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Abstract

This thesis discusses the destruction of sheets of paper by manual tearing and evaluates two
approaches for reconstruction of such pages by exact methods based on Integer Linear Pro-
gramming. These methods operate solely on the shape of torn pieces of paper and reconstruct
the borders of the paper sheets.

For evaluation and tests within this problem domain, a tearing model of human paper tearing
as well as a C++ library and an XML data interchange format were developed. The tear-
ing simulation takes into regard shear effects which distort paper in a way that—opposed to
cutting—the shapes of adjacent pieces will not prefectly fit together anymore.

The ILP formulations were evaluated with extensive empirical tests using the CPLEX solver soft-
ware. The performance and accuracy of several objective functions was compared, in particular
functions using the CPLEX specific IloAbs absolute value calculation feature and formulations
not using this feature. Further evaluation was performed on the very performance-relevant
CPLEX parameters MIPEmphasis and on the CPLEX specific lazy constraints.

The developed library and tools were very useful for the evaluation in this problem domain and
can be reused for further studies. The ILP models are fast and yield good accuracy results on
single page instance sizes which makes them well suitable for usage in hybrid algorithms.

Zusammenfassung

Diese Diplomarbeit behandelt die Zerstörung von Papierdokumenten durch manuelles Zerreißen
und evaluiert zwei Verfahren zur Rekonstruktion solcher Dokumente basierend auf Methoden der
ganzzahligen linearen Programmierung (ILP). Die vorgestellten Verfahren operieren ausschließ-
lich auf der Form der Schnipsel und rekonstruieren die Ränder der zerstörten Dokumente.

Für die Evaluierung wurde ein Modell für manuelles Zerreißen und eine C++ Bibliothek mit
einem XML Datenformat entwickelt. Die Simulation des Zerreißprozesses berücksichtigt auch
Schereffekte, die Papier beim Reißen—im Gegensatz zum Schneiden—plastisch so verformen,
dass die Umrisse benachbarte Stücke nicht mehr exakt zusammenpassen.

Die ILP Formulierungen wurden durch umfangreiche empirische Tests mit der CPLEX Software
untersucht. Die Performanz und Ergebnisqualität von mehreren Zielfunktionen wurde ver-
glichen, insbesondere solcher die von der CPLEX-spezifischen IloAbs-Absolutwertsberechnung
Gebrauch machen und solcher die dies nicht tun. Weiters wurde der sehr performancekritische
MIPEmphasis Parameter und das Lazy Constraint Feature von CPLEX evaluiert.

Die entwickelte Bibliothek und die Programmwerkzeuge haben sich in den Tests bewährt und
eignen sich für weiterführende Untersuchungen innerhalb dieser Domäne. Die ILP Formulierun-
gen zeigen gute Performanz und gute Ergebnissgenauigkeit für Instanzen bestehend aus einer
Papierseite und eignen sich deshalb für die Verwendung in Hybridalgorithmen.
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1 Preface

This thesis is the result of one and a half years of challenging and rewarding work in very
different parts of mathematics and information technology. Here I want to give a short
account of the creation and distribute my thanks to all the people who supported me.

The Making Of

In the beginning there was an idea for how to reassemble manually torn paper. The
first challenge was to model the creation of problem instances which was based on some
empirical experiments I did with work and university colleagues (they found this very
amusing). Then I started designing a library to support my further experiments and in
parallel thought about how to recreate the pages once I had a framework for solving.
After the tools for modelling the whole problem and the solver were working in principle
I had to improve the performance of my approach because solving took ages, even for two
or three pages. Some experiments later and after throwing quite a lot of brains at specific
ILP constraints I had an improved formulation which worked better and could start to
design methodical empirical tests which were more than mere experiments on a handful
of problem instances. Because of the big amount of instances I created in this process,
several bugs in lower layers, especially in the simulation of paper tearing and in geometric
libraries, surfaced and had to be fixed. As other people at the institute started to work
on the same problem and wanted to use my library, I did a rewrite of the whole code to
create cleaner C++ and XML interfaces and to complete the source code documentation.
After that the empirical tests started in earnest. At first I tried to solve everything to the
optimum or nearly there but after the first test ran for one week and seemed to require
another three weeks to finish I decided to test within a shorter reasonable time bound
and evaluate the quality of the results as far as they could be optimised even if they were
not optimal or far from optimal. The empirical tests had to be repeated once due to
bugs in the tearing simulator tool and once due to bugs in the solver tool and took about
two weeks in the final version. As the analysed data from the evaluation process would
require more pages than the thesis itself I decided not to waste too many trees and to
present the results in plots only. The final challenge was to create these plots and I am
grateful that several people suggested to use gnuplot and that I decided to use it.

Acknowledgements

First I want to thank the Algorithms and Data Structures group, especially Günther
Raidl and Matthias Prandtstetter who expertly guided me through the process of writing
this thesis. Many thanks also go to Florian Pflug because during eating a marvellous
pizza we discussed a complexity problem of a formulation in this thesis and he had a
very good idea which led us to the efficient approach for special constraints described on
page 20. For teaching me many software engineering skills I needed for the development of
the library and tools in this thesis I want to thank Philipp Tomsich. Very special thanks
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go to my fiancée Edda because she always encouraged me to have no bad conscience to
work on my thesis instead of spending my time together with her. I also want to thank
my parents—my mother Monika because she taught me to always keep an eye on the big
picture of things and never to lose contact to the rest of the world if I was very deep
into something technologically—and my father Werner who gave me the fascination of
technology before I even went to school.

My final thanks go to the whole open source community, most notably the LATEX, bibtex,
gnuplot, gcc, valgrind, gnumeric, OpenOffice, python, openbox, mozilla, debian and last
but not least the Linux Kernel projects which were all directly involved in the creation
of this thesis.
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2 Introduction

In 1989, the Stasi (main security and intelligence organisation of the German Demo-
cratic Republic) destructed thousands of secret documents by manually tearing them
into pieces. This resulted in about 17000 bags each containing about 2000 torn docu-
ment pages. Nowadays, the confidential information contained in this documents is still
of great interest. The reconstruction of manually torn papers has similarities to solving
jigsaw puzzles, giving the problem the name “Puzzle”. This thesis describes a tearing
simulation, a C++ library to deal with instances of this problem and two reconstruction
approaches.

Manual reconstruction of these torn documents is estimated to take about 100 years, so
it is necessary to devise means of reconstruction which rely on computational power to
speed up the reconstruction efforts. One can think of several possibilities for solving the
Puzzle problem, one approach already taken in [9] is to create an image database of all
pieces and do a pairwise pattern matching. After each successful match, the pieces are
glued together and the resulting bigger piece is put back into the pool instead of the
original parts.

The approach taken in this thesis disregards the image content of the paper snippets and
operates on the geometric shape only. Additionally no pairwise matching is done but the
whole input data is considered at once and a solution is created in one calculation pass.
This is a strategy completely opposite to pattern matching while it is not incompatible
to this approach, creating the possibility to combine the two approaches into hybrid
algorithms using both complementary approaches to solve instances with a performance
superior to each of the single approaches.

Thesis Organisation

Section 3 describes the problem in detail, the next section shows two integer linear pro-
gramming formulations for solving parts of the Puzzle problem. Section 5 gives a descrip-
tion of the software tools created for evaluating the integer linear program from Section 4
and the two following sections describe the software library SnipLib which was created
to implement the tools and how the library was used to implement the tools. Section 8
describes the setup and the results of the empirical tests and the final section contains
the conclusions from the tests.
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3 Problem Description

In the Puzzle problem—in the following called PP, we are given a set of snippets (small
pieces of paper), which properly combined form one or more sheets of document pages.
The goal is to find exactly this combination, such that all original sheets of paper are
reconstructed. The given snippets might come from shredders for destructing documents
or from manually torn documents. Of course, both methods of destructing paper have
their specific properties and lead to different challenges in the reassembling process. This
thesis will only focus on manually torn documents.

Before anything is destructed, there are several sheets of paper. Most of these pages are
rectangles which means that their borders consist of four sheet edges. Figure 1 illustrates
a torn sheet of paper. As already mentioned we denote by snippets the given pieces
of paper produced by tearing or shredding those sheets of paper. Each snippet has at
least three edges, which can be classified into outer snippet edges and inner snippet
edges. Inner snippet edges were created by the tearing or shredding process whereas
outer snippet edges were part of a sheet edge. This means that after reconstructing the
original document, inner snippet edges are “inside” of the sheet. Furthermore we classify
inner snippets—bounded by inner snippet edges only—and outer snippets, bounded by
at least one outer snippet edge. Corner snippets are a special case of outer snippets
because they are bounded by two outer snippet edges which enclose a common angle.
Since most of the sheets are rectangular, this enclosed angle will be a right angle but this
need not always be the case. By tears we denote those abstract objects which separate
two or more snippets by producing inner snippet edges.

Assumptions

The following assumptions are made for the sake of simplicity:

• All sheets which shall be reconstructed have the same paper format which is known
as “A4”. From this assumption follows the assumption that the size of the sheets
to be reconstructed is known in advance.

• For each sheet there exist four corner snippets. As long as this is not true the solver
adds small corner snippets to the instance to make the model feasible.

• Corner snippets have exactly two outer edges which need not always be the case in
practice, where it could happen that a sheet of paper is torn exactly through the
corner or that two corners are part of one snippet. The first case is simplified by
adding a new corner snippet with very short edge lengths which replaces the “lost”
corner snippet, the second case is averted by the tearing strategy introduced in this
thesis which creates four corner snippets as soon as more than one tear is done (see
Section 5.1.2).

• Snippets which are not corner snippets contain may only contain one outer edge.
This is ensured by the tearing model in this thesis like the previous assumption.
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Instance Description

An instance of PP consists of a list of snippets. A snippet is a polygon with coordinates
measured in millimetres where each edge is marked either as an inner edge or as an outer
edge. Snippets containing no outer edges are called inner snippets and not regarded
in the ILP formulations in this thesis. Snippets containing exactly two outer edges are
called corner snippets and will often be handled as special cases. References to “next”
or “previous” edges or vertices always refer to the next or previous edges or vertices
counterclockwise along outer edges of sheets or snippets.

length Li of snippet edge i length Lj of snippet edge j

outer point

inner point

first angle A1

i

(of snippet edge i) second angle A2

j

(of snippet edge j)

inner snippet
(the only one)

outer snippet
(and corner snippet)

outer snippet

snippet edge i snippet edge j

length Sw of page edge w

outer snippet edge
inner snippet edge

Figure 1: Visualisation of a torn document page.

Figure 1 visualises a torn sheet of paper and names several properties of this sheet. The
symbols of the mathematical formulation of the instance are described in the following
text and in Table 1. The sheets which are to be reconstructed are numbered from one to
m, the sheet edges from one to k. The numbering of the sheet edges is defined to start
at the top edge and to be done counterclockwise. In addition to the set of all sheet edge
indices K, two additional sets KL and KS are introduced to represent the indices of all
long and short sheet edge indices, respectively. The snippet edges are numbered from
one to n, the corner snippets from one to u. Similarly N and U denote the sets of all
snippet edge indices and the set of all corner snippet indices. For the management of
corners, additional constants C1

v and C2
v are introduced for all v ∈ U . These constants
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Symbol Explanation

m number of sheets to be reconstructed
M set of sheet indices
k number of sheet edges
K set of sheet edge indices
KL set of all long sheet edge indices
KS set of all short sheet edge indices
n number of outer snippet edges
N set of outer snippet edge indices
u number of corner snippets
U set of corner snippet indices
C1

v index of the edge directly before the corner point on corner snippet
v. This edge always contains a first angle and never a second angle.

C2
v index of the edge directly after the corner point on corner snippet

v. This edge always contains a second angle and never a first angle.
C1 set of all first corner snippet edges: C1 = {C1

v : v ∈ U}
C2 set of all second corner snippet edges: C2 = {C2

v : v ∈ U}
Sw length of sheet edge with index w.
Li length of outer snippet edge with index i.
A1

i first angle of outer snippet edge with index i.
A2

i second angle of outer snippet edge with index i.

Table 1: Symbols used in the mathematical formulation of PP instances.
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contain the first and second edge indices of all corner snippets. Furthermore the sets C1

and C2 contain all first and second edge indices of all corner snippets, respectively. The
lengths of the sheet edges are named Sw for all w ∈ K. The lengths of the outer snippet
edges are named Li for all i ∈ N . The first angles A1

i of outer snippet edges are defined
for all snippet edges not starting in a corner (for all indices i /∈ C2) and the second angles
A2

i of outer snippet edges are defined for all snippet edges not ending in a corner (for all
indices i /∈ C1).

Special challenges of manual paper tearing

Manual rupture of paper leads to the special challenge of shear effects which cause a tear
to have a width greater than zero. Shear effects occur because the fibres of the paper are
not all torn at the same position as would be the case had the paper been cut and not
torn. Therefore tears are not straight lines, they are ragged and irregular. In addition,
shear effects increase the area of paper snippets and a correctly reassembled sheet will
contain many overlapping regions located along the tears due to shear effects and the
total area of a reassembled pages’ snippets will be significantly greater than the area of
the original page.

Another challenge where shear effects are involved is that the snippets have to be scanned
and subjected to a shape detection process to get a digital representation of the shape.
This shape detection process has to create polygons from image data and has to calculate
for each edge whether it is a ragged (inner) edge or a straight (outer) edge. The need
for a decision of “raggedness” means that there most likely will be a threshold for the
minimum polygon segment length. This further means that some short edges will not be
detected at all but incorporated into adjacent longer edges, or that short edges will be
detected with the wrong edge type (inner versus outer edges).

The above two paragraphs state the two main reasons which make the reconstruction of
manually torn sheets of paper a hard problem. This thesis will take into regard both of
these implications of shear effects.
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4 Integer Linear Programming Formulations

A Integer Linear Program (ILP) is a mathematical formulation of a constraint satisfaction
problem which is often combined with an optimisation problem. In this thesis we will
always use a special case of an ILP called linear mixed-integer program (MIP) which is
defined as:

maximise

cx + hy

subject to

Ax + Gy ≤ b

x ∈ Zn

y ∈ Rp

An instance of the problem is specified by the tuple 〈c, h, A, G, b〉 with c an n-vector, h
a p-vector, A an m x n matrix, G an m x p matrix and b an m-vector. This problem is
called mixed because of the presence of both integer and continuous (real) variables [12].
A solution 〈x, y〉 is called feasible if Ax + Gy ≤ b, infeasible otherwise. It may be the
case that there exists no feasible configuration for a given problem instance. A solution
is called optimal if it is a feasible solution and if the objective function cx + hy is greater
than all objective functions of all other feasible solutions of this problem instance. To
solve a minimisation problem it is only necessary to change the sign of the objective
function and solve the maximisation problem of the resulting instance. It may be the
case that a MIP instance has feasible solutions but no optimal solution—in this case the
problem is called unbounded.

The following sections describe two ILP formulations for solving instances of PP. Both
formulations assemble outer snippets only, the first formulation is called Lilp and uses
the lengths of outer snippet edges, the second formulation—called LAilp—additionally
includes the angles between each pair of adjacent outer snippets.

The software used for evaluating the performance of Lilp and LAilp uses the CPLEX
solver by ILOG, Inc. version 10.0 with its C++ API. Constraints which might be re-
dundant are simply added to the model as CPLEX will eliminate them in the presolving
process. This way it is up to the solver software to discard the more costly constraints
and to keep the less costly ones. Some parts of the ILP formulations use the IloAbs
absolute value calculation feature which is specific to CPLEX and will therefore only be
solvable with CPLEX.

8



4.1 Lilp Formulation

This formulation assigns the outer snippet edges to sheet edges in a way that the sum of
the snippet edge lengths fits the lengths of the sheet edges optimally. Inner snippets are
not regarded.

The following binary variables are introduced to represent assignments of snippet edges
to sheet edges:

xi,w =

{
1 if snippet edge i is part of sheet edge w

0 otherwise

∀i ∈ N , w ∈ K
(1)

The output of a PP instance solved using Lilp is a function which maps each outer
snippet edge in the input to a page edge of a certain output page. The number of output
pages is defined by the amount of corner snippets in the input. Output pages and page
edges are solely defined by the snippet edges assigned to them.

4.1.1 Constraints

The following constraints are defined in Lilp:

• Every snippet edge is part of exactly one sheet edge:∑
w∈K

xi,w = 1 ∀i ∈ N (2)

• Every sheet edge has at least two snippet edges assigned1:∑
i∈N

xi,w ≥ 2 ∀w ∈ K (3)

• Corners always connect short and long sheet edges. This is formulated in the
following constraints:
Of the two edges of any given corner snippet, exactly one edge has to be assigned
to a long sheet edge:∑

w∈KL

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (4)

1This makes use of the assumption that there are four corner snippets for each torn document page.
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Of the two edges of any given corner snippet, exactly one edge has to be assigned
to a short sheet edge.∑

w∈KS

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (5)

• If one corner snippet edge is part of a sheet edge, the other edge of this corner
snippet has to be part of the following paper edge on the same sheet:

xC1
v ,w = xC2

v ,wnext

wnext = w − (w mod 4) + ((w + 1) mod 4)
∀w ∈ K (6)

• Every paper edge has to contain exactly one corner snippet’s first edge and one
corner snippet’s second edge2:∑

i∈C1

xi,w = 1 ∀w ∈ K (7)∑
i∈C2

xi,w = 1 ∀w ∈ K (8)

4.1.2 Objective Function

All integer solutions of the polyhedron defined by constraints (2)-(8) are valid solutions to
the reconstruction problem. Our goal is to find the solution which corresponds closest to
the original document page. Therefore we define an objective function which minimises
the difference between the length of a sheet edge and the sum of all outer snippet edges
which are assigned to that sheet edge. There are several approaches henceforth called
“delta modes” which implement this goal as an integer linear program.

helpvar An auxiliary variable ∆help
w models the difference between the length of the sheet

edge and the sum of the snippet edges (12). This length is limited by the constant
∆Max which will be explained at the end of this section. A non negative variable
∆L

w which is put into the objective (9) is constrained to be greater than the absolute
value of the auxiliary variable with constraints (10) and (11):

minimise
∑
w∈K

∆L
w (9)

∆L
w > ∆help

w ∀w ∈ K (10)

∆L
w > −∆help

w ∀w ∈ K (11)

∆help
w = Sw −

∑
i∈N

Li · xi,w ∀w ∈ K (12)

0 ≤ ∆L
w ≤ ∆Max ∀w ∈ K (13)

2This makes use of the assumption that there are four corner snippets for each torn document page.
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nohelpvar The absolute value calculation can also be done without an auxiliary variable.
In this case there are two constraints (15) and (16) instead of (10), (11) and (12).

minimise
∑
w∈K

∆L
w (14)

∆L
w > Sw −

∑
i∈N

Li · xi,w ∀w ∈ K (15)

∆L
w > −Sw +

∑
i∈N

Li · xi,w ∀w ∈ K (16)

0 ≤ ∆L
w ≤ ∆Max ∀w ∈ K (17)

twovars It is also possible to put the absolute value into the objective with a single
constraint (19) and two non negative variables ∆

Lpos
w for positive length differences

and ∆
Lneg
w for negative length differences on each sheet edge. This method allows

to weight and limit positive differences differently from negative ones3:

minimise
∑
w∈K

∆Lpos
w + ∆Lneg

w (18)

Sw + ∆Lpos
w = ∆Lneg

w +
∑
i∈N

Li · xi,w ∀w ∈ K (19)

0 ≤ ∆Lpos
w ≤ ∆Max ∀w ∈ K (20)

0 ≤ ∆Lneg
w ≤ ∆Max ∀w ∈ K (21)

posdif Tearing paper should only make the sum of the snippet edge lengths greater than
the real sheet edge length due to shear effects which increase edge lengths. Shear
effects occur at each tear and therefore should dominate scanning problems which
can decrease edge lengths by not recognising edges. This delta mode therefore only
allows a positive length difference by omitting the ∆

Lneg
w variables from the previous

formulation:

minimise
∑
w∈K

∆L
w (22)

Sw + ∆L
w =

∑
i∈N

Li · xi,w ∀w ∈ K (23)

0 ≤ ∆L
w ≤ ∆Max ∀w ∈ K (24)

iloabs The natural way to formulate the optimisation is an absolute value function.
The CPLEX optimiser provides a method called IloAbs to create absolute value

3This possibility was not evaluated for reasons of scope but it could improve the practical performance
of the model.
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functions in the ILP model4. This delta mode uses a help variable ∆L
k to store the

absolute value obtained by IloAbs in (26) and puts the helper variables into the
objective function:

minimise
∑

∆L
w (25)

∆L
w = IloAbs

(
Sw −

∑
i∈N

Li · xi,w

)
∀w ∈ K (26)

0 ≤ ∆L
w ≤ ∆Max ∀w ∈ K (27)

iloabsdirect The same CPLEX functionality can be used to put the absolute value
expression directly into the objective. This removes the possibility to limit the
value because it removes the helper variables but it could allow CPLEX to process
more efficiently:

minimise IloAbs

(
Sw −

∑
i∈N

Li · xi,w

)
∀w ∈ K (28)

limitpagemax This formulation is different from the formations so far because it does
not minimise the sum of all length differences in all pages but it minimises the
greatest length difference per page, taking no care of how small other differences
on the same page are. ∆L

q refers to the largest length difference on page q:

minimise
∑
q∈M

∆L
q (29)

∆L
q > Sw −

∑
i∈N

Li · xi,w ∀w ∈ {4q, 4q + 1, 4q + 2, 4q + 3} ,∀q ∈M (30)

∆L
q > −Sw +

∑
i∈N

Li · xi,w ∀w ∈ {4q, 4q + 1, 4q + 2, 4q + 3} ,∀q ∈M (31)

0 ≤ ∆L
q ≤ ∆Max ∀q ∈M (32)

limitglobalmax In this formulation we do not minimise the largest length difference on
each page but the largest length difference on all page edges of all pages. Therefore
only one ∆L suffices and the objective function consists of one variable:

minimise ∆L (33)

∆L > Sw −
∑
i∈N

Li · xi,w ∀w ∈ K (34)

∆L > −Sw +
∑
i∈N

Li · xi,w ∀w ∈ K (35)

4Internally the IloAbs feature of CPLEX is implemented using additional auxiliary decision variables
and special constraints called “Special Ordered Sets” which enforce that at most two adjacent binary
variables in each set are one, the other variables have to be zero.
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0 ≤ ∆L ≤ ∆Max (36)

Most of the delta modes share the common property that they contain ∆Max which is
an upper bound on the maximum length difference for one page edge. The calculation of
these limits is done as follows:

• An auxiliary constant “tear width limit” ∆tearWidth is defined from observations.
This limit indicates the maximum expected width of a tear which is created by
shear effects and is typically a length between five and ten millimetres.

• The maximum allowed length difference ∆Max is calculated from the tear width
limit and the maximum number of tears along a sheet edge, which is assumed to
be five. This assumption comes from the observation that in real world instances
most times there are only three to four tears along one sheet edge. The tearing
simulation in the empirical tests will also take into regard this real world facts. As
each of at most five tears can be ∆tearWidth wide and this applies to both snippets
of the tear:

∆Max = 2 · 5 ·∆tearWidth = 10 ·∆tearWidth (37)

4.1.3 Complete Lilp Formulation

The following is a summary of Lilp with the twovars delta mode:

minimise ∑
w∈K

∆Lpos
w +

∑
w∈K

∆Lneg
w (38)

subject to

Sw + ∆Lpos
w = ∆Lneg

w +
∑
i∈N

Li · xi,w ∀w ∈ K (39)∑
w∈K

xi,w = 1 ∀i ∈ N (40)∑
i∈N

xi,w ≥ 2 ∀w ∈ K (41)∑
w∈KL

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (42)∑

w∈KS

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (43)∑

i∈C1

xi,w = 1 ∀w ∈ K (44)
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∑
i∈C2

xi,w = 1 ∀w ∈ K (45)

xC1
v ,w = xC2

v ,wnext

wnext = w − (w mod 4) + ((w + 1) mod 4)
∀v ∈ U ,∀w ∈ K (46)

0 ≤ ∆Lpos
w ≤ ∆Max ∀w ∈ K (47)

0 ≤ ∆Lneg
w ≤ ∆Max ∀w ∈ K (48)

4.2 LAilp Formulation

This formulation is an extension of Lilp, it uses the whole Lilp model and extends the
constraints and the objective function by defining an order of assigned snippets around
each page such that a circle of snippets arises. The optimisation goal here is to find
the order of snippets where the angles of adjacent snippets (compare Figure 1) add up
to 180 degrees as good as possible. To achieve this, additional binary variables are
introduced:

yi,j =

{
1 if outer snippet edge i is followed by outer snippet edge j

0 otherwise

∀i ∈ N , j ∈ N (49)

The output of a PP instance solved using LAilp is the output from Lilp and a function
which maps each outer snippet edge in the input to another outer snippet edge in the
input. This cycle of outer snippet edges is defined for each page and defines the order of
outer snippets around each document page.

4.2.1 Constraints

The following constraints apply in addition to the Lilp constraints:

• No snippet edge follows itself:

yi,i = 0 ∀i ∈ N (50)

• Every snippet edge follows exactly one snippet edge and each snippet edge is fol-
lowed by exactly one snippet edge:∑

j∈N

yi,j = 1 ∀i ∈ N (51)∑
i∈N

yi,j = 1 ∀j ∈ N (52)
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• At each corner snippet, the second snippet edge is the only one following the first
one and the first snippet edge does not follow the second one:

yC1
v ,j =

{
1 if j = C2

v

0 otherwise
∀v ∈ U ,∀j ∈ N (53)

yC2
v ,C1

v
= 0 ∀v ∈ U (54)

• If a snippet edge j follows another snippet edge i these two snippet edges must be
assigned to the same sheet edge unless i is the first edge of a corner snippet or j is
the second edge of a corner snippet:

yi,j = 1 ⇒ xi,w = xj,w ∀w ∈ K,∀i ∈
(
N \ C1

)
,∀j ∈

(
N \ C2

)
(55)

The implementation of these constraints is described in Section 4.2.3.

• In each sheet there must be exactly one circle built from the follow-relations in-
duced by the variables yi,j which have the value one. The implementation of these
constraints is described in Section 4.2.4.

4.2.2 Objective Function

The objective function of Lilp has to be extended by the additional goal of minimising
all differences between 180 degrees and the sum of the angles between two snippet edges
i and j where yi,j is one. This goal is multiplied with the constant factor WLAilp. This
allows weigthing the LAilp objective relative to the Lilp objective in the combined ILP.
As in Lilp there are different ways of expressing this LAilp goal:

direct This delta mode precalculates the absolute values of the angle differences of all
valid (i, j) combinations and directly puts them into the objective function. This
requires no additional constraints:

ObjectiveLAilp = ObjectiveLilp + WLAilp

∑
i∈(N \ C1)
j∈(N \ C2)

∣∣π − A2
i − A1

j

∣∣ · yi,j (56)

limitglobalmax This method works like the equally named delta mode of Lilp: one new
variable ∆A is introduced, added to the objective and constrained to be greater than
or equal to the absolute value of any angle difference:

ObjectiveLAilp = ObjectiveLilp + WLAilp∆
A (57)

∆A ≤
∣∣π − A2

i − A1
j

∣∣ · yi,j ∀i ∈
(
N \ C1

)
,∀j ∈

(
N \ C2

)
(58)
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Preliminary tests showed that direct creates far better results than limitglobalmax so
the latter delta mode was not evaluated during extensive tests in Section 8. The value of
WLAilp was set to the value 15 which means that 15 degrees angle difference correspond
to about 4 millimetres of length difference5. As the model created satisfying results with
this setting the impact of changing this value was not evaluated in this thesis but it could
be the subject of future work.

4.2.3 Implementation Approaches for Follow Constraints

The following constraint was already introduced in Section 4.2.1: If a snippet edge j
follows another snippet edge i these two snippet edges must be assigned to the same
sheet edge unless i is the first edge of a corner snippet or j is the second edge of a corner
snippet:

yi,j = 1 ⇒ xi,w = xj,w ∀w ∈ K,∀i ∈
(
N \ C1

)
,∀j ∈

(
N \ C2

)
(59)

In the following, three approaches for implementation are shown in the order they were
developed, the most efficient approach is shown last.

Natural approach

The straight-forward method to implement this is given by the following formula:

yi,j − 1 ≤ xi,w − xj,w ≤ 1− yi,j ∀w ∈ K,∀i ∈
(
N \ C1

)
,∀j ∈

(
N \ C2

)
(60)

This is easier viewed using two cases for values of yi,j:

yi,j = 0 ⇒ −1 ≤ xi,w − xj,w ≤ 1 → no restriction on xi,w and xj,w (61)

yi,j = 1 ⇒ 0 ≤ xi,w − xj,w ≤ 0 → xi,w = xj,w (62)

This exactly realises the conditions in (59). The approach given in (60) needs O (n2 · k)
constraints and preliminary tests showed that adding all these constraints to the model
causes the solver to be very slow.

Prime numbers approach

This approach tries to reduce the amount of constraints necessary for each yi,j. The
matrix of combinations of xi,w1 and xj,w2 for one yi,j can be visualised as a table where
each row represents a xi,w1 for w1 ∈ K and each column represents a xj,w2 for w2 ∈ K
(Figure 2). For a given yi,j exactly one of the xi,w1 and one of the xj,w2 decision variables
is set to one according to the Lilp constraints. Therefore only one cell of this table can
be “selected” by the xi,w1 and xj,w2 . If yi,j is one, a cell is “OK” iff w1 = w2. Figure 2
shows such a table for w1, w2 ∈ {1, . . . , 6} and all allowed and forbidden cells.

5This is the --laaweight command line parameter of the solver described in Secction 5.3.

16



xj,6xj,1 xj,2 xj,3 xj,4 xj,5

xi,6

xi,1

xi,2

xi,3

xi,4

xi,5

xj,w2

xi,w1

OK

OK

OK

OK

OK

OK

Figure 2: Constraint table for yi,j = 1 and w1, w2 ∈ {1, . . . , 6}

The following constraints ensure that more than half of all invalid combinations of values
for xi,w1 and xj,w2 are rejected:

xi,1 + xi,3 + xi,5 + . . . + xj,2 + xj,4 + xj,6 + . . . ≤ 2− yi,j

xi,2 + xi,4 + xi,6 + . . . + xj,1 + xj,3 + xj,5 + . . . ≤ 2− yi,j

∀i ∈
(
N \ C1

)
∀j ∈

(
N \ C2

)
(63)

Or in
∑

notation:∑
w1∈KL

xi,w1 +
∑

w2∈KS

xj,w2 ≤ 2− yi,j∑
w1∈KS

xi,w1 +
∑

w2∈KL

xj,w2 ≤ 2− yi,j

∀i ∈
(
N \ C1

)
∀j ∈

(
N \ C2

)
(64)

Figure 3 shows the cells forbidden by the constraints above. These constraints forbid
more than half of the invalid 〈xi,w1 , xj,w2〉 combinations using O (n2) constraints while
the formulation in (60) needs O (n2 · k) constraints to forbid all invalid combinations.

Analogously to (63) it is possible to formulate constraints using the modulus of three:∑
w1∈{w:w∈K,w mod 3=k1}

xi,w1 +
∑

w2∈{w:w∈K,w mod 3=k2}

xj,w2 ≤ 2− yi,j

∀i ∈ (N \ C1) ∀j ∈ (N \ C2)
∀(k1, k2) ∈ {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)} (65)
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xj,6xj,1 xj,2 xj,3 xj,4 xj,5

xi,6

xi,1

xi,2

xi,3

xi,4

xi,5

xj,w2

xi,w1

OK

OK

OK

OK

OK

OK

Figure 3: Cells forbidden by modulus two constraints.

Figure 4 shows the cells forbidden by the modulus three constraints above (six constraints
per yi,j):

The general formulation of the modulus constraints can be done with prime numbers as
follows: ∑

w1∈{w:w∈K,w1 mod p=k1}

xi,w1 +
∑

w2∈{w:w∈K,w2 mod p=k2}

xj,w2 ≤ 2− yi,j

∀i ∈ (N \ C1) ∀j ∈ (N \ C2)
∀(k1, k2) : (k1, k2) ∈ {0, 1, . . . , p− 1}2, k2 6= k1

∀ primes p up to pLimit starting at 2
(66)

This creates p(p − 1) constraints for each prime p, the product of all primes lesser than
or equal to p is the maximum value for the number of sheet edges k such that all of the
invalid combinations are rejected. Table 2 shows the amount of necessary constraints and
primes needed to generate constraints covering several maximum values6 of k. The table
shows that for some maximum values of k this new model needs far more constraints than
the previous model. If k is at least 36 the new model always needs less constraints, the
greater the numbers the better this model performs compared to the previous model7.
Although this approach needs fewer constraints than the natural approach preliminary
tests revealed that it does not perform significantly better.

6For generating constraints, only the maximum values which are an integer multiple of 4 are interesting,
because this maximum equals the number of sheet edges K and each sheet has 4 edges.

7k = 1 . . . 36 means that the solver solves a problem with 9 sheets of paper.
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xj,6xj,1 xj,2 xj,3 xj,4 xj,5
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xi,3

xi,4
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OK

OK
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OK

Figure 4: Cells forbidden by modulus three constraints.

Constraints per yi,j

Primes Maximum for k Prime numbers approach Natural model

2 2 2 2*2 = 4
2, 3 3 2+2*3 = 8 3*2 = 6
2, 3 4 2+2*3 = 8 4*2 = 8
2, 3 5 2+2*3 = 8 5*2 = 10
2, 3 2*3 = 6 2+2*3 = 8 6*2 = 12
2, 3, 5 7 2+2*3+4*5 = 28 7*2 = 14
. . . . . . . . . . . .
2, 3, 5 14 2+2*3+4*5 = 28 14*2 = 28
2, 3, 5 15 2+2*3+4*5 = 28 15*2 = 30
. . . . . . . . . . . .
2, 3, 5 2*3*5 = 30 2+2*3+4*5 = 28 30*2 = 60
2, 3, 5, 7 31 2+2*3+4*5+6*7 = 70 31*2 = 62
. . . . . . . . . . . .
2, 3, 5, 7 35 2+2*3+4*5+6*7 = 70 35*2 = 70
. . . . . . . . . . . .
2, 3, 5, 7 2*3*5*7 = 210 2+2*3+4*5+6*7 = 70 210*2 = 420
2, 3, 5, 7, 11 211 2+2*3+4*5+6*7+10*11 = 180 211*2 = 422
2, 3, 5, 7, 11 2*3*5*7*11 = 2310 2+2*3+4*5+6*7+10*11 = 180 2310*2 = 4620

Table 2: Prime numbers approach: amounts of primes and constraints.
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Efficient approach

This approach further reduces the number of constraints necessary for one yi,j. This is
possible by reformulating the previous constraints so that the number of constraints is
independent of the total number of sheets to be reconstructed. The following constraint
is created for each yi,j, where the absolute value is realised by the IloAbs functionality:

|1 · xi,1 + 2 · xi,2 + · · ·+ k · xi,k

−1 · xj,1 − 2 · xj,2 − · · · − k · xj,k| ≤ k · (1− yi,j)

∀i ∈
(
N \ C1

)
∀j ∈

(
N \ C2

)
(67)

Or in
∑

notation:∣∣∣∣∣∑
w1∈K

w1 · xi,w1 −
∑
w2∈K

w2 · xj,w2

∣∣∣∣∣ ≤ k · (1− yi,j)

∀i ∈
(
N \ C1

)
∀j ∈

(
N \ C2

)
(68)

Exactly one of the xi,w1 is non-zero. The same is true for the xj,w2 in the second sum.
This means that the left part of the inequality can never exceed k − 1. If yi,j is zero,
the right part of the inequality is k and the xi,w in the left side are not constrained. In
case yi,j is one, the right part becomes zero and so must be the left part. The left part
of the inequality becomes zero exactly if xi,w1 and xj,w2 are one with w1 = w2 which
means that snippet edge i and j are assigned to the same sheet edge w1 = w2. Therefore
these constraints imply all constraints from (59) using only O (n2) instead of O (n2 · k)
constraints in (60) .

In preliminary tests the natural and the prime numbers approaches did not yield any
feasible result for instances containing more than two pages within an hour. The efficient
approach allows to get solutions for more than four pages within that time, so only this
approach was further evaluated in the empirical tests in Section 8.

4.2.4 Implementation Approaches for Anti-Circle Constraints

As already mentioned in Section 4.2.1, there must be exactly one circle of follow relations
per sheet given by the variables yi,j. The implementation of this assertion is described
in this section. To prevent all circles of length one and two, the following constraints are
introduced:

yi,i = 0 ∀i ∈ N (69)

yi,j + yj,i ≤ 1 ∀i ∈ N , j ∈ (N \ {i}) (70)

To prevent all circles of length q, O (nq) constraints are needed. It is important, though,
not to forbid any valid circles. A circle is valid if it is the only one, even if this circle
has length 8 which means that the circle consists of corner snippet edges only. A circle
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therefore is invalid only if there is another longer circle on the same sheet and elimination
of such invalid circles can only be done on demand during the solving process. It is
necessary to check for bad circles whenever an integer feasible solution is found and
then forbid unwanted circles by adding new constraints into the model. The following
strategies are used to implement this anti-circle constraints efficiently:

• Circles of length one and two can be prevented with O (n) and O (n2) constraints,
respectively. Since these are not too many constraints they are simply added.

• Constraints preventing circles of length three are added to the model if specified
in a configuration parameter8, some of them are added as “lazy constraints” which
are only evaluated by the solver once an integer feasible solution candidate has
been found and added to the model on demand if they are violated. For each
circle of length three the impact on the objective is calculated (71) and the circles
where this value is above a certain threshold9 are added lazy, the other circles are
added directly into the model. The idea behind this strategy is that the solver will
not often create circles which have a very negative impact on the objective so the
constraints forbidding these circles can be lazy constraints.

∆Circlei1,i2,i3
=
∣∣π − A2

i1
− A1

i2

∣∣+ ∣∣π − A2
i2
− A1

i3

∣∣+ ∣∣π − A2
i3
− A1

i1

∣∣ (71)

• Circles of length four and above are detected and prevented on demand by a callback
mechanism once a feasible solution is found: All circles in a sheet are detected and
all circles but the largest one are forbidden via new constraints.

4.2.5 Complete LAilp Formulation

The following is a summary of LAilp with the twovars delta mode for lengths and the
direct delta mode for angles:

minimise ∑
w∈K

∆Lpos
w +

∑
w∈K

∆Lneg
w + WLAilp

∑
i∈(N \ C1)
j∈(N \ C2)

∣∣π − A2
i − A1

j

∣∣ · yi,j (72)

subject to

Sw + ∆Lpos
w = ∆Lneg

w +
∑
i∈N

Li · xi,w ∀w ∈ K (73)∑
w∈K

xi,w = 1 ∀i ∈ N (74)

8This is the --laacir3 command line parameter of the solver tool described in Section 5.3.
9This is the --laalazy command line parameter of the solver tool. In preliminary experiments a good

value for this threshold was found to be 0.15 radians which means about 8 degrees. This parameter
was not further evaluated for reasons of scope but could be the subject of future work.
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∑
i∈N

xi,w ≥ 2 ∀w ∈ K (75)∑
w∈KL

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (76)∑

w∈KS

(
xC1

v ,w + xC2
v ,w

)
= 1 ∀v ∈ U (77)∑

i∈C1

xi,w = 1 ∀w ∈ K (78)∑
i∈C2

xi,w = 1 ∀w ∈ K (79)∑
j∈N

yi,j = 1 ∀i ∈ N (80)∑
i∈N

yi,j = 1 ∀j ∈ N (81)

∣∣∣∣∣∑
w1∈K

w1 · xi,w1 −
∑
w2∈K

w2 · xj,w2

∣∣∣∣∣ ≤ k · (1− yi,j)

∀i ∈
(
N \ C1

)
∀j ∈

(
N \ C2

)
(82)

xC1
v ,w = xC2

v ,wnext

wnext = w − (w mod 4) + ((w + 1) mod 4)
∀v ∈ U ,∀w ∈ K (83)

0 ≤ ∆Lpos
w ≤ ∆Max ∀w ∈ K (84)

0 ≤ ∆Lneg
w ≤ ∆Max ∀w ∈ K (85)

yC1
v ,j =

{
1 if j = C2

v

0 otherwise
∀v ∈ U ,∀j ∈ N (86)

yC2
v ,C1

v
= 0 ∀v ∈ U (87)

yi,i = 0 ∀i ∈ N (88)

yi,j + yj,i ≤ 1 ∀i ∈ N , j ∈ (N \ {i}) (89)
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5 Tools

Several tools were developed in this thesis to simulate the whole process of reassembling
ruptured paper sheets. The real world process consists of tearing pages into snippets,
shuffling several torn pages into a collection, scanning the snippets to get a digital version
of the snippets and then using a solver algorithm on the data obtained from the scanning
process.

Tearing one page is simulated by the simulator. This tool gets a file as input which
contains various parameters of the rupture process and the randomisation. The output
of the simulator contains the parameters as well as a list of tearing actions done and the
tearing hierarchy. The tearing hierarchy is a tree structure containing at the root node
the initial page, the children of each node are the snippets which were created by tearing
the snippet stored in the node. The leaves of the hierarchy are the final snippets which
are used as an input to the mixer tool. Therefore this hierarchy contains information of
the tearing process and the correct solution.

The mixer processes one or more output files of the simulator. It simulates shear
effects on the tear edges of the snippets as well as edge detection problems during the
scanning process. The main output of the mixer is a file containing the modified snippets
in a shuffled list which can subsequently be used as a problem instance. To have the
possibility to verify the solutions obtained from the solver, the mixer is also capable of
calculating optimal solutions for each input page. This can be done because the mixer

has the information which snippet belongs to which page and because the mixer has the
unmodified snippet data from the simulator which contains the exact locations of the
snippets in the page. The mixer creates one solution file for each input file.

The solver processes the problem instance files from the mixer and creates a solution
file. This solution file has exactly the same format as the solution file from the mixer

but it contains all pages whereas mixer solution files contain only one page each.

The verifier tool is able to calculate a quality rating of the solver output in comparison
with the optimal solutions calculated by the mixer. For visualising tearing hierarchies,
generated problem instances and solutions, the displayer tool was developed.

Figure 5 shows a flowchart of the whole process when using an instance containing a
single document page. Figure 6 shows the mixer, solver and verifier parts of the
process for instances containing multiple document pages.

5.1 Simulator

The simulator—as its name indicates—simulates the tearing of paper. It uses CGAL [1]
for geometric calculations and the CGAL default pseudo random number generator for
randomisations. The simulator is able to replay tearing processes and to output his-
tograms of randomisation parameters. Figure 7 gives a sample output of a simulation
process which was visualised using the displayer.
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simulator
(simulate mode)

simulator
(replay mode)

solver

displayer
(solution mode)

displayer
(hierarchy mode)

verifier

<SimParamMap+ActionList+HierarchySnip>.xml

<SimParamMap>.xml <ActionList>.xml

<OneSnipList>.xml

mixer

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

<OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

stats.txt

hierarchy.png

solution.png

displayer
(solution mode)

solution.png

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

executeable file

Legend:

Figure 5: Dataflow diagram for simulated rupture and subsequent reconstruction of a
single document page.
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solver

verifier

<OneSnipList>.xml

mixer

<OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

<SimParamMap+ActionList+HierarchySnip>X.xml
<SimParamMap+ActionList+HierarchySnip>X.xml N files

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>X.xml
N files

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>.xml

<HierarchySnip+OneSnipList+
EdgeAssignmentList+

FollowAssignmentList>X.xml
N filesstatXs.txt

statsX.txt N files

Figure 6: Dataflow diagram for simulated rupture and subsequent reconstruction of mul-
tiple document pages.

Figure 7: Visualisation of a typical simulator output.
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5.1.1 Usage

The simulator is called using the following command line:

simulator -m <mode> -i <infile> [ -hv -p <paramfile> -o <outfile> ]

The arguments are:

-m <mode> Specify the mode which is one of:

simulate Simulate tearing according to parameters given in a file specified by
-p <paramfile> and store the snippets and the tearing hierarchy into the file
specified by -o <outfile>.

testrandom Output histograms for parameters given in a parameter file indicated
by -p <paramfile>.

replay Replay the tearing protocol in the file specified by -i <infile> according
to parameters in a file specified by -p <paramfile> and write the result to the
file specified by -o <outfile>. (<infile> may be the same as <paramfile>).
This mode was used to evaluate numerical problems in CGAL by replaying
a previously simulated tearing process without new randomisation influence
and verifying the output files or tracing problems in CGAL intersection op-
erators. It can also be used to verify the correctness of the simulator after
a change to the Geometry or Processor class implementations (see Section 6
for implementation details).

5.1.2 Tearing Process

To create problem instances which resemble real world problem instances as closely as
possible, the simulator uses a tearing algorithm which resembles observed behaviour of
people when tearing paper. The algorithm is implemented by the Processor module
which is documented in Section 6.2.4. An example for two tears is visualised in Figure 8.
Parameters controlling this algorithm are provided to the simulator in an XML file.
This algorithm works as follows:

• Start with a rectangle centred around the origin representing the original page in
landscape format (Figure 8a).

• Simulate a tear represented by a straight line. One end point of this “cut line” is
at the top side of the rectangle, the other end point is at the bottom side of the
rectangle. The horizontal positions of the two end points are obtained from the
cut.top and cut.bottom parameters, respectively. Using this cut line, the rectangle
is torn into two snippets—the snippet to the left of the cut line and the snippet to
the right of the cut line. Geometrically this is done by intersecting the rectangle
with the cut line (Figure 8b).
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(a)
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B

cut.top

cut.bottom
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(d)

A
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cut.top

cut.bottom

A
B

(f)

Figure 8: Tearing process visualisation for two tears.
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• Place the right resulting part using the following transformations whereas the origin
is used as reference point (Figure 8c):

– center the bounding rectangle10,

– mirror as specified by the mirror.x and mirror.y parameters,

– rotate as specified by the rotate parameter and

– translate as specified by the translate.x and translate.y parameters.

• Apply the same transformations to the left part but this time omit the mirroring
process, because to mirror one part against the other one it is only necessary to
mirror one part. After doing this the two parts are located on top of each other
and put together into a stack (Figure 8d).

• Rotate this stack left or right by 90 degrees as specified by the turn.left parame-
ter (Figure 8e).

To simulate the desired number of cuts specified by the cut.count parameter the last four
items of this list are repeated as often as necessary. The last iteration consists of a cut
only (Figure 8f).

5.1.3 Parameters

The simulation parameters are specified to the simulator in an XML file and are stored
into each simulated XML file along with the tearing actions and tearing hierarchy data.
A simulation parameter is more than just a value given in an XML configuration file, it
is a value generator configured by the XML data.

Two flavours of parameters exist: the parameters giving a boolean output and the pa-
rameters giving a numerical output. The boolean output number generator is configured
with a given probability to return true. For the numerical output number generators
there are two implementations: a generator returning an fixed number configurable in the
XML and a generator returning a gauss-distributed value where the center and standard
deviation can be configured in the XML11.

Additionally, numerical parameters can be configured with a setting whether the numbers
they return should be scaled to given boundary values or not—this setting is called
relation and is one of absolute or relative. Whenever a value is retrieved from a parameter,
a lower and upper bound is given12. If return is the returned value and value is the value
obtained from the number generator, the absolute setting limits the value from the number
generator at the bounds using the formula

return = min (boundupper, max (boundlower, value)) (90)

10The bounding rectangle is depicted as a dashed line in Figure 8c
11The number generators can easily be extended by another number generator returning specially dis-

tributed values.
12For example the value of cut.top is bounded by the left and right X coordinates of the bounding

rectangle enclosing the page or the stack of snippets which shall be torn next.
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Type Value Type Configuration

bool boolean probability
fixed numerical value
gauss numerical center, dev

Table 3: Parameter types of the simulator.

whereas the relative setting scales the value retrieved from the number generator in a
way that if the number generator returned values in [−1, 1] those values are mapped to
[boundlower, boundupper] by the following formula:

value′ =
boundlower + boundupper

2
+

value · (boundupper − boundlower)

2
(91)

which is afterwards again limited using the formula

return = min (boundupper, max (boundlower, value′)) (92)

The following example illustrates the relative parameter type: if the simulator

wants to retrieve a value for the X position of the first tear on the top edge of a
page, it asks the cut.top parameter for a value in [Xtop left corner, Xtop right corner] =
[−147.5 mm, 147.5 mm]13. If the value generator is configured relative and would re-
turn 0.5, the cut would start at 73.25 mm. The setting absolute would return 0.5 mm.
This setting was introduced to model the fact that people start tearing approximately in
the middle of the paper sheet or snippets they are holding and the smaller those stacks
of paper get the more thorough is the middle of the paper chosen before the tearing
is done. Table 3 gives an overview of the available parameter generator types and their
configuration. Table 4 shows the concrete parameter names used by the simulator along
with their units, sensible relation settings and example values.

5.2 Mixer

The mixer is used to create an unordered collection of polygons created by one or several
executions of the simulator. The output of the mixer is of the format which is expected
by the solver. Additionally the mixer is capable of creating solution files containing
perfect solutions. These perfect solution files are used by the verifier as a benchmark
for solutions created by the solver.

To ensure that any solver for finding the original document pages is not biased by the
position or sequence of snippets processed, the mixer generates a random permutation of
the snippets and normalises the position of each snippet by centring it around the origin
and rotating it by an arbitrary amount. Figure 9 shows part of a typical mixer output.

13A landscape A4 page has a length of 295 mm of which the half length is 147.5 mm.
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Name Unit Relation Generators Useful Example value

paper.width mm absolute fixed 295 for A4 landscape.
paper.height mm absolute fixed 210 for A4 landscape.
cut.count amount absolute fixed 4
cut.top mm relative numerical gauss:

center = 0, dev = 0.06
cut.bottom mm relative numerical gauss:

center = 0, dev = 0.18
mirror.x boolean - bool 50% probability
mirror.y boolean - bool 50% probability
rotate radians absolute numerical gauss:

center = 0, dev = 0.08
translate.x mm absolute numerical gauss:

center = 0, dev = 3
translate.y mm absolute numerical gauss:

center = 0, dev = 3
turn.left boolean - bool 50% probability

Table 4: Simulator parameters.

Figure 9: Visualisation of mixer output.
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Figure 10: The mixer option -d visualised on a corner snippet.

Figure 11: The mixer option -k visualised on an outer non-corner snippet.

Two important characteristics of the real world paper tearing process are modelled by the
mixer: shear effects and edge detection problems during the snippet scanning process.
Shear effect simulation is visualised in Figure 10, it is modelled by displacing the vertices
of the snippets subject to the following rules:

• do not displace corner points,

• displace points along page edges only along those edges14,

• displace other points away from the centre of the snippet so that the area of the
snippet increases.

Edge detection problems during the snippet scanning process are simulated by removing
snippet edges shorter than a given minimum length. As visualised in Figure 11, this can
reduce the area of a snippet.

The mixer is called using the following command line:

mixer -o <outfile> [ -hvcrms -d <displace> -k <rmdist> -p <solutionprefix> ]

<inputpage1.xml> <inputpage2.xml> ...

Some useful mixer arguments are:

-c Center snippets around the origin.

14This implicates that only tear edges are moved by this displacement.
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-r Randomly rotate snippets.

-m Randomly mirror snippets.

-s Shuffle snippet list before export

-d <displace> Randomly displace snippet points (shear effect simulation). The maxi-
mum displacement is given in <displace>.

-k <rmdist> Remove edges shorter than <rmdist> (edge detection problem simulation).

-p <solutionprefix> Activate the solution generator and create solution files
as an additional output. Solution files get their name from the given
<solutionprefix> and the basename15 of the respective <input file>, e.g.
the input files my/instances/page1.xml and my/instances/page2.xml in
combination with -p my/solutions/solution would yield the solution files
my/solutions/solution page1.xml and my/solutions/solution page2.xml.

-o <outfile> Output file for the resulting XML collection.

5.3 Solver

The solver gets a Puzzle problem instance—an unordered collection of polygons—as
input16 and returns a solution file containing this collection plus assignments of outer
snippet edges to page edges. If configured for using LAilp, the solver also returns the
order of outer snippet edges around each document page in its output file. The solver

is called using the following command line:

solver -i <infile> -o <outfile> [ -hv -t <tilim> -m <modcon>

--cplexNames --cplexExportModel --cplexExportFinalModel

--cplexExportSolution --cplexIncumbentExport <incdir>

--cplexMipDisplay <dispprio> --cplexMipInterval <dispint>

--cplexMipEmphasis <emph> --cplexRootAlg <ralg>

--cplexNodeAlg <nalg> --cplexVarSel <vsel> --cplexBrDir <br>

--cplexNodeSel <nsel> --cplexProbeTime <prtilim> --cplexBtTol <bttol>

--laexact --lacir3 --laangles --laeldelta <ldeltamode>

--laadelta <adeltamode> --laalazy <lazy> --lalweight <lweight>

--laaweight <aweight> ]

15The basename of a file name is the last part of the name if the file name includes a path, i.e. the
basename of /tmp/directory/input.xml is input.xml

16The solver therefore cannot process an output coming directly from the simulator because such an
output contains a tearing hierarchy and no snippet list. The mixer has to be used to create an input
file for the solver.
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Important solver arguments are:

-i <infile> Specification of the input file which has to be an XML file containing a
problem instance.

-o <outfile> Specification of the output file which will be an XML file containing the
problem instance and its solution.

-t <tilim> This specifies the time limit for optimisation in seconds, the default is the
CPLEX default of 1e75 seconds, i.e. eternity.

--cplexNames Store the names for CPLEX extractables (variables, constraints) in the
model (this is very useful for debugging).

--cplexExportModel Export the initial CPLEX model (to the file initialmodel.lp).

--cplexExportSolution Export the CPLEX solution (to the file solution.sol).

--cplexIncumbentExport <incdir> Export incumbent solutions into the directory
specified by <incdir>. The filenames are <incdir>/incumbent <IDX> <OBJ>.xml,
created from the index of the incumbent <IDX> and the objective value <OBJ>.

--cplexMipEmphasis <emph> Specify the CPLEX MIPEmphasis parameter. The de-
fault is the CPLEX default 0, <emph> ∈ {0, 1, 2, 3, 4})

--cplexBrDir <br> Specify the CPLEX BrDir parameter. The default is the CPLEX
default 0, <br> ∈ {−1, 0, 1})

--lacir3 Create anti-circle constraints prohibiting circles of three edges following one
another. If this option is not set the constraints are created on demand in the
incumbent callback as soon as a violation is detected in the incumbent callback.
This option can only be used when solving with LAilp.

--laangles Solve using LAilp (if this argument is omitted, the solver uses Lilp).

--laeldelta <ldeltamode> Set the length delta calculation mode to minimise length
differences: Possible values: iloabs, iloabsdirect, helpvar, nohelpvar,
twovars, posdif, limitpagemax and limitglobalmax. The mathematical for-
mulations corresponding to these values were described in Section 4.1.2.

--laadelta <adeltamode> Set the angles delta calculation mode to minimise angle dif-
ferences: Possible values are direct (this is the default) and limitglobalmax.
The mathematical formulations corresponding to these values were described in
Section 4.2.2.

--laalazy <lazy> Specify a threshold for the angle difference above which a constraint
is put into the model as a lazy constraint. (default is 0.15 radians). The evaluation
of this argument is proposed as future work, in this thesis the default value was
used for all tests.
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--lalweight <lweight> The weight for length differences (how to scale millimetres).
The default is 1.0, the evaluation of this parameter is proposed as future work.

--laaweight <aweight> The weight for angle differences (how to scale radians). The
default is 15.0 which means that a length difference of 5 mm has the same effect on
the objective function as an angle difference of 15◦. The evaluation of this argument
is proposed as future work.

One of the following option combinations has to be specified to select one of the two ILP
formulations:

• --laeldelta <ldeltamode> to solve using Lilp with the specified delta mode,

• --laangles --laeldelta <ldeltamode> to solve using LAilp, again the delta
mode for lengths has to be specified.

5.4 Verifier

The verifier gets a solver output file containing one or several solved pages and
solution files containing one page each as input. It verifies the solver output against the
solution files which were created by the mixer. The output of the verifier is a statistics
file and a “verified solution” file for each input solution file. The input and output data
flow has been visualised in the diagram in Figures 5 and 6 for one and several input pages,
respectively.

A verified solution file has the same structure as a solution file but it contains the hierarchy
of an original solution file together with the best match from the solver output assigned to
this original solution. This way the solver output is combined with the correct solution
information and can be drawn using the displayer and visually inspected. Figure 12
shows three verified solution files.

(a) (b) (c)

Figure 12: Solution display examples from three separate instances: (a) shows a perfect
single-page solution, (b) an partially correct one, and (c) shows one page of a partially
correct solution of a two-page instance.
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The following command line is expected by the verifier:

verifier -d <dir> -s <solverfile> [ -hv -o <statout> ]

<solution1.xml> <solution2.xml> ...

The most important arguments are:

-o <statout> Output file for writing verification statistics (the default is to use standard
output).

-d <dir> Specification of directory where verified output files shall be created (XML
files containing a hierarchy and an assigned collection of snippets).

-s <solverfile> The solver output file which shall be verified.

Finding the best match between a solver output and several solution files is not a trivial
task. The approach taken in this thesis is to find a best match between one of the pages
in the solver output and one of the perfect solutions and calculate statistics depending
on this best match. Two possibilities to do this were taken into consideration, in the
following we will call them “solution-centred” and “solver-centred”.

The solution-centred approach stores all perfect solutions into the verified file and assigns
the best matching solver page to each of the solutions. The solver-centred approach stores
all pages from the solver output in the verified file and assigns the best matching original
page to each page in the solver output. This means that the first approach always
stores each solution but sometimes may assign the same page from solver output twice
to different solutions which furthermore means that parts of the solver output will not
be present in the verified file. Contrarily the whole solver output will be present in the
verified file in the second approach, with the possibility that some solution files will not
be present because one solution file never was the best match to a page in the solver
output.

The verifier implemented in this thesis uses the second approach which ensures that the
solver output is always completely present in the verified file. This allows visual inspection
of the whole solver output with the possible drawback of missing tearing hierarchies in
the verified file.

After assigning the best match, the verifier checks if it is possible to increase the
number of correct edge assignments by rotating each page by 180◦ and each page for
which this is the case is stored into the verified solution rotated this way. Algorithm 1
sketches the algorithm used for verification.

5.5 Displayer

The displayer is used to visualise simulated tearing hierarchies, polygon collections and
solutions as shown in Figures 7, 9 and 12. This tool supports drawing multiple input
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Create a global statistics container;
foreach solution file s given as argument to the verifier do

Find the page p in the solver output which contains the highest amount of
snippets in s;
// Calculations on p are now done in comparison to s.
Create a data container for a verified file;
Add the tearing hierarchy of s to the container;
Calculate the number of correct edge assignments of p;
if rotating p by 180◦ increases this number then

Rotate p by 180◦;
end
Calculate the edge and follow assignment statistics of p;
Add this statistics to the global statistics container;
Add the snippets and the edge and follow assignments of p to the verified file
data container;
Create a name for the verified file using the name of s;
Write the verified file container to this file name;

end
Write the global statistics container to the statistics file;

Algorithm 1: Verification Algorithm

entities in tiles as can be seen in Figure 9. An input entity can be a file—as is the case
when drawing solutions—or it can be a snippet in a file—as is the case when drawing
problem instances.

The displayer is called using the following command line:

displayer -m <mode> -o <outfile> [ -hvfa

-n <tiles> -p <width> -d <drawdepth> -s <stretch> ]

<input1.xml> <input2.xml> ...

The most important parameters are:

-m <mode> Specification of display mode. Valid values are hierarchy, collection and
solution.

-n <tiles> Number of items/tiles displayed in the same row.

-p <width> Pixel width of one item/tile output.

-o <outfile> Output file name (output is in PNG format).
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6 SnipLib

To implement the tools described in the previous section, the SnipLib C++ library
was designed and implemented. This library facilitates the implementation of tools in
the Puzzle domain. The tasks of creating instances, solving instances and verifying the
results are cleanly separated in the tools abstractions provided by the generic SnipLib
framework.

An overview of the most important classes, templates and interfaces is given in Figure 13
using the UML [4] notation. The inheritance relations between classes are shown as well
as class templates and—drawn as dashed class symbols—instantiated class templates.
The UML package symbols are used to show the C++ namespaces in which the classes
are located. On top of the figure generic classes can be seen, below is the SnipLib

namespace containing the core data types and the XML and Tools namespaces for more
specialised data types within SnipLib. In some of the UML diagrams in the following
sections, classes which are not part of the discussed module are shown for the sake of
completeness (e.g. as base classes). These classes are depicted using a grey background
to emphasise the fact that they are not part of the discussed module.

6.1 Generic Modules

Some generic modules were put into the global namespace because they are very useful
but not present in the C++ Standard Template Library (STL).

PtrTarget is a class which allows to access objects only via reference counted smart
pointers from the boost library [6]. It is the universal handle class used in SnipLib.
Usage of smart pointers via PtrTarget results in less memory leaks. This paradigm also
unifies the object management in SnipLib.

Visitor Pattern is a programming pattern for visiting class hierarchies where different
actions have to be taken for different classes using RTTI17. This pattern consists of the
VisitorBase class and the Visitor<T, R, TRef> and Visitable<R> template classes.
The code was taken from [3] and adapted to allow visiting const objects.

CmdlineConfig provides a generic method to process command line arguments and to
store them into a configuration object. The CmdlineConfig class is used by deriving
from it and defining command line arguments, conversions, consistency conditions and
help messages in the derived class.

17Run Time Type Identification or Run Time Type Information, a C++ language feature which allows
to compare types of objects referenced by pointers of arbitrary type.
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SnipLib

InfoPoint

::CGAL::Polygon_2<InfoPoint>

::CGAL::Polygon_2<P>

Figure 14: UML diagram: classes in the Geometry module.

6.2 Snippet Processing Modules

This section covers the SnipLib modules which provide functionality for managing snip-
pets, tearing simulation and graphical output. Among other classes, three important
class hierarchies are implemented with an abstract interface class on top: Action, Snip
and SimParam. These are interfaces to all tearing actions, all snippets and all simulator
parameters, respectively. All these abstract classes are managed using the PtrTarget

paradigm and can be visited using the Visitor Pattern.

Geometry provides basic geometric types used for paper tearing. The InfoPoint class
is derived from the CGAL::Point 2 class and adds meta information about the ID of the
point and whether the edge starting at this point is an original page edge or a tear edge.
This class is used in connection with the CGAL::Polygon 2 template to create polygons
containing meta information about tearing. Figure 14 gives an overview of the classes in
this module.

GFX provides a wrapper around the GD library [7] which allows the user to define a
drawing canvas with a physical size measured in pixel and a logical size measured in
millimetres. This canvas can be used to draw snippets, lines and text using physical
and/or logical coordinates.

6.2.1 Action

The Action module contains all tearing actions supported by the Processor module. The
structure of this module is shown in Figure 15. As the Processor module documentation
(Section 6.2.4) will cover the calculations done with the storage classes in this module,
only a brief description of the classes in this module is given here. The following classes
are derived from the abstract Action interface class:

CutAction which stores a straight cut line,

CreateStackAction which creates a new empty StackSnip and contains no data ele-
ments,

PutFirstOnStackAction which puts the first Snip in the Processor snippet list onto
the currently active StackSnip and contains no data elements and
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SnipLib

PtrTarget Visitable<bool>

Action
<<interface>>

CutAction PlaceAction

TranslatePlaceAction

RotationPlaceAction

MirroringPlaceAction

CreateStackAction PutFirstOnStackAction

Figure 15: UML diagram: classes in the Action module.

PlaceAction which is an abstract class representing a linear transformation. Concrete
subclasses of PlaceAction are:

TranslationPlaceAction which stores a CGAL::Vector and represents a snippet
translation,

RotationPlaceAction which stores an angle and represents a snippet rotation and

MirroringPlaceAction which stores two boolean values and represents mirroring a
snippet along the X and/or Y axis.

6.2.2 Snippet

This module contains all classes representing snippets. The generic interface to snippets
is the abstract Snip class which stores an ID and allows to retrieve all polygons contained
in the snippet18 and also allows retrieval of the bounding rectangle of all those polygons.
Figure 16 shows the classes defined in this module.

The OneSnip class represents one paper snippet and is a single CGAL polygon with edge
annotations (inner versus outer edge) in its InfoPoint vertex storage elements. Instances
of this class can also store a reference to a parent snippet and the information whether
this OneSnip is located to the left or to the right of the line cutting the parent snippet.

The HierarchySnip class represents a OneSnip which has been torn into two pieces by the
Processor and yielded two snippets. Instances of this class store references to their two
OneSnip children and to the line which has been used to cut. As the children eventually
also get torn into several pieces, this class contains a method to obtain all leaf snippets
of type OneSnip below the current HierarchySnip instance.

18As explained in the following paragraphs, a Snip can contain a polygon or a stack of other Snip objects,
therefore a Snip can contain several polygons which is important to remember when discussing
operations on Snip objects.
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SnipLib

PtrTarget Visitable<bool>

Snip
<<interface>>

OneSnip

::CGAL::Polygon_2<InfoPoint>

HierarchySnip

PlacedSnip StackSnip

Figure 16: UML diagram: classes in the Snippet module.

The PlacedSnip class represents a Snip which has been placed using a PlaceAction.
Similarly, the StackSnip class represents a stack of Snip instances which typically oc-
curs when tearing a paper into pieces and stacking them to tear them again in another
direction. Stacking is triggered by an action of type CreateStackAction followed by two
actions of type PutFirstOnStackAction in the Processor.

The snippet module also contains a debugging function which can print any Snip to an
std::ostream in human readable form. The verbose modes of the simulator outputs this
debugging information after each action of the Processor which allows close inspection
of the tearing process.

6.2.3 SimParam

This module contains the representations of the simulation parameters which were intro-
duced in Section 5.1.3. The generic interface to simulation parameters is the abstract
SimParam class which provides methods to obtain the name, type and relation of a simula-
tion parameter and to obtain values from parameters. Figure 17 shows an UML diagram
of this module.

The BooleanSimParam class can only return boolean values and is configurable with a
probability to return true, whereas the abstract NumberSimParam class restricts child
implementations to returning numeric values. Derived numeric parameter classes are the
FixedSimParam class which always returns a preset value and the GaussSimParam class
which returns numeric values distributed according to a Gaussian (standard normal)
distribution. The numbers are generated using a “Box-Muller normalised distribution
generator” [5] .

41



SnipLib

PtrTarget Visitable<bool>

SimParam
<<interface>>

NumberSimParam BooleanSimParam

FixedSimParam GaussSimParam

Figure 17: UML diagram: classes in the SimParam module.

6.2.4 Processor

This module implements the Processor class which is able to apply Action instances to
Snip instances to simulate the tearing process. The underlying process has already been
specified in Section 5.1.2, this section describes the data types which have been created
to execute this process in software.

The tearing process is modelled as an algorithm operating on two lists, the input list
of actions and the working list of snippets with the initial state of one polygon of A4
paper size stored as the only element of the snippet list. In the following description of
all possible actions, the snippet list is referred to as “the List” and a stack of snippets is
referred to as “a Stack”. The following actions are sufficient to model the tearing process:

CutAction cuts the only item in the List into two items and put the resulting two items
into the List, the item which was created left of the cut line comes into the List
first. This action can only be executed with a single item currently in the List.

PlaceAction transforms the first item in the List using the affine transformation returned
by the PlaceAction.

CreateStackAction appends an empty Stack to the end of the List.

PutFirstOnStackAction removes the first item in the List and puts it onto the Stack
which is the last item of the List. To execute this action, the List must contain at
least two items and the last item must be a Stack.

6.2.5 XML

This module contains generic XML serialisation base classes and serialiser classes which
allow to serialise and deserialise many of the SnipLib types and assists in the creation
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SnipLib::XML

XMLHelper

Handler<T>
<<interface>>

ActionListHandler

PolygonHandler

OneSnipListHandler

OneSnipHandler

HierarchySnipHandler

AllContainer

AllContainerHandler

SimParamMapHandler

Figure 18: UML diagram: classes in the XML module.

of custom XML serialisation classes for custom solution representations. It is a wrapper
around the libxml2 [14]. Figure 18 shows an UML diagram of the classes in this module.
Appendix A shows the file sniplib.dtd which is the document type definition for all
XML containers.

The following generic classes are defined in this module: XMLHelper provides static meth-
ods which assist in using libxml2 and take care of memory allocation and character con-
version issues, eliminating the need to explicitly cast values and to explicitly free values
returned by libxml2. The Handler<C> template is derived from XMLHelper and defines
an interface for serialisation of the class C into an XML node and vice versa. This tem-
plate contains functionality to write serialised XML nodes to files and to load XML nodes
from files. All XML serialisation should be done using a class derived from Handler<C>.
The following serialisation handler classes for SnipLib types are implemented in this
module:

SimParamMapHandler serialises STL maps containing SimParam instances indexed
by their name. The following example describes the fixed simulation parameter
paper.width, the gauss distributed parameter cut.top and the boolean parameter
mirror.x:

<simparams>

<param name="paper.width" relation="absolute">

<fixed value="295" />

</param>

<param name="cut.top" relation="relative">

<gauss center="0" dev="0.05" />

</param>

<param name="mirror.x" relation="bool">

<bool probability="0.5" />

</param>

</simparams>
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ActionListHandler serialises STL lists containing Action instances. The following is an
example for a tearing protocol from the simulator containing two tears:

<protocol>

<cutaction paramA="210" paramB="-12.07" paramC="1622.063"/>

<createstackaction />

<placetaction translateX="77.61" translateY="-0"/>

<placeraction rotate="-0.077"/>

<placetaction translateX="1.7497" translateY="-1.89"/>

<putfirstonstackaction />

<placetaction translateX="-69.88" translateY="-0"/>

<placemaction mirrorX="no" mirrorY="yes"/>

<placeraction rotate="-0.022"/>

<placetaction translateX="-0.26" translateY="1.21"/>

<putfirstonstackaction />

<placeraction rotate="-1.57"/>

<cutaction paramA="167.06" paramB="-47.6" paramC="5258.2"/>

</protocol>

PolygonHandler serialises polygons holding InfoPoint instances. An example is given
in the description of the HierarchySnipHandler.

OneSnipHandler serialises OneSnip instances using the PolygonHandler. An example
is given in the description of the HierarchySnipHandler.

HierarchySnipHandler serialises HierarchySnip instances using the OneSnipHandler.
The following example shows a HierarchySnip which is the initial page of size A4.
This snippet contains a cut line and parts of the first child which is a OneSnip are
also shown:

<hierarchysnip id="Sn4xEUs4">

<cutline paramA="210" paramB="-42.2" paramC="3799.71"/>

<polygon>

<point x="-147.5" y="-105" startcut="0" id="Sn4xEUp0"/>

<point x="147.5" y="-105" startcut="0" id="Sn4xEUp1"/>

<point x="147.5" y="105" startcut="0" id="Sn4xEUp2"/>

<point x="-147.5" y="105" startcut="0" id="Sn4xEUp3"/>

</polygon>

<children>

<child type="left">

<onesnip id="Sn4xEUs11">

<polygon> ... </polygon>

</onesnip>

</child>

<child type="right"> ... </child>
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</children>

</hierarchysnip>

OneSnipListHandler serialises STL lists containing OneSnip instances using the One-

SnipHandler. The XML of OneSnipList classes looks as the following example:

<collection>

<onesnip ... > ... </onesnip>

<onesnip ... > ... </onesnip>

...

</collection>

AllHandler serialises the AllContainer data type which contains an STL map of
SimParam instances, an STL list of Action instances, a HierarchySnip and an
STL list of OneSnip instances. AllHandler directly or indirectly makes use of
all the other handler classes described above. The following example shows the
structure of a complete SnipLib XML file:

<?xml version="1.0" encoding="UTF8"?>

<!DOCTYPE sniplib SYSTEM "sniplib.dtd">

<sniplib>

<simparams> ... </simparams>

<protocol> ... </protocol>

<hierarchysnip id="..."> ... </hierarchysnip>

<collection> ... </collection>

</sniplib>

Section 6.4 will show how to reuse the functionality of this module to create a custom
solution representation and corresponding XML handlers useable by all tools in SnipLib.

6.3 Tool Modules

This section describes the library modules corresponding to the software tools from Sec-
tion 5. As the library is solution representation independent, the library provides either
a complete tool as in the case of the simulator or a tool missing solution representation
dependent functionality as in the case of the mixer and displayer, or no tool at all but
a framework for creating a tool as in the case of the verifier and solver.

The Simulator module provides the simulator tool which is used to simulate paper tear-
ing and to create problem instances. The displayer tool is provided by the Displayer

module. This tool is able to display collections of snippets and snippet hierarchies which
were created using the simulator or the mixer. The solution display functionality is
missing in this module and can be implemented by deriving a custom implementation.
The Mixer module provides the mixer tool which is able to merge multiple simulated torn
pages into a collection of snippets which then constitute problem instances and can be
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SnipLib

VerifierBase

Verifier<Solution, Config, Statistic>

Figure 19: UML diagram: classes in the Verifier module.

used as an input to the solver. To generate solution files during the mixing process it is
necessary to create a custom implementation of the mixer which reuses this module and
writes solution files. The usage and further capabilities of the mixer tool are documented
in Section 5.2. Information about the implementation of custom displayer and mixer

tools will be given in Section 6.4.

6.3.1 Verifier

This module provides generic functionality to create verifier tools which are able to

• verify the consistency of a solver output file,

• verify the solver output file with solution output files generated by a mixer,

• calculate statistics about the correctness of the solution returned by the solver
compared to the solutions created by the mixer and

• create “verified solutions” which contain both the tearing hierarchy of the perfect
solution and the best matching solver output. This allows easy visual inspection of
solver results (for an example see Figure 12).

The VerifierBase class is a concrete base class defining and implementing the verifier
configuration (using CmdlineConfig) and a generic statistics gathering module. The
Verifier<SolutionT, ConfigT, StatisticT> template is derived from the Verifier-
Base and provides a generic framework for reading solver output, reading solution files,
performing the verification tasks and writing solution output into user-specified locations.
Figure 19 shows the classes in the Verifier module.

6.3.2 Solver

This module provides a framework to create solver tools for Puzzle problem instances.
Figure 20 shows the UML diagram of this module. The module is enclosed in the Solver
namespace and provides the following classes and templates:

Config provides the basic configuration a solver needs, and custom implementations
should derive their own configuration from this class.
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Instance is the representation of a Puzzle problem instance. An object of type Instance
is created from a list of OneSnip objects. This class creates various comfort data
structures to make it easier to create a solver algorithm. Instances are passed to
the solver algorithm as a const variable, they can be used but not modified by
the solver algorithm. This reduces the possibility for programming errors while not
reducing the performance of accessing every detail of the instance.

This class defines its own Instance::Snippet class derived from OneSnip. It stores
additional information about snippets; the area of the snippet is calculated as well
as the zero based index of a snippet in the collection of snippets in the instance
(which is an STL vector for performance reasons).

Instance also defines a new internal class Instance::SnippetEdge which stores
information about each inner and outer snippet edge like their ID, index, previous
and next edges’ indices, the length of the edge and whether the edge is a page or a
tear edge.

Finally, the Instance class also calculates the set of all indices of snippets which
are corner snippets.

Algorithm<ConfigT, InstanceT, ResultT> is the template which is the base class for
all custom solver implementations. An Algorithm receives configuration and in-
stance objects of type const ConfigT& and const InstanceT& and contains three
abstract methods which have to be overridden:

solve This method has to solve the given instance and return true upon success
and false otherwise.

getResult This method shall return the solution representation obtained by a pre-
vious run of solve. The solution representation type is defined by the ResultT
template parameter.

outputResult This method has to be overridden to store the solution into a file.
Most times this method will simply call the appropriate XML serialiser.

Application<AlgorithmT> is a template configured with the solver algorithm which
shall be used for solving. This template is a wrapper around the algorithm providing
management functionality and facilitating the easy creation of a solver binary.

The concept of separating the application and the algorithm was created to allow
algorithms to use other algorithms as it is done by the WrapperAlgorithm template
in the LAilp implementation described in Section 7.

6.3.3 CplexSolver

This module provides a generic interface for creating solver tools using the CPLEX
optimiser and is a specialisation of the Solver module. Figure 21 shows the classes in
this module and how they are derived from classes in the Solver module:
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CmdlineConfig

SnipLib::Tools::Solver

Instance Algorithm<Config, Instance, Result>

Application<Algorithm>

Config

Figure 20: UML diagram: classes in the Solver module.

CmdlineConfig

SnipLib::Tools::Solver

Instance

Algorithm<Config, Instance, Result> CplexAlgorithm<Config, Instance, Result, Model>

CplexModelConfig CplexConfig

Figure 21: UML diagram: classes in the CplexSolver module.

CplexConfig is a class which allows to configure basic CPLEX parameters in addition to
generic solver parameters. The parameters which are directly mapped to CPLEX
parameters have the CPLEX default values as defaults.

CplexModel holds basic data structures of the CPLEX model. It controls access to the
objective expression and is able to handle user cuts and lazy constraints.

CplexAlgorithm<ConfigT, InstanceT, ResultT, ModelT> is the specialisation of the
Algorithm template and provides a framework to create a solver algorithm class
using an ILP formulation which is solved with CPLEX. The following important
methods have to be provided by custom implementations deriving from this tem-
plate:

createModel creates the CPLEX model.

configureCplex configures the CPLEX solver. This method must register the very
important incumbent callback. Other tasks this method may perform are
registering other callbacks, setting parameters, setting a starting solution and
setting branching priorities.

Solutions of the solving process are retrieved via incumbent callbacks. The Cplex-

Algorithm internally provides the CplexIncumbentI class—an abstract incumbent
callback class—which has to be used as a base class for a custom incumbent call-
back. This callback has to be registered in the configureCplex call. By using the
incumbent callback to retrieve solutions, this module is able to create incumbent
solution output without additional effort by the user of SnipLib.
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XMLHelper

Handler<T>
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AllContainer

AllContainerHandler

CustomContainerHandler

CustomContainer

CustomHandler

Custom
<<serializes>>
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Handler<Custom>

Handler<CustomContainer>

Handler<AllContainer>

Figure 22: UML diagram: custom XML serialisation using the XML module.

6.4 Reuse

Many modules and classes in SnipLib facilitate reuse when working with SnipLib. This
section gives an overview of the classes which are very likely to be reused and how this
should be done.

All of the generic modules—as their name already suggests—are very likely to be reused.
Especially the Visitor Pattern is very helpful in creating drawing functionality for new
solver strategies. The CmdlineConfig will be reused indirectly every time a Config class
of a generic tool is reused.

Whenever a new solving algorithm is implemented it will be necessary to create new XML
processing classes derived from the XML::Handler<C> template class. Suppose the new
formulation is called “Custom” and the type of the new data is therefore Custom. Then
a new “CustomContainer” data type should be derived from the XML::AllContainer,
containing Custom. A handler class has to be derived from XML::Handler<Custom>,
assume to call it “CustomHandler”. Finally, a handler for the new CustomContainer has
to be implemented. This custom handler uses CustomHandler to serialise the custom data
and XML::AllHandler to serialise the base class (XML::AllContainer) data. Figure 22
shows an UML diagram of this example.

The Displayer module is designed for reuse and adapted for drawing custom solution
representations by deriving from the internal DrawItem class and providing a custom
DrawVisitor. This visitor has to be able to draw the custom DrawItem containing a
solution representation read from an XML file.

Custom implementations of the mixer should reuse the Mixer class and override the
createAndOutputSolution method to allow usage of the -p option to generate a solution
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file for each input file which then can be used to verify solver outputs. A mixer without a
custom createAndOutputSolution method throws an exception and aborts when usage
of the -p option is attempted.

The Verifier module must be reused to create a verifier tool working with a cus-
tom solution representation. This is done by deriving from the Verifier<SolutionT,

ConfigT, StatisticT> template.

If there is a need for new simulation parameter random number generators, a new
SimParam class can be derived from the BooleanSimParam or NumberSimParam class.

As the Solver and CplexSolver modules cannot be used without deriving from them,
their reuse has already been described in Sections 6.3.2 and 6.3.3, respectively.
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7 Implementation of both ILP formulations using SnipLib

This section describes how SnipLib is used to implement tools to test the Lilp and
LAilp formulations. As Lilp is part of LAilp only one set of tools is implemented for
which it is possible to activate either Lilp or LAilp in its calculations. These tools
will be called the “LAilp tools” in the following. Figure 23 shows an UML diagram
of the most important classes implemented including the classes of SnipLib which are
directly reused. Data types and implementation details of the LAilp tools are given in
the following sections.

7.1 Storage Classes

The following classes are defined for storage purposes:

EdgeAssignment stores assignments of snippet edges to page edges, corresponding to
variables xi,w in Lilp and LAilp.

FollowAssignment stores assignments of snippets to following snippets, corresponding
to variables yi,j in LAilp.

XML::AllContainer extends the SnipLib::XML::AllContainer data type and adds the
possibility to store lists of edge and follow assignments and mirror assignments.

SolverResult stores edge and follow assignments and is used to extract solver results from
the CPLEX model. This data type takes the place of the ResultT template param-
eter of the CplexAlgorithm<ConfigT, InstanceT, ResultT, ModelT> template
and is used for implementing the SolverAlgorithm.

To serialise lists containing objects of type EdgeAssignment and FollowAssignment or
to serialise an XML::AllContainer, the XML handler classes XML::FollowAssignment-
ListHandler, XML::EdgeAssignmentListHandler and XML::AllHandler are imple-
mented.

7.2 Tool Implementation Classes

The following describes the LAilp tools which are derived from SnipLib tools or imple-
mented using SnipLib tool templates.

Mixer is derived from the SnipLib Mixer class and extended to allow the generation of
perfect solution files. This is done using an algorithm which calculates the perfect
edge and follow assignments from the coordinates of the vertices before the mixer

changes them to create the solver input instance. Although mirrored problem
instances are not solved in this thesis, the mixer supports them and also generates
solution information including mirroring information.
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(a) (b) (c)

Figure 24: Solution display examples.

Displayer is derived from the SnipLib Displayer class and extended to be able to display
solution information. Solutions are drawn as can be seen in the examples given in
figure 24. Snippets assigned to page edges are drawn around the hierarchy in the
centre of the canvas. If an assigned snippet really belongs to the page it is connected
to the snippet in the solution by a line. Solution 24a is a perfectly correct solution,
24b contains snippets assigned to wrong edges and wrong follow assignments and
24c contains snippets from other pages (detectable by the missing connection line),
snippets assigned to wrong edges of the page and wrong follow assignments.

Verifier is derived from the SnipLib Verifier<SolutionT, ConfigT, StatisticT>

template instantiated as Verifier<LengthsAngles::XML::AllContainer> using
the defaults for the Config and Statistic template parameters. The main effort
in the implementation of this tool was the algorithm for finding the best match be-
tween the solver output pages to the solution pages (see Algorithm 1 in Section 5.4).

Solver implements the Lilp- and LAilp-based solver tool. This is done us-
ing two classes derived from the Algorithm template; the WrapperAlgorithm<

AlgorithmT> template and the SolverAlgorithm. The configuration class is
SolverConfig which is derived from CplexConfig.

The WrapperAlgorithm<AlgorithmT> is a simple algorithm which takes the prob-
lem instance and creates a modified problem instance by adding as many very small
corner snippets as necessary so that the number of corner snippets in the whole in-
stance becomes an integer multiple of four19. The modified instance is passed to
the algorithm given in the template parameter.

The SolverAlgorithm is a CplexAlgorithm template which uses the custom
SolverConfig for configuration, the default Instance as an instance data type,
the custom SolverResult class as result representation and the custom Solver-

Model as CPLEX model container.

By default the solver creates a model containing the Lilp formulation. Using the
--laangles command line switch causes the LAilp formulation to be generated in
the model so that this solver can be used for solving both formulations.

19This functionality is required by the assumptions made in Section 3.
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8 Tests and Results

Within this section, test settings and results for Lilp and LAilp are presented. The tests
were performed using the tools explained in previous sections which were implemented
using SnipLib. The test server was a machine with two Dual Core AMD Opteron(tm)
270 Processors with 2 GHz and 8 GB RAM in total with CPLEX version 10.0.

Instances for testing were created using the simulator and mixer tools. Each instance
consists of the simulated pages, the solver input file and the solution files created by
the mixer which are needed for verification of the solver output.

For each tested parameter combination, ten instances were generated and each test was
run on all instances. In the evaluation of the results, only the averages of the ten instances
were analysed to rule out the influence of special cases in the results.

A very important parameter is the ILP formulation and the instance size (amount of
pages in the instance), the following instance sizes were created: 1, 2, 3, 4, 5 and 10.
As Lilp can handle larger instance sizes than LAilp, the latter formulation was never
evaluated with ten pages in the input because preliminary tests showed this would take
days to find any result (if any result was found at all).

The simulator and the mixer are responsible for separate parts of the instance gener-
ation and both have their own parameters. The size of the parameter space makes it
impossible to test all possible combinations of settings within reasonable time. Therefore
“default parameter sets” for the simulator and mixer parameters were calculated from
observations on real world instances. The simulator parameter combinations are tested
only in combination with the mixer default parameters and vice versa. The solver pa-
rameters, which have an even larger parameter space, are tested using instances created
with default simulator and mixer parameters and the best performing parameters are
used as solver default parameters.

This reduction of the parameter space still results in a large number of parameter combi-
nations which have to be tested. An overview of the evaluated parameter space is given
in Table 5.

8.1 Tested Parameters

This section explains which parameters of the simulator, mixer and solver were used
for testing and shows the tested values and the default value for each parameter.

8.1.1 Simulator

The simulator parameters control how the paper tearing is simulated (the details were
explained in Section 5.1.3). Table 6 shows the parameters and their default values and
the parameter settings for the cut.count, cut.top and cut.bottom parameters which
were selected for testing.
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Test Simulator Mixer Solver
ILP Lilp & LAilp Lilp & LAilp Lilp LAilp
simulator parameter combinations 9 1 1 1
mixer parameter combinations 1 12 1 1
solver parameter combinations 1 1 15 15
Instance sizes 1-5 1-5 1-5, 10 1-5
Distinct configurations a 2x45 2x60 90 75
Number of runs 2x450 2x600 900 750
Total runs 3750

aThis is calculated from the number of ILP formulations times the parameter combinations of
simulator, mixer and solver times the amount of different instance sizes tested.

Table 5: Amount of parameter combinations and configurations tested. The tool param-
eter combinations are multiplied by the distinct instance sizes to be tested. This result
is multiplied by ten because each result is averaged over ten different runs. If each run
is limited to twenty minutes the worst case runtime of all 3750 tests is 1250 hours or 52
days. As the solver is single threaded and three tests could be done simultaneously on
three processors and because small instances sometimes did not need the whole twenty
minutes, the wall clock runtime for all tests was about two weeks.

Parameter Tested Relation Generator Tested Values Default

paper.width no absolute fixed - 295
paper.height no absolute fixed - 210
cut.count yes absolute fixed {3, 4, 5} 4
cut.top yes relative gauss center = 0 center = 0

dev = {0.03, 0.06, 0.09} dev = 0.06
cut.bottom yes relative gauss center = 0 center = 0

dev = {0.09, 0.18, 0.27} dev = 0.18
mirror.x no boolean bool - 50%
mirror.y no boolean bool - 50%
rotate no absolute gauss - center = 0

dev = 0.08
translate.x no absolute gauss - center = 0

- dev = 3
translate.y no absolute gauss - center = 0

- dev = 3
turn.left no boolean bool - 50%

Table 6: Parameters of the simulator with regard to testing.
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(a) (3, 0.06, 0.18) (b) (4, 0.06, 0.18) (c) (5, 0.06, 0.18)

(d) (3, 0.03, 0.09) (e) (3, 0.06, 0.18) (f) (3, 0.09, 0.27)

Figure 25: Samples of simulator test instances: the numbers below the tearing hierar-
chies indicate the parameters: (cut.count, cut.top, cut.bottom). The top three pages
differ in the cut.count parameter, the bottom ones in the cut.top and cut.bottom
parameter settings. The configuration (3, 0.06, 0.18) is shown twice for the sake of com-
parison.

The reason for selecting those three parameters for testing is that the amount of tears
done (cut.count) and the amount of variation in one tear (cut.top and cut.bottom)
contributes most to differences in the size of the LP model and are also most likely to
vary in real manual paper tearing.

Figure 25 shows typical tearing results when using the selected parameter combinations.
In the upper three pages the influence of different numbers of cuts is shown, in the lower
three pages the effect of different tear slope variability is shown.

8.1.2 Mixer

The mixer parameters control how snippets from single pages are changed to model shear
effects during tearing and the inexact process of digitalisation of the snippets. Table 7
shows all mixer parameters, their default values and how the -d and -k parameters are
varied for testing.

The -d parameter models shear effects which cause the snippet borders to be extended
outwards and was selected for testing because shear effects are a central reason that the
paper tearing problem is difficult to solve. With exact tear edges and angles the solver
could always pick the exact match or enumerate possible solutions from a very limited
amount of exact matches. It will be shown, though, that a total absence of fuzziness
of the input data can prevent the solver from proving that the currently best found
solution really is the optimal solution.
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Parameter Tested Tested Values Default

-c no - active
-r no - active
-m no - not active
-s no - active
-d yes -d {0, 1, 2, 3} -d 2
-k yes -k {0, 5, 10} -k 5

Table 7: Parameters of the mixer with regard to testing.

(a) (b) (c)

Figure 26: Samples of mixer test instances: (a) shows a changed outer angle, (b) shows
a removed edge which changes the outer angle even more and (c) shows a snippet which
is no longer an outer snippet because the short outer edge has been removed.

The -k parameter degrades the data by modelling that some very short snippet edges
will not be detected by the scanning process. This parameter was selected for testing
because it models a crucial part of the Puzzle problem which is not modelled in any other
way in this thesis—the digitalisation process of the snippets.

Mirroring was not evaluated because it would only affect corner snippets in Lilp solving
and because LAilp is not capable of handling mirrored snippets. The extension of LAilp
for the handling of mirrored snippets could be the subject of future investigations.

Figure 26 shows two examples for the effect of the mixer parameters in test instances:
26a illustrates the effect of the -d parameter which changes the outer angle of the marked
vertex, 26b and 26c visualise the two possible effects of the -k parameter which removes
edges, thereby changing angles and possibly even reducing the number of outer snippets.

8.1.3 Solver

Gathering empirical data about the solving process is done with an emphasis on the
performance of the solver. The reason for this are the following observations made in
preliminary tests:
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Parameter Tested Values

--cplexMipEmphasis {0, 1, 2, 3, 4}
--cplexBrDir {−1, 0, 1}

--laeldelta
{iloabs, iloabsdirect, nohelpvar, helpvar,
twovars, posdif, limitpagemax, limitglobalmax}

--lacir3 {not active, active}

Table 8: Tested parameters of the solver.

• some parameter settings of CPLEX cause the solver to find the optimum within
seconds, whereas other settings result in hours of computation time until the first
feasible solution is found,

• if the optimality gap of the solution found by CPLEX is greater than a few percent,
the correctness of the solution is bad. That means it pays off to find a near optimal
or optimal solution.

Table 8 shows the tested solver parameters. The delta mode selection in combination
with the --cplexMipEmphasis parameter which controls whether CPLEX solves with an
emphasis on optimality or feasibility was selected for evaluation because these two param-
eters seemed to be the most promising performance tuning parameters. In some cases,
the --cplexBrDir branch direction setting “-1“ seemed to outperform any other setting
and so this parameter was also evaluated in combination with the other parameters.

For LAilp, the delta modes posdif and limitglobalmax were not considered for evalua-
tion as they performed bad on Lilp which is a subset of LAilp. The --lacir3 parameter
was evaluated to compare the CPLEX “lazy constraint” functionality to a circle elimi-
nation procedure which methodically checks circle constraint violations as soon as a new
best integer feasible solution is found by CPLEX (see Section 4.2.4).

8.2 Page Sets

The first step in creating an instance of m pages is to use the simulator to simulate
paper tearing m times with the same parameters. This yields a collection of torn pages
which is called “page set” in the following. To produce comparable results, each page set
of a certain size and with certain parameters was created only once for all tests requiring
a page set with this number of pages and simulation parameters. Table 9 shows all
generated page sets and for which tests the respective page sets were used.

8.3 Solver Test Results

Finding the solver parameter combination which performs best is the objective of the
solver tests. The results of these tests are shown prior to the simulator and mixer

test results. They were evaluated prior to those tests because the empirically “best”
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(cut.count,
cut.top,

cut.bottom)
Pages Tests

(3, 0.03, 0.09) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(3, 0.06, 0.18) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(3, 0.09, 0.27) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(4, 0.03, 0.09) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(4, 0.06, 0.18) 1, 2, 3, 4 and 5 solver, simulator, mixer: Lilp and LAilp
10 solver, simulator, mixer: Lilp

(4, 0.09, 0.27) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(5, 0.03, 0.09) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp and LAilp
10 simulator: Lilp

(5, 0.06, 0.18) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

(5, 0.09, 0.27) 1, 2, 3, 4 and 5 simulator: Lilp and LAilp
10 simulator: Lilp

Table 9: Page sets created for evaluating Lilp and LAilp.
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Parameter Tested Values

--cplexMipEmphasis {0, 1, 2, 3, 4}
--cplexBrDir {−1, 0, 1}

--laeldelta
{iloabs, iloabsdirect, nohelpvar, helpvar,
twovars, posdif, limitpagemax, limitglobalmax}

Instance Size 1, 2, 3, 4, 5 and 10

Table 10: Solver tests: parameter combinations for Lilp.

Parameter Tested Values

--cplexMipEmphasis {0, 1, 2, 3, 4}
--cplexBrDir {−1, 0, 1}

--laeldelta
{iloabs, iloabsdirect, nohelpvar,
helpvar, twovars, limitpagemax}

--lacir3 {not active, active}
Instance Size 1, 2, 3, 4 and 5

Table 11: Solver tests: parameter combinations for LAilp.

parameter combination from the solver tests was used as solver default parameters for
performing the simulator and mixer tests.

The solver tests were done on the default simulator parameters cut.count=4,
cut.top=0.06 and cut.bottom=0.18 and the default mixer parameters -d 2 -k 5. Each
instance size was tested for each parameter combination using ten instances, all results
presented in the following diagrams are accumulated results over ten instances of the
same size and also accumulated over all parameters not shown in the respective diagram.
Tables 10 and 11 show the tested solver parameter combinations for evaluating Lilp
and LAilp, respectively.

LILP

The results of the solver tests for the Lilp formulation can be seen in Figures 27, 28
and 29. Figure 27 shows the percentage of instances which could be solved to opti-
mality versus the --cplexMipEmphasis parameter setting. For an instance size of one
page, all instances could be solved to optimality. This figure shows that the setting of
“4” (documented in the CPLEX manual as “find hidden feasible solution”) performs
significantly better for larger instance sizes than all the other settings and that values
“2” and “3”, documented as “emphasise optimality” and “emphasise the best bound”,
respectively, perform inferior to the remaining settings “0” (this is the default which bal-
ances optimality and feasibility) and “1” (emphasise the search for feasible solutions).
Because of these results, the solver tests of the LAilp formulation do not test the
--cplexMipEmphasis setting for values of “2” and “3” and the simulator and mixer

tests for Lilp use --cplexMipEmphasis 4 as default solver parameters.
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Figure 27: Optimally solved Lilp instances versus --cplexMipEmphasis.

Figure 28 shows the percentage of instances solved to optimality versus the delta mode
setting. It can be seen that limitpagemax and limitglobalmax are never solved op-
timally for instances containing more than one page. Furthermore the performance
of helpvar and posdif degrades faster than the remaining delta mode settings and
are clearly unfavourable for instances containing three or more pages. Because of the
performance degradation of posdif which is even worse than the performance degra-
dation of helpvar, the delta mode posdif was not considered for LAilp tests. The
limitglobalmax delta mode was omitted for the LAilp tests too, because it performs
very similar to limitpagemax while limitpagemax has more degrees of freedom—one
delta variable for each page instead of one delta variable for all pages. It might seem
illogical to use limitpagemax in the LAilp tests because it yields no optimal solutions
for more than one page, but in fact this delta mode always yielded a feasible solution,
even for large instances where helpvar and posdif sometimes yielded no solution. Be-
cause of its superior performance shown in the next paragraph, the limitpagemax was
also evaluated with LAilp. Candidates for the delta mode setting of the simulator

and mixer tests in combination with Lilp are iloabsdirect, iloabs, nohelpvar and
twovars. Of these four, twovars is best for the largest instance sizes and never falls far
behind other delta modes and so twovars was used for the simulator and mixer tests.

Figure 29 shows the amount of correct edge assignments from Lilp versus the delta mode
setting. The performance of limitpagemax and limitglobalmax with regard to correct
edges is clearly superior to all other delta modes for an instance of one page. For larger
instances the performance does not vary much between the delta modes except for the
helpvar and posdif delta modes which fall behind because they yielded no optimal so-
lutions at all for larger instance sizes. Although the limitpagemax and limitglobalmax

delta modes never achieve optimal results for instance sizes greater than one page, they
generate solutions with a quality comparable to the other delta modes. As the experi-
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Figure 28: Optimally solved Lilp instances versus --laeldelta.

ments were time bounded by twenty minutes each, it cannot be known from these ex-
periments whether limitpagemax and limitglobalmax would perform equal or better
than other delta modes for larger instance sizes if they were solved to optimality. For an
instance size of one page where all instances in all delta modes could be solved to opti-
mality within one second or less, these two delta modes should clearly be favoured over
the other delta modes and are therefore ideal candidates for use in a hybrid algorithm
which uses Lilp for optimisation of single pages only.

A fact not shown in the figures is that the branch direction setting did not significantly
influence the solver performance or solution quality. As this setting has a default value,
this default value was used as for simulator and mixer tests. Also not shown is the fact
that from all delta modes only helpvar and posdif failed to yield a feasible solution
for some large instances. This supports omitting those two delta modes from further
evaluation.

LAILP

The following paragraphs describe the test results obtained using LAilp. Because LAilp
never solved any instance to optimality for instance sizes of two and more pages (within
twenty minutes) the ratio of optimal to feasible solutions is not analysed. Instead, the
ratio of feasible solutions to runs without any feasible solution is analysed in Figures 30,
31 and 32.

Figure 30 shows the percentage of feasible solutions for the reduced set of MIPEmphasis
values. The value of “1” which stands for an emphasis in feasible solutions clearly out-
performs the balanced emphasis “0” and the emphasis on hidden feasible solutions “4”.
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Figure 29: Correct edge assignments from Lilp versus --laeldelta.

Therefore the solver and mixer tests use --cplexMipEmphasis 1 during the evaluation
of LAilp.

Figure 31 shows how the circle elimination without lazy constraints performs slightly
better than the circle elimination using the callback together with lazy constraints. As
the callback is always required for correct identification of inconsistent solutions and as
the lazy constraints do not improve performance, the solver and mixer tests for LAilp
do not use the --laacir3 parameter.

The histogram in Figure 32 shows the percentage of feasible solutions versus the reduced
set of delta modes. As could be expected from observations from the Lilp tests, the
performance of the helpvar delta mode degrades very fast for increasing instance sizes.
The iloabsdirect delta mode stays ahead of the other delta modes for instance sizes
of two and three pages but falls behind them for larger instance sizes. The other delta
modes iloabs, limitpagemax, nohelpvar and twovars perform nearly identical with
regard to output of feasible solutions.

Figures 33 and 34 show the percentage of correctly reproduced edge and follow assign-
ments versus the delta modes. The limitpagemax delta mode performs better than all
other delta modes for an instance size of one page, for larger instances the performance
does not vary much between the delta modes.

A fact not shown in the diagrams is that for the --cplexMipEmphasis 1 --laeldelta

limitpagemax setting, each instance containing one page was solved to optimality within
five to ten seconds. Other delta modes were sometimes faster but not by more than one
or two seconds and with far worse results for correct edge and follow assignments. This
means that the --cplexMipEmphasis 1 --laeldelta limitpagemax setting could be
used in a hybrid algorithm which uses LAilp for solving sub-instances consisting of one
page in short time and with reasonable quality results.
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Figure 30: Feasibly solved LAilp instances versus --cplexMipEmphasis.
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Figure 31: Feasibly solved LAilp instances versus --laacir3.

64



0%

20%

40%

60%

80%

100%

1 page 2 pages 3 pages 4 pages 5 pages

In
st

an
ce

s
so

lv
ed

to
fe

as
ib

ili
ty

helpvar
iloabs

iloabsdirect
limitpagemax

nohelpvar
twovars

Figure 32: Feasibly solved LAilp instances versus --laeldelta.
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Figure 33: Correct edge assignments from LAilp instances versus --laeldelta.
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Figure 34: Correct follow assignments from LAilp instances versus --laeldelta.

Figure 35 compares the Lilp and LAilp formulations with regard to the number of
correct edge assignments in the solver tests. We can see that LAilp improves the
number of correct edges for single page instances, for all bigger instances there is no
significant difference in the percentage of correct edges. The number of correct edges of
the limitpagemax delta mode is better by a small amount of six percent because the
performance of this deltamodes is already very good in Lilp, so it cannot improve much
more in LAilp.

For the delta mode in the simulator and mixer tests, the twovars setting was chosen
like in the Lilp tests. This was done to be able to compare the simulator and mixer

test results between Lilp and LAilp and because this delta mode neither outperforms
nor under-performs the other delta modes. The twovars delta mode seems to be the best
delta mode in average and so it was chosen as default value for subsequent simulator

and mixer tests.

8.4 Simulator Test Results

The simulator tests evaluate the simulator parameter influence on the performance
and correctness of the results of the ILP formulations, each parameter combination is
tested on each instance size with ten instances. Table 12 shows the mixer and solver

parameters used for these tests. All results presented in the following diagrams are
accumulated results over ten instances of the same size.
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Figure 35: Comparison of correct edge assignments between Lilp and LAilp.

Parameters Lilp Parameters LAilp

mixer -d 2 -k 5

solver --laeldelta twovars

--cplexMipEmphasis 4

--cplexBrDir 0

--laeldelta twovars

--cplexMipEmphasis 1

--cplexBrDir 0

Instance Sizes 1, 2, 3, 4 and 5

Table 12: Simulator tests: default parameter settings.
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Figure 36: Run time for Lilp instances versus number of tears.

LILP

The simulator test results for Lilp are shown in Figures 36 and 37. The first figure
shows a plot of the average runtime of one instance versus the number of tears done, where
the time is shown on a logarithmic scale. In this plot we see that for fewer tears—which
means for fewer snippets per page—the runtime increases dramatically. Of all instances,
only two with five pages and three tears per page could not be solved optimally. Instances
with fewer snippets per page clearly have a smaller search space of integer solutions and
therefore should need less time, not more, than bigger instances. One possible explanation
for the better performance of larger models is that they have less dense constraint matrices
and can be processed faster by CPLEX because the branch and cut process is guided to
optimal solutions faster.

Figure 37 shows that for instances containing one to three pages, fewer tears per page
and therefore fewer snippets mean a better correctness of the results. This effect clearly
occurs at the step from three to four tears per page which approximately corresponds to
eight and sixteen snippets per page, respectively. For even more snippets per page this
effect is no longer so clear and sometimes the correctness even becomes better by a small
amount. This effect can be explained by the mixer variation of the vertex coordinates
which has a small effect if a page is torn into eight snippets (three tears) because the
snippets do not become very small. Tearing a page into about 16 or 32 snippets (four
and five tears) creates much smaller snippets and so the mixer degrades the data used
for the reassembling process far more than for three tears.

Not shown in plots is the effect of the cut.top and cut.bottom parameters which affect
the tear slope variability. These parameters affect the solve time and edge assignment
correctness only by a small amount where a larger tear slope variability means a slightly
larger solve time and a slightly better edge assignment correctness.
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Figure 37: Correct edge assignments for Lilp instances versus number of tears.

LAILP

In contrast to the surprising run time results with Lilp, the LAilp simulator tests show
that more tears per page cause the solving process to take longer or even find no result
at all. Instances with five tears per page could never be solved optimally within the time
limit of twenty minutes, some instances with five tears per page and five pages did not
yield any feasible solution at all.

Figures 38 and 39 compare the percentage of correct edge and follow assignments versus
the number of tears. It can be seen very clearly that the correctness is very good for
instances containing one page if these instances contain three or four tears per page. In
general the accuracy becomes worse for higher numbers of tears and larger instances. A
further result is that the follow assignment correctness is always about twice as good as
the edge assignment correctness (except for single page instances where both are nearly
the same). This means that the model performs better for follow assignments and worse
for edge assignments and improvements of the model should first be attempted in the
edge assignment strategy.

As in Lilp, the effect of the cut.top and cut.bottom parameters which affect the tear
slope variability is not shown in figures as these parameters do not affect correctness or
run time significantly.

Figure 40 compares the number of correct edge assignments between Lilp and LAilp
instances in the simulator tests. We can see that LAilp improves the number of correct
edges for single page instances and for two page instances with three tears. Above that,
there is no significant difference in the percentage of correct edges.
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Figure 38: Correct edge assignments for LAilp instances versus number of tears.
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Figure 39: Correct follow assignments for LAilp instances versus number of tears.
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Figure 40: Comparison of correct edge assignments between Lilp and LAilp.

Parameters Lilp Parameters LAilp

simulator cut.count = 4 cut.top = 0.06 cut.bottom = 0.18

solver --laeldelta twovars

--cplexMipEmphasis 4

--cplexBrDir 0

--laeldelta twovars

--cplexMipEmphasis 1

--cplexBrDir 0

Instance Sizes 1, 2, 3, 4 and 5

Table 13: Mixer tests: default parameter settings.

8.5 Mixer Test Results

In order to test the influence of mixer parameters on the performance and solution quality
of the solver, two pagesets of the original ten pagesets with default solver parameters
are “mixed” into five instances each, creating a total of ten instances (this is done for all
tested instance sizes). This strategy allows to evaluate the effects of the mixer parameters
on the same pageset but there are still two pagesets used for all tests, reducing the possible
effect of special cases in the randomised pagesets from the simulator. Table 13 gives a
compact overview of the mixer test settings.

LILP

The results are presented in Figures 41 and 42, whereas the first figure shows that no
randomised vertex movement causes the solve times to increase. This is especially true
for small instance sizes, with two pages the solver process needs only 1

100
as much time

if the results are randomised using -d 1 compared to -d 0, for three pages this factor is
still 1

10
. The second figure shows that for larger randomisation values the results get worse
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Figure 41: Run time for Lilp instances versus amount of vertex randomisation.

which is an intuitive result. The fact that no randomisation means long run times can
be explained by problems which occur if the relaxed solution of the ILP has an objective
value of zero which is always the case if all snippets are in the model exactly as they
were torn. In this case CPLEX has to visit a large amount of the search space to prove
optimality and so no optimal solution is found because the found solution was not proved
optimal within twenty minutes.

LAILP

The same effect occurs for LAilp where the only instances which did not yield any
feasible solution were instances with no vertex randomisation. Figures 43 and 44 show
the percentages of correct edge and follow assignments when using LAilp. No vertex
randomisation means longer solve times, but as shown in the figures this also means a
better edge and follow assignment correctness. Because of the time limit it is difficult
to state results for larger instance sizes except that only small instances can be solved
efficiently and that this conclusion is independent of the vertex randomisation.

In all the mixer test results, the effect of the -k parameter which deletes small edges was
not shown, because this parameter does not have a noticeable effect on run time or edge
or follow assignment correctness.
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Figure 42: Correct edge assignments for Lilp instances versus amount of vertex randomi-
sation.
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Figure 43: Correct edge assignments for LAilp instances versus amount of vertex ran-
domisation.
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Figure 44: Correct follow assignments for LAilp instances versus amount of vertex ran-
domisation.
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9 Conclusions and future work

Conclusions

Two ILP formulations were developed, Lilp for solving with regard to lengths of snippet
edges only and LAilp which also takes into account the angles between snippets. For
the implementation and evaluation of these formulations, a C++ library was developed.
This library allows to create solver applications and verification tools for custom solver
approaches. It offers a generic framework using an extensible XML data interface for
input and output of instance and solution data. The library facilitated the evaluation
of the ILP formulations and it provides an foundation for future work in this problem
domain.

A central conclusion from the tests is that the ILP formulations perform very good—both
in run time and correctness—for the reconstruction of single page instances. For larger
instances the run times quickly get unacceptable and no optimal solutions are found, in
addition the correctness of the found solutions gets worse. This means that neither Lilp
nor LAilp is useable as a stand-alone solution for reconstruction of torn documents, but
both approaches could well be used in a hybrid algorithm where instances containing one
page have to be solved often as a subproblem.

The ILPs were evaluated using the CPLEX solver from ILOG, Inc. where one config-
uration parameter—the MIPEmphasis—was identified as very important regarding the
performance of LAilp where only the emphasis on feasible solution yields results for
instance sizes above three pages. Without evaluating the influence of this parameter on
the solver performance no instance sizes above three pages could have been evaluated for
LAilp.

Eight flavours of objective functions for edge lengths and two flavours of objective func-
tions for angles were developed and evaluated, where six of the edge lengths approaches
yield the same objective function but with different ILP formulation methods for abso-
lute value calculations, sometimes using special features of CPLEX. From the evaluation
we can conclude that it pays off to use a good absolute value calculation method and
sometimes it pays of not to use the CPLEX specific absolute value calculation method.

A conclusion not central to the Puzzle problem itself is that the most challenging pro-
gramming task of the whole thesis was the visualisation tool, but it pays off to have
such a tool which is able to show problem instances, torn pages and verified solutions
where it is possible to visually verify the quality of a solution and check if the verification
algorithms work correctly.
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Future work

Future work is possible in several areas of the Puzzle domain in general and in several
areas of possible solutions covered in this thesis in particular. As the evaluation of the
parameters was very time consuming only a few CPLEX solver parameters could be eval-
uated and only a few parameters of the developed ILPs could be evaluated. Promising
CPLEX parameters for future evaluation could be the variable and node selection param-
eters, for LAilp the ratio between the weight of length differences and angle differences
and their effect on solution quality could be evaluated. Another promising possibility is
to extend LAilp to take into account not only the angles between snippets but also the
length of the cut edges enclosing these angles. If two long edges enclose an angle the
angle is presumably correct, contrarily an angle enclosed by a long and a short edge can
change very much if one of the two vertices of the short edge is displaced by shear effects
(see Figure 26 for an example).

In the general problem domain of reconstructing torn sheets of paper various heuristic
approaches could be taken to reconstruct pages, possibly using one of the ILP formu-
lations developed in this thesis as sub algorithms for solving single page instances, but
even without using any solver approach from this thesis it is possible to use the C++
library and the tools and data format from this thesis for generation of problem instances,
solution verification and visualisation.
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A XML document type definition.

<!ELEMENT sniplib (

simparams?, protocol?, hierarchysnip?,

collection?,

edgeassignments?, followassignments?, mirrorassignments?)>

<!ELEMENT simparams (param+)>

<!ELEMENT param (fixed|gauss|bool)>

<!ATTLIST param

name CDATA #REQUIRED

relation (absolute|relative|bool) #REQUIRED

>

<!ELEMENT fixed EMPTY>

<!ATTLIST fixed

value CDATA #REQUIRED

>

<!ELEMENT gauss EMPTY>

<!ATTLIST gauss

center CDATA #REQUIRED

dev CDATA #REQUIRED

>

<!ELEMENT bool EMPTY>

<!ATTLIST bool

probability CDATA #REQUIRED

>

<!ELEMENT onesnip (polygon)>

<!ATTLIST onesnip

id CDATA #REQUIRED

>

<!ELEMENT polygon (point+)>

<!ELEMENT point EMPTY>

<!-- the id is the id of the polygon edge following this point -->

<!ATTLIST point

x CDATA #REQUIRED

y CDATA #REQUIRED

id CDATA #REQUIRED

startcut CDATA #REQUIRED

>
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<!ELEMENT hierarchysnip (cutline, polygon, children)>

<!ATTLIST hierarchysnip

id CDATA #REQUIRED

>

<!ELEMENT cutline EMPTY>

<!ATTLIST cutline

paramA CDATA #REQUIRED

paramB CDATA #REQUIRED

paramC CDATA #REQUIRED

>

<!ELEMENT children (child*)>

<!ELEMENT child (hierarchysnip|onesnip)>

<!ATTLIST child

type (left|right) #REQUIRED

>

<!ELEMENT protocol (

(cutaction|placemaction|placeraction|placetaction|

createstackaction|putfirstonstackaction)+

)>

<!ELEMENT cutaction EMPTY>

<!ATTLIST cutaction

paramA CDATA #REQUIRED

paramB CDATA #REQUIRED

paramC CDATA #REQUIRED

>

<!ELEMENT placemaction EMPTY>

<!ATTLIST placemaction

mirrorX (yes|no|true|false|1|0) #REQUIRED

mirrorY (yes|no|true|false|1|0) #REQUIRED

>

<!ELEMENT placeraction EMPTY>

<!ATTLIST placeraction

rotate CDATA #REQUIRED

>

<!ELEMENT placetaction EMPTY>

<!ATTLIST placetaction

translateX CDATA #REQUIRED

translateY CDATA #REQUIRED

>

<!ELEMENT putfirstonstackaction EMPTY>
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<!ELEMENT createstackaction EMPTY>

<!ELEMENT collection (onesnip+)>

<!-- onesnip: see above -->

<!ELEMENT edgeassignments (assignedge+)>

<!ELEMENT assignedge EMPTY>

<!-- point denotes the snippet edge following this point -->

<!-- edge denotes the complete paper edge to which

this snippet edge is assigned -->

<!ATTLIST assignedge

point CDATA #REQUIRED

paper CDATA #REQUIRED

edge CDATA #REQUIRED

>

<!ELEMENT followassignments (assignnext+)>

<!ELEMENT assignnext EMPTY>

<!-- point denotes a snippet edge -->

<!-- nextPoint denotes the snippet edge

following the previous snippet edge -->

<!ATTLIST assignnext

point CDATA #REQUIRED

nextPoint CDATA #REQUIRED

>

<!ELEMENT mirrorassignments (assignmirror+)>

<!ELEMENT assignmirror EMPTY>

<!-- id denotes a snippet id -->

<!ATTLIST assignmirror

id CDATA #REQUIRED

>
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