
Unterschrift des Betreuers

M A S T E R A R B E I T

Java-based Filesystem for a Commercial Database System

ausgeführt am Institut für

Informationssysteme
der Technischen Universität Wien

unter der Anleitung von
Dipl.-Ing. Dr.techn. Roman Kurmanowytsch
und
Doz. Dipl.Ing. Dr.techn. Engin Kirda
als verantwortlich mitwirkendem Universitätsassistenten

durch

Marian Daubner

Kammelweg 1/4/15, 1210 Wien

_________________________ _______________________
 Datum Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Database systems have in recent years emerged as a crucial part in the storage process

of immense data. Data is stored in diverse sophisticated relation models to maximize

the performance and efficiency of data mining. On the other side, these features

require explicitly built applications to manage the data, causing a lack of

interoperability of the system. We consider and solve this problem with a user-space

filesystem based on Java and describe the design and implementation of this Java-

based filesystem for a particular database system – Braintribe Content Service

Platform (BTCSP).

Zusammenfassung

Datenbanksysteme bekamen in den letzten Jahren ein entscheidendes Teil der

Datenverwaltung. Daten sind bewahrt in raffinierten organisierten Strukturen mit

komplexen Beziehungen um die Performanz und Effektivität von Datamining zu

steigern. Anderseits erfordert diese Einrichtung explizit gebaute Applikationen um die

Daten zu verwalten, und damit verursacht ein Mangel an Interoperabilität mit anderen

Systemen bzw. Applikationen. Wir betrachten und lösen dieses Problem mit einem

Java-basierendem user-space Filesystem. Diese Arbeit schildert den Entwurf und die

Implementierung eines Filesystem entwickelt für ein bestimmtes Datenbanksystem –

Braintribe Content Service Platform (BTCSP).

2

Content

ABSTRACT... 2

ZUSAMMENFASSUNG... 2

CONTENT... 2
1. PROBLEM DESCRIPTION... 4

1.1 INTRODUCTION ... 4
1.2 PROBLEM DEFINITION... 5
1.3 ORGANIZATION OF THIS THESIS .. 6

2. REVIEW OF THE STATE OF THE ART .. 7

3. DESCRIPTION OF THE APPROACH ... 9
4. FILESYSTEMS ... 11

4.1 MOST COMMON FILESYSTEM OBJECTS.. 13
4.1.1 Inode object ... 13
4.1.2 Dentry object ... 13
4.1.3 File object.. 13

4.2 BASIC FILE PROPERTIES .. 14
4.3 RELATION TO DATABASE SYSTEMS ... 16
4.4 VIRTUAL FILESYSTEM (VFS) .. 17

4.4.1 Registering and Mounting a Filesystem.. 18
4.4.2 Insight into a simple procedure .. 21
4.4.3 VFS Interface... 22

5. FUSE .. 23
5.1 USER-SPACE FILESYSTEM ... 23

5.1.1 Kernel-User-Space Communication ... 24
5.2 DESIGN .. 26

5.2.1 FUSE kernel module .. 26
5.2.2 fusermount ... 30
5.2.3 FUSE library ... 31
5.2.4 Call-Flow... 32

5.3 BASIC FUSE STRUCTURES.. 35
5.3.1 FUSE kernel structures .. 35
5.3.2 FUSE user-space objects.. 38
5.3.3 FUSE exchange structures ... 39

5.4 FUSE EXPORTED INTERFACE.. 41
5.5 USAGE ... 42

6. BRAINTRIBE CSP ... 44
7. JAVAFS ... 46

7.1 FUSE MODIFICATIONS ... 47
7.2 JAVAFS CLIENT IMPLEMENTATION .. 48
7.3 COMMUNICATION PROTOCOL.. 51
7.4 JAVAFS SERVER ... 52

3

7.5 JAVAFS API... 54
7.5.1 IFSAccessDir ... 54
7.5.2 IFSFileAccess .. 56
7.5.3 IFSAccessFileDir... 57
7.5.4 IFSAccessInode.. 58
7.5.5 IFSAccessFS .. 60

7.6 USING JAVAFS FRAMEWORK .. 60

8. BTCSP INTERNALS .. 62
8.1 API .. 64
8.2 BTCSP FS ... 70

8.2.1 Usage... 74

9. RELATED WORK.. 78

10. EVALUATION AND FURTHER WORK ... 80
10.1 EVALUATION .. 80
10.2 FURTHER WORK.. 82

11. SUMMARY AND CONCLUSION ... 83

REFERENCES.. 84
APPENDIX.. 86

A. VFS INTERFACE... 86
B. FUSE OPERATION CODES AND PARAMETERS.. 96
C. LIST OF FUSE MODIFICATIONS RELATED TO 256BIT INODE SUPPORT 98

4

1. Problem Description

In the course of this thesis a filesystem was designed and developed for a database

system called Braintribe Content Service Platform. This database system is used to

store clients and their data (e.g. contracts, photos and other documents). The stored

data is composed of fixed and variable part, which will be described later. To gain the

idea behind this work filesystems are first briefly introduced.

1.1 Introduction

Since the development of the very first computer, filesystems are an inevitable part of

all computer operating systems. About twenty years ago, only a handful number of

filesystems existed (one of the most famous being FAT16 and FAT32). However,

because of their widespread usage, some of them are still supported.

A filesystem may be divided into two main operational blocks. One must conform to

a standard set of operations, which are identical in all filesystems. It is mostly called

virtual filesystem (VFS) interface. It is developed in a way, that no matter of the

filesystems storage medium and implementation, it gives all filesystems the standard

look and usage. This part is accessible from applications over the system calls.

The latter part is specific for a particular filesystem. The methods here are private,

usually called from the implementation of the VFS interface. This part contains calls

to the underlying device, implements cache and organizes the data on the specific

medium.

Nowadays, there is countless number of filesystems, e.g. device specific filesystems,

RAM filesystems, network filesystems and even filesystems based on another

filesystems. Operating systems usually support only the most common ones.

5

1.2 Problem Definition

The subject of the thesis originates from an actual software business problem. An

Austrian company Braintribe IT-Technologies GmbH1 was looking for an

alternative way to present data managed by its application Braintribe Content Service

Platform (BTCSP). The data managed by BTCSP stores information about clients and

their documents with attached properties and notes. The data has a hierarchical

structure similar to filesystems but with built-in properties and versioning.

The company wants to make the data accessible from multiple platforms

independently of the operating system, preferably in an explorer-like environment. In

cooperation, we considered three solutions as follows:

1. to develop a windows shell application (something like windows ZIP file

explorer);

2. to use an open source web-tool called WebDAV that would make the data

available in a browser; or

3. to build a filesystem.

All the pros and cons were accounted and we came to the conclusion that a filesystem

would be the most flexible and robust solution. The pros and cons considerations may

be found in chapter 3.

The filesystem feasibility analysis and development includes an open source

framework called FUSE that was chosen to be used in the filesystem creation. FUSE

became a part of the thesis focus, as the FUSE framework was necessary to modify to

server purposes of this thesis. FUSE does not have yet any documentation therefore

part of the work was dedicated to analyzing FUSEs implementation and design. The

resulting knowledge is summed in chapter 5.

The next section gives a better insight into the chapters of this thesis.

1 Braintribe IT-Technologies GmbH is a software development company based in Vienna. More about
the Braintribe product can be found in chapter 6.

6

1.3 Organization of This Thesis

In this section the reader becomes an idea of the structure of this thesis. Single

chapters are briefly described what they are about.

Data presentation is a common problem in database systems. Therefore next two

chapters are dedicated to some other techniques used to solve this problem.

Chapter 3 describes the decision making process that steered us to the final solution

presented in the thesis – the use of filesystems.

Chapter 4 gives an insight into the world of filesystems. It gives answers to the

questions what a filesystem is, how it works and how it is used. It also illustrates the

complex processes in the operating system and the design of the virtual filesystem.

In chapter 5, the practical part of the assignment begins with a description of the

FUSE framework. Chapter 6 introduces the Braintribe product – Braintribe CSP – for

which the filesystem was developed. In chapter 7 is explained JavaFS framework,

which was included into the thesis to enhance the BTCSP maintenance and to create

another abstraction layer for development of another filesystem in Java. Chapter 8

describes the internals of the BTCSP that this filesystem was made for, its API used to

implement the BTCSP filesystem and the actual developed BTCSP filesystem.

Related work is mentioned in chapter 9 and the BTCSP filesystem evaluation is in

chapter 10. Finally in chapter 11 can be found the summary and conclusion of the

thesis.

7

2. Review of the state of the art

Graphical interface and presentation of data is a very important issue in database

systems. This is the part of the software that the user comes in contact with. This may

give a software product some advantage in the highly competitive market. Therefore

software producers must be innovative and try to create software that would have all

features that could be of some use to the end-user (client) that could give it the crucial

advantage in the market. The most common presentation techniques are depicted in

Figure 1.

Figure 1: Common presentation models

Database systems are used to store huge piles of information and therefore without

any arrangement of the data, data mining would be impossible. Therefore data must

be often organized into sophisticated structures. The database architect must find the

best solution for the design of the database to fit the requirements based on its future

use. They face many different trade-offs, the most common being the trade-off

between performance and storage space. The result is then a complex customized

database architecture, which is often composed of many recurrent relations with

various types of data stored. Such a database can be hardly represented in form of a

filesystem.

8

Therefore the most common way to present the data in the database is also a

customized application. In a multi-user environment web applications are more

popular because of their effortless support and configuration.

In some cases the database is composed of hierarchical parts that have a more

filesystem-like design that makes it possible to partially display the data in a

filesystem. Filesystem then allows some simple but frequently used operations on

these data.

It is now apparent that there is not only one approach to present data. It decidedly

depends on its future use and on its hierarchical and structural characteristics. Multi-

user database systems have mostly a web application access on contrary to single-user

systems that will do with a normal application. Database systems composed of

hierarchical architecture and storing files may enable also a filesystem access.

9

3. Description of the approach

We decided to make a filesystem to access the database system data in the BTCSP.

We considered it as the most flexible and robust choice from the other possibilities we

had. To implement the filesystem kernel module we used open-source user-space

filesystem FUSE, which enormously simplified the development process. The

implementation of the actual filesystem logic was written in Java.

BTCSP provides a database system that has a hierarchical structure composed of files.

There were three options to access these data:

to use a windows shell program similar to the ZIP explorer,

to use an open-source Java web server (we considered WebDAV) that

would allow an internet browser access, or

to make a filesystem.

The first option allows windows explorer access. It would look good and it would

make a good filesystem illusion, but it would be almost as complex as a filesystem

and restrained for windows use only. Java web server choice would be a more

platform independent solution, giving an advantage of developing in a object-oriented

programming language, but loosing of some filesystem usage features. Making a

BTCSP filesystem is the most difficult option, but it has all the pros of the other

options, except the development in Java, and it has the advantage of being the most

robust solution. For example scripts are easily written for a filesystem, a partial

backup is easily possible and another filesystem may be used on it; I have in mind

SAMBA filesystem, which allows network access.

Based on its characteristics, the filesystem choice was straightforward. Now we need

to handle the complexity of this option. Filesystems are drivers or kernel-space

programs implemented in the programming language of the operational systems,

which is usually C. Kernel-space is a very restrictive programming environment,

allowing only a set of pre-implemented functions. Besides it requires great knowledge

of the operational system kernel that it is implemented for, which led us to the

10

conclusion to develop BTCSP filesystem for Linux, which is open-source and has lots

of information free available on internet. Linux kernel-space programs are

implemented in form of kernel modules; therefore from now on I will refer to them as

kernel module.

But developing in kernel module has as well other difficulties. Debugging is almost

impossible and bugs in the implementation lead mostly to a system crash; prepare to

spend some time in front of rebooting machine. Therefore it is necessary to move

most of the implementation into user-space.

But such problems arising with kernel module programming led us to search a way to

avoid or facilitate it. We looked for a filesystem kernel module that would allow

further development in user-space. And we found some user-space filesystems. We

considered FUSE and LUFS2. We chose FUSE as it appeared to be the most

documented, bug-free and most used one. A comparison of both filesystem APIs may

be found in chapter FUSE. This chapter also explains some techniques used to

exchange communication data between kernel and user space.

FUSE was ideal to build on. FUSE supports all necessary filesystem operations.

These operations are then delegated to user-space. As will be seen later, FUSE does

not fully fit to our requirements; therefore it was necessary to make some

modifications to it. The section 7.1 is dedicated to show the problems with FUSE and

the modifications of it.

Although implementing in user-space was relative simple, it was yet necessary to pass

on all calls to Java so that we could use the Braintribe CSP client API. We decided to

use TCP/IP communication to pass the commands to Java server, which would allow

the Java module to be run on a different machine.

For the Java module we chose to use API architecture to allow an effortless

implementation of different kinds of Java-based filesystems. The exact architecture

and implementation is described in the following chapters.

2 LUFS – Linux User-space Filesystem [lufs]

11

4. Filesystems

To grasp the idea behind filesystems, one must understand what the user sees and why

things are presented the way they are, what concept lies behind it all.

The basic and most common elements of a filesystem are regular files and directories,

with regular files being the most spread type of file in operating systems. Sources,

programs, scripts, pictures and documents are all regular files. One might argue that

executable files are a special type of regular files but they are handled by the

filesystem in the same way – as a stream of bytes.

Although directories also contain a stream of bytes, these are interpreted by the

filesystem in a different way. They contain the information about files and directories

that are present in it and how they are linked together, giving the user a hierarchical

perspective over the files and directories. Therefore files and directories in a

filesystem may be also presented in tree-like form; where everything other then a

leave is a directory, see figure 2.

Figure 2: An example of the directory tree.3

There are also other types of files and directories that need to be considered when

building a filesystem, but not all of them have need to be supported. They are outlined

here.

3 Figure from [utlk02]

12

Regular files. Regular files hold any data that is not interpreted by the

filesystem. They include for example script, documents, videos, images and

binaries.

Directories. Directories provide structure in the filesystem. They catalog

entries of files or other directories. Data they contain is being interpreted and

managed by the filesystem. The data conforms to the virtual filesystem

standard.

Symbolic links. A symbolic link, also called symlink, hold a reference to

another file or directory. They don’t have to have the same name as the

referee and they may cross through different filesystems. Removing a

symbolic link does not have any impact on the referenced file. Removing or

renaming the indexed file causes the symbolic to be invalid or broken,

although the symbolic link is not removed. A broken symbolic link may

become again valid, when the referenced file»reappears«. Symlink is also

translated by the filesystem. Usually it just holds the path to the referee as a

null terminated string, which the filesystem tries to find.

Hard links. In contrast to symlink, hard link isn’t just a simple mapping with

any impact on the referenced file. By creating a hard link the file’s link

count is incremented, which on the other hand deleting decrements. When

the file’s link count hits zero, the file is removed from the filesystem. Hard

links cannot cross filesystem boundaries.

Named pipes. Named pipes are part of Inter Process Communication (IPC)

mechanism, which allows unrelated processes to bi-directionally

communicate. This differs from traditional UNIX pipes that can only by

accessed by related processes and which operational unit is built-in in the

operational system.

Special files. Special file is a file that refers to a character or block device

such as a disk or a tape. This allows the user of the file to access the device

with the file’s read write methods. These files can be found in devfs or

procfs.

13

4.1 Most Common Filesystem Objects

This chapter explains some of the filesystem’s object that will be used later in this

thesis to explain some of the processes in the VFS.

4.1.1 Inode object

Inode is an object that »lives« on the disk and represents each file on the filesystem.

Every file accessed, independently of its type, is held in the virtual filesystem as an

inode structure. The inode structure has a number of members used by the VFS to

manage access to the file and to store some of the file’s properties. Among others it

contains the i_ino field (inode id or inode number) that is a unique 64bit value for a

file and identifies the file in the specific filesystem. The virtual filesystem holds

exactly one such structure for a file in the cache, and discards it from the cache after

some time if there is no outstanding open method and it is not needed any more.

4.1.2 Dentry object

Dentries are not disk objects; they are dynamically allocated in RAM to enhance

performance and therefore are never saved to disk. VFS stores filesystem’s structure

in memory as a linked list of dentries. The dentry structure (defined in

linux/dcache.h) is used as the dentry’s representation and contains managing

mechanisms and a reference to the inode object. In order to resolve a pathname into a

dentry VFS may resort to allocating dentries along the way. For relevant dentries the

inodes are loaded and associated with the corresponding dentry.

4.1.3 File object

File object is represented by the file structure. It holds the information about the file

interaction in scope of a process. This object is created when a file is opened and

freed when the last reference is released. It doesn’t have any corresponding disk

image, although it includes a reference to the dentry object that further references the

inode object.

14

The main information stored in a file object is the offset position in the file data from

which the next operation will take place. It also stores the interface with file

operations implemented by the corresponding filesystem.

How all these objects interact with each other shows the figure 3.

Figure 3: Interaction between processes and VFS objects.4

4.2 Basic File Properties

To obtain the properties of any file the stat () system call may be invoked. A user

may use the stat or ls commands, which also invoke the stat () system call. One

line of the result of an ls command is showed and described in figure 4.

The main properties showed are:

The File type and access permissions

The link count

The owner and group of the file

The size of the file

The last modification date of the file

The name of the file

4 Figure from [utlk02]

15

Figure 4: File properties shown by typing ls –l5

First the ls command obtains the list of all files in the current directory using the

getdent () system call and then it calls stat () for each file to get the file’s

properties. The interface of these two system calls is defined in sys/stat.h and looks

like this:
int stat(const char *path, struct stat *buf);

int getdents(unsigned int fd, struct dirent *dirp,

 unsigned int count);

The getdents system call uses a file descriptor6 to obtain the entries in the directory.

The caller provides the buffer for a list of dirent structures that is filled in the

getdents call. The dirent structure contains the inode id and file name that is

subsequently used to make a pathname and passed to the stat () call that returns the

file’s properties in a stat structure (defined in sys/types.h), which has the following

form:
struct stat {

dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* Inode number / file serial number */

mode_t st_mode; /* File mode */

nlink_t st_nlink; /* Number of links to file */

uid_t st_uid; /* User ID of file */

gid_t st_gid; /* Group ID of file */

dev_t st_rdev; /* Device ID for char/blk special file */

5 Figure and description from [ufedi03].
6 To access the file’s data, the file must be first opened using the open system call. The result of a
successful open is the file descriptor that is further used to access the file.

16

off_t st_size; /* File size in bytes (regular file) */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last data modification */

time_t st_ctime; /* Time of last status change */

long st_blksize; /* Preferred I/O block size */

blkcnt_t st_blocks; /* Number of 512 byte blocks

allocated */

};

Given this information it is relatively simple to map the structure fields to the

information displayed by ls. This structure is not easily altered. Usually the filesystem

updates this information. If you want to change the fields manually, than you have to

use system calls like chmod, chown, utime or truncate, which are mentioned in VFS.

Additional information can be found in Linux manual pages.

Besides the standard file properties Linux VFS supports extended file attributes.

These may be customized by the filesystem. The getfattr7 command may be used to

obtain the attribute names and values of a specific file. Typically only attributes with

names starting with “user.” prefix are displayed. To get a value of an attribute

without the user prefix, one must know the attribute’s name. These attributes aren’t

yet widely used, although some security systems like SElinux do use them to store

some information about the files (e.g. security.selinux attributes).

System calls responsible for handling extended attributes are fgetxattr, lgetxattr

and getxattr. The VFS functions are described later in this chapter.

4.3 Relation to Database Systems

Filesystems and database systems have a totally entangled relation. A filesystem is

not a database system, although it may use one to manage the filesystem data. A

database system is not a filesystem, although at some point it certainly uses a

filesystem (if it doesn’t use direct device calls) to maintain its data. The main

difference is the data organization where filesystem obey a standard structure and

7 getfattr is not a standard Linux command. It must be installed with the attr package, although it is
mostly included in the basic installation.

17

database systems enjoy the freedom of the database architect. Another foremost

discrepancy is the data access. Both have standard interfaces to implement, but they

are obviously different (Select, insert, update vs. open, read, write).

Of course it is possible to design a database system with a structure adhere to the

filesystem data organization, see figure 5. Such a database could easily be used by a

filesystem. It would just need to bind to the VFS by implementing its interface.

Figure 5: An example of a database model conforming basic filesystem data
organization

4.4 Virtual Filesystem (VFS)

Virtual Filesystem (also known as Virtual Filesystem Switch or VFS) is an abstract

kernel software layer that handles all filesystem related calls and delegates them to the

underlying filesystem implementation. As mentioned earlier, it provides a standard

interface for all filesystems. A cp /mnt/floppy/foo /home/user command would then

look as in figure 6.

18

Figure 6: VFS role in a cp operation8

There is no cp () or copy () system call, the cp command is a program that reads

(read () system call) data from one file and writes (write () system call) them into

another file.9 In our example the command crosses between two filesystems, the ext2

and msdos filesystem. The VFS acts as an abstraction layer between the application

(the cp program) and the filesystem implementations, therefore the application

doesn’t care about the filesystems the files are stored in and interacts with the VFS

only by means of generic system calls.

4.4.1 Registering and Mounting a Filesystem

In order to access a filesystem, it has to be mounted. Each filesystem has its own root

directory where its filesystem’s space begins. If filesystem’s root directory is also the

root of the system’s directory tree, then the filesystem is called a root filesystem.

Other filesystems may be mounted at any point on the system’s directory tree; and

other on the directory tree of the mounted filesystems. The directory on which the

filesystem is inserted is called mounting point, and the filesystem that the directory

belongs to, is called the parent filesystem.

Mounting a filesystem is done by the mount command.

Example:

8 Figure from [utlk02]
9 Of course the cp program invokes other system calls as well (e.g. open (), stat(), etc.)

19

mount -t ext2 /dev/fd0 /flp

where first argument is the device associated with the filesystem, second

argument is the mounting point and the -t flag argument specifies the

filesystem. To view all the currently available filesystems, execute the

command cat /proc/filesystems.

It is possible to mount multiple filesystems on a single mount point, although it is

very rare. The last mounted filesystem always hides the previous, although

applications working with files from the previous filesystem may continue to do so.

When the topmost filesystem is removed (unmounted), then the previous filesystem is

made visible again.

Registering a filesystem

To support a new filesystem in the kernel, the filesystem needs to be registered. This

is not done by the mount command. The filesystem must be already registered at the

time the mount command is executed. Typically the filesystem is registered in the init

function of its kernel module when you run the insmod command.

Registering is provided by the register_filesystem () kernel function. You pass

it a file_system_type structure that describes your filesystem and your filesystem is

available for mount.

struct file_system_type {

 const char *name;

 int fs_flags;

struct super_block *(*get_sb) (struct file_system_type *,

int, const char *, void *);

void (*kill_sb) (struct super_block *);

struct module *owner;

struct file_system_type * next;

struct list_head fs_supers;

};

name – is the name of the filesystem, such as »ext2« or »fat32«.

fs_flags – various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)

20

get_sb – reads the super-block of the filesystem on mount

kill_sb – frees all necessary structures of the filesystem on unmount

for internal VFS use

owner – module responsible for the filesystem, instantiated with THIS_MODULE

next – next filesystem in the list, this should be initialized to NULL

fs_supers – list of superblocks, initialized to NULL

get_sb and kill_sb are part of filesystem’s implementation.

Internal mount

Internally the mount command calls the mount () system call (with sys_mount ()

service routine). The sys_mount temporarily copies the parameter into a kernel

buffer, locks the global kernel lock and invokes the do_mount () kernel function that

does all the work. The next pseudo code shows some of the important steps the

do_mount function does.

1. If any mount flags (e.g. MS_NODEV, MS_NOEXEC) are passed then set the

corresponding flags (e.g. MNT_NODEV, MNT_NOEXEC) in the mounted

filesystem object.

2. Lookup the pathname of the mount point

3. Check the mount flags to determine what has to be done

4. Invoke path_release () to terminate pathname lookup of the mount

point

The core of the mount operation is done by the do_kern_mount () function that does

most of the above-mentioned steps. Among these tasks, it allocates a super_block

structure partially initializes its members. The rest is then set by the filesystem’s

get_sb () function (specified in the file_system_type structure used in the

registration process). This object provides an interface, super_operations stored in

field s_op, which is then further used to access the filesystem. The interface is

described in section VFS interface.

21

4.4.2 Insight into a simple procedure

This subchapter describes the call flow of an open, read and close system call. This

is one of the most common scenarios carried out by an application.

Opening a file

Any access to a file must be preceded by the open method. The open () system call

is handled by the open () kernel function. It receives the file’s pathname as

argument; therefore its first task is to call the namei () that looks up and parses the

dentry cache (filesystem’s tree) and on success returns the inode number of the inode

object referenced by the last dentry.

Next the kernel open function calls an open1 () function, passing it its opening

mode argument. The split between the open () and open1 () allows open () and

creat () system calls to share much of their code. To ensure that the process has

permission to access the file with the passed mode, open1 in first place invokes the

access () method. If all is fine, a call to falloc () is made that allocates a file table

entry (file structure) and internally calls the ufalloc () to allocate a file descriptor

from u_ofile[] array. The allocated file descriptor will be set to point to the

allocated file table entry and a reference to the inode object is established.

Reading the File

The system call read () is invoked with a file descriptor parameter and a buffer that

will be filled with the data from the file. At first it obtains the file table entry and

verifies the permission to read. The next steps involve repeated calls to bmap ()

function to obtain the disk block address from the file offset. bmap maps the logical

block number within the file into a physical block number on the disk. This is passed

to the bread () function that reads in the blocks on the disk. To fill the passed buffer

with read data calls to the copy_to_user () function are made. This buffer may not

be directly accessed, because the buffer is not in the kernel address space. After a

successful read, the file’s offset in the file structure is modified and the number of

bytes that have been read is returned. The read system call always reads the requested

number of bytes, if not, the specific error number is returned.

22

Closing the File

The close () system call is handled by the close () kernel function. It does do

little work other than the opposite of open. It obtains the file table entry calling the

getf () function, zeros the appropriate entry in u_ofile[] and invokes the closef

() function. The file table entry cannot be simply freed because it may be referred by

another file descriptor. This may happen, for example, when a dup () call was made

on the file descriptor. For this purposes the reference count of the file is stored in the

file table entry in the field f_count. If f_count is 1, then there is no other reference

and the file table entry may be freed and a call to the closei () is made to free the

inode.

closei invokes iput () function that checks inode’s reference count i_count and

releases it if it reached 0. Additional work is performed in closei to allow a device

call in the case the closed file was a device. One additional check that has to be made

is to see if the hard link count of the inode is not 0. If it is 0, what means that an

unlink () call was made on the file while it was opened, then the inode may be freed

on the disk as well.

4.4.3 VFS Interface

Linux kernel is written in C, which isn’t an object-oriented programming language;

therefore all the objects and interfaces are represented in form of the structure type.

The VFS interface includes longer lists of supported operations and interface

structures, which is together with brief descriptions situated in appendix A.

It is useful to state that some of the operations where added to the VFS interface to

support specific filesystem processes (e.g. dir_notify for the Common Internet

Filesystem (CIFS)). Not all interface members are therefore used. Unused or not

implemented members of the interface should be set to NULL and will be ignored by

the VFS.

23

5. FUSE

FUSE (Filesystem for User-Space) is a simple API for developers that exports virtual

filesystem interface to user-space. It is an open-source project created by Miklos

Szeredi. It can be downloaded from: [prjfuse] or from FUSE’s homepage [wwwfuse].

In this chapter is explained its implementation, design and how it is used. To get the

overall picture about FUSE it is helpful to understand what a user-space filesystem is

and why are they useful, therefore the next subsection is dedicated to user-space

filesystems.

5.1 User-space Filesystem

Filesystem that provides data and metadata from user-space is called user-space

filesystem. As stated in chapter about filesystems, Linux filesystems must be

implemented and linked into the kernel. Such an implementation restricts the

developer to work in kernel’s address space. Because of the different address space a

kernel module can’t call user-space standard functions and a user-space application

can’t call kernel functions. This makes complex kernel modules even more strenuous.

To facilitate the implementation such demanding kernel modules, developers move

parts of the implementation into user-space. There are only few techniques (described

in next subsection) for the kernel-user-space communication, which are described in

next subsection, and programmers are forced to use them. To prevent repeated

implementations of the same code, open-source programmers make a framework that

can be then used by everyone.

This was also the motivation behind user-space filesystems, to facilitate the

development process of a complex filesystems. With same scenario as any other

kernel module, it became obvious that a framework for user-space filesystems would

be useful, and among other frameworks, FUSE was born and became popular in user-

space filesystem development under Linux.

24

5.1.1 Kernel-User-Space Communication

As described above simple function calls don’t work between kernel and user-space,

therefore some special techniques are used instead. This problem is different for the

directions of communication therefore they will be treated here separately.

User Kernel Calls

To call a kernel function from user-space one may call a system call, which typically

invokes some kernel functions. In general developers don’t have their own

implementations of system calls. Adding a new system call into the system involves

couple of steps, with the last one being the rebuilding of the kernel. As a rule

programmers try to avoid rebuilding of kernel as it opposes the philosophy of its

kernel design.

Instead of making an own system call, it is better to get use of an existing one. The

question is how to make a system call execute own implementation and this is where

special filesystems like proc or dev step in. They provide interface that kernel

modules can use to register their own directories and files with own implementation

of the file operations (i.e. read, write, ioctl, etc.).10

Using proc filesystem for user-kernel communication is very common, although dev

filesystem provides similar functionality and becoming also very popular. Proc entries

are registered via create_proc_entry function. The caller sets then the read_proc

and write_proc pointers to its implemented functions. Dev users register their

devices with misc_register function. They pass it a structure with information about

the device name, device number and file operations.

Kernel User Calls

Calls from kernel to user-space have to be handled differently. They use the same

manner (i.e. proc, dev, etc.) for the data exchange, but the procedure is other. There

10 There are many kernel modules that use the proc filesystem (typically mounted in /proc). Kernel
modules use it, to allow user-space applications access to some of the internal information. For
example the file cpuinfo in proc filesystem is handled by kernel module that returns CPU information
(i.e. CPU frequency, flags, cache size, etc.)

25

must be a user-space application running in background as a deamon that will handle

the commands from kernel-space. These calls are done by combination of read and

write operations (figure 7).

Figure 7: Sequence diagram of the kernel to user-space call. The invoking and

returning of the special call are represented by the red arrows left.

First the deamon process calls the read system call for the desired file in proc

filesystem. The read system call invokes the read operation of the file, which was set

by the registration of the file. In the body of the read method the process blocks and

waits until the kernel module will have an outstanding request that should be

processed in user-space. When the kernel module will want to make use of the user-

space functionality, it fills the buffer in read method, unblocks it and blocks it self.

The deamon interprets the returned data as a command with arguments, calls the

necessary functions and returns the result by calling the write system call on the file

owned by the kernel module. The write operation will be delegated to the kernel

module implementation that sets the result buffer and unblocks the kernel module

block.

26

Of course the data exchanged is not just an array of bytes, it has to be correctly

interpreted by the deamon process. Therefore the communication or request protocol

needs to be implemented in both, kernel and user-space.

The procedure used for kernel to user-space exchange is very much the same as two

producer-consumer problems. First the deamon plays the role of the consumer and

kernel module is the producer, and the product is the request. In the returning process

are the roles switched and the product is the data to be returned.

Besides proc, dev or other special filesystems sockets may be used for the kernel-

user-space communication, though the implementation is more complicated. Because

the kernel module can’t make use of the socket, open, read and write system calls,

the corresponding low-level functions have to be used. The call-flow would be same

as in the special filesystem case.11

5.2 Design

FUSE is a medium size open-source project. It can be divided into three main

modules. One is the kernel module responsible for the implementation of VFS and

communication with user-space. The other two are user-space implementations; one is

the FUSE API library and the other is a small utility called fusermount. These

modules and their cooperation will be described in next subsections.

5.2.1 FUSE kernel module

As every filesystem, FUSE must implement a kernel module. This module

implements the callbacks of the VFS interface. Calls from VFS are translated into

command and sent in request structures forward to the user-space. In the initial phase

of the module it registers the filesystem and the device for the user-space

communication.

11 You can find more about socket programming in kernel-space here [ksockprog].

27

The implementation of the kernel module lies in the kernel directory (in FUSE source

code). To prevent name conflicts inside kernel, all exported FUSE functions have the

prefix »fuse_«.

fuse device

FUSE implemented kernel to user-space calls using the dev filesystem. Its source

code is in the file kernel/dev.c. The methodology of the kernel to user-space

communication in FUSE is very much the same as suggested in previous chapter.

Read method blocks and waits until a request is pending. When a request is created,

its structure representation is copied into read buffer and the request owner function

blocks. In write operation is the result written into the requests results buffer and the

request owner is woken up. The implementation details are showed in next

paragraphs.

It isn’t bound to any real device; it is just a software imitation. The device is

registered by calling misc_register function, passing it the FUSE miscdevice

structure. The minor device number is set to FUSE_MINOR (defined in

fuse_kernel.h), device name is »fuse« (with this name will be created a character

device in /dev directory) and file operations are set with the fuse_dev_operations

structure. Another task the initialization function of the device has to do is to establish

the request cache (with the name »fuse_request«) using the kmem_cache_create

function. This is then used to allocate new requests, which are represented by the

fuse_req structure defined in fuse_i.h.

Besides the request data, which can have the maximum size of

FUSE_MAX_PAGES_PER_REQ (defined in fuse_i.h) pages12, it includes control members

such as the current state of the request, request id, reference count, wait-queue, etc. As

you may see blocking of request owners is implemented using wait queue13 (waitq

member); and as you will further see, all blocking mechanisms are done with wait

12 A page has typically 4096 bytes and FUSE_MAX_PAGES_PER_REQ is defined as 32, therefore the
maximum size of request data is 32 * 4096 = 131 072 bytes or 128kb.
13 Further information about wait queues may be found in Linux Kernel Internals [lki00].

28

queues and spinlocks14. A sequence diagram depicting this process is shown in figure

8.

Figure 8: Sequence diagram of the FUSE filesystem request processing.

Sequence diagram in figure 8 shows 5 functions of two threads; some control

mechanisms and special handling is left out for simplicity. One thread belongs to the

FUSE deamon process that is started by mounting the filesystem. It opens the FUSE

device file and calls the read system call, which in a trace of calls invokes the

fuse_dev_read function shown in the figure; the read system call and other functions

in the stack trace are not depicted as they are of no relevance here. Then the read

method calls the request_wait function, which uses add_wait_queue_exclusive

fuse connection object (fuse_conn, described in next subsection) member waitq to

add a task entry into the queue.

In this case exclusive means that wake_up call wakes up only one exclusive task. On

wake up is the owner process state set to TASK_RUNNING and therefore on next

schedule it will have assigned CPU time.

14 Spinlocks should be used only for short time, for example testing/setting couple of variable, because
it uses CPU time. Wait queues have a greater overhead than spinlocks; therefore they should not be
used for short time blocking. Wait queues are instead used when the caller waits until some longer
process finishes.

29

The request_wait function implements the block mechanism in a special way.

Instead of a wait call it runs a loop where it enables interrupting, sets the owner

process state to TASK_INTERRUPTIBLE (this means that this process won’t be

rescheduled until it is woken up) checks whether the process has a pending signal, if

there is no signal then it calls the schedule kernel function that reschedules another

process. Now it waits until the wake_up call wakes up this process by marking the

process as running, otherwise it won’t be rescheduled. When it is woken up, it checks

whether the fuse connection isn’t disconnected and whether there is a request waiting

to be processed, if not the whole thing repeats itself. This might look complicated

therefore here are the steps again from the point of view of the blocking process:

1. Add ourselves to the reader’s wait queue (fuse connection field waitq)

2. Mark ourselves as sleeping (TASK_INTERRUPTIBLE)

3. Ask the kernel to schedule tasks again (schedule function)

4. The kernel sees we are asleep and schedules some other process

5. The next request interrupt sets our state to TASK_RUNNING and notifies the

kernel to reschedule tasks

6. The kernel sees we are running again and continues our execution

The other thread belongs to a process that called the getdents system call on a FUSE

filesystem directory. Again this figure doesn’t show the caller stack trace functions

and illustrates only the FUSE function that handles the getdents system call, the

fuse_readdir function. The function fuse_readdir checks some parameters,

prepares the request structure and invokes the request_send method with the request

as parameter. This method wakes up the reader’s queue (fuse connection member

waitq) and executes the request_wait_answer that using the

wait_event_interruptible kernel method (with the request waitq member as

parameter) blocks until the request is answered (i.e. when the queue is woken up with

wake_up call).

Now the deamon thread in read method is unblocked and returns the request structure

that is to be interpreted and processed. When the deamon is finished with the request,

30

it calls the write system call that further calls the fuse_dev_write function as

illustrated in the figure. The write method finds the corresponding request structure by

its request id in the list of all requests being processed (stored in fuse connection),

attaches the answer to the request and wakes all processes waiting on this request by

calling wake_up call on the waitq member of the request structure. The write method

is hereby done and returns to the deamon.

The woken up processes waiting for the request continue in the request_send

function that before returning unlocks the fuse connection spinlock. The execution is

continued in the specific FUSE function, in our example fuse_readdir, which reads

and deals with the results of the request, and returns (through the getdents system

call to the user-space program).

FUSE VFS interface implementation

The VFS interface is in FUSE implemented in three files: file.c, dir.c and inode.c. The

names of the files give already an insight into which operations are where

implemented.

Operations are straightforward implemented without any sophisticated logic. The

body of a typical VFS interface function does the following tasks:

Allocate and prepare a request object

Send request object via request_send function to user-space

Use the request result to finish the work of the specific operation

This implementation also includes special FUSE mount options. In function

parse_fuse_opt are the options interpreted and corresponding members of the

fuse_mount_data object are set.

5.2.2 fusermount

The utility fusermount is a user-space program that is used to initialize the mount

process – loads fuse kernel module if necessary. Besides this job it calls the actual

mount system call. It is implemented as a different program in the directory util in the

31

FUSE source code directory. Typically it is executed from the fuse_mount function

implemented in the FUSE library. It may be also called from command line with

different options. The most used one from command line is the unmount (-u) option.

In case the user-space filesystem has problems with unmounting, fusermount may be

called with this option to force the unmount. While the filesystem is used, this module

is not used.

5.2.3 FUSE library

FUSE library is the user-space part of FUSE. It provides functions for the developers

that would like to use FUSE API. It is designed like the virtual filesystem. The user

may choose only to implement a predefined set of functions, which are then attached

to the FUSE deamon implementation, or uses some of the library functions to create a

new deamon. The list of all functions in the library can be found in the file

lib/fuse_versionscript.

A programmer using FUSE library may also choose to between two abstraction

levels; FUSE interface and FUSE low-level. Low-level interface is defined by

fuse_lowlevel_ops structure and FUSE interface is represented by fuse_operations.

The basic difference is that the FUSE interface makes the use of inodes transparent.

Files and directories are instead identified with the full path, although the FUSE

interface uses the low-level functions. Its most overhead lies in the translation of the

inodes into path; otherwise both abstraction levels share the code.

The implementation itself contains also some levels of abstraction. One was already

mentioned in previous paragraph, the inode abstraction level. The fuse_kern_chan.c

file implements another abstraction level, the communication channel level. The

communication channel provides the fuse_chan_ops interface, this includes the

implementation of receive, send and destroy functions.

To sum it up, the FUSE library offers an implementation of the communication with

the device, the deamon that repeatedly interprets the commands from device and

writes the answers back, parses the mount options and allows a debugging useful

verbose mode.

32

5.2.4 Call-Flow

As we already mentioned, FUSE can be divided into three modules, two of them

running in user-space. This section offers an insight into the interaction between the

modules and depicts the call-flow of a three scenarios. First scenario being the

initialization and mount process of FUSE, latter scenario is the typical handling of a

command in the running state, and last is when the FUSE is being closed –

unmounted.

Initialization

FUSE initialization starts with the insmod command that links FUSE kernel module

into Linux kernel and starts its init function. The FUSE kernel module init function is

fuse_init and its source can be found in file kernel/inode.c. It allocates and

initializes some objects, registers the FUSE filesystem and the FUSE device, which is

then accessed over the /dev/fuse file.

When the FUSE kernel module is loaded in Linux kernel the filesystem can be

mounted. The mounting of FUSE is different from other filesystems in that it isn’t

mounted with the mount command, although it calls the mount () system call in the

process. Filesystems based on FUSE are built as a program with the main method and

are started as commands. The program implements the FUSE interface and in the

main function it may initialize its own objects. In the initialization it may use any of

the FUSE help functions, like fuse_parse_cmdline that parses the arguments and

returns the mount point. At the end of the initialization the program must call the

fuse_main (or in the case of a low-level filesystem the fuse_mount) method to start

the filesystem – that is, mount the filesystem. To use these functions the program

must include the header file include/fuse.h and link with the FUSE library.

Here starts the initialization of the FUSE fuse_main parses the passed arguments and

calls the fuse_mount function. fuse_mount creates a UNIX domain socket pair and

executes the fusermount command, which gets one end of the socket as a file

descriptor in the FUSE_COMMFD_ENV environment variable and in command line

arguments the mount arguments passed to fuse_mount.

33

The command fusermount checks whether the fuse module is loaded, and loads it if

not. Then it opens the FUSE device – /dev/fuse – and sends the obtained file

descriptor through the UNIX socket. The fuse_mount reads the /dev/fuse file

descriptor from the socket and closes it as it won’t be of any need anymore. Then it

initializes a fuse channel object and returns the pointer to it.

Now either the fuse_main or the program’s main function runs deamon function that

uses the obtained fuse channel object to capture filesystem system calls and to send

the results back to the kernel-mode process. The fuse_main prepares its fuse object,

which is used to store and maintain configurations, and uses the fuse_loop (or

fuse_loop_mt) functions to start the main deamon loop.

Running

Now when FUSE is loaded and the user-space filesystem is mounted, the deamon

sleeps in the read system call of the FUSE device that was invoked from the receive

operation of the fuse channel object, and waits for a command or an interrupt. The

figure 9 shows the path of a call.

As soon as a filesystem system call invokes one of the FUSE kernel functions, the

blocked read method is woken up and a request structure is created and sent over the

read syscall buffer to user-space. The FUSE library deamon loop reads the command

from the device and calls the specific function from the operation structure filled by

the filesystem program.

When the filesystem user-space function is done with the command, it calls a specific

FUSE library function to send the command results such as the fuse_reply_err

function that is used to reply an error. The FUSE library function then uses the fuse

channel object to write the answer to FUSE device. The FUSE device write method

finds the corresponding request, hangs the answer to it and wakes up all the tasks

waiting for it.

34

Figure 9: This figure shows the path of a filesystem system call. It can be found on
FUSE homepage [wwwfuse].

What is not obvious on the picture is that this call-flow involves two processes. One

process is the FUSE deamon that runs all the time and doesn’t stop after this

communication exchange. It handles all the requests of the filesystem while the

filesystem is mounted. The other process initiates the call-flow, in our example it is

the ls program. Life of this process spreads usually only over a couple of requests.

Unmounting

When a user is done with the user-space filesystem, he may unmount it. He can either

use the umount command, the fusermount -u command provided from FUSE or kill

the FUE deamon process. The last option differs from the other, and is possible only

if you capture the SIGINT signal, what the FUSE library deamon does.

In case the filesystem was unmounted either with umount or fusermount -u command,

the umount () system call is invoked. This command furthermore invokes the FUSE

put_suser function that creates a destroy request and sends it to user-space. When

the request is done, put_super closes fuse connection object, releases some objects

and wakes up all waiting processes that return with an error.

35

Next FUSE device read operations don’t block anymore and just return with the

ENODEV error code that breaks the deamon loop. A poll () system call on the device

returns POLLERR error code what means that the filesystem is already unmounted.

If the deamon process is being killed, the unmounting looks slightly different. The

deamon signal handler calls the fuse_session_exit function that sets the session as

exited and closes the FUSE device file. This breaks the FUSE deamon loop and exits

the process.

5.3 Basic FUSE Structures

Just like the implementation of virtual filesystem, FUSE objects are represented in

structures. Besides objects, structures are used to implement the kernel-user-space

communication protocol. There are structures that are used specifically in FUSE

kernel module and structures used only in FUSE user-space part – library.

5.3.1 FUSE kernel structures

The reason that some objects are needed only in kernel module is because the kernel

and user-space are so different and because they have different roles. They are

declared in kernel directory in fuse_i.h header files. There is also another header file

in this directory, fuse_kernel.h, but this file declares the FUSE communication

protocol structures and is therefore used also in user-space module.

fuse_i.h is included in every FUSE kernel module C file.

The first couple pages of fuse_i.h set version macros and default value macros and

include some other necessary header files. The first object that you encounter is fuse

inode object, fuse_inode. This object is stored instead of the Linux kernel inode

object; therefore the first member in the structure is reserved for the Linux kernel

object, although it doesn’t have to be the first member.

36

The allocation of the Linux inode object is done entirely in FUSE implementation,

although it will be used by the virtual filesystem. Therefore any reference to Linux

inode object returned from a VFS function is in memory a fuse inode object and can

be translated to it using the get_fuse_inode function (defined also in fuse_i.h).

Next member is the fuse inode identification object, node_id, used to identify the

inode between fuse kernel and user mode. The other fuse inode object members are

used in maintenance. nlookup holds the count of lookups performed on this inode.

On each forget operation is this count decremented by one. The fuse inode object

stores the reference to forget operation request object in the forget_req field. Last

field is i_time and it defines the life-time of the inode attributes – it holds the time in

jiffies until the attributes are valid.

After inode object definition comes fuse file object representation, fuse_file. It is a

small object and holds only a reference to a request object that is reserved for the

flush and release commands (when a file is released), and a file handle used in user-

space.

FUSE request object is on the other hand one of the largest objects defined in FUSE.

It is defined on couple pages, including some other objects. This objects stores all

information relevant for the execution of the command and many control fields used

to manage the process of execution. First fields store lists of pending processes and

tasks. The count field saves the reference count to this object to ensure that the object

is not released when some process still uses it. The intr_unique is used if this

request is an interrupt request that has higher priority than other requests and is used

to identify this interrupt request.

The next dozen fields are dedicated to request flags (e.g. isreply, force, etc.) and to

store the state of the request.

The following fuse_in and fuse_out objects in the request store the request input

arguments and output – answer. They define the number, size, buffer and some flags

37

of the arguments/answer. The request pages and num_pages members are therefore

used only if the fuse io objects need them.

The waitq member was already mentioned in Call-flow subchapter, and is used to

wake up processes waiting for this request to finish. The last request fields are used to

make sure that some objects (e.g. vfsmount) aren’t released before some task is done.

The fuse connection object is another large object. It is implemented in the

fuse_conn structure and is created when the filesystem is mounted. It has the same

life-time as the filesystem and is therefore destroyed when the FUSE device is closed

and filesystem unmounted. The first three members implement some locking

mechanism. count is used the same way as in request object, and lock protects from

simultaneous access and inconsistencies. Some of the mount information is stored in

user_id, group_id and flags. The waitq field is used for waking up the reader

processes as described in Call-flow subchapter and the next two lists store the

requests that are pending and request that are being processed.

If there are too many requests the connection is blocked by setting the blocked field

and all next request are added to the blocked_waitq wait queue. The reqctr saves

the last request id and is incremented for each new request. The field connected is 1

over the life-time of fuse connection object and is cleared only at the end when the

filesystem is unmounted, the connection is aborted or the FUSE device is released.

Next come a dozen of flags describing either the state of the connection or

configuration. A fuse connection object is identified by the id field and stores also the

list entry definition in entry member. Each fuse connection object stores also a

reserved request for the destroy command.

The rest pages of the fuse_i.h file define functions used for obtaining pointers from

different structures and declare some global functions that are implemented in C files.

38

5.3.2 FUSE user-space objects

User-space part of FUSE is implemented in FUSE library. The definitions are stored

in include directory. fuse_opt.h file defines two objects used in mount process to

parse and store the arguments, I won’t go deeper into this one. Neither will I describe

the FUSE interface objects in this section, because it will be examined in next

subchapter.

The only objects of some relevance are declared in fuse_common.h. The

fuse_file_info object is used only on create/open operation. This object is stored

only in user-space and is only partly used. The most important member is the fh and

stores a file handle passed from user-space filesystem. This member is also stored in

kernel module. The other object defined in this file is fuse_conn_info and is used

only on init to set some parameters.

As in kernel module, the user-space implementation has also a representation for the

request, although it is much smaller as it doesn’t have to implement so many control

mechanisms. The name of the structure is the same as in kernel, fuse_req, but it isn’t

defined in a header file but in the fuse_lowlevel.c file.

The user-space request implementation stores a reference to a fuse low-level object in

the f field to maintain a pointer to its parent. It provides also a mutex for locking the

request in the lock field, although it is used only for the request interrupt function.

For security reasons, the request holds context information about the calling process,

which is passed from the kernel space. The ch member contains the reference to the

fuse channel object and interrupted is a flag that stores if there is an interrupt

command to handle before this request. The next union then stores the interrupt

information. Besides these members, the request object stores the request id in unique

and the reference count in ctr.

The fuse_lowlevel.c includes one other private object, the fuse low-level object –

fuse_ll. It stores some general configuration information (e.g. debug, allow_root,

etc.), the list of requests and interrupts and the FUSE low-level interface. For the user-

39

space filesystem it stores a reference to the user defined data – userdata. To prevent

inconsistencies, it provides a mutex named lock.

The file fuse_session.c implements two other important objects: the fuse channel

object – fuse_chan, which is referenced from user-space request and a fuse session

object – fuse_session. These objects are double linked together.

The fuse session object provides a list of session operations (i.e. process, exit,

destroy, etc.), the information about the sessions state (exit field) and a pointer to

fuse channel object.

The fuse connection object exports an interface for the communication with kernel-

space (op) and stores the FUSE device file descriptor in fd. It stores also a reference

to the session object (se) to allow the double link.

5.3.3 FUSE exchange structures

As previously stated there is no simple or direct way to call a user-space function

from the kernel-space. The only way is to use some kind of pipe (in form of a

filesystem or socket, see subchapter User-space Filesystem) that allows data exchange

between these two spaces. A filesystem implementation needs a broad number of

functions that have different parameters and return values; therefore it is impossible to

implement this with simple data exchange. This requires some kind of interpretation

of the data. For performance reasons it is necessary to make multiple »calls« at the

same time over the same pipe. The best way to support these requirements is to use a

protocol request system.

FUSE has also a communication protocol for its request system. All requests and their

arguments have standard structures that are defined in fuse_kernel.h. This file is in the

FUSE directory twice. One is in the /include and the other in /kernel directory. Both

are and have to be identical because FUSE library (user-space) has to implement the

same protocol as the kernel module (kernel-space), otherwise the two processes would

not comprehend each other. The request and request answer headers are in figure 10.

40

Figure 10: This figure shows an illustration of, a) the request header that is used to
send commands and, b) the request answer header that is used to send answer of a
request.

The message headers are defined by fuse_in_header and fuse_out_header

structure. All fields of the request header are unsigned values.

len – the size of the whole request

opcode – the code of the command, each method in the FUSE low-level

interface has a unique opcode

unique – identifier of the request, each request has a unique number

nodeid – id of the inode handling this request

uid – user id of the process executing this request

gid – group id of the process executing this request

pid – process id of the process executing this request

padding – message padding

The answer has smaller header, because the unnecessary fields were removed. All

fields, except the error field, have unsigned values.

len – size of the whole answer

error – in case some error occurred during the processing of this request, this

field contains the error code

a) request header – all fields are unsigned
0 32 64

len (32bit) opcode (32bit)

unique (64bit)

nodeid (64bit)

uid (32bit) gid (32bit)

pid (32bit) padding (32bit)

b) answer header – all fields are unsigned except error
0 32 64

len (32bit) error (signed 32bit)

unique (64bit)

41

unique – identifier of the request that this answer is for.

Requests and answers have various arguments. The size, number and structure of the

arguments depend on the opcode – the requested command. The specific arguments

for all commands are listed in appendix B.

5.4 FUSE Exported Interface

As mentioned in previous subchapters, FUSE implements two abstraction levels and

exports therefore two types of interfaces. The FUSE basic interface is defined in the

include directory in file fuse.h under fuse_operations. All of these functions are

optional but some functions have to be implemented for a use-full filesystem. Open,

flush, release, fsync, opendir, releasedir, fsyncdir, access, create,

ftruncate, fgetattr, lock, init and destroy are special purpose methods, which

aren’t essential for a full featured filesystem. Most of this functions work like UNIX

filesystem operations, but instead returning the error codes in errno, they are returned

directly as a negated value (e.g. -ENOTSUP).

Low-level interface is very similar to the basic interface. It is defined by the

fuse_lowlevel_ops structure in the file fuse_lowlevel.h and the main difference is

that the functions have an inode (fuse_ino_t) instead of the path (char *)

parameter. Most of the methods receive also a fuse request argument, which must be

passed to the reply function.

There is no need to explain the functions because the FUSE interface has a very good

in-code documentation. The documentation can be found in the file fuse_lowlevel.h

(in ./include directory) in the definition of fuse_lowlevel_ops structure.

Unfortunately in meanwhile such an in-code documentation is the only reference

point for a developer using FUSE.

42

5.5 Usage15

Let us now examine the usage of FUSE from user point of view. FUSE may be used

on any Linux kernel version 2.6.X where X is greater equal 9. FUSE doesn’t typically

have precompiled binaries; therefore it is necessary to compile it for the given Linux

kernel, although Linux kernel 2.6.14 and later may contain FUSE support. If the

Linux kernel contains FUSE support the FUSE kernel module won’t be compiled. To

override this, use the '--enable-kernel-module' configure option.

Before compiling it may be necessary to add ‘/usr/local/lib’ to ‘/etc/ld.so.conf’ and/or

run ldconfig. Then run the configure command in the FUSE directory. If ‘./configure’

cannot find the kernel source or it says the kernel source should be prepared, you may

either try

./configure --disable-kernel-module

or if the Linux kernel does not already contain FUSE support:

1. Extract the kernel source to some directory

2. Copy the running kernel's config (usually found in /boot/config-X.Y.Z) to

.config at the top of the source tree

3. and run ‘make prepare’

When the configure command successfully finishes, run make. This compiles the

FUSE library, FUSE kernel module, fusermount utility and examples. If you want to

install FUSE, run ‘make install’. This copies the binaries into system directories (e.g.

fusermount into /bin). This installation sets the fusermount user id to root, to allow

normal users to mount their filesystems. There are some limitations to prevent

security risk.

The user can only mount on a mount-point, for which it has write

permission.

The mount-point is not a append-only directory which isn't owned by

the user (like /tmp usually is).

No other user (including root) can access the contents of the mounted

filesystem.

15 Installation and usage description can also be found in FUSE directory in README file. For more
information on installation see also the file INSTALL

43

It is possible to set some options regarding mount policy in the file /etc/fuse.conf.

Currently these options are:

mount_max = NNN - Set the maximum number of FUSE mounts allowed to non-

root users. The default is 1000.

user_allow_other - Allow non-root users to specify the allow_other or allow_root

mount options.

Mounting is done by running the user-space filesystem implementation. For example

the example/hello file. The first argument is the mount-point (e.g. example/hello

/mnt/fuse). Most of the generic mount options are supported (i.e. ro, rw, suid, nosuid,

dev, nodev, exec, noexec, atime, noatime, sync async, dirsync); they are described in

mount manual pages. Filesystems are mounted with the options ‘-onodev,nosuid’ by

default, which can only be overridden by a privileged user. The FUSE specific mount

options are listed in README file in the FUSE directory.

Recenly the author of FUSE opened an online wikipedia for FUSE that should work

as a tutorial for beginners and shows how to build a filesystem in FUSE. This

wikipedia can be found here [fusewiki].

44

6. Braintribe CSP

Content Integration becomes more and more a major part of Enterprise Content

Management (ECM). The introduction of Enterprise-Content-Integration (ECI)

solutions facilitates the access to content in a heterogenic environment and decreases

the integration costs of businesses. Braintribe Content Service Platform (Braintribe

CSP or BTCSP) combines the ECM and ECI technologies to become a unique service

oriented ECM platform solution.

The concept of the Braintribe CSP is based on years of experience in document

management that Braintribe gathered from the requirements and knowledge of its

customers in the field of ECM and ECI technology. The content service platform

unites the main aspects of Java and XML (i.e. platform independence, scalability and

robustness) with the demands of content integration and the enterprise service bus

technology approach. Besides, the service oriented approach, used in Braintribe CSP,

conforms to the Service Oriented Architecture (SOA) design. SOA describes a

software infrastructure that splits an application into a couple of standalone service

modules that are dynamically interconnected to work together in accordance to the

business processes.

The key services provided by Braintribe CSP may be divided into four categories:

system, content, integration and business services. The system services include

essential functions of Braintribe content service platform, which supports the proper

working of provided operations. Its functionality includes security, transaction

management, logging, caching, etc. Content services focus on the content

management - standard ECM functions, such as content analysis, saving, searching or

lifecycle and records management. Standard interfaces and connectors to other

applications and data repositories offer the integration services. The last service

category, business services, embraces all other operations supporting business

processes and business requirements of a given industry sector.

45

Under the right orchestration these services create a new functionality to better fit

business processes of customers and industry sectors. More about Braintribe and its

products can be found on their homepage [braintribe].

Before describing the Braintribe CSP internals and API, the framework JavaFS,

which stands between FUSE and the new BTCP filesystem, is introduced in chapter 7.

46

7. JavaFS

In order to develop a filesystem for the BTCSP as described in the problem

description we decided to use FUSE as it showed to be a very powerful and helpful

framework. Instead of implementing the BTCSP filesystem directly to FUSE we

chose to create a layer of abstraction. The layer should export the filesystem interface

to Java, that’s where the name JavaFS comes from. Having this abstraction layer we

could then build upon it the BTCSP FS. The figure .. shows where the JavaFS

framework is placed in the component model.

Figure 11: Component model showing how JavaFS was integrated instead of a BTCSP
component, which would be directly accessed from FUSE.

JavaFS is an abstraction layer that stands between FUSE and the BTCSP FS, although

due to the requirements of the BTCSP FS it was necessary to modify FUSE a little so

that it supports larger inode ids (256bit), this improves the performance of the BTCSP

FS. As mentioned in section 4.1.1, inodes are typically identified by a 64 bit integer

value. From now on, the modified version of FUSE will be referred as FUSEbtcsp.

JavaFS is composed of two parts. One part is the C implementation of the FUSEbtcsp

interface and the other is a Java implementation of our API. The two modules are

FUSE BTCSP FS
(fuse impl.)

BTCSP FS
(Java impl.)

FUSE JavaFS
(fuse impl.)

JavaFS (Java
impl.)

BTCSP FS
(JavaFS impl.)

kernel
space

switch between C and Java implementation (e.g. TCP, JNI, etc.)
direct function call interaction

47

connected through a TCP connection using own communication protocol, very similar

to the FUSE one.

7.1 FUSE Modifications

The FUSEbtcsp added support for 256bit inode ids in FUSE. This could also be done

in a different way, but to build-in the support was the most effective solution for the

BTCSP FS requirements. The modification involved changes in all objects storing

inode id, in function declarations having an inode id parameter and functions handling

with inode id. The list of all changes related to the 256bit support in FUSE shows a

table in appendix C.

The FUSEbtcsp includes also other adjustments. The JavaFS filesystem

implementation has its own directory in FUSE source, which induced subsequent

changes in configure and Makefile files. To support new options (i.e. port and ip

address) for JavaFS filesystem, some adjustments were made in the mount option

parsing process, see following table.

Line # Change description
Changes in file include/fuse_opt.h:

+ 9: #include <arpa/inet.h> Includes support for ip address

structure in_addr_t

+ 117: int port;

in_addr_t ipaddr;

int debug;

New option attributes added into

fuse_args structure. The fields

port and ipaddr store the JavaFS

server connection information and

debug is flag setting the C part of

JavaFS into debug mode.

± 125: Macro FUSE_ARG_INIT Needed small modification for the

support of new options.

± 184: Changes in the declaration of function that

parses options, fuse_opt_proc_t

A new parameter was added, passing

the context of the parse process in

object fuse_opt_context_t.

+ 188: Declaration of structure

fuse_opt_context moved from file

48

fuse_opt.c

In file include/fuse_opt.c:
- 16: Structure fuse_opt_context was

declared in fuse_opt.h.

± 129: The parse context parameter (ctx) passed

to the parse function.

± 318: Couple lines added to support skipping of

option arguments and adding them to the

argument list.

The context object was used to skip

option arguments to avoid handling

them as options.

In file lib/fuse_lowlevel.c:

+ 1184: KEY_DEBUG_JavaFS,… The three new mount options added.

+ 1202: FUSE_OPT_KEY("-a",

KEY_IPADDR),…

The three new mount options added

in the fuse_opt structure.

+ 1225: … fuse_ll_help_javafs(void)

{…}

New static function added for

printing out JavaFS mount options.

± 1235: … fuse_ll_opt_proc(…) {…} Function modified to support new

options.

Table 1: Changes made in option parsing part of FUSE implementation. See table 2
for explanation of the symbols used.

The new javafs directory in FUSE source contains the implementation of JavaFS. The

C implementation is in topmost files and Java implementation lies in the java

subdirectory.

The C implementation has two parts. One is the implementation of the FUSE interface

with FUSE deamon. It is situated in file javafs.c. The other part is the set of functions

used in communication with JavaFS Java server. They can be found in comm.h,

comm.c, conn_list.c and conn_list.h. How FUSE deamon and an implementation of

FUSE interface works has been examined in chapter FUSE, therefore we will go into

more detail only for the communication part of JavaFS.

7.2 JavaFS client implementation

The JavaFS C and Java parts work together in client-server architecture. The data

exchange is achieved over multiple TCP connections, although this data transmission

49

is not as straightforward as in the kernel-user-space data exchange. C has types that

are dependent on the underlying platform; Java and its types are on the other hand

platform independent. This demands standardization of some types on the C side. The

most involved C types are the numerical types and JavaFS uses only integers what

greatly facilitated the problem.

The solution is to translate all integers to network byte order. We chose network byte

order because Java types use it and C standard interface already provides the

conversion functions (i.e. htonl,ntohs,etc.). Any integer type exchanged over the

TCP connection must be therefore either translated to or from the network byte order;

depends on the direction the data is sent.

Another translation takes place in error codes. Naturally Java doesn’t know the C

error codes and they cannot be hard coded because they depend on the underlying

system. The error codes have to be translated in C code and that’s what the function
int convert_javafs_errno(int javafs_err)

is for (conn_list.c); converts for example the JavaFS_CODE_ENOSYS_ERR error code

into the system errno ENOSYS. The JavaFS_CODE_..._ERR error codes are then hard

coded on both sides of the connection (in MessageHeaderBuf.java and conn_list.h).

The reverse conversion is not necessary because error codes are sent only one way.

As mentioned earlier, multiple connections are used to send the requests. The ideal

number of connection is when it is same as the number of deamon threads. The

connections are managed as resources with exclusive access. The sequence diagram in

figure 11 shows, how a connection is allocated if all are currently in use.

Figure 12: Allocation of a connection if all are currently in use.

50

Problem illustrated in figure 11 occurs only if there are fewer connections established

than the number of running threads in deamon. Then another deamon must wait until

a connection is released. In our example the deamon thread 2 uses a connection and

deamon thread 1 called the list_getfreeconn function to get hold of a free

connection. The list_getfreeconn locks the list client_sem semaphore, which is

already locked, and blocks until the thread 2 invokes the list_freeconn method that

sets the processing bit (STATUS_PROCESSING_BIT) of its connection to 0 and unlocks

the list client_sem semaphore. In that moment thread 1 is woken up, and the

client_sem semaphore is decreased. It than locks the lists semaphore (list_sem) to

get exclusive access to the list, and searches the list with the test_and_set atomic

operation for an unused connection (with processing bit 0). When it finds such

connection it unlocks the list semaphore and returns the connection. The next

paragraph briefly explains how semaphores work therefore those who already know

the semaphores may want to skip it.

Semaphores are IPC instruments used to manage access to exclusive resources. A

semaphore contains an integer value that is changed with atomic operations. The basic

operations are the up and down. The up operation increments the semaphores value by

1 and down decrements it by 1. If the semaphore value is 0 and the down operation is

invoked, the operation blocks until the semaphores value is more than 0. For example

if we want to create a semaphore that will allow limited access to a resource, we may

initialize the semaphore to N, and call the down operation on each access. This would

allow no more than N instances to gain access to the resource.

Semaphores used in JavaFS are accessed with the locksem (down) and unlocksem

(up) method. The client_sem semaphore is stored in the list of connections.

client_sem is incremented when a new connection is added or when a process

releases a connection. It is decreased when process gets hold of a connection or when

a connection is removed from the list.

Besides client_sem a list of connection contains one more semaphore, list_sem.

This semaphore has never a value greater than 1 because it is used to gain exclusive

51

access to the list to prevent inconsistencies when a connection is either added or

removed. It is also used to prevent another process from removing or adding a

connection when the list is parsed.

7.3 Communication Protocol

The protocol used between JavaFS client and server is similar to the FUSE protocol
used between kernel-user-space, although it uses own header structures. The request
header is defined in file comm.h and illustrated on figure 12. Request answer uses the
same message header.

Figure 13: Request header of JavaFS communication protocol.

ino – same as in FUSE protocol, id of the involved inode

userdata – 32 bytes of additional inode information stored from userspace

command – equivalent to opcode field in FUSE

padding – 32bit padding

request id – unique request id, equivalent to unique field in FUSE

buffer size – number of bytes in buffer

return code – return code of command, 0 on success

After the request header comes typically the command header that is specific for each

command. The declarations of command headers are stated in file conn_list.h. For

each command header there is also a conversion function that shifts the integers into

network byte order as stated earlier.

0 32 64
ino (64bit)

userdata (32bytes)

...

command (32bit) padding (32bit)

request id (64bit)

buffer size (32bit) return code (32bit)

52

The headers are of course implemented in Java as well. Their implementation can be

found in package javafsapi.request.structs. In contrast to C, in Java are no

structures and pointers therefore the reading and writing is much more difficult. All of

them implement the abstract class javafsapi.request.IFSBuffer. The classes are

representations of header structures having same members. The members are set by

invoking the Read() method passing it the byte array of the buffer and the index

where the header starts. The Write() methods writes the object members into a buffer

using the same parameter types as in the read process. Each single member of the

header object is read and written using the static class javafsapi.utils.ConvertCTypes.

This class provides a list of functions for 16bit, 32bit and 64bit integers, each for

signed and unsigned. Java doesn’t however support unsigned integers, therefore an

unsigned 16bit integer is stored in int type (that has 32bit) and a 32bit is stored in

long type (64bit). An unsigned 64bit integer is also stored in long, but the sign bit is

chopped off. For example the read of a 16bit unsigned integer is done by the

following statement:
int u16 = getUnsigned16bitValueAt(index, buff);

where index is the starting position in byte array buff. If there is not enough space to

hold the 16bit value on the given position in the buffer, then -1 is returned.

To write the 16bit value back into some byte array buffer, the next statement is used:
setUnsigned16bitValueAt(u16, index2, buff2);

In case the 16bit value doesn’t fit into the buffer at the given position, nothing is done.

7.4 JavaFS server

This section covers the implementation of JavaFS server. It explains the handling of

requests and a description of the packages follows. Let’s start with an overview of,

what the JavaFS is and what it does, to get a good starting point.

The JavaFS sever is a Java application that handles requests from JavaFS client. Just

like a web server it has a specific port opened and listens for the incoming TCP

connections; therefore the JavaFS is not restricted to run on the same machine as the

JavaFS client. If the number of established connections isn’t greater than a given

value, the incoming connection is accepted and a new worker thread is started that

53

takes care of the requests that were received over this connection. The used

application protocol was already revealed in previous sections. The next figure

illustrates the route a request takes to be processed with establishing of the TCP

connection.

Figure 14: JavaFS server request processing

Requests are sent by JavaFS client and executed by JavaFS server. The

javafs.api.server.JavaFSServerApi class is just a listener class that waits for

connections. Every connection has an own worker object handling the incoming

messages - communicating over the connection. The worker class is implemented by

javafs.api.server.FSServerThread class, which extends the java.util.Thread

class to run in its own thread and contains the process loop (i.e. read, process and send

over and over again).

The read, process and send methods used on a request are included in the

javafs.request.FSRequest class. The read methods receives a message through a

specific TCP socket, fills its internal buffer and sets member values, then reads more

data from the socket if the request contains any buffer data. The request header fields

are stored in the member messHdrBuf (class MessageHeaderBuf). If the read function

successfully load the received request into the buffer, the worker threads calls the

process method in the FSRequest object.

54

At the beginning of the processing the received message is checked whether it

conforms the JavaFS protocol and a response object is initialized (initially it is set

with an error code). The body of the processing is implemented in a large switch

statement with the all possible command field as cases. It jumps to the case equal to the

command received in request header. Each case prepares the command objects, gets

the specific interface from the javafs.fs.FileSystem and invokes the command-

specific method from the interface. On success, at the end of the case, the response

header fields and its buffer are filled. The process function returns after the response

is sent.

7.5 JavaFS API

JavaFS is not a filesystem by its own. It just provides framework for a filesystem in

Java. The framework is supposed to be a transparent layer between the developed

Java filesystem and FUSEbtcsp. To create a filesystem using the JavaFS, the JavaFS

API must be implemented, which is pretty much the FUSE low-level interface

translated to Java. The JavaFS API is composed of 5 interfaces grouping the

filesystem operations by their scope. The corresponding interfaces are listed in

package javafsapi.interfaces. The function parameters have various types that

the JavaFS framework exports to be used as their C language equivalents. The

examples package contains a simple »Hello world« example that shows how the API

is used in practice. The description of the API interfaces can be found in the following

subsections.

Error handling is in all functions same. In case the filesystem wants to generate an

error, it should throw an FSErrorException exception that contains the

corresponding error code and message that will be printed in the console. Errors are

also produced outside of the filesystem methods, in case the returned object isn’t what

the JavaFS framework expected.

7.5.1 IFSAccessDir

As the name of the interface already shows, this interface exposes directory specific

functions. However the mkdir command is not present here, it is included in an

55

interface that contains file and directory operations because it is combined with the

create file command.

FSInodeObj findEntry(FSInodeObj p_inode, String dentry_name)

throws FSErrorException;

The findEntry method is used to look up an entry with the dentry_name in the

directory given by the p_inode argument. In case such entry was found, its inode is

returned. If the entry does not exist the method may either throw an exception with

error code ERR_FLAG_ENOENT_ERR or return null. This method corresponds to the

COMMAND_LOOKUP command and must be implemented in functioning filesystem.

int readDir(FSInodeObj inode, long pos, FSDirEntries dentries)

throws FSErrorException;

This method reads the entries from the directory specified in inode parameter. The

pos parameter gives the position of the entry in the directory where the read should

start. The passed FSDirEntries object is used to fill a buffer with the entries. It

provides the add method for this purpose. The add method returns 1 if the buffer is

full and the readDir function may quit, and 0 on success. The readDir return value

is used when the filesystem uses the JavaFS framework temporary (while the

filesystem is running) symbolic links. It specifies the positive difference between the

given position and the number of all entries in the directory (e.g. if pos is 4 and the

directory has 3 entries than the return value is 1). If the filesystem doesn’t want to use

the framework temporary links, it must always return 0. This method is invoked in the

COMMAND_READDIR command and should not be missing in a filesystem.

boolean openDir(FSInodeObj inode) throws FSErrorException;

boolean releaseDir(FSInodeObj inode) throws FSErrorException;

Before a directory is opened or closed these methods are called. The directory is

represented by the passed inode object and if there is problem, these methods should

return false (or throw an exception). If the filesystem does not want to implement

these operations, I suggest to coding it to always return true. Commands

COMMAND_OPENDIR and COMMAND_RELEASEDIR are responsible for invoking these

methods.

56

7.5.2 IFSFileAccess

This interface exports file-specific operations that are listed here.

int writeFile(FSInodeObj inode, long pos, long size, byte[] data,

int data_offset) throws FSErrorException;

Writing into file is done here the same way as in FUSE interface. The file is

represented by the given inode, writing position is passed in the pos argument, and

the count of bytes to write together with the buffer are sent in the next arguments.

This method includes one more parameter that indicates where in the buffer the data

starts. This has a simple reason, to avoid multiple copying from byte array to byte

array; therefore one byte array is used for sending and receiving data from the TCP

socket, and for processing in the filesystem operations. The drawback is that the

filesystem implementation may mess-up the response header by writing in the buffer

on wrong position. The writeFile method is coupled with the COMMAND_WRITE

command and does not have to be implemented (e.g. in read-only filesystem). In that

case it is necessary to have the function to throw the ERR_FLAG_ENOSYS_ERR or in a

read-only filesystem the ERR_FLAG_EROFS_ERR exception. On success the method

should return the number of bytes written. The next code snippet shows the read-only

implementation.
public int writeFile(FSInodeObj inode, long pos, long size,

byte[] data, int data_offset) throws FSErrorException

{

throw new FSErrorException("read-only filesystem",

MessageHeaderBuf.ERR_FLAG_EROFS_ERR);

}

int readFile(FSInodeObj inode, long pos, long size, byte[] data,

int data_offset) throws FSErrorException;

The readFile method does the opposite of the write operation described above. It

has the same parameters, whereby the pos parameter specifies the position in the files

where the read operation should start and data is the buffer where the file data

should be written. This function must always read the number of bytes denoted by

size, the exception is only end of file or an error. The number of read bytes is

returned.

57

boolean flushFile(FSInodeObj inode) throws FSErrorException;

This method is called on each close of an open file (even if it is opened with a read-

only flag); however there may be more close calls than there are open calls. This

happens when a file descriptor is copied with dup() or some other system call. The

COMMAND_FLUSH command leads to this method.

boolean openFile(FSInodeObj inode) throws FSErrorException;

boolean releaseFile(FSInodeObj inode) throws FSErrorException;

These are same case as the openDir/releaseDir operations for directories. Open is

called when a file is opened, and release is invoked when the last close is called on

the opened file. The file is identified by the inode argument. COMMAND_OPEN is

associated with the openFile and COMMAND_RELEASE with the releasFile method.

7.5.3 IFSAccessFileDir

Some filesystem operations are shared by files and directories and they are grouped in

this interface. The method descriptions follow.

FSInodeObj Symlink(FSInodeObj parent_inode, String name, String Path)

throws FSErrorException;

This method supports the symbolic link in a filesystem. It used to create a symbolic

link inode that will store the path to the linked inode. It receives the directory inode

where the new link will be placed in the parent_directory argument. The name of

the link entry is given by the name parameter. On success the created symbolic link

inode is returned. This method is connected to the COMMAND_SYMLINK command.

FSInodeObj Create(FSInodeObj parent_inode, String name, int type,

long mode) throws FSErrorException;

The Create operation is shared by the commands COMMAND_MKDIR and

COMMAND_MKNOD. It is used to create new file and directory in the directory given by

parent_inode. The type argument says which inode should be created (e.g.

EntryVarBuf.TYPE_DIR) and mode specifies the initial permissions using the Linux

standard (e.g. 0744). On success the newly created inode is returned.

58

boolean Link(FSInodeObj parent_inode, FSInodeObj inode, String name,

long mode) throws FSErrorException;

This method creates a hard link with the given name to the inode in the directory

denoted by parent_directory argument. The mode parameter specifies the

permissions of the link. It does not create a new inode though it increases the link

count of the given inode in the inode attributes object (FSInodeAttr). Inode should

not be deleted while the link count is greater than zero (see description of the link

filesystem operation). It returns true on success. The command of this operation is

denoted COMMAND_LINK.

String readLink(FSInodeObj inode) throws FSErrorException;

This method is called on a symbolic link inode to retrieve the path stored in it. It is

interpreted from the COMMAND_READLINK command.

boolean Rename(FSInodeObj parent_inode, String name,

FSInodeObj new_parent_inode, String new_name)

throws FSErrorException;

This operation moves a file or directory with given name in the directory

parent_inode to new_name in the directory new_parent_inode. This function does

not have to be implemented, however the generic rename function used is very

inefficient therefore it is recommended to include it in the filesystem. It returns true

on success. Used by the COMMAND_RENAME command.

boolean Remove(FSInodeObj parent_inode, String name, int type)

throws FSErrorException;

This method bonds the COMMAND_UNLINK and COMMAND_RMDIR commands together. It

removes a file or directory with given name from the parent_inode directory. The

argument type specifies the inode type. In case the filesystem supports hard-links, the

number of links of the associated inode should be decreased. The inode should be

than removed only if the link count hit 0. Return true on success.

7.5.4 IFSAccessInode

This interface implements inode specific operations; for reading and altering of inode

attributes.

59

FSInodeAttr GetAttr(FSInodeObj inode) throws FSErrorException;

This method implements one of the most important task of a functioning filesystem;

in this interface it is the only method that must be implemented. It gets the attributes

of an inode in an FSInodeAttr object that holds the information about the inode size,

creation time, type, number of hard-links, etc. This function is called for each inode

that the filesystem is going to work with; it may be sometimes even called a couple of

times, if the inode attributes expire. The command COMMAND_GETATTR is in charge of

this method.

FSInodeAttr SetAttr(FSInodeObj inode, FSInodeAttr attr)

throws FSErrorException;

To save modified inode attributes virtual filesystem calls the SetAttr method. After

the change is applied the new inode attributes are returned. The handler command is

COMMAND_SETATTR.

byte[] GetXattr(FSInodeObj inode, String name)

throws FSErrorException;

This method retrieves the given inode extended attribute for the specified inode. The

value of the extended attribute is returned as a byte array. This method is typically

called twice. First it finds out the size of the extended attribute value and than it gets

the value. The command COMMAND_GETXATTR is interpreted as this operation.

boolean SetXAttr(FSInodeObj inode, String name, byte buffer[],

int index, int size) throws FSErrorException;

The SetXAttr method is used to set the value of the given extended attribute for an

inode. The new value is stored in the provided buffer starting at the given offset. The

parameter size holds the number of bytes that the value is composed of. On success

this method returns true. This method is invoked when the COMMAND_GETXATTR

command is received.

String[] ListXattrs(FSInodeObj inode) throws FSErrorException;

Extended attributes are user customized properties of the inode therefore the virtual

filesystem doesn’t know which extended attributes the inode supports. To get a list of

all attributes for a given inode it calls this method that returns the list of extended

60

attribute names. If there are no extended attributes for the given inode, it should

simply return null or an empty string array. The appropriate command is

COMMAND_LISTXATTR.

StatfsBuf GetStatfs(FSInodeObj inode) throws FSErrorException;

This operation is used to get inode statistics. The inode statistics are stored in the

StatfsBuf class which is on success returned. The underlying command is

COMMAND_STATFS.

7.5.5 IFSAccessFS

The last interface that a filesystem may implement is IFSAccessFS. It doesn’t include
any essential filesystem operations. The three operations are as follows.

StatfsBuf GetStatfs() throws FSErrorException;

Just like the inode GetStatfs this method returns the statistics object and is also

invoked from the COMMAND_STATFS command. But the returned StatfsBuf object

contains here the filesystem statistics (i.e. number of blocks used, free and all).

void Init() throws FSErrorException;

void Destroy() throws FSErrorException;

These methods are called at the beginning (Init) and at the end (Destroy) of the

filesystem usage. Neither of them returns a value. The used commands are

COMMAND_INIT and COMMAND_DESTROY.

7.6 Using JavaFS Framework

JavaFS framework is compiled in a jar file - JavaFSApi.jar. Using it is therefore a

simple matter; just include the jar file in the classpath. JavaFS framework also allows

some configurations, which specify some behavior of the JavaFS framework. The

configurations are read from a file named JavaFSAPI.conf, which should be in the

same directory as the jar file. If the file is missing, JavaFS API will run with default

settings. The configuration file has the following syntax:
property = value # comment

61

The next table shows all properties with their default values, which can be set in the

configuration file.

Name default description
JavaFS_SERVER_PORT 4567 TCP port number which will be used by

JavaFS server.
JavaFS_SERVER_MAX_CLIENTS 100 Maximum number of clients that can be

simultaneously connected to the JavaFS
server.

JavaFS_FILESYSTEM_READONLY NO Specifies whether the filesystem should be
handled as read-only – all writable
operations are ignored.

JavaFS_MAX_NAME_LENGTH 252 The maximum length of entry name.
JavaFS_BLOCK_SIZE 2048 Files block size. Used in read/write

operations.
JavaFS_ROOT_INODE 2 Inode id of the root inode (better left

unchanged).
JavaFS_DEBUG NO Run in verbose mode (show debug info).
JavaFS_SHOW_TIMING DEBUG

option
Show timing information about execution of
commands.

Table 2: JavaFS API configurations. The JavaFS_DEBUG and JavaFS_SHOW_TIMING are
static options of the Configuration class.

62

8. BTCSP Internals

As depicted in chapter 6 the BTCSP is a commercial document management system

developed by Braintribe for archiving and document management with support for

versioning. It has a server and a client component. The BTCSP client provides a user-

interface into the database management system. It allows the user to search in the

archive database and create, remove and alter the documents and their attributes.

Server runs in background and may serve multiple clients. Its data presentation may

be divided into two parts. The variable part is composed of the document data that the

user may alter in run-time. This is stored in the underlying database, although the

archived files are stored directly on the systems filesystem. The other part is fixed, but

may be configured before its first time use. The server configuration is stored in the

directory \i2z\server\cfg (in the server application directory). For us are only the

content configurations important.

By content is to understand a cabinet like structure that may hold multiple documents

that share some basic properties. For example a company using BTCSP to manage

their documents may want to assign each customer a content that would hold all the

documents regarding this customer (e.g. contract, scanned mail received, emails, etc.).

Besides the stored documents, each content may hold multiple sets of properties

which may be later also used in searching. The collection of properties is called

content definition and a single property is referred to as index. Our example could

have two content definitions:

1. personal_data – containing indexes: title, name, surname, customer id, date of

creation, etc.,

2. location_info – would contain: address, city, country, building type, etc...

The basic structure (composed of nodes) that groups the contents together and the

content definitions with the user customized indexes are configured in two xml files:

content_definition.xml and content_hierarchy.xml. Their names already indicate

63

where the hierarchy is and where the content definitions are stored. Figure 14 shows

the overall hierarchy of the BTCSP system.

Figure 15: BTCSP data hierarchy.

The figure shows filesystem-like hierarchy. The red part is preconfigured and can’t be

changed at run-time, black are stored in the database and blue part is accessed on the

system filesystem. The four types of components are clearly visible each being

denoted by a special symbol. The types are listed here:

Node – represented by a small circle is part of the preconfigured hierarchy. It

defines the content definitions that will be used with the direct content

children. It may have sub-nodes which define new content definitions. Each

node is identified by a positive integer; the root node having typically id 0.

Content – is a virtual directory in the figure symbolized with a diamond. It

must always have a node as a parent that defines the content definitions bound

to this content (and all content siblings). Content then declares the values for

the indexes in those content definitions. Content may be added or removed and

have its indexes modified at run-time, and each content is identified by its

GUID.

Content object (or object) – having in figure the triangle symbol, is the

database system representation of the archived document. It is always a child

of a content identified by an object id, which is unique only in the scope of the

64

content. It is partially stored in the database and partially on the system

filesystem. The database holds the path to the file and the values of some basic

attributes that may be supplemented with additional information as defined by

its grandparent node.

Index – is symbolized by a small square. Each index expresses a single

attribute for either a content or an object. It defines the name and the type of

an attribute value (i.e. String, Date, etc.). The possible indexes of contents and

objects are defined in nodes (in preconfigured part), but the values are stored

in database with the specific content or object. Indexes are identified and

accessed by unsigned integers. They are grouped in content definitions.

BTCSP server supports multiple databases and operating systems therefore it provides

an API to access the data. The client API is implemented in Java (like the server) and

some essential parts are addressed in the following subchapter.

8.1 API

The BTCSP client API is very useful in that it allows programmable access to the

data. Instead of accessing the database and the documents on the filesystem directly,

this API allows to use the BTCSP server functionality. The Java API has two

abstraction levels, but we will cover here only the low-level API, which we used in

the BTCSP filesystem implementation. However both levels initialize the session in

same way:
 theFactory = I2zFactory.getI2zFactory(clientCommFile, Log4jFile);
 i2zSession = theFactory.getSession(serverName,userName,password);

where clientCommFile indicates the path to the file that configures the

communication with the BTCSP server. The Log4jFile parameter holds the path to the

logging configuration file. When the session is created, the user may choose the

preferred API level.

The basic low-level API class used to communicate with BTCSP server is

COMM_Module in package biz.i2z.comm. This class manages the communication

channel between the client and BTCSP server. In order to run procedures on the

65

server the COMM_CallInterface class is used. To get a reference to this class the

get_COMM_Call() method of the communication module must be invoked.

The call interface class allows calling procedures remotely on the server. The

authentication of the client using the low-level API would then look like this:
COMM_Parameter[] authParms = new COMM_Parameter[2];

 authParms[0] = new COMM_Parameter(COMM_Protocol.STRING, "i2z");

 authParms[1] =

 new COMM_Parameter(COMM_Protocol.STRING, "operating");

 COMM_Parameter retSec = call.callMethod("authenticateUser",

 authParms, null, "SECURITY");

A remote call is made using the callMethod() method, but before the call the

procedure parameters must be prepared. The COMM_Parameter class is a variant type

(something like the Variant type in Visual Basic or VARIANT in C++). It stores the

type (i.e. String, integer, etc.) and the specific value; only simple types are supported.

To pass the arguments to the method an array of parameter classes is made and the

reference is passed to the callMethod method, which first argument is the name of

the procedure that should be invoked. The last argument specifies the module that the

client wishes to access. In our example it is the SECURITY module, though the

RETRIEVAL module is also very common.

A parameter class is also returned, typically having a string type. The communication

exchange is based on XML therefore most of the string values, especially retrieval

results, have an XML form which depends on the procedure invoked. Here is a list of

the most common procedures:

getContentHierarchy, getContentDefinitions – these procedures are used to

get the data structure configuration. Basically they return the contents of the

content definition and content hierarchy files, but with a slightly different

syntax. The result of these procedures is always static (does not change in run-

time) therefore it is useful to save it in a cache. These procedures don’t have

any parameters – the parameter array is null. Part of RETRIEVAL module.

authenticateUser – This procedure was already shown in the previous

example. It authenticates a user for this session and must be therefore invoked

66

before any other remote call. It takes two string parameters: user name and

password. To access this procedure one must use the SECURITY module.

fastSearchISAndGetResults – Looks up contents with specified attributes

and returns the list in an XML string. Accessed through RETRIEVAL module

taking 6 parameters:

1. Boolean saying whether this search should include subnodes.

2. int[] an array of integers specifying the nodes that will be searched.

3. String defining the search attributes. Has the following XML form:

"<i2z><Index id=\"4001\" op=\"=\" expr=\"*\"/>…</i2z>"

where the various attributes may be grouped with <and> or <or>

tags.

4. int[] integer array holding the index ids whose values will be

included in the result.

5. Integer constraining the results to maximum count of contents.

6. Integer specifying sts.

getSearchId, openISSearch, isSearchResultsAvailable, getResults,

closeSearch – does all together the same as the procedure above, however

allowing to split the results in chunks when the result string includes too many

contents that would exceed the maximum size. The getSearchId procedure

doesn’t have any parameters and returns the search id as string used in the

other four search procedures; it opens a kind of search session. Actual search

constrains are specified calling the openISSearch procedure. It takes four

arguments, the search id as first argument, and the second, third and fourth

parameters are the same as in fastSearchISAndGetResults method. The

isSearchResultsAvailable function may be then invoked, with the search

id as the single argument, to check the status of the search, to see whether

there are any results available. getResults is then used to get the results of

the given search. The number of contents to get in the result string is defined

by the second parameter. This call may be called several times, returning

always results that haven’t yet been returned. The final closeSearch call

closes the search session. These procedures are invoked in the RETRIEVAL

module.

67

getContentObjectsProperties – Retrieves the objects of a given content.

Here is the declaration of this function in pseudo code:
string getContentObjectsProperties(string content_definition,

string content_GUID, int version);

First parameter specifies the content definition id of the content given by

content_GUID. The version argument doesn’t have to be used. It constrains

the results only to the given object versions (use -1 to get all versions).

getContentData – Obtains index values for a given content.

We didn’t show yet how a result XML looks like. Here is a list of typical XML

formatted results that are returned by BTCSP server. The XML results depicted in this

table are only simple examples highlighting the essentials of the syntax.

Retrieved content
definition

<?xml version="1.0" encoding="UTF-8"?>
<i2z>
 <ContentDefinitions>
 <ContentDefinition id="CD3" name="Exekutionen" description="">
 <IndexStore store="IND_STORE">
 <Index id="3">
 <Parameters>
 <Parameter name="length" value="100" />
 <Parameter name="dbLength" value="100" />

</Parameters>
</Index>

 <Index id="11" />
 <Index id="12" />

</Index>
</IndexStore>

 <ObjectStore name="OBJ_STORE">
 <ContentObjectsPropertyDefinition name="COP">
 <ContentObjects>
 <IndexDefinition />

</ContentObjects>
 <ContentObject>
 <IndexDefinition>
 <Index id="2002" name="originalFileExtension" type="string">
 <Parameters>
 <Parameter name="length" value="50" />
 <Parameter name="dbLength" value="50" />

</Parameters>
 <TypeInfo>
 <Length from="0" to="2147483647" />

</TypeInfo>
</Index>

 <Index id="2001" name="originalFileName" type="string">
 <Parameters>
 <Parameter name="length" value="255" />
 <Parameter name="dbLength" value="255" />

</Parameters>
 <TypeInfo>

68

 <Length from="0" to="2147483647" />
</TypeInfo>

</Index>
</IndexDefinition

</ContentObject>
 <ObjectPart>
 <IndexDefinition />

</ObjectPart>
</ContentObjectsPropertyDefinition>

</ObjectStore>
</ContentDefinition>

 <ContentDefinition id="CD2" name="Pensionsakt" description="">
…

</ContentDefinition>
</ContentDefinitions>

 <IndexDefinition>
 <Index id="12" name="SAP-Schluessel" type="integer">
 <TypeInfo>
 <Length from="0" to="2147483647" />

</TypeInfo>
</Index>

 <Index id="11" name="Fallnummer" type="integer">
 <TypeInfo>
 <Length from="0" to="2147483647" />

</TypeInfo>
</Index>

 …
</IndexDefinition>

</i2z>
Retrieved content
hierarchy

<?xml version="1.0" encoding="UTF-8"?>
<ContentHierarchy>
 <node id="0" name="DMS" access="AddTextComments, AddTwain,
DeactivateContent, EditAnnotation, … " description="Knoten Beschreibung"
guiVisible="Yes">
 <node id="1" name="Personendaten" access="AddTextComments,
AddTwain, DeactivateContent, EditAnnotation, …" description=""
guiVisible="Yes">
 <ContentDefinitions>
 <ContentDefinition name="CD1" />
 </ContentDefinitions>
 </node>
 <node id="2" name="Pensionsakt" access="AddTextComments,
AddTwain, DeactivateContent, EditAnnotation, …" description=""
guiVisible="Yes">
 <ContentDefinitions>
 <ContentDefinition name="CD2" />
 </ContentDefinitions>
 </node>
 <node id="3" name="Exekutionen" access="AddTextComments,
AddTwain, DeactivateContent, …" description="" guiVisible="Yes">
 <ContentDefinitions>
 <ContentDefinition name="CD3" />
 </ContentDefinitions>
 </node>
 </node>
</ContentHierarchy>

Search results <?xml version="1.0" encoding="UTF-8"?>
<i2z searchId="070623151032019e6a6c314e333d1545"
displayName="BEDNR = *">
 <HitList objectstore="OBJ_STORE" indexstore="IND_STORE"

69

contentdefinition="CD2">
 <Nodes>
 <Node id="2" />
 </Nodes>
 <Entry contentId="070623135505831a1a618e7bd054c6aa" status="0"
score="1" dts="23.06.2007 13:55:38" objectstore="OBJ_STORE" miid="0">
 <Value id="1" value="" />
 <Value id="2" value="test content 2" />
 <Value id="3" value="" />
 </Entry>
 </HitList>
 <HitList objectstore="OBJ_STORE" indexstore="IND_STORE"
contentdefinition="CD2">
 <Nodes>
 <Node id="2" />
 </Nodes>
 <Entry contentId="070619114224327aa39c61701fd42c98" status="0"
score="1" dts="19.06.2007 11:42:55" objectstore="OBJ_STORE" miid="0">
 <Value id="1" value="" />
 <Value id="2" value="test_nofile" />
 <Value id="3" value="" />
 </Entry>
 </HitList>
…
</i2z>

Content object
list

<?xml version="1.0" encoding="UTF-8"?>
<ContentProperties>
 <Parameters>
 <Parameter name="contentPath" value="0706/2313/51/" />
 <Parameter name="filename"
value="070623135158552b00c86d6fd8d4420a.1" />
 <Parameter name="port" value="9011" />
 <Parameter name="host" value="192.168.190.1" />
 <Parameter name="prefix"
value="smi://i2z_master//C//braintribe/Server-1.2.15/i2z/server/JBX/" />
 <Parameter name="path" value="0706/2313/51/" />
 <Parameter name="server" value="i2z_master" />
 <Parameter name="contentId"
value="070623135158552b00c86d6fd8d4420a" />
 </Parameters>
 <ContentObjects>
 <ContentObject id="1">
 <Parameters>
 <Parameter name="filename"
value="070623135158552b00c86d6fd8d4420a.1.1" />
 <Parameter name="objectPath" value="0706/2313/51//" />
 <Parameter name="originalFileName" value="desktop.ini" />
 <Parameter name="prefix"
value="smi://i2z_master//C//braintribe/Server-1.2.15/i2z/server/JBX/" />
 <Parameter name="sts" value="0" />
 <Parameter name="path" value="0706/2313/51//" />
 <Parameter name="originalFileExtension" value=".ini" />

</Parameters>
</ContentObject>

…
</ContentObjects>

</ContentProperties>
Content data <?xml version="1.0" encoding="UTF-8"?>

<IndexValues contentDefinitionName="CD2"
indexStoreName="IND_STORE" dts="19.06.2007 11:42:55" version="1"

70

miid="0">
 <Index id="1">
 <Values nodeId="2" />
 </Index>
 <Index id="2">
 <Values nodeId="2">
 <Value val="test_nofile" />
 </Values>
 </Index>
 <Index id="3">
 <Values nodeId="2">
 <Value val="" />
 </Values>
 </Index>
…
</IndexValues>

Table 3: Result examples of five most common operations.

Archived document data are accessed differently. Instead of using a call interface the

class FileAccess in package biz.i2z.system.utils is used. The file is then

accessed as it would be a local file using I/O streams. A code snippet is showed here:
fa = new FileAccess(filepath);

 InputStream in = fa.getFileInput();
in.read(buf, off, len);
fa.close();

Of course the BTCSP client API supports dozen other procedures and modules. This

subchapter handled only a fraction of the available methods. To get a bigger picture

see the client API introduction [capii].

8.2 BTCSP FS

BTCSP filesystem (BTCSP FS) provides another way to access BTCSP archived

documents. It binds the FUSEbtcsp and BTCSP API together. The figure 15 illustrates

how the different APIs are connected.

71

Figure 16: Integration of the BTCSP filesystem (in red).

Commands originate on the Linux machine in user-mode. System calls interact with

the virtual filesystem that delegates the commands to the FUSEbtcsp filesystem

implementation. FUSEbtcsp translates the commands to requests and tunnels them

back to user-mode JavaFS implementation. The requests are transcribed into JavaFS

protocol that sends them over TCP to the Java implementation of JavaFS server. Here

joins BTCSP FS the command stack by implementing the JavaFS API. It interprets

the commands and makes necessary remote calls over the BTCSP client API. The

result traverses then again back to the command origin through all the API layers.

Although some commands may reach only some of the layers if an error interrupts the

command flow.

The BTCSP FS has a relatively straightforward implementation (most of the work is

done by the under- and above-lying frameworks) therefore we will describe only the

functionality – how the filesystem is generated from the BTCSP data. The basic

hierarchy is already defined (as illustrated in figure 14), but the naming of the files

and a deeper structure are still open; besides, inode identification can’t be directly

carried over (i.e. content GUID).

72

The naming is not simple if the BTCSP server is not configured for this use (i.e. no

unique names for filesystem use defined). Names of all item types of the BTCSP

structure are identified by integers or GUID not by a string therefore it is overall

possible to use same names (name attribute) for multiple entries with same parent (i.e.

siblings having same name), although this would be rather accidental than intentional

from the user. We solved this by allowing different possible naming conventions (e.g.

use name and id, only name, or use chosen attributes).

The tree structure of the BTCSP FS isn’t also restricted to be used in the filesystem.

The BTCSP FS may organize the data into any hierarchical structure, although it

should have some system to keep track of the entries. To help keep track and organize

the data the FUSEbtcsp stores 32 bytes user-data with each inode. The BTCSP FS

uses this buffer as illustrated in next figure.

Figure 17: BTCSP filesystem 32 byte user-data usage.

content GUID – identifies the parent content in the BTCSP hierarchy. If the

inode is a node, this is filled with zeros. (This doesn’t hold the string

representation of GUID! – this would be a waste of space – instead it is the

128bit representation of a GUID)

flags – some flags that may be stored with an inode (this is the only field that

is excluded from hash generation, later in this section)

type – another 16bit used to store some info about the inode. It differs from

the flags field in that this field is used in the hash algorithm.

node id – Id of the parent (sub)node in the BTCSP hierarchy. Should never

have the value 0. It doesn’t need more than 24 bit because as we already

mentioned the node structure is preconfigured in a file and contains rarely

more than hundred nodes.

0 8 16 24 32 40 48 56 64
content GUID (first 8 bytes)
content GUID (second 8 bytes)

flags type node id (24bit) obj-

-ect id vesion # (24bit) index id (24bit)

73

object id – id of the object in a content. With the content GUID this makes a

unique identification of each object (in case versioning is turned off). One

content doesn’t typically hold many objects.

version number – holds the version number of the object.

index id – identifies attribute in a content or object to support file

representation of attributes.

As described above, this 32 byte user-data is more than enough to identify all BTCSP

items; besides identification it holds also the BTCSP hierarchical structure of each

inode. But as you might already suggest, an inode in a filesystem is identified by a

64bit integer and we have here 256bit. The easiest way would be to assign each inode

an id in order they have been accessed and hold this in an array until the inode is

removed from the virtual filesystem inode cache. The inode cache would then hold

several thousand inodes. The inode user-data mapping would then be used to translate

all inodes in a readdir or lookup operation to the inode id - integer value. This would

have a negative affect on the lookup and readdir performance, but every inode would

have definitely a unique integer id, although FUSEbtcsp and JavaFS would then need

to include another command (PUT_INODE) into their protocol to capture the event

when an inode is removed from the VFS inode cache. This would also cause problems

when restarting server while a filesystem is in use. The server side would loose the

inode cache what could create inconsistencies when new inode id would be assigned.

To avoid the countless lookups in the association array and to avoid the modification

of the protocol another possibility was examined and implemented. Instead of

assigning each inode a unique integer on access the inode ids are generated from the

user-data. The process of generating inode ids from user-data must:

assign each inode a unique id,

an inode should always have the same integer assigned.

The second premise doesn’t imply any problems, but the first premise constraint is

impossible to hold (i.e. mapping all 256bit integers to unique 64bit integers). But we

don’t need all the inodes to have unique id, it suffices an inode has a pseudo unique

id; by pseudo unique is meant that the id is unique in a group of ids. The VFS works

74

always only with a dozen inodes and its inode cache holds only a small group of all

inodes in the filesystem. The mapping algorithm should therefore assign each inode in

this group a unique id.

The best solution is to randomly spread the 64bit unique ids in the 256bit space. Then

we will get a probability Pc that in a group of C elements at least two will have same

id.

 c-1

 i=0
(263 - i)

Pc = (263)c

That is, if a group (cache) has C = 1.000.000 inodes, then probability Pc 7,14 x 10-8;

this is less than being struck by a lightning or being involved in an airplane accident.

If two inodes have same id it is still possible to find out that they have different user-

data and this rare occasion can be handled.

The BTCSP filesystem uses message digest (MD5) to hash the inode user-data; except

the flags field. The hashing is implemented in BTCSP inode implementation and is

called only when necessary, i.e. when the inode id is requested, to spare CPU time.

How is the BTCSP filesystem overall performance is described in chapter 10.

8.2.1 Usage

Just like JavaFS API, BTCSP filesystem is compiled into a jar file - BTCSP_FS.jar,

however BTCSP filesystem has additional external dependencies related to the

BTCSP client API. These dependencies are not included in the BTCSP_FS package;

therefore these need to be added into the class path ass well. This involves the:

clientApi.jar, jdom.jar, log4j-1.2.8.jar and xalan.jar packages.

BTCSP filesystem implements JavaFS API interfaces and is responsible for

implementing the main class. The main class is implemented in the

BTCSP.BTCSP_Main.class. The resulting BTCSP_FS.jar file may be then executed in

75

a simple java -jar command, although it needs all the necessary packages to be in the

.\lib directory (relative to the BTCSP_FS.jar file). This isn’t very reasonable, but there

is no other way to do it (besides including all dependencies in the BTCSP_FS jar

file).16 The source of the manifest file is in the META-INF directory.

The main class doesn’t take any parameters. Similar to JavaFS API, all configurations

are read from a configuration file; from the BTCSP_FSS.conf. If the file is not found,

the application takes hard-coded default values implemented in the class

BTCSP.config.BTCSP_Configuration. The syntax of the BTCSP filesystem

configuration file is the same as before. The following table shows the possible

parameters with their default values and description.

Name default description
BTCSP_ClientCommPath client_comm.xml

in local directory
Path to the BTCSP client comm
xml file.

BTCSP_Log4jPath log4j.xml in local
directory

Path to the BTCSP log4 xml
file.

BTCSP_USE_INDEX_NAME_IN_CONTENT_NAMELIST NO Specifies whether the name
indices are defined using index
names. (e.g. if set to “YES”,
instead writing CD1 = 2, one
would write CD1 = Name)

BTCSP_CONTENT_NAMES Null Content definitions, for which
one wants to define naming
indexes. (e.g. … = CD1, CD2)

BTCSP_USE_INDEX_NAME_IN_CONTENT_AUTO NO Specifies whether the name
indices should be generated
automatically – from all
obligatory indices of a content
definition.

BTCSP_NAME_CONTENT_SHOW_ID NO Show content GUID in the
name of a content directory.

BTCSP_NAME_NODE_SHOW_ID NO Show node id in the name of a
node directory.

BTCSP_NAME_OBJECT_SHOW_ID NO Show object id in the name of
an object file.

BTCSP_NAME_OBJECT_HIDE_VERSION NO Hide version in the name of
object file.

BTCSP_NAME_INDEX_SHOW_ID NO Show index id in the name of
an index file.

BTCSP_DEFAULT_NAME_INDEX_CONTENT 2 Index to use for generating a
content directory name in case
not defined and auto naming is

16 When running jar files, the classpath option is ignored. Instead the Class-path parameter is taken
from the jar file. Therefore all external dependencies have to be in set in the manifest file of the jar file.
See [runjar].

76

disabled.
BTCSP_CONTENT_SHOW_INDEXFILE NO Show file with values of all

content indices in the content
directory. Also called index-
file.

BTCSP_CONTENT_INDEXFILE_NAME index Name of the indexfile.
BTCSP_CONTENT_MODIFICATION_ENABLE
BTCSP_CONTENT_DELETE_ENABLE
BTCSP_CONTENT_CREATE_ENABLE

YES Permissions for content
changing (index values),
deleting and creating.

BTCSP_OBJECT_WRITE_ENABLE
BTCSP_OBJECT_DELETE_ENABLE
BTCSP_OBJECT_CREATE_ENABLE

YES Permissions for object writing,
deleting and creating.

Table 4: BTCSP filesystem configuration parameters.

Before closing this section it would be handy to explain the naming of the files and

directories in the BTCSP filesystem. Naming of objects (files) and nodes (directories)

wasn’t as much effort. Objects have their original filename that is used to generate

their names. Depending on the configurations object name may also contain object id

or version number. Nodes have a name property that is used in their naming. If

necessary, node naming may be configured to include node id in their names.

The content naming wasn’t that straight forward. Contents don’t have to have any

name property. The content properties depend on the parent node content definition.

For this reason it was practical to give the user options how to generate the content

names. One option is, as in object and node naming, to include content id (GUID) in

names, which would certainly generate unique names, but would not be very user-

friendly. To include some useful information about the content in the content name

without user guidance, an option enables automatically generated names. These

names are generated from the most important indices in the content definitions, which

are typically the ones that have to be set in the content creation process – the

obligatory indices. This generates user-friendly names, which however might become

unnecessarily long. Another configuration gives therefore the user the freedom to

select the indices he or she values the most.

Besides generating content names is the naming configuration also used in

initialization of content index values when a content directory is created (using the

mkdir command). The user enters a dot separated content name that is parsed

according to the name indices to set the content index values. In case an index value

77

should include a dot, this should be preceded by the ‘%’ escape character. Ids (version

number) should not be included in the creation commands, because at this time they

are typically unknown. The entry is internally renamed to include the ids (version

number) if configured to show the ids or other automatic numbers.

The next pictures show how BTCSP filesystem is used in an explorer and terminal.

Figure 18: Screenshots from the BTCSP client application (top right), and from the Linux
Konqueror (down left) and terminal (down right) using the mounted BTCSP filesystem
(mount point is /mnt/test directory). The BTCSP application shows the same contents as the
Linux applications. The red ellipses highlight the contents.

78

9. Related Work

As already mentioned, there are lots of user-space filesystems. Many of them running

on FUSE but also many developed from scratch. Some of the FUSE based filesystem

are listed here:

SSHFS – a filesystem that provides access to files over an SSH connection.

EncFS – an encrypted filesystem

RelFS – filesystem storing files and directories in a relational database

The list goes on as FUSE is an open-source application under GNU General Public

License (GPL) license – allowing the use of the code for free (with some conditions

stated in GNU GPL). Of course not all the user-space filesystems are based on FUSE.

For example:

V9FS – a user-space filesystem implementation of the 9P distributed file

protocol (also called styx) [plan9]

DAVFS2 – user-space filesystem providing access to WebDAV server. It is

based on Coda [coda], a networked filesystem, and neon, a WebDAV

interface.

These are also GPL filesystems. Examples of commercial (non GPL) filesystems are

harder to find because it is harder to judge if a commercial filesystem is user-space or

not, but an example would be the Callback File System™ [cfm] for Microsoft

Windows. It is also a user-space framework like FUSE, but for Microsoft Windows

OS.

As in our case, many times filesystems are not only implemented in user-space but

also in a different programming language. Therefore there are some open-source

projects based on FUSE allowing implementation in various languages. Some of the

language bindings for FUSE:

C – this is the native FUSE API

C++ - FUSECPP

Java – FUSE-j

Haskell – hfuse. Haskell is a purely functional programming language

79

Python, Perl, C# - some other languages17

For us is FUSE-j of relevance [fusej]. It is a Java API that uses JNI bindings to FUSE

library. The last version released was in 6/2007 for the FUSE 2.4 version, what was

also one of the reasons to make JavaFS API. There is also a project called

FuseWrapper [fw] that allows Java and other high-level languages for FUSE. It is a

SWIG18 based wrapper that binds the FUSE low-level library with Java. This would

not work with FUSEbtcsp because of the modified low-level API.

17 The whole list can be found on website:
http://fuse.sourceforge.net/wiki/index.php/LanguageBindings
18 Simplified Wrapper and Interface Generator (SWIG) is an open-source tool used to bind C/C++
program libraries with other script or high-level languages [swig].

http://fuse.sourceforge.net/wiki/index.php/LanguageBindings

80

10. Evaluation and Further Work

At the end of the work some test were run to show some missing issues and hidden

problems. The obvious and important problems were improved in the test process. All

outstanding problems and issues are described in the two following sections.

10.1 Evaluation

The operational test of the BTCSP filesystem didn’t show any functional problems.

The next table shows the average times in milliseconds a JavaFSApi command is

executed in the Java environment. JavaFSApi commands that are not listed have

negligible times or are called only relatively few times to be of any importance.

Command time (ms) command time (ms) command time (ms)
LOOKUP 37 READDIR 46 READ 1,48
GETATTR 18 WRITE 0,16 GETXATTR 12

Table 5: Average times a JavaFS command needs to execute.

The writing and reading of a file doesn’t make many overhead operations, therefore

the cp command shows a good estimate of the framework speed (including network

transmission time). In test we used the cp command to write from and into the

filesystem. In this I/O test one large file (~10Mb) was copied into the BTCSP

filesystem and then copied from the BTCSP filesystem to the local disk. The resulting

speed in this test was 1272 kbps for writing (cp /local/tesfile /mnt/fuse/Node/Content)

and 2089 kbps for reading (cp /mnt/fuse/Node/Content/tesfile /local/.)19.

Besides IO operations, readdir (ls -l command) operations have a great significance in

a filesystem. The tests were therefore run also on the ls command. To the readdir

operations belong the LOOKUP, GETATTR and READDIR. However the Linux

19 Speed is in kilobyte per second units. Converted to kilobits per second the speeds are 9,94 Mb/s and
16,32 Mb/s respectively. Here it is obvious that the read operation is a couple times faster than writing,
however the Table 5 shows the opposite. The difference is that the times in the table show only the
execution time in JavaFS, but the speed is measured for the cp command which includes the whole
execution and other factors as well (e.g. writing to local filesystem may be faster than reading from it,
the overhead for writing is greater than reading in FUSE framework, etc.).

81

system security module (selinux) typically invokes in the ls -l command the

GETXATTR command for each entry listed. As stated in Table 5 these operations

don’t have negligible times.

According to the times from the table, listing a directory with 100 entries would in

optimal case (each operation is executed only minimum number of times) take

approximately 8 seconds. However the tests showed much worse performance. This

performance issue has two reasons:

1. The implementation of the filesystem does not include any caching

mechanisms.

2. The JAVA implementation of the BTCSP filesystem’s readdir method

is not optimized.

The next table shows the commands called in ls –l command on the root (containing 3

nodes).

command inode params result
1 GETATTR root root inode attributes
2 OPENDIR root
3 GETATTR root root inode attributes
4 READDIR root pos = 0 3 node names
5 READDIR root pos = 3 empty
6 GETATTR root root inode attributes
7 GETXATTR root “system.posix_acl_access” empty
8 LOOKUP root “Node1” Node1 inode attributes
9 GETATTR Node1 Node1 inode attributes
10 LOOKUP root “Node1” Node1 inode attributes
11 GETXATTR Node1 “system.posix_acl_access” empty
12 LOOKUP root “Node2” Node2 inode attributes
13 GETATTR Node2 Node2 inode attributes
14 LOOKUP root “Node2” Node2 inode attributes
15 GETXATTR Node2 “system.posix_acl_access” empty
16 LOOKUP root “Node3” Node3 inode attributes
17 GETATTR Node3 Node3 inode attributes
18 LOOKUP root “Node3” Node3 inode attributes
19 GETXATTR Node3 “system.posix_acl_access” empty
20 READDIR root pos = 3 empty
21 RELEASEDIR root

Table 6: JavaFS commands called in ls –l command. The red rows show commands that
could accessed items in cache. Blue rows denote commands that could access items in cache
if readdir method is optimized for caching.

82

The table gives an idea about the performance improvement if caching is correctly

implemented. The execution time of ls –l command would be halved.

In general the BTCSP filesystem did well in the evaluation tests. The BTCSP

filesystem provides a useful access into the BTCSP content system. The only

drawback of the filesystem is its performance in certain operations, but the

optimization of these and other processes belong to the future work.

10.2 Further work

The combination of FUSEbtcsp, JavaFS and BTCSP FS leaves a large space for

further work. FUSE is being continually maintained and evolves over time therefore

to keep pace with it FUSEbtcsp will always have some rests to do. It would be useful

to have some kind of patch that would modify FUSE automatically if possible;

supposedly there would not be any crucial API changes.

JavaFS may also be updated with FUSEbtcsp to support new commands or even a

new protocol (e.g. encrypted, compressed, negotiation, etc.). Another wished feature

would be another communication type between the FUSEbtcsp and JavaFS; e.g. over

a pipe, a UNIX socket or using Java RMI.

On the other hand BTCSP FS could support different types of view of the BTCSP

data. It could create a deeper hierarchical structure that would group contents

according to their names in an A-Z directory structure. The reading/writing file

operations are not yet optimal and XML parsing of BTCSP responses could also bear

some tuning. Also caching is missing in all layers, which would certainly bring some

performance advance. Caching would be especially useful in directory listing

operation as mentioned in section Evaluation.

As one might see, there is enough work left for the future and if all mentioned tasks

are done, the porting of the filesystem driver to Microsoft Windows would be

definitely a great mission to undertake.

83

11. Summary and Conclusion

Many applications store their own data in files or databases organizing them also in a

directory tree, but usually keeping them manageable only from the application. But

often clients (users) demand out of application access to the data. Software

development companies trying to satisfy all their clients are then forced to allow such

an access either by internet browsers, filesystems or other kind of software or device.

The more options they provide to the clients, the more diverse client groups will be

pleased. This thesis gives a glance into the filesystem alternative.

Filesystems are a very useful and necessary part of operating systems and

applications. They organize data into a logical hierarchical structure and provide

standardize operations to work with them. In course of this thesis we designed and

implemented a user-space filesystem BTCSP FS in Java for a commercial database

system BTCSP developed by Braintribe. The filesystem involves multiple layers and

protocols. An operation on a file is not processed in one layer of the BTCSP FS but is

forwarded through all the layers (if necessary over multiple platforms) to the Java

implementation of the BTCSP filesystem.

The core of the filesystem that runs in Linux kernel is built by a modified version of

FUSE – FUSEbtcsp. It is directly connected to the virtual filesystem (VFS) that

handles filesystem calls from user-space and passes them to the underlying filesystem

– in our case FUSEbtcsp. FUSEbtcsp exports the VFS interface back to user-space

where filesystem operations reach JavaFS module. In this module the operations are

translated into requests that are sent over TCP connection to the JavaFS server;

implemented in Java. JavaFS server interprets received request as filesystem

commands and calls the implementation of the underlying Java filesystem. Here the

Java filesystem processes the command by accessing data sources – the BTCSP server

– and creates a response that traverses the layers back to the VFS and to the process

where the filesystem call originated. As we see, a filesystem call takes a long journey

to be taken care of, but at the end it is successfully carried out in the Java application.

84

References

[capii] Roman Kurmanowytsch. Introduction to the Client API of the Multilingual

Content Integration Framework i2z. Technical report. Braintribe Group, 2005.

[utlk02] Daniel P. Bovet, Marco Cesati. Understanding the Linux Kernel,

2nd Edition. O'Reilly & Associates, Inc., 2002.

[ufedi03] Steve D. Pate. UNIX Filesystems: Evolution, Design and Implementation,

VERITAS Series. Wiley Publishing, Inc., Indiana USA 2003.

[lki00] M. Beck, H Böhme, et al. Linux Kernel Internals, 2nd Edition.

Addison-Wesley, 2000.

[ldd05] Jonathan Corbert, et al. Linux Device Drivers 3rd Edition. O'Reilly &

Associates, Inc., 2005.

[lkd05] Robert Love. Linux Kernel Development 2nd Edition. Sams Publishing,

2005.

[dque83] Robert Elz. Disc Quotas in a UNIX environment. Technical report.

Department of Computer Science, University of Melbourne, Australia 1983.

[braintribe] Braintribe homepage. http://www.braintribe.com/

[wwwfuse] FUSE homepage. http://fuse.sourceforge.net/

[fusewiki] FUSE wiki. http://fuse.sourceforge.net/wiki/index.php/FUSE%20tutorial

[prjfuse] FUSE project homepage. http://sourceforge.net/projects/fuse

[lufs] Linux Userland Filesystem. http://sourceforge.net/projects/lufs/

[plan9] Plan 9 Filesystem Protocol. http://9p.cat-v.org/

[coda] Coda File System. http://coda.cs.cmu.edu/

[cfm] Callback File SystemTM. http://www.eldos.com/cbfs/

[fusej] FUSE-j. http://sourceforge.net/projects/fuse-j

[fw] FuseWrapper. http://arg0.net/wiki/fusewrapper

http://www.braintribe.com/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/wiki/index.php/FUSE%20tutorial
http://sourceforge.net/projects/fuse
http://sourceforge.net/projects/lufs/
http://9p.cat-v.org/
http://coda.cs.cmu.edu/
http://www.eldos.com/cbfs/
http://sourceforge.net/projects/fuse-j
http://arg0.net/wiki/fusewrapper

85

[swig] Simplified Wrapper and Interface Generator. http://www.swig.org/

[ksockprog] Socket programming in kernel-space.

http://www.linuxforums.org/forum/linux-kernel/55923-kernel-sockets.html

[runjar] Classpath in executable jar files. http://www.timfanelli.com/item/22

http://www.swig.org/
http://www.linuxforums.org/forum/linux-kernel/55923-kernel-sockets.html
http://www.timfanelli.com/item/22

86

Appendix

A. VFS Interface

This appendix describes the most common operations used by filesystems. Detailed

information can be also found in [lki00] and [utlk02].

super_operations

This is the first interface that the VFS will use. It is saved in the super_block

strucutre and set by the filesystem’s get_sb method referenced by the

file_system_type.

struct super_operations {

struct inode *(*alloc_inode) (struct super_block *sb);

void (*destroy_inode) (struct inode *);

void (*read_inode) (struct inode *);

void (*dirty_inode) (struct inode *);

void (*write_inode) (struct inode *, int);

void (*put_inode) (struct inode *);

void (*drop_inode) (struct inode *);

void (*delete_inode) (struct inode *);

void (*put_super) (struct super_block *);

void (*write_super) (struct super_block *);

int (*sync_fs) (struct super_block *, int);

void (*write_super_lockfs) (struct super_block *);

void (*unlockfs) (struct super_block *);

int (*statfs) (struct super_block *, struct statfs *);

int (*remount_fs) (struct super_block *, int *, char *);

void (*clear_inode) (struct inode *);

void (*umount_begin) (struct super_block *);

int (*show_options) (struct seq_file *, struct vfsmount *);

int (*show_stats)(struct seq_file *, struct vfsmount *);

ssize_t (*quota_read)(struct super_block *, int, char *,

size_t, loff_t);

ssize_t (*quota_write)(struct super_block *, int,

 const char *, size_t , loff_t);

};

87

alloc_inode

This method creates and initializes a new inode under the specific super block

destroy_inode

This function does the opposite of the alloc_inode.

read_inode

Reads the inode from the disk and fills the data of the provided inode object.

The i_ino field of the inode object identifies the specific filesystem inode.

dirty_inode

Invoked by the VFS when the inode is marked as modified (dirty). Journal

filesystems (such as ReiserFS) use this to update their journal.

write_inode

Writes the passed inode object to the disk (i_ino identifies the physical

inode). The second parameter indicates whether the operation should be

synchronous.

put_inode

Releases the inode object passed as parameter. This doesn’t mean that it will

be freed from memory, because other processes may still use it, see

drop_inode.

drop_inode

This method is called by VFS when the last reference to the inode object is

dropped. The caller must hold the inode’s lock. Now it is possible to free the

inode object from memory, although this method is rarely implemented in

which case the VFS simply frees the inode.

delete_inode

Deletes the inode on the disk represented by the inode object parameter.

put_super

Just like put_inode, releases the reference to the super block object. Called by

VFS on unmount.

write_super

Updates the super block on the disk with the data in the super block object.

sync_fs

Synchronizes filesystem metadata with the on-disk filesystem. Called when

VFS writes out all the data associated with the super block. Second parameter

88

indicates whether the method should be synchronous; whether it should wait

until the process finishes.

write_super_lockfs

Prevents changes in the filesystem and updates the on-disk data with the super

block object argument.

unlockfs

Unlocks the filesystem locked in the write_super_lockfs function.

statfs

Fills the provided buffer with filesystem statistic information.

remount_fs

Remounts the filesystem with new mount flags.

clear_inode

Like put_inode, but clears any pages associated with this inode.

umount_begin

Used only by network filesystems to interrupt a mount operation, because the

unmount was already started.

show_options

Used to display filesystem specific options.

show_stats

Display all filesystem related information including mount options.

quota_read and quota_write

Functions used to read and write quota files that support resources limitations

for different users. The quota files hold information about the usage on the

filesystem. Typically these files have name like »quotas« or »quotas.user« and

access is allowed only through these methods, which are called by VFS.20

inode_operations

This interface contains the operations on an inode. VFS comes into contact with it just

after the super operations. This interface doesn’t have to be same for each inode. It is

stored in the inode object and initialized by the read_inode function mentioned

above.

20 Some information about the disk quotas system may be found in [dque83]

89

struct inode_operations {

int (*create) (struct inode *,struct dentry *,int,

struct nameidata *);

struct dentry * (*lookup) (struct inode *,struct dentry *,

struct nameidata *);

int (*link) (struct dentry *,struct inode *,struct dentry *);

int (*unlink) (struct inode *,struct dentry *);

int (*symlink) (struct inode *,struct dentry *,const char *);

int (*mkdir) (struct inode *,struct dentry *,int);

int (*rmdir) (struct inode *,struct dentry *);

int (*mknod) (struct inode *,struct dentry *,int,dev_t);

int (*rename) (struct inode *, struct dentry *, struct inode *,

struct dentry *);

int (*readlink) (struct dentry *, char __user *,int);

void * (*follow_link) (struct dentry *, struct nameidata *);

void (*put_link) (struct dentry *, struct nameidata *, void *);

void (*truncate) (struct inode *);

int (*permission) (struct inode *, int, struct nameidata *);

int (*setattr) (struct dentry *, struct iattr *);

int (*getattr) (struct vfsmount *mnt, struct dentry *,

struct kstat *);

int (*setxattr) (struct dentry *, const char *,

const void *,size_t,int);

ssize_t (*getxattr) (struct dentry *, const char *, void *,

 size_t);

ssize_t (*listxattr) (struct dentry *, char *, size_t);

int (*removexattr) (struct dentry *, const char *);

void (*truncate_range)(struct inode *, loff_t, loff_t);

};

create

Run from the open and creat system call to create a new inode with the given

mode and associate it with the provided dentry object.

lookup

Searches a directory for an inode specified in the dentry object parameter.

link

Creates a hard link to the file specified by the dentry object in the first

argument.

unlink

90

Removes the given dentry object from the specified directory and decreases

the hard link reference count of the inode of the removed dentry.

symlink

Creates a new inode for a symbolic link to the file represented by the dentry in

the given directory.

mkdir

Function called from mkdir () system call to create a new inode for a

directory associated with the given dentry in some directory.

rmdir

Removes a subdirectory represented by the second argument from the

directory in the second argument.

mknod

Creates a special file just like create and associates it with the device

specified by the major device number in last argument.

rename

This function is called by the VFS to move a file identified by the second

argument from one directory to another. The new filename is included in the

dentry object in the last parameter. This function is called only for a move in

the scope of one filesystem. Move crossing two filesystems is solved

differently; typically the file is copied to the new filesystem and the old file is

deleted.

readlink

This function is used to get the full path associated with the given symbolic

link dentry.

follow_link

Translates a symbolic link path into an inode and the result is stored in the

nameidata pointer.

put_link

Called by the VFS to clean up after the follow_link function.

truncate

Modifies the size of the file associated with the inode. Before calling thes

method the new size should be set in the inode object member i_size;

91

permission

Checks whether an access mode is possible on the file represented by the

given inode. It returns 0 on success and negative error code otherwise. This

method is typically set to NULL to let the VFS check the permissions based

on the properties of the file (i.e. owner, group, etc.).

setattr

This function is called whenever the inode is being notified to be dirty

(changed).

getattr

This function is called by the VFS whenever it is notified that the inode should

be refreshed from the disk.

setxattr

Sets extended attribute of the given dentry to the specified value.

getxattr

Copies the value of an extended attribute into the buffer provided.

listxattr

Is called by the VFS to get a list of the names of all extended attributes of a

dentry. The list is an array of zero terminated strings.

removexattr

This function removes the given extended attribute from the file.

truncate_range

Removes a number of blocks in the file starting at the given block position.

file_operations

This section covers the operations of files and directories. Files and directories share

the same interface, though directory inodes have typically other implementation of the

interface functions than the files. readdir function is for example unnecessary for

files. To keep things simple I split this interface into groups of functions specific for

files, directories and general group that is used in both types. I will start with directory

group, because the root is always a directory.

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

92

ssize_t (*read) (struct file *, char __user *, size_t,

loff_t *);

ssize_t (*aio_read) (struct kiocb *, char __user *, size_t,

loff_t);

ssize_t (*write) (struct file *, const char __user *, size_t,

loff_t *);

ssize_t (*aio_write) (struct kiocb *, const char __user *,

size_t, loff_t);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *,

struct poll_table_struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int,

unsigned long);

long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);

long (*compat_ioctl) (struct file *, unsigned int,

unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*readv) (struct file *, const struct iovec *,

unsigned long, loff_t *);

ssize_t (*writev) (struct file *, const struct iovec *,

unsigned long, loff_t *);

ssize_t (*sendfile) (struct file *, loff_t *, size_t,

read_actor_t, void *);

ssize_t (*sendpage) (struct file *, struct page *, int, size_t,

loff_t *, int);

unsigned long (*get_unmapped_area)(struct file *,unsigned long,

unsigned long, unsigned long, unsigned long);

int (*check_flags)(int);

int (*dir_notify)(struct file *filp, unsigned long arg);

int (*flock) (struct file *, int, struct file_lock *);

ssize_t (*splice_write)(struct pipe_inode_info *,

struct file *, loff_t *, size_t, unsigned int);

ssize_t (*splice_read)(struct file *, loff_t *,

93

struct pipe_inode_info *, size_t, unsigned int);

};

directory functions

There are only one directory specific operations, although being one of the most used

one.

readdir

Reads next directories in a directory listing. A callback function is passed in

one argument to be used to fill the given buffer with dentries.
typedef int (*filldir_t)(void *, const char *, int, loff_t,

 ino_t, unsigned);

Allows the kernel to read directories into the kernel-space or to have

different dirent layouts depending on the binary type.

file functions

File provides a wider interface than the directory. The file specific functions are listed

here.

llseek

Updates the working offset of a file object. Used by the llseek () system

call.

read, aio_read

Called by the read () (aio_read () system call) to read a given number of

bytes from a specific offset and file into a buffer. The aio_read function starts

an asynchronous read.

write, aio_write

Called by the write () (aio_write () system call) to write a given number

of bytes from buffer in the file. Write begins at the given offset that is at the

end updated. The aio_write function starts an asynchronous write.

poll

This function waits for an activity on the given file. It is called from the poll

() system call.

mmap

This function performs a memory mapping of the file into a process address

space.

94

flush

Called whenever the f_count field in the file object is decremented (i.e.

whenever the last close on a file is called).

fsync, aio_fsync

Writes all cached data of a file to the disk; writes in asynchronous mode in

case of aio_fsync.

lock

This function handles a lock on the given file. Called by the fcntl () system

call for the commands: F_GETLK, F_SETLK and F_SETLKW.

readv, writev

Similar to read/write functions used to access data of a file, but these

methods process work with multiple buffers defined by the given vector.

sendfile

Called by the sendfile () system call, to copy data of one file into another

without switching to user address space.

sendpage

This function is used to send data from one file to another; this method is used

by sockets.

get_unmapped_area

Gets unused address space to map the given file. Used for mapping frame

memory.

flock

Applies or removes advisory lock on the given file. Advisory locks allow

cooperating processes to perform consistent operations on files. For more, see

man pages for the flock () system call.

splice_write, splice_read

Called by the splice () system call to splice data from a pipe to a file (i.e.

from a file to a pipe in the splice_read method). It is used to move data

between to files without copying between kernel and user -space where one

side refers to a pipe.

95

shared functions

As mentioned in the name, these methods are available to all file types, though only

some of them apply to a specific type.

ioctl, unlocked_ioctl, compat_ioctl

Called by the ioctl () system call to send a command with arguments to a

device. ioctl is one of the remaining kernel parts running under the Big

Kernel Lock (BKL). Filesystems that do not require the BKL should use

unlocked_ioctl instead. The compat_ioctl is called by the ioctl system

call when 32bit system calls are used on 64bit kernels.

open

Called by the open () system call to create a new file object and associate it

with the corresponding inode object.

release

Releases the file object created in open function when the last reference to an

open file is closed; i.e. called when the f_count reaches 0.

fasync

Enables or disables asynchronous I/O signal notifications.

check_flags

This function is used to check the validity of flags passed to the fcntl ()

system call for the SETFL command. This method is recently used only by the

NFS filesystem to disable the combination of the O_APPEND and O_DIRECT

flags.

dir_notify

This function is a new method introduced in the 2.6.8 kernel. It partly does the

work of the obsolete fcntl () function (2.6.6 kernel). It is used by CIFS to

handle F_NOTIFY requests. Called by the fcntl () system call.

96

B. FUSE Operation Codes and Parameters

The following table lists all FUSE commands together with the input/output

parameter.

Opcode Request arguments Answer arguments
FUSE_LOOKUP string – name of the entry to lookup

(i.c.z.).
fuse_entry_out – information about
the inode associated with found
dentry. This includes:

inode id
inode generation
cache timeout for the name
cache timeout for attributes
inode attributes (i.e. ino,
size, atime, blocks, etc.)

FUSE_FORGET fuse_forget_in – contains the inode
nlookup field

None

FUSE_GETATTR None fuse_attr_out – stores inode
attributes and cache timeout for the
attributes

FUSE_SETATTR fuse_setattr_in – inode attributes
except ino, blocks, ctime, ctimensec,
nlink and rdev. Besides this it has
valid and fd (file handle) fields.

Same as FUSE_GETATTR

FUSE_READLINK None string – full path to the entry that the
link points to (i.c.z.)

FUSE_SYMLINK 2 arguments
string – name of the new entry
(i.c.z.)
string – full path of the link (i.c.z.)

Same as FUSE_LOOKUP

FUSE_MKNOD 2 arguments
fuse_mknod_in – mode and rdev
string – name of the new entry
(i.c.z.)

Same as FUSE_LOOKUP

FUSE_MKDIR 2 arguments
fuse_mkdir_in – mode
string – name of the new entry
(i.c.z.)

Same as FUSE_LOOKUP

FUSE_UNLINK,
FUSE_RMDIR

string – name of the entry to delete
(i.c.z.)

none

FUSE_RENAME 3 arguments
fuse_rename_in – inode id of the
parent directory where the new
entry will be added
string – name of the old entry
(i.c.z.)
string – name of the new entry
(i.c.z.)

none

FUSE_LINK 2 arguments
fuse_link_in – inode id of the
referred inode
string – name of the link entry
(i.c.z.)

Same as FUSE_LOOKUP

FUSE_OPEN,
FUSE_OPENDIR

fuse_open_in – flags and mode fuse_open_out – user-space file
handle, open flags and padding

FUSE_READ, fuse_read_in – user-space file Variable size (maximum count bytes

97

FUSE_READDIR handle, file offset and count of
bytes

in 1st argument), store in pages

FUSE_WRITE 2 arguments
fuse_write_in – user-space file
handle, file offset, size and write
flags
count bytes stored in pages

fuse_write_out – size and padding

FUSE_STATFS None fuse_statfs_out – filesystem
information stored in fuse_kstatfs
(i.e. blocks, bfree, bavail, files, etc.)

FUSE_RELEASE,
FUSE_RELEASEDIR

fuse_release_in – user-space file
handle, flags, release flags and lock
owner

none

FUSE_FSYNC,
FUSE_FSYNCDIR

fuse_fsync_in – user-space file
handle, fsync flags and padding

none

FUSE_SETXATTR 3 arguments
fuse_setxattr_in – size and flags
string – attribute name (i.c.z.)
byte array – attribute value

none

FUSE_GETXATTR 2 arguments
fuse_getxattr_in – size and padding
string – attribute name (i.c.z.)

Conditional
If size in first input argument is 0
then
fuse_getxattr_out – necessary size
and padding
otherwise
byte array – attribute value

FUSE_LISTXATTR fuse_getxattr_in – size and padding Same as FUSE_GETXATTR, but
byte array contains a list of attribute
names (i.c.z.)

FUSE_REMOVEXATTR string – name of the attribute to
remove (i.c.z.)

none

FUSE_FLUSH fuse_flush_in - user-space file
handle, unused 32bit, padding and
lock owner

none

FUSE_INIT fuse_init_in – major and minor
FUSE kernel module version, max
read-ahead and flags

fuse_init_out – (variable length for
backward compatibility) FUSE
library major and minor version,
max read-ahead, flags, unused 32bit
and max write

FUSE_GETLK fuse_lk_in - user-space file handle,
owner and fuse_file_lock (i.e. start,
end, type and pid)

fuse_lk_out - fuse_file_lock

FUSE_SETLK,
FUSE_SETLKW

Same as FUSE_GETLK none

FUSE_ACCESS fuse_access_in – mask and padding none
FUSE_CREATE 2 arguments

fuse_open_in – flags and mode
string – name of the new entry
(i.c.z.)

2 arguments
fuse_entry_out – see
FUSE_LOOKUP
fuse_open_out – see FUSE_OPEN

FUSE_INTERRUPT
(has a special handling)

fuse_interrupt_in – interrupt unique
id

none

FUSE_BMAP (used
only by device backed
filesystems)

fuse_bmap_in – block within file,
block size and padding

fuse_bmap_out – block within
device

FUSE_DESTROY None None

Table 7: List of commands with input and output parameters. i.c.z – including closing
zero

98

C. List of FUSE Modifications related to 256bit inode support

This appendix lists all the modifications in FUSE that are related to the 256bit

support.

Line # Change description
Changes in file include/fuse_common.h:

+ 18: #include <sys/stat.h> Includes support for stat

structure

+ 123: struct fuse_stat {…}; New inode attributes used

only in kernel-user-space

data exchange.

+ 130: struct fuse_inode_id {…}

fuse_ino_t;

New inode identification

structure, includes a byte

array of 32 bytes (256bit)

named i_userdata.

+ 136: FUSE_FIRST5_USERDATA(usrdt) Macro used to represent the

first 5 bytes of the passed

usrdt array.

+ 137: FUSE_COPY_IUSERDATA(dst,src) Macro copying the

i_userdata field from

structure dst to i_userdata

field in src. The number of

copied bytes depends on the

size of the field in dst.

In file include/fuse_kernel.h (and in kernel/):

+ 82: char i_userdata[32]; The 256bit inode

identification in fuse inode

attributes - fuse_attr.

+ 178: fuse_inode_kernel_id {…}

fuse_ino_kernel_t;

Inode id structure defined for

kernel (in principal same as

fuse_ino_t)

± 186: - __u64 nodeid;

+ fuse_ino_kernel_t noedid;

Change of types for inode id

in object fuse_entry_out.

± 218: - __u64 newdir;

+ fuse_ino_kernel_t newdir;

Same as above, but for object

fuse_rename_in.

99

± 224: - __u64 oldnodeid;

+ fuse_ino_kernel_t oldnodeid;

Same as above, but for object

fuse_link_in.

± 367: - __u64 nodeid;

+ fuse_ino_kernel_t nodeid;

Same as above, but for object

fuse_in_header. (request

header)

In file include/fuse_lowlevel.h:

- 30: #include <sys/stat.h> Has been moved to

fuse_common.h.

- 45: typedef unsigned long fuse_ino_t; Has been changed and

moved to fuse_common.h.

± 82: - struct stat attr;

+ struct fuse_stat attr;

In object fuse_entry_param.

The new inode attributes

with 256bit inode id.

± 236: In function setattr change of attr parameter

from stat to fuse_stat type.

New parameter type with

256bit support.

In file kernel/dir.c:

±112,113: req->in.h.nodeid.ino =

get_node_id(dir);

get_iuserdata(dir, req-

>in.h.nodeid.i_userdata);

Changes the way inode id is

copied to request header. In

first line nodeid in request

header is now a structure and

ino is its field. Second line

copies the 256bit inode id.

± 167: if (!err && !outarg.nodeid.ino) nodeid is a structure with ino

field that hold the older

nodeid value.

±171,256,

257,259,

261,429,

430,441,

447,566,

567,598,

599,626,

627,629,

630,675,

676,705,

706,803,

The changes because of the new nodeid structure

are always the same therefore the lines left show

all the places where this changes were made, but it

isn’t necessary to show the code.

Typically nodeid is changed into

nodeid.ino. The function get_iuserdata

is used in case the 256bit inode id also needs to be

copied.

100

804,963,

964

+ 419: struct fuse_inode *fi;

+ 454: fi = get_fuse_inode(inode);

memcpy(&(fi->nodeid.i_userdata),

&(outarg.nodeid.i_userdata),

sizeof(outarg.nodeid.i_userdata));

In function create_new_entry

it was necessary to add

additional code to copy the

256bit userdata.

In file kernel/file.c:

± 38,39,

220,221,

260,261,

293,294,

455,456,

699,700,

833,834

Same as in the file dir.c, the lines left show the

changes required because of the change in

nodeid structure.

± 122: Change in the function fuse_release_fill

of the nodeid parameter type from u64 to

fuse_in_kernel_t.

± 147: The function fuse_release_fill takes as 2nd

argument get_kernel_ino(inode) instead

get_node_id(inode).

This is modification is a

result of the above change.

In file kernel/fuse_i.h:

± 118: - u64 nodeid;

+ fuse_ino_kernel_t nodeid;

In object fuse_inode. This is

the object stored together

with kernel inode object.

+ 463: … get_kernel_ino(… Implementation of the static

inline get_kernel_ino

function that is used to get

the fuse_ino_kernel_t

from a kernel inode.

± 470: return get_fuse_inode(inode)-

>nodeid.ino;

Sticks with the structural

change of nodeid.

+ 474: … get_iuserdata(… Implementation of the static

inline get_iuserdata

function that copies the

256bit userdata from a kernel

101

inode object into a 256bit

buffer.

± 486: Change of the nodeid parameter type from

unsigned long to u64 in function fuse_iget.

± 493: Change of the nodeid parameter type from

unsigned long to fuse_ino_kernel_t in

function fuse_send_forget.

± 513: Change of the nodeid parameter type from u64

to fuse_ino_kernel_t in function

fuse_release_fill.

Same as in file file.c on the

line 122. Here is the

declaration of the function.

In file kernel/fuse_i.h:

± 61,99,

100,186,

538,545

Changes resulting from structural changes of

nodeid. Same as in dir.c (lines 171, 256…) and

file.c (lines 38, 39…).

± 513: Change of nodeid parameter in function

fuse_send_forget.

See change in function

declaration in file fuse_i.h on

line 493.

+ 133: One line added to the implementation of

fuse_change_attributes function.

Copies 256bit userdata from

inode attributes into inode.

± 185: Change of type of the nodeid variable from

unsigne long to u64.

In implementation of

fuse_inode_set().

In file lib/fuse_lowlevel.c:

± 65: The function convert_stat has been modified

to handle the new fuse_attr attributes.

+ 86: New function convert_kernel_inode_id

added to convert type fuse_ino_kernel_t to

fuse_ino_t.

±290,291,

316:

Changes resulting from structural changes of

nodeid.

± 338: Parameter attr changed to type fuse_stat in

function fuse_reply_attr.

± 463: struct fuse_stat stbuf;

± 463: convert_attr(arg,

&stbuf.stat_attr);

Variable stbuf changed to

type fuse_stat.

102

±554,566,

1166:

Conversion of fuse_ino_kernel_t inode id

to fuse_ino_t.

+ 1039: uint64_t fuse_req_unique(…) {…} New function added that gets

request id from a request

object.

Table 8: List of changes related to the 256bit inode support. First row shows the line
number. ‘+‘ means one or more lines were added. The character ‘-‘means a line was
deleted and the symbol ‘± ‘ stands for one or more modified lines. In modified code
sections red ink denotes added text.

