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Zusammenfassung

Der Mechanismus der Selbsterregung ist von großer praktischer Relevanz in technischen
schwingungsfähigen Systemen. Als Beispiele, die als übergeordnete Motivation für die
vorliegende Arbeit angesehen werden können, seien die Schwingungen von Hochspan-
nungsleitungen in einem Luftstrom oder das Quietschen von Bremsen erwähnt. In ma-
thematisch glatten Systemen wird das Auftreten selbsterregter Schwingungen durch eine
Hopf-Verzweigung beschrieben, was am Beispiel synchronisierter Lösungen in mechani-
schen Systemen gezeigt wird. In zufolge von Reibungseffekten nicht-glatten Systemen
liefern neue theoretische Resultate aus dem Bereich der nicht-glatten Verzweigungstheo-
rie wertvolle Impulse zur Beschreibung selbsterregter Reibungsschwingungen.

Synchronisation ist ein Phänomen, das in den unterschiedlichsten Wissenschaftsdis-
ziplinen beobachtbar ist, sobald schwingungsfähige Systeme miteinander interagieren.
Das Charakteristikum hierbei ist, dass die Oszillatoren im Verbund eine (gegebenen-
falls phasenverschobene) Schwingung mit einer gemeinsamen (“synchronen”) Frequenz
ausführen, die von den Eigenfrequenzen der isolierten Einzelsysteme abweicht. Als me-
chanisches Beispiel hierfür werden zwei gekoppelte geringfügig unterschiedlich dimen-
sionierte Pendel betrachtet, die einem Windstrom ausgesetzt sind. Durch die durch die
Anströmung bewirkte Energiezufuhr wird das System selbsterregt und durch eine ela-
stische Kopplung zwischen den beiden Pendeln auch synchronisationsfähig. Mathema-
tisch manifestiert sich eine synchronisierte Bewegung im Auftreten eines Grenzzyklus
im gekoppelten Bewegungsgleichungssystem, welcher im betrachteten Beispiel durch ei-
ne Hopf-Verzweigung der Kodimension 2 bei einer kritischen Anströmgeschwindigkeit
entsteht. Die Untersuchung dieser Verzweigung hängt wesentlich von den Resonanzei-
genschaften der Systemeigenwerte ab:

I. Der Fall nicht resonanter Eigenwerte tritt für starke Koppelung bzw. eine große Ei-
genfrequenzabweichung der beiden Schwinger ein. Stabilitätsgrenzen für synchronisier-
te Lösungen können aus den bekannten Methoden der Normalformtheorie einer Hopf-
Verzweigung mit zwei unterschiedlichen Paaren rein imaginärer Eigenwerte ermittelt
werden. Während für eine starke Kopplung der Pendel erwartungsgemäß stets stabile
synchronisierte Lösungen ohne Phasenverschiebung auftreten, kann im Fall der großen
Frequenzabweichung eine Schranke für dieselbe in Abhängigkeit der Koppelungsstärke
angegeben werden, sodass sich immer synchronisierte Schwingungen einstellen.

II. Im Fall resonanter Eigenwerte, der mechanisch durch eine kleine Abweichung der
Eigenfrequenzen der Pendel sowie eine schwache Koppelung hervorgerufen wird, führt
hier die Mittelungsmethode zu Amplituden- und Phasengleichungen für die Evolution
des Grenzzykels. Synchronisierte Lösungen ergeben sich als stationäre Lösungen der über
eine Pendelperiode gemittelten Gleichungen. Durch eine geschickte Variablensubstituti-
on gelingt es eine analytische Stabilitätsuntersuchung der synchronisierten Lösungen
durchzuführen und im speziellen Formeln für die Amplituden bzw. die Frequenz des
synchronisierten Grenzzykels anzugeben. Insbesondere erlaubt eine einfache graphische
Interpretation der synchronisierten Lösungen das Auffinden von Stabilitätsgrenzen in der
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von der Frequenzabweichung und der Koppelungsstärke aufgespannten Parameterebene.
Der zweite Themenkomplex, dem sich diese Arbeit zuwenden soll, widmet sich der

Entstehung selbsterregter Schwingungen durch Reibung. Da durch die physikalische Na-
tur der Reibung zwangsläufig Unstetigkeiten in den Beschleunigungen auftreten, muss
ein besonderes Augenmerk auf die noch im Entwicklungsstadium begriffene Verzwei-
gungstheorie in nicht-glatten Systemen gelegt werden, die hier auf konkrete mechanische
Beispiele angewandt werden soll. Reibungsschwinger zählen zu den sogenannten Filip-
pov-Systemen, wo Lösungen an Unstetigkeiten im Phasenraum entlanglaufen können.
Für ebene nicht-glatte Systeme des Filippov-Typs sind bereits alle Kodimension-1-
Verzweigungen nach Kuznetsov klassifiziert. Für mechanische Systeme mit einem Frei-
heitsgrad kann jedoch ein Großteil der möglichen nicht-glatten Verzweigungsarten be-
reits vorweg ausgeschlossen werden. Ein einfacher Einmassenschwinger auf einem rau-
hen laufenden Band soll als einführendes Beispiel zur Erklärung nicht-glatter Verzwei-
gungsphänomene dienen. Für eine allgemeine nicht-lineare Abhängigkeit des Reibungs-
koeffizienten von der Relativgeschwindigket kann bereits für den einfachen Reibungs-
schwinger die Existenz nahezu aller wichtiger nicht-glatter Verzweigungen numerisch
nachgewiesen werden, die in mechanischen Systemen mit einem Freiheitsgrad von Re-
levanz sein können. Mit einer numerischen Fortsetzungsmethode können die Orte der
Verzweigungen im Parameterraum verfolgt werden, wobei geometrische Kenngrößen der
Reibungskennlinie sowie die Bandgeschwindigkeit als Parameter dienen. Speziell ist hier
neben den typischen “stick-slip”-Schwingungen auch das Auftreten von überschwingen-
den Lösungen zu beobachten, d. h. die Masse bewegt sich in der Bandlaufrichtung kurz-
zeitig schneller als das Band.

Motiviert durch das Auftreten von Quietschgeräuschen beim Bremsvorgang von Zügen
wird in der Folge ein bremsenähnliches kontinuierliches Modell betrachtet, bestehend aus
einer auf eine starre Welle aufgeschrumpften elastischen Nabe, wobei die Welle in der Na-
be mit konstanter Winkelgeschwindigkeit rotiert. Reduziert man die Bewegungsgleichun-
gen der Nabe in radialer Richtung durch einen eingliedrigen Galerkin-Ansatz, erhält
man ähnliche Gleichungen wie für den einfachen Reibungsschwinger, die nun eine fort-
laufende nicht-glatte elastische Welle an der Grenzfläche zwischen der festen Welle und
der Nabe beschreiben, wobei durch die hinzutretende Veränderung des Normaldrucks
zwischen Welle und Nabe auch Ablöseeffekte auftreten können. Das Auftreten unter-
schiedlicher Kontaktzonen wie Haften, Gleiten oder Ablösen sind anschauliche Beispiele
für Verzweigungen des nicht-glatten Systems, die es gilt numerisch nachzuweisen. Zum
Auffinden der Verzweigungskurven im Parameterraum dienen vorrangig der statische
Reibungskoeffizient, die Winkelgeschwindigkeit der Welle und das Verhältnis der Radien
als Fortsetzungsparameter, während wiederum ein nichtlineares Gesetz für die Abhängig-
keit des Reibungskoeffizienten von der lokalen Relativgeschwindigkeit am Wellen-Naben-
Kontakt angenommen wird. Es wird gezeigt, dass im positiven Umlaufsinn fortlaufende
Wellen nur für kleine Nabendurchmesser existieren. Für rückwärtslaufende Wellen ergibt
sich ein reiches Verzweigungsverhalten vom Auftreten von “stick-slip”-Wellen, über die
Ausbildung von überschwingenden Bereichen (d. h. lokal übersteigt die Tangentialge-
schwindigkeit der Nabe die Umfangsgeschwindigkeit der Welle) bis hin zur Entstehung
von mehreren Separationszonen. Die erhaltenen Resultate rechtfertigen den Einsatz der
nicht-glatten Verzweigungstheorie zum Auffinden der Parameterbereiche qualitativ un-
terschiedlicher Lösungstypen, die bei einer konventionellen Analyse durch eine Glättung
der Unstetigkeiten nicht unterscheidbar wären.
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Abstract

The mechanism of self-excitation is of great practical relevance in oscillating technical
systems. Oscillating power transmission lines in a wind flow or the squealing noises
of brakes serve as examples which may be regarded as a superior motivation for the
present thesis. In mathematically smooth systems the onset of self-excited oscillations
is described by a Hopf-bifurcation, which will exemplarily be demonstrated for synchro-
nized solutions of a mechanical system. In systems which are non-smooth due to friction
effects new theoretical results from non-smooth bifurcation analysis will prove useful for
the description of self-excited friction oscillators.

Synchronization is a phenomenon which can be found in many branches of natural
sciences, engineering and social life as soon as oscillating systems are interacting. The
coupled system may oscillate with a common (“synchronous”) frequency which is differ-
ent from the eigenfrequencies of the isolated oscillators. Two coupled slightly different
pendula which are exposed to a fluid flow shall be considered as a mechanical example.
The energy supply due to the fluid flow provides a mechanism of self-excitation and the
elastic coupling enables the pendula to synchronize. Mathematically, a synchronized
motion manifests itself in the appearance of a limit cycle in the coupled system of the
equations of motion. In the considered example, the limit cycle appears by means of a
Hopf-bifurcation of codimension 2 at a critical flow velocity. The analysis of the Hopf-
bifurcation depends on the resonance properties of the eigenvalues of the system: the
eigenvalues are found to be non-resonant for a large frequency detuning and/or a large
coupling strength. The stability boundaries of synchronized solutions can be derived
from prevailing methods of normal form theory. For a strong coupling the pendula will
always perform synchronized motions. If the frequency detuning is assumed to be large it
has to be limited by bounds depending on the coupling strength in order to synchronize
all solutions.

Resonant eigenvalues are mechanically achieved by a small frequency detuning and a
weak coupling of the pendula. In this case the method of averaging is applied in order
to obtain equations for the amplitudes and the phase governing the evolution of the
limit cycle. Synchronized solutions are found as the stationary solutions of the averaged
system. With the aid of a cunning substitution of variables the stability investigations
of the synchronized solutions can be performed analytically. In particular, formulas are
given for the amplitudes and the frequency of the synchronized limit cycle. Moreover, a
simple graphical interpretation of the synchronized solutions facilitates the calculation
of stability boundaries in the parameter space spanned by the frequency detuning and
the coupling strength.

The second topic, this thesis is devoted to, is concerned with the occurrence of self-
excited oscillations due to friction. Because of the physical nature of friction, necessarily
a discontinuity is introduced to the system. Thus, special emphasis must be placed
upon non-smooth bifurcation theory, which shall be applied to concrete mechanical
problems, here. Friction oscillators belong to so-called Filippov-Systems, which are
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characterized by the fact that solutions can stay on a discontinuity in the phase space
for at least a finite time. All possible codimension-1 bifurcations in planar Filippov-
Systems have been classified by Kuznetsov. In mechanical systems with one degree-
of-freedom, however, various types of non-smooth bifurcations may be ruled out from
the outset. A simple oscillator consisting of a spring-mass system on a driven belt serves
as an example to explain the effect of non-smooth bifurcations. If a general non-linear
dependence of the friction coefficient on the relative velocity is assumed, even this simple
friction oscillator reveals all major types of non-smooth bifurcations that are expected
to appear in general in mechanical systems with one degree-of-freedom. By means
of a numerical continuation method these bifurcations are continued in a parameter
space, where the geometric quantities of the friction characteristic as well as the band
speed serve as continuation parameters. Besides the pertinent “stick-slip” oscillations
we also concentrate on finding “overshooting”-solutions where the mass moves in the
same direction as the belt but is temporarily faster.

Originating from the problem of squealing noises in breaking trains we consider in the
following a brake-like continuous model which consists of a rotating rigid shaft fitted
into an elastic bush with a diameter mismatch. The equations of motion of the bush are
reduced by a one-mode Galerkin expansion in the radial direction and thus describe
the evolution of non-smooth elastic travelling waves on the shaft-bush interface. The
reduced travelling wave equations closely resemble the simple friction oscillator, yet the
variation of the normal pressure between the shaft and the bush may additionally cause
separation effects. The appearance of different contact regimes, such as sticking, slipping
or separating provides a vivid example of non-smooth bifurcations in the considered
system, which are calculated numerically. In order to detect the bifurcation curves in
the parameter space we predominantly use the static coefficient of friction, the rotation
velocity of the shaft and the radial ratio of the bush as continuation parameters. Again,
a non-linear friction law depending on the local relative velocity is assumed to hold
at the shaft-bush interface. It is shown that waves rotating in the same sense as the
shaft only exist for small diameters of the bush. For backward waves rotating in the
opposite direction a rich bifurcation scenario is found, yielding pure slip, stick-slip, stick-
slip-separation and slip-separation waves. In slip regimes we additionally encounter the
emergence of overshooting motions where the tangential velocity of the bush locally
exceeds the velocity of the shaft. The obtained results justify the application of non-
smooth bifurcation theory in order to find parameter domains of qualitatively different
types of solutions which would have been undetected if a conventional strategy was
pursued where the discontinuities are avoided using smoothing functions.
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Eintauchen in das faszinierende Gebiet der Unstetigkeiten wo es durchaus – meiner Mei-
nung nach – lohnen würde, nun aufbauend auf den ersten Resultaten weiterzuarbeiten.
Es ist doch wirklich erstaunlich, dass im Zeitalter von Gen–, Nano– und sonstwelchen
Technologien immer noch niemand wirklich von Grund auf versteht, warum eine Bremse
quietscht, und wie dies zu vermeiden wäre!
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1 Introduction

‘Wissenschaft lehrt nicht zu anworten, sie lehrt zu fragen.’
Erwin Chargaff, 1905-2002, Austrian/American Biochemist.

1.1 Motivation

The study of self-excited oscillations in mechanical engineering in general and mechanics
in particular is steeped in tradition. Yet, it is a field of research that never ceases from
being up to date. Self-excited oscillations may be highly desirable such as in every-
day applications like pendulum clocks or violin strings. On the other hand the onset
of oscillations due to an instability in technical applications may cause severe damage,
material fatigue or is simply physiologically annoying. Oscillating electric power lines in
a wind flow or squealing brakes may serve as examples. The latter examples can already
be regarded as a superior motivation for the present thesis: the major problems under
consideration will be self-excited oscillations due to a fluid flow in Chapter 2 and due to
friction in Chapters 3 and 4.

The vast development of numerical methods and computing power has very success-
fully boosted the investigations of complex systems in engineering sciences. Finite el-
ement tools are nowadays a standard application in industry and serve very well for
numerical experiments. However, because of the complexity of the systems we some-
times loose sight of the basic mechanisms that are responsible for a certain system
behavior. One of the basic concerns of this work, thus, shall be rather to scrutinize
a problem profoundly and accept the drawback of seemingly too simple models as a
necessity. Bifurcation theory shall provide the major mathematical tool and a spe-
cial emphasis will be placed upon the application of recent advances in the theory of
non-smooth bifurcations to applied mechanical problems. Though often neglected, bi-
furcation theory proves to be very valuable for engineers in applied sciences since it
allows to answer fundamental questions like: which problem parameters produce which
type of system behavior. It is felt that only the synthesis of the “bottom-up” strategy
followed here with the fashionable “top-down” approach by direct numerical simulation
can yield results that are valuable, both, for the development of more sophisticated theo-
retical concepts on the one hand as well as innovative engineering solutions on the other.

All phenomena studied throughout this thesis are due to nonlinearities in the respec-
tive mechanical models. It has therefore to be opened with a short summary of important
notions of the theory of nonlinear dynamical systems. The examples treated in the re-
mainder are chosen such that the mechanical setting is conceptually simple. The study
of flow excited oscillators will lead to the investigation of coupled Van-der-Pol equa-
tions, the results thus might be carried over to multiple technical applications exceeding
mechanics. The examples of friction oscillators can be reproduced by anybody opening
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1 Introduction

a bottle of wine and turning the cork within the bottleneck. Despite the simplicity of
the model the problem will turn out to be mathematically and mechanically so intricate
that a complete understanding of the underlying mechanisms seems out of reach for the
time being. In view of the preceding quotation, however, we will obtain a glimpse into
a new non-smooth world that offers still vast lands to explore for future pioneers.

1.2 Selected basics of nonlinear dynamics

The available literature on nonlinear dynamics is abundant and it is not the scope of this
work to recompile a textbook on this subject. However, the need is felt to prepend here
some basic terminologies and definitions with an emphasis on an application oriented
viewpoint. We take the liberty of picking out single issues that will be of crucial impor-
tance in the course of this thesis. For a complete treatise it is referred to Guckenheimer
& Holmes [1983], Arnold [1983], Troger & Steindl [1991], Kuznetsov [1995],
Shilnikov et al. [1998] and Shilnikov et al. [2001].

1.2.1 Dynamical systems

It suffices here to define a dynamical system as the system of ordinary autonomous
differential equations

dx

dt
:= ẋ = f (x,µ) (1.1)

where x = x(t) ∈ Rn is a solution of (1.1), f is a vector valued function, f : Rn → Rn

defining a vector field on Rn depending on a parameter vector µ; t is an independent
variable, usually identified with time. In the sequel we cannot in general require f to
be continuous and smooth. While this will hold true for Chapter 2, the essential results
of Chapters 3 and 4 are due to a discontinuity of f .

1.2.2 Stability, asymptotic stability, superstability

Of course we use the common concept that a solution x0(t) of (1.1) is said to be stable
if a trajectory starting in a neighborhood V of x0 it remains in a neighborhood V1 ⊂ V
for all times; x0(t) is asymptotically stable if x0 is approached asymptotically as t→∞.
Moreover we introduce the term superstability (cf. e. g. Kuznetsov et al. [2003]) if
a trajectory starting near x0 coincides “exactly” with x0 after a finite time. This will
frequently appear in the non-smooth examples discussed in Chapters 3 and 4. We note
already here that the Poincare map of a superstable periodic trajectory always has a
zero eigenvalue.

1.2.3 Structural stability, topological equivalence and bifurcations

The vector field f in (1.1) is structurally stable if all sufficiently small perturbations f ǫ

of f are topologically equivalent to f , i. e. there exist homeomorphisms that take orbits
of f ǫ onto orbits of f . Usually a bifurcation occurs by definition if at a critical parameter
value µ = µ∗ the vector field f (x,µ∗) is not structurally stable. In fact we use this
notion of a bifurcation throughout this work. However, it is remarked that in particular
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1 Introduction

for the non-smooth examples this definition will contradict the intuition that at a bi-
furcation a “new” solution branches off. Leine [2000] recommends to use a definition
of a bifurcation proposed by Seydel [1994], namely: “a bifurcation point is a solution
where the number of fixed points or (quasi-)periodic solutions changes when µ passes
µ∗.” It is already anticipated here that almost all non-smooth bifurcations that will be
discussed in Chapters 3 and 4 would not comply with this definition. Indeed, in the
examples that will be considered solutions in a neighborhood of a bifurcation value will
be topologically non equivalent. Though, no additional solution will branch off at the
bifurcation value. Leine [2000] suggested to use the term topological transition instead
to describe this behavior. Again, we emphasize that we stick to the classical definition.
Besides, it is also employed by Kuznetsov et al. [2003] whereupon the non-smooth
analysis presented here is rooted.

The loci of all bifurcation values µ∗ associated with a certain type of bifurcation in
the parameter space is called a bifurcation set. The visualization of the bifurcation sets
in the parameter space will be called a stratification of the parameter space. A bifur-
cation may be classified by the codimension of its bifurcation set in the parameter space.

A bifurcation is local if it involves only a sufficiently small neighborhood of a given
point in the phase space of (1.1). For smooth systems local bifurcations typically occur
for equilibria of (1.1) if the real part of at least one eigenvalue of the Jacobian of (1.1)
becomes zero. For non-smooth systems (Chapter 3) there are multiple mechanisms of
local bifurcations, such as e. g. the collision of an equilibrium with a discontinuity.
A bifurcation is called global if the topological change involves the whole phase space.
Bifurcations of periodic orbits are generally global but may be described as local bi-
furcations in a reduced system, such as a Poincare map or a normal form on a center
manifold.

1.2.4 Center manifold and Normal Forms

The center manifold theorem proves the existence of an invariant manifold in a neighbor-
hood of an equilibrium of (1.1), which is tangent to the critical subspace of the Jacobian
∂f/∂x, spanned by the eigenvectors belonging to the eigenvalues on the imaginary axis.
The dimension of the center manifold thus is equal to the number of eigenvalues with
zero real part. Assuming that the remaining eigenvalues all have a negative real part
every trajectory will be attracted to this center manifold. Thus, the dynamics near
the equilibrium and especially the stability behavior can be studied from the dynamics
on the center manifold which allows to reduce a system of arbitrary dimension to the
dimension of the center manifold.

The reduced system in this sense will in general still be nonlinear, so it would be desir-
able to choose coordinates on the center manifold that at least make the nonlinearities as
simple as possible. This is done by a sequence of coordinate transformations which are
consolidated in normal form theory. The goal is to eliminate as much low powers in the
Taylor series expansion of the nonlinearities as possible. This procedure of calculating
a reduced normal form will be exemplarily outlined in Section 2.3.1.

11



1 Introduction

1.2.5 The method of averaging

The method of averaging provides another widespread and useful tool in the simplified
qualitative analysis of nonlinear dynamical systems. Roughly speaking, a system of
differential equations is simplified by averaging all occurring quantities over a certain
fast varying variable. Although this notion might be conceptually clear, its theoretical
foundation is rather sophisticated. In view of further application to the determination
of so-called synchronized solutions (see Section 2.1.1) it shall be referred here to Kirch-
graber & Stiefel [1978] who embeds the averaging method into the framework of
perturbation theory. In the following the basics as far as necessary for the understanding
of subsequent applications will be outlined here in slightly more detail.

Let a system of autonomous ordinary differential equations depending on an external
small parameter ǫ take the form

ẋ = f0(x) + εf 1(x, ε) (1.2)

where x ∈ Rn and f i (i = 0, 1) are vector valued functions f i : Rn × R → Rn. If the
solution of the unperturbed equation

ẋ0 = f 0(x0) (1.3)

has either periodic or quasi-periodic solutions, i. e. x0 can be written as x0 = ϕ0(ω0t)
where ω0 is some vector, possibly of dimension 1, then a transformation U , defined by

x = U(φ,Ω,a) (1.4)

may be applied to (1.2), called an element transformation of (1.2). U has to be 2π
periodic in φ and Ω and applied to (1.2) yields

φ̇ = ω(a) + εR(φ,Ω,a)

Ω̇ = εS(φ,Ω,a)

ȧ = εT (φ,Ω,a) .

(1.5)

Herein R, S and T are vector valued functions also 2π-periodic in φ and Ω, the vector
ω is constant or may depend on a. φ is called a fast angular variable, Ω a slow angular
variable, the components of a will be called amplitudes. For the moment, the dimensions
of the vectors φ, Ω and a are arbitrary, yet for practical purposes one would strive for a
transformed system (1.5) which does not exceed the dimension of the original equation
(1.2). It shall be remarked that in many applications (see e. g. Kirchgraber &
Stiefel [1978] or Chapter 2) the element transformation U (1.4) is a formal formula-
tion of performing a variation of the constants of integration that might appear in the
solution of the unperturbed problem (1.3).

The system (1.5) now defines a differential equation on an l-torus Tl where l =
dim(φ) + dim(Ω) the phase space of which is Rk × Tl with k = dim(a) (cf. Shilnikov
et al. [1998], Arnold [1983]). Moreover, (1.5) is suitable for an averaging opera-
tion, which shall be motivated in the sequel. Allowing a more concise presentation, the
quantities occurring in (1.5) shall be formally collected in sets,

Q = {φ,Ω,a} , N = {ω, 0, 0} and R = {R,S,T } . (1.6)

12
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Equations (1.5) again constitute a perturbation problem of the form (1.2) and may in
view of (1.6) be put down in writing

ẏi = νi(a) + εgi(Q) (1.7)

where
yi ∈ Q , νi ∈ N , gi ∈ R

and the index i addresses the i-th element of the respective set in (1.6). To each element
yi ∈ Q in (1.7) now a near identity transformation is applied, i. e.

yi = ȳi + εhi(Q̄) , (1.8)

where the generating functions hi inherit the periodicity properties of the of the func-
tions contained in R. Substitution of (1.8) into (1.5) yields after some straightforward
manipulations equations for the new variables ȳi ∈ Q̄ = {φ̄, Ω̄, ā} of the type

˙̄yi = ν i + ε

(

gi(Q̄)− ∂hi

∂φ̄
ω

)

+O(ε2) . (1.9)

The functions hi will have to be determined such that equations (1.9) become as simple
as possible. It would be desirable that the terms of first order in ε do not depend on φ̄

since then equations (1.5)2,3 would by means of (1.8) decouple from the equation for φ

(1.5)1. This requirement may be formulated as a partial differential equation for hi,

gi(Q̄)− ∂hi

∂φ̄
ω = ḡi(Ω̄, ā) . (1.10)

Due to the periodicity of gi and hi solutions of (1.10) may be sought in terms of Fourier
series, viz.

gi =
∑

n∈Zd

Gi,n(Ω̄, ā)ei(n·φ̄) , hi =
∑

n∈Zd

H i,n(Ω̄, ā)ei(n·φ̄) , (1.11)

where the sum is taken over all integer vectors n of dimension d = dim φ. Kirchgraber
& Stiefel [1978] have proved, albeit in a more general context, that hi is a solution
of (1.10) that complies with (1.11) if the Fourier coefficients Gi,n and H i,n are related
by

H i,n = − iGi,n

n · ω ∀n ∈ Z
d\{0} , H i,0 := 0 (1.12)

and if we let
ḡi(Ω̄, ā) = Gi,0 , (1.13)

which can easily been verified by substituting (1.11) into (1.10). The latter relation (1.13)
describes an averaging operation of the respective quantity gi ∈ Q, which alternatively
may be expressed as

ḡi(Ω̄, ā) =
1

2πd

∫ 2π

0

· · ·
∫ 2π

0

gi(φ̄, Ω̄, ā) dφ̄1 · · ·dφ̄d .

By virtue of this averaging procedure the original system (1.5) is simplified to

˙̄φ = ω(ā) + εR̄(Ω̄, ā)

˙̄Ω = εS̄(Ω̄, ā)

˙̄a = εT̄ (Ω̄, ā)

(1.14)

13
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and equations (1.14)2,3 now may be solved separately from (1.14)1.

Clearly, it follows from (1.12) that the Fourier coefficients of hi may only be calculated
if the scalar product n · ω =

∑

j njωj does not vanish except for n = 0. Vectors ω sat-
isfying this condition are called non resonant. It shall be remarked here that in (1.12) a
problem of small denominators occurs if ω is close to a resonance which leads to a weak
convergence of the fourier series (1.11). Since this is most commonly the case in synchro-
nization problems (cf. Chapter 2) where ωj will correspond to the natural frequencies
of a given oscillating system which might be close to each other, albeit not equal. Let
us consider an exemplary case where two frequencies ωj and ωk, say, are close to each
other, thus we may write ωj −ωk = O(ε). An integer vector n satisfying n ·ω = O(ε) is
n = (0, . . . , 0, 1,−1, 0, . . . , 0) with 1 and −1 at the j-th and k-th positions, respectively.
If so, however, a new quantity Ωl := φj − φk, Ω̇l = ωj −ωk + ε(Rj −Rk) = O(ε) may be
defined which is taken as an additional slow angular variable and appended to Ω while
one of the components, φj or φk, is dropped from φ.

Returning to the original Equation (1.5) a solution of first order in ε has now been
found, namely

φ(t) = φ̄(t) + εh1

(

φ̄(t), Ω̄(t), ā(t)
)

,

Ω(t) = Ω̄(t) + εh2

(

φ̄(t), Ω̄(t), ā(t)
)

,

a(t) = ā(t) + εh3

(

φ̄(t), Ω̄(t), ā(t)
)

.

(1.15)

By substituting (1.15) into (1.4) a first order approximation of (1.2) reads

x = U (φ̄ + εh1, Ω̄ + εh2, ā + εh3) (1.16)

which can be expanded into a Taylor series of first order in ε as follows,

x = U(φ̄, Ω̄, ā) + ε

[

∂U

∂φ
h1 +

∂U

∂Ω
h2 +

∂U

∂a
h3

]

+O(ε2) . (1.17)

In (1.17) the square brackets contain Fourier harmonics of higher order, of which the
average over one period in φ̄ is zero. Therefore, we are satisfied with a “mean” solution
for x, given by

xm = U(φ̄, Ω̄, ā) . (1.18)

Some comments still have to be made regarding the validity of the approximation (1.14)
for (1.5) in the time t. In general it can be proven that a solution ȳi(t) of the averaged
system remains close to a solution yi(t) of the original system (i. e. ȳi(t)−yi(t) = O(ε))
in a time interval proportional to ε−1 (Arnold [1983], Verhulst [1990], Sethna
[1967]). However, a periodic solution of (1.5) remains in a neighborhood of an equilib-
rium solution of (1.14) for all times t ≥ 0. If the equilibrium of the averaged equation
is asymptotically stable for t → ∞ then so is the periodic solution in the original sys-
tem (Verhulst [1990],Sanders & Verhulst [1985]). The latter statements will
justify the application of the averaging method for synchronization problems discussed
in Chapter 2.

14



1 Introduction

Energy source Oscillator
Switching
mechanism

Figure 1.1: Principal scheme of a self excited oscillator.

1.2.6 Self-excited oscillations

The main subject of interest in the present work are self-excited oscillators. A com-
prehensive introduction can be found in Magnus & Popp [2002]. In contrast to free
oscillators self oscillating systems are equipped with an energy source. If the energy
supply by the energy source is balanced with the amount of dissipation during one oscil-
lation period a periodic motion will set in exhibiting its own specific natural frequency.
Thus, a further distinction has to be made from a forced oscillator, where an oscillating
system takes over the frequency from the forcing.

We want to employ the notion of Magnus & Popp [2002] that a self excited oscillator
has three components, namely an energy source an oscillator and a switching mechanism
which controls the energy supply from the source to the oscillator (Figure 1.1). In the
following we will investigate three different self-sustained oscillators, which are mainly
distinguished by the type of the switching mechanisms gathered in Table 1.1.

System Energy Source Oscillator Switching mechanism Chapter

Flow excited
pendula

fluid flow pendula
nonlinear damping
characteristic of the
fluid force

2

Simple friction
oscillator

driving band spring-mass decreasing friction law 3

Shaft-bush
problem

rotating shaft elastic bush
decreasing friction law
and vanishing normal
pressure

4

Table 1.1: Types of self-excited oscillators that are going to be investigated
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2 Synchronization phenomena

The following chapter will be devoted to an investigation of synchronous motions (i. e.
oscillations with a common frequency) of two weakly or, respectively, strongly coupled
mechanical self-sustained oscillators, that would in the absence of an interaction perform
self-excited oscillations of different frequencies. After an explanatory introduction to the
subject in Section 2.1 the effect of synchronization is defined mathematically in Section
2.1.1. The following sections will consider the case of 1:1 frequency synchronization of
two coupled fluid-excited pendula with different natural frequencies, an example which
is simple enough such that almost all calculations can be performed analytically and
hence a very thorough discussion of the phenomenon can be given. We investigate
weak and strong coupling, comparing different approaches in order to find synchronized
regimes. Basically, these two cases can be classified as resonant and non-resonant Hopf
bifurcations, where in the latter case, which still is rather neglected in the literature
on synchronization theory (Blekhman [1988], Pikovsky et al. [2001]), well-known
results of normal form theory will permit a comprehensive description of synchronized
motions. The case of weak coupling is studied with the aid of averaging and we finally
obtain a descriptive graphical interpretation of synchronized solutions and analytical
results for the corresponding amplitudes and frequencies.

2.1 Introduction to synchronization phenomena in

mechanical systems

The prevailing historical introduction found in the literature on the phenomenon of
synchronization are Huygen’s clocks: in 1665 he observed that two pendulum clocks
mounted on a beam start to oscillate with a common frequency after some time and
the ticks are heard simultaneously. He cunningly perceived that this synchronization
is due to the weak coupling because of the elastic beam connecting the clocks. In the
1870s Rayleigh observed the mutual synchronization of slightly detuned organ pipes and
discovered the effect of oscillation quenching, when the coupling results in a suppression
of the oscillations of interacting systems. In the 20th century, synchronization effects
were observed in machine dynamics, if unbalanced rotors are mounted on a common
base-plate. More recently self-excited wind-induced vibrations of power transmission
lines have been studied by Kern & Maitz [1998], a system which likewise permits
the occurrence of synchronized motions. The spacers within a conductor bundle provide
the essential elastic coupling. The big field of chaotic synchronization has to be left out
here, since its main application is found in particular in biology, chemistry and electri-
cal engineering. The fascination of the synchronization phenomenon itself shall justify
to scrutinize an elementary mechanical example in the following (Blekhman [1988],
Pikovsky et al. [2001]). Mechanically, the striking phenomenon of synchronization
may be subsumed in such a way that a (very) weak coupling suffices to synchronize
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different oscillators with a new synchronous frequency. In this sense synchronized os-
cillations have to be strictly distinguished from forced oscillations. Mathematically, the
effect of synchronization will be explained as the occurrence of a limit cycle in a system
of coupled self-sustained oscillators that typically arises by means of a Hopf-bifurcation.

2.1.1 Synchronized solutions of dynamical systems

Although the notion of synchronization as described above seems to be intuitively clear,
mathematically exact definitions of synchronization are yet rather scarce, in particular if
it comes to the phenomenon of synchronization of non-periodic motions. Blekhmann
et al. [1997] give a most comprehensive definition of synchronized solutions of a set
of given dynamical systems which is more vividly explained in Blekhman [2000]. In
short, a number of, say, k general processes, the states of which are denoted by some time
dependent vector xi(t), (i = 1, . . . , k), are called synchronized if for a certain functional
C [t,xi(t)], describing some characteristic properties of xi at time t, the relation

C [t,x1(t+ τ1)] ≡ . . . ≡ [t,xk(t+ τk)] (2.1)

holds true for some phase shifts τ1, . . . , τk. The case where (2.1) is fulfilled for all
t > t0 ∈ R+ is referred to as full synchronization and approximate synchronization
occurs if (2.1) just holds approximately. If the limit t → ∞ yields (2.1) we are fac-
ing asymptotic synchronization. A mechanical example of the above mentioned process
might preferably be a periodic motion of an oscillating body described by some coor-
dinates xi(t) and C can be defined as an integer fraction of the frequency1 ωi of the
i-th body, viz. C [t,xi(t)] := ωi/ni, ni ∈ Z. With that (2.1) is identically satisfied if
ωi = niωs, which means that the considered bodies are shifted in their phases2 but oscil-
late with frequencies commensurate or possibly equal to a common frequency ωs, called
synchronous frequency. This example has accordingly been termed frequency synchro-
nization by Blekhmann et al. [1997] and shall be presented more precisely in the
following.

Let a dynamical system be represented by k autonomous ordinary differential equa-
tions

ẋi = fi(xi), i = 1, . . . , k, (2.2)

where xi ∈ R1. Following Blekhman [1988] a solution

xi = miωst+ Φi(niωst), mi, ni ∈ Z (2.3)

of (2.2) is called synchronous with a common synchronous frequency ωs if each Φi is a
periodic function in time with period Ti = 2π/niω. If one of the integers mj and nj
is zero for a coordinate xj the corresponding quantity is called rotational (ni = 0) or
oscillating (mi = 0), respectively. An example for the latter case will be discussed in
Section 2.2. Mechanical systems where rotational coordinates are present are discussed
e. g. in Blekhman [1988].

1Of course, a definition of what is meant by a frequency has to be available in the considered example.
2Again, a definition is needed for what is meant by a phase.
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2 Synchronization phenomena

In view of the following example a slightly less strict definition of synchronized so-
lutions in connection with the method of averaging, sketched in Section 1.2.5, shall be
formulated. Bearing in mind that the fundamental phenomenon discussed here is the
appearance of synchronized motions in weakly coupled systems as mentioned before it
should be possible to formulate the synchronization problem (2.2) in terms of a pertur-
bation problem, such as (1.2) which can be approximated by means of the averaging
method with a system of equations for the phases and amplitudes (1.14). We may look
for stationary solutions Ω̄0 and ā0 of (1.14)2,3 which satisfy

S̄(Ω̄0, ā0) = 0 ,

T̄ (Ω̄0, ā0) = 0 .

A solution φ̄0(t) on the surface Ω̄ = Ω̄0, ā = ā0 is given by

φ̄0(t) =
[

ω(ā0) + εR̄(Ω̄0, ā0)
]

t ,

and the original system (2.2) in the form of (1.2) has the mean solution in the sense of
Section 1.2.5

xm(t) = U
[(

ω0 + εR̄0

)

t, Ω̄0, ā0

]

+O(ε) , (2.4)

where ω0 and R̄0 denote ω and R̄, respectively, evaluated at Ω̄ = Ω̄0 and ā = ā0.
Clearly, xm(t) is a synchronized solution in compliance with (2.3) if the “frequency”
ω0 + εR̄0 in (2.4) can be represented as

ω0 + εR̄0 ≡ nωs (2.5)

for some integer vector n and a scalar constant ωs, the synchronous frequency. It is
pointed out, however, that since the solution (2.4) represents only an approximation of
first order in ε modulo the fast oscillating terms (cf. Section 1.2.5) the criterion for
synchronization (2.5) only holds for small values of ε and is only first order accurate.
Hence we are facing the case of approximate synchronization as mentioned above. If the
periodic solution xm (2.4) is asymptotically stable in the sense of Lyapunov, furthermore
the synchronized regime will be reached asymptotically for t → ∞. Consequently, the
problem of finding frequency-synchronized solutions of a given dynamical system has in
fact reduced to the determination of the periodic solutions and their stability.

2.2 Mechanical system and equations of motion

We consider two down-hanging rigid pendula, connected by a linear spring (spring con-
stant c) and a linear damping element (damping constant k12) performing planar oscil-
lations in the same plane (see Figure 2.1). Friction at the hinges is taken into account
by additional damping elements (k). The system has two degrees of freedom ϕ1 and ϕ2

and is exposed to a steady fluid flow of uniform velocity U perpendicular to the plane
of oscillation of the pendula. For non-circular cross sections of the pendula galloping
(flutter) instabilities (Blevins [1977]) are possible if U is increased beyond a certain
critical value Uc. The aerodynamic force fi acting per unit length on the i-th pendulum
due to the fluid flow is given by (Blevins [1977])

fi =
1

2
ρFU

2Di

[

a1
vi
U
− a2

(vi
U

)3
]

, (2.6)
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Figure 2.1: Mechanical system consisting of a flow excited double pendulum.

where ρF denotes the fluid density, vi the velocities of the pendula, D defines some
characteristic diameter of the cross-sections and the non-dimensional coefficients a1 and
a2 have to be determined experimentally, depending on the cross-section of the body.
We obtain two nonlinear ordinary differential equations for ϕ1 and ϕ2 which are, under
the restriction of small amplitude oscillations |ϕi| ≪ 1,

ϕ̈1 = −ω2
1ϕ1 − β1(ϕ1 − ϕ2)− γ1(ϕ̇1 − ϕ̇2) + (µ1 − α1ϕ̇

2
1)ϕ̇1 ,

ϕ̈2 = −ω2
2ϕ2 + β2(ϕ1 − ϕ2) + γ2(ϕ̇1 − ϕ̇2) + (µ2 − α2ϕ̇

2
2)ϕ̇2 .

(2.7)

Being most descriptive, the pendula are supposed to be homogeneous rigid rods (area
of cross section A) of the same material (density ρP ) differing solely in their lengths li,
which after integrating the fluid force (2.6) over the lenghts of the pendula leads to the
following expressions for the parameters introduced in (2.7):

ω2
i =

3g

4li
, βi =

3ch2
c

4ρPAl3i
, γi =

3k12h
2
k

4ρPAl3i
,

µi =
3ρFUD

4ρPAli
a1 −

3k

4ρPAl3i
:= µ̃i − k̃i, αi =

3ρFDli
2ρPAU

a2 .

(2.8)

By means of the variable transformation (Landa [2001])

ϕ̇i = xi/
√

3 (2.9)

we transform the Rayleigh equations (2.7) into a first order system of linearly coupled
Van-der-Pol equations

ẋ1 = y1 , ẏ1 = −ω2
1x1 − β1(x1 − x2)− γ1(y1 − y2) + (µ1 − α1x

2
1)y1 ,

ẋ2 = y2 , ẏ2 = −ω2
2x2 + β2(x1 − x2) + γ2(y1 − y2) + (µ2 − α2x

2
2)y2 .

(2.10)

in the new variables xi and their derivatives yi defining the vector field F (x1, x2, y1, y2) :
R4 → R4. In Pikovsky et al. [2001] and Aronson et al. [1990] the terms as-
sociated with βi are named reactive and those related to γi diffusive coupling. Two
coupled Van-der-Pol oscillators of the form (2.10) with distinct natural frequencies ω1

and ω2 but equal parameters βi, γi, µi and αi have been studied in Rand & Holmes
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[1980] and Aronson et al. [1990]. The latter particularly focuses the diffusive case
βi = 0, which for our model is coupling by damping only. In Storti & Rand [1982]
and Chakraborty & Rand [1988] weakly detuned oscillators similar to the case cur-
rently under consideration are discussed for γi = 0 and also for strong and weak coupling,
respectively. Particularly for the case of weak coupling explicit analytical representa-
tions of some bifurcation sets, which are referred to in Section 2.3.3, are presented in
Chakraborty & Rand [1988]. In Aronson et al. [1987] two identical oscillators
are examined and beneficial use is made of the additional reflectional symmetry of the
vector field defined by (2.10) occurring in that case. In Landa [2001] two different
coupled Van-der-Pol oscillators are discussed in the context of synchronization theory
by means of approximative methods. More recently, numerical studies detecting even
chaotic behavior were published in Low et al. [2003]. Here, we specifically want to
focus our attention on a comprehensive mechanical explanation of the peculiarities of
coupled Van-der-Pol equations from a more engineering oriented point of view.

2.3 Bifurcation analysis

In the following we will step through the customary stages of a nonlinear bifurcation
analysis (Guckenheimer & Holmes [1983], Troger & Steindl [1991]) starting
with the calculation of the critical parameter value (flow speed) by means of a linearized
stability analysis. In the sequel, the Hopf bifurcations occurring for large and small
frequency detunings and weak and strong coupling, respectively, are investigated.

2.3.1 Normal form analysis for a large frequency detuning

To start with, we want to employ some restrictions on the parameters in (2.10), namely

β1 = β2 , γ1 = γ2 , α1 = α2 , µ1 = µ2 − ε . (2.11)

In view of (2.8), it is hard to imagine a mechanical oscillator that fulfills restrictions
(2.11). However, since (2.11) is commonly assumed in the literature (Landa [2001],
Pikovsky et al. [2001]) these restrictions shall be discussed here, though. Physically
this can be considered as the case of a large frequency detuning between the oscillators
(Teufel et al. [2003]).

In the neighborhood of the equilibrium position x = (x1, x2, y1, y2) = 0 system (2.10)
can be written in the form ẋ = Jx + N(x), N(x) = (0, 0, α1x

2
1y1, α2x

2
2y2), with the

Jacobian matrix

J =









0 0 1 0
0 0 0 1

−β − ω2
1 β −γ − µ γ

β −β − ω2
2 γ −γ + ε+ µ









, (2.12)

The eigenvalues λ of J obey the characteristic equation

P (λ,µ) = λ4+λ3 (2γ − ε− 2µ) + λ2
(

2β − γε+ (ε− 2γε)µ+ µ2 + Ω
)

+

λ
(

−βε− µ (2β + Ω) + γΩ− εω1
2
)

+ βΩ +
1

4
(Ω2 −∆2) = 0

(2.13)
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where use is made of the expressions

Ω = ω2
1 + ω2

2 , ∆ = ω2
1 − ω2

2 , µ = (µ, ε, γ)

For γ = ε = 0 equation (2.13) can be simplified to

(

λ2 − λµ+ ω2
1

) (

λ2 − λµ+ ω2
2

)

+ β
(

2λ2 − 2λµ+ Ω
)

= 0 (2.14)

which can easily be solved with the aid of the substitution ν2 = λ2 − λµ yielding the
eigenvalues λi, (i = 1, . . . , 4),

λ1,2,3,4 =
µ

2
±
√

µ2

4
− ν2

1,2 , ν2
1,2 =

1

2

(

Ω + 2β ∓
√

4β2 + ∆2
)

. (2.15)

Clearly, ν1 and ν2 are real for Ω > 0 and β > 0 and thus the zero solution is stable for
µ < 0. At µ = 0 a Hopf-bifurcation of codimension two (Guckenheimer & Holmes
[1983]) at two pairs of imaginary conjugate eigenvalues occurs. The definition of µ,
(2.8)4, yields a relation for the critical velocity Uc of the flow at which the down-hanging
equilibrium position of the pendula becomes unstable. Assuming k1 ≈ k2 = k and
replacing the length li of the respective pendulum in (2.8)4 by some average value l̄ we
obtain

Uc = k/(2a1ρDl̄
2)

In order to scrutinize this bifurcation equation (2.10) may be rewritten at µ = 0 in terms
of new complex variables w by virtue of the linear transformation x = Tw yielding the
bifurcation equation

ẇ = Dw + G(w) , w = (w1, w2, w̄1, w̄2) (2.16)

where D is the diagonal matrix containing the eigenvalues of J and T is constructed
from the eigenvectors of J at µ = 0, viz.

D =









iν1 0 0 0
0 −iν1 0 0
0 0 iν2 0
0 0 0 −iν2









, T =









1 1 1 1
A+∆
2β

A+∆
2β

−A−∆
2β

−A−∆
2β

iν1 −iν1 iν2 −iν2

i (A+∆)ν1
2β

−i (A+∆)ν1
2β

−i (A−∆)ν2
2β

i (A−∆)ν1
2β









.

(2.17)
The abbreviation A stands for A =

√

4β2 + ∆2. The nonlinear vector function G has
to be calculated from

G(w) = T−1N(Tw) , (2.18)

its components Gi being homogeneous polynomials of degree 3 in w, viz.

Gi(w1, w2, w̄1, w̄2) =
∑

k,l,m,n
k+l+m+n=3

ai,klmnw
k
1w

l
2w̄

m
1 w̄

n
2 =:

∑

m
|m|=3

ai,mwm , (2.19)

where m := (k, l,m, n) and |m| := k + l +m+ n. The complex coefficients ai,m can be
derived from the relation

ai,klmn =
1

k! l!m!n!

∂k+l+m+nGi

∂wk1∂w
l
2∂w̄

m
1 ∂w̄

n
2

. (2.20)
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2 Synchronization phenomena

A further reduction of the nonlinear terms in (2.16) by means of normal form theory
now depends on the resonance properties of the eigenvalues ±iνi. It is known from the
Poincare-Dulac theorem (see e. g. Arnold [1983], Shilnikov et al. [1998])
that a change of variables

w = z + h(z) , z = (z1, z2, z̄1, z̄2) (2.21)

will transfer (2.16) to
ż = Dz + R(z) . (2.22)

The polynomials Ri will contain only those powers zm where the exponents satisfy the
resonance condition

kν1 − lν1 +mν2 − nν2 = νi . (2.23)

If the ratio ν1/ν2 is irrational solutions k, l,m, n for (2.23) are called trivial resonances
(Shilnikov et al. [2001]). Additionally, non-trivial resonances occur if ν1/ν2 = M/N ,
M,N ∈ N. Non-trivial resonances are commonly neglected, if N is greater than the or-
der of the lowest trivial resonance, i. e. N > |m|, which is referred to as weak resonance
and will be treated in the following.

In view of the eigenvalues (2.36) it is evident that for sufficiently large frequency
detunings ∆ or coupling strength β we avoid being close to the 1:1 resonance where ν1−
ν2 = O(ǫ). Synchronized regimes in the instance of non-resonant eigenvalues can most
easily be studied form from the normal form (2.22) of a Hopf-bifurcation of codimension
two at two imaginary pairs of eigenvalues without low order resonances (Takens [1974],
Holmes [1980] and Guckenheimer & Holmes [1983]). The normal form in the
considered case reads

ż1 = iν1z1 + a1,2100z
2
1 z̄1 + a1,1011z1z2z̄2 ,

ż2 = iν2z2 + a2,0021z
2
2 z̄2 + a2,1101z1z̄1z2 ,

(2.24)

or, respectively, in polar coordinates, z1 = R1e
iφ1, z2 = R2e

iφ2,

Ṙ1 = −R1(b
R
11R

2
1 + bR12R

2
2) , ṙ2 = −R2(b

R
21R

2
1 + bR22R

2
2) ,

φ̇1 = ν1 + bI11R
2
1 + bI12R

2
2 , φ̇2 = ν2 + bI21R

2
1 + bI22R

2
2 ,

(2.25)

where the coefficients bRij and bIij are the real and imaginary parts, respectively, of ai,klmn
occurring in (2.24). The considered example permits an analytical computation of bij ,
namely

bR11 = a1,2100 =
α(A+ ∆)(2β2 + ∆2)

16Aβ2
, bR12 = a1,1011 =

α(A−∆)

4A
,

bR21 = a2,1101 =
α(A+ ∆)

4A
, bR22 = a1,2100 =

α(A−∆)(2β2 + ∆2)

16Aβ2
,

bI11 = bI12 = bI21 = bI22 = 0 .

(2.26)

Scaling the amplitudes R1 and R2 by

R1 =
R̄1
√

bR11
, R2 =

R̄2
√

bR22
,
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2 Synchronization phenomena

and embedding (2.25) as usual into a two-parameter family (Guckenheimer & Holmes
[1983]) yields the simplified amplitude equations

˙̄R1 = η1R̄1 − R̄1(R̄
2
1 + κR̄2

2) , φ̇1 = ν1 + ξ1 ,

˙̄R2 = η2R̄2 − R̄2(R̄
2
2 + κR̄2

1) , φ̇2 = ν2 + ξ2 .
(2.27)

ηi and ξi being the real and imaginary parts of the unfolding parameters, respectively
(Troger & Steindl [1991]). The coefficient κ can be calculated analytically using
the formula

κ = 2
∂3G2

∂w1∂w̄1∂w2

(

∂3G1

∂w2
1∂w̄1

)−1

, (2.28)

where Gi is given by (2.19). A relation between the unfolding parameters ηi, ξi and
the physical quantities µ, ε and γ is established from the Taylor series expansion of the
eigenvalues (Troger & Steindl [1991]),

ηi + iξi =
∂λ

∂µ

∣

∣

∣

∣µ=0

λ=iνi

· µ = − 1

∂P/∂λ

∂P

∂µ

∣

∣

∣

∣µ=0

λ=iνi

· µ . (2.29)

Evaluating (2.28) and (2.29) using (2.17), (2.18) and the characteristic equation (2.13)
yields the results

κ =
2

1 + ∆2

2β2

, η1,2 =
µ

2
+

(

1∓ ∆

A

)

ε

4
−
(

1∓ 2β

A

)

γ

2
, ξ1,2 = 0 . (2.30)

The phase portraits of (2.27) are elaborated for a more general case in Guckenheimer
& Holmes [1983]. In the context of aerodynamically excited mechanical oscillations,
similar to the case discussed here, in Stribersky & Troger [1987] the same type of
bifurcation was studied numerically. We shall interpret some major results here within
the framework of synchronization theory.

System (2.27) has four stationary solutions, denoted by S0, . . . , S3, namely

S0 : R̄∗
1 = 0 , R̄∗

2 = 0 , S1 : R̄∗
1 =
√
η1 , R̄

∗
2 = 0 ,

S2 : R̄∗
1 = 0 , R̄∗

2 =
√
η2 , S3 : R̄∗

1 =

√

κη2 − η1

κ2 − 1
, R̄∗

2 =

√

κη1 − η2

κ2 − 1
.

Reestablishing relations between the quantities R1, R2, φ1 and φ2 in (2.27) and the orig-
inal deflection angles ϕi yields

ϕ1(t) =
1√
3

[

R1

ν1

sin ν1t+
R2

ν2

sin ν2t

]

+Q
(3)
1 (R1, R2, ν1t, ν2t) ,

(2.31)

ϕ2(t) =
1

2β
√

3

[

(A−∆)
R1

ν1
sin ν1t−(A+ ∆)

R2

ν2
sin ν2t

]

+Q
(3)
2 (R1, R2, ν1t, ν2t) ,

where the higher order terms Q
(3)
i are homogeneous functions in R1 and R2 of third

degree and higher, quasi-periodic in the time t with periods 2π/ν1 and 2π/ν2. Evaluated

at the stationary values R1 = R̄∗
1/
√

bR11, R2 = R̄∗
2/
√

bR22, the form of solution (2.31) is
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2 Synchronization phenomena

η2

η1

η1
= η2/

κ for
κ >

1

η1
= κη2

for
κ <

1

η
1

=
κ
η
2

fo
r
κ
>

1

η
1

=
η
2
/
κ

fo
r
κ
<

1

II: S2

IV: S2V: S0

VI: S1

III:
κ > 1 : S1, S2

κ < 1 : S3

I: S1

Figure 2.2: Stratification of the parameter plane (η1,η2) and the corresponding stable stationary
solutions.

similar to the general relation (1.17) discussed in Section 1.2.5, where the amplitude
vector ā is identified with ā = (R1, R2), the phases φ̄ are ν1t and ν2t and Ω̄ has zero
dimension. The solution (2.31) suggests the following interpretation of the stationary
solutions S1 . . .S3:

• In-phase synchronization with the common frequency ν1 appears at S1 where the
oscillations of the pendula are described by

ϕ1(t) =
1

ν1

√

η1

3bR11
sin ν1t+O(η

3/2
1 ) , ϕ2(t) =

A−∆

2βν1

√

η1

3bR11
sin ν1t+O(η

3/2
1 ) .

• Anti-phase synchronization with the common frequency ν2 appears at S2 where
the oscillations of the pendula are described by

ϕ1(t) =
1

ν1

√

η2

3bR22
sin ν2t+O(η

3/2
2 ) , ϕ2(t) = −A+ ∆

2βν2

√

η2

3bR22
sin ν1t+O(η

3/2
2 ) .

• At S3 we obtain the full quasi-periodic motion on a 2-Torus with two distinct
frequencies ν1 and ν2 described by (2.31)

The conditions for the existence of the fixed points S1, . . . , S3 partition the parameter
space (η1, η2) into six segments I. . .VI as depicted in Figure 2.2. The stability can easily
be checked by linearizing (2.27) (see Guckenheimer & Holmes [1983]). Obviously,
the system will in general tend to synchronize if κ > 1 regardless of the other parameters
which with the aid of (2.30)1 results in the condition

−
√

2β < ∆ <
√

2β . (2.32)

In regions I and VI in-phase synchronization is stable contrary to regions II and IV
where the anti-phase solutions are attracting. In region III both, in-phase and anti-
phase regimes are stable and thus the long-term behavior depends only on the initial
conditions.
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2 Synchronization phenomena

If κ < 1 synchronization occurs merely in regions I, II, IV and VI whereas in the
segment III we are facing the case of quasi-periodic oscillations. Using (2.30)2 we arrive
at the conditions for in- and anti-phase synchronization, respectively,

(

6β2 + ∆2
)

(4βγ −∆ε)− A
(

2β2 −∆2
)

(2γ − ε− 2µ) > 0 (in-phase),
(

6β2 + ∆2
)

(4βγ −∆ε) + A
(

2β2 −∆2
)

(2γ − ε− 2µ) < 0 (anti-phase).

For the special case of similar oscillators without damping, i. e. ε = 0, γ = 0 and
consequently η1 = η2 = µ/2 we obtain a picture that is qualitatively similar to region III
in Figure 2.2. Thus again, the motions of the pendula will synchronize if the parameters
β and ∆ satisfy the inequality (2.32).

2.3.2 Small frequency detuning and strong coupling

For the mechanical problem, it seems practically more plausible to emphasize the case
of zero damping (γi = 0) and identical oscillators, but to consider unfoldings for a small
length deviation (l2 − l1)/l1 = ε and a small damping γ (Teufel et al. [2006b]).
Taking ε as a small parameter reveals the dependencies

ω2
2 = ω2

1(1− ε) , β2 = β1(1− 3ε) , γ2 = γ1(1− 3ε) ,

µ2 = µ1(1− ε) + 2k̃1ε , α2 = α1(1 + ε) .
(2.33)

In the sequel we will for simplicity drop the indices of β1, γ1, µ1, k̃1, α1. Discussing the
case of weak coupling in Section 2.3.3, we will take advantage of the fact that the devi-
ations (2.33) may be of second order in ε if the coupling parameters are assumed to be
small themselves.

The Jacobian matrix of system (2.10) is now given by

J =









0 0 1 0
0 0 0 1

−β−ω2
1 β −γ+µ γ

β(1−3ε) −β(1−3ε)−ω2
1(1−ε) γ(1−3ε) 2k̃ε−γ(1−3ε)+µ(1−ε)









, (2.34)

with the characteristic equation

P (λ,µ) = −β (1− 3ε) (β + γλ) +
[

β + ω1
2 + λ (γ + λ− µ)

]

×
[

β (1− 3ε) + ω2
1 (1− ε)

]

− λ
[

γ (1− 3ε) (β + γλ)−
(

γ (1− 3ε) + λ− µ(1− ε)− 2k̃ε
)

(

β + ω2
1 + λ(γ + λ− µ)

)]

(2.35)

which for γ = 0 and ε = 0 straightforwardly yields the eigenvalues λ1, . . . , λ4,

λ1,2,3,4 =
µ

2
±
√

µ2

4
− ν2

1,2 , ν2
1 = ω2

1 , ν2
2 = ω2

1 + 2β . (2.36)

At the critical parameter vector µ = (µ, ε, γ) = 0 again a Hopf-bifurcation of codimen-
sion two occurs. The 1:1 resonance can be avoided only for a sufficiently large coupling
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2 Synchronization phenomena

strength β here. The computation of the Poincare-Dulac normal form was outlined
in Section 2.3.1. Only the transformation matrix T must be adapted to,

T =









1 1 1 1
1 1 −1 −1
iν1 −iν1 iν2 −iν2

iν1 −iν1 −iν2 iν2









, (2.37)

which affects the unfolding parameters and the coefficient κ in (2.27). Evaluating (2.28)
and (2.29) using (2.37), (2.18) and (2.35) gives

κ = 2 , η1 =
1

2

(

µ+ k̃ε
)

, ξ1 = −εν1

4

η2 =
1

2

(

µ+ k̃ε
)

− γ , ξ2 = −ε
(

ν2

4
+
β

ν2

)

.
(2.38)

In Section 2.3.1, where a large frequency detuning between the oscillators was still per-
mitted, we have explained that the stationary solution of (2.27) where R̄∗

1 = 0, R̄∗
2 =
√
η2

corresponds to an anti-phase synchronized motion, while that with R̄∗
1 =
√
η1, R̄

∗
2 = 0

causes in-phase synchronization with frequencies ν2 + ξ2 or ν1 + ξ1, respectively. More-
over it is known that a quasi-periodic two frequency regime is only stable if κ < 1 which
is ruled out by (2.38), here. Thus, in the considered example the in- and anti-phase
motions of two coupled identical pendula (Arnold [1978]) are preserved with small
frequency shifts ξi for a small difference of their lengths ε and a small damping γ. If
η1 and η2 are negative the origin is the only stable solution, which permits to calculate
the critical flow velocity Uc beyond which the pendula start oscillating from µ+ k̃ε = 0;
using the definition (2.8)4 of µ gives Uc = k(1− ε)/ρFDl1a1.

2.3.3 Hopf-bifurcation at 1:1 resonance –

small frequency detuning and weak coupling

The derivation of the normal form (2.27) in the previous subsection was based upon
the requirement that the eigenvalues at the Hopf bifurcation ±iν1 and ±iν2 be non-
resonant due to strong coupling. In this work, we shall put the emphasis however on the
case of weak coupling where actually synchronization is the more striking phenomenon.
We start again with equations (2.10) for zero damping γ = 0 and a small detuning
of the natural frequencies ω2 = ω1(1 − ε/2) due to a small relative length difference
of the pendula ε. Furthermore, in view of (2.33) we now express the smallness of the
coefficients β, µ and α by the notations

β1 = β := εβ ′ , µ1 = µ := εµ′ , α1 = α := εα′ ,

β2 = β +O(ǫ2) , µ2 = µ+O(ǫ2) , α2 = α +O(ǫ2) ,
(2.39)

In order to obtain the normal form of (2.10) up to order ε in the resonant case we
use a direct averaging approach (Sethna [1995]). Inserting (2.39) into (2.10) yields a
perturbation problem suitable for averaging where the unperturbed system is a simple
harmonic oscillator with frequency ω1. Introducing the element transformation (Kirch-
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graber & Stiefel [1978])

x =









x1

x2

y1

y2









=









A1 cos φ
A2 cos(φ+ ψ)
ω1A1 sinφ

ω2A2 sin(φ+ ψ)









= U(y) , y := (A1, A2, φ, ψ) , (2.40)

which is widely used to derive amplitude equations for Van-der-Pol oscillators (Landa
[2001], Pikovsky et al. [2001], Rand & Holmes [1980]) we formally obtain aver-
aged equations for y from

˙̄y =

∫ 2π

0

∂U

∂y

−1

F (U(y)) dφ , (2.41)

where the bar indicates averaged quantities. Up to order ε, the result of (2.41) reads

˙̄A1 = (1− Ā2
1)Ā1 − β̃Ā2 sin ψ̄ , ˙̄ψ = ∆̃ + β̃

(

Ā1

Ā2

− Ā2

Ā1

)

cos ψ̄ ,

˙̄A2 = (1− Ā2
2)Ā2 + β̃Ā1 sin ψ̄ , ˙̄φ = −ω̃1 − β̃

(

1− Ā2

Ā1

cos ψ̄

)

,

(2.42)

where the amplitudes as well as the time have been scaled by

Ā1 → 2

√

µ

α
Ā1 , Ā2 → 2

√

µ

α
Ā2 , t→ 2

µ
t , (2.43)

and the parameters are given by3

∆̃ = ε
ω1

µ
=

∆

µ
, β̃ = ε

β ′

µω1
, ω̃1 =

2ω1

µ
. (2.44)

where the frequency detuning ∆ = ω1 − ω2 has been introduced. Apparently, at sta-

tionary solutions ˙̄A1 = ˙̄A2 = ˙̄ψ = 0 of (2.42), both pendula oscillate with different
amplitudes Ā∗

1 and Ā∗
2, with a constant phase shift ψ̄∗ and a common frequency ωs,

given by the solution of (2.42)4 on the manifold {Ā = Ā∗
1, Ā2 = Ā∗

2, ψ̄ = ψ̄∗}, viz.

φ̄∗(t) = −ωst , where ωs = ω1 +
1

2
µβ̃

(

1− Ā∗
2

Ā∗
1

cos ψ̄∗

)

. (2.45)

With the phase φ given by (2.45) a solution x of (2.10) given in the form of (2.40)
complies with the definition (2.3) where the periodic functions Φi are now identified
with the components of the transformation U . Thus a stationary solution of (2.42) is
naturally frequency synchronized. We want to stress the point that the transformation
(2.40) permits a direct calculation of the synchronous frequency ωs avoiding the ad-hoc
assumption that ωs = (ω1 + ω2)/2, which is used in Landa [2001] and Pikovsky et
al. [2001]. In order to find the solutions (Ā∗

1, Ā
∗
2, ψ̄

∗) and in particular domains for the
parameters ∆̃ and β̃ where these solutions exist and are stable, two different approaches
are compared in the following. One is to solve (2.42) by means of a perturbation expan-
sion for small β̃. The other is based upon a graphical interpretation of the stationary
solutions.

3Note that by definitions (2.43)
3

and (2.44) we restrict ourselves to the case µ 6= 0.
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A perturbation expansion

A perturbation expansion to (2.42) has been applied in Rand & Holmes [1980] and
shall briefly be sketched here for review purposes. For β̃ = 0, equations (2.42)1,2 have

a stationary solution4 A∗
1 = 1, A∗

2 = 1 and ψ is a time-like variable ψ = ∆̃t. Thus, for
small β̃ we may seek solutions using an expansion

A1(ψ) = 1 + β̃A11(ψ) +O(β̃2) , A2(ψ) = 1 + β̃A21(ψ) +O(β̃2) , (2.46)

which if substituted into (2.42)1,2 yields linear ordinary differential equations for A11

and A21 by comparing the coefficients of β̃, namely

∆
dA11

dψ
= −2A11 − sinψ ,

∆
dA21

dψ
= −2A21 + sinψ ,

(2.47)

Using (2.46) in the equation for ψ̇ (2.42)3 and expanding the right-hand-side in a Taylor

series in β̃ yields
ψ̇ = ∆̃ + β̃2(2A11 − 2A21) cosψ +O(β̃4) . (2.48)

A solution of (2.47) modulo exponentially decaying terms is easily found to be

A11(ψ) =
1

2
√

1 + (∆̃/2)2

cos(ψ + θ) , where θ = arctan
2

∆̃
, (2.49)

and furthermore A21 = −A11 holds true. Taking this into account and besides assuming
that ∆̃ ≪ 1 (i. e. θ ≈ π/2) we obtain from (2.48) together with (2.49) a simple o.d.e.
involving only the phase difference, which is

ψ̇ = ∆̃− β̃2 sin 2ψ. (2.50)

In a synchronized regime the phase difference ψ∗ is constant (ψ̇∗ = 0) and thus given by

2ψ∗
s = arcsin

∆̃

β̃2
, 2ψ∗

u = π − arcsin
∆̃

β̃2
. (2.51)

The subscripts s and u indicate that (2.51)1 is stable in contrast to (2.51)2 which is easy

to check by calculating ∂ψ̇/∂ψ from (2.50). Moreover, it is obvious that solutions (2.51)
exist only if the inequality

−β̃2 ≤ ∆̃ ≤ β̃2 (2.52)

holds which defines a domain bounded by two parabolas in the (∆̃, β̃)-space. This do-
main is an approximation of the parameter region where synchronized solutions are
stable..

4The bars for A1, A2 and ψ are in the following dropped for simplicity.
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A graphical approach

Now we will go straightway about finding stationary solutions for (2.42) and consider
the algebraic system of equations

f(A; b) =

(

(1− A2
1)A1 − bA2

(1− A2
1)A1 + bA2

)

= 0 , ∆̃ + c(A)

√

β̃2 − b2 = 0 , (2.53)

where the following substitutions have been performed:

A = (A1, A2) , b = β̃ sinψ , c(A) =
A1

A2

− A2

A1

. (2.54)

If A1, A2 and ∆̃ are regarded as variables depending on the parameters b and β̃, (2.53)1
can be solved uncoupled from (2.53)2 by virtue of some cunning algebraic manipulations
laid down in the following.

Solutions of (2.53)1 may be visualized as the intersection points of two curves, σ1 and
σ2, defined by

σ1 = {A : (A2
1 + A2

2)− (A4
1 + A4

2) = 0} , σ2 = {A : A2 =
1

b
(A1 − A3

1)} , (2.55)

and plotted in Figure 2.3a. It is evident that there will in general be two such intersection
points, denoted by A∗

1(b) and A∗
2(b) depending solely on b. We proceed to derive from

(2.53) together with the definition of c, (2.54)2, on σ1 the identities

A2
1 + A2

2 ≡ (2 + c2)A2
1A

2
2 ≡ 2 + bc . (2.56)

Furthermore, a formula for the derivative of c with respect to b on the curve σ1 is given
by

dc

db

∣

∣

∣

∣

σ1

=
dc

dA
· dA

db

∣

∣

∣

∣

σ1

= − dc

dA
·
(

∂f

∂A

−1∂f

∂b

)∣

∣

∣

∣

σ1

. (2.57)

All derivatives in (2.57) are easily calculated from (2.54)3 and (2.53) unless ∂f/∂A
is singular, namely at the point of tangency of σ1 and σ2. Thus, it suggests itself to
introduce the determinant of the Jacobian of f by

Θ(A1, A2, b) := det
∂f

∂A
=

∣

∣

∣

∣

1− 3A2
1 −b

b 1− 3A2
2

∣

∣

∣

∣

= (1− 3A2
1)(1− 3A2

2) + b2 (2.58)

and we remark that Θ(A1, A2, bc) = 0. If additionally relation (2.55) is taken into
account the evaluation of (2.57) results in the expression

dc

db

∣

∣

∣

∣

σ1

= −2
(A2

1 + A2
2)

2

A2
1A

2
2

1

Θ
= −2(2 + bc)(2 + c2)

1

Θ
= −2(4 + c2)

1

Θ
, (2.59)

where in the last two steps again repeated use has been made of (2.56) and (2.55).
Relation (2.59) conspicuously reveals that c has to obey the identity (2 + bc)(2 + c2) ≡
(4 + c2) for all b, or more concisely c(bc2 + c+ 2b) ≡ 0 with the non-trivial solutions

c1(b) =
1

2b
(−1 +

√
1− 8b2) , c2(b) = − 1

2b
(1 +

√
1− 8b2) . (2.60)
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Apparently, c1 and c2 are real if

b ∈
[

− 1

2
√

2
,

1

2
√

2

]

(2.61)

and thus the critical value bc = 1/2
√

2 has been found below which (2.53) possesses
both solutions, A∗

1 and A∗
2. The result (2.60) is of crucial importance since all quantities

dealt with in the subsequent analysis will be educible in terms of ci(b). In particular, we
obtain expressions for the components of A∗

i = (A1,i, A2,i) from solving (2.56),

A2
1,i(b) =

4 + c2i − |ci|
√

4 + c2i
4 + 2c2i

, A2
2,i(b) =

4 + c2i + |ci|
√

4 + c2i
4 + 2c2i

, (2.62)

and for the determinant Θi(b) = Θ(A1,i, A2,i, b) from (2.59)

Θi(b) = −2(4 + c2i )/c
′
i , (2.63)

where a prime (·)′ is used to indicate differentiation with respect to b. The functions ci
(i = 1, 2) correspond to c(A) evaluated at A∗

i , i. e. ci(b) = c(A∗
i (b)).

For stationary (i. e. synchronized) solutions of the original system (2.42) it is still
required that there exist frequency detunings ∆̃1, ∆̃2 in compliance with (2.53)2, namely

∆̃1(β̃, b) = −c1(b)
√

β̃2 − b2 and ∆̃2(β̃, b) = −c2(b)
√

β̃2 − b2 . (2.64)

In the (∆̃, β̃)-space, equations (2.64) define two one-parameter arrays of curves depend-
ing on b, the graphs of which are shown in Figure 2.3b. The notations S1 and S2 shall
be introduced for the solution triples S1 = (A∗

1, ∆̃1) and S2 = (A∗
2, ∆̃2) of (2.53) in-

dicating synchronized solutions of (2.42) with amplitudes A∗
i for a frequency detuning

∆̃i given by (2.64). Observing Figure 2.3a we remark that at S1 the pendula oscillate
with amplitudes of roughly the same order of magnitude (A1,1 ≈ A2,1 ≈ 1) while at
S2 the amplitude A1,2 would be considerably smaller than A2,2 which seems physically
not feasible and indeed, the instability of S2-type solutions will be shown in due course.
Obviously, the graphs of ∆̃1(β̃, b) and ∆̃2(β̃, b) are dense in the (∆̃, β̃)-space (see Figure
2.3b) and thus synchronized solutions exist for all pairs (∆̃, β̃) since for any given com-
bination (∆̃, β̃) at least one value for b ∈ [0, bc] can be found such that either (2.64)1
or (2.64)2 holds.5 The definition of b, (2.54)2, then yields the corresponding stationary
phase shift ψ. In order to check the stability properties of S1 and S2 equations (2.42)1−3

are transformed in terms of the variables A1, A2 and b defining a new vector field

Ȧ1 = (1− A2
1)A1 − bA2 ,

Ȧ2 = (1− A2
2)A2 + bA1 ,

ḃ = ∆̃

√

β̃2 − b2 + c(A1, A2)(β̃
2 − b2) .

(2.65)

to which a linear stability analysis is subsequently applied in the standard fashion.
Resorting to the well known Routh-Hurwitz criterion use will be made of the Jacobian

5Without loss of generality we confine ourselves to ∆̃ > 0 which is just a matter of renumbering the
oscillators.
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2 Synchronization phenomena

Jb of (2.65) evaluated for Si, viz.

Jb =





1− 3A1,i
2 −b −A2,i

b 1− 3A2,i
2 A1,i

A2,i(2 + c2i )(β̃
2 − b2) −A1,i(2 + c2i )(β̃

2 − b2) −bci



 , (2.66)

as well as its invariants

pi = − trJb = 4(1 + bci) ,

qi = tr(Jb)
2 − tr(JbJ

T
b ) = Θi + bci(4 + 3bci) + (4 + c2i )B(b) ,

ϑi = − detJb = bci Θi + 2(4 + c2i )B(b) ,

χi = pi qi − ϑi = (4 + 3bci) [Θi + 4bci(1 + bci)] + 2(1 + 2bci)(4 + c2i )B(b) ,

(2.67)

where β̃2−b2 has been abbreviated by B(b) ≥ 0 and (2.56) had to be reapplied repeatedly.
Thus pi, qi, ϑi and χi may be interpreted as linear functions in B(b) for a given b. The
aforementioned criterion then asserts that all eigenvalues of Jb have a negative real part
if

pi > 0, qi > 0, ϑi > 0, and χi > 0 . (2.68)

If χi = 0 (pi, qi, ϑi > 0) the Jacobian Jb exhibits a pair of purely imaginary eigenvalues
announcing a Hopf bifurcation and if ϑi = 0 (pi, qi, χi > 0) a bifurcation at a single zero
eigenvalue occurs. Furthermore, it is easy to verify that the inequalities

−2 ≤ Θ2(b) ≤ 0 ≤ Θ1(b) ≤ 4 , −1 ≤ bc2(b) ≤ −
1

2
≤ bc1(b) ≤ 0 (2.69)

hold for all b ∈ [−bc, bc]. We now essentially have the prerequisites at hand in order to
prove the stability or instability of the fixed points S1 and S2.

Proposition 2.1. Stationary solutions S2 are unstable for all β̃ ≥ 0 and b ∈ [−bc, bc].

Proof. Avoiding an explicit calculation of (2.67) for (2.60)2 the instability of S2-solutions
follows immediately from (2.69) by virtue of which (2.67)4 may be written as

χ2 = − |4 + 3bc2| (|Θ2|+ |4bc2| |1 + bc2|)− 2 |1 + 2bc2| (4 + c22)B < 0

which violates (2.68), since both terms are either negative or zero for all B ≥ 0, b ∈
[−bc, bc].

Proposition 2.2. The family of curves (2.64)1 in the parameter plane possesses an
envelope e which has the equation in parametric form

β̃e(b)
2 =

c1
c′1
b+ b2 , ∆̃e(b) = −c1

√

β̃2
e − b2 = −c1

√

c1
c′1
b . (2.70)

The envelope (2.70) is a bifurcation set where the Jacobian matrix of f b has one single
zero eigenvalue and there exists a number b00 < bc such that for any given b ∈ ]−b00, b00[
the associated synchronized solution S1 is stable if β̃ > β̃e(b) and ∆̃1 given by (2.64)1.
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Figure 2.3: (a) Geometrical interpretation of the stationary solutions A∗
1 and A∗

2 according to
equation (2.55). (b) Stratification of the parameter plane, coupling strength β̃ versus frequency
detuning ∆̃, into the corresponding synchronized solutions S1 (solid) and S2 (dashed). The
dotted line indicates the cusp-shaped envelope.

Proof. The representation of the envelope (2.70) is found straightforwardly from solving

∆̃1 + c1

√

β̃2 − b2 = 0 ,
∂

∂b

(

∆̃1 + c1

√

β̃2 − b2
)

= 0 ,

for ∆̃1 and β̃. Rewriting (2.67)3 under consideration of (2.63) and solving ϑ1 = 0 for B
immediately yields

B|ϑ1=0 = β̃2
∣

∣

∣

ϑ1=0
− b2 =

c1
c′1
b

which is equivalent to (2.70)1, i. e. β̃
∣

∣

∣

ϑ1=0
= β̃e. In order to show that (2.70) is

indeed a bifurcation set we have to verify that the remaining invariants are positive for
B(b) = B|ϑ1=0. We observe that p1 is by (2.69)2 strictly positive for all b ∈ [−bc, bc];
q1 > 0 and consequently χ1 > 0 holds for B(b) = B|ϑ1=0 if 2bc1(4+3bc1)+Θ1(2−bc1) > 0,
which is obviously fulfilled for b = 0 but violated for b = ±bc. Thus there exists an
interval ]−b00, b00[ ⊂ [−bc, bc] such that q1 > 0 and χ1 > 0 if b ∈ ]−b00, b00[. Using (2.60)
as well as (2.63) to replace c1 and Θ1 permits a numerical calculation of b00 ∼= 0.340089.
Since the coefficients of B(b) in (2.67) are all positive by (2.69), p1 > 0, q1 > 0, ϑ1 > 0
and χ1 > 0 indeed holds for B(b) > B|ϑ1=0, i. e. β̃ > β̃e(b), for a given b ∈ ]−b00, b00[
and thus S1 is stable.

Proposition 2.3. The envelope (2.70) exhibits a cusp located at bx = 1/3, β̃x =
2/(3
√

3), ∆̃x = 1/(3
√

3).

Proof. The parameter value bx where the cusp is located can be calculated from the
condition that ∂β̃2

e/∂b = 0 (which implies that ∂∆̃e/∂b = 0) at b = bx yielding

3bxc
′
1(bx)

2
+ c1(bx)(c

′
1(bx)− bxc′′1(bx)) = 0 .
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Figure 2.4: (a) A coarse global stratification of the parameter plane including the envelope e and
the Hopf bifurcation line h. (b) Enlargement of the frame shown in Figure 2.4a (qualitatively
sketched).

After employing (2.60)1 the solution bx = 1/3 may be found analytically together with

the associated values β̃x = β̃e(bx) and ∆̃x = ∆̃e(bx).

Proposition 2.4. For b ∈ ]b00, bc] the curve h, defined by

β̃h(b) =
√

Bh(b) + b2 , ∆̃h(b) = −c1(b)
√

Bh(b) , (2.71)

where Bh is given by

Bh(b) = −(4 + 3bc1) [Θ1 + 4bc1(1 + bc1)]

2(1 + 2bc1)(4 + c21)
, (2.72)

defines a bifurcation set where the Jacobian of f b has a purely imaginary pair of eigen-
values indicating a Hopf bifurcation. For β̃ > β̃h(b), S1 is stable.

Proof. The expression (2.72) is again immediately found from solving χ1 = 0 in (2.67)4
for B. All further reasoning is similar to the proof of Proposition 2.2 and shall not be
repeated.

The preceding propositions suggest that codimension 2 singularities will occur at b =
bx as well as at b = b00. The first case can intuitively be recognized as a cusp bifurcation
(Guckenheimer & Holmes [1983],Troger & Steindl [1991]). In the second case
we are facing a double zero eigenvalue since the determinant and the second invariant of
Jb are zero while the trace is still negative. If so, it is well known that the local behavior
in a neighborhood of the singular point A∗

1(b00) is governed by the Bogdanov-Takens
normal form (Guckenheimer & Holmes [1983])

ż1 = z2 , ż2 = η1 + η2z2 + κ1z
2
1 + κ2z1z2 , (2.73)

where z1, z2 are coordinates on a two dimensional center manifold and η1, η2 are unfolding
parameters. Actually, the task is only to find the coefficients κ1 and κ2 in (2.73) which is
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Figure 2.5: (a) Enlargement of region IV in Figure 2.4b. (b) Synchronized amplitudes AIV

and phases ψIV occurring in region IV .

considerably facilitated by the analytical representation (2.62). However, the calculation
has to be performed numerically in the standard fashion and we shall be content with
stating our results

κ1
∼= 0.16670 , κ2

∼= −5.48513 .

Since the topological behavior of (2.73) in fact depends only on the sign of κ2 we obtain
the same type of bifurcations as studied extensively for the periodically driven Van-der-
Pol oscillator in Holmes & Rand [1978]. Comparing their analysis with the results
discussed here, obviously the coupling in the considered example plays the role of the
driving amplitude of a forced oscillator and the frequency detuning in the coupled system
can likewise be identified with the difference between the squares of the eigen-frequency
of a single forced oscillator and the frequency of the forcing.

2.4 Discussion and comparison of the results

A qualitative illustration of Propositions 2.2–2.4 in the parameter plane of β̃ versus ∆̃
is drawn in Figure 2.4 and we shall now stress its interpretation with respect to the
auxiliary parameter b taking advantage of the curves b = const. in Figure 2.3b, which
will be called b-lines for simplicity.

An arbitrary point P = (β̃∗, ∆̃∗) from the domain I in Figure 2.4 can be regarded as
the intersection of three distinct b-lines with b = b∗1 and b = b∗2 belonging to different
S1-solutions as well as b = b∗3 corresponding to a solution S2 (Figure 2.3b). The points
of tangency of the curves for b∗1 and b∗2 with the envelope are T1 and T2 in Figure 2.3b,
where β̃1

e = β̃e(b
∗
1) and β̃2

e = β̃e(b
∗
2). The values b∗i then are associated with synchronized
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phase shifts ψ∗
i whereof ψ∗

1 = arcsin (b∗1/β̃
∗) is the only stable one since β̃∗ > β̃1

e (cf.
Proposition 2.2) – sloppily speaking, P lies “beyond” the point of tangency T1 on a b-
line; b1 thus corresponds to a stable synchronized phase shift close to zero since b∗1 ≪ β̃∗.
The values b∗2 and b∗3 represent unstable synchronized solutions for β̃∗ < β̃2

e and b∗3 is a
generally unstable S2-solution. The associated phase shifts ψ∗

2, ψ
∗
3 will be close to π/2

since b∗2/β̃
∗ ≈ b∗3/β̃

∗ ≈ 1.

Similarly, in regions IIIa and IIIb there is still only one stable synchronized solution
with the mere difference, that the unstable S2-type solution existing in region I has given
way to a third stationary solution of the type S1 which is unstable, too. In Region IIb,
however, it will be surrounded by a stable limit circle. The homoclinic bifurcation that
gives birth to this limit cycle is a distinctive feature of the Bogdanov-Takens bifurcation
at b00 which is well understood, and for a detailed analysis the reader is again referred
to Holmes & Rand [1978] or Guckenheimer & Holmes [1983].

It should by now also be clear that in region V there exists only one stable S1-type
synchronized motion (cf. Figure 2.3b) with a phase shift close to zero similar as in region
I.
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Interestingly, two stable synchronized solutions occur in the tiny region IV , and one
is tempted to ask whether these are physically pertinent. Applying the same graphical
technique as described previously, we obtain for a point P in region IV three intersecting
b-lines, b∗1, b

∗
2, b

∗
3, among the family of S1-solutions (Figure 2.5a). The line b∗1 corresponds

to a stable synchronized solution by Proposition 2.2, the solution associated with b∗2 again
is unstable since the point of tangency T2 of the b-line with the envelope e is located
beyond P ; b∗3 is stable either by Proposition 2.2 if b∗3 < b00 or otherwise by Proposition
2.4. Clearly, these solutions exist only for those b-lines entering IV which happens for
b in the interval [0.315140, 0.340103], obtained numerically. With the aid of (2.62) it
is straightforward to compute all possible amplitudes AIV1 (b) and AIV2 (b) accompanied
with the phase shifts ψ∗IV (β̃, b) appearing in region IV (Figure 2.5b). Comparing the
numerical values of β̃x and β̃00 we observe that they differ only by 10−3 and thus we
may obtain ψ∗IV (β̃, b) ≈ ψ∗IV (b) approximately from ψ∗IV (b) = arcsin(b/β̃00) for b in
the above interval. Figure 2.5b now demonstrates that the amplitudes as well as the
phase shift for the different synchronized solutions in IV are so close to each other that
physically, a qualitative difference would not be observable.

Equally as described in Pikovsky et al. [2001] synchronization is lost crossing the
envelope e from I to II by a global saddle-node bifurcation which gives rise to a stable
quasi periodic regime where the phase difference increases steadily (Figure 2.7). How-
ever, at the Hopf-bifurcation curve h synchronization is still maintained since the phase
shift ψ starts oscillating, though, but remains bounded (Figure 2.6b). The solution fi-
nally starts drifting if the bifurcating limit cycle hits one of the degenerate singularities
at A1 = 0 or A2 = 0, respectively, and thus becomes in fact a homoclinic orbit (Figure
2.6a). This phenomenon was described for periodically driven oscillators in Pikovsky
et al. [2001] and for two coupled Van-der-Pol equations in Chakraborty & Rand
[1988]. The bifurcation line where A1 = 0 separating regions II and Va was determined
numerically by a straightforward homotopy method and is inserted into the coarse bi-
furcation diagram Figure 2.4.

Up to now, three results are available regarding the existence and stability of syn-
chronized solutions of two coupled Van-der-Pol equations and in the following we shall
relate the outcomes of Sections 2.3.2 and 2.3.3 with the rather comprehensive results
of §2.3.3. In Section 2.3.2 we found, that for strong coupling the oscillators are always
synchronized similar to the case of identical coupled pendula if the frequency detuning
due to the length difference is assumed to be small. This obviously is in compliance
with Figure 2.3b, where for sufficiently large β̃ synchronized solutions of the S1-type are
always found. For large coupling and frequency detunings we found in Teufel et al.
[2003] essentially the same result using normal form theory as obtained in Storti &
Rand [1982] by means of more intricate perturbation techniques, namely the synchro-
nization threshold to be ∆̃ =

√
2β̃. It is easy to verify that this is an asymptote to the

Hopf-bifurcation line (2.71) i. e. that limb→bc(∆̃h/β̃h) = c1(bc) =
√

2 which follows from
Bh(bc) =∞. The representation of the envelope (2.70) together with the solution (2.60)
permits to calculate a Taylor series expansion for ∆̃e(β̃) which takes the form

∆̃e(β̃) =
3

2
√

2
β̃2 +O(β̃4) ≈ 1.06 β̃2 . (2.74)
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deflection angles ϕ of the pendula plotted for one period.

This reveals that the perturbation expansion (2.46) in §2.3.3 indeed yields an acceptable
approximation to the “exact” result (2.74). Moreover, it can be shown that the bifurca-
tion sets (2.70) and (2.71) coincide with the representations presented in Chakraborty
& Rand [1988] if the parameter b is eliminated.

A remark on in- and anti-phase synchronization

Note, that the transformation (2.54) is only unique for −π/2 ≤ ψ ≤ π/2. For π/2 < ψ <
3π/2 we have to change the + sign in (2.53)2 since the cosine function then is negative.
However, the vector field defined by the averaged equations (2.42)1−3 is equivariant under
the symmetry transformation A1 → A2, A2 → A1, ψ → ψ + π (Troger & Steindl
[1991]). Therefore, any stationary phase shift ψ found in §2.3.3 can be rotated by π
without altering the results but swapping the roles of A1 and A2. Thus the stability of
an anti-phase regime ψ + π is carried over to the associated in-phase regime ψ and the
occurrence of in- or anti-phase synchronization is a matter of initial conditions.

Numerical verification

In order to demonstrate practically the procedure of calculating synchronized solutions,
an exemplary case shall now be worked out. Choose for instance

b = 0.2 , β̃ = 0.33 ,

corresponding roughly to the point P in Figure 2.3. Then (2.64)1 yields the frequency
detuning ∆̃ = 0.115087 which produces a stable synchronized regime. Selecting fur-
thermore µ = 0.4, α = 0.1 and ω1 = 10 permits to calculate β and ω2 from (2.44),
ω2 = 9.953, β = 1.32. The values of the amplitudes A∗

1, A
∗
2 are calculated from formulas

(2.62), as well as the phase shift ψ∗ from (2.54)2 and the synchronous frequency ωs from
(2.45), which yields

A∗
1 = 1.07745 , A∗

2 = 0.86684 , ψ∗ = 0.65110 , ωs = 10.000747 . (2.75)
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After reapplying the transformations (2.43), (2.40) and (2.9), the analytical approxima-
tion of the synchronized vibration modes in terms of the angles of the pendula is found
to be

ϕ1(t) =
2A∗

1

ωs

√

µ

3α
sin(ωst) + h.o.t , ϕ2(t) =

2A∗
2

ωs

√

µ

3α
sin(ωst− ψ∗) + h.o.t ,

which is illustrated in Figure 2.8 in comparison with the numerical result. Numerically,
for the parameter values given above and γ = 0 the synchronized periodic solution was
obtained straightforwardly from solving (2.7) complemented by the trivial equation for
the period Ṫ = 0 as a boundary value problem using a multiple shooting method im-
plemented in the software package Boundsco (Oberle et al. [1985]). If the time
is scaled by T the boundary conditions take the form ϕi(0) = ϕi(1), ϕ̇i(0) = ϕ̇i(1) and
ϕ1(0) = ϕ2(0). The numerical computation yields a value for the synchronous frequency
as 2π/T = 10.00164 which supports the assertion that the frequency of the synchronous
oscillation might well be higher than both natural frequencies of the uncoupled oscilla-
tors. Likewise, this is fortified by the analytical result (2.75) and formula (2.45). Thus
the prevailing assumption, that the synchronous frequency was the arithmetic mean of
the natural frequencies, is neither justified nor necessary.

2.5 Conclusion

It has been shown that two different coupled pendula can be synchronized by a fluid
flow in the sense that they oscillate with a common frequency which is different from
their natural frequencies. The stationary solutions of the averaged equations of motion
are identified with synchronized motions of the coupled system. Conditions have been
derived for the existence and stability of these synchronized motions depending on the
coupling strength and the frequency detuning. In particular for the case of strong cou-
pling classical normal form theory provided a simple means of interpreting the oscillation
modes on a center manifold as in-phase or anti-phase synchronized motions. In the case
of weak coupling a graphical interpretation of the synchronized phase shifts was given
using an auxiliary parameter in the averaged equations. Remarkably, an analytical solu-
tion for the amplitudes as well as the synchronous frequency in the synchronized regime
could be found and previous findings could be embedded into the present approach.
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3 Non-smooth bifurcations of
mechanical systems with 1-d.o.f
involving friction

It was in 1785 that Charles Augustin de Coulomb formulated the idea that friction is
the force necessary to overcome the asperities of two contacting surfaces in order to initi-
ate slipping. Although this notion is clear from common sense, its deeper mathematical
and physical foundations are yet far from being completely settled. Coulomb asserted
a linear proportionality between the normal load and the friction force, independent of
the sliding velocity. Originating from Coulomb’s law an abundance of models have been
developed, each aiming for a functional relationship between the applied load and both,
the static and the dynamic friction force, depending on various physical parameters,
such as the relative velocity of the surfaces in contact, the temperature or the contact
time. From a mathematical point of view non-smooth nonlinearities are conceptually
induced to the problem due to the obvious distinction of static and dynamic friction.
Unlike inertia forces which “smoothly” counteract motion, friction forces are capable of
inhibiting motion at all unless a critical load is applied in the “limit of static friction”,
which merely explains the everyday observation that a body keeps sticking on a surface
if the applied forces are small enough. If this critical load is reached and a motion sets in,
the friction force acting against the direction of motion typically experiences a sudden
“non-smooth” change or even a jump, depending on parameters which appear due to
the dynamics of the system, such as typically the relative velocity.

Consequently in a mathematical modeling approach a friction law has to be selected
with a minimal set of parameters where mathematical complexity has to be balanced
with physical significance. One might be tempted to ask the question the other way
around: which friction law is necessary to produce which physical effect? Actually, this
shall be the main question during the remainder of this thesis: we stay within the con-
cept of a proportionality between the normal force and the friction force and let the
coefficient of proportionality (the “friction coefficient”) be mathematically given by a
function of the relative velocity, the shape of which is determined by three descriptive
geometrical parameters and has both, a decreasing and increasing part depending on
the relative velocity (Section 3.1.4).

A widespread mathematical framework to deal with non-smooth systems is Filippov-
Theory, the foundations of which are explained in Section 3.1.1. For more information
the reader is referred to Filippov [1988], Leine [2000], Awrejcewicz & Lamarque
[2003] or Kuznetsov et al. [2003]. It will be shown in Section 3.1.2 that friction
oscillators naturally belong to the class of Filippov-systems. The effects of a 3-parameter
friction law applied to a simple one degree-of-freedom (1-d.o.f.) friction oscillator are

39



3 Non-smooth bifurcations of mechanical systems with 1-d.o.f involving friction

studied in Section 3.2 which provides a basis for the understanding of the analysis
performed in Chapter 4 dealing with friction induced travelling waves.

3.1 Introduction to non-smooth systems

In the following we are concerned with piecewise smooth systems (p.s.s.) which are de-
scribed by a set ofm n-dimensional ordinary differential equations of the form (Kuznetsov
et al. [2003])

ẋ = f i(x) , x ∈ Si ⊂ R
n , i = 1, . . . , m . (3.1)

We have to be more generous than Kuznetsov et al. [2003] and do not make any
restrictions on the dimension of the subregions Si. We merely require them to be open
and non-overlapping (see Chapter 4 for an example). The subregions Si are delimited
by boundaries Σj . From a mechanical point of view these discontinuities are typically
induced by contact problems possibly involving friction. While friction in systems with
one degree of freedom will be the main issue of this chapter an infinite dimensional
example will be treated in Chapter 4 where also the loss of contact between two bodies
introduces a discontinuity to the system.

A p.s.s. is said to be continuous with respect to a boundary Σk if f i(x) = f j(x)
∀x ∈ Σk where Σk separates Si from Sj. If a system is not continuous with respect to a
discontinuity and thus f i(x) 6= f j(x) on Σk then we call the system a Filippov System.
If we address a Filippov system here we always have to refer to a certain boundary
since the complete system (3.1) may possess other discontinuities with respect to which
it may well be non-Filippov (continuous) as for the example in Chapter 4.

3.1.1 Filippov Systems

In Filippov systems a trajectory has two possibilities to cross a boundary depending on
the signs of the transversal components of the adjacent vector fields. Let the disconti-
nuity be described by an equation Σ : H(x) = 0 and let f1 denote the vector field in S1

where per definition H(x) < 0 and f 2 denote the vector field in S2 where H(x) > 0.
The auxiliary quantity s = (grad H(x) · f 1(x))(gradH(x) · f 2(x)) > 0 is defined for
x ∈ Σk which is positive if f1 and f 2 point in the same direction on Σk and negative
if they point in the opposite direction. If s > 0 a trajectory will cross the boundary
and has a discontinuity in its derivative. Otherwise, if s ≤ 0 trajectories will either be
pushed towards Σ from both subdomains S1 and S2 or the vector fields, both in S1 and
S2, want to tear a point away from Σ. In any case, if a trajectory enters Σ inside a
domain where s ≤ 0 by whatever means it will stay there. Thus, the condition s ≤ 0
defines a sticking1 set on Σ.

If gradH · f 1 > 0 and gradH · f 2 < 0 on Σ the sticking set is attracting. The
sticking region in the phase space of a friction oscillator which mechanically describes

1In mathematically oriented publications (e. g. Kuznetsov et al. [2003], Leine [2000], Luo
[2004], Luo [2007]) consistently the term sliding is used for a solution that stays on Σ. Here, we
want to refrain from this expression in order to avoid confusions with its mechanical meaning and,
in view of the mechanical applications, use sticking instead.
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S1 S1

S2 S2

f 1 f 2

T v1 T i2
Σ Σ

(a) (b)

Figure 3.1: Examples of tangent points, (a) Visible tangent point T v1 of f1, (b) invisible tangent
point T i2 of f2. Dotted curves indicate, respectively, the (invisible) extension of the trajectories
to the opposite subdomain.

static friction is a typical example for an attracting sticking set (see Section 3.2).

If gradH · f1 < 0 and gradH · f2 > 0 on Σ, the sticking set is repelling. Although
a solution that stays on a repelling sticking set is defined by Filippov theory (Filippov
[1988], Leine [2000]) it is not unique. It may stay on Σ but likewise exit to the ad-
jacent domains S1 or S2. This will happen for certain parameter combinations in the
shaft-bush problem considered in Chapter 4 (see Figure 4.6).

Yet, a vector field has to be defined inside a sticking set on Σ since the f i are ambiguous
there. A method to define the derivative g(x) of a sticking motion in the aforementioned
sense was given by Filippov [1988] and is such to construct a convex combination of
f 1 and f 2, viz.

ẋ = g(x) , g(x) = λf 1(x) + (1− λ)f 2(x) , λ =
gradH · f 2

gradH · (f 2 − f1)
,

x ∈ Σk , λ ∈ [0, 1] .

(3.2)

This construction will be demonstrated geometrically for the example of a simple friction
oscillator in Section 3.2 and Figure 3.7. Obviously, λ = 0 if f 2 is tangent to Σk or f 2 = 0
and λ = 1 if f1 is tangent to Σk or f1 = 0. Thus sticking intervals are bounded either
by tangent points of the vector fields with the discontinuity or by so-called boundary
equilibria of (3.2)1. Equilibria where g(x) = 0 inside Σk are called pseudo equilibria.

A tangent point of a vector field f i with Σ may either be visible if the trajectory that
produces the tangency is visible in Si. It is called invisible if the trajectory containing
the tangent point is not visible in Si. Figure 3.1 shall clarify this notion.

3.1.2 Bifurcations in planar Filippov systems

Considering a p.s.s. of the form (3.1) it is intuitively evident that inside each domain
Si all kinds of different smooth solutions and their bifurcations may appear in the same
manner as in smooth systems. However, qualitative changes in the types of solutions
are expected if a trajectory interacts with the discontinuities, i. e. eventually crosses
or sticks on them. For planar Filippov systems with one discontinuity Kuznetsov et
al. [2003] have given a comprehensive listing of all possible codimension-1 bifurcations
that stem from the presence of the discontinuity in the phase space. Without repeating
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their treatise we give a rough outline of their classification. They distinguish five groups
of basic bifurcation mechanisms in Filippov systems:

(i.) Collisions of equilibria with the discontinuity,

(ii.) Collisions of tangent points,

(iii.) Collisions of pseudo equilibria,

(iv.) Bifurcations of cycles with sticking segments2,

(v.) Pseudo-homoclinic and pseudo-heteroclinic bifurcations.

Since these types of bifurcations are not yet well established among the engineering
community a complete assembly of all the types found by Kuznetsov et al. [2003]
shall be given in the following Table 3.1 although we already want to mention that for
the examples considered here only a few of them are relevant. Nevertheless short ex-
planations of the mechanisms are given in the table and sketches of the phase portraits
are presented from Kuznetsov’s paper. Most of the time we stick to their nomenclature,
however sometimes different names will be introduced in view of the following applica-
tions. For cycles which include sticking segments we will already use the succinct term
stick-slip cycle which will be explained in Section 3.2.2. For all further details the reader
is referred to the original paper. A mathematically more sophisticated approach towards
bifurcations in discontinuous dynamical systems is found e. g. in Luo [2004] and Luo
[2007].

2Frequently called sliding bifurcations (e. g. di Bernardo et al. [2002])
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Table 3.1: Classification of non-smooth bifurcations in a planar Filippov systems following
Kuznetsov et al. [2003].

T . . . tangent point,
X . . . equilibrium,
P . . . pseudo-equilibrium,
L . . . closed cycle,
()α . . . generic cases,
()0 . . . at the bifurcation,
()i . . . counters,
()(i) . . . refers to the i-th subdomain Si.

Description Phase-portraits
before bifurcation at bifurcation after bifurcation

(i.) Collisions of equilibria with the discontinuity

Boundary focus bifurcations

BF1:
Collision of T, P and
X accompanied by
the annihilation of a
limit cycle

BF2:
Collision of T, P and
X whereupon P and
X are extinguished

BF3:
Collision of T and X
accompanied by the
annihilation of a limit
cycle and the birth of
a stable pseudo-node

BF4:
Collision of T and X
accompanied by the
birth of an unstable
pseudo-node

continued on next page
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BF5:
Collision of T, P and
X similar to BF2:
except that the
sticking segment is
repelling.

Boundary node bifurcations

BN1:
Collision of T and X
giving birth to a
pseudo-node

BN2:
Collision of T, P and
X whereupon P and
X are extinguished

Boundary saddle bifurcations

BS1:
Collision of T, P and
X whereupon P and
X are extinguished.

BS2:
Collision of T, P and
X whereupon P and
X are extinguished. A
difference w.r.t BS1:
is found in the slope
of the saddle’s
unstable manifold.

continued on next page
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BS3:
Collision of T and X :
a standard saddle
becomes a
pseudo-saddle.

(ii.) Collisions of equilibria with the discontinuity

Double tangency bifurcations

DT1:
Disappearance of a
sticking segment

DT2:
Closing of a crossing
window

continued on next page
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Collision of two visible tangent points

VV1:
Closing and reopening
of a crossing window

VV2:
A repelling sticking
domain becomes
attractive

Collisions of visible and invisible tangent points

VI1:
A repelling sticking
domain becomes
attractive

VI2:
Collision of a
pseudo-saddle with
the tangent points
accompanied by
closing and reopening
a crossing window

VI3:
The collision of an
unstable pseudo-node
with the tangent
points accompanied
by closing and
reopening a crossing
window yields a stable
pseudo-node and two
tangencies.

continued on next page
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Collisions of two invisible tangent points

II1:
Opening and closing
of a crossing window

II2:
An attracting sticking
segment with a
pseudo-node becomes
repelling.

(iii.) Collisions of pseudo-equilibria

Pseudo-saddle-node bifurcation

PSN:
Merger of a
pseudo-node with a
pseudo-saddle

(iv.) Bifurcations of cycles with sticking segments

Grazing (or touching) bifurcations

GR1:
A stable smooth limit
cycle touches the
discontinuity and
becomes a
“stick-slip”-cycle

GR2:
An unstable smooth
limit cycle merges
with a non-smooth
“stick-slip”-cycle

Sliding disconnection

continued on next page
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SD:
A “stick-slip”-cycle
breaks up after the
appearance of a
tangency inside the
sticking domain.

Switching bifurcation

SW:
A “stick-slip”-cycle is
created with slipping
parts in S1 and S2.

Crossing bifurcations

CR1:
The trajectory in S2

devours one of two
sticking segments.
One sticking segment
is left.

CR2:
The trajectory in S2

devours the only
sticking segment
which yields a (stable)
pure crossing cycle.

continued on next page
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(v.) Pseudo-homoclinic and pseudo-heteroclinic bifurcations

Pseudo-homoclinic bifurcations

HO1:
Bifurcation of a
homoclinic orbit to a
pseudo-saddle-node

HO2:
Bifurcation of a
sticking homoclinic
orbit to a
pseudo-saddle

HO3:
Bifurcation of a
sticking
pseudo-homoclinic
orbit to a saddle
accompanied by the
annihilation of a limit
cycle.
Pseudo-heteroclinic bifurcations

HE1:
Bifurcation of a
heteroclinic orbit
between two
pseudo-saddles

HE2:
Bifurcation of a
heteroclinic orbit
between a
pseudo-saddle and a
saddle
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3.1.3 Friction oscillators

Here, we will in the following focus our attention on bifurcations that may occur in
mechanical systems involving friction. To this end let us confine our considerations to
planar Filippov systems with one discontinuity that stem from the mechanical descrip-
tion of friction oscillators with one degree of freedom. Thus, consider equations of the
form

ẍ+ q(x, ẋ) = sgn(V − ẋ)p(x, ẋ) (3.3)

where p and q are smooth functions and the set valued sign function is defined by (Leine
[2000])

sgn(vrel) =











−1 vrel < 0

[−1, 1] vrel = 0

1 vrel > 0

(3.4)

x is the degree of freedom of a rigid body which is in frictional contact with a surface
moving with velocity V . The r.h.s. of (3.3) models the resulting friction force acting on
the body and thus typically is of the form µ(vrel)FN (x, ẋ) where FN is the normal force
acting perpendicular to the plane of contact and µ(vrel) models the dynamic coefficient
of friction depending on the relative velocity vrel = V − ẋ (cf. Section 3.1.4). The
function q(x, ẋ) accounts for all remaining forces acting on the considered body. In the
phase plane (x, y = ẋ) the discontinuity Σ of (3.3) is thus given by the line

Σ = {x = (x, y) ∈ R
2 : V − y = 0} , (3.5)

dividing the phase space into the two regions with positive and negative relative velocity,
namely

S1 = {x ∈ R
2 : V − y > 0} , S2 = {x ∈ R

2 : V − y < 0} . (3.6)

The vector fields valid in S1 and S2 read

f 1(x, y) =

(

y
−q(x, y) + p(x, y)

)

, f 2(x, y) =

(

y
−q(x, y)− p(x, y)

)

. (3.7)

With the vector fields given by (3.7) it is evident that friction oscillators naturally com-
ply with Filippov’s construction of sticking solutions explained in Section 3.1.1 since the
x-components of f 1 and f 2 are both equal to V on Σ (see Figure 3.7).

The coordinates (x
(i)
T , y

(i)
T ) of the tangent points Ti of f i delimiting a sticking region

on Σ are found from

y
(1)
T = y

(2)
T = V , T1 : −q(x(1)

T , V ) + p(x
(1)
T , V ) = 0 , T2 : −q(x(2)

T , V )− p(x(2)
T , V ) = 0 .

(3.8)
A sticking set may thus be defined on Σ by

Σs = {x ∈ Σ : |q(x, V )| ≤ p(x, V )} , (3.9)

which includes all points where a trajectory cannot cross the discontinuity. In the planar
case the visibility of the tangent points given by (3.8) can be checked by investigating
the second derivatives of a trajectory at Ti, which are found to be

d2y

dx2

∣

∣

∣

∣

T1

=
1

V

(

∂q

∂x
− ∂p

∂x

)∣

∣

∣

∣

(x
(1)
T ,V )

,
d2y

dx2

∣

∣

∣

∣

T2

=
1

V

(

∂q

∂x
+
∂p

∂x

)∣

∣

∣

∣

(x
(2)
T ,V )

. (3.10)
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Figure 3.2: Mechanical
model of a driven pen-
dulum with friction

f(0)

ϕ

−f(0)

q(ϕ,Ω)

T i2T i2T i2 T v2T v2T v2 T i1T i1 T v1T v1

T2T2T2 T1T1

f(0) < 1

f(0) = 1

f(0) > 1

Σs Σs

Σs

Σs

Figure 3.3: Construction of visible and invisible tangent points T vi ,
T ii and sticking sets Σs depending on the friction parameter f(0)

A tangent point T1 is visible if y′′(T1) < 0 and invisible if y′′(T1) > 0, T2 is visible if
y′′(T2) > 0 and invisible if y′′(T2) < 0. If y′′ = 0 the trajectory has a cubic tangency as
it is the case for the DT-bifurcations in Table 3.1.

All equilibria (x0, y0) of (3.3) fulfill

y0 = 0 , q(x0, 0) = sgn(V )p(x0, 0) . (3.11)

It is easy to check that they are stable if

(

−∂q
∂y

+ sgn(V )
∂p

∂y

)∣

∣

∣

∣

(x0,0)

< 0 and

(

−∂q
∂x

+ sgn(V )
∂p

∂x

)∣

∣

∣

∣

(x0,0)

< 0 (3.12)

Thus comparing (3.7) with (3.5) reveals that in friction oscillators where the discontinu-
ity is just given by a vanishing relative velocity generally boundary and pseudo equilibria
on Σ cannot exist if V 6= 0. Obviously, the discontinuity does not cross the x-axis in the
phase plane and hence, the cases (i.), (iii.) and (v.) in Kuznetsov’s classification are
not applicable for friction oscillators of the form (3.3). If V = 0 we are facing a degener-
ate situation where the sticking domain is filled with infinitely many equilibria. This is
mathematically due to the fact that sgn(0) as defined in (3.4) takes all values from 0 to
1. From a mechanical point of view this is consistent with the notion of static friction.
Thus case (i.) is degenerate for friction oscillators and will be illustrated in more detail
for the simplest mechanical model – a mass on a driven belt – in Section 3.2 and Figure
3.9. Beyond that, we only expect bifurcations falling in categories (ii.) and (iv.). A
mechanical example illustrating the collision of tangent points (ii.) is sketched below
without going into details. A concise non-smooth bifurcation analysis will be presented
in Section 3.2 for the aforementioned simple friction oscillator, where the possible types
of bifurcations of cycles with sticking segments (iv.) will be explained exemplarily.

Example: Sticking set of a Froude -Pendulum

Consider the academic but instructive example of a pendulum (mass M) installed on a
shaft which is rotating with angular velocity Ω (Figure 3.2). Gravitation is active and
friction shall be present between the pendulum and the shaft (Figure 3.2). With an
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vrel

µ(vrel)
α

vrel

α̃

β̃
γ

µ(vrel)

Figure 3.4: Coulomb’s friction model Figure 3.5: General friction law with three pa-
rameters.

appropriate scaling the deflection angle ϕ of the friction-pendulum, known as Froude-
pendulum obeys the o.d.e.

ϕ̈+ sinϕ = sgn(Ω− ϕ̇)f(Ω− ϕ̇) , (3.13)

where f incorporates some friction law (see Section 3.1.4). For the construction of the
sticking set Σs given by (3.9) we compute the tangent points T1, T2 by (3.8) and get

ϕ̇
(1)
T = ϕ̇

(2)
T = Ω , T1 : sin(ϕ

(1)
T ) = f(0) , T2 : sin(ϕ

(2)
T ) = −f(0) . (3.14)

The visibility of the tangent points in (3.14) is determined by (3.10) which applied to
the current example yields

d2y

dx2

∣

∣

∣

∣

Ti

=
1

Ω
cos
(

ϕ
(i)
T

)

The solution of (3.14) is finally illustrated graphically in Figure 3.3. The superscripts v
and i are used to indicate visible and invisible tangent points. Obviously, for f(0) < 1
the sticking domain is composed of an infinite number of sticking intervals bounded
by an infinite number of tangent points T1 and T2, respectively. Inbetween the sticking
intervals a trajectory can cross the discontinuity. The value f(0) = 1 marks a bifurcation
point where a visible and an invisible tangent point of each vector field merge, which
corresponds to the double tangency bifurcation DT2 in Table 3.1. At f(0) = 1 the
sticking set is connected containing cubic tangent points Ti. They disappear for f(0) > 1
which yields completely different solution types of (3.13). For f(0) ≥ 1 a trajectory will
stay on the discontinuity forever as soon as it is touched, i. e. the mass keeps sticking
for all times. If f(0) ≤ 1 we expect stick-slip motions and there are windows where the
discontinuity may be crossed towards motions with negative relative velocity. A more
detailed analysis of this system exceeding the classical literature (Kauderer [1958],
Andronov et al. [1966], Magnus & Popp [2002]) would be fruitful in the context
of Filippov theory but is beyond the scope of this thesis.

3.1.4 Friction Models

It has already been mentioned that an empiric relation describing the friction force
depending on the relative velocity has to enter the system (3.3). Typically, normal and
tangential forces at the contact area are related by a friction coefficient µ which itself
may depend on several parameters and the relative velocity between the two bodies in
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contact (Ibrahim [1994]). Although various formulas for µ are prevalent (Li & Feng
[2004], Leine et al. [1998], Hetzler et al. [2007]) we shall present only those
being of prior importance for the following considerations.

Coulomb’s model of dry friction

Albeit abundant in the literature Coulomb’s model of dry friction has to be prepended
here merely for review purposes. It assumes a constant coefficient of friction µ = α
independent of the relative velocity of the bodies in contact (Figure 3.4). In the simplest
case of an elastically mounted mass on a driven belt (cf. Section 3.2), Coulomb friction
would not allow for stick-slip solutions, let alone more complicated non-smooth periodic
solutions. However, for more complicated problems Coulomb’s friction law is still widely
used because of its simplicity (e. g. Moirot et al. [2002]). Alterations to the
Coulomb model, such as the introduction of a dynamic coefficient of friction which is
still constant but different from the static coefficient of friction effectuate non-Filippov
systems and provoke numerical difficulties and thus shall not be considered here. (cf.
Leine [2000], Awrejcewicz & Lamarque [2003]).

A generalized friction model

Based upon a representation for the friction coefficient µ depending on the relative
velocity vrel which is presented in Awrejcewicz & Lamarque [2003] we propose the
model

µ(vrel) = sgn vrel

(

η +
α− η

1 + δ |vrel|

)

+ γvrel . (3.15)

Introducing the scalings

vrel =
ṽrel
δ
, η =

η̃

δ
, α =

α̃

δ
,

reveals that the parameter δ has a scaling property, namely

µ(vrel) =
1

δ
µ̃(ṽrel) =

1

δ
sgn ṽrel

(

η̃ +
α̃− η̃

1 + |ṽrel|

)

+ γṽrel =
1

δ
µ̃(δvrel) . (3.16)

The graph of the friction characteristic given by (3.16) is depicted in Figure 3.5. The
parameter α̃ now is a measure for the static coefficient of friction, and the linear term
introduced by the coefficient γ describes an asymptotic slope of the friction characteristic
for high relative velocities which could be regarded as a model for lubrication (Ibrahim
[1994]). The third parameter η̃ is related to the relative minimum of (3.16) where
µ̃′(ṽ∗rel) = 0 at

ṽ∗rel = −1 +

√

α̃− η̃
γ

. (3.17)

Introducing the descriptive parameter β̃ shown in Figure 3.5, which accounts for the
maximum drop of the dynamic friction coefficient, by

β̃ = α̃− µ̃(ṽ∗rel)
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permits to express the parameter η̃ by

η̃ = α̃−
(
√

β̃ +
√
γ

)2

. (3.18)

Inserting (3.18) into (3.16) yields the final representation of the scaled friction law:

µ̃(ṽrel) = sgn ṽrel

[

α̃−
(
√

β̃ +
√
γ

)2(

1− 1

1 + |ṽrel|

)

]

+ γṽrel , (3.19)

which will be used throughout the remainder of this work. The parameters α̃, β̃ and γ
appearing in (3.19) will act as the main problem parameters in the examples discussed
in Section 3.2 and Chapter 4. So we will be able to study the influence of the shape of
the friction law on the mechanical behavior of a system.
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Figure 3.6: Simplest configuration of a mechanical friction oscillator

3.2 Non-smooth bifurcations of the simple friction

oscillator

The simplest friction oscillator we can think of is depicted in Figure 3.6 and consists of
an elastically mounted mass on a driving belt running at the speed V . The coefficient of
friction µ between the mass and the belt shall be modeled by the representation (3.15)
which gives the equation of motion

ẍ = −ω2x+ gµ(V − ẋ) , (3.20)

where ω is the natural frequency of the oscillator and g is gravity. In view of (3.3) the
nonlinear function p is given by p(x, ẋ) = g sgn(V − ẋ)µ(V − ẋ) here. Letting ẋ = y and
introducing scaled variables

x̃ = ωδx , ỹ = δy , t̃ = ωt , Ṽ = δV , η̃ =
gδ

ω
η , α̃ =

gδ

ω
α , γ̃ =

g

ω
γ (3.21)

yields the simple non-dimensional equations of motion

x̃′ = ỹ , ỹ′ = −x̃+ µ̃(Ṽ − ỹ) , (3.22)

where µ̃ can be written in the form given in (3.19) with γ substituted by γ̃ and (·)′
indicates differentiation with respect to the scaled time t̃. Thus, we end up with a piece-
wise smooth planar system of o.d.e’s of the type (3.1) due to the non-smoothness of the
function µ̃ with four problem parameters, namely the driving velocity Ṽ of the belt, the
static coefficient of friction α̃, the dynamic friction drop β̃ and the asymptotic slope of
the friction characteristic γ̃. The tildes will be dropped for simplicity in the following.

Despite its simplicity, system (3.22) will show a rather rich bifurcation behavior due
to the sophisticated friction model. We will find solutions where the mass is stationar-
ily slipping on the belt, there might be smooth oscillations and there will be stick-slip
cycles, where the mass temporarily sticks to the belt. In particular stick-slip cycles,
where for a short period of time the mass moves faster than the belt and in the same
direction are found under certain conditions. These motions will be termed “overshoot-
ing” in the following. Systems of the form (3.22) with simpler friction laws, especially
for Coulomb-friction (cf. Section 3.1.4), are exhaustively examined in the literature (cf.
Awrejcewicz & Lamarque [2003], Leine [2000]). Elmer [1997] discusses the bi-
furcation behavior of a simple friction oscillator for a smooth friction law, putting some
emphasis on smooth Hopf-bifurcations occurring in this case. Galvanetto & Bishop
[1999] discuss a non-smooth system with a two-parameter friction law and additional
damping and also show the existence of overshooting solutions. Leine et al. [1998]
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discuss the effect of different friction models, also considering time-dependent static fric-
tion, and compare numerical methods. Hetzler et al. [2007] do some analytical
stability investigations of the steady state for a friction oscillator with an exponentially
decreasing friction law and damping. However, they don’t consider overshooting solu-
tions. Derecole & Kuznetsov [2004] discover non-smooth bifurcations in (3.22) for
a linearly decreasing friction law. However, their results are to some extent physically
infeasible. Here we want to add a concise study of the non-smooth bifurcations in the
spirit of Derecole & Kuznetsov [2004] depending on the shape of the friction law
and the belt velocity.

3.2.1 Linear Stability analysis

System (3.22) has one fixed point at

x0 = µ(V ) , y0 = 0 (3.23)

corresponding to the stationary slipping solution of the mass block on the belt running
with velocity V . It is well known (Elmer [1997], Hetzler et al. [2007]) and obvious
that this stationary solution is stable if µ′(V ) > 0 and unstable if µ′(V ) < 0 (cf. Section
3.1.2). At the critical value V ∗ where µ′(V ∗) = 0 the stability changes by a Hopf-
bifurcation. From (3.17) and (3.18) we know the locus of these Hopf-bifurcations in the
parameter space, given by

V ∗ =
√

β/γ . (3.24)

The stationary solution now is stable for V > V ∗ and unstable otherwise. In order to
examine the nature of the Hopf-bifurcation and the bifurcating smooth limit cycle we
compute the normal form (Guckenheimer & Holmes [1983]) of (3.22) in a neigh-
borhood of (3.23). Introducing the notation x = (x, y) and likewise x0 = (x0, y0) small
deviations from the stationary solution are measured by

ξ = x− x0

The transformation
ξ = Bz

where z defines the complex vector z = (z, z̄) and

B =
1

2

(

1 1
i −i

)

permits to write (3.22) as a series

ż =iz + i
1

8
µ′′(V ∗)(z2 + z̄2)− i

1

4
µ′′(V ∗)zz̄ + . . .

+
1

48
µ′′′(V ∗)(z3 − z̄3) +

1

16
µ′′′(V ∗)(zz̄2 − z2z̄) +O(z4)

(3.25)

By means of the normal form reduction process (Troger & Steindl [1991]) a suc-
cessive change of coordinates given by

z = w0 + h2(w0) , w0 = w + h3(w) ,
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is applied to (3.25) where w0 = (w0, w̄0), w = (w, w̄) and h2,3 are homogeneous polyno-
mials of degree 2 and 3, respectively, in their arguments. All nonlinear terms in (3.25)
except for the term w2w̄ can consequently be eliminated by proper choices of hi. The
normal form of (3.22) finally takes the form (cf. formulas in Troger & Steindl
[1991], p. 187)

ẇ = iw − 1

48
(3µ′′′(V ∗)− i 2µ′′(V ∗))w2w̄ . (3.26)

Using polar coordinates w = Reiϕ yields amplitude and phase equations for the bifur-
cating limit cycle

Ṙ = κR − 3

48
µ′′′(V ∗)R3 ,

ϕ̇ = 1− 1

24
µ′′(V ∗)R2 ,

(3.27)

where the complex unfolding parameter κ has been introduced which can be computed
by formula (2.29) and (3.24)

κ = −µ
′′(V ∗)

2
(V − V ∗) = −

(√
β +
√
γ
)2

(1 +
√

β/γ)3

(

V −
√

β

γ

)

.

Observing the third derivative

µ′′′(V ∗) = −6
(√

β +
√
γ
)2

(1 +
√

β/γ)4
< 0

shows that the Hopf-bifurcation at V ∗ is always subcritical because the coefficient of R3

in (3.27) is always positive and hence an unstable limit cycle bifurcates from (3.23).

3.2.2 The simple friction oscillator in the context of Filippov

systems

Up until now we have dealt with the smooth properties of the friction oscillator for
sufficiently high relative velocities V − y. Yet, essential non-smooth features of (3.22)
have not been exploited. As explained in Section 3.1.2 the condition of vanishing relative
velocity defines a discontinuity boundary Σ in the phase space given by (3.5). Now we
cast (3.22) into the form of (3.7) in order to reveal its non-smooth nature:

ẋ =











f 1(x) if x ∈ S1,

g(x) if x ∈ Σ and |x| < µ(0),

f 2(x) if x ∈ S2,

(3.28)

where

f 1(x) =





y

−x+ α−
(

√

β +
√
γ
)2
(

1− 1

1 + V − y

)

+ γ(V − y)



 ,

f 2(x) =





y

−x− α +
(

√

β +
√
γ
)2
(

1− 1

1− V + y

)

+ γ(V − y)



 ,

g(x) =

(

V
0

)

.

(3.29)
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Figure 3.7: Filippov’s construction of sticking solutions
for the friction oscillator

Figure 3.8: Analytical approxima-
tion of a bifurcation diagram for the
grazing bifurcation

The domains S1 and S2 have been defined in (3.6). The trivial vector field g(x) describes
the mass sticking on the belt if the elastic spring force is lower than the static friction
force in consistence with the Filippov-construction. (cf. Section 3.1.1, Figure 3.7).

Tangent points

Next we look for points where one of the vector fields f1 and f 2 is tangent to Σ, which
means that y = V and ẏ = 0. Thus, we easily obtain the tangent points

T1 = (α, V ) , T2 = (−α, V )

for f 1 and f 2, respectively. Inbetween T1 and T2 a trajectory that hits Σ from is “forced”
to stay on the discontinuity from either side (cf. Figure 3.7), which mechanically causes
the sticking motion. Inside the sticking domain

Σs = {x ∈ Σ : |x| < α}

the friction force is strong enough to balance the elastic spring force. Outside the sticking
region inertia and elastic forces are predominant.

Grazing bifurcations

It suggests itself to ask for which parameter values the bifurcating limit cycle at (3.24)
“touches” the discontinuity Σ at the tangent point T1. This incident is called a grazing
bifurcation (Kuznetsov et al. [2003], Table 3.1) which gives rise to a non-smooth
stick-slip cycle. Throughout this work we will only be concerned with grazing bifur-
cations where a smooth and a non-smooth cycle merge which means that one of the
bifurcating cycles has to be unstable. In Table 3.1 this corresponds to case GR2. An
approximation for the radius R∗ of the bifurcating smooth cycle depending on the pa-
rameter V can be obtained from the amplitude equation (3.27) by setting Ṙ = 0, i.

58



3 Non-smooth bifurcations of mechanical systems with 1-d.o.f involving friction

y

x

f2(x, 0)

f1(x, 0)

S2

S1

Σ

Figure 3.9: Degenerate situ-
ation in the phase plane for
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slip cycle for V > 0.

y

x

T1

T2

Σ

S1

S2
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furcation: a smooth cycle
touches the discontinuity
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e.

R∗(V ) =

√

8

3
(1 + V ∗)(V − V ∗) . (3.30)

The limit cycle hits the discontinuity if the branch given by (3.30) is tangent to the
line R∗ = V in the bifurcation diagram plotted in Figure 3.8. The locus of grazing
bifurcations in the parameter space spanned by β, γ and V can thus be calculated from
the condition

∂R∗(V )

∂V

∣

∣

∣

∣

V=Vgr

= 1 . (3.31)

Evaluating (3.31) yields the rough approximation

VGR =
1

3

(

2 + 5
√

β/γ
)

(3.32)

for the bifurcation curve, which is of mere qualitative value, though. We remark that
by (3.32) and (3.24) for γ = 0 there are neither grazing nor Hopf bifurcations.

Numerically the loci of grazing bifurcations in the (β, V ) plane can be calculated from
the boundary value problem (b.v.p.)

ẋ = τf 1(x) , x(0) = α , y(0) = V ,

τ̇ = 0 , x(1) = x(0) , y(1) = y(0) ,
(3.33)

which can be continued with respect to two problem parameters; τ denotes the period
of the grazing cycle.

Stick-slip oscillations

It is well known (cf. Galvanetto & Bishop [1999], Kunze & Küpper [1997])
and intuitively obvious that for small driving velocities V instantly a stable limit cycle
appears, that has a sticking segment, thus called a stick-slip cycle: For V = 0, clearly,
the discontinuity Σ is given by the line y = 0. A continuum of equilibria exists at
y = 0, |x| < α (cf. Figure 3.9). For V > 0 the continuum of equilibria has bifurcated
into the unstable focus discussed in Section 3.2.1 and a surrounding stable non-smooth
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Figure 3.12: Switching bifurcation: a trajec-
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Figure 3.13: Overshooting stick-slip cycle: in
S2 the relative velocity is negative.
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Figure 3.14: Crossing bifurcation: A trajectory
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Figure 3.15: Crossing cycle: a limit cycle is
composed of two slipping segments in S1 and
S2 respectively. Sticking does not appear.

stick-slip cycle. The formation of the limit cycle becomes clear since for sufficiently
small V and y the trajectories around the unstable focus can be regarded as logarithmic
spirals. Therefore a trajectory leaving the sticking domain at the tangent point T1 will
be repelled from the fixed point and hits the discontinuity again in Σs (Figure 3.10) .
For increasing the band velocity V the amplitude of the limit cycle is approximately
proportional to V , and thus the line R∗ = V may be regarded as a representation for
the stick-slip circle in Figure 3.8 which is indeed a schematic bifurcation diagram. The
stick-slip cycle merges with the unstable smooth limit cycle at the grazing bifurcation
and disappears suddenly for parameter values beyond VGR. The grazing bifurcation thus
resembles a non-smooth fold bifurcation (Galvanetto & Bishop [1999]).

Stick-slip cycles are calculated numerically by solving the boundary value problem

ẋ = τ1f 1(x) , x(0) = α , y(0) = V ,

τ̇1 = 0 , y(1) = V ,
(3.34)

which can be continued with respect to one parameter, τ1 being the period of the slip-
segment. The sticking period τs is easily found from

τs =
α− x(1)

V
.

The period of the stick-slip cycle then is given by τ1 + τs.

Switching bifurcations

It may happen that for a critical parameter value the stick-slip cycle connects both
tangent points T1 and T2 (Figure 3.12). In the neighborhood of this value the slip tra-
jectory may “switch” from S1 to S2 by crossing the discontinuity outside of Σs and a
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qualitatively new type of limit cycle is born. This incident is therefore called a switching
bifurcation (case SW in Table 3.1). Mechanically the slip trajectory in S2 corresponds
to a motion with negative relative velocity, i. e. the mass moves faster than the belt,
a phenomenon which will be called overshooting. The part of the trajectory lying in S2

hits Σs again and we end up with a stable overshooting stick-slip cycle (Figure 3.13).

The loci of switching bifurcations in the parameter space are found from a numerical
two-parameter continuation of the boundary value problem

ẋ = τ1f1(x) , x(0) = α , y(0) = V ,

τ̇1 = 0 x(1) = −α , y(1) = V .
(3.35)

The period of the switching cycle is τ1 +2α/V . In order to calculate overshooting cycles
the non-smooth system (3.28) is replaced by a composite system of smooth ODEs for
x1 and x2 defined respectively in S1 and S2, namely

ẋ1 = τ1f 1(x1) , x1 ∈ S1 , x1(0) = α , y1(0) = V ,

ẋ2 = τ2f 2(x2) , x2 ∈ S2 , x2(0) = x1(1) , y2(0) = y1(1) ,

τ̇1 = 0 , y1(1) = V ,

τ̇2 = 0 , y2(1) = V ,

(3.36)

where τ1 is the slip-period with positive relative velocity and τ2 measures the duration
of overshooting, the overall period thus being τ1 + τ2 + (α− x2(1))/V .

Crossing bifurcations

Imagine that upon the variation of a problem parameter the overshooting segment in
S2 grows large enough to meet the tangent point T1 again (Figure 3.14) and thus the
stick phase is lost. The following cycle circumvents the sticking domain Σs completely
and is merely composed by two halves lying in S1 and S2, respectively (Figure 3.15).
Since the shape of the limit-cycle has again changed qualitatively from an overshooting
stick-slip to an overshooting slip cycle, this event is called a crossing bifurcation (case
CR2 in Table 3.1).

The boundary value problem suitable for the continuation of a crossing bifurcation
with respect to two parameters is given by

ẋ1 = τ1f 1(x1) , x1 ∈ S1 , x1(0) = α , y1(0) = V ,

ẋ2 = τ2f 2(x2) , x2 ∈ S2 , x2(0) = x1(1) , y2(0) = y1(1) ,

τ̇1 = 0 , y1(1) = V , y2(1) = V

τ̇2 = 0 , x2(1) = α ,

(3.37)

where again the non-smooth system has been splitted into the dynamics in S1 described
by x1 and S2 described by x2. The adjacent crossing cycle is likewise calculated from

ẋ1 = τ1f 1(x1) , x1 ∈ S1 , y1(0) = V ,

ẋ2 = τ2f 2(x2) , x2 ∈ S2 , x2(0) = x1(1) , y2(0) = y1(1) ,

τ̇1 = 0 , y1(1) = V , y2(1) = V

τ̇2 = 0 , x2(1) = x1(0) ,

(3.38)

the overall period being τ1 + τ2.
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3.2.3 Numerical Results and discussion

We subsequently use the software package Slidecont provided by Derecole & Kuznetsov
[2004] in order to compute the one-parameter continuation of stick-slip, stick-slip-
overshooting and overshooting-slip solutions described by b.v.p’s (3.34), (3.36) and (3.38)
as well as the two-parameter continuation problems for bifurcation points given by (3.33),
(3.35) and (3.37). We start with the stratification of the parameter plane (belt veloc-
ity V versus friction drop β) for a small asymptotic slope of the friction characteristic
(γ = 0.008) and a fixed value of the static friction coefficient α = 0.4 presented in Figure
3.16. The curve of grazing bifurcations is marked by GR, switching bifurcations occur
at the curve SW and crossing bifurcations at CR in Figure 3.16. Moreover, there exist
two fold-bifurcations of crossing cycles, the loci of which are indicated by “LP”. How-
ever, we already note here that these fold-bifurcations occur at physically meaningless
values of β and hence are of pure mathematical interest. However, we want to point
out that in Derecole & Kuznetsov [2004] and Abadi [2003] they find similar
folds but did not recognize their physical infeasibility! The curve of Hopf-bifurcations
labeled “Ho” is found analytically from (3.24). Figure 3.16 also includes qualitative
sketches of the phase portraits associated with the domains resulting from the intersec-
tion of bifurcation curves in the parameter plane – irrespective of their physical meaning.

In the sequel we show three examples of bifurcation paths. Figures 3.17-3.21 and
Figures 3.22-3.25 show the different solutions occurring for either a low band velocity
of V = 2.5 or a high band velocity V = 9 varying the friction drop β. Technically this
parameter study may be interpreted as a change in the surface texture. Figures 3.26-
3.28 show the bifurcation scenario for a given friction characteristic increasing the band
speed. Finally, parameter studies are performed to reveal the influence of the parameters
α and γ on the bifurcation behavior of the friction oscillator.

Bifurcations at constant band velocity

For a given band velocity of V = 2.5, static coefficient of friction α = 0.4 and fixed
γ = 0.008 we cross the parameter plane in Figure 3.16 on a horizontal path. For a flat
friction characteristic (i. e. small β) we start with a single stable equilibrium position
(Figure 3.17). After the grazing bifurcation at GR in Figure 3.17 two limit cycles appear
suddenly: a stable stick slip cycle and an unstable smooth limit cycle surrounding the yet
stable focus (Label 1 in Figure 3.17, Figure 3.18). The smooth limit cycle disappears
at the Hopf-bifurcation (Ho), where the stability of the equilibrium position changes.
Next, we encounter a switching bifurcation (Mark SW in Figure 3.17) after which an
overshooting cycle is born (Label 2 in Figure 3.17, Figure 3.19) where the mass moves
faster than the belt for a very short period of time. Proceeding further crossing the CR-
curve in Figure 3.16 (Mark CR in Figure 3.17) a crossing cycle that does not enter the
sticking domain (Label 2 in Figure 3.17, Figure 3.20) is created by means of a crossing
bifurcation.

Here, we do not want to refrain from presenting a physically meaningless but math-
ematically interesting sequence of fold bifurcations of crossing cycles, occurring for
β/α > 1, which means that the friction force would become negative for a range of
relative velocities (Figure 3.21). The fold bifurcations are seen as limit points in the
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bifurcation diagram (labels LP in Figure 3.17). The continuation paths of these limit
points in the (V, β)-domain are included in Figure 3.16. At LP a stable and an unstable
crossing cycle merge and disappear catastrophically. In-between the limit points, three
nested crossing cycles coexist (see Figure 3.21).

Choosing a larger band velocity V = 9 produces the bifurcation diagram in Figure
3.22. The sequence of grazing, switching, crossing and fold bifurcations is similar to the
case discussed before. The evolution of the limit cycles in the phase space is depicted in
Figures 3.23-3.25. Yet, the smooth cycle surrounding the stable equilibrium persists for
all values of β of physical relevance. In the range between the limit points LP in Figure
3.22 we observe the coexistence of four limit cycles of alternate stability, three of which
are non-smooth and cross the discontinuity.

Bifurcations for a given friction law

Practically, it seems to be easier to increase the band speed V for a given friction law,
i. e. to choose a vertical path through the parameter plane in Figure 3.16. Perform-
ing this experiment numerically one obtains the bifurcation diagram plotted in Figure
3.26. The value of β/α = 0.75 was chosen such to demonstrate all possible types of
bifurcations. For low band velocities we observe the immediate formation of a stick-slip
circle surrounding the unstable focus as explained in Section 3.2.2. After a sequence of
switching and crossing bifurcations (Figure 3.27) a crossing cycle is obtained with a short
overshooting segment and no stick regime. Increasing V beyond the Hopf-bifurcation
(label Ho in Figure 3.26) this progression of non-smooth bifurcations is reversed again.
Exemplarily, an overshooting stick-slip cycle and the enclosed unstable smooth cycle are
depicted in Figure 3.28. The overshooting and stick regime, however, are considerably
smaller than the slip regime with positive relative velocity. At the second switching
bifurcation (V ≈ 12.3) the small overshooting segment vanishes and the resulting stan-
dard stick-slip cycle merges at GR with the unstable smooth cycle that has bifurcated
at the Hopf-point Ho. The stable focus remains the sole attractor for V > VGR.

The Influence of α and γ

Up to now, we kept the static coefficient of friction α and the asymptotic slope γ fixed.
In order to reveal the influence of the remaining parameters on the bifurcation scenario
the loci of the turning points of the switching curve (SW) and the crossing curve (CR)
in the (β, V )-plane have been continued with respect to α and γ. This means that the
minimum values of β/α for switching and crossing bifurcations are sought depending on
α and γ (Figure 3.29). One observes that grazing and switching bifurcations are shifted
towards lower values of β and higher values of V for decreasing α or γ. Projecting these
continuation paths into the (β, γ)-plane yields the chart in Figure 3.30 which shows
the possibility for overshooting stick-slip oscillations and crossing cycles to occur upon
variation of V if a certain combination of γ and β/α is chosen. In domain A in Figure
3.30 stick-slip oscillations disappear by a grazing bifurcation for rising band velocities.
In the domain B the stick slip cycle starts overshooting in an interval of V , whereas in
C the stick phase vanishes completely and crossing cycles appear in an interval of V .
The example shown in Figures 3.26-3.28 belongs to domain C as indicated in Figure

63



3 Non-smooth bifurcations of mechanical systems with 1-d.o.f involving friction

3.30. Recall that if γ > 0 for arbitrary β and sufficiently high V the non-smooth cycle
will disappear by a grazing bifurcation and the mass will attain the stable equilibrium
position.

For the case of γ = 0 the static equilibrium is always unstable and thus is surrounded
by a non-smooth cycle for all physically reasonable combinations of parameter values.
Grazing bifurcations do not appear. Figure 3.29 shows the stratification of the (β, V )-
plane, including the loci of switching (SW), crossing (CR) and Hopf (Ho) bifurcations in
that particular case. Although not proven, the numerical results plotted in Figure 3.30
and Figure 3.31 support the conjecture that for sufficiently high velocities V we always
end up with a non-sticking crossing cycle created by a crossing bifurcation. Although
physically meaningless it is interesting to mention that for a given velocity (V = 1.33
was chosen in Figure 3.32) at β/α = 1 (LP

∞) an additional unstable crossing cycle of
infinite amplitude appears, the radius of which decreases for β/α > 1. The stable and
unstable crossing cycles annihilate each other at the point “LP” above which no stable
steady-state solution exists (Figure 3.32).

A note on stability considerations

The stability of the presented solutions was merely checked by, respectively, forward
or backward integration of the non-smooth system (3.28) in time. A simple algorithm
proposed by Leine [2000] was used which introduces a small neighborhood of the
discontinuity Σ. A trajectory entering this neighborhood is either numerically “pushed”
towards the discontinuity or transferred across Σ depending on whether |x| < α or
not. The stability investigations, however, are intuitively clear for the simple example
considered so far such that no need is felt to strive for more sophisticated methods.
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marks 1 − 3 are displayed in Figures
3.23-3.25.
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Figure 3.23: Phase portrait of the
overshooting stick-slip cycle for β =
0.24 and the corresponding friction
characteristic (above). The over-
shooting segment is enlarged. An un-
stable limit-cycle surrounds the stable
equilibrium
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Figure 3.24: Phase portrait of the
slip cycle with a small overshoot-
ing segment for β = 0.36 and the
corresponding friction characteristic
(above). The stable fixed point and
the unstable smooth cycle persist.
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Figure 3.25: Coexistence of 3 cross-
ing cycles for β = 0.47 with the un-
stable smooth cycle. The associated
friction characteristic (above) is phys-
ically meaningless, though.
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associated friction law is displayed
above.
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4 Non-smooth bifurcations of
travelling waves

4.1 Motivation

One of the obvious effects of friction are squealing noises, be it in squeaking doors, in
brakes or in the ultimate cultivation the sound of a violin. The problem considered in
this chapter was triggered by an investigation of brake squeal noises in disc and drum
brakes of the high speed (“TGV”-)train in France performed by Q. S. Nguyen and
his research group (Moirot et al. [2002], Nguyen [2003], Moirot & Nguyen
[2002]). In Moirot et al. [2002] they simulated a very simplified brake-like model
consisting of a rigid shaft inside an elastic annular bush (Figure 4.1) with a finite element
discretization and found rotating waves that exhibit stick, slip and separation zones
between the shaft and the bush for certain parameter combinations. A connection of
their results to the occurrence of squealing noises remains a conjecture, however. The
task was to get a deeper insight into the dynamics of the system using concepts of non-
smooth bifurcation theory in order to study the influence of the problem parameters on
friction induced waves, in particular on the occurrence of the stick-slip and separation
phenomena. While Moirot et al. [2002] stick to a Coulomb-type friction model, here
we furthermore want to incorporate the more sophisticated friction model introduced in
the previous chapter.

4.2 Mechanical model of a brake-like system

Consider an elastic annular bush fitted to a rigid shaft with a diameter mismatch δ
(Figure 4.1). The shaft is rotating with angular velocity Ω. Friction between the rotating
shaft and the bush shall be taken into account by a friction coefficient µ depending on the
local relative velocity vrel. The bush obeys the standard planar equations of motion of a
linear elastic continuum together with the appropriate boundary and contact conditions
in polar coordinates (r, θ) (cf. Moirot et al. [2002]),

div σ = ü , σ =
ν

(1 + ν)(1− 2ν)
tr(ε)I +

1

1 + ν
ε , ε =

1

2

(

∇u +∇uT
)

(4.1a)

u(ξ, θ, t) = 0 , (4.1b)

σrr(1, θ, t) = −p(θ, t) , σrθ(1, θ, t) = −q(θ, t)
u(1, θ, t) ≥ δ , p(u(1, θ, t)− δ) = 0 , (4.1c)

vrel(θ, t) = Ω− v̇(1, θ, t) , |q| ≤ µ(vrel)p , vrel (q − µ(vrel)p) = 0 (4.1d)

for the stress and strain tensors σ, ε and the displacement field u = (u, v, w); ν denotes
the Poisson ratio. The ratio of the radii ξ = Ro/Ri, the pressure p and the shear stress
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Figure 4.1: Rotating (Ω) rigid shaft (radius Rs = Ri + δ fitted into an annular bush (radii
Ri, Ro) with diameter mismatch δ, i. e. the undeformed inner radius of the bush Ri < Rs by
the amount δ.

q have been introduced and the physical quantities have been scaled by1

u← 1

Ri

u , δ ← δ

Ri

, σ ← 1

E
σ , r ← r

Ri

, t← 1

Ri

√

E

ρ
t , Ω← Ri

√

ρ

E
Ω ,

(4.2)
where E and ρ are Young’s modulus and the density of the bush. At the outer boundary
(r = ξ) all displacements are set to zero by (4.1b). Boundary condition (4.1c) describes
the possibility of separation between the bush and the shaft: if the bush is in contact
with the shaft then u = δ holds at r = 1 and the normal pressure p is nonzero, otherwise
p = 0 during separation. Boundary condition (4.1d) incorporates the friction law µ(vrel)
relating normal and shear stresses at the shaft-bush interface. Again, either the relative
tangential velocity at the interface vrel = 0 or q = µ(vrel)p. Writing out (4.1a) in
planar polar coordinates (r, θ) yields linear partial differential equations for the radial
and tangential displacements u and v, respectively:

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
− (2− κ1)

1

r2

∂v

∂θ
+ κ1

1

r

∂2v

∂r ∂θ
+ (1− κ1)

1

r2

∂2u

∂θ2
= η1ü ,

∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+ (2 + κ2)

1

r2

∂u

∂θ
+ κ2

1

r

∂2u

∂r ∂θ
+ (1 + κ2)

1

r2

∂2v

∂θ2
= η2v̈ ,

(4.3)

where

κ1 =
1

2(1− ν) , κ2 =
1

1− 2ν
, η1 =

1− ν − 2ν2

1− ν , η2 =
2(1− ν − 2ν2)

1− 2ν
.

The non-linearity is introduced to the problem by the non-smooth boundary conditions
(4.1c) and (4.1d), written out

[

∂u

∂r
+

ν

1− 2ν

(

u+
∂u

∂r
+
∂v

∂θ

)]

(u− δ)
∣

∣

∣

∣

r=1

= 0 ,

{

1

2(1 + ν)

(

∂u

∂θ
− v +

∂v

∂r

)

− µ(vrel)

1 + ν

[

∂u

∂r
+

ν

1− 2ν

(

u+
∂u

∂r
+
∂v

∂θ

)]}

(Ω− v̇)
∣

∣

∣

∣

r=1

= 0 ,

1The scalings (4.2) differ from those proposed in Moirot et al. [2002] in order to get hold of Ω as
as problem parameter
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4 Non-smooth bifurcations of travelling waves

which result from the possibility of separation and the employed friction law. Similar to
(3.19) we now use the slightly modified version

µ(vrel) = α

{

sgn(vrel)

[

1− β̂
(

1− 1

1 + |vrel|

)]

+ γvrel

}

where β̂ =
(

√

β +
√
γ
)2

.

(4.4)

4.3 Stability of the stationary solution

Equations (4.3) have a stationary solution u0 = (u0, v0) where u̇ ≡ 0, v̇ ≡ 0, given by
(Moirot et al. [2002])

u0 = δ
1

ξ2 − 1

(

ξ2

r
− r
)

, v0 = δµ(Ω)
1

ξ2 − 1

(

ξ2

r
− r
)(

1 +
1

ξ2(1− 2ν)

)

,

p0 = δ
1

ξ2 − 1

1

1 + ν

(

ξ2 +
1

1− 2ν

)

, q0 = µ(Ω)p0

(4.5)

In the vicinity of u0 equations (4.3) are linear if separation and sticking is excluded for
small disturbances and Ω > 0. We assume the perturbations of u to be negligible and
write (cf. Chandrasekhar [1970])

u(r, θ, t) ≡ u0 , v(r, θ, t) = v0 + V (r)eikθ+λt , (4.6)

where k is the wave number of the transversal disturbance. For a stable stationary solu-
tion all eigenvalues λ must have a negative real part for all k such that all disturbances
decay exponentially in time. Neglecting (4.3)1 one obtains from (4.3)2 the eigenvalue
problem

L [V ] := (rV (r)′)
′ − s2V (r)

r
= η2λ

2rV (r) . (4.7)

where s2 = (k2(1 + κ2) + 1). The corresponding linearized boundary conditions read
(

1− 2ν + 2ikνµ(Ω) + 2p0µ
′(Ω)(1− ν − 2ν2)λ

)

V (1)− (1− 2ν)V ′(1) = 0 ,

V (ξ) = 0 .
(4.8)

Equation (4.7) is of the Bessel type, the eigenfunctions V (r) are thus represented by the
modified Bessel functions of index s, namely Is(

√
η2λr) and Ks(

√
η2λr) (cf. Smirnow

[1967]). The boundary conditions (4.8) can be written as

(a0 + ǫλ)V (1) + a1V
′(1) , V (ξ) = 0 , (4.9)

where a0, λ ∈ C, a1 ∈ R and ǫ = 2p0µ
′(Ω)(1 − ν − 2ν2) is small which is physically

justified since the mismatch δ as well as the slope of the friction characteristic µ′(Ω) will
be small. If ǫ = 0 (e. g. µ′(Ω) = 0) the boundary value problem (4.7) and (4.9) is self-
adjoint and due to the complex boundary conditions has a skew-symmetric distribution
of infinitely many complex eigenvalues, i. e. if λ0 is an eigenvalue then so is −λ0 because
the square of λ appears in (4.7). Hence, in contrast to the 1-d.o.f. friction oscillator
discussed in Section 3.2 in the present continuous problem the stability of the stationary
solution does not change if µ′(Ω) = 0. For a small perturbation ǫ 6= 0, the eigenvalues
λ1, say, will remain in a neighborhood of λ0 and thus we are apt to formulate
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4 Non-smooth bifurcations of travelling waves

Proposition 4.1. The stationary solution u0 given by (4.5) is unstable w.r.t. pertur-
bations (4.6) for all parameter values and ǫ sufficiently small.

Proof. Let λ0 and −λ0 be eigenvalues of the unperturbed boundary value problem ǫ = 0
and λ1 be an eigenvalue of the perturbed problem. V0 and V1 are the corresponding
eigenfunctions. Then use integration by parts to calculate
∫ ξ

1

(L [V0]V1 − L [V1]V0) dr = [rV ′
0V1 − rV ′

1V0]
ξ
1 = η2

(

λ2
0 − λ2

1

)

∫ ξ

1

rV0V1dr . (4.10)

Using the boundary relations V ′
1(1) = −(a0 + ǫλ1)V (1)/a1 and V ′

0(1) = −a0V0(1)/a1 in
(4.10) yields

λ2
1 = λ2

0 + ǫ
V0(1)V1(1)

a1η2

∫ ξ

1
rV0V1dr

λ1 , (4.11)

which reveals that both solutions of (4.11) for λ1 depend smoothly on ǫ. Since either λ0

or −λ0 has a positive real part we will find a λ1 with Re(λ1) > 0 and thus u0 is unstable.

4.4 Travelling wave reduction

Following Moirot et al. [2002] we use a Galerkin reduction to simplify the problem.
The displacements are sought in the form

u = U(θ, t)X(r) , v = V (θ, t)X(r) , (4.12)

where the radial distribution X(r) is taken from the static solution (4.5), namely

X(r) =
1

ξ2 − 1

(

ξ2

r
− r
)

.

The quantities U and V thus describe the (nondimensional) displacements of the shaft-
bush interface depending on the polar angle θ. Performing the Galerkin reduction of
(4.1) employing (4.12) (cf. Nguyen [2003]) yields the following system of p.d.e’s for U
and V :

Ü − bU ′′ − dV ′ + gU = P

V̈ − aV ′′ + dU ′ + hV = Q

P ≥ 0 , U − δ ≥ 0 , P (U − δ) = 0 ,

|Q| ≤ µ(Ω− V̇ )P , Q− µ(Ω− V̇ )P = 0 ,

(4.13)

where (·)′ denotes differentiation with respect to θ. The constants a, b, d, g, h depend on
ξ and the Poisson ratio ν and are given by

a =
ãA

B
, b =

b̃A

B
, d =

aC1 − bC2

A
, g =

2ã+ 2(ξ2 − 1)b̃

B
, h =

2ξ2b̃

B
,

ã =
1− ν

(1 + ν)(1− 2ν)
, b̃ =

1

2(1 + ν)
,

A = −2ξ2 ln ξ

ξ2 − 1
+

1 + ξ2

2
, B =

ξ4 ln ξ

ξ2 − 1
+

1− 3ξ2

4
,

C1 =
2ξ2 ln ξ

ξ2 − 1
− 1 , C2 = −2ξ2 ln ξ

ξ2 − 1
− 1 + 2ξ2 .

(4.14)
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It is remarked that all problem constants are positive except d. Next we look for travel-
ling wave solutions of (4.13) which propagate at constant (non-dimensional) wave speed
c. This permits to introduce a phase φ given by

φ = θ − ct (4.15)

whereby the dependencies of U and V are reduced to

U = U(φ) , V = V (φ) , U̇ = −cU ′ , V̇ = −cV ′ . (4.16)

The prime indicates differentiation with respect to φ now and U, V are periodic functions
of period 2π/k, k being the wave number of the considered solution. Recalling the
scalings (4.2) the associated physical wave speed becomes c

√

E/ρ m/s. Consequently,
periodic waves are governed by a non-smooth system of o.d.e’s depending on whether
the contact pressure, given by (cf. (4.13))

P = gδ − dV ′ , (4.17)

is zero or positive, i. e.

U = δ , U ′ = 0

V ′′ =







0 if |hV | ≤ µ(0)P andV ′ = −Ω/c
1

c2 − a (−hV + µ(Ω + cV ′)P ) otherwise















if P > 0

(4.18a)

(c2 − b)U ′′ − dV ′ + gU = 0
(c2 − a)V ′′ + dU ′ + hV = 0

}

if P = 0 . (4.18b)

Equations (4.18) possess a 4-dimensional phase space with elements x = (U,U ′, V, V ′).
If the shaft is in contact with the bush the dynamics is governed by (4.18a) and restricted
to the 2-dimensional manifold

SC = {x ∈ R
4 : U = δ, U ′ = 0} .

This plane of contact SC can be regarded as a discontinuity in the complete 4-dimensional
system (4.18) (see Figure 4.2). The vector field defined by (4.18b) is not only non-smooth
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4 Non-smooth bifurcations of travelling waves

with respect to SC but also discontinuous since U ′ will experience a jump if contact is
reestablished and a trajectory hits SC . The vector field in SC is given by (4.18a) and
therefore a 4-dimensional Filippov construction of the solutions in Sc is not applicable.
Furthermore, SC may not be pierced by a trajectory since U ≥ δ must always hold. This
defines a permissible 4-dimensional half-space for separated states, i. e.

SSEP = {x ∈ R
4 : U > δ} .

Inside SC , however, there exist two 1-dimensional sub-boundaries Σ1 and Σ2 for vanishing
relative velocity and vanishing normal pressure, respectively, given by

Σ1 = {x ∈ Sc : Ω + cV ′ = 0} , Σ2 = {x ∈ Sc : gδ − dV ′ = 0} .
With respect to the boundary Σ1 the 2-dimensional sub-system (4.18a) is of Filippov-
type and gives rise to stick-slip solutions as explained in Section 3.1.1. It comprises
the sticking domain ΣS = |hV | ≤ µ(0)P . The boundary Σ2 indicates the onset of a
separation zone between the shaft and the bush and thus plays the role of a “window”
into R4. As soon as a trajectory in SC hits Σ2, the governing equations switch to (4.18b)
and the trajectory exits to SSEP . Σ2 is not of Filippov type since the adjacent vector
fields are non-smooth, though, but continuous which is easily seen from letting P = 0
in (4.18). The plane Sc is sub-partitioned by Σ1 and Σ2 into three domains S1, S2 and
S3 (Figure 4.6), defined by

S1 = {x ∈ Sc : gδ − dV ′ > 0 ∧ Ω + cV ′ > 0} ,
S2 = {x ∈ Sc : gδ − dV ′ > 0 ∧ Ω + cV ′ < 0} ,
S3 = {x ∈ Sc : gδ − dV ′ < 0} .

The domains S1 and S2 thus contain all admissible states of contact with positive normal
pressure. We will call S1 the domain of positive slip, since it contains slip states with
positive relative velocity. Likewise, S2 will be referred to as overshooting domain, since
its elements correspond to a motion where the bush is locally faster than the shaft.
Obviously, the domain S3 is forbidden. We will in the following refer to a slip motion
with positive (resp. negative) relative velocity simply as positive slip (resp. negative
slip or overshooting). The system (4.18a) is a friction oscillator of the form discussed in
Section 3.1.2 where the normal pressure P now depends on V ′ via (4.17). However, due
to the presence of the second discontinuity Σ2 we furthermore expect more complicated
periodic solutions with separation zones.

4.5 Non-smooth solutions and bifurcations of travelling

waves

4.5.1 Equilibria and tangent points

We start with the investigation of non-smooth solutions and bifurcations of the planar
system (4.18a). As explained in Section 3.2.2 system (4.18a) has two tangent points
with respect to Σ1 where V ′′ = 0 and V ′ = −Ω/c, given by

T1 =

(

α

h

(

gδ + d
Ω

c

)

,−Ω

c

)

, T2 =

(

−α
h

(

gδ + d
Ω

c

)

,−Ω

c

)

, (4.19)
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Figure 4.5: Hopf-bifurcations in the
(ξ, ν)-parameter plane for Ω = 1, β =
0.2, γ = 0.0615, k = 1, c < 0 and
cµ′(Ω) > 0

where, as for the simple friction oscillator, T1 is visible and T2 is invisible.

The fixed point at V = µ(Ω)gδ/h corresponds to the stationary slipping solution
discussed in Section 4.3. With respect to the original p.d.e. (4.3) this solution has
been shown to be always unstable in Proposition 4.1. Nevertheless, the equilibrium
may change its nature from a source to a sink within the approximated system (4.18a).
Applying formula (3.12) we find that the term

K = cµ′(Ω)gδ − dµ(Ω) (4.20)

governs the stability of the equilibrium. If K < 0 it is a sink2, if K > 0 it is a source and
if K = 0 there is a Hopf-bifurcation. Observing (4.20) we recognize that in contrast to
the simple friction oscillator (Section 3.2) the occurrence of a Hopf bifurcation is mainly
determined by the parameter d here. Since µ′(Ω)δ will be small and µ(Ω) is always
positive K will only vanish if d is sufficiently small. From (4.14) the change in the sign
of d is easily found by evaluating d = 0, which yields

ν =
1 + ξ2 − 2ξ4 + 6ξ2 ln ξ

4ξ2(1− ξ2 + 2 ln ξ)
. (4.21)

The graph of (4.21) is plotted in Figure 4.3. The wave speed c = cH at a Hopf bifurcation
has to be determined such that the bifurcating limit cycle has a period 2π/k. Since
the frequency of the bifurcating cycle at the bifurcation value is given by the natural
frequency

√

h/(c2 − a) of the oscillator (4.18a) we find that

cH = ±
√

h

k2
+ a.

The sign of the wave speed indicates the direction of the considered wave (waves with
positive wave speed propagate in the same sense as the applied rotation Ω). Using the

2We try to avoid the terms stable and unstable here since stability (instability) w.r.t. the approximation
(4.18a) does not necessarily mean that the solution is indeed physically stable (unstable).
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Figure 4.6: Possible lay-outs of the contact plane SC and the corresponding arrangement of
the domains S1, S2 and S3. The tangent points and the sticking domain on Σ1 are sketched.
The equilibria are depicted as sources, which is the most significant case.

representations (4.14) for g and d we can compute numerically the loci of Hopf bifur-
cations in the parameter space for a given friction characteristic. Figure 4.4 shows the
surfaces K = 0 in the (Ω, ξ, ν)-space if a forward rotating wave is bifurcating in mode
1 (i. e. cH > 0, k = 1). A typical configuration of the friction characteristic which will
also be used in the remainder of this chapter has been chosen (β = 0.2, γ = 0.0615) and
Ω is small enough that everywhere µ′(Ω) < 0 is fulfilled. For waves rotating against the
sense of the shaft (cH < 0) the situation is depicted in Figure 4.5 where Ω = 1 is kept
fixed, since the influence of Ω would be visually indiscernible. We conclude from Figures
4.3, 4.4 and 4.4 that d < 0 covers most of the cases that are physically relevant3. Hopf
bifurcations occur either for rather small radial ratios ξ or high Poisson numbers ν close
to an incompressible material. Both cases can be regarded as physically not typical for
the problem under consideration, hence we may argue that the emergence of travelling
waves due to a Hopf bifurcation plays a minor role in the present example. However, we
will see in Section 4.5.4 that waves with positive wave-speed are solely found in these
exceptional cases.

For large Ω where µ′(Ω) > 0 we only have to swap figures 4.4 and 4.5 since the oc-
currence of Hopf bifurcation depends only on the sign of the product cµ′ which shall be
clarified by the following table:

3Choosing e. g. ν = 0.3 and ξ = 2 yields d = −8.865 · 10−1.
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d > 0 d < 0

cµ′ < 0 (Fig. 4.4) sinks
possibility of Hopf-bifurcations
for |δ| ≪ 1

cµ′ > 0 (Fig. 4.5)
possibility of Hopf-bifurcations
for |δ| ≪ 1

sources

Finally, note that the Hopf bifurcation is independent of the static friction coefficient
α. Furthermore we know from numerical tests that the influence of the remaining pa-
rameters in the friction law on the loci of Hopf bifurcations is negligible.

Looking now at the plane of contact SC in the phase space we distinguish six different
lay-outs (see Figure 4.6) depending on the placement of Σ1 and Σ2 and the signs of the
wave speed c and the parameter d. In order to find possible non-smooth waveforms we
have to find periodic solutions with fixed period 2π/k of (4.18) numerically. Observing
the possible topologies of SC depicted in Figure 4.6 we expect stick, slip (including over-
shooting) and separated solutions in cases (I), (IIa), (III) and (IVa) while cases (IIb)
and (IVb) only permit positive slip and separated solutions.

It is important to remark that due to the travelling wave reduction (4.15) and (4.16)3,4
a solution of (4.18) with c > 0 corresponds to a solution in negative time of the original
p.d.e. (4.13). For forward waves the orientation of a phase curve in φ therefore is
reversed if it is transferred to the time t. This fact will have important consequences
on the different formulation of boundary conditions for c < 0 and c > 0 (Sections 4.5.3,
4.5.4). Moreover, system (4.18a) is invariant with respect to the transformation

c→ −c , d→ −d , φ→ −φ . (4.22)

This means that once a travelling backward wave with, say, c < 0, d < 0 is found there
exists an identical forward wave for c > 0 and d > 0. We will scrutinize this point
when we reconsider forward travelling waves in Section 4.5.4 (Figure 4.9). Although,
physically, the parameter d is linked via ξ and ν to a, b, g and h we expect that a solution
that corresponds to an ‘artificial’ value of d will be close to a physically correct solution.
In view of (4.22) we thus conjecture that solutions in the cases (I) and (II) in Figure 4.6
are similar to cases (III) and (IV) and in a first approach it shall suffice to consider one
example out of each group in order to reduce the complexity of the problem.

4.5.2 Numerical Procedure

In order to cope with the non-smoothness of (4.18) a composite system of smooth equa-
tions is constructed similar to Section 3.2.2 each accounting for a different type of con-
tact between the shaft and the bush. Introducing the variables W (φ) = V ′(φ) and
Y (φ) = U ′(φ) and rescaling the respective integration variables with the periods Φ we
divide a non-smooth limit cycle of (4.18) into the sticking segment on Σ1, m positive
slipping segments in S1, n overshooting segments in S2 and a separated segment in SSEP .
New variables are appended to the state space for each type of shaft-bush contact in the
following fashion:
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4 Non-smooth bifurcations of travelling waves

Type of contact Rel. velocity State variables Period Eqn.
Sticking Ω + cW = 0 V0,W0 Φ0 (4.18a)
m slipping Ω + cW > 0 V11,W11, . . . , V1m,W1m Φ11, . . . ,Φ1m (4.18a)
n overshooting Ω + cW < 0 V21,W21, . . . ,W1n,W2n Φ21, . . . ,Φ2n (4.18a)
Separating vrel ≥ 0 ∨ vrel < 0 U3, Y3, V3,W3 Φ3 (4.18b)

The first order system of o.d.e’s that has to be integrated subject to appropriate
boundary and transition conditions reads

V ′
0 = −Φ0

Ω

c
W ′

0 = 0 (V0,W0) ∈ Σ1

V ′
11 = Φ11W11 W ′

11 = Φ11
1

c2 − af1(V11,W11) (V11,W11) ∈ S1

...
...

...

V ′
1m = Φ1mW1m W ′

1m = Φ1m
1

c2 − af1(V1k,W1m) (V1m,W1m) ∈ S1

V ′
21 = Φ21W21 W ′

21 = Φ21
1

c2 − af2(V21,W21) (V21,W21) ∈ S2

...
...

...

V ′
2n = Φ2nW2n W ′

2n = Φ2n
1

c2 − af2(V2n,W2n) (V2n,W2n) ∈ S2

U ′
3 = Φ3Y3 Y ′

3 = Φ3
1

c2 − b(dW3 − gU3)

V ′
3 = Φ3W3 W ′

3 = Φ3
1

c2 − a(−dY3 − hV3) (U3, Y3, V3,W3) ∈ SSEP
Φ′

0 = Φ′
11 = . . . = Φ′

1m = Φ′
2 = Φ′

3 = 0

(4.23)

where

f1(V,W ) = −hV + α

[

1− β̂
(

1− 1

1 + Ω− cW

)

+ γ(Ω− cW )

]

(gδ − dW ) ,

f2(V,W ) = −hV + α

[

−1 + β̂

(

1− 1

1− Ω + cW

)

+ γ(Ω− cW )

]

(gδ − dW ) .

(4.24)

Above all we have to add the boundary condition that the overall period sums up to
2π/k in order to ensure the periodicity of the wave, i. e.

Φ0 + Φ11 + . . .+ Φ1m + Φ21 . . .+ Φ1n + Φ3 =
2π

k
, (4.25)

which permits to determine the unknown wave speed c. In (4.23) the possibility of
multiple slip segments has been incorporated, since typically slipping regimes precede
and succeed a separation zone (i. e. usually m = 2). The solution and continuation
of b.v.p’s for (4.23) including (4.25) is performed numerically by a collocation method
implemented in the continuation software Auto (Doedel et al. [1998]). Use will
also be made of the standard continuation routines for Folds and Hopf bifurcations that
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4 Non-smooth bifurcations of travelling waves

are available in Auto. The problem parameters suitable for continuation are collected
in the parameter vector

λ = (α, β, γ, δ, ξ, ν,Ω) . (4.26)

As a matter of fact, a complete stratification of the parameter space given by (4.26) is
cumbersome and we have to restrict ourselves to a meaningful choice of continuation
parameters for the numerical calculations. The b.v.p’s (4.27)-(4.55) each describing a
specific type of travelling wave are laid down in Tables 4.1 and 4.2.

4.5.3 The case c < 0

The case being most similar to the friction oscillator with one degree of freedom is case
(III) in Figure 4.6. Hence, in view of the numerical results that will be presented in
Section 4.6.1 we start with a listing of the different types of waves travelling on the
shaft-bush interface and their bifurcations for c < 0, i. e. for waves propagating in the
opposite direction than the rotation of the shaft.

(Overshooting) Stick-slip waves

Consider waves of mode k that exhibit k stick and slip zones with positive relative
velocity on the circumference of the shaft. The waveform of a stick-slip wave with
positive slip obeys the boundary value problem (4.27). A switching bifurcation produces
overshooting stick-slip waves which exhibit slipping with negative relative velocity.

(Overshooting) Stick-slip-separation waves

Stick-slip-separation waves are born by a separating bifurcation (explained below) either
of a stick-slip or an overshooting stick-slip wave. Thus, they feature k stick zones and
2k slip zones, which may as well exhibit overshooting behavior. The corresponding
boundary value problems are given by (4.31) for a standard stick-slip-separation wave
and (4.32) for its overshooting counterpart. A trajectory starts separating if P = 0 and
exits smoothly into the separation space SSEP , i. e. for the separated segment U3(0) = δ
and Y3(0) = U ′

3(0) = 0 holds. When contact is reestablished U ′
3 and P experience a jump

at the connection between the separated and the slipping segment, which corresponds
to a jump in the tangential and normal contact forces.

Crossing slip waves

A crossing slip wave is created by a crossing bifurcation. A crossing wave of mode k
is composed of k positive slipping segments and k overshooting slipping segments. The
sticking domain in Σ1 is completely encircled.

Crossing slip-separation waves

Crossing slip-separation waves, accordingly, result from a separating bifurcation of a
crossing cycle or from a crossing bifurcation of an overshooting stick-slip-separation
cycle. The wave runs k times through the regimes: positive slip – separation – positive
slip – overshooting slip. The corresponding b.v.p. is given in (4.33).
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SC

SSEP

λ = λ
P0

Σ2

S1

S3

Figure 4.7: Separating bifurcation: upon the variation of a parameter a trajectory is tangent
to Σ2 and consequently exits to SSEP .

Slip-separation waves

Pure Slip-separation waves without overshooting appear by the grazing bifurcation of a
stick-slip-separation wave (4.47). The b.v.p. suitable for the 1-parameter continuation of
slip-separation waves is given in (4.30). The cycle is composed of a positive slip segment
in S1 and a separation segment in SSEP .

Separating bifurcations

Separating bifurcations are an essential feature of the model under consideration. The
onset of a separation zone between the shaft and the bush is determined by a tangency
of a trajectory in SC with Σ2 (Figure 4.7) for a certain parameter value λ = λP0.
In di Bernardo et al. [2002] this event would be called a multisliding bifurcation.
Upon the variation of a parameter a separated trajectory in SSEP builds up governed by
(4.18b). It may appear in all kinds of non-separated waveforms, i. e. stick-slip waves,
overshooting stick-slip waves and crossing slip waves. The loci of separating bifurcations
in the parameter space are calculated from boundary value problems (4.36)-(4.38).

Grazing bifurcations

Grazing bifurcations may appear for stick-slip as well as stick-slip-separation waves and
are characterized in the phase space by a tangency of the considered limit cycle with Σ1.
Either a stick-slip wave merges with a smooth slip wave or a stick-slip-separation cycle
merges with a slip-separation cycle. The corresponding b.v.p’s for the continuation of
grazing bifurcations in the parameter space are given by (4.46) and (4.47).

Switching bifurcations

As it is the case for the simple friction oscillator in Section 3.2 switching bifurcations
are characterized by a trajectory connecting the two tangent points T1 and T2 given in
(4.19). Both, stick-slip as well as stick-slip-separation waves may undergo a switching
bifurcation and consequently exhibit an overshooting segment. In order to continue the
loci of switching bifurcations in the parameter space we have to solve the boundary value
problems (4.39) for switching bifurcations of stick-slip waves and correspondingly (4.40)
for stick-slip-separation waves.
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Figure 4.8: Fly-over bifurcation: (a) Stick-slip-separation cycle projected into the (U, V,W )-
space. (b) Fly-over bifurcation at λ = λFO: the separated segment ends at Σ1. (c) Overshoot-
ing stick-slip-separation wave with separated switching.

Crossing bifurcations

If a limit cycle has a segment in S2 which ends up in the tangent point T1 we are facing
a crossing bifurcation similar to the simple friction oscillator. The associated b.v.p’s are
(4.41) for the crossing bifurcation of an overshooting stick-slip cycle and (4.42) for the
crossing bifurcation of an overshooting stick-slip-separation cycle. Upon the variation of
a problem parameter, the considered wave looses its stick-regime and we observe crossing
slip waves or crossing slip-separation waves, respectively.

Separated switching – “Fly Over” bifurcations

Imagine the case that the separated trajectory of a stick-slip-separation cycle (Figure
4.8a, b.v.p. (4.31)) ends up at the discontinuity Σ1 for a certain constellation of pa-
rameter values, λ = λFO, say (Figure 4.8b). Physically, at λFO a separation regime is
followed immediately by a stick regime. In the vicinity of λFO the separated trajectory
may fly over the discontinuity Σ1 in SSEP (Figure 4.8c) and an overshooting stick-slip-
separation wave is created, where the relative velocity changes its sign during separation.
That’s why we shall call this event a fly-over bifurcation. Since the projection of the
phase portrait onto the (V,W )-Plane resembles the switching bifurcation we will anal-
ogously use the term separated switching to address this phenomenon. The boundary
value problem suitable for the continuation of “fly-over” bifurcations is given by (4.43).
System (4.34) finally shows the b.v.p. necessary for the continuation of the resulting
overshooting stick-slip-separation waves that exhibit separated switching.

The same type of bifurcation may occur if an overshooting stick-slip-separation wave
is considered with slip-segments in S1 as well as in S2 (b.v.p. (4.32)). The sepa-
rated segment (U3, Y3, V3,W3) may grow large enough such that the second slip-segment
(V2,W2) vanishes and S2 is entered via SSEP (see e.g. Figures 4.19-4.20). The loci of
“fly-over”-bifurcations of an overshooting stick-slip-separation wave are calculated from
b.v.p. (4.44).
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4 Non-smooth bifurcations of travelling waves

Furthermore, the same mechanism may cause Σ1 to be flown over twice by a separated
trajectory in SSEP , i. e. a separation zone with negative relative velocity leads directly
to a sticking segment. Upon the variation of a parameter the relative velocity of the
separating trajectory may change from positive to negative to positive again and contact
is reestablished when the trajectory hits SC in S1 (see the result in Figure 4.15). A
secondary fly-over bifurcation can be continued using the same b.v.p. valid for the
primary fly-over bifurcation given by (4.45). An appropriate overshooting stick-slip-
separation solution with separated switching close to the secondary fly-over bifurcation
must be provided as a starting solution.

Table 4.1: Boundary value problems corresponding to backward rotating waves (c < 0) and
their non-smooth bifurcations.

discontinuity

trajectory in SC

separated trajectory in SSEP

tangent point

Stick-slip wave

V ′
0 = −Φ0

Ω

c
V0(0) = V11(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11f1(V11,W11) V11(0) =

α

h

(

gδ + d
Ω

c

)

Φ′
0 = 0 W11(0) = −Ω

c

Φ′
11 = 0 W11(1) = −Ω

c

c′ = 0
2π

k
= Φ0 + Φ11

(4.27)

ODEs: 6
BCs: 6
Cont. par.: 1
Wave-form:

continued on next page

84



4 Non-smooth bifurcations of travelling waves

Overshooting Stick-slip wave

V ′
0 = −Φ0

Ω

c
V0(0) = V2(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11f1(V11,W11) V11(0) =

α

h

(

gδ + d
Ω

c

)

V ′
2 = Φ2W2 W11(0) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) W11(1) = −Ω

c

Φ′
0 = 0 V2(0) = V11(1)

Φ′
11 = 0 W2(0) = W11(1)

Φ2 = 0 W2(1) = −Ω

c

c′ = 0
2π

k
= Φ0 + Φ11 + Φ2

(4.28)

ODEs: 9
BCs: 9
Cont. par.: 1
Wave-form:

Crossing slip wave

V ′
11 = Φ11W11 V11(0) = V2(1)

W ′
11 = Φ11f1(V11,W11) W11(0) = −Ω

c

V ′
2 = Φ2W2 W11(1) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) V2(0) = V11(1)

Φ′
11 = 0 W2(0) = W11(1)

Φ2 = 0 W2(1) = W11(0)

c′ = 0
2π

k
= Φ11 + Φ2

(4.29)

ODEs: 7
BCs: 7
Cont. par.: 1
Wave-form:

continued on next page
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Slip-separation wave

V ′
11 = Φ11W11 V11(0) = V3(1)

W ′
11 = Φ11

1

c2 − af1(V11,W11) W11(0) = W3(1)

U ′
3 = Φ3Y3 W11(1) =

gδ

d

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) U3(0) = δ

V ′
3 = Φ3W3 Y3(0) = 0

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) V3(0) = V11(1)

Φ′
11 = 0 W3(0) =

gδ

d
Φ′

3 = 0 U3(1) = δ

c′ = 0
2π

k
= Φ11 + Φ3

(4.30)

ODEs: 9
BCs: 9
Cont. par.: 1
Wave-form:

Stick-slip-separation wave

V ′
0 = −Φ0

Ω

c
V0(0) = V12(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11

1

c2 − af1(V11,W11) V11(0) =
α

h

(

gδ + d
Ω

c

)

V ′
12 = Φ11W12 W11(0) = −Ω

c

W ′
12 = Φ11

1

c2 − af1(V12,W12) W11(1) =
gδ

d

U ′
3 = Φ3Y3 U3(0) = δ

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) Y3(0) = 0

V ′
3 = Φ3W3 V3(0) = V11(1)

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) W3(0) =
gδ

d

Φ′
0 = 0 U3(1) = δ

Φ′
11 = 0 V12(0) = V3(1)

Φ′
12 = 0 W12(0) = W3(1)

Φ′
3 = 0 W12(1) = −Ω

c

c′ = 0
2π

k
= Φ0 + Φ11 + Φ12 + Φ3

(4.31)

ODEs: 14
BCs: 14
Cont. par.: 1
Wave-form:

continued on next page
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Overshooting stick-slip-separation wave

V ′
0 = −Φ0

Ω

c
V0(0) = V2(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11

1

c2 − af1(V11,W11) V11(0) =
α

h

(

gδ + d
Ω

c

)

V ′
12 = Φ11W12 W11(0) = −Ω

c

W ′
12 = Φ11

1

c2 − af1(V12,W12) W11(1) =
gδ

d

V ′
2 = Φ2W2 V2(0) = V12(1)

W ′
2 = Φ2

1

c2 − af2(V2,W2) W2(0) = W12(1)

U ′
3 = Φ3Y3 W2(1) = −Ω

c

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) U3(0) = δ

V ′
3 = Φ3W3 Y3(0) = 0

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) V3(0) = V11(1)

Φ′
0 = 0 W3(0) =

gδ

d
Φ′

11 = 0 U3(1) = δ

Φ′
12 = 0 V12(0) = V3(1)

Φ′
2 = 0 W12(0) = W3(1)

Φ′
3 = 0 W12(1) = −Ω

c

c′ = 0
2π

k
= Φ0+Φ11 + Φ12 + Φ2 + Φ3

(4.32)

ODEs: 17
BCs: 17
Cont. par.: 1
Wave-form:

continued on next page
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Crossing slip-separation wave

V ′
11 = Φ11W11 V11(0) = V2(1)

W ′
11 = Φ11

1

c2 − af1(V11,W11) W11(0) = −Ω

c

V ′
12 = Φ11W12 W11(1) =

gδ

d

W ′
12 = Φ11

1

c2 − af1(V12,W12) V2(0) = V12(1)

V ′
2 = Φ2W2 W2(0) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) W2(1) = −Ω

c

U ′
3 = Φ3Y3 U3(0) = δ

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) Y3(0) = 0

V ′
3 = Φ3W3 V3(0) = V11(1)

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) W3(0) =
gδ

d

Φ′
11 = 0 U3(1) = δ

Φ′
12 = 0 V12(0) = V3(1)

Φ′
2 = 0 W12(0) = W3(1)

Φ′
3 = 0 W12(1) = −Ω

c

c′ = 0
2π

k
= Φ11 + Φ12 + Φ2 + Φ3

(4.33)

ODEs: 15
BCs: 15
Cont. par.: 1
Wave-form:

continued on next page
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Overshooting stick-slip-separation wave
with separated switching.

V ′
0 = −Φ0

Ω

c
V0(0) = V2(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11

1

c2 − af1(V11,W11) V11(0) =
α

h

(

gδ + d
Ω

c

)

V ′
2 = Φ2W2 W11(0) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) W11(1) =
gδ

d

U ′
3 = Φ3Y3 V2(0) = V3(1)

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) W2(0) = W3(1)

V ′
3 = Φ3W3 W2(1) = −Ω

c

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) U3(0) = δ

Φ′
0 = 0 Y3(0) = 0

Φ′
11 = 0 V3(0) = V11(1)

Φ′
2 = 0 W3(0) =

gδ

d
Φ′

3 = 0 U3(1) = δ

c′ = 0
2π

k
= Φ0 + Φ11 + Φ2 + Φ3

(4.34)

ODEs: 14
BCs: 14
Cont. par.: 1
Wave-form:

continued on next page
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Overshooting stick-slip-separation wave
with double separated switching.

V ′
0 = −Φ0

Ω

c
V0(0) = V12(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11

1

c2 − af1(V11,W11) V11(0) =
α

h

(

gδ + d
Ω

c

)

V ′
12 = Φ11W12 W11(0) = −Ω

c

W ′
12 = Φ11

1

c2 − af1(V12,W12) W11(1) =
gδ

d

U ′
3 = Φ3Y3 V12(0) = V3(1)

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) W12(0) = W3(1)

V ′
3 = Φ3W3 W12(1) = −Ω

c

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) U3(0) = δ

Φ′
0 = 0 Y3(0) = 0

Φ′
11 = 0 V3(0) = V11(1)

Φ′
12 = 0 W3(0) =

gδ

d
Φ′

3 = 0 U3(1) = δ

c′ = 0
2π

k
= Φ0 + Φ11 + Φ12 + Φ3

(4.35)

ODEs: 14
BCs: 14
Cont. par.: 1
Wave-form:

Separating bifurcation of a stick-slip wave

V ′
0 = −Φ0

Ω

c
V11(0) =

α

h

(

gδ + d
Ω

c

)

V ′
11 = Φ11W11 W11(0) = −Ω

c

W ′
11 = Φ11f1(V11,W11) W11(1) =

gδ

d
V ′

12 = Φ12W12 0 = f1 (V11(1),W11(1))

W ′
12 = Φ12

1

c2 − af1(V12,W12) V0(0) = V12(1)

Φ′
0 = 0 V0(1) = V12(0)

Φ′
11 = 0 W12(1) = −Ω

c
Φ′

12 = 0 V12(0) = V11(1)

c′ = 0 W12(0) = W11(1)

2π

k
= Φ0 + Φ11 + Φ12

(4.36)

ODEs: 9
BCs: 10
Cont. par.: 2
Label: P0

Wave-form:

continued on next page
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Separating bifurcation of an overshooting stick-slip wave

V ′
0 = −Φ0

Ω

c
V0(0) = V2(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11

1

c2 − af1(V11,W11) V11(0) =
α

h

(

gδ + d
Ω

c

)

V ′
12 = Φ12W12 W11(0) = −Ω

c

W ′
12 = Φ12

1

c2 − af1(V12,W12) W11(1) =
gδ

d

V ′
2 = Φ2W2 0 = f1 (V11(1),W11(1))

W ′
2 = Φ2

1

c2 − af2(V2,W2) V12(0) = V11(1)

Φ′
0 = 0 W12(0) = W11(1)

Φ′
11 = 0 W12(1) = −Ω

c
Φ′

12 = 0 V2(0) = V12(1)

Φ2 = 0 W2(0) = W12(1)

c′ = 0 W2(1) = −Ω

c
2π

k
= Φ0 + Φ11 + Φ2

(4.37)

ODEs: 12
BCs: 13
Cont. par.: 1
Label: P0

Wave-form:

Separating bifurcation of a crossing slip wave

V ′
11 = Φ11W11 V11(0) = V2(1)

W ′
11 = Φ11

1

c2 − af1(V11,W11) W11(0) = −Ω

c

V ′
12 = Φ12W12 W11(1) =

gδ

d

W ′
12 = Φ12

1

c2 − af1(V12,W12) 0 = f1 (V11(1),W11(1))

V ′
2 = Φ2W2 V12(0) = V11(1)

W ′
2 = Φ2

1

c2 − af2(V2,W2) W12(0) = W11(1)

Φ′
11 = 0 W12(1) = −Ω

c
Φ′

12 = 0 V2(0) = V12(1)

Φ2 = 0 W2(0) = W12(1)

c′ = 0 W2(1) = −Ω

c
2π

k
= Φ0 + Φ11 + Φ2

(4.38)

ODEs: 12
BCs: 13
Cont. par.: 1
Label: P0

Wave-form:

continued on next page
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Switching bifurcation of a stick-slip wave

BVP (4.27) augmented by the boundary condition

V11(1) = −α
h

(

gδ + d
Ω

c

)

(4.39)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: SW

Wave-form:

Switching bifurcation of a stick-slip-separation wave

BVP (4.31) augmented by the boundary condition

V12(1) = −α
h

(

gδ + d
Ω

c

)

(4.40)

ODEs: 14
BCs: 15
Cont. par.: 2
Label: SW

Wave-form:

Crossing bifurcation of an overshooting stick-slip wave

BVP (4.28) augmented by the boundary condition

V2(1) =
α

h

(

gδ + d
Ω

c

)

(4.41)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: CR

Wave-form:

Crossing bifurcation of an overshooting stick-slip-separation wave

BVP (4.32) augmented by the boundary condition

V2(1) =
α

h

(

gδ + d
Ω

c

)

(4.42)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: CR

Wave-form:

continued on next page
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Fly-over bifurcation of a stick-slip-separation wave

BVP (4.31) augmented by the boundary condition

W3(1) = −Ω

c
(4.43)

ODEs: 15
BCs: 16
Cont. par.: 2
Labels: FO1

Wave-form:

Fly-over bifurcation of an overshooting stick-slip-separation wave

BVP (4.32) augmented by the boundary condition

W3(1) = −Ω

c

(4.44)

ODEs: 17
BCs: 18
Cont. par.: 2
Label: FO1

Wave-form:

Secondary fly-over bifurcation of an overshooting stick-slip-separation wave
with separated switching

BVP (4.31) augmented by the boundary condition

W3(1) = −Ω

c
(4.45)

ODEs: 15
BCs: 16
Cont. par.: 2
Labels: FO2

Wave-form:

Grazing bifurcation of a stick-slip wave

BVP (4.27) augmented by the boundary condition

Φ0 = 0
(4.46)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: GR

Wave-form:

continued on next page
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4 Non-smooth bifurcations of travelling waves

Grazing bifurcation of a stick-slip-separation wave

BVP (4.31) augmented by the boundary condition

Φ0 = 0
(4.47)

ODEs: 14
BCs: 15
Cont. par.: 2
Label: GR

Wave-form:
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4 Non-smooth bifurcations of travelling waves

V

dV
dφ

V

dV

dφ̂

V

V̇

c > 0, d > 0 ĉ < 0, d̂ < 0

ĉ = −c
d̂ = −d
φ̂ = −φ

φ = θ − |c| t φ̂ = θ̂ + |ĉ| t

Figure 4.9: Construction of forward and backward waves in time changing the signs of d and
c.

4.5.4 The case c > 0

Considering forward waves with c > 0 we always have to bear in mind that the orienta-
tion of the wave in time t is opposite to the orientation in the phase φ. Observing again
cases (I)-(IIb) in Figure 4.6 we expect periodic solutions only if the equilibrium is a sink
w.r.t. φ which corresponds to a source w.r.t. t. Otherwise, a phase curve starting at the
sicking domain would spiral towards the equilibrium in time. Thus, periodic solutions
are expected in the neighborhood of the Hopf bifurcation discussed in Section 4.5.1, so
we have to consider small values of the radial ratio ξ. Indeed, the bifurcating smooth
periodic orbit at the Hopf-Bifurcation will be continued numerically until it hits the
discontinuity at a grazing bifurcation. Thus we will find smooth pure slip waves in the
present case. The following mechanism of successive switching, crossing and separating
bifurcations has already been exhaustively explained in Section 3.2 and Section 4.5.3 and
we will only provide a listing of the boundary value problems that have been continued
numerically in Table 4.2 here.

Another method to obtain forward waves has already been mentioned in Section 4.5.1
which is due to the invariance relation (4.22). However, such a solution requires the
isolated change of the sign of d leaving the remaining parameters constant, which is
physically not consistent. It makes sense, though, for a deeper understanding of the
problem to give some thought to this issue. Consider a forward wave, say V (φ), with
c > 0 and d > 0. By (4.22) this corresponds to a backward wave V (φ̂) where φ̂ = −φ,
ĉ = −c and d̂ = −d the phase portrait of which is obtained by a reflection at the V−axis
and a reversal of the orientation (Figure 4.9). If we transform both solutions back from
the (φ, φ̂)-domains to the time domain we obtain equal waveforms, which are rotating
in opposite directions on the shaft-bush interface.

Next, the formulation of boundary conditions deserves closer attention. Again, due to
the inversion of the orientation in time (see again Figure 4.9) the boundary conditions
on the right and left ends of certain segments of a cycle have to be swapped compared
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4 Non-smooth bifurcations of travelling waves

with the backward waves described before in Section 4.5.3. This shall become clear in
Table 4.2. The solutions are discussed in Section 4.6. We will find pure slip (b.v.p.
(4.48)), stick-slip (b.v.p. (4.49)), overshooting stick-slip (b.v.p. (4.50)), crossing slip
(b.v.p. (4.51)) waves in the cases (I) and (IIa) and additionally crossing slip-separation
waves (b.v.p. (4.52)) only in case (I) where d > 0. For the time being no periodic
solutions have been found in case (IIb).

Table 4.2: Boundary value problems corresponding to forward rotating waves (c > 0) and their
non-smooth bifurcations. The indicated sense of rotation corresponds to the orientation of φ.

Pure slip waves

V ′
11 = Φ11W11 V11(0) = V22(1)

W ′
11 = Φ11

1

c2 − af1(V11,W11) W11(0) = W22(1)

Φ′
11 = 0 f1 (V11(0),W11(0)) = 0

c′ = 0
2π

k
= Φ11

(4.48)

ODEs: 4
BCs: 45
Cont. par.: 1
Wave-form:

Stick-slip waves

V ′
0 = −Φ0

Ω

c
V0(0) = V11(1)

V ′
11 = Φ11W11 V0(1) = V11(0)

W ′
11 = Φ11f1(V11,W11) V11(1) =

α

h

(

gδ + d
Ω

c

)

Φ′
0 = 0 W11(0) = −Ω

c

Φ′
11 = 0 W11(1) = −Ω

c

c′ = 0
2π

k
= Φ0 + Φ11

(4.49)

ODEs: 6
BCs: 6
Cont. par.: 1
Wave-form:

continued on next page
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Overshooting Stick-slip wave

V ′
0 = −Φ0

Ω

c
V0(0) = V11(1)

V ′
11 = Φ11W11 V0(1) = V2(0)

W ′
11 = Φ11f1(V11,W11) V11(1) =

α

h

(

gδ + d
Ω

c

)

V ′
2 = Φ2W2 W11(0) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) W11(1) = −Ω

c

Φ′
0 = 0 V2(0) = V0(1)

Φ′
11 = 0 W2(0) = −Ω

c
Φ2 = 0 W2(1) = W11(0)

c′ = 0
2π

k
= Φ0 + Φ11 + Φ2

(4.50)

ODEs: 9
BCs: 9
Cont. par.: 1
Wave-form:

Crossing slip wave
Equivalent to (4.29) (4.51)

ODEs: 7
BCs: 7
Cont. par.: 1
Wave-form:

continued on next page
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4 Non-smooth bifurcations of travelling waves

Crossing slip-separation wave (only for d > 0)

V ′
11 = Φ11W11 V11(0) = V2(1)

W ′
11 = Φ11

1

c2 − af1(V11,W11) W11(0) = −Ω

c

V ′
12 = Φ11W12 W11(1) =

gδ

d

W ′
12 = Φ11

1

c2 − af1(V12,W12) V2(0) = V12(1)

V ′
2 = Φ2W2 W2(0) = −Ω

c

W ′
2 = Φ2

1

c2 − af2(V2,W2) W2(1) = −Ω

c

U ′
3 = Φ3Y3 U3(0) = δ

Y ′
3 = Φ3

1

c2 − b(dW3 − gU3) Y3(1) = 0

V ′
3 = Φ3W3 V3(0) = V11(1)

W ′
3 = Φ3

1

c2 − a(−dY3 − hV3) W3(1) =
gδ

d

Φ′
11 = 0 U3(1) = δ

Φ′
12 = 0 V12(0) = V3(1)

Φ′
2 = 0 W12(0) = W3(1)

Φ′
3 = 0 W12(1) = −Ω

c

c′ = 0
2π

k
= Φ11 + Φ12 + Φ2 + Φ3

(4.52)

ODEs: 15
BCs: 15
Cont. par.: 1
Wave-form:

Grazing bifurcation of a pure slip wave

BVP (4.48) augmented by the boundary condition

W11(1) = −Ω

c

(4.53)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: GR

Wave-form:

Switching bifurcation of a stick-slip wave

BVP (4.49) augmented by the boundary condition

V11(0) = −α
h

(

gδ + d
Ω

c

)

(4.54)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: SW

Wave-form:

continued on next page
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Crossing bifurcation of an overshooting stick-slip wave

BVP (4.50) augmented by the boundary condition

V2(0) =
α

h

(

gδ + d
Ω

c

)

(4.55)

ODEs: 6
BCs: 7
Cont. par.: 2
Label: CR

Wave-form:

Separating bifurcation of a crossing slip wave (only for d > 0)

Equivalent to (4.38)

ODEs: 12
BCs: 13
Cont. par.: 1
Label: P0

Wave-form:

4.6 Numerical Results

4.6.1 Backward waves (c < 0)

In a first approach we choose the static coefficient of friction α and the rotation velocity
Ω as continuation parameters and present a stratification of the parameter space (α,Ω, c)
in Figure 4.10 for waves with wave-number k = 1 and c < 0. Throughout the depicted
plots we use the black color for bifurcations of non-separated solutions and accordingly
the blue color for separated solutions. Note that Figure 4.10 is a projection of the
parameter space into the (α,Ω)-plane, i. e. all true intersections of solution paths are
explicitly indicated by dots. We find the loci of switching and crossing bifurcations of
non-separated stick-slip cycles, indicated by SW and CR, respectively and plotted in
black color. The remaining bifurcations occur for separation waves which appear by
separating bifurcations shown in red labeled P0. There are two branches of switching
bifurcations of separated stick-slip cycles, labeled SW in blue color: one appears for
small values of α and Ω > 6 · 10−2 (Figures 4.26-4.27), another near α ≈ 1.5 and
Ω ≈ 10−2 (Figure 4.16 and 4.18). A curve of crossing bifurcations of overshooting
stick-slip-separation cycles (blue-colored label CR) connects to the curve of crossing
bifurcations of non-separated cycles. Furthermore two curves of fly-over bifurcations are
found indicating single (FO1) and double (FO2) crossings of Σ1 via SSEP as described in
Section 4.5.3. Moreover we observe three bifurcation points of codimension 2 located at
B1, B2 and B3. At B1 a crossing and a separating event appear simultaneously and at B2

switching and separating occur together. At B3 the switching bifurcation of a separated
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4 Non-smooth bifurcations of travelling waves

stick-slip cycle coincides with a fly-over bifurcation, which means that the separated
part of the wave ends up in the tangent point T2. In the following all possible sequences
of bifurcations are explained by considering three typical examples.

Example 1. Bifurcations for constant α

Figures 4.11-4.15 illustrate the sequence of bifurcations for given α = 0.42. Figure 4.11
shows the corresponding solution path in the (Ω, c)-domain. Interestingly, there are two
solution branches, yielding two different rotating waves with wave speeds near c ≈ −1
and c ≈ −2.4

Consider first the “fast” wave. It starts as a stick-slip wave if the rotation velocity
Ω is increased from zero (Figure 4.12). It suffers a switching bifurcation, starts over-
shooting and afterwards exhibits a separating segment beyond the red bifurcation curve
labeled P0. Immediately, a crossing bifurcation of the overshooting stick-slip-separation
circle follows at CR. In the interval5 0.053 < Ω < 0.122 we hence observe crossing slip-
separation cycles lacking a stick-regime. A stick-regime appears again after a second
crossing bifurcation (CR) at Ω ∼= 0.122 (Figure 4.13) and grows until a second switching
bifurcation at Ω ∼= 2.871 terminates the overshooting motion (cf. Figure 4.10). Physi-
cally, the separated gap, however, has become too large to be meaningful.

The “slow” wave coexisting with the previously described one departs at Ω = 0 with
c ∼= −0.9732. It likewise emanates as a stick-slip wave which starts separating instead
of switching. When the solution branch hits the bifurcation curve FO1 (see enlargement
A in Figure 4.11) the separating segment ends up at the discontinuity and a variation
of Ω leads to separated switching solutions, i. e. the separating segment terminates
in the overshooting domain (Figure 4.14). A wave of this kind is also shown in Figure
4.24 where the radial displacements are plotted around the circumference of the shaft
in order to show the different contact zones. We observe a large sticking region and a
quite small circulating zone of slip, separation and overshooting.

A second fly-over happens at FO2 after which the separated trajectory crosses Σ1

a second time and reenters the domain of positive slip (Figure 4.15). Although it is
still uncertain, whether these solution will occur physically, the corresponding radial
displacements describing the separated gap seem small enough to be feasible (Figure
4.21). Considering the S-shaped continuation path of these waves we perceive the coex-
istence of four waves in an interval of Ω, three of which are “slow” and one of which is
“fast”. The continuation had to be terminated as a second separation area would build
up at P02 because the simple numerical method described in Section 4.5.2 becomes too
cumbersome. It is conjectured that the formation of novel separation zones and fly-
overs continues and that consequently this second branch of solutions exists for all pairs
(α,Ω). However, this issue has to remain an open question for the time being. A single
solution shortly after the point PO2 in Figure 4.11 is still presented in Figure 4.25. It
was obtained by direct integration using the algorithm in Leine [2000]. The boundary

4Selecting steel as the material of the bush the physical wave speed is about 5000× c m/s!
5For steel and an inner radius of Ri = 0.1 m the number of rotations per second may be approximated

by 8000× Ω!
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conditions were fulfilled by trial and error. However, this issue has to remain an open
question for the time being.

Example 2. Bifurcations for intermediate Ω

We choose next a fixed value of Ω = 1.19 · 10−2 (Figure 4.10). Increasing α from zero
we start with a crossing slip wave which obtains a stick zone after the crossing bifurca-
tion at CR in Figure 4.10. The resulting overshooting stick-slip wave suffers a switching
bifurcation at SW which annihilates the overshooting segment. For a relatively large
interval of α we observe stick-slip waves. Near α ≈ 1.5 the bifurcations become more
complicated again and Figure 4.16 shows the corresponding detailed bifurcation diagram
in the (α, c)-plane. The stick slip cycle starts separating at P0 (Figure 4.17). However,
considering Figure 4.16 the separation effect acts as a non-smooth fold bifurcation, where
a stick-slip wave merges with a stick-slip separation wave (Figure 4.18). The separated
wave starts overshooting beyond SW (Figure 4.19), the overshooting amplitude, how-
ever, being very small (detail in Figure 4.19). The period on the circumference, however,
is quite considerable as it is seen in Figure 4.23.

Again, due to the turning points of the continuation path, we observe an interval of α
where multiple waveforms coexist. After SW the separating segment grows large enough
to generate two fly-over bifurcations, successively (FO1 and FO2 in Figures 4.19-4.20).
In this case however, the displacements during separation are too large to be practically
meaningful (see Figure 4.22).

Example 3. Bifurcations for large Ω

Choosing Ω = 1 we obtain the bifurcation diagram shown in Figure 4.26 for increasing
α. At α = 0 (i. e. no friction) we obtain a pure slip wave with non-zero amplitude
(Figure 4.27). For α > 0 immediately a separation zone is established and the slip-
separation cycle grows until it touches the discontinuity Σ1 at GR. The continuation
path of the slip-separation solution has a limit point which can itself be continued in
the parameter space yielding the curve labeled LP in Figures 4.10 and 4.26. At the
grazing bifurcation GR a slip-separation wave merges with a stick-slip-separation wave.
The latter starts overshooting at SW and exhibits a fly-over at α = 1.65 (Figure 4.27).
Again, the displacements during separation grow too large quite rapidly.

4.6.2 Forward waves (c > 0)

Hopf-bifurcations for small ξ

As already announced in Section 4.5.4 we start with a continuation of Hopf bifurcations
of the equilibrium given by the analytic relation (4.20) varying the radial ratio ξ and
the rotation velocity Ω. We choose again a representative friction law where α = 0.1,
β = 0.2 and γ = 0.0615. The diameter mismatch and the Poisson ratio are kept
fixed (δ = 0.005, ν = 0.3) and we more or less arbitrarily selected mode-4 waves for a
closer investigation. The static friction coefficient was chosen sufficiently small that the
computed bifurcations occur at reasonably low rotation velocities. In Figure 4.28 the
obtained continuation path is shown in the parameter plane as the curve labeled Ho.
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4 Non-smooth bifurcations of travelling waves

As expected, Hopf bifurcations occur for small ratios ξ i. e. for small rings around the
shaft. Figure 4.29 provides a closer look to the Hopf bifurcation for a fixed ξ = 1.22
(d < 0). The equilibrium is stable6 for low rotation velocities. At the critical value
a stable supercritical cycle branches off which exists only within a very small interval
of rotation velocities. The bifurcating periodic orbit corresponds to a smooth mode-4
pure-slip wave. At a grazing bifurcation the stable smooth cycle merges with an unstable
stick-slip cycle that has developed in parallel. Beyond this grazing bifurcations no limit
cycles have been found so far. The continuation path of the grazing bifurcation using
b.v.p. (4.53) is inserted in Figure 4.28 as a bold curve labeled GR. The aforementioned
(unstable) stick slip cycle may suffer a sequence of switching, crossing and separating
bifurcations that will be explained in the following.

Non-smooth bifurcations of mode-4 waves

In addition to the grazing bifurcation Figure 4.28 contains the continuation paths of
switching (SW), crossing (CR) and separating (P0) bifurcations obtained from b.v.p.’s
(4.54), (4.55) and (4.38). Below the switching line SW stick slip cycles exist that vanish
in the grazing bifurcation. Figure 4.30 shows the evolution of stick-slip waves in the
phase plane for constant Ω = 0.17 increasing the ratio ξ. The amplitude of the cycle
increases with the diameter of the bush while the wave speed decreases.

Figure 4.31 shows overshooting stick-slip waves in the phase plane that build up after
a switching bifurcation (SW) of a stick-slip wave. In the example ξ = 1.122 has been
chosen and Ω has been increased quasi-statically starting from the cycle labeled ξ = 1.12
in Figure 4.30. It is remarked that increasing the shaft velocity for fixed ξ recovers prac-
tically the same bifurcation sequence as in the simple friction oscillator for rising band
speeds. For a critical rotation velocity (Ω = 1.78) the overshooting part ends up in the
visible tangent point, which produces crossing slip waves if Ω is increased further (see
Figure 4.32). The phase curves in Figure 4.32 are obtained for ξ = 1.14, α = 0.1. A
larger value of α = 1 has been chosen in Figures 4.30-4.31 in order to ensure a better
visibility of sticking and overshooting domains. The wave speed of the crossing cycles
settles at the almost constant value c = 2.388. For larger shaft velocities the graz-
ing, switching and crossing bifurcations virtually coincide such that a crossing slip wave
emerges almost immediately after the grazing bifurcation.

For huge rotation velocities a separation zone builds up after a separating bifurcation.
Figure 4.33 shows some solutions in the vicinity of the separating bifurcation projected
into the (U, V,W )-phase space. The separated segment grows very fast, the wave speed
remains practically constant. Figure 4.34 finally demonstrates the propagation of an
overshooting slip-separation wave from Figure 4.33 (those, with the largest radial dis-
placements) on the shaft-bush interface. While the radial displacements had to be scaled
by a factor 8000 for better visibility the periods of the slip, separation and overshooting
segments agree with the values computed numerically. Separated solutions appear only
if d > 0. For d < 0 all periodic solutions terminate at a finite rotation velocity in a

6Note again, that ‘stability’ here means stability with respect to the phase φ. In time t the stability
properties are reversed but still are confined to the reduced system (4.18)!

7Note that due to the scaling (4.2)
6

rotation velocities beyond Ω = 1 are hardly feasible.
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grazing bifurcation.

The stratification of the parameter plane presented in Figure 4.28 fortifies the assertion
that the behavior of forward waves with d > 0 is similar to backward waves with d < 0.
Take for example α = 0.1 in Figure 4.10 and follow the bifurcations for increasing Ω.
The value of d = −0.88 used there was obtained for ξ = 2 and ν = 0.3 Accordingly,
d = +0.88 yields ξ = 1.11. The sequences of bifurcations are equal in Figure 4.28 for
ξ = 1.11 and in Figure 4.10 for α = 0.1 albeit shifted towards larger shaft velocities for
forward waves.

4.6.3 A note on stability investigations

Certainly, the first question that one is tempted to ask observing the numerical results
in Section 4.6 is, whether the obtained solutions are mechanically stable or not. For the
time being an answer that is satisfactory can unfortunately not be given. First steps
towards stability considerations for a travelling stick-slip wave (excluding separation!)
using just Coulomb’s law of friction (i. e. β = γ = 0 here) were published by Steindl
[2006], Teufel et al. [2006a] and Nguyen et al. [2007] and shall in the following
be briefly explained.

In order to investigate the stability of a travelling sick-slip wave solution, say VTW (φ),
two approaches have been proposed. The first is to smooth the sign function by tanh(vrel/ǫ)
where ǫ is a sufficiently small parameter, next to replace the spacial derivatives in (4.13)
by finite differences and finally to formulate a large boundary value problem for the
components Vi(t), each describing one segment of the travelling wave, connecting a grid
point to the next one. The eigenvalues of a permutation map that takes the solution at
one grid point to the previous one are used as a first estimate for the eigenvalues of the
travelling wave. However, these eigenvalues are not very accurate and numerical difficul-
ties arise because of the stiffness caused by the smoothed sign function. Next, the paths
of critical eigenvalues λ found by the previous idea have been continued by formulating
a boundary value problem for the eigenfunctions ψ(θ) using an ansatz V = VTW + VL
where VL = exp (λt)ψ(θ) in (4.13). Recent advances suggest that e. g. a stick-slip wave
of mode 4 looses stability by a Hopf bifurcation which creates a motion on a non-smooth
torus. Parameter regions which at first glance produce an irregular motion are found as
well (Nguyen et al. [2007]).

Let us summarize that the stability calculations start to be successful for one type of
stick-slip wave with considerable numerical effort. In view of the more complicated solu-
tions presented here incorporating a more sophisticated friction law the development of a
numerical procedure that reliably allows for the prediction of the stability of a travelling
wave is still an open task. Moreover, it has to be mentioned that even the calculations
of A. Steindl outlined above are based upon the one-mode Galerkin reduction (4.13)
introduced in Section 4.4.
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4.7 Conclusions and Outlook

Originating from Kuznetsov’s classification of non-smooth 1-parameter bifurcations
in planar Filippov systems Chapters 3 and 4 were concerned with the application of
Kuznetsov’s findings to mechanical systems. Due to the mathematical properties of
oscillation equations, where a discontinuity is introduced by friction effects, it could be
shown that bifurcations of non-smooth cycles constitute the main mechanism of non-
smooth bifurcations in friction oscillators. The simple friction oscillator consisting of
an elastically mounted mass on a driving belt served as a descriptive example which
exhibits all major types of non-smooth bifurcations that are expected in mechanical 1-
degree-of-freedom-systems once it is equipped with a friction law that has decreasing and
increasing branches with respect to the relative velocity. Moreover, a concise bifurcation
analysis of the simple friction oscillator is still a topic which is treated rather scarcely.

The simple friction oscillator provided a basis for the investigation of an infinite di-
mensional system, namely a rigid shaft, rotating inside an elastic bush where a diameter
mismatch causes a contact pressure. This system – besides friction – includes a second
discontinuity due to the possibility of local separation between the shaft and the bush.
It has been studied in a 1-mode Galerkin approximation of travelling waves rotating
with constant wave speed on the shaft-bush interface. The concept of non-smooth bi-
furcations allowed an unconventional insight into the formation of different wave forms
with varying contact regimes, such as sticking, slipping and separation. We have shown
that the existence of pure slip, stick-slip, slip-separation and stick-slip-separation waves,
both for negative and positive wave speeds, depends on main system parameters such
as the rotation velocity of the shaft, the static coefficient of friction or the size of the
bush. The appearance of different types of contact between the shaft and the bush
upon the variation of a system parameter constitutes a vivid mechanical interpretation
of the concept of non-smooth bifurcations. Although the numerical computations al-
ready showed a rich diversity of different solution types, the approximated model was
still simple enough to permit theoretical considerations and fortifications of the results.

However, we have not in the least calculated all major modes of travelling waves that
may appear. Nevertheless, we take the liberty to conjecture that the basic mechanisms
of non-smooth bifurcations of travelling waves have been found so far if we restrict our-
selves to the applied approximation. The computation of further bifurcation diagrams
for higher modes remains a matter of time and diligence but the solutions are expected
to be qualitatively similar to those presented here. It still seems promising to sleuth the
solution branch of slow backward mode-1 waves that produced a secondary separation
segment in Figures 4.11 and 4.25. To this end, a more refined numerical routine would
be necessary since the rather crude method to add new equations for each new segment
sooner or later becomes too expensive.

As already mentioned in Section 4.6.3 the major drawback of the preceding calcula-
tions is the lack of a reliable method to check the stability of the computed solutions with
respect to the original p.d.e. It is felt that further research on this shaft-bush problem
has to focus on the question of stability. In connection with stability calculations one
would expect to get hold of further bifurcations that have not appeared in the present

111



4 Non-smooth bifurcations of travelling waves

analysis, such as Hopf or torus bifurcations of non-smooth waves. First steps have been
made in this direction by A. Steindl, however, the numerical procedure is still too
cumbersome to cope with a bigger load of qualitatively different solutions.

Another approach would be to refine the Galerkin approximation and include higher
modes, both for the calculation of new solutions and the analysis of their stability.
Clearly this would be accompanied by a loss of simplicity of the model but probably this
would be the only way to obtain more trustworthy results.

In view of the long-term objective to explain squealing noises let us finally recall
the rich bifurcating behavior for backward mode-1 waves in Section 4.6.1 occurring at
small rotation velocities, in particular again the branch of solutions near c = −1, which
means that the waves propagate approximately with the speed of sound in the material.
Being imaginative we could think of these solutions having something to do with the
occurrence of squealing noises, since it is known from common sense that these noises
appear particularly at low velocities, e. g. if we listen to a breaking train in the railway
station. However, lots of trains will still have to arrive squealing and squeaking in railway
stations before we will definitely know why they squeal and squeak...
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