
•

DISSERTATION

ArchView - Analyzi~g Evolutionary
Aspects of Complex Software Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Harald C. Gall
Institut für Informatik

Universität Zürich
und

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme

Technische Universität Wien

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Martin Pinzger
pinzger@infosys.tuwien.ac.at

Matrikelnummer: 9626545
Stuben 238, A-6542 Pfunds, Österreich

Wien, im Mai 2005

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

mailto:pinzger@infosys.tuwien.ac.at

•

•

Kurzfassung

Grosse und komplexe Software Systeme sind laufenden Änderungen ausgesetzt die in allen
Lebensabschnitten auftreten, wie in der Entwicklung, Wartung, Migration und Ausscheidung.
Diese Änderungen sind einerseits notwendig, um den Erfolg eines Software Systems zu ga-
rantieren, aber andererseits wirken sie sich auf die Architektur und das Design eines Software
Systems aus. Aus diesem Grunde ist eine laufende Überwachung und Analyse der Architektur
und des Designs notwendig, um Fehler und Unzulänglichkeiten friihzeitig zu erkennen und zu
beheben .

In dieser Dissertation stellen wir den ArchView Ansatz vor, der sich mit der Analyse und Be-
wertung von Software Modulen hinsichtlich ihrer strukturellen und evolutionären Eigenschaften
befasst. Software Module sind architekturelle Elemente, die durch Source Files, Klassen oder
Aggregationen von diesen implementiert werden. Das primäre Ziel unsere Arbeit ist die Identifi-
kation jener Module und Strukturen, welche Bad Smells in der Implementierung, im Design und
der Architektur darstellen und behoben werden müssen.

Als Gnmdlage fur die Analyse und Bewertung der strukturellen und evolutionären Eigen-
schaften von Software Modulen verwendet ArchView Metriken und die Kopplungs-Beziehungen
zwischen Modulen. Die Metriken bewerten die Grösse, Komplexität, Kopplungsgrad, Änderungs-
und Fehlerhäufigkeit von Modulen. Zusammen mit den Kopplungsbeziehungen geben sie Auf-
schluss über Qualität der Implementierung. Bezüglich der Evolution führen wir diese Messungen
fur mehrere Releases durch und erhalten so Trends, welche uns auf Unzulänglichkeiten in der
Implementierung, dem Design und der Architektur hinweisen.

Für die Darstellung der Ergebnisse verwendet ArchView Graphen in denen Knoten die Mo-
dule und Kannten die Kopplungsbeziehungen darstellen. Zur Bewältigung der grossen Daten-
menge stellen wir eine erweiterte Graph-Visualisierungs- Technik vor, die auf dem Prinzip des
Measurement Mappings beruht. Diese Technik erlaubt die gleichzeitige Darstellung von Modu-
len mit vielfachen Metriken von mehreren Releases und deren Kopplungsbeziehung in einem
Graph. Die so erstellten Graphen ermöglichen uns die visuelle Identifizierung von jenen Modu-
len und Kopplungsbeziehungen, die Bad Smells darstellen.

Wir demonstrieren und validieren den ArchView Ansatz anhand einer Fallstudie mit dem
Open Source Projekt Mozilla. Die Resultate der Fallstudie zeigen die strukturellen und evoluti-
onären Eigenschaften von Mozilla und weisen auf Bad Smells in der Architektur und im Design
hin.

•

•

Abstract

Large and complex software systems are confronted with continuous changes during al1
stages in their life comprising development, maintenance, migration, and retirement. On the
one side these changes are mandatory to guarantee the success of a software system but on the
other side changes affect the architecture and design of a software system. Therefore, a contin-
uous observation and analysis of the architecture and the design is mandatory to early identify
errors and shortcomings and resolve them.

In this dissertation we propose the ArchView approach that focuses on the analysis and evalu-
ation of software modules regarding their structural and evolutionary aspects. Software modules
are architectural elements that are implemented in source files, classes or aggregations of them.
The primary objective of our work is the identification of modules and structures that represent
Bad Smel1s in the source code, the design, and the architecture to be resolved.

For the analysis and evaluation of the structural and evolutionary properties of software mod-
ules ArchView basical1y uses software metrics and coupling dependencies between modules.
Metrics assess the size, complexity, coupling degree, modification and problem frequency of
modules. In combination with coupling dependencies they provide information about the quality
of an implementation. Regarding the evolution we perform these measurements for a number of
releases to yield trend data that points us to shortcomings (Bad Smel1s) in the implementation,
design, and architecture.

For the presentation of the results Arch View uses graphs in which nodes represent modules
and edges represent the coupling relationships. To handle the huge amount of information we in-
troduce an extended graph visualization technique that is based on the principle of measurement
mapping. Our technique facilitates the representation ofmodules with multiple metric values of
a number of releases, and their coupling relationships in one graph. The so created graphs al10w
us to visual1y identify those modules and coupling dependencies that indicate Bad Smel1s.

We demonstrate and validate the ArchView approach in a large case study with the Mozilla
open source project. Results clearly show the structural and evolutionary properties of Mozil1a
and point to Bad Smells in the architecture and the design.

•

•

Acknowledgments

It is my pleasure to thank the many people who made this thesis possible.

First of all, I would like to thank my supervisors, Prof. Harald C. Gall and Prof. Mehdi
Jazayeri, for opening the door to research, their guidance, and continuous support.

Special thanks goes to Michael Fischer for his discussions of and input on release history
data and visualization techniques. I still remember the numerous extreme paper writing sessions
we had together with Harald. Furthennore, I would like to thank Michele Lanza for his feedback
and support on CodeCrawler and Beat Fluri as well as Eveline Suter for proof-reading this thesis.

I also would like to thank my colleagues of the Distributed Systems Group, Vienna where I
started my research, and the Institute for Informatics, Zurich that has become my new working
place. It was always fun to work together with you and still is.

Last but not least, I am grateful to my parents who allowed me to do what I liked to do. They
always supported me in whatever I did and wherever it was possible. Many thanks go to my
friends in Pfunds, Vienna, and Zurich. They pointed me to other activities that represented the
perfect contrast program to my research.

Martin Pinzger
Zurich, Switzerland, May 2005

•

CONTENTS

1 Introduction
1.1 Problem Statement

1.2 The Approach .

1.3 Contributions

1.4 Thesis Outline .

2 Software Architecture and Evolution
2.1 Software Architecture .

2.2 Architectural Views and Viewpoints

2.3 Abstraction Levels .

2.4 Software Evolution

2.5 Controlling Software Evolution.

3 Related Work
3.1 Software Evolution

3.2 Architecture Recovery ..

3.3 Information Visualization.

4 The Arch View Approach
4.1 Introduction.....

4.2 Change-Prone Modules

4.3 Arch View Process. . .

4.4 Key Features

4.5 Module View Example

4.6 Summary

1
1
2

3
4

5
5
6

7

9

10

12
12

14

15

17
17

18

19

20
22
24

•

Contents

5 Building the Arch View Repository
5.1 Introduction .
5.2 The E-FAMIX Meta Model.
5.3 Source Code Fact Extraction
5.4 Release History Data

5.4.1 CVS .
5.4.2 Bugzilla .
5.4.3 Change Couplings

5.5 Data Integration.
5.6 Summary .

6 Architectural View Abstraction
6.1 Introduction..........................
6.2 Source Code Containment Hierarchy

6.2.1 Establishing the links between the hierarchicalleve1s
6.3 Software Metrics

6.3.1 Module Metrics ...
6.3.2 Relationship Metrics

6.4 Abstraction Algorithm
6.5 Summary

7 Visualization & Analysis
7.1 Introduction...............
7.2 Feature Vectors and Evolution Matrices
7.3 Higher-Level Views on a Release
7.4 Visualizing Multiple Evolution Metrics

7.4.1 Visualizing Data ofn Releases
7.4.2 Kiviat Graphs.

7.5 Summary ...

8 Mozilla Case Study
8.1 Mozilla Project
8.2 Preparing the ArchView Repository

8.2.1 Source Code Model. . .
8.2.2 CVS and Bugzilla Data.
8.2.3 Data Integration
8.2.4 Data Abstraction

ii

25
25
25
27
29
30
32

34

35
37

39
39

40

41

42
43
44
45

49

50
50

51

52

57

60

64
65

66

66

67
68

69
72
74

Contents

8.3 Views on Mozilla Release 1.7 .

8.3.1 Large and complex entities .

8.3.2 Frequently modified and "buggy" entities

8.3.3 Views with multiple metrics

8.3.4 Source code coupling .

8.3.5 Change Coupling .

8.4 Evolution from Mozilla Release 0.92 to 1.7

8.4.1 Evolution of modules.

8.4.2 Evolution of critical source files

8.4.3 Kiviat graphs

8.4.4 Results ...

8.5 Summary ofResults .

8.6 Discussion ofResults

8.6.1 Fact extraction

8.6.2 Data model integration

8.6.3 Visualization.....

9 Conclusion

9.1 Contributions

9.2 Future Work.

Bibliography

Appendix

A The Extended FAMIX Meta Model
A.I E-FAMIX meta model

A.2 Source Code Model . .

A.3 Release History Model

B Publications
B.I Visualization & Analysis

B.2 Architectural View Abstraction .

B.3 Model Extraction & Integration.

iii

75

75
78

81

83
88

90
91
93

93

96
98

100

100

102

102

104

104

. 106

108

118

118
118

120

121

124

124

125

125

LIST OF FIGURES

2.1 Abstraction levels and corresponding entity and relationship types used to create
views on the implementation. Dotted arcs indicate the mapping between entities
of different abstraction level. .. 8

4.1 ArchView Process with data sources (on the left), the ArchView repository (in
the center) and the different process phases. 21

4.2 Source code coupling evolution view on Mozilla content and layout modules
with metric values of in-coming and out-going inheritance relationships. Values
are of7 releases from 0.92 to 1.7. Edges denote aggregated inherits relationships
taken from release 1.7 filtered using a threshold of 5 for RNAIH. 23

5.1 E-FAMIX meta model consisting ofthe FAMIX and RHDB meta modellinked
by file-entities (overview). 26

5.2 Source code model extracted from a Java code snippet. 28
5.3 RSF file representing the extracted E-FAMIX conform source code model ofthe

Java source code snippet. .. 29
5.4 Example CVS log-file containing the modification reports ofthe source file nsC-

SSFrameConstructor.cpp. 31
5.5 When two modification reports (MRs) belong to the same transaction. 35
5.6 Algorithm to reconstruct transactions from CVS modification reports. 36
5.7 Algorithm for mapping RHDB and SCM data models by the fully qualified file

nanle. .. 37

6.1 Containment hierarchy of source code models including modification and prob-
lem reports. .. 41

6.2 Source code model with 2 packages, 3 classes, 7 methods, contains and invokes
relationships. 47

6.3 Source code model graph enriched by abstracted -invokes relationship between
PA and PB and computed coupling metries. 48

7.1 Mapping of metrics to graph attributes using polymetric views.

IV

53

List afFigures v

7.2 Modification hotspots view on Mozilla 1.7 source files with measured evolution
and complexity metrics. Node: width=NMR; height=NPR; color=CCMPLX;
order by NMR. .. 54

7.3 Source code coupling view by function/method calls of two software modules.
Node: width=IFan-out; height=IFan-in; color=NFM; Arc: width=RNAI. 56

7.4 Change coupling view oftwo software modules. Node: width=NMR; height=NMR;
Arc: width=RNAC. .. 57

7.5 Kiviat diagram with values of6 metrics Ml, lU2, , lU6 ofmoduleA. 57
7.6 Detailed system hotspots view of one software module with complexity (m. 0..3)

and size metrics (m. 4 ..10). .. 59
7.7 Detailed modification hotspots view of one software module with modification

and problem report metrics. .. 60
7.8 Kiviat diagram with 6 metrics .MI, 1\12, ... , 1\116 of3 releases ofmoduleA. 61
7.9 Detailed system hotspots evolution view with size and complexity metrics of 7

releases indicating an Idle module. .. 62
7.10 Detailed modification hotspots evolution view with evolution metrics of 7 releases. 63
7.11 Source code coupling evolution view on the coupling by function calls with mea-

sured call fan-in and fan-out metric values of 7 releases. 65

8.1 System hotspots view on the Mozilla 1.7 content and layout modules with mod-
ule size metrics. Node: width=NOV; height=NFM; color=NOF; order by NOY. . 76

8.2 System hotspots view on Mozilla 1.7 content and layout modules with module
complexity metrics. Node: width=CCMPLX; height=HALDIFF; color=NFM;
order by CCMPLX. .. 76

8.3 System hotspots view on Mozilla 1.7 content and layout source files with file size
metrics. Node: width=NOV; height=NFM; color=LOC; order by NFM. 77

8.4 System hotspots view on Mozilla 1.7 content and layout source files with file
complexity metrics. Node: width=CCMPLX; height=HALDIFF; color=NFM;
order by CCMPLX. .. 78

8.5 Modification hotspots view on Mozilla 1.7 content and layout modules with evo-
lution and complexity metrics. Node: width=NMR; height=NPR; color=CCMPLX;
order by NMR. 79

8.6 Modification hotspots view on Mozilla 1.7 content and layout source files with
evolution and complexity metrics. Node: width=NMR; height=NPR; color=CCMPLX;
order by NMR. ., .. 80

8.7 Detailed system hotspots view on Mozilla 1.7 content and layout modules with
Kiviat diagrams showing evolution, size and complexity metrics. 81

8.8 Detailed modification hotspots view on Mozilla 1.7 content and layout modules
with Kiviat diagrams showing metrics of different categories of problem reports. 82

List of Figures vi

8.12

8.13• 8.14

8.15

8.16

8.17

8.18

8.19

8.9 Detailed modification hotspots view on frequently modified Mozilla 1.7 content
and layout source files with Kiviat diagrams showing size, complexity, and evo-
lution metrics. .. 84

8.10 Source code coupling view (invokes) on Mozilla 1.7 content and layout modules.
Node: width=IFan-out; height=IFan-in; color=NFM; Arc: width=RNAI; Arc-
filter: RNAI<50. .. 85

8.11 Source code coupling view (inherits) on Mozilla 1.7 content and layout modules.
Node: width=NOC; height=NOC;color=OFan-in; Arc: width=RNAIH; Arc fil-
ter: RNAIH ::; 5. 86
Source code coupling view (invokes) on Mozilla 1.7 content and layout source
files. Node: width=NFM; height=NFM; Arc: width=RNAI; Arc-filter: RNAI<30. 87
Change coupling view on Mozilla 1.7content and layout modules. Node: width=NMR;
height=NMR; Arc: width=RNMR; Arc-filter: RNMR<200. 89
Change coupling view on Mozilla 1.7 content and layout source files. Node:
width=NMR; height=NMR; Arc: width=RNMR; Arc-filter: RNMR<5. 90
Detailed system hotspots evolution view on Mozilla content and layout modules
with size and complexity metries of7 releases from 0.92 to 1.7.. 91
Detailed modification hotspots evolution view on Mozilla content and layout
modules with problem report metries of 7 releases from 0.92 to 1.7. 92
Detailed system hotspots evolution view on Mozilla content and layout source
files with size and complexity metries of7 releases from 0.92 to 1.7. 94
Detailed modification hotspots evolution view on Mozilla content and layout
source files with problem report metries of7 releases from 0.92 to 1.7. 95
Source code coupling evolution view on Mozilla content and layout modules
with metric values ofin-coming and out-going call relationships. Values are of7
releases from 0.92 to 1.7. Edges denote aggregated invokes relationships taken
from release 1.7 filtered using a threshold of 50 for RNAI. 96

8.20 Source code coupling evolution view on Mozilla content and layout modules
with metric values of in-coming and out-going inheritance relationships. Values
are of7 releases from 0.92 to 1.7. Edges denote aggregated inherits relationships
taken from release 1.7 filtered using a threshold of 5 for RNAIH. 97

A.l E-FAMIX meta model- based on the FAMIX source code meta model, extended
by the release history meta model. 119

LIST OF TABLES

6.1 Size metrics of software modules. 43
6.2 McCabe and Halstead complexity metrics of software modules. . 43
6.3 Modification and problem report metrics of software modules. . 44
6.4 Source code coupling metrics (in-coming and out-going class inheritance and

function calls) of software modules. 45
6.5 Change coupling metrics of software modules. 46
6.6 Metrics of abstracted change coupling, invokes, and inherits relationships. 46

7.1 Example of an evolution matrix E9x7 containing measured values of 9 module
size metrics ofMozilla's DOM module of7 releases. 52

8.1 Selected Mozilla releases with the number of files (NOF) and lines of code
(LOC) metrics. The number ofheader files (#.h) includes header files generated
from .idl files. .. 66

8.2 Mozilla content and layout modules and corresponding source code directories. . 67
8.3 Size metric values ofMozilla's content and layout modules ofthe seven releases. 69
8.4 Accumulated number of modification and problem reports obtained for the source

files ofthe content and layout modules. The number ofPRs is further detailed in
four categories comprising the numbers ofPRs with highest priority pI, severity
critical,statusresolved,andresolutionfixed 70

8.5 Number of established links between files of source code models and release
history data together with the numbers of multiple linked files. 72

8.6 Number of integrated change coupling relationships per Mozilla release. 73
8.7 Abstraction levels and types of relationships considered for abstraction as well

as for computation ofthe coupling metrics ofimplementation units. 75

VIl

CHAPTER 1

INTRODUCTION

Large complex software systems undergo frequent changes during their life-cycle that are carried
out as maintenance and evolution tasks. Basically, these tasks are concerned with fixing errors or
adapting the system to new requirements. Attempts to estimate the costs of software maintenance
and evolution yielded from 50% up to 75% ofthe total software project costs [Boe81], [Dav95],
[SomOO]. Much of this effort is given to program understanding ranging from understanding a
system's architecture and design concerns (aspects) and its implementation.

The engineer needs to build mental models that show these concerns. Visualization of ab-
stracted views on lower-level information has been accepted as a useful means to build these
models [SFM99]. With regard to the computation of abstract views research projects concen-
trated on developing reverse engineering techniques and tools. According to Chikofsky and
Cross reverse engineering refers to:

The process of analyzing a subject system to identify the system's components and
their interrelationships, and to create representations of the system in another fonn
or at a higher level of abstraction [CC90].

Reverse engineering tools aim at providing (semi-)automatic support for the extraction of
higher-level representations. Theyare important instruments for maintaining and evolving soft-
ware systems. Abstracted views are also mandatory to perform quality assessment of the imple-
mented architecture and design.

In terms of extracting views on the software architecture of a system the reverse engineering
technique is also called architecture recove,y or architecture reconstruction. This thesis is fo-
cused on reverse engineering and, in particular, on architecture recovery to abstract architectural
views that facilitate the analysis of structural and evolutionary aspects of software systems.

1.1 PROBLEM STATEMENT

The abstraction of views on the architecture of software systems has been subject to research
over the past years and several commercial tools and research prototypes emerged. They focus

Chapter 1: Introduction 2

on extracting data models from source code and execution traces. On top ofthe data models they
perfonn metric measurements and provide facilities to navigate the data and abstract higher-level
views. Visualization graph-like representations are being used in which nodes represent source
code or execution entities and edges relationships between them.

In the case study with the large open source project Mozilla, we applied a number of these
tools and utilities. For instance, we used the commercial tool Imagix-4D1 to parse the C/C++
source code, compute metrics, and navigate the source code. We further used the graph vi-
sualization tools Rigi [MK88], [Won98] and SHriMP [SM95] to create the higher-level views.
To summarize, our experiences with these tools yielded that they are useful to extract, browse
and navigate the source code but fail in: 1) creating and presenting higher-level views; and 2)
anaZvzing evolutionat'y aspects.

The first problem showed that existing approaches lack capabilities to create views able to
highlight implementation, design, and architecture specific aspects. They use graphs with primi-
tive glyphs for nodes and edges that are not sufficient to convey these aspects.

The second problem concerns software evolution analysis. Existing approaches concentrate
on analyzing static and dynamic infonnation of one particular software release but miss the
aspect of evolution. For instance, the analysis ofwhich entities were vulnerable to problems and
had to be modified frequently is not supported. And, although recently there has been research
done in this area several issues are left open. They concern: a) the integration of modification
and problem report data to analyze fault and change proneness of implementation units; and b)
trend analysis of implementation units and relationships over several software releases.

The approach presented in this thesis addresses the open issues. We base on existing extrac-
tion, analysis and visualization techniques and provide extended and new techniques to create
higher-level views on the implemented architecture and its evolution.

1.2 THE ApPROACH

The Arch View approach is an architecture recovery and analysis approach that addresses the ex-
traction ofhigher-level views on a software system. Views facilitate the analysis ofimplementa-
tion and evolution specific aspects. With respect to implementation specific aspects our approach
takes into account source code model data of several source code releases. Source code models
are obtained per release by using existing static and dynamic fact extraction techniques. Con-
cerning software evolution analysis Arch View processes modification and problem report data as
obtained from the Concurrent Versions System (CVSi and the bug reporting system Bugzilla3.

Arch View integrates the different data models into one common model that allows for the
navigation between source code models and corresponding release history data. Furthermore,
the integrated data model is used to compute the change coupling relationships, abstract the

Ihttp://www.imagix.com
2https://www.cvshome.org
3http://www. bugzilla. org

http://www.imagix.com
http://https://www.cvshome.org

Chapter 1: Introduction 3

higher-level views and compute several new evolutionary metrics. Metrics refer to: 1) prob-
lem and modification report metrics; and 2) source code size, complexity, and coupling metrics
tracked over a number of n releases. They characterize the problem and modification frequency
of implementation units and their trend in size, complexity, and coupling.

For the visualization of abstracted views ArchView uses and extends the polymetric views
technique introduced by Lanza and Ducasse [LD03]. Polymetric views follow the principle
of measurement mapping in that larger metric values lead to larger glyphs in a graph [FP96].
This results in views that, for instance, point out change prone and hide idle implementation
units. In order to visualize multivariate data of n releases Arch View extends polymetric views
by Kiviat diagrams and graphs. They allow the user to study multiple aspects in parallel, such
as the relation between complexity and modifications or metric trends. Concerning the latter
aspect Kiviat diagrams highlight strong changes in the evolution indicating improvements or
degradations of implementation units. Both visualization techniques are accompanied by a set of
pre-defined views that are part of the Arch View approach.

1.3 CONTRIBUTIONS

The contributions of this thesis comprise:

• The E-FAMIX Meta Model layouts the data model for integrating source code data of
several releases with modification and problem report data .

• The ArchView Integration Algorithm that based on the name of entities integrates the dif-
ferent data models according to the E-FAMIX meta model. It further computes the change
coupling dependencies .

• The Arch View Abstraction Algorithm that based on the integrated data model aggregates
source code relationships and change coupling dependencies to visualize and analyze them
on the level of software modules .

• The Evolution Metrics comprising metrics of modification and problem reports as well
as source code metrics that are tracked over n releases. They are mandatory to perform
software evolution analysis .

• The Extended PoZvmetric Views Visualization Technique used by ArchView to visualize
multiple metric values of several releases as graphs .

• The set of Module Evolution Views focusing on identifying the change prone software
modules and heavy coupling dependencies.

• The validation of the ArchView approach with the Mozilla open source project indicating
the benefits as well as the open issues of the ArchView approach.

Chapter 1: Introduction

1.4 THESIS OUTLINE

The thesis is structured as follows:

4

• In Chapter 2, we introduce the terms and basic concepts used in architecture recovery and
software evolution analysis .

• In Chapter 3, we present related work in the areas of software evolution analysis, architec-
ture recovery, and software visualization .

• In Chapter 4, we introduce the ArchView architecture recovery and analysis approach. The
focus is on the ArchView process and its key concepts and features .

• In Chapter 5, we introduce the E-FAMIX meta model and present the techniques we use
to extract and integrate the source code model, modification, and problem report data.

• In Chapter 6, we introduce the containment hierarchy model of ArchView according to
which lower-level information is abstracted. Furthermore, we present the abstraction algo-
rithm and the different metrics that are computed and used by ArchView.

• In Chapter 7, we present the polymetric views techniques and the extension of it to Kiviat
diagrams and Kiviat graphs. They facilitate the visualization of multiple metric values of
up to n releases in parallel. Based on both techniques we specify new system hotspots
views that focus on the visualization of evolutionary and coupling aspects of software
systems.

• In Chapter 8, we present the Mozilla case study we used to validate the ArchView ap-
proach. In the case study we concentrated on the analysis of the implementation and
evolution aspects of Mozilla's content and layout module. For this we took into account
data of seven recent releases and the data obtained from the Mozilla CVS4 and Bugzilla5

repositories .

• In Chapter 9, we draw the conclusions ofthe ArchView approach and discuss open issues
and future work.

• In the Appendix, we provide the detailed E-FAMIX meta model description and the list of
our publications that are related to the ArchView approach.

4http://www.mozilla.org
5https://bugzilla.mozilla.org

http://4http://www.mozilla.org

CHAPTER 2

SOFTWARE ARCHITECTURE AND
EVOLUTION

This chapter provides the background information including the definition of terms used to de-
scribe and understand the Arch View approach. Most of the definitions are taken from recent
work in the field of software architecture, architecture recovery, and software evolution analysis.

2.1 SOFTWARE ARCHITECTURE

Software Architecture is a term frequently used when discussing, designing and analyzing large
complex software systems. However, there are different meanings and understandings of what
software architecture actually is. According to this diversity there exists a number of quite sim-
ilar definitions, such as collected by the Software Engineering Institute ofthe Carnegie Mellon
Universityl.

The IEEE 1471-2000 standard definition for a software architecture is:

A software architecture is the fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution [14700].

A system inhabits an environment, that can influence the system, and a system has one or
more stakeholders. Each stakeholder has interests in, or relative to, that system.

A system stakeholder is an individual, team, or organization (or classes thereof) with
interests in, or concerns relative to, a system [14700].

Concerns are those interests which pertain to the system's development, its oper-
ation or any other aspects that are critical or otherwise important to one or more
stakeholders. Concerns include system considerations such as performance, reliabil-
ity, security, distribution, and evolvability [14700].

Ihttp://wwv •.sei.emu.edu/architeeture/definitions.htm I

5

Chapter 2: Software Architecture and Evolution

2.2 ARCHITECTURAL VIEWS AND VIEWPOINTS

6

An architecture can be recorded by an architectural description that is organized into one or more
constituents called architectural views.

A view is a representation of a whole system from the perspective of a related set of
concerns [14700].

Each view conforms to a viewpoint and addresses one or more of the concerns of the stake-
holders.

A viewpoint is a specification of the conventions for constructing and using a view.
A pattern or template from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its creation and analy-
sis [14700].

The viewpoint determines the languages to be used to describe the view and any associated
modeling methods or analysis techniques to be applied to these representations of the view. A
number ofbooks and articles exist that address the issues. Regarding the description of a software
architecture they share the view that different views and viewpoints are mandatory. For instance,
Kruchten proposed the "4+ 1" view model [Kru95] that distinguishes: logical view, process view,
development view, physical view, and use case view. The latter view ties together the other four
views. Similarly, Hofmeister et a/. [HNSOO]proposed to use four different views: conceptual
architecture, module interconnection architecture, execution architecture, and code architecture.

Regarding viewpoints Bass et al. [BCK03] presented a categorization of architectural views
into three different view types:

• Module Views. Elements of these views are modules which are units of implementation
with a well-defined interface providing a coherent unit offunctionality. With module views
the decomposition of a software system into its implementation units is described. Conse-
quently, module views include a description of the functionality assigned to each module,
possible generalization of modules, and uses-relationships between modules.

• Component-and-Connector Views. Here, the elements are runtime components and con-
nectors. Components are the principal computational units such as clients, servers, pro-
cesses and databases. Connectors represent the communication vehicles among compo-
nents, such as remote procedure calls, named pipes, and sockets. Basically, views of this
type describe the executing components, their interactions and run-time behavior within
the running application .

• Allocation Views. Views of this type are concerned with the mapping of the various mod-
ules, components and connectors to the development environment and runtime environ-
ment respectively. Consequently, elements of this view type are software modules, com-
ponents and connectors, and elements ofthe environment ranging from hardware resources
(computer, processor, etc.) to human resources (designers, programmers, testers, etc.) to
which software elements are allocated to.

Chapter 2: Software Architecture and Evolution 7

The ArchView approach focuses on the module views because they represent aspects (con-
cerns) ofthe implementation ofa software system. The other two view types are out ofthe scope
of this thesis. Regarding module views the primary subject architectural elements are software
modules and their relationships.

A module is an implementation unit of software that provides a coherent unit of
functionality [CBB+02].

Programming language units, such as Smalltalk, Java, C++ or Modula modules, are examples
of software modules. Modules can both be aggregated and decomposed. The relationships that
are used to design module views are:

• Is-part-of: Defines a part/whole relationship between the submodule A - the part - and
the aggregate module B - the whole, or parent. In this thesis, we also use this relationship
to express the mapping between modules and their corresponding elements in the design
level (i.e., package, class, directory, file) that implement each module. In Figure 2.1, the
is-part-of relationship is represented by the contains relationship .

• Depends-on: Defines a dependency relationship between the modules A and B. This rela-
tion is typically used early in the design process when the precise form of the dependency
has yet not be decided. From the perspective of architecture recovery the type of depen-
dency relationship is already defined in the code. Instead of depends-on we also use the
design level relationships, such as class aggregation, function call, or variable access rela-
tionships .

• Is-a: Defines a generalization relationship between a more specific module - the child A
- and a more general module - the parent B. Because the focus of ArchView is on object-
oriented systems we use the class inheritance for the is-a relationship.

The objective of reverse engineering and, in particular, architecture recovery is to extract
module views that reflect the concerns used to implement a software system. Basically, these
concerns can reside on different abstraction levels which is be described in the next section.

2.3 ABSTRACTION LEVELS

Views on the implementation of a software system can be of different levels of abstraction de-
pending on the concerns to represent. Figure 2.1 shows the different abstraction levels, the
entities and relationships used to create the views, and the mapping (hierarchy) between the lev-
els. The latter is used to abstract higher-level views from lower-level source code infonnation
and vice versa to trace higher-level views down to source code. The model is derived from the
models proposed by Riva [Riv04] and Kazman et a/. [KWC98].

The four abstraction levels are:

Chapter 2: Software Architecture and Evolution 8

-.;
> [J -[J

Entities: moduleQ)

...J
~ ,

Relations: uses, generalization::s I

Ü I

~ I Hierarchy: contains
:.ë I

U
I

.... I

<: I

I

directory, file,Entities:
package, class,

-.; method, function,
> attribute, variable,Q)

...J
<::: Relations inherits, aggregatesOll

"Vi invokes, accessesQ)

Cl
Hierarchy: contains,

Entities: programming
-.; language constructs
>
Q)

\...J Relations: syntactic nesting,
Q) \

"0 \ links0 \

U \
\,

\

\
\

•
\

\

-.;

•>
Q)

...J
;(

[IJ [IJQ)

E-
Q)

~::s
0

CI)

Figure 2.1: Abstraction levels and corresponding entity and relationship types used to create
views on the implementation. Dotted arcs indicate the mapping between entities of different
abstraction level.

• Architecture: At the top, there are the architectural viewpoints that describe the architec-
turally relevant aspects ofthe system. In this thesis we focus on the viewpoints that concern
software modules, their decomposition, uses, and generalization .

• Design: The design viewpoints capture the design aspects of software systems, such as
the object-oriented design aspects. The representation of the aspects is with source code
models - they are close to the source code but do not contain all the details. In this thesis
we use the E-FAMIX meta model for a language-independent representation of source
code of object-oriented programming languages and release history data.

• Code: The code view points give a detailed representation of the syntactic structure of
classes and source files. Typically, this is modeled with the Abstract Syntax Tree (AST) .

• Source Text: The implementation of the system consists of a set of documents, such as
source files, configuration files, build commands, log files, etc ..

Chapter 2: So/Mare Architecture and Evolution 9

Regarding this thesis the important levels are Design and Architecture. The lower-two levels
are handled by lexical and syntactical analysis tools that parse the source text, and extract a full or
partial abstract syntax tree representation from which the design level entities and relationships
are obtained.

2.4 SOFTWARE EVOLUTION

Software evolution encompasses all stages in the life of a software system: development, main-
tenance, migration, and retirement. A software system has to react to the changing forces of the
environment or it will become obsolete. It is this change over time that is the focus of software
evolution research. In this context, Pamas stated:

Software, like people, gets old. We can't prevent aging, but we can understand its
causes, take steps to limit its effects, temporarily reverse some of the damage it has
caused, and prepare for the day when the software is no longer viable [Par94].

Analyzing software evolution refers to analyzing the changes, their causes, and effects. Con-
cerning the causes and effects Lehman et al. identified a set of laws called the "Laws of software
evolution" [LPR+97]. They present general observations, for example:

• Continuing Change: Systems must be continually adapted else they become progressively
less satisfactory;

• Increasing Complexity: As a system evolves its complexity increases unless work is done
to maintain or reduce it; and

• Continuing Growth: The functional content of a system must be continually increased to
maintain user satisfaction over their lifetime.

During the evolution of software systems changes occur on all levels of abstraction. The
architecture of a software system as well as its design and implementation evolve.

A major problem with evolution is that software systems suffer from signs of aging as they are
adapted to changing requirements. Signs, for instance, refer to architectural erosion, architectural
drift, or architectural mismatch. Architectural erosion is defined as violations in the architecture
that lead to increased system problems and brittleness" [PW92]. Perry and Wolf also defined
the term architectural drift as "a lack of coherence and clarity of form which may lead to archi-
tectural violation and increased inadaptability of architecture". Architectural mismatch indicates
the gap that exists between the designer's architectural descriptions and the actual realizations in
the code [GA095].

Causes for these signs of software aging are, for instance, poor design decisions and changes
that damage the architecture or the lack of conformance between implementation and intended
architecture. The effect of the signs is that sofuvare productivity and quality continue to fall
short. The costs for fixing problems and adapting the system to changing and new requirements
explode and the 'life" of a software system is shortened.

Chapter 2: Software Architecture and Evolution

2.5 CONTROLLING SOFTWARE EVOLUTION

10

To overcome or avoid the negative effects of software aging is by placing change in the center of
the software development and maintenance process. We must advance beyond the engineering
metaphor of current software development and provide more and better support for software
change and evolution. This includes support for analyzing software systems and its evolution
and support for controlling and executing changes. The focus of this thesis is on the analysis and
control of software evolution. The aspect of support for the execution of changes is out of scope.

Architecture recovery is a reverse engineering technique that addresses the analysis issues
providing the foundation for controlling evolution. According to Jazayeri et al.

Architecture recovery refers to the techniques and processes used to uncover a sys-
tem's architecture from available infornlation [JRvdLOO].

Architecture recovery addresses the extraction of architectural views that represent the system
from the perspective of structural and evolutionmy concerns. Questions to be answered are, for
instance:

• Which are the modules that constitute the system? What are the relationships between
these modules? Which architectural styles and patterns have been used?

• Are there structures in the implementation that indicate architectural mismatch, architec-
tural erosion, or architectural drift?

•. How does the architecture, design, and the implementation evolve over time? Which are
the change prone modules?

• Are there hidden dependencies in the implementation that cause change propagation?

• Are there trends of decay in the architecture, design, and implementation?

The answers point the engineers to the locations in the implementation - modules and rela-
tionships that cause the erosion, mismatch, drift, and decay. Based on this knowledge, the system
developers and architects can plan and execute restructuring that resolve the shortcomings. This
results in a number of benefits that are gained through architecture recovery and software evolu-
tion analysis, such as:

• Architectural analysis and evaluation: Breaking down a large software system into smaller,
more manageable units facilitates understanding of the behavior and quality attributes.

• Maintenance and evolution: A better understanding of the architecture facilitates to asses,
plan, and execute changes to the system more effectively .

• Evolution traceability: By extracting and analyzing architectural infornlation from differ-
ent releases it is possible to trace the system evolution.

Chapter 2: Software Architecture and Evolution 11

•

• Conformance-checking: Resulting architectural views can be used to check whether the
"as-designed" architecture conforms to the "as-built" architecture .

• Reuse: Higher-level views on architectural elements (e.g., modules) show their interfaces
and facilitate the identification of elements that can be re-used when developing a new or
re-engineering an existing software system.

• Product line architecting: The idea of a product line or product family is in maximizing
re-use of software artifacts and minimizing costs for developing single products. Architec-
ture recovery helps to recover the architectures of single products and product families to
design and maintain the reference architecture, isolate the variable parts, and to generalize
software components [PGG+03].

In order to extract the architectural views and perform the architecture and software evolution
analysis we have to cope with a number of challenges, such as:

• What are the signs of architectural erosion, mismatch, drift, and decay, and how can they
be tracked down to the implementation?

• How can hidden dependencies in a system that complicate and hinder its evolution be
discovered? How can existing analysis methods be adapted, revised, or enhanced to enable
this?

• How can the plethora of software data (several source code releases, modification and
bug data, release data) be filtered and visualized? Which are the most suitable effective
visualization models and techniques for that?

In this thesis, we address these challenges with a focus on the hidden dependencies, the
extraction and integration of software data, the abstraction of these data to higher-level views,
and the visualization and analysis ofthese views.

•

•

CHAPTER 3

RELATED WORK

In this chapter, we review the state-of-the-art in the research field of software evolution. Numer-
ous research groups have started research projects in software evolution: the whole established
community of reverse engineering, re-engineering, and program understanding has acknowl-
edged that evolution is indeed the umbrella of their research activities.

3.1 SOFTWARE EVOLUTION

Lehman and Belady's Laws of Software Evolution [LB85] establish that as systems evolve, they
become more complex, and consequently more resources are needed to preserve and simplify
their structure. They also establish that successful systems (i.e., used in a real-world environ-
ment) must change, or become progressively less useful in that environment. Lehmann, Perry
and Ramil explored the implication of evolution metrics on software maintenance [LPR98],
[LPR+97]. They used the number of modules to describe the size of a version and defined
evolutionary measurements which take into account differences between consecutive versions .

Various well-known techniques exist to make systems more flexible in the face of change.
Many design patterns, in particular all ofthose in the original Design Patterns book [GHJV95],
are intended to increase flexibility, however at the cost of increased complexity. Software ar-
chitectures [SG96] establish rules that govern how a system grows and evolves. Unfortunately,
certain kinds of unanticipated change can break the assumptions of an architectural style (for
example, pipeline architectures intended for batch processing can be hard to migrate to a fully
interactive setting).

There are several approaches that analyze the influence of changes in an evolving software
system: Burd and Munro analyzed the influence of changes on the maintainability of software
systems by defining a set of measurements to quantify the dominance relations which are used
to depict the complexity of the calls [BM99]. Gold and Mohan defined a framework to under-
stand the conceptual changes in an evolving system [GM03]. Based on measuring the detected
concepts, they could differentiate between different maintenance activities. In terms of change

12

Chapter 3: Related Work 13

effects, impact analysis approaches (e.g., [Arn96], [LR03], [CFV99]) attempt to determine, given
a point in the source code involved in a modification task, all other possible points in the code
that are transitively dependent upon this seed point. Many ofthese approaches are based on static
slicing (e.g., [GL91]) or dynamic slicing (e.g., [AH90]).

Zimmennann et al. placed their analysis at the level of entities in a meta-model [ZWDZ04].
Their focus was to provide a mechanism to warn developers that: "Programmers who changed
these functions also changed ... ". Further, Ying et al. applied data mining techniques to the
change history of the code base to identify change patterns to recommend potentially relevant
source code for a particular modification task [YMNCC04].

Cubranic and Murphy introduced the Hipikat [CM03] approach. Hipikat uses project infor-
mation to provide recommendations for a modification task. Project information comprises a
number of different sources, including the source code versions, modification task reports, news-
group messages, email messages, and documentation. The focus of Hipikat is on providing
recommendations for relevant project artifacts to developers who are evolving a system whereas
the focus of Arch View is on software architecture and evolution analysis.

Fenton and Ohlsson reported on an experiment with two commercial software systems in
which they tested a range ofbasic software engineering hypotheses relating to: The Pareto prin-
ciple of distribution of faults and failures; the use of early fault data to predict later fault and
failure data; metrics for fault prediction; and benchmarking fault data [FOOO]. They found no
evidence to support the hypothesis that size and complexity of modules are good predictors of
either fault-prone or failure-prone modules. Their results showed that those modules which are
the most fault-prone prerelease are among the least fault-prone postrelease, while conversely,
the modules which are most fault-prone postrelease are among the least fàult-prone prerelease.
ArchView also addresses the relation between size and complexity to fault and change proneness
but focuses more on the techniques to obtain, integrate, and visualize views on the implementa-
tion and its evolution.

Taking into account different releases of a system Lanza et al. introduced the Evolution Ma-
trix [LanOI] that represents the history of classes. Based on size metrics tracked over a number of
releases they defined a specific vocabulary to categorize classes (e.g., Pulsar, Supernova, White
Dwarf, etc.). Similarly, Girba et al. described an approach that based on summarizing source
code metric values of several releases facilitates identifies change prone classes [GDL04].

Gall et al. analyzed the history of changes in software systems to detect the hidden depen-
dencies between modules [GHJ98]. Their analysis was at the file level, rather than dealing with
the real code and considered release and version information of software units (modules, files,
etc.) as well as modification reports [GJKT97]. In [GJR99] Gall et al. described a visualization
approach to allow an engineer to quickly grasp the evolution "nature" ofmodules, differentiating
stable from more volatile ones with respect to change and growth trends.

Fischer et al. extended the concept oflogical coupling and defined a filtering mechanism and
a data scheme for such an integration in [FPG03b]. The data scheme is the initial version of the
Release History Database (RHOB) that we adapted for the ArchView approach. In [FPG03a]
Fischer et al. analyzed the evolution relation to bug reports to track the hidden dependencies be-
tween system features. By instrumenting the code the authors showed how features are scattered

Chapter 3: Related Work 14

over the project tree and how features are logically coupled over releases. An extension of this
approach with a number of specific visualization techniques is described in [FG04]. This ap-
proach allows an engineer to uncover hidden dependencies among different features over many
releases.

Based on CVS data Krajewski et al. discovered change couplings: developers checking in
and out files within certain periods of time and the relationship of these files discovered de-
pendencies that are difficult to detect by other means and pointed to several bad code smells
[FBB+99] by means ofvisualizations using JGraph [GJK03].

In terms ofre-engineering activities, Demeyer et al. [DDN02] propose practical assumptions
to identify where to start a re-engineering effort: working on the most buggy part first or focusing
on the client's most important requirements.

• 3.2 ARCHITECTURE RECOVERY

Research on architecture recovery spans a wide area of activities: approaches, such as Book-
shelf [FHK+97], Dali [KC99], Bauhaus I or Rigi [MK88], [Won98] follow the Extract-Abstract-
View Metaphor described in [EKRW02]. They focus on the creation of condensed high-level
views to facilitate program understanding. Most tools differ in the underlying fact extraction
technique, in the methods and details offact representation, and in the analysis and visualization
techniques.

Murphy and Notkin proposed a reconstruction technique based on reflexion models [MNSOI].
The user starts with a structural high-level view model that is mapped against the source code.
The result ofthe mapping is a reflexion model that shows the differences between the developer's
high-level and the recovered model. Koschke and Simon have extended the original reflexion
models to hierarchical architecture models [KS03].

Similar to reflexion models Robillard and Murphy proposed an approach using Concern
Graphs that abstract the implementation specific details of a concern and makes explicit the
relationships between different parts of the concern. They implemented their approach in the
Feature Exploration and Analysis Tool (FEAT) that allows a developer to manipulate a concern
representation extracted from a Java system, and to analyze the relationships ofthat concern to
the code base.

Cremer et al. [CMW02] described a graph-based approach for re-engineering COBOL pro-
grams. Since the focus of their work is on source code transformation, their visualizations are
very detailed but do no support abstractions to higher levels.

In [EKRW02] Ebert et al. introduced GUPRO which is an integrated workbench that supports
program understanding of heterogeneous systems on arbitrary levels of granularity. However,
it does not concentrate on the abstraction of higher-level views from source code. Moreover,
GUPRO supports program understanding via textual infornlation, but it does not include graphi-
cal representations to depict its findings.

Ihttp://www.iste.uni-stuttgart.de/pslba uhaus

http://www.iste.uni-stuttgart.de/pslba

Chapter 3: Related Work 15

•

Extracting architectural properties from large open source systems such as the Mozilla system
has been addressed by Godfrey et al. [GLOO].Their work relied on PBS [FHK+97] which is a
reverse engineering workbench containing the Relational Algebra tool Grok [FHOO]. The new
version ofthe PBS workbench is SWAGkie. This toolkit concentrates on extracting higher-level
views from C/C++ source code. But, both PBS and SWAGkit do not consider the visualization
of metrics to characterize abstracted entities and relationships leading to more condensed and
comprehensible views.

The SAR method described by Krikhaar [Kri99] concentrates on creating higher-level views
on the architecture. The approach is based on Relational Partition Algebra [FKv098] and defines
a process for selecting the information sources from which higher-level views are abstracted.
The architecture recovery approach of ArchView is similar to the SAR method but also takes
into account evolution.

Riva proposed a view-based architecture reconstruction approach named NIMETA [Riv04].
Similar to Krikhaar the approach is based on relational algebra. NIMETA emphasizes the scrupu-
lous selection of architectural concepts and architecturally significant views that are reflecting the
stakeholders' interests.

Other works concentrate on diverse coupling metrics: in [BDW99a] Briand et al. dis-
cuss a unified framework for coupling measurement in object-oriented systems based on source
model entities. Based on these metrics they verified in [BDW99b] the coupling measurements
on file level using statistical methods and change coupling information based on "ripple ef-
fects" [YCM78]. In [ABF04] Arisholm et al. describe how coupling can be defined and mea-
sured based on dynamic analysis of systems. This recent study shows that some dynamic cou-
pling measures are significant indicators of change proneness and that they complement existing
coupling measures that are based on static analysis.

In terms of analysis of evolution history data, Zimmemlann et al. inspected release history
data of several software systems for change coupling between source code entities [ZDZ03].
They conclude that augmentation of architectural data with evolutionary information could reveal
new otherwise hidden dependencies between source code entities. Even though a number of other
work used release history data as well, a detailed evaluation of the correlation between source
model entities and the properties of change coupling is still missing.

3.3 INFORMATION VISUALIZATION

Information visualization is defined as "the use of computer-supported, interactive, visual repre-
sentations of abstract data to amplify cognition." [CMS99]. It derives from several communities.
Starting with Playfair (1786), the classical methods of plotting data were developed. In 1967,
Jacques Bertin, a French cartographer, published his theory in the semiology of graphics [Ber74].
This theory identifies the basic elements of diagrams and describes a framework for their design.
Edward Tufte published a theory of data graphics that emphasized maximizing the density of

2 http://swag.uwaterloo .ca/swagki t

Chapter 3: Related Work 16

useful information [Tuf90], [Tuf97]. Both Bertin's and Tufte's theories have been influential in
the various communities that led to the development of information visualization. They mainly
addressed issues of how certain types of data could best be visually rendered on paper or on
screen.

The goal of information visualization is to visualize any kind of data. It must be emphasized
that most information visualization systems involve using computer graphics which render the
data using 2D- and/or 3D-views of the data. Applications in infom1ation visualization are so
frequent and common, that most people do not notice them: examples include meteorology
(weather maps), geography (street maps), geology, medicine (computer-aided displays to show
the inner ofthe human body), transportation (train tables and metro maps), etc.

According to Ware [WarOO],visualization is the preferred way of getting acquainted with
and navigating large data pools. In the 1980s, thanks to increased performance of computers,
researchers started to develop tools and methodologies to interactively display large amounts of
information on the screen. Stasko et al. [SDBP98] give an excellent overview over this pioneer-
ing work.

In the more specific field of reverse engineering, visualization soon proved to be an effective
technique, yielding many tools such as Rigi [MK88], [Won98] and SHriMP (Creole) [SM95].

Visualization has also proven to be a key technique ofresearch in software evolution, mainly
due to the huge amounts of information that need to be processed and understood. Riva et
al. analyzed the stability of the architecture [GJR99], [Jaz02] by using colors to depict the
changes over a period of releases. Rysselberghe and Demeyer used a simple visualization based
on information in version control systems to provide an overview of the evolution of systems
[VRD04]. Similar to [GJR99], Wu et al. describe an Evolution Spectrograph [WSHH04] that
visualizes a historical sequence of software releases.

Grosser, Sahraoui and Valtchev applied Case-Based Reasoning on the history of object-
oriented system as a solution to a complementary problem to ours: to predict the preservation
of the class interfaces [GSV02]. They also considered the interfaces of a class to be the relevant
indicator of the stability of a class. Sahraoui et al. employed machine learning combined with a
fuzzy approach to understand the stability ofthe class interfaces [SBLEOO].

Source Viewer 3D (sv3D) is a tool that uses a 3D metaphor to represent software systems and
analysis data [MMF03]. The 3D representation is based on the SeeSoft pixel metaphor [BE96]
and extends it by rendering the visualizations in a 3D space.

We emphasize the fact that many researchers view information visualization as a mere way
to present their data, while we are convinced that an (interactive) visualization itself is a central
part of evolution research, due to the very large amounts of information. In his thesis Lanza
followed this principle and developed the CodeCrawler tool [Lan03]. The tool integrates a num-
ber of pre-defined views that facilitate coarse-grained, fine-grained, and evolutionary software
visualization. The ArchView approach also follows these principles and introduces additional
and new views 011 the implementation of a software system and its evolution.

CHAPTER 4

THE ARCHVIEW ApPROACH

This chapter introduces the Arch View architecture recovery and analysis approach with a focus
on the ArchView process and its key principles and features.

4.1 INTRODUCTION

The idea to re-construct the architecture of software systems from available infonnation sources
is not new and there exists a number of approaches that concentrate on this issue. However, our
experience with the existing approaches showed that actually there is no sufficient solution to
this problem.

The major challenge of architecture recovery is in abstracting reasonable higher-level views
from lower-level information. We claim reasonable to be condensed higher-level views that
highlight the interesting elements and relationships and hide information of minor interest. For
instance, when analyzing the coupling between modules we want to see or point out the strong
coupling relationships and hide the weak ones. To create such views we need techniques to:

• Extract facts from available data source;

• Aggregate and abstract information;

• Filter the interesting infonnation; and

• Visualize the results in a way that facilitates reasoning about the architecture and its evo-
lution.

With respect to these techniques existing approaches lack: 1) data to analyze evolutionary
aspects of a software system; and 2) techniques to visualize multivariate data of n software
releases.

17

Chapter 4: The ArchView Approach 18

Addressing these issues we introduce the ArchView approach, which in addition to source
code, considers modification and problem report data. Data about these reports is available
from versions and bug reporting systems, such as CVS I and Bugzilla2• The primary idea of
ArchView is to integrate this data with the data models extracted from n source code releases.
Based on the integrated data model several new evolution metrics are computed. They concem:
1) problem and modification report metrics; and 2) source code size, complexity, and coupling
metries tracked over a number of n releases.

The first set of metries characterizes the frequency of problems and modifications of imple-
mentation units (e.g., software modules, source files). The second set of metrics facilitates the
visualization ofthe trend ofmeasured metric values. With the trend information the user is able
to spot changes that, for instance, led to an improved or degraded design and implementation.
For example, from release x to release y the two modules A and B have been decoupled by
removing the cyclic dependency relationship.

Conceming the visualization ArchView uses the polymetric views techniques [LD03] to map
the measured metric values to graphical attributes. Furthermore, ArchView provides an extension
to the polymetric views that facilitates the visualization of multiple metries of up to n releases.
Using these two techniques our approach comes up with a number ofnew polymetric views that
provide insights into the implementation and evolution of a software system.

In the following sections we present the process and the key principles of the ArchView
approach. The detailed descriptions of the different techniques used by ArchView are provided
in the subsequent chapters.

4.2 CHANGE-PRONE MODULES

A primary objective of Arch View is to point out the change-prone modules and heavy coupling
dependencies. To find these change-prone entities we first have to define: What is a change-prone
module?

A software module is an implementation unit that stems from the decomposition of a software
system into manageable units [CBB+02], [BCK03]. Depending on the granularity level of the
system decomposition a software module is implemented by a single source file or class but may
also be implemented by a set of source files or classes. For instance, the Mozilla source code is
organized in more than 90 software modules whereby each module refers to a set offiles grouped
in several source code directories. Packages are similar to source code directories and also are
used to group classes to an implementation unit that represents a software module. The focus of
this thesis is on software modules as groups of source files and on single source files.

The quality of an implementation of a software module can be measured by software metries.
They quantify the size, computational complexity, modification and problem frequency. For the
size of modules we primarily use the number of lines of code (LOC) and the number of functions

Ihttps://www.cvshome.org
2 https:/lbugziIIa.mozilla.org

http://https://www.cvshome.org

Chapter 4: The Arch View Approach 19

(NFM) metrics. The computational complexity of a module is determined by the McCabe cyclo-
matic complexity [McC76] and the Halstead metrics [Hal77]. These metrics provide indications
for the maintainability of software modules [SabO1,CAL094].

In addition to the size and complexity metrics ArchView computes evolution metrics that
concern the number ofmodifications and reported problems during a specified observation period
(e.g.. between two releases). Based on these metrics we refer to a change-prone module as:

A software module that relative to the other modules is large in size, computational
complex, and has more modification and problem reports assigned to it.

Change prone modules are, therefore, implementation units that compared to the other modules
were involved in maintenance and evolution activities more often. In the refactoring community
change prone modules and coupling relationships are referred to as Bad Smells as described by
Fowler et al. [FBB+99] and Kerievsky [Ker05].

Another aspect of decomposing a system concerns the dependency and in particular the usage
relationships between modules. Typically, the behavior that belongs together is put into one
module (e.g., class) and can be accessed by other modules through its interface [Par72]. If other
modules depend on the services provided by this module then the modules are coupled.

On the source code level these lises relationships are ftmction calls, variable accesses, and
also type references between modules. Heavy coupling between two modules occurs if relative
to other coupling relationships the number of source code relationships between two modules is
high or exceeds a specified threshold. The effect is that when modifying one module the coupled
modules also have to be modified. Heavy coupling dependencies contribute to Bad Smells in the
code, the design, and the architecture.

In addition to source code coupling ArchView takes into account change coupling relation-
ships. A change coupling relationship between two modules originates from changes in both
modules that were committed by the same developer in the same commit transaction [GJK03].
We indicate heavy change couplings by the number of such pairwise commits that relative to
other change couplings is high or exceeds a specified threshold.

The approach followed by ArchView is to identify and highlight these change prone modules
and heavy coupling dependencies by using graphical visualizations.

4.3 ARCHVIEW PROCESS

The ArchView approach follows an iterative and interactive architecture recovery process that
is depicted by Figure 4.1. The figure shows the different process phases/steps of ArchView to-
gether with the information sources taken into account and the flow of information. The different
process phases of ArchView are:

1. Fact Extraction.
The fact extraction phase is concerned with extracting the facts from available infonnation

Chapter 4: The ArchView Approach 20

sources. ArchView takes into account different source code releases (RI, R2, ..., Rn) and
modification (CVS data), as well as problem report data (Bugzilla data). The latter data
sources enrich the source code model data by release history data. The various data sources
are retrieved, processed and extracted facts are stored in the ArchView repository.

2. Data Integration.
The task of the data integration step is to create and maintain a consistent data repository.
For instance, the different tools and techniques used to extract the facts from source code
and configuration management data produce separate data files. Similarly, the iterations
of the abstraction step as well as the iterations in the architecture analysis result in differ-
ent data files. The ArchView data integration tool processes these separate data files and
integrates them into the Arch View repository [PFG05], [APGP05].

3. View Abstraction.
In the view abstraction phase, higher-level views are abstracted from lower-level infor-
mation. The ArchView abstraction algorithm facilitates information abstraction onto dif-
ferent levels. In this thesis we focus on the level of software modules and source files.
Resulting views are expressed in terms ofhigh-level entities, abstracted coupling relation-
ships, and metrics that are computed during abstraction. Resulting views together with the
links to abstracted lower-level information are stored in the ArchView repository. From
there the views are retrieved for further abstraction iterations or analysis and visualiza-
tion [PFG05], [PFJG04].

4. Visualization & Analysis.
In the visualization phase abstracted views and measured metric values are presented to
the user. Computed views are the basis for the analysis of the current implementation and
its evolution. To facilitate analysis the ArchView visualization techniques concentrate on
highlighting the change prone modules and heavy coupling relationships [PGFL05].

The ArchView process is iterative and interactive. The user is in the driving seat and controls
the abstraction of architectural views, their visualization and analysis. Support is provided by
ArchView in the form of tools and predefined views. Tools aid in automating the extraction,
integration, and abstraction of data models. Furthermore, there are tools that facilitate informa-
tion filtering and composition of views. The set of pre-defined views facilitates the analysis of
implementation and evolution specific aspects. This set can be re-used in other analysis projects
and extended by additional views.

4.4 KEY FEATURES

The key features ofthe ArchView approach and the major benefits gained by a feature are:

• Considering source code model data of several releases.
Size, complexity and coupling metrics are computed of different releases. This enables the

Chapter 4: The Arch View Approach 21

[iiiiJ]
cvsDmolim ~

Bugzilla Data

Results

3. View
Abstraction

Fact Graphs

4. Visualization &

Analysis

Lengend:m Data Source D Process Phase Ô Repository -- Information Flow

Figure 4.1: ArchView Process with data sources (on the left), the ArchView repository (in the
center) and the different process phases.

visualization and analysis of metric trends of implementation units and coupling depen-
dencies.

• Modification and problem report data.
Evolution metrics are measured whereby different observation periods can be selected.
This allows the analysis of modification and problem behavior during different periods.
The user can concentrate on a particular observation period and compare it with other
observation periods.

• Change coupling dependencies.
In addition to source code ArchView computes change couplings between source files and
software modules. They indicate the propagation of changes between modules in the past
caused by shortcomings in the design.

• Integration of data models.
The integration tool links the different data models to one model that facilitates the nav-
igation between them. For example, ArchView allows the user to navigate between the
models ofthe different source code releases and the modification and problem report data.

• Abstraction of data models.
The abstraction of data models condenses lower-level source code entities and relationships
to higher-level implementation units (e.g., software modules) and relationships. Lower-
level relationships, such as function calls are aggregated and established between the
higher-level implementation units.

Chapter 4: The Arch View Approach 22

• Extended polymetric views visualization.
For the coarse grained analysis of the implementation of one release we apply polymetric
views. Based on this technique we specify a set of additional views that take into account
coupling and evolution metrics. We extend the polymetric views technique to visualize
measured values of multiple metrics of several releases in one view. They enable the user
to analyze the trends of size, complexity, coupling, and evolution metrics and spot strong
changes that indicate improvements or degradations in the implementation and design.

The techniques, algorithms and methods applied to realize each key feature are described in
the following chapters.

4.5 MODULE VIEW EXAMPLE

The output of the Arch View process are graphical views in which nodes represent the modules
and edges represent the coupling dependencies between modules. Figure 4.2 represents an ex-
ample of a graph generated with Arch View. In this example the focus was on analyzing the
inheritance structure ofMozilla's content and layout implementation and its evolution.

The nodes depict the seven software modules of Mozilla that implement Mozilla's content
and layout handling. The edges of the graph represent the inheritance relationships between
modules and show which module inherits behavior from which other modules. The width of
the edges indicates the number of aggregated inheritance relationships. The thicker the edge the
more and the stronger the inheritance relationship is between two modules. Each node is drawn
as a diagram that shows 9 metric values computed from 7 Mozilla releases. In this example,
the metrics indicate the size in number of classes (NOC) and the fan-in (IHNAR-in, IHFan-in,
IHNCE-in, IHNR-in) and fan-out (IHNAR-out, IHNCE-out, IHFan-out, IHNR-out) metrics of
module inheritance. Basically, the fan-in metrics denote the number of classes that other modules
inherit from a module. The fan-out metrics denote the number of classes that a module inherits
from other modules. An explanation of these metrics is presented in Chapter 6.

In the following we provide an interpretation of this view and point out a number of key
findings that we can get from such views:
First of all, we gain information about the inheritance structure of the content and layout mod-
ules. We see that, except the MathML, all modules inherit behavior from the DOMmodule.
Hence, DOMclearly is a super module. The other module from which behavior is inherited is
NewLayoutEngine.

Regarding the edges the graph shows that NewLayoutEngine and XPToolki t inherit
more behavior from DOMthan do other modules. Furthem10re, the graph highlights a "Bad
Smell" in the inheritance structure. This is due to the cyclic inheritance between
NewLayoutEngine and DOM.Apparently, there is a number of classes contained by the
NewLayoutEngine module that should be moved to the DOMmodule.

In addition to the structure, the graph represents detailed measurements of size, inheritance
fan-in fan-out metrics ofseveral releases. For instance, it points out the DOMmodule as the largest

.continuous descrease of intermodule
inheritance in recent releases"

Chapter 4: The Arch Vie,,\!ApplVach

D:Noe

l:IHNAR-in

.small sub module
with almost zero
changes in inheritance
implementation.

Mat ML

.cyclic dependency
indicating a Bad
Smell in the design.

XSLT

.sub modules. .descrease of intermodule
inheritance between
releases 1.3a and 1.4.

Releases:

~

r,~ ~::~:: ~:~7
1.0 -- 1.3a

1.3a -- 1.4

() 1.4 -- 1.6

~ 1.6 -- 1.7

23

Figure 4.2: Source code coupling evolution view on Mozilla content and layout modules with
metric values ofin-coming and out-going inheritance relationships. Values are of7 releases from
0.92 to l.7. Edges denote aggregated inherits relationships taken from release 1.7 filtered using
a threshold of 5 for RNAIH.

module with the highest number of classes and MathML as the smallest module with a rather
small number of classes. With regard to the fan-in and fan-out metric values it depicts the DOM
module as a super module. This is indicated by the high fan-in values and low fan-out values.
Diagrams of other modules, such as ofthe NewHTMLStyleSystem and XPToolkit nodes
classify these modules as sub modules. They show high fan-out values but low fan-in values
because they solely inherit behavior from other modules (i.e.. DOMand NewLayoutEngine).

Furthermore, the graph shows metric values of several releases that allows us to retrieve
information about the progression of metric values and spot the strong changes in past releases
that affected the implementation. ArchView indicates strong changes of metric values by large
polygons. For instance, the size values represented by the DOMdiagram show a large module to
which continuously new classes where added. In relation to the DOMmodule the MathML module
did not change a lot. Furthermore, the relative large, green polygon in the XPToolki t diagram
clearly highlights a big change between the releases 1.3a and 1.4. In this observation period

Chapter 4: The Arch View Approach 24

the number of class inheritances of the XPToolki t was reduced from 53 to 40 inheritance
relationships. This metric values further decreased from release 1.6 to 1.7 as indicated by the
red polygon. Apparently, there is a trend of reducing the intermodule inheritance. Another
interesting trend is depicted by the green and red polygons of the DOM module. They show a
continuous decrease in the inheritance of DOM behavior in the recent releases. In contrast, the
metric values shown by the MathML node indicate a small sub module with almost zero changes
during the seven releases.

This is a representative number of key findings that we can gain from the higher-level views
created by ArchView. Further views are presented and interpreted in Chapter 8.

4.6 SUMMARY

The chapter introduced the Arch View architecture recovery and analysis approach including the
process, the key concepts and features. Basically, ArchView follows the Extract-Abstract-View
Metaphor [EKRW02]. In contrast to existing approaches, ArchView considers modification and
problem report data that are integrated with extracted source code models. Based on this data
model ArchView computes abstracted views as well as source code, modification, and problem
report metrics.

The polymetric views visualization technique is based on mapping metric values to graph
attributes. ArchView extends an existing technique to provide more detailed views that highlight
the change prone modules and heavy coupling relationships.

The integration ofmodification and problem report data as well as the extension ofthe visual-
ization techniques present the major improvements to existing architecture recovery approaches.

CHAPTER 5

BUILDING THE ARCHVIEW REPOSITORY

This chapter describes the pre-processing of information sources including source code and re-
lease history data to build the ArchView Repository.

5.1 INTRODUCTION

For the reconstruction of higher-level views ArchView takes into account the source code of
several releases as well as data from versions and bug reporting systems.

The extraction phase is concerned with pre-processing the different data sources to obtain
data models. They represent a structured view on the data sources containing the entities and
relationships that are subject to analysis. For instance, the source code model contains the source
code entities, such as classes, methods, attributes and the relationships between them, such as
class inheritance, method calls, attribute accesses.

The integration phase links the different data models to one integrated model that contains
the relevant infornlation about the implementation, problems (or bugs), and modifications. The
integrated data model is stored in the ArchView repository that serves as basic input to the sub-
sequent Arch View abstraction, visualization, and analysis steps.

5.2 THE E-FAMIX META MODEL

The ArchView repository is the central data storage of our approach that holds the different ex-
tracted and integrated data models as well as analysis results. We implemented it with a relational
database management systems (i.e., MySQU) that stores:

• source code models of different source code releases;

Ihttp://www.mysql.com

25

http://www.mysql.com

Chapter 5: Building the Arch View Repository

• configuration management data (modification and problem reports);

• abstracted views; and

• measured metric values of source code entities and relationships.

26

For the representation of source code different meta models exist, such as FAMIX of the
University of Bern [Sof99], Datrix of Bell Canada Inc. [BeI99], or Bauhaus resource graphs of
the University of Stuttgart [UniOS]. All these meta models model the same kind of data - source
code - however in slightly different ways. For instance, they use different type identifiers to
represent source code entities and relationships. Recent work focused on integrating the different
source code meta models into the Dagstuhl meta model [LTP04]. But this is on-going work.
With respect to ArchView non of these models takes into account the representation of releases,
modifications, and problems.

For the specification ofthe E-FAMIX meta model we used the FAMIX meta model. FAMIX
is a meta model for a language-independent representation of source code of object-oriented
programming languages. It provides extension points that can be used to include programming
language specific features, such as C++ templates. We used FAMIX for representing the source
code of each release and added the types and relationships that are mandatory to represent release,
modification, and problem report data. Figure 5.1 depicts an overview ofE-FAMIX meta model.

File Entities

FAMIX
Meta Model

RHDB
Meta Model

Figure 5.1: E-FAMIX meta model consisting ofthe FAMIX and RHDB meta modellinked by
file-entities (overview).

The E-FAMIX meta model consists of two meta models that are linked together by file-
entities that are common to both meta models:

• The FAMIX meta model for representing the source code models; and

• The RHDB meta model for representing the configuration management data.

The most important extension to FAMIX is by the RHDB meta model. The latter meta
model is used to represent modification report (MR) and problem report (PR) data as obtained
from versions systems, such as CVS2 and bug reporting systems, such as Bugzilla3•

2 https://www.cvshome.org
3http://www. bugzilla. org

http://https://www.cvshome.org

Chapter 5: Building the Arch View Repository 27

The RHOB meta model is linked to the FAMIX model by using thefile-entity defined by both
models. The principle is straight forward: source files are entities that exist in both data models.
On the one hand source files contain the programming language specific entities that are subject
to the source code model extraction (FAMIX). On the other hand, source files present the items
that are managed by configuration management systems and therefore are also entities of the
release history database (RHOB). For instance, modification reports about changes committed to
the source code repository are assigned to source files.

A detailed description ofthe E-FAMIX meta model can be found in the Appendix. The next
sections describe the extraction ofthe different data models.

5.3 SOURCE CODE FACT EXTRACTION

The source code fact extraction step is concerned with pre-processing the selected source code
releases to FAMIX compliant source code models.

For the extraction of information from source code Arch View primarily applies syntactical
analysis tools which are source code parsers. Parsers are programming language dependent
and produce an intermediate representation of source code (Abstract Syntax Tree, AST). In the
context of reverse engineering the AST is traversed to output the infornlation about the basic
source code entities and their relationships. The set of extracted source code facts is referred to
as a source code model (SCM). Figure 5.2 shows an example of a source code model extracted
from a Java source code snippet.

The parser processes the project containing the Java classes of the Example application. It
parses the source code of each source file and extracts facts about contained source code entities
and relationships. Facts concerning the example above are: there is the package A that contains
class Demo. Demo contains the main () method which contains the local variable p. Variable
p references an object of class Player. p is accessed by the main () method to invoke the
startDemo () method. Furthermore, there is the package B that contains class Pla ye r which
contains the startDemo () method.

Each source code release of a system constitutes such a parsing-project and results in a source
code model. For instance, for the Mozilla case study we checked out the major source code
releases from the Mozilla repository and parsed each release with the Imagix-40 tool4. For
each release we created a project containing the parser configuration and the repository holding
the extracted source code model of a release. With our Imagix-4D plug-in we accessed each
repository and exported the E-FAMIX compliant source code model.

For the representation of source code models different file fonnats exist ranging from pure
ASCn files to relational databases. Common to most of these representations is the use of di-
rected attributed graphs. Nodes in the graph represent source code entities and edges the rela-
tionships. Both, nodes and edges are assigned a set of attributes, such as the name of the entity,
the size of a source file, the accessibility specification of methods and attributes, etc.

4http://www.imagix.com

http://4http://www.imagix.com

Chapfer 5: Building fhe Arch Vie.\! ReposifOl)J 28

II Example

package A;
public class Demo {

puglic static void mainO {

Player p = new PlayerO;
p.startDemoO;

}
}

package B;
public class Player {

public void startDemoO {

II run demo
}

parser

9

8
I

B

Example

,

GJ

o Source code entity

- - I> Contains relationship -----l> Accesses relationship

-----l> Invokes relationships ---- HasType relationships

Figure 5.2: Source code model extracted from a Java code snippet.

Output formats used by current reverse engineering tools are, for example, the Rigi Standard
Format (RSF) [Won98] or its successor the Graph eXchange Language (GXL) [HWSOO]. The
latter comes with an XML representation of graph data. FUl1hermore, there exists a converter
from RSF to GXL and vice versa. Arch View uses RSF as an intermediate format to facilitate the
application of other reverse engineering tools on extracted source code models.

RSF uses an easy to use tuple format <relation A B> to represent nodes, edges, and at-
tributes of graphs. Figure 5.3 depicts the RSF file that represents the source code model extracted
from the Java example shown in Figure 5.2. The unstructured RSF file contains the definitions
of the existing source code entities (the Root entity is only given for syntactic reasons). Each
entity is assigned its entity type as defined by the E-FAMIX meta model (see type tuples). The
contains tuples define the containment (hierarchy) of entities. For instance package A con-
tains class Demo. The last three tuples define the relationships between source code entities, such
as the access to the local variable p or the invocation of method startDemo () by main () .

The results of the source code fact extraction step is a set of source code models (one per
release) that are stored in the ArchView repository.

Chapter 5: Building the Arch View Repository

type Root Syntactic
type A Directory
type B Directory
type Demo.java File
type Player.java File
#
type A Package
type B Package
type Demo Class
type Player Class
type main() Method
type startDemo() Method
type p LocalVariable
#
contains A Demo. java
contains B Player.java
contains Demo. java Demo
contains Player.java Player
contains A Demo
contains B Player
contains Demo maint)
contains Player startDemo()
contains main() p
#
accesses main() p
hasType p Player
invokes main() startDemo()

29

Figure 5.3: RSF file representing the extracted E-FAMIX conform source code model ofthe Java
source code snippet.

5.4 RELEASE HISTORY DATA

In addition to source code, Arch View takes into account configuration management data with
focus on version data, modification and problem reports. The primary data sources for this kind
of information are the repositories managed by version control systems such as the Concurrent
Versions System (CVS5) and bug tracking systems, such as BugzilIa6. Currently, ArchView
concentrates on CVS and Bugzilla but future work is concerned with providing support for other
versions and bug tracking systems, such as Subversion7 the successor of CVS, IBM Rational's

5https:/Avww.cvshome.org
6https://bugzilla.mozi\la.org
7 http://subversion .tigris.org

Chapter 5: Building the Arch View Repository

ClearCase8, or Microsoft's Visual SourceSafe9.

5.4.1 CYS

30

CYS is designed to handle revisions oftextual infonnation by storing delta's between subsequent
revisions in the repository. Binary files can be stored in the repository as well, but they are not
considered by ArchView.

REVISION NUMBERS

Typically, version control systems distinguish between version numbers of files and software
products. Concerning files these numbers are called revision numbers and indicate different
versions of a file. In terms of software products they are called release numbers and indicate the
releases of a software product.

Each new version of a file stored in the CYS repository receives a unique revision number.
After an update of a fiIe and a commit of the changes to the CYS repository the revision number
of each affected file is increased by one. Because some files are more affected by changes than
others these files have different revision numbers in the CYS repository.

A release represents a snapshot on the CYS repository comprising all files realizing a software
system whereby the files can have individual revision numbers. Whenever a new version of the
software system is released a symbolic name (i.e., tag) indicating the release is assigned to the
revision numbers of current files. The relation symbolic name - revision number is stored in the
header section of every tagged file and appears also in the header section of CYS log files.

Revision numbers and CYS tags are the information that are needed to checkout the different
source code releases. For more information on CYS internais we refer the reader to the CYS
manual [Fre03].

VERSION CONTROL DATA

For each working file in the repository CYS generates version control data stored in log files.
From there log file information can be retrieved by issuing the cvs log command. The speci-
fication of additional parameters allow for the retrieval of infornlation about a particular file or a
complete directory. Figure 5.4 depicts an example log file taken from the Mozilla project show-
ing version data of the source file nsCSSFrameConstructor. cpp as it is stored by CYS.
Basically, a log file consists of several sections, each describing the version history of an artifact
(i.e., file) ofthe source tree. Sections are separated by a line of '=' characters. For the population
ofthe release history database (RHDB) we take the following properties into account:

Resfile - The path information in this field identifies the artifact in the CYS repository.

8http://www-306.ibm.com/software/ awdtools/clearcase
9http://www. microsoft.comJssafe

http://www-306.ibm.com/software/

C/wpter 5: Building the Arch View Repository

RCS file: /cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.cpp,v
Working file: nsCSSFrameConstructor.cpp
head: 1.804
branch:
locks: strict
access list:
symbolic names:

MOZILLA 1 3a RELEASE: 1.800
NETSCAPE_7_01_RTM_RELEASE: 1.727.2.17
PHOENIX_0_5_RELEASE: 1.800

RDF_19990305_BASE: 1.46
RDF_19990305_BRANCH: 1.46.0.2

keyword substitution: kv
total revisions: 976; selected revisions: 976
description:

revision 1.804
date: 2002/12/13 20:13:16; author: doe@netscape.com; state: Exp; lines: +15 -47
Don't set NS BLOCK SPACE MGR and NS BLOCK WRAP SIZE on- - -

revision 1.638
date: 2001/09/29 02:20:52; author: doe@netscape.com; state: Exp; lines: +14 -4
branches: 1.638.4;
bug 94341 keep a separate pseudo frame list for a new pseudo block or inline frame

RCS file: /cvsroot/mozilla/layout/html/style/src/nsCSSFrameConstructor.h,v

31

Figure 5.4: Example CYS log-file containing the modification reports ofthe source file nsCSS-
FrameConstructor.cpp.

symbolic names - Lists the assignment of revision numbers to tag names. This assignment is
individual for each artifact since revision numbers may differ.

description - Lists the modification reports describing the change history of the artifact starting
from its initial check-in till the current release. Besides the modifications made in the main
trunk all changes which happened in the branches are also recorded there. Reports (i.e.,
revisions) are separated by a mnnber of ' -' characters .

• The revision number identifies the source code revision (main trunk, branch) which
has been modified .

• Date and time ofthe check-in are recorded in the date field .

• The author field identifies the person who did the check-in .

• The value of the state field determines the state of the artifact and usually takes one
of the following values: "Exp" means experimental and "dead" means that the file
has been removed.

mailto:doe@netscape.com;
mailto:doe@netscape.com;

Chapter 5: Building the Arch ViewRepository 32

• The lines fields counts the lines added and deleted ofthe newly checked in revision
compared with the previous version of a file.

• If the current revision is also a branch point, a list of branches derived from this
revision is listed in the branches field (e.g., 1.638.4) .

• The followingfree text field contains informal data entered by the author during the
check-in process.

ArchView uses the RHDB Populator tool [FPG03b] to access the CYS repository and retrieve
the modification reports. Basically, the tool traverses through the source tree structure to retrieve
the modification reports from the CYS repository on directory basis. Modification reports about
"unused" files that have an entry in the CYS repository but are not part of the current checked
out version are also captured (i.e., deleted files or files belonging to different products). Each
modification report is parsed for the facts mentioned above. Extracted facts are stored in the
RHDB.

5.4.2 BUGZILLA

In addition to the CYS data, the Populator tool also provides facilities to access the bug reporting
system Bugzilla for retrieving the problem reports. Problem reports describe "bugs" that have
been identified during execution ofthe system (e.g., testing) and reported to the developers.

PROBLEM REPORTS

Problem reports as stored by Bugzilla contain administrative infoffi1ation, such as contact in-
formation, mailing addresses, discussion, and information that describes the reported problem.
Listing 5.1 lists an example of a problem report derived from the Bugzilla repository ofMozilla.

Listing 5.1: Example ofa Bugzilla entry (i.e., problem report) ofthe Mozilla project.
<bugjd> 100069<!bugjd>
<bug_status> VERIFIED <!bug_status>
<product> Browser</product>
<priority> - - </priority>
<version>other</version>
<rep_platfonn> All</rep_platfonn>
<assigned_to> doe@mozilla.org</assigned_to>
<delta_ts> 20020 l16205l54</delta_ts>
<component> Printing: Xprint</component>
<reporter>doe@mozilla.org</reporter>
<targeLmilestone> mozillaO.9.6</targeLmilestone>
< bug_severity> enhancement <!bugseverity>
<creation_ts>2001-09-1708:56</creation_ts>
< qa_contact>doe@mozilla.org</qa_contact>

Chapter 5: Building the Arch ViewRepository

<oP-BYs> Linux </op_sys>
<resolution> FIXED</resolution>
<shOlt_desc> Need infrastructure for new print

dialog</shorLdesc>
<keywords>patch, review</keywords>
<dependson> I06372</dependson>
<blocks>84947 </blocks>
<long_desc>
<who>doe@mozilla.org</who>
<bug_when>2001-09-1708:56:29</bug_when>
<thetext> </thetext>

</long_desc>

Key infonnation extracted from problem reports include:

33

• bug_id: This ID is referenced in the modification report. Since the lOs are stored as free
text in the CYS repository, the information can not be reliably recovered from the change
report database .

• bug..status (status white-board): Describes the current state of the bug and can be uncon-
firmed, assigned, resolved, etc .

• resolution: Indicates what happened to a bug and can be: empty (""), has been fixed (fixed),
is no valid bug (invalid), will never be fixed (wontfix), etc .

• product: Determines the product which is affected by a bug. Examples in Mozilla are
Browser, MailNews, NSPR, Phoenix, Chimera, etc.

• component: Determines which component is affected by a bug. Examples for components
in Mozilla are Java, JavaScript, Networking, Layout, etc .

• dependwn: Declares which other bugs have to be fixed first, before this bug can be fixed .

• blocks: List ofbugs which are blocked by this bug .

• priority: This field describes the importance and order in which a bug should be fixed.
This field is utilized by the programmers/engineers to prioritize their work to be done. The
available priorities range from PI (most important) to PS (least important.)

• bug..severity: This field is used to further classify problem reports into blocker, critical,
major, minor, trivial, enhancement bugs .

• targetJnilestone: Possible target version when changes should be merged into the main
trunk.

Chapter 5: Building the Arch View Repository

LiNKINGCYS ANDBUGZILLADATA

34

Retrieved modification and problem reports build two separate data sources because CYS and
Bugzilla do not provide a built-in mechanism to reference a bug with the modifications to source
files that have been carried out in order to fix the bug. These links are mandatory to reflect fixed
bugs to changes in source files and vice versa. Therefore, the RHDB Populator tool includes an
algorithm to establish the links between modification and problem reports.

The algorithm is based on bug report numbers that manually have been entered in modifica-
tion reports by the software developers when committing changes to source files. Basically, a
link is established whenever a reference (i.e., bug report number) to a problem report is found in
a modification report. Problem report numbers in modification reports are searched by regular
expressions, e.g., bug #145342. Because these numbers are entered as free text results contain
false positive matches as well. To improve data quality all matched numbers are validated us-
ing infonnation available with PRs and secondary information such as patches. Details about
the RHDB Populator tool and an evaluation of the quality of extracted and linked modification
and problem repolis are given in [FPG03a] in which the tool has been applied to the CYS and
Bugzilla data ofthe Mozilla project.

5.4.3 CHANGE COUPLINGS

Change coupling between two files A. and B originates from changes made to the two files that
were committed by the same developer in a single commit transaction. Transactions can span
on an arbitrary number offiles and can be of arbitrary length. Typically, commit operations take
several seconds or minutes.

CYS does not explicitly store the information about transactions, however it indicates them
by storing the same log message (i.e., MR) for the involved files. Consequently, change coupling
relationships can be reconstructed by analyzing the MRs. Underlying data coming from the
reports is retrieved from the repository and represents the input to the algorithm described in
Figure 5.5.

The algorithm is based on a sliding time window with two parameters: the maximum length
of time that a transaction can last Tmax and the maximum distance in time 5max between two
subsequent MRs. According to the abstraction algorithm, a modification report 1nT is included
in a transaction Tif:

1. The log message lm2 or the author a2 differs from the previous MR; and

2. The check-in time t2 is at most i5max apart from the check-in time t1 ofthe previous report;
and

3. The check-in time t2 is at most Tmax apart from the start time tstar.t ofthe transaction.

Otherwise a new transaction T is created and the modification report is assigned to it.

Chapter 5: Building the Arch View Repository 35

•
< omax

< tmax•

,,,,. ,,,,,,
~~---~

..,,,,,,,,,,
~

t start

,- - - - - --~,,,,
1 ~

Im ~ Im --------,
12: ,,,

a1~ a2 ---------

time •

Figure 5.5: When two modification reports (MRs) belong to the same transaction.

Heuristics obtained from our experiences with the Mozilla CVS repository range from 45 to
60 seconds for <5max and 15 to 20 minutes for Tmax. Smaller values tend to split transactions, and
larger values tend to combine transactions into one. Similar experiences have been reported by
related approaches, such as Gennan et al. [GHJ04] or Zimmermann et al. [ZWDZ04].

Based on the transactions the change coupling relationships between source files are com-
puted. A change coupling relationship is established between two files whenever there exists
MRs for the two files that belong to the same transaction. Finally, all the extracted relationships
are added to the repository.

The results of presented extraction techniques are one source code model per release and the
release history database. Source code models provide the implementation specific facts and the
release history database provides facts about problems and modifications of source files.

5.5 DATA INTEGRATION

The objective of the data integration step is to establish the links between the entities of the
different source code and the release history data models. Integration is needed to have a common
view on the different data models facilitating the navigation between the different models and the
analysis ofthem.

Currently, the integration of the data models is done on the level of source files. Files are
entities that exist in all extracted ArchView models: source files contain the extracted source code
entities and furthermore they are the entities managed by configuration management systems.
With respect to source files differences between the data models exist because of:

C/wpter 5: Building the Arch View Repository

ListA! R := Iist of modification reports
sort list.M R by author, checkinTime
Tmax = 15 min.
ornax = 45 sec.
al := null
t1 := 0
tstart := 0
Lm1 := null
ListT := {}
foreach mT of ListAiR do

0.2 := author of m1'

t2 := checkin time of mT

Lm2 := log message of mr
if al of 0.2 or Lm1 of Lm2 or t2 > (tl + "max) or t2 > (tstm.t + Tma:r) then

T := new transaction
add T to ListT
tstU7't := t2

end
assign m1' to T

end

Figure 5.6: Algorithm to reconstruct transactions from CYS modification reports .

36

• Deleted and added files.
During maintenance and evolution of a software system source files are added to or deleted
from the source base .

• Moved files and subdirectories.
Source files are moved to a different subdirectory due to restructuring of the source code
base. The file entity is the same but the global name ofthe file has changed .

• Generated files.
Certain source files are input to compilers that generate a number of corresponding other
source files. For instance, the configuration management system contains * .idl files from
which the idl compiler generates the corresponding header files that are input to our parsing
tool.

The main task ofthe data integration step is concerned with checking ifthe source file in one
data model exists in the other data model. For these checks ArchView uses the fully qualified
name (global file name) of source files and applies the Algorithm 5.7. The algorithm uses three
heuristics to map the file identifiers of two data models by: I) the fully qualified file name; 2)
the short file name; and 3) the file name with the file extension replaced. The latter heuristic

Chapter 5: Building the Areh View Repository

semA := load model A
semB := load model B
mapping := new Mapping
foreach eB of semB do

nameB := eB.fullName
cA := semA.queryEntity(namcB)
if cA = null then

no:rncB := nameB.chopDirectories()
eA := semA.queryEntity(nameB)
if eA = null and nameB.ends With(".h ") then

nameB := nameB.replaceFileExtension("idl")
cA := semA.queryEntity(nameB)

end
end
if eA =1= null then

mapping.insert(eA, eB)
end

end

37

Figure 5.7: Algorithm for mapping RHDB and SCM data models by the fully qualified file name.

accounts for files that are generated by a pre-compiler. For example, in the Mozilla case study
idl files are contained in the RHDB instead ofthe generated C/C++ header files that are contained
in extracted source code models.

Experiences gained in the case study showed that using these heuristics we establish around
96-99.8% ofthe links between file entities ofthe different data models. Details about the preci-
sion of the data integration algorithm are presented in Chapter 8.

The result comprises records of mapped identifier pairs that are inserted into the mapping
table ofthe ArchView repository.

5.6 SUMMARY

The Arch View repository is the core data source of the Arch View architecture recovery and
analysis approach. It integrates source code and release history data into a common data model.
For the representation ofthis data model we introduced the E-FAMIX meta model and presented
corresponding extraction techniques. The E-FAMIX meta model is an extension ofthe FAMIX
meta model by entity and relationship types to represent release history data.

Concerning the extraction we presented the techniques and fornlats to derive the different
source code and release history data models. Based on the latter data model we described the
algorithm for the linkage of modification and problem report data. They allow for the navigation

Chapter 5: Building the Arch View Repository 38

•

•

of problems down to source code modifications and vice versa. Furthermore, we presented the
algorithm used to cOlnpute the change coupling relationships between source files.

The integration of the different data models is based on the fully qualified name of source
files. Based on this name we presented an algorithm that handles deleted, added, moved, and
generated files. The result is a repository that contains an E-FAMIX conform data model of
several source code releases, modification, and problem report data. The repository serves the
ArchView abstraction, visualization, and analysis phases that are described next.

•

•

CHAPTER 6

ARCHITECTURAL VIEW ABSTRACTION

To obtain higher-level views low-level information has to be condensed and abstracted. This
chapter introduces the Arch View containment hierarchy model that defines paths for infornlation
abstraction and the Arch View view abstraction algorithm.

6.1 INTRODUCTION

The amount of information obtained by the fact extraction phase is high especially when analyz-
ing large and complex software systems. For example, the case study we present in Chapter 8
is of a large open source software system that comprises source code model data of more than
10.000 C/C++source files of seven releases, more than 450.000 modification reports and 250.000
bug reports.

Having a single user to understand all the details is difficult if not impossible but also not
always mandatory. In general, browsing and navigating through such large information sources
is difficult and time consuming. Users do not have reasonable points (e.g., source code entities)
from which to start investigations and analysis because starting points often are not visible in
the huge amount of information. Information abstraction is needed that aggregates lower-level
information about source code entities and their relationships and reflects them on higher-levels
of abstraction.

As mentioned in the related work past and recent research has been concerned with abstract-
ing high-level views from lower-level information, such as source code. Most important in the
context ofthis thesis are the work from Holt [HoI98] and Feijs et al. [FKv098]. They both used
relational algebra to aggregate and abstract architectural information. Therefore, the algebraic
concepts used by our abstraction algorithm is not new per se. Arch View uses these concepts and
extends them in two ways:

• Metrics: The Arch View abstraction algorithm computes source code metrics about ab-
stracted entities and relationships. Measured metric values express, for instance, the size

39

Chapter 6: Architectural ViewAbstraction 40

of entities (e.g., in terms ofthe number of contained low-level entities) and the weight of
relationships (e.g., in terms of the number of aggregated relationships). They are manda-
tory to highlight interesting entities as well as to filter information .

• Information sources: ArchView takes into account source code data of several releases,
for instance, to facilitate the analysis of metric trends of source code entities. Furthermore,
ArchView takes into account release history data. This data enriches extracted source
code model data and allows for analysis ofthe evolutionary aspects of a software system's
implementation (e.g., change coupling between source files).

The next Section introduces the ArchView containment hierarchy model that specifies the
paths along which low-level source code and release history data can be abstracted .

• 6.2 SOURCE CODE CONTAINMENT HIERARCHY

•

The ArchView containment hierarchy model specifies the hierarchy of implementation units and
source code entities. The hierarchy stems from decomposing the system into manageable imple-
mentation units according to the object-oriented design paradigm. Our hierarchy model is based
on the abstraction levels described in Section 2.3 and specified by entities ofthe E-FAMIX meta
model and its relationships that express the containment of entities. Figure 6.1 depicts the model.

According to the decomposition of a system we go top-down and describe the following
hierarchicallevels:

• Architecturallevel: From the point ofview ofthe implementation the architecture of a sys-
tem is specified by subsystems and software modules and the relationships between them.
A system is decomposed into software modules. According to Clements et al. [CBB+02]
we refer to a software module as an implementation unit of software that provides a co-
herent unit of functionality. Modules present a code-based way of considering the sys-
tem [BCK03]. Composition of subsystems is indicated by the self-arc of the Module entity
hence we do not need to include a separate subsystem entity in our model.

• Design level: The design level contains the entities that are used to specify a detailed model
of the implementation. One of the most frequent used design paradigms to specify these
models is the object-oriented design. The entities used by this paradigm and contained in
this abstraction level are Package and Class. Additionally, this level contains also the en-
tities Directory and File. Latter two are not directly used in object-oriented design models
but are used by programming languages such as Java and C++ to manage the source code
in files and directories. Often there is a direct mapping between Class and File, and Pack-
age and Directory. For instance, in Java the package structure corresponds to the directory
structure. Also in Java the implementation of a class typically is contained in one file. The
three entities Directory, Package, and Class can have sub-directories, sub-packages, and
sub-classes respectively which in Figure 6.1 is indicated by the self-arcs.

Chapter 6: Architectural ViewAbstraction

o E-FAMIX entity System

41

•

- - -<> impcicit containment

- explicit containment

<l .. c> possible mapping

Problem
Report

I I

~-j
I

1- - - - - - - - - - - - - - ~ - - - - - - - - - - - - --I

I
I

.••......•••... --t•..•...••....
I
I
I, L _

e.

Figure 6.1: Containment hierarchy of source code models including modification and problem
reports.

• Code level: They comprise all principal entities provided by a programming language
to implement the system. Basically, these entities are Method, Attribute, Local Variable
and Formal Parameter. A class contains methods and attributes. A method contains its
parameters and local variables. Additionally, for handling the C part of C++ applications
we added global functions and variables that are contained by a source file. Another add-
on to the hierarchy model is the Modification Report and Problem Report entities. They
indicate the facility provided by the E-FAMIX model to also abstract modification and
problem report data along the File entity.

6.2.1 ESTABLISHING THE LINKS BETWEEN THE HIERARCHICAL LEVELS

Whereas the links between the entities of design and the code level are explicit the links be-
tween the entities of the architectural and the design level are not. The basic reason for this is
that software architectures are abstract concepts and so are software modules. Although recent
software development processes provide support for such a mapping of abstract concepts to the
implementation in practice it is not always carried out by the developers.

Typically, the system is decomposed into software modules. The implementation of each
software module is broken down to one or more classes, packages or files or directories re-
spectively. Information about such refinements often is contained in design documents. For

Chapter 6: Architectural ViewAbstraction 42

instance, the design documents of Mozilla provide this information on the module owners web-
sitel. There the architects of Mozilla listed all software modules and for each module specified
its owner, links to design documents, and the source code directories containing the implementa-
tion. The latter represent the links between the architectural and the design level entities that can
be directly integrated into extracted source code models and then are available for information
abstraction.

If no information about the mapping of abstract concepts to source code is available the con-
cepts and their mapping has to be determined by the user. With respect to software modules such
a determination is concerned with grouping the design elements (i.e., classes, files, packages,
directories) together that implement a coherent set of functionality. Straight forward techniques
for such a grouping are based, for example on the:

• Package or the directory structure: Each package or directory is assigned to a software
module

• Naming conventions: Prefixes or postfixes of class, package, file, or directory ~ames that
indicate the affiliation of an entity to a particular software module.

Hints about naming conventions can be obtained from design and code documents or developers.
Both techniques also have been used in recent architecture recovery approaches, such as the
Software Reflexion Models described by Murphy et al. [MNSO1].

Another technique that provides support tür relating entities of the architectural level with
entities of the design and implementation levels is clustering. Clustering tools, such as Bunch
[MMCG99], provide algorithms to (semi-)automatically aggregate tightly coupled source code
entities (e.g., classes, files) to modules and subsystems. However, to obtain reasonable results
with clustering knowledge about the design is necessary, for instance, to configure the algorithm
with appropriate main seeds.

Having determined the source code organizational units that implement software modules the
remaining hierarchy and thus the links between the different abstraction levels is due to the con-
tainment relationships depicted by Figure 6.1. A module consists of one or more source files that
contain the implementation of classes, functions, and the definitions of global variables. Classes
contain attributes and methods which further contain parameter and local variable definitions that
represent the lowest-level entities in our hierarchy model.

6.3 SOFTWARE METRICS

Software metrics are a key input to our analysis and visualization approach. Metrics used by
ArchView stem from source code and release history data and are computed during fact extrac-
tion and infornlation abstraction. They range from metrics timt assess the size (e.g., number of
methods in a class), program complexity (e.g., cyclomatic complexity) of source code entities
and evolutionary metrics (e.g.. number of modifications of a source file).

Ihttp://www.mozilla.org/owners.html

http://www.mozilla.org/owners.html

Chapter 6: Architectural ViewAbstraction 43

Arch View concentrates on module and coupling dependency metrics on the design and ar-
chitectural level. Modules refer to classes, packages, files, directories and software modules.
Coupling dependencies refer to source code and change coupling relationships. Source code
relationships are file includes, class inherits and aggregations, type definitions, function calls,
and variable accesses. Metrics assessing lower-level source code entities, such as methods or
attributes are also considered but not subject ofthis thesis.

6.3.1 MODULE METRICS

Table 6.1 lists the set of metrics used by Arch View to assess the size of software modules.

•
Metric
NOD
NOF
NOP
NOC
NGF
NOM
NFM
NGV
NOA
NOV
LOC

Description
Number of associated directories
Number of associated files
Number of associated packages
Number of associated classes
Number of global functions
Number of methods
Number of global functions and methods (NGF + NOM)
Number of global variables
Number of instance and class attributes
Number of global variables and attributes (NGV + NOA)
Length in number of lines

Table 6.1: Size metrics of software modules.

For assessing the complexity ofa module's implementation ArchView uses the McCabe cy-
c10matic complexity [McC76] and Halstead complexity metrics [Hal77] listed in Table 6.2.

HALDIFF

Metric
CCMPLX
HALCONT

HALEFF

Description
Accumulated McCabe cyclomatic complexity
Halstead Intelligent Content - language-independent measure of the amount
of content (complexity) of a module
Halstead Mental Effort - number of elemental mental discriminations neces-
sary to create, or understand a module
Halstead Program Difficulty - measure of how compactly a module imple-
ments its algorithms

Table 6.2: McCabe and Halstead complexity metrics of software modules.

Table 6.3 lists the evolution metrics that Arch View computes for software modules.
Regarding problem reports several metrics are computed that address the different problem

report categories as offered by the Bugzilla bug reporting system2. The four main categories are

2 https://bugzilla.mozilla.org

Chapter 6: Architectural ViewAbstraction 44

Metric
NMR

NPR

NPR-x

ENT

Description
Accumulated number of modification reports assigned to a module during a
specified observation period
Accumulated number of problem reports assigned to a module during a spec-
ified observation period
Accumulated number of problem reports of category x assigned to a module
during a specified observation period
Accumulated entropy of modification reports (sum of lines added + lines
deleted) of a module during a specified observation period

Table 6.3: Modification and problem report metrics of software modules.

Status, Priority, Resolution and Severity. Each category has several sub-categories that specify
• the different values of a main category. For instance, the status of a problem report in Mozilla

can be unconfirmed, new, assigned, reopened, resolved, or verified. Basically, the values of the
four main categories are unique hence we use them to build the names for the different problem
report metrics. For instance, NPR-verified denotes the number of problem reports with
status verified.

Table 6.4 lists the set of metrics to assess the coupling between modules. Basically, they
describe the number of relationships of a certain type that a module has with other modules.
Related to the E-FAMIX meta model these are file includes, class inherits and aggregates, method
invokes, variable accesses, and type references. The list depicts the coupling metrics according to
the coupling via class inheritance and method invocation. We use different prefixes to distinguish
these metrics, such as "IH" for class inheritance and "I" for method invocations metrics.

In addition to the source code coupling metrics, Arch View takes into account change coupling
metrics. Basically, they denote the number of pairwise modifications that occurred for a module
during a given observation period. Table 6.5 lists these metrics.

6.3.2 RELATIONSHIP METRICS

In addition to metrics computed for software modules, ArchView computes metrics for abstracted
relationships. With regard to the E-FAMIX meta model these relationships are: includes,
inherits, aggregates, invokes, accesses, hasType, and couples. Basically,
measured metric values denote the number of aggregated lower-level relationships and involved
source and target entities. Table 6.6 lists the set of metrics used in this thesis.

For more object-oriented source code metrics we refer the reader to the publications ofLorenz
and Kidd [LK94], Henderson-Sellers [HS95], and Fenton and Pfleeger [FP96]. The metrics
presented there can also be used by ArchView.

Chapter 6: Architectural ViewAbstraction 45

Metric
IHFan-in

IHNCE-in
IHNR-in
IHNAR-in
IHFan-out

IHNCE-out
IHNR-out
IHNAR-out
IFan-in

INCE-in

INR-in
INAR-in
IFan-out

INCE-out

INR-out
INAR-out

Description
Fan-in of class inheritance - number of classes of other modules that inherit
behavior from the module
Number of contained classes that are inherited by classes of other modules
Number of in-coming inheritance relationships
Number of abstracted in-coming inheritance relationships
Fan-out of class inheritance - number of classes of other modules from which
a module inherits behavior
Number of contained classes that inherit behavior from other modules
Number of out-going inheritance relationships
Number of abstracted out-going inheritance relationships
Fan-in of function/method calls -number of functions/methods of other mod-
ules that call the module's functions/methods
Number of contained functions/methods that arc called by functions/methods
of other modules
Number of in-coming call relationships
Number of abstracted in-coming call relationships
Fan-out of function/method calls - number of functions/methods of other
modules that are called by the module's functions/methods
Number of contained functions/methods that call functions/methods of other
modules
Number of out-going call relationships
Number of abstracted out-going call relationships

Table 6.4: Source code coupling metrics (in-coming and out-going class inheritance and function
calls) of software modules.

6.4 ABSTRACTION ALGORITHM

The goal ofthe ArchView abstraction algorithm is to reflect lower-level source code and release
history information on higher levels of abstraction, such as onto the level of software mod-
ules. The input to our abstraction algorithm is an integrated source code and release history data
model. Consider the following simplified integrated E-FAMIX conform data model depicted by
Figure 6.2.

The Abstraction-Example has been decomposed into two software modules PA and PB
whereby each module is implemented by one package with corresponding name. Package PA
contains the class GAl with the methods aO, bO, and cO and further class GA2 with the methods
711.0 and nO. Package PB contains the class GBI with the methods xO and yO. Higher-level
entities are packages (i.e., modules) and classes. The containment relationship between entities
are depicted as dashed (gray) arcs. Call relationships between methods are depicted as solid (red)
arcs.

Source code model data of this form is obtained from the ArchView repository and input to
the abstraction algorithm. The algorithm consists of following four basic steps:

Chapter 6: Architectural ViewAbstraction 46

Metric
CFan-inout

CNCE
CNAC
CNMR
CENT

Metric
RNMR
RNMRPR

RENT
RNAC
RNCR
RNCE
RNAI
RNSUB
RNSUP
RNAIH

Description
Fan-in and fan-out of change coupling - number offiles of other modules that
a module is change coupled with
Number of contained files that are change coupled with files of other modules
Number of abstract change coupling relationships
Number of modification reports involved in the change coupling
Entropy of modification reports involved in the change coupling

Table 6.5: Change coupling metrics of software modules.

Description
Number ofmodification reports involved in the change coupling
Number of modification reports involved in the change coupling for which a
link to a problem report exist
Entropy of modification reports involved in the change coupling
Number of abstracted change coupling relationships
Number of calling functions/methods
Number of called functions/methods
Number of abstracted function/method call relationships
Number of contained sub classes
Number of inherited super classes of other modules
Number of abstracted class inheritance relationships

Table 6.6: Metrics of abstracted change coupling, invokes, and inherits relationships.

1. Select entities and relationships to beprocessed: The user selects a set of software modules
to be analyzed. In our example we parameterize the algorithm with the software modules
(packages) PA and PB, and the invokes relationship type. Additionally, we specify the
source and target entity type of the relationships (lv!ethod).

2. Compute contained source entities for each selected entity pair: Depending on the rela-
tionship type to be analyzed the algorithm computes sets oflower-Ievel entities contained
by each element of the pair. For example, analyzing the invokes relationship between the
modules PA and PB the algorithm computes the two sets setA and setB. setA holds the
methods aO, bO, cO, mO, and nO that are contained by package PA. setB comprises the
methods xO, and yO that are contained by package PB.

3. Query relationships between sets of entities: Based on the source code model graph the
algorithm computes the direct relationships from entities of setA to entities of setB. Re-
ferring to our example the result of the query comprises the direct invokes relationships
bO ~ .TO, mO ~ .TO, nO ~ xO, and nO ~ yO. Whenever the query retrieves
at least one lower-level relationship the algorithm aggregates these relationships to an ab-
stract relationship and computes the coupling metrics presented by Table 6.6.

4. Olltput abstracted relationships and metrics: The result comprises aggregated (i.e., ab-

Chapter 6: Architectural View Abstraction

Abstraction- Example

47

o
; "

; "GG
I I \

,
G

o higher-level entity D method

- - ~ contains -- invokes

Figure 6.2: Source code model with 2 packages, 3 classes, 7 methods, contains and invokes
relationships.

stracted) relationships between selected higher-level entities and computed metric values
assigned to them. They are stored in the source code model.

The enriched source code model of our example is depicted by Figure 6.3. It contains a new
invokes arc between package PA and PB with three measured values that indicate the number
of aggregated lower-level invokes relationships (RNAI), the number of callers in PA (RNCR)
and the number of callee's in PB (RNCE).

Listing 6. I outlines the implementation of the ArchView abstraction algorithm in Java using
the structured query language (SQL) for infoffilation retrieval.

Listing 6.1: Algorithm to abstract direct relationships of type r.Type between the higher-level
entities cA and cB.
public class Abstractor extends Query {

private Entity eA, eB;
private String fromType, toType;
private String relType;

protected arcFactory = new ArcFactoryO;

public Abstractor(Entity eA, Entity eB, String fromType,

Chapter 6: Architectural ViewAbstraction 48

Abstraction- Example~ ,

~_.d>_r~ ~_~,_-----.

[PA J 3 4 : [PB J
, I,,GG/

B
I

~ higher-level entity D method

- - I>- contains --- invokes

Figure 6.3: Source code model graph enriched by abstracted invokes relationship between PA
and PB and computed coupling metries.

String toType, String relType) {
this(eA, eH, fromType, toType, relType);

}

public Arc abstractRelO {
Arc arc = null;

II get entities of eA and entities of eH
Vector setA = eA.getContainedEntities(fromType);
Vector setH = eB.getContainedEntities(toType)

II select relationships between entities of setA and setH
String sql = "select count(*) nr, "

+ "count(distinct r.from) nrFrom, "
+ "count(distinct r.to) nrTo "
+ "FROM " + relType + "r "
+ "WHERE r.nodeFrom IN (" + buildIDs(setA) +") "
+ "AND r.nodeTo IN (" + buildIDs(setB) + ")";

Statement sqlStm = connection.createStatementO;

Chapter 6: Architectural ViewAbstraction

ResultSet rs = sqIStm.executeQuery(sq\);
if (rs.next()) {

// create new abstract arc and add measures
arc = arcFactory.create(relType, eA.getID(), eB.getIDO);
arc .addAttribute("nr", rs.getInt("nr"));
arc.addAttri bute("nrFrom", rs.getInt("nrFrom"));
arc .addAttribute("nrTo", rs.getInt("nrTo"));

}

return arc;
}

}

49

The algorithm abstracts direct relationships of type l'Type between two entities eA and eB. Step
1 accords to the initialization ofthe algorithm that is done in the constructor. The algorithm itself
is implemented by the abstmctRelO method. According to step 2 it first computes the contained
entities of eA and eB stored in the vectors setA and setB. The identifiers of entities of both sets
are used in the SQL-query that is composed next (step 3). It is executed on the database table
relType and retrieves relationships with a source (from) entity that is contained by setA and
with a target (to) entity that is contained by setB. The number of matched relationships (nr) and
number of source (nrFrom) and target (m'To) entities are returned. If relationships have been
found then a new arc object oftype relType between eA and eB is created. Retrieved measures
are assigned to the arc object that is returned to the calling method.

6.5 SUMMARY

The ArchView abstraction algorithm aggregates relationships between lower-level source code
entities along the containment hierarchy up to higher-level entities, such as classes, files, direc-
tories, packages, and respectively software modules and subsystems. A relationship between
two higher-level entities is established whenever there is at least one relationship between their
contained source code entities.

In addition to abstracted relationships, the algorithm derives measures for each higher-level
entity and abstracted relationship. They are indicators for the size of entities and the strength of
abstracted relationships. Established relationships, as well as computed measures are added to
each source code model.

The abstraction step is applied to data models of selected releases. Enriched models are
used in the analysis and visualization phase to analyze and present higher-level views on the
implementation and its evolution.

CHAPTER 7

VISUALIZATION & ANALYSIS

This chapter describes the ideas and techniques used by Arch View to compute different views
on the integrated data model. Each view highlights a particular aspect and aids an engineer in
understanding the current implementation and its evolution.

7.1 INTRODUCTION

Visualization has been accepted as a useful means to understand complex data, because visual
displays allow the human brain to study multiple aspects of complex problems - like reverse
engineering - in parallel [SDBP98]. However, often the visualizations themselves are hard to
interpret, and in the case of evolutionary data, they often succeed in obscuring the relevant infor-
mation.

Visualization has to focus on the interesting information and hide/filter information of minor
interest. With regard to architecture recovery the degree of interestingness depends on: I) the
architectural aspect/property the user wants to analyze and 2) the viewpoint from which the user
looks at the extracted, integrated, and abstracted data models.

The aspect focused on by Arch View concerns the implementation and the evolution of soft-
ware systems. They comprise aspects of the:

• Logical structure of the implementation:

- Which are the main building blocks (i.e., implementation units) ofthe software sys-
tem?

- Which units are coupled with each other and how strong are these coupling depen-
dencies?

- Are there entities and relationships that indicate Bad Smells, such as cyclic coupling
dependencies or God Modules?

50

Chapter 7: Visualization & Analysis

• Evolution:

51

- How did the software modules and the coupling dependencies evolve - can we iden-
tify change prone modules and Bad Smells, such as Divergent Change or Shotgun
Surgery?

- Which units were most vulnerable to problems and modified most frequently?

- Are there change couplings between modules and how strong are they?

To answer these questions Arch View provides a number of different views on the implemen-
tation and its evolution. In the following we present these views and describe the visualization
techniques that we use to compute them .

• 7.2 FEATURE VECTORS AND EVOLUTION MATRICES

The data input to the visualization and analysis techniques of Arch View is obtained from the in-
tegrated data model stored in the Arch View repository. It contains the software module informa-
tion, the link to the source code entities that implement a software module, the aggregated source
code and change coupling dependencies between software modules and lower-level source code
entities, and measured values of module and relationship metrics.

Metric values of each module and relationship are represented by an -i-dimensional feature
vector 1\1 = {ml, m")., ... , mi}' To denote the evolution of a module or relationship the values of
the same set of metrics are tracked over TL releases. The results are per module or relationship
a set of TL feature vectors. The release number is added to the feature vector leading to 1\1n =
{mr, m;!, ... , mit}. Based on these vectors the evolution of a module or relationship is expressed
by the following evolution matrix E containing the TL vectors with measured values of i metrics:

m,' mil
1 Im; m~

EiXTl =

m' rn"• .,

Evolution matrices are computed for each selected module and relationship. The number of
metrics to be considered depend on the aspect to analyze or the view to visualize respectively.
ArchView provides a predefined set ofviews and metric configurations but also supports the user
to compose his/her own views.

Table 7.1 provides a tabular representation of an evolution matrix. It lists an excerpt of metric
values used to characterize the size of a software module. In this example, the software module
is Mozilla's Document Object Model (DOM) module and metric values are of seven selected
Mozilla releases. The abbreviations of the metrics are listed in the first column. Remaining
columns are headed by the release number and contain the measured values.

Chapter 7: Visualization & Analysis

Metric 0.92 0.97 1.0 1.2 1.4 1.6 1.7
NOD 44 45 50 50 50 50 49
NOF 397 405 443 464 477 485 492
NOe 459 476 528 566 595 607 609
NOM 9.802 9.395 10.346 10.823 11.104 11.130 11.068
NGF 333 880 288 325 341 334 330
NFM 10.135 10.275 10.634 11.148 11.445 11.464 11.398
NOA 906 988 1.118 1.236 1.292 1.316 1.293
NGV 219 227 234 262 250 237 229
NOV 1.125 1.215 1.352 1.498 1.542 1.553 1.522

52

Table 7.1: Example of an evolution matrix E9x7 containing measured values of 9 module size
metrics ofMozilla's DOM module of7 releases.

The size values listed in the table clearly indicate a growing module. For instance, the number
affiles (NFM) that implement the DOM module increased from 397 to 492 source files. A similar
trend can be observed for the number of global functions and methods (NGF) that increased from
10.135 to 11.398 functions/methods.

In this form evolution matrices are input to the Arch View analysis and visualization tech-
niques to, for instance, generate views on one or several releases.

7.3 HIGHER-LEVEL VIEWS ON A RELEASE

The basic principle of the Arch View visualization technique is the mapping of module and rela-
tionship metrics to graphical attributes. A recent approach that concentrated on such a mapping
are the polymetric views introduced by Lanza et al. [L003]. Basically, the model data is visu-
alized with graphs whereby nodes represent the source code entities and edges the relationships
between them. The extension to traditional graph visualization approaches is that nodes and
edges of graphs are rendered with metric values as demonstrated by Figure 7.1.

With the polymetric view technique up to 5 different metrics in nodes and 3 different metrics
in relationships can be visualized. The five node metrics are for the width, height, color, x-, and
y-position of a node in a graph. The three edge metrics are for the width, length, and color of an
edge.

The width, height, length, and color metrics of nodes and edges can be used in different graph
layouts. The x- and y-position metrics are not applicable in graph layouts in which the position
is computed by the layout algorithm (e.g., tree, spring, etc.).

Fenton and Pfleeger call this rendering technique measurement mapping [FP96]. Their con-
dition is: "A measurement mapping Ai must map entities into numbers and empirical relations
into numerical relations in such a way that the empirical relations preserve and are preserved by
the numerical relations". This condition is satisfied by the polymetric views technique in that
larger values lead to larger glyphs.

Chapter 7: Visualization & Analysis 53

- Width Metric --
x - Position Metric
y - Position Metric

Color Metric

Width Metric

t
Heigth
Metric

t

Arc Metrics:

Node Metrics:

Edges:
Scope:

Figure 7.1: Mapping of metrics to graph attributes using polymetric views.

ArchView adapts the polymetric views technique to visualize the various views on computed
data models. Metric values are retrieved from the evolution matrices that in case of one release
are vectors. The mapping of the values of a vector to graphical attributes (i.e., size, color and
position) is done by the graph visualization tool.

We use Lanza's CodeCrawler [Lan04] to draw and layout the different views on the imple-
mentation of one software release. In addition to the existing polymetric views, we specify a set
of new views that also take into account our evolutionary metrics. The example views are taken
from the Mozilla case study that we present in Chapter 8.

For describing the configuration of each view we use the following schema:
Nodes: Entity type represented by a node in the graph. We consider software

modules (Mozilla), source files, packages, and classes.
Relationship type represented by an edge in the graph.
The scope of a view can be all or a selected set of modules of one or n
releases.
List of graph node attributes and mapped module metrics. For tradi-
tional polymetric views graph node attributes are Size, Color, and Or-
der. For views with Kiviat diagrams we list the categories of metrics.
List of graph edge attributes and mapped relationship metrics. In this
thesis we limit the edge attributes to the Width of edges.

For each view we present the interpretation of the visualized information on hand of an
example and the possible variations in the view configuration.

Chapter 7: Visualization & Analysis 54

1. MODIFICATION HOTSPOTS VIEW

Full system of 1 release

Width: NMR
Height: NPR
CCMPLX
NMR

Color:
Order:
Arc Metrics:

The objective ofthis view is to highlight the implementation units that were most vulnerable to
problems and modified most frequently as well as the idle and stable entities.

Nodes: Software modules, source files
Edges:
Scope:
Node Metrics:
Size:

View Interpretation Large nodes represent fault prone entities that were frequently modified
during a specified observation period. They are the entities that influenced the evolution of a
system most. Small nodes represent entities that were not touched during this time hence denote
the stable entities. The color of a node indicates the McCabe Cyc10matic Complexity of a module
whereby dark nodes represent the complex modules.

Figure 7.2 depicts an example taken from the Mozilla case study. Evolution metric values
are of modification and problem reports that were committed and reported during the time from
release 1.6 to 1.7. The large nodes at the bottom represent the change prone source files with a
large number ofreported problems and committed changes. The small nodes on the top represent
the stable entities. The color of nodes indicates that most of the change prone source files have
also high values for the cyc10matic complexity and program difficulty metries.

Figure 7.2: Modification hotspots view on Mozilla 1.7 source files with measured evolution and
complexity metries. Node: width=NMR; height=NPR; color=CCMPLX; order by NMR.

Chapter 7: Visualization & Analysis 55

Variations For the evolution metrics the user can select different observation periods. Instead
of the cyclomatic complexity the user can also select other size and complexity metrics, such as
lines of code (LaC), number of functions and methods (NFM), or the Halstead program difficulty
(HALDTFF) metric.

2. SOURCE CODE COUPLING VIEW

RNAI

Width: IFan-out
Height: IFan-in
NFMColor:

Order:
Arc Metrics:
Width:

This view is used to represent the coupling between implementation units meaning software mod-
ules, sourcefiles, packages, or classes. The objective is to highlight the strong coupled entities
and the strong coupling relationships. In the presented view configuration coupling relationships
refer to function/method calls.

Nodes: Software modules, source files, packages, classes
Edges: invokes
Scope: Selected elements of I release
Node Metrics:
Size:

View Interpretation Wide, narrow nodes represent implementation units that use functional-
ity offered by other units but themselves are not used by other units. They are typical service
requesters. Tall, narrow nodes denote service providers whose provided functionality is used
by other units. The color indicates the amount of functionality implemented by a module - the
darker a node the more functionality the entity contains.

Figure 7.3 depicts an example of a source code coupling view. The node on the right side
of the graph represents a typical provider of services that are used by the requester node on the
left side. Edges represent the coupling relationships that are due to function/method calls. The
direction of edges denotes the usage of functionality. To indicate the direction of a relationships
the edge is drawn from the bottom of the requester node to the top of the provider node. The
width indicates the strength of the coupling relationships in terms of number of function/method
invocations.

Variations Views can get complex when visualizing a large number of entities and relation-
ships. To produce graspable views the user is able to interpret Arch View provides filtering and
user-selection. Thresholds are used to filter nodes and edges, such as standalone nodes and edges
of weak coupling relationships.

Regarding the type of coupling the user can select different types of source code relationships
and use the corresponding fan-in, fan-out, and size metrics. For instance, to depict the coupling
by class inheritance we select the inherits relationship type, the IHFan-out and IHFan-in, and the
number of classes (NOC) metrics.

Chapter 7: Visualization & Analysis

--
56

Figure 7.3: Source code coupling view by function/method calls of two software modules. Node:
width=IFan-out; height=IFan-in; color=NFM; Arc: width=RNAI.

3. CHANGE COUPLING VIEW

This is similar to the source code coupling view but shows the change dependencies between
implementation units instead of the source code couplings. Visualized metrics refer to an user-
specific observation period. The objective is to highlight the entities that most frequently were
modified together and consequently have a strong change coupling.

Nodes: Software modules, source files
Edges: couples
Scope: Selected elements of I release
Node Metrics:
Size: Width: NMR

Height: NMR
Color:
Order:
Arc Metrics:
Width: RNAC

View Interpretation Large nodes represent frequently modified entities, such as the node on
the right side of the graph of Figure 7.4. Small nodes represent stable entities. Each edge
denotes a change coupling between two entities that resulted from a modification that affected
both entities. The more such pairwise modifications occurred the stronger is the change coupling
as indicated by the width of an edge.

Variations The selection of the entities of interest as well as filtering reduces the amount of
information and keeps views understandable. Concerning the evolution metries the user can
select a different observation period to analyze the change coupling that occurred during this
period.

Chapter 7: Visualization & Analysis 57

Figure 7.4: Change coupling view oftwo software modules. Node: width=NMR; height=NMR;
Arc: width=RNAC.

7.4 VISUALIZING MULTIPLE EVOLUTION METRICS

The Arch View visualization approach follows the polymetric views principles of mapping metric
values to graphical attributes. However, there is a problem with the number of metrics that can
be visualized for a node using current tools, such as CodeCrawler. The primary reason lies in the
limited number of attributes for the glyphs used to draw the graph nodes. In case of CodeCrawler
the glyphs support up to 5 metrics whereby the metrics for the x- and y-position are not applicable
in all graph layout algorithms.

Kiviat (also called radar) diagrams are suited to present multivariate data. Figure 7.5 shows
an example of a Kiviat diagram representing measured values of six metrics of moduleA. The six
metrics 2\;11,"'12, ... , lv16 are circularly arranged. For each metric there is a straight line drawn
from the center point ofthe diagram to its outer boundary. The value ofeach metric m~,m;...,m~
is plotted on its corresponding straight line and adjacent values are connected by lines. The result
is a polygon with 6 vertices.

Ml

Figure 7.5: Kiviat diagram with values of6 metrics 1111,1\112, , lv16 ofmoduleA.

Chapter 7: Visualization & Analysis 58

Full system of 1 release

CCMPLX, HALCONT, HALEFF, HALDIFF
LOC, NOD, NOF, NOP, NOC, NFM, NOV

To prevent diagrams to become cluttered with information certain requirements have to be
met: 1) nOffilalization of metric values to a maximal drawing length to prevent over-sized Kiviat
diagrams; 2) using a minimum (i.e.. an offset) that is added to computed values to prevent in-
formation cluttering in the center of Kiviat diagrams. Metric values are drawn with respect to
these minimum and maximum drawing range. We will see later on that the limitation in size is
necessary to link Kiviat diagrams to Kiviat graphs.

In the following we present two new polymetric views with Kiviat diagrams that aid in ana-
lyzing the size, complexity, and evolution of implementation units.

1. DETAILED SYSTEM HOTSPOTS VIEW

This view is an extension ofthe system hotspots view described by Lanza [Lan03]. The primary
objective is to identify the large and small as well as complex and trivial implementation units.

Nodes: Software modules, source files, packages, classes
Edges:
Scope:
Node Metrics:
Complexity:
Size:
Arc Metrics:

View Interpretation Kiviat diagrams with big circles indicate large and complex elements. If
the circles are exceptionally large, then the element is a God Module. In contrast, small circles
indicate trivial elements of small size and low complexity.

Circles can exhibit indentations and peaks. For instance, a peak in the number of variables
(NOV) metric indicates data storage elements. Diagrams with a low NFM value but high com-
plexity denotes modules that implement complex algorithms.

Figure 7.6 shows an example of a Kiviat diagram of one software module. The diagram
indicates a large, complex module that contains a large number of variables and attributes. The
relation between the number of functions (NFM) and the LOC metrics indicates a module with
few but long and complex functions and methods. The indentation by the number of packages
(NOP) metric is due to the fact that the developers did not use C/C++ namespaces.

Variations Depending on the abstraction level the user can add or omit different size metrics.
For instance, on the file and class level the NOD, NOF, and NOP metrics are not used. Instead of
this metrics the user may add metrics quantifying the number of attributes and methods according
to the different access modifiers.

2. DETAILED MODIFICATION HOTSPOTS VIEW

This view presents the evolution metrics of implementation units that currently are software
modules and source files. The objective is to highlight the elements with a large or smallnumber

Chapter 7: Visualization & Analysis

8:NOC

4:LOC

3:HALDIFF

9:NFM

lO:NOV

O:CCMPLX

l:HALCONT

59

Full system of 1 release

Software modules, source files

NMR
NPR, NPR-s-, NPR-blocker, NPR-critical, NPR-enh, NPR-major,
NPR-minor, NPR-normal, NPR-trivial, NPR-p-, NPR-p, NPR-PI,
NPR-P2, NPR-P3, NPR-P4, NPR-P5

Figure 7.6: Detailed system hotspots view of one software module with complexity (m. 0..3) and
size metrics (m. 4..10).

of modifications and reported problems. The first category denotes change prone m~dules to
which most of the maintenance and evolution activities were dedicated to. The latter category
denotes idle elements.

Nodes:
Edges:
Scope:
Node Metrics:
Modifications:
Problems:

Arc Metrics:

View Interpretation Change prone modules are indicated by peaks for the number of mod-
ifications (NMR) and reported problems (NPR). The latter is further detailed by the different
problem report metrics. The most change prone modules have peaks in measured NPR-critical
and NPR-PI and NPR-P2 metrics. The first metric denotes the number of critical problems and
the latter the number of problem reports of high priority. Figure 7.7 depicts an example of a
change prone software module.

Another characteristic diagram pattern denotes elements that underwent cosmetic modifica-
tions. They are indicated by relatively high values for the NPR-trivial, NPR-P4 and NPR-P5
metrics that refer to the number of trivial problems with low priority.

Diagrams with small circles denote elements with few modifications and problems. We call
these elements idle elements.

Chapter 7: Visualization & Ana/ysis 60

O:NMR

l:NPR

16:NPR-PS

13:NPR-P2

12:NPR-P1 14:NPR-P3

11 :NPR-p lS:NPR-P4
10:NPR-R-

7:NPR-minor

6:NPR-major 3:NPR-blocker
S:NPR-enh 4:NPR-critical

9:NPR-tri . I

Figure 7.7: Detailed modification hotspots view of one software module with modification and
problem report metrics.

Variations The user can reduce the number of metrics to one category, such as severity or
priority metrics. Because the metrics are time dependent the user mayalso select different ob-
servation periods.

7.4.1 VISUALIZING DATA OF N RELEASES

In addition to visualizing and analyzing data of one release another objective of Arch View is
to communicate the evolution of metrics across n releases. So far we used Kiviat diagrams to
visualize multiple metrics. In this section we demonstrate how we extended the Kiviat diagrams
to also visualize multiple metrics of n releases.

The two principles that allow Arch View to visualize data of several releases are: I) normal-
izing metric values to the range determined by the minimum and maximum of each metric; and
2) using a metric to represent the time-order of releases.

Reconsidering the evolution matrix Arch View computes the maximum of each metric across
the n releases.

A1AX(iVIi) = max(m:, m:', ... , m7)

The minimum of each metric can be considered o. The effective drawing length of each metric
value is computed by nonnalizing the value by its maximum and adding an offset to it.

The constant c specifies the maximum drawing size and together with the offset constant is
used to control the size of Kiviat diagrams. These constants can be configured by the user. The
different values computed for a metric across n releases are plotted in the diagram and adjacent

Chapter 7: Visualization & Analysis 61

metries of the same release are connected. The result is a diagram that per release shows a
polygon that represents the normalized metric values of one feature vector.

The evolution of metries is highlighted by filling the polygons emerged between two sub-
sequent releases and adjacent metries with different colors. Using appropriate color gradients,
such as the rainbow colors, the order ofreleases is made transparent and strong changes in metric
values are highlighted. But, there is a limit to the number of data and releases because diagrams
get blurred with polygons and colors. Based on our experiences with the Mozilla project we set
this limit to 20 metrics of 10 releases.

Strong changes in metric values are further emphasized by grouping metries according to
certain properties, such as size, complexity, or method call fan-in and fan-out of modules. Re-
sulting sectors contain metrics that quantify certain aspects ofthe implementation and evolution
respectively and their trends. For example, by grouping metries that quantify in-coming and out-
going uses relationships in two separate sectors of the diagram users can categorize modules
into service providers and service requesters or both.

M3

M4-

moduleA
/

MS

M2

\
M6

Ml

Releases:

1t1 2

~2 -- 3

Figure 7.8: Kiviat diagram with 6 metries Ml, 11-12, ... , 1"\1/6 of3 releases ofmoduleA.

Figure 7.8 depicts an example of visualizing six metries of mod1lleA of three releases 1, 2,
and 3. In this example A'll presents the number of modifications (NMR) between two subsequent
releases which also specifies the chronological order of releases. Consequently, metric 1v12 is
decreasing whereas the values of remaining metries increase from release 1 to release 2. From
release 2 to 3 the values ofmetric A12, 1\13, and 1\16 increase whereby A14 and 1\15 decrease.

1. DETAILED SYSTEM HOTSPOTS EVOLUTION VIEW

This view is an extension to the detailed system hotspots view presented before. The extension
is by visualizing measured values of the same set of complexity and size metries of up to n
releases. The primary objective ofthis view is to represent the growth in size and complexity of
implementation units, such as software modules, files, packages and classes.

Chapter 7: Visualization & Ana~vsis 62

Nodes:
Edges:
Scope:
Node Metrics:
Complexity:
Size:
Arc Metrics:

Software modules, source files, packages, classes

Full system of '/I, releases

eCMPLX, HALCONT, HALEFF, HALDlFF
LOC, NOD, NOF, NOP, Noe, NFM, NOY

View Interpretation The diagrams facilitate the detection of several evolution patterns that
have been described by Lanza in his thesis [Lan03]. The Pulsar is indicated by overlapping
polygons. A diagram with small circles in the earlier releases that suddenly grew to a large circle
in one ofthe recent releases denotes a Supernova. In contrast, large circles in the earlier releases
that suddenly shrank to small circles indicate a White Dwm:j: Diagrams with large circles indicate
God Modules that were and still are large in size and complex. Lanza refers to this pattern as Red
Giant. Anidle module is indicated by nalTOWpolygons as shown by Figure 7.9.

2
3

4

5

6

7

Releases:

O:CCMPLX

lO:NOV

l:HALCONT

2:HALEFF
3:HALDIFF

6:NOF

5:NOD

8:NOC

Figure 7.9: Detailed system hotspots evolution view with size and complexity metrics of 7 re-
leases indicating an idle module.

Variations For this view the set of variations of the detailed system hotspots view are appli-
cable. In addition, the number of releases can be configured to focus on a specific observation
period.

2. DETAILED MODIFICATION HOTSPOTS EVOLUTION VIEW

The focus of this view is on visualizing the trends of evolution metrics. The objective is to
highlight elements that frequently were involved in modifications and problems as well as to
highlight the stable clements.

Chapter 7: Visualization & Ana~vsis 63

Nodes:
Edges:
Scope:
Node Metrics:
Modifications:
Problems:

Software modules, source files

Full system of 11, releases

NMR
NPR, NPR-s-, NPR-blocker, NPR-critical, NPR-enh, NPR-major,
NPR-minor, NPR-normal, NPR-trivial, NPR-p-, NPR-p, NPR-PI,
NPR-P2, NPR-P3, NPR-P4, NPR-P5

Arc Metrics:

View Interpretation Kiviat diagrams with large cü-eies and polygons denote elements that
were most vulnerable to problems. They are the change prone modules with respect to the
evolution of the system. Typically, they have a high number of modification (NMR) and prob-
lem reports (NPR). Indentations are possible for problem report metries of low priority, such as
NPR-trivialorNPR-P5.

Diagrams that show large polygons in the earlier releases and narrow polygons in the recent
releases indicate elements whose evolution became stable. Figure 7.10 depicts such an imple-
mentation unit. The inner polygons show an increase ofthe number ofreported critical problems
of high priority in the first three releases. Then, the polygons became narrow that indicates a
reduction of reported problems.

2

3

4

S

6
7

Releases:

1
2

3
4

(IS
~/_6

O:NMR

1:NPR

7:NPR-minor

6:NPR-major 3:NPR-blocker
S:NPR-enh 4:NPR-critical

13:NPR-P2
12:NPR-P1 14:NPR-P3

11:NPR-p 1S:NPR-P4
10:NPR-p-

16:NPR-PS
9:NPR-trivial

8:NPR-normal

Figure 7.10: Detailed modification hotspots evolution view with evolution metries of 7 releases.

Variations The user can select a different set of problem report metries to concentrate on the
evolution of a particular problem report category. Further, the observation period can be config-
ured to show the changes in measured values between a specific set of releases.

Chapter 7: Visualization & Analysis

7.4.2 KIVIAT GRAPHS

64

Arch View uses a Kiviat diagram per module to represent values of multiple metrics and their
changes across several releases. But, although the diagrams provide quantitative measurements
they do not explicitly show the coupling dependencies between the implementation units.

To also represent these dependencies Arch View links diagrams to Kiviat graphs. Nodes in the
graph represent the implementation units and edges represent the coupling dependencies between
them.

1. SOURCE CODE COUPLING EVOLUTION VIEW

The view is an extension to the source code coupling view. Its objective is to show the coupling
by function calls between implementation units. Coupling metrics presented by Kiviat diagrams
are of up to n releases and quantify the call fan-in and fan-out properties of modules, files or
classes and changes in these metrics. Edges represent the aggregated function call relationships.

Nodes: Software modules, source files, packages, classes
Edges: invokes
Scope: Selected elements of n releases
Node Metrics:
Node: NFM, Fan-in (INAR-in, IFan-in, INCE-in, INR-in) and Fan-out (INAR-

out, INCE-out, IFan-out, INR-out) metrics
Arc Metrics:
Width: RNAI

View Interpretation The view is extension to the Source Code Coupling View. It provides
further measured metric values that facilitate the characterization of an implementation unit into
service providers, service requesters or both. The node on the right side of the graph shown in
Figure 7.11 represents a typical requester - high fan-out values and fan-in values that are almost
zero. The node on the left side refers to an element that is both, a requester and a provider of
functionality. Its diagram shows high fan-in and fan-out values.

Other interesting aspects visualized by this view concern the change in the provider and
requester behavior. For instance, diagrams that show decreasing values for the fan-in and fan-out
metrics but a stable value for NFM metric indicates elements that die. Either the functionality
has been moved to other elements or it became obsolete. When the values reach zero then the
element represents dead code and should be removed.

Steadily increasing fan-in and fan-out metric values indicate increasing coupling with other
elements. If the corresponding coupling relationship directs in one direction then it is not a
problem per se. However, a cyclic coupling dependency denotes a design flaw.

Variations Regarding the node metrics the same variations as mentioned for the source code
coupling view are applicable. The user also can select different observation periods to analyze
the coupling between entities at different points in time.

Chapler 7: Visualizalion & Ana~vsis

7:IFan-out
6:INCE-out

:INR-out

:NFM

:INAR-in

2:IFan-in

7:IFan-out
6:INCE-out

2:IFan-in

8:INR-out

O:NFM

l:INAR-in

65

Releases:

I;1 -- 2
;, 2 -- 3

3 -- 4
04 -- 5
() 5 -- 6
~6 -- 7

Figure 7.11: Source code coupling evolution view on the coupling by function calls with mea-
sured call fan-in and fan-out metric values of 7 releases.

7.5 SUMMARY

In this chapter we presented the concepts and techniques to create views that show implementa-
tion and evolution specific aspects of a software system. The focus is on highlighting the change
prone modules and heavy coupling relationships.

For the creation of these views we built upon the polymetric views technique and extended
it towards the visualization of multiple metrics of n releases. Using polymetric views we intro-
duced a set of hotspots views that show the size, complexity, and coupling metrics of a system's
modules as well as their modification and problem report data. Size, complexity, and coupling
metrics are used to assess maintenance and evolution efforts. Hotspots refer to modules that in
relation to other modules need more effort. How much effort more is needed is indicated by the
number of problems and modifications.

In extension to the traditional polymetric views we presented the Kiviat diagrams that we
use to: I) visualize values of multiple metrics tracked over n releases; and 2) visualize source
code and change couplings with Kiviat graphs. Based on this technique we introduced several
views, such as the Detailed System Hotspots and Detailed Modification Hotspots Evolution View.
They facilitate a more detailed diagnosis by highlighting the progression of metric values. Users
can spot strong increases and decreases in metric values that either indicate improvements or
degradations in the design and architecture. For instance, design degradation is indicated by
strong increases in the coupling metrics that are accompanied by increasing numbers ofproblems
and modifications. In contrast, an improvement is indicated by low coupling values accompanied
by decreasing numbers of problems and modifications.

In the next chapter we demonstrate the ArchView techniques by applying them to the Mozilla
open source project.

•

CHAPTER 8

MOZILLA CASE STUDY

To demonstrate and evaluate our approach we applied ArchView to the Mozilla open source
software project. The source code as well as the release history data (CVS and Bugzilla) are
freely available on the Mozilla developers web-site. The primary objective of the case study is
to highlight aspects that concern the implementation and the evolution ofMozilla.

8.1 MOZILLA PROJECT

The Mozilla data that we considered in the case study stems from 7 Mozilla releases starting
with release 0.92 (28th of June, 2001) up to release 1.7 (l7th of June, 2004). The time interval
between each two subsequent releases is about half a year. Table 8.1 lists the set of releases
together with their release dates, the number of source code files (.h, .cpp, and .c) and the total
lines of C/C++ source code (LaC) per release.

Release I Date #.h #.cpp #.c NOF LOC
Mozilla 0.92 28th of June, 2001 4.695 3.847 1.600 10.142 3.306.122
Mozilla 0.97 21st of December, 2001 4.824 3.896 1.635 10.355 3.518.124
Mozilla 1.0 5th of June, 2002 5.258 3.961 1.970 11.189 3.868.025
Mozilla 1.3a 13th ofDecember, 2002 5.464 4.119 1.806 11.389 3.924.064
Mozilla 1.4 30th of June, 2003 5.585 4.168 1.832 11.585 3.986.466
Mozilla 1.6 15th of January, 2004 5.473 4.161 1.546 11.180 3.835.173
Mozilla 1.7 17th of June, 2004 5.662 4.278 1.562 11.502 3.912.631

Table 8.1: Selected Mozilla releases with the number of files (NOF) and lines of code (LaC)
metrics. The number ofheader files (#.h) includes header files generated from .idl files.

The table shows that the amount of source code is increasing from release to release. For
instance, the number of source files increased by 360 files or 606.509 LaCs from Mozilla release
0.92 to 1.7.

66

Chapter 8: Mozilla Case Study 67

•

An interesting peak in terms of number offiles and lines of code is by release 1.4 with 11.585
source files and 3.966.466 LaCs. Up to this release source code has been added permanently
due to addition of new features or extension of existing features. Then, from release 1.4 to 1.6
the amount of source code decreased by 405 source code files (151.293). In particular, several .c
and .cpp files have been removed or sourced out to libraries. In the next release the source code
again increased.

The Mozilla release history data comprised 494.730 modification reports (CVS log entries)
of 40.884 files obtained from Mozilla's CYS repository'. The number offiles included all moved
and deleted files. Regarding reported problems we processed 255.310 problem reports retrieved
from the Bugzilla repository2.

For demonstrating our approach we narrow the Mozilla case study down to a selected set of
seven software modules that implement the handling of the content and layout of web pages.
These modules are amongst the Mozilla core modules. Table 8.2 lists the selected software
modules together with corresponding source code directories containing their implementation.
The mapping between modules and source code directories has been derived from Mozilla's
design documentation3•

Module
MathML
New Layout Engine
XPToolkit
DOM
New HTML Style System
XML
XSLT

Source Directories
layout/mathml
layout/base, layout/build, layout/html
content/xul, layout/xul
content/base, content/events, content/html/content,
contentlhtml/document, dom

II content/html/style, content/shared
I content/xml, expat, extensions/xmlextras
I content/xsl, extensions/transformiix
I

Table 8.2: Mozilla content and layout modules and corresponding source code directories.

In the following section we provide the details about obtaining the data from the different
sources and building the data models. They contain the facts about the implementation and
evolution ofthe content and layout modules ofMozilla.

8.2 PREPARING THE ARCHVIEW REPOSITORY

The basis for the ArchView repository is formed by the information stored in the source code of
the different releases and Mozilla's CVS and Bugzilla repositories.

1http://www.mozilla.org/cvs.html
2 https://bugzilla.mozilla.org
3http://wvvw.mozilla.org/owners.html

http://www.mozilla.org/cvs.html
http://wvvw.mozilla.org/owners.html

Chapter 8: Mozifla Case Study

8.2.1 SOURCE CODE MODEL

68

In order to extract the source code models of each Mozilla release we first checked out the
complete source code of each release from Mozilla's CVS repository. We then configured and
compiled each Mozilla release to generate the header files out of . idl files and the Makefiles
for the CIC++ compiler. In the configuration for the compiler we selected Linux as the target
platform, the GNU CIC++ compiler, and Mozilla's standard components as pre-configured by
the Mozilla developers.

For parsing the CIC++ source code of each release we used the Imagix-4D4 tool. The tool
comes with a C/C++ parser that does a full semantic parsing of source files, analyzing all the
symbols in the code. The Imagix-4D parser is compiler independent and is able to accurately
analyze source code developed for a number of C/C++ compilers. Emulation of compilers is
facilitated by the use of compiler configuration files. They contain the compiler specific settings,

• such as the path to system include files, type definitions, and macro definitions.
Regarding the Mozilla source code we selected the Linux gcc as basis configuration. The

Mozilla specific compiler settings were added to this file. To get these settings we inspected the
different Makefiles of each Mozilla module and obtained the additional include paths, compiler
directives, and the set of files to exclude from the parsing process. For instance, we added the
directories that contain Mozilla specific header files to the system include path. Mozilla specific
compiler directives (i.e., #defines) were taken from the mozilla_config. h file. Mozilla's
Makefiles contain also the list of directories and files to include. This allowed us to determine
the list of files to exclude from the parsing process. For instance, files that contain platfoffi1
specific (e.g., Microsoft Windows) source code.

The Imagix-4D parser stores extracted source code facts to its Imagix-4D database that is a
proprietary database that can not be directly accessed from outside the Imagix-4D tool. Using
our Imagix-4D plug-in we exported the database of each parsed source code release to an E-
FAMIX compliant (Rigi Standard File) RSF file. Exported facts include the source code entities
and relationships as specified by the E-FAMIX meta model and source code metrics computed
by the Imagix-4D parser.

We used the RSF file as an intermediate representation of a source code model because this
data fOffi1atis understood by several reverse engineering tools, such as Rigi [MK88], [Won98] or
grok [FHOO].We used these tools to edit, filter, cleanse, and visualize exported source code mod-
els. For instance, we used grok to compute the transitive closure ofthe contains relationships
which was needed in the data abstraction step. And we used Rigi to add the module structure
to each of the source code models. The structure is defined by the module-source directories
relation as given by Table 8.2.

The cleansed RSF file of each source code release was input to a Perl script that generated the
SQL file which specified the layout and the contents of an ArchView source code model database
of one Mozilla release. We imported each SQL file issuing mysql dbname < dbname. sql
command that created and filled the source code model database of a Mozilla release.

4http://www.imagix.com

http://4http://www.imagix.com

Chapter 8: Mozifla Case Study 69

•

Table 8.3 provides the measured size metrics of number of extracted source code entities of
the seven Mozilla modules per release. Size metrics represent absolute values computed from the
snapshots that we took from the Mozilla source code at each particular release date. In its recent
release 1.7 the content and layout modules implementation comprises 1.321 C/C++ source and
header files (NOF) that are contained by 145 directories (NOD). The files contain 1.677 classes
(NOC) with 22.130 methods (NOM) and 4.983 attributes (NOA), and 1.433 global C functions
(NGF) and 1.950 global variables (NGV).

Release NOD NOF NOC NOM NGF NFM NOA NGV NOV
Mozilla 0.92 146 1.212 1.369 21.018 1.610 22.628 4.361 1.789 6.150
Mozilla 0.97 147 1.242 1.404 20.189 2.668 22.857 4.486 1.996 6.482
Mozilla 1.0 159 1.347 1.587 22.369 1.702 24.071 5.087 2.079 7.166
Mozilla 1.3a 154 1.364 1.677 23.161 1.420 24.581 5.159 2.092 7.251
Mozilla 1.4 147 1.317 1.681 22.487 1.472 23.959 4.964 2.033 6.997
Mozilla 1.6 146 1.317 1.687 22.657 1.443 24.100 5.000 1.943 6.943
Mozilla 1.7 145 1.321 1.677 22.130 1.433 23.563 4.983 1.950 6.933

Table 8.3: Size metric values ofMozilla's content and layout modules ofthe seven releases.

The measured value ofthe size metrics ofthe seven different releases indicate that the number
of source code entities of the implementation of the content and layout modules increased up to
release 1.3a and after that slightly decreased. For instance, the number of functions and methods
(NFM) increased to 24.581 in release I.3a and then in the next 3 releases decreased by more
than 1.000 functions/methods down to 23.563. Consequently, first functionality was added to the
seven modules which then was consolidated in the latter 3 releases.

8.2.2 CYS AND BUGZILLA DATA

For retrieving the modification and problem reports we applied the RHDB Populator tool. The
tool traverses the Mozilla source code tree and for each file obtained the modification reports
(MRs) from Mozilla's CYS repository. Each report was parsed with respect to the key informa-
tion as described in the Section 5.4. Extracted facts were stored in the ArchView repository.

Next, we connected to Mozilla's Bugzilla repository and retrieved the problem reports (PRs)
in XML format issuing the wget command. For instance, to retrieve bug number 12345 we
issued wget https: / /bugzilla. mozilla. org/xml. cgi ?id=12345. The down-
loaded XML files were parsed and extracted facts about the problem reports were stored in the
repository.

Overall we retrieved 494.730 MRs from the Mozilla CYS repository and 255.310 PRs from
the Bugzilla database. The number of modification and problem reports are accumulated over
time. Modification and problem reports start with 28th of March, 1998 when the new Mozilla
project was set ups. The number of MRs and PRs that were involved in the evolution of the
source files ofMozilla's content and layout modules are listed by Table 8.4.

5http://w\vw.mozilla.org/roadmap.html

Chapter 8: Mozi/la Case Study

Release ; NMR NPR NPRpl NPRcritical NPRresolved NPRJixedi

Mozilla 0.92 42.749 15.946 2.323 1.808 2.732 14.316
Mozilla 0.97 48.729 20.769 3.174 2.009 5.383 18.219
Mozilla 1.0 56.714 24.145 3.622 2.397 7.183 21.020
Mozilla l.3a 59.539 26.230 3.970 2.512 8.907 22.673
Mozilla 1.4 62.702 28.003 4.318 2.621 10.423 24.159
Mozilla 1.6 66.441 29.881 4.650 2.702 12.114 25.926
Mozilla 1.7 69.402 30.650 4.728 2.734 12.835 26.528

70

•

•

Table 8.4: Accumulated number ofmodification and problem reports obtained for the source files
ofthe content and layout modules. The number ofPRs is further detailed in four categories com-
prising the numbers of PRs with highest priority pI, severity cri tical, status resolved,
and resolution fixed .

For instance, in the time from the 28th ofMarch, 1998 to the 28th of June, 2001 (release of
Mozilla 0.92) the Mozilla developers committed 42.749 change logs to Mozilla's CYS repository
for the source files implementing the content and layout modules. Then, from release 0.92 to
release 1.7 another 26.653 modification reports were added (see NMR column of Table 8.4).
Regarding the problem reports different attributes exists in the Bugzilla database that allow for
a further categorization of PRs by its status, resolution, severity, and priority. Table 8.4 lists the
total number ofPRs and the numbers offour important categories ofproblem reports:

• pI: most important PRs with highest priority .

• critical: PRs with serious negative impact on the system (i.e., system crashes, loss of
data, and severe memory leak) .

• resolved: PRs for which a resolution has been taken, and it is awaiting verification.

• fixed: PRs tür which a fix is checked into the source code tree and tested .

Similar to the size metries of source code models the problem report metrics were computed
based on snapshots that we took from the Bugzilla database at certain points in time (i.e., when
we filled the release history database). However, problem report attributes, such as status and
resolution change over time because work is going on on bugs. For instance, when a problem
is reported the report gets the status new. Then the problem is assigned to a developer who
works on it and provides a resolution. When there is a resolution the problem reports gets the
status re sol ved. The resolution has to be verified (i.e., tested) and finally if successful the
status ofthe problem report is changed to verified. In this case study we did not take into
account the activity log and left out the metrics concerning the status and resolution of problem
reports. This is part of our future work.

Referring to the metrics listed in Table 8.4 we gained that in the earlier Mozilla releases more
problems (bugs) have been reported than in recent releases. For instance, up to release 0.97 in
total 20.769 PRs were entered into the Bugzilla database that concern problems in the content

Chapter 8: Mozilla Case Study 71

and layout modules. With respect to Mozilla release 0.92 this presents an increase by 4.823 new
PRs. 851 PRs out of the added PRs 851 were of highest priority. In contrast, from release 1.6
to 1.7 the increase is by 769 PRs in total. This is a significantly smaller amount of PRs taking
into account that the amount of time spent for moving from release 1.6 to 1.7 is about the same
as from release 0.92 to 0.97. The other categories of problem report metrics show a similar
tendency.

A possible interpretation is that Mozilla's content and layout modules were more "buggy" in
the earlier versions when developers introduced new layout mechanisms and dom standards than
in recent releases.

LINKAGE OF MODIFICATION AND PROBLEM REPORTS

Using the algorithm described in Section 5.4 we established the links between modification and
problem repmis. In total 323.409 links were computed between 225.978 different modification
and 36.474 different problem reports. Linked MRs involved 21.025 files out of all files managed
by Mozilla's CYS repository. Our validation of these links indicated that 91 % of the referenced
reports fell either into the group fixed/resolved or fixed/verified. The other cat-
egories were sparsely filled which may indicate a positive false detection or incorrect tracking
status of PRs. By comparing this data with all reports downloaded from the Bugzilla database,
we recognized that a large number ofPRs within the groups duplicate, invalid, won' t
f ix, and works for mewere not referenced. These results supported our assumption in two
ways: 1) only records about PRs were made that have an effect on the CVS repository; 2) a
significant number of the identified lOs was valid if we presumed that dupl ica te, boxed,
etc. reports were equally distributed over the ordinary scale of report IDs.

Therefore, our conclusion from linked modification and problem reports were: references
to PRs are available in a sufficient quantity and quality that allowed for further analysis. More
details are presented in [FPG03a] in which we analyzed the Mozilla release 1.3a.

CHANGE COUPLING

For the computation ofthe change coupling relationships between source files we configured the
Algorithm 5.6 presented in Section 5.4 with a search radius of 15 minutes and applied it to the
modification reports stored in the Arch View repository. In total the algorithm detected 4.058.473
change coupling relationships between 16.029 different source files. For each relationship the
algorithm also output the total number ofinvolved MRs, the number ofMRs for which there is a
link to a problem report, and the sum oflines added and deleted. These attributes characterize the
strength of a change coupling relationship. Both, relationships and their attributes were stored in
the Arch View repository.

For more information on the computation of change couplings we refer the reader to the
related publications of our group [PFG05] and Zimmermann et al. [ZWDZ04].

Chapter 8: Mozilla Case Study

8.2.3 DATA INTEGRATION

72

•

This step is concerned with establishing the links between the file identifiers of the different
source code models and the release history data. Table 8.5 provides the numbers of established
links including also the number ofmultiple linked files.

Release
,

NOF #links #SCM files #RHDB files #multi. SeM #multi. RHDBI

I
Mozilla 0.92 1.212 1.422 1.165 1.394 225 28
Mozilla 0.97 1.242 1.461 1.193 1.433 233 28
Mozilla 1.0 1.347 1.606 1.318 1.578 242 28
Mozilla l.3a 1.364 1.614 1.348 1.610 233 4
Mozilla 1.4 1.317 1.558 1.308 1.554 221 4
Mozilla 1.6 1.317 1.559 1.315 1.559 218 0
Mozilla 1.7 1.321 1.559 1.319 1.557 213 2

Table 8.5: Number of established links between files of source code models and release history
data together with the numbers of multiple linked files.

For release 0.92 and 0.97 the tool established around 96% ofthe links between file entities of
the different data models (1.165 out of 1.212 SCM files). The missing 4% of the links basically
were due to files that were generated during Mozilla's configuration and pre-compilation steps.
Most of these files had a dummy entry in the release history database and zero modification
reports that caused the filtering of these files. In the latter four releases these files were not part
of the source code release that was input into the Imagix-4D parser. This led to a recall ratio of
more than 99.8% (1.319 out of 1.321 SCM files).

MULTIPLE LINKED FILE ENTITIES

The fact that several entries for the same file existed in the source code and also release history
data models led to multiple links between file entities. The #mul t . seM column ofTable 8.5
lists the number of multiple linked files of each source code model. For instance, in release 0.92
225 files have more than one pendant in the release history data model. An investigation ofthese
files in the release history data yielded that multiple entries are due to the reasons mentioned
in Section 5.5. All entries of the file in the release history data were linked without any false
positive link. Hence, it is possible to navigate from each linked file in the source code model to
all its modification repOlts in the release history data model.

In the other direction the number of multiple linked release history data files was 28 in the
first three releases (see column #mul t i . RHDB of Table 8.5). This number decreased to 2
files in subsequent Mozilla releases. A check of these file entities in the source code models
yielded that multiple links were due to duplicated entries for the same file in the source code
models. It turned out that the duplicates were generated by the Imagix-4D parser because sev-
eral exemplars of the same file existed in different source code directories and the parser was
not able to distinguish between them. Most of these duplicated entries referred to header files.
For instance, in release 0.92 the header file dom. h existed in the two source code directories

Chapter 8: Mozilla Case Study 73

.. /xml/dom/ and .. /xml/dom/standalone/ which led to two different file entities in
the source code models. But, because links were established for each ofthe duplicated file entity
also the navigation to the corresponding release history data was possible from each entity.

Our conclusion is that the number of false positive links is low and as a consequence es-
tablished links are provided in reasonable quality. This facilitates a detailed integration of the
different source code and release history data models as is needed by our approach.

INTEGRATION OF CHANGE COUPLING RELATIONSHIPS

Source code models contain the file entities that existed at the point in time of a release. In con-
trast, change couplings occur during the development a new release hence at arbitrary points in
time. To integrate the change coupling relationships with the source code model data the differ-
ent change coupling relationships are aggregated. The aggregation involves the accumulation of
the metric values of a change coupling relationship (see Table 6.6).

Based on the containment hierarchy we query the source code model of each release to get
the list of source files implementing the content and layout modules. With this list we apply
a query to the mapping table that returns the list of file identifiers known by the release history
data model. Using this list ofidentifiers and the dates oftwo subsequent releases we finally query
the change coupling table. The query aggregates the matched change coupling relationships and
sums up the number ofinvolved MRs (RNMR), the number ofMRs linked with a problem report
(RNMRPR), and the number oflines added and deleted (RENT).

For each aggregated coupling relationship a record is created in the database that holds the
references to the two files of the source code model and the accumulated attribute values. Ta-
ble 8.6 lists the numbers of integrated change coupling relationships (#rels), number of affected
file entities ofthe source code models, and the file with the highest number of change couplings.

Release i #rels #affected files #rels per file peak!
Mozilla 0.92 59.985 908 (74,92%) 66,06 428 (nsXULElement.cpp)
Mozilla 0.97 39.279 837 (67,39%) 46,93 358 (nsPresShell.cpp)
Mozilla 1.0 30.401 807 (59,91 %) 37,67 341 (nsPresShell.cpp)
Mozilla 1.3a 25.168 754 (55,28%) 33,38 321 (nsPresShell.cpp)
Mozilla 1.4 51.866 840 (63,78%) 61,75 412 (nsCSSStyleRule.cpp)
Mozilla 1.6 40.613 676 (51,33%) 60,08 425 (nsCSSFrameConstructor.cpp)
Mozilla 1.7 27.648 642 (48,60%) 43,07 271 (nsPresShell.cpp)

Table 8.6: Number of integrated change coupling relationships per Mozilla release.

The numbers listed by Table 8.6 indicate that regarding the content and layout modules most
of the change couplings occurred in the development of the two releases 0.92 (59.985 created
relationships between 908 files) and 1.4 (51.866 created relationships with 840 files). Relatively
low change coupling arose in the releases 1.0, 1.3a and 1.7. The rate of affected source files of
total files decreased from 74,92% in release 0.92 to 48,6% in the most recent release 1.7. This
indicates improvements in the implementation ofMozilla's content and layout modules.

Chapter 8: Mozilla Case Study 74

The #rels per file shows the number of change coupling relationships normalized
by the number of affected source files. The largest values are from the releases 0.92, 1.4, and
1.6. For instance, in release 1.4 the number of change couplings of each affected source code
model file is 61.75 on average. The peak column lists the largest number of change coupling
relationships of a source file of each release. For instance, in the time between release 1.4 and 1.6
the file nsCSSFrameConstructor. cpp was changed together with 425 out of 1.317 source
files or 32.37% respectively.

CONCLUSION OF DATA INTEGRATION

Links between the source code and release history data models were established in reasonable
quality and stored in the mapping tables. Multiple entries in both the release history and source
code data models were resolved by our mapping algorithm. Using the name affile entities turned
out to provide a reasonable work around for this issue.

The result of the Arch View data integration step a data model that facilitates the navigation
from source code model entities to corresponding release history data and vice versa. For in-
stance, we can navigate from the source code model data of a file to its modification and problem
report data in the release history including computed source code and evolution metrics as well
as dependencies with other source files. The model forms the basis for our abstraction, analysis,
and visualization algorithms.

8.2.4 DATA ABSTRACTION

For the abstraction ofthe data models we selected the class, file, and module level. The enriched
source code model of each release was input to the abstraction tool that implements the abstrac-
tion algorithm presented by Listing 6.1. According to the abstraction level we configured the
tool to:

• Abstract relationships of lower-level entities as specified by the containment hierarchy
model;

• Compute the size and complexity metrics of classes, files, and software modules;

• Compute the evolution metrics out of modification and problem report data; and

• Compute the source code and change coupling metrics of each class, file, and software
module.

Concerning the abstracted relationships Table 8.7 lists the different types of relationships per
abstractionlevel. Additionally, the right columnlists the types of relationships that we considered
for the computation of the coupling metrics.

Abstracted relationships and computed metric values were stored in the Arch View reposi-
tory. This concludes the data preparation phase. The results were integrated and abstracted data

Chapter 8: Mozilla Case Study 75

Level
Class

File

Module

Rei. types to aggregate
aggregates, invokes, overrides, ac-
cesses, hasType
all relationship types of Class level
plus inherits
all relationship types of File level plus
couples and includes

Rei. types for coupling measurements
inherits, aggregates, invokes, over-
rides,accesses, hasType
all of Class level plus couples and in-
cludes
same as for File level

Table 8.7: Abstraction levels and types ofrelationships considered for abstraction as well as for
computation of the coupling metrics of implementation units.

models enriched with a set of source code and change coupling metrics and other source code
metrics as presented in Section 6.3. In the next sections we demonstrate the usage of the data
models to analyze and visualize certain aspects of the implementation of Mozilla's content and
layout modules ant their evolution.

8.3 VIEWS ON MOZILLA RELEASE 1.7

In the first analysis step we concentrate on the most recent Mozilla release 1.7. The objective of
the analysis is to compute views on the integrated data model that address and provide answers
to the analysis issues of the scenario described at the beginning of this chapter. The analysis
follows the order of these issues starting with highlighting the large and complex entities. For
each issue we present views on the module level that are followed by views on the level of source
files. First views aid in gaining an initial understanding that next is detailed by the views on the
file level. Each analysis issue is concluded by a presentation and interpretation of the findings.
Further, when presenting polymetric views we provide the metric mapping in the caption of the
figure.

8.3.1 LARGE AND COMPLEX ENTITIES

To get an initial understanding of the implementation of Mozilla's content and layout modules
we start top-town with building views on the system hot-spots. For the composition of these
views we apply the CodeCrawler tool [Lan04].

Module Views Figure 8.1 depicts a system hot-spots view on the content and layout software
modules using three module size metrics. The node width represents the number of contained
global variables and class attributes (NOV), the height represents the number of contained func-
tions and methods (NFM), and the color represents the number offiles (NOF).

From Figure 8.1 we gain that the largest module is DOM with 1.522 global variables and
attributes and 11.398 functions contained in 492 source files. The second largest module is
NewLayoutEngine that contains 1.394 variables and 4.404 functions in 229 source files. The

Chapter 8: Mozifla Case Study 76

Figure 8.1: System hotspots view on the Mozilla 1.7 content and layout modules with module
size metrics. Node: width=NOV; height=NFM; color=NOF; order by NOY.

module with the highest amount ofvariables is NewHTMLStyleSystem depicted on the right
side. It contains 1.572 variables.

Figure 8.2 depicts the same set of modules but this time with two complexity metries. The
width of nodes represents the McCabe cyc10matic complexity metric (CCMPLX). The height
represents the Halstead program difficulty metric (HALDIFF) and the node color maps to the
number of functions (NFM) implemented by a module.

Figure 8.2: System hotspots view on Mozilla 1.7 content and layout modules with module com-
plexity metrics. Node: width=CCMPLX; height=HALDIFF; color=NFM; order by CCMPLX.

DOM is the most complex software module with an accumulated cyc10matic complexity value
of 26.873 and an accumulated Halstead program difficulty value of 51.425. It is drawn as a
large dark rectangle. The color gradient of the nodes indicates that the modules with the largest
number of functions are the most complex ones.

File Views Software modules as used by the Mozilla project are rather abstract entities that
consist of a number of source files. To get more into detail and point out finer-grained hot-spots
we decrease the abstraction level down to source files.

Figure 8.3 depicts the 1.321 C/C++ source files implementing the seven software modules.
Files with a high number of variables and functions are highlighted by mapping the NOV and

Chapter 8: Mozi/la Case Study

nsHTMLAtomList.h

~
nslDOMCSS2Properties.h

77

Figure 8.3: System hotspots view on Mozilla 1.7 content and layout source files with file size
metrics. Node: width=NOV; height=NFM; color=LOC; order by NFM.

NFM metrics to the width and height ofnodes. The color ofnodes maps to the length affiles in
lines of code (LOC).

The source files that contain a large number offunctions are listed on the bottom ofthe figure.
For instance, the file with the highest number of functions is nsIDOMCSS2Properties. h
which contains 340 functions and is 3.516 lines long. Because it contains zero variable declara-
tions it is drawn as a long small rectangle on the right of the bottom row. As highlighted by the
black color the largest file is nsCSSFrameConstructor. cpp with 13.320 lines of code. It
implements 208 functions and declares 36 global variables and attributes.

Source files that contain an large number of global variables attributes but almost zero func-
tions are depicted in the top rows of the graph. They are drawn as flat small rectangles. Most of
them are header files that declare constants for the different tag elements, such as for 233 HTML
tags in nsHTMLAtomList. h, or 214 MathML tags in nsMathMLAtomlist. h.

Figure 8.4 depicts the same set of files with complexity metrics mapped to the width and

Chapter 8: Mozilla Case Study 78

height of nodes. The width of nodes depicts the accumulated McCabe cyclomatic complex-
ity metric (CCMPLX), the height of nodes depicts the Halstead program difficulty (HALDIFF)
metrics, and the color depicts the number of contained functions (NFM). Using this mapping
files with a high complexity are drawn as large dark rectangles.

Figure 8.4: System hotspots view on Mozilla 1.7 content and layout source files with file com-
plexity metrics. Node: width=CCMPLX; height=HALDIFF; color=NFM; order by CCMPLX.

The last row of the figure highlights source code files with high complexity. The last four
nodes depict (from right to left) the files nsCSSFrameConstructor. cpp,
nsGlobalWindow. cpp, nsTableFrame. cpp, and nsSelection. cpp. The accumu-
lated cyclomatic complexity of these files is above 1.200 and each contains the implementation
of more than 200 functions.

Files with low complexity are located in the top rows of the graph. Most of them are header
files (.h). They contain less implementation hence their complexity is low.

Results Presented hotspots views give an initial insight into the implementation of Mozilla's
content and layout features by depicting involved elements together with size and complexity
metrics. The views clearly point out the DOM module as the largest and most complex module.
With respect to the source files we identified 40 files that contain 100 functions and more. Almost
all of these files are highly complex as highlighted by the graphical node attributes (i.e.. width,
height, and color). They are the files that implement most ofthe content and layout functionality
hence are those most likely to be involved in evolution and maintenance activities.

8.3.2 FREQUENTLY MODIFIED AND "BUGGY" ENTITIES

In addition to the size and complexity metrics we computed evolutionary metrics that concern
the number of reported problems and the frequency of changes. Visualizing these metric values

Chapter 8: Mozilla Case Study 79

yields the list of software modules and source code files to which most ofthe work was dedicated
to. For the analysis we take into account the time period between the releases 1.6 and 1.7.

Another analysis aspect concerns the check of the hypothesis that "complex elements are
more vulnerable to problems and modifications than are elements with low complexity". The
following set of module and file views deal with this aspect and highlight the elements with
exceptional high metric values.

Module Views Figure 8.5 shows the seven software modules with the values of evolution and
complexity metrics. The width of nodes represents the number of modification reports (NMR),
the height represents the number of problem reports (NPR), and the color attribute is used to
represent the accumulated cyclomatic complexity ofthe modules (CCMPLX).

Figure 8.5: Modification hotspots view on Mozilla 1.7content and layout modules with evolution
and complexity metrics. Node: width=NMR; height=NPR; color=CCMPLX; order by NMR.

From the graph we obtain that the DOM module is the module with the highest number of
reported problems and modifications. In detail from release 1.6 to 1.7 1.496 new modification
and 554 problem reports were assigned to this module. The order and the color gradient of
nodes indicate that the complex modules are modified more frequently than modules with low
complexity.

File Views Figure 8.6 shows the graph with the 1.321 source files enriched with values of
evolution and the cyc10matic complexity memes. The width of nodes represents the number
of modification reports (NMR), the height of nodes represents the number of problem reports
(NPR), and the color represents the accumulated cyclomatic complexity metric (CCMPLX).

Using this configuration the view highlights the source files that have been most worked on
during the development ofthe new release 1.7. These are: nsCSSFrameConstructor. cpp
(53 MRs), nsPresShell . cpp (47 MRs), nsGenericHTMLElement . cpp (38 MRs), and
nsHTMLDocument. cpp (37 MRs). These files are also amongst the files with a large number
ofreported problems. In detail, for nsCSSFrameConstructor. cpp 16 PRs, for
nsPresShell. cpp 14 PRs, for nsGenericHTMLElement. cpp 18 PRs, and for
nsHTMLDocument. cpp 19 PRs were reported.

Ordering the nodes by the NMR values the graph highlights the source files with zero or few
modifications. These files are positioned at the top of the graph. For instance, from release 1.6
to 1.7742 out ofthe 1.321 source files were modified not more than once. Consequently, more
than 56% of the files are almost stable. Furthermoer, for 934 files that are about 70% of the

Chapter 8: Mozifla Case Study 80

Figure 8.6: Modification hotspots view on Mozilla 1.7 content and layout source files with evo-
lution and complexity metrics. Node: width=NMR; height=NPR; color=CCMPLX; order by
NMR.

files no problems were reported. The relation between the width and height of nodes is almost
proportional. Hence, the more problem reports are reported for a file the more modifications had
to be perfOlmed.

The graph provides further clues to verify the hypothesis stated before. According to the
order and color of nodes complex files are more vulnerable to problems and are more frequently
modified than files with low cyclomatic complexity. But, there is a small number of complex
source files that conflicts with the hypothesis. For instance, xml tok_impl . c or xmlparse. c
are rated as complex files but refer to zero MRs and zero PRs. The conclusion is that although
the implementation ofthese files is complex it is stable.

Results From the views presented in this section the user derives the set of software modules
and source files to which most of the evolution and maintenance activities were dedicated to.
Concerning the content and layout modules the views identified the DOM module as the most
complex, default prone, and frequently modified module. The view on the source files yielded
that 56% of the source files were not touched. In contrast, 19 source files were modified more
than 20 times in the observation period from release 1.6 to 1.7. On the problem report side 76%
of the investigated source files are stable.

The combination of the modification and problem report metries with the cyclomatic com-
plexity measure of software modules clearly showed that the cyclomatic complexity is propor-
tional to the number of problems and modifications. The view on the source files further verified
this hypothesis with a few exceptions to report. Basically, these exceptions indicated stable
source files. Both, stable and unstable elements were highlighted by the system hotspots views.

Chapter 8: Mozilla Case Study 81

8.3.3 VIEWS WITH MULTIPLE METRICS

In order to reason about the relations between multiple metries we mapped the values of multi-
ple metrics to graph nodes. This functionality is provided by our Kiviat diagram visualization
technique that we applied to compose views with multiple metries.

Module Views Figure 8.7 depicts the main size, complexity, and evolution metries ofMozilla's
content and layout modules. The order of metries of each Kiviat diagram corresponds to the three
categories of metries. Metrics that belong together are located side by side: 0..3 - complexity
metries; 4..9 - size metrics; 10,11 - evolution metrics.

9:NOV
8:NFM 10:NMR

11

I.

3

XSLT

11

11

I.

I.

3

XPToolkit

2

NewLàyoutEngine

11

11

I.

I.

3

11 NewHTMLStyleSystem S

DOM

I.

3

XML

3

MathML

Figure 8.7: Detailed system hotspots view on Mozilla 1.7 content and layout modules with Kiviat
diagrams showing evolution, size and complexity metries.

The graph highlights the DOM module as the largest and most complex module that also is

Chapter 8: Mozilla Case Study 82

changed most frequently. The big circle drawn in the diagram indicates the DOM module as a
"God Module".

The second largest module is NewLayoutEngine followed by XPToolki t. Peaks in
certain metric values are also highlighted by the Kiviat diagrams. For instance, the diagram
representing the NewHTMLStyleSystem module shows a peak in the number of contained
variables (NOV).

Bugzilla allows the categorization of problem reports into different severity and priority lev-
els. According to this categorization we established evolution metrics that we measured in the
Mozilla case study. An excerpt ofthese metrics are depicted by the Kiviat diagrams ofFigure 8.8.

1.

1.

•
DOM

12 13 14

•
MathML

1.

.
NewHTMLStyleSystem 11.

1.

XML

XPToolkit

12 13 14

O:NMR

l:NPR

16:NPR-PS

13:NPR-P2
12:NPR-Pl 14:NPR-P3

11:NPR-p lS:NPR-P4
lO:NPR-R-

7:NPR-minor

6:NPR-major 3:NPR-blocker
S:NPR-enh 4:NPR-critical

9:NPR-tri . I

NewLayoutEngine

Figure 8.8: Detailed modification hotspots view on Mozilla 1.7 content and layout modules with
Kiviat diagrams showing metrics of different categories of problem reports.

As already shown with the system hotspots view the DOM module by far is the module with
the most problem and modification reports. However, the most critical bugs in the development

Chapter 8: Mozi/la Case Study 83

of release 1.7 have been assigned to the NewLayoutEngine module with 28 critical PRs
followed by the DOMmodule with 20 critical PRs. The other severity categories again are leaded
by the DOMmodule.

The results of measurements that concern the priority of problem reports draw a similar
picture. DOMwas assigned the highest number of PRs with highest priority followed by the
NewLayoutEngine module.

Certain diagrams contain single peaks, such as the modules XSLT for the NPR-P3 met-
ric, NewHTMLStyleSystem for the NPR-trivial metric, and XML for the NPR-blocker metric.
They tend to indicate a high number of problems but basically are due to the algorithm that we
use for normalizing the values to the size of the Kiviat diagrams. For instance, the maximum
for the NPR-blocker metric is 2. Having another NPR-blocker metric of value 1 results in a
normalized value that is 50% of the maximum length.

File Views On the level of source files we investigated similar aspects as on the module level
before. However, to maintain the clearness of graphs we concentrate on the critical source code
files. Figure 8.9 depicts the top 7 critical source code files. The interest is on the distribution of
the metric values ofthe different problem report categories.

The file with the highest number of assigned problem reports is nsHTMLDocument. cpp
with 19 PRs. The Kiviat diagram depicts that almost all of these 19 PRs have been rated as
normal and oflow priority. 16 PRs were assigned to nsCSSFrameConstructor. cpp but
10 ofthese reports have been rated ofhighest priority PI and P2. This clearly indicates this file
as the most critical file. Another two files that are change prone are nsXULElement . cpp and
nsPresShell. cpp (see NPR-Pl metric).

Results In this section we used Kiviat diagrams to visualize a number of different size, com-
plexity, and evolution metrics. On the module level we first concentrated on the size and com-
plexity metrics. The resulting graph indicated the DOMmodule as a "God Module" and the
NewLayoutEngine as exceedingly complex.

The objective of the second module diagram was to show the distribution of metric values of
the different problem report categories as offered by the Bugzilla database. According to the dia-
grams most ofthe critical bugs with highest priority were assigned to the NewLayoutEngine
module directly followed by the DOMmodule. As shown by the graph the center of gravity in
maintaining and evolving Mozilla's content and layout behavior in the time between the releases
1.6 and 1.7 was on these two modules.

On the file level we investigated similar aspects and presented one view on the most change
prone source files (i.e., files with the most modification and problem reports). In particular, this
view indicated one change prone file which is nsCSSFrameConstructor. cpp.

8.3.4 SOURCE CODE COUPLING

The next couple of views present information about the coupling relationships between the
Mozilla content and layout modules and their contained source files. An interesting aspect to

Chapter 8: Mozilfa Case Study 84

l'

nsHTMLDoc~ment.cpp
12 13

12 I] ,..

.
nsXULElement.cpp

.
nsPresShell.cpp

12 13

12 B

.
nsGenericElement.cpp

l'

l' nsEventStateManager.cpp

O:CCMPLX

16:NPR-PS

12 13

12 13

nsGlobalWindow.cpp

4

nsCSSFrameConstructor.cpp 10

13:NPR-P2
12:NPR-Pl 14:NPR-P3

11 :NPR-p lS:NPR-P4
lO:NPR-p-

l:INCIn

7:NPR-minor 2:NGF

6:NPR-major 3:NMR
S:NPR-critical 4:NPR

Figure 8.9: Detailed modification hotspots view on frequently modified Mozilla 1.7 content and
layout source files with Kiviat diagrams showing size, complexity, and evolution metrics.

highlight is the intermodule coupling - which modules are coupled and how strong are these
couplings. Showing the cyclic coupling dependencies is also subject to these views. They indi-
cate "Bad Smells" in the design which should be removed.

The focus ofthe views is on showing the strong coupling relationships. Therefore, we apply
filtering by thresholds to clarify views. The values for the thresholds are given in the caption of
the figures.

Module Views On the level of modules we are interested in the uses and inheritance rela-
tionships as well as the change coupling between the software modules. Figure 8.10 depicts
the function calls crossing the module boundaries. The width of nodes represents the fan-out
of modules (IFan-out), the height the fan-in (IFan-in), and the color represents the number of
contained methods and functions (NFM). To highlight strong coupling relationships we map the
number of aggregated function calls (RNAl) to the width of edges.

Clwpter 8: Mozilla Case Study 85

Figure 8.10: Source code coupling view (invokes) on Mozilla 1.7 content and layout modules.
Node: width=IFan-out; height=IFan-in; color=NFM; Arc: width=RNAI; Arc-filter: RNAI<50.

The view emphasizes the strong coupling relationships, such as between the DOMand the
XPToolki t modules or between the DOMand the NewHTMLStyleSystem modules. The
first edge represents 702 and the latter 870 aggregated method calls. Another module strongly
coupled with these three modules is the NewLayoutEngine module. The color ofnodes and
the width of edges indicate that strong couplings basically affect the large modules.

We mapped the values of fan-in and fan-out metrics of function calls to the width and height
of nodes to distinguish the modules into service providers and requesters of or both. For in-
stance, the XML,XSLT, and MathML modules are marked as service requesters. In contrast to
these modules, the NewHTMLStyleSystem module is a service provider. The module con-
tains 1.760 functions whereby 322 (18,29%) out of them are used by other modules. On the
other side, only 108 functions (6,14%) of this module call functions of other modules. The
DOMand NewLayoutEngine module play both roles because the width and height of nodes
representing the two modules are of equal size.

The graph also depicts several cyclic dependencies between modules that indicate shortcom-
ings in the design. The strongest cycle is between the DOMand NewLayoutEngine modules
spanned by two aggregated invokes relationships with 389 and 432 aggregated function calls.

Another cyclic call dependency is between the NewLayou tEng ine and XPToo 1ki t mod-
ules. It consists of a strong and a relatively weak coupling relationship. The weak relationship
comprising 137 function calls is the candidate to remove for resolving the cyclic coupling. We
will come back to this issue when presenting the views on the file-level.

The next view depicted by Figure 8.11 shows the inheritance stmcture of the content and
layout modules. The width and height of nodes represent the number of contained classes (NOC),

Chapter 8: Mozilla Case Study 86

the color the fan-in of overriding methods (OFan-in). The width of arcs represents the number
of aggregated inheritance relationships crossing the module boundary (RNAIH).

Figure 8.11: Source code coupling view (inherits) on Mozilla 1.7 content and layout modules.
Node: width=NOC; height=NOC;color=OFan-in; Arc: width=RNAIH; Arc filter: RNAIH :S 5.

The view presents the DOM module as the basis module from which all other modules inherit
methods and attributes. The OFan-in value indicates that DOM is the module whose methods are
overridden most by methods of other modules. According to these metric values the inheritance
of the content and layout module is soundly implemented.

The cyclic coupling analysis ofthe inheritance relationships revealed only minor design flaws
that are subject to re-factor. For instance, there are severallight-weight cyclic coupling depen-
dencies due to class inheritance that are of strength up to 3. On the level of source files we will
further elaborate on this.

File Views The objective of the file-level views is to visualize the files that are most involved
in the coupling between the content and layout modules of Mozilla release 1.7. Furthermore, we
provide details about the cyclic coupling relationships that have been detected on the module-
level. Coupling dependencies include the different source code relationships, such as file in-
cludes, class inheritances, method calls, or variable accesses.

Figure 8.12 depicts the intermodule coupling by method calls. Nodes represent the source
files whereby the width and height of nodes maps to the number of functions (NFM) met-
ric. Edges represent method invocations whereby the width maps to the number of aggregated
method calls between two source files (RNA!). To clarify the graph we applied a threshold filter
of 30 to the RNA! metric - relationships with less than 30 aggregated functions calls are filtered.

C/wpter 8: Mozilla Case Study 87

NewLayoutEngine NewHTMLStyleSystem

Figure 8.12: Source code coupling view (invokes) on Mozilla 1.7 content and layout source files.
Node: width=NFM; height=NFM; Arc: width=RNAI; Arc-filter: RNAI<30.

The filtering results in a graph that shows 29 nodes and 22 edges representing the source
files that are most involved in the coupling between the modules. Out of these files there are
three source files that have strong call relationships with 4 or more source files. These files
are nsIContent. h, nsRuleNode. cpp, and nsIFrame. h. The other nodes represent
source files that also have been highlighted by the system hotspots view before. For instance,
nsCSSFrameConstructor.cpp,nsXULDocument.cpp,ornsXULElement.cpp.

Regarding the detailed analysis of the cyclic coupling dependencies detected on the module-
level we navigated the graph of involved modules down to their source files and isolated the files
that cause this design flaw. In terms of the cyclic coupling between the NewLayoutEngine
and XPToolki t modules we found out that involved functions are contained by five files ofthe
module NewLayoutEngine: nsCSSFrameConstructor. cpp,
nSListControlFrame.cpp,nsTextControlFrame.cpp,
nsGfxScrollFrame.cpp,andnsScrollPortFrame.cpp.

The analysis ofthe cyclic coupling by inheritance yielded the source files:
nsTextControlFrame. h, nsGfxScrollFrame. h, and nsScrollPortFrame. h. In-
teresting is that these source files are also involved in the cyclic coupling by function calls. Con-
sequently, clearing the inheritance contributes to the resolution ofthe cyclic coupling by function
calls.

Chapter 8: Mozi/fa Case Study 88

Results For the analysis of the source code coupling between Mozilla's content and layout
modules we presented two views on the module level and one view on the file level. The views on
the module level highlighted the strong couplings by method invocations and class inheritance.
Concerning the first type of source code coupling the t'our largest modules also are the modules
that are coupled most with each other. Several cyclic call dependencies between these modules
were detected that needed a detailed analysis. The view on the inheritance hierarchy yielded
a clear stmcture in which the DOM module is the super-module from which all other modules
inherit behavior.

The detailed analysis of the intermodule coupling was done on the level of source files.
The intention was to highlight the source files that contribute most to the coupling between the
content and layout modules or are involved in cyclic coupling dependencies. The view on the
coupling by method invocations yielded 29 source that are coupled with files of other modules
by more than 30 method calls. The modules heavily involved in the coupling are the mod-
ules already pointed out at the module level: DOM,XPToolki t, NewLayoutEngine, and
NewHTMLStyleSystem.

8.3.5 CHANGE COUPLING

The views presented in this subsection are used to visualize the change coupling dependencies
between software modules and their source files. They complete the source code coupling views
by highlighting the implementation units that most frequently were changed together.

Module Views Figure 8.13 depicts the change coupling between the seven content and layout
modules. The width and height ofnodes indicate the number ofmodifications that were commit-
ted to the CVS repository during the time between Mozilla releases 1.6 and 1.7. Edges represent
the aggregated change coupling relationships. The width of edges maps to the accumulated num-
ber ofpailwise changes (RNMR). To filter out weak relationships we used a threshold of200 on
the RNMR metric.

The graph again highlights the DOMmodule that with an NMR value of 1.496 is the module
most frequently changed. The module exhibits strong change coupling relationships to all soft-
ware modules except the MathML module. The strongest change coupling is between the DOM
and NewLayoutEngine modules with 2.635 shared modification reports (RNMR). Another
two strong change coupling dependencies occur between the XPToolki t and DOM(RNMR
of 1.783) and XPToolkit and NewLayoutEngine modules (RNMR of 1.323). Almost all
modifications that occur in one ofthese three modules affected the other modules.

File Views Figure 8.14 depicts the change coupling relationships between source files that
cross the module boundaries. We configured the mapping to represent the number of modifica-
tion reports (NFM) on the width and height ofnodes. Edges represent change coupling relation-
ships between source files whereby the size of edges maps to the number of shared modification
reports (RNMR).

Chapter 8: Mozilla Case Study 89

Figure 8.13: Change coupling view on Mozilla 1.7 content and layout modules. Node:
width=NMR; height=NMR; Arc: width=RNMR; Arc-filter: RNMR<200.

Using a threshold of 5 we filtered out the weak change coupling relationships and standalone
nodes. Remaining files present the candidates that most frequently were changed together. Ac-
cording to the size of nodes the set also includes the files that most frequently were touched
during the development of release 1.7. The detailed investigation of the CYS history yielded that
these files are among the "top-ten" of all source files concerning the number of committed MRs
during the development of the Mozilla release 1.7.

Most ofthe modifications and most ofthe pairwise changes affected source files ofthe three
modules DOM,XPToolki t, and NewLayoutEngine. The remaining four modules contain
only one source file having high coupling (XMLand NewHTMLStyleSystem) or none (XSLT
and MathML). Related to the module view presented by Figure 8.13 this view further verifies
our previous results that the first three modules are most critical for source code modifications -
modifying the implementation of one of these modules impacts changes to the other two mod-
ules.

Results The views presenting the modification measurements and change coupling relation-
ships derived the software modules and source files that were changed together most frequently.
On the module level the view clearly highlighted the three most dependent modules. The view on

Chapler 8: Mozilla Case Sllidy 90

Figure 8.14: Change coupling view on Mozilla 1.7 content and layout source files. Node:
width=NMR; height=NMR Arc: width=RNMR; Arc-filter: RNMR<5.

the file level further strengthened this effect and provided detailed information about the source
files most involved in the strong change couplings.

_ 8.4 EVOLUTION FROM MOZILLA RELEASE 0.92 TO 1.7

In the previous section we demonstrated that our integrated data model facilitates the generation
of different polymetric views on one release of a software system. In this section we go one step
further and increase the amount of data to visualize up to n releases.

The primary objective of these views is to sketch the evolution of Mozilla's content and
layout modules by including the dimension oftime. For this we used the Kiviat graph tool that
facilitates the composition of measurements and structures of different Mozilla releases.

Chapter 8: Mozilla Case Study 91

11

Releases:

~

+ ~::~:: ~:~7
1.0 -- l.3a

1.3a -- 1.4

() 1.4 -- 1.6

.1.6 -- 1.7

11

11

3

MathML

,.

,
XPToolkit

NewLayoutEngine ,. "

XSLT

DOM

11

O:CCMPLX

XML

l:HAlCONT

3

NewHTMLStyleSystem 7

9:NOV
8:NFM 10:NMR

l1:NPR

4:lOC

6:NOF

Figure 8.15: Detailed system hotspots evolution view on Mozilla content and layout modules
with size and complexity metrics of7 releases from 0.92 to 1.7.

8.4.1 EVOLUTION OF MODULES

The first set of views concerns the evolution of the seven Mozilla content and layout modules.
Figure 8.15 depicts the Kiviat diagrams with the source code size and complexity metrics. Each
circle denotes a release starting with release 0.92. The different colors indicate the time periods
between two subsequent releases. For instance, the blue polygon spanned by the two inner circles
denotes the change in the measured metric values between release 0.92 and release 0.97. The
different values depicted by the Kiviat diagrams are normalized by its corresponding maximum.

The graph highlights the DOM module as the module that over the seven releases was the
largest and most complex module. The color gradient of its Kiviat diagram indicates continuous
growth in the different size and complexity metrics.

The Kiviat diagrams highlight outstanding changes in metric values, such as for the XML
and the NewHTMLStyleSystem module. The diagram ofthe XML module indicates a strong

Chapter 8: Mozilla Case Study 92

,.
12 13 '4,.

O:NMR

l:NPR

13:NPR-P2

12:NPR-Pl 14:NPR-P3

11:NPR-p lS:NPR-P4
10:NPR-R-

16:NPR-PS
9:NPR-tri - I

7:NPR-minor

6:NPR-major 3:NPR-blocker
S:NPR-enh 4:NPR-critical

Figure 8.16: Detailed modification hotspots evolution view on Mozilla content and layout mod-
ules with problem report metrics of 7 releases from 0.92 to 1.7.

change in almost all values betwccn release 1.3a and 1.4. An inspection ofthis change revealed
that the value decreased because there was a change in the Makefile that reduced the amount of
files needed for building the XML module. Another change highlighted by our approach happened
to the NewHTMLStyleSystem module. It affected the HALEFF metric that from release 1.4
to 1.6 decreased from 3.989 to 1.247. This change in complexity is further strengthened by the
decreasing values for the HALCONT and CCMPLX metrics. The metric values of the other
modules indicate a stable evolution of these modules with only minor changes.

The view depicted by Figure 8.16 sketches the different problem report metrics. The intention
of this view is to highlight large increases or decreases in the number of problem rep0l1s over the
seven releases. Large polygons highlight these strong changes in the Kiviat diagrams.

The diagrams show that the NewLayoutEngine and the DOMmodule were assigned the
lat'gest number of the critical problem reports. For the NewLayoutEngine module most of

Chapter 8: Mozilla Case Study 93

•

the problems were reported in the time between release 0.92 and 1.0 as indicated by the blue and
cyan polygons. The color gradient of the DOMmodule indicates that DOMwas most vulnerable
to problems in the time from release 0.92 to 1.3a.

Interestingly, the largest number of trivial reports and reports with lowest priority (P5) were
reported for the XSLT module. From release 0.92 to 0.97 the number of trivial problem reports
increased from 56 to 159 (NPR-trivial). The smallest number of problem reports were reported
for the MathML, XML,and NewHTMLStyleSystem modules. In relation to the other modules
and from the perspective of problem report metrics these modules are stable.

8.4.2 EVOLUTION OF CRITICAL SOURCE FILES

On the level of source files we applied the Kiviat visualization technique to sketch the evolution
of the seven most critical source files. Figure 8.17 shows the Kiviat diagrams with the size and
complexity metrics. As on the module level the intention of this view is to point out strong
changes of these values over time.

Regarding complexity the nsCSSFrameConstructor. cpp was and is the most complex
source file. And, this fact did not change during the development of release 1.7. Overall, the
Kiviat diagrams highlight only few strong changes. For instance, the decrease of the HALEFF
and NOV metrics ofnsGlobal Window. cpp between the releases 1.3a and 1.4 or the decrease
ofthe NOC, NFM, and NOV metrics ofnsPresShell . cpp between the releases 1.0 and 1.3a.

Figure 8.18 depicts the different problem report metrics observed over the seven Mozilla
releases.

The file most affected by problems was and is nsCSSFrameConstructor. cpp. Its
Kiviat diagram shows a continuous increasing number of critical problems (NPR-blocker, NPR-
critical, NPR-major) whereby most of them were reported in the earlier releases. The same
behavior can be stated for the number of problems with highest priority (NPR-Pl, NPR-P2,
NPR-P3). The measured metric values of ns Pre s She Il . cpp show a similar behavior except
that the problems reported tor this file were of lower priority. Furthennore, big changes in
metric values are depicted by the diagrams of nsGlobalWindow. cpp (NPR-s-, NPR-enh)
and nsEventStateManager. cpp (NPR-P4).

Taking into account the previous view that showed the size and complexity metrics most of
the reported problems concerned existing features and not the addition of new features. Rel-
atively small increasing size and complexity metries but steadily high increasing numbers of
reported problems verify this hypothesis. The decline of reported problems in the latter releases
indicates that these source files became more stable in the recent releases.

8.4.3 KTVTAT GRAPHS

The focus of the views presented in this section is on providing more detailed graphs on the
coupling dependencies between software modules. For this we use the Kiviat graph visualiza-
tion technique that connects the set of Kiviat diagrams by edges which represent the coupling

Chapter 8: Mozilla Case Stlldy 94

7:Noe 8:NFM

Releases:

~
,.;:,~::~~~~:~7

1.0 -- Ua

l.3a -- 1.4

() 1.4 -- 1.6

.1.6 -- 1.7

2

nsXULElement.cpp

2

nsHTMLDocument.cpp

2

nsGlobalWindow.cpp

•nsEventStateM~ nager.cpp •

2

nsCSSFrameConstructor.c pp

l:NPR

O:NMR

9:NOV

2

nsGenericElement.cpp

2

nsPresShell.cpp

3:HALCONT 2:CCMPLX

Figure 8.17: Detailed system hotspots evolution view on Mozilla content and layout source files
with size and complexity metrics of7 releases from 0.92 to 1.7.

dependency. For the Kiviat diagrams we select the corresponding fan-in and fan-out metrics to
visualize the service provider and requester behavior of each software module.

• Figure 8.19 shows the module coupling by function calls. Edges denote aggregated function
calls taken from the recent Mozilla release I.7. We applied a threshold of 50 to filter the weak
relationships. The values of fan-in metrics are represented by thc attributes 1-4. Fan-out values
are represcntcd by the attributes 5-8. The attribute labeled NFM shows the number of functions
and methods contained by a module. The measurcments are taken from the Mozilla releases 0.92
to 1.7.

The view is an cxtension to the view shown by Figure 8.10. It highlights the strong coupling
relationships and several cyclic dependencies betwccn four modules. Several changes in the
values arc emphasized by the Kiviat diagrams. For instance, the number of out-going function
calls (lNR-out) of the DOM module steadily increased from release to release until release 1.6.
After that release thc value decreased by 499 from 1.808 down to 1.309 calls. This denotes a
decoupling of the DOM module in release 1.7. On the in-coming side of the DOM module the

Chapter 8: Mozilla Case Study 95

,.

Releases:

i~::~::~:~7
1.0 -- 1.3a

Ua -- 1.4

() 1.4 -- 1.6

.1.6 -- 1.7

,.

,.

nsGenericÊlement.cpp
12 13

nsPresShell.cpp

12 13 14

.
nsGlobalWindow.cpp

12 13

•
nsCSSFrameConstructor.cpp

.
" nsEventStateManager.cpp'

,.

O:NMR

l:NPR

12 13 14

.
nsXULElement.cpp

nsHTMLDocument.cpp ,.

13:NPR.P2
12:NPR.Pl 14:NPR.P3

11 :NPR-p 15:NPR.P4

10:NPR'R' 16:NPR-P5

12 13

7:NPR-minor

6:NPR-major 3:NPR.blocker
5:NPR.enh 4:NPR.critical

9:NPR-tri . I

•

Figure 8.18: Detailed modification hotspots evolution view on Mozilla content and layout source
files with problem report metries of 7 releases from 0.92 to 1.7.

number of function calls between the releases 1.4 and 1.6 increased by 360 up to 1.459 calls.
The Kiviat diagram representing the NewHTMLStyleSystem emphasizes changes in the

in-coming calls metries between the two recent releases. The value of the IFan-in metric con-
tinuously increased until the release 1.6 but then in release 1.7 decreased by 173 down to 547
functions. The Kiviat diagrams of the remaining nodes show only minor changes except the
diagram of XPToolki t which shows an up and down for the metries of out-going function
calls.

Figure 8.20 represents the content and layout modules with the aggregated inheritance re-
lationships and corresponding fan-in and fan-out metrics. Regarding the filtering of the weak
relationships we applied a threshold of 5.

The graph provides detailed information to the view depicted by Figure 8.11. By grouping
the fan-in and fan-out metrics the diagrams categorize the modules into sub- and super-classes

•

Chapter 8: Mozilla Case Study

7:IFan-out

6~:INŒ-Out 8:INR-out

5:INAR-oul

O:NFM

4:INR-in
l:INAR-in

3:INCE-in
2:IFan-in

MathML

,

*
' .

>-~ .. '

Releases:

~
' ~::~::~:~7

1.0 -- Ua

1.3a -- 1.4

() 1.4 -- 1.6

t$ 1.6 -- 1.7

96

Figure 8.19: Source code coupling evolution view on Mozilla content and layout modules with
metric values of in-coming and out-going call relationships. Values are of 7 releases from 0.92
to 1.7. Edges denote aggregated invokes relationships taken from release 1.7 filtered using a
threshold of 50 for RNA!.

whereby high fan-out values denote sub-classes and high fan-in super-classes. In addition, the
diagrams show the evolution of these metric values. For instance, in the earlier releases the
XPToolki t module inherited more than 40 super-classes from other modules. Then, from
release l.3a to 1.4 the number decreased to 30 super-classes. The change is highlighted by the
big green polygon.

Other large changes are indicated by the diagrams ofthe NewHTMLStyleSystemand DOM

modules. Both diagrams denote a decrease of inter-module inheritance relationships.

8.4.4 RESULTS

In this section we presented a number of views that were focused with visualizing multiple met-
rics and their evolution over the seven selected Mozilla releases. Using the Kiviat diagram ap-
proach these views highlighted the strong changes in the metric values that were clearly indicated

•

Chapter 8: Mozilla Case Study

XSLT

DOM

Releases:

: ~.~~= ::~:
~ Ua -- 1.4
() 1.4 -- 1.6

~ 1.6 -- 1.7

97

Figure 8.20: Source code coupling evolution view on Mozilla content and layout modules with
metric values ofin-coming and out-going inheritance relationships. Values are of7 releases from
0.92 to 1.7. Edges denote aggregated inherits relationships taken from release 1.7 filtered using
a threshold of 5 for RNAIH.

by large polygons.
Regarding Mozilla's content and layout modules the diagrams again highlighted the DOM

module and nsCSSFrameConstructor. cpp file as the most critical entities concerning
size, complexity, past modifications, and reported problems. But, the trend of the metrics of the
two entities also yielded that the most critical phase ofthe two entities was in the earlier releases.
In the recent release they became more stable as indicated by the Kiviat diagrams.

For the detailed analysis ofthe inter-module coupling relationships we composed Kiviat dia-
grams to Kiviat graphs. The focus was on visualizing the trend of coupling metrics together with
the different types of aggregated relationships that constitute the coupling. We presented two
views on the module level, one on intermodule function calls, and another view on intermodule
class inheritance relationships. Also in these views the Kiviat diagrams indicated improvements
ofthe most critical modules whose values of coupling metrics decreased in recent releases. This
corresponds to the overall impression that we got from the case study: the implementation of

Chapter 8: Mozilla Case Stûdy 98

Mozilla's content and layout functionality became more stable in recent releases.
Summarized, our proposal to the Mozilla developer is to split the critical entities highlighted

by our views and to resolve the cyclic dependencies. They were and are the central cost factors
in terms of numbers of modifications and problems. And, without a directed refactoring they
will remain these factors in the up-coming releases.

8.5 SUMMARY OF RESULTS

In this section we summarize the case study results and provide answers to the questions con-
cerning the implementation and evolution ofthe seven Mozilla modules:

• Which are the main building blocks?
In the recent Mozilla release 1.7 seven modules including 1.321 source files implement
Mozilla's content and layout handling. The DOMmodule is by far the largest and most
complex module. It consists of more than 11.000 functions and methods contained in 492
source files. Another module pointed out as large and complex is NewLayoutEngine.
It consists of 4.404 functions and methods contained in 229 source files. Compared to
these two modules the remaining five modules are small and less complex (see Figure 8.1,
Figure 8.2, Figure 8.7).

On the file level the views highlighted 40 source files with more than 100 functions and
high cyclomatic and program complexity. Among these the largest file is
nsCSSFrameConstructor. cpp. It comprises 13.320 lines of code that implement
208 functions (see Figure 8.3, Figure 8.4, Figure 8.9) .

• Which units are coupled with each other and how strong are these coupling dependencies?
In the case study we analyzed the source code and change coupling relationships between
modules and their source files. The views on the function calls showed weak intermodule
coupling. However, there is the problem of cyclic coupling dependencies that are between
the DOMNewLayoutEngine, and XPToolki t modules. A deeper investigation on the
file-level pointed us to 29 source files that make up most ofthe coupling. Concerning the
cyclic coupling we determined five source files that are basically responsible for that (see
Figure 8.10, Figure 8.12).

The view on the inheritance relationships depicted a well designed inheritance structure.
We found only one weak cyclic coupling between the NewLayoutEngine and the
XPToolki t module that has to be removed. Interestingly, three of the files causing the
inheritance cycle also are involved in the cyclic function calls (see Figure 8.11) .

• Are there entities and relationships that indicate Bad Smells?
On the module level we identified the DOMmodule as a "God Module". Compared to the
other modules it is too large and complex and therefore should be re-factored into smaller
sub modules. NewLayoutEngine is another module that should be divided into sub

Chapter 8: Mozilla Case Study 99

modules. It also is large, complex, and strongly coupled with the other modules. Reducing
the size will reduce the complexity and improve maintainability and evolvability of these
modules (see Figure 8.3, Figure 8.4, Figure 8.9).

On the file-level we identified 40 source files that implement more than 100 methods. This
is far too much behavior that is difficult to understand and maintain. The developers should
re-factor the files and move methods to new files (see Figure 8.3, Figure 8.4, Figure 8.9).

With regard to internlOdule method invocations and class inheritance we identified a num-
ber of cyclic coupling relationships between the content and layout modules. Basically,
the modules involved in these design shortcomings are the large and complex modules,
namely DOM, NewLayoutEngine, XPToolkit, and NewHTMLStyleSystem. The
analysis on the file level retrieved the set of source files that cause the cycles. For instance,
the cycle between the NewLayoutEngine and XPToolkit modules basically is caused by
five source files and a small shortcoming in the inheritance structure (see see Figure 8.10,
Figure 8.11, Figure 8.12) .

• How did the implementation units (i.e., modules) and coupling dependencies evolve?
Views on the modules indicated a growing content and layout implementation most of all
in the large and complex modules DOM and NewLayoutEngine. However, the increase
dropped in the recent releases (see Figure 8.15). The view on the largest source files
further strengthen this trend: size and complexity increased in earlier releases but dropped
in recent releases (see Figure 8.17).

The decrease in size and complexity is also visible in the diagrams showing the intermod-
ule coupling dependencies. They highlight strong coupling in the earlier Mozilla releases
that have been reduced in recent releases (see Figure 8.19, Figure 8.20). Concerning the
intermodule coupling this clearly denotes improvements .

• Which modules were most vulnerable to problems and modified mostfrequently?
Here the module views showed a clear picture: the large and complex modules were
most affected by high-priority problems andtherefore were assigned the highest num-
ber of modification reports. Normalizing the metric values by the number of source files
(NOF) we obtain that the NewLayoutEngine module by far is the most change prone
module. On average 44 problem reports were assigned to a file of this module that is
more than twice as much as for the other modules. For instance, DOM, XPToolki t, and
NewLayoutEngine have a problem report rate of 20 reports per source file (see Fig-
ure 8.8). The progression of these metrics indicated a stabilization regarding the number
of new problems and modifications (see Figure 8.16).

On the file level we identified the change prone source files. The resulting graph is domi-
nated by the nsCSSFrameConstructor. cppfile that was and still is the most change
prone file followed by nsPresShell . cpp, and nsGlobalWindow. cpp. But also for
these files the progression of evolution metric values depict a reduction in the number of
new problems and modifications (see Figure 8.18).

Chapter 8: Mozilla Case Study JOO

• Are there change couplings between modules and how strong are they?
We visualized the change coupling relationships between the software modules that oc-
curred from Mozilla release 1.6 to 1.7. The graph shows that except one module (MathML)
all modules have change couplings with the DOM module. Consequently, changes to the
DOM module lead to changes in the other modules. Other two modules that are involved in
the change coupling are XPToolkit and NewLayoutEngine (see Figure 8.13).

Details about the change coupling are provided by the file-level view. They showed that
the heavy change coupling relationships are between files of the three modules pointed
out on the module level. The source files that were most involved in this kind of coupling
between the releases 1.6 and 1.7 are those files that are also involved in the intermodule
coupling via method invocations. They truly propagated modifications across modules to
other source files. To find out the reasons for this we have to investigate the problem and
modification reports in more detail than the file level.

8.6 DISCUSSION OF RESULTS

The Mozilla case study demonstrated that our integrated data model and visualization techniques
facilitate the identification of the implementation units and the coupling dependencies that are
critical for maintaining and evolving the content and layout modules. The integration of the
release history allowed for the computation of evolution metrics that addressed the frequency of
modifications and problems as well as the change couplings.

Based on this data model we applied the polymetric views visualization technique. Resulting
views showed that this technique is useful to point out the entities and relationships of interest by
mapping metric values to graphical attributes of one release. We demonstrated that our extension
of polymetric views to Kiviat graphs facilitated the visualization of multiple metrics of up to n
releases. Kiviat diagrams and graphs provided additional clues of the evolution of implementa-
tion units and in particular highlighted the strong changes which were of primary interest. They
indicate improvements but also degradation in the implementation.

During the case study with the Mozilla open source software project we encountered a num-
ber of problems that affected our results. These problems were concerned with extracting the
facts, integrating the data models, and creating the views.

8.6.1 FACT EXTRACTION

In the fact extraction the primary issues were related with properly configuring the C/C++ parser
to obtain a fact base of reasonable quality. For the Mozilla project we had to manually inspect
the Makefiles of the different software modules to obtain the compiler settings. The effect of
these settings emerged in certain metric measurements and consequently graphs. For instance,
the Kiviat diagram of the XML module depicted in Figure 8.15 shows such a strong change that
basically results from a change in the Makefile between the releases 1.3a and 1.4. In the latter

Chapter 8: Mozilla Case Study lOI

the directory schema and soap were not included by default as was done in release 1.3a. The
result is a decrease in size and complexity ofthe XML module.

The quality of the parser influences the results. The version 5.0.2 of the Imagix-4D parser
performs a full semantic analysis but fails when parsing certain C/C++ template constructs. Be-
cause of this deficiency the parser missed a considerable amount of function calls that occur in
the Mozilla source code. Basically, missed function calls involved functions of classes that are
wrapped by a XPComcomponent. XPCom is the component framework of Mozilla that heavily
uses C/C++ templates which caused the parsing problems.

Listing 8.1 depicts an example of a class (interface) nslScrollable that is implemented with
the XPCom framework.

Listing 8.1: C/C++ template example of a function call missed by the Imagix-4D parser.
II nsIScrollable.h
class NS~O_VTABLE nslScrollable : public nslSupports {
public:

NS_IMETHOD GetDefPrefs(PRInt32 scrollOrientation,
PRlnt32 *scrollbarPref) = 0;

}

II nsBarProps.h
NSJMETHODIMP ScrollbarsProplmpl: :GetVisible(PRBool *aVisible) {

nsCOMPtr<nsIScrollable> scroller(do_Querylnterface(docshell));

I/Missing/Mismatched function declarator
scroller- >GetDefPrefs(nsIScrollable:: ScrollOrientation_ Y, &prefValue);

}

The class nsIScrollable contains a method GetDefPrefs (..) that is called by the
GetVisible(..) method of another class named ScrollbarsProplmpl. The reference to this
call is missed by the Imagix-4D parser because it can not statically determine the type ofthe class
to which the method GetDefPref s belongs to. This effected the quality of our fact base and
the analysis results of the coupling by function calls. The other calls were fully retrieved hence
there was sufficient function call information available for our analysis. However, having also
the set of missed calls would further improve our analysis results. It is part of our on-going and
future work to develop a workaround that uses the GNU gcc parser to obtain the missed calls.
The initial approach and first results are presented in [GPG04].

The other data extraction issues concerned the CVS and Bugzilla data, in particular the link-
age ofmodification and problem reports. The links were reconstructed by matching the bug num-
bers in the messages entered by the Mozilla developers when committing their changes to the
CVS repository. Because these numbers were entered as free text there is a number of false pos-
itives and negatives that have to be considered. Summarizing the results presented in [FPG03a]

Chapter 8: Mozilla Case Study J02

we retrieved a high number of correctly established links and a low number of false positives and
negatives. However, we have to thank the Mozilla developers for entering the report numbers.
Without this infonnation the linkage of modification and problem report data needs a serious
workaround.

8.6.2 DATA MODEL INTEGRATION

In the current version of our approach we consider integration of data models on the level of
source files and higher. As mentioned in the integration step of the Mozilla case study we used
the short file name for detemlining the links between the file entities of the source code and
release history data models. The percentage of established links was 96% in the earlier and
99.8% in the latter Mozilla releases. This resulted in a well integrated data model that was useful
to perform analysis on the level of source files and software modules.

But, to perform a more detailed analysis of modifications and problems on the level of classes
and methods the model integration algorithm has to be refined. Whereas, for linking source files
the file name is sufficient, it is not for classes and moreover for methods. Typically, in a large
source code base there exists several methods with the same name and even the same signature
that lead to false positive matches. Further, methods are more likely to be changed or moved
around. Determining a link between such methods is not trivial and subject of on-going and
future research.

8.6.3 VISUALIZATION

The Polymetric Views technique and in particular the hotspots views turned out to be useful to
get an overview ofthe system by highlighting its core elements. In addition to the views ofLanza
et al. in [LD03] we incorporated additional metrics that addressed the source code and coupling
between entities as well as metrics computed ofthe release history data. Including these metrics
we were able to compute views that highlight the entities that were the critical cost factors in
terms of number of modifications and problems.

By extending the polymetric views technique to use Kiviat diagrams instead of rectangles our
approach facilitates the visualization of multiple metrics in each node. In the Mozilla case study
the diagrams facilitated us to put more details about certain aspects, such as size and complexity
or usage relationships between software modules, into one view. They also enabled us to analyze
the relation between certain metrics, such as between the size and complexity and the number of
modifications of a module in one and multiple releases.

In this context, a lesson learned from the case study was that the user has to make sure:

• To select the proper set ofmetrics to be visualized (e.g .. avoid too many metries); and

• To properly order metries in the Kiviat diagrams (e.g., group metrics that belong together).

Chapter 8: Mozilla Case Study 103

The views we presented in the case study considered these aspects and represent an initial set
of views from which the user can derive other view configurations. However, to claim a view
configuration to be useful we need user-studies that are still an open issue.

Using the Kiviat diagrams to present multiple metrics observed over several subsequent
Mozilla releases proofed to be suitable to highlight strong changes in metric values. We identi-
fied such changes in several software modules and source files ofMozilla. During the case study
we encountered also a number of limitations of the Kiviat diagram approach but also potential
solutions to handle them. These are:

1. Views become cluttered with informaüon when visualizing complex graph<;or a large num-
ber of metries: Information cluttering can be handled by reducing the set of entities to
visualize or by applying filters.

2. Polygons represenüng the metric values of recent releases overlap polygons of earlier
releases: This problem emerges especially when visualizing measured values of multiple
metrics of a large number of releases. A workaround is to select only the releases with the
large changes in metric values and redraw the graph again.

3. Normalization to the maximum obfuscates small values: To gain insights into the entities
with little changes we remove the large and complex entities from the list of selected
entities. This lowers the different maxima and emphasizes small metric values.

In summary, the Arch View approach provided us with several techniques to analyze the as-
pects that we mentioned in the Mozilla scenario. The quality ofthe integrated data model as well
as the abstraction and visualization techniques provided us with the views that we needed for the
analysis. The interpretation of the views then is subject to user.

CHAPTER 9

CONCLUSION

In this chapter we summarize the contributions of this dissertation, discuss the benefits of our
approach, and indicate directions of future work.

9.1 CONTRIBUTIONS

In this dissertation we tackled the issues concemed with creating and presenting higher-level
views on the implementation of a software system and its evolution. Summarized, these issues
comprised:

• The building of an integrated data model. The analysis of evolutionary aspects needs the
consideration of different data sources that provide information about the implementation,
problems, and modifications of a software syst"em.We presented the techniques and tools
to process these data sources and extract the corresponding data models. For the integra-
tion of the different data models we introduced the E-FAMIX meta model that serves for
subsequent abstraction, visualization, and analysis tasks. The E-FAMIX meta model facil-
itates the navigation of entities and relationships across source code releases, from source
code to release history data, and vice versa .

• The Abstraction oj lower-level data. The sheer amount and complexity of information
obtained from several source code releases, versions, and bug reporting systems of large
software systems blurs views. We built on an existing aggregation technique to condense
implementation and evolution specific information to higher-level views. In this context
we presented the containment hierarchy model that specifies the entities and paths along
which lower-level entities and relationships are abstracted to the level of modules. The
abstraction was accompanied by the computation of size, complexity, modification, and
problem report metrics. The latter two metrics represented important extensions to existing
source code metrics. Basically, they were used to highlight the change prone modules and
heavy change coupling relationships.

104

Glapler 9: Conclusion 105

• The creation of coarse and fine-grained graphical views. For the creation of these views
we built upon the existing polymetric views technique and extended it towards the visu-
alization of multiple metrics of up to n releases. We realized these extensions by using
Kiviat diagrams instead of trivial graph glyphs. We described the measurement mapping
technique and showed the composition of Kiviat diagrams to Kiviat graphs. Based on the
integrated, abstracted, and enriched data model we provided a set of new hotspots views
used to answer questions conceming structural and evolutionary aspects of the implemen-
tation. In particular, we were able to:

- Identify the main modules of a software system their size and complexity.

- Show the inter-module coupling relationships and the type and strength of these re-
lationships.

- Identify the modules and coupling dependencies indicating design shortcomings (Bad
Smells, such as God Modules, cyclic dependency, and dead code).

- Identify the modules that have been most vulnerable to problems (i.e., change prone
modules) and, on the other side, the stable modules.

- Show the heavy change coupling relationships indicating frequent propagation of
changes between modules (i.e., Shotgun Surgery).

- Show the growth in size and complexity of modules across releases and identify
periods with improvements or degradations.

- Show the progression of problem vulnerability and modification frequency and iden-
tify modules that are or tend to become vulnerable and modules that are or tend to
become stable.

The different techniques and algorithms have been integrated into the Arch View approach. In
order to demonstrate the ArchView approach we applied it to the open source project Mozilla that
provided us with a representative amount and complexity of source code and release history data.
The focus was on analyzing the implementation ofMozilla's content and layout functionality, and
in particular its structural and evolutionary aspects.

The results of the case study comprised a number of views on the level of software modules
and source files identifying the large, complex, buggy, and frequently modified modules and
source files as well as the heavy source code and change coupling relationships. In addition, we
presented views depicting metric trends indicating improvements and degradations in the design
and implementation of Mozilla's content and layout modules. Questions, such as when has the
number of problem reports of module A increased rigorous, could be answered. In this way
the ArchView views identified the change prone content and layout modules and source files to
which most of the maintenance effort has been dedicated to. They represent the candidates for a
refactoring and this was what we claimed to provide in the case study.

Regarding the case study we also presented a discussion ofthe results and described possible
pitfalls and shortcomings of the ArchView approach. A number of these pitfalls and shortcom-
ings are subject to future work described in the next section.

Chapter 9: Conclusion

9.2 FUTURE WORK

106

In the following we list open issues in the area of architecture recovery and software evolution
analysis that showed up while developing the ArchView approach. Basically, they concern data
extraction, model integration, view visualization, and view analysis .

• Dynamic analysis: A possible extension to ArchView is by the inclusion ofrun-time data
that can be obtained from execution traces. We then can apply ArchView for analyzing
the structural and evolutionary aspects offeatures, components, and connectors. Initial ap-
proaches that address these issues have been presented by Fischer e/ a/. [FG04,FOGG05].
Future work is concerned with integrating these techniques into Arch View.

• Ex/rae/ion and evolution of pat/ems: Similar to feature data obtained from dynamic anal-
ysis we plan to integrate data from extracted patterns and analyze how they influenced
the evolution of software systems. Patterns range from code patterns, over object-oriented
design pattern to architectural patterns and styles. Concerning code patterns we plan to
integrate the Revealer approach [PFGJ02] into ArchView to do pattern-supported architec-
ture recovery and analysis [PG02].

• Fine-grained analysis of modifications: Another possible direction of future work is in the
detailed analysis of modifications, such as which classes, methods, fields, or even more
detailed which statements where inserted, added, or changed. This enables the reconstruc-
tion of modifications and a detailed analysis of them. For instance, based on the detailed
information a categorization of changes into "good" changes that led to improvements
and "bad" changes that led to "Bode Smells" is possible. Based on these categorization
of modifications "Evolutionary Smells" can be identified. Along with the detailed infor-
mation about modifications another open issue is concerned with the detailed analysis of
reported problems. Questions, such as which problems where trivial to solve and which
caused changes in the design and architecture of a system could be answered. Both issues
give deeper insights into the evolvability of software systems .

• Inclusion of bug-activity data: In the current version of ArchView we do not take into ac-
count the bug activity log data as tracked by the Bugzilla bug reporting system. Basically,
this data describes the work that is going on to resolve a reported problems. It keeps track
of the bug fixing process starting with reporting the problem, assigning it to a developer,
and usually ending with verifying the resolution. With this data it is possible to navigate
the history of each report and perform more detailed analysis of the problem resolution
process. Preferable, this open issue has to be combined with the fine-grained modification
analysis to develop an early-warning-system that, integrated into an IDE, warns the devel-
oper when a class or method exceeds its allowed fault and change proneness threshold .

• Da/a extractionfromframework-based software systems: In our previous work [POG03]
and [KP03] we showed that the extraction of framework specific facts is mandatory to
analyze framework-based software systems. The problem is that program logic is hidden

Chapter 9: Conclusion 107

away in extra configuration files or even in comments. Future work is needed to develop
extraction tools that obtain and integrate the framework specific data within source code
model and release history data. This allows for the detailed analysis of such software
systems. Because of the diversity of existing frameworks we propose to start with the
major frameworks, such as Sun's J2EE or Microsoft's .NET.

• Data mining: Taking into account the fine-grained modification and bug activity data the
fact repository contains a richness of data to analyze. Future work can be spent on applying
sophisticated data mining algorithms to this data with focus on the source code and evolu-
tion metrics. Issues, such as what is the relation between metrics, which metrics have to be
computed for the characterization of the evolvability of software systems, are there metrics
that are irrelevant, or prediction of problems and modifications have to be addressed.

• View visualization: The amount and type of data provided by the Arch View repository
demands improvements of visualization techniques. In particular, future work has to be
done in the presentation and navigation of views. There are a number of ideas future re-
search can play with, such as using animations or 3D graphics to visualize the evolution of
software systems. Animations, tür instance, show the series of snapshots taken from parts
or the whole system animating the change in size, complexity, problem and modification
frequency. In addition, further support for navigating the huge amount of complex data has
to be investigated and tested.

BIBLIOGRAPHY

[14700] IEEE Std 1471-2000. Ieee recommended practice for architectural description of
software-intensive systems. IEEE Std 1471-2000,2000.

[ABF04] Erik Arisholm, Lionel C. Briand, and Audun Foyen. Dynamic coupling measure-
ment for object-oriented software. IEEE Transactions on Software Engineering,
30(8):491-506, 2004.

[AH90] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings
ofthe Conference on Programming Language Design and Implementation, pages
246-256, White Plains, NY, June 1990. ACM Press.

[APGP05] Giuliano Antoniol, Massimiliano Di Penta, Harald Gall, and Martin Pinzger. To-
wards the integration of versioning systems, bug reports and source code meta-
models. Electronic Notes in Theoretical Computer Science, 127(3):87-99, April
2005.

[Arn96] Robert S. Arnold. Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley, 2nd edition, 2003.

[BDW99a] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A unified framework for
coupling measurement in object-oriented systems. IEEE Transactions on Software
Engineering, 25(1):91-121, January 1999.

[BDW99b] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. Using coupling measure-
ment for impact analysis in object-oriented systems. In Proceedings of the Inter-
national Conference Oll Software Maintenance, pages 475-482, Oxford, England,
UK, 1999. IEEE Computer Society Press.

[BE96] Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE
Computer, 29(4):33-43, 1996.

[Be199] Bell Canada Inc. DATRIX - Abstract semantic graph reference manual, 1.2 edi-
tion, July 1999.

108

Bibliography 109

[Ber74] Jacques Bertin. Graphische Semiologie. WaIter de Gruyter, 1974.

[BM99] Elizabeth Burd and Malcolm Munro. An initial approach towards measuring and
characterizing software evolution. In Proceedings of the Working Conference on
Reverse Engineering, pages 168-174, Atlanta, Georgia, 1999. IEEE Computer
Society Press.

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[CAL094] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evalu-
ate software system maintainability. IEEE Computer, 27(8):44--49, 1994.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith Stafford. Documenting Software Architectures: Views
and Beyond. Addison-Wesley, 2002.

[CC90] Elliot 1. Chikofsky and James H. Cross. Reverse engineering and design recovery:
A taxonomy. IEEE Software, 7(1):13-17, January 1990.

[CFV99] Aniello Cimitile, Anna Rita Fasolino, and Giuseppe Visaggio. A software model
for impact analysis: a validation experiment. In Proceedings of the 6th Working
Co"!ference on Reverse Engineering, pages 212-222, Atlanta, GA, 1999. IEEE
Computer Society Press.

[CM03] Davor Cubranié and Gail C. Murph. Hipikat: recommending pertinent software
development artifacts. In Proceedings of the 25th International Conference on
Software Engineering, pages 408-418, Portland, Oregon, 2003. IEEE Computer
Society Press.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Readings in
Iiformation Visualization - U"ing Vision to Think. Morgan Kaufmann, 1999.

[CMW02] Katja Cremer, André; Marburger, and Bernhard Westfechtel. Graph-based tools
for re-engineering. Journal ofSoftware Maintenance, 14(4):257-292,2002.

[Dav95] Alan M. Davis. Principles ofSoftware Development. McGraw-Hill, 1995.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[EKRW02] Jürgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter. Gupro-
generic understanding of programs. Electronic Notes in Theoretical Computer
Science, 72(2):59-68, 2002.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design ofExisting Code. Addison-Wesley, 1999.

Bibliography 110

[FG04] Michael Fischer and Harald Gall. Visualizing feature evolution of large-scale
software based on problem and modification report data. JOl/rnal of Software
Maintenance and Evolution: Research and Practice, 16:385-403,2004.

[FHOO] Hoda Fahmy and Richard C. Holt. Software architecture transfonnations. In
Proceedings ofthe International Conference on Softyy'areMaintenance, pages 88-
96, San Jose, CA, October 2000. IEEE Computer Society Press.

[FHK+97] Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, Kostas Kontogian-
nis, Hausi A. Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and
Kenny Wong. The software bookshelf. IBM Systems Journal, 36(4):564-593,
November 1997.

[FKv098] Loe Feijs, Rene Krikhaar, and Rob van Ommering. A relational approach to sup-
port software architecture analysis. JOl/rnal of Software Practice and Experience,
28(4):371-400,1998.

[FOOO] Norman E. Fenton and NicIas Ohlsson. Quantitative analysis offaults and failures
in a complex software system. IEEE Transactions on Software Engineering, 26(8),
2000.

[FOGG05] Michael Fischer, Johann Oberleitner, Harald Gall, and Thomas Gschwind. Sys-
tem evolution tracking through execution trace analysis. In Proceedings of the
International Workshop on Program Comprehension, pages 237-246, St. Louis,
Missouri, 2005. IEEE Computer Society Press.

[FP96] Norman E. Fenton and Shari Lawrence Pfleeger, editors. Software Metrics: A
Rigorol/s and Practical Approach. Thomson Computer Press, 2nd edition, 1996.

[FPG03a] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug
report data for feature tracking. In Proceedings of the 10th Working Conference
on Reverse Engineering, pages 90-99, Victoria, B.C., Canada, November 2003.
IEEE Computer Society Press.

[FPG03b] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings of the
International Conference on Software Maintenance, pages 23-32, Amsterdam,
Netherlands, September 2003. IEEE Computer Society Press.

[Fre03] Free Software Foundation. Version Management with CVS, 1.11.14 edition, 2003.
http://www.cvshome.org/ docs/manual.

[GA095] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: why
reuse is so hard. IEEE Software, 12(6):17-26, 1995.

http://www.cvshome.org/

Bibliography 111

[GDL04] Tudor Gîrba, Stéphane Ducasse, and Michele Lanza. Yesterday's weather: Guid-
ing early reverse engineering efforts by summarizing the evolution of changes.
In Proceedings of the International Conference on Software Maintenance, pages
40-49, Chicago, Illinois, 2004. IEEE Computer Society Press.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling
based on product release history. In Proceedings of the International Conference
on Software Maintenance, pages 190-198, Bethesda, Maryland, USA, 1998. IEEE
Computer Society Press.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

•
[GHJ04] Daniel M. German, Abram Hindle, and Norman Jordan. Visualizing the evolution

of software using softchange. In Proceedings the 16th Internation Conjèrence on
Software Engineering and Knowledge Engineering, pages 336-341, 3420 Main
S1.Skokie IL 60076, USA, June 2004. Knowledge Systems Institute .

[GJK03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for
detecting logical couplings. In Proceedings of the International Workshop on
Principles of Software Evolution, pages 13-23, Helsinki, Finland, 2003. IEEE
Computer Society Press.

[GJKT97] Harald Gall, Mehdi Jazayeri, René R. Klösch, and Georg Trausmuth. Software
evolution observations based on product release history. In Proceedings of the
International Conference on Software Maintenance, pages 160-166, Bari, Italy,
1997. IEEE Computer Society Press.

•
[GJR99]

[GL91]

[GLOO]

[GM03]

Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software release his-
tories: The use of color and third dimension. In Proceedings of the International
Conference on Software Maintenance, pages 99-108, Oxford, UK, 1999. IEEE
Computer Society Press .

Keith Brian Gallagher and James R. Lyle. Using program slicing in software main-
tenance. IEEE Transactions on Software Engineering, 17(18):751-761, 1991.

Michael W. Godfrey and Eric H. S. Lee. Secrets from the monster: Extract-
ing mozilla 's software architecture. In Proceedings of the Second International.
Symposium on Constructing Software Engineering Tools, Limerick, Ireland, June
2000.

Nicolas Gold and Andrew Mohan. A framework for understanding conceptual
changes in evolving source code. In Proceedings of the International Conference
on Software Maintenance, pages 432-439, Amsterdam, The Netherlands, 2003.
IEEE Computer Society Press.

Bibliography 112

[GPG04] Thomas Gschwind, Martin Pinzger, and Harald Gall. Tuanalyzer-analyzing tem-
plates in c++ code. In Proceedings of the 11th IEEE Working Conference on
Reverse Engineering, pages 48-57, Delft, Netherlands, November 2004. IEEE
Computer Society Press.

[GSV02] David Grosser, Houari A. Sahraoui, and Petko Valtchev. Predicting software sta-
bility using case-based reasoning. In Proceedings of the 17th International Con-
.fèrence on Automated Software Engienering, pages 295-298, Edinburgh, Scot-
land, UK, September 2002. IEEE Computer Society Press.

[Hal77] Maurice H. Halstead. Elements of software science, operating, and programming
systems series. Elsevier, 7, 1977.

•

•

[HNSOO]

[Ho198]

[HS95]

[HWSOO]

[Jaz02]

[JBR99]

[JRvdLOO]

[KC99]

[KerOS]

[KP03]

Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture.
Addison-Wesley,2000 .

Richard C. Holt. Structural manipulations of software architecture using tarski
relational algebra. In Proceedings of the Working Conference on Reverse Engi-
neering, pages 210-219, Honolulu, Hawai, 1998. IEEE Computer Society Press.

Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity.
Prentice-Hall, 1995.

Richard C. Holt, Andreas Winter, and Andy Schüff. Gxl: Toward a standard
exchange fomlat. In Proceedings of the 7th Working Conference on Reverse En-
gineering, pages 162-171, Brisbane, Australia, November 2000. IEEE Computer
Society Press.

Mehdi Jazayeri. On architectural stability and evolution. In Proceedings of the
Reliable Software Technlogies-Ada-Europe, pages 13-23, Vienna, Austria, 2002.
Springer Verlag.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architecture
for Product Families: Principles and Practice. Addison-Wesley, 2000.

Rick Kazman and S. Jeromy Carriére. Playing detective: Reconstructing software
architecture from available evidence. Automated Software Engineering, 6(2): 107-
138,1999.

Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley,2005.

Jens Knodel and Martin Pinzger. Improving fact extraction of framework-based
software systems. In Proceedings ofthe 10th Working Conference on Reverse En-
gineering, pages 186-195, Victoria, B.c., Canada, November 2003. IEEE Com-
puter Society Press.

Bibliography 113

[Kri99] Rene Leo Krikhaar. So(ftvare Architecture Recollstruction. PhD thesis, Univer-
siteit van Amsterdam, 1999.

[Kru95] Philippe B. Kruchten. The 4+ 1 view model of architecture. iEEE Software,
12(6):42-50,1995.

[KS03] Rainer Koschke and Daniel Simon. Hierarchical reflexion models. In Proceedings
of the 10th Working Conference on Reverse Engineering, pages 36--45, Victoria,
Canada, 2003. IEEE Computer Society Press.

[KWC98] Rick Kazman, Steven G. Woods, and S. Jeromy Carrire. Requirements for inte-
grating software architecture and reengineering models: Corum ii. In Proceedings
ofthe 5th Working Conference on Reverse Engineering, pages 154-163, Honolulu,
Hawai, 1998. IEEE Computer Society Press .• [LanOI]

[Lan03]

[Lan04]

[LB85]

[LD03]

[LK94]

[LPR98]

Michele Lanza. The evolution matrix: Recovering software evolution using soft-
ware visualization techniques. In Proceedings of the international Workshop on
Principles ofSoftware Evolution, pages 37--42, Vienna, Austria, September 2001.
ACM Press.

Michele Lanza. Object-Oriented Reverse Engineering - Coarse-grained, Fine-
grained, and Evolutionary Software Visualization. PhD thesis, University of
Berne,2003.

Michele Lanza. Codecrawler - polymetric views in action. TnProceedings of the
19th iEEE international Conference on Automated Software Engineering (ASE),
pages 394-395, Linz, Austria, 2004. IEEE Computer Society Press.

Manny M. Lehman and Les Belady. Program Evolution - Processes of Sofftvare
Change. London Academic Press, 1985.

Michele Lanza and Stéphane Ducasse. Polymetric views - a lightweight visual
approach to reverse engineering. iEEE Transactions on Software Engineering,
29(9):782-795, September 2003.

Mark Lorenz and JefIKidd, editors. Object-Oriented Software Metrics: A Practi-
cal Guide. Prentice-Hall, 1994.

Manny M. Lehman, D. E. Perry, J. F. Ramil, W. M. Turski, and P. D. Wernick.
Metrics and laws of software evolution - the nineties view. TnProceedings of the
4th international Software Metrics Symposium, pages 20-32, Albuquerque, NM,
USA, 1997. IEEE Computer Society Press.

Manny M. Lehman, Dewayne E. Perry, and Juan F. Ramil. Implications of evolu-
tion metrics on software maintenance. In Proceedings ofthe international Confer-
ence on Software Maintenance, pages 208-217, Bethesda, Maryland, USA, 1998.
IEEE Computer Society Press.

•

Bibliography 114

[LR03] James Law and Gregg Rothermel. Whole program path-based dynamic impact
analysis. In Proceedings ofthe 25th International Conference on SofMare Engi-
neering, pages 308-318, Portland, Oregon, 2003. IEEE Computer Society Press.

[LTP04] Timothy Lethbridge, Sander Tichelaar, and Erhard Ploedereder. The dagstuhl mid-
dle metamodel: A schema for reverse engineering. Electronic Notes in Theoretical
Computer Science, 94:7-18,2004.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Transactions on SofMare
Engineering, 2(4), 1976.

[MK88] Hausi A. Müller and K. Klashinsky. Rigi - a system for programming-in-the-large.
In Proceedings of the 10th International Conference on Softlvare Engineering,
pages 80-86, Singapore, April 1988. IEEE Computer Society Press .

[MMCG99] Spiros Mancoridis, Brian S. Mitchell, Yih-Fam Chen, and Emden R. Gansner.
Bunch: A clustering tool for the recovery and maintenance of software system
structures. In Proceedings of the IEEE International Conference on Software
Maintenance, pages 50-59, Oxford, England, September 1999. IEEE Computer
Society Press.

•

[MMF03]

[MNS01]

[Par72]

[Par94]

[PFG05]

[PFGJ02]

Jonathan I. Maletic, Andrian Marcus, and Louis Feng. Source viewer 3d (sv3d):
a framework for software visualization. In Proceedings of the 25th International
Conference on Software Engineering, pages 812-813, Portland, Oregon, 2003.
IEEE Computer Society Press.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. Software reflexion mod-
els: Bridging the gap between design and implementation. IEEE Transactions on
Software Engineering, 27(4):364-380, April2001.

David Lorge Pamas. On the criteria to be used in decomposing systems into
modules. Communications ofthe ACM, 15(12):1053-1058,1972 .

David Lorge Parnas. Software aging. In Proceedings of the J 6th international
conference on SofMare engineering, pages 279-287, Sorrento, Italy, 1994. IEEE
Computer Society Press.

Martin Pinzger, Michael Fischer, and Harald Gall. Towards an integrated view on
architecture and its evolution. Electronic Notes in Theoretical Computer Science,
127(3):183-196, Apri12005.

Martin Pinzger, Michael Fischer, Harald Gall, and Mehdi Jazayeri. Revealer: A
lexical pattern matcher for architecture recovery. In Proceedings of the 9th Work-
ing Conference on Reverse Engineering, pages 170-178, Richmond, Virginia, Oc-
tober 2002. IEEE Computer Society Press.

Bibliography 115

[PFJG04] Maltin Pinzger, Michael Fischer, Mehdi Jazayeri, and Harald Gall. Abstracting
module views from source code. In Proceedings of the International Conference
on Software Maintenance, pages 533-533, Chicago, USA, 2004. IEEE Computer
Society Press.

[PG02] Martin Pinzger and Harald GaU. Pattern-supported architecture recovery. In Pro-
ceedings of the 10th International Workshop on Program Comprehension, pages
53-61, Paris, France, June 2002. IEEE Computer Society Press.

[PGFL05] Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing
multiple evolution metrics. In Proceedings of the ACM Symposium on Software
Visualization, pages 67-75, St. Louis, Missouri, 2005. ACM Press.

[PGG+03] Martin Pinzger, Harald Gall, Jean-Francois Girard, Jens Knodel, Claudio Riva,
Wim Pasman, Chris Broerse, and Jan Gerben Wijnstra. Architecture recovery for
product families. In Proceedings of the 5th International Workshop on Product
Family Engineering, Lecture Notes in Computer Science, pages 332-351, Siena,
Italy, 2003. Springer-Verlag.

[POG03] Martin Pinzger, Johann Oberleitner, and Harald Gall. Analyzing and understand-
ing architectural characteristics of com+ components. In Proceedings of the Inter-
national Workshop on Program Comprehension, pages 54-63, Portland, Oregon,
2003. IEEE Computer Society Press.

[PW92] Dewayne E. Perry and Alexander L. Wolf Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40-52, 1992.

[Riv04] Claudio Riva. View-Based Software Architecture Reconstruction. PhD thesis,
Vienna University ofTechnology, 2004.

[SabO1] Michael Saboe. The use of software quality metrics in the materiel release process
experience report. In Proceedings of the 2nd Asia-Pacific Conference on Quality
Software, pages 104-109, Hong Kong, 2001. IEEE Computer Society Press.

[SBLEOO] Houari A. Sahraoui, Mounir Boukadoum, Hakim Lounis, and Frédéric Ethève.
Predicting class libraries interface evolution: an investigation into machine learn-
ing approaches. In Proceedings of7th Asia-Pacific Software Engineering Confer-
ence, pages 456-464, Singapore, December 2000. IEEE Computer Society Press.

[SDBP98] John T. Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors.
Software Visualization - Programming as a Multimedia Experience. The MIT
Press, 1998.

[SFM99] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. MüUer. Cognitive
design elements to support the construction of a mental model during software
exploration. Journal of Systems and Software, 44(3): 171-185, 1999.

Bibliography 116

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice-Hall, 1996.

[SM95] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating and documenting
software structures using shrimp views. In Proceedings ofthe 1995 International
Conference on Software Maintenance, pages 275-284, Opio, France, October
1995. IEEE Computer Society Press.

[Sof99] Software Composition Group, University of Berne. The FAMIX 2.0 specification,
2.0 edition, August 1999. http://www.iam.unibe.ch/scg/ Archive/famoos/F AMIXI.

[SomOO] Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition edition,
2000.

[Tuf90] Edward R. Tufte. Envisioning Iriformation. Graphics Press, 1990.

[Tuf97] Edward R. Tufte. Visual Explanations. Graphics Press, 1997.

[UniOS] Uni Stuttgart. Bauhaus: Software Architecture, Sofnvare Reengineering, and Pro-
gram Understanding, May 2005.

[VRD04] Filip Van Rysselberghe and Serge Demeyer. Studying software evolution infor-
mation by visualizing the change history. In Proceedings of the 20th International
Conference on Software Maintenance, pages 328-337, Chicago, Illinois, USA,
September 2004. IEEE Computer Society Press.

[WarDO] Colin Ware. Iriformation Visualization. Morgan Kaufmann, 2000.

[Won98] Kenny Wong. The Rigi User:" Manual - Version 5.4.4. University of Victoria,
5.4.4 edition, 1998.

[WSHH04] Jingwei Wu, Claus W. Spitzer, Ahmed E. Hassan, and Richard C. Holt. Evolution
spectrographs: Visualizing punctuated change in software evolution. In Proceed-
ings ofthe 7th International Workshop on Principles of Software Evolution, pages
57-66, Kyoto, Japan, September 2004. IEEE Computer Society Press.

[YCM78] Stephen S. Vau, J. S. Collofello, and T. MacGregor. Ripple effect analysis of
software maintenance. In The IEEE Computer Society 's Second International
Computer Sofnvare and Applications Coriference, pages 60-65. IEEE Computer
Society Press, 1978.

[YMNCC04] Annie T. T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Pre-
dicting source code changes by mining change history. IEEE Transactions on
Sofnvare Engineering, 30(9):574-586, September 2004.

http://www.iam.unibe.ch/scg/

Bibliography 117

[ZDZ03] Thomas Zimmennann, Stephan Diehl, and Andreas Zeller. How history justifies
system architecture (or not). In Proceedings of the 6th International Workshop
on Principles ofSoftware Evolution, pages 73-83, Helsinki, Finland, 2003. IEEE
Computer Society Press.

[ZWDZ04] Thomas Zimmermaml, Peter Weissgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the 26th
International Conference on Software Engineering, pages 563-572, Edinburgh,
Scotland, 2004. IEEE Computer Society Press.

ApPENDIX A

THE EXTENDED FAMIX META MODEL

This chapter provides the background information about the meta model that is used by Arch View
to store extracted and abstracted source code and configuration management data.

Recent and ongoing work in the field of meta models is concerned with integrating existing
source code meta models into a common meta model that can be extended towards programming
language and application specific requirements.

The FAMIX model [Sof99] from the University ofBem follows this ideas. FAMIX is a meta
model for a language-independent representation of object-oriented source code. It supports
extension points to tailor the meta model to include programming language specific features
such as C++ templates.

A.I E-FAMIX META MODEL

ArchView uses the E-FAMIX meta model which is an extension to FAMIX source code meta
model. The FAMIX model [Sof99] was developed by the University of Bern and provides a
meta model for a language-independent representation of object-oriented source code. It supports
extension points to tailor the meta model to include programming language specific features such
as C++ templates. We use these extensions points to include:

• Entity and relationship types that are related with representing modification and problem
report data as obtained from the CYS and Bugzilla systems. Concerning relationships we
add the "couples" relationship type that denotes a change coupling .

• Metrics that are computed for abstracted entities and relationships. Entity metries denote
the size, complexity, modification report, problem report, and coupling metrics (see Ta-
ble 6.1, Table 6.2, Table 6.3, Table 6.4, and Table 6.5). Relationship metries denote the
weight of an abstracted source code or change coupling relationship (see Table 6.6).

118

Appendix

o Entity

- Relationship

~ Inheritance

Source Code Meta Model

hasType

contains

includes

Release History Meta Model

mapsTo

writtenBy

119

Figure A.I: E-FAMIX meta model - based on the FAMIX source code meta model, extended by
the release history meta model.

Figure A.I shows the the core of the E-FAMIX meta model. The meta model consists of
two major models - the source code model and the release history model. Entities common to
both models are directories and files. In the source code model files contain the source code
(implementation) specific entities such as packages, classes, methods, and attributes. Files can
include other files (e.g., C/C++ header files) and are contained in a directory. Directories may be
nested and often base directories contain the implementation of a specific software module. With
respect to the release history model files are items that are managed by configuration management
systems. Modifications are made to files and checked in into the source code repository managed
by such systems. Therefore, files are first class entities for establishing links between the source
code model and release history model.

The E-FAMIX meta model described above can be extended towards the inclusion of addi-
tional entity and relationship types that are mandatory for specific analysis tasks. In context of
this thesis the current version of E-FAMIX is sufficient.

AppendŒ 120

A.2 SOURCE CODE MODEL

The ArchView source code model specifies the source code related entity and relationship types
needed to represent source code of object-oriented and procedurallike programming languages.
Figure A.I depicts the core of the E-FAMIX source code model. For a detailed description
interested readers are referred to the FAMIX documentation [Sof99]. The following is a brief
description of the model:

• Entities:

- Package: A Package is a named source code unit used to group source code entities
that logically belong together. Packages are programming language dependent, for
example, Java uses packages whereas C++ uses namespaces.

- Type: The Type entity represents data types as used by typed based programming
languages. For example, Java supports primitive data types (e.g., boolean, int, long)
and complex data types (i.e., classes). Regarding C++ the Type entity also represents
type aliasing by typedef statements.

* Class: Class is derived from the Type entity to represent classes as used by
object-oriented programming languages. Different types of classes such as C/C++
structs, unions or Java interfaces are not supported per se but can be distinguished
by setting corresponding attribute values.

- Behavioral Entity: This entity type comprises source code entities that implement
behavior. Based on the scope ofthe entity E-FAMIX considers:

* Function: Functions are behavioral source code entities of global scope. Typ-
ically, they are used by procedural/functional programming languages such as
C.

* Method: Methods are similar to functions but denote behavioral entities of a
class. Object-oriented programming languages such as Java or C++ use the con-
cepts of methods whereas in C++ methods are called member functions.

- Structural Entity: Structural entities are source code entities that concern the rep-
resentation of the state of a system. They denote locations in memory where in-
formation about the current state is stored. Depending on the scope we distinguish
between:

* Global Variable: Structural entities of global scope are denoted global variables.
The global scope implies that these variables are globally accessible and valid
during the lifetime ofthe running system.

* Local Variable: In contrast to global variables local variables are defined locally
within a behavioral entity (i.e., function, method). Access to local variables is
limited to entities within the scope of the function or method.

Appendix 121

* Attribute: Attributes are used in object-oriented programming languages to de-
fine structural entities within the scope of a class or instance of a class (i.e.,
object).

* Formal Parameter: Formal parameters are similar to local variables in that their
scope also is limited to functions or methods in which they are declared. The
difference to local variables is that they specify arguments that are passed to a
behavioral entity .

• Relationships:

- contains: Relationships of this type define the containment of entities by other enti-
ties. Based on these relationships a containment-hierarchy is established that defines
the path along which low-level elements are abstracted (see Section 6).

- hasType: These relationships are used to define the data type of structural entities
and the rerum type ofbehavioral entities. Further, type aliasing (e.g., C++ typedef)
is expressed by these relationships.

- includes: The inclusion of files is a functionality that is typical tür the C/C++ pro-
gramming language. An includes relationship denotes that a source file includes
another source file to, for instance use the class declaration ofthe included file.

- inherits: The inherits relationships reflects the inheritance between classes. Inheri-
tance is a basic concept used by object-oriented programming languages to inherit
responsibilities from base classes. The application of this concept in source code is
interesting on the design and architecturallevel.

- associates, aggregates: These two relationship types have been taken from the Unified
Modeling Language (UML) to denote relationships between classes in the design
level. However, implementation of these relationships vary in source code and often
can not be distinguished by the parser.

- invokes: Invocations denote calls between behavioral entities such as function are
methods calls.

- overrides: Overriding is a concept used by object-oriented programming languages
to override functionality inherited from a base class. Extracted relationships provide
information about the use of inherited and added functionality.

- accesses: Accesses to structural entities are denoted by relationships of this type.
Currently, ArchView does not distinguish between set and reading of structural enti-
ties.

A.3 RELEASE HISTORY MODEL

The ArchView release history model specifies entity and relationship types that are related to
modification specific data such as version, modification and problem report data as obtained from

Appendix 122

configuration management systems. Integration of release history data into source code model
data is beneficial in that it adds information about changes to source code entities. Consequently,
ArchView uses this infonnation to analyze the impact of changes to certain source code entities
to other entities. The core ofthe release history model is depicted in Figure A.I. It consists of:

• Entities:

- Product: Products are the results of software engineering efforts. Usually, the output
of software projects comprises a number of products that are delivered to customers.

- Release: According to Jacobson et al. [JBR99] a release is a relatively complete and
consistent set of artifacts that is delivered to internal or external users. During the
lifetime of software products several releases are developed. Basically, each devel-
opment cycle concludes with a product release that is ready for delivery. Regarding
version management systems a release is a snapshot on the source code repository
whereas source files are tagged with the release number.

- Item: Item denotes entities that are subject to store in version management sys-
tems. Basically, items are files such as source and configuration files or design doc-
uments but may be of any type that can be handled by version management systems.
ArchView focuses on implementation units and therefore concentrates on source and
configuration files that implement a particular release of a software product.

- Problem Report: Problem reports are created by users that discover bugs or are re-
sponsible for reporting bugs in the system. The evidence of a bug report leads to
modifications (e.g .. bug fixes) in the implementation of a software system.

- Modification Report: A modification report describes a particular modification to an
item that has been committed to the repository. Changes to the implementation of a
software system may affect n files. When committing these changes n modification
reports are generated (one per affected file). From the point ofview ofthe modifica-
tion (e.g., bug fix, add feature, refactoring) such commits bring about change related
couplings between affected items (i.e., source files) that are utilized by the ArchView
architecture recovery approach.

- Author: Author denotes software developers that report, comment or fix bugs, or
commit modifications to source code repositories managed by version systems.

- Patch: Patches denote bug fixes. Typically, patches are provided in form of source
code and contain information about the source files the patch affects and the lines of
code be added or deleted. Depending on the bug reporting system patches often are
attached to bug reports .

• Relationships:

- belongsTo: Similar to contains these relationships denote containment. They are used
to organize entities in hierarchies.

Appendix 123

- follows: Each commit of modifications to a particular item results in an increment of
the revision number assigned to each item by the version management systems. In
addition to the revision numbers these relationships describe the sequence of modifi-
cations to a particular item.

- linksTo: Bug reports typically lead to bug fixes which lead to modifications in source
files. Relationships ofthis type reflect this change process and denote the bug reports
that led to associated modification reports.

- dependsOn: These relationships denote dependencies between bugs, for example, a
new bug occurred from a fix of a previous bug.

- reportedBy, assignedTo, writtenBy, committedBy: These relationships indicate users
reporting bugs and users who are responsible for fixing them. Further, they denote
the user who implemented a patch to fix a bug and the user who commits fixes to the
source code repository.

- attachedTo: Often patches are attached to bug reports. These relationships describe
this attachment and consequently indicate the patch that fixes a given bug.

- patches: These relationships denote the application of which patches have been ap-
plied to which source files.

For each entity and relationship type there are a number of attributes that result from extrac-
tion and abstraction processes. During extraction of the source code model details and metrics
about each entity are extracted that are stored in the entity's attributes. For example the file loca-
tion of entities, the signature of methods, access control qualifiers of methods and attributes, etc.
In the release history model attributes include the date ofmodification or bug reports, the size of
modifications (e.g., lines added/deleted), severity, priority, and status ofbug reports, etc.

ApPENDIX B

PUBLICATIONS

This chapter presents the list of publications on which this dissertation is based on.

B.1 VISUALIZATION & ANALYSIS

Visualizing Multiple Evolution Metrics
Abstract: Observing the evolution of very large software systems needs the analysis of large

complex data models and visualization of condensed views on the system. For visualization
software metrics have been used to compute such condensed views. However, current techniques
concentrate on visualizing data of one particular release providing only insufficient support for
visualizing data of several releases. In this paper we present the RelVis visualization approach
that concentrates on providing integrated condensed graphical views on source code and release
history data of up to n releases. Measures of metrics of source code entities and relationships
are composed in Kiviat diagrams as annual rings. Diagrams highlight the good and bad times of
an entity and facilitate the identification of entities and relationships with critical trends. They
represent potential refactoring candidates that should be addressed first before further evolving
the system. The paper provides needed background information and evaluation of the approach
with a large open source software project.

Published: In Proceedings ofthe ACM Symposium on Software Visualization, pages 67-75,
St. Louis, Missouri, 2005. ACM Press.

Towards an Integrated View on Architecture and its Evolution
Abstract: Information about the evolution of a software architecture can be found in the source

basis of a project and in the release history data such as modification and problem reports. Ex-
isting approaches deal with these two data sources separately and do not exploit the integration
of their analyses. In this paper, we present an architecture analysis approach that provides an
integration of both kinds of evolution data. The analysis applies fact extraction and generates

124

Appendix 125

specific directed attributed graphs; nodes represent source code entities and edges represent re-
lationships such as accesses, includes, inherits, invokes, and coupling between certain architec-
tural elements. The integration of data is then performed on a meta-model level to enable the
generation of architectural views using binary relational algebra. These integrated architectural
views show intended and unintended couplings between architectural elements, hence pointing
software engineers to locations in the system that may be critical for on-going and future main-
tenance activities. We demOlIstrate our analysis approach using a large open source software
system.

Published: In Electronic Notes in Theoretical Computer Science, 127(3): 183-196, April
2005.

B.2 ARCHITECTURAL VIEW ABSTRACTION

Abstracting Module Views from Source Code
Abstract: In this paper we present ArchView an approach for abstracting and visualizing soft-

ware module views from source code. ArchView computes abstraction metries that are used to
filter out architectural elements and relationships of minor interest resulting in more reasonable
and comprehensible module views on software architectures.

Published: In Proceedings of the International Conference on Software Maintenance, page
533, Chicago, USA, 2004. IEEE Computer Society Press.

B.3 MODEL EXTRACTION & INTEGRATION

Towards the Integration of Versioning Systems, Bug Reports and Source Code Metamod-
els

Abstract: Concurrent Versioning System (CVS) repositories and bug tracking systems are
valuable sources of information to study the evolution of large open source software systems.
However, being conceived for specific purposes, i.e., to support the development or trigger main-
tenance activities, they do neither allow an easy information browsing nor support the study of
software evolution. For example, queries such as locating and browsing the faultiest methods are
not provided.

This paper addresses such issues and proposes an approach and a framework to consistently
merge infomlation extracted from source code, CYS repositories and bug reports. Our infor-
mation representation exploits the property concepts ofthe FAMIX information exchange meta-
model, allowing to represent, browse, and query, at different level of abstractions, the concept of
interest. This allows the user to navigate back and forth from CYS modification reports to bug
reports and to source code. This paper presents the analysis framework and approaches to popu-
late it, tools developed and under development for it, as well as lessons learned while analyzing
several releases ofMozilla.

Published: In Electronic Notes in Theoretical Computer Science, 127(3):87-99, Apri12005.

Appendix 126

Analyzing and Understanding Architectural Characteristics of COM+ Components
Abstract: Understanding architectural characteristics of software components constituting dis-

tributed systems is crucial for maintaining and evolving them. One component framework heav-
ily used for developing component-based software systems is Microsoft's COM+. In this paper
we particularly concentrate on the analysis of COM+ components and introduce an iterative and
interactive approach that combines component inspection techniques with source code analysis
to obtain a complete abstract model of each COM+ component. The model describes impor-
tant architectural characteristics such as transactions, security, and persistency, as well as cre-
ate and use dependencies between components, and maps these higher-level concepts down to
their implementation in source files. Based on the model, engineers can browse the software
system's COM+ components and navigate from the list of architectural characteristics to the cor-
responding source code statements. We also discuss the Island Hopper application with which
our approach has been validated.

Published: In Proceedings ofthe Intemational Workshop on Program Comprehension, pages
54-63, Portland, Oregon, 2003. IEEE Computer Society Press.

CURRICULUM VITAE

Personal Information

Name:
Nationality:
Date ofBirth:
Place ofBirth:

Education

2001 - 2005

1996 - 2001

1996 - 1996
1993 - 1995

1989 - 1993

1980 - 1989

Martin Pinzger
Austria
September 8th, 1974
Zams, Tirol, Austria

Ph.D. in Computer Science in the Distributed Systems Group at the
Vienna University ofTechnology
Subject of the Ph.D. thesis: "ArchView - Analyzing Evolutionary As-
pects of Complex Software Systems"
Student in Computer Science at the Vienna University ofTechnology
Master in Computer Science in the Distributed Systems Group at the
Vienna University ofTechnology
Subject of the Master thesis: "Re-engineering von Flugplanungssoft-
ware" at the EADS Domier GmbH in Friedrichshafen, Germany
Military service in the Austrian Federal Armed Forces
Kolleg for EDV und Organisation at HBLV für Textilindustrie in Vienna
Graduation on September 26th, 1995
Scientific Bundes- Oberstufenrealgymnasium in Landeck
Graduation on June 13th, 1993
Primary Schools in Pfunds

