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Abstract

As media technologies have developed over time, generating novel methods

of creating, presenting and interacting with visual information, artists began

experimenting with new concepts and possibilities by producing artworks

which moved conventional borders of art expression. New media technolo-

gies have introduced new opportunities for artistic creation and have brought

the computer created design and artwork to a wide spread instrument of vi-

sual communication.

These recent trends in artistic production and presentation of visual ma-

terial consequently stimulated the development of novel techniques in the

field of computer graphics. Particularly, the (semi-)automatic creation of

output that resembles conventional art forms, such as various styles of draw-

ings or paintings produced by hand, has attracted a lot of attention in the

computer graphics community. To generate results with a handcrafted-like

appearance, a number of systems use a 3D modeled scene and thus benefit

from full control over the scene structure. On the other hand, using images

of natural scenes in order to compute their stylized representation is a very

challenging task. The process of extracting information that is useful for the

subsequent stylization from the real input scene can be quite complex and

demanding, mostly because of the presence of noise and other artifacts. In

spite of this, natural scenes offer a variety of ready-made shapes, objects and

textures, which sets them to a powerful and very attractive alternative to 3D

modeled scenes for simulating the traditional and exploring new art forms.

The focus of this thesis is the stylization of images from real scenes cap-
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tured using a stereo camera set-up. An essential feature of the depiction

process is a novel silhouette extraction approach that we introduce here.

This so-called Edge Combination algorithm utilizes stereo-derived disparity

maps in order to find silhouettes, which delineate the dominant structure of

the scene. Our research results demonstrate that silhouettes extracted using

the Edge Combination algorithm are suitable and convenient for image de-

piction and stylization in various simulations of the traditional artwork, such

as sketching and drawing. We also illustrate the benefit of utilizing dispar-

ity maps to orient strokes to facilitate the “depth” perception in drawn-like

image representations. Finally, we show that silhouettes extracted by the

Edge Combination algorithm can serve for motion delineation in imitation

of comics produced by hand and also to portray the impression of change in

a moving object’s speed.



Kurzfassung

Ausgelöst durch die kontinuierliche Weiterentwicklung von Medientechnolo-

gien in Richtung neuer Methoden zur Generierung und Präsentation visuel-

ler Information, einschließlich zugehöriger Möglichkeiten zur Interaktion, ha-

ben Künstler begonnen, mit neuen Konzepten und Möglichkeiten zu experi-

mentieren. Dabei wurden Kunstwerke geschaffen, welche die konventionellen

Grenzen des künstlerischen Ausdrucks verschieben. Moderne Medientechno-

logien haben damit neuartige Möglichkeiten zur Generierung künstlerischen

Inhalts eröffnet und computergenerierte Kunstwerke und Darstellungen zu

einem weit verbreiteten Instrument der visuellen Kommunikation gemacht.

Diese gegenwärtigen Trends in der künstlerischen Erzeugung und Präsen-

tation visueller Inhalte stimulierten zugehörige Entwicklungen in der Compu-

tergrafik. Ein besonderes Augenmerk liegt dabei auf der möglichst automati-

schen Erzeugung von Bildern, die traditionellen Kunstwerken wie händischen

Zeichnungen und Malereien nachempfunden sind. Um solche Ergebnisse zu

generieren, verwenden derzeitige Systeme üblicherweise ein vorhandenes 3D-

Modell der Szene, welches dem Bearbeiter vollständige Kontrolle über die

Szenenstruktur ermöglicht. Im Gegensatz dazu stellt die Verwendung von

echten Bildaufnahmen natürlicher Szenen für die nachfolgende Stilisierung

eine große Herausforderung dar, insbesondere auch wegen Störfaktoren wie

Bildrauschen und anderer Artefakte. Natürliche Szenen bieten jedoch ein

breites Spektrum an vorhandenen Formen, Objekten und Texturen, was sie

zu einer mächtigen und äußerst attraktiven Alternative zur traditionellen

3D-Modellierung als Ausgangspunkt für die Simulation konventioneller und
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die Entwicklung neuer Kunstformen macht.

Der Fokus dieser Arbeit liegt auf der Stilisierung von Bildern realer Sze-

nen, welche mit einem Stereo-Kamera-Setup aufgenommen wurden. Eine we-

sentliche Neuheit unseres Darstellungsprozesses ist ein Ansatz zur Silhouet-

tenextraktion, den wir in dieser Arbeit beschreiben. Der so genannte Edge-

Combination-Algorithmus verwendet dabei Disparitätskarten, welche durch

Stereoauswertung berechnet wurden, um Silhouetten zu finden. Die extra-

hierten Silhouetten stellen die dominante Struktur der Szene dar. Unsere For-

schungsergebnisse zeigen, dass mittels des Edge-Combination-Algorithmus

berechnete Silhouetten gut geeignet sind, um eine Bilddarstellung und Sti-

lisierung zu erzeugen, welche verschiedene traditionelle Kunstformen wie

künstlerische Skizzen und Gemälde simulieren. Des Weiteren demonstrieren

wir, wie Disparitätskarten dazu verwendet werden können, um Striche zu ori-

entieren, was die Tiefenwahrnehmung in Bildrepräsentationen, welche an ver-

schiedene Zeichen- und Malstile angelehnt sind, unterstützt. Schließlich zei-

gen wir, dass Silhouetten, welche durch den Edge-Combination-Algorithmus

extrahiert wurden, dazu dienen können, eine Bewegungsdarstellung im Stile

handgezeichneter Comics zu erzeugen, wobei dem Betrachter auch ein Ein-

druck von der Geschwindigkeitsänderung eines sich bewegenden Objektes

vermittelt wird.
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Chapter 1

Introduction

1.1 Art: The Visual Ensemble

I never saw an ugly thing in my life: for let the form of an object be what it

may - light, shade, and perspective will always make it beautiful.

- John Constable (1776-1837).

rt - the magical form of expression that is inwrought in our

life, revealing its power by a delicate presence. It spreads

out from book shelves, theaters, museums, concert halls,

boutiques, radio and television, cinemas, restaurants and

perfumeries. It enriches our life, brings beauty, new ideas and a variety of

emotions. An artwork, as a “creative impulse”, has the power to calm or

incite to action. It is a force that can refine, persuade, influence or mystify.

Art, overall, has an incredible potential to heal, unite, inspire and provoke.

By going deeper to the visual aspect of the thrilling force of art, we find

images that surround us in everyday life, coming from a variety of media:

drawings, paintings, prints, photos, newspapers and magazines, billboards,

movies, videos, games, etc. But, what is visual art? Or, maybe, the better

question is - what is visual art for you? Some basic descriptions that can be

found in encyclopedias are:
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1.1 Art: The Visual Ensemble 2

Art, also called visual art : a visual object or experience consciously cre-

ated through an expression of skill or imagination. The term art encompasses

diverse media such as painting, sculpture, printmaking, drawing, decorative

arts, photography, and installation [5].

Art : the product of creative human activity in which materials are shaped

or selected to convey an idea, emotion, or visually interesting form. The word

art can refer to the visual arts, including painting, sculpture, architecture,

photography, decorative arts, crafts, and other visual works that combine

materials or forms [6].

More sophisticated and advanced defining and categorizing of the art

forms falls within the domain of the philosophy of the visual arts. Although

various definitions have been proposed, visual art remains to be an ongoing

source of debate with a lot of open questions and arguments. As it is a

rapidly growing and constantly transforming area, defining and classifying is

extremely hard.

Visual art is, generally, a class of artworks which are principally visual in

nature, classified usually into fine arts on one side and craftwork on the other

side. The term of fine art or high art encompasses a wide variety of human

creativity expressions, usually created by utilizing developed techniques and

skills with a lot of care, devotion and imagination to provide a high level

of longevity. “Traditionally, high art consists of the meticulous expression

in fine materials of refined or noble sentiment, appreciation of the former

depending on such things as intelligence, social standing, educated taste, and

a willingness to be challenged” [35]. On the other side, the craftwork is con-

sidered as handmade creation that has utility in everyday life use such as

ceramics, furniture, glass, jewellery, metal, textiles, wood or puppetry. A

more detailed classification list of visual arts can be found in “On the Nature

of the Visual Arts” by Thomas Munro [4].
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In art as a constantly changing, growing and modifying area, which is

tightly connected to the human creativity and knowledge, borders between

classes became blurred. The perseverance of artists in experimenting, break-

ing rules, defying conventions and pushing borders forward with new pos-

sibilities of new media and new methods of creation is incessantly forming

novel techniques and new styles of expression.

1.2 Arts and Technology

Worldwide communication for collecting and exchanging ideas, methods and

information is rapidly transforming from conventionally text based to a rich,

interactive and image based one. This change, along with the development

of technology, promoted an explosion of visual material that emphasized the

term “visual culture” [43]. As a result, the visual culture that portrays hu-

man development, information distribution and communication has become

an important interdisciplinary field of studies and research.

Today, art, information and educational resources are much more avail-

able to wider communities and not only accessible by a handful of privileged

people as it was the case through history. Novel systems for image creation

have increased our means of expression, understanding and imagination. In-

teractive and visual demonstrations in presenting instructional, educational

or business material, also used for distant collaboration and learning, have

introduced novel, faster and more comprehensible means of interaction, ed-

ucation and information, which are also easier to modify.

Through the constant change in human “visual culture”, creations of the

modern technologies and media such as television, motion pictures, adver-

tisements, comic books and computer games endeavor to find a place next

to the traditional means of the artistic expression like drawing, painting and

sculpture. A new type of creative expression, digital art, which combines the

artistic and technical inquiry, has become one of the most exploited forms

of artistic creation. Although it has developed into a vital part of modern
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global culture, it is still not generally considered as a highly valuable art

form. Often ignored by art critics, digital art has attracted the attention of

designers, educators and the entertainment industry artists.

Major support for the digital Avant-Garde and interactions between Art

and Technology are online web resources and communities, digital art muse-

ums and galleries that promote the digital artwork. Below we list some of the

pioneers who have undertaken the mission to engage the public, educate the

community to understand and appreciate digital art and to support artists

in the creation, exhibition and promotion of their work.

• “Digital Art Museum” (DAM), the online resource of digital fine art

[38],

• “Ars Electronica Center - Museum of the Future” in Linz, Austria,

• “Museum of the Moving Image” in Astoria, New York, USA,

• “Center for Art and Media” in Karlsruhe, Germany,

• “The Austin Museum of Digital Art” (AMODA), Texas, USA.

In Figure 1.1 we give an illustration that shows “Gulliver’s World”, one of

the most popular attractions of the “Ars Electronica Center - Museum of the

Future” in Linz, Austria. This set-up is a multi-user mixed reality system

that offers to users the ability to design their own environment and to modify

characters of the artificial world.

1.3 Digital Art: Man vs. Machine

Digital art as an advantageous form for artists to evanesce borders, fusing

art and new technologies, has introduced a range and variety of possibilities

to create and experiment; particularly, by combining it with various art ex-

pressions like sound or dance, as shown in Figure 1.2. In a sense of quality,

creativity and artistic expression, “computerization” of the artwork creation
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Figure 1.1: Ars Electronica Center Exhibition - “Gullivers World”. c© Pilo

process did not change much. New technologies brought novel methods and

tools, but the human power to create, imagine and feel still plays a main role.

However, novel aspects of creation, such as image creation software, sensors,

cameras or screens introduced innovative tools, approaches and methods of

the artistic expression beyond the traditional ink, paint, brush and canvas.

For most of the traditional branches of visual art it is necessary to study

and develop technical and manual skills. Different to this, computer software

offers flexibility in creation and provides even to unexperienced users the op-

portunity to create interesting image results. Additionally, the necessity of

manual dexterity in traditional art creation is suppressed, leaving space for

other required elements such as imagination, creativity or image composition.

This is particularly obvious in a type of visual art called algorithmic art, in

which computer generated art forms such as fractals, genetic or mathemat-

ical art are produced completely as output of an algorithm, written by the

artist. In this case, the usual manual dexterity required for the art creation is
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Figure 1.2: Apparition - a dance and media performance for the stage where the
dancer interacts with and controls the image and the musical environment. A col-
laboration between Klaus Obermaier and the Ars Electronica Futurelab c© Pascal
Maresch

completely replaced by the necessity of good programming and mathematical

knowledge. A concise description along with some examples of algorithmic

art is presented in [21].

In this thesis we focus on algorithms to stylize images of natural scenes

from stereo input. Our goal is to automate the creation and simulate the

results of traditional artistic styles such as sketches and drawings. The idea

behind the usage of these algorithms is to produce interesting and effective

results, similar to handcrafted graphics, from real images of a natural scene

by simply tuning parameters. In our research, we concentrate on silhouettes

and shading as centerpieces of the human depiction process, as well as on

comics-like motion depiction.
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1.4 Centerpieces of Real World Delineation

1.4.1 Silhouettes

Silhouette is an essential form to effectively convey a great amount of in-

formation in just few strokes. Silhouettes are perceptually and influentially

salient features that are part of our everyday life. Exploited by the human

vision as the first index into its memory of shapes, silhouettes help us to

recognize objects even without necessity of using color, shading or texture

information, but only by their contours [61]. This remarkable human un-

derstanding of shapes devised only by lines has always been used for artistic

work and scientific visualization to efficiently represent the form of objects.

Figure 1.3 shows an example of a simple, easily recognizable, delineated form,

which is depicted purely through the use of lines.

Figure 1.3: Example of form delineation.

The silhouette as a drawing feature has been playing a crucial role in artis-

tic expression from early cave paintings to today. Artists often use silhouettes

for depicting basic shapes for further art creation, and as a standalone pure

line form in different styles of artwork like sketches or silhouette portraits.

This type of portraiture, silhouette portrait, was named by the French finance

minister Étienne de Silhouette, whose hobby was the cutting of paper shadow
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portraits. An example of such silhouette portraiture is shown in Figure 1.4.

Referred to as the “poor man’s portrait,” because of an inexpensive alterna-

tive to the more extravagant custom-made oil portraits, silhouette portraits

became very popular in the mid-18th-century for all classes of society. Silhou-

ette artists and amateurs would create portraits by using scissors and black

paper or by tracing their subject’s image with a machine called the camera

obscura [42]. Through time methods changed, and the fashion of depicting

shapes of friends, family, prominent people or beloved ones established the

term silhouette to depict the extracted boundary of an object.

Figure 1.4: Example of a silhouette portrait.

Even today, it is possible to find artists, particularly on streets of large or

tourist cities, that instantly cut silhouette portraits using nothing but black

paper, scissors and several minutes of the model’s time. For example, the

photo shown in Figure 1.5 was taken in Paris in 2006.

Playing a very important role in computer science, silhouettes have been

used extensively for object segmentation, recognition, tracking or shape re-

construction, as well as for human action recognition or pose estimation,

masking and compositing. In computer graphics, silhouette finding and ren-
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Figure 1.5: Montmartre, Paris: An artist cuts the silhouette portrait of a tourist.

dering has efficient use to represent the form of objects in technical or medical

illustrations, architectural design and in the area of non-photorealistic ren-

dering (NPR).

Mostly, silhouettes are drawn to abstract and denote the distinctive fea-

tures, or to clearly delineate objects. Since they represent discontinuities in

the visibility of an object and those are tightly connected to the depth discon-

tinuities, one of the most valuable source of information for silhouette finding

and extraction is depth information. Many techniques use depth information

to portray the important features of models in a scene [107, 34, 30, 86, 59].

These approaches, as well as most of the previous work, are focused on the

silhouette extraction from a modeled 3D scene, but with thinning and soft-

ening the differences between computer vision and graphics methods, a door

to exploit the biggest source of 3D models, the real world, has opened. In

this sense, we have developed methods to extract silhouettes and to stylize
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recordings of natural scenes from a stereo image pair in order to depict and

explore profound shapes of the real world.

1.4.2 Shape Depiction by Shading

Another extremely expressive form that robustly influences the final result

of an art creation is shading. This magical interplay of light and shade gives

the objects a live appearance and a sense of solidity. For most pictorial

artworks, shading is used to reinforce the feeling of three-dimensionality, to

convey roundness, depth, and mass of a depicted subject.

In some styles of depiction - for instance, drawing and print making - the

final mixing of colors and tones is visual, the tonal variations of color are

produced when the eye “mixes” them. This is different to painting where

desired colors are commonly created by physically mixing them. One group

of these techniques uses a variety of colors to produce artworks. In this case,

the desired colors and tones are usually produced by superimposing layers of

a different color shade or different color.

Another group, that we will put more emphasis on, is the group of

monochromatic techniques, which essentially use different tones of one color

for depiction. The mood of such an artwork and its overall dimensional feel is

achieved using different levels of shading tones. Shading tones are formed by

applying various shading techniques such as hatching, crosshatching or stip-

pling. Shading techniques use basic strokes organized in textures. Varying

tonal values of shading are created from the different stroke densities. This

way, shading goes from very light areas with almost no strokes to very dark

areas where strokes more or less overlap, forming highlights, midtones and

shadows. An example of the shading tone scale produced using the hatching

technique is given in Figure 1.6.

A further, very important feature of shading strokes is their orientation.

In order to produce the illusion of three dimensions, the feeling of “depth,”

and to separate objects from each other, shading strokes are typically drawn

to follow the shape of a depicted object’s surface.



1.4 Centerpieces of Real World Delineation 11

Figure 1.6: Example of a shading tone scale (hatching technique).

Figure 1.7 shows an artwork by Giovanni Battista Piranesi from the mid-

18th century. A closer view, which shows a detail of the arch, is given in

Figure 1.8. Note the delicate shading strokes, their position, shape, orienta-

tion and density that form the depth of the depicted space. Indubitably, the

creation of such an artwork requires manual dexterity and artistic skillfulness.

In order to produce a pictorial artwork, it is important to understand

how shading is used to depict light variations, to model three-dimensionality,

or to add mood and feeling. The artist interacts with the lines on a surface

through meticulous consideration of the light variation aspects to delineate

delicate shading tone variations in order to convey shapes and forms of the

artwork.

In Chapter 6 we present an algorithm for depiction of images of a natural

scene in a drawn-like form. In order to attach to the final image result a

feeling of “depth”, we employed the additional information obtained from

the disparity map. We orient shadowing strokes to follow the orientation of
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Figure 1.7: Giovanni Battista Piranesi - Veduta interna del sepolcro di S. Costanza,
etching, 1756.

the disparity map layers. We show that utilization of such an approach for

the automatized creation of a stylized image representation can be useful to

convey shapes and produce a handcrafted-like result of images of a natural

scene. We also show that this approach is applicable to produce stylized

image results in one as well as in more colors. The goal of this approach is to

artistically depict images of a real scene and in this way to assist the artist,

to support the art creation learning process or simply to help common users

to produce interesting artistic image results.
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Figure 1.8: A detail of the arch shown in Figure 1.7.

1.5 Contributions and Organization

The foremost contributions of this dissertation are novel techniques to stylize

images of natural scenes, recorded using a stereo set-up, in a form similar to

creations of traditional artistic styles. The general concept of the work we

present here is to create a stylized representation of the real world with the

attention on depiction concepts that preserve the natural visual aspect of a

scene and its content appearance.

Natural scenes, as opposed to modeled 3D scenes, provide a large variety

of ready-made objects, shapes and structures. This characterizes them as an

excellent source for further stylized representation and also as a big challenge

to accurately extract the information needed for the depiction process. Tex-

tured regions, variations in illumination such as shadows or reflections and

noise set the precise feature extraction to a complex task.

In this thesis we offer some solutions to existing problems in image based

natural scene depiction. As a remedy to the problem of the lack of depth in-

formation, which arises in image based rendering of real scenes, we propose

using disparity maps computed from stereo image pairs. The information
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obtained from disparity maps helps us to portray the dominant scene struc-

ture, to preserve the “depth” feeling of a scene or to depict motion. We

will show the usefulness and benefit of employing such information, through

obtained results, particularly for the image stylization of natural scenes. The

major goal of our work is to make the stylization algorithms robust to errors

present in the stereo-derived disparity maps, which make the extracted depth

information of a natural scene to be significantly lower quality than the one

obtained from a modeled scene.

The research topics of the thesis are summarized and structured as fol-

lows:

In Chapters 2 and 3, we provide an overview of related literature and

background information relevant to our work. In Chapter 4, we introduce

the Edge Combination algorithm, a silhouette extraction method, which im-

parts the dominant structure of the scene based on information from the

original image and the computed disparity map. In this chapter, we also

show that a clean and distinct Edge Combination image, which is delivered

by the algorithm, can be used in synergism with Active Contours to signifi-

cantly improve the results of the object extraction process.

Afterwards in, Chapters 5, 6 and 7, we demonstrate the usefulness of

the Edge Combination approach in the main or supporting role for various

image stylization procedures. In this manner, in Chapter 5, we present a

method for representing images of a real scene in a sketched like form. The

apparent dominant structure of the scene, defined through silhouettes of the

Edge Combination image, provides the basis for the imitation of a human

sketching style. We represent edges of the Edge Combination image in a

parametric form by fitting higher degree Bézier curves and further stylize

them to produce a handcrafted like appearance.

We explicitly use the term sketch to describe the output of our algorithm,

instead of drawing, because of a fundamental difference between these two

styles. Sketching loosely captures the likeness of shapes, roughly pointing

out important features without adjunct details, while drawing, as we will
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show in the following Chapter 6, concentrates more on precise depiction and

object’s shape description, using often shading to faithfully portray objects

in a form of an artwork. An example of the difference in those two styles is

given in Figure 1.9, where a leaf is handcrafted in a sketched and in a drawn

form.

Figure 1.9: The example of an object handcrafted in sketched and in drawn form.

In Chapter 6 we focus on depicting images of a real scene in a drawn like

form. The novelties we introduce include an image enhancement in order to

better convey shapes of objects and an improved shading style, with strokes

following the orientation of the disparity map layers to preserve the “depth

feeling” of the scene.

In Chapter 7 we show the advantage of employing silhouettes of the Edge

Combination image sequence to depict motion in a comics like style by using

motion lines and multiple contours.

Finally point, in Chapter 8, we conclude with a summary discussion and

suggestions for future research.
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1.6 Publications

Through the process of composing this thesis document, parts of the work

have been published in several scientific articles:

• D. Markovic and M. Gelautz. Comics-Like Motion Depiction from

Stereo. In Proceedings of the 14-th International Conference in Cen-
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• D. Markovic and M. Gelautz. Drawing the Real. In Proceedings of

the 3rd International Conference on Computer Graphics and Interac-

tive Techniques in Australasia and South East Asia (GRAPHITE ’05),

pages 237-243, Dunedin, New Zealand, November 2005.

• E. Stavrakis, M. Bleyer, D. Markovic and M. Gelautz. Image-Based

Stereoscopic Stylization. In Proceedings of the IEEE International

Conference on Image Processing (ICIP), pages 5–8, Genova, Italy,

September 2005.

• D. Markovic, E. Stavrakis, and M. Gelautz. Parameterized Sketches

from Stereo Images. In Proceedings of the 17th Annual Symposium

on Electronic Imaging: Science and Technology, volume 5685, pages

783-791, San Jose, California, USA, January 2005.

• D. Markovic and M. Gelautz. Experimental Combination of Inten-

sity and Stereo Edges for Improved Snake Segmentation. International

journal “Pattern Recognition and Image Analysis: Advances in Math-

ematical Theory and Applications”, 5(1):243–247, 2005.

• D. Markovic and M. Gelautz. Experimental Combination of Intensity

and Stereo Edges for Improved Snake Segmentation. In Proceedings

of the 7th International Conference on Pattern Recognition and Image

Analysis: New Information Technologies, pages 310–313, St. Peters-

burg, Russian Federation, October 2004.
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• M. Gelautz and D. Markovic. Recognition of Object Contours from

Stereo Images: an Edge Combination Approach. In Proceedings of the

2nd International Symposium on 3D Data Processing, Visualization,

and Transmission (3DPVT’04), pages 774–780, Thessaloniki, Greece,

September 2004.

• D. Markovic and M. Gelautz. Video Object Segmentation Using Stereo-

Derived Depth Maps. In Proceedings of the 27th Workshop of the

AAPR/ÖAGM, pages 197–204, Laxenburg, Austria, June 2003.



Chapter 2

Related Work

2.1 Introduction

Throughout history, image creations have always been used as a form of no-

tation, communication, message, and observation, or as means to record a

moment, place or likeness of a subject. Creators of such carriers of expres-

sion, important for any culture or time period, have been developing their

manual dexterity in order to convincingly depict objects of the real, imagi-

nary or religious scenery. With the invention and expansion of photography,

high realism in object depiction lost some of its importance, which left more

space for the creation of new styles and techniques of visual art expression.

Major innovations in technology have been always influencing and bring-

ing innovations in the art creation, new tools and/or styles. The wide usage

of computer software was not an exception. From the pioneering work till

today, computer graphics has become an extremely powerful, effective and

usable domain of expression, which complements the traditional ways of pre-

senting, visualizing, conveying and portraying the visual information.

2.1.1 Photorealistic Rendering

In a segment of computer graphics known as photorealism or photorealistic

rendering, the typical goal is to generate images that are impossible to dif-
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ferentiate from a photograph of a scene. Over the past few decades great

progress has been made toward the development of algorithms that achieve

a convincingly realistic appearance of the modeled scene. As we live in a

world that is remarkably rich in objects of various sophisticated shapes and

materials, whose appearance is affected also by the interplay of light, pho-

torealistic rendering faces an extremely challenging task in producing the

illusion of real. Due to such a demanding and complex goal, it is very hard

to achieve the general photorealism. Instead, the attention of photorealistic

research is more distinctly structured through areas that focus on particular

problems in simulation of elements and phenomena of the physical world.

Figure 2.1 shows an example of realistic scenery rendering, a result of the

work presented in [36], which is focused on realistic simulation of natural

plant ecosystems.

Figure 2.1: Realistic landscape presented in [36].
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2.1.2 Non-Photorealistic Rendering

On the other side, the fascinating human power to create fine pieces of art-

work has always been attracting scientists’ attention. Over the years, a

thread of research devoted to the simulation of the human ability to depict

real and fantasy worlds has been progressing steadily toward the develop-

ment of sophisticated methods and approaches that give an output which

resembles the result of traditional stylization techniques of the art creation.

Known as non-photorealistic rendering (NPR), which essentially means that

the rendered output is not being photorealistic, this area of research has

advanced to a wide and powerful field of not only traditional art forms em-

ulation but also to a field of novel art styles and forms development [47].

The intention behind this NPR research is not to replace artists but to set

a flexible and practical environment for non-highly experienced, educated or

skilled people to produce interesting and appealing art forms. Also, because

of the high accuracy of the produced results, systems that simulate traditional

art techniques can be very useful in training and educational programs. A

rich set of novel tools that NPR researchers have developed generated new

possibilities and new ideas and also stimulated the creation of some new art

forms, which would be impractical or too demanding for handcrafting.

The fact that NPR provides a rich field of opportunities to experiment,

depending on the human creativity, perception and expression, can bring

artists or viewers to interact more closely with the artwork. The artwork,

for instance, could change constantly or from time to time according to the

viewers attention, mood or will. An example of such an idea is the ap-

proach presented in [115]. In this work, an interactive painterly rendering

approach, the “empathic painting”, is presented, in which the appearance

of the output adjusts itself in real-time to reflect the perceived emotional

state of the viewer. In order to identify the emotional state of the viewer,

through recognition of the user’s facial expression, a set of computer vision

algorithms is employed. An illustration of such an interactive approach of

stylization through different emotional states of the viewer is shown in Figure
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2.2. Another potential form of interaction, in which the artwork is not just

reflecting, but stimulating the emotional state of the viewer, could be very

inspiring, motivating and pleasurable for the user.

Figure 2.2: Empathic Painting. An example of adjusting stylization output accord-
ing to the emotional state of the viewer, presented in [115].

Classification

In order to roughly categorize NPR work, various approaches can be used

[47]. For instance, one type of classification could be made according to the

degree of the user intervention required to produce the expected output. In

this sense, NPR systems take a range of classes from automatized to systems

that very much depend on the user assistance in the creation process.
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A further classification can be made according to the type of pictorial art

simulated in the output of the NPR system. In this case, by following the

classification of pictorial art given in [4], NPR algorithms can be grouped

into algorithms that produce results which resemble:

• paintings [31, 55, 114, 46, 27, 53, 134, 118, 74, 15, 115],

• drawings [126, 109, 108, 116, 56, 96, 39, 76, 103, 72, 135, 80],

• mosaics [41, 52, 69, 13, 44],

• prints [87, 93],

• collages [62, 102].

An additional advantage of computer assisted types of the art creation

can be seen through some of the NPR algorithms, which are able to simulate

different styles of a particular technique [55, 53]. In this case, various styles

of one technique can be simulated by simply changing input parameters.

Such a flexible and adjustable approach can be very inspiring for the user

by providing a possibility to experiment with different painterly effects. An

illustration of such an approach is given in Figure 2.3.

Figure 2.3: Different styles of painterly rendering of a flower (top left), presented in
[53].
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Another group of NPR systems, described in [94, 128, 66], simulate the

creation of artworks whose construction is not directly associated to a spe-

cific type of pictorial art. Generally, this type of artworks, such as maze or

ornament creations, can be produced by using different techniques such as

painting, engraving, drawing or mosaicking. Equivalently to this, NPR sys-

tems which simulate the creation of such artworks produce an output that

can be adapted to imitate the effect of different techniques.

Finally, we can also classify NPR algorithms according to the type of the

input used for depiction. A great deal of developed algorithms, as we will

show in following, takes as input a modeled 3D scene. They benefit from the

precise information that can be extracted from a 3D polygon mesh. In this

way, remarkable results can be produced but, naturally, they are strongly

dependent on the modeling process.

Another group of algorithms, that we will put more emphasis on, takes

images as input. Due to not fully available information needed for the depic-

tion process, these algorithms usually rely on various image features and on

information that can be extracted from them. Particularly, we will focus on

algorithms that take as input images of a natural scene. This is an extremely

challenging type of input because of the difficulties that arise in extracting

accurate information, as desirable for the image stylization process.

2.2 Silhouettes

2.2.1 Modeled Scene

Many techniques use silhouettes to stylize or abstract scene objects, however

most of them rely on available 3D models and the precise information that

can be extracted from a modeled 3D scene. The most important of these

methods are presented in a survey of silhouette algorithms for polygonal

models [64]. Generally, these algorithms can be classified into image space,

object space and hybrid approaches.
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Image Space Algorithms

Image space algorithms find silhouettes of a 3D modeled scene by detecting

the silhouette edges in the image buffers and extract them using image pro-

cessing techniques. The principal difference to our method is that we use

images of a real scene as an input to reconstruct and to extract the necessary

scene information, a task that poses a very significant challenge. In the fol-

lowing discussion of modeled scene approaches, for the sake of conciseness,

we emphasize those image space techniques that employ depth information

to find silhouettes, since they are more related to our work.

The incorporation of depth information in order to enhance the visual

perception of an object’s shape in illustrations was pioneered by Saito and

Takahashi [107]. In this work, the concept of G-buffers is introduced. G-

buffers are image buffers used to store geometrical properties of the 3D scene.

In particular, image processing operations on a G-buffer, that stores depth

values, are used to extract silhouettes. The extracted silhouettes are further

composed with the result of the scene’s rendering in order to enhance the

visual comprehensibility of the scene. The idea of using depth information

is further explored by Decaudin [34] to produce “cartoon looking” computer

generated images from data representing a 3D scene. Deussen and Strothotte

[37] presented a method to extract important silhouette lines using depth dis-

continuities determined by a depth difference threshold to create pen-and-ink

illustration of trees in different levels of detail. Curtis suggested a loose and

sketchy rendering framework [30], see Figure 2.4, where line plays an impor-

tant role in the communication of an animation’s mood. In this technique

a depth map is used to extract two intermediate images, one describing the

amount of ink required to be deposited on specially selected image locations,

such as depth discontinuities, while the second one is used to guide a par-

ticle simulation that crafts the final sketchy lines. This approach is further

extended to a real-time rendering algorithm by Ho and Komiya [59].
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Figure 2.4: Loose and Sketchy Animation. The figure shows various styles that
can be obtained by varying parameters as presented in [30].

Object Space Algorithms

Another class of algorithms function as the object space approaches. The

basic idea behind object space approaches to silhouette extraction is to find

edges that connect front-facing to back-facing polygons. These algorithms

operate directly on 3D polygonal meshes, avoiding the representation of sil-

houettes in a pixel matrix. The problem that they have to solve is the hidden

line removal, which means to eliminate all the detected edge lines in the sil-

houette finding process that are occluded and should not be visible in the

final result.
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Hybrid Algorithms

A group of algorithms that aim to use positive sides of both, image and

object space techniques, are hybrid algorithms. In this case, object space

operations and rendering steps are performed that yield silhouette edges in

image space. This hybrid type of approach usually requires multiple pass

rendering and the result is a silhouette represented in a pixel matrix.

2.2.2 Natural Scene

On the other side, silhouette extraction has been a significant area of research

also for algorithms that operate on images of real scenes. These approaches

typically consider a silhouette edge to be the object’s outline, without taking

into consideration additional silhouette edges that may arise at depth discon-

tinuities inside the object, which can enhance the image. From that simplified

point of view, the problem of finding silhouette edges is mainly transformed

to a problem of effectively separating foreground and background in real

images. This poses one of the fundamental and crucial problems in Com-

puter Vision, since the input data may contain various artifacts (e.g. noise)

and therefore provide unreliable information for many image processing algo-

rithms. In addition, the lack of a geometric description of the imaged scene

makes object-space algorithms ineffective in this case.

One considerable research topic dealing with silhouette extraction and

utilization is Shape-From-Silhouette (SFS), a 3D reconstruction method for

estimating the shape of an object from multiple silhouette images to con-

struct the object’s Visual Hull (VH). First introduced in the PhD thesis of

Baumgart 1974 [9], SFS became a very interesting method for further re-

search. Initially performed on static objects, some recent SFS developments

are targeted toward the shape estimation of dynamic objects [24]. Comput-

ing silhouettes for SFS is usually simple object separation from background

using either background of a single uniform color (chromakeying) or image

differencing. The latter approach uses a built statistical background model
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from recorded frames of the scene without presence of the object. This in-

formation is further used to extract silhouettes by finding a difference in new

frames when an object moves into the scene [19].

Apart from the stylization application that we focus on in our work,

the silhouette approach has also shown its advantage in many methods for

estimating body posture and motion [99, 17, 1], gait-based human identifi-

cation [122], video surveillance [70], content-based image retrieval [63], etc.

To extract objects of interest, these systems typically use basic background

subtraction techniques or specially created equipment.

Further advances of media technologies have generated the need of seg-

menting the foreground from a complex background. This initiated the de-

velopment of a number of approaches with different levels of user interaction,

such as Intelligent Scissors [88], Image Snapping [45], Active Contours [67],

image matting [104, 25, 57, 120], graph-cut based methods [16, 12, 101] and

also a group of algorithms that utilize disparity maps [33, 65, 129] in order to

select the object of interest from the rest of the scene. While some of these

methods require a lot of user interaction, others can only approximately find

an object’s outline. Similar to our idea, in the work presented in [98], depth

discontinuities are used for the stylization of images of natural scenes. Depth

discontinuities are detected by utilizing a camera with multiple flashes. The

camera set-up is designed in such a way that flashes, placed on the camera,

are positioned to cast shadows along depth discontinuities in the scene. Due

to the strategy of finding depth discontinuities by exploiting actively pro-

duced shadows, this approach is not able to handle open space or distant

scenes. An example of the result of this technique is shown in Figure 2.5.

In contrast, we propose a new automatic method that extracts accurately

silhouettes of foreground objects by using disparity maps that are computed

from stereo image pairs of natural scenes.
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(a) (b)

Figure 2.5: Illustration of (a) the input image of a flower plant and (b) a stylized
texture de-emphasized rendering, presented in [98].

2.3 Drawn-like Depiction

A lot of attention of the computer graphics community has been attracted to

simulate expressive traditional media in the form of artistic creation. Conse-

quently, considerable research has been devoted to produce renderings with

a handcrafted appearance by simulating traditionally created drawings.

One part of related studies takes an available 3D scene as input, such as

[126, 116, 56, 96]. These geometry-based approaches benefit from complete

access to the 3D geometry. An example shown in Figure 2.6 presents a re-

sult of such a drawn-like depiction that takes a 3D model for input. This

particular real-time approach, described in [96], aims to give an output that

resembles those handcrafted drawings in which shading is produced using the

hatching technique.

On the other side are image-based systems, which use available images of

a modeled or natural scene to produce illustrations. These approaches have

no a-priori comprehension of the scene geometry, and to convey shapes by

orienting strokes, they include either user interaction [108, 39, 109] or infor-

mation obtained from image feature analysis [76, 72, 80].
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Figure 2.6: Example of a result of the real-time hatching algorithm result presented
in [96].

An interactive system for creating pen-and-ink illustrations is presented

in [109], where the user creates the image by “painting” with different stroke

textures to create the desired result. The used stroke textures are formed

from collections of strokes arranged in different patterns. In [72] a method for

generating pencil drawings is described. Stroke directions are obtained from

texture analysis of each region identified in the color segmentation process.

Another technique for the automatic generation of pencil drawings from im-

ages as input is presented in [76]. This method uses line integral convolution,

a texture based vector field visualization technique, to simulate pencil-like

drawings. In order to convey shapes and textures of objects, strokes direc-

tions are assigned by employing the information obtained from the analysis

of the directionality of textures. This work is further extended in [135] to

a colored pencil drawing filter. In [80], see Figure 2.7, another method for

creating colored pencil style images is proposed. To resemble handcrafted

appearance, shading strokes are placed in a way that their directions align

along the boundaries of segmented regions.

An earlier work by Saito and Takahashi [107] demonstrated the benefit

of using depth maps to create a variety of styles to visualize the 3D scene.
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(a) (b)

Figure 2.7: Illustration of (a) the input doll image and (b) a drawn-like representa-
tion in colored pencil style, presented in [80].

In this work, besides the image enhancement method that we already men-

tioned in Section 2.2.1, an approach for drawn-like image representation of

3D models is presented.

Recent research has shown the advantage of using combined techniques.

The approach in [112] is image-oriented and additional 3D information, if

available, is used to create a larger variety of styles. For the stroke orienta-

tion, in this work, various schemes can be employed. Strokes can be oriented

by simply following a constant direction, by using sources such as color or

intensity gradient information or by utilizing their combination. Figure 2.8

shows an example result of this approach. In this case, for the stroke orien-

tation, the color information of the original image is used.

In [133], an interactive non-photorealistic rendering system is presented,

which stylizes and renders outdoor scenes captured by 3D laser scanning. In

this work, due to the large size, complexity and incompleteness of the ob-

tained data, a point-based representation of laser scans is used, along with



2.3 Drawn-like Depiction 31

Figure 2.8: A result of the drawn-like depiction approach presented in [112]. The
output is a hatched rendering of Cezanne’s Still Life With Apples used as input.

the geometric information estimated at every point. This information and/or

some other criteria such as data accuracy are further used for the “feature

degree” computation for each point. By applying a certain threshold, fea-

ture points, a subset of points with high feature degree, are extracted. For

the final depiction, a two-pass rendering pipeline is used, in which the first

pass generates a depth buffer, called visibility mask, and the second pass

renders the points in stylized form by utilizing different primitives such as

point sprites, line segments and textured strokes. Through this system a

natural scene can be represented in a variety of drawing styles and in a form

of coherent animation.

As opposed to the previously discussed image-based systems, this thesis is

concentrated on recorded stereo image pairs of real scenes. We include addi-

tional information by computing the disparity map, which is inversely related

to the scene depth, to attach to the illustration a feeling of “depth”. The
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result of our approach resembles the form of the traditionally handcrafted

drawings as we will show in more detail in Chapter 6.



Chapter 3

Background

3.1 Stereo Vision

3.1.1 Human Vision and Stereoscopy

How do we see? How do we exploit all the visual information in our every-

day life without even noticing that a complex process is happening behind

it? Researchers and scientists in many fields have been trying to give answers

to questions like these for a long time.

The human visual system is a binocular visual system. This essentially

means vision by using two eyes. A slightly different view of the same area,

with overlapping fields, captured by each eye is forwarded to the brain for

further processing. The fusion of these views in the brain sets up disparities

that give us the perception of depth and relative distance of objects. This

process in visual perception is called stereopsis. The word stereopsis was

formed from the Greek words στερεóς (stereos) meaning solid and óψις (op-

sis) for look.

Although the roots of stereoscopic creative work go far back to the binoc-

ular drawings made by Giovanni Battista della Porta (1538-1615) and Jacopo

Chimenti da Empoli (1554-1640), pioneer steps to explain binocular vision

and to construct a viewing device, the stereoscope, were made by Sir Charles

33
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Wheatstone. In June 1838, he published the paper on stereopsis entitled

“On some remarkable and hitherto unobserved, phenomena of binocular vi-

sion” [124], where he pointed out that the differences in the two eyes’ images,

due to the horizontal separation of the eyes, produce the impression of so-

lidity in the mind. A new device, called stereoscope, used two pictures of

the same subject from two slightly different viewpoints, displaying them in

such a way that each eye sees only one of the images, allowing stereopsis to

be stimulated to create a depth illusion. The first stereoscope constructed

by Sir Charles Wheatstone, a simple two-mirrored device called “Reflecting

Mirror Stereoscope”, was improved by Sir David Brewster. He created in

1849 a more practical stereoscope using lenses, a “Lenticular Stereoscope”.

An illustration showing both devices is given in Figure 3.1.

Figure 3.1: Wheatstone’s (left) and Brewster’s (right) stereoscope.

Over time stereoscopic devices were changing the size, shape and struc-

ture. They were mostly used for entertainment, allowing a viewer to see

the third dimension of stereoscopic images. Entertaining photos of family,

friends, and landscapes viewable in 3D evolved the idea to extract extremely

valuable depth information automatically for a further usage.

3.1.2 Machine Stereo Vision

As pointed out before, the human visual system is a sophisticated system,

which uses stereopsis to extract the necessary depth information that we use
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in our everyday life. In our mind, the distance of objects is determined using

the displacements in the two images that we receive. If the object is further

away from the eye, the difference in the two images will be smaller and, oth-

erwise, if the subject is closer, the difference is larger.

A deficiency of the human visual system is that we actually cannot use

these image dissimilarities to measure precisely the distance in our mind. For

example, if someone throws a ball we will be able to use the information per-

ceived from our eyes to catch the ball, but we will not be able to determine

exactly the length of the ball’s path or the speed of the moving ball.

The idea of measuring differences in images recorded from slightly differ-

ent viewpoints to extract depth information initiated a lot of research and

has an important purpose in many applications. A considerable amount of

research has been focused on depth-from-stereo algorithms. These algorithms

use a similar principle as our mind to extract depth information. Figure 3.2

shows an example of a stereo image pair recorded from cameras positioned

in parallel. The images are preprocessed, undistorted and rectified, which

essentially means that a pixel in one image of the stereo pair should have

a corresponding pixel in the other image at the same processing scanline.

This procedure makes computing stereo correspondences simpler, allowing a

search for corresponding points to be performed along the horizontal lines

of the rectified images, which basically simplifies the problem of the two di-

mensional search to one dimension. Object positions in these images appear

slightly shifted. Dissimilarities of the stereo image pair are used further by a

stereo algorithm to extract a depth map of the scene. Basically, the output

of the stereo algorithm is a disparity map that is computed according to the

determined correspondences in two images. It is stored often as a gray value

image, called disparity image.

As given in [40], in the case of parallel cameras, disparity and its rela-

tionship to depth can be defined as follows: Given a scene with a physical

3D point M and its two projection points m1 of coordinates (u1,v1) in the

first image plane and m2 of coordinates (u2,v2) in the second image plane
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(a) (b)

Figure 3.2: Example of the stereo image pair: (a) Left camera image, (b) right cam-
era image.

(see Figure 3.3), the disparity value d is defined as:

d = v2 − v1 (3.1)

The relationship between disparity d and the distance z of the 3D point M

is given by:

d = v2 − v1 = d12f/z (3.2)

with f being the focal length and d12 denoting the distance between the two

optical centers C1 and C2 as shown in Figure 3.3.

The problem of determining correspondences between pixels in the left

and right image becomes more complex if we take a closer look at open prob-

lems in depth-from-stereo computation. Stereo matching algorithms attempt

to reduce the number of false matches by employing different strategies, but

several problems are still unsolved. In addition to the complexity of the scene,

which strongly influences the correspondence problem, the stereo matching

process encounters difficulties in dealing with occlusions. Due to different

camera viewpoints, not all the pixels in the left image have a corresponding

pixel in the right image. This generates the problem of assigning a disparity
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Figure 3.3: Disparity and depth relation for parallel cameras. [40]

value to occluded pixels when computing a final dense disparity map. Dif-

ficulties that also encumber the stereo matching process, causing erroneous

correspondences, are inducted by light variations, noise or by texture related

problems, such as untextured areas or regions with strongly regular and/or

repetitive texture patterns.

The challenge to solve these problems stimulated machine stereo vision

to become a very intensive and dynamic research field. The importance

and usefulness of a reliable depth map computation initiated the proposal

of numerous algorithms. For further study of stereo techniques we refer the

reader to the survey of Scharstein and Szeliski [111], which accompanied by

the Middlebury Stereo Vision Page presents a good overview of stereo algo-

rithms and current developments in the field.

In order to produce smooth and detailed disparity maps, stereo approaches

often adopt certain assumptions, usually by enforcing uniqueness and conti-

nuity constraints, originally proposed by Marr and Poggio [77]. These con-

straints can be described as follows:

• Uniqueness: Each point may be assigned at most one disparity value.

• Continuity: Disparity varies smoothly almost everywhere.
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According to the employed strategies, most of the algorithms can be

broadly classified into local and global methods. A major difference between

these two approaches is the different continuity (smoothness) assumption for

the disparity map.

Local methods employ a window-based approach in order to solve the cor-

respondence problem. Their main problem is the selection of the appropriate

window size. Assuming implicit smoothness assumptions and constant dis-

parities within a search window, local methods encounter problems at depth

discontinuities, which results in the foreground fattening effect [58].

In contrast to this, global methods apply explicit smoothness assump-

tions. These smoothness assumptions are expressed in a global cost func-

tion, which is then optimized. Usually slower than local approaches, global

methods generally produce more accurate and coherent depth maps. Local

methods still remain to be one very important area of stereo vision research

because of their simplicity and efficiency, especially valuable for real-time

applications.

In this thesis we aim to show the usefulness of disparity maps for the styl-

ization of images of natural scenes. In order to produce results that resemble

traditionally created artwork and their handcrafted appearance, we employ

disparity maps computed from stereo image pairs. Therefore, to obtain dense

disparity maps, we particularly put attention on two approaches because of

the characteristics of results that they produce. We provide a more detailed

description of these approaches in the following. First we describe a fast but

less accurate stereo matching algorithm developed by Birchfield and Tomasi

[11] and right after we present the approach suggested by Bleyer and Gelautz

[14] that produces more reliable and less noisy disparity maps.
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Pixel-to-Pixel stereo [11]

This method aims to extract reliable depth discontinuities from a stereo

pair of images by obtaining a rough disparity map. Stereo correspondences

are computed by matching scanlines independently using dynamic program-

ming. An assumption made in this approach is that a depth discontinuity

is accompanied by an intensity variation. The ordering constraint is used to

locate occlusions in scanlines. This constraint is utilized to suppress noise

that affects the disparity map computation especially in untextured regions.

In order to handle sampling artifacts and false matches, an image sampling

insensitive dissimilarity measure is devised that compares each pixel in the

reference image with the linearly interpolated intensity function surrounding

its matching pixel in the other image. To refine the obtained disparity map,

a postprocessing step that propagates reliable disparities into their neighbor-

ing regions of unreliable disparity, by processing the disparity map in vertical

and horizontal direction, is employed until an intensity variation is found. An

example of a disparity map obtained by using this approach for the input

stereo pair shown in Figure 3.2 is given in 3.4.

Figure 3.4: Pixel-to-Pixel stereo: Resulting disparity map for the input stereo pair
shown in Figure 3.2.
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Graph-cut based stereo matching algorithm [14]

To get a more accurate and less noisy disparity map, this method employs

color segmentation as a valuable information in determining stereo correspon-

dences. According to this, two assumptions are made: disparity inside each

color segment varies smoothly and depth discontinuities coincide with seg-

ment borders. In the first step, an initial disparity map is computed by using

a window-based method to initialize each segment’s planar disparity model.

From these initial disparity models, a set of disparity layers, which repre-

sent the dominant depth planes occurring in the scene, are extracted in the

layer extraction step of the algorithm. In the final, iterative layer assignment

step, each segment is assigned to exactly one of those planes by employing

a global cost function to measure the quality of such an assignment. A local

minimum of the cost function is determined by using a robust graph-based

optimization technique. The computed final disparity map, represented in a

set of planar layers, can as well be considered as disparity segmentation. An

example of a resulting disparity map obtained by using this approach for the

input stereo pair shown in Figure 3.2 is given in 3.5.

Figure 3.5: Graph-cut based stereo: Resulting disparity map for the input stereo
pair shown in Figure 3.2.



3.2 Active Contours 41

3.2 Active Contours

3.2.1 Introduction

In the seminal work titled “Snakes: Active Contour Models”, in 1988, Kass

et al. [67] introduced active contours, also called snakes. The snake is pre-

sented as the evolving curve that serves to select the boundary of a salient

image feature. This work initiated numerous studies on further development

as well as investigations on possible applications that employ snakes in the

main or an additional role. Originally, active contours were proposed as an

interactive method for detecting edges, lines and subjective contours as well

as an effective approach for motion tracking and stereo matching. Over time,

snakes gained a lot of attention, especially in research in medical imaging,

computer graphics and, generally, in very important computer vision topics

such as motion analysis, recognition, reconstruction and object segmenta-

tion.

In medical imaging research, active contours are widely used to collect

important information about anatomical structures. Understanding, local-

izing, segmenting and tracking anatomical structures or changes in those

structures, caused by a particular disorder, can help to identify the source of

a problem, monitor the development of a disease and potentially lead to a

better treatment. In this sense, active contours are effectively used in the di-

agnosis and in medical image analysis. Generally, they are employed in order

to obtain accurate shape information, some indication of a normal variation

or anomaly of anatomical structures, which is valuable information for the

further medical analysis or treatment procedure. This promoted the devel-

opment of active contour models and their variations in 2D, and in 3D as

well, to a very important and challenging research topic. Consequently, since

their proposal in the late eighties, active contours have become a powerful

approach in medical image analysis to segment, match, quantify and track

anatomical structures. [82, 130]

In computer graphics, particularly in modeling and animation, deformable
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curves and surfaces play an essential role. One of the important goals in com-

puter graphics research is to create sophisticated shapes and objects that are

modeled or animated in the context of complex environments and interac-

tions with the environment, in order to resemble the natural appearance.

In research that focuses on image stylization and animation, active con-

tours also found an appealing application. Generally this work is based or

inspired by the original approach of active contours. A number of approaches

employ snakes to select and track the subject, in order to create an animation

from an image sequence [2, 3]. These are, typically, interactive approaches

where the user plays an active role by adjusting and refining the snake curve.

An example of such a technique, described in [2], is illustrated in Figure 3.6.

In this work, an animation system, called SnakeToonz, is presented to gener-

ate 2D cartoons from a video sequence. The SnakeToonz system is designed

as an interactive approach that provides to inexperienced people, particularly

children, a tool to create the cel animation.

Figure 3.6: Example of a SnakeToonz animation along with its corresponding video
frames as presented in [2].

Another useful application of active contours, in which snakes are em-

ployed for object selection and motion tracking, comes initially from the

work of Kass et al. [67]. Originally, an example of tracking the movement
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of facial features, such as the speaker’s lips, is presented. This inspired the

development of systems for actor-driven facial animation [121, 60]. Again,

snakes are used to select and track the facial features, in order to create the

animation. This way recorded facial expressions of an actor are further used

to animate computer created characters.

In this section, so far, we have illustrated the snakes’ usability and impor-

tance in some of the research fields. In following, we will give some basics of

the original approach. We will also shortly describe the Gradient Vector Flow

(GVF) method, which we employ in synergism with the Edge Combination

image, explained in Chapter 4, in order to accurately segment objects in im-

ages. A more detailed description of such an object segmentation approach

can be found in Section 4.7.

3.2.2 Fundamentals - Traditional Snake

In the following we will give a concise description of the original approach,

also known as the traditional snake approach, derived from the comprehen-

sive and detailed explanations given in [67, 132, 91].

Fundamentally, active contours or snakes are deforming contours defined

within an image domain, which as energy minimizing curves move under in-

fluence of internal forces, image forces and external constraint forces to user

desired salient image features. Active contours were named also snakes be-

cause when they move toward image features, their motion type resembles

the genuine snake movement.

In active contours, a contour is initiated on the image by specifying an ap-

proximate shape and a starting position close to the desired feature’s bound-

ary. In subsequent iterations the snake deforms itself under the influence of

image constraints, designed to attract the snake toward features of interest.

While moving, the snake maintains a certain degree of smoothness and conti-

nuity in the contour, specified by internal continuity constraints that force it

to remain smooth. This can be expressed as an energy minimization process

where the curve is deforming to minimize its energy functional and finally
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localize the minimum by sticking to the target feature.

In this sense, representing the position of a snake parametrically by

x(s) = [x(s), y(s)], s ∈ [0, 1], its energy functional E∗
snake can be written

as:

E∗
snake =

∫ 1

0

Esnake(x(s))ds

=

∫ 1

0

Eint(x(s)) + Eimage(x(s)) + Econ(x(s))ds (3.3)

where Eint is the internal energy of the contour, Eimage denotes the image

energy and Econ represents the external constraint energy. The external

constraint forces are employed in order to put the snake somewhere near the

desired contour and can be introduced from different sources, like for instance

from a user interface. In this case, the user could push or pull the snake to

the desired position and internal and image forces would stick it closer to the

target feature. A more detailed explanation of the internal energy Eint and

image energy Eimage is given in the following.

Internal energy

The internal energy of the snake, that regulates its characteristics of defor-

mation, is defined as a weighted sum of the first- and second-order derivatives

and can be written as:

Eint = (α(s) |x′(s)|2 + β(s) |x′′(s)|2)/2 (3.4)

The first-order term, controlled by α(s), characterizes the elasticity of

the contour, making the snake to act like a membrane. The second-order

term, controlled by β(s), characterizes the bending flexibility of the contour,

making the snake to act like a tin plate. The choice of the values of the

weights α and β influences the tension and stiffness of the contour. High

values for α produce large contraction, increasing the tension, whereas low

values allow great change in point spacing. High values for β influence the
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snake to become smooth and less flexible while low values allow the curve to

develop a corner.

Image forces

Image forces serve to drive the snake toward salient image features. The total

image energy can be expressed as a weighted combination of three terms:

Eimage = wlineEline + wedgeEedge + wtermEterm (3.5)

where Eline, Eedge and Eterm are line, edge and terminations energy function-

als, respectively, controlled by weighting coefficients wline, wedge and wterm,

respectively. Different snake behavior, usually needed for different applica-

tions, can be produced by adjusting the weights. The function of the energy

functionals is to attract the snake to intensity extremes, edges and other

image features of interest.

Minimizing the energy

In general, the behavior of the snake is determined by internal and external

forces. The external force that serves to push the snake close to the salient

image features is influenced by image forces and external constraint forces.

In this sense, the external energy Eext can be formulated as the addition of

the image energy Eimage and the external constraint energy Econ:

Eext = Eimage + Econ. (3.6)

If we consider α(s) = α and β(s) = β to be constants, see 3.4, the curve

that minimizes the given energy functional, must satisfy the Euler equation:

αx′′(s)− βx′′′′(s)−∇Eext = 0 (3.7)

In order to find a solution, the snake is transformed to the dynamic form,

considering x to be a function of time t. The expression of the snake as a

function of time is then:
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xt(s, t) = αx′′(s, t)− βx′′′′(s, t)−∇Eext (3.8)

When the solution x(s, t) stabilizes, the term xt(s, t) disappears, and the

solution of 3.7 is obtained.

3.2.3 Aspects of Snake Behavior

There are several well known problems and limitations to the majority of

active contour approaches. First of all, sensitivity to initialization - the ini-

tial contour should be placed close to the desired boundary, otherwise it can

be attracted by other image features and a wrong result can be obtained.

Another difficulty is the snake’s sensitivity to parameters, which makes its

convergence unpredictable. Sometimes it is even necessary to test the snake’s

behavior under different initialization and different parameters to obtain a

satisfying result. Snakes are very susceptible to noise and the strength of the

attracting feature, that also affect the quality of the result. Another limita-

tion is the snake’s inability of advancing into boundary concavities.

Many approaches reported in the very rich active contour literature aim

to solve various snake limitations and to improve its behavior. To accomplish

these challenging tasks, different strategies have been employed and numer-

ous snake variations have been proposed such as a greedy algorithm [125],

balloon model [26], B-snakes [84], dual active contour concept [49], Fourier

snakes [117] and T-snakes [83]. Rather than finding an ideal, standard so-

lution to solve all the snake limitations and difficulties, novel active contour

methods focus on specific requirements of different applications. Here we put

more attention on and shortly describe in following an approach, presented in

[131, 132], which particularly deals with the snake’s limitations in advancing

into boundary concavities and initialization.
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3.2.4 Gradient Vector Flow Snake

The Gradient Vector Flow (GVF) snake, presented in [131, 132], brings sev-

eral advantages over the traditional snake, a particularly important one being

the ability to move into boundary concavities. This is the effect of the exter-

nal force field, which is derived from the image and designed to have a large

“capture range”, pointing into concave boundary regions. The increased cap-

ture range of the GVF snake is achieved through a diffusion process, which

diffuses the gradient map further away from the edges and into homogeneous

regions. The external force is also defined statically, which means that, com-

puted at initiation, it remains unchanged in time and does not depend on

the position of the contour.

The dynamic snake equation to be solved by the GVF snake, contains a

new static external force field v(x, y), called the Gradient Vector Flow field,

and can be written as:

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + v (3.9)

This equation is obtained by replacing the −∇Eext in 3.8 with v(x, y).

Gradient Vector Flow

The energy functional ε to be minimized by the Gradient Vector Flow field,

that is defined to be the vector field v(x, y) = [u(x, y), v(x, y)], is given as:

ε =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2 |v−∇f |2 dxdy (3.10)

where the parameter µ is a regularization parameter, whose value should be

set according to the amount of noise present in the image, and ∇f is the

gradient of the edge map f(x, y), which is derived from the image I(x, y).

Using the calculus of variations, the GVF field is determined by solving

the following Euler equations:

µ∇2u− (u− fx)(f
2
x + f 2

y ) = 0 (3.11)
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µ∇2v − (v − fy)(f
2
x + f 2

y ) = 0 (3.12)

where ∇2 is the Laplacian operator. By treating u and v as functions of

time, equations 3.11 and 3.12 can be solved, yielding the following generalized

diffusion equations:

ut(x, y, t) = µ∇2u(x, y, t)− [u(x, y, t)− fx(x, y)]
[
fx(x, y)

2 + fy(x, y)
2
]

(3.13)

vt(x, y, t) = µ∇2v(x, y, t)− [v(x, y, t)− fy(x, y)]
[
fx(x, y)

2 + fy(x, y)
2
]

(3.14)

A more detailed description of the numerical implementation along with the

iterative solution to GVF is given in [132].

Figure 3.7 shows an example of a snake guided by the Gradient Vector

Flow external forces. This simple example is designed to demonstrate an

accurate active contour convergence to the boundary, particularly within the

concave boundary region.

(a) (b) (c)

Figure 3.7: (a) Convergence of a snake using the GVF external forces shown in (b).
A close view of forces within the concave boundary region is given in (c). (After
[132].)

All the limitations mentioned in the previous section become even more

intensive when the snake is applied on images of a real world scene. Such

image sources usually contain noise, textured regions, light variations and
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low contrast, which set the snake’s convergence to an even more complex

problem. In order to obtain accurate snake results we suggest the Edge

Combination approach in synergism with active contours. In our tests we

experiment with the Gradient Vector Flow snake because of its advantages

in converging to the desired boundary. The core of the object segmentation

process is the Edge Combination approach, which employs disparity maps as

an additional source of information in order to extract the dominant structure

of the scene. A more detailed description of the Edge Combination algorithm

can be found in Chapter 4, with object segmentation results being presented

in Section 4.7.
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3.3 Bézier Curves

Bézier curves were named after the French mathematician Pierre Bézier,

who initiated their broad and practical usage in the wide community. Bézier

curves and surfaces became extensively used in computer graphics, particu-

larly in areas such as geometric modeling as well as animation and for stylized

depiction.

The Bézier curve is a parametric curve whose degree depends on the num-

ber of control points used to form the curve. A polygon created by orderly

connecting control points of the Bézier curve is called the control polygon

of the Bézier curve. The position and the number of control points influ-

ence the curve, its shape and behavior. These characteristics make it easy

to further manipulate the curve which means that the shape of the smooth

Bézier curve can be adjusted simply through repositioning, adding or remov-

ing control points. In this way, with some graphical support, the designer

can easily create and modify the curve by defining or adapting the control

polygon without knowing the computation process behind. Figure 3.8 shows

some examples of two-dimensional Bézier curves constructed using (a) four

and (b) six control points. Besides the illustrated appearance of the curves,

the figure also shows the control points used to construct these curves and

their control polygons.

Given n + 1 control-point positions pk = (xk, yk, zk), the corresponding

Bézier curve defined by these control points, as presented in [54], is:

P (u) =
n∑

k=0

pkBk,n(u), 0 ≤ u ≤ 1 (3.15)

where the Bk,n(u) are the Bernstein polynomials defined as:

Bk,n(u) = C(n, k)uk(1− u)n−k (3.16)

In the above equation, C(n, k) are the binomial coefficients given by:

C(n, k) =
n!

k!(n− k)!
(3.17)
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(a) (b)

Figure 3.8: Bézier curve examples constructed using (a) four and (b) six control
points.

Several Bézier curve properties make them very useful for many computer

graphics areas. Some of the most important Bézier curve properties, as

described in [54, 7], are:

• Endpoint interpolation

The Bézier curve passes through the first and the last control point of

its defining polygon, which can be written as:

P (0) = p0 (3.18)

P (1) = pn (3.19)

• Endpoint derivatives

The first derivatives of a Bézier curve at the end points are:

P ′(0) = −np0 + np1 (3.20)

P ′(1) = −npn−1 + npn (3.21)

The second derivatives of a Bézier curve at the end points are:

P ′′(0) = n(n− 1)[(p2 − p1)− (p1 − p0)] (3.22)

P ′′(1) = n(n− 1)[(pn−2 − pn−1)− (pn−1 − pn)] (3.23)
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• Convex hull

The Bézier curve is contained in the convex hull defined by a polygon

boundary that is created from the control points.

• Variation diminishing

The number of intersections of a straight line with the Bézier curve is

less or equal to the number of intersections of this line with the control

polygon of the curve. This along with the previously described convex

hull property is illustrated in Figure 3.9.

• Affine invariance:

Bézier curves are invariant under affine transformations.

• Global control

By modifying any of control points the entire curve is affected.

Figure 3.9: A cubic Bézier curve from Figure 3.8, shown with its convex hull and
variation diminishing property.

Bézier curves of different degrees can be utilized in order to create shapes

of various levels of detail. More detailed shape representation or creation
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requires a higher degree Bézier curve. From the Bézier curve definition, a

higher degree of the curve can be achieved by employing a greater number

of control points. There are many advantages of such a Bézier curve design.

This way, for instance, a variety of shapes or a sketched-like stroke appear-

ance can be produced, as we will show in Chapter 5. On the other side,

higher degree Bézier curves are harder to control due to the global control

property.

Another approach of creating more complex shapes is by using the piece-

wise Bézier curves form. Such a structure can be obtained by attaching

several lower degree Bézier curves to each other. In order to ensure that two

Bézier curves are continuous, different degrees of continuity can be utilized

at the point where they join. This approach provides more control over the

curve and it is particularly useful for the Bézier curve design and construc-

tion. On the other hand, the case of fitting a piecewise Bézier curve to a

contour raises a problem of obtaining the optimal knots’ location and their

optimal number, as well as the problem of determining the continuity degree

between the curve pieces at each knot.

In our application in Chapter 5, we present an algorithm to determine

an optimal number and location of control points for higher-degree Bézier

curves to represent significant contour edges in a stylized form. In particu-

lar, we show how the approximation by Bézier curves can be used to vary the

thickness of the sketched-like contours in imitation of line drawings produced

by hand.



Chapter 4

Edge Combination Algorithm

In this chapter, we will describe the main structure of the Edge Combination

algorithm that we devised in order to find silhouettes, which delineate the

principal structure of a natural scene. Images of real scenes usually contain

texture, noise, or other features such as shadowing that set the accurate

extraction of silhouettes to a complex task. A simple approach of using

only the output of an edge detector for most real scenes’ images induces

the problem of distinguishing object edges from other features’ edges. To

overcome this problem and to extract only dominant edges by suppressing

unnecessary lines detected by edge detection, we use depth information as

an additional source of information. To obtain this information from images

of a real scene, we use the depth-from-stereo approach. The output of the

stereo matching process delivers a disparity map, which is inversely related

to the depth. Whereas a perfect disparity map might be used to separate

the object of interest from the background in a relatively straightforward

way, in practical stereo analysis we have to cope with stereo matching errors

that lead to erroneous disparity values, which are present particularly in the

absence of texture and along object discontinuities. In order to suppress the

matching-induced errors along object contours, we suggest an Edge Combi-

nation algorithm that combines the edges derived from the disparity image

with the original edges for more accurate localization of contour edges.

54
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4.1 Outline of the Algorithm

A summary of the involved processing steps can be seen in Figure 4.1. A

stereo image pair is processed by a stereo matching algorithm, which delivers

as output a disparity map in the geometry of one of the two input images.

Next, an edge detector (e.g. Canny) is applied to the original image and the

disparity image. The core of the processing pipeline of the Edge Combina-

tion algorithm is to determine which edges in the original edge image are also

present in the disparity edge image. The idea is to combine the edges from

the disparity edge image, which suggest the location of scene object discon-

tinuities, with the higher positional accuracy of the edges from the original

edge image. This combination allows more accurate recognition of significant

contour edges.

In this context, a pixel-by-pixel search is performed to determine cor-

responding pixels in the original and disparity edge image. To reduce the

possibility of mismatches, the search takes into account the orientation of

the edge. The result of this step is further refined during an edge linking

process that bridges minor gaps in the computed combined edges based on a

labeling of the connected edge components in the original edge image. The

result of the Edge Combination step is a set of edges that are located along

depth discontinuities, but with the positional accuracy of edges in the origi-

nal edge image. A detailed description of each distinct step of this procedure

follows.

4.2 Edge Detection

The first step is to detect edges in both the original image and its correspond-

ing disparity image, by using the Canny edge detector [20]. Apart from the

pixel coordinates describing an edge pixel, we gather information about the

edge orientation in the range [-π/2, π/2], estimated using the gradient in the

x and y directions, for both the original and disparity edge image.
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left stereo image right stereo image

stereo matching

disparity image

edge detectionedge detection

original edge image disparity edge image

Edge Combination

Edge Combination
image

Figure 4.1: Overview of processing chain.

4.3 Edge Search

The original edge image (IE) and the disparity edge image (IDE) are input

to the Edge Combination procedure, shown in Figure 4.2. For each edge

pixel in IDE, we determine whether a corresponding edge pixel with a similar

orientation can be found in IE. We use a search window of N × N , with

N = 2k + 1 pixels, where k = 0, . . . , kmax and kmax is an integer parame-

ter. Note that k should be progressively increased from 0 to a user-defined

maximum kmax until a matching pixel is found. To estimate the similarity

in edge orientation we employ a tolerance angle, usually between 5◦ and 20◦.

We record every edge pixel in IE (Figure 4.2(b)) that was found to have a

corresponding edge pixel in IDE (Figure 4.2(a)), in order to include it in the
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Edge Combination image (Figure 4.2(c)). In this way, we build up a “basic”

Edge Combination image (IEC).

(a) IDE (b) IE (c) IEC

Figure 4.2: Searching process in constructing the “basic” Edge Combination im-
age.

4.4 Edge Linking

Imperfect disparity information along continuous edges, usually sourcing

from artifacts in the stereo matching process, will prevent some pixels in

the comparing process to match, leaving a gap in the reconstructed contour

line. An edge linking procedure is used to repair “broken” edges in IEC , if

a continuous edge in IE indicates that edge segments should be connected.

First, we use a labeling algorithm to determine the connected edge com-

ponents in IE. For each end point of an edge in IEC , we search within a

neighborhood of M ×M , with M = 2kL + 1 pixels, where kL = 0, . . . , kLmax ,

to find another end pixel in IEC . If both of them belong to the same edge in

IE, as determined by the previous labeling, we connect the two end points

in IEC by inserting the corresponding edge segment from IE. In practice, we

copy an appropriate window of size Mmax ×Mmax, with Mmax = 2kLmax + 1

pixels, from IE and insert it into IEC . Before insertion, we clean the window

by pruning superfluous parts of the copied edge pattern using the cleaning

technique described in the following subsection. The edge linking procedure

terminates, if there are no more open end points found in IEC that could be

connected.
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4.5 Cleaning (Maze Solving Technique)

To remove redundant line parts from the window we identified as the one

to be copied in the previous step, Figure 4.3(a), we use the Maze solving

technique described in [89]. For every end pixel of the window as shown

in 4.4(b), we check if it is one of the end pixels that we initially wanted to

connect, marked in 4.4(a). If this test fails we remove that pixel from the

window and continue testing the remaining end pixels, as shown stepwise

in 4.4(b) through 4.4(h). This procedure terminates when we only find end

pixels that have the same position as the pixels that we want to connect, as

marked in Figure 4.4(h).

(a)

(b) (c) (d)

Figure 4.3: (a) Part of the original edge image, (b) Edge Combination image win-
dow before linking, (c) Edge Combination image window after linking and before
cleaning, (d) Edge Combination image window after linking and cleaning.

4.6 Results

For our Edge Combination tests, we utilized the Pixel-to-Pixel [11] and the

Graph-cut based [14] stereo matching algorithm in order to compute dense
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 4.4: Window cleaning.

disparity maps. In both cases, for the output of the Edge Combination algo-

rithm - the Edge Combination image - we obtained similar results. For the

sake of conciseness, we present here silhouettes extracted from the Edge Com-

bination approach by using the result of the Pixel-to-Pixel stereo matching

algorithm [11]. Additional results, obtained using also disparity maps of the

Graph-cut based stereo matching approach [14], will be shown in subsequent

sections of the thesis, when we present techniques for object segmentation

and image stylization, which utilize the Edge Combination image as an im-

portant feature.

The results of the Edge Combination approach along with our test data

are illustrated in Figures 4.5 through 4.7. Figures (a) and (b) show a pair of

stereo video frames in epipolar geometry. The resulting disparity map is given

in Figure (c). Figures (d) and (e) show the edges derived from the disparity

image (Figure (c)) and the original image (Figure (a)), respectively. Figure

(f) contains the silhouettes computed by the Edge Combination approach.

Figure 4.5 particularly demonstrates the advantage of such an approach when

dealing with a textured background. In this case, we show that the domi-

nant edges were successfully located and selected among the other edges in

the original edge image. In this, as well as in subsequent Figures 4.6 and 4.7,
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one can recognize the smoother appearance and the more accurate location

of the Edge Combination edges in (f) when they are compared to the edges

of the disparity edge image in (d).

4.7 Application to Object Segmentation

4.7.1 Motivation

Information about objects present in a scene is crucial for many applications

such as content-based multimedia retrieval, video editing and compositing,

or mixed reality compositions. A necessary first step for obtaining this in-

formation is object segmentation. The significance of extracting the precise

information about the object’s location and outline in the scene has initiated

the development of a considerable number of approaches. The extraction

process, usually trivial for the user, can be extremely complicated for a ma-

chine to achieve in a robust and accurate fashion. This fact resulted in the

development of several systems that utilize user interaction. An often used

approach for object segmentation from the image is based on active contours,

also known as snakes. The main principles of active contours were already

described in Section 3.2.

The task of active contours, moving under the influence of internal and

external forces, is to stick to the object in order to extract the desired informa-

tion about the boundary between the object and the background. However,

despite years of research, this remains a very challenging task. Contour-based

approaches often have difficulties when dealing with images of a natural scene,

mostly because of highly textured regions or low contrast. Recordings of a

natural scene usually contain noise, variations in illumination such as shad-

ows and reflections or textured regions that can prevent the active contour

from converging to the object boundary. To overcome these problems, the

data should be simplified by removing the irrelevant information. Ideally, the

simplification process should clearout the complex textured areas or remove

unnecessary details without damaging the object boundary information.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Edge Combination example 1: (a) Left camera image, (b) right camera
image, (c) disparity image, (d) disparity edge image, (e) original edge image, (f)
Edge Combination image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Edge Combination example 2: (a) Left camera image, (b) right camera
image, (c) disparity image, (d) disparity edge image, (e) original edge image, (f)
Edge Combination image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Edge Combination example 3: (a) Left camera image, (b) right camera
image, (c) disparity image, (d) disparity edge image, (e) original edge image, (f)
Edge Combination image.
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To filter out “problematic” information, one of the most valuable sources

of information about the objects present in the scene is the depth informa-

tion. Employing disparity information, which is inversely related to depth

and provides a simpler representation of the original image, gives a robust

additional cue for object segmentation and analysis. The idea to take advan-

tage of disparity information to perform object segmentation initiated the

development of several methods.

For example in [65], Izquierdo presented a stereo-matching algorithm

based on block matching with a local adaptive window. The contour of

the initial object segmentation, based on disparity information, is further

matched to the edges extracted from the original image in order to obtain

a better positioned object contour. Woo [129] suggested an object segmen-

tation framework where the initial object segmentation map is obtained by

using a background subtraction process and further refined by combining

several cues such as intensity, intensity edge, disparity and disparity edge.

The idea that we present here is to extract the silhouette information first

using the Edge Combination algorithm and to employ it in synergism with

active contours in order to precisely segment the object of interest from the

rest of the scene.

4.7.2 Experiment

In our experiments, we used the obtained Edge Combination images, com-

puted by utilizing the previously explained Edge Combination algorithm. In

order to segment objects from the background, we employed the Gradient

Vector Flow (GVF) snake. The GVF snake, as we described in more detail in

Chapter 3.2.4, brings particular advantages over the traditional snake such

is the ability to move into boundary concavities. We applied the GVF snake

on the original intensity image from the stereo image pair, on the computed

disparity image and on the corresponding Edge Combination image. In the

following section we give the results obtained in our experiments.
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4.7.3 Object Segmentation Results

The results of our experiments demonstrate that the proposed Edge Com-

bination approach used in conjunction with active contours can significantly

improve the segmentation results, especially in textured regions, where snakes

often fail to produce satisfactory results.

Figures 4.8 and 4.9 illustrate the results produced by applying the GVF

snake to the original, disparity, and Edge Combination image. The snake ini-

tialization shown in (a) and the parameters used for the snake computation

were the same in all three cases. The results can be compared in (b), (d),

and (f). The active contour computed on the original image in (b) shows the

obvious errors caused by the background texture. Clearly, the background

pattern pulls away the snake from the object of interest at several locations,

which leads to poor segmentation results. More snake iterations resulted in

even larger deviations between the computed and actual shape in (b). These

errors are no longer present in the snake result from the disparity image in

(d). However, because of imperfectness of the stereo matching results, the

final position of the GVF snake in (d) does not coincide exactly with the

boundaries of the object. The errors in (b) and (d) are largely suppressed by

the Edge Combination approach, as demonstrated by the almost perfect fit

of the snake in (f).

We carried out more experiments with other test data and obtained sim-

ilar results. In all cases, the Edge Combination image produced a better

snake segmentation than the intensity image or disparity image alone, which

demonstrates the usefulness of the combined approach.

4.8 Summary

In this chapter, we have described the main steps of the Edge Combination

algorithm. This approach aims to take the advantage of positive sides of

both, the original and disparity edge image.

The edges from the disparity edge image suggest the location of scene
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object discontinuities. However, due to disparity artifacts induced by stereo

matching errors, depth discontinuities may be displaced. In order to suppress

the matching-induced errors along object contours by utilizing the higher

positional accuracy of edges from the original edge image, we suggest the

Edge Combination algorithm. In this way, final silhouettes extracted using

the Edge Combination approach can be described as depth discontinuities

“shifted” to the proper position. Using the edge detection to identify edges

in both, the original and disparity image, gives the ability to the user, by

tuning parameters, to specify the desired level of detail in conveying the final

dominant scene structure.

In this chapter, we also described an object segmentation approach that

utilizes the synergism of the Edge Combination algorithm with the Gradient

Vector Flow snake. The presented results demonstrate the usefulness of such

a joint approach to perform accurate object segmentation.

Through the following chapters, we will show the utility of the Edge

Combination approach for image stylization, in which object contours play

an important role. This approach gives the opportunity of utilizing natural

scenes of the real world in simulating the traditional and in creating new art

forms as an alternative to traditional 3D modeled scenes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Object segmentation example 1: (a) Original image with snake initial-
ization, (b) final snake on original image, (c) final snake on disparity image, (d)
original image with snake from (c) overlaid, (e) final snake on Edge Combination
image, (f) original image with snake from (e) overlaid.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Object segmentation example 2: (a) Original image with snake initial-
ization, (b) final snake on original image, (c) final snake on disparity image, (d)
original image with snake from (c) overlaid, (e) final snake on Edge Combination
image, (f) original image with snake from (e) overlaid.



Chapter 5

Sketching by Parameterized
Silhouettes

5.1 Introduction

5.1.1 Motivation and Overview of Algorithm

Sketching is an important form of human expression and idea communica-

tion. Defined as a quick drawing that loosely captures the appearance of

important scene features, it is often used as a study in preparation for larger,

more detailed works of art. Sketching has also been the primary tool in the

learning process of visual fine arts. Furthermore, its importance becomes

apparent in most activities of collaborative work where planning, recording,

developing, visualizing and sharing ideas graphically can enhance human

communication. More than a labor intensive drawing, sketching makes the

information intimate and gives dominance to line over mass.

Although sketching skills can vary from one person to another, almost

everybody is able to sketch and understand a sketch drawn by someone else.

Simple self-made drafts in our everyday life serve as aids for problem anal-

ysis, solution presentation, memory support and communication. Despite

its expressiveness and intuitiveness, sketching has not yet become a primary

69
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means of interaction with computer systems. Furthermore computers cannot

readily communicate information back to humans in a sketched form, and

usually they need to abstract complex information that is present in digitized

images.

To enable computers to generate graphical sketches of complex data, a

lot of research in computer graphics has been devoted to the simulation of

the human sketching ability [30, 127, 85, 50, 59, 23, 90, 123]. In this area of

research, very natural and often used features are silhouettes because of their

important role in object depiction [107, 34, 30, 92, 78, 98]. They illustrate

objects enough to stimulate imagination or allow further stylization.

Our focus is to present real scenes as stylized sketches through silhou-

ettes by employing disparity maps to select only significant contours that

play the most important role in object description. For this we utilize the

Edge Combination algorithm to highlight only dominant edges in an image

and to suppress unnecessary features.

The dominant structure of an object’s appearance in a scene is depicted

by using higher degree Bézier curves to achieve smoothness and simplify the

representation of usually complex shapes. As a starting point to our con-

version algorithm we use ideas from Bhuiyan and Hama [10] to transform

the rasterized contours into a vector graphic representation. Our algorithm

strives for economy in data representation by selecting the degree of the

Bézier curves that best suits the approximation of each edge line, and also

improves the performance by using adaptive parameters. The input to the

sketching algorithm is a natural scene, along with a user-defined set of pa-

rameters that affect the quality of the image to be produced. The output is a

vector representation of the scene with objects emphasized by their dominant

edges.

In order to create such a smooth, abstract and descriptive representation

of a natural scene that can be stylized to have a handcrafted-like appearance,

we have to transform the captured input images to a more appropriate form

for further processing and stylization. This procedure can be regarded as a
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raster-to-vector conversion.

5.1.2 Raster-to-Vector Conversion

Vectorization, i.e. raster-to-vector conversion, is the process of transforming

raster images to a more suitable vector form for further viewing, editing or

processing. Widely used in document analysis and recognition, this problem

has been an important and challenging research topic for many years, which

has resulted in a number of techniques proposed to solve it.

The input to this process, a raster image, is usually a recorded or scanned

picture of a certain amount of detail, dependent on the image size and resolu-

tion. In order to produce a more appropriate form for further manipulation,

depending on the image information different strategies are employed.

In case of an input line image (e.g. scanned engineering drawings), the

usual vectorization procedure is applied through steps of skeletonization,

tracing and approximation [22]. The task of skeletonization is to convert

lines of the line image to a one pixel wide skeleton form without affecting the

general shape of the line. To obtain such a representation, thinning [71] or

non-thinning [73] based techniques can be employed. After the tracing step,

which is a line tracking procedure that links the skeleton pixels to chains,

the obtained information is used for the approximation. The result of the

approximation is a simplified, smooth representation, appropriate for further

processing.

Another case is the raster image which contains objects or regions with

descriptive outline information that should be vectorized (e.g. geographical

images, calligraphic text characters). For this image category, the important

contour information is obtained by finding the outline of the object/region.

Recent research shows strong interest in the development of algorithms

for vectorization of complex color and intensity raster images (e.g. pho-

tographs) [95, 8]. The aim of this research is to transform the inflexible

raster photographic imagery to the scalable and resolution independent vec-

tor representation.
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In our work, due to requirements of the stylized abstract scene represen-

tation, the vectorization process consists of several steps. A stereo image

pair of a natural scene, transformed into epipolar geometry, is processed by

a stereo matching algorithm in order to compute a disparity map. The ob-

tained disparity map is further utilized to find silhouettes through the Edge

Combination image computation. The dominant scene structure, maintained

in the Edge Combination image, is used to impart an abstract scene repre-

sentation.

After the extraction of edges using the Edge Combination algorithm, we

approximate them by employing Bézier curves. This parametric representa-

tion of the contours allows flexible manipulation of the extracted sketching

lines; it also acts as a line stylization mechanism, since the data is fitted

smoothly, providing a distinct and artistic character to the otherwise rigid

edges. The different steps of the algorithm are explained in more detail in

the following sections.

5.2 Converting Raster Lines to Bézier Curves

The edges in the final Edge Combination image IEC (see Figures 4.5 - 4.7) are

properly localized to present significant edges. However, a bitmap representa-

tion of these lines is usually not sufficiently flexible for stylization. Therefore

we convert the rasterized contours into a parametric representation by fit-

ting higher degree Bézier curves. Our algorithm transforms complex to much

simpler contours by selecting the degree of the Bézier curves that best suits

the approximation of each edge line, while efficient performance is achieved

by using adaptive parameters. The concept of our algorithm is to initiate a

Bézier curve and by adjusting its shape to minimize the distance between the

original edge and the approximating curve. To adjust the shape we move the

control points and calculate the error, accepting iteratively the new location

of the control points if they generate a curve where the estimated error is

smaller than the previous one.
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5.2.1 Initialization

To position the initial control points of an approximating curve (A), we use

a smooth representation (B) of the respective edge by considering all its

pixels as Bézier curve control points, with a and b points of the sets A and

B respectively. This representation is used to determine the direction and

curvature at each point, as explained in [75] and [48]. The direction βd of

the curve at the nth point is determined as:

βd(n) = arcsin(
∆by(n)√

∆bx(n)2 + ∆by(n)2
) (5.1)

where

∆bx(n) = bx(n+ f)− bx(n− f) (5.2)

∆by(n) = by(n+ f)− by(n− f) (5.3)

and f is a small integer used to define a neighborhood size around a point.

The curvature βc is then calculated by the angle between two elementary

segments:

βc(n) = βd(n+ f)− βd(n− f) (5.4)

as presented in Figure 5.1. This is further used for the detection of extreme

points (Pd) by selecting only the regional extrema within each region above

a threshold value. By computing the mean value of βc we determine this

threshold value, which can be additionally adjusted by using a scale factor.

An example rasterized curve is presented in Figure 5.2(a). The same curve

and its smooth representation are shown in Figure 5.2(b), together with the

detected dominant points (Pd).

5.2.2 Creating Sketchy Line Segments

The Bézier curves produced by using the above initialization strategy may

require further treatment in order to achieve the handcrafted appearance for
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bn-2

bn-1

bn bn+1

bn+2

(n)bd

bn-2

bn-1

bn bn+1

bn+2

(n)

bn-2

bn-1

bn bn+1

bn+2

bd

(n)bc

(a) (b)

Figure 5.1: Direction and curvature estimation where f = 1.
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Figure 5.2: Example of (a) a curve with (b) its Bézier curve representation and
dominant points.
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Pd

Pd+1

Pd+2

(a) (b)

Figure 5.3: (a) The curve from Figure 5.2, (b) result of the simplification.

which we are aiming. When sketching by hand, it is common to represent long

lines by smaller segments that perceptually approximate the desired shape,

instead of crafting a long continuous contour. Furthermore, we observe that

it is more natural for humans to subdivide long lines where local extrema

(e.g. corners) are present. To fulfill these requirements we establish a crite-

rion that can be user-adjusted to define the sensitivity of the algorithm to

subdivide the initial curves. For this, we use the surrounding points of each

dominant point, detected previously, and while operating on the original ras-

terized curve we repeat the previous procedure of the direction and curvature

determination. Dominant points with a change in curvature greater than a

user specified threshold value are considered as points of the curve where it

should be divided. The result of such a curve splitting by using breakpoints

is illustrated in Figure 5.3. In this example, the original continuous curve

was split up at the location of the dominant point Pd from Figure 5.2.

5.2.3 Initial Control Points

We place an initial control point P
′

d at a distance of sHt, in the direction of

the height vector Ht of a triangle formed by the dominant points Pd−1, Pd

and Pd+1, as shown in Figure 5.4. We scale the height vector Ht by the factor
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Figure 5.4: Control points initialization.

s, in our experiments usually 4, to shape the curve similarly to curve (B) in

order to decrease the computation of the subsequent searching process.

5.2.4 Curve Approximation

To approximate the edge representation with the initialized Bézier curve,

we move all the intermediate control points to new locations to minimize

the area between the curves A and B. For each intermediate control point

P
′

d(x, y), we translate it to four possible new locations:

(a) P
′

d(x+ e, y),

(b) P
′

d(x− e, y),

(c) P
′

d(x, y + e),

(d) P
′

d(x, y − e),

where e is the moving distance. This adaptive parameter is associated with

an error metric H according to:

e = m ·H(A,B) (5.5)
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where m takes values in each iteration from mmax (usually 2) to 0 with the

parameter step defined by the user (usually 1). H(A,B) is the error metric

which represents the largest distance between the two curves calculated by

using the general definition of the Hausdorff distance described by Rote [100],

given as:

H(A,B) = max (h(A,B), h(B,A)) (5.6)

where h(A,B) is the Hausdorff distance from A to B presented as:

h(A,B) = max
a∈A

min
b∈B

d(a, b) (5.7)

where we take d(a, b) as the Euclidean distance between points a and b of

sets A and B, respectively.

Whenever the area between the two curves is decreased by a movement,

we accept the new control point location only if the computed value of

H(A,B) is reduced. We reiterate this procedure until a maximum number of

user-defined iterations has been reached, or the error has become sufficiently

small, under a user-defined threshold.

5.3 Line Stylization

We have so far extracted a set of dominant edges from the original scene

and converted them into a parametric form suitable for further stylization.

A number of algorithms have been proposed to help a user-artist breathe life

into simple lines that represent a piece of artwork. In this manner Pudet

[97] employs stylization according to the input of a pressure-sensitive stylus

on a digitizing tablet, and Curtis [30] produces a sketchy stroke utilizing

the particles generated from the template image, guided by a force field.

Northrup and Markosian [92] draw each stroke in a style defined by the user,

randomly perturbed and with texture attributes. Su et al. [119] use interval

splines, Saito et al. [106] vary the thickness of the line according to its

curvature and length.
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In our work, we stylize smooth curves using available data obtained in

the previous step, which we utilize to imitate stroke pressure. For this we use

the maximum estimated error, which is the Hausdorff distance as described

in the previous section, at the point of the approximated curve at which we

estimated this error, as illustrated in Figure 5.5(a). We then interpolate this

pressure (i.e. stroke thickness) along the stroke path, setting the pressure to

zero at the starting and ending points of the curve. This procedure produces

a stroke tapering effect, as can be seen in Figure 5.5(b). Using the mechanism

described we obtain the results shown in the following section.

H(A,B)

A

B

(a)

H(A,B)

(b)

Figure 5.5: (a) Final maximum error measured by the Hausdorff distance between
the approximated curve A and curve B, (b) final style of the line.

5.4 Experimental Results

The application of the method to our test data and the results obtained are

illustrated in Figures 5.6 through 5.8. Throughout these examples, Figures

(a) and (b) show a pair of stereo video frames in epipolar geometry, which
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we use as input to our algorithm.

For our tests, we utilized the Pixel-to-Pixel stereo matching algorithm de-

scribed by Birchfield and Tomasi [11]. The resulting disparity image is given

in Figure (c). Figures (d) and (f) show the edges derived from the original

image (a) and the disparity image (c), respectively. Figure (e) contains the

contour edges computed by the Edge Combination approach. Our silhouette-

extraction Edge Combination algorithm filters out only those edges from (d)

that are needed to describe the dominant scene structure, while preserving

the position, proportion and shape of the objects. In this way it provides

enough information for the final sketches creation using a small number of

simple expressive strokes. It abstracts the scene by omitting unnecessary

details.

Figure (g) shows the final sketch result with strokes of dominant edges of

the scene computed by the Edge Combination algorithm, represented by the

previously explained approximation procedure and stylized to imitate artistic

stroke pressure. We achieved a hand-drawn appearance by allowing the line

thickness vary similarly to real life pens as explained in Section 5.3. Lines

with small curvature along their paths tend to produce thin lines, whereas

more curved lines are usually represented by strokes that vary in thickness,

comparable to the mark a human directed pen would leave while slowing

down to follow the curvature. The final results in Figures 5.6, 5.7 and 5.8

illustrate a real scene by using the dominance of significant lines artistically

highlighted as a smooth hand-drawn effect.

5.5 Summary

In this chapter we presented a curve approximation technique based on higher

degree Bézier curves to convert these rasterized edges of the Edge Combina-

tion image into a parametric form. The parametric edges outlining meaning-

ful objects in the scene are then stylized by using strokes to produce sketches

that have a handcrafted appearance. The smoothness of the stylized output
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.6: Example 1 of the sketched-like image representation: (a) Left camera
image, (b) right camera image, (c) disparity image, (d) original edge image, (e) Edge
Combination image, (f) disparity edge image, (g) sketched image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.7: Example 2 of the sketched-like image representation: (a) Left camera
image, (b) right camera image, (c) disparity image, (d) original edge image, (e) Edge
Combination image, (f) disparity edge image, (g) sketched image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.8: Example 3 of the sketched-like image representation: (a) Left camera
image, (b) right camera image, (c) disparity image, (d) original edge image, (e) Edge
Combination image, (f) disparity edge image, (g) sketched image.
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is similar to that found in many concept drawings and sketches. The al-

gorithm produces aesthetically pleasing results with artistically highlighted

dominant lines. It can further assist an artist in creating the basis for a

fine art work or it can help a beginner artist as a guiding tool on important

features of a scene when learning visual fine arts.



Chapter 6

Drawn-like Image
Representation

6.1 Introduction

In this chapter we present a novel algorithm for depicting images of a natural

scene in a drawn-like form, similar to traditionally created drawings. Input

to the algorithm is a stereo image pair of a real scene. This stereo image

pair is used for a disparity map computation. The obtained disparity map

serves to provide additional information which is used to attach to the final

image result a feeling of “depth”. In order to better convey shapes of objects

we developed an image enhancement step. The result of the image enhance-

ment along with the information obtained from the disparity image is used

to arrange strokes and to facilitate the comprehensible depiction of a natu-

ral scene. Furthermore, silhouettes extracted using the Edge Combination

approach are utilized to outline and highlight the dominant scene structure.

The output of such an approach resembles the form of handcrafted drawings,

as we will show in following.

84
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right imageleft image

disparity image

Edge Combination
image

enhanced image

stroke orientation

color segmented
image

drawn image

Figure 6.1: Overview of processing steps.

6.2 Algorithm

Figure 6.1 gives a short summary of the involved processing steps. A stereo

image pair consisting of a left and right stereo image is processed by a stereo

matching algorithm, which delivers a disparity map in the geometry of one

of the two input images as output. The disparity map is described by a set

of disparity layers, as a result of modeling the 3D scene by a set of planar

facets [14]. For further processing, we enhance the reference image by using

its color segmentation result. The color segmented image along with the

orientation of the disparity layers gives the information to orient strokes. To

highlight the dominant structure of the scene we use the Edge Combination

algorithm for more accurate recognition of significant contour edges. The

various processing steps are described in more detail in Subsections 6.2.1

through 6.2.4.
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6.2.1 Image Segmentation

In this step we color segment the reference image employing the Mean Shift

Based Image Segmenter (EDISON System) developed by [29]. The image is

segmented to group regions of similar color into meaningful image segments.

Regions with a size smaller than a user specified threshold are merged to

neighboring large regions. The output of the color segmentation step serves

to locally adjust the image contrast in order to achieve a more balanced

distribution of stroke density across the whole image, as described in the

following.

6.2.2 Stroke Arrangement

Our goal is to generate drawn-like illustrations derived from a gray scale

version of the recorded images. The stroke density varies according to the

tone of the image region, from very dense strokes in dark, to almost no strokes

in very light areas, depending on the parameters specified by the user. In

images recorded from a real scene we often find very dark areas usually with

poor contrast. Inevitably, it is necessary to locally enhance the contrast of

such images before further processing in order to better convey local shape

variations and provide a well-balanced overall impression. In the following,

we will describe the local contrast enhancement step and how the enhanced

image is used to calculate the position and local density of the strokes.

Image Enhancement

The principal idea of our contrast-enhancement step is to “remove” color from

the image. As a natural solution of this problem we use color segmentation to

enhance contrast for each segment. The user selects a scaling factor (constant

for the whole image), which is applied to each segment: Values greater than

the segment’s mean value, modified by the scaling factor, turn to white and

lower values are stretched between a minimum value and white. An example

of this image enhancement step is shown in Figure 6.2. Some newly revealed
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details, especially in extremely dark areas of the image (see, for example, the

trousers of the recorded person), are obvious in Figure 6.2 (b).

(a) (b)

Figure 6.2: (a) Left camera image, (b) enhanced image.

Stroke Centers Generation

To control the density of strokes according to the image intensity values, we

first generate random points using the Poisson distribution that we further

distribute according to the Poisson disc distribution method with variable

disc radii, as explained in [110]. The position of the center point of each

stroke is specified by calculating the disc radius, which can be considered as

a limit that none of the other points can fall inside. The disc radius R of

each center point is determined using the intensity value Ii,j at that location

as:

R = Rdf + 2Rw

(
tan−1AI

(
Ii,j
Iav

− 1

)
/π

)
, 0 ≤ Rw ≤ Rdf (6.1)

where Iav is the average intensity value and AI , Rw and Rdf are user defined

constants used to control the density of the strokes. When Ii,j decreases (i.e.,
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in darker parts of the image), R decreases to produce more dense strokes and

otherwise, when Ii,j increases R also increases, which makes the strokes more

sparsely distributed. This results in a convenient tuning of the image tone

by adjusting the density and distribution of the strokes according to the

intensity values, with darker areas represented by a denser stroke pattern

than bright regions.

6.2.3 Stroke Orientation

To depict shapes and to give the image a “depth” impression, which is a very

important factor, the stroke direction should be considered. To produce such

effects, each stroke is drawn perpendicularly to the angle θ, which is specified

by the orientation of the disparity layers in the disparity image.

In order to obtain a disparity map, we employed the graph-cut based

stereo matching algorithm described in [14], as explained in Section 3.1.2.

The method is of particular interest, since it represents disparity by a set of

planar layers.

In the next step, for each layer, we utilize a square window of a maximum

size previously specified by the user, as presented in Figure 6.3 (a). In order

to enhance the contrast, the values of the window are rescaled from black

to white as in Figure 6.3 (c). To identify the orientation of the projected

disparity values, we use image moments as given in [114].

The image moment of lth degree about the x-axis and mth degree about

the y-axis is defined as:

Mlm =
∑

x

∑
y

xlymI(x, y). (6.2)

Mlm is called the image moment of nth degree for n = l + m. The image

moment of zeroth degree, M00, is simply the sum of all the intensity values

of the gray-scale image. The angle θ is calculated as follows:

θ =
1

2
tan−1 (

b

a− c
), (6.3)
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where a, b, and c are defined as:

a =
M20

M00

− x2
c , (6.4)

b = 2(
M11

M00

− xcyc), (6.5)

c =
M02

M00

− y2
c , (6.6)

where xc and yc are:

xc =
M10

M00

, (6.7)

yc =
M01

M00

. (6.8)

As an option, the stroke orientation derived from image moments can

be combined with additional user-defined preferences. In our application,

we decided to replace horizontally and vertically aligned strokes, which we

found to produce less appealing effects, by adding/subtracting a value of 45◦

whenever θ is close to 90◦ or 0◦.

6.2.4 Outlining

A very important element often used by artists are outlines or silhouettes,

which define the edges of objects, describe their shape and indicate their

volume. In order to emphasize the dominant structure of the scene we employ

silhouette edges extracted using the Edge Combination approach. Outlining

strokes placed in this way, will properly delineate objects’ shapes.

For strokes resulting from the Edge Combination image, we derive the

orientation using image moments applied to the color segmented image. This

distinguishes the contour strokes from the rest of the image, where the stroke

orientation was computed from the disparity image. As a result, outlines are

emphasized in the drawn image.
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(a)

q

(b) (c) (d)

Figure 6.3: Process of disparity layer orientation estimation: (a) disparity image,
(b) square window of the disparity layer, (c) rescaled values of the window in (b)
from black to white, (d) estimated angle θ of the disparity layer.

6.3 Results

The obtained results of our algorithm applied to images of real scenes are

illustrated in Figures 6.5 through 6.8. The size of the images is 400 x 400

pixels for all four test scenes in Figures 6.5 through 6.8. Figures (a) and

(b) show a pair of stereo video frames in epipolar geometry. Their result-

ing disparity image is given in Figure (c), and Figure (e) shows the labeled

disparity layers. Figure (d) shows the Edge Combination image, which com-

bines the edges derived from the original image (a) and the disparity image

(c), to outline the dominant structure of the scene. The result of the image



6.3 Results 91

color segmentation is given in Figure (f). Finally, Figure (g) shows the final

drawing result: The real scene is illustrated using strokes oriented according

to the disparity layers with the strokes’ density reflecting local brightness

variations encountered in the contrast-enhanced original image. In addition,

dominant edges in the image (e.g., object contours) are highlighted to pro-

duce an artistic hand-drawn effect.

To illustrate the advantage of using a disparity map, Figure 6.4 presents

the same scene as Figure 6.5, but generated without disparity information.

One can recognize that the front and the top side of the Teddy’s desk can-

not be separated from each other in Figure 6.4, due to the uniform stroke

orientation caused by the homogeneous appearance of the whole desk in the

original image from Figure 6.5 (a). This results in an obvious absence of

the impression of “depth” in Figure 6.4. Contrarily, in Figure 6.5 (g) the

computer-generated strokes follow the orientation of the disparity layers and

the geometric structure of the desk is clearly discernible.

Figure 6.4: Example of the drawn-like result without disparity information.
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The benefit of the image enhancement step described in Section 6.2.2

can be recognized by comparing the result in Figure 6.6 (g) with the cor-

responding original and contrast-enhanced images in Figure 6.2. According

to the disparity layers in Figure 6.6 (e), most parts of the person’s body

(except head, neck and hands) are represented by a single layer and thus

result in a uniform stroke orientation. However, a sense of depth is conveyed

by variations in the stroke density that follow the brightness pattern of the

enhanced image in Figure 6.2 (b). A similar result is presented in Figure 6.7.

In this case, the person’s body is composed from several layers and the con-

trast enhancement step helps to better visually describe the subject’s body

shape. This is particularly noticeable in Figure 6.8, in which the contrast

enhancement step along with the outlining step facilitates the distinction of

the subject from the textured background.

Furthermore, our system can be easily extended to accommodate a va-

riety of different styles of hand-drawn art. Besides the results obtained by

employing the approach that we presented in this chapter, Figure 6.9 illus-

trates a few supplementary results, created using the initial set 6.8. In Figure

6.9 (a) each stroke is rendered by simply replacing the black color with colors

sampled from the equivalent location in the original source image. Figure 6.9

(b) presents another style of additionally depicting the lightest areas of the

enhanced image along with the original result of the described approach. For

this example the usual white color of the background is changed to another

color in order to facilitate the visibility of white strokes.

6.4 Summary

This chapter describes a method to generate stylized images derived from real

scenes. Our approach employs the output of a stereo matching algorithm and

utilizes tone stylization and object outlining techniques to synthesize images

with a drawn-like appearance. The layered output of the stereo matcher is

used to orient the strokes and in this way preserve the perspective impression
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of the image. In addition, we generate outlines using the Edge Combination

approach that further enhance the image outlook and help to better appre-

hend the discrete scene structure.

This work comprises a potential of a number of additional steps for future

investigation with the goal to obtain a variety of artistic styles for diverse

types of illustrations. The output of such an image-based approach pro-

vides aesthetic flexibility, controlled by the user, to capture the important,

application-specific visual details of the input images.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.5: Example 1 of the drawn-like image stylization: (a) Left camera image, (b)
right camera image, (c) disparity image, (d) Edge Combination image, (e) disparity
layers, (f) color segmented image, (g) drawn image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.6: Example 2 of the drawn-like image stylization: (a) Left camera image, (b)
right camera image, (c) disparity image, (d) Edge Combination image, (e) disparity
layers, (f) color segmented image, (g) drawn image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.7: Example 3 of the drawn-like image stylization: (a) Left camera image, (b)
right camera image, (c) disparity image, (d) Edge Combination image, (e) disparity
layers, (f) color segmented image, (g) drawn image.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.8: Example 4 of the drawn-like image stylization: (a) Left camera image, (b)
right camera image, (c) disparity image, (d) Edge Combination image, (e) disparity
layers, (f) color segmented image, (g) drawn image.
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(a)

(b)

Figure 6.9: Results of the different drawn-like depiction styles for the image set
given in Figure 6.8.



Chapter 7

Comics-like Motion Depiction

The heart of comics lies in the space between the panels where the reader’s

imagination makes still pictures come alive! [81]

7.1 Introduction

Although there is an ongoing discussion about historical roots of comics and

their artistic contribution, reputed to be the first comic strip magazine is

“Ally Sloper’s Half Holiday” published in 1884. It was one of the most fa-

mous and most popular of all Victorian comics, featuring a regular character,

Ally Sloper. However, the great boom that prompted the beginning of comics

as an ongoing very popular art form was Richard Fenton Outcault’s cartoon

series “Hogan’s Alley” for Joseph Pulitzer’s New York World in 1895. The

Yellow Kid, as he later came to be known for his yellow nightshirt, became

the first comic character to serve as a marketing tool for the sale of news-

papers. This set the bases for a new kind of art with the adventures of

superheroes and monsters in stories written in a powerful language of visual

symbols. [105, 51]

Comic books lost a lot of their popularity with the development and

expansion of 3D animation and new media. Today a great variety of com-

99
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Figure 7.1: Example 1 from the “Alan Ford” comic book series. c© Copyright 2005
by Max Bunker Press. Used by permission.

mercial applications give to the user the ability to create interesting artwork

even without the requirement of good drawing skills. Contrary to this, comic

books are usually created by skilled and creative artists who use a style of

drawing unique for this type of art, as illustrated in Figures 7.1 and 7.4.

Comic books can be compared to silent movies, having dialogs in a written

form and telling a story through sequences of images with a very important

difference: comics use one image to present a sequence of frames. The form

to visually depict the motion in just one image has been a big challenge

for artists through history and resulted in different methods like: dynamic

balance, multiple stroboscopic images, affine shear, photographic blur, and

action lines [32]. Today, pictorial description of the motion is particularly

interesting for image stylization and initiated the development of a number

of systems [79, 18, 28, 68].

In this work we concentrate on a comic books’ style of motion expression,

where few lines suggest an action in the scene through motion lines and

multiple contours. Similar to our work, Masuch et al. [79] depict motion,

but different to our system they use a 3D scene as input, having access to
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the 3D geometry and precise motion information of the objects. The overall

goal of our system is to enable a user to generate effective and attractive

illustrations of dynamic natural scene recordings from stereo as input.

7.2 Algorithm

In this work, our goal is to stylize the image in a drawn-like form and to depict

motion through motion lines and multiple contours. Thus, our algorithm

consists of two major steps: image representation in a drawn-like form and

comics-like depiction of motion. These steps are further explained in the

following subsections.

7.2.1 Drawn-like Image Representation

To present an image in a drawn-like form, we make use of the work described

in Chapter 6. The computed stroke density varies according to the tone of

the intensity image region, from dense strokes in dark to no strokes in light

areas. To better convey the shape of objects in natural scene images, which

usually suffer from a bad contrast, we first perform a local image contrast

enhancement, which is driven by the color segmentation result of the original

image. An image frame of a test sequence shown in Figure 7.2 and a result

that shows newly revealed details, obtained using the contrast enhancement

step, is given in Figure 7.3. We then draw each stroke in a direction de-

termined by the stereo derived disparity layers with the stroke density and

distribution derived from a Poisson disc distribution. The disparity maps

that we use in this work are results of the graph-cut based stereo-matching

algorithm [14], which represents disparity by a set of planar layers. Such a

representation of enhanced images using disparity to orient strokes results in

a good distinction and shape depiction of objects in the scene.
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Figure 7.2: Intermediate frames (from top left to bottom) showing each fifth frame
of the original sequence used for computation of the contours in our tests.
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(a)

(b)

Figure 7.3: (a) Original image from the sequence shown in Figure 7.2, (b) enhanced
original image, prepared for further stylization.

7.2.2 Tracking Motion

After creating the drawn-like representation of a reference image of the in-

put stereo image pair sequence, the next very important step is the motion

depiction of the objects present in the scene. Naturally, in order to de-

pict the desired motion, we need to extract the motion information of the

moving objects. To accomplish this task, various approaches can be used.

In our work, for tracking the motion of objects in the scene, we employed

the Kanade-Lucas-Tomasi (KLT) tracker, an implementation of the feature
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tracker described in [113].

In order to avoid the unnecessary computation of a dense motion field,

the KLT tracker selects “good” features to track in the first image frame

and tracks them throughout the following frames. A good feature represents

a small window, optimal for tracking, with significant intensity variation in

multiple directions. For the motion depiction in comics-like style, we need

only information of distinct discontinuities in motion, which usually go along

with depth discontinuities. By following this idea, among the point set se-

lected automatically by the KLT tracker, we track only those points found to

be close to edges in the Edge Combination image through all the frames of

the user selected sequence. In this way we convey only the most important

motion information, as desirable for a comics-like depiction style.

7.2.3 Depicting Motion

Depicting motion in comics has a meaningful purpose in story telling and

strongly depends on an artist’s imagination. In comics, motion is usually

represented using either motion lines, multiple contours or a combination

thereof, which results in a variety of styles. An example of motion depiction

in a real comic through motion lines is given in Figure 7.1, and using both

motion lines and multiple contours is shown in Figure 7.4. In our work, we

aim at depicting motion by following these styles. Therefore, we will portray

each one of them in more detail in the following sections.

Motion Lines

Motion lines, also known as action lines or speed lines, belong to the most

common stylistic forms of depicting motion in comic books. Usually, the

motion for each object is presented through one path in several motion lines

(see Figure 7.1 and Figure 7.4). In a natural scene, one or more objects can

be sources of motion. Representing just the motion of the object with, for

instance, the longest path would be a great limitation. As a remedy, we give

control to the user to choose a desired object and type of motion to depict by
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Figure 7.4: Example 2 from the “Alan Ford” comic book series. c© Copyright 2005
by Max Bunker Press. Used by permission.

selecting one of the object’s tracked points. Figure 7.5 (b) shows a tracked

point and its path selected from the tracking points in Figure 7.5 (a). To

preserve the usual simple motion illustration in comics, we fit primitives (i.e.

a circle, ellipse or straight line) to the path of the tracked point to get the final

motion path and to have a possibility to extend its length. An example of

fitting a primitive, in this case a circle, is shown in Figure 7.5 (c). By further

selecting points on the contour in the Edge Combination image, Figure 7.5

(d), close to the tracked point, the user passes the same shape of the motion

path to these points. In this way, more motion lines can be created from a

single tracked path. For a more natural, hand-drawn look, the number of

points in the final motion path, for each motion line, is reduced by removing

a small random number of points at the beginning of the path.

In order to stylize the obtained motion path in a handcrafted-like fashion,

we employed a strategy similar to the one described in the previous Chapter 5,

in Section 5.3. Different to this procedure, instead of employing the computed

error information obtained in the fitting process, we now use the user input

parameters to specify the thickness of the stroke. Through these parameters,



7.2 Algorithm 106

(a) (b)

(c) (d)

Figure 7.5: (a) Points to track, (b) motion path of the selected point, (c) circle fitted
to the motion path, (d) selected new point on the contour in the Edge Combination
image and its path.

the user gets full control over the handcrafted-like appearance of the motion

lines.

Multiple contours

Multiple contours technique is another, very important, stylistic form of mo-

tion representation which uses a complete or a part of a moving object’s

contour. To imitate this style we use Edge Combination images extracted

from the frames in a regular interval and draw them on the final result. Reg-

ularity in frame selection gives a good impression of the object’s speed. The
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variety of styles can be even larger by changing the transparency of contours

through frames.

This is, in a way, an even simpler and very effective form of motion ex-

pression, which does not require the motion tracking step. On the other

hand, this style of motion portrayal requires the computation of the Edge

Combination image for depiction of all desired frames, which makes it de-

pendable on the disparity map computation.

However, the motion depiction through multiple contours is a very ex-

pressive style. In this way presented motion of an object can be very com-

prehensible, as we will show through the obtained experimental results. This

style is also very suitable for further experimenting in the creation of novel

models of artistic expression and depiction.

7.3 Experimental Results

Example results of motion depiction using multiple contours, motion lines

and their combination are given in Figures 7.7 - 7.10. The initial stereo

image pair of the image sequence shown in Figure 7.2 is presented in Figure

7.6 (a) and (b). Their resulting disparity image computed by employing the

stereo matching algorithm presented in [14] is given in Figure 7.6 (c), along

with the labeled disparity layers shown in Figure 7.6 (e). This disparity

image is further utilized to compute the Edge Combination image given in

Figure 7.6 (d). The color segmentation result, see Figure 7.6 (f), is used

in order to locally enhance the contrast to better convey the shape of the

natural scene before further processing. Figure 7.7 (b) illustrates the output

of our algorithm in the style of motion depiction using motion lines together

with the drawn-like representation of the natural scene from Figure 7.7 (a).

One can see that the circular motion lines describe well the actual motion of

the person’s upper body shown in Figure 7.2. Another example of the same

motion depiction style is given in Figure 7.10 (c). In this case, the motion

of a falling object is depicted using motion lines that are obtained by fitting
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straight lines to the motion path.

Two sets of images, presented in Figure 7.8 and Figure 7.9, demonstrate

various styles of motion depiction through multiple contours and multiple

contours joined with motion lines, respectively. The multiple contours styles

that we illustrate in these figures are obtained by changing the transparency

of contours through frames, using a complete or a part of a moving object’s

contour and their combination.

7.4 Summary and Outlook

In this chapter we have presented an algorithm to depict motion in comics-

like form, with an artistic drawn-like representation of the scene, from a

stereo image sequence. In order to truthfully simulate comics’ style of mo-

tion portrayal, we devised several motion depiction techniques using motion

lines and/or multiple contours. We have shown how silhouettes extracted by

the Edge Combination algorithm can serve in motion depiction and also to

portray the impression of the change of an object’s speed.

In future steps, we intend to experiment with a spline representation of

the motion path. This should give more flexibility and the possibility of

depicting more complex motions, but it may also raise problems in motion

path length extension. We also plan to experiment with other stylistic prop-

erties of comics and explore additional techniques of motion illustration in

still images.



(a) (b)

(c) (d)

(e) (f)

Figure 7.6: (a) Left camera image, (b) right camera image, (c) disparity image, (d)
Edge Combination image, (e) layers image, (f) color segmented image.



(a)

(b)

Figure 7.7: (a) Drawn-like image representation for the test set shown in Figure 7.6,
(b) the same drawn-like image representation with motion depicted through motion
lines.



Figure 7.8: Results of motion depiction through multiple contours.

Figure 7.9: Results of motion depiction through multiple contours and motion
lines.



(a) (b)

(c)

Figure 7.10: (a) Left camera image, (b) right camera image, (c) drawn image with
depicted motion.



Chapter 8

Summary and Future Work

In this thesis we presented novel algorithms to stylize images of natural scenes

in a form similar to creations of traditional artistic styles. The general goal

of this work is to create a stylized representation of the real world with the

attention on depiction concepts that preserve the natural visual aspect of a

scene and its content appearance. Therefore, our algorithms focus on the

utilization of stereo-derived disparity maps in order to obtain additional in-

formation about the 3D scene structure and objects’ shape, which allows to

produce stylization results in an expressive and comprehensive form.

First of all, we described a method to extract object silhouettes from

stereo images of a natural scene. We showed that this so-called Edge Combi-

nation algorithm can improve the recognition of object contours from stereo

images by combining the robustness of stereo-derived edges with the higher

precision of the original intensity edges. Results of the Edge Combination al-

gorithm show that the effects of stereo matching errors are largely suppressed,

especially along object boundaries. In this way, a more reliable recognition

of object contours is provided.

In subsequent chapters we presented several applications and experimen-

tal results that show the usefulness of the Edge Combination approach. In

experiments illustrated in Section 4.7, we demonstrated that it can improve

the performance of Active Contours for a more accurate object segmentation.

113
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In Chapter 5 we described another type of application, which utilizes the

Edge Combination image to depict a natural scene structure in an abstract

fashion. We presented an algorithm to encode the extracted contour edges

using an efficient Bézier curve representation for a subsequent image-based

computer graphics rendering application in which we represent recordings of

the natural scene in a sketched-like form. In this context, we implemented

a fast curve approximation technique to convert the rasterized edges into a

parametric form. The parametric form of the edges, outlining meaningful

objects in the scene, is then stylized to produce sketches that have a hand-

crafted appearance. The smoothness of the stylized output is similar to that

found in many concept drawings and sketches. The algorithm can be useful

to assist an artist in creating the basis for a fine art work or it can help

a beginner artist as a guiding tool on important features of a scene when

learning visual fine arts.

Furthermore, we proposed a method to generate images in a drawn-like

form derived from real scenes. Our approach employs the output of a stereo

matching algorithm and utilizes tone stylization and object outlining tech-

niques to synthesize images with a handcrafted appearance. The layered

output of the stereo matcher is used to orient the strokes and in this way

preserve the perspective impression of the image. In addition, we generate

outlines using the Edge Combination algorithm that further enhance the im-

age outlook and help to better apprehend the discrete scene structure.

Finally, we presented an algorithm to depict motion in comics-like form,

from a stereo image sequence. We devised several motion depiction styles

using motion lines and/or multiple contours. We showed that silhouettes ex-

tracted by the Edge Combination algorithm can serve in motion delineation

and also to portray the impression of change in a moving object’s speed.

Although, through the described algorithms, we have shown the useful-

ness of the Edge Combination approach, there is still space for further im-

provements to make it even more stable and less dependable on parameters

and edge detector results. Using the robustness of disparity edges, the Edge
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Combination algorithm relies on a stereo-matching result. This essentially

means that with a better quality of the disparity map, a better result of the

Edge Combination algorithm can be obtained. In our tests we used high-

quality disparity maps delivered by stereo algorithms that reflect the current

state of the art. A research topic of high practical relevance would be to

explore the potential applications of the proposed approach to lower-quality

stereo maps as, for example, computed by real-time stereo algorithms or by

using low-resolution webcam images.

Another strong influence on the algorithm has the edge detector. In our

work, we used the Canny edge detector, which gives very satisfactory re-

sults. However, some problems can arise, for example when dealing with

Y-junctions, causing broken edges. Our algorithm comprises the important

step of closing gaps of the “basic” Edge Combination image, created in the

edge search process. The linking step is strongly dependable on the continu-

ity of edges in the original edge image. This basically means that if the edge

is broken in the original edge image, the edge in the Edge Combination image

will also have a gap. Future work might overcome this weakness related to

the edge detector in the Edge Combination approach.

Another focus of follow-up research could be to experiment with other

possible applications based on the Edge Combination approach, related to

object segmentation, detection, and tracking, as well as to explore various

additional stylization techniques for natural scenes’ depiction. This includes

the development of “more advanced” algorithms that put more attention on,

for instance, faces when depicting humans or use levels of details according

to the disparity map when illustrating a more complex scene.

While in this thesis we have focused on the automatic simulation of tra-

ditionally created artwork, future research might also explore possibilities of

devising a combination of traditional and modern. The automatic creation of

computer-generated artistic work from natural images and video scenes offers

high flexibility for devising novel styles. The goal of such automation is to

support and assist users with different levels of art and computer software
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knowledge to create meaningful and aesthetically pleasing results.
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