
D I S S E R T A T I O N

High Performance Computing in Finance—On the

Parallel Implementation of Pricing and Optimization

Models

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

technischen Wissenschaften unter der Leitung von

o.Univ.-Prof. Dipl.-Ing. Mag. Dr. Gerti Kappel

E188

Institut für Softwaretechnik und Interaktive Systeme

eingereicht an der Technischen Universität Wien

Fakultät für Informatik

von

Dipl.-Ing. Hans Moritsch

Smolagasse 4/2/8, A-1220 Wien

Matr.Nr. 77 25 716

Wien, am 23. Mai 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Der Einsatz von Hochleistungsrechnern in der Finanzwirtschaft ist sinnvoll bei der Lösung
von Anwendungsproblemen, die auf Szenarien und deren Eintrittswahrscheinlichkeiten definiert
sind. Die Entwicklung von Aktienkursen und Zinsen kann auf diese Weise modelliert werden.
Gehen diese Modelle von einem bekannten Zustand aus und erstrecken sie sich über mehrere
Zeitperioden, so nehmen sie die Form von Szenario-Bäumen an. Im Spezialfall “rekombinier-
barer” Bäume entstehen Gitterstrukturen. In dieser Arbeit werden zwei Problemklassen be-
handelt, nämlich die Berechnung von Preisen für Finanzinstrumente, und die Optimierung
von Anlageportefeuilles im Hinblick auf eine Zielfunktion mit Nebenbedingungen. Dynamische
Optimierungsverfahren berücksichtigen mehrere Planungsperioden. Stochastische dynamische
Verfahren beziehen Wahrscheinlichkeiten mit ein und führen daher zu (exponentiell wachsenden)
Baumstrukturen, die sehr groß werden können. Beispielsweise besitzt ein Baummodell dreier
Anlagen über zehn Perioden, wobei die Preise durch Ausmaß und Wahrscheinlichkeit des Fall-
ens bzw. Steigens innerhalb eines Jahres beschrieben werden, (23)10 = 1 073 741 824 Endknoten.
Die Lösung solcher Probleme auf einem Arbeitsplatzrechner kann Stunden oder Tage dauern,
daher ist es wünschenswert, sie mittels Hochleistungsrechnern zu beschleunigen.

Die Parallelverarbeitung stellt den wichtigsten Ansatz zur Leistungssteigerung in dieser Ar-
beit dar. Es wurden Verfahren zur Preisberechnung pfadabhängiger Zinsderivate auf der Basis
sowohl von Monte Carlo Simulationen als auch von Rückwärtsberechnungen parallel implemen-
tiert. Im Optimierungsteil der Arbeit wurde das Dekompositionsverfahren von Benders zur
mehrstufigen stochastischen Optimierung eingesetzt und sowohl in einer synchronen als auch
in einer asynchronen Variante parallelisiert. Mit diesen parallelen Implementierungen lassen
sich angemessene bis sehr gute Verbesserungen der Ausführungszeiten im Vergleich zu den
sequentiellen Programmversionen erzielen. Darüber hinaus dienen sie als Fallstudien in der
Entwicklung von Softwarewerkzeugen für Hochleistungsrechner, die im Rahmen des Spezial-
forschungsbereichs F011 Aurora (“Advanced Models, Applications and Software Systems for
High Performance Computing”) des FWF durchgeführt wurden.

Die datenparallele Programmiersprache HPF+, mit Erweiterungen für SMP-Cluster, wurde
erfolgreich bei der Implementierung von Preisberechnungsverfahren eingesetzt. Eine Nota-
tion für Pfade, die es erlaubt, parallele Algorithmen auf Gittern auf hoher Abstraktionsebene
auszudrücken, wurde als Erweiterung von Fortran 95 spezifiziert. Das parallele Programmier-
modell eines verteilten aktiven Baumes wurde entworfen und auf der Basis von Java Threads und
RMI implementiert. Parallele Implementierungen des Benders Verfahrens in Java zeigen, dass
diese Sprache zur Entwicklung von Hochleistungsanwendungen geeignet ist. Sowohl OpusJava
als auch JavaSymphony und das Modell eines verteilten aktiven Baums haben sich als nützliche
Werkzeuge bei der Implementierung paralleler baumstrukturierter Algorithmen erwiesen.

Zusätzlich zur Parallelisierung existierender sequentieller Verfahren, der Weiterentwicklung
bekannter Parallelisierungsansätze und der Verwendung spezieller Programmiersprachen und
Programmiermodelle wurden Leistungssteigerungen auch durch algorithmische Verbesserungen
erzielt. Eine Verallgemeinerung der klassischen Rückwärtsberechnungsmethode ermöglicht die
schnellere Berechnung, und zwar in linearer statt exponentieller Zeit, von Preisen bestimmter
pfadabhängiger Produkte mit “begrenzter” Pfadabhängigkeit. Dadurch wird auch gezeigt, dass
besonders effiziente Ansätze zur Leistungssteigerung die Ebene der Algorithmen mit jener der
parallelen Implementierung verbinden.

i

Abstract

High Performance Computing is useful in the field of finance for solving problems which are
defined on models of financial variables in the form of sequences of scenarios along with their
realization probabilities. Both the evolution of stock prices and interest rates is frequently
described in this manner. Starting from a known state, and covering a future time horizon of
multiple periods, these models take the form of scenario trees. As a special case, the structure
collapses into a lattice, if the tree is “recombining”. This work deals with the two problem classes
of determining prices of financial instruments, and of determining optimal portfolios of assets,
with respect to some objective function and constraints. Dynamic optimization techniques
allow for multiple planning periods, whereas stochastic dynamic optimization problems take
into account also probabilities and exhibit (exponentially growing) tree structures, which can
become very large. As an example, a model of ten years of three assets, each of which is
described by the extents and probabilities of rising or falling of their respective prices within
a year, results in a scenario tree with more than one billion (23)10 = 1 073 741 824 terminal
nodes. Computation times for solving these problems can extend to hours and days, hence high
performance computing techniques of achieving speed up are desirable.

The major approach for performance improvement in this work is parallel computing. It in-
cludes the parallel implementation of Monte Carlo simulation techniques as well as of backward
induction methods for pricing path dependent interest rate derivatives, in particular constant
maturity floaters with embedded options. In the optimization part, the nested Benders decom-
position method of multistage stochastic optimization has been parallelized in a synchronous as
well as in an asynchronous version. The parallel implementations obtain speedups ranging from
reasonable to excellent and demonstrate the potential of high performance computing for finan-
cial applications. In addition, they served as case studies in the development of software tools
for high performance computing within the framework of the Special Research Program No.
F011 Aurora “Advanced Models, Applications and Software Systems for High Performance
Computing” of the Austrian Science Fund (FWF).

The data parallel programming language HPF+, with extensions for clusters of SMPs, has
been successfully employed in the implementation of pricing algorithms. A path notation has
been specified as an extension to Fortran 95, allowing for the high level formulation of parallel
algorithms operating on lattice structures. The parallel programming model of a distributed
active tree has been designed and implemented on top of Java’s threads and RMI. Parallel im-
plementations of the nested Benders decomposition algorithm in Java demonstrate that this is
a suitable language for high performance computing. The OpusJava component framework, as
well as the JavaSymphony class library, and the distributed active tree model proved their use-
fulness as programming support environments in the implementation of parallel tree structured
algorithms.

In addition to the parallelization of sequential existing algorithms, the improvement of
known parallelization approaches, and the use of specialized parallel programming languages
and programming models, an increase in performance has been achieved by algorithmic devel-
opments. The generalization of the classical backward induction method allows for the faster
calculation, i.e., in linear instead of exponential time, of prices of a class of instruments exhibit-
ing “limited” path dependence, demonstrating that highly effective approaches of performance
improvement combine the levels of algorithms and parallel implementation.

ii

Acknowledgments

I wish to thank my supervisor Professor Gerti Kappel for her indispensable support in accom-
plishing this thesis and for her continuous encouragement to integrate the diverse aspects of
high performance computing in finance arisen from the work within the Aurora project.

I am grateful to my academic teacher and project leader of the Aurora subproject “High
Performance Computing in Finance” Professor Georg Ch. Pflug for enabling the access to the
exciting field of stochastic optimization, for lots of detailed discussions on nested decomposi-
tion methods, and for helping to optimize the “generalized” backward induction algorithm. For
suggesting the term, I would like to thank Professor Engelbert J. Dockner, as well as for stim-
ulating discussions on numerical pricing algorithms and for providing such a fine environment
for becoming acquainted with finance theory. I am also grateful to my co-supervisor Professor
A Min Tjoa for supporting my thesis at the Institute of Software Technology and Interactive
Systems of the Vienna University of Technology.

Also, I am thankful to the speaker of the Aurora project Professor Hans P. Zima for pro-
viding the first environment to get familiar with parallel programming and for introducing me
into the science of automatic parallelization. I wish to thank Professor Barbara M. Chapman
for her support while gaining experience with parallel programming environments and their ap-
plication, and for an initial outline of this thesis. I am grateful to Professor Stavros A. Zenios for
inspiring statements on high performance computing in finance, and hints related to sampling
techniques. I appreciate the opportunity to work in excellent research groups at the University
of Vienna, at the former Institute for Software Technology and Parallel Systems, the European
Centre for Parallel Computing at Vienna, the Department of Finance, and the Department of
Statistics and Decision Support Systems.

Thanks to all the members of these groups who contributed to this work. I would like to
thank Professor Andrea Gaunersdorfer for helping me to get used to the field of finance as well
as Dr. Helmut Elsinger for giving me countless ad-hoc crash courses in financial mathematics.
I am grateful to Professor Siegfried Benkner, Professor Thomas Fahringer, and Dr. Erwin Laure
for numerous fruitful and motivating discussions on the parallelization part. I am thankful to
all the participants of the Aurora project for the opportunity to work together, in particular to
Professor Peter Brezany, Dr. Ian Glendinning, Dr. Ronald Hochreiter, Dr. Alexandru Jugravu,
Dr. Maria Lucka, Professor Eduard Mehofer, Dr. Bernhard Scholz, Dr. Viera Sipkova, and
Dr. Artur Świȩtanowski. Thank you to Dr. Mariusz Siomak for help with the optimization
model specification. This work was supported by the Austrian Science Fund (FWF) as part of
the Special Research Program No. F011 “Aurora”.

I appreciate all the encouragement of Professor Robert Glück, Professor Klaus Gugler, Pro-
fessor Christian Keber, Mag. Ulrike Keber-Höbaus, Professor Michaela Schaffhauser-Linzatti,
Dr. Matthias Schuster, and Professor Katharina J. Srnka, who is particularly thanked for her
help with making the interdisciplinary presentation comprehensible. Thanks to all mentioned
who contributed to the proof reading of this thesis.

I thank my parents, Ing. Peter and Maria Moritsch for providing the opportunity to take
my studies in Vienna.

iii

Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 A Tour on Finance . 1

1.1.2 A Tour on High Performance Computing 6

1.1.3 Use of High Performance Computing in Finance 8

1.2 Related Work . 9

1.2.1 Pricing . 9

1.2.2 Optimization . 10

1.2.3 Programming Support . 10

1.3 Contribution . 11

1.4 Structure of the Thesis . 15

2 Programming Support Environments for Parallel Systems 16

2.1 HPF+ . 16

2.2 The Vienna Fortran Compiler . 17

2.3 HPF Extensions for Clusters of SMPs . 18

2.3.1 Abstract Nodes Arrangements and Processor Mappings 19

2.3.2 Distributed-Memory versus Shared-Memory Parallelism 20

2.3.3 Execution Model for Clusters of SMPs . 21

2.4 Fortran 95 Extensions for Path Constructs . 21

2.4.1 Data Types . 22

2.4.2 Operations . 23

iv

2.4.3 Fortran 95π Notation . 23

2.5 OpusJava . 24

2.6 JavaSymphony . 26

2.7 Distributed Active Tree . 27

2.7.1 Programming Model . 27

2.7.2 Java Implementation . 29

3 Computational Problems in Finance 35

3.1 Pricing of Interest Rate Derivatives . 36

3.1.1 Interest Rate Dependent Instruments . 37

3.1.2 Constant Maturity Floaters . 38

3.1.3 Specification of Path Dependent Instruments 39

3.1.4 The Hull and White Interest Rate Model 40

3.2 Multistage Stochastic Portfolio Optimization . 43

3.2.1 Specification of Node Problems . 44

3.2.2 Maximization of Terminal Wealth . 45

3.2.3 Index Tracking . 47

3.2.4 Problem Generation . 50

4 Solution Procedures 52

4.1 Numerical Pricing . 52

4.1.1 Monte Carlo Simulation . 52

4.1.2 Backward Induction . 54

4.1.3 Generalized Backward Induction . 55

4.2 Model Decomposition . 60

4.2.1 Two-Stage Decomposition . 60

4.2.2 Nested Benders Decomposition . 62

5 Parallel Implementation 64

5.1 Monte Carlo Simulation . 64

5.1.1 Parallelization Strategy . 66

v

5.1.2 HPF+ Version . 66

5.1.3 Experimental Results . 68

5.2 Backward Induction . 74

5.2.1 Parallelization Strategy . 76

5.2.2 HPF+ Version . 77

5.2.3 Experimental Results . 78

5.3 Generalized Backward Induction . 81

5.3.1 Parallelization Strategy . 81

5.3.2 Fortran 95π Version . 81

5.3.3 Experimental Results . 82

5.4 Nested Benders Decomposition . 85

5.4.1 Synchronous Parallelization . 85

5.4.2 Asynchronous Parallelization . 85

5.4.3 Java Distributed Active Tree Version . 90

5.4.4 OpusJava Version . 90

5.4.5 JavaSymphony Version . 96

5.4.6 Experimental Results . 96

6 Conclusion 104

6.1 Summary . 104

6.2 Open Issues . 105

vi

List of Figures

1-1 Parallel implementation of a financial management system 14

2-1 Node arrangements and processor mappings . 19

2-2 HPF+ directives for clusters of SMPs . 20

2-3 Code generated by VFC under the cluster execution model 21

2-4 Layers in the distributed active tree model . 28

2-5 Running the compute node program . 30

2-6 States of the coordination object . 32

2-7 Synchronization in the coordination object . 33

3-1 The Aurora Financial Management System. 36

3-2 Lookback cap instrument . 38

3-3 Hull and White interest rate tree . 41

3-4 Two-stage portfolio optimization problem . 44

3-5 Node problems for terminal wealth maximization 48

3-6 Document type definition of a node problem . 50

3-7 XML specification of the root node problem . 51

4-1 Sampled path and nested simulation . 55

4-2 Limited path dependence (d = 4) . 57

4-3 Induction step in generalized backward induction (d = 4) 58

4-4 Constraint matrix of the deterministic equivalent of a 31-nodes problem 61

5-1 Data representation of the interest rate lattice . 64

vii

5-2 Monte Carlo simulation on the interest rate lattice 65

5-3 Data distribution of parallel Monte Carlo simulation 67

5-4 Parallel Monte Carlo simulation . 68

5-5 Performance of bond pricing via Monte Carlo simulation—HPF+ version 72

5-6 Performance of bond pricing via Monte Carlo simulation—HPF+ version 73

5-7 Different parallelization strategies for Monte Carlo simulation 75

5-8 Data structures and distribution specification of HPF+ backward induction . . . 76

5-9 Main loop in HPF+ backward induction . 77

5-10 Computation at time step m in HPF+ backward induction 78

5-11 Performance of backward induction—HPF+ and hybrid-parallel version 79

5-12 Variable declarations of generalized backward induction code 82

5-13 Generalized backward induction (4.8) . 83

5-14 Generalized backward induction (4.9) . 84

5-15 Completion operation at the root node . 85

5-16 Flow of information during synchronous forward and backward sweeps 86

5-17 Node algorithm of asynchronous nested Benders decomposition 87

5-18 Interaction among node programs in nested Benders decomposition 88

5-19 Asynchronous execution scenario of nested Benders decomposition 89

5-20 Data fields of the distributed active tree node . 91

5-21 Iteration in the distributed active tree node . 92

5-22 The OpusJava buffer . 93

5-23 Initialisation in the OpusJava node . 94

5-24 Main loop in the OpusJava Node . 95

5-25 Mapping of tree nodes onto compute nodes at distribution level 2 97

5-26 Performance of nested Benders decomposition—distributed active tree version . . 99

5-27 Scaling of nested Benders decomposition—distributed active tree version 100

5-28 Mapping of tree nodes onto compute nodes—optimal load balancing strategy . . 101

5-29 Performance of nested Benders decomposition—OpusJava version 102

5-30 Performance of nested Benders decomposition—JavaSymphony version 103

viii

List of Tables

2-1 Abstract lattice and Fortran 95π notation . 24

2-2 Objects of the distributed active tree at a compute node 30

3-1 Terminal wealth maximization problem . 46

3-2 Constraint matrix of terminal wealth maximization problem 47

3-3 Index Tracking problem (Nc = 3) . 49

3-4 Constraint matrix of index tracking problem (Nc = 3) 50

5-1 Prices of 6 year bonds . 69

5-2 Prices of 8 year bonds . 69

5-3 Prices of 10 year bonds . 70

5-4 Prices of bonds with variable cap/floor . 70

5-5 Execution times of Monte Carlo simulation (seconds) 71

5-6 Execution times for a variable coupon bond with embedded option (seconds) . . 71

5-7 Performance of pricing an instrument with limited path dependence 82

5-8 Performance of nested Benders decomposition on Sun workstation cluster 98

ix

Chapter 1

Introduction

The thesis deals with the application of high performance computing to problems arising in

finance. This introduction lays the ground for readers coming from the both communities,

economics and computer science. The first section introduces into basic concepts of finance

and high performance computing. The second section gives a detailed account on related work.

The third section summarizes the contribution made by the author.

1.1 Motivation and Background

Applying high performance computing techniques to problems in finance requires adequate

programming support environments and represents an instructive opportunity of developing,

using and evaluating these. Both high performance computing and computational finance are

special fields for computer scientists as well as for economists. The work described lies in the

intersection of these two fields. The aim of this section is therefore to create, for readers of

both communities, an understanding of the problems tackled.

1.1.1 A Tour on Finance

The overall issue investigated in this research concerns the utilization of high performance com-

puting techniques to solve problems in finance. “Finance can be defined as the art and science

of managing money” [63]. More precisely, finance studies the allocation and use of money and

other assets and the management of these, with particular focus on the risks undertaken [153].

1

Risk Management The term financial management under uncertainty makes clear that

future events which have an effect on financial decisions and the value of investments cannot

always be predicted. Risk management distinguishes several types of financial risk, e.g., market

risk associated with the movements of interest rates, and currency risk caused by exchange

rate fluctuations. Other types of risk are shape risk, volatility risk, sector risk, credit risk, and

liquidity risk [39]. Combining different assets or asset classes within a portfolio is a classical

means to diversify and thus reduce risk [84].

Portfolio Optimization In general, a portfolio can be constructed in such a way that a

relation between return and risk specified by the investor is maintained. The composition

of the portfolio is obtained as the solution of an optimization problem, which models the

desired risk-return characteristics including exposure to specific risks via an objective function

and constraints. As an example, in the classical mean-variance portfolio optimization model

developed by Markovitz, risk—quantified by the variance of the portfolio return—is minimized

whereas the portfolio must achieve a certain minimum return within some time period [106].

The objective function is quadratic, and the optimization problem can be solved using quadratic

programming techniques. The design and definition of a useful optimization model1 requires a

portfolio manager to analyze which risks are accepted. The choice of a suitable risk measure is

a research issue on its own [126]. Optimization models are employed in particular in financial

engineering, a term referring to the process of designing new financial products to be added

to the market, with risk characteristics fitting specific investors needs and preferences [39].

Financial innovation sees a continual introduction of products tailored, in a computer-aided

design process, to the demands made by risk management [160].

Operations Research Risk management, portfolio optimization, and financial engineering

are important issues in operations research (OR), a field dealing with the interdisciplinary so-

lution of planning problems using developments in computer science and mathematics [57].

Systems are described using mathematical models, which allow for the comparison of decisions

1The terms model and problem are synonymous in this context, as the mathematical problem formulation

inherently represents a model.

2

and strategies taking into account trends and uncertainty [4]. OR provides methods to de-

scribe complex decision problems in a quantitative manner, as well as algorithms to solve these

problems on a computer, e.g., the classical Simplex algorithm by Dantzig for solving linear

programs [40].

Multistage-Optimization Portfolio optimization models are extensively used by banks and

companies offering financial services. In the Markowitz model, an investor plans portfolio deci-

sions only for a single time period, with future consequences of the current decisions not taken

into account. A more general approach includes a multi-period planning horizon allowing for

rebalancing, i.e., altering the composition of the portfolio in every time period. The uncertain

future returns of the individual assets are modeled as a set of different scenarios jointly with

their realization probabilities. The resulting financial planning model is multistage and stochas-

tic in nature, and can be solved using stochastic optimization techniques such as multistage

stochastic programming. Dynamic portfolio management problems can also be formulated as

stochastic optimal control models [25]. An alternative approach defines parameterized decision

rules and optimizes their parameters [119].

Tree Structured Problems Linking every scenario in a multi-period stochastic model to

its successors yields a tree structure. Tree structured models for problems in which decisions

are made in stages have been employed, besides their application in portfolio management

[23, 45, 78, 89], in resource acquisition [14] and natural resource management [2, 124, 143].

For the generation of scenario trees, future probability distributions of asset returns have to be

represented in a discrete way with a small number of tree nodes. Various methods exist, based

on historic data and expert knowledge, such as random sampling, matching of the moments of

a distribution, and minimizing special metrics [88, 73, 127]. A large number of scenarios allows

for more accurate models, but at the same time increases the computational effort of solving

the problem. In general, the tree size grows exponentially with the number of time periods.

Multiple decision dates and sufficient approximations of the return distributions easily result

in large scale models with millions of scenarios [65].

3

Solution Techniques As far as its solution is concerned, a stochastic problem can be for-

mulated as its so called deterministic equivalent problem, a linear program which could be

solved e.g. by means of the Simplex method [85]. However, because of the huge and extremely

sparse constraint matrix arising from a large tree structured problem, this approach is rather

inefficient. Model decomposition algorithms, e.g., Benders decomposition, provide for an al-

ternative [5, 41, 138]. The whole optimization problem is defined as a set of relatively small

node problems, each associated with a node of the scenario tree. “Linking” constraints of the

local problem define dependencies on other nodes, in particular on the predecessor and succes-

sors. The local node problems can be solved autonomously, though requiring data from other

nodes in order to satisfy the linking constraints. By repeatedly solving and updating their local

problem, all nodes contribute to the overall solution.

Asset Price Models The evolution of asset prices can be described by mathematical models

in terms of probability distributions. According to the observation of unexpected changes in

the market, asset prices are seen as variables whose values change randomly over time. Such

variables are said to follow a stochastic process [72]. Finance theory has developed—in the so

called “age of quants”— a variety of models of asset prices, e.g., the classical model by Black

and Scholes, who made the assumption that asset prices follow a geometric Brownian motion

[75]. The model can be formulated as the stochastic differential equation dS = µSdt + σSdz,

where dS represents the change of the asset price within a small interval of time dt, and µ is

a constant quantifying a locally deterministic proportional increase (the “drift”) of the price.

Random proportional deviations have the form of Gaussian noise described by a constant σ

and increments dz of a Wiener process, which are normally distributed with mean zero and

variance dt. The parameters σ and µ are determined via a calibration process such that the

model fits observed market data.

Derivatives Models of asset prices and other economic variables, such as interest rates, are in

particular needed in case of derivative products. A financial derivative is an instrument whose

value depends on other, more basic underlying variables, e.g., a bond with its coupon payments

depending on current interest rates (a “floater”), or an option. An option is a contract whereby

the holder has the right to buy (or sell) an underlying asset by a certain date for a certain

4

price [75]. The holder has to pay a price for this right which reflects expected profits through

exercising it, which in turn depend on the future evolution of the underlying asset price.

Pricing Models In general, the derivatives pricing problem can be stated as follows: what

is the price today of an instrument which will a pay cash-flow in the future, depending on the

value of the underlying ? The widely used non-arbitrage principle states that two financial

contracts that deliver identical future cash-flows must have the same price today. The relation

between the price of the derivative and the underlying is again described by mathematical

pricing models. In certain cases, analytical pricing formulas can be derived, using stochastic

calculus. For example, the Black-Scholes option pricing model leads to a (deterministic) partial

differential equation, whose solution is the famous Black-Scholes formula [19]. However, for

many complex “exotic” products, in particular if they are path dependent, i.e., their payments

depend on past values of the underlying, analytical solutions do not exist.

Numerical Pricing Techniques Numerical solution methods are applied which employ

approximations of the mathematical models, e.g., finite difference methods replace partial dif-

ferentials with finite differences [140]. Using Monte Carlo simulation, a stochastic process is

sampled by randomly drawing paths of the underlying, enough to represent the future evolu-

tion. The prices corresponding to each path are then averaged [21]. Binomial or trinomial

lattice methods discretize the distribution of the underlying and describe the future as a finite

set of states with transition probabilities. Using backward induction, the prices at all states

are determined backwards in time, i.e., from the future to the present [37]. The computational

effort of these methods is increasing with the desired accuracy of the solution. They principally

discretize time, and the number of paths to be processed for the pricing of path dependent

products grows exponentially with the number of time steps. Backward induction shows a

much lesser polynomial effort but cannot be employed for path dependent products. The prices

calculated by numerical methods already represent meaningful information, e.g., in the design

and marketing of new products, but in particular they are needed for the definition of scenarios

in a stochastic optimization model.

5

Computational Finance Advances in computing and algorithms have established a new

interdisciplinary area combining finance and computer science. Computational finance aims

at gaining better understanding of financial markets strongly relying on the use of computer

programs to simulate market phenomena. Among other things, it studies artificial markets

based on game theory and employs neural networks and genetic algorithms in forecasting mar-

kets [149]. The effective exploitation of new computational methods helps financial institutions

to improve their decisions and reduce risk via portfolio optimization. The authors in [95] state

that it is desirable to support decision makers with computerized decision support systems that

are on the one hand able to cope well with the huge amounts of data and on the other hand

model the uncertainty aspects. Realistic models, taking into account a lot of risk factors, result

in a computational effort which requires high performance computing.

1.1.2 A Tour on High Performance Computing

High Performance Computing Systems Whereas high performance computing (HPC)

cannot be defined precisely in terms of quantitative parameters, the use of high performance

computer hardware is essential [67]. A high performance computing system provides more com-

puting power than is “generally available” [35], in particular it goes beyond the performance of a

desktop machine [67, 35]. Due to advances in hardware technology, the threshold for “high per-

formance” is steadily increasing. Today a performance in the range of TeraFLOPS—1012 float-

ing point operations per second—can be achieved. High performance computing systems are

either computer clusters or highly parallel supercomputers. The term supercomputer refers

to computing systems—including hardware, operating system and application software—that

provide “close to the best currently achievable” [67] sustained performance on demanding com-

putational problems, or simply to “the most powerful machines that exist at any given point

in time” [163]. High performance computing systems have been used in various application

areas, such as climate modeling, weather forecasting, computational fluid dynamics, molecular

dynamics, image processing, and computer vision.

Parallelism Besides higher clock speeds and shorter memory access times provided by tech-

nology, parallelism is the dominating concept for performance improvement. In a parallel

6

multiprocessing system, many processors are simultaneously executing a program, hence the

overall execution time may be reduced by orders of magnitudes. Program development on these

systems is clearly more complex than on sequential machines, because it requires to take care

of the additional dimension of parallelism. Apart from trivial cases, the individual processors

need to be synchronized and have to exchange data in order to efficiently cooperate.

Parallel Architectures In a so called shared-memory multiprocessor, the processors are

“tightly” coupled via a single memory, thus sharing all the data and directly providing it to

other processors. Symmetric multiprocessor (SMP) systems, workstations or PC’s containing

a relatively small (up to 32) number of processors with uniform access to a shared memory,

follow the trend. In a so called distributed-memory system, each processor has its own exclusive

memory. Data needs to be explicitly transfered to other processors via message passing using

special communication operations, resulting in an ever increased programming effort. However

for technical reasons, much more processors can be coupled in this “loosely” way (up to n 103).

Single processors as well as multiprocessor systems, e.g., SMPs, can be part of a distributed-

memory machine. Both cases are subsumed under the more general term “compute node”.

Combining a number of workstations or PC’s of the same or different type, permanently or

temporarily, in a network or cluster allows for building a low budget distributed-memory sys-

tem. The popular Beowulf cluster consists of compute nodes and an interconnection network

which are mass produced, relatively inexpensive standard components, and runs open source

software [145]. Shared-memory parallelism within SMP compute nodes can be combined with

distributed-memory parallelism in a cluster of SMPs, a hybrid architecture becoming increas-

ingly important.

Parallel Programming Support In any case of parallel architecture, the task of program-

ming needs some kind of high level support, allowing the programmer to focus on the algorithm

to be implemented rather than on low level details of synchronization and communication. The

availability of this support, in the form of special programming languages, automatic paral-

lelization [60, 61], program libraries, and programming tools, is seen even as crucial for the

broad development of software for high performance computing systems. A lot of research has

been devoted to this issue during the last decades.

7

Parallel Programming Models An interface separating higher and lower level issues in a

parallel program is termed a model of parallel computation or a parallel programming model, re-

spectively [142]. It represents a means to express parallel algorithms and simplifies the program

structure through providing operations to the programmer at a higher level than the underlying

(hardware) architecture.2 For example, the classical Single-Program-Multiple-Data (SPMD)

model of computation restricts the processors in a parallel system to execute the very same

program. Every processor is assigned a portion of the whole data, and, according to the so

called owner-computes rule, it performs—in parallel with the rest—just the computations on

its “own” data. In this way, the data as well as the computational work is divided and “dis-

tributed” amongst all processors. This kind of parallel computation is also referred to as data

parallel. A suitable parallel programming model, in the form of a programming language or pro-

gram library, significantly reduces the complexity of program development on parallel systems.

Among others, the parallel programming languages Vienna Fortran [162] and High Performance

Fortran [69] follow the SPMD model.

1.1.3 Use of High Performance Computing in Finance

The study of large scale financial planning problems requires a combined approach of modeling

techniques, algorithms and high performance computing [65, 160]. Significant shorter com-

putation times can make previously intractable problems really tractable. In general, faster

responses of a system are seen as a benefit (and nothing less than a driving force for technical

progress). They can in particular enable new qualities of using software tools, if the effect of

changes to model parameters can be displayed to the user sufficiently fast to allow for inter-

actively exploring parameter spaces, e.g., in the computer-aided design of financial products

and in research. Finally, as an economic aspect in the area of managing money, both the early

availability of data and its reliability, by reducing modelling errors, represent a profit potential

of investment strategies and justify the hypothesis of a performance improvement of financial

operations through high performance computing.

2For this reason, a parallel programming model can also be viewed as an abstract machine.

8

1.2 Related Work

The presentation of related work is divided into three parts, each of which corresponds to an

area of contribution (see Figure 1-1).

1.2.1 Pricing

The book [75] describes models of asset prices and interest rates as well as the numerical pricing

of derivative instruments. Interest rate models and their application to the pricing of interest

rate dependent products are further described in [18, 36, 76, 161]. Monte Carlo methods

for pricing financial instruments are presented in [21, 22] and in the book [64]. The paper [62]

presents a method to accelerate the calculation of hedge sensitivities by Monte Carlo simulation

and applies it to the LIBOR market model. A description of a wide range of pricing algorithms

is given in the book [32]. Polynomial algorithms for pricing path dependent instruments with

special cash-flow structure are presented in the report [116]. Numerical pricing methods are

becoming increasingly important due to the continuing introduction of exotic instruments with

complex cash-flows [122], and due to the integration of optimization and simulation models for

the design of financial products [34] and for the tracking of fixed-income indices [154].

Parallel algorithms have been applied to the numerical pricing of derivatives, in particular

of path dependent fixed income securities [77, 159]. The shared- as well as distributed-memory

parallelization of multinomial lattice methods for pricing European- and American-style options

based on hidden Markov models is presented in [26]. Parallel algorithms for pricing multi-

asset American-style Asian options employing the binomial method are discussed in [74]. An

architecture independent parallel approach of option price valuations under the binomial tree

model is described in [59]. The paper [125] presents an approach of optimizing both sequential

and parallel option pricing programs through the use of performance models. The paper [103]

compares the performance of the standard Monte Carlo method with a method approximating

high dimensional integral problems through (t, m, s)-nets generated by a parallel algorithm. The

parallelization of Monte Carlo methods with focus on the underlying parallel pseudo-random

number generation is discussed in [123]. A parallel financial engineering C++ library based on

MPI is described in [101].

9

1.2.2 Optimization

An overview of stochastic programming and tree structured models is given in [43, 48, 49,

85]. Implementations of Simplex based methods for solving the deterministic equivalent are

described in detail in [38, 79, 146]. Interior point methods are presented in [105, 151, 155],

and augmented Lagrangian methods in [13, 44, 136]. Decomposition techniques are discussed

in [12, 138]. Benders introduces the method in [5], as the dual form of the Dantzig-Wolfe

algorithm [41]. Nested Benders decomposition extends to multistage, i.e., tree structured,

problems [16], an early implementation is [58].

Parallel implementations are described in [10, 20, 102, 156], parallel Benders decomposition

in [3, 17, 120]. A combination of parallelization with the aggregation of decision stages is

presented in [46]. The papers [128, 152] review parallel algorithms for large-scale stochastic

programming and raise the issue of asynchronous decomposition techniques. An implementation

of a nested decomposition method based on regularized decomposition [135] on a (shared-

memory) multiprocessor system, both in a synchronous and in an asynchronous manner, is

discussed in [137]. This work deals with implementation techniques for parallel tree structured

optimization algorithms, including varying coordination mechanisms and scheduling strategies.

As a tool, it provides a distributed active tree framework for a high level, object-oriented

specification of parameters (see Section 1.2.3). Within the Aurora project (see Section 1.3),

the nested Benders decomposition method has also been implemented using OpusJava [98], and

a distributed active tree with its coordination layer on top of JavaSymphony [54]. The book [29]

describes a large number of parallel optimization algorithms in detail, and the book [1] deals

with the field of parallel metaheuristics.

1.2.3 Programming Support

The advantages of a hybrid programming model based on MPI and OpenMP as opposed to a

unified MPI-only model are investigated in [27, 68]. On the Origin2000 system, data placement

directives form a vendor specific extension of OpenMP [141]. Compaq has extended Fortran for

Tru64 UNIX to control the placement of data in memory and the placement of computations

that operate on that data [15]. A set of OpenMP extensions, similar to HPF mapping direc-

tives, for locality control is proposed in [31], and a high-level programming model that extends

10

the OpenMP API with data mapping directives, is proposed in [100]. This model allows for

controlling data locality with respect to the nodes of SMP clusters.

A classification of Java environments, language extensions, libraries, and JVM modifica-

tions for high performance computing in Java is given in [104]. Several language extensions

have been defined for writing high performance applications in Java. Spar [150] provides ex-

tensive support for arrays such as multidimensional arrays, specialized array representations,

and tuples. It supports data parallel programming and allows for an efficient parallelization via

annotations. Titanium [157] is a Java dialect with support for multidimensional arrays. It pro-

vides an explicitly parallel SPMD model with a global address space and global synchronization

primitives. A high-performance numerical Java library as well as programming techniques for

numerical Java codes are described in [110]. A parallel random number generator Java library

is presented in [33]. HPJava [28] adds SPMD programming and collective communication to

Java. The Java implementation of the distributed active tree model is specifically targeted at a

high level formulation of tree structured iterative algorithms, a shared address space, collective

communication, and a highly modular architecture.

The papers [51, 52, 55, 56, 134, 148] are dealing with the important aspects of evaluation

and estimation, respectively, of the performance of parallel programs and present performance

tools developed within the Aurora project. The paper [71] describes the utilization of grid

computing for financial applications. A method for specifying concurrent programs at the level

of UML is presented in [109]. The paper [87] discusses model checking for UML state diagrams

and automatic code generation techniques.

1.3 Contribution

This work describes parallel implementations of numerical pricing methods as well as of large

scale stochastic optimization methods. These implementations form components of the Aurora

Financial Management System, a decision support system for asset and liability management

under development within the framework of the special research program Aurora “Advanced

Models, Applications and Software Systems for High Performance Computing”. The research

agenda of Aurora [144]

11

“focuses on high-level software for HPC systems, with the related research issues

ranging from models, applications, and algorithms to languages, compilers, and

programming environments. The major goals include pushing the state-of-the-art

in high-level programming paradigms, languages, and programming environments

for HPC systems, the study and development of new models, applications, and

algorithms for HPC, ...

Aurora is a distinctively interdisciplinary project, based upon a highly syner-

getic cooperation of sub-projects ranging across a broad range of disciplines. The

explicit common goal that unites these projects is to push the state-of-the-art in the

field of software for HPC systems. At the heart of the project lies the cooperation

between language and tool developers on the one hand, and application designers

on the other hand. Synergy is at the core of Aurora—none of the participating

institutions alone has the full expertise required to make a real contribution to this

difficult area of research and development.”

As stated in [95], the Aurora Financial Management System is intended to support a decision

maker in finding portfolio allocations that will ensure meeting future obligations, safety of the

investment, and a reasonable profit. An investor chooses a portfolio of various assets or asset

classes, in such a way that some objective, including a risk measure, is maximized, subject to the

uncertainty of future markets’ development and additional constraints such as the investor’s

preferences and budget restrictions [129]. The system contains pricing models for financial

instruments such as stocks, bonds, and options, implemented within a pricing module, and

repayment models for liabilities. The core of the system is a large scale stochastic multi-period

optimization problem, which is solved by an optimization module. According to the research

agenda, focus was not only on the development of a high performance application as such, but

also on the development process, including the software tools to support it.

Figure 1-1 shows how the contribution of this work—displayed in shaded boxes— fits into

the domain of a high performance financial management system, regarding the structure and

development of both the system and suitable programming tools. Models of prices of underlyings

as well as of derivatives are the starting point for the development of pricing algorithms. As

far as the implementation on a computer is concerned, it is desirable that it is parameterized

12

with respect to a variety of instruments. A suitable notation for the specification of financial

instruments has to be chosen. As of any software exceeding a certain size, the development

of a parallel pricing tool requires a design. Typically, the parallel implementation employs

some kind of programming support, either by specialized languages or libraries. Parameters of

pricing models, after being calibrated to market data, are passed to the pricing kernel. The

resulting prices serve as an input to the scenario tree generation.3 The design of an optimization

model yields a formal model specification describing the objective function and constraints. A

problem generation procedure combines the specification with the scenario tree and produces

the complete tree structured description of the optimization problem to be solved. A parallel

solver implements (based on a software design) an optimization algorithm and calculates the

optimal solution. A parallel programming model is designed and specified, then implemented

either as a programming language (extension) or a program library (extension), and finally

employed as a tool in parallel software development.

In this work, parallel pricing procedures for interest rate derivatives on the basis of the Hull

and White trinomial interest rate lattice model have been implemented in High Performance

Fortran, adopting classical vectorization and data parallel approaches. The parallel pricing

kernel developed includes the classical backward induction and Monte Carlo simulation meth-

ods, and provides for the specification of path dependent interest rate derivatives in terms

of their cash-flow behavior depending on a history state. Constant maturity instruments with

embedded options are priced via a nested simulation approach. In addition, a hybrid implemen-

tation has been developed, employing language extensions for clusters of SMPs, which combines

distributed- and shared memory parallelism.

The backward induction method has been generalized in order to allow for pricing a sub-

class of path dependent instruments exhibiting a restricted form of path dependence identified

and termed “limited”, with a computational effort growing linearly with the number of time

steps. The generalized version includes the special cases of path independence and full path

dependence. The algorithm is formulated in a parallel path notation which has been designed,

as an extension of Fortran 95, for the clear description of algorithms operating on paths in

lattice structures.

3In addition, the scenario tree generation may directly utilize market data.

13

solution

prices

implementation

 programming support

algorithm development scenario tree

model parameters

market data

model specification

notation

specification
financial instruments

algorithm development

calibration

parallel solver

parallel pricing kernel

optimization algorithm

tree generator

problem generator

pricing model

programming model

optimization model

parallel implementationpricing algorithm

parallel implementation

language / API
specification

compiler / library

optimization

pricing

parallel programming suppport

financial product definition

optimization model definition

process / activity

result

data flow

control flow

executable program

issue

design

design

optimization problem tree

secondary contribution

contribution

Figure 1-1: Parallel implementation of a financial management system

14

The nested Benders decomposition algorithm for solving multistage stochastic optimization

problems has been parallelized by means of Java, according to the object-oriented paradigm.

A new version of the algorithm has been implemented, based on an asynchronous computation

scheme, and compared with the synchronous one.

The parallel implementation follows the programming model of a distributed active tree,

which has been designed to support the parallel and distributed implementation of a whole

class of tree structured algorithms with varied synchronization requirements. It provides high

level operations for the coordination of simultaneously active tree nodes allocated on the com-

pute nodes of a parallel system. An application programming interface has been specified,

implemented as a Java library using threads and Java remote method invocation (RMI), and

employed in the parallelization of the decomposition algorithm. In addition, the latter has been

parallelized using OpusJava and a distributed active tree implemented on top of JavaSymphony.

An optimization problem generator has been developed combining the generation of both the

scenario tree and of local node problems for wealth maximization and index tracking optimiza-

tion models.

1.4 Structure of the Thesis

Chapter 2 describes programming languages, libraries, and programming models employed as

support in the parallel program developments undertaken. Chapter 3 presents financial appli-

cation problems, found in the areas of pricing and optimization, to be solved by means of high

performance computing techniques. Chapter 4 describes the (sequential) algorithms applied.

Chapter 5 discusses in detail the parallelization of these algorithms and presents performance

results. Chapter 6 draws conclusions of this work and lists a selection of open issues.

15

Chapter 2

Programming Support

Environments for Parallel Systems

Program development on parallel architecture is more complex than on sequential machines,

therefore an adequate support of the programming task is required. The parallel imple-

mentations undertaken in this work employ a number of parallel programming models, lan-

guages, and libraries. In this chapter, relevant features of the programming language HPF+

(see Section 2.1), the Vienna Fortran Compiler (see Section 2.2), HPF extensions for Clusters

of SMPs (see Section 2.3), as well as of the Java frameworks OpusJava (see Section 2.5) and

JavaSymphony (see Section 2.6) are presented, based on the overviews given by the authors in

[54, 95, 98, 113]. The aim of efficient program development suggested the proposal of Fortran ex-

tensions for path constructs (see Section 2.4), as well as of a programming model for tree struc-

tured parallel algorithms (see Section 2.7.1) and its implementation in Java (see Section 2.7.2).

2.1 HPF+

The high-level programming language HPF+ [6, 11] has been used in the parallel implementa-

tion of pricing algorithms, because low-level explicit parallel programming with MPI [107] or

threads [80] tends to be cumbersome and error-prone. High Performance Fortran (HPF) [69] is

the standard language for data parallel programming on shared- and distributed-memory par-

allel architectures. HPF is a Fortran 90 language extension [81] and utilizes the array handling

16

features of Fortran 90 for expressing parallel array operations. It provides compiler directives

for distributing data and for specifying parallel loops. HPF+ is an extended version of HPF,

designed in cooperation with application developers from industry. It improves the data distri-

bution model of HPF and includes additional features that facilitate the efficient compilation

of irregular applications. In the following, relevant HPF+ language features are summarized.

Using the BLOCK data distribution, data is distributed in equally sized chunks onto the

available processors. The block-wise data distribution guarantees both data locality and load

balancing. Since loops represent the main source of parallelism and static compiler analy-

sis cannot always detect parallelism, the user guides the parallelization via directives. The

INDEPENDENT directive states that a loop can be executed in parallel. It can be combined with

other constructs. The ON HOME clause specifies a work distribution. Every processor which owns

a copy of the variable referred to in the ON HOME clause executes the associated loop iteration.

The RESIDENT clause asserts that data is distributed in such a way that no communication is

required during the execution of the loop.

The HPF+ REUSE clause indicates that both loop-iteration- and communication-schedules

do not change from one instantiation of the loop to the next. The parallelization overhead

is reduced significantly, because the schedules are computed only once and reused later on.

Reduction operations, for example, summations, are marked explicitly with the REDUCTION

keyword. The compiler substitutes optimized library calls for these operations. In HPF, proce-

dures called from within parallel constructs must have the PURE attribute to assert that no side

effects prevent parallelization. However, PURE does not provide any information about data

accesses, which in general result in communication. HPF+ introduces the PUREST directive,

which also asserts that the invocation of a procedure does not require any communication.

2.2 The Vienna Fortran Compiler

The Vienna Fortran Compiler (VFC) is a parallelizing compilation system which translates

HPF+ programs into explicitly parallel message passing programs [8]. The parallelization

techniques are based on the SPMD model, where each processor executes the same, indeed pa-

rameterized, code. The generated SPMD program calls MPI routines for data transfers among

17

the compute nodes of a distributed-memory parallel system. The data distribution directives

GENERAL BLOCK and INDIRECT of the VFC support in particular the parallel implementation of

irregular applications.

Emphasis for both language and compiler development has been on the parallelization of

irregular loops. Since it is in general impossible to determine access patterns for irregular

loops at compile-time, neither independence of data accesses within a loop can be proved, nor

required communication operations can be derived statically. The first problem is tackled by

the INDEPENDENT directive, which allows for marking a loop as parallelizable, and the latter by

a runtime parallelization strategy following the Inspector/Executor paradigm [139].

The execution of an irregular loop is performed in several phases. In the work distribution

phase, the iteration space of a loop is distributed onto the compute nodes. In the inspector

phase, access patterns and the communication schedule are derived. In the final executor

phase, the loop is actually executed, including communication according to the communication

schedule. Since the computation of communication schedules can be very costly, the reuse of

loop-invariant schedules helps in achieving high performance. If, via the REUSE clause, the

access patterns and array distributions are asserted to remain invariant, the communication

schedule can be reused in subsequent executions of the loop [6].

2.3 HPF Extensions for Clusters of SMPs

HPF extensions for clusters of SMPs enhance the functionality of the HPF mapping mechanism

such that the hierarchical structure of SMP clusters can be exploited and an HPF compiler

can adopt a hybrid distributed-/shared-memory parallelization strategy [9, 24]. It is achieved

through combining distributed-memory parallelism based on message passing, e.g. MPI [107,

108], across the compute nodes of a cluster, and shared-memory parallelism, based on multi-

threading, e.g. OpenMP [121], within compute nodes.

A number of extensions allow for optimizing existing HPF codes for clusters of SMPs without

the need for modifying existing mapping directives, by introducing the concept of abstract

node arrays. A processor mapping from an abstract node array to an abstract HPF processor

array represents a simple means for describing the topology of SMP clusters (see Figure 2-1).

18

Alternatively, hierarchical data mappings can be specified. In a first step, data arrays are

distributed onto the compute nodes of a cluster by means of standard HPF data distributions.

These mappings are referred to as inter-node data mappings. In a second step, an intra-node

data mapping of the local data at a compute node may be specified, for use by a compiler in

order to derive a work distribution of the set of threads running concurrently on the processors

of a compute node.

2.3.1 Abstract Nodes Arrangements and Processor Mappings

The hierarchical structure of an SMP cluster is described by mapping abstract processor ar-

rangements to abstract node arrangements. The NODES directive declares one or more recti-

linear node arrangements. For the specification of processor mappings, HPF data distribution

mechanisms as provided by the DISTRIBUTE directive are employed. The intrinsic function

NUMBER OF NODES() yields the total number of compute nodes available for executing the pro-

gram and may be combined with the NUMBER OF PROCESSORS() intrinsic function in order to

specify the topology of a cluster in a parameterized way.

!HPF$ PROCESSORS p(16)

!HPF$ NODES n(8)

!HPF$ DISTRIBUTE p(BLOCK) ONTO n

REAL a(na)

!HPF$ DISTRIBUTE a(BLOCK) ONTO p

!HPF$ PROCESSORS p(4,8)

!HPF$ NODES n(4)

!HPF$ DISTRIBUTE p(*, BLOCK) ONTO n

REAL b(nb1,nb2)

!HPF$ DISTRIBUTE b(CYCLIC, BLOCK) ONTO p

(a) (b)

Figure 2-1: Node arrangements and processor mappings

Example (a) in Figure 2-1 specifies the hierarchical structure of an SMP cluster consisting

of eight compute nodes, with two processors each. Example (b) defines an SMP cluster with

four compute nodes, each of which comprises 4 × 2 processors. Using processor mappings, the

hierarchical structure of SMP clusters may be explicitly specified without changing existing HPF

directives. Based on a processor mapping, a compiler can apply a cluster specific parallelization

strategy in order to efficiently exploit both distributed- and shared-memory parallelism.

19

2.3.2 Distributed-Memory versus Shared-Memory Parallelism

In a processor mapping, the combination of distributed- and shared-memory parallelism is

specified for each dimension of a processor arrangement. There are two extreme cases. If for

a dimension of a processor arrangement the character “*” is specified as distribution format,

all processors in this dimension are mapped to the same node of a node arrangement, and

thus only shared-memory parallelism may be exploited. On the other hand, if the block size of

a processor mapping is one, only distributed-memory parallelism will be exploited across the

corresponding processor array dimension. In all other cases, distributed- and shared-memory

parallelism may be combined. In Example (a) in Figure 2-1, both types of parallelism may be

exploited for array a. In Example (b), shared memory parallelism may be exploited across the

first dimension of array b, whereas across the second dimension both types of parallelism may

be exploited.

!HPF$ PROCESSORS p(NUMBER_OF_PROCESSORS())

!HPF$ NODES n(NUMBER_OF_NODES()) ! node arrangement

!HPF$ DISTRIBUTE p(BLOCK) ONTO n ! processor mapping

DOUBLE PRECISION, DIMENSION(m) :: a, b, x, y

!HPF$ DISTRIBUTE(BLOCK) ONTO p :: a, b, x, y ! original HPF distribution

...

!HPF$ INDEPENDENT, ON HOME(a(y(i))), REUSE ! INDEPENDENT loop, schedule reuse

DO i = 1, m

a(y(i)) = ... b(x(i)) ...

END DO

Figure 2-2: HPF+ directives for clusters of SMPs

An HPF data mapping directive, e.g., DISTRIBUTE a(BLOCK) ONTO p, determines for each

processor p(i) of the processor array p those parts of the data array a that are owned by p(i).

If, in addition, a processor mapping for p with respect to a node array n is specified, an inter-

node data mapping may be automatically derived according to the following rule. The part of

the array which is owned by the compute node is allocated as a whole in its shared memory,

while data is distributed across the local memory of compute nodes. Also an intra-node data

20

mapping may be derived from a data mapping and a processor mapping. Intra-node data

mappings assign portions of the data allocated at a compute node of a cluster to the processors

of the compute node. They control shared-memory parallelization within compute nodes, while

inter-node data mappings control distributed-memory parallelization across the compute nodes

of a cluster.

2.3.3 Execution Model for Clusters of SMPs

IF (first) THEN

< inspector phase >

ENDIF

< MPI gather communication > ! inter-node communication

!$OMP PARALLEL DO ! OpenMP parallelization

DO i = 1, niters(me)

a(loc_y(i)) = ... b(loc_x(i)) ...

END DO

Figure 2-3: Code generated by VFC under the cluster execution model

The VFC compiler exploits shared memory parallelism through inserting OpenMP direc-

tives, e.g., PARALLEL DO. Figure 2-3 shows the code resulting from the program in Figure 2-2.

The code generated by the VFC compiler is compiled with an OpenMP Fortran compiler and

linked with the MPI library. The resulting binary is executed as an MPI program, i.e., as a

set of parallel processes, each of which runs, within its own local address space, on a separate

compute node of a cluster. Each process employs a set of concurrent threads running in the

shared address space of the compute node. Data partitioning and message-passing takes place

among the compute nodes of a cluster, while within a compute node additional parallelism is

exploited by means of multiple threads.

2.4 Fortran 95 Extensions for Path Constructs

Pricing algorithms on lattices (see Section 3.1) typically are composed of building blocks which

operate on sets of either nodes or paths. In the conventional programming style, the use of

21

multi-dimensional arrays results in nested loops in which variables are accessed via index tu-

ples, including indirect accesses, whereby the readability of the resulting program is impaired.

Abstractions at a higher level, in particular including the notion of paths, allow for a more

natural and concise formulation. The notion proposed in this section is also capable of express-

ing parallelism and serves as a means in the high level parallel formulation of lattice based

algorithms (see Section 5.3). In the following, the data types and operations of an abstract

lattice are introduced. Subsequently, they are mapped onto a programming language notation

based on Fortran 95.

2.4.1 Data Types

Lattice The lattice defines a two-dimensional discrete state space. Each state is associated

with a time value and values of financial variables. At least one such variable exists, the short

term interest rate, which is needed in discounting operations. States are represented by nodes.

Arcs are labeled with transition probabilities. The time increment is constant over time and

returned by get∆t(). The operation getLength() returns the number of time steps.

Node A node n is identified by the pair (time index i, value index j) and accessed via

getNode(i,j). The set of all nodes at time index i is addressed by getNodes(i). The indices of

the node are accessible via timeIndex(n) and valueIndex(n). The operation getRate(n) returns

the short term interest rate.

Path A path π is specified by its starting node and the sequence of value indices defining

the remaining nodes. The operation getProbability(π) returns the conditional probability of the

path. The k-th node of a path is accessed through getNode(π,k), where k = 0 identifies the

starting node. The operation getLength(π) returns the length of a path. A path of length 0 is

a single node, and vice versa, and has a conditional probability of 1. The set of all paths of

length ` emanating from node n is specified by getPaths(n,`).

Array Nodes as well as paths can build array index domains, thus allowing for the declaration

of arrays of nodes and paths. An element of array a is accessed through getElement(a,n) and

getElement(a,π), respectively. The function sum(a) returns the sum of all elements of array a.

22

2.4.2 Operations

Concatenation The operation concat(π1,π2) returns the concatenation of two paths.

Cash-flow The operation cashflow(π) returns a (path dependent) cash-flow as a function of

the interest rate values at the nodes of path π.

Discount The operation discount(c,π) returns

c

getLength(π)
∏

i=0

e−getRate(getNode(π,i)) get∆t(), (2.1)

the cash-flow c discounted on the basis of the interest rates at the nodes of path π.

Parallel Array Assignment The Fortran 95 FORALL construct assigns values to the elements

of an array indexed by a given set [82]. It specifies one or more assignment statements, each

of which is completely executed, i.e., it is executed for all array elements specified, before the

execution of the next statement. Within a statement, the array elements may be assigned in

arbitrary order, in particular in parallel. All expressions are evaluated before any array element

is changed, and no array element is assigned more than once. The FORALL construct applied

to arrays of nodes or paths (see Section 2.4.1) allows, in a data parallel manner, for specifying

operations to be performed on many nodes or paths simultaneously.

2.4.3 Fortran 95π Notation

In the following, the primitives described are expressed as a notation in the style of Fortran 95,

termed Fortran 95π. It relies on Fortran 95 semantics and presumes the extensions of a node-

type, a path-type with a concatenation operator, a cash-flow function interface, a discount

operator, node references via index pairs, the specification of sets of paths through starting

node and length, inquiry functions for the time increment and number of time steps, and arrays

of nodes and paths with the following properties. They are implicitly dynamic, i.e., allocatable,

their extents need not to be specified explicitly, and they can be accessed within the FORALL

construct.

23

Table 2-1 lists data types and operations of the abstract lattice, along with the corresponding

Fortran 95π notation (operations for creating and naming lattices are not given).

Lattice getLength() LENGTH() intrinsic function
get∆t() DELTA T() intrinsic function

Node n node type NODE

getNode(i,j) (i,j)

getNodes(i) (i,:)

getRate(n) n%RATE

Path p path type PATH, attribute LENGTH

getProbability(π) p%PROBABILITY

getNode(π,k) p%NODE(k)

getLength(π) p%LENGTH

getPaths(n,`) (n|l)

Array a node or path index domain INDEX attribute
getElement(a,n) a(n)

getElement(a,π) a(p)

sum(a) SUM(a)

Operations cashflow(π) CASHFLOW(p) function interface
discount(c,π) c.DISCOUNT.p

concat(π1,π2) p1 & p2

Array assignment for all nodes n with FORALL (n = (i,:))

time index i
for all paths π with FORALL (p = (n,l))

starting node n and length `

Table 2-1: Abstract lattice and Fortran 95π notation

2.5 OpusJava

OpusJava [91, 93] is a Java [66] component framework that provides high level means for

interaction among distributed active objects in a heterogeneous and multi-lingual environment.

The development of OpusJava is based upon the coordination language Opus [94, 96], a task

parallel extension to HPF [69] which was specifically designed to support multi-disciplinary

applications. OpusJava introduces the concepts developed in Opus to the Java world and is

seamlessly interoperable with Opus and thus with HPF.

The OpusJava distributed object model introduces a class called ShareD Abstraction (SDA)

which allows to instantiate, manipulate, migrate, and terminate remote objects. In contrast to

Java’s remote object model RMI [147], OpusJava does require SDA objects neither to implement

24

specific interfaces nor to extend specific classes. Hence, any Java class, even in pre-compiled

byte-code representation, may be created as an SDA object. The OpusJava framework provides

generic functions for SDA creation and interaction and hides all low level details such as socket

communication, RMI, JNI, and synchronization.

Methods of SDAs may be invoked in a synchronous or asynchronous manner. Asynchronous

method executions are bound to events with which explicit synchronization is possible. Method

executions may be guarded by condition clauses a method may be associated with. A condition

clause is a boolean function which must evaluate to true before the guarded method can be

executed. Condition clauses are specified using a special naming convention: their name must

be the name of the guarded method postfixed with “ cond”. With help of condition clauses

a consistent state of the data of an SDA can be guaranteed independently of the order the

methods of an SDA are invoked.

The OpusJava framework provides for mutual exclusive execution of SDA methods, thus

ensuring a consistent state of the SDA data. Arguments to Java SDAs are passed with standard

RMI semantics, i.e., standard objects are passed by value, remote objects (including SDAs) by

reference. The data of SDA objects may only be accessed through the invocation of methods.

In contrast to standard Java RMI, which does not provide for an interference-free execution of

multiple concurrent method invocations within an object and leaves all synchronization to the

user, OpusJava provides high level synchronization by means of condition clauses and events.

It also ensures a consistent state of a remote object by imposing mutual exclusive method

executions. By providing all of these features OpusJava enriches the standard Java RMI model

with asynchronous method invocation, dynamic object creation/migration on user specified

resources, and high level coordination means. Since any OpusJava SDA represents a separate

thread of control, creating multiple SDAs on an SMP allows also for the exploitation of shared

memory thread parallelism.

The OpusJava framework has been implemented as a pure Java library without any mod-

ifications to the language and the Java Virtual Machine [92]. OpusJava introduces four new

classes visible to the user. Class SDA is a stub for a remote SDA object, class Event is used

to reference asynchronous method invocations, class Resource describes an SDA’s resources.

Class Request is primarily used as wrapper for requests posed to HPF SDAs.

25

2.6 JavaSymphony

Most Java-based systems that support portable parallel and distributed computing either re-

quire the programmer to deal with low-level details of Java, or prevent the programmer from

controlling locality of data. In contrast, JavaSymphony—a class library written entirely in

Java—allows to control parallelism, load balancing, and locality at a high level [50, 53].

JavaSymphony introduces the concept of dynamic virtual distributed architectures, which

allows the programmer to define a structure of a heterogeneous network of computing resources

and to control mapping, load balancing, and migration of objects and code placement. Virtual

architectures consist of a set of components, each of which is associated with a level. A level-1

virtual architecture corresponds to a single compute node such as a PC, workstation or a SMP

node. A level-i virtual architecture, i ≥ 2, denotes a cluster of level-(i−1) virtual architectures

which among others allows to define arbitrary complex clusters, clusters of clusters, etc. Every

level-(i − 1) virtual architecture can only be part of one unique level-i virtual architecture.

Static (e.g., machine name, operating system, etc.) and dynamic parameters (e.g., system load,

idle times, etc.) can be indicated when requesting a virtual architecture. Constraints defined on

parameters can be checked any time during execution of a JavaSymphony application, which

enables a programmer to control, for instance, load balancing. Computing resources can be

dynamically added or removed to/from a virtual architecture.

In order to distribute objects onto virtual architectures, these objects are encapsulated into

JavaSymphony objects. JavaSymphony objects can be created by generating instances of a

class JSObject, which is part of the JavaSymphony class library. JavaSymphony objects can be

explicitly mapped to specific level-1 virtual architectures. Constraints can be provided to control

the mapping of JavaSymphony objects to virtual architectures. A JavaSymphony object can

be created single- or multi-threaded. A single-threaded object has one thread associated with

it that executes all of its methods, whereas a multi-threaded object can be assigned multiple

threads by the Java runtime system that execute its methods simultaneously.

Remote method invocation is the main mechanism to exchange data among distributed

objects and to process work by remote objects. Besides synchronous and one-sided method

invocations, JavaSymphony also offers asynchronous method invocations, which enable the

user to continue the execution and retrieve the results at a later time.

26

2.7 Distributed Active Tree

Problems which are defined on trees arise in various application areas. Solution methods oper-

ate on the tree and solve subproblems assigned to the tree nodes. For this purpose, the nodes

need to interact with each other. By repeatedly solving and updating their subproblems, all

nodes contribute to the overall solution. Tree structured algorithms of this kind can be im-

plemented in parallel by assigning subsets of tree nodes to physical processors. In order to

support the high level parallel implementation of a whole class of tree structured algorithms,

a parallel programming model based on the object-oriented paradigm has been designed [112].

In this model, the algorithm is expressed at a high level with transparent remote accesses,

communication and synchronization. The model has been—in the form of an implementation

in Java—successfully employed in the parallelization of the nested Benders decomposition al-

gorithm (see Section 5.4). In the following, the distributed active tree model as well as its

implementation in Java are described.

2.7.1 Programming Model

The distributed active tree (DAT) is a distributed data structure which executes a parallel pro-

gram. The tree comprises active node objects, i.e., every tree node possesses a separate thread

of control. Whereas in principle the tree nodes could execute different programs, in this model

they execute the same code, eventually parameterized with particular node properties. As the

nodes operate on different data, the programming model is of the type Single-Program-Multiple-

Data (SPMD). The set of tree nodes is distributed onto a set of compute nodes. The nodes

altogether execute the parallel algorithm, thus the whole tree can be viewed as a distributed

processing unit, or an abstract machine, respectively. Tree nodes are mapped onto compute

nodes individually or at the level of subtrees. With emphasis on iterative tree structured al-

gorithms, the node activity is modeled as a while-loop (which can contain additional, nested,

loops). Conceptually, all nodes are simultaneously active. They can exchange data with other

nodes. Due to synchronization requirements, a node can have a waiting state.

The distributed active tree model distinguishes two layers. The algorithm to be executed is

implemented in the algorithm layer, on top of the coordination layer, which provides services

27

for the communication among tree nodes. The core abstraction of the coordination layer is the

accessible, representing a set of tree nodes which participate in a communication operation, for

example, the successors and the predecessor of a node. Incoming data is buffered at the target

nodes. For example, in Figure 2-4, node n1 sends data to its successors, which are combined in

the accessible {n2, n3}.

n3

n2

n1

buffers

buffers

local data structures

algorithm

algorithm layer

coordination layer

Figure 2-4: Layers in the distributed active tree model

Data transfers from or to a set of nodes are performed by the following methods of the

class Accessible. The targetAccessible.put(data) method, called in the algorithm layer, copies

a data object into buffers located at the elements of the target accessible. The sourceAcces-

sible.get(condition) method, called at the target nodes, retrieves the data (put by the source

nodes) from the buffer and copies it into local data structures read later on by the algorithm. A

condition object specifies synchronization constraints. The standard synchronization patterns

any and all specify an asynchronous mode, in which get() waits until data has arrived from at

least one source node, and a full synchronous mode, in which it waits for incoming data from

all source nodes (independent of the order).

These methods represent collective communication operations, which are transparent with

respect to the tree distribution. Nodes residing on the same compute node, called local nodes,

28

are addressed in the same way as nodes residing at a different compute node, referred to as

remote nodes, thus a shared memory view of the whole tree is maintained.

The simultaneous execution of many node activities on a compute node can be scheduled

following different strategies. A scheduling strategy maps all the iterations to be executed by the

tree nodes residing at a certain compute node onto threads of the run time system. For example,

following the single thread strategy, one thread cyclically executes the first iteration on all tree

nodes, then the second iteration, and so on. Alternatively, the node thread strategy associates

every tree node with a thread, thus delegating the scheduling to the underlying runtime system.

Combinations of these strategies are possible, e.g., each of a set of m threads is responsible for

a set of n tree nodes.

2.7.2 Java Implementation

The distributed active tree has been implemented in Java, because of Java’s portability and

other features such as the object-oriented programming paradigm, robustness, automatic mem-

ory management and support for multithreading and network programming. In particular,

financial applications are assumed to be used in a heterogeneous computing environment. In

Java, the distributed active tree model is described as a set of interfaces, organized in the

packages

dat.tree for the specification of the tree structure,

dat.alg for the specification of the node algorithm,

dat.dist for the specification of the tree distribution,

dat.sched for the specification of the scheduling strategy, and

dat.coord specifying the interface between the coordination layer and the algorithm layer.

An instance of a distributed active tree is defined by the classes implementing these inter-

faces. A tree node is an instance of a class which implements the dat.alg.AlgorithmNode inter-

face and overrides the methods iteration() and terminate() of the dat.alg.LoopActivity

interface, thus specifying the body and termination condition of the main loop. Associated

29

to every tree node there is a coordination object, an instance of a class implementing the

dat.coord.Coordination interface, which maintains the buffer for incoming data and pro-

vides accessible objects to the AlgorithmNode objects. Parameters of the tree structure and

its mapping onto compute nodes are specified using Java code, as an implementation of the

dat.dist.DistributedTreeSpecification interface. The loop scheduling strategy is specified

in an implementation of the dat.sched.LoopScheduler interface which operationally defines

the mapping from the set of iterations onto a set of threads. An instance of the scheduling class

creates threads, assigns loop iterations and starts them. A distributed active tree at runtime

comprises, at each compute node, the objects listed in Table 2-2, which are combined by the

main program at a compute node within a ComputeNode object (see Figure 2-5).

AlgorithmNode active objects executing the node algorithm
Coordination their corresponding coordination objects
DistributedTreeSpecification a specification object for the tree and its distribution
LoopScheduler an object specifying the scheduling strategy

Table 2-2: Objects of the distributed active tree at a compute node

new ComputeNode(

"<AlgorithmNode>",

"<Coordination>",

new <DistributedTreeSpecification>(...)

).run(new <LoopScheduler>(...));

Figure 2-5: Running the compute node program

2.7.2.1 Coordination using RMI

The implementation of the coordination layer deals with all the intra- and inter-processor

communication and -synchronization. It will employ underlying mechanisms such as Sockets,

Java RMI, CORBA, and MPI. In the following, an implementation employing Java remote

method invocation (RMI) is described.

The communication scheme makes use of buffers for incoming data, thus the data structures

of the algorithm layer are not affected by arrivals of new data, which can occur at any point

30

in time. The buffers are part of the underlying coordination layer. The coordination class, im-

plementing the dat.coord.Coordination interface, has a synchronized method add() which

appends new data to the input buffer. It is called by the put() operation. Local nodes are

directly accessed through shared memory, via local invocation of add() at the target coordi-

nation objects. Remote nodes are accessed through calling, via RMI, a remote method of the

target ComputeNode object, which then locally calls the add() method at the target coordina-

tion objects. In the following, the implementation of the any and all synchronization patterns

for the node thread scheduling strategy as a collection of state dependent actions [99], using

Java’s built-in synchronization features, is described.

With regard to coordination, the logical state space of a node (more precisely, of the co-

ordination object) consists of the following states. In the Active state, the node is actually

performing computations of the node algorithm. When it waits for data from other nodes, it

enters the Wait state. When new data has arrived, it enters the Transfer state. In this state,

the buffer contents are copied into local data structures. States are left either when the activ-

ity associated with a state is completed, or when add() has been called, i.e., some node has

added data to the buffer. Accesses to the buffers are synchronized in order to prevent the

modification of a buffer while its contents are transfered to the local data structures.

The UML [70] statechart diagram in Figure 2-6 shows the additional substates New, which

are entered when new data has arrived and which allow for some optimizations. In the case of

Active, Wait can be skipped, and in the case of Transfer, the new data will just be considered

during the get() operation currently executed. In addition, two boolean guard conditions

control the state transitions. First, incoming data is regarded relevant only if the node, which

has put it into the buffer, is an element of the Acessible executing get(). Second, in case the

all synchronization pattern is applied, data is regarded available only if arrived from all element

nodes of the accessible. If the any pattern is applied, the all condition always evaluates to true.

2.7.2.2 Synchronization

The statechart diagram Figure 2-6, specifying the synchronization behavior, is implemented by

a synchronized method nextState() of the coordination object, which updates an instance

variable state. This method is called in get() and, by the source node thread, on completing

31

Wait

[element]
add

Transfer New

Active New
add

[element && all]

[else]

[element && all]

add

add

add

Figure 2-6: States of the coordination object

add(). The two cases are distinguished by the parameter, the invoking accessible in the first case

as opposed to the source coordination object in the latter one. The code excerpt in Figure 2-7

shows the implementation of the get() method of an inner Accessible class (an implementation

of the interface dat.coord.Accessible). If the state has changed to Wait, the node thread

executes the Object.wait() method. The Object.notify() method is called in nextState(),

just in the case that the Wait state has been left. There is no more than one thread waiting,

which allows for safely using notify() instead of notifyAll().

The synchronized method transfer() of the coordination object copies the buffered data

objects into the local data structures of the AlgorithmNode object. As these data structures

are part of the algorithm layer, they are not visible to the coordination object. Therefore the

buffer contents are converted into AlgorithmData objects by a factory object created by the

AlgorithmNode object. Subsequently, the methods of these objects are called, which perform

the copy operation.

2.7.2.3 Optimized Handling of Data Transfers

In the following, the communication scheme is described in more detail. In a basic version,

the computation would proceed, after data in the buffers has been transfered to the local data

structures. Data received during the accomplishment of the transfer operation would not be

transfered and thus not considered in the computation that follows. Data ignored in this way

potentially enforces additional iterations to be performed by the algorithm.

32

public class Coordination implements dat.coord.Coordination {

...

public synchronized void add(..., Coordination source) {

// add data to buffer

...

// state transitions due to new data arrived

nextState(source);

}

public class Accessible implements dat.coord.Accessible {

...

public void get(dat.coord.Pattern condition) {

setPattern(condition);

// assertion(state == Active || state == NewActive)

// state transitions due to completed node activity

nextState(this);

synchronized(Coordination.this) {

if (state == Wait)

try { Coordination.this.wait();

} catch (InterruptedException e) {...}

}

do {

transfer(this); // copy buffer to local data structures

// assertion(state == Transfer || state == NewTransfer)

// state transitions due to completed data transfer

nextState(this);

} while (state == Transfer);

}

...

} // Accessible

}

Figure 2-7: Synchronization in the coordination object

33

The semantics of the “transference” (upper) superstate in Figure 2-6 is “a node is in the

transference state iff data is transfered”. It comprises the substates Transfer and New, which

represent the two possibilities of staying in the transference state. Either data has arrived during

the execution of the current transfer operation (New), or not (Transfer). Hence New represents

the information of an additional transfer operation, implemented by transfer(), needed after

completion of the current one. When executing a transfer operation, a node can either stay in

Transfer and on completion leave the transference state, or change to New, in which case it is

forced to return to Transfer. Entering Transfer is equivalent to starting the transfer operation.

Staying in the transference state is equivalent to the sequence of states described by the regular

expression Transfer(New Transfer)*. In order to prevent very long sequences, an upper limit for

the number of transitions from Transfer to New is defined.

The behavior specified in this way can be directly mapped to Java code (see Figure 2-7).

Note that the call to transfer() with the subsequent call to nextState() must not be within

a synchronized block, as this would inhibit state changes due to the arrival of new data during

the execution of transfer().

There are situations in which the resulting performance still is not optimal. It can happen,

that, after data d1 has arrived and caused a transition from Wait to Transfer, data d2 arrives

immediately before the call to transfer(), and thus New is entered, and no more data arrives

during this call. Both d1 and d2 will be properly transfered, indeed, a second call to transfer()

will follow, although the buffers are empty. This problem can be easily tackled by checking the

buffers to be non-empty on entering transfer(). A different situation arises if data d arrives

during the execution of nextState() (after the call to transfer()), which switches to Active.

This means that no data has arrived during the execution of transfer(). Conceptually, the

node is already active, and the data will not be transfered and used in subsequent computations.

However, the time spent in nextState() is very short. The problem can be tackled by including

NewActive in the termination condition of the do-while-loop.

34

Chapter 3

Computational Problems in Finance

This work deals with the application of high performance computing for solving problems in

pricing and optimization. Though in principle these problem classes are independent and as such

constitute important areas in computational finance, they arise combined in a real application

such as a financial management system. The Aurora Financial Management System is a

decision support tool for portfolio and asset liability management under development at the

University of Vienna [129]. Parts of the system are being developed in cooperation with a

pension fund company [131, 132]. The following overview of the system is given by the authors

in [95].

The classical problem of dynamic asset-liability management seeks an investment strategy,

in which an investor chooses a portfolio of various assets or asset classes, in such a way that some

risk-adjusted objective is maximized, subject to uncertainty of future markets’ development and

additional constraints, related to the investor’s business. The problem requires modeling of all

relevant risks (both on the asset side and the liability side, as shown in Figure 3-1), and a precise

statement of a coherent objective function (in the sense of [126]). The Aurora ALM model is

developed within a framework of stochastic dynamic optimization methods and models. Thus

the uncertainty is modeled by a number of random processes, which are eventually transformed

to ones discrete in time and values.

The Aurora ALM model is based on a pricing model for financial instruments on the as-

set side, and a multivariate Markovian birth-and-death model for liabilities. The core of the

Aurora Financial Management System is a large scale linear or convex optimization problem,

35

solution of which is the ultimate aim of the modeling effort. Figure 3-1 depicts the structural

design together with the simplified data flow in the system. The stochastic optimization model

generator (3) creates an optimization problem derived from financial market scenarios (1) and

liability scenarios (2). The latter two modules are completely independent of each other. The

financial market scenarios are generated using historical records of the financial market perfor-

mance (in form of stock indices, interest rates, prices of individual stocks, and other financial

instruments) while the liability scenarios must adhere to the accounting rules specific to the

pension funds. In either case, the uncertain future is modeled by a tree of all possible futures.

As a result of joining these two models of independent aspects of the uncertain future, an

optimization problem is formed (3) and solved (4).

1.
Financial
market

scenario
generation

2. Liability
scenario

generation

3.
Stochastic

optimization
model

generation

4.
Stochastic
optimization

Interest rates
(time series)

Stock indices
(time series)

Mortality and
other statistics

Accounting rules

Contractual & legal
investment constraints

Asset performance
scenario tree

Scenario tree of
net liabilities

Optimization
problem

History of pensions
and contributions

Figure 3-1: The Aurora Financial Management System.

3.1 Pricing of Interest Rate Derivatives

Since an investor in a financial management problem bases his decision on the prices for different

instruments, a financial management system includes a pricing model. It forms an important

part of financial market scenario generation and serves to determine the price of a financial

36

instrument at a specific time and in a specific state of the economic environment. For interest

rate dependent instruments in particular, the pricing problem can be formulated as follows:

what is the price today of an instrument with future payments depending on the development

of interest rates ?

According to the arbitrage free pricing principle, which states that two financial contracts

that deliver identical future cash-flows must have the same price today, the price is the present

value of future cash-flows. The present value equals the expected, discounted cash-flow of

the instrument [75]. Analytical pricing formulas are available for simple cases, but in general

numerical techniques have to be applied. Estimates of future interest rates needed both for the

calculation of cash-flows and for discounting have to be supplied by an interest rate model. In

the following, the interest rate instruments dealt with, as well as the problem of pricing these,

and the interest rate model employed are described.

3.1.1 Interest Rate Dependent Instruments

A financial instrument is characterized by a stream c of cash-flows cti which are paid at payment

dates ti, 1 ≤ i ≤ n,

c = (ct1 , . . . , ctn), (3.1)

where n > 0 denotes the number of payment dates. The present value PVt at time t < ti is

defined as the expected value of discounted future cash-flows,

PVt = Et

∑

i=1,n

cti exp(−
∫ ti

0
rτdτ)

 , (3.2)

where Et is the expectation at time t and rτ is the instantaneous short rate at time τ , used for

continuous discounting. The price of an instrument at valuation date t0 is given by PVt0 .

In case of fixed income securities the cash-flows are deterministic. Alternatively, for floating

rate securities (“floaters”) such as variable coupon bonds, they are specified in terms of a

reference interest rate, e.g. the LIBOR (London Inter-Bank Offered Rate).

Path dependent instruments are instruments paying cash-flows which depend on the value

of a financial variable in the past. In the case of interest rate dependent instruments, the

37

cash-flows cti depend on past levels of a reference interest rate R

cti({Rτi,1 , . . . , Rτi,mi
}), (3.3)

where mi > 0 denotes a number of interest rate realizations Rτi,j
, 1 ≤ j ≤ mi, and τi,j < ti.

Figure 3-2 shows a lookback cap instrument with its coupon payment at time t specified as

ct = td max

(

max
τ=t−k∆t ∧ k∈N ∧ τ≥t−td

Lτ − ρ, 0

)

, (3.4)

where Lτ is the level of LIBOR at times τ , and ρ is a constant cap rate. Here, the cash-flow

depends on the path of reference interest rates from time t − td to time t.

ρ

∆ t

time

c(t)

in
te

re
st

 r
at

e

LIBOR

t−t t
d

Figure 3-2: Lookback cap instrument

3.1.2 Constant Maturity Floaters

For so called constant maturity instruments, the maturity of the reference interest rate exceeds

the period of adjustment. Constant maturity instruments, based in particular on the so called

secondary market yield (SMY), are very popular among Austrian banks, e.g., loans, credits,

and bonds that use the SMY as a reference interest rate. The SMY is an index of Austrian

government bond yields traded in the secondary market and can be interpreted as an average

yield to maturity in the range of five to seven years. Consequently, instruments based on the

SMY are constant maturity floaters. Some instruments provide an embedded option that allows

for redeeming, and thus payment of the nominal value, before time of maturity. Such an option

38

is typically exercised by the issuer in case the discounted stream of remaining coupon payments

is expected to be greater than the redemption price.

In the following, two types of instruments with embedded options are considered. These are

either bonds with a coupon rate equal to the SMY which include a call option by the issuer, or

SMY floaters with variable caps and floors and the following characteristics. An initial interest

rate r0 applies as long as the SMY at time t does not hit a lower or an upper bound specified

symmetrically around a basis rate rb, i.e.,

| SMYt − rb |≤ ρ. (3.5)

If on the contrary | SMYt − rb |> ρ, the interest rate is adjusted to a new level of

rt+∆t = rt + f(SMYt − rb), (3.6)

where 0 < f < 1 is the factor of adjustment. In addition, the basis rate is updated to rb = SMYt.

As the adjustment depends on past interest rate realizations, these products are path dependent.

They are priced under the assumption that the SMY can be specified as a linear combination

of spot rates, based on the replication of the SMY introduced in [133],

∆SMYt = γ0 + γ1∆R(t + T1) + γ2∆R(t + T2), (3.7)

where Ti are the maturities of spot rates and γi are constants.

3.1.3 Specification of Path Dependent Instruments

A general implementation of a pricing model requires to be parameterized with respect to the

products to be priced. For the specification of interest rate dependent products, a specification

approach has been chosen which is based on an internal state. Using this state, information

needed for the calculation of the path dependent cash-flow at time t is accumulated in a recursive

manner in time steps ∆t over the period t − td to t.

The definition of the cash-flow ct at time t is a function of the current state st and time

independent parameters and does not refer to past interest rate values. A state transition at

39

time τ + ∆t, t− td ≤ τ ≤ t−∆t, is specified as a function of state sτ and interest rate level rτ .

The following examples represent specifications of exotic interest rate derivatives.

Lookback cap s ∈ R (see Figure 3-2),

Initialization st−td = −∞,

State transition sτ+∆t = max(sτ , rτ),

Cash-flow ct = td max(st − ρ, 0).

Down and out barrier cap s ∈ {false, true} × R,

Initialization st−td = (true, 0.0),

State transition sτ+∆t = (s
[1]
τ ∧ (rτ ≥ H), rτ),

Cash-flow ct = td max(s
[2]
t − ρ, 0)1

s
[1]
t

.

Average rate cap s ∈ N × R,

Initialization st−td = (0, 0.0),

State transition sτ+∆t = (s
[1]
τ + 1, s

[2]
τ + rτ),

Cash-flow ct = td max(s
[2]
t /s

[1]
t − ρ, 0).

In case the state is a tuple, s[i] denotes its i-th component. 1cond is an indicator function

yielding one if the condition cond holds, and zero otherwise. Both the state transition and the

cash-flow functions are specified by means of expressions, thus avoiding the need for control

constructs such as conditional statements and loops.

3.1.4 The Hull and White Interest Rate Model

In order to calculate the price of an interest dependent instrument, a model of interest rates

is needed that allows for estimating future interest rates. Hull and White developed a single

factor model, in which the factor of uncertainty is the short term interest rate [76]. The model

is expressed as the stochastic differential equation

dr(t) = (θ(t) − a r(t)) dt + σdz, (3.8)

40

where r(t) denotes the instantaneous short rate at time t, σ is the volatility, and dz is an

increment of a standard Wiener process. The stochastic process specified is a mean reverting

process with an average short rate θ(t) as a function of time, and adjustment rate a. The model

can be calibrated such that it is consistent with an initial term structure.

In order to efficiently implement numerical pricing procedures, a discrete representation of

the model has been chosen. The continuous time model (3.8) is approximated by a trinomial

lattice, the so called Hull and White tree. It describes the future development of interest rates

in discrete time, with increment ∆t, and discrete interest rate value. Each node represents a

state, defined by a time value and an interest rate value, which is the spot rate for maturity

∆t. The lattice is evenly spaced in the interest rate dimension, with interval ∆r.

Nodes are denoted by the pair (m, j), where m is a time index and j is an interest rate

index. Node (m, j) represents a time value of m∆t and an interest rate value of αm + j∆r,

0 ≤ m ≤ M , where M is the number of time steps, αm an adjustment term, and j is bounded

by jmin ≤ j ≤ jmax. Node (m, j) has three successor nodes (m + 1, succdir (j)) with transition

probabilities pdir (j), where dir ∈ {up, mid, down}. Both the successors and the probabilities

depend on the interest rate index j only. Figure 3-3 shows an example of a Hull and White

tree with ∆t = 1 year and ∆r = 0.0173.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

∆t spot rate

0 1 2 3 4 5

time [years]

(1,1)

(1,0)

(1,-1)

pmid = 0.67
pdown = 0.16

pup = 0.16

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

...

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

..

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

...

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........

Figure 3-3: Hull and White interest rate tree

41

According to Hull and White, the spacing between interest rates ∆r is set to ∆r = σ
√

3∆t.

The probabilities are specified such that they are consistent with the probability properties of

the continuous model. More precisely, both the expected change in r and the variance of the

change in r over the next interval ∆t must be matched. In addition, pup + pmid + pdown = 1.

These conditions allow for an initial calculation of the probabilities. In order to take into

account the mean reverting property, the probabilities need to be adjusted.

Using a forward induction method, the lattice is calibrated to the initial term structure [83].

Let Qm,j denote the present value of a zero coupon bond maturing at time m∆t that pays 1 if

state (m, j) is reached and 0 otherwise. The Qm,j are also called state prices. Their values can

be computed inductively, starting with Q0,0 = 1, according to

Qm+1,j =
∑

k

Qm,kq(k, j) exp (−rm,k∆t), (3.9)

where q(k, j) denotes the probability of a transition from node (m, k) to node (m + 1, j), and

the summation is over all k for which this is positive, i.e., for all predecessor nodes [161]. The

price of a discount bond maturing at time (m + 1)∆t can be expressed as

Pm+1 =
∑

j

Qm,j exp (−rm,j∆t). (3.10)

The tree construction procedure takes as an input the number time steps M , the length

of a time step (in years) ∆t, the model parameters σ and a, and the initial term structure

rinit. In a first phase, the interest rate interval ∆r, the tree height, defined by jmin and jmax,

and the successor probabilities for each j are calculated. A preliminary version of the tree is

defined by assigning the rate r′m,j = j∆r to each node. In a second phase, the preliminary tree

is adjusted to the initial term structure by computing the ∆t spot rates rm,j = αm + r′m,j . The

values αm are computed iteratively, starting with α0 = rinit(∆t), the current ∆t spot rate. The

calculation of αm uses the vector Qm, and the calculation of Qm uses the value αm−1 of the

previous step. In the final phase, the instantaneous short rate is calculated from the ∆t spot

rate at each node, and from the latter an entire term structure is derived. Based on the interest

rate lattice, numerical pricing algorithms can be applied [47, 113].

42

3.2 Multistage Stochastic Portfolio Optimization

Problems in which decisions are made in stages occur in different areas, for example in resource

acquisition, reservoir optimization, and in asset and liability management. In fact, they rep-

resent an important class of the problems dealt with in finance. Finding optimal investment

strategies is important for long term investors, especially those who wish to achieve goals and

meet future obligations.

Portfolio management is a classical problem in financial optimization. An investor chooses a

portfolio of various assets, in such a way that some objective, including a risk measure, is max-

imized, subject to uncertainty of future markets’ development and additional constraints such

as budget restrictions. Objectives of a portfolio optimization problem include the maximization

of an investors return, cash-flow, wealth, or some utility function. The result is a decision on

how to spend a budget on different investments, or investment categories, respectively. If future

asset returns are not known, a decision problem under uncertainty must be solved, which can

be formulated as a stochastic programming model. If, in addition, the portfolio is rebalanced

at several dates within a planning horizon, i.e. decisions are taken in stages, there is a dynamic

multistage stochastic program [117].

The uncertainty of future asset returns is modeled by means of a tree structured repre-

sentation of future scenarios for asset prices, e.g., stock prices, along with their realization

probabilities. The investor has to plan all present and future activities conditional on the re-

alized scenario. Figure 3-4 shows a two-stage problem for three assets, based on three future

scenarios, for increasing, decreasing, and constant remaining asset prices. Circle sizes corre-

spond to portfolio values. The optimal decisions at the second stage depend on the asset prices

in that period and on the decision taken at the first stage. The objective is, e.g., the maximiza-

tion of the expected value of the portfolio after the second-stage decision. It can be expressed

as the sum of the portfolio values, weighted with the scenario realization probabilities at the

terminal nodes.

43

second−stage decisions

a

first−stage decision

b

c
a

b

c

a
b

c a
b

c

a
b

c
a

b
c

a
c
b a b

c

Figure 3-4: Two-stage portfolio optimization problem

3.2.1 Specification of Node Problems

Problems in which decisions are made in stages can be described by means of tree structured

models. A scenario tree defines the possible developments of the environment in which the

decisions are taken. Every node of the tree corresponds to a specific future scenario. At every

node, based on the scenario assigned to it, a node specific objective function is formulated. The

multistage stochastic optimization problem (3.11) is defined in terms of the sum of all node

specific objectives.
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Minimize
∑

n∈N

fn(xn)

∀(n ∈ N)

Tnxpre(n) + Anxn = bn

xn ∈ Sn,

(3.11)

where N denotes the set of nodes in the scenario tree. Every node n ∈ N is associated with

a local objective function fn wrt. decision variables xn. The constraints expressed by An, bn,

and Tn represent the dependency of the current decision xn on the decision xpre(n) taken at

the previous stage, i.e., at predecessor node pre(n). They are called linking constraints, the

variables xpre(n) are called linking variables. In addition, there are constraints local to the

44

node, denoted by Sn. If n is the root, then Tn = 0. In the following, the optimization problems

maximization of terminal wealth and index tracking are defined in terms of linear node problems.

A node problem is defined by the local objective fn and both local and linking constraints. Its

decision variables x̄n combine the local decision variables xn and the linking variables xpre(n).

If the objective function fn and the constraints in (3.11) are linear, a node problem can be

formulated as the linear program
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Minimize c̄T
n x̄n

s.t.

Ānx̄n ≤ b̄n

x̄n ≥ 0.

(3.12)

Here, the objective function is defined by the cost vector c̄n. Local as well as linking constraints

are described by means of the constraint matrix Ān and the right hand side b̄n. The speci-

fication of all node problems defines the whole optimization problem. In the decomposition

procedure, the node problems form the cores of the linear programs to be solved at each node

(see Section 4.2.2). The objective functions and constraints specified in the following are based

on the approaches of [129, 130, 154].

Let Nc denote the number of financial contracts in a portfolio, c denote the amount of cash

in the portfolio at a node, hi denote the number of pieces of contract i held, bi denote the buy

price for of one piece of contract i, si denote the sell price, and vi denote its value, respectively.

The value is set equal to the sell price, thus the total portfolio value V at the node is

V = c +

Nc
∑

i=1

hivi, (3.13)

with vi = si. The number of decision stages is denoted by T , the absolute probability of a

node by pn, and the set of tree nodes at time stage t, 0 ≤ t ≤ T , is denoted by Nt. Note that
∑

n∈Nt
pn = 1. In the following, the node index n can be omitted, if the context is clear.

3.2.2 Maximization of Terminal Wealth

The objective function is

Maximize E(VT) =
∑

n∈NT

pnVn, (3.14)

45

the maximization of the terminal wealth, defined as the expected value of the portfolio value

vT at the final decision stage, where the total portfolio value at node n is denoted by vn.

The local linear program has 3Nc +1 decision variables. For every contract i, there is a hold

variable x̄
(h)
i , representing the number of pieces of the contract held in the portfolio—after the

decision taken, a buy variable x̄
(b)
i , representing the number of pieces being bought as a part of

the decision, and a sell variable x̄
(s)
i , representing the number of pieces being sold. In addition,

there is a cash variable x̄(c), representing the amount of cash in the portfolio—after the decision

taken. Short selling is not permitted. Note that (3.12) allows for non-integer numbers of pieces

of contracts. Both cash and hold variables are linking variables. They are part of the right

hand sides of the successors’ problems.

x̄(c)

x̄
(h)
1

x̄
(h)
2

x̄
(h)
3

x̄
(b)
1

x̄
(b)
2

x̄
(b)
3

x̄
(s)
1

x̄
(s)
2

x̄
(s)
3

−p
−p v1

−p v2

−p v3

0
0
0

0
0
0

pre(n).x̄(c)

pre(n).x̄
(h)
1

pre(n).x̄
(h)
2

pre(n).x̄
(h)
3

0
0
0

variables cost vector right hand side

Table 3-1: Terminal wealth maximization problem

The cost vector c̄ has 3Nc + 1 elements. For all nodes other than the terminal nodes, c̄ = 0.

For terminal nodes, the first Nc + 1 entries are the cash- and contract values, weighted with

probability p. The local objective function is the minimization of the portfolio value at the node,

weighted with probability p. The sum of the local objective functions is the global objective, in

fact, it is the maximization of the expected portfolio value at the final stage. The formulation

of the objective function as a minimization requires the entries of the cost vector to be negative.

The constraint matrix Ā has 3Nc + 1 columns and 2Nc + 1 rows. The first Nc + 1 rows

represent balance equations for cash and contract holdings, including dependencies from the

previous stage problem, through the linking variables. Note that, with the terminal wealth

46

maximization objective, they need not to be equality constraints. The last Nc rows describe

additional (local) constraints, the maximum contribution βi of the value of contract i to the

total portfolio value. They are needed to prevent portfolios consisting of a single asset only.

cash hold buy sell

1 0 0 0 b1 b2 b3 −s1 −s2 −s3

0 1 0 0 −1 0 0 1 0 0
0 0 1 0 0 −1 0 0 1 0
0 0 0 1 0 0 −1 0 0 1

−β1 (−β1 + 1)v1 −β1v2 −β1v3 0 0 0 0 0 0
−β2 −β2v1 (−β2 + 1)v2 −β2v3 0 0 0 0 0 0
−β3 −β3v1 −β3v2 (−β3 + 1)v3 0 0 0 0 0 0

Table 3-2: Constraint matrix of terminal wealth maximization problem

The right hand side vector b̄ has 2Nc + 1 elements. For t > 0, the first Nc + 1 elements are

the values of the linking variables (the cash- and hold values of the previous stage—after the

decision taken). During the solution procedure they are retrieved from the predecessor node.

At the root node, these are the initial cash- and hold values.

Table 3-1 and Table 3-2 illustrate the local linear program for Nc = 3. Figure 3-5 shows as

an example of a terminal wealth maximization problem, defined on a binary scenario tree. For

the root (node 1) and its successors (nodes 2 and 3), the constraint matrix Ā, as well as the

right hand side b̄, and the cost vector c̄ are given.

3.2.3 Index Tracking

The objective function is

Minimize E(| Vt − It |) =
∑

n∈Nt

pn|Vn − It|, (3.15)

which is equivalent to the minimization of the mean absolute deviation of the tracking error

dt = Vt − It between the portfolio value Vt and an index value It, for all time stages t ≥ 1. The

sequence I1, . . . , IT of index values is an external parameter to the problem. It can be derived

from historical data, which allows for backtesting an index tracking model [154]. Alternatively,

the index values can be calculated as a function of the prices of instruments in a set which

defines the index, allowing for deriving a future investment strategy. The local linear programs

47

node 1

A = (1.00 0.00 0.00 0.00 122.64 183.32 206.18 -112.64 -173.32 -196.18

0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00

-0.50 56.32 -86.66 -98.09 0.00 0.00 0.00 0.00 0.00 0.00

-0.54 -60.83 79.73 -105.94 0.00 0.00 0.00 0.00 0.00 0.00

-0.47 -52.94 -81.46 103.97 0.00 0.00 0.00 0.00 0.00 0.00)

b=(3000.00 10.01 9.68 9.81 0.00 0.00 0.00)

c = (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00)

node 2

A = (1.00 0.00 0.00 0.00 139.66 178.38 244.03 -129.66 -168.38 -234.03

0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00

-0.50 64.83 -84.19 -117.02 0.00 0.00 0.00 0.00 0.00 0.00

-0.54 -70.02 77.45 -126.38 0.00 0.00 0.00 0.00 0.00 0.00

-0.47 -60.94 -79.14 124.04 0.00 0.00 0.00 0.00 0.00 0.00)

b = (0.00 0.00 0.00 0.00 0.00 0.00 0.00)

c = (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00)

node 3

A = (1.00 0.00 0.00 0.00 147.50 260.44 428.80 -137.50 -250.44 -418.80

0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 1.00

-0.50 68.75 -125.22 -209.40 0.00 0.00 0.00 0.00 0.00 0.00

-0.54 -74.25 115.20 -226.15 0.00 0.00 0.00 0.00 0.00 0.00

-0.47 -64.62 -117.71 221.96 0.00 0.00 0.00 0.00 0.00 0.00)

b = (0.00 0.00 0.00 0.00 0.00 0.00 0.00)

c = (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00)

Figure 3-5: Node problems for terminal wealth maximization

48

of the index tracking problem are presented in terms of differences to the terminal wealth

maximization problem (see Section 3.2.2). For the root node, the local problem is identical to

terminal wealth maximization.

x̄(c)

x̄
(h)
1

x̄
(h)
2

x̄
(h)
3

x̄
(b)
1

x̄
(b)
2

x̄
(b)
3

x̄
(s)
1

x̄
(s)
2

x̄
(s)
3

d+

d−

0
0
0
0

0
0
0

0
0
0

p
p

pre(n).x̄(c)

pre(n).x̄
(h)
1

pre(n).x̄
(h)
2

pre(n).x̄
(h)
3

0
0
0

It

variables cost vector right hand side

Table 3-3: Index Tracking problem (Nc = 3)

The difference dn = Vn − It, n ∈ Nt, between the portfolio value at a node and the index

value is represented as dn = d+
n − d−n , d+

n ≥ 0 and d−n ≥ 0 . The vector of variables is extended

by the variables d+and d−. The cost vector c̄ refers to the newly introduced variables only. For

the root node, c̄ = 0. For all other nodes, the local objective function is the minimization of

d+ + d−, which is is equivalent to the minimization of |d| = |d+ − d−|. If d+ + d− is minimal,

either d+ = 0 or d− = 0. The sum of the local objective functions is the global objective, i.e.

the minimization of
∑

1≤t≤T

∑

n∈Nt

pn(d+
n + d−n), (3.16)

which is equivalent to the minimization of
∑

n∈Nt
pn|dn| for all time stages t ≥ 1. If the total

sum is minimal, then the partial sums related to the individual time stages are minimal. The

constraint matrix Ā shows an additional row for the difference between the portfolio value and

the index value

d = c +

Nc
∑

i=1

x̄
(h)
i vi − It = d+ − d−, (3.17)

49

which is represented by an equality constraint. Also the first Nc + 1 (linking) constraints

are equality constraints. The right hand side vector b̄ has an additional element for the new

constraint.

cash hold buy sell d+ d−

1 0 0 0 b1 b2 b3 −s1 −s2 −s3 0 0
0 1 0 0 −1 0 0 1 0 0 0 0
0 0 1 0 0 −1 0 0 1 0 0 0
0 0 0 1 0 0 −1 0 0 1 0 0

−β1 (−β1 + 1)v1 −β1v2 −β1v3 0 0 0 0 0 0 0 0
−β2 −β2v1 (−β2 + 1)v2 −β2v3 0 0 0 0 0 0 0 0
−β3 −β3v1 −β3v2 (−β3 + 1)v3 0 0 0 0 0 0 0 0

1 v1 v2 v3 0 0 0 0 0 0 −1 1

Table 3-4: Constraint matrix of index tracking problem (Nc = 3)

3.2.4 Problem Generation

<!ELEMENT treeproblem (nnodes, ncontr, node+)>

<!ELEMENT nnodes (#PCDATA)>

<!ELEMENT ncontr (#PCDATA)>

<!ELEMENT node (obj?, constr+)>

<!ELEMENT obj (#PCDATA)>

<!ELEMENT constr (lhs, rhs?)>

<!ATTLIST constr type (less|equal|greater) "less">

<!ELEMENT lhs (#PCDATA)>

<!ELEMENT rhs (#PCDATA)>

Figure 3-6: Document type definition of a node problem

A test problem generator has been developed [114], which takes as an input the number

of tree nodes and the number of contracts and generates an XML file for every tree node,

conforming to the document type definition shown in Figure 3-6. The constraints are described

in terms of the left hand side vector, the right hand side, and the type of the constraint. Optional

elements have a predefined value of zero. Figure 3-7 shows the generated root problem.

50

<?xml version="1.0" standalone="no"?>

<!DOCTYPE treeproblem SYSTEM "treeproblem.dtd">

<treeproblem>

<nnodes> 7 </nnodes> <ncontr> 3 </ncontr>

<node> <n> 1 </n>

<obj> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </obj>

<constr type="equal">

<lhs> 1.0 0.0 0.0 0.0 122.64 183.32 206.18 -112.64 -173.32 -196.18 </lhs>

<rhs> 3000.0 </rhs>

</constr>

<constr type="equal">

<lhs> 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 1.0 0.0 0.0 </lhs>

<rhs> 10.01 </rhs>

</constr>

<constr type="equal">

<lhs> 0.0 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 1.0 0.0 </lhs>

<rhs> 9.68 </rhs>

</constr>

<constr type="equal">

<lhs> 0.0 0.0 0.0 1.0 0.0 0.0 -1.0 0.0 0.0 1.0 </lhs>

<rhs> 9.81 </rhs>

</constr>

...

</node>

...

</treeproblem>

Figure 3-7: XML specification of the root node problem

51

Chapter 4

Solution Procedures

4.1 Numerical Pricing

Analytical pricing formulas for the calculation of the present value (3.2) of interest rate depen-

dent instruments are available for simple cases, but in general numerical techniques have to be

applied, depending on the type of the instrument. For path dependent products, Monte Carlo

simulation techniques are employed [22]. Instruments without path dependence can be priced

by means of the more efficient backward induction method [75]. Both types of methods use

an interest rate lattice, a discrete representation of the stochastic process describing the future

development of interest rates (see Section 3.1.4). A numerical pricing procedure takes as an

input the interest rate lattice and, as a specification of the financial instrument, the principal

payment value and a function calculating the coupon payment at a node. As an output, it

yields the price of the instrument as the present value at the root node.

4.1.1 Monte Carlo Simulation

If the expectation in (3.2) cannot given by a formula, one possibility of determining a numerical

approximation is by employing Monte Carlo simulation. The continuous time stochastic process

(3.8) is represented by a number of paths describing realizations of the process. Every path

is built from samples of the random variable, based on standard normal samples drawn by a

random number generation procedure. Hence there is a discretization in the time dimension,

but not in the dimension of the random variable. Following an alternative approach, paths are

52

sampled on the basis of the interest rate lattice. The resulting discretization in the interest rate

dimension allows for a more efficient sampling procedure [47].

The Monte Carlo simulation algorithm selects a number N of paths πi, 1 ≤ i ≤ N , in

the Hull and White tree from the root node to some final node. Every path corresponds to a

scenario of future interest rates. The present value at time 0 associated with path πi equals

PV
(πi)
0 =

∑

m=1,M

c(πi)
m

∏

k=0,m−1

exp(−r
(πi)
k ∆t), (4.1)

where M denotes the length of the tree, c
(πi)
m denotes the cash flow at time step m in πi, i.e.,

at time m∆t, and rk is the interest rate at time step k in πi, respectively. The average of all

path specific present values

P̂ V 0 =
1

N

∑

i=1,N

PV
(πi)
0 . (4.2)

is an estimate of the price of the instrument. In order to sample from the distribution of paths

as defined by the probabilities in the model, a path is constructed in the following way. Starting

at the root node, for each node (m, j) a successor node (m + 1, j′) is selected, according to the

transition probabilities, such that

j′ =

succdown(j) if r < pdown(j)

succmid(j) if pdown(j) ≤ r < 1 − pup(j)

succup(j) otherwise,

(4.3)

where r denotes a standard uniform number drawn at every time step. The algorithm recursively

discounts along each path, backwards from the final node to the root node, the cash-flow

generated by the instrument. For node (m, j), 0 ≤ m < M , it calculates the present value

PVm,j = (PVm+1,j′ + cm+1,j′) exp(−rm,j∆t), (4.4)

where j′ is the interest rate index of the successor node in the path, and cm+1,j′ is the respective

cash-flow. The recursion starts with PVM,j′′ = 0, where j′′ is the interest rate index of the

final node of the path. For path dependent instruments, the cash-flow depends on interest

rate values at predecessor nodes. Making use of Monte Carlo simulation techniques together

53

with the Hull and White interest rate tree allows for pricing a large spectrum of interest rate

products. However, they are computationally very intensive. For example, modeling one year

on a monthly basis results in approx. 5.3 105 paths, and modelling four years on a weekly basis

results in approx. 1.7 1099 paths.

In case the instrument has an embedded option, the cash-flows need to be adjusted. If

premature redeeming takes place, i.e., if at a node the present value is greater than the exercise

value, the principal payment value is substituted for the cashflow. Starting at the final node,

the conditional substitution is applied recursively for each node of the selected path. Since also

the iterative discounting process is performed backwards, the redefinition of the present value

expresses the cancellation of all future payments.

The modeling of the redeeming decision at a node is further improved by considering the

future cash-flow not only along the path selected, but along a representative subset of all paths

emanating from the node. A nested simulation calculates an approximation of the present value

by applying the same Monte Carlo Simulation algorithm at that node [47]. Thus, at the main

simulation level, paths starting at the root node are selected, and at the nested simulation level,

for every node in such a path, paths emanating from this node are selected in order to derive the

redeeming decision. Figure 4-1 shows a scenario sampled at the main simulation level, defined

by the path emphasized. In order to calculate the redeeming decision at node n, paths within

the shadowed area are sampled.

4.1.2 Backward Induction

If paths are not sampled randomly, but instead, in a deterministic manner, every path of the

total number of M3 paths from the root node to some final node in the lattice is selected once,

the exact (with respect to the lattice) present value PV0 can be calculated as

PV0 =
∑

πi∈Π
(M)
0,0

p(πi) PV
(πi)
0 , (4.5)

where p(πi) is the path’s probability. The notation Π
(`)
m,n is used to describe the set of all paths

of length ` starting at node (m, n). The enumeration of all paths in (4.5) shows a computational

complexity of O(3M), which is exponential in M .

54

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
a
t
e

0 1 2 3 4 5

Time [∆t periods]

n

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......................................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.......................................

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...
...
...
...
...
...
...
...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...
...
...
...
...
...
...
...
...
...
...
...
...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...
...
...
...
...
...
...
...
...
...
...
...
...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...
...
...
...
...
...
...
...
...
...
...
...
...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

...
...
...
...
...
...
...
...
...
...
...
...
...

r

,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4-1: Sampled path and nested simulation

For path independent cash-flows, the backward induction algorithm computes PV0 by re-

cursively applying the following scheme at each node. The present value PVm,j at node (m, j),

0 ≤ m < M , is calculated through discounting the cash-flows and present values at every

(direct) successor node,

PVm,j =
∑

j′

pj′ (PVm+1,j′ + cm+1,j′) exp(−rm,j∆t), (4.6)

where j′ = succdir (j), pj′ = pdir (j), dir ∈ {up, mid, down}. The backward induction starts with

PVM,j = 0, jmin ≤ j ≤ jmax. The algorithm computes in a backward sweep, from the final

nodes to the root node, the price of the instrument as the present value PV0 ≡ PV0,0 at the root

node. Since the present value embodies information of the future of a node which is propagated

backwards in time, this method can be applied only in case the cash-flows are determined by

the state represented by the node, i.e., they are not path dependent. The backward induction

on a mean reverting lattice exhibits a complexity of O(M), which is only linear in M .

4.1.3 Generalized Backward Induction

Searching in sorted data sets is faster than in unsorted ones. It can be performed using an

improved algorithm which exploits a known property of the input data. Similarly, syntax

55

analysis is less costly for context free grammars which are regular. In both cases, known

properties of the problem allow for a faster algorithm. The pricing of some path dependent

derivatives can be performed significantly more efficient if specific characteristics of the path

dependence are considered [111].

4.1.3.1 Limited Path Dependence

For a subclass of path dependent instruments, the price calculation effort can be significantly

reduced, based on the following observation. A path dependent instrument exhibits a restricted

form of path dependence, if the cash-flows depend on “early” values of a financial variable in

the past only.

Definition 1 The depth td of the path dependence of an instrument specified by cash-flows cti

(3.3) is defined as the maximum of the differences between ti and the payment date τi,j of the

earliest cash-flow on which cti depends, i.e.,

td = max
1≤i≤n

(

ti − min
1≤j≤mi

τi,j

)

, (4.7)

where n > 0 is the number of payments dates, and mi > 0 is the number of reference interest

rate realizations Rτi,j
, and τi,j < ti.

If td is small with respect to the life time T of an instrument, in particular, if it is not increasing

with T , the path dependence is termed limited. This is not a definite property of the instrument,

but rather serves to indicate a case in which the optimized algorithm will be profitable. In a

discrete model such as the interest rate lattice, the depth can be quantified by the number d

of time steps corresponding to td. Figure 4-2 shows an example with depth d = 4, i.e., the

cash-flows at time step m depend on interest rates at timesteps m − i, 0 < i ≤ 4.

4.1.3.2 Incomplete present values

A first approach to exploit limited path dependence and to allow for pricing these instruments

more efficiently than, e.g., by Monte Carlo simulation, introduces path dependent present values.

Through calculating the present values at the nodes of the lattice dependent on history paths of

56

m−4 m−1m−3 m−2 m

Figure 4-2: Limited path dependence (d = 4)

length d− 1 (see Figure 4-2), the backward induction scheme could be maintained. However, it

is necessary to calculate at every node 3d−1 different such values. Since they are used repeatedly,

they need to be stored and retrieved, addressed in a costly way via tuples of nodes.

The core step in backward induction is the computation of the present value at a node

through the discounted cash-flows and present values at the direct successor nodes. The prop-

agation of information backwards in time reflects the present value’s property of incorporating

future information (i.e., future cash-flows). Through the iterative application of the induction

step, the information at all successors of a node, representing its complete future, has an im-

pact on the present value at that node. This principle works well if the future information is

fully determined by the state represented by the node. In case of path dependent instruments,

the future cash-flows, and thus the present value, are specific to the history of the node. An

induction step must therefore regard future information only to a part which does not depend

on the history of the node. The design of an induction step in accordance to this condition

leads to a modified kind of present value, which in fact does not take into account cash flows

in the “near” future.

Instruments exhibiting limited path dependence can be priced using a method which gen-

eralizes the backward induction in such a way that it computes the incomplete present value at

57

a node with respect to depth d, denoted by PV
(d)
m,j . With this modified type of present value,

cash-flows paid at times earlier then m + d timesteps in the future (as illustrated in Figure 4-3

by a dotted line) are ignored, i.e., the cash-flows taken into account are those paid at time steps

m+d, m+d+1, . . . , M . The incomplete present value contains information of the future to the

part which is path independent only and thus can be propagated backwards in time. Hence, the

incomplete present value itself is path independent. Note that PV
(1)
m,j = PVm,j . An incomplete

present value defined in this manner has an important property. It can be completed by taking

into account the missing cash-flows. As they are path dependent, a history path of length d−1

is required for the completion operation.

4.1.3.3 The Generalized Backward Induction Algorithm

m m+3m+1 m+2 m+d

Figure 4-3: Induction step in generalized backward induction (d = 4)

The algorithm involves two phases [111]. The first phase is similar to the standard backward

induction, however, it calculates incomplete present values at every node. Unlike (4.6), which

includes the calculation of the present value at time step m of the cash-flows paid at time step

m + 1, the recursion step (4.8) in the generalized backward induction algorithm calculates the

present value at time step m of the cash-flows paid at time step m + d, and adds them to the

present value at time step m of the incomplete present values at the successor nodes PV
(d)
m+1,j′ .

58

The cash-flows at time step m + d are path dependent and are calculated for every path of

length d − 1 emanating from (m, j).

PV
(d)
m,j =

∑

j′

pj′PV
(d)
m+1,j′ exp(−rm,j∆t) +

∑

πi∈Π
(d−1)
m,j

p(πi)c
(πi)
m+d

∏

k=0,d−1

exp(−r
(πi)
m+k∆t), (4.8)

where j′ = succdir (j), pj′ = pdir (j), dir ∈ {up, mid, down}. In the second phase, the incomplete

present value at the root node is completed by adding the present value at time step 0 of the

path dependent cash-flows between time step 1 and d − 1. The latter are calculated based on

the history path ((−d + 1, j′), (−d + 2, j′′), . . . , (0, 0)) concatenated with all paths in Π
(d−2)
0,0 . A

reordering of discounting and summation operations in (4.8) results in a deeper nesting level.

PV
(d)
m,j =

∑

j′

pj′ exp(−rm,j∆t)

PV

(d)
m+1,j′ +

∑

πi∈Π
(d−2)

m+1,j′

p(πi)c
(πi)
m+d

∏

k=0,d−2

exp(−r
(πi)
m+k∆t)

.

(4.9)

With the backward induction algorithm generalized in this manner, the exponential problem

of pricing path dependent derivatives1 is reduced to a fixed-parameter tractable problem for a

particular type of path dependence. On a mean reverting lattice of length M , the price of an

instrument with limited path dependence of depth d can be calculated with a complexity of

O(M 3d−1), which is exponential in small values of d, but still linear in the length of the lattice.

The generalized algorithm includes both the path independent case d = 1 and the full path

dependent case d = M . For the latter, it enumerates all paths emanating from the root node

of length M − 1, which is equivalent to (4.5). For d = 1, it is equivalent to the the standard

backward induction (4.6). As a modification of the algorithm, only a subset of Π
(d−1)
m,j may be

sampled in a Monte Carlo simulation manner.

1The method is not restricted to interest rate derivatives and applies for lattices with an arbitrary number of

successors per node.

59

4.2 Model Decomposition

The dynamic stochastic optimization problem (3.11) can be formulated as a deterministic equiv-

alent problem, if all objective functions and constraints are linear. The resulting large linear

program can be solved by means of, e.g., the Simplex method, however, its extremely sparse

constraint matrix makes an efficient solution difficult. Figure 4-4 illustrates, through displaying

non-zero entries by dots, the sparsity of the 217 × 310 constraint matrix of the deterministic

equivalent of a small terminal wealth problem of three financial contracts with four stages,

where every node has two successors (see Section 3.2.2). Here, the portion of non-zero entries

falls exponentially with approx. 46 · 2−t %, where t is the number of time stages.

Model decomposition algorithms exploit the structure of a problem. They allow for solving

a set of smaller subproblems to optimize components of the problem, e.g., scenarios. The

subproblems are coordinated by a master which repeatedly produces estimates of the overall

solution. Based on the current estimate of the master, a new subproblem is defined and solved.

This procedure continues in an iterative manner [5, 29, 86, 90]. For tree structured problems,

the whole problem is decomposed into (much smaller) subproblems that correspond to the

objective functions and constraints associated with the nodes of the tree.

4.2.1 Two-Stage Decomposition

In the simple case of a two-stage problem, the second stage decomposes into the sum of local

objective functions of all successor nodes. Denoting the root node by m, the two-stage problem

can be formulated as
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Minimize fm(xm) +
∑

n∈succ(m)

fn(xn)

s.t.

Tnxm + Anxn = bn

xm ∈ Sm

xn ≥ 0 for all n.

(4.10)

60

100

200

r
o
w

100 200 300

column

· ················ · ······· ···· ···· ··············· ············

Figure 4-4: Constraint matrix of the deterministic equivalent of a 31-nodes problem

During the iterative solution procedure the master node m makes, for each successor n, use of

the value functions

Qm,n(xm) = min{fn(xn) : Tnxm + Anxn = bn, xn ≥ 0}, (4.11)

describing the optimal solution of the problem associated with successor n as a function of the

decision variable xm at the master node. With these functions, the master node m optimizes

the whole problem (4.10), whereas the slave nodes n solve their local problems while taking

into account the master’s solution. In each iteration, the master minimizes

fm(xm) +
∑

n∈succ(m)

Qm,n(xm), (4.12)

sends the solution to the slaves, and receives constraints from the slaves which will improve its

solution in the next iteration.

61

4.2.2 Nested Benders Decomposition

The decomposition principle can be applied to multistage, tree structured problems [16]. In

the nested version of Benders decomposition, every intermediate node of the tree acts both as

a master and as a slave, whereas the root node acts only as a master, and leaf nodes only as

slaves. In the following, let m denote the master node pre(n) of node n. The value functions

are defined recursively as

Qm,n(xm) = min
{

fn(xn) +
∑

k∈succ(n) Qn,k(xn) : Tnxm + Anxn = bn, xn ≥ 0
}

, (4.13)

and express the dependence of the non-local part of the global objective of the master (more

specifically, those parts associated with the slaves) on the value of the local variable xm. Ac-

tually, the value functions are approximated by maxima of linear functions, which form a set

of linear constraints called optimality cuts. In the following, one iteration step of the algorithm

performed by tree node n is described for both the master and the slave role. In iteration i,

node n uses the approximation Q
(i)
n,k of the value function related to successor k. R

(i)
n denotes a

set of feasibility constraints called feasibility cuts. By sending a so called null cut signal a slave

notifies its master that the approximation of the value function is correct.

Algorithm Nested Benders Decomposition

Step 0: Initialize i = 0, R
(0)
n , Q

(0)
n,k.

[Slave] Step 1: Node n receives the solution x
(ı̂)
m , calculated by the master in iteration ı̂, and

the current approximation value q̂ = Q
(ı̂)
m,n(x

(ı̂)
m) from the master node.

[Master] Step 1: Node n receives cuts from the slave nodes.

Step 2: Node n solves the local problem

∥

∥

∥

∥

∥

∥

∥

∥

Minimize fn(xn) +
∑

k∈succ(n)

Q
(i)
n,k(xn)

s.t. Tnx
(ı̂)
m + Anxn = bn, xn ∈ {Sn ∩ R

(i)
n }, xn ≥ 0.

(4.14)

If the problem is feasible, it yields solution xn with objective value qn.

62

[Master] Step 3: If the problem (4.14) is feasible, node n sends the solution xn and the

approximation values Q
(i)
n,k(xn) to every slave k.

[Slave] Step 3: If the problem (4.14) is feasible, node n compares the objective value qn with

the master’s approximation q̂.

[Slave] Step 3.1: If the approximation is correct, i.e., qn ≤ q̂, the master is notified via

sending a null cut signal.

[Slave] Step 3.2: Otherwise, the hyperplane c(ξ) = λnξ + τ is calculated and sent to

the master as an an optimality cut, forming an additional constraint to the master’s

problem. λn is the dual solution of (4.14) and τ = qn − λnx
(ı̂)
m . This constraint will

improve the master’s approximation of the value function related to node n.

[Slave] Step 3.3: If the problem (4.14) is infeasible, a new constraint to the master’s

problem is calculated and sent as a feasibility cut to the master. By this it is ensured

that in a following iteration the local problem, based on the master’s solution taking

this feasibility cut into account, has a feasible solution.

Step 4: Let i ← i + 1 and return to Step 1.

If a node has received null cuts from all slaves, it enters a sleeping state from where it

resumes by receiving a new solution from its master or new (non null) cuts from its slaves.

Once the root node enters the sleeping state when the rest of the tree is in the sleeping state,

the optimal solution of the whole problem has been found and the algorithm terminates.

In the original version of the method, each node receives the solution from its master, builds

and solves the local problem, and sends the solution to its slaves. Then it waits until it received

cuts from every slave. The solution process takes the form of forward- and backward sweeps over

the whole tree. It is possible to relax the tight coupling between master and slaves by allowing

a node to use any new data—from its master or from its slaves, as soon as it is available—for

the building of a new linear program, resulting in a more general, asynchronous version of the

algorithm (see Section 5.4.2). More detailed discussions, including the calculation of feasibility

cuts, can be found in [117, 128].

63

Chapter 5

Parallel Implementation

In the following, the parallelization of the solution procedures described in Chapter 4 is dis-

cussed in detail. The parallel implementation of numerical pricing procedures is presented in

Sections 5.1–5.3. Parallel versions of nested Benders decomposition are presented in Section 5.4.

5.1 Monte Carlo Simulation

A parallel pricing kernel has been developed [47, 113] based on Fortran 90, by annotating the

Fortran 90 program with HPF and HPF+ directives (see Section 2.1) and compiling it with

the VFC compiler (see Section 2.2). Fortran 90 supports a modular programming style while

providing a vector notation for arrays. The pricing kernel builds the lattice representation of

the interest rate model and applies pricing algorithms, based on an interest rate lattice and the

cash-flow specification of an instrument. It comprises several modules, encapsulating the Hull

and White tree, the specification of instruments (see Section 3.1.3), basic financial operations,

e.g., discounting, and both the Monte Carlo simulation and backward induction algorithms.

REAL(dbl) :: rate(0:maxM,minJ:maxJ,0:maxM) ! interest rates

TYPE(direction) :: successor(minJ:maxJ) ! successors

TYPE(direction) :: probability(minJ:maxJ) ! probabilities

REAL(dbl) :: factor(0:maxM,minJ:maxJ) ! discount factors

Figure 5-1: Data representation of the interest rate lattice

64

The major data structure is the representation of the Hull and White tree, as shown in

Figure 5-1. Data structures describing graphs are often based on a node data type with pointers

to successor nodes. In order to save dereferencing costs during state transitions, a more efficient

array representation has been chosen. Every array element represents an entire term structure.

The height of the lattice is defined by minJ:maxJ, and direction is a type with components

for the up-, mid-, and down direction. The element rate(m,j,k) holds the interest rate with

maturity k∆t in the state (m,j). Successors and probabilities are independent of the time step.

The discount factors associated with the lattice nodes are computed in the lattice building

procedure and stored in the array factor.

TYPE(instrument) :: inst ! the instrument to be priced

INTEGER :: path(0:maxM) ! path in the Hull and White lattice

INTEGER :: nPaths ! number of paths selected

REAL(dbl) :: price(nPaths) ! path specific prices

DO i = 1, nPaths

path = randomPath(0, 0, maxM) ! select a path starting at the root node

! discount the cashflow to time 0 using the discount factors at the path

price(i) = discount(0, cashFlow(inst,1,maxM), factorAt(path))

END DO

priceFinal = SUM(price)/nPaths

Figure 5-2: Monte Carlo simulation on the interest rate lattice

The Monte Carlo simulation module computes the price of a financial instrument as the

present value at the root node of the Hull and White tree (see Section 4.1.1). Figure 5-2

shows the main simulation loop. The randomPath() function samples a path by choosing

successor nodes according to the transition probabilities. The discount() function discounts

the sequence of cash-flows returned by cashFlow(), based on a vector of discount factors. The

latter is returned by factorAt(), corresponding to the interest rates at the selected path. For

embedded options, the discounting function performs a test for redeeming at every node, based

on the present value of future cash-flows along the selected path. For nested simulations, at

both levels the same recursive simulation procedure is called. During the simulation at the

65

first level, it calls an extended discount function, which calls the same simulation procedure to

perform the second level simulation. At that level, redeeming can again be handled by a nested

simulation at an additional, third level, or by the standard discount function, i.e., without

further recursion. In fact, the nesting level can arbitrarily be chosen as a parameter to the

procedure.

5.1.1 Parallelization Strategy

Interest Rate Lattice During the simulation, data at all nodes of the lattice is potentially

needed by every path, thereby motivating the replication of the lattice. The storage requirement

is not critical in terms of local memory size, however, according to the owner-compute rule,

the replication of the lattice implies also the lattice building procedure to be replicated. On

the other hand, the calculation (3.9) of the values Qm,j exhibits dependencies which require

communication and thus limit the parallelism achievable in a parallelized lattice construction.

Moreover, the distributed lattice generated needs to be totally replicated, i.e., at every compute

node the local portion of the generated lattice must be sent to the other compute nodes. The

resulting all-to-all communication is expensive and burdens the parallel performance. Because

the frequency of price calculations is much higher than that of the construction of a new interest

rate lattice, both the data structures and the construction procedure are replicated.

Monte Carlo Simulation Sampling as well discounting along paths can be performed in

parallel. No communication is necessary, because the processing of a path has access to the

whole (replicated) lattice, and it is independent of every other path. The final price is computed

via a summation of the prices associated to the individual paths over all compute nodes. This is

the only operation which requires communication. A sum reduction operation calculates partial

sums on all compute nodes simultaneously and sends the partial results to a selected compute

node which builds the final sum.

5.1.2 HPF+ Version

The parallelization strategy described has been expressed in HPF+. The array price stores

the prices calculated along individual paths. It is distributed in equally sized blocks onto the

66

!HPF$ PROCESSORS P(number_of_processors())

REAL(dbl) :: price(nPaths)

!HPF$ DISTRIBUTE (BLOCK) ONTO P :: price

Figure 5-3: Data distribution of parallel Monte Carlo simulation

available compute nodes, inquired by the HPF intrinsic function number of processors(), as

shown in Figure 5-3.

In addition to distributing the data, potential parallelism needs to be specified. Figure 5-4

shows the parallel version of the main loop. HPF+ offers a number of directives which assist the

compiler in parallelizing the code. In particular, the INDEPENDENT directive marks the main loop

of the Monte Carlo simulation, indicating that the loop does not contain dependencies which

might inhibit parallelization. It is annotated with further clauses that enforce the generation

of efficient code. The NEW clause specifies that every iteration of the loop owns a private copy

of variable path, which consequently cannot introduce any dependence. ON HOME applies the

owner-compute rule, RESIDENT asserts that all data accesses are local, and the REUSE clause

allows for the reuse of communication schedules. Finally, the summation of the prices related

to individual paths in variable priceSum is marked as a REDUCTION to allow for an optimized

implementation. The discount(), cashFlow(), and factorAt() functions, called from within

the INDEPENDENT loop have been designed in such a way that they conform to PUREST.

Each compute node executes the iterations which, according to the distribution, compute

the elements of the array price the compute node owns. The summation has been transformed

from vector form to a sequential form, because a reduction operation based on the HPF SUM

intrinsic is not supported by the version of the VFC employed. For nested simulations, the

second level is not parallelized, because the maximum parallelism is already exploited at the

first level. This poses a problem related to the recursive use of the simulation procedure. So

far it specifies a distributed computation, which is required for the first level only. Therefore,

a clone of the procedure, without distribution, performs the nested simulations. A dynamic

data distribution [30], including the total replication in its distribution range, would allow for

a version of the procedure which is parameterized with regard to the distribution.

67

priceSum = 0.0d0

!HPF$ INDEPENDENT, NEW(path), ON HOME(price(i)), RESIDENT, REUSE, REDUCTION(priceSum)

DO i = 1, nPaths

path = randomPath(0,0,maxM)

price(i) = discount(0, cashFlow(inst,1,maxM), factorAt(path)) ! purest call

priceSum = priceSum + price(i)

END DO

priceFinal = priceSum/nPaths

Figure 5-4: Parallel Monte Carlo simulation

5.1.3 Experimental Results

5.1.3.1 Numerical Results

In the following, numerical results for coupon bonds with fixed or variable interest rates and

embedded options are presented. The variable interest rate is specified as the SMY approxi-

mated by a linear combination of spot rates as described in Section 3.1.2. In addition, prices

of SMY floaters with variable caps and floors are given. These products are path dependent

and hence do require Monte Carlo simulation. Although this does not apply to the products

of the first group, their prices are given for the purpose of demonstrating differences between

simulated and precise values.

Tables 5-1–5-3 show prices of bonds with embedded options. The Hull and White tree is

calibrated to an initial term structure rinit(t) = 0.08−0.05e−0.18t, and the model parameters are

specified as a = 0.1, σ = 0.25, ∆t = 1 year. The SMY at time m∆t is given by SMY(m∆t) =

0.95r(5∆t)(m − 1, j)+0.05r(7∆t)(m − 1, j). The theoretical price in case of a fixed coupon bond

is the result of discounting along the initial term structure. In addition to the prices calculated

by traversing all paths in the lattice, results of Monte Carlo simulations are reported. The

sampling rates for these simulations are given as percentages of the total number of paths,

which equals to 3M . For the nested version in case of embedded options, the same percentage

has been choosen at the first and the second level. For all simulations, the relative differences

ε′ (to the price calculated by traversing all paths at the first level only), and ε′′ (to the price

68

method coupon
fix variable

option option
no yes no yes

theoretical 9332.61
backward 9332.61 9131.09 10537.83 10186.02
all paths 9332.61 9081.20 10537.83 10177.30

10% 9365.94 ε′ 0.357 9131.38 ε′ 0.552 10548.37 ε′ 0.100 10183.93 ε′ 0.065
1% 9548.40 ε′ 2.312 9285.55 ε′ 2.250 10597.04 ε′ 0.561 10193.15 ε′ 0.155

nested all paths 9107.67 10185.27
10% 9097.06 ε′′-0.116 10183.45 ε′′-0.017
1% 9171.73 ε′′ 0.703 10191.01 ε′′ 0.056

10% once 9047.72 ε′′-0.658 10180.59 ε′′-0.045
1% once 9302.12 ε′′ 2.135 10192.16 ε′′ 0.067

Table 5-1: Prices of 6 year bonds

method coupon
fix variable

option option
no yes no yes

theoretical 8883.49
backward 8883.49 8703.52 10540.12 10174.84
all paths 8883.49 8592.34 10540.13 10148.45

10% 8895.03 ε′ 0.129 8597.73 ε′ 0.062 10542.87 ε′ 0.026 10148.00 ε′-0.004
1% 8882.95 ε′-0.006 8622.23 ε′ 0.347 10542.28 ε′ 0.020 10152.76 ε′ 0.042

nested all paths 8626.26 10171.85
10% 8625.38 ε′′-0.010 10172.13 ε′′ 0.002
1% 8602.90 ε′′-0.270 10170.63 ε′′-0.012

10% once 8622.27 ε′′-0.046 10172.46 ε′′ 0.006
1% once 8557.21 ε′′-0.800 10172.16 ε′′ 0.003

Table 5-2: Prices of 8 year bonds

69

method coupon
fix variable

option option
no yes no yes

theoretical 8476.90
backward 8476.90 8249.79 10525.22 10164.51
all paths 8476.90 8150.92 10525.22 10116.92

10% 8475.38 ε′-0.017 8147.16 ε′-0.046 10524.61 ε′-0.006 10116.56 ε′-0.004
1% 8512.37 ε′ 0.418 8168.58 ε′ 0.216 10534.62 ε′ 0.089 10117.71 ε′ 0.008

nested all paths 8179.09 10160.34
10% 8178.26 ε′′-0.010 10160.27 ε′′-0.001
1% 8189.47 ε′′ 0.126 10160.96 ε′′ 0.006

10% once 8153.83 ε′′-0.308 10160.39 ε′′ 0.001
1% once 8233.72 ε′′ 0.667 10160.74 ε′′ 0.004

Table 5-3: Prices of 10 year bonds

calculated by traversing all paths at both levels, i.e., via nested simulation) are presented. As an

optimization, it is possible to reuse the result of a nested simulation at a node, when this node

is encountered later on, during subsequent simulations. In this version, at every node a nested

simulation is performed only once, however, independence of the samples is not maintained.

12 months 18 months
10% 15030.79
1% 15025.08

0.1% 15021.14 20531.19
0.01% 20518.46

0.001% 20514.67

Table 5-4: Prices of bonds with variable cap/floor

For the floaters with varying caps and floors, a precise result (with respect to the lattice)

would require to solve for 320 scenarios in case of 20 time steps, which is virtually impossible.

Hence Monte Carlo simulation is the only feasible approach. Table 5-4 presents numerical re-

sults based on r0 = 5%, rB = 3.5%, k = 3%, f = 8%, ∆t = 1 month, and maturities of 12

and 18 months. The corresponding execution times on a Sun Ultra 2 workstation are given in

Table 5-5. The comparison of execution times for the different methods in Table 5-6 demon-

strates, that the added effort for the nested simulation is very high. Significant improvements

can be gained through the reuse of simulation results.

70

sampling rate 12 months 18 months
10% 15.041
1% 1.525

0.1% 0.195 155.977
0.01% 15.502

0.001% 1.600

Table 5-5: Execution times of Monte Carlo simulation (seconds)

method 10∆t-period 8∆t-period 6∆t-period
backward 0.108
all paths 9.694

10% 0.914
1% 0.106

nested all paths 27614.018 2579.550 255.928
10% 4712.586 6.723 1.435
1% 110.993 2.543 0.428

10% once 14.655
1% once 2.090

Table 5-6: Execution times for a variable coupon bond with embedded option (seconds)

5.1.3.2 Performance Results

The performance of the parallelized program has been measured on both the Meiko CS-2 HA and

NEC Cenju-4 distributed memory systems. The program has been compiled with the Vienna

Fortran compiler (VFC) which makes use of the PARTI runtime routines [42]. Figure 5-5 shows

execution times of parallel Monte Carlo simulations with 10% of the total 59049 paths sampled

on up to 32 compute nodes of the Meiko CS-2. The parallelization is very efficient, since the

communication overhead, induced only by the computation of the total sum, is small. The

computationally intensive part is performed in parallel without communication.

Figure 5-6 shows the execution times and the speedup for a number of test cases, which

vary in the number of timesteps, i.e., the length of the paths and the number of paths sampled,

running on up to 64 compute nodes of the NEC Cenju-4. The impact of the communication

overhead—due to the sum reduction operation—on the efficiency increases with the number

of compute nodes, but decreases with the problem size. For larger problems, the speedup

achieved is close to linear. Figure 5-7 shows the effect of different parallelization strategies on

the performance of the main simulation loop. In the first version (a), the distribution of array

71

0.0

0.2

0.4

0.6

0.8

1.0

s
e
c

Execution times
Meiko CS-2 HA

Np = 12 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

◦

◦

◦
◦

◦ ◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

◦

◦

◦
◦

◦ ◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¦

¦

¦

¦
¦ ¦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

¦

¦

¦

¦
¦ ¦

0.0

4.0

8.0

12.0

16.0

20.0

24.0

28.0

32.0

Speedup
Meiko CS-2 HA

Np = 12 4 8 16 32

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

◦ ◦
◦

◦

◦

..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

◦ ◦
◦

◦

◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¦ ¦
¦

¦

¦

..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

¦ ¦
¦

¦

¦

◦ fix coupon
¦ variable coupon

............................. with embedded option

........ without option

Np number of compute nodes
. . . linear speedup

Figure 5-5: Performance of bond pricing via Monte Carlo simulation—HPF+ version

72

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Execution times
NEC Cenju 4

Np = 124 8 16 32 64

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

¦

¦

¦
¦

¦ ¦ ¦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
..

¦

¦
¦ ¦ ¦ ¦ ¦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

◦
◦◦ ◦ ◦ ◦ ◦
.

.

.

.

.
.
.
.
...

◦◦◦ ◦ ◦ ◦ ◦ 0.0

8.0

16.0

24.0

32.0

40.0

48.0

56.0

64.0

Speedup
NEC Cenju 4

Np = 124 8 16 32 64

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

¦¦
¦

¦

¦

¦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¦¦
¦

¦

¦

¦

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

◦◦
◦

◦

◦

◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

◦◦
◦

◦

◦

◦

◦ 10000 paths
¦ 40000 paths

............................. 40 time steps

........ 10 time steps

Np number of compute nodes
. . . linear speedup

Figure 5-6: Performance of bond pricing via Monte Carlo simulation—HPF+ version

73

price, via the DISTRIBUTE directive, onto all compute nodes is the only parallelization directive

applied. Every compute node executes all loop iterations, however, the assignment statetment

is masked, i.e., it is executed only in case a compute node owns price(i). The summation of

the path results is totally replicated, i.e., every compute node computes the final priceSum, and

thus has to exchange data with every other compute node, which causes a large communication

overhead. For the second version (b), the REDUCTION directive enforces an efficient machine

reduction operation to be employed for the summation. Just as in version (a), the loop is

replicated but the assignment statetment is masked. In the third version (c), the INDEPENDENT

directive specifies that each iteration of main simulation loop can be executed in parallel. Every

compute node executes only the iterations which assign owned array elements, according to the

owner-compute rule. The experiments demonstrate that version (b) outperforms version (a),

and that version (c) is optimal. Therefore, the rest of the performance studies presented in this

section is based on the parallelized version (c).

5.2 Backward Induction

The implementation of the backward induction algorithm (see Section 4.1.2) is based on the

Hull and White tree [113]. The height of the lattice is specified via maxJ ≡ jmax = −jmin.

The two-dimensional array rate holds the interest rate values rate(m,j), where m is the time

index and j equals the (adjusted) interest rate index j − jmin + 1 (see Figure 5-8). Successors

and probabilities do not depend on the time index and are represented by two-dimensional

arrays. Element successor(k,j) holds the j-index of the k-th successor of a node, and element

probability(k,j) the corresponding transition probability. The present values computed

during the backward induction are stored in the two-dimensional array presentValue.

The algorithm comprises an outer time step loop (see Figure 5-9), which is executed sequen-

tially. The subroutine computePVColumn() calculates the present values at the nodes at time

step m (see Figure 5-10). The backward induction method is also employed in an extended ver-

sion. For instruments with limited path dependence (see Section 4.1.3.1), the calculation of the

coupon payment at a node uses history paths of length d− 1, thereby reducing the complexity

of pricing path dependent instruments with limited dependence to an exponential of d − 1.

74

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

s
e
c

Execution times
NEC Cenju 4

Np = 124 8 16 32 64

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...........
...........
...........
...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

◦

◦
◦ ◦ ◦ ◦ ◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.
.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

¦

¦

¦
¦ ¦ ¦ ¦ 0.0

8.0

16.0

24.0

32.0

40.0

48.0

56.0

64.0

Speedup
NEC Cenju 4

Np = 124 8 16 32 64

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
........
............
..◦◦ ◦ ◦ ◦ ◦..

..
..
....
.....
.....
.....
....
....
....
....
....
...........
................

...............
........................

...
..

..

..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

¦¦
¦

¦

¦

¦

40 time steps, 40000 paths

loop summation

◦ (a) replicated replicated
. (b) replicated reduction operation
¦ (c) parallelized reduction operation

Np number of compute nodes
. . . linear speedup

Figure 5-7: Different parallelization strategies for Monte Carlo simulation

75

INTEGER, DIMENSION(:) :: HH, HP ! halo information

DOUBLE PRECISION, DIMENSION(2*maxJ+1, maxM) :: rate

INTEGER, DIMENSION(3,2*maxJ+1) :: successor

DOUBLE PRECISION, DIMENSION(3,2*maxJ+1) :: probability

DOUBLE PRECISION, DIMENSION :: principal, price

DOUBLE PRECISION, DIMENSION(2*maxJ+1, maxM+1) :: presentValue

DOUBLE PRECISION, DIMENSION(2*maxJ+1) :: pVCol, rateCol

...

!HPF$ PROCESSORS p(number_of_processors())

!HPF+ NODES n(number_of_nodes()) ! abstract nodes arrangement

!HPF+ DISTRIBUTE p(BLOCK) ONTO n ! processor mapping

!HPF$ DISTRIBUTE (BLOCK,*) ONTO p :: presentValue, rate

!HPF$ DISTRIBUTE (*,BLOCK) ONTO p :: probability, successor

!HPF$ DISTRIBUTE (BLOCK) ONTO p :: pVCol, rateCol

!HPF+ DISTRIBUTE (BLOCK) ONTO p, &! HPF+ halo specification

HALO(HH(HP(I):HP(I+1)-1)) on p(I) :: pVColOld

Figure 5-8: Data structures and distribution specification of HPF+ backward induction

5.2.1 Parallelization Strategy

Both the arrays rate and presentValue are distributed in the first dimension, whereas the ar-

rays probability and successor are distributed in the second dimension. In order to optimize

for clusters of SMPs, the hierarchical structure of the cluster is specified by means of a pro-

cessor mapping directive, which specifies a distribution of a processor arrangement to a nodes

arrangement. A processor mapping as described in Section 2.3.1 is used, which distributes the

processor array p block-wise onto the array of compute nodes n.

The temporary one-dimensional arrays rateCol, pVCol, and pVColOld support the efficient

parallelization with the VFC compiler through storing exactly the column slices of the arrays

rate and presentValue which are required during the call of computePVColumn() in time step

m. Array pVColOld holds the present values computed during the previous call (in time step

m+1). These temporary arrays are distributed as well.

76

5.2.2 HPF+ Version

The specification of the data distribution in the HPF+ implementation of the backward in-

duction algorithm is shown in Figure 5-8. On each processor, the set of non-local elements of

pvColOld required by its neighbors has been specified by means of the HPF+ HALO attribute

[7]. The halo information is computed for each processor via a simple function at runtime and is

represented by the arrays HH and HP. Communication associated with the halo of array pvColOld

is triggered explicitly by means of the HPF+ UPDATE HALO directive, as shown in Figure 5-9.

Subsequently, no communication is required during the execution of computePVColumn(). The

j-loop in computePVColumn() can be fully parallelized since it does not exhibit any loop-carried

dependencies (see Figure 5-10). In particular, the computeCoupon() function does not access

the present values computed. This is asserted through the INDEPENDENT directive.

presentValue(:,maxM+1) = principal

DO m = maxM, 1, -1 ! time step loop

rateCol(:) = rate(:,m)

pVColOld(:) = presentValue(:,m+1)

!HPF+ UPDATE_HALO :: pVColOld ! update halo area

CALL computePVColumn(m) ! compute pVCol(m)

present_value(:,m) = pVCol(:)

END DO

price = presentValue(maxJ+1,1) ! at root node

Figure 5-9: Main loop in HPF+ backward induction

Due to the indirect data accesses via the index array successor, the VFC compiler ap-

plies runtime parallelization techniques. For the hybrid parallel execution (MPI process paral-

lelism across compute nodes, OpenMP thread parallelism within compute nodes) the directive

!$OMP PARALLEL DO is inserted. Because the access patterns of the distributed arrays are in-

variant for all calls of computePVColumn(), the HPF+ clause REUSE is specified. This allows

the VFC compiler to minimize the overheads of runtime parallelization, i.e., the translation

of the loop from global to local indices is performed only once, when computePVColumn() is

77

executed for the first time. Moreover, due to the use of halos, no communication is required

within computePVColumn(). Since the communication pattern required for accesses to array

pvColOld has been explicitly specified by means of the HPF+ HALO attribute, the communica-

tion schedules required for non-local data accesses to pvColOld need not to be computed by an

inspector, but can be determined at the time the distribution of pvColOld is evaluated.

SUBROUTINE computePVColumn(m)

! computes pVCol(m), using rateCol, pVColOld

INTEGER, INTENT(IN) :: m

!HPF+ INDEPENDENT, NEW(c), ON HOME(pVCol(j)), REUSE

DO j = 1, 2*maxJ+1

c = computeCoupon(m,rateCol(j)) ! compute coupon at successor nodes

pVCol(j) = exp(-deltaT*rateCol(j)) * (&

probability(UP,j) * (pVColOld(successor(UP,j)) + c) + &

probability(MID,j) * (pVColOld(successor(MID,j)) + c) + &

probability(DOWN,j) * (pVColOld(successor(DOWN,j))+ c))

END DO

END SUBROUTINE computePVColumn

Figure 5-10: Computation at time step m in HPF+ backward induction

The data dependence carried by the time step loop induces single element communica-

tion among processors, which, depending on the computational complexity of the function

computeCoupon(), can impair the parallel performance. On architectures with multi-processor

compute nodes communicating via shared memory such as clusters of SMPs, processors within

the same compute node perform the exchange of elements of pVColOld through shared memory

accesses, thus avoiding communication over the network.

For instruments with limited path dependence, computeCoupon() processes history paths

of a node. The increased workload results, depending on the value of d, in a higher computa-

tion/communication ratio and an improved efficiency.

5.2.3 Experimental Results

In the performance experiments, the price of a variable coupon bond with a maturity of 10

years is calculated on a one-day basis. The workload of the computeCoupon() function used is

78

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Execution times
NEC SX-5Be

Np = 1 2 4 6 8 12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

•

◦

◦
◦ ◦ ◦

0

200

400

600

800

1000

s
e
c

Execution times
Beowulf Cluster

Np =1 2 4 8 16

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

•

◦

◦
◦

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

¦

¦
¦

¦

...

4
4

4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Speedup
NEC SX-5Be

Np = 1 2 4 6 8 12

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
......
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

◦
◦

◦ ◦
◦

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Speedup
Beowulf Cluster

Np =1 2 4 8 16

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

◦
◦

◦

...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

¦ ¦
¦

¦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

4

4

4

• sequential # processors per compute node
◦ (a) HPF+/MPI 1
¦ (b) HPF+/MPI 2
4 (c) HPF+/MPI-OpenMP 2

Np number of processors

Figure 5-11: Performance of backward induction—HPF+ and hybrid-parallel version

79

slightly smaller than the workload of the extended version processing paths of length one. The

code has been parallelized with the VFC compiler and executed on a NEC SX-5Be compute

node as well as on a Beowulf cluster consisting of 8 compute nodes, each equipped with two

Pentium II processors, connected via Fast Ethernet. On the SX-5, the Fortran90/MPI code

generated by the VFC compiler has been compiled with the NEC sxf90, while on the PC cluster

the Portland pgf90 compiler has been employed as a backend compiler of VFC. Figure 5-11

shows the performance results.

For the MPI code generated by VFC to be executed on the SX-5, special care has been

taken in order to support the sxf90 compiler in fully vectorizing the j-loop in subroutine

computeCol(). The function computeCoupon() has been inline-expanded. The speedups

achieved are quite satisfactory.

On the PC cluster, two different parallel code versions were generated by VFC. The first

version is a pure MPI message passing code, while the second version employs a hybrid execution

model utilizing MPI process parallelism across the compute nodes of the cluster and OpenMP

thread parallelism within compute nodes. The pure MPI version of the generated code has

been executed on two to eight compute nodes, where on each compute node only one processor

is utilized and no intra-node communication takes place (a). In addition, it has been executed

on one to eight compute nodes, where on each compute node both processors are utilized (b),

i.e., on two to sixteen processors. Both inter- and intra-node communication is performed via

calls to MPI routines. The hybrid MPI-OpenMP version (c), also utilizing both processors

at each compute node, has been executed on two to eight compute nodes, i.e., on four to

sixteen processors. It performs MPI communication across compute nodes and OpenMP shared

memory accesses within compute nodes. This version was generated by VFC by taking into

account the HPF extensions, i.e., the NODES directive and processor mapping.

Figure 5-11 demonstrates that the MPI-OpenMP code generated by VFC (c) outperforms

the pure MPI version on two processors per compute node (b). One reason is seen in the

overhead induced by intra-node MPI communication. The MPI implementation employed does

not provide an optimized intra-node communication via shmem within the compute nodes of the

cluster. In addition, variant (b) requires twice as much memory for data structures which are

shared in variant (c). The utilization of both processors of a compute node can induce overheads

80

due to the potential of bottlenecks during the shared use of memory and other resources. These

overheads are assumed to be responsible for the poorer performance of variant (b) as compared

to variant (a). The intra-node MPI communication can inhibit and slow down the inter-node

communication performed simultaneously. The times measured for variants (a) and (c) are

almost the same, however, variant (a) requires twice as many compute nodes. Also on the

Beowulf cluster the parallelized backward induction kernel exhibits good speedups.

5.3 Generalized Backward Induction

5.3.1 Parallelization Strategy

The generalized backward induction algorithm (see Section 4.1.3.3) sequentially proceeds back-

wards from the last to the first time step, whereas all operations at a time step can be performed

in parallel. It is parallelizable analogous to the classical Backward Induction (see Section 5.2).

The lattice is partitioned into blocks of rows, each processor computes the incomplete present

values within one block. Due to the loop carried dependence in the time step loop, values

computed by the neighboring processor in the previous time step are required. On parallel ar-

chitectures with distributed memory, the resulting single element communication can impair the

parallelization. In the generalized Backward Induction, the additional processing of 3d−1 paths

at a node results in higher computation/communication ratios and thus improved efficiency.

5.3.2 Fortran 95π Version

The computation of the incomplete present value PV (d) at every node of the lattice via gener-

alized backward induction [111] is presented in two versions using the notation introduced in

Section 2.4.3. Both versions possess parallelism, expressed by the FORALL construct.

Figure 5-12 lists the variable declarations. The first version, shown in Figure 5-13, imple-

ments (4.8) and directly calculates the present value at node n = (m, j) of the cash-flows at

time step m+d. The second version, shown in Figure 5-14, reorders discounting and summation

operations, resulting in shorter paths and a smaller number of discounting operations. At the

root node, the incomplete present value is completed based on a history path (see Figure 5-15).

The IF-statement as well as the variable v within the body of the FORALL construct have been

81

inserted to clearly arrange the initialization of the timesteps–loop. After applying a loop

peeling transformation related to the first iteration, they can be eliminated.

integer :: d ! depth of limited path dependence

path, length(d-2) :: p0 ! history path to root node

real, index(node) :: PV_d(:) ! incomplete present value at node

real, index(path) :: pvcash(:) ! present value of cash-flows

real, index(path) :: pvsucc(:) ! present value of PV_d of successors

real, index(path) :: pvroot(:) ! present value of cash-flows near root node

real :: PV ! final present value at root node

path, length(:) :: p ! path

path, length(1) :: s ! path to successor

node :: n ! node

integer :: m ! time step

real :: v ! temporary value

Figure 5-12: Variable declarations of generalized backward induction code

5.3.3 Experimental Results

Table 5-7 shows the price of a path dependent variable coupon bond with a maturity of 18

periods, paying at timestep m the average of the interest rates at time steps m− 4, . . . , m− 1.

The interest rate lattice has 89 nodes. In addition, the number of paths considered and the

execution times on a Sun Ultra 4 workstation, using Monte Carlo Simulation, with varying

sample sizes, and generalized backward induction, are given.

method number of paths price execution time (sec)

MC simulation 3.87 103 8573.703 0.65
MC simulation 3.87 104 8590.857 6.55
MC simulation 3.87 105 8589.274 64.17

Generalized Backward (all) 3.87 108 8586.582 1.81

Table 5-7: Performance of pricing an instrument with limited path dependence

82

timestep: DO m = LENGTH()-d, 0, -1

node: FORALL (n = (m,:))

ALLOCATE(pvcash,pvsucc)

path: FORALL (p = (n|d-1))

! present value at n of cash-flows paid at timestep m+d

pvcash(p) = (CASHFLOW(p) .DISCOUNT. p) * p%PROBABILITY

END FORALL paths

init: IF (m == LENGTH()-d)

! first iteration of timestep-loop

PV_d(n) = SUM(pvcash)

ELSE

successors: FORALL (s = (n|1))

! present value at n of incomplete p.v. at successor node

pvsucc(s) = (PV_d(s%NODE(1)) .DISCOUNT. n) * s%PROBABILITY

END FORALL successors

PV_d(n) = SUM(pvcash) + SUM(pvsucc)

END IF init

DEALLOCATE(pvcash,pvsucc)

END FORALL node

END DO timestep

Figure 5-13: Generalized backward induction (4.8)

83

timesteps: DO m = LENGTH()-d, 0,-1

node: FORALL (n = (m,:))

ALLOCATE(pvsucc)

successor: FORALL (s = (n|1))

ALLOCATE(pvcash)

path: FORALL (p IN (s%NODE(1)|d-2))

! present value at successor node of cash-flows paid at timestep m+d

pvcash(p) = (cashFlow(n & p) .DISCOUNT. p)* p%PROBABILITY

END FORALL path

init: IF (m == LENGTH()-d)

! first iteration of timestep-loop

v = SUM(pvcash)

ELSE

! add PVd at successor node

v = SUM(pvcash) + PV_d(s%NODE(1))

END IF init

! present value at n of v

pvsucc(s) = (v.DISCOUNT.n) * s%PROBABILITY

DEALLOCATE(pvcash)

END FORALL successors

PV_d(n) = SUM(pvsucc)

DEALLOCATE(pvsucc)

END FORALL node

END DO timesteps

Figure 5-14: Generalized backward induction (4.9)

84

ALLOCATE(pvroot)

FORALL (m = 0:d-2)

FORALL (p == ((0,0)|i))

! PV at root of cash-flow paid at m+1

pvroot(p) = (CASHFLOW(p0 & p) .DISCOUNT. p) * p%PROBABILITY

END FORALL

END FORALL

PV = PVd(0,0) + SUM(pvroot)

DEALLOCATE(pvroot)

Figure 5-15: Completion operation at the root node

5.4 Nested Benders Decomposition

Due to the computational complexity of nested Benders decomposition, parallel decomposition

methods have been developed [46, 115, 128]. In the following, the synchronous as well as the

asynchronous parallelization approach is described.

5.4.1 Synchronous Parallelization

In the nested Benders decomposition algorithm, every node performs an iterative procedure,

acting as a master, a slave, or both of them (see Section 4.2.2). With a synchronous computation

scheme, each node except the root receives the pair (x
(ı̂)
m , q̂) from its master in order to build and

solve a local linear program. Then it sends the pair (xn, Q
(i)
n,k(xn)) to every slave. Subsequently

it waits until it receives a complete new set of cuts. It cannot continue before it received

cuts from every slave. This coupling results in a sequence of forward and backward sweeps

over the whole tree, as illustrated in Figure 5-16. Every sweep in turn comprises a sequence

of simultaneous activities of the tree nodes at a certain level, whereas the rest of the nodes

remain idle. Hence, in a parallel version, the synchronous communication scheme exhibits poor

processor utilization, because it allows for parallelism (indicated by dotted boxes in Figure 5-16)

only within nodes at the same level.

5.4.2 Asynchronous Parallelization

In an asynchronous version, every node waits until it has received data from the master or

from at least one of its slaves, i.e., the local problem is solved using only the best information

85

parallelism parallelism

Figure 5-16: Flow of information during synchronous forward and backward sweeps

obtainable so far [117]. A node does not have to wait for its master to send a new solution

(during a forward sweep) and for all slaves to send their cuts (during a backward sweep) prior

to start a new iteration. Rather, it is sufficient to receive any new data, thus more nodes can

be simultaneously active. However, since in the asynchronous version there is no tight coupling

between sending and receiving nodes, the data received has to be stored in communication

buffers. It is possible that the master’s solution did not change from the last (local) iteration,

since the master did not yet finish its optimization, and that not all slaves sent new cuts. At

each new iteration cycle, a node reads the buffers and uses the data to build a new local linear

program.

The activity diagram in Figure 5-17 shows the asynchronous node algorithm. Q denotes the

set of optimality-, and R denotes the set of feasibility cuts, respectively. Every node performs

an activity in parallel with all other nodes. The activity consists of a loop, in which a linear

program is repeatedly created and solved. As each node executes the same program, but

operates on different data, the situation adheres to the SPMD programming model. All tree

nodes are distributed onto the compute nodes of a parallel system. On each compute node, the

tree node computations are executed concurrently. Figure 5-18 illustrates the coordination of

a node with its neighbors. Subactivity states represent a preprocessing (construction of new

linear program) and postprocessing (cut calculation) phase.

Figure 5-19 depicts an asynchronous execution scenario. After the first iteration, the node

starts a second one, as soon as it got the new cut 4 from slave 1. In particular, it does not

86

wait for cut 5 and solution 6, which are incorporated into the local problem not until the

third iteration. Since the algorithm is an iterative procedure with increasing accuracy, it is not

relevant whether a particular information is provided sooner or later. However, because a new

local problem is constituted by a smaller amount of new information than in the synchronous

version, more iterations are needed in the asynchronous version. The argument for asynchronous

parallelization is that the additional computational work is more than made up by improved

parallelism due to the fact that tree nodes at more than one levels may be simultaneously active

in the asynchronous version.

update Q, R

build new LP

solve LP

slave

{cardinality= #slaves}

[infeasible] [feasible]

master

[termination]

[else]

send Solution

send Cut

[new data]

[else]

[else]

[correct approximation]

wait

when (new data)

feasibility cut

optimality cut

Figure 5-17: Node algorithm of asynchronous nested Benders decomposition

87

Buffer

Buffer

Buffer

solve LP

preprocessing

postprocessing

wait

solve LP

preprocessing

postprocessing

wait

solve LP

preprocessing

postprocessing

solve LP

preprocessing

postprocessing

wait

master node slave1

new data

new data

new data

slave2

wait

Figure 5-18: Interaction among node programs in nested Benders decomposition

88

master node slave1 slave2

1: send(solution)

2.a: send(solution) 2.b: send(solution)

3: send(cut)

5: send(cut)

4: send(cut)

8: send(cut)

12: send(cut)

9: send(cut)
10: send(cut)

7.a: send(solution) 7.b: send(solution)

11.a: send(solution) 11.b: send(solution)

6: send(solution)

node

2nd iteration:

3rd iteration:

1st iteration:
uses solution 1

uses solution 1, cut 4

uses solution 6, cut 5

4th iteration:
uses cut 9, cut 10

Figure 5-19: Asynchronous execution scenario of nested Benders decomposition

89

5.4.3 Java Distributed Active Tree Version

The parallel version of the nested Benders decomposition algorithm can be directly expressed

as a distributed active tree [118]. The node program shown in Figure 5-17 is implemented

as an AlgorithmNode class by overriding the iteration() and terminate() methods, spec-

ifying the body and termination condition of the main loop. Figure 5-20 shows the variable

fields of the NestedBendersNode class, which contains the inner classes Solution and Cut

with subclasses. Figure 5-21 presents the loop body of the node algorithm. Using prede-

fined accessibles and the standard synchronization constraints, provided by the coordination

layer through getAllNeighbours(), getSuccessors(), getPredecessor(), and Pattern.all,

Pattern.any, respectively, and the variable source, all the communication and synchroniza-

tion needed for both the asynchronous and the synchronous version, and, for the latter, for

both the forward sweep and the backward sweep can be expressed at a high level of abstraction

within two statements. The implementation of the algorithm does not need explicit buffers

and is combined with a coordination layer implemented in Java, on top of Java remote method

invocation. Details related to the solving of local linear programs are discussed in Section 5.4.6.

5.4.4 OpusJava Version

The asynchronous version of nested Benders decomposition has also been implemented employ-

ing OpusJava. The description in this subsection is a short summary of the work presented

in [97, 98]. Tree nodes are implemented as SDA objects, because they perform their activity

in parallel with other nodes. In order to prevent data which arrives during the solution of the

linear program from overwriting the data which is currently used in the solution procedure, all

incoming data at a node is stored in a buffer associated with the node. The buffer is imple-

mented as an SDA as well, allowing for exploiting the high level synchronization mechanism

provided by OpusJava. As SDAs have monitor semantics, it is not necessary to synchronize ac-

cesses to the buffer. The synchronization condition is expressed as a condition clause guarding

the method which retrieves the data from the buffer, thus no synchronization is needed within

the nodes. Figure 5-22 shows the Buffer class. It contains instance variables for solution and

cuts, and their respective access methods. The condition for executing getData() is specified

in the method getData cond().

90

class NestedBendersNode implements dat.alg.AlgorithmNode {

abstract class BendersData implements AlgorithmData, SerializableCoordinationData

{...}

class Solution extends BendersData

{...}

abstract class Cut extends BendersData

{...}

class FeasibilityCut extends Cut

{...}

class OptimalityCut extends Cut

{...}

dat.rmi.Coordination coordination; // the coordination object of this node

boolean root; // this is the root node

boolean master, slave; // node acts as master and / or slave

boolean synchronous; // synchronous / asynchronous version

LP lp; // linear program object

Cut nullCut; // null cut signal

// local data:

Solution solutionMaster; // solution received from master

Vector Q[]; // optimality cuts received from slaves

Vector R[]; // feasibility cuts received from slaves

boolean forward; // sweep direction is forward / backward

boolean optimize; // perform optimization

...

}

Figure 5-20: Data fields of the distributed active tree node

91

public void iteration() throws CoordinationException, LPException {

dat.coord.Accessible source; // source nodes to get data from

Solution solution; // solution of the local LP

Cut cut; // cut to be sent to the master

source = (synchronous ? (// determine source nodes

forward ?

coordination.getPredecessor() :

coordination.getSuccessors()

) :

coordination.getAllNeighbours()

);

source.get(synchronous ? // get data (possibly wait for it)

dat.coord.Pattern.all :

dat.coord.Pattern.any

);

// local data structures are updated

if (optimize) {

lp = new LP(solutionMaster,Q,R); // create and solve the linear program

solution = lp.getSolution();

switch (lp.getStatus()) {

case LP.OPTIMAL:

if (master)

coordination.getSuccessors().put(solution);

if (slave) {

if (solution.getQ() <= solutionMaster.getQ(this))

cut = nullCut;

else

cut = new OptimalityCut(solution);

}

break;

case LP.INFEASIBLE:

if (root)

throw new LPException(this,LP.INFEASIBLE);

if (slave)

cut = new FeasibilityCut(lp);

break;

case LP.UNBOUNDED:

throw new LPException(this,LP.UNBOUNDED);

break;

}

if (slave)

coordination.getPredecessor().put(cut);

}

}

Figure 5-21: Iteration in the distributed active tree node

92

public class Buffer {

private Solution masterData; // Buffer for predecessor

private Vector slaveData[]; // Buffer for successors

public void putSlaveData(Cut cut, ...) // data from successor

{...}

public void putMasterData(Solution s, ...) // data from predecessor

{...}

public Object[] getData() // reads all data out from the buffer

{...}

public boolean getData_cond() // condition clause for getData()

{...}

}

Figure 5-22: The OpusJava buffer

Figure 5-23 shows the implementation of a tree node as an SDA Node. It contains references

to other SDAs, actually to its own buffer, to the successor nodes, and to the buffers of both

the successor and predecessor nodes. The constructor is parameterized and requires the caller

to pass a reference to an SDA object, in this case to the buffer. When a node instantiates its

successors, it passes its local buffer as a parameter. The tree is constructed by the method

init(). After the local buffer of a node is instantiated, the successor nodes are set up. A

resource request is associated with the call for instantiating the successors, thus the nodes

may be distributed over the available compute nodes. The init() method of the successors is

invoked in an asynchronous manner, causing a parallel growth of the tree. The return value

of init() is a reference to the local buffer which is stored in the variable successorBuffer.

The init() methods of all successors run in parallel, associated with Event objects acting as

container for their results. Via calling the getResults() method of such an event, the caller

synchronizes with the callee and eventually retrieves the results of the asynchronous call. The

method iterate(), shown in Figure 5-24, implements one iteration of the main loop of the

node algorithm. Once it is invoked within a node, the request is in parallel propagated to the

successor nodes. After having initiated the computation in the successor nodes, a node enters

the main loop.

93

public class Node {

SDA successors[]; // successor Nodes;

SDA predecessorBuffer; // predecessor buffer

SDA myBuffer; // local buffers

SDA successorBuffer[]; // successor buffers

// problem specific data

...

public Node (SDA buffer) { // constructor

predecessorBuffer = buffer;

...

}

public SDA init(...) {

myBuffer = new SDA("Buffer", ...);

successors = new SDA[nrOfSuccessors]; // create local buffer

Event e[] = new Event[nrOfSuccessors];

if (!leaf()) {

// create successors passing the local buffer as input argument

for (int succNr=0;succNr<nrOfSuccessors;succNr++) {

// compute distribution of nodes

Resource r = new Resource(...);

successors[succNr] = new SDA("Node", new Object[]{myBuffer}, r);

// spawn initialization of successors

e[succNr] = successors[succNr].spawn("init",...);

}

// synchronize with successors and link buffers

for (int succNr=0;succNr<nrOfSuccessors;succNr++)

successorBuffer[succNr] = (SDA) e[succNr].getResults();

}

... // do other initialization

return myBuffer; // return local buffer to caller

}

...

}

Figure 5-23: Initialisation in the OpusJava node

94

public void iterate() {

Event e[] = new Event[nrOfSuccessors];

// invoke solution procedure within successors

if (!leaf()) {

for (int succNr=0;succNr<nrOfSuccessors;succNr++)

e[succNr] = successors[succNr].spawn("iterate");

}

do { // main loop

// retrieve data from buffer

Object[] data = (Object[]) myBuffer.call("getData");

... // solve the local problem

if (!leaf()) {

// send solution to successors

for (int succNr=0;succNr<nrOfSuccessors; succNr++)

successorBuffer[succNr].call("putMasterData", ...);

}

if (!root()) {

// send cuts to predecessor

predecessorBuffer.call("putSlaveData",...);

}

} while (!solutionFound);

}

Figure 5-24: Main loop in the OpusJava Node

95

5.4.5 JavaSymphony Version

The asynchronous version of the nested Benders decomposition algorithm has also been imple-

mented on top of JavaSymphony [54]. This version has been built starting from the existing

Java distributed active tree implementation (see Section 5.4.3). Both the coordination layer

and and the initialization part have been adapted to the JavaSymphony API, whereas the im-

plementation of the node algorithm remained unchanged. The threads associated with the tree

nodes are encapsulated within JSObjects. Communication among tree node objects located

at the same compute node is performed through direct access, and among objects residing on

different computing nodes through JavaSymphony remote method invocation.

5.4.6 Experimental Results

A number of experiments have been conducted on various hardware platforms, including a clus-

ter of Sun Ultra 10 workstations connected via fast Ethernet, and a Beowulf cluster consisting

of quad-board PC compute nodes, each equipped with 4 Pentium III Xeon 700MHz processors.

In the following, the performance results of the distributed active tree implementation

(see Section 5.4.3) are presented. The nested Benders decomposition is written in pure Java

and represents the algorithm layer of a distributed active tree. The latter, essentially the coor-

dination layer, is also implemented in Java, on top of Java remote method invocation. Initially,

also a Java Simplex routine has been employed, which in fact proved to be numerically very

unstable and could be applied for simple problems only. As an alternative, a Fortran solver has

been integrated, via wrapper routines in C and the Java Native Interface. Following the node

thread scheduling strategy, every tree node possesses a separate thread. Since the solver is not

thread safe, it is called from within a synchronized block.

Both the synchronous and the asynchronous version of the algorithm have been measured

for problems with up to 511 tree nodes, i.e., scenarios. The linear programs generated during

the execution of the decomposition algorithm demand for high quality solvers in terms of nu-

merical stability. It is possible, that newly generated constraints turn out to be almost identical

to previously generated ones. The solver can expose a “cycling” behavior in which it repeatedly

switches among a set of solutions, without improvement. Problems of this kind, related to the

solving of linear programs as a subtask in nested Benders decomposition, require the local linear

96

programs in the experiments to be fairly small. Consequently, short times are spent for compu-

tational work, as compared to communication times, and a poor computation/communication

ratio limits the speedups achieved. It can be observed, that the application of the algorithm

on larger scenario trees in particular suffers from the numerical difficulties described.

level 0

1

2

3

4

compute compute compute compute
node 1 node 2 node 3 node 4

root
compute node 0

Figure 5-25: Mapping of tree nodes onto compute nodes at distribution level 2

The scenario tree is distributed according to the pattern shown in Figure 5-25. The root

node and its descendents up to a certain level are mapped onto the “root” compute node. The

rest of the tree is distributed in such a way that subtrees emanating from the “distribution” level

(level 2 in Figure 5-25) as a whole are mapped onto the remaining compute nodes. Consequently,

they can be processed with remote communication (displayed in bold lines) required to the root

compute node only.

Table 5-8 shows the performance of both versions on one, three, and five Sun workstations.

The first two columns comprise the problem size, defined by the number of tree nodes Nn, and

the number of financial contracts Nc in the portfolio, column 3 shows the number of compute

nodes Np employed, and column 4 the distribution level δ. The initial local constraint matrices

are of size 2Nc +1×3Nc +1. Execution times are given in seconds, ta for the asynchronous, and

ts for the synchronous version. The speedup spa for the asynchronous version equals t
(Np)
a /t

(1)
a ,

and for the synchronous version sps = t
(Np)
s /t

(1)
s , where the superscript denotes the number of

97

Nn Nc Np δ ta ts spa sps ts/ta

63 2 1 – 0.846 0.582 - - 0.68
63 2 3 4 0.905 0.890 0.93 0.65 0.98
63 2 5 3 0.487 0.510 1.73 1.14 1.04

63 3 1 – 0.946 0.483 - - 0.51
63 3 3 4 1.082 0.865 0.87 0.55 0.80
63 3 5 3 0.630 0.421 1.50 1.14 0.66

127 2 1 – 1.930 1.211 - - 0.62
127 2 3 5 1.893 1.01
127 2 5 4 1.035 0.970 1.86 1.24 0.93
127 2 5 5 2.079 0.92

127 3 1 – 2.268 1.090 - - 0.48
127 3 3 5 2.083 1.08
127 3 5 4 1.302 1.223 1.74 0.89 0.93
127 3 5 5 2.150 1.05

255 2 1 – 4.875 2.575 - - 0.52
255 2 3 6 3.955 1.23
255 2 5 5 2.227 2.307 2.18 1.11 1.03

511 2 1 – 9.245 - -
511 2 3 7 8.344 1.10
511 2 5 6 4.493 2.05

Table 5-8: Performance of nested Benders decomposition on Sun workstation cluster

compute nodes. In the last column, the ratio ts/ta of the synchronous and the asynchronous

execution time is given. Due to the numerical problems with linear problem solving, some

entries of the table remain empty.

The results demonstrate the impact of the tree distribution. The distribution level parame-

ter allows for priorities such as optimal load balancing or minimal communication. For example

in the two cases (Nn, Np, δ) = (127, 5, 4), 15 tree nodes are assigned to the root compute node

and 28 tree nodes to every other compute node, yielding 16 edge cuts. As opposed, with δ = 5,

31 nodes are assigned to the root compute node and 24 nodes to every other compute node,

resulting in 32 edge cuts. The first cases perform better, because less communication is required

and more processor cycles are available to the thread associated with the root node. Because it

provides information to the rest of the tree, fast execution is crucial. As far as the comparison

of the two versions is concerned, the synchronous version clearly dominates the asynchronous

one on a single compute node, due to its faster convergence in terms of number of iterations.

However, the ratio ts/ta increases for larger numbers of tree and compute nodes, respectively.

98

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Np=1 Np=3 Np=5

Execution times
Beowulf Cluster

...

◦
◦ ◦

...

.

.
.

..

¦

¦

...◦ ◦ ◦...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.................

....................
...............

.
. .

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

¦
¦

¦

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Np=1 Np=3 Np=5

Execution times
Sun workstation cluster

...

¦
¦

¦...

.
.

.
..

◦ ◦
◦
©

...

. .
...

◦ ◦

0.0

1.0

2.0

3.0

4.0

5.0

Np=1 Np=3 Np=5

Speedup
Beowulf Cluster

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

◦

◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

.

.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....¦

.......
.......

.......
.......

.......
.......

.......
...............

...................
...................

.◦ ◦
.. .
...

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

¦
¦

0.0

1.0

2.0

3.0

4.0

5.0

Np=1 Np=3 Np=5

Speedup
Sun workstation cluster

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...................
...................

...................
...................

...................
...................

...................
...................

...................
...................

......
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

¦

¦

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
.........
.........
.........
.........
.........
.....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

.

.

..
..

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

◦

◦

.........
..........

.........
..........

..........
.........

..........
..........

.........
..........

........
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
...◦

◦ 127 tree nodes
. 255 tree nodes
¦ 511 tree nodes

............................. asynchronous version

........ synchronous version
Np number of compute nodes
. . . linear speedup

Figure 5-26: Performance of nested Benders decomposition—distributed active tree version

99

Figure 5-26 shows the performance on both clusters for the cases Nc = 2 ∧ (Nn, Np, δ) ∈
{(127, 3, 5), (127, 5, 4), (255, 3, 6), (255, 5, 5), (511, 3, 7), (511, 5, 6), }. As an important result of

improved processor utilization, the asynchronous algorithm exhibits superior speedups. In the

synchronous version, the node threads perform on average less iterations than in the asyn-

chronous one, which results in shorter execution times on a single compute node, whereas in

the asynchronous version, the threads spend less time in waiting for new data. Now, when

running on more than one compute node in parallel, a compute node as a whole is idle, if

all threads are waiting, and shorter idle times result in the larger speedups observed for the

asynchronous version.

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Execution times
Beowolf Cluster

Nn=127 Nn=255 Nn=511

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

◦

◦

◦

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

.

.

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

¦
¦

¦

.....
.....

.....
.....

.....
.....

.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

◦ ◦

◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

¦
¦ ¦

0.0

2.0

4.0

6.0

8.0

10.0

s
e
c

Execution times
Sun workstation cluster

Nn=127 Nn=255 Nn=511

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

◦

◦

◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

.

.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

¦
¦

¦

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

◦
◦

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

¦
¦

◦ 1 compute node
. 3 compute nodes
¦ 5 compute nodes

............................. asynchronous version

........ synchronous version
Nn number of tree nodes

Figure 5-27: Scaling of nested Benders decomposition—distributed active tree version

The experiments also revealed that the number of iterations per tree node increases with

the tree size. The resulting increase in the number of communication operations can be to the

disadvantage of the asynchronous version.

As a supplement demonstrating the scaling behavior of both versions, Figure 5-27 shows

the same execution times as displayed in Figure 5-26 as a function of tree sizes. All in all,

100

the performance of the asynchronous algorithm is expected to improve with more realistic, i.e.,

larger problems, due to more advantageous communication/computation ratios.

node 0 node 1
compute
node 2

compute
node 3

computecompute

Figure 5-28: Mapping of tree nodes onto compute nodes—optimal load balancing strategy

In the experiments with the OpusJava implementation, a tree distribution is chosen which

follows an optimal load balancing strategy as shown in Figure 5-28. As opposed to Figure 5-25,

the compute nodes have to remotely exchange data with more than on neighbor. Figure 5-29

shows the execution times and corresponding speedups, on one, two and four Sun workstations

and on one, two, four, and eight compute nodes of the Beowulf cluster, respectively. Every tree

node there are two threads associated with, the first one for the buffer and the second one for the

algorithm (see Section 5.4.4). Due to the small size of the local problems, the communication

overhead overwhelms parallelism gains also in the OpusJava version.

On the Beowulf cluster, a significant thread scheduling overhead caused by the runtime

system, i.e., the Java virtual machine and the operating system, can be observed when a lot

of tree nodes are mapped to a compute node, in particular, when the maximum of 511 nodes

is mapped to a single compute node. However, for experiments that do not suffer from the

scheduling overhead, satisfactory speedups are obtained. They are even superlinear in case the

scheduling overheads disappear, due to the higher number of compute nodes and thus smaller

number of threads to be scheduled on a compute node.

101

0.0

4.0

8.0

12.0

16.0

20.0

s
e
c

Execution times
Beowulf Cluster

Np=1 Np=2 Np=4 Np=8

..

◦ ◦ ◦ ◦

....
...
....
....
....
....
....
....
....
....
....
....
....
....
...
....
....
....
....
....
..

.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

¦

¦

¦
¦

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

s
e
c

Execution times
Sun workstation cluster

Np=1 Np=2 Np=4

...

◦
◦ ◦

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

¦

¦

¦

0.0

2.0

4.0

6.0

8.0

10.0

Speedup
Beowulf Cluster

Np=1 Np=2 Np=4 Np=8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.

◦

◦
◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

¦

¦

¦

0.0

1.0

2.0

3.0

4.0

Speedup
Sun workstation cluster

Np=1 Np=2 Np=4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

◦

◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

¦

¦

◦ 127 tree nodes
. 255 tree nodes
¦ 511 tree nodes

............................. asynchronous version
Np number of compute nodes
. . . linear speedup

Figure 5-29: Performance of nested Benders decomposition—OpusJava version

102

For the performance evaluation of the JavaSymphony implementation, the active tree node

objects are artificially augmented with additional work in order to reflect more realistically

sized optimization problems with larger portfolios. Figure 5-30 shows the execution times

and speedups on the Beowulf cluster. With increasing number of compute nodes, the overall

communication effort increases and lowers the speedups. However, in case of larger scenario

trees, the effect is smaller, and in particular for the 511-nodes problem a very good speedup is

achieved.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

s
e
c

Execution times
Beowulf Cluster

Np=1 Np=2 Np=4 Np=8

...

◦ ◦ ◦ ◦

...

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

¦

¦

¦
¦ 1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Speedup
Beowulf Cluster

Np=1 Np=2 Np=4 Np=8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....

◦

◦
◦

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....
...
.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

¦

¦

¦

◦ 63 tree nodes
. 255 tree nodes
¦ 511 tree nodes

............................. asynchronous version
Np number of compute nodes
. . . linear speedup

Figure 5-30: Performance of nested Benders decomposition—JavaSymphony version

103

Chapter 6

Conclusion

6.1 Summary

In this work, the question of how to efficiently implement high performance financial applica-

tions—in particular on parallel platforms—has been tackled at the levels of algorithms, the

parallelization of these, and the programming tools employed. So it has been interpreted

in the double sense of how to obtain an efficient parallel program as a result of an efficient

implementation process. The performance of the code implemented has been evaluated on

various platforms, including a massively parallel system, a vector supercomputer, a Linux SMP

cluster, and a network of workstations. The resulting speedups demonstrate the potential of

high performance computing for financial applications.

The programming model of a distributed active tree for the parallel and distributed imple-

mentation of tree structured algorithms including varying synchronization requirements, tree

distributions, and scheduling strategies has been designed and implemented as a Java package

on top of Java’s threads and Java RMI. In addition, a path notation for the parallel formulation

of algorithms operating on lattice structures has been specified as a Fortran 95 extension.

Procedures for pricing interest rate derivatives based on the Hull and White tree have been

implemented in parallel in HPF+. A hybrid implementation of backward induction on clusters

of SMPs combines distributed and shared memory parallelism via MPI and OpenMP. The

parallel pricing kernel developed applies backward induction and nested Monte Carlo simulation

and provides for a specification of path dependent instruments based on a history state. A class

of instruments with limited path dependence has been identified, and the backward induction

method has been generalized to allow for calculating their prices in linear time.

104

The nested Benders decomposition algorithm has been implemented in parallel in Java,

both in a synchronous and in an asynchronous version, on top of a Java implementation of the

distributed active tree model. In addition, the algorithm has been parallelized using OpusJava

and a distributed active tree implemented on top of JavaSymphony. A test problem generator

has been developed which builds wealth maximization and index tracking optimization models

in a node-local formulation.

Parallelization is not the only source of performance improvement, the seek for performance

starts with the selection of modeling techniques yielding structures which can be exploited—

in particular with respect to parallel execution—by specialized algorithms. It continues with

the choice or design, respectively, of such an algorithm, followed by an implementation which

utilizes other sources of sequential performance optimization.

The combination of sequential and parallel performance optimization provides for synergy.

In the case of generalized backward induction, the optimized sequential method is superior to

the original version also with respect to its potential for parallelism.

Performance improvement is not an end in itself, but a means to support the user in achieving

higher productivity. The requirement for short computation times must not sacrifice the quality

of the data delivered, especially with respect to its purpose of supporting decision makers. In

fact, early availability of a decision is a factor of productivity, and hence an argument for high

performance computing.

6.2 Open Issues

A lot of issues are rather scratched on the surface than dealt with in depth and comprehensively

and thus demand for further studies. As far as the level of parallel implementation is concerned,

the programming support environment developed is an aid in such investigations by facilitating

the production of experimental program versions.

In order to study the impact on the performance, parallel versions of the nested Benders

decomposition algorithm can be varied in the following characteristics. The problem size is

defined by the number of time stages, the number of successors of a single node, the number

of financial contracts in a portfolio, and the number of local constraints. Various mappings

occurring in this context have to be considered. The decomposition of the whole optimization

105

problem is described by a mapping from the set of node problems onto the set of subproblems,

i.e., a subproblem can comprise more than one node problem. The distribution specifies the

mapping of subproblems onto compute nodes of a parallel system. It can vary during runtime

through dynamic rebalancing of the tree which includes the migration of subproblems. Parts of

the tree which will not contribute to the final solution can be pruned. Distribution strategies

can also be characterized by their objective, such as minimal communication and optimal load

balancing. The scheduling includes the mapping of subproblems onto threads (a thread can be

responsible for more than one subproblem), the mapping of threads onto compute nodes and

onto physical processors of an SMP node, respectively, and the order of visits of subproblems

by a thread.

Different synchronization schemes are possible and can also be combined. As an example,

the coordination of compute nodes follows the asynchronous scheme, and the coordination of

subproblems within a compute node the synchronous one. Likewise, subproblems handled by

the same thread can be coordinated asynchronously, whereas subproblems handled by differ-

ent threads interact in a synchronous manner. Furthermore, the overhead of buffers can be

minimized, e.g., data structures of the linear program solver could be carefully employed as

communication buffers.

A comparison with parallelizations of the nested Benders algorithm employing HPF, MPI,

and OpenMP would yield further insights in the suitability of Java as a language for high

performance computing.

The sequential decomposition procedure can be optimized through the deletion of irrelevant

cuts of a subproblem, the prevention of resending identical solutions and cuts, including the

optimal specification of the equality of cuts in terms of numerical accuracy. The performance

of the decomposition algorithm can be enhanced also by a variety of optimized linear problem

solving techniques, including “warm” starts.

At the level of the optimization model to be solved, a number of objective functions are

interesting with respect to both numerical and performance results, including quadratic and

nonlinear convex objectives and risk measures, e.g., variances, mean absolute deviation (MAD),

and Value at Risk (VaR). Some of these need universal variables in the node problems and thus

raise a challenge with respect to communication requirements.

106

The Monte Carlo simulation can be enhanced by a multitude of known variance reduc-

tion techniques which aim at sequential performance improvement, such as control variates,

stratified sampling, and importance sampling. The pricing algorithms can be applied to multi-

dimensional lattices, which, e.g., represent different foreign interest rates. A potential is seen in

the development of pricing algorithms exploiting special cash-flow characteristics and the par-

allelization of these. Further subject to parallelization are approximative backward induction

techniques as well as scenario tree generation procedures.

Numerical studies will expose the optimal choice of performance-critical parameters, e.g.,

the size of the time step and the number of paths in the Monte Carlo simulation, with respect

to the accuracy of the result required. An optimal calibration of the lattice to market data is

important in order to minimize model errors.

The user interface of the Aurora Financial Management System is subject to improvement

via—possibly XML based—input languages both for the specification of financial instruments

and the optimization model. On the output side, some visualization component is desirable,

illustrating both the solution process and the results of the optimization.

The study and development of object-oriented models of the application domain including

financial products, asset price models, and algorithms is a real challenge. The integration of

pricing and optimization procedures into (remotely accessible) problem solving environments,

e.g., in the form of web services, is a further issue.

The Fortran 95 path notation is to be formally specified and implemented within a com-

piler or preprocessor. The distribute active tree model can be generalized to arbitrary graph

structures in a straightforward way. Finally, the specification of a mapping from UML state

diagrams onto (Java) code and automatic code generation would represent a means for reducing

the time-consuming and error-prone programming effort of synchronizing concurrent processes

and would pass the way to model driven application development for financial applications.

107

Bibliography

[1] E. Alba, editor. Parallel Metaheuristics. Parallel and Distributed Computing. Wiley,

Hoboken, New Jersey, USA, 2005.

[2] T.W. Archibald, C.S. Buchanan, K.I.M. McKinnon, and L.C. Thomas. Nested Benders

decomposition and dynamic programming for reservoir optimisation. Journal of the Op-

erational Research Society, 50(5):468–479, 1999.

[3] K.A. Ariyawansa and D.D. Hudson. Performance of a benchmark parallel implementation

of the Van-Slyke and Wets algorithm. Concurrency: Practice and Experience, 3:109–128,

1991.

[4] S. Beer. What has cybernetics to do with operational research? Operational Research

Quarterly, 10:1–21, 1959.

[5] J.F. Benders. Partitioning procedures for solving mixed-variable programming problems.

Numer. Math., 4:238–252, 1962.

[6] S. Benkner. HPF+—High Performance Fortran for advanced scientific and engineering

applications. Future Generation Computer Systems, 15(3):381–391, 1999.

[7] S. Benkner. Optimizing irregular HPF applications using halos. Concurrency: Practice

and Experience, 12:137–155, 2000.

[8] S. Benkner. VFC: The Vienna Fortran Compiler. Scientific Programming, 7(1):67–81,

2000.

[9] S. Benkner and T. Brandes. Initial specification of HPF extensions for clusters of SMPs.

Technical Report ADVANCE Deliverable 4a, University of Vienna, August 2000.

108

[10] S. Benkner, L. Halada, and M. Lucka. Parallelization strategies of three-stage stochastic

program based on the BQ method. In R. Trobec, P. Zinterhof, M. Vajtersic, and A. Uhl,

editors, Parallel Numerics’02, Theory and Applications, pages 77–86, October 2002.

[11] S. Benkner, E. Laure, and H. Zima. HPF+: An extension of HPF for advanced industrial

applications. Technical Report TR99-01, Institute for Software Technology and Parallel

Systems, University of Vienna, 1999.

[12] A. Berger, J. Mulvey, and R.J. Vanderbei. Solving multistage stochastic programs with

tree dissection. Technical report, Statistics and Operations Research, Princeton Univer-

sity, 1991.

[13] D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic

Press, New York, 1982.

[14] D. Bienstock and J.F. Shapiro. Optimizing resource acquisition decisions by stochastic

programming. Management Science, 34:215–229, 1988.

[15] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C. Nelson, and C. Offner.

Extending OpenMP for NUMA machines. In Proceedings of SC 2000: High Performance

Networking and Computing Conference, November 2000.

[16] J.R. Birge. Decomposition and partitioning methods for multistage stochastic linear

programs. Operations Research, 33:989–1007, 1985.

[17] J.R. Birge, C.J. Donohue, D.F. Holmes, and O.G. Svintsitski. A parallel implementa-

tion of the nested decomposition algorithm for multistage stochastic linear programs.

Mathematical Programming, 75(2):327–352, 1996.

[18] F. Black, E. Derman, and W. Toy. A one-factor model of interest rates and its application

to treasury bond options. Financial Analysts Journal, Jan-Feb:33–39, 1990.

[19] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of

Political Economy, 81:637–654, 1973.

[20] J. Blomvall. A multistage stochastic programming algorithm suitable for parallel com-

puting. Parallel Computing, 29:431–445, 2003.

109

[21] P.P. Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:323–38,

1977.

[22] P.P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security pricing.

Journal of Economic Dynamics and Control, 21:1267–1321, 1997.

[23] S.P. Bradley and D.B. Crane. A dynamic model for bond portfolio management. Man-

agement Science, 19:139–151, 1972.

[24] T. Brandes and S. Benkner. Hierarchical data mapping for clusters of SMPs. Technical

Report ADVICE-2 Deliverable 4a, GMD, June 2000.

[25] M.J. Brennan, E.S. Schwartz, and R. Lagnado. Strategic asset allocation. Journal of

Economic Dynamics and Control, 21:1377–1403, 1997.

[26] G. Campolieti and R. Makarov. Parallel lattice implementation for option pricing under

mixed state-dependent volatility models. In IEEE Proceedings of the 19th International

Symposium on High Performance Computing Systems and Applications (HPCS’05), pages

170–176, May 2005.

[27] F. Cappello and D. Etieble. MPI versus MPI+OpenMP on the IBM SP for the NAS

benchmarks. In Proceedings of SC 2000: High Performance Networking and Computing

Conference, 2000.

[28] B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen. HPJava: Data parallel extensions

to Java. Concurrency: Practice and Experience, 10(11-13):873–877, 1998.

[29] Y. Censor and S.A. Zenios. Parallel Optimization. Theory, Algorithms and Applications.

Oxford University Press, 1997.

[30] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic data distributions in

Vienna Fortran. In Proceedings of the Supercomputing ’93 Conference, Portland, Oregon,

November 1993.

[31] B. Chapman, P. Mehrotra, and H. Zima. Enhancing OpenMP with features for locality

control. In Proceedings of the ECMWF Workshop “Towards Teracomputing—The Use of

Parallel Processors in Meteorology”, Reading, England, November 1998.

110

[32] L. Clewlow and C. Strickland. Implementing derivative Models. John Wiley & Sons, 1998.

[33] P.D. Coddington and A.J. Newell. JAPARA—A Java parallel random number generator

library for high-performance computing. In 18th International Parallel and Distributed

Processing Symposium (IPDPS 2004), Santa Fe, New Mexico, April 2004.

[34] A. Consiglio and S.A. Zenios. Designing portfolios of financial products using integrated

simulation and optimization models. OR, 47:195–20, 1999.

[35] Cornell Theory Center. Glossary of High Performance Computing Terms, March 2006.

www.tc.cornell.edu/NR/shared/Edu/Glossary.

[36] J. Cox, J.E. Ingersoll Jr., and S. Ross. A theory of terms of interest rates. Econometrica,

53:385–407, 1985.

[37] J. Cox, S. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of

Financial Economics, 7:229–263, 1979.

[38] CPLEX Optimization, Inc., Incline Village, NV. Using the CPLEX Callable Library,

1995.

[39] H. Dahl, A. Meeraus, and S.A. Zenios. Some financial optimization models: I. risk

management, II. financial engineering. In Zenios [158], pages 3–36, 37–71.

[40] G.B. Dantzig. Linear programming under uncertainty. Management Science, 1:197–206,

1955.

[41] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8:101–111, 1960.

[42] R. Das and J. Saltz. A manual for PARTI runtime primitives—Revision 2. Internal

research report, University of Maryland, December 1992.

[43] M.A.H. Dempster, editor. Stochastic Programming. Academic Press, New York, 1980.

[44] M.A.H. Dempster. On stochastic programming II: Dynamic problems under risk. Stochas-

tics, 25:15–42, 1988.

111

[45] M.A.H. Dempster and A.M. Ireland. A financial expert decision support system. In

G. Mitra, editor, Mathematical Models for Decision Support, NATO ASI Series F48,

pages 631–640. Springer, Heidelberg, 1988.

[46] M.A.H. Dempster and R.T. Thompson. Parallelization and aggregation of nested Benders

decomposition. Annals of Operations Research, 81:163–187, 1998.

[47] E. Dockner and H. Moritsch. Pricing constant maturity floaters with embedded options

using Monte Carlo simulation. In A.M. Skulimowski, editor, Proceedings of the 23rd

Meeting of the EURO Working Group on Financial Modelling, Krakow, 1999. Progress &

Business Publishers.

[48] J. Dupacova. Multistage stochastic programs: The state-of-the-art and selected bibliog-

raphy. Kybernetika, 31:151–174, 1995.

[49] Y. Ermoliev and R.J.-B. Wets, editors. Numerical Techniques for Stochastic Optimization.

Springer, Berlin, 1988.

[50] T. Fahringer. JavaSymphony: A system for development of locality-oriented distributed

and parallel java applications. In Proceedings of the IEEE International Conference on

Cluster Computing (CLUSTER 2000), Chemnitz, Germany, November 2000. IEEE Com-

puter Society.

[51] T. Fahringer, P. Blaha, A. Hössinger, J. Luitz, E. Mehofer, H. Moritsch, and B. Scholz.

Development and performance analysis of real-world applications for distributed and par-

allel architectures. Concurrency and Computation: Practice and Experience, 13:841–868,

2001.

[52] T. Fahringer, M. Geissler, G. Madsen, H. Moritsch, and C. Seragiottio. Semi-automatic

search for performance problems in parallel and distributed programs by using multi-

experiment analysis. In Proceedings of the 11-th Euromicro Conference on Parallel Dis-

tributed and Network based Processing (PDP2003), Genoa, Italy, February 2003.

[53] T. Fahringer and A. Jugravu. JavaSymphony: New directives to control and synchronize

locality, parallelism, and load balancing for cluster and GRID-computing. In Proceed-

112

ings of the 2002 joint ACM-ISCOPE conference on Java Grande (JGI ’02), pages 8–17,

Seattle, Washington, USA, 2002. ACM Press.

[54] T. Fahringer, A. Jugravu, B. Di Martino, S. Venticinque, and H. Moritsch. On the evalu-

ation of JavaSymphony for cluster applications. In Proceedings of the IEEE International

Conference on Cluster Computing, Chicago, Illinois, September 2002.

[55] T. Fahringer, A. Pozgaj, J. Luitz, and H. Moritsch. Evaluation of P 3T+: A perfor-

mance estimator for distributed and parallel applications. In IEEE Proceedings of the

International Parallel and Distributed Processing Symposium, Cancun, Mexico, 2000.

[56] T. Fahringer, K. Sowa, P. Czerwinski, J. Luitz, and H. Moritsch. On using SPiDER

to examine and debug real-world data-parallel applications. In Proceedings of the 6th

International Conference on Parallel Computing Technologies, PACT-2001, Novosibirsk,

Russia, September 2001.

[57] Österreichische Gesellschaft für Operations Research, March 2006. www.oegor.at.

[58] H.I. Gassmann. MSLiP: A computer code for the multistage stochastic linear program-

ming problem. Mathematical Programming, 47(3):407–423, 1990.

[59] A.V. Gerbessiotis. Architecture independent parallel binomial tree option price valua-

tions. Parallel Computing, 30:301–316, 2004.

[60] H.M. Gerndt. Automatic Parallelization for Distributed-Memory Multiprocessing Systems.

PhD thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1989.

[61] H.M. Gerndt and H. Moritsch. Parallelization for multiprocessors with memory hierar-

chies. In H.P. Zima, editor, Parallel Computation. First International ACPC Conference

1991, Lecture Notes in Computer Science, No. 591, pages 89–101. Springer, 1992.

[62] M. Giles and P. Glasserman. Smoking adjoints: Fast evaluation of Greeks in Monte Carlo

calculations. Technical Report NA-05/15, Numerical Analysis Group, Oxford University,

July 2005.

[63] L.J. Gittman. Principles of Managerial Finance. Pearson/Addison-Wesley, Boston, 11th

edition, 2006.

113

[64] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New York,

2004.

[65] J. Gondzio and R. Kouwenberg. High performance computing for asset liability manage-

ment. Operations Research, 49:879–891, 2001.

[66] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesely,

1996.

[67] S.L. Graham, M.Snir, and C.A. Patterson, editors. Getting Up to Speed: The Future of

Supercomputing. The National Academic Press, 2005.

[68] D. S. Henty. Performance of hybrid message-passing and shared-memory parallelism for

discrete element modeling. In Proceedings of SC 2000: High Performance Networking

and Computing Conference, 2000.

[69] High Performance Fortran Forum. High Performance Fortran Language Specification,

Version 2.0, January 1997.

[70] M. Hitz, G. Kappel, E. Kapsammer, and W. Retschitzegger. UML@Work. dpunkt.verlag,

Heidelberg, 2005.

[71] R. Hochreiter, C. Wiesinger, and D. Wozabal. Large-scale computational finance appli-

cations on the Open Grid service environment. In Advances in Grid Computing—EGC

2005: European Grid Conference, Lecture Notes in Computer Science, No. 3470, pages

891–899. Springer, 2005.

[72] P. Hoel, S. Port, and Ch. Stone. Introduction to Stochastic Processes. Houghton-Mifflin,

Boston, 1972.

[73] K. Hoyland and S.W. Wallace. Generating scenario trees for multistage decision problems.

Management Science, 47:295–307, 2001.

[74] K. Huang and R.K. Thulasiram. Parallel algorithm for pricing american asian options

with multi-dimensional assets. In IEEE Proceedings of the 19th International Symposium

on High Performance Computing Systems and Applications (HPCS’05), pages 177–185,

May 2005.

114

[75] J.C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, 6th edition, 2006.

[76] J.C. Hull and A. White. One factor interest rate models and the valuation of interest rate

derivative securities. Journal of Financial and Quantitative Analysis, 28:235–254, 1993.

[77] J.M. Hutchinson and S.A. Zenios. Financial simulations on a massively parallallel con-

nection machine. The International Journal of Supercomputer Applications, 5(2):27–45,

1991.

[78] P. Hutchinson and M. Lane. A model for managing a certificate of deposit portfolio under

uncertainty. In Dempster [43], pages 473–496.

[79] IBM Corporation, Kingston, New York. Optimization Subroutine Library (OSL) Release

2, 4th edition, 1992.

[80] IEEE/ANSI. POSIX Threads Extensions. IEEE/ANSI 1003.1c-1995.

[81] ISO. Fortran 90 Standard, 1991. ISO/IEC 1539:1991 (E).

[82] ISO. Fortran 95 Standard, 1997. ISO/IEC 1539:1997.

[83] F. Jamshidian. Forward induction and construction of yield curve diffusion models. Jour-

nal of Fixed Income, 1:62–74, 1991.

[84] J.E. Ingersoll Jr. Theory of Financial Decision Making. Studies in Financial Economics.

Rowman & Littlefield, 1987.

[85] P. Kall and S.W. Wallace. Stochastic Programming. Wiley & Sons, Chichester, 1994.

[86] J.G. Kallberg and W.T. Ziemba. An algorithm for portfolio revision: Theory, computa-

tional algorithm and empirical results. In R. Shultz, editor, Applications of Management

Science, pages 267–291. JAI Press, 1981.

[87] A. Knapp and S. Merz. Model checking and code generation for uml state machines

and collaborations. In G. Schellhorn and W. Reif, editors, Proceedings of the 5th Work-

shop on Tools for System Design and Verification(FM-TOOLS 2002), Report 2002-11,

Reisensburg, Germany, July 2002. Institut für Informatik, Universität Augsburg.

115

[88] R. Kouwenberg. Scenario generation and stochastic programming models for asset liability

management. European J. of Operations Research, 134:279–292, 2001.

[89] M.I. Kusy and W.T. Ziemba. A bank asset and liability management model. Operations

Research, 34:356–376, 1986.

[90] L.S. Lasdon. Optimization Theory for Large Systems. Macmillan Series in Operations

Research. Macmillan, New York, 1970.

[91] E. Laure. Distributed high performance computing with OpusJava. In E.H. D’Hollander,

J.R. Joubert, F.J. Peters, and H. Sips, editors, Parallel Computing: Fundamentals &

Applications, Proceedings of the International Conference ParCo’99, pages 590–597, Delft,

The Netherlands, April 2000. Imperial College Press.

[92] E. Laure. High Level Support for Distributed High Performance Computing. PhD thesis,

Institute for Software Science, University of Vienna, February 2001.

[93] E. Laure. OpusJava: A Java framework for distributed high performance computing.

Future Generation Computer Systems, 18(2):235–251, October 2001.

[94] E. Laure, M. Haines, P. Mehrotra, and H. Zima. On the implementation of the Opus

coordination language. Concurrency: Practice and Experience, 12(4):227–249, April 2000.

[95] E. Laure, E. Mehofer, H. Moritsch, V. Sipkova, and A. Świȩtanowski. HPF in financial

management under uncertainty. Technical Report Aurora TR1999-21, Vienna Univer-

sity, October 1999.

[96] E. Laure, P. Mehrotra, and H. Zima. Opus: Heterogeneous computing with data parallel

tasks. Parallel Processing Letters, 9(2):275–289, June 1999.

[97] E. Laure and H. Moritsch. A high performance decomposition solver for portfolio manage-

ment problems in the Aurora financial management system. Technical Report TR01-13,

Institute for Software Science, University of Vienna, October 2001.

[98] E. Laure and H. Moritsch. Portable parallel portfolio optimization in the Aurora finan-

cial management system. In Proceedings of the SPIE ITCom 2001 Conference: Commer-

cial Applications for High-Performance Computing, Denver, Colorado, August 2001.

116

[99] D. Lea. Concurrent Programming in Java. Addison-Wesley, Reading, Mass., 1997.

[100] M. Leair, J. Merlin, S. Nakamoto, V. Schuster, and M. Wolfe. Distributed OMP—

A programming model for SMP clusters. In Eight International Workshop on Compilers

for Parallel Computers, pages 229–238, Aussois, France, January 2000.

[101] M.-P. Leong, C.-C. Cheung, C.-W. Cheung, P.P.M. Wan, I.K.H. Leung, W.M.M. Yeung,

W.-S. Yuen, K.S.K. Chow, K.-S. Leung, and P.H.W. Leong. CPE: A parallel library for

financial engineering applications. IEEE Computer, 38(10):70–77, 2005.

[102] R. Levkovitz and G. Mitra. Solution of large-scale linear programs: A review of hardware,

software and algorithmic issues. In T.A. Ciriani and R.C. Leachman, editors, Optimization

in Industry, pages 139–171. John Wiley, Chichester, 1993.

[103] J.X. Li and G.L. Mullen. Parallel computing of a quasi-Monte Carlo algorithm for valuing

derivatives. Parallel Computing, 26:641–653, 2000.

[104] M. Lobosco, C. Amorim, and O. Loques. Java for high-performance network based com-

puting: a survey. Concurrency and Computation: Practice and Experience, 14:1–31, 2002.

[105] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods for linear program-

ming. ORSA J. on Computing, 6:1–14, 1994.

[106] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[107] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version

1.1, June 1995.

[108] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,

July 1997.

[109] M. Mizuno, G. Singh, and M. Neilsen. A structured approach to develop concurrent

programs in UML. In Andy Evans, Stuart Kent, and Bran Selic, editors, Proceedings

of UML 2000—The Unified Modeling Language. Advancing the Standard. Third Interna-

tional Conference, pages 451–465, York, UK, October 2000. Springer.

117

[110] J. Moreira, S. Midkiff, M. Gupta, P. Artigas, M. Snir, and R. Lawrence. Java programming

for high-performance numerical computing. IBM Systems Journal, 39(1):21–56, 2000.

[111] H. Moritsch. A backward induction algorithm for pricing instruments with limited path

dependence. Technical Report Aurora TR2003-05, Vienna University, 2003.

[112] H. Moritsch. A programming model for tree structured parallel and distributed

algorithms. In Proceedings of the International Conference on Parallel Computing

(ParCo2003), Dresden, Germany, September 2003.

[113] H. Moritsch and S. Benkner. High performance numerical pricing methods. Concurrency

and Computation: Practice and Experience, 14:665–678, 2002.

[114] H. Moritsch, G. Ch. Pflug, and E. Dockner. Test problem generation for multiperiod

optimization in the Aurora financial management system. Technical Report Aurora

TR2001-14, Vienna University, November 2001.

[115] H. Moritsch and G.Ch. Pflug. Java implementation of asynchronous parallel nested op-

timization algorithms. In Third Workshop on Java for High Performance Computing,

2001. Sorrento, Italy, June.

[116] H. Moritsch and G.Ch. Pflug. Polynomial algorithms for pricing path dependent contracts.

Technical Report Aurora TR2002-32, Vienna University, December 2002.

[117] H. Moritsch, G.Ch. Pflug, and M. Siomak. Asynchronous nested optimization algorithms

and their parallel implementation. In Proceedings of the International Software Engineer-

ing Symposium, Wuhan, China, March 2001.

[118] H.W. Moritsch and G.Ch. Pflug. Using a distributed active tree in Java for the parallel and

distributed implementation of a nested optimization algorithm. In Proceedings of the 5th

Workshop on High Performance Scientific and Engineering Computing with Applications

(HPSECA-03), Kaohsiung, Taiwan, ROC, October 2003.

[119] J.M. Mulvey and W.T. Zimba. Asset and liability management systems for long-term

investors: discussion of the issues. In J.M. Mulvey and W.T. Ziemba, editors, Worldwide

Asset Liability Management. Cambridge University Press, 1998.

118

[120] S.S. Nielsen and S.A. Zenios. Scalable parallel Benders decomposition for stochastic linear

programming. Parallel Computing, 23:1069–1088, 1997.

[121] The OpenMP Forum. OpenMP Fortran Application Program Interface, Version 1.1,

November 1999. www.openmp.org.

[122] K. Pang and C. Strickland. Pricing interest rate exotics using term structure consistent

short rate trees. In C. Strickland L. Clewlow, editor, Exotic Options: The State Of The

Art. International Thomson Business Press, London, 1997.

[123] Giorgio Pauletto. Parallel Monte Carlo methods for derivative security pricing. In Numer-

ical Analysis and Its Applications, Second International Conference, NAA 2000, Lecture

Notes in Computer Science, No. 1988, pages 650–657. Springer, 2000.

[124] M.V.F. Pereirea and L.M. Pinto. Multi-stage stochastic optimization applied to energy

planning. MPr, 52:359–375, 1991.

[125] S.C. Perry, R.H. Grimwood, D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd. Per-

formance optimization of financial option calculations. Parallel Computing, 26:623–639,

2000.

[126] G. Ch. Pflug. How to measure risk. In U. Leopold-Wildburger, G. Feichtinger, and K.-

P. Kistner, editors, Modelling and Decisions in Economics, pages 39–59. Physica-Verlag,

1999.

[127] G. Ch. Pflug. Optimal scenario tree generation for multiperiod financial planning. Math-

ematical Programming, 89:251–271, 2001.

[128] G.C. Pflug and A. Świȩtanowski. Selected parallel optimization methods for financial

management under uncertainty. Parallel Computing, 26:3–25, 2000.

[129] G.Ch. Pflug, A. Świȩtanowski, E. Dockner, and H. Moritsch. The Aurora financial

management system: Model and parallel implementation design. Annals of Operations

Research, 99:189–206, 2000.

[130] G.Ch. Pflug and A. Świȩtanowski. The Aurora financial management system documen-

tation. Technical Report Aurora TR1998-09, Vienna University, June 1998.

119

[131] G.Ch. Pflug and A. Świȩtanowski. Dynamic asset allocation under uncertainty for pension

fund management. Control and Cybernetics, 28(4):755–777, 1999.

[132] G.Ch. Pflug and A. Świȩtanowski. Asset-liability optimization for pension fund manage-

ment. In Operations Research Proceedings 2000, pages 124 – 135. Springer, 2000.

[133] S. Pichler. Bewertung von Zahlungsströmen mit variabler Verzinsung. Vienna, September

1998. Habilitationsschrift.

[134] R. Prodan, T. Fahringer, F. Franchetti, M. Geissler, G. Madsen, and H. Moritsch. On

using ZENTURIO for performance and parameter studies on clusters and grids. In Pro-

ceedings of the 11-th Euromicro Conference on Parallel Distributed and Network based

Processing (PDP2003), Genoa, Italy, February 2003.

[135] A. Ruszczyński. A regularized decomposition method for minimizing a sum of polyhedral

functions. Mathematical Programming, 35:309–333, 1986.

[136] A. Ruszczyński. An augmented Lagrangian decomposition method for block diagonal

linear programming problems. Operations Research Letters, 8:287–294, 1989.

[137] A. Ruszczyński. Parallel decomposition of multistage stochastic programming problems.

Mathematical Programming, 58:201–228, 1993.

[138] A. Ruszczyński. Decomposition methods in stochastic programming. Mathematical Pro-

gramming, 79:333–353, 1997.

[139] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and

execution of loops on message passing machines. Journal of Parallel and Distributed

Computing, 8(2):303–312, 1990.

[140] E.S. Schwartz. The valuation of warrants: Implementing a new approach. Journal of

Financial Economics, 4:79–94, 1977.

[141] Silicon Graphics Inc. MIPSpro Power Fortran 77 Programmer’s Guide: OpenMP Multi-

processing Directives, 1999. Document 007-2361-007.

120

[142] D. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Com-

puting Surveys, 30(2):123–169, June 1998.

[143] L. Somlyody and R.J.-B. Wets. Stochastic optimization models for lake eutrophication

management. Operations Research, 36:660–681, 1988.

[144] Spezialforschungsbereich (SFB) Aurora “Advanced Models, Applications and Software

Systems for High Performance Computing”, University of Vienna. Report on the First

Research Period, October 1999.

[145] Thomas Sterling. Beowulf Cluster Computing with Linux. MIT Press, Cambridge, MA,

USA, 2001.

[146] U.H. Suhl. MOPS - Mathematical Optimization System. European J. of Operations

Research, 72:312–322, 1994.

[147] SUN Microsystems. Java Remote Method Invocation Specification, 1998.

[148] H. Troung, T. Fahringer, G. Madsen, A. Malony, H. Moritsch, and S. Shende. On using

SCALEA for performance analysis of distributed and parallel programs. In Proceedings of

the 9th IEEE/ACM High-Performance Networking and Computing Conference, SC’2001,

Denver, Colorado, November 2001.

[149] E.P.K. Tsang and S. Martinez-Jaramillo. Computational finance. IEEE Computational

Intelligence Society Newsletter, pages 8–13, August 2004.

[150] C. van Reeuwijk, A. van Gemund, and H. Sips. Spar: A set of extensions to Java for

scientific computation. Concurrency and Computation: Practice and Experience, 15(3-

5):277–297, 2003.

[151] R.J. Vanderbei. LOQO: An interior point code for quadratic programming. Technical

Report SOR-94-15, School of Engineering and Applied Science, Departament of Civil

Engineering and Operations Research, Princeton University, 1994.

[152] H. Vladimirou and S.A. Zenios. Scalable parallel computations for large-scale stochastic

programming. Annals of Operations Research, 90:87–129, 1999.

121

[153] Wikipedia. “Finance”, March 2006. en.wikipedia.org/wiki/Finance.

[154] K.J. Worzel, C.V. Vassiadou-Zeniou, and S.A. Zenios. Integrated simulation and opti-

mization models for tracking fixed-income indices. Operations Research, 42(2):223–233,

1994.

[155] S.J. Wright. Primal Dual Interior-Point Methods. Society for Industrial and Applied

Mathematics, Philadelphia, 1997.

[156] D. Yang and S.A. Zenios. A scalable parallel interior point algorithm for stochastic linear

programming and robust optimization. Technical Report 95-07, Departament of Public

and Business Administration, University of Cyprus, February 1995.

[157] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect.

Concurrency and Computation: Practice and Experience, 10(11-13):825–836, 1998.

[158] S. Zenios, editor. Financial Optimization. Cambridge University Press, 1993.

[159] S.A. Zenios. Parallel Monte Carlo simulation of mortgage-backed securities. In Zenios

[158], pages 325–343.

[160] S.A. Zenios. High-performance computing in finance: The last ten years and the next.

Parallel Computing, 25:2149–2175, 1999.

[161] G. Zhong. A numerical study of one-factor interest rate models. Master’s thesis, Graduate

Department of Computer Science University of Toronto, 1998.

[162] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran—

A language specification. Internal Report 21, ICASE, 1992.

[163] H.P. Zima and B.M. Chapman. Supercompilers for Parallel and Vector Computers. ACM

Press Frontier Series. Addison-Wesely, 1990.

122

