

Diplomarbeit

Communication Protocols in XVSM-
Design and Implementation

Ausgeführt am
Institut für Computersprachen

Abteilung für Programmiersprachen und Übersetzerbau
der Technischen Universität Wien

unter Anleitung von
Ao. Univ. Prof. Dipl.-Ing. Dr. eva Kühn

durch
Severin Ecker

Tigergasse 11/16
A-1080 Wien

Matr.Nr.: 9925546

Wien, August 2007 ----------------------------

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

2

Kurzfassung

In vernetzten Umgebungen, im Speziellen sind hier space basierte

Anwendungen zu verstehen, existiert eine Vielzahl an unterschiedlichen

interagierenden Geräten. Beispiele hierfür wären der weit verbreitete Desktop-

PC, große Server aber auch mobile Geräte wie Handhelds und Vertreter der

neuen Generationen von Mobiltelefonen. Diese sind oft auf verschiedensten

Technologien aufgebaut und stellen unterschiedliche Ansprüche sowohl an die

jeweiligen Programmierparadigmen als auch an die verwendeten Werkzeuge.

Einfach eine Middleware zu verwenden, gibt insofern keine ausreichende

Hilfestellung da sie die Probleme der Internetfähigkeit und der Heterogenität der

Endverbrauchergeräte nicht oder nur teilweise löst. Üblicherweise müssen

spezielle Programmiersprachen benutzt und eigene Hardware

Schnittstellengeräte des jeweiligen Endsystems berücksichtigt werden.

Die Kommunikation in XVSM (erweiterbares virtuelles shared Memory) wurde

also offenes Protokoll und sprachunabhängig spezifiziert unter Verwendung des

öffentlichen und freien Standards für XML Schema.

Dies ermöglicht eine Entkopplung der XVSM Core (XCore) Implementierung von

der jeweiligen Anwendung und den Restriktionen des Endgeräts. Dadurch

resultiert das XVSM System in einer leichter zu verwendenden und besser

integrierbaren space basierten Middleware.

Diese Diplomarbeit befasst sich sowohl mit dem Design und der

Implementierung der MozartSpaces (eine open source Java Implementierung

von XVSM) als auch mit der Entwicklung und der Integration des XML

Protokolls.

Abstract

3

Abstract

In a distributed environment especially in space-based computing, a large

number of heterogeneous devices interact together. Examples for such devices

are the widespread and well known desktop PC, servers but also mobile devices

such as handhelds or smart phones. These are based on different technologies

and usually pose different requirements on the programming paradigms and

tools. Simply picking a middleware only provides limited support for overcoming

the problems of needed network support and the heterogeneity of end user

devices. Usually a specific kind of programming language, hardware interfacing

device, or software technology must be available on the end user device.

The communication in XVSM (extensible virtual shared memory) is defined as

open and language independent protocol. This protocol is specified by using the

publicly available and well-established standard XML Schema.

This allows the decoupling of the XVSM core (XCore) implementation from the

client application and the end user device characteristics, which results in an

easier to use, and more adaptable space-based middleware.

This thesis discusses the design and implementation of the MozartSpaces (an

open-source Java based implementation of the XVSM) and the development of

the XML Communication Protocol.

Acknowledgements

4

Acknowledgements

First and foremost I would like to thank my supervisor Dr. eva Kühn who made

this diploma thesis possible. She is an everlasting source of interesting and

ingenious ideas and an inspiration to my own work.

I also want to express my gratitude to my colleagues at the complang institute,

most of all Richard Mordinyi whose constructive criticism helped me shape and

structure the project documents and in the end this thesis itself. Also he never

complained when I was in a bad mood or things didn’t work out the way I

intended them.

Additionally my thanks go out to my friends who have helped me to stay focused

and continue my work. Especially I want to thank Peter Vogl who sparked my

interest in computer science and Benjamin Roch who never grew tired in

helping me with bureaucracy issues.

Last but not least I want to thank the Tigerbande members. They have endured

my moods without complaints and wouldn’t stop trying to drag me away from

my work in order to party.

Table of Content

5

Table of Content

Kurzfassung ___ 2

Abstract __ 3

Acknowledgements ___ 4

Table of Content ___ 5

Figure List __ 8

Listings __ 10

I. Introduction __ 11

I.1. Motivation ___ 11

I.2. Current Situation__ 11

I.3. The Goal ___ 13

I.4. Basic Concepts __ 14

I.5. Comparison existing Space-based Middleware _______________________________ 14

II. Evolution of Space based middleware____________________________________ 21

III. XVSM Coordination Patterns __ 26

IV. XVSM System Architecture __ 29

V. Architectural Overview ___ 31

V.1. Embedded XVSM ___ 31

V.2. Standalone XVSM ___ 33

VI. Core API___ 35

VI.1. Definition of a Container ___ 36
VI.1.1. Properties ___ 37
VI.1.2. Coordination Types ___ 39

VI.2. Definition of API Arguments __ 40
VI.2.1. Entry___ 40
VI.2.2. Selector __ 45

VI.3. Core API Operations___ 48

Table of Content

6

VI.3.1. Core management operations__ 49
VI.3.2. Container operations __ 49
VI.3.3. Entry operations __ 50
VI.3.4. Notifications___ 52

VI.4. Exceptions ___ 56
VI.4.1. Runtime Exceptions ___ 57
VI.4.2. Operational Exceptions __ 57

VII. Entry Workflow ___ 59

VII.1. Workflow principles ___ 59
VII.1.1. Blocking Workflows __ 60
VII.1.2. Workflow ___ 62

VII.2. Creation of a Workflow __ 63

VII.3. READ Workflows ___ 64
VII.3.1. Capi.read/ReadWorkflow__ 64
VII.3.2. Capi.take/TakeWorkflow __ 67
VII.3.3. Capi.destroy/DestroyWorkflow ___ 68

VII.4. WRITE Workflows __ 69
VII.4.1. Capi.write/WriteWorkflow ___ 69
VII.4.2. Capi.shift/ShiftWorkflow __ 71

VII.5. Optimizing Selectors ___ 72
VII.5.1. Checking Validity __ 73
VII.5.2. Optimization __ 74

VIII. Container Access Data Access Object __________________________________ 77

VIII.1. ContainerAccess API __ 77
VIII.1.1. Container Management __ 78
VIII.1.2. Entry and Selector Methods __ 79
VIII.1.3. Miscellaneous Methods__ 79
VIII.1.4. Exceptions __ 80

VIII.2. Selector application __ 81

VIII.3. Database ___ 82
VIII.3.1. EER Diagram ___ 83
VIII.3.2. Database Processing __ 87

IX. Collaborations within XVSM___ 92

IX.1. Core Management Operations ___ 92
IX.1.1. Init __ 92

Table of Content

7

IX.1.2. Shutdown ___ 93

IX.2. Container Operations __ 93
IX.2.1. Create Container ___ 93
IX.2.2. Destroy Container __ 94
IX.2.3. Read/Take/Destroy/Write/Shift __ 94

X. XVSM Protocol__ 95

XI. XVMS Client Site __ 96

XI.1. ClientCapi: Implementation of the Capi interface___________________________ 96

XI.2. Transforming Capi calls to XVSM XML __________________________________ 96

XI.3. Connections to the server ___ 97

XI.4. Notifications __ 98

XI.5. Exceptions thrown by the client __ 99

XII. XVSM Server Site___ 100

XII.1. Notifications ___ 102

XII.2. Timeout __ 103

XIII. The XML Protocol __ 104

XIV. Capi and Sample Code ___ 106

XV. Evaluation and Benchmarking __ 113

XVI. Future Work ___ 114

XVII. Conclusion __ 116

References __ 117

Abbreviations __ 119

Appendix A – XML Protocol XML Schema ____________________________________ 120

Table of Content

8

Figure List

Figure 1: Space based computing overview ..16

Figure 2: Direct communication ..22

Figure 3: Client-Server based communication..23

Figure 4: Central Space Server ..24

Figure 5: Virtual Space Server ...25

Figure 6: System Architecture ...29

Figure 7: XVSM System embedded ..32

Figure 8: XVSM Core architecture ...33

Figure 9: XVSM System standalone ...34

Figure 10: CapiFactory Class diagram ...36

Figure 11: ContainerProperties class diagram..37

Figure 12: ContainerProperty class diagram ..39

Figure 13: CoordinationTypes class diagram ...40

Figure 14: Entry and Tuple class diagram ...43

Figure 15: Entry::Factory class diagram ..44

Figure 16: ValueTypes class diagram...45

Figure 17: Selector class diagram ..47

Figure 18: Capi Interface diagram ...48

Figure 19: Notification class diagram...53

Figure 20 NotificationMode class diagram ...55

Figure 21: NotificationListener class diagram ..56

Figure 22: Workflow class diagram ..62

Figure 23: Workflow creation sequence diagram ..64

Figure 24: Sequence diagram for the read workflow...65

Figure 25: Sequence diagram for the blocking read workflow...........................66

Figure 26: Main activities of read operation ...67

Figure 27: Sequence diagram for the take workflow...68

Figure 28: Sequence diagram for the destroy workflow69

Figure 29: Sequence diagram for the write operation70

Figure 30: Sequence diagram for the blocking write operation71

Figure 31: Sequence diagram for the shift operation..72

Figure 32: SelectorOptimizer class diagram ...73

Table of Content

9

Figure 33: ContainerAccess class diagram...78

Figure 34: XVSM Core database model ..84

Figure 35: Database read sequence..88

Figure 36: Database take/destroy sequence...89

Figure 37: Database write sequence ...90

Figure 38: Database shift sequence ..90

Figure 39: Capi.Init sequence diagram ..92

Figure 40: Capi.shutdown sequence diagram ..93

Figure 41: Capi.createContainer sequence diagram ...93

Figure 42: Capi.destroyContainer sequence diagram94

Figure 43: entry operation sequence diagram ..94

Figure 44: Creator class diagram...97

Figure 45: Reader class diagram..97

Figure 46: ConnectionManager class diagram..98

Figure 47: Connection class diagram...98

Figure 48: NotificationManager class diagram ...99

Figure 49: AbstractNotificationReceiver class diagram99

Figure 50: XVSMServlet class diagram ..100

Figure 51: XVSMXmlObject class diagram...100

Figure 52: ProtoJax class diagram...101

Figure 53: NotifListener class diagram...103

Listings

10

Listings

Listing 1: Capi creation through factory...35

Listing 2: Bean configuration for Capi ...35

Listing 3: Subtype checking of entry and value type ..41

Listing 4: isSubType implementation...42

Listing 5: Workflow creation with the factory ...51

Listing 6: ReadWorkflow bean configuration ..51

Listing 7: Creation of Notifications in Capi...53

Listing 8: checking notification validity..54

Listing 9: Notification Callback ..54

Listing 10: Notification firing ...56

Introduction Motivation

11

I. Introduction

I.1. Motivation

More than a decade after the invention of the ‘Internet’, as we commonly know

it, the number of networked devices nowadays is tremendously high. To most

owners of personal computers these devices are almost useless if it were not for

the worldwide connection and interaction with others. Applications that exploit

these networks range from simple communication among endpoints to highly

sophisticated distributed processing and resource sharing. Usually this works

fine in the world of traditional computers and servers where distributed

programming has been studied and established for many years. Additionally the

small amount of resources on mobile computing devices is still a problem and

requires careful and complex resource management. Today even the average

desktop computer has a huge amount of memory and computational power

which makes it a lot easier to write useful and competitive applications in a

short timeframe.

Still these aren’t the only problems that arise in a distributed environment.

Advanced and complicated programming patterns are needed in order to ensure

secure and safe applications. Not only to avoid intrusion and data manipulation

from third parties but also simple protection against data corruption and data

loss due to networking problems. Enhancement of distributed applications in

these aspects is often hard to implement due to the complexity of the technology

on one hand and the entanglement of network and application code.

Clearly an improvement of this situation is desired to speed up development

time and produce more robust programs that at the same time make use of

cutting edge technology achievements.

I.2. Current Situation

Programming in and for networked environments has been around for quite

some time. Distributed applications also are not some new unknown ground. It

is clear that support for the development of such programs has improved over

the last years. Networking, package and message handling often (if not always,

Introduction Current Situation

12

not accounting some special or exotic corner cases) is only visible through some

high level abstracting libraries to the average programmer. Still, since breaking

up application data into separate messages that can be sent by means of such

libraries is tedious enough an even higher level concept has been introduced.

And developers want to exchange parts of programs and data and not messages

that are unnatural to the application structure.

Developers usually have the ‘don’t reinvent the wheel’-concept learned from day

one. Therefore the best way to achieve an improvement would be to first look at

what’s already there. Different program parts need to communicate with each

other. Most often it’s not really noteworthy since they communicate on the same

machine. But here lies the key to a new concept for distributed programming.

Inter process communication has come a long way and many different solutions

have been invented to support it. Similar problems also occur in multi-

threaded1 applications, that is different processes (or threads) have to

communicate. A natural idea is to let multiple processes share a common

memory called a shared memory. Each process (or thread) can work with the

memory in such a way as if it would be just a normal chunk of memory2. Since

multiple processed (or threads) can access the same memory without special

hacks or intruding private memory blocks of another process, they can share

data and thus communicate.

This idea of a shared memory in a non-networked environment has been

adopted for distributed applications as well. In order to clearly distinct between

the different environments such a shared memory is called space in the

networked environment. But the principle is still the same; multiple (not

necessarily) distributed applications share some virtual common memory which

they can use to exchange data. The advantage of this concept is clearly visible to

the application programmer since the burden of writing tedious network code,

1 Multi threading is a concept that allows a program to virtually run multiple tasks simultaneously. Each
different task would be implemented in a separate thread which can run on its own. In many cases this
can result in tremendous performance boosts especially when slow operations (such as I/O) are
involved that would otherwise block the rest of the program during their wait cycles. Additionally the
multi threaded architecture is natural to the existing and spreading multi-core CPUs.
2 Of course there usually are differences to ‘normal’ memory since the shared memory has to be
requested from the operating system. It might also be possible (depending on the used library and
OS) that the process has to do some locking and releasing when working with the memory.

Introduction The Goal

13

breaking data into messages and similar tasks are hidden in the abstraction of

a space middleware.

Quite a number of different space based middleware is already on the market. A

short and not exhaustively overview will be given in chapter I.4. It will compare

the currently available systems to the XVSM (eXtensible Virtual Shared Memory)

which tries to solve or nullify different limitations and problems of distributed

computing by providing a new methodology for space based computing.

I.3. The Goal

The XVSM system was designed from scratch with three main aspects in mind.

1. It must be possible to distribute the memory pool (space) itself

throughout a networked environment. This means that the space must

not be limited to a single machine but can be accessed by multiple

devices.

2. It must be extensible in such a way that needed aspects can be injected

into the system without a system redesign. Such aspects may concern

security, encryption or user management (Note: these are only examples

and not an exhaustive list.)

3. The XVSM must have an interface that is independent of a programming

language so that different applications can use the same space

implementation no matter which language they are written in.

Chapter III explains the different XVSM coordination patterns; chapter IV the

overall system architecture; chapter V the concrete architecture of the

MozartSpaces and the chapters thereafter contain detailed discussion about the

MozartSpaces implementation.

Basically XSVM’s objective is to be a robust, feature-rich yet easy to use space

based computing middleware. It is my feeling that we indeed have accomplished

our goals thus far and think that XVSM could and should be the next step to be

taken in space based computing.

Introduction Basic Concepts

14

I.4. Basic Concepts

The XVSM (eXtensible Virtual Shared Memory) system is briefly described in

this chapter. For more detailed explanations see the respective chapters.

The main concept used in XVSM is a container (see chapter VI.1). A container

has a number of properties (see chapter VI.1.1). The most important properties

in XVSM are the coordination types (see chapter VI.1.2). These are used to

coordinate multiple clients through specific read/write/notify design patterns.

Another prominent example of a container property is its size. A container can

be unbounded, meaning that it does not have a size and can hold an unlimited

number of entries, or bounded. The size property of a bounded container gives

the number of entries that the container can hold.

The chunks of data that can be written into or read from a container are called

entries (see chapter VI.2.1). These entries have a VALUE_TYPE property which

specifies the type of the data this entry represents. Along with the value’s type

the value itself is stored in the entry.

Entries are written to and read from the container with so called selectors (see

chapter VI.2.2). These can be thought of as some kind of filter in the case of

reading entries and additional meta-information when writing entries. Some

operations that are defined for entries (read, take, write) can block. This means

that if the operation cannot successfully execute (e.g.: the desired entry that

must be written does not exist) the operation is said to block. This means that

the operation will only return to the caller after the specified timeout has

expired or the operation can successfully execute (e.g.: someone might have

written the desired entry into the container).

For each operation that is concerned with entries a so called notification can be

created (see chapter VI.3.4). This notification fires whenever the hooked

operation is executed successfully. Among other things this mechanism can be

used to implement asynchronous behaviour.

I.5. Comparison existing Space-based Middleware

This chapter gives some examples of currently available and used middleware

implementations along with a short description of each. For each of these

implementations a short list of shortcomings is given and a summarizing table

Introduction Comparison existing Space-based Middleware

15

of these limitations along with a relation to XVSM is presented at the end of the

chapter.

Figure 1, taken [Kühn 2007], gives a general idea about the space based

systems and implementations that are currently available.

m
isc. D

/V
S

M
 Im

p
lem

en
tatio

n
s

LIN
D

A
tuple

spaces

XVSM

G
iga

Spaces

T-Spaces

Space B
ased

C
om

puting

XM
L Spaces

Java Spaces

Shared Prolog

C
-Linda /

Fortran-Linda

jxta

Vision / ParadigmTechnology / StandardProduct / Implementation

Sem
antic W

eb
P2P and G

RID

C
om

puting

D
SM

/
VSM

G
LO

B
U

S

O
utrigger

m
isc. G

L
O

B
U

S

Im
p

lem
en

tatio
n

s
e.g

.: p
latfo

rm

T
S

C
 P

ro
jek

t

Triple
Space

jxtaSpaces
etc.

C
orso

T
rip

C
o

m
P

ro
jek

t
C

orso
M

ozartSpaces

m
isc. D

/V
S

M
 Im

p
lem

en
tatio

n
s

LIN
D

A
tuple

spaces

XVSM

G
iga

Spaces

T-Spaces

Space B
ased

C
om

puting

XM
L Spaces

Java Spaces

Shared Prolog

C
-Linda /

Fortran-Linda

jxta

Vision / ParadigmTechnology / StandardProduct / Implementation

Sem
antic W

eb
P2P and G

RID

C
om

puting

D
SM

/
VSM

G
LO

B
U

S

O
utrigger

m
isc. G

L
O

B
U

S

Im
p

lem
en

tatio
n

s
e.g

.: p
latfo

rm

T
S

C
 P

ro
jek

t

Triple
Space

Triple
Space

jxtaSpaces
etc.

C
orso

C
orso

T
rip

C
o

m
P

ro
jek

t
C

orso
C

orso
M

ozartSpaces
M

ozartSpaces

Introduction Comparison existing Space-based Middleware

16

Figure 1: Space based computing overview

In the rightmost column the vision or architectural paradigm is given. Such

paradigms generally give concepts and ideas about the general functionalities

that such a system must have.

The middle column then sums up which standards/specifications and or

technologies follow and specify the visions given in the paradigm column. Also

the relationship among different technologies is visible. E.g.: the XVSM can be

seen as an evolution of the Corso and Java Spaces technologies that also

includes ideas and concepts of the GRID computing world.

Finally in the leftmost column available implementations of the mid-column

specifications are given. E.g.: the MozartSpaces are one implementation of

XVSM.

The following list gives a short overview of currently available and important

players for the three general paradigms.

• JavaSpaces3

JavaSpaces is a specification developed and maintained by Sun Microsystems.

It is based on the Jini technology (also introduced by Sun). Data objects that

can be written into and retrieved from the space are called entries. These entries

will be serialized upon writing to and de-serialized upon reading from the space.

Among JavaSpace clients (so called peers) all communication is handled

through the entries written to and read from the space. The space itself will not

take an active and direct role in peer interaction (other than providing

mechanisms for entry storage).

In JavaSpaces, as it is the case with any space based middleware, the heart lies

in the space itself. The space is the storage which provides mechanisms to write

and read data. In the case of JavaSpaces this memory is not distributed among

several hosts but located on a single machine. Some of the disadvantages with

this architecture become immediately clear. Obviously it more or less boils down

to a client-server architecture including many of its limitations, most notably

the problem of the single point of failure. If the service for any reason does not

3 The currently most recent specification, version 2.1, can be found online.
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html

Introduction Comparison existing Space-based Middleware

17

work as intended, the peers are left without any possibility of fixing the problem.

The space server might become overstressed, taken down for maintenance or

even worse, lose all data due to an unexpected crash. Some of these problems

can be tackled by sophisticated server backup strategies. Due to the very nature

of the JavaSpace architecture itself this puts a heavy burden on system

administrators though.

Since JavaSpaces is an implementation specification of the TupleSpaces the

single coordination model available is that of the so called LINDA tuples. The

LINDA tuples provide a template tuple matching mechanism. Simply spoken

this means that a template for the requested type of entry is created, filled with

the desired matching fields and sent to the space. The space will then match

this template against the available entries (unset fields will match any value of

that given field) and return the matching entries to the client.

JavaSpace, as the name quite obviously suggests, are available only for the Java

programming language therefore ruling out a rather big number of possible

users beforehand.

Additionally to simple read and write operations the JavaSpaces offer the

possibility of notifications which can be used to track changes in the space

without the need of implementing a pull based model.

• GigaSpaces4
The GigaSpaces are a concrete implementation of the JavaSpaces specification.

They provide high performance and transaction safety. Coming in different

flavours (e.g.: free, caching, enterprise editions) everyone can find an edition

suitable to his/her needs and budget. Unlike JavaSpaces the GigaSpaces also

provide language bindings for other programming languages than Java (e.g.:

.NET).

• XMLSpaces5

4 http://www.gigaspaces.com/
5 http://www.ag-nbi.de/research/xmlspaces.net

Introduction Comparison existing Space-based Middleware

18

Just as it has been the case with the previously mentioned space

implementations only the LINDA coordination model is available for XMLSpaces.

XMLSpaces is an extension of the Linda coordination language which is used for

web based applications. The advantages of XMLSpaces lie in the more

sophisticated matching facilities that are available. The matching is performed

according to an XML document, hence the name XMLSpaces. Here not only

simple logical compositions are possible but also complex ones such as XPath

expressions.

XMLSpaces are available for Java as well as the .NET platform.

• Corso6

The Coordinated Shared Objects space based system was designed and

implemented at the Vienna University of Technology. Once again only one

coordination model is supported. Every item that is written into the space has a

unique ID attached (the object ID). This identifier must be used to retrieve

objects from the space. An object therefore has an identity such as it is

commonly known from object oriented programming languages. Depending on

the situation this can be an advantage or a burden. Another disadvantage of

Corso is that it doesn’t offer any other GRID related features and extensible

interceptor technologies.

Unlike many other space-based middleware the programmer can choose

between different language bindings such as .NET, Java and C++. These of

course are available on different operating systems as well (e.g.: Linux, UNIX,

Window, even some mobile platforms).

Objects in Corso can be read from and written into the space, registered with

names, read asynchronously and there is also a notification system available.

• Grid Computing (Globus)7

A GRID is an infrastructure that allows sharing of distributed resources.

Probably two of the most prominent examples would be processing time and

memory. The main advantage of this architecture is that even resource limited

end points virtually have unlimited resources at their hands such as handhelds

or smart phones. Additionally GRID architectures don’t face the same problems

6 http://stud3.tuwien.ac.at/~e9825311/SBC/corso/docs
7 http://www.globus.org

Introduction Comparison existing Space-based Middleware

19

as traditional client-server architectures do. Since the workload is distributed

among several endpoints there is no single point of failure i.e.: the one server.

One representative for GRID computing systems is Globus.

Feature Space-based system Available

JavaSpaces One - LINDA tuple

GigaSpaces One - LINDA tuple

XMLSpaces One - LINDA tuple

Corso One - LINDA tuple

Grid Computing (Globus) GridFTP and RFT

Coordination
types

MozartSpaces
Order (lru, fifo, lifo, set),

key, vector and template

JavaSpaces Java

GigaSpaces Java, .Net and C++

XMLSpaces Java and .NET

Corso .NET, Java and C++

Grid Computing (Globus) Phyton, C and Java Programming

language

MozartSpaces

Java (additional

languages such as the

.NET framework with its

supported programming

languages are already

planned)

JavaSpaces Read, write, take, notify

GigaSpaces Read, write, take, notify

XMLSpaces Read, write, take, notify

Corso Read, write, take, notify

Grid Computing (Globus) Read, write, take, notify

Basic

operations

MozartSpaces
Read, write, take,

destroy, shift, notify

JavaSpaces
No, representative of

Tuple Space model

GigaSpaces Yes, in a special version

Distribution
of the space

XMLSpaces No, representative of

Introduction Comparison existing Space-based Middleware

20

Tuple Space model

Corso
Yes, representative of

VSM

Grid Computing (Globus) Yes

MozartSpaces

Yes, via higher level

profiles, representative of

XVSM

JavaSpaces
No distributed

transactions

GigaSpaces
No distributed

transactions

XMLSpaces
No distributed

transactions

Corso Distributed transactions

Grid Computing (Globus) Distributed transactions

Transactions

MozartSpaces Not yet

Table 1: Space-based computing middleware comparison

Evolution of Space based middleware Comparison existing Space-based Middleware

21

II. Evolution of Space based middleware

Four major evolutionary steps can be identified in the evolution of space based

computing. This chapter will explain these steps and also give examples of the

main and most important technologies for each step. These four steps are:

1. Direct communication

2. Client-Server based communication

3. Central Space Server

4. Virtual Space Server

1. In the direct communication ‘age’ every peer that wants to interact with

another peer directly sends messages to a target. This usually puts a

noticeable burden on the application designers and developers since,

among other things, they have to implement the messaging code, come up

with a suitable communication protocol8 that fulfils the needs of the

overall application. This directly implies that each peer must know every

other peer and its communication protocol. Figure 2 shows only a small

network with a few peers that interact with each other. Clearly a lot of

knowledge about the other peers must be shared (e.g.: host endpoints,

ports) and a lot of network traffic is involved.

Related technologies for this kind of communication are sockets, RPC9

and RMI10.

Extensions of this model are very complex and there is no caching

strategy.

8 This does not mean a transfer protocol such as TCP or UDP. Here the content of the messages
which are sent from one peer to another are spoken of. Of course transfer protocols usually are
managed by networking libraries and not implemented by the application developer.
9 Remote Procedure Calls allow the invocation of methods on a different host.
10 Remote Method Invocation can be seen of SUN’s version of RPC for the Java Programming
Language.

Evolution of Space based middleware Comparison existing Space-based Middleware

22

Figure 2: Direct communication

2. The client server architecture (see Figure 3) removes the necessity of every

peer knowing every other peer that it wants to communicate with.

Instead, all interaction is done between a client and a centralized host,

the server. This server is contacted whenever a peer needs to interact with

the server itself or another client in the network. Depending on the

application and the network infrastructure it might be possible that the

service can only be contacted by clients but may not contact clients itself.

Such limitations must be taken into consideration when designing

applications. Usually the servers are well equipped considering their

bandwidth, computational power and memory and can do their tasks a

lot quicker than the average client would be able to. The reduction of

communication interfaces is an advantage of this architecture. The

disadvantages must not be overlooked. Client-server architectures11 offer

11 In this case assume that there is no backup server available, which in reality basically is a must for
important services.

Evolution of Space based middleware Comparison existing Space-based Middleware

23

a single point of failure for the application. Whenever the server is not

running the application is not functional. Also the client-server

architecture is still based on the message passing paradigm. Very

prominent examples of client-server architectures would be HTTP servers

(web browsing) or web services that are used for certain computation

tasks.

Figure 3: Client-Server based communication

3. The next step of abstraction is space based computing as shown in Figure

4. Two things have changed compared to the client-server architecture.

First, the standard message passing has been changed into a space based

API. This means that all network handling, message splitting and protocol

issues are handled by the space based library in the background and

transparent to the user. All peers can access a common storage, however,

on a server and most importantly do so independently of the application.

The application developers therefore don’t need to worry about data to

Evolution of Space based middleware Comparison existing Space-based Middleware

24

message splitting and comply with application specific communication

protocols since all this is handled in the space based library. The most

serious flaw of the client-server architecture still applies to this approach:

the single point of failure. Once the main server is down, the space and

therefore all storage and communication facilities are not available.

Important and related technologies concerning this architecture are the

Java Spaces, VSM and XVSM.

This architecture is only a conceptual improvement since the underlying

techniques are still the ones that have been discussed before.

SpaceSpace

Figure 4: Central Space Server

4. The last step of evolution towards space based architectures is shown in

Figure 5. The central space hosting server and thus the single point of

failure has been overcome while keeping the space based advantages

depicted in the previous architectural step. The space (the common

storage area) now is spanned by the participating peers, the virtual space

Evolution of Space based middleware Comparison existing Space-based Middleware

25

server. This means that failure of a single device does not have as big an

impact (if any) on the overall application and other peers as in

comparison to a central space service. In combination with this

architecture usually replication mechanisms are incorporated to keep all

data available and intact even in cases where peers are not available. This

also helps with the overall performance of an application since usually

much shorter routes have to be taken to access certain pieces of data in

this case than when only a central server is hosting the data. Related

technologies for this architecture are Peer-to-Peer, GRIDs, VSM and

XVSM.

SpaceSpace

Figure 5: Virtual Space Server

XVSM Coordination Patterns Comparison existing Space-based Middleware

26

III. XVSM Coordination Patterns

In chapter I.4 the LINDA coordination principle has already been mentioned.

This is the most widespread coordination pattern in space based middleware. In

this chapter it was also mentioned that XVSM supports more coordination

patterns.

These will be described in this chapter.

Coordination patterns define the way how entries are written to and read from

the space. Many different patterns can be imagined but usually many of them

are very specific to a certain problem and others can be built using more basic

patterns. Before introducing the coordination patterns that are available in

XVSM the two important properties are introduced.

• Implicit/explicit: an implicit coordination pattern does the bookkeeping

for every entry transparently to the user. This means that the user simply

specifies the entry s/he wants to write into the space and the middleware

itself adds any needed additional information for the designated

coordination pattern. Similarly the client only needs to ask the

middleware for the next entry (or more) and will get these according to the

coordination pattern.

Explicit coordination patterns on the other hand require the user to

explicitly provide additional bookkeeping information that is needed for

the coordination pattern.

• Complete/incomplete: a complete coordination pattern allows the client to

retrieve all entries with a single method invocation and the selector that is

bound to that specific coordination type. Furthermore the client does not

need any information about the content of the container or the entries

that are stored therein. (An analogy to this single selector get all property

would be the following SQL query: SELECT * FROM container)

Incomplete coordination patterns do not have this property. This means

that it is not possible to retrieve all available entries with a selector that is

bound to that coordination pattern in a single method invocation.

These two property types will become clearer in the remainder of this chapter.

Coordination patterns can be categorized into three coordination types.

XVSM Coordination Patterns Comparison existing Space-based Middleware

27

• ORDER (implicit, complete): coordination orders are the most basic kind

of coordination types so that every container12 has one basic coordination

order. There are presently four different coordination orders available and

supported in XVSM

o Random: entries are stored in the space without any coordination

(“chaos”). Therefore retrieving an entry also is uncoordinated and

indeterministic. The MozartSpaces implementation of the random

coordination type is truly random13 meaning that retrieval of an

arbitrary entry will not always result e.g. in the first entry.

o FIFO (first in, first out): the FIFO coordination pattern implements

a behaviour commonly known as queue. The entry that has been

written first will be retrieved before any other entry.

o LIFO (last in, first out): the LIFO coordination pattern implements a

behaviour commonly known as stack. The entry that has been

written last will be retrieved before any other entry.

o LRU (least recently used): the entry that has the oldest access14

timestamp will be retrieved. The access timestamp will be added

and managed by the XVSM system. While this is additional

information the coordination type is still implicit since it requires

no client action or information.

• VIEW (explicit, incomplete): coordination views are incomplete and

explicit. This means that the client must provide additional information

when writing and reading entries. This information is stored along with

the entry data and used when applying a selector. Additionally the

incomplete property means that it is not possible to retrieve all entries

with one operation call (e.g.: one cannot provide all matching meta-

information in one selector).

o KEY: the key coordination pattern implements a behaviour that is

similar to a hash map. Each entry has attached an additional

information property, the key. This key is used as lookup value for

the entry. Keys in XVSM can have arbitrary type i.e. they are not

restricted to string values.

12 For more details on what containers are and what they are needed for please see chapter VI.1.
13 Please note that deterministic random number generation of programming languages and hardware
architectures still apply and are not solved by this pattern.
14 In this context access applies to both, reading and writing.

XVSM Coordination Patterns Comparison existing Space-based Middleware

28

o VECTOR: a vector provides access to its entries through indices.

Each entry in the container has an integer typed index attached as

meta-information. Unlike vector implementations commonly known

in programming languages (e.g.: java.util.Vector in the Java

programming languages) the vector does not necessarily need to be

compact. It is valid to have any number and size of gaps between

subsequent indices.

• TEMPLATE (implicit, incomplete): this coordination type is used for

content matching15.

o LINDA: this is XVSM’s implementation of the LINDA matching

coordination which is a tuple matching paradigm.

Coordination patterns are not only used for reading and writing entries. XVSM

also features another interesting operation named shift. Shifting is used to

replace an existing entry with a new one and can be seen as atomic ‘destroy-

write’ operation. Shift always operates using the base coordination order of a

container. Since all containers do have a basic coordination order, this

operation is always defined and operable.

15 Other matching paradigms would be e.g. XPath or RDF. These are not implemented in the
MozartSpaces and therefore not mentioned any further.

XVSM System Architecture Comparison existing Space-based Middleware

29

IV. XVSM System Architecture

XVSM specifies the architecture that is capable of providing the functionality

that has been discussed in chapter II, the virtual space server. This chapter

briefly explains the conceptual architecture of the XVSM while the next chapter

discusses the architecture of the MozartSpaces, the concrete implementation of

the XVSM.

Tr

an
sa

ct
io

n

N
ot

ifi
ca

tio
n

P
er

si
st

en
cy

R
ep

lic
at

io
n

E
nc

ry
pt

io
n

A
ut

ho
riz

at
io

n

A
ut

he
nt

ic
at

io
n

M
on

ito
rin

g

Li
fe

 C
yc

le

A
dm

in
 /

C
on

fig

…
…

.

Space – Core

Interface Layer Interface layer based on extensible
protocols

Plug-able Function Profiles:
Plug-in layer allow flexible configuration

of intrinsic capabilities of the space.
Plug-In’s are tightly and efficiently

coupled to the core

The Core – Layer contains and
manages the set of coordination

containers/structures that make up a
single “space”. The core supports

multiple types of coordination patterns
(Linda/Fifo/Index/…..)

Tr
an

sa
ct

io
n

N
ot

ifi
ca

tio
n

P
er

si
st

en
cy

R
ep

lic
at

io
n

E
nc

ry
pt

io
n

A
ut

ho
riz

at
io

n

A
ut

he
nt

ic
at

io
n

M
on

ito
rin

g

Li
fe

 C
yc

le

A
dm

in
 /

C
on

fig

…
…

.

Tr
an

sa
ct

io
n

N
ot

ifi
ca

tio
n

P
er

si
st

en
cy

R
ep

lic
at

io
n

E
nc

ry
pt

io
n

A
ut

ho
riz

at
io

n

A
ut

he
nt

ic
at

io
n

M
on

ito
rin

g

Li
fe

 C
yc

le

A
dm

in
 /

C
on

fig

…
…

.

Space – Core

Interface Layer Interface layer based on extensible
protocols

Plug-able Function Profiles:
Plug-in layer allow flexible configuration

of intrinsic capabilities of the space.
Plug-In’s are tightly and efficiently

coupled to the core

The Core – Layer contains and
manages the set of coordination

containers/structures that make up a
single “space”. The core supports

multiple types of coordination patterns
(Linda/Fifo/Index/…..)

Figure 6: System Architecture

Figure 6, taken from [Kühn 2007], shows the XVSM system architecture on a

very general and abstract level. The basic goals can be derived from this

architecture. In principal the architecture comprises a three-layered vertical

approach which, from bottom to top is:

• The Core Layer (green): The space or XVSM core implements the basic

functionality of the system, namely container handling, coordination

patterns and notifications. On its own, this core setup only provides a

‘space implementation’ for a single host and would apply to the third

architectural step of the previous chapter.

• The Profile Layer (yellow): This layer contains the so called pluggable

function profiles. The basic XCore functionality is extended here with

additional properties such as monitoring, authentication & authorization

as well as replication which are needed to implement the virtualization of

XVSM System Architecture Comparison existing Space-based Middleware

30

the XCore and extend the architecture towards the Virtual Space Server

architecture that has been described in the previous chapter. Therefore

this layer relates to the extensibility goal mentioned in chapter I.3.

• The Interface Layer (blue): Here a programming language neutral interface

is provided to the XVSM clients. This decouples the client programming

language requirements from the language used to implement the XCore

itself.

The following chapters describe the architecture in detail especially the parts

that have been implemented in version 1.0 of the MozartSpaces.

MozartSpaces is the name of the implementation of the XVSM system

developed at the Vienna University of Technology.

Architectural Overview Embedded XVSM

31

V. Architectural Overview

The XVSM system consists of numerous parts which are explained in detail in

the following chapters.

There are two possible architecture configurations of the XVSM system; the

embedded and the standalone installation. In the functionality that they provide

both are equal. Mainly the choice for either one of the two depends on the needs

of the user. For a single site and possible multi-threaded application the

embedded version of XVSM is fully sufficient. It provides all feature of the

MozartSpaces 1.0 and does not require the installation of a servlet container. A

real distributed application which has multiple processes running on multiple

hosts must use the stand-alone version of XVSM. The stand-alone version

requires a servlet container (e.g.: Apache Tomcat) installation and network

access to this server. The setup is slightly more complicated but the advantage

of distributed coordination should outweigh this minor inconvenience.

V.1. Embedded XVSM

The embedded version of XVSM can be seen as an application library. Like any

other library the embedded XVSM runs in the process space of the application

and therefore can only be used by this application16. Figure 7 shows the setup

for an embedded XVSM System. Details about the embedded version of XVSM

will be given in chapters VI (the XCore API), VII (workflow discussion) VIII

(Container Access backend) and IX (collaboration of these distinct parts).

16 The possibility of injecting applications into the process space of the host application or
modifying the JavaVM in order to allow across VM library sharing is not considered here. Nonetheless
if in such cases the library is used in a normal way it should work as intended and correctly even then.

Architectural Overview Embedded XVSM

32

Figure 7: XVSM System embedded

The embedded XVSM System (also called XVSM Core or simply Core), comprises

a three layered architecture. These layers are as follows (from outmost to inner

most):

a) Capi: The Core API (Capi) provides the interface that is used by

applications to make use of the XVSM system.

b) Workflow: The workflows are entities that carry out single specific tasks of

the XCore. Examples for these are reading or writing of entries

c) CADAO (ContainerAccess Data Access Object): The container access

entity that handles container and entry manipulation. In this version of

the XVSM core the CADAO is the front end to a database.

Each of the parts listed above makes use of the part(s) below. This means that

the Capi uses the Workflows and the Workflows use the CADAO.

In order to keep the system as extensible as possible this 3-part architecture

was used to decouple the application from the XCore implementation on the one

hand and to decouple the data holding backend (database) from the XCore.

Figure 8 shows the general architecture of the XVSM Core and the interaction

with an application. The XCore is loaded as dependent library and therefore

runs in the same process space as the application. The interaction between the

XCore and the application is carried out using the Capi part of the XCore. This

Capi is a lean Java API that provides the functionality of the XVSM system. This

is the only visible entry point to the XCore that an application can use. Within

the XCore an in process space database (in our case: Derby) is used as

repository. Since the data handling part is decoupled from the rest of the XCore

Java-Application

Java API

XVSM embedded library

Host A

Architectural Overview Standalone XVSM

33

it shouldn’t be hard to use another relational database or even some completely

different kind of data system such as a file based storage system.

In the current version of the MozartSpaces it is not possible for multiple

applications to share one XCore (Note: there might be ways for two applications

to start within the same JVM and share a loaded library but this should be

considered a “hack” and not the intended way of usage). It is possible though to

safely have multiple threads connected to the XCore and their operations will

correctly be synchronized.

Figure 8: XVSM Core architecture

The XCore itself comprises three distinct parts which will be described in detail

in chapters VI, VII and VIII.

V.2. Standalone XVSM

The standalone version of XVSM is closely related to the embedded version. In

Figure 9 one can see that the client application that makes use of the XVSM

System only links a small runtime library which provides an interface that is

identical to the embedded version interface. This library hides network

communication and therefore transparently provides the XVSM functionality

that actually is carried out on another host, to the client. As communication

and data protocol between the network nodes a specifically developed XML

protocol has been developed that reflects the capabilities of the XVSM System.

This also renders the whole standalone system independent of any specific

transport protocol or network topology. Even the concrete incarnation of the

Architectural Overview Standalone XVSM

34

standalone ‘server’ (client-server, peer-to-peer…) is not relevant to the XVSM

System.

Java Application

Java API
XVSM net lib

Host A

XVSM XML
Protocol

XVSM Standalone
Version

Host B

Networking environment

Java Application

Java API
XVSM net lib

Java API
XVSM net lib

Host A

XVSM XML
Protocol

XVSM Standalone
Version

Host B
XVSM Standalone

Version
Host B

Networking environment

Figure 9: XVSM System standalone

Core API Standalone XVSM

35

VI. Core API

The Capi provides the Java interface that the applications must use to interact

with the XCore. Figure 18 shows the UML class diagram of the Capi interface. It

should be noted that the Capi only specifies a java interface, hiding the concrete

implementation. For the application to get a usable Capi object it must request

such an object from the CapiFactory (Figure 10). This allows for easy exchange

of concrete API implementations. The Spring Framework17 mechanisms are used

to create the Capi implementation18 object as Singleton19.

The code for using Spring in this context look somewhat like this:

Listing 1: Capi creation through factory

Setting the singleton property is done in the configuration file

‘CapiImplementation.xml’ and can be changed when the need arises.

Listing 2: Bean configuration for Capi

The bean id specifies the name which can be used in the Java code to request

the object form the factory.

The following figures show the UML diagrams of the most important classes

used in the Capi part of the Core architecture. The contained methods will be

shortly described but detailed information especially about parameters and

return values can be found in the source code and its accompanying JavaDoc.

17 Spring Framework: http://www.springframework.org/
18 The Spring Framework provides a unified mechanism for usage of the singleton design
pattern. A so called Bean-Factory can be used to retrieve an object which, if configured correctly, is
guaranteed to have the singleton property.
19 The Singleton patter is a well known design pattern. Details can be found in [GoF].

 ClassPathResource res =

 new ClassPathResource("CapiImplementation.xml");

 XmlBeanFactory factory = new XmlBeanFactory(res);

 Capi capi = (Capi)factory.getBean("CapiImplementation");

<bean id="CapiImplementation"

 class="org.xvsm.api.core.implementation.WFCapi" singleton="true"/>

Core API Definition of a Container

36

cd core

CapiFactory

+ createCapi() : Capi

Figure 10: CapiFactory Class diagram

• createCapi: this method is used to get an object that implements the Capi

interface. In the current version the Capi object is implemented as

singleton therefore the overhead of object creation only matters the first

time of invocation.

The Capi and its operations will be discussed in chapter VI.3.

VI.1. Definition of a Container

In XVSM a container is among the most important concepts. A container

primarily is the basic storage entity in the space. That is every entry (for more

details about entries see chapter VI.2.1) that is written into the space belongs to

a container. Given this rule there are no “freely floating entries” in the space20.

The implementation of the MozartSpaces shows this very clearly since each

entry always have a Container Reference (cref) attached to it (see chapter

VIII.3.1 for details). Also a container reference itself specifies a valid entry type

allowing these references to be written into another container. This feature

enables interesting programming patterns such as lookup tables, lists or even

more complex ones.

Containers basically come in two flavours, anonymous containers and named

containers. Anonymous containers are the standard type of containers since

they require both less storage (an additional container is stored in the space

which maps the container names to the actual container references) and a

slightly less performance overhead (The creation/destruction of a container

requires the name to be added/removed from the lookup container. When

requesting the container reference for a name an additional read operation must

20 The Capi description later in this chapter makes this property even clearer. There is always a so
called container reference involved whenever the client wants to manipulate entries.

Core API Definition of a Container

37

be carried out in the lookup container). These containers are accessibly only

through their container reference. Named containers on the other hand are

given a name by the user and their references are stored in a special lookup

container21 within the space. Named containers too can be accessed through

their container reference. This container reference can be retrieved from the

space through the container’s name. The obvious advantage of such containers

is that the application has access to its container even after a restart without

the requirement of storing it before the program exits. Named containers also

provide the means for distributed applications to have access to the same

container even though these applications are located on different hosts.

Containers are the XVSM entity which provides the coordination facilities to the

clients. Every container has at least a base coordination order and can have in

addition multiple other coordination types. The containers and their

coordination types provide a powerful yet simple to use coordination mechanism

for application programmers..

VI.1.1. Properties

Each container is characterized by its properties. These ca be re/set and/or

queried. The currently available properties can be seen in Figure 11.

cd properties

«enumeration»
ContainerProperties

enum
+ SIZE:
+ FILL_SIZE:
+ BASE_COORDINATION_ORDER:
+ COORDINATION_TYPES:
+ VALUE_TYPES:

Figure 11: ContainerProperties class diagram

21 This lookup container is strictly for internal use and not accessible or visible to the XVSM clients.
Note that this special container is implemented with the basic XVSM operations and coordination
types that are available to the clients as well. The lookup container is a normal KEY coordinated
container which uses the container name as KEY and the container’s reference as indexed entry.

Core API Definition of a Container

38

• SIZE: this property specifies the size of the container. This can be a

positive number or -1 to specify an unbounded container. If the size is not

unbounded at most ‘size’ entries can be written into the container. A

bounded container can only hold as many entries as have been specified

with the SIZE property. When the container is bounded and filled with

entries every WRITE operation blocks.

• FILL_SIZE: this property is a read only property meaning that it can’t be

changed by an application. It specifies the number of entries that are

currently stored in the container.

• BASE_COORDINATION_ORDER: this property may only be changed if the

container is empty. More details about coordination types are given in

chapter VI.1.2.

• COORDINATION_TYPES: new coordination types may be added to a

container at any given time. Some coordination types can only be added

when the container is empty. An example is the FIFO coordination order

which needs to keep track of all entries written into the container.

Removal of coordination types is only permitted for empty containers.

• VALUE_TYPES: optional; this property is used to narrow the allowed

value types which entries may have. Only entries whose value types are

set in the VALUE_TYPES container property can be written to the

container. More details about value types are given in chapter VI.2.1.

Core API Definition of a Container

39

cd properties

«enumeration»
ContainerProperties

enum
+ SIZE:
+ FILL_SIZE:
+ BASE_COORDINATION_ORDER:
+ COORDINATION_TYPES:
+ VALUE_TYPES:

U

ContainerProperty

+ ContainerProperty(p :ContainerProperties, v :U, m :PropertyMode)
+ getMode() : PropertyMode
+ getProperty() : ContainerProperties
+ getValue() : U

CoordinationTypeProperty

+ CoordinationTypeProperty(p :ContainerProperties, v :CoordinationTypes, m :PropertyMode)

«enumeration»
PropertyMode

enum
+ SET:
+ RESET:
+ GET:

SizeProperty

+ SizeProperty(p :ContainerProperties, v :Integer, m :PropertyMode)

ValueTypeProperty

+ ValueTypeProperty(p :ContainerProperties, v :ValueTypes, m :PropertyMode)

-property_

-mode_

Figure 12: ContainerProperty class diagram

Figure 12 shows the class diagram of the ContainerProperty class. This class is

the base class for all available container properties. This class is a generic class

and its type parameter is set by its subclasses. The parameter is set the java

type that represents the property’s value type.

VI.1.2. Coordination Types

Figure 13 shows the class diagram of the available coordination types.

Coordination types specify how entries are read from and stored in a container.

Core API Definition of API Arguments

40

cd core

«enumeration»
CoordinationTypes

enum
+ RANDOM:
+ FIFO:
+ LIFO:
+ LRU:
+ KEY:
+ VECTOR:
+ LINDA:

+ code() : int
+ forCode(code :int) : CoordinationTypes

Figure 13: CoordinationTypes class diagram

More details about coordination types their usage and properties can be found

in chapter III.

VI.2. Definition of API Arguments

The following subchapters give details about the most important entities that

are used as parameter and return values in the XCore API.

VI.2.1. Entry

A central type of the Core is the Entry type (Figure 14). An entry22 is an object

that can be written to or read from a container. An entry basically consists of a

ValueType (Figure 16) and an Object field that holds the value.

In the first version of MozartSpaces the Entry class was designed as generic

class taking a type parameter. This type parameter was the Java equivalent to

the ValueType (e.g.: java.lang.String was used for STRING_UTF8). This is a clean

way of injecting type information into a class because the client would get a

correctly Java-typed object that s/he could use in her application, independent

of the way the entries were stored in the backend. The doubled information of

ValueType and type parameter was needed since the entries are stored as

strings in the database backend. Doing this allowed for an efficient and compact

22 Entry type: the Java type that is defined by a java class. Entry: an instance of the entry class
(entry type)

Core API Definition of API Arguments

41

database schema design but the need arose for an additional type flag so that

the correct typed entry could be restored when read from the database. Severe

problems would arise when users misused this design and entered different

types for the type parameter and the ValueType. This led to bugs and crashes of

the MozartSpaces library. Additionally when creating new entries the user was

forced to write the same lines of Java code for each entry which was rather

tedious. Therefore the XCore design was completely changed in this respect.

Entries now are not generics anymore. The value holding field in the entry type

is of type java.lang.Object. A field of type ValueType still keeps the information

which concrete type is stored in the entry. In order to be able to check whether

the type of the value complies with the ValueType, entries can’t be created

directly anymore. Rather an entry factory is used to accomplish that (see Figure

15). One could argue that the same can be done by using the constructor of the

Entry class but the Factory has one further advantage. Whenever entries are

read from the database backend the CADAO has to create a new entry and store

this information. Since the type of the entry value will (for now) always be

java.lang.String, there is a mismatch between the value’s type and the

ValueType field. This is needed and therefore the Factory needs to provide a

method that allows for unchecked entry creation.

The following code segment shows the type checking used in the Entry class:

Listing 3: Subtype checking of entry and value type

The ValueTypes class provides a method (getTypeClass) that returns the Class

object of the class that is mapped to a specific ValueType (e.g.: java.lang.String

for STRING_UTF8).

This class is then checked against the value’s type. If the value class has a

subtype relationship to the ValueType class then the entry creation is legal,

otherwise an IllegalValueTypeSpecifiedException is thrown.

private Entry(Object val, ValueTypes type, List<Selector> sel)

{

 if (!isSubType(val.getClass(), type.getTypeClass()))

 throw new IllegalValueTypeSpecifiedException(type, val.getClass().getName());

 //…
}

Core API Definition of API Arguments

42

The isSubType method recursively checks all super classes and interfaces. If the

requested one is found, the super/subtype relation is satisfied.23

Listing 4: isSubType implementation

The Entry::Factory’s newTypelessInstance omits this type checking and simply

creates an entry whose type flag and the concrete type of the entry’s value don’t

match. This entry will then be typed in the Capi implementation before it’s

returned to the client.

One problem still resides though. Since Java does not provide the concept of

‘friend’ classes, this method must be public even though only one class will ever

be legally allowed to use it. Formally though, everyone can use (and in this

sense misuse) this method to create un-typed entries. There still needs to be

done some research on how to resolve this problem.

23 There still needs to be looked through the Java Platform API whether there is a simple
standardized method that allows for recursive super/subtype checking.

protected boolean isSubType(Class a, Class b)

{

 if (a == null || b == null)

 return false;

 if (a.equals(b))

 return true;

 if (isSubType(a.getSuperclass(), b))

 return true;

 Class[] ilist = a.getInterfaces();

 for (Class i: ilist) {

 if (isSubType(i, b))

 return true;

 }

 return false;

}

Core API Definition of API Arguments

43

When entries are read from the XCore the list of selectors (see chapter VI.2.2 for

details) will always be null. These are solely used when writing entries where

additional information such as keys needs to be assigned to this entry.

Entries of simple types that are strings, integers, crefs (Container Reference),

are represented with the entry type. Since the XVSM Core also supports tuples24

there was the need for an additional type. The factory returns an object of type

Tuple whenever an entry with ValueType TUPLE is created. The tuple class is

similar to the entry class; it simply adds a few convenience methods for adding

single fields to the tuple instead of just allowing the setting of the whole tuple.

cd core

Entry

+ addSelector(s :Selector) : void
Entry(val :Object, type :ValueTypes)
+ equals(rhs :Object) : boolean
+ getSelectors() : List<Selector>
+ getType() : ValueTypes
+ getValue() : Object
+ hashCode() : int
+ initSelectors() : void
isSubType(a :Class, b :Class) : boolean
+ setSelectors(sel :List<Selector>) : void
+ setValue(val :Object) : void
+ toString() : String

Tuple

+ addEntry(e :Entry) : void
+ equals(r :Object) : boolean
+ getArity() : int
+ getValue() : List<Entry>
+ hashCode() : int
+ setValue(e :List<Entry>) : void
+ setValue(e :Object) : void
+ toString() : String
+ Tuple()

Figure 14: Entry and Tuple class diagram

The (non trivial) operations of the Entry class are as follows:

24 A tuple is an ordered -list of values, where each single value is called field.

Core API Definition of API Arguments

44

• addSelector: add a selector to the list of selectors (only needed when

writing entries)

• initSelectors: constructs a new list object for the selectors. This must be

called before adding selectors to the entry; otherwise a

NullPointerException will be thrown.

The additional (non trivial) operations of the Tuple class are:

• addEntry: this adds a new field at the end of the tuple list.

• getArity: retrieves the number of fields of this tuple.

cd core

«static»
Entry::Factory

+ newInstance(t :ValueTypes) : Entry
+ newInstance(t :ValueTypes, val :Object) : Entry
+ newInstance(t :ValueTypes, val :Object, sel :List<Selector>) : Entry
+ newInstance() : Entry
+ newInstance(val :String) : Entry
+ newInstance(val :String, sel :List<Selector>) : Entry
+ newInstance(sel :List<Selector>) : Entry
+ newTypelessInstance(t :ValueTypes, val :Object) : Entry

Figure 15: Entry::Factory class diagram

The Entry::Factory methods are rather simple, these are:

• newInstance: creates a new object of type Entry which is typed correctly

according to the ValueType

• newTypelessInstance: creates a new instance of type Entry which has not

set its type information according to the value’s type. It rather contains a

string value and the ValueType information. This method must not be

used by anyone but the CADAO.

Core API Definition of API Arguments

45

cd core

«enumeration»
ValueTypes

enum
+ CREF:
+ STRING_UTF8:
+ INTEGER:
+ TUPLE:

+ code() : int
+ getTypeClass() : Class

Figure 16: ValueTypes class diagram

The enumeration values of the ValueType class are rather self-explanatory.

Each of the values is mapped to a Java type, which can be retrieved using the

getTypeClass method. The value-type mapping is as follows:

• CREF org.xvsm.api.core.ContainerRef

• STRING_UTF8 java.lang.String

• INTEGER java.lang.Integer

• TUPLE org.xvsm.api.core.Tuple

VI.2.2. Selector

Just as the name suggests selectors in XVSM are used to select entries within a

container. Additionally these selectors are used to specify the needed book-

keeping information for explicit coordination types when writing entries. Figure

17 gives an overview about the class structure of XVSM’s selectors. The

following selectors are available, one for each coordination type. Most of the

selectors are self explanatory still they’re briefly described in this chapter.

• SetSelector: this selector randomly selects the given amount of entries

from the container. The related coordination order is RANDOM.

• FifoSelector: this selector retrieves entries in a first in first out (queue)

fashion. The related coordination order is FIFO.

• LifoSelector: this selector retrieves entries in a last in first out (stack)

fashion. The related coordination order is LIFO.

• LruSelector: this selector retrieves the entries in a least recently used

fashion. The related coordination order is LRU.

Core API Definition of API Arguments

46

• KeySelector: this selector retrieves the entries based on the provided key.

The key type and key value must be given. While an entry can have

multiple keys which are distinct through the key’s name, the value of a

key must be unique. Due to this unique nature of keys, only one entry

can be selected at a time. The related coordination view is KEY.

• VectorSelector: this selector retrieves the entries based on the integer

index. If more than one entry is selected the position depicts the starting

index within the container along with the number of successive entries in

the container. The related coordination view is VECTOR.

• TemplateSelector: this selector is used to match the provided template

against the tuples in a container. Only entries of type tuple can be

retrieved with this selector. The related coordination template is LINDA.

Figure 17 also shows that the Vector-, Template- and KeySelectors implement

an interface called NotificationSelector. This interface is a so called tagging

interface. It is needed to use the implementing classes polymorphically for

parameters which would otherwise be unrelated. While in this case the three

selectors would share a common super class, namely the Selector, there are

other classes that have this super class as well. The NotificationSelectors are

special selectors which can be used when creating notifications on entries.

While this has not yet been implemented in the current version of the

MozartSpaces it certainly is in the concept. Before providing full support for

entry level notifications there are still a few other problems that need to be

solved.

Core API Definition of API Arguments

47

cd selectors

«enumeration»
FifoLifoAccess

enum
+ FIRST:
+ LAST:

FifoSelector

+ FifoSelector(pos :FifoLifoAccess)
+ FifoSelector(pos :FifoLifoAccess, count :int)
+ getPosition() : FifoLifoAccess

KeySelector

+ getKey() : String
+ getType() : ValueTypes
+ getValue() : Object
+ KeySelector(k :String, t :ValueTypes, v :Object)

LifoSelector

+ getPosition() : FifoLifoAccess
+ LifoSelector(pos :FifoLifoAccess)
+ LifoSelector(pos :FifoLifoAccess, count :int)

LruSelector

+ LruSelector()
+ LruSelector(count :int)

«interface»
NotificationSelector

Selector

+ CNT_ALL: int = -1

+ getCount() : int
+ Selector()
+ Selector(c :int)

SetSelector

+ SetSelector()
+ SetSelector(count :int)

TemplateSelector

+ getArity() : Integer
+ getTemplate() : Map<Integer, Entry>
+ setArity(a :int) : void
+ setField(pos :int, e :Entry) : void
+ setTemplate(template :List<Entry>) : void
+ TemplateSelector()
+ TemplateSelector(count :int)

VectorSelector

+ START_POSITION: int = 0

+ getPosition() : Integer
+ setPosition(position :Integer) : void
+ VectorSelector()
+ VectorSelector(count :int)
+ VectorSelector(count :int, position :int)

-position_-position_

Figure 17: Selector class diagram

Core API Core API Operations

48

Whenever a selector is chosen it should be checked whether the selector is

compatible with the coordination types of the container, otherwise the XCore

will respond with an error.

VI.3. Core API Operations

The Capi operations can be grouped into several distinct functionalities. These

will be described in more detail in the following subchapters. Figure 18 shows

the available methods in the Capi’s class diagram.

cd core

«interface»
Capi

+ cancelNotification(NotificationID) : void
+ createContainer(CoordinationTypes, int) : ContainerRef
+ createContainer(CoordinationTypes) : ContainerRef
+ createContainer(int) : ContainerRef
+ createContainer() : ContainerRef
+ createNamedContainer(String, CoordinationTypes, int) : ContainerRef
+ createNamedContainer(String, CoordinationTypes) : ContainerRef
+ createNamedContainer(String, int) : ContainerRef
+ createNamedContainer(String) : ContainerRef
+ createNotification(ContainerRef, long, NotificationMode, boolean, NotificationListener) : NotificationID
+ destroy(ContainerRef) : void
+ destroy(ContainerRef, long) : void
+ destroy(ContainerRef, List<Selector>) : void
+ destroy(ContainerRef, long, List<Selector>) : void
+ destroyContainer(ContainerRef) : void
+ destroyNamedContainer(String) : void
+ getContainerProperties(ContainerRef, List<ContainerProperties>) : List<ContainerProperty>
+ getNamedContainer(String) : ContainerRef
+ init(boolean) : void
+ isNamedContainer(ContainerRef) : boolean
+ read(ContainerRef, List<Selector>) : List<Entry>
+ read(ContainerRef, long, List<Selector>) : List<Entry>
+ read(ContainerRef) : List<Entry>
+ read(ContainerRef, long) : List<Entry>
+ removeContainerName(String) : void
+ restart(boolean) : void
+ setContainerName(ContainerRef, String) : void
+ setContainerProperties(ContainerRef, List<ContainerProperty>) : void
+ shift(ContainerRef, List<Entry>) : void
+ shift(ContainerRef, long, List<Entry>) : void
+ shutdown(boolean) : void
+ take(ContainerRef) : List<Entry>
+ take(ContainerRef, long) : List<Entry>
+ take(ContainerRef, List<Selector>) : List<Entry>
+ take(ContainerRef, long, List<Selector>) : List<Entry>
+ write(ContainerRef, List<Entry>) : void
+ write(ContainerRef, long, List<Entry>) : void

Figure 18: Capi Interface diagram

Core API Core API Operations

49

The Core API’s operation categories are

• Core management operations: these usually are only needed once and not

during the production life of a program. They correctly initialize and

shutdown the XCore.

• Container operations: methods that manipulate containers and not their

contents.

• Entry operations: these methods manipulate entries, either store them in

a container retrieve or delete them.

• Notifications. Notifications can be created that monitor changes on

containers.

VI.3.1. Core management operations

• init: this method is used to correctly initialize the XCore and all its

systems. Most importantly it initializes the backend data store and starts

up the connection between the data store and the CADAO.

• shutdown: frees the used system resources and correctly shuts down the

backend data store.

• restart: this basically is a shortcut method for shutting down the XCore

and starting it up again.

VI.3.2. Container operations

A container is an entry holding entity. As container operations we understand

operations that directly manipulate containers in contrast to entry operations

which manipulate the contents of a container. The functionality for these

operations is implemented by the CADAO and exposed through its interface.

These methods are used directly by the Capi to provide the container operations

to the client. These operations are:

• createContainer: creates a new container in the space which can then be

used by the client.

• createNamedContainer: creates a new container just as createContainer

does. With this operation though the client can bind a name to the newly

Core API Core API Operations

50

created container. This name can be used for container lookup at a later

point in time.

• destroyContainer: destroys an existing container.

• destroyNameContainer: this method destroys an existing named container,

rendering the name invalid.

• getContainerProperties: retrieves the specified properties of a container.

Such might be the size, the current fill size or the supported coordination

types.

• getNamedContainer: this retrieves the container handle (a so called

Container Reference) for a container name.

• isNamedContainer: checks whether a certain Cref depicts a named or just

an ordinary container.

• removeContainerName: this method removes the binding of a name and a

container so the name is free to be used for another container.

• setContainerName: binds a container name to a Cref.

• setContainerProperties: changes the specified properties of a container. Not

all property changes are allowed at all times. E.g.: trying to remove a

supported coordination type while there are entries stored within the

container results in an error.

VI.3.3. Entry operations

An entry is an entity which may be stored in a container. (More details about

entries can be found in chapter VI.2.1) For each of the five possible operations

that can be carried out for entries the Capi creates a new corresponding

workflow (see chapter VII) object which then fulfils the task. Workflow objects

are not created directly but retrieved from a factory25. For the loading of the

workflow classes and the creation of these workflow objects, again the spring

framework’s methods and implementations are used. The following code

segment shows the usage in principal.

25 Check computer science literature on design patterns, specifically the ‚Factory’ Design
Pattern. A good reference for design patterns is [Gamma, Helm, Johnson, Vlissides, 1995].

Core API Core API Operations

51

Listing 5: Workflow creation with the factory

The advantage of loading workflows through the spring framework and creating

them with the factory pattern lies in the easiness of exchange. Loading another

workflow implementation is simply a change of just one line change in the

configuration file. This comes handy especially for testing when one needs to

test correct behaviour when working with workflows and their possible states

and conditions.

The following section is taken from the implementation’s ‘Workflows.xml’ file.

Using a different workflow implementation can be injected by changing the

‘class’ attribute.

Listing 6: ReadWorkflow bean configuration

• read: entries stored in a container will be retrieved and returned to the

client if they match the list of selectors provided.

• take: this operation has the same semantics as the read operation in the

sense of retrieving entries. Though, other than read the retrieved entries

are removed from the container.

• destroy: again entries are chosen using the selector matching and are

then removed from the container without returning the matching entries

to the client.

• write: new entries are written to the container if there is still enough free

storage in the container.

• shift: again new entries are written to the container, though if there is not

enough free storage, existing entries are ‘shifted’ out of the container

using its base coordination order.26

26 Details about coordination orders can be found in chapter III.

<bean id="ReadWorkflow"

 class="org.xvsm.ms.workflows.ReadWorkflow" singleton="false"/>

ClassPathResource res = new ClassPathResource("Workflows.xml");

XmlBeanFactory factory_ = new XmlBeanFactory(res);

 Workflow wf = (Workflow)factory_.getBean(wfname);

Core API Core API Operations

52

VI.3.4. Notifications

Notifications are used to inform about a certain event that occurred.27 In XVSM

notifications can be reduced to simple call-back functions.28 In XVSM

notifications can be created on the level of containers. This means that

whenever an entry is written to a container that a notification has been

registered with, the notification target will be notified. The Capi operations for

notifications are:

• createNotification: creates a new notification for container

• cancelNotification: stops an existing notification

Notifications are managed in the Capi implementation. This means that the

Capi needs to keep track of all active notifications. This is done using a hash

map and since the Capi is used as singleton and multiple threads may need

access to this hash map concurrently, it must be a thread safe implementation.
 ConcurrentHashMap<ContainerRef, Map<NotificationID, Notification> > notifications_

= null;

Since multiple notifications might be active for a single container at the same

time, the value type of the hash map must be some kind of container type. A

map from NotificationIDs to Notifications was chosen for a simple reason. It

supports fast removal of a specific NotificationID whenever the cancelNotification

operation is invoked.

Creating a new notification is shown by the following code segment (operation

parameters for the Notification constructor have been omitted for readability

reasons):

27 Notifications can be found in many aspects of life and in various forms: when a fire is
discovered, the fire fighters are notified through a pager or phone call; when a registered letter has
been delivered the sender is notified with a note in his/her post box..
28 In the embedded version this is correct, but in the standalone version notifications are more
complex. Details will be given in section XI.4.

Core API Core API Operations

53

Listing 7: Creation of Notifications in Capi

Notifications are created with a specific mode (Figure 20), for a specific

container and a NotificationListener.

Figure 19 shows the class diagram of a notification. It comprises a given

timeout, the notification mode, the notification’s identifier and of course the

call-back object. The remaining fields are used internally for bookkeeping and

implementation support.

cd notification

Notification

~ fired_: boolean

+ getId() : NotificationID
+ isValid() : boolean
+ isValidTarget(NotificationTarget) : boolean
+ Notification(long, int, NotificationMode, boolean, NotificationListener)
+ returnEntries() : boolean
+ sendNotification(java.util.List<Entry>) : boolean

Figure 19: Notification class diagram

The only non trivial or self explanatory method is sendNotification. This method is

used to invoke the NotificationListener’s call-back operations. Since this method

still runs in the same thread as the XCore, problems arise when the call-back

operation does other tasks than a trivial flag setting. In the worst case the client

sends the call-back thread to sleep which would then stall the whole XCore.

This situation clearly is not desirable. That is why the sendNotification operation

in the Notification class had been added and implemented in the following way:

Notification not = new Notification ();

Map<NotificationID, Notification> tempmap = notifications_.get(cref);

if (tempmap == null) {

 tempmap = new ConcurrentHashMap<NotificationID, Notification>();

}

tempmap.put(not.getId(), not);

notifications_.put(cref, tempmap);

Core API Core API Operations

54

Listing 8: checking notification validity

As mentioned before, the first thing is to check whether the notification is still

valid. Then there is just a simple conditional statement which checks whether

the entries that were written, and therefore cause the notification, must be

returned to the client.

In any case, the key functionality here is that a new Thread is created for each

firing notification which will then be started and invokes the call-back method.

This way only the newly (and other than that unneeded) thread will be stalled or

delayed if the call-back method is fairly complex. The XCore itself will continue

to work and accept client requests.

Listing 9: Notification Callback

timeout_.update();

if (!isValid())

 return false;

final java.util.List<Entry> lentries = entries;

 if (returnEntries()) {

 new Thread(new Runnable() {

 public void run() {

 listener_.sendNotification(getId(),

lentries);

 }

 }).start();

 }

 else {

 new Thread(new Runnable() {

 public void run() {

 listener_.sendNotification(getId());

 }

 }).start();

 }

 return true;

Core API Core API Operations

55

The check whether a notification is still valid29 the following two steps are

performed; first, the validity of the timeout is checked and then the correct

mode behaviour.

The notification modes can be used to specify the firing behaviour of a

notification in the following way

• ONCE: the notification is invalid (and will be removed) after it has fired

once

• PROLONG: whenever the notification fires, the timeout is reset to the

executing thread’s current time.

• RESTRICTED: the notifications fires every time while the timeout is valid

• INFINITE the notification fires every time and there is no timeout

cd notification

«enumeration»
NotificationMode

enum
+ ONCE:
+ PROLONG:
+ RESTRICTED:
+ INFINITE:

Figure 20 NotificationMode class diagram

Whenever an entry has successfully been written to a container and this

container has an associated notification which is active then this notification

fires. If a notification does not fire within the given timeout period it will be

removed from the system (unless the notification mode is INFINITE).

This listener is the object that provides the call-back operation that will be

invoked when a notification fires. Figure 21 shows the listener interface that the

application requesting a notification must implement. If the notification was

created in the sense of returning the entries, the second operation is invoked

when the notification fires. Any entry that caused this firing will be returned to

the application. This is useful since usually a fired notification is followed by a

read operation requesting those entries.

29 A notification is valid if the notification mode is INFINITE or the timeout has not expired.

Core API Exceptions

56

cd notification

«interface»
NotificationListener

+ sendNotification(NotificationID) : void
+ sendNotification(NotificationID, List<Entry>) : void

Figure 21: NotificationListener class diagram

Firing a notification works as follows:

Listing 10: Notification firing

After checking whether the specified cref has any notification assigned their

notification operations are invoked.

VI.4. Exceptions

The XCore can throw various exceptions depending on the operation that has

been invoked and what the exact error reason was. There are two flavours of

exceptions, RuntimeExceptions and ‘normal’ Exceptions. In the Java

programming language exceptions must be declared in the exception list of an

operation and therefore the caller must either add exception handling to their

method (using a try/catch block) or declare the exception in the exception list to

further promote it. But this is not the case with RuntimeExceptions. Neither do

they have to be declared nor does the caller have to handle them (usually this

Map<NotificationID, Notification> tempmap = notifications_.get(cref);

if (tempmap == null)

 return;

Iterator<Notification> it = tempmap.values().iterator();

while (it.hasNext()) {

 it.next().sendNotification(entries);

}

Core API Exceptions

57

situation results in a program abortion with a stack trace). One of the most

prominent examples of a RuntimeException is the NullPointerException.

In XVSM RuntimeExceptions are used for the following types of erroneous

conditions:

• A fatal internal XCore condition occurred. The XVSM user has no chance

of performing any actions that would ‘repair’ the XCore; therefore it

doesn’t make sense to force the client to handle the exception.

• Operation parameter might under some circumstances be used in a

wrong way.30

• Again an internal XCore condition occurred but some resource that is

used by the XCore imposes a problem (e.g.: no entries can’t be written to

the database)

The exception classes themselves do not have any special functionality therefore

a simple list of the available XCore exception will be given without class

diagrams.

VI.4.1. Runtime Exceptions

• FatalCoreException: a fatal internal error has occurred.

• InvalidParameterValueException: the parameter value of a method has an

invalid value (e.g.: the list of selectors for the Capi.read() operation is null)

• IllegalValueTypeSpecifiedException: this exception is thrown when a

ValueType (see Figure 16) is specified that does not match the generic

template parameter of the entry.

VI.4.2. Operational Exceptions

• ContainerAlreadyLockedException: whenever entries are written to a

container this container must be locked in the database. If the container

is already locked this exception is thrown.

30 According to the method’s specification certain parameter values are illegal. Usually they
would not be used in a wrong way but it’s still possible to do so. Since this method is also used in the
core itself and in that case it is guaranteed to be used in the right way, adding a normal exception
would result in unnecessary code bloat within the core.

Core API Exceptions

58

• ContainerAlreadyUnlockedException: whenever an unlocked container is

requested to unlock this exception is thrown.

• ContainerFullException: bounded containers only have limited space for

entries. If the write operation is invoked but there is not enough space to

write all entries this exception is thrown.

• ContainerNameOccupiedException: one tries to either create a new

named container or bind a name to a container which is already occupied

by another named container.

• ContainerNotEmptyException: if a container coordination type should be

removed and the container is not empty.

• CoordinationTypeNotSupportedException: whenever a container is

accessed using a coordination type which is not supported by this

container, this exception is thrown.

• CountNotMetException: whenever a read/take/destroy operation is

invoked and the count parameter is greater than the number of matching

entries.

• DoubleCrefException: a container is requested to be created with a

specific cref that already exists.

• FatalException: Whenever an unexpected or exception or a condition that

is not repairable occurs.

• SelectorNotCompatibleException: at least one of the provided selectors

requires an unsupported coordination type.

• TimeoutExpiredException: the timeout for a given operation has expired.

• UnknownContainerException: an entry is read from or written to a

container reference which is not valid.

• UnknownContainerNameException: a named container must be retrieved

though the name does not depict any.

• WriteSelectorNeededException: thrown when a write selector is missing

for explicit coordination types or invalid.

Entry Workflow Workflow principles

59

VII. Entry Workflow

For all entry operations (see chapter VI.3.3) a dedicated workflow exists. All

specific workflow classes are derived from the abstract Workflow class (see

Figure 22). Each XVSM workflow implements a certain list of tasks that are

needed to fulfil the requested operation. The available workflows are

• ReadWorkflow

• TakeWorkflow

• DestroyWorkflow

• WriteWorkflow

• ShiftWorkflow

The most important purpose of the workflows is to trigger the correct CADAO

methods in the correct order.

VII.1. Workflow principles

Most operations of the workflow class are protected. These are needed for

internal use while processing each specific workflow. The public interface that

the workflow clients use consists of three methods and the constructor.

A workflow can be used by two different entities in the XVSM system, the Capi

on the one hand and the CADAO on the other hand. Whenever the Capi receives

any workflow related method invocation (see chapter VI.1.1 for details) a new

workflow is created and initialized. Immediately after that the workflow

processing is invoked through its start method. The note method is not used by

the Capi implementation but the CADAO. Whenever a workflow is in a blocked

wait status the CADAO notifies, and therefore awakes it, if certain conditions

are met.

Details about processing internals of the workflows are given later in this

chapter. The remainder of this subchapter will explain the class diagram and

shed some light on the purpose and function of blocking workflows.

The abstract Workflow class provides the following methods:

• block: this method is used to switch the currently executing workflow into

blocked stated. All necessary bookkeeping and registration with the

CADAO is handled by this method.

Entry Workflow Workflow principles

60

• init: initialization of the workflow with the container reference, the entry

which must be written and/or contains the selector list for reading, a

timeout depicting the maximum wait time of the workflow in case of

blocking and the CADAO object that is used for data backend handling.

• lockContainer: the container specified by the container reference is locked

when a workflow starts its processing. This method in combination with

the block method is used for handling blocking workflows. Their

interaction will be explained in detail later in this subchapter.

• notif31: the CADAO uses this method to notify a blocked workflow that the

desired container has been unlocked and is available for further

processing.

• process: this method probably is the most interesting one for all

workflows. It implements the workflow specific behaviour and must be

overridden by the concrete workflow subclasses.

• unlockContainer: removes the workflow’s lock form the container.

• unlockContainerIfNecessary: only unlocks the container if it really has been

locked by this workflow before.

The protected fields in the Workflow class are used for internal bookkeeping and

processing. The source code documentation should be checked for a more

detailed and thorough explanation.

VII.1.1. Blocking Workflows

There are two situations in which a workflow can block. Blocking in this sense

means that the processing of the workflow’s tasks stops due to certain

conditions and stalls until it is instructed to continue its work. The definition of

each workflow’s functionality gives a clue about which workflows can block and

which cannot. Details about each respective workflow are given in the following

chapters but in principle all workflows but the ShiftWorkflow may block.

• Read/Take/DestroyWorkflow blocking: if the entry count of a read

request cannot be satisfied the workflow thread registers itself at the

CADAO as blocking and sleeps for the specified timeout period. If a new

31 Note that the name ‚notif’ was chosen since every class in Java inherits a ‘notify’ method from the
Object base class which shouldn’t be overwritten with application specific behaviour.

Entry Workflow Workflow principles

61

entry is written into the container while the workflow is still blocking the

CADAO notifies this workflow. The notification cancels the thread’s

sleeping state and the workflow once again tries to fulfil the request. If

there are still not enough matching entries available in the container the

workflow blocks again. This block-notify cycle continues until the

workflow’s timeout has expired. It then cancels and returns an error to

the client.

• WriteWorkflow blocking: whenever a number of entries are about to be

written into a container but there is not enough room to store them, the

WriteWorkflow will block. The notify-block cycle works in principle just as

it does in the ReadWorkflow case. The only difference is that a

WriteWorkflow is notified whenever an entry is removed form the

container, therefore leaving more room than when the blocking occurred.

One important fact about blocking workflow must be noted here. Workflow

instances are always created and invoked in the thread context of the invoking

thread. Therefore, if the workflow blocks, this whole thread context stalls. This

is important for application designers and implementers. By default workflow

have a synchronous fashion that is if an application invokes a read request

which happens to block, the whole application is stalled until the ReadWorkflow

finishes. If such behaviour is not desired the application developer must create

a separate thread and invoke the read operation within this new thread’s

context. Another important detail is that while a workflow might block the whole

application, the MozartSpaces XCore itself will not be blocked. Therefore if the

developer invokes a read request in a dedicated thread which happens to block

it is still possible to invoke other requests from the main or different dedicated

threads. If this would not be the case, there would be no possibility to break the

workflow’s blocking behaviour other than by an expiring timeout which clearly

would be a highly inappropriate characteristic.

Entry Workflow Workflow principles

62

cd workflows

DestroyWorkflow

process() : List<Entry>

ReadWorkflow

process() : List<Entry>
read() : List<Entry>

ShiftWorkflow

process() : List<Entry>

TakeWorkflow

process() : List<Entry>
take() : List<Entry>

Workflow

~ bCordT: CoordinationTypes
~ cadao: IContainerAccess
~ cordTs: List<CoordinationTypes>
~ cref_s: String
~ entry: Entry
~ locked: boolean
~ log: Logger = Logger.getLogge...
~ timeout: Timeout

block() : void
+ init(cref_s :String, entry :Entry, timeout :Timeout, cadao :IContainerAccess) : void
lockContainer() : void
+ notif() : void
process() : List<Entry>
+ start() : List<Entry>
unlockContainer() : void
unlockContainerIfNecessary() : void
+ Workflow()

WriteWorkflow

process() : List<Entry>

Figure 22: Workflow class diagram

VII.1.2. Workflow

The Workflow class is the abstract base class for all concrete workflow

implementations. By implementing the template method design pattern all

workflow subclasses only need to override the process method. This method

contains the workflow specific part of the algorithm; all common functionality is

already implemented in the Workflow class itself.

Entry Workflow Creation of a Workflow

63

Invoking the workflow’s start method will initiate the process of reading entries

from or writing entries to a container. The algorithm itself works as follows:

1. Check the validity of the given selectors with the SelectorOptimizer helper

class.

2. Lock the target container.

3. Run the workflow specific part of the algorithm (process)

4. Unlock the container

5. Return the results in case of successful processing or an error otherwise.

Figure 22 shows all available workflow classes that are available in the

MozartSpaces. In principle they can be divided into two categories: READ and

WRITE. The READ and WRITE specific workflows will be discussed in chapter

VII.3 and chapter VII.4 respectively.

VII.2. Creation of a Workflow

The creating of the concrete workflows is done by exploiting another well known

design pattern, the factory method pattern. While using this pattern doesn’t

provide any obvious advantages for the production code it is very helpful to

inject stripped down and configurable workflow instances during test runs.

A quick look at the entry operations of the Capi (see chapter VI.3.3) shows that

each has its own concrete workflow implementation. The respective mapping is

as follows:

• Capi.read() ReadWorkflow

• Capi.take() TakeWorkflow

• Capi.destroy() DestroyWorkflow

• Capi.write() WriteWorkflow

• Capi.shift() ShiftWorkflow

Since the initialization and the binding to the target container and the desired

entries/selectors is already implemented and handled by the abstract Workflow

class (see chapter VII.1) no additional information is needed for the process

operation.

Figure 23 shows the principle of the workflow creation. This process is the same

for all available workflow classes with the exception of the factory method

Entry Workflow READ Workflows

64

parameter. Therefore only the sequence diagram for the ReadWorkflow is given

as an example. (Note: parameters that are unnecessary for the understanding of

the algorithm have been replaced with ‘…’ for brevity and clarity reasons).

sd workflow creation

CapiClient XmlBeanFactory

ReadWorkflow

read(...)

processWF("ReadWorkflow",...)

getBean("ReadWorkflow");

create
wf = ReadWorkflow

Figure 23: Workflow creation sequence diagram

The XmlBeanFactory in Figure 23 is a factory class implementation that is part

of the Spring Framework32. This factory class is configured with special XML

files where the ‘bean name’, the parameter to the factory method (in this case

the getBean method) is linked with the class that implements the desired

workflow. Exchanging one workflow implementation with another one is simply

a matter of changing the configuration file and no compilation is required.

VII.3. READ Workflows

There are three workflows that handle the different READ requests. These are

read, take and destroy. The concrete functionality will be discussed in the

following subchapters.

VII.3.1. Capi.read/ReadWorkflow

Figure 24 show a sequence diagram of a read request.

32 http://www.springframework.org/

Entry Workflow READ Workflows

65

Note: Figure 24 shows only a simple create message for creating a new workflow

instance. In reality this is slightly more complex involving a factory method

which depicts and creates the instance. Details can be found in chapter VII.2.

sd non blocking read sequence

Application Capi ContainerAccess

ReadWorkflow

read

create

init

start

lockContainer

process

applySelectors

getCompleteEntries

List<Entry>

unlockContainer

List<Entry>

List<Entry>

Figure 24: Sequence diagram for the read workflow

The application invokes the read method of the Capi. A new ReadWorkflow

instance is created and initialized with the request parameters of the

application. These request parameters include the target container reference, a

list of selectors that depict the desired entries and optionally a timeout for the

operation. After this initialization process the workflow sequence as it has been

described in chapter VII.1.2 is started. The workflow in Figure 24 shows a non-

blocking version i.e. the read request can be satisfied immediately. After the

Capi has received the desired entries from the workflow this workflow instance

Entry Workflow READ Workflows

66

is no longer needed and can be destroyed. In the case of the MozartSpaces

implementation the reference to the instance is dropped and the Java GC takes

care of removing the object.

ReadWorkflow’s implementation of the process method invokes an internally

private read method. This is needed since ReadWorkflow’s subclasses

Take/DestroyWorkflow need a slightly different implementation. The read

method tries to optimize the selectors that were given in the request and then

prepares the CADAO for a read request. Applying all available selectors will

either work properly or result in an exception if these selectors can’t be

satisfied. In case of an exception the workflow then blocks (see Figure 25; only

the blocking part between the ReadWorkflow and the CADAO are shown, the

surrounding method invocations are equal to those that are shown in Figure

24). If the selectors can be satisfied the workflow retrieves the entries from the

CADAO are and returns them to the Capi.

sd blocking read

ReadWorkflow CADAO

applySelectors

CountNotMetException

registerReadWF

unlockContainer

block

Figure 25: Sequence diagram for the blocking read workflow

To better understand the actions going in during a read request Figure 26

shows an activity diagram of the ReadWorkflow’s process method.

Entry Workflow READ Workflows

67

ad workflow

check Selectors apply Selectors

lock Container

Errorhandling return Entries

block

register

unlock Container

valid yes

no

count fulfilled

notified

yes

no

Figure 26: Main activities of read operation

• Purpose

A ReadWorkflow can be seen as a query for entries against a container.

Entries are selected through the application of a number of selectors.

While ReadWorkflows are, or more precisely can be, blocking operations

this behaviour can be suppressed by specifying a timeout value of 0. That

way, whenever no entries can be found the workflow immediately returns

to the calling application.

VII.3.2. Capi.take/TakeWorkflow

Figure 27 shows the sequence diagram for the take operation. In principle this

is the same as the read operation. This property is even further emphasized by

the fact that the take workflow executes its super class’ read method. The read

method handles the selection of the correct entries with the CADAO. In the

same sense the blocking is also handled by this operation. The only difference

between the take and the read operation in the workflow implementation is the

invocation of the CADAO’s destroy method. This removes the previously selected

Entry Workflow READ Workflows

68

entries from the target container. Details about this operation will be discussed

in chapter VIII.1.2.

sd non blocking take

Application Capi

TakeWorkflow

ContainerAccess

take
create

init

start

List<Entry> = read

destroy
entries = List<Entry>

entries

Figure 27: Sequence diagram for the take workflow

• Purpose

A TakeWorkflow can be seen as a ReadWorkflow that is immediately

followed by the removal of the selected entries from the target container.

This is one operation; therefore either the entries are read and destroyed

or nothing happens at all. It is not possible to read the entries but not to

remove them from the container.

VII.3.3. Capi.destroy/DestroyWorkflow

Figure 28 shows the sequence diagram of the destroy operation. Taking a closer

look at the diagram reveals that this in fact is exactly the same as the take

operation with one minor exception. The entries that are retrieved with the

workflow’s take operation are not returned to the Capi. This results in effectively

removing the selected entries from the container.

Entry Workflow WRITE Workflows

69

sd destroy sequence

Application Capi

DestroyWorkflow
destroy

create

init

start

take

Figure 28: Sequence diagram for the destroy workflow

• Purpose

A DestroyWorkflow can be seen as a TakeWorkflow without returning the

selected entries. In other words, this workflow removes the selected

entries from a container.

VII.4. WRITE Workflows

In XVSM there are two different kinds of WRITE request. These are write and

shift. The concrete functionality will be discussed in the following subchapters.

Entries are always written into the container using the base coordination order.

The explicit selector values are merely meta-information that can be used to

read entries in a more sophisticated manner.

VII.4.1. Capi.write/WriteWorkflow

The WriteWorkflow is the one WRITE request that may block. A write operation

inserts the specified entries into the target container if and only if there is

enough room to add them. Enough room in this sense means two different

things equally. If the target container does not contain other coordination types

other than coordination orders then this property only applies to the container’s

Entry Workflow WRITE Workflows

70

size. If on the other hand there are explicit (see chapter III) coordination types

involved then the selectors’ values must not yet be occupied. An example would

be a container that has the KEY coordination view enabled and an entry with

the key value of ‘key1’. Let’s further assume that the container is unbounded

and therefore there is enough room for any additional entries. If the client tries

to write an entry whose key specifies the values ‘key1’ it will not be possible and

block the operation since the key is already occupied.

Figure 29 shows a sequence diagram of the non-blocking write operation. Again

the workflow locks the target container, writes the entry into the container and

then unlocks the container again.

sd write sequence

Application Capi

WriteWorkflow

ContainerAccess

write

create

init

start

lockContainer

process

writeEntry

unlockContainer

Figure 29: Sequence diagram for the write operation

Figure 30 shows the workflow details of the blocking case. If the container does

not provide enough unoccupied room, or if the value of the explicit selector

contains an already available value the operation must block. The workflow

therefore registers itself at the CADAO and unlocks the container. The CADAO

Entry Workflow WRITE Workflows

71

will notify the registered workflow whenever entries are removed from the

container or if the container’s size is changed.

sd blocking write

WriteWorkflow ContainerAccess

writeEntry

ContainerFullException

registerWriteWF

unlockContainer

block

Figure 30: Sequence diagram for the blocking write operation

• Purpose

The WriteWorkflow is used to add new entries to the specified target

container. If there is not enough room or if the explicit selector values are

occupied the operation blocks. The same coding principles for blocking

operations apply here just as they have been explained in the previous

chapter.

VII.4.2. Capi.shift/ShiftWorkflow

Figure 31 shows the sequence diagram of the shift operation. The ShiftWorkflow

is XVSM’s only workflow that cannot block. In principle it is a non blocking

write operation. This behaviour is accomplished by modifying the write

operation properties as follows. If the container does not provide enough

unoccupied room for the entries they are ‘shifted out’ of the container by

applying the base coordination order. In principle this means that prior to

writing the entries into the container a base order destroy request takes place.

Entry Workflow Optimizing Selectors

72

The number of entries that must be destroyed can be calculated by subtracting

the number of free places in the container from the number of entries that must

be written. Also if an explicit selector value is already occupied this entry is

replaced by the new one. Note: this does not effectively remove the entry from

the container if merely removes the link from the meta-information to the entry.

Taking a KEY enabled container as an example and informally speaking the

key’s target is switched to the new entry.

sd shift sequence

Application Capi

ShiftWorkflow

ContainerAccess

shift
create

init

start
writeEntry

Figure 31: Sequence diagram for the shift operation

• Purpose

The ShiftWorkflow can be seen as non blocking WriteWorkflow with

eventual entry overriding.

VII.5. Optimizing Selectors

While the name of the class that is shown in Figure 32 partly misleading it still

covers a big part of its purpose. The most important task of the

SelectorOptimizer is to check the validity of the given selectors for the specified

container. Only then an optimization trying to minimize the work that must be

done in the CADAO makes sense.

Entry Workflow Optimizing Selectors

73

cd ms

SelectorOptimizer

+ optimize(List<Selector>) : List<Selector>
+ checkSelectorsWithContainerCoordTypes(List<Selector>, List<CoordinationTypes>) : void
- checkCnts(List<Selector>) : void

Figure 32: SelectorOptimizer class diagram

The interface of the SelectorOptimizer class only contains three methods each of

which are static. Since there is no internal state that must be managed there is

no need to use a normal class and create instances of this class.

The methods of the interface are the following:

• optimize: This method receives the list of selectors that has been provided

to the workflow class through the entries. It is used to optimize and

therefore minimize the work for the CADAO.

• checkSelectorsWithContainerCoordTypes: Since there is a predefined and

specified connection between the existing coordination types and

selectors only matching selector-coordination type pairs are valid. This

method checks this validity.

• checkCnts: Each selector can specify the number of entries that must be

selected. This method is used to check whether the count values of

subsequent selectors are sensible and valid.

The details about selector matching will be given in chapter VIII but the most

important fact about selectors is that they are sequentially applied to the result

set of the previous selector application. The selectors therefore form a logical

AND kind of conjunction.

VII.5.1. Checking Validity

There are two checks that must be performed to ensure the validity of the

provided selectors. If the selectors are not found to be valid a

SelectorNotCompatibleException is thrown.

The first check that must be done is the coordination type matching. This

means that only selectors can be used, which are supported by the container’s

Entry Workflow Optimizing Selectors

74

coordination types. Table 2 gives a small and intuitive example of both a valid

and an invalid selector list. In the valid case the container has the FIFO, LRU

and KEY coordination types enabled. The request contains both a Fifo- and a

KeySelector. The FifoSelector is covered by the FIFO coordination type and the

KeySelector by the KEY coordination type. Therefore the selectors of this request

are valid. In the invalid case the container only has enabled the LRU and

RANDOM coordination types. The request selector on the other hand contains a

KeySelector which is not covered by any of the available coordination types. This

request therefore is invalid and results in a SelectorNotCompatibleException

being thrown.

validity Selectors Containers Coordination
Types

Valid FIFO, KEY FIFO, LRU, KEY

Invalid KEY LRU, RANDOM

Table 2: Selector/Coordination Type matching

The second type of validity check involves the count values of the selectors.

Since the selectors are applied in a subsequent manner by definition it is clear

that a selector’s count value can only be equal or less than the previous

selector’s count value.

A simple valid example would be two FifoSelectors where the first selector

requests 5 entries and the second one requests 2. Using the same value and

exchanging the count values will result in an invalid request. Clearly 5 entries

cannot be selected from a set that only contains 2 entries.

VII.5.2. Optimization

While optimization has not yet been implemented in the MozartSpaces a few

ideas can already be given and are subject to be available in a future version of

the MozartSpaces.

These optimizations are only a few examples and there are quite a few other

optimization possibilities. In any case caution must be taken when optimizing

the selectors. Before specifying and implementing new optimizations it must be

proven that the end result is correct and equal to the not optimized case. This

can be a difficult task and during the course of the specification and

Entry Workflow Optimizing Selectors

75

implementation of the MozartSpaces quite a few cases have been found that

intuitively looked like a good optimization possibility. On a second more

thorough look though, it turned out that these would in fact change the

semantic behaviour of the operation.

In some cases extensive profiling must be done prior to moving these

optimizations into production code. It might be possible that simply running

through selector processing in the CADAO is faster than performing complex

optimizations beforehand.

The simplest optimization contains subsequent selectors for the same base

coordination order (namely the SetSelector, FifoSelector, LifoSelector and

LruSelector). Any number of equal selectors from this list can be replaced by a

single selector that has the count value of the last (and therefore the smallest)

one.

TemplateSelectors are already more difficult to optimize correctly.

One optimization regards the arity of the tuples. If multiple template selectors

request different arity tuples this request cannot be fulfilled correctly. Clearly a

tuple with arity of 3 cannot be selected among a set of tuples with arity 2 or 4.

The second optimization involves the types of a tuple’s fields. Whenever

subsequent TemplateSelectors request different types for the same field position

the TemplateSelectors are incompatible. Once again an intuitive example would

be the following: The first TemplateSelector requests a string in the field at

position zero while the second TemplateSelector requests an integer for the

same field. Of course this optimization can be extended to concrete values not

only types (See Table 3 for an example).

A third optimization includes type/value narrowing. In this case the selectors

can be merged. Assume a TemplateSelector that requests a field to have a

specific type and a subsequent TemplateSelector requests the same type or a

concrete value (of the correct type) for the same field. Additionally mutual ‘don’t

care’ conditions for any fields do not invalidate this optimization. If these

properties hold for all specified fields, then these TemplateSelectors can be

merged.

Table 3 sums up the previously mentioned optimizations. Cases where a

SelectorNotCompatibleException would be thrown are marked as INVALID in

Entry Workflow Optimizing Selectors

76

the third column. Cases where subsequent selectors can be merged are marked

as MERGED, followed by the merged TemplateSelector.

[] arity = 4 [] arity = 5 INVALID

[string, ?, int] [int, ?, int] INVALID

[string, ?, int] [1234, ?, int] INVALID

[‘hello’, ?, int] [int, ?, int] INVALID

[string, ?, int] [‘hello’, ?, int] MERGED, [‘hello’, ?, int]

[string, ?, 3] [‘hello’, ?, int] MERGED, [‘hello’, ?, 3]

[string, ?, ?] [‘hello’, ?, int] MERGED, [‘hello’, ?, int]

[string, ?, 3] [?, ?, int] MERGED, [string, ?, 3]

Table 3: TemplateSelector optimizations

Compared to the TemplateSelector the VectorSelector optimization is simple.

The request is valid if and only if all VectorSelectors select the same position.

Container Access Data Access Object ContainerAccess API

77

VIII. Container Access Data Access Object

The MozartSpaces implementation of the XVSM uses the Derby33 database as

space backend. The name Container Access Data Access Object is rather long

but reflects its origin. Data Access Object (abbr. DAO) is the name of a design

pattern. This pattern allows the abstraction of access to certain resources,

usually data storing and data providing resources. Examples for such resources

are databases, streams or files. Using the DAO pattern enables the developer to

simply exchange the DAO implementation without the need to adapt or perform

changes in the application itself. This way it is rather simple to exchange the

Derby database with another database a RAM disk implementation or even

direct file access34. The implementation class of the DAO in the MozartSpaces is

called ContainerAccess35.

VIII.1. ContainerAccess API

 Figure 33.shows the class diagram of the ContainerAccess class. The interface

of this class might look rather complex but most operations have already been

informally introduced. The list of methods along with explanations of their

purpose will be given in the following subchapters. An important note is that

container references are simply strings. The ContainerRef class is only a

wrapper class for a unique string but this string value has already been

extracted at time of invocation of the CADAO methods.

33 Derby is an OSS database implementation written in Java. As of version 1.6.0 of the Java
programming language this database is included in the JDK as JavaDB.
34 Note: these are only examples that emphasize the advantages of the DAO design pattern and not
intended as concrete proposals for the change of the MozartSpaces implementation.
35 Even though the class itself is just named ContainerAccess during the process of specifying and
implementing the MozartSpaces the name CADAO has been used informally as name for writing
documents and discussion.

Container Access Data Access Object ContainerAccess API

78

cd ms

Object
ContainerAccess

+ ContainerAccess(conn :Connection)
+ createContainer(c :Container) : void
+ deleteContainer(cref_s :String) : void
+ addCoorType(cref_s :String, ct :CoordinationTypes) : void
+ getCoordinationTypes(cref_s :String) : List<CoordinationTypes>
+ getBasicCoordinationType(cref_s :String) : CoordinationTypes
+ getCompleteEntries(cref_s :String, basicCT :CoordinationTypes) : List<Entry>
+ beginReadWF(cref_s :String, basicCT :CoordinationTypes) : void
+ applySelector(sel :Selector, cref_s :String) : void
+ destroy(cref_s :String) : void
+ writeEntry(e :Entry, cref_s :String, basicCT :CoordinationTypes, supportedCTs :List<CoordinationTypes>) : void
+ writeEntry(e :Entry, cref_s :String, shift :boolean, basicCT :CoordinationTypes, supportedCTs :List<CoordinationTypes>) : void
+ commit() : void
+ lockContainer(cref_s :String) : void
+ unlockContainer(cref_s :String) : void
+ registerReadWF(blockingWF :Workflow, cref_s :String) : void
+ registerWriteWF(blockingWF :Workflow, cref_s :String) : void
+ registerForUNlock(blockingWF :Workflow, cref_s :String) : void
+ getRootContainer() : String
+ getContainerPropertiesCollection(cref_s :String) : ContainerPropertiesCollection
+ setContainerProperties(cref_s :String, cpc :ContainerPropertiesCollection) : void

Figure 33: ContainerAccess class diagram

VIII.1.1. Container Management

Container Management operations can be seen as the ContainerAccess

counterpart to the container operations that are described in chapter VI.3.2.

This set of methods is used to create, destroy and manage container properties.

These operations are used by both, the Capi implementation and the workflow

classes.

• createContainer: Creates a new container in the database with the

specified container reference.

• deleteContainer: removes the specified container from the database.

• addCoorType: This method is used to add a new coordination type to the

specified container. The parameters are the container reference and the

new coordination type.

• getCoordinationTypes: retrieves a list of all coordination types that are

enabled at the specified container.

• getBasicCoordinationTypes: retrieves the base coordination order of the

specified container.

• lockContainer: locks the specified container. This prevents other threads

from making modifications at this container.

Container Access Data Access Object ContainerAccess API

79

• unlockContainer: removes the lock from a container.

• getContainerPropertiesCollection: retrieves a list of all properties of the

specified container.

• setContainerProperties: sets the specified container properties at the

container depicted by the container reference.

VIII.1.2. Entry and Selector Methods

The entry and selector methods contain all necessary algorithms to read and

write entries from a container. These are only used by workflow classes.

• getCompleteEntries: retrieves all entries that have been selected by the

previous application of selectors.

• beginReadWF: prepares the temporary table for a read request.

• applySelector: This method applies the specified selector

• destroy: deletes the entries that have previously been selected by a read

request.

• writeEntry: adds a new entry to the specified container. Depending on the

shift flag either a write or a shift operation is performed.

VIII.1.3. Miscellaneous Methods

The Miscellaneous methods contain bookkeeping and management operations.

These are not directly related to containers or entries but rather the

functionality of those. Again these methods are used by the Capi

implementation and the workflow classes.

• ContainerAccess: The class’ constructor takes a connection as parameter.

In the case of MozartSpaces this parameter is the connection to the Derby

database.

• commit: commits all changes to the database.

• registerReadWF: registers a read workflow for notification. This essentially

adds the workflow instance in a list which is then added into a container

which maps the container reference to this list.

• registerWriteWF: registers a write workflow for notification.

Container Access Data Access Object ContainerAccess API

80

• registerForUnlock: registers a workflow for notification when a container

becomes unlocked.

• getRootContainer: retrieves the MozartSpaces root container. The root

container is used to store the name container reference mapping of the

named containers.

VIII.1.4. Exceptions

Most of the CADAO exceptions have already been mentioned in the context of

the Capi and workflows. While the list of exceptions that can be thrown by the

CADAO is rather long, all are related to container and/or entry operations and

specify wrong usage or unexpected states. Only one exception cannot be

categorized like the others and is used to flag internal and severe errors. All

exceptions are rather simple and basically only exist to give certain conditions

useful names rather than complex functionality.

The following list contains all exceptions that the CADAO might throw.

• ContainerAlreadyLockedException: this exception is thrown when a

workflow tries to lock a container, which already has been locked by

another workflow.

• ContainerAlreadyUnlockedException: this exception is thrown when a

workflow tries to unlock a container, which already has been locked by

this or another workflow.

• ContainerFullException: this exception is thrown when a workflow tries to

write more entries than there are free places in the container.

• ContainerNotEmptyException: this exception is thrown when an attempt

is made to change a container’s coordination types but the container still

holds at least one entry.

• CoordinationTypeNotSupportedException: this exception is thrown when

an attempt is made to apply a selector to a container whose coordination

types do not support that selector type.

• CountNotMetException: this exception is thrown when there are not

enough entries in the container that match the specified selectors.

• DoubleCrefException: this exception is thrown when an attempt is made

to create a new container with an already existing container reference.

Container Access Data Access Object Selector application

81

• UnknownContainerException: this exception is thrown when an attempt

is made to access a container with a non existing container reference.

• WriteSelectorNeededException: this exception is thrown when a write

request is made, the target container has explicit coordination types but

the entries do not container selector values that satisfy these coordination

types.

• FatalException: this exception is thrown when an unexpected or

otherwise internal erroneous condition occurs.

VIII.2. Selector application

It has already been mentioned that selectors are applied in a sequential

manner. The index of the selector list therefore also specifies the order which

the selectors are evaluated in. Selector rejection and merging has already been

discussed in chapter VII.5. No optimization takes place in the CADAO. Each

selector is applied one after another similar to successive filtering of the

previous result set..

One of the most important steps that the CADAO has to perform prior to

applying the selectors to a container, is a process called ‘selector translation’.

Since the data is stored in a database it would be highly inefficient to read all

entries that are stored in the target container into entry instances in main

memory. There are virtually no limits on the number of entries in a container

therefore this could take a long time and eat tremendous amounts of memory.

Therefore each selector is expressed as SQL query and directly performed in the

database. The CADAO simply chooses the appropriate SQL query, fills it with

the selector’s current values and executes it in the database. All SQL queries of

course are executed as prepared statements for reasons of both, speed and

security.

Compiling a new statement each time a selector is executed would cost huge

amounts of CPU cycles in the CADAO code as well as in the database itself.

Additionally SQL injection and other security issues are inherently more difficult

to exploit when using prepared statements.

In the current implementation there exist a number of database tables (details

will be discussed in chapter VIII.3) for each container. The most important one

for the process of selector application is the WorkingSet table. At the beginning

Container Access Data Access Object Database

82

of a read operation the target container’s WorkingSet table is cleared and all

entry identifiers of this container are added to the WorkingSet table. A selector’s

SQL query then removes all entry identifiers from the WorkingSet table that do

not match this particular selector. Then the next selector’s SQL query is

executed. This process description makes it immediately obvious that selectors

form a logical AND relationship as it has been mentioned before. After all

selectors have been executed the WorkingSet table contains only entry

identifiers of those entries that match all selectors. Depending on the intended

workflow the result of this process is handled differently.

• ReadWorkflow: The entries that are identified through the entry ids in the

WorkingSet table are read from the Entry table and returned to the

workflow.

• TakeWorkflow: The entries are returned to the workflow in the same way

that has been described for the ReadWorkflow. Immediately thereafter all

entries that are identified through the entry ids in the WorkingSet table

are deleted from the Entry table.

• DestroyWorkflow: All entries that are identified through the entry ids in

the WorkingSet table are deleted from the Entry table.

One interesting detail should be mentioned regarding selector counts. If more

entries match the selector than the specified count value of the selector, the

desired number of entries is chosen using the base coordination order of the

target container.

Writing or shifting entries into a container involves selector processing only

when the target container has an explicit coordination type enabled. In that

case the selector’s meta-information simply is added to the appropriate

database table.

VIII.3. Database

A database was chosen as the data handling backend for the MozartSpaces

implementation since it provides a vast number of features that are needed by

the XVSM system. Developing these features would have required many

resources both in manpower and time for implementation and extensive testing

afterwards. Databases provide transaction handling, table locks and most

Container Access Data Access Object Database

83

importantly a simple and thoroughly tested querying mechanism, an SQL

processor.

A vast number of databases are available but some constraints had to be taken

into account before making a concrete decision. MozartSpaces was intended to

become an Open Source Software (OSS) project but should not include any viral

licence such as the GPL. Java was the preferred programming language for the

MozartSpaces therefore an easy integration/usage with Java was also needed.

In the end the decision fell on Derby for reasons of simple handling and

integration, a reasonably small footprint and the possibility to run the whole

database within a process’ memory space. Additionally it was already known

that Derby would be included in Java 6 and therefore no additional database

library would be needed once Java 6 was available36.

In the MozartSpaces implementation the database is loaded into the process

space and is kept totally transparent to the XCore user (and even to all the

XCore entities other than the CADAO).

VIII.3.1. EER Diagram

In its current state the database model for the XCore looks as shown in Figure

34

36 Java 6 has already been available for some months as of the writing of this thesis.

Container Access Data Access Object Database

84

Container

PK id

cootype_s
timestamp_t
cref_s
len_n
locked
prim_coortype_s

Entry

PK entry_id

FK1 container_id
type_e
timestamp_t
len_n
value_s

Indexes

PK,FK1 entry_id

order_n

Keys

PK,FK1 entry_id
PK key_s
PK value_s

EntryTuple

PK,FK1 entry_id
PK pos

type_e
value_s

lru

PK,FK1 entry_id

timestamp_t

WorkingSet

PK entry_id

Figure 34: XVSM Core database model

One important detail about the current implementation of the MozartSpaces

and probably one of the biggest performance bottlenecks is the fact that one set

of these tables37 is created and managed for every container in the space.

Additionally the Derby database itself is rather slow.

The tables are as follows and will be explained in detail in the next subchapters.

 Container:

The container table is probably the most important table of the database. It

stores information about the containers that are currently available in the

XCore and can therefore be seen as a table or container catalogue. This table

is the only one that exists only once per XVSM core.

The table fields are:

• id: declares an internal primary key.

37 An exception is the container table, which can be seen as table/container catalogue.

Container Access Data Access Object Database

85

• prim_coortype_s: stores the base coordination order.

• coortype_s: stores the coordination types of a container. This is a bit field

of the coordination types that are enabled at the container.

• timestamp_t: specifies the container’s creation timestamp.

• cref_s: stores the unique Container-Reference of a container.

• len_n: is set to the number of elements a container may contain if it is

bounded.

• locked: is a field used for transaction-management. Specifies whether the

container is locked by a workflow.

 Entry:

Entries represent the entities that may be stored in a container. Even though

the application might store entries of different types, they are converted by

the CADAO and stored as string representations in the database. Every

container has its own Entry table; therefore the name of the concrete

instance of the entry table in the database is the following: ‘<Cref>_Entry’.

The Entry-table fields are:

• entry_id: declares the primary key for an entry. This id is also used for the

WorkingSet table entries.

• container_id: is the foreign key to the container’s id wherein an entry is

kept.

• type_e: specifies the type of the entry’s value.

• timestamp_t: is entered by a trigger on creation.

• len_n: is the length of the entry.

• value_s: stores the string representation of the entry’s value.

 EntryTuple:

Even though a tuple is basically nothing more than another type of entry (see

ValueType in chapter VI.2.1), more information is needed internally for book-

keeping and template matching. For this reason tuples have their own table,

again one for every container with a similar naming pattern:

‘<Cref>_EntryTuple’.

This internal distinction between entries and tuples is totally transparent to

the application. To the client a tuple in fact is nothing more than an entry

Container Access Data Access Object Database

86

and reading/writing of a tuple works with the entry handling methods.

The EntryTuple-table fields are:

• entry_id: specifies the entry id if this tuple. Since a tuple contains one or

more entries as its fields more than one tuple table entries can have the

same entry_id.

• pos: specifies the field position within the tuple.

• type_e: specifies the type of the tuple entry’s value.

• value_s: stores the string representation of the tuple entry’s value.

An important detail that must be considered when using tuples is the fact

that tuples will be flattened. This means that while any degree of nested

tuples can be stored into the database only the topmost level will be

reconstructed when reading the tuple. This behaviour results from the fact

that information about the correct type is lost due to the conversion of tuple

field’s values to strings.

 Keys:

The Keys table contains the meta-information needed for the KEY

coordination type. Once again the naming scheme of this table is

‘<Cref>_Keys’ and exists once per container.

The Key-table fields are:

• entry_id: specifies the entry that this key is bound to.

• key_s: specifies the type of the key value.

• value_s: specifies the string representation of the key’s value.

 Indexes:

The Indexes table contains the meta-information needed for the VECTOR

coordination type. The naming scheme of this table is ‘<Cref>_Indexes’ and it

exists once per container.

The Indexes-table fields are:

• entry_id: specifies the entry that this index is bound.

• order_n: specifies the index that this entry has in the container

Container Access Data Access Object Database

87

 Lru38:

The Lru table contains the meta-information needed for the LRU

coordination type. The naming scheme of this table is ‘<Cref>_Lru’ and it

exists once per container.

The Lru-table fields are:

• entry_id: specifies the entry that this timestamp is bound to.

• timestamp_t: specifies the timestamp of the last access to the referenced

entry.

 WorkingSet:

The WorkingSet table is a temporary table used whenever selectors are

applied to a container. Details about the selector application can be found in

chapter VIII.2. The entry ids of the requested container are initially stored in

the table when a new list of selectors must be applied. Then every selector

(possibly) filters out entry ids from this list until the final table setup

contains the entry-ids of those entries that match the list of selectors. These

can then simply be read from the Entry table.

The WorkingSet-table fields are:

• entry_id: specifies the entry_id of the entry that matches the selectors that

have been applied thus far.

VIII.3.2. Database Processing

This chapter is intended to give some examples of entry operations and how

they change the database tables. Additionally the method invocations of the

CADAO are shown to clarify the context and timeframe of the database changes.

The following examples assume a container that has the FIFO base coordination

order and is bounded to five entries.

38 Note: the LRU coordination type has been removed in a more recent version of the XVSM
specification. This is due to the reason that the LRU coordination type changes an entry upon reading
which clearly should not alter the state of an entry.

Container Access Data Access Object Database

88

• Read

Figure 35: Database read sequence

When the beginReadWF method is invoked all entry identifiers that are available

in the container are copied from the Entry table to the WorkingSet table. (Note:

the WorkingSet table is cleared beforehand if it’s not empty).

Then the selectors of the read request are applied. In this example there is a

single FifoSelector that reads three entries from the space. All non matching

entry identifiers in the WorkingSet table are removed; in this case these are the

entry ids 4 and 5. The getCompleteEntries operation then reads the entries from

the Entry table whose entry ids are in the WorkingSet table; in this case these

are the entries 1, 2 and 3. These entries are then returned to the workflow.

Container Access Data Access Object Database

89

• Take/Destroy

Figure 36: Database take/destroy sequence

There is one combined example for take and destroy since these two operations

are equal concerning the database processing. The distinction between take and

destroy and therefore whether the entries should be returned to the client or not

is made in the workflow implementation.

Again the beginReadWF method invocation initiates the filling of the WorkingSet

table with the available entry ids. Then the selectors, again a FifoSelector for

three entries is used in this examples, are applied. The remaining entries are

retrieved through the invocation of the getCompleteEntries method. Thereafter

the workflow implementation calls the destroy method which checks the

Container Access Data Access Object Database

90

WorkingSet table and removes those entries from the Entry table whose entry

ids match.

• Write

Figure 37: Database write sequence

Writing entries into the space is a fairly simple operation on the database side.

All blocking is handled by the workflow and CADAO implementations therefore

this example concerns only the non-blocking write case. If there is enough

room, the entries are simply written into the Entry table; in this case the entries

1, 2 and 3.

• Shift

Figure 38: Database shift sequence

Assume that the bounded container contains all five possible entries. When the

writeEntry method is invoked and requested to perform a shift action the number

Container Access Data Access Object Database

91

of free places in the container is checked against the number of entries to be

written. In this case there is no room in the container and three entries must be

written. Therefore three entries are shifted out of the container according to the

base coordination order, FIFO. Therefore the entries 1, 2 and 3 are removed

from the Entry table. Entries 4 and 5 are moved upfront in their position

according to FIFO and the new entries 1, 2 and 3 are written into the container.

Collaborations within XVSM Core Management Operations

92

IX. Collaborations within XVSM

This chapter presents sequence diagrams of the most important processes

within XVSM. The purpose of those is to show the interaction of the three

previously described parts.

IX.1. Core Management Operations

IX.1.1. Init

sd workflow

Capi ContainerAccessFactory

ContainerAccess
createCadao(clearspace)

new

ContainerAccess

getRootContainer

root

Figure 39: Capi.Init sequence diagram

The Capi requests a new ContainerAccess object from the

ContainerAccessFactory. The clearSpace parameter specifies whether the

backend database should be cleared (that is, all possibly available contents

must be deleted) or it the previous state must be restored. After the successful

creation of the ContainerAccess object its root container is retrieved.

Collaborations within XVSM Container Operations

93

IX.1.2. Shutdown

sd shutdown

Capi ContainerAccessFactory

shutdown(clearSpace)

Figure 40: Capi.shutdown sequence diagram

The XCore shutdown simply is carried out by invoking the shutdown method of

the ContainerAccessFactory. This will handle any needed cleanup.

Again the clearSpace parameter specifies whether the available contents must be

destroyed or kept.

IX.2. Container Operations

IX.2.1. Create Container

sd createContainer

Capi ContainerAccess

cref= getNewCref

createContainer(cref)

Figure 41: Capi.createContainer sequence diagram

After creating a new container reference the createContainer method of the

ContainerAccess is invoked. While the cref parameter is not entirely true (some

intermediate objects are created and passed to the CADAO object), the meaning

and order of the operation is correct.

Collaborations within XVSM Container Operations

94

IX.2.2. Destroy Container

sd destroyContainer

Capi ContainerAccess

destroyContainer(cref)

Figure 42: Capi.destroyContainer sequence diagram

IX.2.3. Read/Take/Destroy/Write/Shift

sd entry operation

Capi XmlBeanFactory Workflow

getBean(workflowname)

Workflow

init(cref, entry, timeout, cadao)

start

entryList

fireNotification

Figure 43: entry operation sequence diagram

The entry operations are exactly the same for all 5 methods. The only difference

is the workflowname which depends on the operation that must be invoked. Also

whether the entryList is returned to the client depends on the operation (e.g.: the

destroy method does not have a return value).

XVSM Protocol Container Operations

95

X. XVSM Protocol

The embedded version of the XVSM is good as a starting point for simple space

based applications. Multithreaded applications and multiple processes that run

in the same java virtual machine can be coordinated. But the real strength of

XVSM lies in coordination of peers distributed in a networking environment. A

short introduction to the XVSM standalone version has already been given in

chapter V.2 and a more thorough discussion can be found in chapter XII.

One main focus in the process of developing the standalone version of XVSM

was that is should be independent of any technology as far as possible.

Therefore interfaces like remote method invocation or even CORBA where clearly

not a desirable interface target. The XML protocol has been developed to specify

the communication between a XVSM client and the standalone version.

All functionality of the XVSM core can be expressed in the XML protocol. Since

it's mainly a payload protocol and does not depend on a specific technology

(apart from XML processors) or transport protocols, the XVSM server can be

implemented using the best fitting technology.

Thorough information about the XML protocol is given in chapter XIII.

XVMS Client Site ClientCapi: Implementation of the Capi interface

96

XI. XVMS Client Site

Together with the XVSM Server, the XVSM Client provides access to Capi

operations over the network. The transport protocol for the client-server

communication is HTTP. The client sends HTTP POST requests to the server.

The payload of those requests is valid XVSM Protocol Capi-requests (please see

chapter XIII for details) and interprets the XVSM Server’s Ipac response.

XI.1. ClientCapi: Implementation of the Capi interface

The XVSM client implements the Capi interface. Therefore it is totally

transparent to the application whether the MozartSpaces are loaded as library

or accessed through a network using the XVSM client and server. Every Capi

call is being encoded to a XVSM XML request which is sent to the server. The

XVSM XML response is received and decoded to objects of types that a Capi call

of that function would return.

XI.2. Transforming Capi calls to XVSM XML

As mentioned earlier, Capi function calls must be encoded in appropriate XVSM

XML and XVSM XML answers from the server must be decoded to objects

specified in the Capi interface. This is done through so called Creators and

Readers. For every possible request there exists a Creator and a Reader which

are used to process XML requests and responses respectively.

Creators are used to map objects from the Capi to valid XVSM XML code. They

construct a request step by step. The PlainCapiDocumentCreator creates a plain

Capi document which is then extended by other creators. Every Creator can

transform a special request to XVSM XML.

Readers are used to parse XML responses from the server step by step by

processing a small part of the response returned. Every Reader can process a

part of the answer (corresponding to the request).

Creators and Readers make it possible to react to further enhancements of the

Capi because there can easily be written another Creator or another Reader

which deals with the new functionality. Creators and Readers also can be used

XVMS Client Site Connections to the server

97

to provide support for compound requests (requests that are composed of

multiple requests).

cd creator

«interface»
Creator

{abstract}

+ get() : CapiDocument

Figure 44: Creator class diagram

cd reader

«interface»
Reader

{abstract}

+ getDocument() : IpacDocument
+ process() : Object

Figure 45: Reader class diagram

XI.3. Connections to the server

The communication between the client and server is performed through

connections. These connections are created and managed by the

ConnectionManager. The class diagram of the ConnectionManager is shown in

Figure 46. The ConnectionManager provides different connections each of which

implements the Connection interface shown in Figure 47.

The usefulness of this architecture becomes immediately clear, because it

decouples the process of getting a connection to a server from the

transformation of Capi calls to XVSM XML. In fact it would be possible to

implement another ConnectionManager which provides Connection objects that

could communicate to servers with any other transport protocol than HTTP.

The client provides a DefaultConnectionManager which creates connections to a

server (given by its URL) on the fly. The client also provides TomcatConnection,

a class, which implements the Connection interface and provides Connection to

a server through HTTP POST requests39. The DefaultConnectionManager creates

39 In this implementation HTTP 1.0 is used. Unfortunately this version does not permit the connection
to be kept alive meaning there is exactly one connection for a single request followed by a single
response.

XVMS Client Site Notifications

98

only connections of type TomcatConnection. The ClientCapi's default

constructor assigns the DefaultConnectionManager to the ClientCapi, so that

the ClientCapi obtains connections to the server from it.

cd connection

«interface»
ConnectionManager

{abstract}

+ getConnection(Map<String, Object>) : Connection
+ releaseConnection(Connection) : void

Figure 46: ConnectionManager class diagram

cd connection

«interface»
Connection

{abstract}

+ connect() : void
+ disconnect() : void
+ isConnected() : boolean
+ send(CapiDocument) : IpacDocument
+ canHandleProperties(Map<String, Object>) : boolean
+ canHandleProperty(String) : boolean
+ setProperty(String, Object) : void
+ setProperties(Map<String, Object>) : void

Figure 47: Connection class diagram

XI.4. Notifications

Since notifications cannot actively be sent from the server to the client (see also

chapter XII.1 for more details) a different approach has been implemented.

Instead of an active push model where the server notifies the client actively, the

server stores notifications and the client is responsible for polling these

notifications.

The ClientCapi can be given an object implementing the NotificationManager

(see Figure 48 for its class diagram) interface. At the NotificationManager is

used to register notifications. For every notification there will be an object of a

class derived from AbstractNotificationReceiver (see Figure 49 for its class

diagram). This notification receiver is a thread which is responsible for polling

XVMS Client Site Exceptions thrown by the client

99

the notifications. The NotificationManager manages the scheduling of the

registered notification receivers. The DefaultNotificationManager which is

assigned to the ClientCapi by its default constructor uses Java's

ScheduledExecutorService to schedule notification polling.

cd notification

«interface»
NotificationManager

{abstract}

+ registerNotification(NotificationID, NotificationListener, ContainerRef, NotificationMode, Long) : void
+ unregisterNotification(NotificationID) : void
+ shutdown() : void

Figure 48: NotificationManager class diagram

cd notification

Thread
AbstractNotificationReceiver

{abstract}

id: NotificationID
listener: org.xvsm.api.core.notification.NotificationListener
cRef: ContainerRef

+ AbstractNotificationReceiver(NotificationID, NotificationListener, ContainerRef)
+ hasNotificationID(NotificationID) : boolean

Figure 49: AbstractNotificationReceiver class diagram

XI.5. Exceptions thrown by the client

All Exceptions thrown by the client are subclasses of XVSMClientException

(which is itself a subclass of FatalException defined by the XVSM Core. This has

the advantage that again the standalone XVSM can be used transparently in an

application even though there are more possible error sources. The client throws

exceptions, if a timeout has occurred (XVSMTimeoutException) or if a

connection error takes place (XVSMConnectionException).

XVSM Server Site Exceptions thrown by the client

100

XII. XVSM Server Site

The main and most important part of the XVSM standalone version is the

server. Correctly speaking this is not a server itself but merely a web

application40. The servlet accepts HTTP GET and HTTP POST requests. As it has

already been explained in chapter X the payload of the request must be a valid

XML string formulated according to the XML protocol.

Figure 50 shows the class diagram of the servlet class. Additionally there are

supportive classes needed for the request processing. These class diagrams can

be seen in Figure 51 through Figure 52.

cd server

HttpServlet
XVSMServlet

{leaf}

+ getCapi() : Capi
+ getNotifListener() : NotifListener
+ init(ServletConfig) : void
+ doGet(HttpServletRequest, HttpServletResponse) : void
+ doRequest(InputStream, Writer) : void
+ doPost(HttpServletRequest, HttpServletResponse) : void

Figure 50: XVSMServlet class diagram

cd serv er

XvsmXmlObject

logger_: Logger = Logger.getLogge...
request_: XmlCursor
response_: XmlCursor
servlet_: XVSMServlet

doProcess() : void
+ process(XmlCursor, XmlCursor) : void
XvsmXmlObject()

Figure 51: XVSMXmlObject class diagram

40 The XVSM server is implemented as Java Servlet. This type of web application needs a so called
servlet container (e.g.: Apache Tomcat) which is used to load and execute the servlet.

XVSM Server Site Exceptions thrown by the client

101

cd serv er

ProtoJax

+ appendXml(XmlCursor, XmlCursor) : void
+ createContainerProperties(String) : ContainerProperties
+ createContainerProperties(String, String, String) : ContainerProperty
+ createContainerRef(String) : ContainerRef
+ createCoordinationType(String) : CoordinationTypes
+ createCount(Object) : int
+ createFifoLifoAccess() : FifoLifoAccess
+ createNotificationID(String) : NotificationID
+ createNotificationMode(String) : NotificationMode
+ createNotificationTarget(String) : NotificationTarget
+ createPropertyMode(String) : PropertyMode
+ createSize(Object) : int
+ createTimeout(Object) : int
+ generateAck() : org.xvsm.IpacAck
+ generateError(Exception) : IpacFault
+ generateError(ServerExceptionWrapper) : IpacFault

Figure 52: ProtoJax class diagram

The XVSMServlet class is the implementation class of the servlet. A servlet is a

special type of java program which must be executed in a so called servlet

container. This servlet container handles networking issues like connection

management, request distribution and similar tasks. The XVSMServlet uses the

standard servlet processing methods and request handling. The doPost method

(doGet for HTTP GET request respectively) first checks the well formed- and

validity of the request. XMLBeans41 are used to accomplish this task. After the

checking, the request is passed on to the correct XVSMXmlObject. This class is

a base class and for each possible request exists a concrete subclass that

implements the mapping from the XML request to the appropriate XVSM Core

method invocation. The ProtoJax class is a simple helper class that implements

the most common transformations from the XMLBeans Java types to XCore

parameter types and vice versa.

41 Apache XMLBeans provides XML to Java types data binding. This binding with the according java
classes can be automatically generated from the XML Schema files.

XVSM Server Site Notifications

102

XII.1. Notifications

Notifications in a non-RPC42 need special treatment. Since it was a design

decision to have a platform and technology independent XVSM standalone

version it was also not possible to implement any of RPC or similar techniques

for notifications. Notifications can’t be sent through a Call-back-Object as it has

been implemented for the embedded version of XVSM.

In standalone XVSM both client and server need to collaborate to provide the

functionality of notifications to the user. Since the server can’t open a

connection to a client without implementing a full blown client tracking and a

notification to client binding, the server can’t actively send out notifications but

the client must poll for them. Such a method has been chosen since keeping

notification connections alive for all clients would be highly inefficient and kill

server resources and system handles very fast.

The server creates a special FIFO container for each newly created notification.

The container reference for it will be returned to the client along with the

notification id43. The NotifListener class (see Figure 53) takes care of the

container handling. It also implements the NotificationListener interface (see

Figure 21) and registers itself in the internal embedded XVSM core as listener.

Each time a notification fires, this information with possibly attached entries

will be stored in the notification container. This container can and will

periodically be checked by the client side of the XVSM standalone version. The

cancellation of the notification removes the container from internal bookkeeping

but does not destroy the container. This is needed for the polling and not

synchronized nature of the notification checking.

42 Remote Procedure Call; Also named RMI (Remote Method Invocation in Java). This is a means of
invoking methods on a remote site through normal programmatic method invocation as it is (more or
less) specified in the programming language used. Network communication and other management
tasks are hidden from the user.
43 The client will strip the container reference and keep it for the notification handling. More details on
the client part of notifications can be found in section X.

XVSM Server Site Timeout

103

cd serv er

NotifListener

+ cancelNotif(NotificationID) : void
+ createNotif(NotificationID) : ContainerRef
+ NotifListener(XVSMServlet)
+ sendNotification(NotificationID) : void
+ sendNotification(NotificationID, List<Entry>) : void

Figure 53: NotifListener class diagram

XII.2. Timeout

In the current version of the XVSM standalone implementation timeouts are

solely handled by the client and timed connections. Further details on timeouts

can be found in chapter X.

The XML Protocol Timeout

104

XIII. The XML Protocol

The XVSM protocol has already briefly been mentioned in chapter X. It is the

payload protocol between the XVSM server and client implementation which in

the case of the MozartSpaces is transported using HTTP.

Extensive element and attribute explanations of the XML protocol can be found

in [Kühn, Ecker 2006]. This document forms the specification of the protocol.

Still, in order to give the readers a clue the XML protocol schema files are

appended to this thesis and can be found in Appendix A.

Care has been taken in order to keep the protocol simple and human readable

while still expressive enough to encode all operations and responses of the

XVSM core.

The protocol schema is divided into three different files.

• The XMLSchema_capi_request.xsd, which contains all elements that are

needed to encode the operation requests to the code. XML data according

to this schema is written by the XVSM client and parsed by the XVSM

server.

• The XMLSchema_ipac_response.xsd, which contains all elements that are

needed to encode the operation responses as well as possible exceptions.

XML data according to this schema is written by the XVSM server and

parsed by the XVSM client.

• The type_definitions.xsd, contains all common XML Schema type

definitions that are needed in both the capi and the ipac protocol parts.

During the development and specification of the XML protocol several tricky

aspects have been discovered. These usually are related to the mapping of

special values for types44 within programming languages to appropriate

encoding in the XML protocol. Naiive mappings can result in unexpected errors

or, in more severe cases, in silent production of wrong results. Such unexpected

errors usually are related to special values, such as ‘null’, that have been

mentioned before. A more subtle bug would result in simply using a string type

with additional encoding information. Problems in encoding and decoding could

take place especially in multi-programming language environments since Java

44 A prominent example of such a special value is the ‘null’ value for references in the Java
programming language.

The XML Protocol Timeout

105

does not use the unicode encoding for strings as it is defined in the ISO

standard.

Another interesting problem is related to exception propagation. In single

programming language environments this would be fairly easy to solve. Also, in

the case of binary and language bound facilities such as RPC or RMI these cases

have a well defined solution. For XVSM we again face the problem of multiple

involved programming languages on the one hand and binary compliance of the

embedded Capi and the client’s Capi implementation. These two aspects

obviously require the encoding of exceptions in such a way, that they can

correctly be reconstructed. The XML protocol therefore specifies exceptions in a

way that the full name of the exception class is specified in the payload.

Additionally the contents of the exception45 is encoded. The XVSM client side

can then use this information to construct an exception of the correct type and

the client application code is not broken. In the Java programming language the

process of constructing an instance of a named type is fairly easy due to the

dynamic nature of Java and it’s class loading abilities during runtime.

An extensive list of samples for the correct usage of the XML protocol can be

found in [Kühn, Ecker 2006].

The following chapter will now give an extensive example of the XVSM method

invocations and return values. Additionally the according XML Protocol strings

will be given.

45 The exception content in XVSM is a string message for all possible exceptions.

Capi and Sample Code

106

XIV. Capi and Sample Code

This chapter will show the Capi invocations and XML protocol data of a small

example. Complete details about how to correctly use the MozartSpaces can be

found in the JavaDoc and the accompanying source code documentation. The

example assumes that two programs are coordinated through the standalone

version of the MozartSpaces. The first program will be named ‘A’ while the

second one has the name ‘B’. Boiling down the example to the basic

functionality it can be described as remote dictionary lookup where client ‘A’

asks client ‘B’ for the German translation of English words.

Both clients know a named container called ‘Dictionary’ which uses the key

coordination type. The key of the container is the English word while the value

is the German translation. A second container named ‘Word-queue’ has the

FIFO coordination type enabled. Client A writes each word it needs to be

translated into this container. Client B takes those words and stores the

translation in the dictionary. Both clients use notifications, client A on the

dictionary container and client B on the word-queue container. For simplicity

reasons client A creates both containers and we assume that both named

containers exist when client B is started.

The following steps will be shown in the example:

1. A: Create a named container called ‘Dictionary’ with default values for

base coordination order and size.

2. A: add the key coordination type

3. A: Create a named container called ‘Word-queue’ with FIFO coordination

order and default size.

4. A: Register a WRITE notification for the ‘Dictionary’ container with

automatic return of the written entries.

5. B: Retrieve named containers

6. B: Register a WRITE notification for the ‘Word-queue’ container.

7. A: Write a word into the ‘Word-queue’ container.

8. B: After being notified, take the available words from the ‘Word-queue’

container

9. B: Shift the translation of all words into the ‘Dictionary’ container.

Shifting avoids the need for error handling when words are requested

multiple times.

Capi and Sample Code

107

10. A: After being notified, read the translation from the ‘Dictionary’

container.

A)
//1) create the ‘Dictionary’ container
ContainerRef dictA = Capi.createNamedContainer(“Dictionary”);

//2) add the KEY coordination type
List<ContainerProperty> request = new LinkedList<ContainerProperty>();

request.add(new CoordinationTypeProperty(ContainerProperties.COORDINATION_TYPES,

 CoordinationTypes.KEY, PropertyMode.SET));

Capi. setContainerProperties(cref, request);

//3) create the ‘Word-queue’ container
ContainerRef queueA = Capi.createNamedContainer(“Word-queue”, CoordinationTypes.FIFO);

//4) register a WRITE notification for the ‘Dictionary’ container
NotificationID nid = Capi.createNotification(dictA, -1, NotificationTarget.WRITE,

 NotificationMode.INFINITE, true, clientANotifListener);

B)
//5) retrieve ‘Dictionary’ container
ContainerRef dictB = Capi.getNamedContainer(“Dictionary”);

ContainerRef queueB = Capi.getNamedContainer(“Word-queue”);

//6) register a WRITE notification for the ‘Word-queue’ container
NotificationID nid = Capi.createNotification(queueB, -1, NotificationTarget.WRITE,

 NotificationMode.INFINITE, true, clientBNotifListener);

A)
//7) write words into the queue
List<Entry> entries = new LinkedList<Entry>();

entries.add(Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “hello”));

entries.add(Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “big”));

entries.add(Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “world”));

Capi.write(queueA, entries);

B)
//B’s notification fires here!

Capi and Sample Code

108

//8) read entries from queue
List<Selector> sellist = new LinkedList<Selector>();

sellist.add(new FifoSelector(FifoLifoAccess.FIRST, Selector.CNT_ALL));

List<Entry> words = Capi.read(queueB, sellist);

//9) store the translation
KeySelector hello = new KeySelector("Key",ValueTypes.STRING_UTF8, “hello”);

KeySelector big = new KeySelector("Key",ValueTypes.STRING_UTF8, “big”);

KeySelector world = new KeySelector("Key",ValueTypes.STRING_UTF8, “world”);

List<Selector> sellist = new LinkedList<Selector>();

List<Entry> translation = new LinkedList<Entry>();

Entry temp = Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “hallo”);

sellist.clear()

sellist.add(hello);

temp.setSelectors(sellist);

translation.add(temp);

Entry temp = Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “große”);

sellist.clear()

sellist.add(big);

temp.setSelectors(sellist);

translation.add(temp);

Entry temp = Entry.Factory.newInstance(ValueTypes.STRING_UTF8, “welt”);

sellist.clear()

sellist.add(world);

temp.setSelectors(sellist);

translation.add(temp);

Capi.write(dictB, translation);

A)
//A’s notification fires here and delivers the new entries

These steps are now shown in XML protocol notation.

A)

//1)
<Capi>

 <ContainerNamedCreate ContainerName=’Dictionary’/>

</Capi>

<Ipac>

Capi and Sample Code

109

 <ContainerNamedCreate>

 <ContainerRef>dict</ContainerRef>

 </ContainerNamedCreate>

</Ipac>

//2)
<Capi>

 <ContainerProperties>

 <ContainerRef>dict</ContainerRef>

 <Property mode=’SET’ name="COORDINATION_TYPE" value=’KEY’/>

 </ContainerProperties>

</Capi>

<Ipac>

 <ContainerProperties>

 <ACK/>

 </ ContainerProperties >

</Ipac>

//3)
<Capi>

 <ContainerNamedCreate ContainerName=’Word-queue’ BaseCoordination=’FIFO’/>

</Capi>

<Ipac>

 <ContainerNamedCreate>

 <ContainerRef>queue</ContainerRef>

 </ContainerNamedCreate>

</Ipac>

//4)
<Capi>

 <CreateNotification mode=’INFINITE’>

 <ContainerRef>dict</ContainerRef>

 <NotificationTarget>WRITE</NotificationTarget>

 </CreateNotification>

</Capi>

<Ipac>

 <CreateNotification>

Capi and Sample Code

110

 <ContainerRef>dict</ContainerRef>

 <NotificationID>notA_id</NotificationID>

 </CreateNotification>

</Ipac>

B)
//5)
<Capi>

 <GetNamedContainer>

 <ContainerName>Dictionary</ContainerName>

 </GetNamedContainer>

</Capi>

<Ipac>

 <GetNamedContainer>

 <ContainerRef>dict</ContainerRef>

 </GetNamedContainer>

</Ipac>

<Capi>

 <GetNamedContainer>

 <ContainerName>Word-queue</ContainerName>

 </GetNamedContainer>

</Capi>

<Ipac>

 <GetNamedContainer>

 <ContainerRef>queue</ContainerRef>

 </GetNamedContainer>

</Ipac>

//6)
<Capi>

 <CreateNotification mode=’INFINITE’>

 <ContainerRef>queue</ContainerRef>

 <NotificationTarget>WRITE</NotificationTarget>

 </CreateNotification>

</Capi>

<Ipac>

 <CreateNotification>

 <ContainerRef>queue</ContainerRef>

 <NotificationID>notB_id</NotificationID>

Capi and Sample Code

111

 </CreateNotification>

</Ipac>

A)
//7)
<Capi>

 <Write operation=’WRITE’>

 <ContainerRef>queue</ContainerRef>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>hello</Value>

 </Entry>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>big</Value>

 </Entry>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>world</Value>

 </Entry>

 </Write>

</Capi>

<Ipac>

 <Write operation=’WRITE’>

 <ACK/>

 </Write>

</Ipac>

B)

//8)
<Capi>

 <Read operation=’READ’>

 <ContainerRef>queue</ContainerRef>

 <Selector>

 <Fifo position=’FIRST’ count=’ALL’/>

 </Selector>

 </Read>

</Capi>

<Ipac>

 <Read operation=’READ’>

 <Value type=’string/utf8’>hello</Value>

 <Value type=’string/utf8’>big</Value>

 <Value type=’string/utf8’>world</Value>

 </Read>

Capi and Sample Code

112

</Ipac>

//9)
<Capi>

 <Write operation=’WRITE’>

 <ContainerRef>queue</ContainerRef>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>hallo</Value>

 <Selector>

 <Key>

 <Value type=’string/utf8’>hello</Value>

 </Key>

 </Selector>

 </Entry>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>große</Value>

 <Selector>

 <Key>

 <Value type=’string/utf8’>big</Value>

 </Key>

 </Selector>

 </Entry>

 <Entry type=’string/utf8’>

 <Value type=’string/utf8’>welt</Value>

 <Selector>

 <Key>

 <Value type=’string/utf8’>world</Value>

 </Key>

 </Selector>

 </Entry>

 </Write>

</Capi>

 <Ipac>

 <Write operation=’WRITE’>

 <ACK/>

 </Write>

 </Ipac>

Evaluation and Benchmarking

113

XV. Evaluation and Benchmarking

A famous saying goes like this: “Pre-emptive optimization is the root of all evil.”

This is true and very much so in the domain of software development. Pre-

emptive optimization often leads to unexpected behaviour and errors that can

be hard to find and are more problematic and a slightly slower running piece of

code. And still, sometimes a developer just knows the bits and pieces that need

work. This would be the case that applies here.

While the design and architecture of the XVSM itself is already quite mature

and solid, the MozartSpaces implementation on the other hand still is very

young and some parts are still in the state of a prototype implementation. In

this case it’s not yet too useful to run performance benchmarks.

First and foremost the MozartSpaces had to be implemented from scratch as

fast as possible. We needed a proof-of-concept for the new API and programming

models. It was clear upfront that this version of the MozartSpaces would most

likely not survive the prototype phase and be replaced by more sophisticated

versions. Of course the experience that we collected with the MozartSpaces

implementation was invaluable to further design decisions and provides a solid

bases to start design, architecture and implementation considerations for future

versions.

Future Work

114

XVI. Future Work

It has already been mentioned that the current MozartSpaces has multiple

aspects that need attention. Improvements and future work that can and

should be done will be listed here. This list is a starting point and does not

claim to be complete.

• Changing the database structure to a more sensible and performance-

friendly approach. This means that there shouldn’t be a set of six tables

for every container. While this might be an easy to handle approach, and

it certainly helped in getting the MozartSpaces up and running, it is

rather hostile towards performance. Every time a new container is created

all those tables must be created as well and destroyed upon container

removal.

• Implement tuples as real entries in the database. Currently, tuples are

treated in a special way which permits easy template matching. The

downside of this approach is the information loss about field types of

nested tuples. One possible solution would be to treat tuples exactly the

same way as entries and store links to other ‘real’ entries for every field of

the tuple. This would prevent information loss and allow correct recovery

of deeply nested tuples. The downside of this approach would probably be

more sophisticated and complex SQL queries in order to read and write

tuples into the space.

• The MozartSpaces have been implemented in a thread safe manner so

that multiple threads can access the space concurrently without the

danger of data corruption. The main goal in the first revision was to

implement a feature complete XVSM system which most likely does not

reflect optimal performance. Synchronized blocks that stall all threads

but one should be revised and kept as local as possible.

• Currently the CADAO uses a single database connection. Again this

approach works as a proof of concept but should be replaced with the

usage of a connection pool. Resource pools contain and manage a

(usually configurable) number of resources which are used by the client.

In this case the pool would contain multiple database connection which

Future Work

115

can be used by the CADAO to perform different space operations

concurrently.

• The XML schema specification allows that syntactic description of valid

XML data. This is an easy and intuitive approach to define structured

data such as the XVSM protocol. The biggest problem here is that no

semantic relations can be expressed. With XML schema such properties

must be explained in the document section of each XML element. As it is

the case with any contract that is not supported and enforced by tools

errors might and most definitely will slip in and cause usually hard to

track bugs. A semantic annotation extension for XML schema should be

used to enforce these relations through tools as a supportive mechanism

for developers.

• Once these rather basic optimizations have been implemented some real

world performance and stress tests should be run against the

MozartSpaces to further optimize and stabilize this XVSM system.

Conclusion

116

XVII. Conclusion

In this diploma thesis the architecture and implementation of the XVSM system

has been presented.

It has been shown that rather simple concepts can be complex to implement

and some complex concepts are fairly simple. Great care has been taken to

provide a solid, stable and easy to use API to application programmers while still

keeping the extensibility requirement in mind.

Extensibility is supported through multiple mechanisms such as the structural

architecture of the XVSM core itself and the exploitation of the embedded XVSM

to provide a full blown XVSM implementation over the network with the

standalone version.

Also the simplicity of usage has been shown in the case of named containers.

These are thoroughly implemented and supported through basic XVSM

features. It is clear that sophisticated features can be created quite easily. This

helps the spreading and adoption of the XVSM system in general and the

MozartSpaces in particular. Application developers desire complex features that

are packaged and accessible through a simple interface. Therein lies the need

and usage for a middleware; it must support the developers in accomplishing

their tasks faster and more reliable.

While all of this sounds great, this is still not the end of the road. Having a

network aware XVSM implementation is a start but the next big step that must

be taken is the distribution of the space itself through sophisticated replication

mechanisms.

The XVSM itself as well as the MozartSpaces implementation are under an

ongoing development and improvement. Up to date information can always be

found at http://www.xvsm.org. Additionally information about space based

computing in general can be found at http://www.spacebasedcomputing.org.

Conclusion

117

References

1. AG Netzbasierte Informationssysteme, XMLSpaces, http://www.ag-

nbi.de/research/xmlspaces.net

2. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, 1995,

Design Patterns, Addison-Wesley Professional Computing Series

3. eva Kühn, 2007, Verteiltes Programmieren mit Space Based Computing

Middleware,

http://www.complang.tuwien.ac.at/eva/Teaching/SBC/sbcIndex.html

4. eva Kühn, Johannes Riemer, Gerson Joskowicz, XVSM (eXtensible Virtual

Shared Memory) Architecture and Application, Technical Report TU-

Vienna, E185/1, SBC-Group, 2005

5. eva Kühn, Johannes Riemer, Lukas Lechner, XVSMP/Bayeux: A Protocol

for Scalable Space Based Computing in the Web, Workshop on

Interdisciplinary Aspects of Coordination

Applied to Pervasive Environments: Models and Applications (CoMA), At

the 16th IEEE International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises (WETICE), Paris 2007.

6. eva Kühn, Severin Ecker, 2006, XVSM – Protocol XML View Version 4.0.2

7. eva Kühn, Severin Ecker, 2006, XVSM – Protocol Samples Version 4.0.2

8. Gerson Joskowicz, eva Kühn, Martin Murth, The XD Model: Extending

XML and DOM to Standards Based Coordination, Proceedings of the 10th

IASTED Int. Conf. on Software Eng. and Appl. (SEA), pp.146-152, Nov.

13-15, 2006, Dallas, USA, 2006.

9. gigaspaces, GigaSpaces, http://www.gigaspaces.com/

10. SUN, Java Spaces Service Specification Version 2.2,

http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html

11. The globus alliance, GLOBUS, http://www.globus.org

Conclusion

118

12. TUWien complang institute, CORSO,

http://stud3.tuwien.ac.at/~e9825311/SBC/corso/docs

Conclusion

119

Abbreviations

API Application Programming Interface

CADAO Container Access Data Access Object

CAPI Core API

CORSO Coordinated Shared Objects

CREF Container Reference

HTTP Hypertext Transport Protocol

Java GC Java Garbage Collector

OSS Open Source Software

VSM Virtual Shared Memory

W3C World Wide Web Consortium

XCore XVSM Core

XML Extensible Markup Language

XSD XML Schema Definition

XVSM Extensible Virtual Shared Memory

Conclusion

120

Appendix A – XML Protocol XML Schema

The XML Schema Definition of the XML Protocol has been divided into three parts for

clarity and maintainability reasons.

• XMLSchema_capi_request.xsd: Defines the request side of the protocol.

• XMLSchema_ipac_response.xsd: Defines the response side of the protocol.

• type_definitions.xsd: Defines the data types that are used within the previous

two schema definitions.

Conclusion

121

XMLSchema_capi_request.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xvsmns="http://www.xvsm.org"
 targetNamespace="http://www.xvsm.org"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:include schemaLocation="type_definitions.xsd"/>

 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The core api - request structures
 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="Capi">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">

 <xsd:element name="ContainerNamedCreate">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The ContainerNamedCreate command creates a new named container. The command
must be given the desired container name as well as a size and a base coordination
order. As in the CreateContainer command these are optional. Not considering the
container name this command behaves exactly as the CreateContainer command.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ContainerName" type="xsd:string" use="required"/>
 <xsd:attribute name="ContainerSize" type="xvsmns:CONTAINER_SIZE"
use="optional" default="UNBOUNDED"/>
 <xsd:attribute name="BaseCoordination"
type="xvsmns:BASE_COORDINATION_ORDER" use="optional" default="RANDOM"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DestroyNamedContainer">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The DestroyNamedContainer is used to completely destroy a named container. This
removes the container name from the space rendering the name inusable to any clients
as well as destroying the container denoted by the container name.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerName" type="xsd:string"/>
 </xsd:sequence>

Conclusion

122

 </xsd:complexType>
 </xsd:element>

 <xsd:element name="GetNamedContainer">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The GetNamedContainer command is used to retrieved the container reference of a
container, that's denoted by the specified container name.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="SetContainerName">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Given a container name and the reference to an already existing container, the
SetContainerName command can be used to tie a name to a container. If successful,
this container reference will then be returned by the GetNamedContainer command.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerName" type="xsd:string"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="RemoveContainerName">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

In cases where it's needed to 'unname' a container without completely destroying it the
RemoveContainerName command must be used. This unties the name from the
container, removing it from the list of valid conatiner names but leaves the container as
such untouched. All existing entries stay intact.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerName" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="IsNamedContainer">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Conclusion

123

The IsNamedContainer command can be used to query the core whether the given
container reference is named. It is not possible though to retrieve the name of a
container reference.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerCreate">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The ContainerCreate command creates a new container. It can be embedded in a
transaction.
Only the most basic properties of a container can be set with this command; the size of
the container and it's coordination type.
All other properties have default values and can be changed using the
ContainerSetProperties command.
The advantage is that the ContainerCreate command stays simple.

If not specified otherwise the new container will be created as unbounded container with
no base ordering (= coordination type is RANDOM)

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ContainerSize" type="xvsmns:CONTAINER_SIZE"
use="optional" default="UNBOUNDED"/>
 <xsd:attribute name="BaseCoordination"
type="xvsmns:BASE_COORDINATION_ORDER" use="optional" default="RANDOM"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerDestroy">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Q: how exactly should this command work:
we have a GC for removing unused containers and entries.
- unpublish it, remove all references to it so the GC can delete it
- explicitly delete it (hopefully with removal of all references to it and unpublishing it)
- ...

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:sequence>
 </xsd:complexType>

Conclusion

124

 </xsd:element>

 <xsd:element name="ContainerProperties">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The properties of a container can be changed with this command.
One command that can be used to set and 'reset' properties of a container results in a
simpler API, yet as expressive and potent as if it would be with separate
create/delete/add/remove/change properties command.
Another side effect is a symmetry in the API between ContainerSet- and
ContainerGetProperties.

The command takes a container reference an optional transaction reference and a list of
properties that must be set.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 <xsd:element name="Property" type="xvsmns:property_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerPublishReference">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Publishing a container makes it accessible to clients outside the space.
After a container has been published the GC is forbidden to remove this container, since
it is still visible and accessible to (all) clients.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerUnPublishReference">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The ContainerUnPublishReference command removes the container reference from the
publically accessible list of containers.
If this container is not accessible (indirectly) from the outside anymore, the GC is free to
delete this container.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Conclusion

125

 <xsd:element name="StartTransaction">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The StartTransaction command opens and starts a client initiated transaction. The
transaction reference that is returned by this command stays valid until either event
happens:
- The specified timeout has been reached
- The transaction is committed using the CommitTransaction command
- The transaction is rolled back using the RollbackTransaction command

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="CommitTransaction">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The CommitTransaction command tries to commit the specified transaction.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="RollbackTransaction">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The RollbackTransaction command rolls back the specified transaction.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CreateNotification">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The CreateNotification command creates a new notification for the specified container.
Whenever a Write command is successfully carried out at this particular container the
notification fires according to the timeout and the notification mode.

- ContainerRef: the container that should be monitored for notifications
- Timeout: the timespan during which the notification is valid
- mode: the particular notification mode
- returnEntries: specifies whether the entries that caused the notification to fire should
be returned/saved or not.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 <xsd:element name="Timeout" type="xvsmns:TIMEOUT" minOccurs="0"/>

Conclusion

126

 <xsd:element name="NotificationTarget" type="xvsmns:NOTIFICATION_TARGET"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="mode" type="xvsmns:NOTIFICATION_MODE" use="required"/>
 <xsd:attribute name="returnEntries" type="xsd:boolean" use="optional"
default="false"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CancelNotification">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The CancelNotification command is used to end an existing notification. As soon as this
command has been carried out not more notifications fire for that particular notification
ID.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="NotificationID" type="xvsmns:TRANSACTION_ID"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Read">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Read command reads entries stored in a container. It has one attribute of type
READ_OPERATION which specified the mode of the read action.
The default read mode is READ.
The Read command has a container reference where the read action must be carried
out, an optional transaction reference and an optional timeout.
It also has a list of Selectors that must be used to specify the entries that must be
retrieved.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="Timeout" type="xvsmns:TIMEOUT" minOccurs="0"/>
 <xsd:element name="Selector" type="xvsmns:read_selector_type"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="operation" type="xvsmns:READ_OPERATION" use="optional"
default="READ"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="Write">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

 The Write command stores entries in the specified container.
 It has one attribute of type WRITE_OPERATION which specified the mode of the read
action. The default write mode is WRITE.

Conclusion

127

 The Write command has a container reference where the write action must be carried
out, an optional transaction reference and an optional timeout.
 It has a list of entries that must be written and for each entry a list of selectors that
specify which 'meta-information' must be written.

In WRITE mode either all entries are written or the command blocks.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 <xsd:element name="TransactionRef" type="xvsmns:TRANSACTION_REF"
minOccurs="0"/>
 <xsd:element name="Timeout" type="xvsmns:TIMEOUT" minOccurs="0"/>
 <xsd:element name="Entry" type="xvsmns:entry_type" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="operation" type="xvsmns:WRITE_OPERATION"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Conclusion

128

XMLSchema_ipac_response.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xvsmns="http://www.xvsm.org"
 targetNamespace="http://www.xvsm.org"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:include schemaLocation="type_definitions.xsd"/>

 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The core api - response structures.
In case of internal or other errors or core failures, a Fault response is always returned at
the level of occurance.
E.g.: if the capi request is malformed, an ipac containing the Faule response is returned.
On the other hand if the write command tries to write to a non existing container an
ipac-write response containing the Fault response is returned.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="Ipac">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="ContainerNamedCreate">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

If the named container could not be created a Fault response is returned. In case of
successful creation the new container reference is returned.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="DestroyNamedContainer" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="GetNamedContainer">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

If the specified name does not depict a named container a Fault response is returned.
Otherwise the container reference of the named container is returned.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:choice>
 </xsd:complexType>

Conclusion

129

 </xsd:element>

 <xsd:element name="SetContainerName" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="RemoveContainerName" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="IsNamedContainer">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The response attribute specifies whether the provided container reference depicts a
named conatiner.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Fault" type="xvsmns:ipac_fault" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="response" type="xsd:boolean" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerCreate">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Returns the container reference of the newly created container.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerDestroy" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="ContainerProperties">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Returns the list of Properties that must be retrieved. If only the SET/RESET property
modes were used a simple ipac response is returned.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="ACK" type="xvsmns:ipac_ack"/>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="Property" type="xvsmns:property_type"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="ContainerPublishReference" type="xvsmns:ipac_simple_return"/>

Conclusion

130

 <xsd:element name="ContainerUnPublishReference"
type="xvsmns:ipac_simple_return"/>

 <xsd:element name="StartTransaction" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="CommitTransaction" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="RollbackTransaction" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="CreateNotification">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Returns the list of Properties that must be retrieved. If only the SET/RESET property
modes were used a simple ipac response is returned.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:sequence>
 <xsd:element name="ContainerRef" type="xvsmns:CONTAINER_REF"/>
 <xsd:element name="NotificationID" type="xvsmns:TRANSACTION_ID"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="CancelNotification" type="xvsmns:ipac_simple_return"/>

 <xsd:element name="Read">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

If the read operation was DESTROY, a simple ipac return value is returned. If the read
operation was either READ or TAKE the list of retrieved entries is returned.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 <xsd:choice>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The read ipac either is a simple ACK element if the operation was DESTROY or the list of
entries in case of READ/TAKE.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:element name="ACK" type="xvsmns:ipac_ack"/>
 <xsd:sequence>
 <xsd:element name="Value" type="xvsmns:template_value_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:choice>

 <xsd:attribute name="operation" type="xvsmns:READ_OPERATION" use="optional"
default="READ"/>
 </xsd:complexType>
 </xsd:element>

Conclusion

131

 <xsd:element name="Write">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This is basically just a simple ipac return value, adding the write operation mode as
attribute to the response.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="ACK" type="xvsmns:ipac_ack"/>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 </xsd:choice>
 <xsd:attribute name="operation" type="xvsmns:WRITE_OPERATION"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

Conclusion

132

type_definitions.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xvsmns="http://www.xvsm.org"
 targetNamespace="http://www.xvsm.org"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- TYPE DEFINITIONS -->
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

List of complex type definitions.
 </xsd:documentation>
 </xsd:annotation>
 <!-- SELECTOR TYPE DEFINITIONS -->
 <!-- SET -->
 <xsd:complexType name="set_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Randomly selects the specified number of entries.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>
 </xsd:complexType>

 <!-- LRU -->
 <xsd:complexType name="lru_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Selects the least recently used entries.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>
 </xsd:complexType>

 <!-- VECTOR -->
 <xsd:complexType name="vector_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Vector selector can be used to select a number of subsequent items starting from a
specified index.
This selector can't be used for set containers since they by definition are unordered
whereas the Vector selector requires ordering of entries.

Two attributes specify the entries that must be selected.

- position: the starting position of the entries
- count: the number of entries that must be selected (a negative number specifies a
backward direction)

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="Value" type="xvsmns:vector_value_type"/>
 </xsd:sequence>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>

Conclusion

133

 </xsd:complexType>

 <!-- FIFO -->
 <xsd:complexType name="fifo_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Vector selector can be used to select a number of subsequent items starting from a
specified index.
This selector can't be used for set containers since they by definition are unordered
whereas the Vector selector requires ordering of entries.

Two attributes specify the entries that must be selected.

- position: the starting position of the entries
- count: the number of entries that must be selected (a negative number specifies a
backward direction)

 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="position" type="xvsmns:FIFO_LIFO_ACCESS" use="required"/>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>
 </xsd:complexType>

 <!-- LIFO -->
 <xsd:complexType name="lifo_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Vector selector can be used to select a number of subsequent items starting from a
specified index.
This selector can't be used for set containers since they by definition are unordered
whereas the Vector selector requires ordering of entries.

Two attributes specify the entries that must be selected.

- position: the starting position of the entries
- count: the number of entries that must be selected (a negative number specifies a
backward direction)

 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="position" type="xvsmns:FIFO_LIFO_ACCESS" use="required"/>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>
 </xsd:complexType>

 <!-- KEY -->
 <xsd:complexType name="key_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Key selector selects entries in the container that match the specified key.
Since the keys must be unique for a given key name, at most one entry can be retrieved
with this selector.

- Value: value entry that contains the value of the key selector.
- name: the name of the key (this allows entries to have multiple keys)
- type: the type of the key value
- arity: if the value is a tuple, the arity must be specified

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="Value" type="xvsmns:key_value_type" maxOccurs="unbounded"/>

Conclusion

134

 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xvsmns:VALUE_TYPE" use="required"/>
 <xsd:attribute name="arity" type="xsd:int" use="optional"/>
 </xsd:complexType>

 <!-- TEMPLATE -->
 <xsd:complexType name="template_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The templte selector is a template matcher that can be used to select tuples.
As has been stated above several subsequent templte selectors can be merged due to
performance reasons.

- Value: the value of the template
- count: the number of entries that the selector returns
- arity: the number of fields in the tuple

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:element name="Value" type="xvsmns:template_value_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="count" type="xvsmns:COUNTER" use="optional" default="1"/>
 <xsd:attribute name="arity" type="xsd:int" use="required"/>
 </xsd:complexType>

 <!-- VALUE ELEMENT TYPE DEFINITIONS -->
 <xsd:complexType name="template_value_type" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This type is used to specify the value of a template. The mixed type allows for recursive
template specification.

- Value: the value of the template field
- type: the type of the template field
- arity: the number of fields in the tuple, if the type is tuple
- id: the position of the field in the template. Positions start at 0

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="Value" type="xvsmns:template_value_type"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="xvsmns:VALUE_TYPE" use="required"/>
 <xsd:attribute name="arity" type="xsd:int" use="optional"/>
 <xsd:attribute name="id" type="xsd:int" use="optional"/>
 <xsd:attribute name="isNull" type="xsd:boolean" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="key_value_type" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This type is used to specify the value of a key.

- Value: the value of the key
- type: the type of the key
- arity: the number of fields in the key, if the type is tuple

Conclusion

135

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="Value" type="xvsmns:key_value_type"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="xvsmns:VALUE_TYPE" use="required"/>
 <xsd:attribute name="arity" type="xsd:int" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="vector_value_type" mixed="true">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This type is used to specify the value of a vector. The value of the vector position is
directly contained in this type.
If a range should be selected the following sequence of elements is used to specify that.

- From: the range starting index.
- To: the range end index (inclusive).

 </xsd:documentation>
 </xsd:annotation>

 <xsd:sequence minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="From" type="xsd:int"/>
 <xsd:element name="To" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- READ SELECTOR DEFINITION -->
 <xsd:complexType name="read_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

A Selector is a sequence consisting of any combination of different selector types.
Currently there are 6 selector types specified:
- Set
- Vector
- Fifo
- Lifo
- Template
- Key

This selector sturcture allows arbitrary complex selection queries.
e.g.: vector matching on the entries that were previously selected by using template
matching on tuples.
If no selector is specified then the core automatically creates the default selector for the
given container. This means a selector for the container's base order with a default
count of 1.

The selection is carried out as follows (possible optimizations like merging subsequent
template selectors is not specified here)
for the first element in the selector
- find the matching entries in the target container
for all subsequent elements in the selector
- take the previously selected entries
- find the matching entries for the current selector in that result set and make this the
new current result set

Conclusion

136

return the final list of matching entries (considering blocking read and count values) to
the client

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Set" type="xvsmns:set_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Vector" type="xvsmns:vector_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Fifo" type="xvsmns:fifo_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Lifo" type="xvsmns:lifo_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Key" type="xvsmns:key_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Template" type="xvsmns:template_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Lru" type="xvsmns:lru_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:complexType>

 <!-- WRITE SELECTOR DEFINITION -->
 <xsd:complexType name="write_selector_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

A Selector is a sequence consisting of any combination of different selector types.
Currently there are 3 selector types specified:
- Vector
- Template
- Key

The write operation can be/is carried out as follows:

- the entry is written to the container using the base order coordination
- the selectors are carried out, checking if the writing of the selector meta-information is
possible (e.g.: if the specified key is occupied)

if the write operation is not possible, the command blocks.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Vector" type="xvsmns:vector_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Template" type="xvsmns:template_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="Key" type="xvsmns:key_selector_type" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:choice>
 </xsd:complexType>

 <!-- WRITE ENTRY TYPE DEFINITION -->
 <xsd:complexType name="entry_type">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

An Entry, whose type is specified with the type attribute is a single entity that is written
into a container.

Conclusion

137

It contains a list of selectors that specify the meta-information that must be written for
this entry (and of course where it must be written).

Whether the Entry is a primitive type or a tuple, the value that must be written is a
value element (primitive type) or a list of Arguments (tuple).

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Selector" type="xvsmns:write_selector_type" minOccurs="0"/>
 <xsd:element name="Value" type="xvsmns:template_value_type"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="xvsmns:VALUE_TYPE" use="required"/>
 <xsd:attribute name="arity" type="xsd:int"/>
 </xsd:complexType>

 <!-- CONTAINER PROPERTIES -->
 <xsd:complexType name="property_type">
 <xsd:annotation>
 <xsd:documentation>

A property consists of a name, which may be any of the names listed in the
CONTAINER_PROPERTY type and a value that must be set for that specific property.
The mode specifies whether the property must be set or reset to its default value.

The keyName and keyType are mandatory if the KEY coordiantion type is set or reset.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="name" type="xvsmns:CONTAINER_PROPERTY" use="required"/>
 <xsd:attribute name="value" type="xsd:string" use="optional"/>
 <xsd:attribute name="keyName" type="xsd:string" use="optional"/>
 <xsd:attribute name="keyType" type="xvsmns:VALUE_TYPE" use="optional"/>
 <xsd:attribute name="mode" type="xvsmns:PROPERTY_MODE" use="required"/>
 </xsd:complexType>

 <xsd:annotation>
 <xsd:documentation xml:lang="en">

List of simple type definitions that are used as attribute types in the schema.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:simpleType name="READ_OPERATION">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Read mode can be either of three values:
- READ: reads entries and leaves them in the container
- TAKE: reads entries and removes them from the container
- DESTROY: removes entries from the container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="READ"/>
 <xsd:enumeration value="TAKE"/>
 <xsd:enumeration value="DESTROY"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="WRITE_OPERATION">

Conclusion

138

 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The Write mode can be either of two values:
- WRITE: writes entries to a container, blocking if the position/key.. is occupied
- SHIFT: writes entries to a container, shifting out entries using the base coordination if
needed

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="WRITE"/>
 <xsd:enumeration value="SHIFT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="NOTIFICATION_MODE">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The notification mode specifies the behaviour and number of notifications fired when the
specified container is altered.

- ONCE: the notification fires a single time when entries are written to the container. If
the timeout has been succeeded nothing happens.
- PROLONG: the notification fires any time when entries are written to the container. If
the notification fires, its timeout is reset starting at the beginning. If the timeout has
been succeeded nothing happens.
- RESTRICED: the notification fires any time when entries are written to the container as
long as the timeout is still valid.
- INFINITE: the notification fires any time when entries are written to the container. The
notification timeout is ignored.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ONCE"/>
 <xsd:enumeration value="PROLONG"/>
 <xsd:enumeration value="RESTRICTED"/>
 <xsd:enumeration value="INFINITE"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="NOTIFICATION_TARGET">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The notification target is used to specify the operation(s) which trigger the notification.
Whenever an operation has successfully been completed an a notification has been
created with this operation as notification target, it fires.
The targets are as follows (for more details check the detailed operation description):

- WRITE: a write operation (writing entries to the container)
- SHIFT: a shift operation (shifting entries to the container)
- READ: a read operation (reading entries from the container)
- TAKE: a take operation (taking entries from the container)
- DESTROY: a destroy operation (removing entries from the container)
- DESTROY_CONTAINER: a container destruction operation (destorying a container)
- ANY: any of the above operations

 </xsd:documentation>
 </xsd:annotation>

Conclusion

139

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="WRITE"/>
 <xsd:enumeration value="SHIFT"/>
 <xsd:enumeration value="READ"/>
 <xsd:enumeration value="TAKE"/>
 <xsd:enumeration value="DESTROY"/>
 <xsd:enumeration value="DESTROY_CONTAINER"/>
 <xsd:enumeration value="ANY"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="BASE_COORDINATION_ORDER">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Specifies the base coordination of a container. This coordination is used for default
selecting entries and writing entries.
- RANDOM: no particular order
- FIFO: first in first out/queue ordering
- LIFO: last in first out/stack ordering
- LRU: least recently used

 </xsd:documentation>
 </xsd:annotation>

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="RANDOM"/>
 <xsd:enumeration value="FIFO"/>
 <xsd:enumeration value="LIFO"/>
 <xsd:enumeration value="LRU"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="COORDINATION_TYPE">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Coordination types are used for reading and writing entries. They can be attached and
removed from the container (as long as certaing properties hold such as container being
empty or one is not trying to remove the base order)
Valid coordination types are:

- RANDOM: no particular order
- FIFO: first in first out/queue ordering
- LIFO: last in first out/stack ordering
- LRU: least recently used
- VECTOR: numerically indexed container
- KEY: key-indexed conatiner
- LINDA: container providing possibility for Linda template matching

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="RANDOM"/>
 <xsd:enumeration value="FIFO"/>
 <xsd:enumeration value="LIFO"/>
 <xsd:enumeration value="LRU"/>
 <xsd:enumeration value="KEY"/>
 <xsd:enumeration value="VECTOR"/>
 <xsd:enumeration value="LINDA"/>
 </xsd:restriction>
 </xsd:simpleType>

Conclusion

140

 <xsd:simpleType name="CONTAINER_PROPERTY">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This enumeration specifies the properties of a container that can be set and retrieved.
- SIZE: the size of the container
- FILL_SIZE: the number of entries that are currently stored in the container
- COORDINATION_TYPES: all coordination types of the container
- BASE_COORDINATION_TYPE: the base coordination type of the container
- VALUE_TYPES: the allowed types for the entries in the container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SIZE"/>
 <xsd:enumeration value="FILL_SIZE"/>
 <xsd:enumeration value="COORDINATION_TYPES"/>
 <xsd:enumeration value="BASE_COORDINATION_ORDER"/>
 <xsd:enumeration value="VALUE_TYPES"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="PROPERTY_MODE">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Specifies the status of a container property
- SET: the property is set/exists/is active
- GET: retrieve the specified container protperty
- RESET: the property is reset/removed/inactive

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SET"/>
 <xsd:enumeration value="GET"/>
 <xsd:enumeration value="RESET"/>
 <xsd:enumeration value="REPORT"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="VALUE_TYPE">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Specifies the type of an entry
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="string/utf8"/>
 <xsd:enumeration value="string/8859-1"/>
 <xsd:enumeration value="binary/enc64"/>
 <xsd:enumeration value="integer/ascii"/>
 <xsd:enumeration value="cref/ascii"/>
 <xsd:enumeration value="tuple"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CONTAINER_REF">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The type for specifying a reference to a container.

Conclusion

141

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>

 <xsd:simpleType name="TRANSACTION_ID">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Unique identification for a notification.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>

 <xsd:simpleType name="TRANSACTION_REF">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

The type for specifying a reference to a transaction.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>

 <xsd:simpleType name="FIFO_LIFO_ACCESS">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

This type specifies the position for a Vector selector. It can be either of three different
values (arroding to the base ordering):
- FIRST: the first element of the container
- LAST: the last element of the container

 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="FIRST"/>
 <xsd:enumeration value="LAST"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="CONTAINER_SIZE">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Specifies the size of a container. It can either be a positive number (bounded container)
or 'unbounded'.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:union memberTypes="xsd:int">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="UNBOUNDED"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="TIMEOUT">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Conclusion

142

Specifies a timeout in seconds. Infinite specifies an infinite timeout and 0 means no
timeout.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:union memberTypes="xsd:int">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="INFINITE"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="COUNTER">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

Specifies either a specific number of entries that must be retrieved or all that are
available.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:union memberTypes="xsd:int">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ALL"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:complexType name="ipac_simple_return">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

basic return type format for operations that don't have any return value.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="ACK" type="xvsmns:ipac_ack"/>
 <xsd:element name="Fault" type="xvsmns:ipac_fault"/>
 </xsd:choice>
 </xsd:complexType>

 <xsd:complexType name="ipac_fault">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

specifies an erroneous operation execution
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Description" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="exceptionclass" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="ipac_ack" mixed="false">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">

specifies a simple acknowledge message, stating the successful execution of an
operation with no other return value.

Conclusion

143

 </xsd:documentation>
 </xsd:annotation>
 </xsd:complexType>
</xsd:schema>

