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Zusammenfassung

Typ-2 Diabetes Mellitus ist auf dem Vormarsch in unserer alternden Wohlstands-
gesellschaft. Als chronische Krankheit mit schwerwiegenden Folgen stellt sie eine
große Herausforderung an das Gesundheitswesen dar. Die Frage ist, wie am besten
mit dieser ernsten Bedrohung der Volksgesundheit umgegangen werden kann. In
dieser Diplomarbeit wird ein System Dynamics Modell zur Simulation der Diabetes
Prävalenz in Österreich entwickelt.
Die vielen verschiedenen Eingangsdaten sind von unterschiedlicher Qualität, sie
ändern sich diskontinuierlich mit der Zeit. Die statistische Datenerfassung erfolgte
selektiv, nur für einige Merkmale zu unterschiedlichen Zeitpunkten, jedoch sind nicht
alle notwendigen Parameter verfügbar. Zum einen ist durch diese Einschränkungen
ein rein statistisches Modell unmöglich, zum anderen wirken sich diese Beschrän-
kungen auf die Struktur des dynamischen Modells aus. Die Modellierung des Krank-
heitsverlaufs in der Bevölkerung führt also auf ein System von gekoppelten, nicht-
linearen, algebraischen Integro-Differentialgleichungen mit diskreten Zustandsänder-
ungen im Zeitverlauf.
Dies legt eine Behandlung mit System Dynamics nahe, moderne System Dynamics
Programme ermöglichen die Berechnung der zeitlichen Entwicklung eines solchen
Systems. Ein von J. Homer et al. [1] für die USA entwickeltes Modell wird an
die Struktur des österreichischen Gesundheitssystems und an die verfügbaren Daten
angepaßt und erweitert. Insbesonders wird eine Unterscheidung nach dem Geschlecht
eingeführt, denn es besteht ein Geschlechter spezifisches Risiko an Typ-2 Diabetes
zu erkranken.
Die verfügbaren Eingangsdaten werden so in das Modell implementiert, dass die
korrekte historische Entwicklung der Verbreitung von Diabetes in Österreich repro-
duziert wird. Die Stabilität des Systems wird mit statistischen und Monte-Carlo
Methoden untersucht. Danach werden einige Experimente, angelehnt an derzeit
laufende Studien, jedoch mit einer größeren fiktiven Population, mit dem Modell
durchgeführt. Parameter, mit denen der Erfolg von unterschiedlichen Maßnahmen
evaluiert werden kann, werden identifiziert.
Ein zukünftiger Erweiterungsschritt könnte die Anwendung des Modells auf Perso-
nen mit unterschiedlichem sozialen Hintergrund sein oder die Verbindung mit einem
Modell zur Verbreitung von Adipositas, da eine starke Korrelation besteht.

i



ii



Abstract

Type-2 diabetes mellitus is on the advance in aging affluent society. As a chronic
disease with severe consequences it poses a major health care challenge. The question
is how to best manage this serious threat to public health. In this thesis we develop
a System Dynamics model for the type-2 diabetes prevalence in Austria.
There are many different input variables and they change discontinuously with time.
The statistical surveys to obtain these data were performed selectively, just for some
characteristics at different times, and not all parameters are available. On the one
hand this makes a model relying only on statistics impossible, on the other hand
these restrictions influence the structure of the dynamic model. So the modelling of
the course of the disease in the population leads to a system of coupled, nonlinear,
algebraic integro-differential equations with discrete changes in state with time.
Therefore System Dynamics is the method of choice. Modern System Dynamics
programs allow the calculation of the time development of such a system. A model
developed by J. Homer et al. [1] for the USA is adopted to the health care system
in Austria and the available data. It is enhanced further, especially a distinction by
sex is introduced, since there is a gender-specific risk to develop type-2 diabetes.
The available input data is implemented in the model to reproduce the correct
historic prevalence of diabetes in Austria. The stability of the system is examined
with statistical and Monte-Carlo methods. Then some experiments with the model,
analogous to ongoing studies but with a larger population, are made. Parameters
with which the success of different measures can be evaluated are identified.
Future work may include the extension of the model to people from a different social
background or the connection with a model for the adiposity prevalence, since there
is a strong correlation.
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Chapter 1

Introduction

Diabetes mellitus and its complications are one of the most challenging topics in

public health care. It is a chronic, progressive and fast-spreading disease. The World

Health Organization (WHO) [2] estimates that over 180 million people worldwide

have diabetes. In 2005 an estimated 1.1 million people died from diabetes. Taking

into account deaths in which diabetes was a contributory condition this number

increases to about 2.9 million people. Almost 80% of diabetes deaths occur in low

and middle-income countries. Almost half of diabetes deaths occur in people under

the age of 70 years and 55% of diabetes deaths happen to women. The WHO expects

a 50% increase of the diabetes deaths for the next 10 years.

In the European Union 25 million people are known to have diabetes [3]. It is

assumed that 50% of the people with diabetes are not aware of their condition, so

that over 50 million people may be affected. And 60 million people are at risk of

developing pre-diabetes. Diabetes is therefore a major chronic disease responsible

for 5 to 10 percent of the total health care costs. In the EU estimated 30 billion

Euro are spent each year on the treatment of diabetes and its consequent illnesses.

The WHO expects a rise in diabetes prevalence of 37 percent from the year 2000 to

the year 2025. So the question is how to manage this serious threat to public health

in the best way.

One powerful tool to help finding the best strategy is System Dynamics. With such

models it is possible to analyze the time dependent behavior of all kinds of systems.

Successful applications have been made in economy [4], engineering, medicine ([5],

[1]) and politics.

The structure of this thesis is as follows: in chapter one we will give the basic
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2 CHAPTER 1. INTRODUCTION

informations about diabetes mellitus and its consequent diseases. We also introduce

the basics of System Dynamics and describe its applicability to model health care

problems. In chapter two the System Dynamics model used to describe the spread

of type-2 diabetes will be discussed. Chapter three lists the input parameters as

well as their sources. The model is analyzed and validated in chapter four. Various

experiments with different health care policies are tested and interpretations are

given. A summary of the results and an outlook to future work is given in chapter

five.

1.1 Diabetes Mellitus

Diabetes Mellitus is a metabolic disease which is known since the ancient Greek.

The name of the disease is deduced from the Greek διαβήτηζ, which means ”passing

through” or ”siphon”, and the Latin mellitus meaning honey [6]. These terms refer

to two major symptoms of diabetes mellitus: excessive urine production with a sweet

taste due to an excess of one kind of sugar in the urine. Ancient Indians as well

as the Korean, Chinese and Japanese also call it the ”sweet urine disease”. The

reason for these symptoms is a disturbance of the glucose metabolism which leads

to a high blood sugar level (hyperglycemia). This is due to either the lack or the

ineffectiveness of the anabolic (”building up”) hormone insulin.

Usually most of the carbohydrate taken in with food is cracked down to monosaccha-

ride glucose (a form of sugar) by the digestive system. Carbohydrates which are not

converted include fruit sugar (fructose) and cellulose. While fructose is passed on

into the blood stream and used as a cellular fuel, cellulose can’t be digested by most

animals, including the human. The monosaccharide glucose is transported through

the intestinal wall into the blood and distributed throughout the whole body. In

response to an increase of blood sugar level the beta-cells in the islets of Langerhans

of the pancreas start releasing insulin. Insulin helps most of the body cells, like

muscle cells and adipose tissue, to take up glucose from the blood stream into the

cell. There it is used to fuel the cell or to synthesize other needed proteins. Insulin

is also the trigger to convert glucose to glycogen, which in turn is stored in muscle

or liver cells. Also the production of glucose in the liver is inhibited by insulin. The

third effect of insulin is that it is necessary for the built up and storing of body-fat.

If the production of insulin is disturbed or the cells can’t process the insulin right,
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the blood sugar is not transported into the cells and the liver produces even more

glucose. Hyperglycemia and the consequent symptoms describing diabetes mellitus

occur.

The WHO distinguishes between five types of diabetes mellitus [7]. After the Inter-

national Statistical Classification of Diseases and Related Health Problems standard

in its current version (ICD-10) there are:

• E10: Insulin-dependent diabetes mellitus (type I diabetes)

• E11: Non-insulin-dependent diabetes mellitus (type II diabetes)

• E12: Malnutrition-related diabetes mellitus

• E13: Other specified diabetes mellitus

• E14: Unspecified diabetes mellitus

Type I diabetes, also called childhood diabetes or juvenile diabetes, encompasses all

diabetes cases with absolute insulin deficiency. Here the beta-cells are destroyed,

most of the time through an autoimmune reaction, leading to a relative insulin

deficiency. It is responsible for around 10% of all diabetes cases, although this

number may vary geographically between 5% in Asian and 15% in Scandinavian

countries [8]. It usually starts in the early childhood and there is a strong genetical

predisposition.

About 90±5% of all diabetes cases are of type-2. Other names are aquired diabetes,

maturity-onset diabetes or obesity related diabetes. In this case the pancreas is still

capable of producing insulin, but the cell-membranes have a reduced sensitivity or

even complete resistance to it. Since this will be the subject of our study we will

describe it below in more detail.

Other types include diabetes due to genetic defects, diseases of the pancreas, chem-

icals or drugs and gestation diabetes. Their total prevalence is negligible compared

to type-1 and type-2 diabetes.

Type-2 Diabetes Mellitus

The following facts about type-2 diabetes mellitus are a collection of data mainly

from the references [9], [10] and [11].
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In an early stage of type-2 diabetes the cell membranes have a reduced insulin sensi-

tivity, which is compensated by an increased insulin level. As the disease progresses

the pancreas can’t keep up to produce enough insulin, leading to hyperglycemia

and the type-2 diabetes becomes manifest. But it may still be years before it is

diagnosed.

Causes

There is a great variety of theories of the exact causes and mechanisms leading to

insulin resistance. One of the main risk factors is obesity, especially central obesity,

since abdominal fat is hormonally very active. With increasing age there is also a

much higher risk of developing type-2 diabetes. In recent years also younger people

are affected. In low- and middle-income countries most of the diabetes cases occur

in the middle-aged group of 45-64 years and not in the elderly group (65+). This

supports the theory that type-2 diabetes mellitus is an acquired chronic disease.

There is also a strong genetical influence. A hereditary insulin resistance makes

sense for people living in an environment where they are subject to food shortage.

A high insulin level ensures that all of the carbohydrates taken in are used metaboli-

cally. Already in childhood people with this genetical predisposition tend to become

overweighted. Especially in threshold countries, where there is bumper food supply,

this leads to an explosive increase in type-2 diabetes. Other risk factors are the lack

of physical activity, smoking, alcohol consumption and an unhealthy diet. These

are usually summarized under the term ’lifestyle factors’. Low weight at birth, ges-

tation diabetes and socioeconomic factors are also rick factors in developing type-2

diabetes.

Aside from the aforementioned causes there is also the metabolic syndrome. It is

regarded as a precursor of type-2 diabetes, but there are several definitions around.

All include a large waist circumference, hypertension (high blood pressure), high

triglyceride levels or low HDL (”good”) cholesterol and high blood glucose levels.

However, the term metabolic syndrome has been criticized since it has no unique

definition and an unreflected use would pathologise great part of the population.

We will therefore use the term prediabetes instead, which describes the state before

type-2 diabetes. Here the blood sugar level and the insulin production are already

increased, but not as high as fully developed diabetes. In this stage the symptoms

can still be reverted.
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Diagnosis

The symptoms of type-2 diabetes are rather unspecific: tiredness, weakness, perma-

nent hunger, blurred vision, weight gain and depressions. It may be years till it is

diagnosed since the symptoms are mild or even nonexistent and they fit to any other

disease as well. Still the undiagnosed disease may lead to severe but characteristic

complications (c. f. below). Most diagnosis come from health screenings or after the

recent onset of one or more symptoms or consequent diseases [12].

The medical criterion is an, at least twice measured, elevated blood plasma glucose

level. There are two ways of testing: Firstly there is the fasting plasma glucose test

(FPGT), which indicates diabetes if the plasma glucose level is at or higher than

126mg/dl (6.1mmol/l). Secondly there is the oral glucose tolerance test (OGTT),

which indicates diabetes when the plasma glucose level is at or higher than 200mg/dl

(11.1mmol/l) two hours after the consumption of 75g glucose. Obtaining just one

positive test result together with one or more of the characteristic symptoms is also

considered as a positive diabetes test.

Both tests can also be utilized to diagnose a disturbed glucose tolerance (predi-

abetes). The respective limit values are 110-125mg/dl for the FPGT and 140-

199mg/dl for the OGTT.

Complications

There are three kinds of acute complication associated with diabetes. The first is

hypoglycemia, or abnormally low blood glucose. This is the consequence of either

an overdose of blood sugar reducing medicaments or eating to little while under

treatment of such. The symptoms vary individually but are similar to a severe hang-

over. The reason is that alcohol metabolization in the liver prohibits the production

of glucose there. The second acute complication is diabetic ketoacidosis, when no

insulin is present in the blood. The consequence is that, although the blood sugar

level is high, the liver starts the production of ketone bodies, another form of fuel

for the cells. This is part of the fat metabolic processes, but these ketone bodies are

not needed. Since they are positively charged they lead to a low blood pH value,

which is an acidic poisoning. The symptoms are dehydration and a high level of

stress hormones. The third acute complication, the hyperosmolar nonketotic state,

has similar symptoms but a different cause. The reason is the high blood sugar
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level. Water is drawn osmotically out of the cells into the blood. Additionally the

kidneys try to get rid of the excess blood sugar with the urine. This is done with

much water and the kidneys can’t resorb enough of it. So the osmotic pressure of

the blood increases further and additional water is drawn out of the cells. This leads

to dehydration.

The most common accompanying disease of diabetes is hypertension (about 75%

of all cases). Since chronic hyperglycemia damages the blood vessels consequent

diseases include the following: Retinopathy due to the growth of friable and poor-

quality new blood vessels, which can lead to severe sight loss or even blindness (2%

after 15 years). Neuropathy due to the damage of peripheral neurons, which result

in the alteration or loss of feeling, especially in the feet. Coronary artery disease,

which leads to angina (”heart ache”), a myocardial infarct (”heart attack”) or a

stroke. Over 50% of the people with diabetes die due to it. Peripheral vascular

disease, which increases, togehter with the neuropathy and circulatory disorders,

the chance of foot ulcers and eventual limb amputation (these symptoms are often

called a diabetic foot). Muscle wasting may occur (myonecrosis), as well as gum

bleeding and parodontitis. And finally the kidneys may be damaged (nephropathy),

requiering the need of dialyses. Diabetes is among the leading causes for kidney

failure. Overall the risk of dying is at least twice as high compared to people

without diabetes.

Therapy

Diabetes mellitus is a major chronic disease of our aging, affluent society. Currently

there is no cure. Therefore the medical treatment must focus on the management and

the prevention of possible short- and long-term complications. In many countries a

diabetes plan has been decided and disease management programs are implemented

[13]. Important parts on the patient side are: education, a diabetic diet, more

physical activity, self glucose monitoring, regular controls and, if indicated, various

oral diabetic medicaments or insulin treatment. For the care staff high quality

training and education has to be assured. A sufficient number of care institutions

and enough money has to be available. And the data has to be collected and

evaluated regularly in a suitable fashion. Always all accompanying diseases, foremost

hypertension, have to be watched and treated appropriately. Screening and early

detection help reducing the burden of diabetes and it’s consequences.
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Prevention

In a scientific context three levels of prevention are defined:

• Primary prevention which avoids the onset of a diabetes by a reduction of risk

factors. This includes measures for high-risk patients, prophylactic measures

for the whole population and programs for specific target groups (social sur-

rounding, women, children, ...) or specific settings (at work, school, university,

...).

• Secondary prevention aims to avoid retinopathy, nephropathy, neuropathy, etc.

after the diabetes onset.

• Tertiary prevention aims for preventing the loss of functions, such as blindness,

amputation, the necessity of dialysis or kidney transplantation, etc..

Secondary and tertiary prevention can try to reduce risk factors or can target the

disease itself. An overview of preventive measures for type-2 diabetes at all levels

in Austria and the EU is given in the references [3] and [13].

1.2 System Dynamics

Since the development of computers simulation has become an indispensable aid in

science and technology. Under simulation we understand the aimed experimenting

with models which mimic a part of the real world or a simplified equivalent. It is

used since the experiments would be too expensive and time consuming or could not

be done at all (e. g. in macroeconomics). One very successful simulation method,

which we will apply to the study of type-2 diabetes mellitus, is System Dynamics

(SD).

It has been invented by Jay W. Forrester in the late 1950s at the Massachusetts

Institute of Technology Sloan School of Management. Originally called ’Industrial

Dynamics’ it was designed to investigate dynamical models in the industry. Soon

afterward the method was applied in many other fields, ranging from economy [4]

and business [15] over physical systems to politics and even world models [16]. It is a

method for the simulation of complex dynamical systems, to study long term effects

and compare different policies. The aim is to support decision making processes

when other tools, like operations research, are not applicable. Another advantage
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is that SD is quite intuitively. So experts from different fields of study with highly

specialized knowledge can work together on a project. The simple main parts out

of which System Dynamics models are built are stocks, flows and feedback loops.

These are introduced now in the following paragraphs.

Systems

The starting point of SD is a system, which is defined as a collection of elements

together with the interconnections between these elements. Each element has at

least one connection to another element and all elements are connected. Through

this, a system has a well defined border which separates it from the environment.

This defines automatically two levels: the system as a whole (macro-level) and

the elements as parts of the system (micro-level). Note that these elements may

be systems itself, which are then called sub-systems. The interaction between the

elements makes the whole more than just the sum of its parts. Systems have different

qualities. All systems can be assessed under the following aspects (see e. g. reference

[14]):

• Dynamical systems exhibit a time dependent behavior as opposed to static

systems.

• There are discrete systems and their opposite continuous ones.

• Open systems interact with their environment (or some elements may change)

in contrast to closed systems.

• There are deterministic and stochastic systems, weather the starting quantities

and calculations are sharp or random in nature.

• Nonlinear systems may exhibit chaos. This also gives rise to the concept of

the stability in this context.

• The degree of complexity depends on the number of elements and connections

as well as the strength of the influences of each component.

There are further properties which are present in some systems, like autonomy

(independence from the environment), self-reference (no input needed), the abilities

to learn, self-regulation and -control, adopt, think, ... . Many of these terms have

no exact definition since not all systems are comparable.
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As one short example lets take a look at a car: the engine may be seen as an element

of the system car. The engine consists of many sub-systems, like spark plugs, valves,

etc. . Since the engine can perform work it is more than the sum of its parts, as well

as the car, which can hopefully drive. The car is an open system since it needs fuel.

It is dynamic since it can move onward and the internal states are altered periodically

in time, which in turn is a kind of stable behavior. The mechanics is rather simple, in

contrast to modern car electronics, which may be self-monitoring. The fuel-injection

system together with all relevant components are self-controlling. But surely a car

is not thinking, at least without high level navigation computers. A comparison to

the human brain or the stock exchange, which are other highly complex dynamic

system, with the same classification categories is impossible. System dynamics is

an analysis method suited for time dependent complex systems which are usually

nonlinear.

Cause and Effect Diagrams

The main characteristic of System Dynamics is the occurrence of feedback loops.

These result from the causal structure of the system. The connections of the system

are analyzed whether one element has a positive or a negative influence on another

element in the sense of cause and effect. The respective sign is attributed to the

connection. All elements and connections may be drawn into a causal-loop-diagram.

It can now happen that one element has, via a detour over other elements, an effect

on itself. What we get is a feedback loop. Typically SD models have many feedback

loops leading to nonlinear and counterintuitive behavior. One example for this are

the occurence of Nash-equilibria in game theory when the participants of a game

start to think of what the others would do [17]. From a systems point of view three

main types of feedback can be distinguished: positive feedback leading to growth

and possibly escalation, negative feedback leading to stabilization and indifferent

feedback if a positive and a negative loop are present for the same element. To

determine if a loop is positive or negative one has just to multiply the signs of

all connections which are part of the loop. For mechanical systems and electrical

circuits the drawing of causal-loop-diagrams can be formalized to the bond-graph

method. A nice example for a positive feedback loop are self-fulfilling prophecies

[21]. Another is population growth with unlimited resources, as seen in figure 1.1.

A simple negative feedback is the demand-price relationship, as pictured in figure
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1.2: the more demand the higher the price. And a higher price leads to less demand,

which in turn lets drop the price. In total the loop has a negative sign and we have

a stabilizing effect. But if there are many feedback loops the general behavior may

depend very sensitively on the exact numerical values.

Figure 1.1: Positive feedback loop: an

increase in population leads, via more

births, to even more population.

Figure 1.2: Negative feedback loop:

higher demand leads to higher prices,

but higher prices to a lower demand.

In the development of a SD model it is necessary to think of all possible influencing

factors. In a first step all of them have to be included, since the feedback loops may

enhance the influence of a small factor significantly. Therefor the analysis of the

causal structure and the finding of feedback loops is of uttermost importance. The

logical configuration sets what can be done with the model and which effects can be

produced.

Stocks and Flows

The active elements of a System Dynamics model are the stocks (levels). They

describe the filling level of reservoirs, where the quantity one is interested in can

be accumulated, stored in or expended from. These stocks are connected by flows,

which are the rates of change. While the stocks usually just integrate the net in-

and outflow rate, the flows may be difficult to calculate and may depend on many
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variables1. When the time starts to run we see rising and falling levels and springing

and ebbing flows with each time step.

Some examples for flows and stocks are: the incoming and outgoing commodities in

a warehouse, the in- and outflowing liquids in tanks, the electrons in a capacitor,

... . For population levels the flows may be births and deaths (c.f. figure 1.3),

immigration end emmigartion, arrival and departure or infections and healing. A

stock and flow diagram can be drawn after the causal-loop diagram has been found.

It is the first step to a quantification of a model.

Figure 1.3: The rabbit population level: small baby bunnies are born into and old

die out of the population.

Equations

After the causal-loop diagram and the stock and flow diagram have been found

the connections and flows need to be quantified. This is done by finding the cor-

responding mathematical equations. They are usually integro-differential algebraic

equations with suitable initial conditionswhich are not analytically solveable. Here

the whole mathematical framework of solving such equations numerically can be

applied. Fortunately modern simulation programs have graphical interfaces and the

simulation engine takes care of the numerics.

A feature often encountered is the occurrence of time-delays. This means that the

rates with which the flows transport stuff from one level to another respond delayed

to changes. An example is an electronic circuit consisting of a voltage source and

a capacitor: when the voltage source is turned off, the voltage will start to drop

but not immediately jump to 0. Since long time delays can be modeled, System

1We use the following terminology: a parameter does not depend on time while a variable may

be time-dependent.
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Dynamics is useful for studying long-time effects. This is the reason why it is a

major tool of strategic controlling [15].

After having found the causal structure and quantified the functional relationships

one can test the model if it produces useful and realistic results. If this is not

the case one has to start the model building cycle again and to find points where

improvements can be made.

1.3 Modelling Health Care Problems

Besides profane statistics different alternative modelling approaches for health care

problems are available: time-series analysis and Markov-chains [18], agent based

models [19], cellular automata [20], genetic algorithms, stochastic processes, Mont-

Carlo methods, System Dynamics and many more. Depending on the specific ques-

tions and settings one or more of them may be appropriate. In the following we will

give some arguments why System Dynamics is the number one choice for modelling

the type-2 diabetes prevalence.

Chronic diseases are widespread in our aging affluent society. Approximately one

third of the total population suffers from chronic diseases and with increasing age

the percentage is rising steeply. Already more than one half of the people above 60

suffer from at least one chronic disease. Therefore these afflictions are responsible

for a great part of the health care costs, outstripping the costs of accidents and acute

diseases combined. According to all estimates chronic diseases are going to increase

further.

Besides the socioeconomic importance, chronic diseases sport several features which

suggest a System Dynamics treatment:

Firstly all health care officials, including doctors, politicians, patient associations

and other medical staff, recognize the threat and agree that measures on an eco-

logical, system-wide level have to be taken to reduce chronic diseases and their

consequences. But most programs sport conventional analytical methods by which

each aspect of a complicated disease control strategy is addressed and evaluated sep-

arately. The advantage of System Dynamics here is that one gets a global picture

where all influencing factors are incorporated and act together.

Secondly chronic diseases involve long time scales. There are long delays between

causes and health consequences making short term analysis methods unsuitable.
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The third argument why System Dynamics is suitable is: for every one of the three

prevention levels many different policies are available. Primary prevention includes

behavioral and socioeconomic measures like improving lifestyle, working and living

conditions, information, education and many more. Secondary prevention focuses

on precaution and early detection. And finally elements of the tertiary prevention

are accessibility to the medical treatment, improvement of compliance and empow-

erment. All these measures together with quality control are elements of a process-

based disease-management approach. System Dynamics now gives the opportunity

to test different approaches and policies simultaneously and observe the respective

outcome.

Also the intuitive character of SD makes it easy for experts from different fields to

work together interdisciplinary.

Finally diabetes mellitus is the prime example of a chronic disease. Together with

it’s many different causes, prevention and therapy methods as well as malign conse-

quences diabetes forms a complex system. It is researched well enough so that the

main risk factors are known and that much input data is available.



Chapter 2

The Model

In the following we will give a description of our model as well as the ideas behind

structuring it as it was done. The basic structure was taken from the Diabetes

System Model of Jack Homer et al. ([1], [22], [23]), which has been developed for

the US-American Center of Disease Prevention and Control. The starting idea is to

simulate the whole population of a given region as it moves through the different

stages of type-2 diabetes. In this case a region may be a geographical area, a social

surrounding or any other sufficiently large and homogeneous group. Since DM is not

infectious it is irrelevant where the people belonging to such a group move around

geographically. SD is after all a top down approach, where the laws of evolution

for the whole population are laid down and where it does not matter with whom

individuals interact. This makes the modelling life a bit easier.

There are three main factors influencing type-2 diabetes: firstly adiposity, through

the caloric balance per day, which is affecting the average body-mass-index (BMI).

Secondly the fraction of elderly people, who have a significantly higher risk for

diabetes. And thirdly the disease management, which includes testing frequencies,

the access to health care institutions and benefits as well as the ability to self-

management.

After introducing the main stock-and-flow diagram we will give a detailed analysis of

the different in- and outflows as well as the transition rates. The adiposity feedback-

cycle will be described separately, since only the average BMI enters the rest of the

system. Here lies also one of the possible future enhancements of the system, since

obesity is also a fast spreading disease with high costs and severe consequences in

our society and much research is done on it [24]. The health care costs will be

14
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examined separately, since these follow out of the model and have no feedback to

it. An enhancement here could be to include the progression of the social security

contribution and its influence on the provided health care measures.

2.1 Stocks and Flows

Figure 2.1 shows the population levels and flows of the model. The population levels

are arranged in four groups: the first group consists only of one level, the people with

a normal blood sugar level (normoglycemic population). The other three groups are

the people with an elevated blood sugar level (prediabetes population), the people

with diabetes and the people who have diabetes as well as an additional consequent

disease or acute complication. These three groups all consist of two levels: the

diagnosed and the undiagnosed ones. This distinction makes sense since there is

a very large estimated number of unreported cases. It is absolutely necessary to

incorporate these in this model: on the one hand screening and prevention methods

could not be tested otherwise. On the other hand severe complications and even

death may occur before type-2 diabetes mellitus is even diagnosed.

The four different groups have a connection to the three prevention levels: the first

two groups are the targets of primary prevention, the prevention of the onset of a

disease. This is especially true for the people with prediabetes since they are the risk

group. Some people are easily identified as belonging to the risk group, like obese

ones, but others may be difficult to recognize, like genetical predispositioned ones.

The third group with fully developed diabetes is the target of secondary prevention,

which aims to avoid deterioration. And finally the fourth group is the target of

tertiary prevention, which aims to counteract the impeding loss of function. All

levels are just the integrals of the net in- and outflow. Each of them has a finite

starting value.

Let us now examine the flows more closely: all flows in the model are expressed as

people per year. There is only one inflow of healthy adults into the fist level, while

people may die out of every level. This inflow is given as a time series input by

statistical predictions [28]. The resons why just the adult population is simulated

are discussed in the next section where the actual rate will be calculated. The

different death rates are affected by the fraction of elderly people, which is again

given as a time series. For the diabetes population with complications the death
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Figure 2.1: The population stocks and flows of the model.
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rate is also influenced by these consequent diseases. The basic assumption is that

the relative rates R of people with a risk factor E compared to people without it

remains constant in the concerned group. The corresponding equation is

R =
P(d|E)

P(d|¬E)
= const. ,

where P(d|.) is the conditional probability of an attribute d to occur under the

influence of the respective factor. This leads to the following transformations:

P(d) = P(d|E) · P(E) + P(d|¬E) · P(¬E) =

= (R · P(E) + P(¬E)) · P(d|¬E) =

= ((R − 1) · P(E) + 1) · P(d|¬E) (2.1)

since P(E) + P(¬E) = 1. With a suitable initial value for either P(d|¬E) or P(d),

the development of P(d) in dependence of P(E) can be calculated. Complications

also increase the death rate for the respective levels. The death rate for the people

with complications is also influenced by the control of the disease, the ”disease man-

agement”. With the initial values the dynamic death rates can then be calculated.

The death rates are not constant ! When the population gets older the death rates

increase. And also the death rate due to complications of DM can be influenced,

which is the aim of the whole model.

The flows between the different stocks are characterized by the following assump-

tions: while people with prediabetes can still recover, there is no way to cure diabetes

mellitus after its onset. Type-2 diabetes is a chronic disease and once complications

occur the damage is dealt and until now no way of repairing it has been found. The

onset of prediabetes and diabetes occur in principle unobserved, while complications

can also arise even if under medical supervision. All transition rates from one level

to another are affected by the elderly and the obese fractions of the respective pop-

ulations. The progression rates in figure 2.1 (the horizontal ones) of the detected

populations can be influenced by the clinical management, like prevention measures

and compliance. The detection rates (the vertical ones) are more difficult to de-

scribe: they are first order exponentially delayed functions of the progression rates

as well as the testing frequency and the sensitivity of the tests. Time dependent

input data enter in several places of diabetes mellitus detection and control incor-

porating different possible health policies. The feedback loops and the details of the

calculation of the flows are given in the following sections.
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The color code for all graphs following is always the same: black are variables

which are calculated in the model. Red characterizes constant input parameters.

Pink denotes input parameters varying with time and output variables are orange.

Finally gray variables in brackets are place holders and are defined at another point

in the model.

2.2 Life and Death

In figure 2.2 we see the causal structure for the inflow and the deaths of the healthy

population. There is the adult population inflow, which consists of all peoples

reaching the age of 20 years. Although in recent years more type-2 diabetes has

been detected in juveniles [11], we do not include them in the calculation, since

their contribution with 0.25 out of 100000 cases (only 8 diagnoses in the years 1999-

2001 in Austria) is negligible. So all people entering the model are healthy, from the

viewpoint of diabetes at least, although they might be obese (c. f. section 2.5). The

adult population is given as a time series, from which the growth rate is calculated

straightforward. The adult population inflow is then the sum of the growth and the

death rate for the adult population multiplied by last years Adult population. So

this is the number of people turning 20 years of age.

The death rate for the adult population is the product of the initial death rate

and an effect of the aging of the society. The effect of the population aging on the

nondiabetes population death rate is calculated as in equation 2.1 from the elderly

fraction of the adult population and a risk factor for the death rate for elderly

compared with non-elderly adults. The death rate for the people without diabetes

is calculated in the same way as for all adults with the only difference that the initial

death rate is a little bit smaller. This death rate is the same for the normoglycemic

population level and the prediabetes population levels since prediabetes is assumed

to be nonlethal. The actual flow in deaths per year is then the product of the

current level times the respective death rate. (All graphs in this section are best

read backwards from the absolute number of deaths per year.)

The causal structure for the death rates for the population with diabetes can be

seen in figure 2.3. The death flows out of the levels are calculated in the same way

as for the non-diabetes population. The only difference is that the risk factor and

the initial death rate are different.
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Figure 2.2: The causal structure for non-diabetes inflow and deaths.

Figure 2.3: The causal structure for the uncomplicated diabetes deaths.
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The situation for the population with complications is different, since the compli-

cations may lead to a premature death (especially through cardiovascular diseases,

c. f. section 1.1). The causal structure, and therefore the equations, for the age-

normal death rate for the complicated diabetes population is the same as in the

previous two cases, as can be seen on the left hand side in figure 2.4. To this

age-normal rate a death rate due to the complications is added. This rate due to

complications is reduced if the diabetes is diagnosed and it is reduced even further

if it is diagnosed and controlled:

Complications death rate for Dx Complic = Complications death rate for Undx

Complic*(Controlled fraction of Dx diabetes popn*Relative risk of complicatios

death if controlled + (1-Controlled fraction of Dx diabetes popn)*Relative risk of

complications death if Dx but uncontrolled)

Figure 2.4: The causal structure for the diabetes with complications deaths.

2.3 Disease Onset, Recovery and Progression

The onset of prediabetes is affected by two factors, the elderly fraction of the pop-

ulation and the obese fraction of the normoglycemic population, as can be seen in

figure 2.5. Obesity is the number one modifiable risk factor in the development of

prediabetes. The respective time dependent effects, as multiplicative factors for a



2.3. DISEASE ONSET, RECOVERY AND PROGRESSION 21

given initial rate, are calculated analogous to equation 2.1. The prediabetes onset

rate is then the rate at which the normoglycemic population level flows out into the

undetected prediabetes level.

Figure 2.5: The causal structure for the prediabetes onset.

The causal structure for the recovery from prediabetes is seen in figure 2.6. It is as-

sumed that a constant percentage of the prediabetes population heals by itself every

year. This stands for the natural fluctuation exchange between the normoglycemic

and the prediabetes population levels. The other healing is due to weight loss. That

these are the only two relevant influencing factors is supported by three arguments:

• Firstly obesity is the main modifiable risk factor.

• Secondly smaller factors are taken into account aggregated in the constant

healing rate.

• And thirdly the contribution of drugs for the treatment of prediabetes, al-

though they are just clinically tested, is negligible.

Additionally the favored choices for the treatment of prediabetes are more physical

activity, a healthier diet and weight control due to the other positive and desirable
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effects they have compared to a treatment with medicaments. The equation for the

prediabetes recovery rate is

PreD recovery rate = PreD recovery rate normal+Fraction of obesity reduction

resulting in PreD recovery*IF THEN ELSE(Rate of change in PreD obese frac-

tion¡0, ABS(Rate of change in PreD obese fraction)*Obese fraction of PreD popn,

0) ,

incorporating the assumption that an additional prediabetes recovery is only ob-

tained if the fraction of obese people in the prediabetes population level decreases.

Figure 2.6: The causal structure for the prediabetes recovery.

The causal structure for the onset of diabetes from prediabetes can be seen in figure

2.7. Since type-2 diabetes does not occur instantaneously but is developed gradually

over time, prediabetes is a necessary precursor of diabetes. The onset takes always

place unobserved, since the blood glucose levels are, even if prediabetes is detected,

not measured on a day to day basis. The onset rate is again affected by the elderly

fraction of the adult population and the obese fraction of the prediabetes population.

It is calculated in the same way as for the prediabetes onset. The difference here are



2.3. DISEASE ONSET, RECOVERY AND PROGRESSION 23

not only the absolute values of the input parameters, but also that the progression

rate for the detected prediabetes population is lowered if it is controlled:

Diabetes onset rate for Dx PreD = Controlled fraction of Dx PreD popn*Relative

risk of diabetes onset if controlled PreD+(1-Controlled fraction of Dx PreD

popn)*Diabetes onset rate for uncontrolled PreD

Figure 2.7: The causal structure for the diabetes onset.

The respective flows are, as always, calculated as the product of the levels times the

onset rates. The total number of people developing diabetes per year, the yellow

Diabetes onset, is one of the output variables which is of interest for health care

strategies. The main goal of the simulation system is to find a policy with which it

is possible to keep this flow low, since there is no healing of type-2 diabetes.

The logical structure of the calculation of progression rates from diabetes to diabetes

with complications can be seen in figure 2.8. If diabetes is undetected, then there is

a constant probability for the development of complications per year. If diabetes is

detected and controlled this rate can be lowered:

Progression rate for Dx Uncomp = Progression rate for Undx Uncomp*(Controlled

fraction of Dx diabetes popn*Relative risk of progression if controlled+(1-Controlled

fraction of Dx diabetes popn)*Reltv risk of progression if Dx but uncontrolled)
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Figure 2.8: The causal structure for the progression from diabetes to diabetes with

complications.

These rates are neither affected by the obese nor by the elderly part of the pop-

ulation. The obese fraction plays no role since the damage to blood vessels and

nerves is due to a high blood sugar level and not due to adipositas. That the elderly

part of the population plays no role has two reasons. The first is that if diabetes

is undetected then complications occur after some time independently of the age.

The second is that we are interested only in the complications caused by diabetes

and not caused in the same diseases as a consequence of age. This argument is also

valid for leaving out the obese fraction of the population.

2.4 Diagnosis

The diagnosis flows from the undetected to the detected population levels in the

stocks and flows diagram on page 16 are more complicated to calculate. The detec-

tion rates depend on the progression rates. They are also influenced by the average

time between medical doctor visits, the significance level off the tests used (c. f. sec-

tion 1.1) and the fraction of people seeking health care. They are delayed, since

the progression usually occurs unobserved. All delays are always first order expo-

nential delays, but changing them, for example to a power law delay, does not alter

the qualitative behavior. Also, if always a constant percentage would be diagnosed,
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there would be a finite limit value of undiagnosed cases, which could be calculated

as the sum of a geometric series. The corresponding growth behavior then tuns out

to be an exponential one. There are always more ways a diagnosis can be obtained,

depending on whether the disease progression happened recently or the people are

already in the undiagnosed level for some time. The details for the three diagnosis

flows are given in the following.

First there is the diagnosis of prediabetes, for which the causal structure can be

seen in figure 2.9. All the gray variables in brackets were already defined in previous

diagrams. The prediabetes diagnosis flow is calculated as

PreD diagnosis =

DELAY1(PreD onset,Avg time from onset to detection for Undx hyperglycemic)*(1-

(Death rate for nondiab popn+Diabetes onset rate for uncontrolled PreD)*Avg

time from onset to detection for Undx hyperglycemic)*Dx fraction of recent PreD

onset

+

(Undx PreD popn/Avg time from onset to detection for Undx hyperglycemic)*(Dx

fraction of recent PreD onset-DELAY1(Dx fraction of recent PreD onset,Avg time

from onset to detection for Undx hyperglycemic))/(1-DELAY1(Dx fraction of re-

cent PreD onset,Avg time from onset to detection for Undx hyperglycemic)) .

Figure 2.9: The causal structure for the diagnosis of prediabetes.
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The two parts of the equation, separated by the plus sign, represent two particular

ways to the diagnosis of prediabetes. The first part comes from the diagnoses of

people with recent-onset prediabetes. The total prediabetes onsets are diagnosed

with a first order exponential time delay, where the time constant is given by half of

the average time interval between two medical doctor visits which are calculated in

Austria from the total number of doctor visits. They have an average value of 2 to

3 years. Next this rate has to be reduced by the percentage of people which died or

progressed to diabetes in the average time from onset to diagnosis. Then the rate is

multiplied by the diagnosis fraction for recent-onset prediabetes cases, which is the

product of the fractions of high-risks screened for prediabetes times the sensitivity

of the test used (usually a FPGT, since it is more sensitive for prediabetes than the

OGTT).

The fraction of high risks tested for prediabetes is a fraction of the high-risks tested

for diabetes with just another multiplicative conjunction. The second part of the

prediabetes diagnosis equation is due to the people whose prediabetes was not di-

agnosed soon after onset. It is calculated as the yearly part of the undetected

prediabetes level multiplied by a ratio. The ratio is the change of the detection frac-

tion of recent-onset prediabetes compared to the last period through the fraction of

people who did not get diagnosed in the past period.

The logical structure for the calculation of the diabetes diagnosis flow in figure 2.10

is more complicated. The sensitivity of testing for uncomplicated diabetes is just a

statistical mixture of the sensitivities of the FPGT and the OGTT, depending on

how often they are used. The fraction of the high risk persons tested for diabetes

is the product of the high risks seeking care and the health care access fraction. In

Austria the health care access fraction is one, due to the obligatory health insurance,

so this factor could be omitted. This is one of the main differences comparing with

the original system discribed by J. Homer et al. [22].

Nonetheless we decided to keep these input parameter because it can be used for

the simulation of socially disadvantaged groups. The product of the tested fraction

and the sensitivity gives the detected fraction of the population with a recent onset

of diabetes. The uncomplicated diabetes diagnosis flow is calculated as the sum of

three contributing factors (which are again separated by a plus sign):

Uncomplicated diab diagnosis =

DELAY1(Diabetes onset from Dx PreD,Avg time from diab onset to MD visit for
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Figure 2.10: The causal structure for the diagnosis of diabetes.

Dx PreD)

+

DELAY1(Diabetes onset from Undx PreD,Avg time from onset to detection for

Undx hyperglycemic)*(1-(Death rate for Uncomp popn+Progression rate for Undx

Uncomp)*Avg time from onset to detection for Undx hyperglycemic)*Dx fraction

of recent Undx Uncomp onset

+

(Undx uncomp diab popn/Avg time from onset to detection for Undx hyper-

glycemic)*(Dx fraction of recent Undx Uncomp onset-DELAY1(Dx fraction of re-

cent Undx Uncomp onset,Avg time from onset to detection for Undx hyperglycemic))/(1-

DELAY1(Dx fraction of recent Undx Uncomp onset,Avg time from onset to de-

tection for Undx hyperglycemic))

The first part accrues from the detected prediabetes population level. It is assumed

that these people visit a doctor regularly, so diabetes onset is diagnosed in all such

cases after some delay. The second part of the equation accounts for those people

who progressed from the undetected prediabetes level to the undetected diabetes

level recently. This is done in the same manner as in the prediabetes case. This is

also true for the third part, which describes the diabetes detection for people who

live already a longer time with undetected diabetes.

The causal structure for the diagnosis of complicated diabetes is presented in figure
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2.11. The testing sensitivity is again the average sensitivity of the tests used. The

fraction of the complicated population seeking health care is the sum of fraction who

have ready access to health care and, for those who do not, the fraction of people

with symptoms bad enough that they show up at a health care institution anyway.

This last block can be left away in Austria. The detection fraction of the people with

a recent onset of the complications is the product of the three preceding variables.

The equation for the calculation of the diagnosis flow for diabetes with complications

Figure 2.11: The causal structure for the diagnosis of diabetes with complications.

has the same logic as for the prediabetes diagnosis case and is given by:

Complic diab diagnosis =

DELAY1(Progression to complic from Undx diab,Avg time from symptoms on-

set to MD visit for Undx Complic)*(1-Undx Complic popn death rate *Avg time

from symptoms onset to MD visit for Undx Complic)*Dx fraction of recent Undx

Complic onset

+

(Undx complic popn/Avg time from symptoms onset to MD visit for Undx Com-

plic)*(Dx fraction of recent Undx Complic onset-DELAY1(Dx fraction of re-

cent Undx Complic onset,Avg time from symptoms onset to MD visit for Undx

Complic))/(1-DELAY1(Dx fraction of recent Undx Complic onset,Avg time from

symptoms onset to MD visit for Undx Complic))
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2.5 Obesity

In this model obesity influences the onset of prediabetes (figure 2.5), the recovery of

prediabetes (figure 2.6) and the onset of diabetes (figure 2.7). Obesity is modeled

by the average weight and through it the average body mass index (BMI). The BMI

is the weight in kilograms of a person divided by the height in meters to the square:

BMI =
weight

height2

[

kg/m2
]

(2.2)

There are several indices for the ratio between the body height and bodyweight

around, but the BMI proved to be the best for all age categories. It accounts

better for the different heights and there is a strong correlation to the fat fraction of

body weight. The later is especially important, since it is responsible for the higher

health risks associated with overweight. An BMI from 20 to 25 kg/sqm. is considered

normal, below 20 kg/sqm. people are under wighted and above 25 kg/sqm. they are

overweighted. An BMI over 30 is considered obese and diagnosed as adipostity.

The average BMI of the adult population is calculated from historical height data

and the average body weight. The body weight is modeled as a level with a two-way

flow which accumulates changes over time, as can be seen in figure 2.12. Note that

this part constitutes a separate model. It enters the rest of the model just via the

obese fraction of the adult population, which is an empirical lookup function of the

average BMI. The original functions from [25] are:

Figure 2.12: The caloric balance feedback loop and the causal structure leading to

the obese fraction of the adult population.
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Change in body weight per day =

Caloric balance*(Fraction of caloric balance affecting fat/9300+(1-Fraction of

caloric balance affecting fat)/4100)

where

Fraction of caloric balance affecting fat = 1/(1+((10.4/(Body weight kg avg*Fat

fraction of body weight))*(4100/9300)))

Caloric expenditure from basal metabolism = (Body weight kg avg*(0.024*Fat

fraction of body weight+0.102*(1-Fat fraction of body weight))+0.85)*238.7

Caloric balance = Caloric intake-Physical activity calories-Caloric expenditure

from basal metabolism-(Caloric intake*Fraction of caloric intake expended by

digestion)

These equations need to be adopted, since not all the required historical input data

is available in Austria. The new equation for the caloric balance is altered so that

the calories spent by physical activity is given as a multiple of the basal metabolic

rate. This ratio is called the physical activity level and varies between 1.2 and 2.4.

So the new equation is

Caloric balance = Caloric intake-Physical activity level*Caloric expenditure from

basal metabolism-(Caloric intake*Fraction of caloric intake expended by digestion)

and figure 2.12 should be altered accordingly. The effect is that heavier people doing

the same physical exercises for the same time loose more weight than lighter ones.

The overall change in the obese fraction of the adult population is a minor one

(c. f. section 4.1) but it represents the possible intervention policies better. E. g. the

WHO and subsequently the Austrian ministry for health recommend half an hour of

exercises per day for the prevention of obesity, type-2 diabetes and vascular diseases.

With the obese fraction of the adult population the obese fractions of the normo-

glycemic, the prediabetes and the diabetes population can now be calculated. The

causal structure is seen in figure 2.13. The first striking feature is that the obese

fraction of the prediabetes population and of the diabetes population have a back

coupling to the obese fraction of the normoglycemic population. This constitutes a

problem since these are just calculated variables and not levels. Therefore this logic

structure leads to implicit equations. With initial conditions these can be solved

self-consistently for the obese fraction of the normoglycemic population and after
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an initialization the calculation can then be continued explicitly. Another way to

overcome this obstacle would be to introduce accumulating levels between the nor-

moglycemic and the prediabetes fraction as well as between the prediabetes and the

diabetes fraction. The second striking feature is that there are many orange vari-

ables, which are calculated straightforward from previous results as the respective

percentiles. That they are orange, which stands for output variables, signifies that

these variables need not necessarily be calculated, but they are quite interesting to

observe over the course of time and the equations get a little bit shorter. These

Figure 2.13: The causal structure for the obese fraction of the different levels.

equations for the obese fractions are:

Obese fraction of normoglycemic popn =

(Obese fraction of adult popn-Obese fraction of PreD popn*PreD fraction of

adult popn-Obese fraction of diab popn*Diabetes fraction of adult popn)/(1-

PreD fraction of adult popn-Diabetes fraction of adult popn)

Obese fraction of PreD popn =

SMOOTHI((Reltv risk of PreD for obese popn*Obese fraction of normoglycemic

popn)/(Reltv risk of PreD for obese popn*Obese fraction of normoglycemic popn

+(1-Obese fraction of normoglycemic popn)), (1-Fraction of normoglycemic popn

caloric habits shared by PreD popn)/(Diabetes onset rate for PreD overall +Death
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rate for nondiab popn+PreD recovery rate normal) , Obese fraction of PreD popn

initial )

Obese fraction of diab popn =

SMOOTHI((Reltv risk of diabetes for obese PreD popn*Obese fraction of PreD

popn)/(Reltv risk of diabetes for obese PreD popn*Obese fraction of PreD popn+(1-

Obese fraction of PreD popn)), (1-Fraction of PreD popn caloric habits shared

by diab popn)/Diab popn death rate average, Obese fraction of diab popn initial)

The calculation of the obese fraction of the normoglycemic population is done al-

gebraically from the other fractions. It is just the respective percentile of the adult

population and, as said before, the initial percentile is calculated implicitly from the

other two fractions and their initial values. The obese fraction of the prediabetes

population is calculated as a first order exponential delay of the obese fraction of the

normoglycemic population. In the steady state it is assumed to be a multiple risk

factor higher than for the normoglycemic population. The smoothing results form

the ,in the average, elder prediabetes population compared to the normoglycemic

one and from different nutrition and physical activity habits in the different levels.

The delay time constant can be viewed as the average time people spent in the

prediabetes population levels, based on the rates of outflow due to death, predia-

betes recovery and diabetes onset. The obese fraction of the diabetes population is

calculated in the same way.

2.6 Disease Management

Disease management programs are a global system approach to the health care

challenges of epedemics [26], chronic diseases [35] and diseases of civilization. For

the system at hand only the parts concerning the patients and the development of

diabetes are of interest. The influencing factors and their logical connections taken

into account in this system can be seen in figure 2.14. Generally speaking this part

of the system describes the fractions of the prediabetes and the diabetes populations

which have their blood glucose level under control.

The controlled fractions are the product of the managed fraction of the detected

population and the respective controlled fractions of this managed population. The

equations for the controlled fractions of the managed population are
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Figure 2.14: The causal structure for the controlled fractions of the people with

diagnosed prediabetes and diabetes.

Controlled fraction of managed PreD popn =

(1-Fraction of PreD who need meds for control)*Ability to adopt healty lifestyle

+ Fraction of PreD who need meds for control*Ability to self monitor*Hyperglyc

meds affordability fraction*(1-Fraction of Hyperglyc who need lifestyle change

for control if taking meds+Fraction of Hyperglyc who need lifestyle change for

control if taking meds*Ability to adopt healty lifestyle)

Controlled fraction of managed diabetes popn =

(1-Fraction of Diab who need meds for control)*Ability to adopt healty lifestyle

+ Fraction of Diab who need meds for control*Ability to self monitor*Hyperglyc

meds affordability fraction*(1-Fraction of Hyperglyc who need lifestyle change

for control if taking meds+Fraction of Hyperglyc who need lifestyle change for

control if taking meds*Ability to adopt healty lifestyle) .

The first part of the equations represents the people who, in each case, do not need

medicaments for control. The second part describes the people who need drugs.

These controlled fractions are influenced by the ability to self-monitor to assess the

effectiveness of the drugs and by the affordability, which is in Austria always one,

except maybe for socially disadvantaged groups. A third influencing factor is the

ability to adopt a healthy lifestyle if drugs alone are not enough to control the blood

glucose level.
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2.7 Health Care Costs

The costs of type-2 diabetes are quite differently from the USA. On the one hand

there are the acute costs, which include hospital inpatient stays, emergency room

visits and ambulance services. On the other hand there are the continual costs in-

cluding physician office visits, medications, glucose testing and preventive measures.

All costs are calculated as a total per year based on values from 2005/2006 without

inflation.

The causal structure for the calculation of the continual health care costs can be

seen in figure 2.15. These are always the initial values times the current fraction of

the affected people. Note that all costs are just output variables and they have no

feedback effect on the rest of the system (although they are directly influenced by

some input variables). The values in Euro could be corrected easily for macroscopic

effects like inflation or the growth of the gross domestic product. The growth rates

remain the same in any case.

Figure 2.15: The causal structure for the continual health care costs.

Figure 2.16 shows the causal structure for calculating the acute and the total health

care costs. They are calculated as the costs per person times the number of affected

people and respectively as the sum of the individual contributions.
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Figure 2.16: The causal structure for the acute health care costs.



Chapter 3

Input Data

One major problem when building this model was finding the correct input data.

In this chapter the encountered problems will be discussed generally and then a list

of the time dependent and the time independent input parameters in order of their

appearance will be given.

The aim of this SD model is to compare different policies in complex systems with

many interactions and nonlinearities. These systems may produce counterintuitive

behavior. In order to built a realistic model as many variables as possible, which

might have a direct or an indirect influence, have to be incorporated. This is in

conflict with the aim to make a manageable model. Although in the original model

no distinction with respect to sex was included we did split the calculation for men

and women. The reason is that the risk factors are very different and therefore

other interventions may be necessary. So the split was not done due to causalities

but with a different aim in mind.

Not all variables used in the model, although needed in the logical structure, are

measured or available, e. g. the undiagnosed population levels. Nonetheless these

variables are needed because one is interested in how a change in these variables

can influence the output data. When no direct data was available the parameters

were estimated. Sometimes there were indirect indicators and at other times they

had to be found experimentally. This was done by tuning the uncertain variables

manually but applying them to an as small as possible part of the model so that the

available historical data were correctly reproduced. This is called the partial-model

estimation approach.

Another problem encountered is that the available data originates from different

36
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years, for example mikrocensus data in more or less regular intervals. In the model

this was circumvented, where applicable, by the use of time-constant risk factors

(c. f. equation 2.1 on page 17).

Another problem is that the available data has a very different accuracy and statis-

tical variation. To formulate the solution shortly: we just expected the worst and

analyzed the stability with the same relative magnitude of error for all variables

(c. f. section 4.1).

When no data for Austria was available we used data from similar western countries,

like Bavaria in Germany or even the USA. In the following we give the values of all

variables used and reference their origin.

3.1 Time Independent

We give here tables with the time-independent input parameters in order of their

appearance in the model. These are those parameters displayed in red in the previous

chapter. The initial values are from the year 1980, while time-constant odds may

come from different years. Actually if those parameters could be calculated from

available data originating from different years, we used this to verify that they really

stay constant. In the first column the name of the parameter is listed, followed by

its value for Austria (Aut) and then the values for the male (m) and female (f)

population. In the last column the sources (Src.) of the data are given. Almost

all values are derived quantities from the data given in the sources by elementary

mathematics. When this is not the case it will be denoted by the letter ’o’ for

’original data’ in the citation column.

To give an example: the initial death rate for the adult population, the first param-

eter below, is calculated from references [27] and [28] by taking the death rate per

1000 people and the total number of people in 5-years age categories. With these the

total number of deaths of adult people (≥ 20 years) is calculated. By dividing this

by the total adult population we get the desired death rate, expressed as a fraction

per year. The same is done for the male and the female population.
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Name Aut m f Src.

Death rate for adult popn initial 0.0121 0.0116 0.0126 [27], [28]

Reltv age normal death for elderly 17.51 14.00 24.97 [27], [28]

Death rate for nondiab popn initial 0.0118 0.0097 0,0105 [11]

Table 3.1: The parameters for figure 2.2 on page 19.

Name Aut m f Src.

Reltv risk of uncomplicated diab for el-

derly

1.9 1.7 2.0 [11]

Death rate for Uncomp popn initial 0.0124 0.0151 0.0102 [11]

Table 3.2: The parameters for figure 2.3 on page 19.

Name Aut m f Src.

Reltv risk of complicated diab for el-

derly

7.6 7.6 7.6 [11]

Age normal death rate for Complic

popn initial

0.0282 0.0270 0.0294 [11], [22]

Complications death rate for Undx

Complic

0.121 0.116 0.126 [11], [22]

Relative risk of complications death if

Dx but uncontrolled

0.465 0.465 0.465 [11], [22]

Relative risk of complications death if

controlled

0.167 0.167 0.167 [11], [22]

Table 3.3: The parameters for figure 2.4 on page 20.

Name Aut m f Src.

Reltv risk of PreD for obese popn 2.6 2.6 2.6 [22]

PreD onset rate for nonobese popn ini-

tial

0.043 0.043 0.043 [22]

Reltv risk of PreD onset for elderly 1.15 1.15 1.15 [22]

Table 3.4: The parameters for figure 2.5 on page 21.
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Name Aut m f Src.

PreD recovery rate normal 0.1 0.1 0.1 [22], o

Fraction of obesity reduction resulting

in PreD recovery

0.5 0.5 0.5 [22], o

Table 3.5: The parameters for figure 2.6 on page 22.

Name Aut m f Src.

Diabetes onset rate for uncontrolled

nonobese PreD initial

0.0135 0.0142 0.0129 [22], o

Reltv risk of diabetes onset for elderly 1.52 1.44 1.60 [11]

Reltv risk of diabetes for obese PreD

popn

2.6 2.6 2.6 [11]

Relative risk of diabetes onset if con-

trolled PreD

0.58 0.58 0.58 [11]

Table 3.6: The parameters for figure 2.7 on page 23.

Name Aut m f Src.

Relative risk of progression if con-

trolled

0.36 0.36 0.36 [22], o

Progression rate for Undx Uncomp 0.079 0.079 0.079 [11]

Reltv risk of progression if Dx but un-

controlled

1 1 1 [11]

Table 3.7: The parameters for figure 2.8 on page 24.

Name Aut m f Src.

Sensitivity of fasting glucose test for

prediabetes

0.84 0.84 0.84 [22], o

Avg time between detection testing of

high risk popn

3 3 3 [11]

Table 3.8: The parameters for figure 2.9 on page 25.
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Name Aut m f Src.

Fraction of tested Undx Uncomp get-

timg glucose tolerance test

0.6 0.6 0.6 [11]

Sensitivity of glucose tolerance test for

diabetes

0.97 0.97 0.97 [11]

Sensitivity of testing glucose test alone

for diabetes

0.84 0.84 0.84 [11]

Avg time between detection testing of

high risk popn

3 3 3 [11]

Avg time from diab onset to MD visit

for Dx PreD

0.5 0.5 0.5 [11]

Table 3.9: The parameters for figure 2.10 on page 27.

Name Aut m f Src.

Fraction of tested Undx Complic get-

ting glucose tolerance test

0.9 0.9 0.9 [11]

Healthcare seeking fraction of Complic

no access

1 1 1 [11]

Avg time from symptoms onset to MD

visitfor Undx Complic

1 1 1 [11]

Table 3.10: The parameters for figure 2.11 on page 28.

Name Aut m f Src.

Physical activity level 1.3 1.3 1.3 [30], [31]

Fraction of caloric intake expended by

digestion

0.1 0.1 0.1 [22]

Table 3.11: The parameters for figure 2.12 on page 29.

Name Aut m f Src.

Fraction of normoglycemic popn

caloric habits shared by PreD popn

0.8 0.8 0.8 [22], o

Fraction of PreD popn caloric habits

shared by diab popn

0.2 0.2 0.2 [22], o

Table 3.12: The parameters for figure 2.13 on page 31.
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Name Aut m f Src.

Fraction of PreD who need meds for

control

0.33 0.33 0.33 [11], [32],

[?]

Fraction of Hyperglyc who need

lifestyle change for control if taking

meds

0.67 0.67 0.67 [11]

Fraction of Diab who need meds for

control

0.95 0.95 0.95 [11], [32],

[?]

Table 3.13: The parameters for figure 2.14 on page 33.

Name Aut m f Src.

Continual costs per high Px complic

diab

2150 2150 2150 [32], [?],

[22]

Continual costs per Dx low Px complic

diab

1050 1050 1050 [32], [?],

[22]

Continual costs per high Px uncomp

diab

1900 1900 1900 [32], [?],

[22]

Continual costs per Dx low Px uncomp

diab

765 765 765 [32], [?],

[22]

Continual costs per Dx uncontrolled

PreD

20 20 20 [32], [?],

[22]

Continual costs per controlled PreD 500 500 500 [32], [?],

[22]

Table 3.14: The parameters for figure 2.15 on page 34.

Name Aut m f Src.

Acute care costs per Dx uncontrolled

complic diab

8700 8700 8700 [32], [?],

[22]

Acute care costs per controlled complic

diab

2900 2900 2900 [32], [?],

[22]

Acute care costs per Undx complic

diab

17400 17400 17400 [32, ], [22]

Table 3.15: The parameters for figure 2.16 on page 35.
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3.2 Time Dependent

In this section we give the time-dependent input data in order of their first appear-

ance. Graphs of these data between 1980 and 2050 will be given. For the normal

scenario it is assumed that all policy dependent values remain constant beginning

with 2006.

The first time dependent input variables are the demographic ones: the adult popu-

lation, that is all people above 20 years of age, and the elderly fraction of the adult

population, which is the fraction of the adult population above 65 years. The lower

boundary was chosen to be 20 instead of 18 since the available data comes in 5-years

age categories. But such a difference does not alter the behavior since almost none

of the 18 to 20 year old people develop type-2 diabetes. The upper boundary was

chosen to be the legal age of retirement, which usually also includes a significant life

style change. If these age borders would be changed the risk factors in the previous

section have to be altered accordingly.

In figure 3.1 we see the development of the Austrian adult population and the elderly

fraction of it. The middle scenarios of the references [27], [28] and [33] were chosen.

The predictions for the future development are usually given in 5 year steps, so we

need to interpolate them. Note that the behavior of the systems does not change

significantly if the available data points are interpolated linearly or by 3rd order

Splines. In the next two figures (3.2 and 3.3) the respective graphs for the male

and the female population are given. We see that there are more females and that

they get, in the average, older than their male counterparts. Both elderly fractions

are increasing, corresponding to the aging of the society, but the male fraction is

increasing faster than the female one.

The following time dependent input variables are all given between 1980 and 2005

and are expected to stay constant after that time in the basis scenario. This is

adequate because we get a result that describes what would happen if the status

quo would be prolonged. So this is a plausible reference scenario.

In the original model there is the fraction of people who have an access to health care

services (the Healthcare access fraction in figure 2.9 on page 25). Due to the social

security system in Austria this fraction is always set to one (and could therefore

be eliminated from the model). However, it may be interesting to study socially

disadvantaged groups in the future, where it is known that they for example visit
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Figure 3.1: The adult (blue) and the elderly (green) population and the fraction of

elderly people (rose slashed, right scale) in Austria between 1980 and 2050.

Figure 3.2: The same as figure 3.1, but

only for the male part of the popula-

tion.

Figure 3.3: The same as figure 3.1, but

only for the female part of the popula-

tion.
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doctors 20 percent less than the average population [34].

The next quantity, the Fraction of high risk seeking care tested for diabetes , is rather

difficult to obtain over the time. It includes all people where a diabetes screening

would be indicated as well as people who exhibit typical symptoms of diabetes

complications. A first approximation is the number of diabetes cases diagnosed at

general health screenings, which are in Austria free of charge once a year. Now the

newly diagnosed cases at hospitals and general practitioners are added. This gives

an order of magnitude but systematically underestimates the true number of tested

persons, since the negative test results are not included. Also no data on the true

data of the high risk persons is available, so the fraction getting tested can only be

estimated.

This was done so that the closest possible match of the fraction of diagnosed diabetes

cases with available historical data has been obtained. Experts agree that it has

risen in the past years, which is also due to a higher public awareness and several

education programs [35]. The chosen time-line can be seen in figure 3.4.

Figure 3.4: The fraction of high risk health care users tested for diabetes between

1980 and 2005.

The testing for prediabetes has only started about a decade ago [11]. In the model

the fraction of high risk people screened for prediabetes is expressed as a fraction of

the high risk people tested for uncomplicated diabetes described above. This PreD

testing fraction of D testing is displayed in figure 3.5. It has again been chosen to

give the right historically known values for diagnosed prediabetes.
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Figure 3.5: The fraction of high risk people tested for prediabetes as a fraction of

the high risk people tested for diabetes between 1980 and 2005.

The next four time dependent input variables influence the ability to control pre-

diabetes and diabetes, as seen in figure 2.14 on page 33. It is again fortunate to

life in Austria, where the medicaments a person needs are supplied. Therefore the

Hyperglyc meds affordability fraction is set to one with the same possibilities as for

the health care access fraction concerning marginal groups.

In the formula given in the last chapter it is multiplied by the ability to self monitor.

So this is a good example of a variable mathematically not necessary, since only the

product of it with another variable enters the system, but which has been introduced

in the model to represent a possible way of influencing it. There may even be other,

mathematically equivalent ways which produce the same effect but are not (or not

as easily) accessible in the real world.

The estimated fraction of detected hyperglycemics who are under regular surveil-

lance can be seen in figure 3.6. They are assumed to be able to have their blood

glucose level under control. The data is again obtained through the stabilization

method from data out of [11], [3] and [36].

The time development of the Ability to self monitor is given in figure 3.7. It is given

as a fraction of the people under management and rises steeply in the past years.

This is due to technical advances so that daily blood glucose testing can be done

now very simply at home. It is adjusted starting from the original data given in

[22].
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Figure 3.6: The managed fraction of the detected hyperglycemic population between

1980 and 2005.

Figure 3.7: The ability to self monitor the blood glucose level between 1980 and

2005.
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The last time dependent variable in this block is the Ability to adopt a healthy

lifestyle. This includes nutrition and exercises. Parts of this data from different

years is available in [30] and [37]. This was then interpolated for the single years

and can be seen in figure 3.8. We see that there is still potential left here.

Figure 3.8: The ability to adopt a healthy lifestyle between 1980 and 2005.

The last of the time dependent input variables are connected with the BMI-feedback

loop given in figure 2.12 on page 29. The Historical height meters avg is, although

in principle time dependent, assumed to be constant.

This has to do with two observations: firstly the time scale over which the average

height changes is about 50 years, the average height in the USA changed only about

half a centimeter between 1980 and 2001. People tend to get taller so the average

height increases. But people are also getting older and older and start shrinking

again, so that the average over the whole population increases very slowly. A more

detailed SD model for the average BMI or obesity in general would have to include

the age dependent nutrition and body height effects. Secondly there are no time

series for the average height in Austria. The data used is 175, 5cm for men and

163, 8cm for women from reference [38] or rather [39] out of the year 1991. The

gender standardized value is 169, 3cm. Also the Fat fraction of body weight does not

change very much, even in the original model is was assumed to be constant 30%

[22].

What remains are the Caloric intake and the Physical activity level (instead of the
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Physical activity calories ). These can be reconstructed out of the historical BMI and

nutrition calories data given in [29], [30], [31] and [37]. They are displayed in the

figures 3.9 and 3.10.

Figure 3.9: The average caloric intake per day between 1980 and 2005.

The output of this feedback loop is the average BMI. The obese fraction of the adult

population of is a well known function empirical of the average BMI, of : BMI →

of(BMI). It is defined as a lookup function, that is its value is looked up in a table.

The graph of the function is given in figure 3.11.



3.2. TIME DEPENDENT 49

Figure 3.10: The physical activity level between 1980 and 2005.

Figure 3.11: The obese fraction of the adult population as a function of the average

BMI.



Chapter 4

Output Data

After all the necessary input data is incorporated in the model experiments can be

done with it. There are two kinds of interesting output quantities of this SD model

of the type-2 diabetes mellitus prevalence in Austria:

• Variables to validate the usefulness of the model and

• variables to make predictions for the future development of the real life system.

From this follows the structure of this chapter: to prove the usefulness of the model

two things have to be shown, on the one hand that the model is stable and on

the other hand that historical data is reproduceable. After that is done several

simulation runs are made and interpreted.

4.1 Stability Analysis

Qualitatively this type-2 diabetes mellitus System Dynamics model is very complex.

To show this we give the number of feedback loops for the different population levels

(c. f. figure 2.1 on page 16) in table 4.1:

The number of the feedback loops gives the number of different ways one can go

through the system starting and ending at the same level. The maximal length of

the loops gives the maximal number of other variables visited on such a way. For

example the loop number 1222 of length 24 of the Dx uncomp diab popn is:

Dx uncomp diab popn → Progression to complic from Dx D → Dx complic

popn → Dx Complic deaths → Diab deaths → Diab popn death rate average →

50
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Level Number max. length

Normoglycemic popn 1618 23

Undx PreD popn 3609 25

Dx PreD popn 3025 25

Undx uncomp diab popn 3635 25

Dx uncomp diab popn 1222 24

Undx complic popn 1820 25

Dx complic popn 1831 25

Table 4.1: The different population levels with the number of feedback loops and

the maximal length of the loops.

Obese fraction of diab popn → Obese fraction of normoglycemic popn → Effect

of obesity on PreD onset → PreD onset rate as affected by obesity → PreD

onset rate → PreD onset → Undx PreD popn → PreD diagnosis → Dx PreD

popn → PreD popn → Diabetes onset rate for PreD overall → Obese fraction

of PreD popn → Effect of obesity on diabetes onset → Diabetes onset rate for

uncontrolled PreD as affected by obesity → Diabetes onset rate for uncontrolled

PreD → Diabetes onset rate for Dx PreD → Diabetes onset from Dx PreD →

Undx uncomp diab popn → Uncomplicated diab diagnosis → Dx uncomp diab

popn

We see that the system is very complex and therefore there is no chance to ana-

lyze the stability of the system analytically. However, there are some qualitative

considerations which can be made:

The first has to do with the stocks and flows structure: the only inflow in the system

is the adult population. Nowhere else in the system new population can enter, the

people are only allowed to die. Therefore the number of people in the system is

bounded and no unlimited growth can arise. Secondly all the flows are time-delayed,

so we can expect that the system responds smoothly to discrete changes of the input

variables and no instantaneous depletion of a level can occur.

And finally an first order analytical approximation for the effect of input parameter

changes of sub-systems can be made. While parameters P which enter multiplica-

tively in the model just produce an error proportional to ∆P , the situation is a little
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bit more complicated for parameters P(d) like in equation 2.1:

P(d) = ((R − 1) · P(E) + 1) · P(d|¬E) .

There are two cases: if the initial value of P(d|¬E) is given, then the errors in P(d)

due to P(E) and P(d|¬E) are multiplicative. But if the initial value for P(d) is

given, then only the error due to this initial value is multiplicative. The error due

to a change in the initial value of P(E) is:

∆P(d) = −
(R − 1) · P(E) + 1)

((R − 1) · P(Eini) + 1)2
· P(dini) · ∆P(Eini) (4.1)

The maximum total error is of course the sum of the absolute magnitude of the

individual errors. In a similar manner all equations in the system can be examined

for error propagation.

However, this is not sufficient for the analysis of the stability of the system due

to the occurrence of feedback loops: the errors have a feedback on themselves and

therefore they may accumulate in a geometric series or even worse. Since there

is no chance to solve this problem analytically we have to investigate the stability

numerically.

As a quantitative analysis two things were done: firstly each input parameter was

changed individually. By changing each input consecutively by ±20% the output

variables always changed by less than 10%, except when changing the initial pupu-

lation levels. The change was done linearily around the initial value. This is a first

indicator that the system is stable, especially in the long time behavior, when the

time dependent input parameters do not vary any more (c. f. the standard scenario

in the next section).

Secondly the Ljapunov exponent [40] was calculated while some input parameters

were varied. The Ljapunov exponent λ measures how fast the trajectories of differ-

ent initial conditions separate (positive exponent) or converge (negative exponent)

in phase-space with time. The definition of the maximal Ljapunov exponent for

continuous, differentiable systems is

λ = lim
t→∞

1

t
ln

∣

∣

∣

∣

δZ(t)

δZ(0)

∣

∣

∣

∣

. (4.2)

But since we do not know this movement through phase-space analytically we had

to work numerically. The numerical calculation is more difficult and was done in

the following way:



4.1. STABILITY ANALYSIS 53

A Monte-Carlo sampling of the System Dynamics model was performed: some of the

input parameters where varied randomly at the same time. The variations followed

a Gaussian distribution with a standard deviation of 20% around their initial values.

This was done for 100 different input parameter combinations and the respective

results have been calculated. In figure 4.1 we see the results for the variation of

all input ’rates’, that are those parameters which have the identifier ’rate’ in their

name. The discrete Ljapunov exponent can be calculated as

Figure 4.1: The diabetes fraction of the adult population for 100 different input

parameter combinations.

λ = lim
N→∞

1

N

N
∑

n=0

ln

∣

∣

∣

∣

∂

∂y
f(y(tn))

∣

∣

∣

∣

. (4.3)

Since we do not know the analytical derivate of f(y(tn)) with respect to y(tn) we

need to approximate the differential quotient through

∂f

∂y
=

f(tn+1) − f(tn)

f(tn) − f(tn−1)
. (4.4)

This approximation is valid since the values for the time step tn+1 are calculated

from the values of the previous time step. The approximation is quite good as long

as the denominator stays away from zero, which is luckily the case. If the simple

finite difference quotient ∆f

∆tn
would be calculated instead, a wrong result would be

obtained since the effect of the phase-space velocity of the system would be excluded.

Now two kinds of averaging have been done:
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1. The mean of all runs and the Ljapunov exponent from it have been calculated

and

2. the Ljapunov exponents for every run has been calculated and averaged after-

ward.

For the test runs from figure 4.1 the respective results are λ1 = −0.0377 and λ2 =

−0.0373 ± 0.007. All of the individual exponents in the second case are negative

and the ±0.007 is the standard deviation. These Monte-Carlo averaged Ljapunov

exponents agree very good, the difference is of the order of the standard deviation.

For all kinds of variations of the input variables and parameters the Ljapunov ex-

ponent turned out to be negative although small (typically between -0.02 and -0.1).

There turned out to be no significant difference if 1.000 instead of 100 different

parameter combinations were used.

e can now interpret these results: although a variation in the initial conditions leads

to a larger difference in the end than in the beginning, as can be seen in figure 4.1,

the system turns out to be stable. This can actually be seen in the figure since there

is a bend toward a constant limit for all test runs which starts after the year 2010.

That there is a bend toward a constant upper limit is a sign of stability.

The conclusion is that the system is quantitatively dynamically stable in accordance

with the qualitative expectations, as long as the input data does not leave the

compulsory bounds (like probabilities greater than 1 and the like).
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4.2 Historical Validation

In this section we give the output data for the standard scenario: all time dependent

input variables except the adult population input and the elderly fraction of the

population stay constant after the year 2006. First we show that available historical

data can be reproduced. And this gives a picture of how the diabetes prevalence in

Austria would develop till the year 2050 if the behavior of all influencing factors does

not change after 2006. In the next section several possibilities for future development

will be discussed.

In figure 4.2 the diagnosed and undiagnosed diabetes and diabetes with complica-

tions fractions of the total population are shown. The simulated data agrees to a

good degree with the available data. We overestimate the diagnosed fraction com-

pared to the undiagnosed one a little bit because although people can visit medics for

free they don’t necessarily do it. But the total diabetes cases are in the bandwidth

of the available estimations from the references [12], [11], [3] and [41].

Figure 4.2: The diagnosed (solid) and undiagnosed (slashed) fractions of the to-

tal population for the diabetes (blue) and the diabetes with complications (red)

populations.

Furthermore we see that the total number of diabetes cases would increase sharply

till 2010 while the spread of the disease slows somewhat after that time. This has

to to with the age structure of the population. But the absolute number of diabetes

cases will continue to grow sharply since the population increases.
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In figure 4.3 the prediabetes fractions are shown. We clearly see that the diagnosed

fraction only starts to increase after the clinical picture has been introduced in 1994.

When we compare this with the data from the US model by J. Homer [23], we see

that although diabetes is also on the advance in Austria the initial condition is

better and the total rise in not as high as in the USA.

Figure 4.3: The diagnosed (blue) and undiagnosed (red) prediabetes fractions of the

total population.

The absolute numbers are omitted since the interest is in the qualitative behavior of

the system. Nevertheless we give the total health care costs for prediabetes, diabetes

and diabetes with complications in Euro per year in figure 4.4. These refer to the

the year 2006 without inflation or other effects influencing prices. We see that the

total health care costs increase faster than the continual part of them. This has to

do with the much higher costs for complicated diabetes: both, the uncomplicated

and the complicated diabetes population, levels increase quite parallel, as can be

seen in figure 4.2. But the much higher costs for the complicated level take their

toll.

4.3 Experiments

This section describes the set up of four different simulation runs:

1. The step-like change scenario, which is mathematically enlightening,
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Figure 4.4: The total health care cost (blue) and the continual costs (red) for pre-

diabetes, diabetes and diabetes with complications from 1980 till 2050 in Million

Euro.

2. the physical activity level (PAL) change scenario,

3. the early detection scenario and

4. the combined scenario.

Note that the simulation runs are always made for the whole population without an

distinction with respect to sex. This has two reasons: one is, that the qualitative

behavior is always the same for the male and the female test runs since the scenarios

are not gender specific. The other reason is that we are only interested in the

qualitative behavior.

Step-Like Change

The first simulation run describes how the system responds to a sudden change of

the caloric intake. Since the caloric intake in Austria [30] is somewhat below the rec-

ommended one [31], we change it suddenly with the year 2007 to the recommended

level. The graph of the time series can be seen in the figure 4.5.

From a mathematically point of view it is interesting to see how the system responds

to a discontinuous, step-like change in one of the major input parameters. Although

the BMI feedback loop is separated from the rest of the system, as can be seen in
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Figure 4.5: The caloric intake from 1980 till 2050 for the step-like change scenario.

figure 2.12 on page 29, the obese fraction of the adult population affects the obese

fractions of all levels. So this change is far from trivial.

PAL Change

The physical activity level is in Austria, with values around 1.4, somewhat less than

recommended one ([30], [37]). This is partially compensated by the fact, that the

daily calories supply is also lower than the recommended value ([30], [31]). In total

the BMI, which gives via a lookup function the fraction of obese people, is above

the international average.

In this scenario the PAL level is increased over a time of 10 years to the recommended

level of 1.65 [31]. This is in accordance with the WHO recommendation of half an

hour of physical exercises per day to prevent obesity and type-2 diabetes [2]. This

recommendation has been adopted in the Austrian diabetes plan [13]. The 8 years

give enough time for educational effects to unfold their impact and the slope is

similar to the one in the 1990s. The graph of the PAL over the years is given in

figure 4.6.

The question here is how a slow change of the BMI affects the dynamics compared

to the sudden increase in the first scenario.
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Figure 4.6: The average physical activity level per person from 1980 till 2050.

Early Detection

The early detection measures include the change of time independent parameters.

Firstly the average time between two visits to a medical doctor is reduced by one

year. Secondly the fraction of high risk people tested for prediabetes is increased,

which can be seen in figure 4.7. These measures can be done by an increase in

the frequency of the general health screenings and an increased testing of high risk

people, for example at the working place. One thing to look at is if more observations

of the onset have a measurable effect on the advance of the disease via the disease

control.

Physical Activity and Prevention Screening

The last scenario is a combination of the previous two scenarios. The question is

whether the two different interventions produce an additional feedback effect.
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Figure 4.7: The high risks tested for prediabetes fraction of the diabetes testing

fraction from 1980 till 2050.
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4.4 Results and Interpretation

We have already seen the development for the diabetes prevalence for the standard

scenario in section 4.2. In this section we give the results of the other testing

scenarios and interpret them.

Step-Like Change

For a sudden increase in the daily consumed calories we get a time delayed increase

in the prediabetes and diabetes fraction of the population. This can be seen in figure

4.8. We see that the increase has a delayed onset of about 3 years (increase in 2006,

divergence in the diabetes fraction starting 2009). We see that the system responds

continuously to a severe discontinuous change of an input variable. In other words

the system behaves stable in this context. In figure 4.9 we see the development of

the health care costs in this scenario. Again the effect is time delayed. And again we

see that the increase in the acute health care costs, which is due to hospital stays,

is larger than the increase of the continual costs.

PAL Change

In the second scenario, the the change goes slower and in the other direction. The

figures 4.10 and 4.11 again show the total diabetes fraction of the population and the

associated health care costs. Although is is of the same magnitude as the step-like

change we get a larger reduction than the increase was in the other case. This is

due to the feedback mechanism of the PAL concept. Medically speaking physical

exercise is much better than making a diet. Another interesting observation is that

this policy is especially effective in reducing the uncomplicated diabetes cases.
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Figure 4.8: The total diabetes fraction of the adult population for the step-like

change scenario (solid line) compared to the standard scenario (slashed line).

Figure 4.9: The total (blue) and the continual (red) health care costs for the step-like

change scenario (solid lines) compared to the standard scenario (slashed lines).
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Figure 4.10: The same as figure 4.8 but for the PAL scenario.

Figure 4.11: The same as figure 4.9 but for the PAL scenario.
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Early Detection

If we now increase the number of people tested for prediabetes and shorten the time

between medical doctor visits we get the following results: The diabetes fraction

of the population decreases slightly, as can be seen in figure 4.12. But the health

care costs in figure 4.13 explode ! A rather unsettling and counterintuitive behavior,

isn’t it ? Now what has happened ? The answer is that the number of diagnosed

prediabetes cases increases very much. This leads to a higher fraction of managed

prediabetes cases and therefore the costs for the prediabetes management explode.

What did we buy with this money ? We bought that the prediabetes recovery rates

are almost as high as the onset rates ant that the prediabetes level stays almost

constant.

Figure 4.12: The same as figure 4.8 but for the early detection scenario.

Physical Activity and Prevention Screening

If we now combine the measures we get an even better result for the diabetes pop-

ulation, displayed in figure 4.14, while the costs do not increase as much, which can

be seen in figure 4.15. The conclusion is that one can start now finding the optimal

policy which will lead to less diabetes cases with no additional health care money

spent.
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Figure 4.13: The same as figure 4.9 but for the early detection scenario.

Figure 4.14: The same as figure 4.8 but for the combined scenario. Also displayed

is the diabetes fraction of figure 4.10.
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Figure 4.15: The same as figure 4.9 but for the combined scenario. Also displayed

are the costs from figure 4.13.



Chapter 5

Conclusion and Outlook

In this thesis we presented a System Dynamics model for the type-2 diabetes mel-

litus prevalence in Austria. System Dynamics was the method of choice for several

reasons:

1. Type-2 diabetes is a progressive chronic disease and levels can be used to

describe the different stages of this affliction.

2. Long time scales are involved, since an individual usually stays a long time in

the different levels.

3. Diagnosis is always delayed since the onset of the disease occurs unobserved.

4. Unmeasured variables, which are logically necessary like the estimated number

of unreported cases, are easily included in the model.

5. There are several risk factors, most prominent age and obesity, affecting the

onset and the progression of diabetes.

The iterative modelling of type-2 diabetes leads therefore to a large, very complex

system which can not be solved analytically. But System Dynamics is capable to do

such simulations numerically.

Also the available input data, originating from different years and of very different

quality, suggest a SD treatment: firstly time constant relative risk factors can be

obtained from the available studies, secondly some boundary conditions change with

time, and finally specialists from different fields of expertise can come and work

together on a SD model due to its comprehensible structure.

67
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The model has been developed starting from a model for the USA by J. Homer et

al., which is described in reference [22]. Of course the input data is different in

Austria, but also structural changes were necessary. The main structural differences

of the situation in Austria compared to the USA are:

• the free of charge access to medical treatment in Austria,

• the different structure of the total health care costs and

• a different disease management concept.

They all are due to the different health care systems in Austria and the USA.

Furthermore we included the concept of the physical activity level instead of the

calories spent by physical exercises per day. This creates additional feedback loops.

And a distinction by sex was made since the risk factors are very different and

other policies are necessary. This was possible only because evaluable data exist for

Austria. The collection of the required input data has been one of the major tasks

solved for this work.

In this thesis it was shown that the SD model for type-2 diabetes mellitus is numer-

ically stable, a previously unpublished result. It is capable to reproduce the right

historical data which have been available. Furthermore the following conclusions

are drawn from the different simulation runs in chapter 4:

1. Type-2 diabetes will rise significantly over the next 20 years. There is virtually

no possibility to achieve a short-term relief due to the long time delays involved.

2. Half an hour of physical exercise per day is a good recommendation of the

WHO to prevent type-2 diabetes since it reduces the prediabetes prevalence

by 20% and the total diabetes prevalence by 30% as seen in figure ??.

3. Early diagnoses and good control can ease the burden of diabetes and prevent

harmful consequences. It can reduce the health care costs and therefore it

can play an important role in the sustainable financing of the Austrian social

insurance system.

4. Both of the last two measures together would have an increased positive effect

on the diabetes prevalence and the total health care costs.
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Recapitulatory we can say that the SD diabetes model is a useful tool for the evalua-

tion of different health care policies for large populations, where field studies simply

are impossible.

Future work can be done into two different directions: one may further improve the

structure of the model or one may apply the model to other populations.

Structural considerations include:

• combination of the diabetes model with a model for obesity since there are

very strong correlations,

• simulation of the type-2 diabetes prevalence in combination with other meth-

ods in a hybrid modelling approach and

• development of a testing environment to analyze the stability of this (and

other) models.

The application of the model to other populations may go in the following directions:

• The comparison of different provinces in Austria with the idea to compare the

effectiveness of different health care policies and by this reduce the costs of

case studies and get faster results. We should always have in mind that we

are focusing on long term effects with a mean reaction time of up to 20 years.

• Application to people with a different social background to find tailored inter-

vention measures which have the greatest impact.

Type-2 diabetes mellitus constitutes a major public health care challenge but I hope

this work helps to find the best way to manage this problem.
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[21] Paul Watzlawick, ’Selbsterfüllende Prophezeiungen’ in ’Die erfundene Wirk-

lichkeit’ (edited by Paul Watzlawick), Serie Piper, Munich, edition June 2006

[22] J. Homer, A. Jones, D. Seville, ’Diabetes System Model Reference Guide’,

Sustainability Institute, USA, October 2004



BIBLIOGRAPHY 73

[23] J. Homer et al., ’The CDC’s Diabetes Systems Modeling Project: Develop-

ing a New Tool for Chronic Disease Prevention and Control’, 22nd International

Conference of the System Dynamics Society, Oxford, England, July 2004

[24] J. Homer et al. , ’Obesity Population Dynamics: Exploring Historical Growth

and Plausible Futures in the U.S.’, submitted to the 24th International System

Dynamics Conference, Nijmegen, July 2006

[25] Abdel-Hamid, ’Modeling the dynamics of human energy regulation and it’s

implications for obesity treatment’, System Dynamics Review 18(4), 431-471,

2002

[26] ’Steirischer Seuchenplan’, Das Land Steiermark, O. Feenstra (Hrsg.), Graz

2002, Update März 2005
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(DGE), 1. Auflage, 2. korrigierter Nachdruck, Frankfurt am Main: Um-

schau/Braus, 2001

[32] NAHES Datenbank ,Hauptverband der Sozialversicherungsträger, Wien, 2007
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