using 
methods of adaptive fuzzy control which will be described in the following Section. 

 
• Fuzzy controllers are supposed to work in situations where there is a large 

uncertainty or unknown variation in plant parameters and structures. Using static 
fuzzy controllers it is difficult to state stability conditions and to maintain a 
consistent performance over the whole operating range of the closed loop control 
system (Wang, L.X., 1994). 

 
• FIS design is a subjective procedure which is adopted to express domain expert’s 

knowledge. However, transferring expert knowledge into a useable knowledge base 
is time-consuming and nontrivial (Lee, C., 1990). 

 
• Moreover, the dependency on human introspection and experience results in some 

problems because, even for human experts, their knowledge is often incomplete 
and episodic rather than systematic. Thus, the completeness and logical consistency 
of a set of fuzzy if-then rules which is only provided from human knowledge (even 
from human experts) can hardly be guaranteed if complex systems in the presence 
of the above mentioned uncertainties are under consideration (Leichtfried, J., Heiss, 
M., 1995).  

 
• MIMO fuzzy systems with high dimensionality often suffer from the problem of 

“curse of dimensionality” due to the rapid increase of fuzzy rules (Wang, L.X., 1998). 
High complexity of fuzzy systems leads to problems in practical realisations 
because of limited processor power and storage space.   

 
Hence, bringing the learning abilities of Adaptive FISs (AFIS) to fuzzy controls may 
provide a more promising approach.  
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 system understanding 

Select FIS-type 

Define rules and labels 

Select input and output
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Select defuzzification
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Tune and validate system Is performance
satisfactory ? 
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No 

Yes

 
Fig. 3-1: Design procedure of a fuzzy controller 

 

3.2 Adaptive Fuzzy Control  
 
What is Adaptive Fuzzy Control? Roughly speaking, if a controller is constructed from 
adaptive fuzzy systems (recall that an adaptive fuzzy system is a fuzzy logic system 
equipped with a training (adaptation) algorithm), it is called an adaptive controller. An 
adaptive controller can be a single adaptive fuzzy system, or it can be constructed from 
several adaptive systems. 
How does an adaptive fuzzy controller compare with a conventional adaptive controller? 
The most important advantage of adaptive fuzzy control is that adaptive fuzzy controllers 
are capable of incorporating linguistic fuzzy information from human operators, whereas 
conventional adaptive controllers cannot. This is especially important for the systems with 
a high degree of uncertainty, such as chemical processes, aircraft, and so on, because 
although these systems are difficult to control from control theoretical point of view, they 
are often successfully controlled by human operators. How can human operators 
successfully control such a complex system without a mathematical model in their minds? 
If we ask a human operator what their control strategies are, they may just tell us a few 
control rules in fuzzy terms and some linguistic descriptions about the behaviour of the 
system under various conditions, which are, of course, also in fuzzy terms. Although these 
fuzzy control rules and descriptions are not precise and may not be sufficient for 
constructing a successful controller, they provide very important information about how to 
control the system and how the system behaves. Adaptive fuzzy control provides a tool for 
making use of the fuzzy information in a systematic and efficient manner. 
How can adaptive fuzzy controllers be classified? In (Narendra, K.S., Parthasarathy, K.,  
1990 ) the adaptive fuzzy controllers are classified according to two criteria: (1) whether 
the adaptive controller can incorporate fuzzy control rules or fuzzy descriptions about the 
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system, and (2) whether the fuzzy logic systems in the adaptive fuzzy controller are linear 
or nonlinear in their adjustable parameters. These classifications are detailed in the next 
two Subsections. 
 

3.2.1 Direct and Indirect Adaptive Fuzzy Control  
  
In conventional adaptive control literature, adaptive controllers are classified into two 
categories (Wang, L.X., 1994): direct and indirect adaptive controllers. In direct adaptive 
control, the parameters are directly adjusted to reduce some norm of the output error, see 
Fig. 3-2. In indirect adaptive control, the parameters of the plant are estimated and the 
controller is chosen assuming that the estimated parameters represent the true values of the 
plant parameters, see Fig. 3-3. 
In fuzzy control, linguistic information from human experts can be classified into two 
categories:  
 

• Fuzzy control rules which state in what situations which control actions should be 
taken (for example, we often use the following fuzzy if-then rule to drive a car: “If 
the speed is slow, then apply more force to the accelerator,” where slow and more 
are labels of fuzzy sets). 

 
• Fuzzy if-then rules which describe the behaviour of the unknown plant (for 

example, we can describe the behaviour of a car using the fuzzy if-then rule: “If 
you apply more force to the accelerator, then the speed of the car will increase,” 
where “more” and “increase” are labels of fuzzy sets). 

 
Interestingly enough, adaptive fuzzy controllers which make use of these two classes of 
linguistic information correspond to the direct and indirect adaptive control schemes, 
respectively. More specifically, direct adaptive fuzzy controllers use fuzzy logic systems as 
controllers. On the other hand, indirect adaptive controllers use fuzzy logic systems to 
model the plant and construct the controllers assuming that the fuzzy logic systems 
represent the true plant; therefore, fuzzy if then rules describing the plant can be directly 
incorporated into the indirect adaptive fuzzy controller. Formally, we have the following 
definition: 
 

• If an adaptive fuzzy controller uses fuzzy logic systems as controllers, it is called a 
direct adaptive fuzzy controller. A direct adaptive fuzzy controller can incorporate 
fuzzy control rules directly into itself. 

 
• If an adaptive fuzzy controller uses fuzzy logic systems as model of the plant, it is 

called an indirect adaptive fuzzy controller. An indirect adaptive fuzzy controller 
can incorporate fuzzy descriptions of the plant (in terms of fuzzy if-then rules) 
directly into itself.  

 
The adaptive fuzzy controller development in Chapter 5 of this thesis is build upon the 
classical approach of (Wang, L.X., 1994) and extensions of other researchers on the same 
topic. However, there also exist a lot of other adaptive fuzzy architectures which are 
summarized in Section 3.3. Studying the literature it is noticeable, that the majority of 
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classical direct adaptive fuzzy control schemes based on (Wang, L.X., 1994) share, 
conditional upon their mathematical structure, a common weak point: If e.g. a simple 
nonlinear SISO plant in from of u)x,x(g)x,x(fx,xx 2121221 +== &&  is assumed, the 
nonlinear function g must be known exactly for the design of a direct adaptive control 
(Chen, B.S., et al., 1996). This drawback also occurs if MIMO plants are under 
consideration. On the other hand, based on this assumption there exist direct schemes, 
which can use special rule-base optimization methods by identifying the inverse of the 
plant and are therefore well suited for MIMO real time applications (Gao, Y., et al.,  2003). 
This means there is a trade-off between the flexibility to dominate a larger class of 
uncertain systems and the computational (hardware) effort for numerical calculations. The 
adaptive fuzzy controller development in Chapter 5 poses an intermediate between these 
two approaches. Therefore it is based on the flexible indirect adaptive approach and uses a 
Dynamic Rule Activation Method to weaken the problem of the “curse of dimensionality”.  
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design 
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output 

 
Fig. 3-2: Direct adaptive fuzzy control architecture 
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Fig. 3-3: Indirect adaptive fuzzy control architecture 

 

3.2.2 First and Second Types of Adaptive Fuzzy Control 
 
Training algorithms for the fuzzy logic system can be quite different depending upon 
whether the fuzzy logic system is linear or nonlinear in its adjustable parameters. If the 
fuzzy system is linear in its adjustable parameters, then it is easier to find an optimal fuzzy 
logic system. However, because the searching space is limited for the fuzzy logic systems 
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which are linear in their adjustable parameters, the optimal fuzzy logic system in searching 
space may not be good enough. On the other hand, if the fuzzy logic system is nonlinear in 
its adjustable parameters, then it is more difficult to find an optimal fuzzy logic system. 
However, if such an optimal fuzzy logic system can be found, its performance should be 
good because the searching space is large. Thus the performance, complexity, and adaptive 
law of an adaptive fuzzy controller can be quite different depending on whether the fuzzy 
logic system in the adaptive controller is linear or nonlinear in their adjustable parameters. 
Therefore adaptive fuzzy controllers can be classified into two types:  
 

• If the fuzzy logic systems used in an adaptive fuzzy controller are linear in their 
adjustable parameters, this adaptive fuzzy controller is called a first-type adaptive 
fuzzy controller. 

 
• If the fuzzy logic systems used in an adaptive fuzzy controller are nonlinear in their 

adjustable parameters, this adaptive fuzzy controller is called a second-type 
adaptive fuzzy controller.   

 
Notice that both first type and second type of adaptive fuzzy controllers are nonlinear 
adaptive fuzzy controllers. Now the formula of the fuzzy logic systems used in first and 
second types of adaptive fuzzy controllers are specified.  
 
In the first-type adaptive fuzzy controller, the following fuzzy logic systems are used: 
 

θφTN

1j jj
ry == ∑ =

θϕ  ( 3-1 )
 
where θ=(θ1,…,θNr)T, ϕ=(ϕ1,…, ϕNr)T, ϕl is the Fuzzy Basis Function (Chapter 2) defined 
by 
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θj are adjustable parameters, and  are given membership functions. Clearly, ( 3-1 ) is 
equivalent to ( 2-18 ) assuming that  are given; that is,  will not change during the 
adaptation (training) procedure. The  can be Gaussian, triangular, or any other type of 
membership functions. For the adaptive fuzzy control design in Chapter 5 Gaussian 
membership functions were chosen. 
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In the second-type adaptive fuzzy controller, the following fuzzy logic system are used: 
 

 



CHAPTER 3.  REVIEW OF ADAPTIVE FUZZY CONTROL 25

∑ ∏

∑ ∏

=
=

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=
r

i

r
i

N

1j

N

1i

2
j

i

j
i

jN

1j

N

1i

2
j

i

j
i

)
xx

(
2
1exp(

w)
xx

(
2
1exp(

y

σ

σ
 ( 3-3 )

 
where , jw j

ix  and  are adjustable parameters. Clearly, ( 3-3 ) is ( 2-15 ) with . j
iσ 1a j

i =
 
Equation ( 3-1 ) and ( 2-15 ) can be analysed from two points of view. First, if all the 
parameters , j

ia j
ix ,  in ϕ j

iσ j are viewed as free design parameters, then FBF expansion    
( 3-1 ) is nonlinear in the parameters. In order to specify such a FBF expansion, nonlinear 
optimisation techniques must be used, for example, use a back-propagation algorithm 
(Wang, L.X., 1994). On the other hand, all the parameters in ϕ j can be fixed at the very 
beginning of the FBF expansion design procedure, so that the only free design parameters 
are θj; in this case, the function y of  ( 3-1 ) is linear in the parameters. The advantages of 
this point of view are that  
 

• Very efficient linear parameter estimation methods can be used, for example, 
the Gram-Schmidt Orthogonal Least Squares (OLS) algorithm (Wang, L.X., 
1994) or the Least Mean Squares (LMS) algorithm (Heiss, M., et al., 1994) to 
design the FBF expansions, 

 
• Relatively simpler adaptive laws to adjust the parameters of the adaptive fuzzy 

controller can be constructed,  
 

• The convergence of the adaptation procedure is expected to be faster because 
we are not concerned with complicated nonlinear search problems, 

 
• Therefore the performance of the controller is less sensitive to the initial values 

of the parameters and 
 

• The performance of controller is more independent of an controller initialisation 
with linguistic rules. 

 
Because of the numerous advantages mentioned above, the adaptive fuzzy controller 
design in Chapter 5 of this thesis is based on the first-type adaptive fuzzy controllers using 
FBF expansions which are linear in the parameters. 
 

3.3 Adaptive Fuzzy Control Architectures 
 
With only a few exceptions, which will be discussed in this Section, the purpose of an 
Adaptive Fuzzy Inference System (AFIS) in an adaptive controller is to perform function 
approximation. For Fuzzy Systems trained by means of associating error signals with 
particular input signals, the aim is to try to achieve a small error and the sources of input 
signals are selected with a view of achieving this aim. The function which an AFIS will 
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perform is therefore wholly dependent on the way which error signal is calculated, or in 
other words, the learning algorithm that the AFIS is adopted with. The adaptive fuzzy 
controller classification scheme used in this Section is designed on the basis of 
observation. Various adaptive fuzzy controller architectures, according to their 
counterparts of classical (non-fuzzy) control theory, will therefore be grouped considering 
the methods of the AFIS learning algorithm. Fig. 3-4 shows the hierarchical classification 
scheme used in this literature survey. These control architectures are generally FIS 
independent. Most FIS architectures (discussed in Section 2.4 ) and learning algorithms 
can be used, although some may be more suitable than others. The degree with which a 
particular FIS satisfies these properties determines its suitability for online modelling and 
control. It does not solely depend on the FISs modelling capacity or on the learning 
algorithm, but a combination of these two factors.  
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Fig. 3-4: Classification of adaptive fuzzy control architectures based on AFIS learning 
methods 

 

3.3.1 Supervised Control Architecture 
 
Supervised learning algorithms need to be posed within specific modelling and control 
architectures, and some of the most popular ones are described in this Section. One of the 
problems in formulating an online learning controller is that the desired control signal is 
rarely available and generally only the desired plant output can be used to train the 
controller. 
As mentioned in Section 3.2.1 there are two classical approaches which have been 
formulated in the adaptive control field: direct and indirect schemes (Wang, L.X., 1994). A 
direct adaptive control scheme builds an explicit model of the desired controller, whereas 
an indirect scheme produces a model of the plant and synthesizes the control law, using a 
predefined optimisation/inversion calculation. For instance, the majority of adaptive fuzzy 
controllers have been direct, as a fuzzy rule base is used as a controller and there exists a 
performance index which relates errors of the plant’s output to errors of the control signal 
in order to update the rule base as discussed in Section 3.1. In contrast, most of the fuzzy-
neural controllers have been indirect, as an explicit plant model is generally constructed. 
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However, there also exist a lot of hybrid control schemes, including explicit fuzzy plant 
models and fuzzy controllers, where it is not easy to associate these schemes to a direct or 
an indirect approach. Hybrid schemes pose an intermediate between the two classical 
directions, but to associate them to the hierarchical classification scheme of Fig. 3-4 there 
is made following additional definition: If the adaptive fuzzy controller of a hybrid scheme 
directly uses the inverse model of the plant (in form of fuzzy if-then control rules) then 
these scheme is counted among the direct adaptive fuzzy approaches.   
Especially mentionable are following subgroups of the classical supervised learning 
architectures (direct and indirect) based on two control methods, namely: (1) VSS 
(Variable Structure Systems) Control and there in particular Sliding Mode Control and (2) 
H∞ Control. 
 

3.3.1.1 VSS Control  
A suitable way of tackling with uncertainties without the use of complicated models is to 
introduce Variable Structure Systems (VSS) theory based components into the system 
structure. Because of its robustness, VSS Control has successfully been applied to a wide 
variety of systems having uncertainties in the representative system models. The 
philosophy of the control strategy is simple, being based on two goals. First, the system is 
forced toward desired dynamics, second, the systems is maintained on that differential 
geometry. In the literature the former dynamics are named reaching mode, while the latter 
is called sliding mode. The control strategy borrows its name from the latter dynamic 
behaviour, and is called Sliding Mode Control (SMC). The idea behind Sliding Mode 
Control is that any state vector can be driven toward the so called sliding surface and then 
maintained on it while forcing the error dynamics toward the origin. Including Fuzzy 
Control techniques in SMC a new research area accrued, namely Fuzzy Sliding Mode 
Control (FSMC). In FSMC the Fuzzy Inference Systems are introduced for smoothing the 
controller action (chattering phenomena) and to facilitate the implementation of linguistic 
knowledge in VSS.       
 

3.3.1.2 H∞ Control  
The H∞-design approach plays a crucial role in adaptive fuzzy control because it considers 
robust and optimal control issues in one control concept. Using H∞-techniques the 
influence of external disturbances and fuzzy modelling errors on the control error can be 
attenuated to infinite small levels and therefore the performance and robustness of adaptive 
fuzzy controls can be increased significantly. Moreover, the H∞-design approach based on 
Lyapunov-stability theory leads to Riccati-like matrix equations and considers therefore 
also optimal control goals like minimization of the control effort and the control error via 
certain cost functions. It should also be mentioned that this approach can result in 
controller actions which temporarily tend to high controller output values. However, in 
practical applications the actuator energy is always limited and therefore there is a natural 
trade-off between control performance and control effort.    
    
Note, that the indirect adaptive fuzzy controller design in Chapter 5 of this thesis includes 
both, VSS- as well as H∞-design techniques and thus represents a simple method to 
combine the advantages of both approaches. Beside the above described classical adaptive 
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fuzzy controller architectures (direct and indirect) there also exist other architectures 
(compare to Fig. 3-4) which are representing the state of the art. These architectures are 
described in the following. 
 

3.3.1.3 Predictive Learning Control 
Model-based predictive learning control schemes attempt to formulate a control strategy by 
assessing the effect of their actions for many time-steps into the future and selecting the 
current “optimal” control action, which is then applied to the plant. The architecture 
requires the development of a forward plant model using an adaptive fuzzy emulator, a 
performance function to evaluate the effect of the control action and an optimization 
technique which can determine the best control action. This is illustrated in Fig. 3-5, where 
a learning adaptive fuzzy controller has also been included, so that after sufficient training, 
the full optimization calculation does not need to be calculated and the computing 
resources can be allocated to other tasks. If the plant is time-varying, the model is 
generally adaptive, although the optimisation calculations may give very poor closed-loop 
control if the process model is inaccurate. 
When the plant model is accurate and the performance function and the search strategy are 
appropriately chosen, this control scheme can provide excellent closed-loop control. 
However, the multi-step ahead optimisation calculation is generally very expensive and is 
only applied to systems which are not time critical. Many simplifications of the above 
architecture can be performed which makes this technique more suitable for real-time 
control. 
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Fig. 3-5: A predictive learning control architecture 

 

3.3.1.4 Model Reference Control  
Model reference fuzzy controllers are the fuzzy control equivalence of the linear Model 
Reference Adaptive System (MRAS) controllers, and are shown in Fig. 3-6. The control 
objective is to adjust the control signal in a stable manner so that the plant’s output 
asymptotically tracks the reference model’s output. The performance of this algorithm 
depends on the choice of a suitable reference model and the derivation of an appropriate 
learning mechanism. 
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Fig. 3-6: A model reference control architecture 

 

3.3.1.5 Fixed Stabilizing Controller 
One of the simplest direct learning control scheme is shown in Fig. 3-7, where a fixed 
stabilizing linear feedback controller is used to train a adaptive fuzzy controller to learn the 
inverse model of the plant. The linear controller is designed so that the closed loop system 
is stable in every operating region and the control signal provides a training signal for the 
learning module. The performance of the closed loop system depends on the current 
operating point, although iterative training of the adaptive fuzzy controller gradually 
improves its performance online. As the operating point changes, the learning controller 
builds up a nonlinear model of the desired control surface, such that when the plant returns 
to the original operating point, the learned response has not been forgotten and it can be 
improved upon. This requires a learning module which is temporally stable and it should 
be highlighted that learning about one area in the input space affects the knowledge stored 
in a different region minimally. Despite the algorithms simplicity, this approach has one 
main drawback due to the design of the fixed linear controller. It has been claimed that a 
algorithm is robust with respect to the design of this controller, although the rate of 
convergence of the learning module depends on the quality of the training signal. A 
learning module is slow to adapt when the linear controller is performing poorly. 
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Fig. 3-7: A direct control architecture with a fixed stabilising controller 

 

3.3.1.6 Direct Inverse Control 
Inverse Controllers make use of fuzzy systems to identify a function which is exact inverse 
of the plant function. It is an intermediate between a direct and indirect scheme, but 
because it directly supplies fuzzy control rules, it is closer to the direct approach. It 
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involves using two adaptive fuzzy systems: a controller and an emulator of the inverse 
plant model as shown in Fig. 3-8. At each time instant, the emulator is used to reconstruct a 
control signal. Since the actual control signal is already known, the adaptive fuzzy 
controller and emulator can be adapted using the error signal between the real control 
signal and the reconstructed one. If the function required of the inverse controller is 
equivalent to that required of the inverse model of the plant a single adaptive fuzzy system 
may be used both controller and emulator structures. Some recent studies on this scheme 
can be found in (Omatu, S., et al.., 1996). 
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Fig. 3-8: A direct inverse control architecture 

 

3.3.1.7 Internal Model Control 
Internal model control uses a structure similar to the predictive learning control scheme, as 
shown in Fig. 3-9. an adaptive fuzzy emulator is used to model the plant directly, receiving 
the applied control signal, rather than the reference signal which is used in the model 
reference control scheme. The error between the forward model and the measured plant 
output is used as a feedback signal and this is passed to the adaptive fuzzy controller, 
which is generally designed to be an inverse plant model. Therefore, analogue to direct 
inverse control, this architecture is also counted among the direct schemes. The adaptive 
fuzzy systems used to model the plant can be trained using standard fuzzy modelling 
schemes (Omatu, S., et al.., 1996) and may be adapted online. Many theoretical stability 
results about internal model control loops are available, although they generally make the 
assumption that the open loop system is stable. Despite this assumption, it is claimed that 
this approach extends readily to nonlinear systems and yields robustness and stability 
analysis. 
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Fig. 3-9: An internal model control architecture 
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3.3.2 Reinforcement Control Architecture 
The main distinguish feature of this type of controller is that it uses reinforcement learning 
instead of the typical supervised learning. Reinforcement learning may roughly be 
described as “learning with a critic as opposed to learning with a teacher”; a teacher tells a 
student how to do something, whereas a critic only tell someone if they have done well or 
badly. 
A reinforcement learning controller is this adapted on the basis of a reinforcement signal 
from a critic which does not provide information about the extent of the error of the 
controller, but merely rates how well it has performed. The concept is shown in Fig. 3-10. 
Over the past ten years, there has been a greater theoretical understanding of the overall 
system, as well as a growing number of simulations and applications that employ modified 
versions of this technique (Berenji, H.R., Khedkar, P., 1992). 
 

plant 
reference output fuzzy 

controller 

adaptive 
critic 

element 

reinforcement 
training signal 

 
Fig. 3-10: A reinforcement control architecture 

 

3.3.3 Self-Tuning Linear Control Architecture 
This novel parameter self-tuning adaptive fuzzy control architecture attempts to exploit the 
ability of adaptive fuzzy systems to learn an arbitrary functional relationship. There are 
many reasons for utilization an intelligent gain-scheduling type approach: widespread 
industrial acceptance of linear feedback controllers, many theoretical and practical results 
about robustness and closed-loop stability and their low implementation are available to 
produce algorithms which can be used to calculate the parameters for both offline and 
online control. Successful systems would result in reduced commissioning costs and posses 
the ability to adapt to time-varying process dynamics. 
All of these approaches assume previous knowledge about the plant’s structure, as this 
simplifies the problem. One example is the idea of extracting the feature labels which 
describe the closed-loop system’s response. The desired closed-loop response is expressed 
as a set of feature labels, which are compared with the labels describing the system’s 
closed loop step response. This error label vector is passed to the AFIS which predicts a 
change in the PID parameters so that the system’s response will be closer to the desired 
one, as depicted in Fig. Fig. 3-11. The ability to synthesis a set of PID parameters online, 
using only input/output data, has been investigated for many years. The potential payback 
from such a system which can increase the robustness of PID controllers is large. 
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Fig. 3-11: A self-tuning linear control architecture 

 

3.3.4 Self-organizing Fuzzy Control 
In contrast with the model-based approaches, the learning-based methodology tries to 
emulate the human’s learning ability by means of operating the process repeatedly, and 
thus the process behaviour is not explicitly taken into account. Here, past experience is of 
particular importance and is utilized intensively for creating workable control schemes. A 
notable example belonging to this class is a so called linguistic self-organizing controller 
(SOC), (Procyk, T., Mamdani, E., 1979). The architecture of the SOC is illustrated in Fig. 
3-12. A performance feedback loop is added to a basic fuzzy controller. On-line measured 
performance of the control system indicated by a Performance Index Table (PIT) is used to 
create or modify the rule base. Starting from an empty rule-base the SOC is able to 
construct a suitable rule base via which the resulting control performance is acceptable in 
the sense of following the PIT measure. Thus with a little a priori knowledge about the 
process, the rule-base is self organized with the learning process. Following the work of 
(Procyk, T., Mamdani, E., 1979), the performance of SOC has been investigated intensively 
and some improved algorithms and design procedures as well as successful applications 
have been reported. The SOC has the important advantage of self-acquiring the required 
knowledge without relying on human experts. Like the model-based case, however, the 
SOC works in high-dimensional space even when the process itself is a single variable 
system and therefore, as would be expected, it has difficulty in handling multivariable 
systems. 
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Fig. 3-12: A self-organizing fuzzy control architecture 
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Chapter 4 
 
 

4 Input-Output Linearization 
 
This Chapter describes how a class of input-affine, general nonlinear systems can be 
linearized exactly by first applying a coordinates transformation to it, and second 
linearizing the system in canonical normal form via special control laws. If the sum of 
relative degrees of the subsystems is less than the system order also the internal dynamics 
of the plant have to be considered. Input-output linearization leads to a linear system, 
which can be stabilized by classical linear controllers. As mentioned in the introduction, 
the input-output linearization method is used as basis for the in Chapter 5 developed 
adaptive fuzzy control schemes.  

4.1 System description of the nonlinear MIMO plant 
 
Assume that a nonlinear MIMO plant is represented by the following set of equations   
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which is equivalent to the compressed form  
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nRUx ⊂∈ is the state vector of the nonlinear system, u, y are the plant inputs and outputs 

respectively, (number of outputs is equal to the number of inputs), the vector 
fields and the functions  are assumed to be 
smooth. 
 

m, Ryu ∈
nn

m1 :,...,, RRUggf →⊂′′′ RRU →⊂ n
i :h

4.2 Coordinates Transformations 
 
Definition 4-1: The system ( 4-1 ) has a (vector) relative degree ru=[r1,…,rm]T in a region 
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UU0 ⊂ if   
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where e.g. means the k)(hL i

k xf ′
th Lie-derivative of the scalar valued function hi with 

respect to the vector valued function f ′ . 
 
(ii) the m × m matrix 
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is not singular. 
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is only implied by, but not equivalent to (ii). 
■ 
  

Proposition 4-1: Suppose a system has a (vector) relative degree ru=[r1,…,rm]T 
. Then  UUx ⊂∈∀ 0 00 Ux ∈∀
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Set, for i=1,2,…,m 
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If , it is always possible to find n-r more functions nrrr m1 <++= L )(),...,( n1r xx ψψ +  
such that the mapping 
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has a Jacobian matrix which is nonsingular 00 Ux ∈∀  and therefore qualifies as a local 
coordinates transformation in a neighborhood of x0. The value at x0 of these additional 
functions can be chosen arbitrarily. Moreover, if the distribution 
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is involutive near x0, it is always possible to choose )(),...,( n1r xx ψψ +  in such way that 
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Proof: refer to (Isidori, A., 1989). 
■ 
 
As a matter of fact, differentiating with respect to time, one obtains, e.g. for the first set of 
new coordinates 
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Note that the coefficient that multiply uj(t) in the latter equation is exactly equal to the (1,j) 
entry of the matrix G(x). 
 
Set now 
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Then the equations in question can be rewritten as 
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If the distribution spanned by the vector fields )(1 xg′ ,…, )(m xg′  is not involutive (most 
general case), we can only write generically, with a vector notation 
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Otherwise, if the distribution in question is involutive, it is always possible to choose the 
remaining set of coordinates )(),...,( n1r xx ψψ +  in such way as to obtain an equation of the 
type  
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The equations ( 4-15 ) and ( 4-16 ) characterize the normal form of the equations 
describing (locally around a point x0) a nonlinear system with m inputs and m outputs 
having a (vector) relative degree  ru=[r1,…,rm]T at x0. The vector ξ represents the so called 
external dynamics which can be linearized according to Section 4.3. The vector η 
represents the internal dynamics and η is unobservable from the output. Note that – in 
equation ( 4-14 ) - the coefficients gij(ξ,η) are exactly the entries of the matrix ( 4-5 ), with 
x replaced by Ψ-1(ξ,η), and the coefficients fi(ξ,η) are the entries of a vector 
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again with x replaced by Ψ-1(ξ,η). 
 
Ψ(x) is called a diffeomorphism on U0, or a local diffeomorphism. Given a nonlinear state 
space realization of an input-affine system ( 4-1 ) a diffeomorphism Ψ(x) can be used to 
perform a coordinate transformation which converts the nonlinear system into the normal 
form equations ( 4-15 ) and ( 4-16 ). Because of the existence of  Ψ-1 (nonsingularity) we 
can always recover the original state space representation if ξ and η are known. 
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If the system ( 4-1 ) has a strong uniform relative degree vector ru=[r1,…,rm]T  
( ) a diffeomorphism Ψ(x) for all  can be found and therefore Ψ(x) is called 
a global diffeomorphism on R

nRx ∈∀
nRU = nRx ∈

n. 
 
Notice that not all systems have a well-defined uniform relative degree, e.g. if 

 at a point  and  elsewhere (Sastry, S., Isidori, 

A., 1989). 
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4.3 Input-Output Linearization via static feedback linearizing control 
law 

 
The equations in ( 4-15 ) may also be written as 
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If G(x)∈Rm×m is bounded away from singularity, the state feedback control law 
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including a linear stabilizing control term ν  which has appropriately to be designed, yields 
to the closed-loop decoupled, linear system 
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and in addition if the system is not fully linearizable ( nrrr m1 <++= L ) to the internal 
dynamics 
 

uηξpηξqη ),(),( +=& .   ( 4-22 )
 
Once linearization has been achived and the internal dynamics are stable, any further 
control objective such as model matching, pole placement, tracking may be easily met. The 
feedback law ( 4-20 ) is referred as a static-state feedback linearizing control law. 
 
Remarks 4-1: If G(x) defined in ( 4-5 ) is singular, linearization may still be achived using 
dynamic state feedback. The development may be followed by using integrators before 
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some inputs; exact conditions under which linearization may be achived by dynamic state 
feedback are given, for instance, in (Sastry, S., Isidori, A., 1989). 

■ 
 
Definition 4-2: Given a dynamical system of the form ( 4-15 ) and ( 4-16 ) the autonomous 
equation 

 
uη0pη0qη ),(),( +=&    ( 4-23 ) 

 
is called the zero dynamics. 
 
Because of the analogy with the linear system case, systems whose zero dynamics are 
stable are said to be minimum phase (Marquez, J.M., 2003). 
■ 
 
Let u*(ξ,η) be the linearizing control law, i.e.,  
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Using this control in the equations for η and assuming that 0∈Rn is the equilibrium point 
of the undriven system ( i.e., f(0)=0 ) and h1(0)=…=hm(0)=0, we see that the subspace  
{(0, η)}⊂ Rn is an invariant subspace  and the zero dynamics are the dynamics of 
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The idea of Definition 4-2 is that of solving first the Problem of Zeroing the Output y, i.e. 
to find initial conditions and inputs consistent with the constraint that the output function 
y(t) is identically zero. If the output has to be zero for all t, then necessarily the initial state 
of the system must be set to a value that ξ(0)=0 where η(0)= η0 can be chosen arbitrarily. 
According to the value of  η0, the input must be set as  
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with 
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Moving from these calculations to a coordinate-free setting, the reader will have no 
difficulties in realizing that, in order to yield y(t)=0 for all times , the system must evolve 
on the subset 
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under the effect of an input u(t) which is a solution of the equation 
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0uxGxf =+ )t())t(())t((    ( 4-29 )

 
so that the state feedback becomes to  
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We notice that setting  in equations ( 4-15 ) and ( 4-16 ) we have that 0y ≡
 

0y ≡  ⇔ 0ξ ≡  
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Thus the zero dynamics can be defined as the internal dynamics of the system when the 
output is kept identically zero by a suitable input function. This means that the zero 
dynamics can be determined without transforming the system into normal form (Marquez, 
J.M., 2003). 
 

Summary 4-1: The stability properties of the zero dynamics play a very important role 
whenever input-output linearization is applied. Input-output linearization is achieved via 
partial cancellation of nonlinear terms. Two cases should be distinguished: 

 
nrrr m1 =++= L : If the sum of relative degrees of the subsystems is equal to the order of 

the whole system, then the nonlinear system can be fully linearized and, input-output 
linearization can be successfully applied. This analysis, of course, ignores at the moment 
robustness issues that always arise as a result of imperfect modeling. 
 

nrrr m1 <++= L : If the sum of relative degrees of the subsystems is lower than the order 
of the whole system, then only the external dynamics of order r are linearized. The 
remaining n–r states are unobservable from the output. The stability properties of the 
internal dynamics is determined by the zero dynamics. Thus, whether input-output 
linearization can be applied successfully depends on the stability of the zero dynamics. If 
the zero dynamics are not asymptotically stable, then input-output linearization does not 
produce a control law of any practical use. 
■ 
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Chapter 5 
 
 

5 Design of the Robust Indirect Adaptive 
Fuzzy Control Scheme for MIMO Nonlinear 
Dynamic Systems 

 
This Chapter describes the development of the robust adaptive fuzzy control scheme for 
controlling a class of MIMO nonlinear dynamic systems, derives the Robust Indirect 
Adaptive Fuzzy Controller (RIAFC) based on H∞- and VSS control techniques and 
presents the convergence and stability analysis of the RIAFC. Moreover, the RIAFC is 
extended by a linear state observer to build an Observer-based Robust Indirect Adaptive 
Fuzzy Control (ORIAFC). To guarantee the existence of solutions for the observer-based 
control a SPR Lyapunov Design Approach is introduced. Modified Adaptation Laws are 
defined to maintain the adaptive parameters of the AFISs inside pre-defined constraint sets. 
Finally, a Dynamic Rule Activation Method is proposed to remedy the phenomenon which 
is known as the “curse of dimensionality”. Comparisons with some existing adaptive fuzzy 
controllers are also carried out to further demonstrate its superior performance.   
 

5.1 Motivation and Development 
 
Fuzzy control methodologies have emerged in recent years as promising ways to approach 
nonlinear control problems. Fuzzy control, in particular, had an impact on the control 
community because of its simple approach to use heuristic control knowledge for nonlinear 
control problems. In very complicated situations, where the plant parameters are perturbed 
or the plant dynamics of systems are too complex for a mathematical model to describe, 
adaptive schemes have to be used online to gather data and adjust the control parameters 
automatically (Procyk, T., et al., 1979, Lee, C., 1990, Driankov, D., et al., 1993, Layne, 
J.R., et. al., 1993, Kwong, W.A., et al., 1996, Gegov, A.E., et  al., 1995). However, no 
stability conditions were provided so far for these adaptive approaches. Based on the 
universal approximation theorem (Wang, L.X., et al., 1992) stable direct and indirect 
adaptive fuzzy control schemes were first developed to control unknown nonlinear systems 
with closed loop stability given by Lyapunov function method (Wang, L.X., 1993, Wang, 
L.X., 1994). Second, several stable adaptive fuzzy control schemes were introduced for 
controlling Single-Input-Single-Output (SISO) nonlinear systems (Chen, B.S., et al., 1996, 
Spooner, J.T., et al., 1996, Sue, C.Y., et al.,  1994, Tong, S.C., et al., 1999, Chai, T.Y., et  
al., 1999). In these adaptive control schemes, the controllers are generally composed of 
two main components. One is the fuzzy logic system for rough tuning. The other one a 
kind of robust compensator, such as supervisory control (Wang, L.X., 1993), H∞ control 
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(Chen, B.S., et al., 1996), sliding-mode control (Spooner, J.T., et al., 1996, Sue, C.Y.,et al., 
1994, Tong, S.C., et al., 1999, Chai, T.Y., et al. 1999), or the combination of the latter two, 
for fine-tuning. Recently, several stable adaptive fuzzy control schemes were developed 
for Multi-Input-Multiple-Output (MIMO) nonlinear systems (Li, Q.G., et al., 1997, Tong, 
S.C., et al., 2000, Chang, Y.C., 2000, Ordonez, R., et al., 1999, Zhang, et  al., 2000, Chang, 
Y.C., et al., 1997). However, these adaptive control techniques are limited to the MIMO 
nonlinear systems whose states are available for measurement. In practical situations, the 
state variables are often unavailable in nonlinear systems. Thus, an output feedback or an 
observer-based adaptive fuzzy control is required for such complicated applications. 
 
This motivated me to investigate an adaptive Robust Indirect Adaptive Fuzzy Control 
(RIAFC) based on H∞- and VSS control techniques and to extend this scheme to an 
Observer-based Robust Indirect Adaptive Fuzzy Control (ORIAFC) for a class of 
nonlinear MIMO plants, based on the previous work (Li, Q.G., et al., 1997, Tong, S.C., et 
al., 2000, Chang, Y.C., 2000). But unlike to the state-of-the-art, the Observer-based Robust 
Indirect Adaptive Fuzzy Control does neither require all system states to be available for 
measurement nor the measured output signals or the reference trajectories to be smooth, 
necessarily. Adaptive fuzzy logic systems are used to approximate the unknown vector 
functions and then a state observer is constructed, upon which the indirect adaptive fuzzy 
control system can be developed to control the MIMO system and maintain the system 
stability. Being the auxiliary compensation, an H∞ control and a Variable Structure 
Systems (VSS) control are designed to improve the system performance by suppressing the 
influence of external disturbance as well as measuring noise and removing the fuzzy 
approximation error. Thus, the proposed Observer-based Robust Indirect Adaptive Fuzzy 
Control can guarantee the closed-loop stability, and also attenuate the influence of the 
matching error, external disturbance and measurement noise to a small level. In addition, 
by the use of a dynamic fuzzy rule activation method the phenomenon which is called “the 
curse of dimensionality” can be significantly weakened.  
 
The salient features of the proposed RIAFC are summarized as follows: 
 

• Nonlinear Dynamic Plants: Including the class of dynamic SISO and MIMO plants 
with exponentially attractive zero dynamics the developed indirect adaptive fuzzy 
control method of this thesis is less conservative compared with other methods.   

 
• Online adaptive learning: No prescribed training models are needed for online-

learning. The RIAFC can learn adaptively from the measured signals sequentially. 
 

• Fast adaptation and learning: The proposed AFISs which are linear in their 
adjustable parameters allow the use of efficient learning methods. The tuning of the 
adjustable AFIS parameters is done automatically by Modified Adaptation Laws 
which guarantee that all parameters are bounded. Moreover, the parameters are 
modified without using any iteration methods. 

 
• Ease of incorporating expert knowledge: Expert knowledge can easily be 

incorporated into the RIAFC in form of fuzzy if-then rules describing the plant. 
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• Fast convergence of tracking error: Fast adaptation- and learning speed of the 
RIAFC enables any controlled plant of the in Section 5.2.1 defined system class to 
track the desired trajectory very quickly. 

 
• Adaptive control: The parameters of the RIAFC are self-adaptive in the presence of 

high complexity, uncertainties and imprecision so as to maintain high control 
performance. 

 
• Robust Control: Asymptotic stability of the control system is established using the 

Lyapunov theorem. H∞- and VSS control techniques are applied to improve the 
system performance by suppressing the influence of external disturbance as well as 
measuring noise and removing the fuzzy approximation error. 

 
• Reduction of activated fuzzy rules: By the use of a Dynamic Fuzzy Rule Activation 

Method the phenomenon which is called “the curse of dimensionality” can be 
significantly weakened. Therefore only that fuzzy rules were activated whose fuzzy 
basis function values are greater than a given threshold.   

 
• Measurement noise: The impact of measurement noise on the performance of the 

closed-loop control system is evaluated in a mathematical rigorous fashion.   
 
The ORIAFC offers besides the advantages of the RIAFC following superior features:    
 

• Availability of system states: The ORIAFC does not require all system states to be 
available for measurement. Only the plant outputs are assumed to be available for 
measurement. 

 
• Smoothness of measured output signals or reference trajectories: The ORIAFC 

does neither require the measured (noisy) output signals nor the reference 
trajectories to be smooth, necessarily. 

 
• Measurement noise: The impact of measurement noise on the performance of the 

closed-loop control system is evaluated in a mathematical rigorous fashion. 
Moreover, applying an observer-based approach in combination with H∞-control 
techniques the influence of measurement noise on the performance of the control 
can be attenuated to a small level. 

 
All algorithms which are presented in this thesis can also successfully be applied if SISO 
plants have to be controlled. To guarantee a clear presentation, the control schemes are 
only for the general MIMO case explicitly developed. However, a guidance how to 
simplify the notations for SISO case can be found in (Chen, B.S., et al., 1996, Spooner, 
J.T., et al., 1996, Sue, C.Y., et al.,  1994, Tong, S.C., et al., 1999, Chai, T.Y., et  al., 1999). 
In Chapter 6 a SISO simulation is carried out, where the pendulum angle of an inverted 
pendulum system is successfully controlled by the ORIAFC.   
 
Following control objectives are faced for the controller design of the RIAFC and 
ORIAFC: 
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Determine a robust feedback control u=u(ξ|Θ) (based on fuzzy logic systems ( 3-1 )) and 
an adaptive law for adjusting the parameter vector such that the following conditions are 
met: 
 
 (i) All the signals and the estimated fuzzy parameters are uniformly bounded, 
 
(ii) For a given disturbance attenuation level ρ>0 the following H∞ tracking performance 
is achieved: 
 

∫∫ ′′′′++≤
T

0

T2T
T

0

TT dt)0(~)0(~1)0()0(dt ddΘΘPeeQee ρ
γ

. ( 5-1 )

 
Q=QT>0, P=PT>0 are positive definite weighting matrices, e is the control error vector, 
γ>0 is an adaptation gain, Θ~  is the parameter approximation error vector, ),0[T ∞∈  
and  is the combined disturbance vector which is assumed to be square 
integrable. 

]T,0[2Ld ∈′′

■ 
 
If the system starts with the initial conditions e(0)=0, 0Θ =)0(~  then the performance in    
( 5-1 ) can be rewritten as  
 

2
2

2

2

]T,0[2

sup ρ≤
′′∈′′ d

e
Q

Ld
. ( 5-2 )

 

Equation ( 5-2 ) with the notations ∫=
T

0

T2 dtQeee
Q

 and ∫ ′′′′=′′
T

0

T2

2
dtddd  means that the                   

L2- gain from d″ to the tracking error e must be equal to or less ρ. 
 

5.2 Robust Indirect Adaptive Fuzzy Control Scheme  
 

5.2.1 MIMO Nonlinear Plant Dynamics  
 
Based on the observations and definitions of Chapter 4, the class of MIMO plants which 
can be controlled by the RIAFC and their mathematical descriptions are stated in this 
Section. Compact notations of these descriptions are presented to allow a better 
understanding of the developed algorithms. 
 
The class of MIMO plants which can be controlled by the RIAFC can be defined by 
following assumption: 
 

 



CHAPTER 5.  DESIGN OF THE ROBUST INDIRECT ADAPTIVE FUZZY CONTROL 
SCHEME FOR MIMO NONLINEAR DYNAMIC SYSTMES 

44

Assumption 5-1: The system ( 4-1 ) has a uniform strong relative degree vector 
ru=[r1,…,rm]T over a compact set  and its zero dynamics are exponentially 
attractive. Further χ(ξ,η) in ( 4-16 ) is assumed to be Lipschitz in ξ,η. 

nRUx ⊂∈

■ 
 
Simply spoken, Assumption 5-1 guarantees bounded tracking for a class of feedback 
linearizable MIMO plants whose zero dynamics are stable. The definition for exponentially 
attractive zero dynamics will be given in the context of Bounded Tracking in Minimum-
Phase Systems (Proposition 5-1) in Section 5.2.3. 
 
For the design of the RIAFC only the external dynamics are relevant because the internal 
dynamics are unobservable from the output. Therefore equations ( 4-15 ) can be rewritten 
as 
 

i
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( 5-3 )

 
including a disturbance vector d(t) which is representing an external bounded disturbance. 
The state vector x and the output vector y are assumed to measurable. The new state vector 
ξ cannot be measured since the in ( 4-20 ) are not explicit available. But note, 

because of measuring y also the new state variables  and as a result the whole vectorξ  is 
known by calculating the derivatives of the variables  (derivate r

)(hL i
ri xf ′

i
1ξ

i
1ξ i-1 times). Therefore 

e.g. DT1-elements with the Laplace transfer function 
 

1

D

sT1
sT

)s(G
+

= ,  TD, T1>0 ( 5-4 )

 
could be used, for practical aspects and constraints please refer to Section 5.3 (state 
observers). However, in the following the vector f and the matrix G are assumed to be 
partially or completely unknown and in particular the vectors d, and the unobservable state 
vector η are assumed to be unknown. 
 
For compact notations define  
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[ ]m1 ,...,diag AAA = , 
[ ]m1 ,...,diag bbB = , 

[ ]m1
T ,...,diag ccC = , 

( 5-5 )

 
and  
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ii rr

i
×∈ RA , , . 1r

i
i ×∈ Rb ir1

i
×∈ Rc

 
Then equations ( 5-3 ) can be formulated as 
 

ξCy
duxGxfBAξξ

T

])()([
=

+++=&
. ( 5-7 )

 

5.2.2 Lyapunov Stability 
 
A very important aspect of the analysis of adaptive controllers is the investigation of their 
stability. In this thesis, the Second Method of Lyapunov (Lyapunov, A.M., Fuller, A.T., 
1992) will be utilized for this purpose. This method is expressed as follows: 
 
Theorem 5-1 (Lyapunov Stability Theorem): Let x=0 be an equilibrium point of 

, f : D→ R)( xfx =& n, and let V : D→ R be a continuously differentiable function such 
that  
(i) V(0)=0, 
(ii) V( x )>0  in D-{0}, 
(iii)  in D-{0}, 0)(V ≤x&

thus x=0 is stable. 
■ 
 
A stronger stability condition, which is applied in Section 5.2.4 and Section 5.3.4, 
represents asymptotic stability: 
 

Theorem 5-2 (Assymptotic Stability Theorem):  Under the conditions of Theorem 5-1, V(⋅) 
is  such that 
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 (i) V(0)=0, 
(ii) V( x )>0    in D-{0}, 
(iii)  in D-{0}, 
thus x=0 is asymtotically stable. 

0)(V <x&

■ 
 
The biggest problem with the Lyapunov function method is that it is often difficult to find 
a suitable Lyapunov function. There is no single systematic procedure which will always 
finde one  (if it exists), however, there are a number of methods form guessing them. Two 
of such methods are the variable gradient method of Schultz and Gibson (Schultz, G.D. and 
Gibson, J.E., 1962) and the Zubovs method (Zubov, V.I., 1957). 

5.2.3 Robust Indirect Adaptive Fuzzy Controller (RIAFC) 
 
An interesting application of the notion of normal form and minimum-phase property is 
following one. Assume the control ν in ( 4-20 ) is chosen so that system outputs yi(t) track 
the reference trajectories defined by yM,i(t) , i=1,2,…,m, with the help of linear external 
controllers νi, i.e. 
 

[ ]T
m1 ν,...,ν=ν  

)yy(k...)yy(kyν i,Mi1i
)1r(

i,M
)1r(

iir
)r(
i,Mi

ii

i

i −−−−−= −−  
)r,...,2,1j;m,...,2,1i( i==  

( 5-8 )

 
with the coefficients kij chosen such that the polynomials 
 

0k...sks 1i
)1r(

iir
)r(

i
i

i

i =+++ −  ( 5-9 )
 
are Hurwitz polynomials and the tracking errors are defined as 
 

i,Mii yye −= . ( 5-10 )
 
The resulting error dynamics (=error system) follow then to  
 

0ek...eke

0ek...eke

m1m
)1r(

mmr
)r(
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111
)1r(

1r1
)r(

1

m

m

m

1

1

1

=+++

=+++

−

−

M . ( 5-11 )

 
If the coefficients ki,j are chosen such that all the polynomials in ( 5-11 ) are Hurwitz, then 
we can conclude that 0)t(elim it =∞→ - a main objective in control. 
 
 

Remarks 5-1:  The reference trajectories yM,i(t) are assumed to have the property of 
standard smoothness to guarantee bounded derivatives up to order ri.■ 
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Proposition 5-1: Bounded Tracking in Minimum-Phase Systems (Sastry, S., Isidori, A.., 
1989): Assume that the zero dynamics of the nonlinear system ( 4-1 ) or equivalently           
( 4-15 ) and ( 4-16 ) are exponentially stable. Further assume that χ(ξ,η) in ( 4-16 ) is 
Lipschitz in ξ,η. Then the control law ( 4-20 ) results in bounded tracking [i.e., x∈Rn 
bounded and yi(t)→yM,i(t)], provided that are bounded. )r(

i,Mi,Mi,M
i,...,, yyy &

Proof: Converse Lyapunov theorem, refer to (Sastry, S., Isidori, A.., 1989). 
■ 
 

Remarks 5-2:  

• Proposition 5-1 establishes that a bounded input to the exponentially stable, 
unobservable dynamics yields a bounded state trajectory η. 

 
• The hypothesis of Proposition 5-1 calls for a strong form of stability – exponential 

stability; in fact, counterexamples to the Proposition exist if the zero-dynamics are 
not exponential stable, for example, if some of the eigenvalues  of  lie 
on the jω-axis. 

),(/ η0χη∂∂

 
 
• The hypothesis of Proposition 5-1 can, however be weakened substantially by 

requiring only that all trajectories of ( 4-25 ) are eventually attracted to a compact 
set, by requiring as one necessary condition the existence of a Lyapunov function 
V(η) which fulfills 

 
2

F
),(

d
dV ηη0χ
η

α−≤⋅   only for R
F

≥η  ( 5-12 )

 
with the weakening that requiring that the left equation has only to hold outside a 
ball  of radius R. We refer this condition as exponential boundedness of the zero 
dynamics. 
Proof: Converse Lyapunov theorem, (Sastry, S., Isidori, A.., 1989). 

■ 
 
The observations above lead directly to the definition of the class of MIMO pants which 
can be controlled by the RIAFC in form of Assumption 5-1 in Section 5.2.1. Moreover, 
they guarantee bounded tracking for this class of MIMO plants if control law ( 4-20 ) is 
applied to the feedback linearizable external dynamics, assuming that the zero dynamics 
are exponentially attractive.  
 
In practical implementations of exactly linearizing control laws, the chief drawback is that 
they are based on exact cancellations of nonlinear terms. If there is any uncertainty, the 
resulting input-output equation is not linear. I suggest the use of adaptive fuzzy control to 
get asymptotically exact cancellation, the advantages of this concept were already 
summarized in Section 3.2. 
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Since the functions fi(x) and gi,j(x) are unknown and di≠0 in our problem, the ideal control      
( 4-20 ) cannot be applied. In this situation, our purpose is to approximate fi(x) and gi,j(x) 
by using scalar fuzzy logic systems )|(f̂ i,fi θx  and defined as according to    
( 3-1 ), with linear paramterization, as 

)|(ĝ ij,gij θx

 

i,f
T

i,fi,fi )()|(f̂ θxφθx = , 

ij,g
T

ij,gij,gij )()|(ĝ θxφθx =  
  ( 5-13 )

 
where  and mGf m

ij,gij,g
m

i,fi,f ),(;),( RθxφRθxφ ∈∈ f, mG are the total number of fuzzy 
rules for modelling the functions fi and gij, respectively.  
 
The controller is now chosen as a certainty equivalence control 
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Assumption 5-2: It is pre-assumed that the matrix )ĝ(matrix)|(ˆ
ijij,g =θxG is invertible 

(non singular). Later this assumption will be relaxed by the projection algorithm of 5.5 – 
Modified adaptation laws. 

■ 
 
Due to existing fuzzy approximation errors, external disturbances and measurement noise, 
only a certainty equivalence control cannot ensure the stability of the closed-loop system. 
Therefore it is necessary to add a robust compensator to attenuate the disturbance effect on 
the system outputs and a VSS (Variable Structure Systems) control term to compensate the 
fuzzy approximation errors. The resulting fuzzy control law is 
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The exact formulation of the control terms uh,i and us,i will be stated in Section 5.2.4 as a 
result of the stability analysis. 
 
Denote 
 

[ ]T
m11 e,...,e=E  

[ ]T
m,M1,MM y,...,y=y  

[ ]T)r(
m,M

)r(
1,M

)r(
M

m1 y,...,y=
∗

y  

  ( 5-16 )
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and  
 

[ ] [ ]Tr21

T)1r(m
1

m
1

)1r(1
1

1
1 ,...,,,...,,...,,..., m1 ξξξξξξξ ==

−−ξ ,  1r ×∈ Rξ

[ ]T)1r(
m,Mm,M
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1,M1,MM

m1 y,...,y,...,y,...,y −−=Y . 
  ( 5-17 )

 
The error vector e is assumed as  
 

][ )1r(
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)1r(
11M

m1 e,...,e,...,e,...,e −−=−= Yξe .   ( 5-18 )
 
Also the fuzzy models ( 5-13 ) can be rewritten in compact form 
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  ( 5-20 )

 
Including the (unknown) bounded noise vectors ny(t) and nx(t) which are representing the 
noise due to measurement of the outputs and the original states, where ny(t) is assumed to 
have the property of standard smoothness 
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the error vector e can be reformulated as 
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Remarks 5-3: If required, the iy  could be filtered by a low-pass filter or another slew-rate 
limiter to bound the derivatives of the noise signals. 

■ 
 
The control law ( 4-15 ) can be rewritten as follows  
 

])|(ˆ)[|(ˆ
sh

T)r(
MfG

1 uueKyΘxfΘxGu ++−+−=
∗−    ( 5-23 )

 
with 
 

],...,,[ 11rr
T kkkK −=  as feedback gain matrix to make the characteristic polynomials of 

TBKA − to be Hurwitz , because (A,B) is controllable concerning the state vector ξ, and 
the fuzzy models 
 

fff )()|(ˆ ΘxΦΘxf =  

GGG )()|(ˆ ΘxΦΘxG = . 
  ( 5-24 )

 

Definition 5-1: Controllability: (A,B) is controllable if . r)(rank 1r2 =− BABAABA MLMMM

■ 
 
In general the grid of rules and therefore the complexity of the fuzzy models grows 
dramatically with the order of the plant (order of the state vector) and among experts this 
phenomenon is called “the curse of dimensionality”. Concerning practical realizations of 
complex fuzzy systems Section 5.6 – Dynamic fuzzy rule activation method – shows how 
the real number of activated fuzzy rules can effectively be reduced. 
 
During this Section the structures of an adaptive fuzzy controller and the corresponding 
adaptive fuzzy systems were defined. The missing adaptation laws for the parameter 
update of the fuzzy systems and the precise form of the control terms uh,i and us,i are stated 
in the next  Section.  
Fig. 5-1 gives an overview of the Robust Indirect Adaptive Fuzzy Controller (RIAFC) -
based tracking control scheme.   
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Fig. 5-1: RIAFC-based tracking control scheme 

 

5.2.4 Stability- and Convergence Analysis of the RIAFC  
 
Substituting ( 5-23 ) in ( 5-7 ) and set  yields T

0 BKAA −=
 

]))|(ˆ)(()|(ˆ)([ y
T

shGf0 NKduuuΘxGxGΘxfxfBeΑe −+++−+−+=& .  ( 5-25 )
 
The disturbance vector d and the vector  can be collected in one combined 
disturbance vector  

y
T NK−

 
y

T NKdd −=′ .   ( 5-26 )
    
Define the optimal parameter vector and the optimal parameter matrix    ∗
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the minimum (fuzzy) approximation error ω 
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and the estimation errors 
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It is pre-assumed that x, x , Θf, and ΘG belong to compact sets U1, U2, Ωf, ΩG, 
respectively, which are defined as 
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Equation ( 5-25 ) turns out as   
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Consider the Lyapunov function candidate 
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Following notations are made for simplification: )|(ˆˆ
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The time derivative of V is 
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Assumption 5-3: There exist positive constants κ, Mg and Me such that 
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■ 
 
Assume the H∞ and VSS control terms as  
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Considering that only the biased vector yNee +=  can be measured and implemented in  

( 5-35 ) instead of e, equation ( 5-33 ) results with ff
~ ΘΘ && =  and GG

~ ΘΘ && =  ( and  
are assumed to be constants) 

∗
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and using  
 

0)]ˆ(ˆ[)ˆ( TTT)r(
M

1TT1T
s ≤−+−+++

∗−− PeBeKyfGGFPeBGGIu ∆∆∆    ( 5-36 )
 
as follows 
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If the parameter ideal update laws are chosen to 
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the Lyapunov derivative can be simplified to  
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PeBdePBRPBPAPAe TTT1
0

T
0

T ])1([
2
1V ′′+−−+≤ −κ& .   ( 5-39 )

 

Remarks 5-4: 

• The adaptation rates γf,i, γG,ij can be properly chosen for each element if̂  and  
individually. Only for simplified notation they were stated as γ

ijĝ

f, γG. 
 

• Exactly observed, also the update laws are biased by noise but due to low-pass 
filtering of the resulting functions f̂  and Ĝ  this effect can again be eliminated. 

■ 
 

Proposition 5-2: For a given positive-definite matrix Q there exists a unique positive-
definite solution P for the Riccati-like matrix equation 
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1 >−− − IR

ρ
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■ 
 
Combining ( 5-39 )and ( 5-40 ) results in 
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As long as  and the fuzzy parameters and  are bounded (refer to Section 5.5 
– Modified adaptation laws) it is included that 

2L∈′′d fΘ GΘ

∞∈ L,,, uxxe  and , (Wang, 
L.X., 1993). 

0E =∞→ 1tlim

Thus the control objective (i) is realized.  
 
Integrating inequality ( 5-41 ) from t=0 to t=T yields 
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Since , inequality ( 5-42 ) implies 0)T(V ≥
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which represents the H∞-criterion given in equation ( 5-1 ) for a pre-described attenuation 
level ρ. Finally, also the control objective (ii) is realized. 
 

Remarks 5-5:  

To avoid discontinuity of  which could yield undesirable chattering 
phenomenon and excite high-frequency unmodeled modes (Ioannou, P.A., and Sun, J., 1996), 
the sign(.) function is replaced by saturation functions sat[(.)

)( T PeBsign

i], defined as 
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or smooth functions ⎥
⎦

⎤
⎢
⎣

⎡
α

i2
T )(

tanh
ePB

, 0>α ,  m,...,2,1i =     ( 5-45 )

 
where the function “tanh” means the “hyperbolic tangent” of its argument and α is a small 
design constant in order to remedy the control chattering. 
■ 
 
In summarizing the above discussions, the design algorithm for the RIAFC is described as 
follows (Tab. 5-1). 
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[Step.1] Select the feedback gain matrix K such that the matrix A-BKT is a Hurwitz 

matrix. Choose a positive-definite matrix Q and select the desired attenuation 
level ρ, the weighting matrix R and the constant κ to solve Lyapunov equation  
( 5-40 ) in order to get a positive-definite matrix P. 

[Step.2] Choose appropriate values for the controller parameters k, α and in ( 5-35 ),  
( 5-45 ), and the parameters for fuzzy modelling i,fγ , ij,Gγ , 1β , 1δ , bijk , cijk , 2δ in  
( 5-107 )-( 5-113 ). 

[Step.3] Construct the fuzzy sets for x. Then solve the fuzzy basis matrices 
, . )(f xΦ )(G xΦ

[Step.4] Obtain the control law ( 5-23 )  and solve the modified adaptive laws ( 5-38 ) by 
maintaining the adjustable fuzzy parameter matrices  and  in a certain 
constraint region in analogy to ( 5-107 )-( 5-113 ). 

fΘ GΘ

 
Tab. 5-1: Design algorithm for the RIAFC based adaptive fuzzy control system 
 

5.3 Extension by a Linear State Observer 
 

5.3.1 Motivation 
 
Including a linear state observer (e.g. a Luenberger observer) the performance and 
practicability of controls can be improved significantly, (Boukezzoula, R.., et al., 2004, 
Mohanlal, P.P., et al. ,2004). Especially if there is some quantification noise content 
included in the output signals of a digital control system (without observer) and the main 
problems are caused by the necessary derivations for building the state vector, (Koller, G., 
1999). If there is a lot of noise contained in the measured output signals a Kalman-filter 
could be introduced to reduce the effects of the measurement noise on the control system 
(not considered here). If the whole state vector or some elements of it are unavailable for 
measurement then a linear state observer is absolute required to build up the state-space 
control system. 
 
The problem statement can be divided in three case studies: 
 

• Case study 1: 
 

The whole state vector x or some elements of x are unavailable, but the output 
vector y is assumed to be available for measurement. Then the control law ( 5-23 ) 
can no longer be used to control the nonlinear system ( 5-7 ). There also may be 
some quantification noise to consider due to the measurement of y. Applying a 
linear state observer the new system state ξ and the error vector e are replaced by 
their estimates  and ξ̂ ê .  
This case study is objectively the most general and most challenging case which is 
studied in this thesis, and will therefore in detail be examined in the mathematical 
investigation below. 
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• Case study 2: 

 
State vector x and the output vector y are still available for measurement, but due to 
quantification of the measured output signals (practical aspect) and the following 
DT1-elements ( 5-4 ) for calculation of the state vector ξ the higher order elements 
of ξ and as a result also the control signal u may contain a lot of noise which could 
lead to high stress for the hardware components, a loss of performance and in 
extreme situations to instability of the closed loop control system. Using a linear 
state observer these derivatives are not needed anymore and the system state ξ and 
the error vector e are again replaced by their estimates ξ̂  and ê .  
The mathematical investigation can be build up like the one in Case study 1 but 
with one exception: Because of the availability of the measured state vector x, this 
vector can directly be used as an input for modelling the fuzzy systems instead of 

. This should result in smaller fuzzy approximation errors concerning the 
approximation of the nonlinear functions f and G by the estimated fuzzy functions 
ξ̂

f̂ and Ĝ . 
 

• Case study 3: 
 

The nonlinear system is already given in normal form ( 5-46 ) and a coordinates 
transformation was not necessary. Then the state vector ξ does not appear in the 
state-space equations anymore and the nonlinear MIMO system in normal form 
depends only on the state vector x. 
 

.xCy
duxGxfBAxx

T

])()([
=

+++=&
   ( 5-46 )

 
In case of unavailability of the state vector x for measurement, the control law         
( 5-23 ) cannot, and if there is some noise content in the measured outputs of the 
plant, control law ( 5-23 ) should not directly be applied (refer to Case study 2). A 
linear state observer can be used instead and the system state x and the error vector 
e are here replaced by their estimates x̂  and ê . The next steps are chosen 
according to Case study 1. 

 

5.3.2 MIMO Nonlinear Plant Dynamics 
 
Based on the observations and assumptions of Chapter 4 the mathematical descriptions of 
MIMO plants to be controlled by the ORIAFC are derived. Compact notations these 
descriptions were stated to allow a better understanding of the developed algorithms and to 
support a time-efficient implementation in computer simulations and hardware 
implementations, respectively. Note, the stated MIMO plant descriptions can easily be 
simplified if SISO plants are under consideration. Therefore refer to (Chen, B.S., et al., 
1996, Spooner, J.T., et al., 1996, Sue, C.Y., et al.,  1994, Tong, S.C., et al., 1999, Chai, 
T.Y., et  al., 1999). 
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Assumption 5-4: It is assumed that the system ( 4-1 ) has a uniform strong relative degree 
vector ru=[r1,…,rm]T over a compact set  and its zero dynamics are 
exponentially attractive. Moreover, the nonlinear functions f and G are assumed to be 
independent of the unobservable state vector η. 

nRUx ⊂∈

■ 
 
Then equations ( 5-3 ) can be simplified to  
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■ 
 

Following notations are made for simplification:  and  . ))(( 1 ξΨff −=
∆

))(( 1 ξΨGG −=
∆

 

5.3.3 Observer-based Robust Indirect Adaptive Fuzzy Control 
(ORIAFC) 

 
The system state ξ and the error vector e are replaced by their estimates  and ξ̂ ê   
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and the controller is designed as 
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including  with eKyν ˆT)r(

M −=
∗

 
],...,,[ 11rr

T kkkK −=  as feedback gain matrix to make the characteristic polynomials of 
to be Hurwitz, because (A,B) is controllable  (the matrix definitions are the 

same as in Section 5.2.1) . 

T
0 BKAA −=
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The control term uh is again responsible for attenuate the disturbance effect on the system 
outputs, uo is the feedback control for ê  and need to be designed and us is a sliding-mode 
control to compensate fuzzy approximation errors. )|ˆ(ˆ

fΘξf  and  be of the 
following form 

)|ˆ(ˆ
GΘξG

 

ff )ˆ(ˆ ΘξΦf =  

GG )ˆ(ˆ ΘξΦG = . 
  ( 5-50 )

 
The dimensions are the same as in ( 5-19 ). 
 
Assumption 5-5: It is again pre-assumed that the matrix )ĝ(matrix)|(ˆ

ijij,g =θxG  is 
invertible (non singular). Later this assumption will be relaxed by the projection algorithm 
of Section 5.5 - Modified adaptation laws. 
■ 
 
As described in RIAFC design stage, the grid of rules and therefore the complexity of the 
fuzzy models grows dramatically with the order of the plant (order of the state vector ξ). 
To remedy this problem Section 5.6 “Dynamic fuzzy rule activation method” shows how 
the real number of activated fuzzy rules can effectively be reduced. 
 
Substituting ( 5-49 ) in ( 5-47 ) yields 
 

])ˆ(ˆ[ˆ soh
T duuuuGGffBeBKΑee ++++−+−+−=&  

 
eCE T

1 = . 
  ( 5-51 )

 
Thus, we have converted the tracking problem into the regulation problem of designing a 
state observer for estimating the error vector e in ( 5-51 ) in order to regulate E1 to zero. 
 
Design the (linear) observer as follows 
 

)ˆ(ˆˆˆ 11o
T EEKeBKeΑe −+−=&  

 
eCE ˆˆ T

1 = , 
  ( 5-52 )

 
where  is the observer gain matrix to make sure that the 
characteristic polynomials of A

],...,,[ o
r

o
2

o
1

T
o kkkK =

1=A-KoCT are strict Hurwitz, because (CT,A) is observable.  
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Definition 5-2: 

Observability: (CT,A) is controllable if . rrank
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■ 
 
The interaction between control and state-observer can be described by the coupled 
differential equations 
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   ( 5-53 )

 
with the virtual input 
 

duuuuGGffu ++++−+−= soh)ˆ(ˆ(    ( 5-54 )
 
and the resulting system matrix, a 2n x 2n Hurwitz-stable coefficients matrix 
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which shows the same eigenvalues as the characteristic polynomials of A0 and A1.  
 
Applying the Laplacetransform (Laplace-variable “s”) on ( 5-52 ) and setting the initial 
condition 0)0(ˆ =e  results in 
 

)(

)s()s()s(ˆ
T

o
T

T
o

1

CKBKΑF

eCKFIe

−−=

−= −

   ( 5-56 )

 
Including the (unknown) bounded noise vector ny(t) which is representing the noise due to 
measurement of the outputs, where ny(t) does not need to have the property of standard 
smoothness, necessarily: 
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The tracking error vector 1E  can be formulated as 
 

i,yii,M
i

1i,Mii neyyye +=−=−= ξ    ( 5-58 )
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y1
T

m11 ]e,...,e[ nEE +== . 
 
Note, it is also not required that the reference trajectories yM,i(t) are smooth, necessarily. 
 
Fig. 5.1 gives an overview about the resulting Observer-based Robust Indirect Adaptive 
Fuzzy Control (ORIAFC). 
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Fig. 5-2: Observer-based Robust Indirect Adaptive Fuzzy Control (ORIAFC) 

 
 
Feed in 1E  into the observer the biased output follows to 
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assuming that a bounded Laplace-transformed variable ny(s) exists. J(s) represents a 
known, stable transfer matrix. 
 
According to the properties between the Laplacetransform L and the inverse Laplace- 
transform L-1 of the product, J(s)ny(s) is characterised by the convolution integral of the 
matrix- respectively vector-valued functions J(t) and ny(t) in time domain: 
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Summarizing, the noise vector ny can, from the mathematical point of view, be 
equivalently transformed from the input to the output of the observer by the linear transfer 
matrix J(s). 
 
Substituting ( 5-49 ), including )t(ˆT)r(

M eKyν −=
∗

, in ( 5-47 ) yields  
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The disturbance vector d and the vector  can be collected in one 
combined disturbance vector  
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Defining the observation error as 
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and subtracting ( 5-52 ) from ( 5-61 ) results in 
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If we take a closer look at the interaction between the e and e~  
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the representative system matrix, a 2n x 2n Hurwitz-stable coefficients matrix, can be 
identified as 
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Ignoring the nonlinearity due to the input u(  for the moment, the characteristic polynomials 
of control and observer are described by the product  
 

)sdet()sdet( T
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T CKAIBKAI +−⋅+− .   ( 5-67 )
 
This would mean that the assumptions for K and Ko and therefore the controller- and 
observer design could be separated (separation principle for linear systems). In the 
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following Lyapunov stability proof it will be shown, that the Lyapunov candidate ( 5-73 ) 
is indeed a Lyapunov function which stabilizes the overall nonlinear system ( 5-47 ) and 
allows the separability of controller- and observer design similar to the separation principle 
for linear systems. 
 

Remarks 5-6:  In the linear control literature, e.g. in (Weinmann, A., 1995), it is a well-
known fact that the eigenvalues of the observer should be located more left in the complex 
“s - half plane” than the eigenvalues of the control system without observer. However, 
observers with too far left located eigenvalues tend to a derivative action, which is not 
desired. If there is a lot of measurement noise contained in the output signals a Kalman-
filter could be introduced to reduce the effects of the measurement noise on the control 
system (not considered here). More details about controls with stochastic optimal 
prediction, which is not part of this thesis, can be found in (Weinmann, A., 1995, Perez, C.,  
et al., 2004, Mohanlal, P.P., et al., 2004). 

 

5.3.4 Stability- and Convergence Analysis of the ORIAFC 
 
Define the optimal parameter vector and the optimal parameter matrix    ∗

fΘ ∗
GΘ
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the minimum (fuzzy) approximation error ω 
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   ( 5-69 )

 
and the estimation errors 
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GGG
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~

ΘΘΘ

ΘΘΘ
   ( 5-70 )

 
It is pre-assumed that ξ, , Θξ̂ f, and ΘG belong to compact sets U1, U2, Ωf, ΩG, respectively, 
which are defined as 
 

 



CHAPTER 5.  DESIGN OF THE ROBUST INDIRECT ADAPTIVE FUZZY CONTROL 
SCHEME FOR MIMO NONLINEAR DYNAMIC SYSTMES 

64

{ }
{ }
{ }
{ }.

G

2
G

f

f

FG
mmm

GG

Ff
1mm

ff

ˆ
F

r
2

F
r

1

:

:

ˆ:ˆ
:

Θ

Θ

ξ

ξ

MΘRΘΩ

MΘRΘΩ

MξRξU

MξRξU

≤∈=

≤∈=

≤∈=

≤∈=

×

×
   ( 5-71 )

 
Equation ( 5-64 ) turns out as  
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Consider the Lyapunov function candidate 
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The time derivative of V is 
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Assumption 5-6: There exist positive constants κ, Mg and Me such that 

 
 

κ∆λ ≤− )]|ˆ(ˆ)ˆ,([ G
1

i ΘξGξξG ,       10 <≤ κ  

 

1M0,M)]|ˆ(ˆ)ˆ,([([max

)|ˆ(ˆ)ˆ,(

gg

p

1j
ijG

1

i

G
1

<≤≤
⎭
⎬
⎫

⎩
⎨
⎧

=

∑
=

−

∞

−

ΘξGξξG

ΘξGξξG

∆

∆

 

 

ei0
T)r(

MfG
1 M)]ˆ)|ˆ(ˆ)(|ˆ(ˆ)ˆ,()ˆ,([ ≤+−+−+

∗− ueKyΘξfΘξGξξGξξf ∆∆  

  ( 5-75 )

 
and the input output constraint  
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CBP =2    ( 5-76 )

 
is fulfilled. 
■ 
 
Choosing the H∞  and VSS control terms as 
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and the tuning control term for the observer as 
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respectively. Considering that only the biased vector eCePBE ~~~ T

2
T

1 == can be measured 
and implemented in  ( 5-77 )-( 5-78 ) instead of ePB ~

2
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equation ( 5-74 ) results with ff

~ ΘΘ && =  and GG
~ ΘΘ && =  ( and  are assumed to be 

constants) as follows 
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Remarks 5-7: 

The sign(.) function is again replaced by saturation functions sat[(.)i] of the form  
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or smooth functions ⎥
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ePB
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where the function “tanh” means the “hyperbolic tangent” of its argument and α is a small 
design constant in order to remedy the control chattering. 
■ 
 
 If the ideal parameter update laws are chosen to 
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the Lyapunov derivative can be simplified to  
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Remarks 5-8: 

• The adaptation rates γf,i, γG,ij can be properly chosen for each element if̂  and  
individually. Only for simplified notation they were stated as γ

ijĝ

f, γG. 
 

• Exactly observed, also the update laws are biased by noise but due to low-pass 
filtering of the resulting functions f̂  and Ĝ  this effect can again be eliminated. 

■ 
 

Proposition 5-3: For the given positive-definite matrices Q1, Q2 there exist positive-
definite solutions P1, P2 for the following Lyapunov- and Riccati-like matrix equations 
considering the input-output constraint ( 5-76 ): 

  
0QAPPA =++ 1011
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Preconditions: 
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  ( 5-88 )

■  
 
A proof for the existence of stable solutions to Riccati-like matrix equation in ( 5-87 ) 
subject to the input-output constraint ( 5-76 ) is given in Section 5.4 – “SPR-Lyapunov 
design approach”. The results of this approach can be summarized as follows:  
 

• If the plant satisfies the Strict Positive Real Lemma (SPR lemma) of Kalman-
Yakubovich-Popov, the existence of stable solutions to equations ( 5-87 ) can be 
verified. 

 
• In case the plant does not show SPR-property at once, the control circuit can be 

transformed into an overall SPR-system in a simple manner.       
 
Combining ( 5-85 ) and ( 5-86 )-( 5-87 ) results in 
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As long as  and the fuzzy parameters Θ2L∈′′d f and ΘG are bounded (refer to Section  5.5 
– “Modified adaptation laws, projection algorithm”), it is included that ∞∈ L,,ˆ,,~,ˆ uxξξee    
(Sastry, S., et al., 1989, Wang, L.X., 1993). Thus, there are 0e =∞→

~limt  and 0e =∞→ ˆlimt . 
Since eee ~ˆ +=  and , there is eCE T

1 = 0E =∞→ 1tlim . 
Thus the control objective (i) is realized. 
 
Integrating inequality ( 5-89 ) from t=0 to t=T yields 
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Since , inequality ( 5-90 ) implies 0)T(V ≥
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which represents an H∞-criterion like the one as given in equation ( 5-1 ) for a pre-
described attenuation level ρ. Finally, also the control objective (ii) is realized. 
 
In summarizing the above discussions, the design algorithm for the Robust Observer-based 
Adaptive Fuzzy Control (ORIAFC) is described as follows (Tab. 5-2): 
 
[Step.1] Select the observer and feedback gain matrices Ko, K such that the matrices  

A-BKT and A-KoCT are Hurwitz matrices, respectively. Choose a positive-definite 
matrix Q1 and solve Lyapunov equation ( 5-86 ) in order to get a positive-definite 
matrix P1. 

[Step.2] Choose appropriate values for the controller parameters kT, α and R in ( 5-105 ),  
( 5-83 ) and the parameters for fuzzy modelling i,fγ , ij,Gγ , 1β , 1δ , bijk , cijk , 2δ in  
( 5-107 )-( 5-113 ). 

[Step.3] Solve the state observer in ( 5-52 ), then eYξ ˆˆ
M += . 

[Step.4] Construct the fuzzy sets for . Then, solve the fuzzy basis matrices ξ̂
)ˆ(f ξΦ , )ˆ(G ξΦ . 

[Step.5] Select L(s) in ( 5-98 ) so, that L-1(s) is a proper stable transfer function matrix and 
H(s)L(s) to be a proper SPR transfer function matrix. 

[Step.6] Obtain the control law ( 5-49 ) and solve the modified adaptive laws ( 5-106 ) by 
maintaining the adjustable fuzzy parameter matrices  and  in a certain 
constraint region in analogy to ( 5-107 )-( 5-113 ). 

fΘ GΘ

 
Tab. 5-2: Design algorithm for the Robust Observer-based Adaptive Fuzzy Control 
(ORIAFC) 
 

5.4 SPR-Lyapunov design approach 
 
Since  is a Hurwitz matrix with a properly chosen K, there exists a positive-
definite matrix P

T
0 BKAA −=

1 for Lyapunov-equation in ( 5-87 ). Actually Proposition 5-3 depends on 
whether there exists a positive-definite matrix P2 for the Riccati-like equation in ( 5-87 ).  
  

• If a positive-definite P2 exists for ( 5-87 ), we have 12
T ~~ EePB = . The estimates ê  

and 1Ê  are available to make the proposed adaptive fuzzy control scheme 
realizable. 
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• If a positive-definite P2 does not exist for ( 5-87 ), then the given system (A,B,CT) 
of ( 5-64 ) can be converted into a Strict Positive Real (SPR) system by using a 
similar way as proposed in (Kim, Y.H., et al., 1997). 

 

Definition 5-3, (Khalil, H.K., IEEE, 1996): The transfer matrix is positive-
real if  

mxm)s( RH ∈

• (1) all elements of H(s) are analytic for  and 0)s( >Re
 
• (2) any pure imaginary pole of any element of H(s) is a simple pole and the 

associated residue matrix of H(s) is a positive semidefinite Hermitian matrix 

0HHHHe ≥+= ∗ ))()((
2
1)]s([ ss   

•  (3) for all real ω for jω is not a pole of any element of H(s), the matrix H(jω)+ 
HT(-jω) is positive semidefinite.  

 
The transfer matrix H(s) is strict positive-real if H(s-ε) is positive real for a small positive 
constant ε>0. 
■ 
 
To satisfy the Riccati-like equation in ( 5-87 ) subject to the input-output constraint P2B=C 
the linear system (A1,B,CT) has in addition to satisfy the following Strict Positive Real 
Lemma (SPR lemma), which is an extension of the famous Positive Real Lemma (PR 
lemma) of Kalman-Yakubovich-Popov. 
 

Lemma 5-1 (Vidyasagar, M., 1993): Consider a system of the form 

 

DuCxy
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+=&
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,
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  ( 5-92 )

 
and assume that (i) the eigenvalues of A lie in the left half of the complex plane, (ii) (A,B) 
is controllable and (iii) (C,A) is observable. Then  is SPR if 
and only if there exist a symmetric positive-definite matrix 

DBAICH +−= −1)s()( s
nxnRP ∈ , and matrices 

, , and nxmRQ ∈ mxmRW ∈ 0>ε  sufficiently small such that 
 

PQQPAPA ε−−=+ TT  
CQWPB =+ TT  

TT DDWW += . 
  ( 5-93 )

■ 
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In our application D=0 and therefore also W has also to vanish, the positive-semidefinite 

can be replaced by the term QQT 0QPBIRBP ≥+−−− −
22

T
2

1
2 ]1)1[(

ρ
κ  which has to 

be designed at least positive-semidefinite and ( 5-93 ) can be reformulated as 
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A sufficient small positive constant ε>0 can be found that )
2

( 1 IAA ε
ε +=  is also 

Hurwitz, BAICH 1T )s()
2
εs-( −−= ε  with the state space representation (Aε,B,CT) is 

positive-real and a positive symmetric matrix P2 satisfying ( 5-94 ) exists . 
 
Summarized, if and only if H(s) is SPR, for the Riccati-like equation ( 5-94 ) which is 
equal to ( 5-87 ) subject to CBP =2  exists a positive-definite solution P2.  
 

Proposition 5-4: Positive-realness of H(s) is equivalent to the passivity of (A1,B,CT). The 
transfer matrix H(s) being SPR restricts the relative degrees ri of the subsystems 
(A1,i,Bi,Ci

T) to be zero or one and its zeros to be stable (minimum phase). 

Proof: (Khalil, H.K., 1996, Prentice-Hall). 
■ 
 
However, if a positive-definite P2 does not exist for ( 5-87 ) because (A1,B,CT) is not SPR, 
then (A1,B,CT) can be converted to a SPR system (A1,Bc,CT) by following a similar way as 
described in (Kim, Y.H., et al., 1997). The details are as follows. 
 
First, the output error dynamics of ( 5-72 ) can be formulated as  
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1 s= ,   ( 5-95 )

 
where 
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The transfer function H(s) is a known stable transfer function matrix. In order to use the 
SPR-Lyapunov design approach, ( 5-96 ) can be written as 
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with 
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L(s) is chosen so, that L-1(s) is a proper stable transfer function matrix and H(s)L(s) to be a 
proper SPR transfer function matrix.  
 
Then the state-space realization of ( 5-97 ) can be formulated as 
 

]

~)ˆ(~)ˆ([~)(~

s

ohGGffcc
T

0c

du

uuωuΘξΦΘξΦBeCKAe
))

)))))&

++

+++−−+−=
 

 

c
T

1
~~ eCE =  

  ( 5-100 )

 
where 
 

m,...,2,1i]b,...,b,...,0,0[

],...,[diag
T

pi1ci

cm1cc

i
==

=

B

BBB
   ( 5-101 )

 
)ˆ()s()ˆ( f

1
f ξΦLξΦ −=

)
 

)ˆ()s()ˆ( G
1

G ξΦLξΦ −=
)

 

uΘξΦLΘξΦLuΘξΦΘξΦς GGffGGff
~)ˆ()s(~)ˆ()s(~)ˆ(~)ˆ(

))
++−−=  

ςωω +=T  

T
1 )s( ωLω −=)  

  ( 5-102 )

 
h

1
h )s( uLu −=)  

o
1

o )s( uLu −=)  

s
1

s )s( uLu −=)  

dLd ′= − )s(1)
. 

  ( 5-103 )

 

Assumption 5-7: ς  is assumed to satisfy 
 

ο≤
F

ς  with a positive constant 0>ο .   ( 5-104 )
■ 
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Assumption 5-7 is reasonable because of the fact  
FG2Ff1F

~~ ΘΘς οο +≤  and 
Ff

~Θ , 

FG
~Θ  are bounded by the projection algorithm. 

 
Note, that each term in ( 5-96 ) need to be filtered by L-1(s). However, as shown later, we 
can implement this scheme easily by filtering the fuzzy basis functions. Therefore this 
error dynamics can be only used for analysis purposes. 
 
After this transformation  is a SPR system. Since  
is SPR for the given positive matrix Q
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Following the Lyapunov stability proof once again the ideal parameter update laws results 
to  
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5.5 Modified adaptation laws (projection algorithm) 
 
The adaptation laws ( 5-38 ) and ( 5-84 ) can be modified using a smooth gradient 
projection algorithm (Khalil, H.K., 1996, IEEE) to maintain the adjustable parameters in a 
certain constraint region defined by 
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( 5-108 )

 
for some smooth function Γf. 
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The resulting modified update law follows to 
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In order to implement the robust indirect adaptive control algorithm the matrices 
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GΘxG  and )|(ˆ

GΘξG , respectively must be invertible, refer to Assumption 5-2 and 

Assumption 5-5 . Now we shall relax this assumption. E.g. the matrix )|(ˆ
GΘxG  can be 

shown to be invertible for a class of nonlinear systems by a suitable choice of the regions 
 and . 02Ω

gθΩ
 
Consider the class of MIMO nonlinear systems in which the output yi is mainly dominated 
by the input ui and the effect of uj for j≠i on yi is smaller than of ui. For such class of 
systems we can set bijk and cijk such that mi1,ĝĝ m

ij,1j ijii ≤≤∀≥ ∑ ≠=
. Then, )|(ˆ

GΘxG  

is so-called strictly diagonal dominant and is invertible (Horn, R.A., Johnson, C.R., 1991).  
 
Consider the fuzzy system , where  ij,g

T
ij,gij,gij )|(ĝ θφθx =

 
ij,GmT

ij,Gijm,g1ij,gij,g ],...,[ Rθ ∈= θθ    ( 5-110 )

 
and 
 

ij,GmT
ij,Gijm,g1ij,gij,g ],...,[ Rφ ∈= ϕϕ    ( 5-111 )

 
again. Chose  as convex hypercube, i.e. 

gθΩ { }ijkijk,gijkG02 cb| ≤≤= θΘΩ  and 

{ }2ijkijk,g2ijkG cb|
g

δθδθ +≤≤−= ΘΩ  for ij,Gmk1 ≤≤  and  where mj,i1 ≤≤

0c,b 2ijkijk >δand  can be specified by the designer. The smooth projection algorithm with 
respect to ΘG is obtained as (Khalil, H.K., 1996, IEEE) 
 

⎪
⎩

⎪
⎨

⎧

<<
>>

=
,otherwise

)0andb(if
)0andc(if

ijk,gij,G

ijk,gijkijk,gijk,gij,G

ijk,gijkijk,gijk,gij,G

ijk,g

Γγ
ΓθΓγ
ΓθΓγ

θ
(

)

&    ( 5-112 )

 
where  
 

i
T

jijk,gijk,g u~ePb′= ϕΓ , with ],...,[ m1 bbB ′′= ,   ( 5-113 )
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5.6 Dynamic fuzzy rule activation method 
 
At the beginning of the fuzzy model design process the designer must determine a fine grid 
of fuzzy rules and fuzzy membership functions, considering as model-input all elements of 
the state vector x or ξ, respectively which are relevant for modelling the nonlinear plant 
matrices f and G in ( 5-3 ) and ( 5-47 ), respectively. This grid and thus the number of rules 
grows dramatically with the order of the plant (order of the state vector) and among experts 
this phenomenon is called the “curse of dimensionality”. In accompany with the increasing 
complexity of the fuzzy systems also the burden for the computation and storage effort 
grows dramatically. Especially concerning the hardware realisation of fuzzy controls 
where the processor power and the storage capability is limited, the “curse of 
dimensionality” is a critical point in the design of fuzzy controls. 
However, once the membership functions are determined, the fuzzy systems ( 5-13 ) are 
constructed from the fuzzy IF-THEN rules. The larger the number of fuzzy rules is, the 
better approximating ability the fuzzy system obtains. That is, there is a trade-off between 
the number of fuzzy rules on one side and the performance of the fuzzy system 
respectively the computation load on the other side. In fact, in ( 5-13 ) most Fuzzy Basis 
Functions (FBFs) and thus the corresponding rules show very small values for a given x or 
ξ. Consequently, they do not nearly contribute to the output of the fuzzy systems ( 5-13 ). 
The idea of the dynamic fuzzy rule activation method (Park, J.H., et al., 2003) is now, that 
at initial time the output of the fuzzy systems is estimated by only a small number of fuzzy 
rules whose FBF-values are greater than a given threshold and unused rules are gradually 
activated on-line during the control procedure. By using this dynamic rule activation 
method, we can reduce the computation time, storage space and dynamic order of the 
adaptive fuzzy systems because only the adjustable parameters corresponding to the 
activated FBFs are updated. Based on this idea, the kth FBF of ϕf,i, resp. ϕg,ij in ( 5-13 ) is 
activated after t0 if the following activation conditions are satisfied: 
 
1) )(ik,f xϕ  resp. )(ijk,g xϕ was inactivated for 0tt0 ≤≤ , 
2) FBFik,f )( εϕ ≥x  resp. FBFijk,g )( εϕ ≥x  
 

mj,i1 ≤≤ ,  resp. i,fmk1 ≤≤ ij,gmk1 ≤≤   

i,fm , ...total number of fuzzy rules. ij,gm

  ( 5-114 )

 
where εFBF represents an activation threshold satisfying 10 FBF <≤ ε . 
 
If there exists a priori knowledge on the newly activated rule, for example, through an 
offline identification or expert knowledge, we can use that information. Otherwise, the 
initial values of the adjustable parameters associated with newly activated FBFs can be set 
simply to zeros. Using this scheme, the output of the fuzzy systems at time t consists of the 
contribution of the active FBFs. Thus, one could start with a fuzzy system having a few 
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rules and gradually activate fuzzy rules in response to the activation condition being 
satisfied. By such means, the number of activated fuzzy rules is increased sequentially, 
which ensures that the function being approximated is learned up to the required levels of 
accuracy, using only a minimal number of fuzzy rules. The fuzzy system including this 
dynamic rule activation method needs smaller computation time and storage space but 
shows almost the same level of approximation accuracy compared with the conventional 
fuzzy system, whereby the number of fuzzy rules is determined a priori by the grid rule 
structure and does not change. 
Let us divide the FBFs and the corresponding adjustable parameters into two parts: 
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where ϕf,iA, ϕg,ijA are activated FBFs and θf,iA, θg,ijA are their corresponding adjustable 
parameters. ϕf,iP, ϕg,ijP and θf,iP, θg,ijP are inactivated (passive) FBFs and their 
corresponding adjustable parameters. By definition, the passive parameter vector and their 
time derivative are zero vectors, i.e. , . Then, we can 
describe the output of the Fuzzy Logic Systems as 

0θθ == iP,fiP,f
& 0θθ == ijP,gijP,g

&
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  ( 5-116 )

 
Assuming, without any restriction, the state vector x to be measurable and the 
measurement noise vectors ny(t) and nx(t) to be zero vectors, the optimal parameter vector 

and the optimal parameter matrix  corresponding to the activated FBFs follow to  ∗
A,fΘ ∗
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and the minimum (fuzzy) approximation error ωA yields 
 

uGfuΘxGxGΘxfxfω AAA ))|(ˆ)(()|(ˆ)(
A,GA,f

∆∆ +=−+−= ∗∗ .   ( 5-118 )
 
Recall the minimum (fuzzy) approximation error ω which results if all rules of the rule base 
are activated ( 0FBF =ε ) 
 

GufuΘxGxGΘxfxfω ∆∆ +=−+−= ∗∗ ))|(ˆ)(()|(ˆ)(
Gf

   ( 5-119 )
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two conclusions are apparent 
 

FFA ωω ≥   and 
FFA ωω →  if 0FBF →ε ,   ( 5-120 )

 
or in other words the approximation accuracy which can be achieved by the rule activation 
method compared with conventional fuzzy systems shows almost the same level if a 
sufficient small εFBF  is chosen. On the other hand, if somebody is using the rule activation 
method but also wants to eliminate the effect of ωA on the tracking error of the closed loop 
control system (keep the same performance level) the constant k in the uS term of ( 5-78 ) 
has to be raised to compensate the additional approximation error 0

FAF
≥−= ωωω∆ . 

This means there is a trade-off between the number of fuzzy IF-THEN rules and the 
control gain in the VSS control algorithm. Inequality  provides a 
sufficient condition to guarantee the solvability of ( 5-40 ), (Tong, S.C., et al., 2000). The 
additional approximation error ∆ω implies the bounded value κ is bigger and R

0/1)1( 21 >−− − IR ρκ

-1 is also 
bigger. That is, there is also a trade-off between the number of fuzzy IF-THEN rules in Ĝ  
and the control gain in the robust H∞ controller. 
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Chapter 6 
 
 

6 SIMULATION EXAMPLES 
 

6.1 SISO Inverted Pendulum System 
 
In this Section we apply the ORIAFC to control an inverted pendulum system (Wang, L.X., 
1994), also known as cart-pole system, as shown in Fig. 6-1. This experiment is often 
picked up in the control literature to show the performance of developed control 
algorithms. The control objective is now to control the pole angle θ to track a given 
reference trajectory by applying a force F to the cart. The cart position x is not controlled 
in this example because the simulated plant is assumed to be a SISO system. However, if 
the cart position is not constraint within small limits there is no contradiction to the real-
time experiment. The nonlinear dynamic equations of this plant can be described as 
 

,)cos(xlm)sin(lgmc)lmI(

F)sin(lm)cos(lmxkx)mm(

pp
2

p

2
pppc

θθθθ

θθθθ

&&&&&

&&&&&&

−=−++

−=−+++
   ( 6-1 )

 
where F is the applied force to the cart, k is the viscous friction coefficient of the cart, g is 
the acceleration due to gravity (g=9.81m/s2), I is moment of inertia of the pole about the 
center of gravity (COG), c is the viscous friction coefficient of the pole, mc is the mass of 
the cart, mp is the mass of the pole which is assumed to be concentrated in the COG and l is 
the half-length of the pole. We choose mc=1kg, mp=0.1kg and l=0.5m in the following 
simulations. The pole is assumed to have a very small diameter in comparison to its length. 
Then the moment of inertia of the pole can be calculated to I=mpl2/3. The friction 
coefficients are assumed to be unknown. 
 

 



CHAPTER 6.  SIMULATION EXAMPLES 78

mc 

mpg

mp, I 
θ 

l
θ

COG

F

x 
 

Fig. 6-1: Inverted pendulum system 

 
From the viewpoint of control engineering the SISO plant equations ( 6-1 ) inclusive 
measurement are described in normal form ( 5-46 ) as 
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Tracking Control with ORIAFC 
 
The external disturbance (including the plant uncertainties due to the unknown friction 
components) is assumed as d(t)=3sin(t) (rad/s2), the measurement noise ny(t) (sensor noise, 
digitization of the sensor signals) is assumed to be white with uniform distribution within 
the interval [-5e-3, 5e-3] (rad) and band-limited by using zero-order-hold  with a sampling 
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time of 10ms. Our control objective is to control the pole angle θ of the cart-pole system to 
track the reference trajectory yM=0.5sin(t) (rad). The feedback and observer gain vectors 
are selected as K=k=[1296 72]T and Ko=ko=[90 2025]T, respectively. A matrix 
Q=diag([1 0.1]) is assumed. The controller parameters are chosen as kT=10, α=1e-2, 
R=r=5e-4, (minimum achievable attenuation level ρmin=2.23e-2) and the fuzzy modelling 
parameters as γf =3.0e4, γg =10, β1=1e4, δ1=1e3, bk= 0, ck=20, δ2=0.02. The membership 
functions for the fuzzy system inputs , i=1,2 are given as Gaussian curve membership 
functions 

ix̂
)]2/()xx̂(exp[)x̂( 22l

iiF l
i

σµ −−=  where σ=0.35 and  lx =-1,-0.5,0,0.5,1 for 

l=1,2,3,4,5, respectively. The inputs ,  are therefore normalized and by /(0.6rad) 
and /(0.6rad/sec) respectively. The approximated function 

1x̂ 2x̂ 1x̂

2x̂ f̂  depends per system 
definition ( 6-3 ) on the inputs  and , the function 1x̂ 2x̂ ĝ  only on the input . These 
circumstances reduce the total number of fuzzy rules to 30 rules. The initial values of the 
adjustable fuzzy parameters are set to 

1x̂

0k,f =θ  for k=1,2,..,25 and 5k,g =θ  for k=1,2,..,5. 
The initial plant and observer states are given as x(0)=[0.25rad 0.05rad/s]T and 

=)0(x̂ [0rad 0rad/s]T, respectively. Finally, the filter L-1 is chosen to L-1=1/(s+2).  
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Fig. 6-2: Tracking curves pole angle θ(t) (solid line), yM(t) (dashed line)   
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Fig. 6-3: Tracking error e(t) 
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Fig. 6-4: Control variable u(t) 
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Fig. 6-5: Error integral versus time 

 
The simulation results Fig. 6-2 - Fig. 6-5 (all variables are displayed in SI-units) 
demonstrate, that the ORIAFC can perform a successful tracking control. The influence of 
external disturbances and measurement noise on the tracking errors can be attenuated to a 
small level by decreasing the attenuation level ρ which goes along with choosing a small 
controller gain r. Also the adaptation speed is superior, although no information about the 
system nonlinearities was available (“blackstart”) and only half of the system states were 
measurable for the control, respectively. However, if there is additional linguistic 
information from human experts about the plant nonlinearities f and g in terms of fuzzy IF-
THEN rules available, then this information can also easily be implemented due to the 
open structure of the fuzzy systems (Wang, L.X, 1992, Wang, L.X., 1993). 
 

6.2 MIMO Magnetic Levitation System 
 
In this section we apply the H∞-observer based adaptive fuzzy control system to control a 
MIMO magnetic levitation system (EPC, 1991) as shown in Fig. 6-6. The control objective 
is now to control the magnet positions y1 and y2 of the system to track given reference 
trajectories. The nonlinear dynamic equations of this plant can be described as 
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mgFFFycym
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&&&

&&&
   ( 6-4 )

 
Fm12 are the magnet forces, Fuij for i,j=1,2 the actuator forces  for i=1,2 the friction 
forces, m is the mass of one magnet disk (m=0.125kg) and mg the gravity force which 
affects one magnet disk (g=9.81m/s

ii yc &

2). According to the manufacturer, the friction forces 
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are typically small and are therefore not modelled in simulations. In case of real time 
experiments, the friction forces will be approximated by the adaptive fuzzy systems.   
 

 
Fig. 6-6: MIMO magnetic levitation system 

 
The magnetic/actuator forces are modeled as having the following forms 
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  ( 6-5 )

 
i1 and i2 are the coil currents of coil1 and coil2 respectively and a, b, c, d and N are 
constants which may be determined by numerical modelling of the magnetic configuration 
or by empirical methods. Typically 3<N<4.5. In our simulations N was selected as N=4, 
and the parameters a, b, c, d were empirically determined as a=5167A/Nm4, b=0.07984m, 
c=0.00025Nm4, d=0.0407m. The actuator forces Fu12 and Fu21 are generally small 
compared to Fu11 and Fu22 for typical values of coil current and for the magnets in their 
normal operating range and are therefore, without any restrictions, also omitted in the 
simulations. The step response of the coils show, that a voltage step of 1 Volt generates a 
steady state current of 0.4 Ampere, this means there is a conversion constant of ku=2.5 
Ohm to consider if the actuator is assumed to be a linear voltage-driven current source. The 
input-output characteristics of the position sensors (Laser Sensors) in Model 730 are 
nonlinear (static nonlinearities). This effect can be compensated sufficiently by arranging 
software building blocks, which model the inverse of these functions in the form of 
nonlinear algebraic equations (EPC, 1991), after the analog input blocks. The parameters 
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of this nonlinearity can be determined empirically by following some calibration 
instructions, also given in (EPC, 1991). However, in our simulations exact linearized 
sensor characteristics are assumed. Special attention needs the rapid heat-up process of the 
coils due to current excitation. The manufacturer strictly recommends to limit the rms-
value of the coil currents i1 and i2 to values about 1.2 Aeff. Short time stresses e.g. 4 Apeak 
for 0.5s within a interval of 60s are also possible. Both current constraints were 
successfully maintained in our simulations. Therefore, as minimum requirement the control 
variables ui are limited by the interval [-10,10] (Volt). The magnet positions are limited by 
the interval [0,0.14] (m) due to the mechanical constraints.    
 
Considering the simplifications above, from the viewpoint of control engineering the plant 
equations ( 6-4 ) inclusive measurement are described in normal form ( 5-46 ) as 
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6.2.1 Tracking Control with RIAFC 
 
The external disturbance, e.g. due to external axial vibrations which interfere on the 
apparatus, is assumed as d(t)=[0.5sin(t); 0.1sin(t)] (m/s2), the measurement noise 
ny(t)=[ny,1; ny,2] (sensor noise, digitization of the sensor signals) is assumed to be white 
with uniform distribution within the interval [-1e-4, 1e-4] (m) and band-limited by using 
zero-order-hold  with a sampling time of 10ms. The noise signals of the different position 
sensors do not correlate with each other. Our control objective is to control the magnet 
positions y1 and y2 of the system to track the reference trajectories  
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yM,1=0.01sin(t)+0.02(1-e-t/0.1) (m) and yM,2= 0.01sin(t)+0.045(1-e-t/0.1)+0.075 (m), 
respectively. The feedback gain matrix is selected as K=[0.36 0; 1.2 0; 0 0.36; 0 1.2]. A 
matrix Q=diag([5 5 5 5]), an attenuation level ρ=3e-3 and κ=0 are assumed. The 
controller parameters are chosen as kT=1, α=1e-4, R=4.5e-4eye(2) and the fuzzy 
modelling parameters as γf,1 =3e6, γf,2 =6e5, γG,11=1.5e5, γG,22=1e5, β1=1e4, δ1=1e3, b11k= 
b22k=0 , c11k= c22k=20, δ2=0.02. The membership functions for the fuzzy system inputs , 
i=1,3 are given as Gaussian curve membership functions 

ix̂

)]2/()xx̂(exp[)x̂( 22l
iiF l

i
σµ −−=  where σ=0.35 and  lx =-1,-0.5,0,0.5,1 for 

l=1,2,3,4,5, respectively. The inputs ,  are therefore normalized and offset-reassessed 

by ( -0.02m)/0.01m and ( -0.12m)/0.01m respectively. The approximated functions 
1x̂ 3x̂

1x̂ 3x̂ 1f̂  

and 2f̂  depend per system definition ( 6-7 ) only on the inputs  and , the function  
only on the input  and  only on the input . These circumstances reduce the total 

number of fuzzy rules to 35 rules (

1x̂ 3x̂ 11ĝ

1x̂ 22ĝ 3x̂

1f̂  and 2f̂  share the same rule base). The initial values 
of the adjustable fuzzy parameters are set to 15k1,f −=θ  and 5k2,f −=θ  for k=1,2,..,25 and 

10k22,gk11,g == θθ  for k=1,2,..,5. The initial plant states are given as x(0)=[0m 0m/s 
0.075m 0m/s]T. 
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Fig. 6-7: Tracking curves magnet positions y1(t) (below, solid line), yM,1(t) (below, dashed 
line) and y2(t) (top, dashed line), yM,2(t) (top, dashed line) 
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Fig. 6-8: Tracking errors e1(t) and e2(t) 
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Fig. 6-9: Control variables u1(t), u2(t) 
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Fig. 6-10: Zoom: Control variables u1(t), u2(t) 
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Fig. 6-11: Error integral versus time 

 
The simulation results Fig. 6-7 - Fig. 6-11 (all variables are displayed in SI-units) 
demonstrate, that the RIAFC can perform a successful tracking control. The influence of 
external disturbances and measurement noise on the tracking errors can be attenuated to a 
small level by decreasing the attenuation level ρ which goes along with choosing a 
controller matrix R with a small Frobenius norm. To reduce the noise level in the control 
signal Also the adaptation speed is superior, although no exact information about the 
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system nonlinearities was available However, if there is additional linguistic information 
from human experts about the plant nonlinearities f and G in terms of fuzzy IF-THEN rules 
available, then this information can also easily be implemented due to the open structure of 
the fuzzy systems (Wang, L.X, 1992, Wang, L.X., 1993). 
 

6.2.2 Tracking Control with ORIAFC 
 
The external disturbance, e.g. due to external axial vibrations which interfere on the 
apparatus, is assumed as d(t)=[0.5sin(t); 0.1sin(t)] (m/s2), the measurement noise 
ny(t)=[ny,1; ny,2] (sensor noise, digitization of the sensor signals) is assumed to be white 
with uniform distribution within the interval [-1e-4, 1e-4] (m) and band-limited by using 
zero-order-hold  with a sampling time of 10ms. The noise signals of the different position 
sensors do not correlate with each other. Our control objective is to control the magnet 
positions y1 and y2 of the system to track the reference trajectories yM,1=0.01sin(t)+0.02(1-
e-t/0.1) (m) and yM,2= 0.01sin(t)+0.12(1-e-t/0.1) (m), respectively. The feedback and observer 
gain matrices are selected as K=[2304 0; 96 0; 0 2304; 0 96] and Ko=[300 0; 22500 0; 0 
300; 0 22500], respectively. A matrix Q1=diag([10 10 1 1]) is assumed. The controller 
parameters are chosen as kT=1, α=1e-4, R=1.25e-5eye(2) (minimum achievable 
attenuation level ρmin=3.53e-3) and the fuzzy modelling parameters as γf,1 =γf,2 =1.6e6, 
γG,11=γG,22=1e5, β1=1e4, δ1=1e3, b11k= b22k=0 , c11k= c22k=20, δ2=0.02. The membership 
functions for the fuzzy system inputs , i=1,3 are given as Gaussian curve membership 
functions 

ix̂
)]2/()xx̂(exp[)x̂( 22l

iiF l
i

σµ −−=  where σ=0.35 and  lx =-1,-0.5,0,0.5,1 for 

l=1,2,3,4,5, respectively. The inputs ,  are therefore normalized and offset-reassessed 

by ( -0.02m)/0.01m and ( -0.12m)/0.01m respectively. The approximated functions 
1x̂ 3x̂

1x̂ 3x̂ 1f̂  

and 2f̂  depend per system definition ( 6-7 ) only on the inputs  and , the function  
only on the input  and  only on the input . These circumstances reduce the total 

number of fuzzy rules to 35 rules (

1x̂ 3x̂ 11ĝ

1x̂ 22ĝ 3x̂

1f̂  and 2f̂  share the same rule base). The initial values 
of the adjustable fuzzy parameters are set to 0k2,fk1,f == θθ  for k=1,2,..,25 and 

10k22,gk11,g == θθ  for k=1,2,..,5. The initial plant and observer states are given as 
x(0)=[0m 0m/s 0.075m 0m/s]T and =)0(x̂ [0m 0m/s 0m 0m/s]T, respectively. Finally, the 
filters  are chosen to =1/(s+5) for i=1,2 and the activation threshold for the fuzzy 
rules is ε

1
iL− 1

iL−

FBF=0.25.    
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Fig. 6-12: Tracking curves magnet positions y1(t) (below, solid line), yM,1(t) (below, dashed 
line) and y2(t) (top, dashed line), yM,2(t) (top, dashed line) 
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Fig. 6-13: Tracking errors e1(t) (solid line) and e2(t) (dashed line) 
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Fig. 6-14: Control variables u1(t) (solid line), u2(t) (dashed line) 
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Fig. 6-15: Zoom: Control variables u1(t) (solid line), u2(t) (dashed line) 
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Fig. 6-16: Error integral versus time 
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Fig. 6-17: Number of activated fuzzy rules versus time 

 
The simulation results Fig. 6-12 - Fig. 6-17 (all variables are displayed in SI-units) 
demonstrate, that the ORIAFC can perform a superior tracking control. The influence of 
external disturbances and measurement noise on the tracking errors can be attenuated to a 
small level by decreasing the attenuation level ρ which goes along with choosing a 
controller matrix R with a small Frobenius norm. Moreover, the impact of the 
measurement noise on the controller output signals ui(t) was significantly attenuated in 
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comparison to the RIAFC. Also the adaptation speed is superior, although no information 
about the system nonlinearities was available (“blackstart”) and only half of the system 
states were measurable for the control, respectively. Fig. 6-17 shows, that the total number 
of necessary fuzzy rules can be reduced significantly (from 35 to 20) by using the proposed 
dynamic rule activation method. However, if there is additional linguistic information from 
human experts about the plant nonlinearities f and G in terms of fuzzy IF-THEN rules 
available, then this information could also easily be implemented due to the open structure 
of the fuzzy systems (Wang, L.X, 1992, Wang, L.X., 1993). 
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Chapter 7 
 
 

7 Conclusions and Outlook 
 

7.1 Qualities of the proposed Robust Indirect Adaptive Fuzzy Control 
 
This thesis presents a new method to design a Robust Indirect Adaptive Fuzzy Control for 
tracking control of a class of uncertain nonlinear MIMO systems with on-line tuning of 
linear fuzzy parameters based on H∞ as well as VSS control techniques and the Strict 
Positive Real Lyapunov (SPR-Lyapunov) design approach. In particular, the Robust 
Indirect Adaptive Fuzzy Control does neither require that all system states are available for 
measurement nor the measured output signals or the reference trajectories to be smooth, 
necessarily. Robust Indirect Adaptive Fuzzy Control guarantees that all signals involved 
are bounded and provides the fuzzy modelling error cancellation by a VSS control term 
and the external bounded disturbances as well as measurement noise attenuation with H∞ 
performance, obtained by a Riccati-like equation. Applying a dynamic fuzzy rule 
activation method the phenomenon which is called “the curse of dimensionality” can be 
significantly weakened. Simulation results of a MIMO magnetic levitation system 
demonstrate the effectiveness and robustness of the Robust Indirect Adaptive Fuzzy 
Control, considering several hardware specifications and constraints of an approved real-
time experiment 
 

7.2 Limitations of the proposed Robust Indirect Adaptive Fuzzy 
Control   

 
The main limitation of the proposed RIAFC and ORIAFC is certainly the canonical normal 
form which the plant has to fulfil. Clearly, there are a lot of practical nonlinear systems 
which are already given in a feedback linearizable normal form or can be transformed into 
such a form by a local or global diffeomorphism, respectively. Nevertheless, not all plants 
fulfil this requirement. Also the difficulty of stable zero dynamics restricts the number of 
successful applications. 
Adaptive Fuzzy Control, including the RIAFC and ORIAFC approaches, deals with “grey” 
plant models. The more information of the plant is available the faster the learning phase 
can be completed. In case of the ORIAFC the period is elongated by the state vector 
estimation. Hence, the initial performance of the closed- loop control circuit depends on 
the degree of pre-knowledge about the plant. The integration of VSS and H∞ components 
in the controller design weakens the problem of missing information on one hand, but 
causes hard controller actions on the other hand. 
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The RIAFC and ORIAFC approaches provide systematic methods to design a tracking 
control for a class of plants with large uncertainty. Irrespective of this fact, there is some 
degree of freedom for a manual optimization of the design parameters (learning rates, 
control- and observer gains, etc.). Due to practical constraints like hard actuator limits, 
geometric limits of the hardware setup, limited sample rate, measurement noise etc. this 
optimization task is time consuming and has to be accomplished for each plant 
individually.  
The adaptive fuzzy control developed in this thesis is designed to be extreme flexible 
concerning the domination of plant uncertainties in form of static plant nonlinearities. The 
price which has to be paid for this flexibility is the lack of freedom regarding fuzzy rule 
base optimization. It is well known, that without rule base modification high plant orders 
lead to a dramatic increase in fuzzy system complexity. The proposed dynamic fuzzy rule 
activation method weakens this phenomenon which is called the “curse of dimensionality”. 
However, this solution represents a compromise and is not able to fully compensate the 
higher demand on hardware resources in comparison to direct adaptive schemes with rule 
base optimization.  
Applying the ORIAFC the impact of measurement noise can be suppressed by the H∞ 
approach. Unfortunely, the usually high inherent feedback gains of the VSS and H∞ 
components revoke this benifit partially. If the plant under control shows a low pass 
characteristic, like the introduced simulation examples, the measurement noise affects 
mainly the controller output signals and as a consequence the actuators. 
 

7.3 Outlook 
 
An interesting future research topic would be the theoretical extension of the in this thesis 
developed algorithms for the application in discrete-time control systems. A simple  
discretization of the continuous-time algorithms in combination with empirically 
determined sampling rate and measurement noise limits can easily be accomplished. But a 
theoretical analysis and prediction of stability and performance limits is a non-trivial task 
when complex uncertain nonlinear systems are under consideration. 
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