

Vienna University of Technology

Institute of Software Technology and Interactive Systems
Favoritenstrasse 9-11/188, 1040 Vienna

Suitability Study of the CMS Trigger Supervisor
Control Panel Infrastructure: The Global Trigger

Case

Diplomarbeit
zur Erlangung des akademischen Grades

„Diplom-Ingenieur“

Student: Alexander Winkler
 Student ID: 0126932
TU Vienna: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Futschek
CERN: DDipl.-Ing. Ildefons Magrans (HEPHY Vienna)
 Dipl.-Ing.Mag. Marc Magrans (CERN)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract Page ii

Abstract
The software level expert tools for the Level 1 Trigger at the CMS Experiment, which

is located at CERN in the LHC tunnel, have been previously developed

heterogeneously as standalone tools. A homogenous design with solely one web

access point will shorten the operators’ learning curve, ease the maintenance of the

overall Level 1 Trigger software infrastructure and enhance sharing of experience

and source code. The hypothesis to be proven says that the Trigger Supervisor

Control Panel infrastructure provided by the Trigger Supervisor Framework is

suitable for the homogenization of the Level 1 Trigger online expert tools. This

document describes the development and integration of the most complex

standalone expert tool as the first Control Panel within the Trigger Supervisor,

namely the one for the Global Trigger.

Abstrakt

Die Software-Level Expertensysteme für den Level 1 Trigger des CMS Experiments,

welches sich auf dem CERN im LHC Tunnel befindet, wurden früher mit

heterogenen Technologien als selbstständig lauffähige Applikationen entwickelt. Ein

homogenes Design mit einer einzigen zugänglichen Schnittstelle verkürzt die

Lernkurve des Operators, vereinfacht die Wartung der Level 1 Trigger Software-

Infrastruktur und fördert den Zugriff als auch die Wiederverwertung von

vorhandenem Source Code. Die zu beweisende Hypothese besagt, dass die Trigger

Supervisor Control Panel Infrastruktur, die vom Trigger Supervisor zur Verfügung

gestellt wird, für die Homogenisierung der Level 1 Trigger Online Expertensysteme

geeignet ist. Dieses Dokument beschreibt die Entwicklung und die Integration des

kompliziertesten selbstständig laufenden Systems als das erste Control Panel

innerhalb des Trigger Supervisors, nämlich das Global Trigger Control Panel.

Eidesstattliche Erklärung Page iii

Eidesstattliche Erklärung
Hiermit versichere ich, die vorliegende Arbeit selbständig, ohne fremde Hilfe und

ohne Benutzung anderer als der von mir angegebenen Quellen angefertigt zu

haben. Alle aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind

als solche gekennzeichnet. Die Arbeit wurde noch keiner Prüfungsbehörde in

gleicher oder ähnlicher Form vorgelegt.

Wien, 14.2.2008

Alexander Winkler

Index Page iv

Index
Abstract ..ii

Eidesstattliche Erklärung ... iii

Index ...iv

1 Introduction..1

2 Introduction to the Scientific Environment..3

2.1 Large Hadron Collider (LHC) at CERN..3

2.1.1 Overview..3

2.1.2 Experiments at LHC ..5

A Toroidal LHC ApparatuS (ATLAS) ..5

Large Hadron Collider beauty (LHCb)..5

A Large Ion Collider Experiment (ALICE)...5

Compact Muon Solenoid (CMS) ...5

2.2 CMS Experiment ...5

2.2.1 Overview..5

2.2.2 Tracker ...6

Strip Tracker ..7

Pixel Tracker..7

2.2.3 Electromagnetic Calorimeter (ECAL) ...8

2.2.4 Hadron Calorimeter (HCAL)...9

2.2.5 Muon Chambers...9

Drift Tube Chamber (DTC) ...10

Cathode Strip Chamber (CSC)...11

Resistive Plate Chambers (RPC) ...11

2.3 CMS Trigger ..12

2.4 Level 1 Trigger (L1T)..12

Index Page v

2.4.1 Overview..12

2.4.2 Calorimeter System..14

2.4.3 Muon System ...14

2.4.4 Global Trigger..15

Trigger Control System Board (TCS)..16

Pipeline Synchronizing Buffer Boards (PSB)..17

Final Decision Logic Board (FDL)..17

Global Trigger Logic Board (GTL) ...17

Timing Board (TIM) ..18

2.4.5 Control Mechanism..18

2.4.6 Trigger Supervisor (TS)...19

3 Global Trigger Control Panel Requirements ...21

3.1 Functional Requirements ...21

3.1.1 Monitoring and Control of the Global Trigger Hardware21

3.1.2 Configuration Data Base Population Tool...21

3.1.3 Access Control Integration ..22

3.1.4 Trigger Menu Generation ..22

3.2 Non-Functional Requirements ...22

3.2.1 User Friendly Design ...22

3.2.2 Desktop-like Look & Feel ...23

3.2.3 Layered Architecture in the Design ...23

4 Architecture..24

4.1 Overview..24

4.2 Class Structure ...25

4.2.1 GtGui..26

4.2.2 Master Panel...27

Index Page vi

4.2.3 MasterTriggerMenu ...27

4.2.4 TechnicalTrigger..28

4.2.5 PtcPanel..28

4.2.6 MasterDialogApply..29

4.2.7 MasterDialogLoad ...30

4.2.8 MasterTimeSlots ..30

4.2.9 PartitionGraph..31

4.2.10 PtcDialogSetPartition...31

4.2.11 PtcMonitorCounters...32

4.2.12 FdlMaskDialog ..32

4.2.13 PtcDetectorStruct ...33

4.2.14 MonitorSource ...33

4.3 GT Cell...34

5 Testing..36

5.1 Hardware Set-Up ...36

5.2 Testing Procedure ..36

5.2.1 Login to cmsdaqpreseries Network ...37

5.2.2 Compiling the Trigger..37

5.2.3 Login to the pcvahcms Computer ..38

5.2.4 Compiling the GT Cell...38

5.2.5 Launching the GT Control Panel ...38

5.2.6 Accessing the Standalone GUI and other Tools connected to the Hardware39

5.2.6.1 Java-implemented Standalone TCS GUI ...39

5.2.6.2 FDL and TCS Standalone GUI’s ...40

6 Performance Measurements...41

6.1 Procedure for Loading-Time Measurement...41

Index Page vii

6.2 Optimization Step 1: Reduce the number of Forms...42

6.3 Optimization Step 2: Reduce the number of Widgets and Events per

XMLHttpRequest...44

6.4 Optimization Step 3: Reduce the number of Widgets and use plain Text if possible

 44

7 Trigger Supervisor Framework Integration ...46

7.1 Generic TS GUI ...46

7.2 Architecture Overview...47

7.3 AjaXell Motivation ..48

7.4 AjaXell Architecture..49

7.5 CellPanel class ...52

7.6 Other Subsystem Control Panels ...56

8 Conclusion ...57

Acknowledgments.. I

List of Figures ... II

Abbreviations...III

Bibliography ..VI

Appendix 1: Source Code ..IX

Introduction Page 1

1 Introduction
The Level 1 Trigger decides about the importance and therefore about the recording

of each bunch crossing event at the CMS Experiment at CERN. The software level

expert tools for the Level 1 Trigger have been previously developed as standalone

tools implemented with a heterogeneous spectrum of technologies.

The goal of the master thesis is to prove the Trigger Supervisor Control Panel

concept drafted within the Trigger Supervisor Framework. This proof happens by the

development and integration of the most complex standalone expert tool as the first

Control Panel within the Trigger Supervisor. The one for the Global Trigger is called

Global Trigger Control Panel.

The development comprises the evaluation of the Global Trigger Control Panel

requirements, the design of the classes and the implementation of the project.

Additionally bugs within the AjaXell library are reported to the AjaXell developers.

The integration comprises the modification of the Trigger Supervisor classes in order

to incorporate the Global Trigger Control Panel into the Trigger Supervisor Generic

GUI. Afterwards a test phase is necessary in order to validate the proper

functionality.

The proof will open doors for the migration of existing standalone tools to Control

Panels and therefore contribute to the harmonization of the Level 1 Trigger expert

tools. The harmonization will provide the following benefits:

1. Learning curve of the operators will become shorter.

2. The maintenance of the overall Level 1 Trigger software infrastructure will

be simplified by eliminating standalone tools which were previously

implemented amongst others by using Tcl/Tk, Java, Qt and Command

line.

3. Sharing of code and experience between subsystems will be enhanced.

The greatest challenges to be met for this master project are the acquirement of a

new technological skill set consisting of C++ and AJAX and the close interaction with

physicists requiring a basic understanding of the physics processes being run within

the scope of the project.

Introduction Page 2

This document is subdivided as follows. Section 2 gives an introduction to the given

scientific environment. It consists of the Large Hadron Collider, the Compact Muon

Solenoid experiment and the Level 1 Trigger. The Level 1 Trigger includes the

Global Trigger, in which the development and the integration of the Global Trigger

Control Panel took place. Section 3 provides the functional and the non-functional

requirements to the Global Trigger Control Panel. Section 4 explains the class

architecture of the Global Trigger Control Panel and the interdependencies between

the classes. Section 5 provides information about the testing procedure. This was

used in order to verify the usability and the correct data flow between the Control

Panel and the hardware. Section 6 gives an insight into performance measurement

and optimization steps. These steps were applied to the Global Trigger Control

Panel in order to improve its response time. Section 7 depicts the necessary classes

used for the integration of the Control Panel into the Trigger Supervisor Framework.

Section 8 summarizes the achievements and outcomes of the master thesis project.

Beside section 2 which describes the broader context of the Global Trigger Control

Panel and beside section 7 which depicts a software architecture already existing

before the start of my project the products of the other chapters were elaborated by

me.

Introduction to the Scientific Environment Page 3

2 Introduction to the Scientific Environment
Chapter 2 gives a brief introduction to the scientific environment. First it describes

the Large Hadron Collider (LHC) including its physics experiments and its goals.

Second the master project was performed within the scope of the Compact Muon

Solenoid (CMS) Experiment. Therefore the CMS Experiment is explained in more

detail. Third the Level 1 Trigger (L1T) including its Global Trigger (GT) is introduced.

The Trigger Supervisor (TS) Framework is responsible for monitoring and operating

the L1T. Also the Run Control Management System (RCMS) is described as part of

the distributed control system.

2.1 Large Hadron Collider (LHC) at CERN

2.1.1 Overview

The LHC [1] is being built in order to find new physics at high energies. It is a particle

accelerator located at CERN [2] which will be switched on in 2008. It has a

circumference of 27 kilometers, crossing the Swiss and French borders and is buried

at around 50 to 175 m depth. The tunnel is the same as the one used for the Large

Electron Positron (LEP) Collider during the 90’s. LHC will collide two counter rotating

beams (see Figure 1) of heavy ions or protons. The beams are moved inside a

continuous vacuum and kept on track by superconducting magnets. A huge

cryogenics system is cooling these magnets down to about 300 degrees below room

temperature. Inside the four main LHC experiments proton-proton collisions will

occur at energies of 7 TeV per beam.

Introduction to the Scientific Environment Page 4

Figure 1: Two beams within the LHC collider [1].

The LHC will create a post big bang similar environment for probing deeper into

matter than ever before and thereby answering amongst others the following

physical questions:

• Higgs: The Standard Model includes a yet undiscovered particle, the Higgs

boson, which is necessary to give mass to certain particles. The Higgs-Boson

is assumed to be neutral and to have spin-0. Its mass is not predicted by the

model. Depending on whether the particles interact heavily or lightly with the

Higgs-Field their mass is big or small. If existing, the Higgs-Boson should be

found at LHC.

• SUSY: For each particle there exists a supersymmetric partner.

Superpartners have a spin difference of ½ with respect to the Standard Model

particles. Supersymmetric particles (sparticles) must be heavy since none of

them has been discovered so far. If existing, the supersymmetric partners

should be found at LHC.

• Dark Matter: In astrophysical context the question arises if Dark Matter exists.

• Dark Energy: This energy accelerates the expansion of the universe and

accounts for ¾ of the universe’s mass.

Introduction to the Scientific Environment Page 5

2.1.2 Experiments at LHC

A Toroidal LHC ApparatuS (ATLAS)

The ATLAS experiment [3] is one of the main LHC experiments and one of two

general-purpose experiments. Its goal is to evaluate high-energy proton-proton

collisions in order to find the Higgs-Boson. Also SUSY is hoped to be proven. The

detector is built onion-layered in order to examine different particle signatures.

Large Hadron Collider beauty (LHCb)

LHCb [4] is a single-arm spectrometer. It has a forward coverage from approximately

10 mrad to 300 mrad in the bending plane. Its goal is to measure CP violations with

B-mesons.

A Large Ion Collider Experiment (ALICE)

ALICE [5] is a heavy ion detector. It will measure the flavor content and phase-space

distribution event by event for a large number of particles whose masses and

momenta are of the order of the typical energy scale involved. This experiment will

cope with the highest particle multiplicities anticipated.

Compact Muon Solenoid (CMS)

CMS is the second of two general-purpose experiments for the LHC [6]. It will

examine proton-proton collisions. Special compared to ATLAS is the scintillating

crystal calorimeter for high energy protons (see Section 2.2 for more details). CMS

and ATLAS are designed to prove each other’s results.

2.2 CMS Experiment

2.2.1 Overview

The CMS Experiment is a general-purpose experiment. CMS’ main feature is a

strong solenoidal magnetic field. CMS consists of a crystal electromagnetic

calorimeter, an inner tracker with an embedded pixel detector, a copper-scintillator

hadron calorimeter and a muon system made up of special trigger chambers and

tracking chambers. Figure 2 shows the composition of the CMS Experiment, which is

described in sections 2.2.2 - 2.2.5.

Introduction to the Scientific Environment Page 6

Figure 2: CMS Experiment composition [16].

2.2.2 Tracker

The Tracker reveals the positions at which unstable particles decay and measure the

momenta of charged particles. The detectors are arranged in following way.

• Pixel detectors [7] are placed closest to the interaction vertex where the

particle flux is the highest (about 107/s at r = 10 cm)

• Silicon microstrip detectors [8] are used in the intermediate region (20 < r <

55cm), where the particle flux is low enough.

• Larger-pitch silicon microstrips are used in the outermost region (r > 55cm) of

the inner tracker, where the particle flux has dropped significantly.

The silicon microstrip detectors in the barrel part are placed at r between 20 and 110

cm. The forward region has two pixel and nine microstrip layers in each of the two

endcaps. The barrel tracker region is divided into two parts; a Tracker Inner Barrel

(TIB) and a Tracker Outer Barrel (TOB). The inner barrel is shorter than the outer

barrel in order to avoid excessively shallow track crossing angles. Additionally there

are three inner disks in the transition region between the barrel and endcap parts on

each side of the inner barrel. The total area of the pixel detector is about 1 m2, while

that of the silicon strip detector is 200 m2 providing coverage up to a rapidity range of

Introduction to the Scientific Environment Page 7

|η| < 2.4. The inner tracker comprises 9.6 million silicon strips and 66 million pixels

which will be described briefly in the subsequent sections.

Strip Tracker

The TIB is made of four layers and covers the effective nuclear electron charge of up

to |z| < 65 cm using silicon sensors with a thickness of 320 µm and a strip pitch

varying from 80 to 120 µm. The TOB has six layers with a half length of |z| < 110 cm.

Small radiation levels provide a good signal to noise (S/N) ratio for longer strip length

and wider pitch. The silicon sensors are 500 µm thick and the strip pitch varies from

120 to 180 µm.

The endcaps consist of the Tracker Inner Disk (TID) and Tracker End Cap (TEC).

Each TID consists of three disks that fill the gap between TIB and TEC. Each TEC

consists of nine disks which extend into the region 120 cm < |z| < 280 cm.

The entire silicon strip detector (see Figure 3) comprises almost 15.400 modules

housed within a temperature controlled outer support tube and mounted on carbon-

fiber structures.

Figure 3: Layout of the barrel silicon detector [6].

Pixel Tracker

The pixel detector comprises three barrel layers with two endcap disks on each side

(see Figure 4). Each pixel module has the size 100 x 150 µm2 (in (r, Ф) and on z-

coordinate). 768 pixel modules are arranged into half-ladders of four identical

Introduction to the Scientific Environment Page 8

modules each form a barrel. A turbine-like geometry is used for assembling the

endcap disks.

Figure 4: Layout of the CMS Pixel Tracker with its end caps [7].

2.2.3 Electromagnetic Calorimeter (ECAL)

The ECAL (see Figure 5) is a high precision scintillating crystal calorimeter. The

ECAL will contribute massively to the search for the Higgs. It has to work within an

extreme environment, whereby every 25 ns an average of 20 events with some 1000

charged tracks will be generated. Big effort has been put into developing appropriate

crystals, electronics, photo detectors and software. The ECAL provides the best

performance since most of the energy from photons or electrons is available within

the homogeneous crystal volume of the calorimeter. The crystals chosen are lead

tungstate (PbWO4) crystals. PbWO4 has a small Moliere radius and a short radiation

length. Therefore it is a fast scintillator which can be produced from existing raw

materials.

Introduction to the Scientific Environment Page 9

Figure 5: The Electromagnetic Calorimeter of the CMS experiment [9].

2.2.4 Hadron Calorimeter (HCAL)

The HCAL [10] will measure gluon, quark and neutrino directions and energies.

Therefore it will measure the direction and energy of particle jets of the missing

transverse energy flow. The identification of missing energy will provide a crucial

signature for new phenomena and particles. These might be relevant for the search

of SUSY partners of quarks and gluons. The HCAL will also contribute to the

identification of photons, electrons and muons in conjunction with the muon systems

and the ECAL.

2.2.5 Muon Chambers

The muon detector [11] has to fulfill three tasks: muon identification, momentum

measurement and triggering. It is located behind the calorimeters and the coil and

consists of four muon stations (see Figure 6) which are at mean radii of 4.0, 4.9, 5.9

and 7 m from the beam axis and are interleaved with the iron return yoke plates. In

both the barrel and the forward regions, a space of 40 cm is available for four muon

stations. The first 5 cm are used as air gap. The remaining space is used for the

chambers, which will be described in the subsequent sections.

Introduction to the Scientific Environment Page 10

Figure 6: Lateral cut of the CMS Experiment showing the four Layers of the Muon Chambers/Stations
[7].

Drift Tube Chamber (DTC)

The DTCs (see Figure 7) are used where the neutron induced background is small

and the muon rate as well as the magnetic field in the chambers is low. This is true

for the barrel region (|η| < 1.2). Each of the five wheels of the barrel detector is

separated into 12 sectors. A Punch-through is induced by pions, which pass through

the calorimeters [13]. Chambers in different stations are constructed so that high-pT

(punch through) muons produced near a sector boundary will have to cross at least

three out of four stations. The single point resolution is about 200 µm. Each station

will give a muon vector in space with approximately 1 mrad in Ф direction and a

precision better than 100 µm in position.

Figure 7: Lateral cut of the Drift Tube Chamber [12].

Introduction to the Scientific Environment Page 11

Cathode Strip Chamber (CSC)

CSCs are used in the region up to |η| < 2.4. The Muon Endcap (ME) system consists

of two endcaps containing 468 CSCs. Each ring of a muon station contains 36

chambers. The innermost ring of the second through fourth disk contains 18

chambers. A charged particle which traverses each plane of a chamber causes a

gas ionization and subsequent electron avalanche whereby producing an image

charge on a group of cathode strips and a charge on the anode wire. The cathode

strips induce the charge distribution whereby the centre-of-gravity can be determined

and the position precisely measured.

Resistive Plate Chambers (RPC)

RPCs are used as well in the barrel as in the endcap regions. Avalanche mode

ensures good operation at high rates (up to 10 kHz/cm2). The RPCs are assembled

out of two parallel resistive plastic plates which are separated by a few millimeters

gas gap. They offer a fast response and a good time resolution. The position

resolution is worse than the one of DTCs and CSCs however, RPCs can measure

the time of occurrence of a bunch crossing with a precision better than 2 ns. The

arrangement of DTC and RPC is shown in Figure 8.

Figure 8: Arrangement of one muon station [11].

Introduction to the Scientific Environment Page 12

2.3 CMS Trigger

A highly selective online data selection process and a sophisticated high bandwidth

data acquisition system are needed to store the rare processes which may occur at

high collision energies and rates. The accelerator will produce heavy-ion and proton-

proton collisions at high interaction rates. The crossing interval for proton bunches

within the beam is 25 ns. The average interaction rate is 40 MHz with a mean event

size of 1 MB (i.e. 40 TB/s of data). The amount of data generated can neither be

stored nor transported. Therefore a reduction mechanism has been introduced, the

so-called Trigger System which is the beginning of the physics event selection

process. The rate is sequentially reduced in two stages called Level 1 Trigger (L1T)

(see section 2.4) and High Level Trigger (HLT) [14]. The first is a custom hardware

system, and the second is a computer farm running a distributed software

application. The rate reduction for the combined L1T and HLT will be at least a factor

of 106. The maximum allocated bandwidth to the L1T is 100 kHz and will be reduced

to 50 kHz at the startup of LHC due to operational reasons. In the second stage, the

HLT will reduce the rate to 100 Hz (i.e. 100MB/s of final data throughput). This

document describes solely the scope of the L1T.

2.4 Level 1 Trigger (L1T)

2.4.1 Overview

Due to limited disk space and due to the high frequency of bunch crossing events a

mechanism is needed to reduce the rate of stored and processed events for the

CMS experiment. The L1T [15] has been created as a custom built hardware system

which decides whether to accept or reject events within a few microseconds after the

collision. It consists of the calorimeter trigger systems and the muon trigger systems

which generate trigger primitives and send them to the Global Trigger (GT) [16] (see

Figure 9).

Introduction to the Scientific Environment Page 13

Figure 9: Composition of the L1 Trigger [17].

Introduction to the Scientific Environment Page 14

2.4.2 Calorimeter System

There exist three calorimeters detectors: Forward Hadronic Calorimeter (HF),

Central Hadronic Calorimeter (HCAL) and Electromagnetic Calorimeter (ECAL).

These detectors send information to the Regional Calorimeter Trigger (RCT) in order

to identify the best photon, electron or hadron jet candidates. Afterwards, the

candidates are sent to the Global Calorimeter Trigger (GCT) and sorted by quality,

correlation, and pT. The best four in terms of pT and quality are sent to the GT.

2.4.3 Muon System

There exist three muon detectors having its own trigger logic: Resistive Plate

Chamber (RPC), Cathode Strip Chamber (CSC) and Drift Tube (DT). These

detectors send information to their corresponding trigger track finders - Cathode Strip

Chamber Track Finder (CSCTF), Drift Tube Track Finder (DTTF) and Pattern

Comparator Trigger (PACT) in order to identify the muon tracks. The Global Muon

Trigger (GMT) validates the muon charge sign, converts the track parameters from

all subsystems to the same scales, and finally, attempts to correlate the tracks of the

different subsystems in order to improve the quality of the best candidates. It sends

the best in terms of pT and quality four muons to the GT. Figure 10 shows the

position of the three detectors. CSCs are allocated in the forward region. DTs are

allocated in the barrel region outside of the magnet coil.

Introduction to the Scientific Environment Page 15

Figure 10: Longitudinal cut of the CMS Muon System [7].

2.4.4 Global Trigger

The GT is the final stage of the L1T. Its decisions are based on the trigger objects

provided by the GCT and the GMT. Trigger objects can be jets, candidate electrons

or muons. The determination happens in three logical steps. First the muon and

calorimeter system generate local trigger information, which is called Trigger

Primitives. Second and third are the calculations of global and regional subdetector

specific quantities. These steps are performed as one step for the RPCs since they

don’t diversify between regional and global trigger systems. The global quantities are

forwarded to the GT.

The ultimate goal of the GT is to generate - dependent on the Trigger Primitives - L1

Accept/Reject (L1A) signals and send them to the Timing, Trigger and Control (TTC)

System [18], which itself delivers it to the different subdetector front-end controllers..

The GT must decide about events every 25 ns without any interruption. The main

Introduction to the Scientific Environment Page 16

part of the Global Trigger Processor logic is the trigger algorithms. An algorithm is

the combination of trigger objects fulfilling threshold, space and quality requirements.

Up to 128 algorithms can be programmed for the physics run. All algorithms are

processed concurrently and results are delivered as a string of 128 bits. The final

decision regarding the L1A is taken by applying a final OR on the 128 algorithm bits.

The GT is a complex electronic system consisting of several VERSAmodule

Eurocard Bus (VME) modules mounted in a VME9U crate (see Figure 11) together

with the central Trigger Control System (TCS) and the GMT. The modules are

described briefly in the subsequent sections.

.

Figure 11: The GT crate with its boards [29].

Trigger Control System Board (TCS)

The TCS board [19] controls the delivery of L1A. It also generates Bunch Crossing

Zero and Level 1 Reset commands and controls the delivery of calibration and test

triggers. Bunch Crossing Zero commands reset the counters in order to begin a new

Introduction to the Scientific Environment Page 17

LHC orbit. The Level 1 Reset command resets the hardware to the original status.

The board receives the status of the L1A and distributes information to the

subsystems through the TTC network.

The Trigger Control Logic divides the CMS readout system into 8 TTC/DAQ-

Partitions (for more information see section 2.4.5). The Global Trigger Processor

generates maximum 1 Final-OR for each TTC/DAQ-Partition.

Pipeline Synchronizing Buffer Boards (PSB)

The PSB boards monitor all bits for every bunch crossing and synchronize the fast

commands generated by the TCS to the GT clock. The PSB input modules receive

12 input channels for synchronizing all input channels to each other and to the LHC

orbit. Three PSB boards are used for the GMT, two are used to accept fast control

signals for the TCS and three are used for the GT logic. All input channels but the

muons are sent to the Global Trigger Logic (GTL) [20] module via the backplane.

This happens with a programmable delay which keeps the overall L1 latency as

small as possible.

Final Decision Logic Board (FDL)

The FDL board computes the L1A signal for each of the 8 TTC/DAQ-Partitions. The

L1A is computed using an OR function that combines 128 algorithms bits from the

GTL board and 64 technical trigger (triggers containing Beam Scintillator Counters)

bits from a dedicated PSB board. These signals are sent to the TCS board, if the

Trigger Throttling Rules accept the signals they will be forwarded to the front-end

electronics in order to read-out the corresponding event. The Trigger Throttling

System (TTS) [21] guarantees that the trigger logic is not overloading the electronic

devices within the data flow from the front-end to the storage media. Technical

Triggers and Trigger Algorithms are defined as “slices”, which can be accessed by a

rate counter.

Global Trigger Logic Board (GTL)

The GTL receives the best four muons from the GMT. The GTL board combines the

data from GMT and GCT and calculates up to 128 trigger algorithms in parallel. It

delivers the algorithm bits to the FDL module in order to be prescaled. Thereby for

L1A rates, that are too high, a prescale factor can be applied for each slice.

Introduction to the Scientific Environment Page 18

Timing Board (TIM)

The TIM [22] is responsible for the distribution of the clock and fast control

commands to all the boards of the GT crate.

2.4.5 Control Mechanism

The Run Control and Monitoring System (RCMS) [23] is the control system of the

CMS experiment. It is the collection of hardware and software components

responsible for controlling and monitoring the CMS experiment during data taking.

The RCMS subdivides the Data Acquisition (DAQ) into up to eight TTC/DAQ-

Partitions. These partitions can be accessed independently and are used for

configuring and operating the trigger and readout electronics. Each TTC/DAQ-

Partition can take care of a subset of the 32 detector groups (i.e. Timing, Trigger and

Control System (TTC) Partitions).

Each TTC/DAQ-Partition is controlled by a Session Manager (SMR) of the RCMS.

The SMR controls the user access rights and distributes the fast commands to the

lower levels. Every subsystem has a corresponding Function Manager (FM). Per

TTC/DAQ-Partition one FM is instantiated. It receives requests from the appropriate

SMR and provides the Application Program Interface (API) to the subsystem

application. This allows transforming requests and forwarding them to the

subsystems. Figure 12 shows the CMS control architecture.

Introduction to the Scientific Environment Page 19

Figure 12: RCMS as an element of the CMS Control Software containing SMR, Subsystems and FMs.

The TS is the control node of the L1T in the hierarchical control structure of the CMS experiment [17].

2.4.6 Trigger Supervisor (TS)

The application for the L1T control is the TS System. The TS is a distributed

software application designed to set up, monitor and test the trigger components and

to manage their information exchange and their interplay with the RCMS [24]. Figure

13 shows the architecture of the TS. The TS System has been built using the TS

Framework [25], a software framework based on the Cross-Platform DAQ

Framework middleware (XDAQ) [26]. The TS is also a distributed application that

controls all the nodes of the L1T. All the TS nodes (in this case called TS

Subsystems) are XDAQ applications referred to as Cells. One of them is the GT Cell.

The top element of this hierarchical structure is the Central Cell. This can be

accessed by several RC sessions concurrently and propagate information to the

subsystem cells. The subsystem cells have to be implemented in order to operate

the corresponding hardware.

Introduction to the Scientific Environment Page 20

Figure 13: Architecture of the TS System [17].

Currently, there are two interfaces to communicate with the TS Cells (see Figure 14).

A machine-to-machine Simple Object Access Protocol (SOAP) [27] interface to

communicate between Cells and between the Central Cell and RCMS, and a human-

to-machine Common Gateway Interface (CGI) [28] to control the Cells from a web-

browser.

Figure 14: The two available interfaces to access the GT Cell: HTTP and SOAP.

Global Trigger Control Panel Requirements Page 21

3 Global Trigger Control Panel Requirements
Chapter 3 describes the functional (see section 3.1) and non-functional (see section

3.2) requirements for the GT Control Panel. In order to create the requirements for

the GT Control Panel a triple approach has been used. First, an informal weekly

follow up of the development of the Control Panel has been arranged. During these

meetings the current version of the Control Panel was presented in front of the group

in order to boost the discussion and extract the requirements from the users.

Second, some formal and public presentations of the state of the GT Control Panel

have been held. And finally the old GUI’s based on Java Swing and C++ Qt have

been used as an example for the desired look and feel.

3.1 Functional Requirements

3.1.1 Monitoring and Control of the Global Trigger Hardware

The GT Control Panel shall implement the most important functionalities to monitor

and control the GT hardware [29]. That includes monitoring of the counters and the

Timing, Trigger and Control System (TTC) Subdetectors assigned to the TTC/DAQ-

Partitions, setting the time slots, enabling and disabling the TTC Subdetectors for a

given TTC/DAQ-Partitions, setting the Final Decision Logic (FDL) board mask,

starting a run, stopping a run, starting random triggers, stopping random triggers,

changing the frequency and step size for random triggers and resynchronization and

resetting of each of the TTC/DAQ Partitions.

3.1.2 Configuration Data Base Population Tool

The GT Control Panel shall allow hardware experts to create configuration entries in

the Configuration Database (DB) without the need of any knowledge of the

underlying schema of the DB. The Configuration DB contains information about the

configuration of the GT. Currently the tool being used to populate the configuration

DB is a browsable GUI developed with the use of Java Server Pages (JSP) [30].

Global Trigger Control Panel Requirements Page 22

3.1.3 Access Control Integration

The GT Control Panel shall support different access control levels. Depending on the

user of the Control Panel (i.e. an expert, a shifter or any other person) the panel has

to visualize different information and allow different tasks to be performed.

3.1.4 Trigger Menu Generation

The GT Control Panel shall allow the visualization and modification of the Trigger

Menu. The Trigger Menu is the high level description of the algorithms that will be

used in the Final Decision Logic (FDL) board in order to choose the desired events.

For each algorithm it shall be possible to visualize and modify the name, algorithm

number, prescale factor, algorithm description and condition properties (i.e.

threshold, quality, etc.).

3.2 Non-Functional Requirements

3.2.1 User Friendly Design

The usage of the GT Control Panel has to be intuitive and self explanatory. All the

functionalities provided have to be clearly structured. The related information has to

be visualized in the best case at one glance.

The Control Panel has to be fast (i.e. more than ~ 5 s response time for any change

in the Control Panel appears to the user as a broken application). The startup time of

the GT Control Panel has to be short. Loading time and switching time between tabs

and screens also has to be fast. The information and values edited in the panel have

to be applied immediately to the hardware except for the values which are meant to

be applied collectively with other values.

The Control Panel has to be browser independent. At least, it has to support the two

most common browsers being Internet Explorer and Mozilla Firefox in any screen

resolution.

Global Trigger Control Panel Requirements Page 23

The inputs which can be performed by the users have to be checked for errors. In

case of unacceptable values the GT Control Panel has to provide reasonable error

messages.

3.2.2 Desktop-like Look & Feel

The GT Control Panel has to provide Desktop-like look and feel. This means that it

has to behave like the desktop applications commonly used under Windows, Linux

and Macintosh operating systems. Widgets like tabs, sliders and trees shall facilitate

work.

3.2.3 Layered Architecture in the Design

The architecture of the GT Control Panel has to be layered. This architecture will

allow the developers of different layers to work independently if the interfaces

between layers are clearly defined and stable (see section 4.1 for an explanation of

the layered architecture underlying the GT Control Panel).

Architecture Page 24

4 Architecture
Chapter 4 gives an overview about the software layers of the GT software

architecture. It also describes all classes which were developed within the scope of

the master thesis project for the highest software layer being the GT Control Panel

4.1 Overview

The GT subsystem can be controlled through the GT Control Panel. The GT Control

Panel offers means to operate, monitor, and test the GT. It is built upon several

software layers (see Figure 15).

The GT Control Panel is the highest level layer within the GT software. The GT

Control Panel interfaces with the GT Cell software and with the TS Framework. The

GT Cell customizes many services provided by the TS Framework e.g. logging,

database access, access control, Control Panel customization, monitoring, etc.

These same services are used also by the GT Control Panel.

Figure 15: Layered Architecture of the GT Control Panel.

In order to develop a Control Panel a CellPanel class descendant must be

instantiated. This class allows the integration of the new Control Panel as a plug-in

into the TS GUI (see section 7.1 for more information about the generic TS GUI).

Architecture Page 25

Therefore the CellPanel descendants allow the TS subsystem developers to

customize the Control Panel for their concrete requirements. These classes will

encapsulate the look and feel (widgets and related events) of a custom Control

Panel for the subsystems. Figure 16 describes the CellPanel main dependencies.

Figure 16: Relationship between CellPanel, ajax::Widget and ajax::Container.

The class CellPanel contains one method called layout(). This method is used by

every inherited class to display the corresponding part of the Control Panel.

The namespaces gtgui and gttoolbox have been introduced. The first wraps all

classes belonging to the GT Control Panel. The latter has been created to

encapsulate all calls to the GT Cell layer. This layer is implemented using

CellCommand and CellOperation descendants of the TS Framework. The gttoolbox

namespace uses routines that wrap the calls to these classes in order to get access

to the hardware functionalities.

4.2 Class Structure

An overview of the class structure of the GT Control Panel is shown in Figure 17. All

the classes shown in the figure but MonitorSource were developed within the scope

of the master thesis project. They are descendants of the CellPanel class.

MonitorSource is the container of the Monitorable Items definition of the GT (see [31]

for more information about monitoring within the TS Framework).

The classes shown in Figure 17 are described in subsections 4.2.1 - 4.2.14.

Architecture Page 26

Figure 17: Class Diagram of the GT Control Panel.

4.2.1 GtGui

The class GtGui (see Figure 18) is the root class of the GT Control Panel. It contains

all widgets and CellPanel descendants that correspond to the GT Control Panel.

The visual content comprises a TabContainer, which contains eleven tabs. Eight out

of the eleven tabs are used to display the eight TTC/DAQ Partitions, one tab is used

for the common functionalities of the GT (the “CENTRAL” tab) and, two tabs are

used for the Trigger Menu and for the Technical Triggers.

The behavior is encapsulated in the event handler that corresponds to the OnFocus

event of the tabs in the TabContainer. By clicking on the tab the content of the tab is

being refreshed.

Figure 18: Relationships associated with class GtGui.

Architecture Page 27

4.2.2 Master Panel

The class MasterPanel (see Figure 19) is contained by the class GtGui and it is used

to display and control common configuration items that are not specific to a concrete

TTC/DAQ Partition.

The visual content comprises a graph, a table and two buttons. The graph shows the

assignment of TTC/DAQ Partitions to subdetectors. The table shows the time slots

allocation. Since only one TTC/DAQ-Partition can be operated at one time, time slots

need to be assigned. The buttons will be used to apply and load either from/to

database or from/to hardware.

The behavior is encapsulated by two events. One event is for refreshing the content

of the graph and another for submitting the time slot assignment.

Figure 19: Relationships associated with class MasterPanel.

4.2.3 MasterTriggerMenu

The class MasterTriggerMenu (see Figure 20) is contained by the GtGui class and is

used to visualize and modify the Trigger Menu.

Architecture Page 28

The visual content comprises all (by the time being 128) algorithms including their

number, their rate and their prescale factor.

The behavior is encapsulated by the OnChange event of the prescale InputText.

Figure 20: Relationships associated with class MasterTriggerMenu.

4.2.4 TechnicalTrigger

The class TechnicalTrigger (see Figure 21) is contained in the GtGui class.

The visual content comprises up to 64 Technical Trigger slice information including

their number, trigger rate and prescale.

The behavior is encapsulated by the OnChange event of the prescale InputText.

Figure 21: Relationships associated with class TechnicalTrigger.

4.2.5 PtcPanel

The class PtcPanel (see Figure 22) is contained in the GtGui class. This class is

used to control and monitor the Partition Controller board of a given TTC/DAQ

partition.

This class uses objects of the classes PtcDialogSetPartition, FdlMaskDialog and

PtcMonitorCounters.

Architecture Page 29

Figure 22: Relationships associated with class PtcPanel.

4.2.6 MasterDialogApply

The class MasterDialogApply (see Figure 23) is part of the class MasterPanel. This

class is used to apply the actual configuration either to hardware or to the

configuration DB. For now it is just a placeholder, since applying to the hardware

happens immediately after an event like a button click has been triggered. Applying

of the whole configuration to the database will be implemented in a further step.

The visual content comprises a button. Next to the button there exists a list with the

available choices for applying the changes to hardware or database.

The behavior is encapsulated by the OnClick event. It is triggered by clicking on the

“OK” or the “Cancel” button.

Figure 23: Relationships associated with class MasterDialogApply.

Architecture Page 30

4.2.7 MasterDialogLoad

The class MasterDialogLoad (see Figure 24) is contained in the MasterPanel class.

This class is used to load the actual configuration from the hardware or from the

Configuration DB to the Control Panel. For now it is just a placeholder, since loading

from the hardware is done by default. Loading of the whole configuration from the

database will be implemented in a further step.

The visual content comprises a button. Next to the button there exists a list with the

available choices for getting the information from hardware or database.

The behavior is encapsulated by the OnClick event. It is triggered by clicking on the

“OK” or the “Cancel” button.

Figure 24: Relationships associated with class MasterDialogLoad.

4.2.8 MasterTimeSlots

The class MasterTimeSlot (see Figure 25) is contained by MasterPanel. This class is

used to visualize and modify the time slots assigned to each TTC/DAQ partition.

The visual content comprises a table with the TTC/DAQ Partition numbers and eight

InputBoxes below them. The InputBoxes show the value of their corresponding time

slot. A common button is provided for applying the whole table to the hardware.

The behavior is encapsulated by the OnSubmit event of the form that contains the

different InputBoxes.

Architecture Page 31

Figure 25: Relationships associated with class MasterTimeSlots.

4.2.9 PartitionGraph

The class PartitionGraph (see Figure 26) is contained in the MasterPanel class.

This class is used to visualize the assignment of subdetectors to a given TTC/DAQ

Partition. The assignment is stored in the struct PtcDetectorStruct.

The visual content comprises a matrix with 32x8 fields, which describes the

assignment of the TCC Subdetectors to its TCC/DAQ Partitions and to its status. The

assigned field is marked either green or red depending on if the enable-bit is set 1 or

0.

The behavior is encapsulated by one event, namely the OnClick event. Its purpose is

to refresh the graph.

Figure 26: Relationships associated with class PartitionGraph.

4.2.10 PtcDialogSetPartition

The class PtcDialogSetPartition (see Figure 27) is contained in the PtcPanel class.

This class is used to visualize and modify the enable bit of a TTC/DAQ partition for

an assigned subdetector. Only already previously assigned subdetectors can be

enabled or disabled.

Architecture Page 32

The event used for enabling and disabling the subdetectors is the OnSubmit event.

By executing this event, the submitted values are applied to the hardware.

Figure 27: Relationships associated with class PtcDialogSetPartition.

4.2.11 PtcMonitorCounters

The class PtcMonitorCounters (see Figure 28) is contained in the PtcPanel class.

This class is used to retrieve the Monitor Counters and to visualize them in an

appropriate format. There exist 40 Monitor Counter bits, which contain the status of

the hardware.

The event used in that class is OnClick. It allows the refreshing of the Monitor

Counters.

Figure 28: Relationships associated with class PtcMonitorCounters.

4.2.12 FdlMaskDialog

The class FdlMaskDialog (see Figure 29) is contained in the PtcPanel class. This

class is used to define the Final Or Mask for a given TTC/DAQ partition.

The OnSubmit event is used to apply the value of the CheckBoxes to the hardware.

Architecture Page 33

Figure 29: Relationships associated with class FdlMaskDialog.

4.2.13 PtcDetectorStruct

The structure PtcDetectorStruct (see Figure 30) is used by the

PtcDialogSetPartition and PartitionGraph classes in order to store the enable bit

and the assigned subdetector of a given TTC/DAQ partition.

Figure 30: Relationships associated with struct PtcDetectorStruct.

4.2.14 MonitorSource

The class MonitorSource is a descendant of DataSource (a class of the TS

framework) used to define the monitorable items of the GT Cell.

Actually the Monitor Counters of TCS are available through the class MonitorSource

(see Figure 31).

Figure 31: Relationships associated with class MonitorSource.

Architecture Page 34

4.3 GT Cell

As has been shown in section 3.1 the GT Control Panel has been developed within a

layered architecture. Therefore, the GT Control Panel is decoupled from the other

software layers and can be developed separately. In order to use the GT

CellCommands the namespace gttoolbox has been introduced. Every function in this

namespace uses a CellCommand descendant that has been implemented by the GT

developers in order to create a SOAP/C++ interface to the Online Software

Infrastructure. All the functions within the gttoolbox namespace interact with the

VME controller in the GT Crate.

Table 1 shows the relation between the different layers for the GT software. Every

listed CellPanel descendant uses one or several CellCommands through the wrapper

provided by the gttoolbox namespace.

Class FUNCTIONALITY
within GT Control
Panel

gttoolbox command GT Cell command

MasterDialogLoad displaying the
assignment in the graph

getAssignPart GtTcsMasterGetAssignPart

gttoolbox,
MasterDialogLoad

displaying the
assignment in the graph

getAssignPartEn GtTcsMasterGetAssignPartEn

PtcDialogSetPartition,
MasterDialogApply

setting the enable bit for
the subdetector to
partition assignment

setAssignPartEn GtTcsMasterSetAssignPartEn

PtcPanel displaying the random
trigger frequency

getRndFrequ GtTcsPtcGetRndFrequ

PtcPanel setting the random
trigger frequency

setRndFrequ GtTcsPtcRndFrequ

PtcPanel starting the random
trigger

startRndTrigger GtTcsPtcStartRndTrigger

PtcPanel stopping the random
trigger

stopRndTrigger GtTcsPtcStopRndTrigger

MasterTimeSlots displaying time slots getTimeSlot GtTcsPtcGetTimeSlot

MasterTriggerMenu,
TechnicalTrigger

displaying rate counters readRateCounter GtFdlReadRateCounter

MasterTriggerMenu,
TechnicalTrigger

setting the prescales setPrescaleFactor GtFdlSetPrescaleFactor

MasterTriggerMenu, displaying the prescales getPrescaleFactor GtFdlGetPrescaleFactor

Architecture Page 35

TechnicalTrigger

PtcPanel reseting the partition hardReset GtTcsPtcHwReset

PtcPanel resynchronizing the
partition

resync GtTcsPtcResync

PtcPanel setting the FinOrMask setFinOrMask GtFdlSetFinOrMask

MasterTimeSlots setting the time slots setTimeSlot GtTcsPtcSetTimeSlot

PtcPanel starting the run startRun GtTcsPtcStartRun

PtcPanel stopping the run stopRun GtTcsPtcStopRun

PtcPanel displaying the
FinOrMask

getFinOrMask GtFdlGetFinOrMask

PtcPanel displaying the partition
input status

getMasterPtcInputStat GtTcsMasterPtcInputStat

PtcPanel displaying the partition
output status

getMasterPtcOutputStat GtTcsMasterPtcOutputStat

PtcDialogSetPartition,
PartitionGraph

displaying detector
status

getMasterDetectorStat GtTcsMasterGetDetectorStat

MasterTriggerMenu used for creating the
trigger menu

getNumberOfAlgos GtFdlGetNumberOfAlgos

TechnicelTrigger,
MasterTriggerMenu

used for creating the
technical trigger menu

getNumberOfTechTrigge
rs

GtFdlGetNumberOfTechTrigg
ers

Table 1: Relation between different layers of the GT software architecture.

Testing Page 36

5 Testing

Chapter 5 describes the hardware set-up and the hardware testing procedure. The

testing procedure includes the tests with dummy (see information about HAL library

[32]) and real hardware. The tests have to be seen in the context of the Magnetic

Test and Cosmic Challenge (MTCC) effort. MTCC is the name for the test procedure

during which the magnetic solenoid was activated and used with cosmic muons. The

GT Control Panel tests have been designed with the help of a hardware expert.

5.1 Hardware Set-Up

The computer named pcvahcms (inside the cmsdaqpreseries network) has been used

as the host for the GT Control Cell. It is connected to the GT hardware through a PCI

board that communicates with the CAEN controller in the VME crate of the GT. That

computer is located in the control room of the MTCCII (Green Barrack, Cessy,

France). pcvahcms has been operated remotely using a web browser from computers

inside the cern network in the building 40 at CERN (Meyrin, France).

pcvahcms is a i686 processor with 1 GB of memory and 50 GB hard disk. The

operating system used is Scientific Linux (SL) CERN Release 3.0.6 [33]. The

software installed is XDAQ 3.5.2, Power Pack 1.4.3 and Work Suite 1.5.1 [34]. The

CAEN driver [35] used is V2718 PCI-VME Bridge v2.4. The Concurrent Versioning

System (CVS) head of the TS Framework is being used during all the development

(roughly corresponding to the version 1.3 of the framework).

5.2 Testing Procedure

For the testing procedure of the GT Control Panel tests with dummy and real

hardware have been performed.

The dummy tests are useful in order to test the functionalities, the look and feel, and

the integration of the GT Control Panel within the TS Framework. The hardware tests

have been done in order to test the interaction of the GT Control Panel with the real

GT hardware.

The goal of the hardware tests is to check if the functionalities of the GT Control

Panel correspond to the desired hardware behavior. In order to test the proper

Testing Page 37

functionality an expert is needed to support the testing procedure. The expert is

responsible for the maintenance of the hardware set-up and he knows how to check

(usually by using standalone tools) the hardware for correct behavior.

The procedure to compile, execute and test the control panel needs a number of

steps which are explained in the sections 5.2.1- 5.2.6.

5.2.1 Login to cmsdaqpreseries Network

First the user has to login to the cmsdaquser0 computer or other head-nodes of the

cmsdaqpreseries network.

user@computer > ssh cmsdaquser0

Then he has to switch to the /home/gtts directory.

[cmsdaquser0] /home/user > cd /home/gtts

After that he has to create a new user group and change his rights by using the

following commands:

[cmsdaquser0] /home/gtts > newgrp gtts

[cmsdaquser0] /home/gtts > umask 002

Finally the user has to retrieve the system environment variables by calling

[cmsdaquser0] /home/gtts > source environment

5.2.2 Compiling the Trigger

After being logged into the cmsdaquser0 computer the user needs to compile the

trigger branch of the software. In order to do that he has to change to the

/TriDAS/trigger directory by executing the following commands.

[cmsdaquser0] /home/gtts > cd TriDAS/trigger/

[cmsdaquser0] /home/gtts/TriDAS/trigger > make Set=trigger

Testing Page 38

5.2.3 Login to the pcvahcms Computer

Before compiling the GT Cell the user has to connect to the pcvahcms test computer

by calling

[cmsdaquser0] /home/gtts/TriDAS/trigger > ssh pcvahcms

After changing to the directory /home/gtts following commands have to be executed

in order to create a new group and to change the user rights

[pcvahcms] /home/gtts > newgrp gtts

[pcvahcms] /home/gtts > umask 002

Finally the system environment variables from pcvahcms have to be loaded by

executing

[pcvahcms] /home/gtts > source environment

5.2.4 Compiling the GT Cell

After having loaded the system environment variables the GT Cell can be compiled.

Depending on if the GT Cell will be run in test or in hardware mode the following

command has to be executed in the directory TriDAS/trigger/gt in order to change

the system variable which stores information about the GTCAEN driver.

For dummy test:

[pcvahcms] /home/gtts/TriDAS/trigger/gt > export GTCAEN=no

For hardware test:

[pcvahcms] /home/gtts/TriDAS/trigger/gt > export GTCAEN=YES

Having set the GTCAEN variable the GT Cell has to be compiled by executing the

following command:

[pcvahcms] /home/gtts/TriDAS/trigger/gt > make Set = gt

5.2.5 Launching the GT Control Panel

After having compiled the GT Cell the GT Control Panel application can be launched.

Testing Page 39

Therefore the monitor collector and the GT Control Panel have to be started in the

directory /home/gtts/TriDAS/trigger/gt/ts/client

[pcvahcms] /home/gtts/TriDAS/trigger/gt/ts/client >

 xdaq.sh –c xml/gtgui.xml –h cmsdaquser.pcvahpreseries –p 3666

[pcvahcms] /home/gtts/TriDAS/trigger/gt/ts/client >

 xdaq.sh –c xml/gtgui.xml –h cmsdaquser.pcvahpreseries –p 3328

5.2.6 Accessing the Standalone GUI and other Tools connected to the
Hardware

Having performed these steps the GT Control Panel can be used to operate and

monitor the GT. To check if the commands sent by the GT Control Panel apply to the

hardware properly, a set of tools is provided by a command based Standalone FDL

GUI, a command based Standalone TCS GUI and a Java-implemented Standalone

TCS GUI.

In order to access these tools a connection to the testing account of pcvahcms has to

be established by executing

ssh testing@pcvahcms

pwd: ******

After having established the connection the timing module has to be started.

[pcvahcms] /home/testing > tim6uv2_gui

Afterwards CAEN has to be clicked within the launched GUI. The sections 4.2.6.1

and 4.2.6.2 describe the three possibilities on how to check the GT Control Panel

functionality while interacting with the hardware.

5.2.6.1 Java-implemented Standalone TCS GUI

The GT, FDL, TCS etc. can be monitored and operated by launching the TCS

Standalone GUI.

[pcvahcms] /home/testing > tcs9u_gui

The TCS Standalone GUI can be run in hardware mode or in dummy mode. The

hardware mode allows the comparison between commands executed by means of

Testing Page 40

the GT Control Panel and commands executed by the TCS Standalone GUI.

Note: In case the GUI crashes after clicking on CAEN the following command has

to be executed

[pcvahcms] /home/testing > reloadit

This works only if the user is member of the sudoer list (/etc/sudoers).

5.2.6.2 FDL and TCS Standalone GUI’s

GT, FDL and TCS can also be monitored by command line standalone applications.

For starting the GT standalone applications the following command needs to be

executed and slot 11 chosen:

[pcvahcms] /home/testing > gtl9u_standalone

For starting the FDL standalone applications following command needs to be

executed and init board 1 chosen:

[pcvahcms] /home/testing > fdl9u_standalone and init board 1

Performance Measurements Page 41

6 Performance Measurements

Chapter 6 describes the procedure for measuring the loading time of individual

widgets. It also depicts optimization steps performed during the development phase.

With an increased amount of widgets the GT Control Panel started reacting relatively

slow. It has been possible to reach an acceptable level of responsiveness. Of

course, it is still possible to improve it through a more careful design of the Control

Panel and an extended measurement and optimization of the AjaXell library [36];

however a trade-off between the master project timeline and the Control Panel

requirements has been reached. For example the Trigger Menu tab originally had

128 forms containing a SubmitButton and a TextBox. It took more than 13 seconds to

load the changes in the web page. After measuring the performance associated to

each widget a better solution has been found by trial and error and the response

time has been decreased to 3 seconds. Upon reaching an acceptable level of

responsiveness with a given functionality the improvement process was stopped. A

means to measure the responsiveness of the Control Panel has been developed.

From these measurements penalties associated to each widget have been estimated

and this has allowed a factorization of the solution with a better response time. From

these measurements it has also been possible to extract some optimization rules for

improving the responsiveness of applications using the AjaXell library.

6.1 Procedure for Loading-Time Measurement

To measure the loading time of particular widgets some adaptations within the

AjaXell library had to be made. All AjaXell widgets are available through the TriDAS

CVS repository at TriDAS/trigger/ts/ajaxell/src/common. One has to edit the

widgets one wants to measure and look for the third occurrence of

getResultType(Eventable::[onCorrespondingEvent]) within the AjaXell widget

class.

Substitute the line

out << “response.setContent(data);” << std::endl;

by

out << “var start = new Date().getTime();” << std::endl;

out << “response.setContent(data);” << std::endl;

Performance Measurements Page 42

out << “var end = new Date().getTime();” << std::endl;

out << “alert(end – start);” << std:endl;

This has to be done for every widget one wants to measure. Afterwards, the AjaXell

library has to be recompiled and the GT Cell has to be restarted. After executing the

adapted event the user will receive an alert in the web browser indicating the amount

of milliseconds it took to load the executed event.

6.2 Optimization Step 1: Reduce the number of Forms

Having measured the response time in the Trigger Menu (see Figure 32) for a

different set of events, and assuming linear dependency a mean was needed to

evaluate the average response time associated to each widget.

Figure 32: The Trigger Menu Tab which was separated from the CENTRAL Tab during one

optimization step.

The most suitable and easiest to use function appeared to be the Linear Estimator

(LINEST) function in MS Excel. Table 2 shows the measurements performed. The

Performance Measurements Page 43

columns show the items that are sent back to the browser after an XMLHttpRequest

[37] and the number of milliseconds that takes the modification of the Document

Object Model (DOM) [38] tree and JavaScript objects to load. Each row represents a

different look and feel for the same tab. In order to extract the response time penalty

associated to each widget the linear estimator has been applied to the Table 2 (the

MS Excel function linest was used).

Form
[# Widgets]

Submit event
[# events]

simple widget
[# Widgets]

Simple event
[# event]

Total
[ms]

128 128 256 0 14000

128 0 256 0 3200

0 0 128 0 1000

0 0 128 128 1500

0 0 128 0 1100

128 0 0 0 1100

Table 2: Measurements performed for a different set of widgets.

The result is shown in Table 3. The first line gives the additional response time

associated to each object sent back to the browser; the second line gives the

standard error associated with the previous estimation [39].

m_iobind [ms]
m_simple
[ms]

m_formiobind
[ms]

m_form
[ms] [ms]

3,515625 8,203125 84,375 8,59375 1,42109E-13

0,676582347 0,390625 0,78125 0,552427173 70,71067812

Table 3: LINEST function to evaluate missing variables.

Performance Measurements Page 44

From the previous table it is possible to say that the major penalty in the response

time comes from the OnSubmit event of a form. Therefore, if one wants to increase

the performance of the Control Panel without modifying the AjaXell library the

number of forms (and the corresponding OnSubmit event) which is sent back to the

web browser has to be reduced. All these events can be substituted by events of

simple widgets, displaying only a partial list of the algorithms, or using a single form.

6.3 Optimization Step 2: Reduce the number of Widgets and
Events per XMLHttpRequest

As we have seen before the response time of the OnFocus event of the Tab widget

depends on the number of widgets. This means that the response time is

proportional to the number of widgets. Therefore, in order to improve the response

time more tabs can be introduced in order to avoid complex refreshes of the DOM

tree and of the JavaScript objects of the web browser.

In the first iteration, the Trigger Menu was part of the "CENTRAL" tab of the GT

Control Panel. After recognizing the dependency of the response time on the number

of widgets, the Trigger Menu was moved to another tab and the response time for

both times has decreased by 10 s.

6.4 Optimization Step 3: Reduce the number of Widgets and use
plain Text if possible

Using the same methodology as in section 5.2 it has been figured out that using

plain Hypertext Markup Language (HTML) without JavaScript decreases the

response time. In this subsection the measurements were done by trying to reduce

the response time of the PartitionGraph (see Table 4 and Table 5).

Radiobutton
[# Widgets]

dialog
[# Widgets]

div
[# Widgets] Total [ms]

256 2 0 3700

256 1 0 3400

0 1 256 3800

Table 4: Performance measurements for a different set of Widgets that are sent back to the browser

after clicking the refresh button of the Partition Graph.

Performance Measurements Page 45

Table 5 shows the result of the linear estimator using MS Excel. The first line gives

the additional response time associated to each object which is sent back to the

browser; the second line gives the standard error associated with the previous

estimation.

Div [ms] Dialog [ms]
Radiobutton
[ms] [ms]

0 300 -1,5625 3500

Table 5: Linest function to evaluate missing variables.

Originally, the PartitionGraph contained a matrix with active and inactive

RadioButtons. Instead of RadioButtons splayed green or red – depending on the

enable status – PlainHtml elements (which are <DIV> elements) are displayed.

Therefore after executing the XMLHttpRequest less JavaScript/HTML/CSS [40] code

is sent to the browser which leads to a performance improvement. Figure 33 shows

the graph with green and red <DIV> elements.

Figure 33: The PartitonGraph after the change filled with green and red PlainHtml <DIV> elements.

Trigger Supervisor Framework Integration Page 46

7 Trigger Supervisor Framework Integration
Chapter 7 describes the TS software infrastructure and the integration of the GT

Control Panel into the Generic TS GUI. Thereby the Generic TS GUI, the TS

Framework architecture, AjaXell and the most relevant class for creating Control

Panels, namely CellPanel is being explained.

7.1 Generic TS GUI

The first project fully developed with the help of the AjaXell library was the Generic

TS GUI, which had existed before as a website being developed without the use of

AjaXell. The Generic TS GUI integrates services offered by the TS in one single web

application in order to monitor, operate, setup and test the L1T of the CMS

experiment, to populate the Configuration Database for any L1T subsystem and to

access the support, documentation and the logging records for audit trials and post-

mortem analysis. The visual difference between the old Generic TS GUI developed

without AjaXell and the new one is depicted in Figure 34. While the old GUI was

browsed by means of hyperlinks to the different sections, the new GUI provides trees

and tabs which enable the enhanced visualization of a higher amount of information.

Originally in the old GUI a whole webpage had to be refreshed in order to visualize

the information retrieved from the server. The information provided in the new GUI

can be refreshed merely in a specific part of the web page which improves the

loading time.

Figure 34: The two web pages on the left show the old Generic TS GUI which was loaded as

a whole at one glance. The webpage on the right contains tabs, which are refreshed

separately.

Trigger Supervisor Framework Integration Page 47

7.2 Architecture Overview

Each Control Panel is part of the TS Framework. Figure 35 shows the dependencies

between the CellPanel class and the classes which instantiate and use the

CellPanel class. It also clarifies that the author

The CellPanel class is the mother class for creating Control Panels. Any Control

Panel inherits from CellPanel which itself provides necessary methods for displaying

and handling any CellPanel. First it contains the getContext() method, which is

needed to retrieve the Uniform Resource Name (URN), Uniform Resource Locator

(URL) and the specific session id of the Control Panel. For error handling it inherits

the getLogger() method which retrieves the log4cplus object containing all log

information. Additionally it contains the layout() method for setting the layout of the

widgets and the html() method for printing the content of the Control Panel.

CellPanel inherits from AutoHandledWidget. This allows the Control Panels, which

inherit from CellPanel, to be used themselves as containers and widgets including

events.

In order to make the Control Panels accessible within the class CellPage, which

corresponds to the Generic TS GUI, each Control Panel has to be added to the

object CellPanelFactory. The CellPanelFactory itself is initialized by the

CellAbstractContext.

Trigger Supervisor Framework Integration Page 48

Figure 35: Class-Diagram showing the GT Control Panel and the dependencies within the TS
Framework.

7.3 AjaXell Motivation

A series of L1T subsystem board level control panels needs to be integrated into the

TS Framework. Originally these control panels have been developed as standalone

tools (Tcl/Tk, C, C++, Qt, Java) being used locally or through remote terminals.

XDAQ version 3 provides a Hypertext Transfer Protocol (HTTP) engine compliant

with the Common Gateway Interface (CGI), which allows the execution of

applications within the web browser. The server side library used for the

development of these Control Panels needed to support new widgets and event

based behavior. During the evaluation process the most suitable library Wt [41] only

supported FastCGI applications under Linux. Therefore a new Linux C++ CGI library

named AjaXell (available as a SourceForge project [42]) has been developed

fulfilling following requirements:

1. Implementation of an event based programming model.

2. Implementation of extended widgets.

3. Modular and extensible design.

Trigger Supervisor Framework Integration Page 49

4. C++ Linux compatibility.

5. Web browser independence.

6. CGI server independence.

7. Open Source solution.

8. Maintenance of commonly used technologies.

This library works within XDAQ [43] and within Apache Tomcat [44] applications

opens doors for future projects.

For the client side there have been examined technologies like Java Applets, which

use files with too large size to deal with XDAQ; XUL and XAML which are browser

specific and therefore not fulfilling the application requirements; and Adobe Flash

which comes with vendor lock-in and high learning costs. Finally AJAX was chosen.

The chosen technology AJAX provides following features:

1. HTML and Cascading Style Sheets (CSS).

2. Document Object Model (DOM).

3. XMLHttpRequest for asynchronous data exchange.

4. XML as format for data exchange.

 The architecture of the AjaXell library is described in the following section.

7.4 AjaXell Architecture

This section explains the C++ library which is used in the GT Control Panel. The

AjaXell library is based on AJAX, which allows sending asynchronous

XMLHttpRequests to the server in order to refresh small parts of the website. Figure

36 depicts the process flow within the AjaXell library between the client being the

browser and the server being a XDAQ application. The data exchange sequence

follows six steps.

First a DOM event is triggered. This may be a click on a button, or a tick on a

checkbox etc. Second the event is redirected to a JavaScript handler, which has

been generated by AjaXell and loaded into the browser. Third the JavaScript handler

generates and sends an XMLHttpRequest to the server passing a widget, the value

and the event type. Fourth the passed parameters are read and redirected to the

Trigger Supervisor Framework Integration Page 50

adequate C++ method which operates as an event handler. Fifth the C++ event

handler creates HTML and JavaScript code corresponding to the request and sends

it back to the browser. Finally the DOM JavaScript handler modifies the specific part

of the website and refreshes the output.

Figure 36: AjaXell Information Flow between Client and Server [36].

Trigger Supervisor Framework Integration Page 51

In order to understand the AjaXell library the classes Widget, EventHandler and

AutoHandledWidget will be explained.

As shown in Figure 37 the Widget class is the root class of the library. It describes a

widget, which can be any object within a browser. For example a button, a checkbox,

a radio button etc. In order to display the widget within the browser the method

Widget::html has to be called.

The class AutoHandledWidget gives the possibility to associate a widget with an

event. Any descendant from AutoHandledWidget can therefore contain not only

widgets itself, but also server side C++ event handlers, which are connected to the

DOM event of the browser. The class AutoHandledWidget further on inherits from the

class Container, which allows the AutoHandledWidget to contain several widgets as

well as AutoHandledWidgets in a recursive way.

Finally the class EventHandler can be any C++ method having passed a Cgicc [45]

object in order to parse the HTTP request. It dispatches the adequate callback for a

given event type and identifier. The callback is written as result into a C++ standard

output stream.

Figure 37: Relationship between Widget, Container, EventHandler and AutoHandledWidget.

Trigger Supervisor Framework Integration Page 52

7.5 CellPanel class

This section explains how a CellPanel is initialized and how it uses its methods. As

mentioned in section 7.2 CellPanel is initialized by CellPanelFactory and inherits

from AutoHandledWidget (see Figure 38).

Figure 38: CellPanel dependency between CellPanelFactory, CellPanel and AutoHandledWidget.

The class CellPanelFactory stores, creates and destroys CellPanels. As the owner

of the CellPanels the CellPanelFactory has three important methods for adding,

removing and destroying a CellPanel instance within the Cell class.

void add(const std::string& name)

void remove();

void destroy(const std::string& instanceName);

There exist some more methods for getting the list of CellPanel classes, for getting a

CellPanel instance and for creating a signature.

In order to add a CellPanel to the Cell one needs to add the line

getContext()->getPanelFactory()->add<panels::CellPanelName>("CellPanelName");

Trigger Supervisor Framework Integration Page 53

to the Cell::init() method. The Cell is a XDAQ application which corresponds to a

node of a distributed system called TS System, which has a web interface.

The class AutoHandledWidget provides the methods (see Figure 39) for setting and

removing an event and for retrieving and checking the corresponding handler. The

three different setEvent() methods bind a handler, which passes a Cgicc-object and

a standard output stream to an event. They are developed to serve three targets.

The first setEvent() method has no target, the second setEvent() method sends the

result to the ResultBox and the third setEvent() method sends the result to the

Dialog. The methods hasHandler() and removeHandler() are used to check if a

handler exists for a given widget.

void setEvent(ajax::Eventable* from, ajax::Eventable::EventType type, OBJECT* obj, void

(OBJECT::*callback)(cgicc::Cgicc&,std::ostream&))void remove();

void setEvent(ajax::Eventable* from, ajax::Eventable::EventType type, ajax::ResultBox*

to, OBJECT* obj, void (OBJECT::*callback)(cgicc::Cgicc&,std::ostream&))

void setEvent(ajax::Eventable* from, ajax::Eventable::EventType type, ajax::Dialog*

dialog, OBJECT* obj, void (OBJECT::*callback)(cgicc::Cgicc&,std::ostream&))

bool hasHandler(const std::string& id, ajax::Eventable::EventType type);

void callHandler(cgicc::Cgicc& cgi, std::ostream& out);

void removeEvent(const std::string& id)

void html(cgicc::Cgicc& cgi, std::ostream& out);

Figure 39: Methods provided by class AutoHandledWidget.

The class CellPanel, which is the parent of any Control Panel, implements methods

for displaying the Control Panels within one session providing a comprehensive

debug possibility.

The method getContext() provides the URN, the URL, the CellPanelFactory for

creating CellPanels, the CellOperationFactory for creating CellOperations, the

CellFactory for creating commands and it conveys the session id for guarantying

multiuser access to the Cell.

CellAbstractContext* getContext();

Trigger Supervisor Framework Integration Page 54

The method getLogger() provides a log4cplus object, which allows logging of errors

and stack traces on different severity levels.

log4cplus::Logger& getLogger();

The method html() prints the html code for all widgets which are available in the

current container.

void html(cgicc::Cgicc& cgi,std::ostream& out);

The method layout() is used to arrange widgets within the page.

virtual void layout(cgicc::Cgicc& cgi) = 0;

An example of how to bind an event to a widget is provided in Figure 40. The method

layout() is used for adding and removing widgets and its events. Therefore first the

layout has to be cleared by calling remove(). Then a PlainHtml widget is created and

added to the panel. Afterwards a button is created with a caption and added to the

panel. Finally an event is assigned by specifying the widget, the event, the result

box, the current object and the event handler.

void panels::ButtonExample::layout(cgicc::Cgicc& cgi)

{

remove();

//Form title

ajax::PlainHtml* title = new ajax::PlainHtml();

title->getStream() << "<h4 align=\"center\">Control Panel Example: Button and the

OnClick event</h4>" << std::endl;

add(title);

ajax::Button* button = new ajax::Button();

button->setCaption("click me!");

this->setEvent(button,ajax::Eventable::OnClick,result_,this,&ButtonExample::onClick);

add(button);

add(result_);

}

Figure 40: Binding an event to a widget with setEvent().

Trigger Supervisor Framework Integration Page 55

The EventHandler which reacts to the above specified event is depicted in Figure 41.

The EventHandler's method name is onClick(). Within this method the result to be

shown is created. In this case it is a PlainHtml widget containing html-code. To add

the PlainHtml widget to the specified ResultBox, the ResultBox needs to be cleared

by calling remove(). Afterwards the PlainHtml widget can be added. In order to

display this widget on the client side one needs to call html().

void panels::ButtonExample::onClick(cgicc::Cgicc& cgi,std::ostream& out)

{

 std::ostringstream msg;

 msg << "The ButtonExample::onClick method has been executed";

 ajax::PlainHtml* plain = new ajax::PlainHtml();

 plain->getStream() << "<p>" << msg.str() << "</p>";

 result_->remove();

 result_->add(plain);

 plain->html(cgi,out);

}

Figure 41: OnClick event example for clicking a button.

To adjust the layout of a widget the LayoutElements can be used, which have to be

packed themselves into LayoutContainer. The LayoutContainer can be arranged

differently. The possibilities offered are LeftRight, TopBottom, None. LeftRight

means the LayoutElements will be arranged in the order they were added but

assigning the left and right side with higher priority. TopBottom means the

LayoutElements will be arranged by the same order as they were added but

assigning the top and the bottom side with higher priority. None means, the elements

will be assigned in spiral order.

void setLayout(ajax::LayoutContainer::Layout layout);

Trigger Supervisor Framework Integration Page 56

The LayoutElements themselves, which are put into the LayoutContainer, have an

alignment method which is called setPosition. The possibilities offered are Left,

Right, Top, Bottom, Client.

void setPosition(ajax::LayoutElement::Position position);

7.6 Other Subsystem Control Panels

In order to control and operate the L1T every subsystem can implement its own

custom Control Panel with the help of the AjaXell library. Until now one custom

control panel for the GT named “GT Control Panel” has been developed. Figure 42

shows how the GT Control Panel fits into the new Generic TS GUI. Within the

Generic TS GUI an instance of the GT Control Panel has to be created by clicking on

the “Create” leaf in the tree. Afterwards the GT Control Panel can be operated on the

right side of the Page. Within the tree the GT Control Panel can be controlled and

destroyed.

Figure 42: GT Control Panel initialized within the Generic GUI.

Conclusion Page 57

8 Conclusion
The Global Trigger Control Panel has been developed and integrated successfully

whereby the concept of the Trigger Supervisor Control Panel Infrastructure was

proven. Periodic usage during the commissioning run exercises and the ongoing

development of new control panels for RCT, DTTF and GMT verify its success.

The functionalities implemented as well as the missing ones are shown in Table 6.

Originally the Trigger Menu was intended to be developed completely. Therefore an

XML parser for the conditions and names for the algorithms to be retrieved from the

configuration database was needed. The development of a new parser or the

decoupling of an existing XML parser being already used within the experiment

would have exceeded the master project timeline.

The AjaXell library used for the master thesis project was found adequate with

respect to the requirements of the GT Control Panel. A few discovered bugs were

reported, which could be solved with the help of the AjaXell developers.

As can be seen in the table a second phase of development will be needed that will

require the implementation of the full Trigger Menu and the configuration database

tool, the integration with access control and the control of the trigger throttling rules.

Conclusion Page 58

Functionality Status
- TCS and FDL counters Done
- DAQ partition status Done

Monitoring of

- Subdetector partition status Done
- Prescales Done
- Time Slots Done
- FDL Final OR Mask Done
- Partition Assignment Done

Monitoring/Updating of

- Random Trigger Frequency Done
- Trigger Done
- Random Trigger Done

Start Stop of

- Partition Assignment Done
Reset and Resynchronization of - PTC Done
Control of - Trigger Throttle Logic To be Done
Creation of - common and partition

dependent keys
To be Done

Generation of - Trigger Menu To be Done
Generation of - Configuration data base tool To be Done
Implementation of - Trigger Supervisor Access

Control Integration
To be Done

Table 6: Implemented and missing Functionalities.

Acknowledgments Page I

Acknowledgments

First I want to thank Marc Magrans de Abril. Thanks to his great support, patience,

motivation and enthusiasm I was able to acquire all necessary knowledge for

developing and integrating the GT Control Panel. I learned a lot from him about

programming as well as about managing tasks and time. I also want to acknowledge

the HEPHY group where I am deeply grateful to Claudia-Elisabeth Wulz and Ildefons

Magrans de Abril for offering this project to me and for making it real. Due to Ildefons'

know-how and project management skills I felt certain about the project's success

whereby I could focus on the goals. For the testing phase I want to say thanks to

Manfred Jeitler, who guided me through the hardware tests. Additionally I want to

acknowledge Philipp Glaser, Ivan Mikulec, Barbara Neuherz, and Vasile Ghete for

their help and advice.

Also I want to say thanks to my family which supported me during my studies and

encouraged me to go to CERN.

Finally I want to say many thanks to Prof. Futschek for supporting my thesis at the

Faculty for Software technology and interactive Systems E188 at Vienna University

of Technology.

List of Figures Page II

List of Figures
Figure 1: Two beams within the LHC collider [1]. ...4

Figure 2: CMS Experiment composition [16]. ..6

Figure 3: Layout of the barrel silicon detector [6]. ..7

Figure 4: Layout of the CMS Pixel Tracker with its end caps [7]. ..8

Figure 5: The Electromagnetic Calorimeter of the CMS experiment [9].9

Figure 6: Lateral cut of the CMS Experiment showing the four Layers of the Muon

Chambers/Stations [7]..10

Figure 7: Lateral cut of the Drift Tube Chamber [12]. ..10

Figure 8: Arrangement of one muon station [11]. ...11

Figure 9: Composition of the L1 Trigger [17]. ..13

Figure 10: Longitudinal cut of the CMS Muon System [7]...15

Figure 11: The GT crate with its boards [29]. ...16

Figure 12: RCMS as an element of the CMS Control Software containing SMR, Subsystems

and FM’s. The TS is the control node of the L1T in the hierarchical control structure of

the CMS experiment [17]...19

Figure 13: Architecture of the TS System [17]..20

Figure 14: The two available interfaces to access the GT Cell: HTTP and SOAP.20

Figure 15: Layered Architecture of the GT Control Panel. ...24

Figure 16: Relationship between CellPanel, ajax::Widget and ajax::Container......................25

Figure 17: Class Diagram of the GT Control Panel...26

Figure 18: Relationships associated with class GtGui. ..26

Figure 19: Relationships associated with class MasterPanel. ..27

Figure 20: Relationships associated with class MasterTriggerMenu.28

Figure 21: Relationships associated with class TechnicalTrigger. ..28

Figure 22: Relationships associated with class PtcPanel. ..29

Figure 23: Relationships associated with class MasterDialogApply.......................................29

List of Figures Page III

Figure 24: Relationships associated with class MasterDialogLoad...30

Figure 25: Relationships associated with class MasterTimeSlots. ..31

Figure 26: Relationships associated with class PartitionGraph. ..31

Figure 27: Relationships associated with class PtcDialogSetPartition.32

Figure 28: Relationships associated with class PtcMonitorCounters.32

Figure 29: Relationships associated with class FdlMaskDialog..33

Figure 30: Relationships associated with struct PtcDetectorStruct. ..33

Figure 31: Relationships associated with class MonitorSource...33

Figure 32: The Trigger Menu Tab which was separated from the CENTRAL Tab during one

optimization step..42

Figure 33: The PartitonGraph after the change filled with green and red PlainHtml <DIV>

elements. ..45

Figure 34: The two web pages on the left show the old Generic TS GUI which was loaded as

a whole at one glance. The webpage on the right contains tabs, which are refreshed

separately. ..46

Figure 35: Class-Diagram showing the GT Control Panel and the dependencies within the TS

Framework. ..48

Figure 36: AjaXell Information Flow between Client and Server [36].50

Figure 37: Relationship between Widget, Container, EventHandler and AutoHandledWidget.

..51

Figure 38: CellPanel dependency between CellPanelFactory, CellPanel and

AutoHandledWidget. ...52

Figure 39: Methods provided by class AutoHandledWidget...53

Figure 40: Binding an event to a widget with setEvent(). ...54

Figure 41: OnClick event example for clicking a button...55

Figure 42: GT Control Panel initialized within the Generic GUI..56

Abbreviations Page III

Abbreviations
API Application Program Interface

CGI Common Gateway Interface

CERN Conseil Europ´een pour la Recherche Nucl´eaire

CMS Compact Muon Solenoid

CSC Cathode Strip Chamber

CSCTF Cathode Strip Chamber Track Finder

CVS Concurrent Versions System

DAQ Data Acquisition

DB Data Base

DOM Document Object Model

DT Drift Tube

DTTF Drift Tube Track Finder

ECAL Electromagnetic Calorimeter

FDL Final Decision Logic

GMT Global Muon Trigger

GTL Global Trigger Logic

GUI Graphic User Interface

HCAL Hadronic Calorimeter

HF Forward Hadronic Calorimeter

HLT High Level Trigger

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSP Java Server Pages

LHC Large Hadron Collider

L1A Level-1 Accept signal

Abbreviations Page IV

L1T Level-1 Trigger

OSWI Online SoftWare Infrastructure

PSB Pipeline Synchronize Buffer

RCMS Run Control and Monitoring System

RPC Resistive Plate Chamber

SMR Session Manager

SOAP Simple Object Access Protocol

TIM Timing Board

TCS Trigger Control System

TS Trigger Supervisor

TTC Timing, Trigger and Control System

TTS Trigger Throttling Logic

URL Uniform Resource Locator

URN Uniform Resource Name

VME VERSAmodule Eurocard Bus

XDAQ Cross-Platform DAQ Framework

XML Extensible Markup Language

Bibliography

Bibliography
[1] LHC Project Homepage, LHC - The Large Hadron Collider, http://lhc.web.cern.ch/lhc/

[15.4.2007]

[2] G. Altarelli, Proc. Large Hadron ColliderWorkshop, Aachen, 1990, eds. G. Jarlskog
and D. Rein, CERN 90–10, vol. I, 153

[3] ATLAS Collaboration, ATLAS Technical Proposal, CERN/LHCC 1994-43

(1994)

[4] LHCb Collaboration, LHCb Technical Proposal, CERN/LHCC 1998-4 (1998)

[5] ALICE Collaboration, ALICE Technical Proposal, CERN/LHCC 1995-71

(1995)

[6] CMS Collarboration, The Compact Muon Solenoid - Technical proposal,

CERN/LHCC 1994-38 (1994)

[7] CMS Physics Technical Design Report Volume I: Detector Performance and
Software, CERN/LHCC 2006-001 (2006).

[8] L. Borello, E. Focardi, A. Macchiolo, A. Messineo, Sensor design for the CMS Silicon
Strip Tracker, CMS. Note 2003/020 (2003).

[9] CMS Collaboration, The Electromagnetic Calorimeter Technical Design Report,
CERN/LHCC 97-33 (1997)

[10] CMS Collaboration, The Hadron Calorimeter, Technical Design Report,

CERN/LHCC 97-31 (1997)

[11] Letter of Intent for a General Purpose Detector at the LHC, Members of the CMS
Collaboration, Della Negra et al., October 1992

[12] F.R. Cavallo, et al., Test of MB3 Muon Barrel Drift. Chambers with Cosmic Rays,
CMS Note 2003/017

[13] Electromagnetic Secondaries and Punch-Through Effects in the CMS ME1/11. I. I. I.
I. Belotelov, et al., CMS NOTE 2006/034

[14] CMS Collaboration, The TriDAS Project – Data Acquisition and High-

Level Trigger Technical Design Report, CERN/LHCC 2002-26 (2002)

[15] CMS The TriDAS Project Technical Design Report, Volume 1: The Trigger Systems,
CERN/LHCC 2000 – 38 CMS TDR 6.1 December 15, 2000.

[16] C.-E. Wulz: “Concept of the First Level Global Trigger for the CMS Experiment at
LHC”, Nucl. Instr. Meth. A473/3 (2001) 227-238

[17] Philipp Glaser, Diploma Thesis March 20, 2007: Software Integration of the Global
Trigger, University of Technology Vienna

[18] B. G. Taylor, TTC Distribution for LHC Detectors, IEEE Trans. Nucl. Sci. 45, No. 3
(1998) 821.]

Bibliography

[19] H. Bergauer, M. Padrta, A. Taurok; Trigger Control Module 9U-Version - TCS chip
V0007, 2004, Hochenergie-Institut Wien

[20] H. Bergauer, K. Kastner, M. Padrta, A. Taurok, Global Trigger Logic Module 9U-
Version, April 2006, Hochenergie-Institut Wien

[21] A. Racz et. al., “Trigger Throttling System for CMS DAQ”, Sixth Workshop on
Electronics for LHC Experiments, CERN/LHCC/2000-041

[22] H. Bergauer, K. Kastner, M. Padrta, A. Taurok, Timing Module in the Level 1 Global
Trigger 6U-Version, August 2005,

[23] V. Brigljevic et al., Run Control and Monitor System for the CMS Experiment,

Computing in High Energy and Nuclear Physics, 2003, La Jolla,

California

[24] CMS NOTE 2005/011, I. Magrans, J. Varela, C.-E. Wulz, Concept of the CMS
Trigger Supervisor, TNS-IEEE

[25] Trigger Supervisor Website, http://triggersupervisor.cern.ch/ [15.4.2007]

[26] J. Gutleber, S. Murray, L. Orsini, Towards a homogenous architecture for high-
energy physics data acquisition systems, Comput. Phys. Commun. 153, Issue 2
(2003) 155 – 163

[27] SOAP Interface Specification, http://www.w3.org/TR/soap/ [14.4.2007]

[28] CGI Specification, http://www.w3.org/CGI/; [14.4.2007]

[29] M.Jeitler et al., The Level-1 Global Trigger for the CMS Experiment at LHC,

Journal of Instrumentation (2007) P01006, http://stacks.iop.org/

1748-0221/2/P01006

[30] Java Sun including Java Server Pages http://java.sun.com/ [14.4.2007]

[31] TS NOTE 2006/003 , P. Glaser, Noebauer T., Magrans I, Magrans M., Urank M.,
User’s Guide Trigger Supervisor

[32] Christoph Schwick, Hardware Access Library
http://cmsdoc.cern.ch/~cschwick/software/documentation/HAL/index.html [15.4.2007]

[33] Scientific Linux 3 CERN Release http://linux.web.cern.ch/linux/scientific3/ [15.4.2007]

[34] J. Gutleber, L. Orsini et al, “Using XDAQ in Application Scenarios of the

CMS Experiment”, Conference for Computing in High-Energy and Nuclear Physics,
CERN 2003

[35] CAEN V2718 PCI-VME Optical Link Bridge, Version 2.4
http://www.caen.it/nuclear/product.php?mod=V2718 [15.4.2007]

[36] Ildefons Magrans de Abril, Marc Magrans de Abril, Enhancing the User Interface of
the CMS Level 1 Trigger Online Software with Ajax, Real Time Conference, CERN
2007

[37] Anne van Kesteren, October 2007, The XMLHttpRequest Object Working Draft,
http://www.w3.org/TR/XMLHttpRequest [18.1.2008]

Bibliography

[38] Document Object Model Level 2 HTML Specification, World Wide Web Consortium,
January 2003 http://www.w3.org/DOM/ [18.1.2008]

[39] Microsoft Corporation, Online Help regarding the Linest function of MS Excel,
http://office.microsoft.com/en-us/excel/HP100698381033.aspx [14.4.2007]

[40] Cascading Style Sheets W3C Specification, http://www.w3.org/Style/CSS/
[14.4.2007]

[41] Wt C++ Web Toolkit Project v. 1.99, http://sourceforge.net/projects/witty/ [14.4.2007]

[42] AjaXell Library Source Forge project, http://sourceforge.net/projects/AjaXell/
[14.4.2007]

[43] J. Gutleber, L. Orsini et al., “Hyperdaq – Where Data Adquisition Meets the

Web”, 10th ICALEPCS, 10 - 14 Oct 2005

[44] Apache Tomcat Webserver; http://tomcat.apache.org/ [14.4.2007]

[45] CGICC Interface; http://www.gnu.org/software/cgicc/ [14.4.2007]

Appendix 1: Source Code

Appendix 1: Source Code
The source code I wrote for the master thesis project is available online.

– Header Files http://isscvs.cern.ch/cgi-bin/viewcvs-

all.cgi/TriDAS/trigger/gt/ts/cell/include/gtgui/?cvsroot=tridas

– Classes http://isscvs.cern.ch/cgi-bin/viewcvs-

all.cgi/TriDAS/trigger/gt/ts/cell/src/common/?cvsroot=tridas

Headers Classes

FdlMaskDialog.h FdlMaskDialog.cc

GtGui.h GtGui.cc

MasterDialogApply.h MasterDialogApply.cc

MasterDialogLoad.h MasterDialogLoad.cc

MasterDialogSetMask.h MasterDialogSetMask.cc

MasterPanel.h MasterPanel.cc

MasterTimeSlots.h MasterTimeSlots.cc

MasterTriggerMenu.h MasterTriggerMenu.cc

PartitionGraph.h PartitionGraph.cc

PtcDialogSetPartition.h PtcDialogSetPartition.cc

PtcMonitorCounters.h PtcMonitorCounters.cc

PtcPanel.h PtcPanel.cc

TechnicalTrigger.h TechnicalTrigger.cc

gttoolbox.h gttoolbox.cc

PtcDetectorStruct.h

Table 7: Headers and classes developed within the scope of the master thesis project.

