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Chapter 1

Introduction to Queueing
Theory

1.1 History

Queueing theory as part of probability theory has evolved from classic tele-
traffic engineering in the last decades. In 1909 A.K. Erlang, a Danish teletraf-
fic engineer published a paper called The Theory of Probabilities and Tele-
phone Conversations. In the early 1920s he developed the famous Erlang
model to evaluate loss probabilities of multi-channel point-to-point conver-
sations. The Erlang model was extended to allow for calculation in finite
source input situations by Engset several years later leading to the Engset
model. In 1951 D.G. Kendall published his work about embedded Markov
chains, which is the base for the calculation of queueing systems under fairly
general input conditions. He also defined a naming convention for queueing
systems which is still used. Nearly at the same time D.V. Lindley developed
an equation allowing for results of a queueing system under fairly general in-
put and service conditions. In 1957 J.R. Jackson started the investigation of
networked queues thus leading to so called queueing network models. With
the appearance of computers and computer networks, queueing systems and
queueing networks have been identified as a powerful analysis and design tool
for various applications.
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1.2 Applications

As mentioned above, queueing theory allows for calculation of a broad spec-
trum of applications. These include

e In manufacturing systems, raw materials are transported from station
to station using a conveyor belt. With each station having performed its
task, the item is allowed to proceed to the next station. If processing
times at all stations are equal and the conveyor belt is filled in the
same frequency as items proceed from one station to the other, no
waiting can occur, as the assembly line works in synchronous mode. In
asynchronous mode, queueing for stations might occur and clearly has
an impact on overall performance.

o Computer systems to perform real-time or high speed operations are
often subject to bad performance due to a single bottleneck device such
as CPU, disk drive, graphics card, communication ports or bus system.
By the use of analytical models the bottleneck device may be detected
and as a consequence upgraded.

e By nature of the protocols used in computer networks, delays occur
due to congestion of the transport network. These delays may be seen
as waiting time until the media becomes free again thus allowing for
calculation of throughput, overall delay and other performance values.

e Teletraffic engineering deals with the availability of stations, trunks
and interconnection lines. Although these systems are characterized by
blocking more than by delay, they still belong to the world of queueing
systems. With the introduction of new media in teletraffic engineering,
the delay paradigm becomes more important again. Teletraffic engi-
neering now also has to cover a broad spectrum of new units such as
announcement boards, interactive voice response units, media servers,
media and signaling gateways.

o Workforce management is concerned about the most efficient allocation
of personell. The application of queueing theory in workforce manage-
ment is most visible in call centres, where agents have to be allocated
according to the call load. Relying on other techniques such as fore-
casting, queueing theory may be seen just as another brick in the wall



1.3. CHARACTERIZATION 7

Queue

i W7 %

EEmwrmee—— N R

Arrivals Departures

\W—J\W—J

Z >

o =

= 5

n S

%+ 5 =0

=] — g

d=] o 5

< e —

2 f 2
Z

Figure 1.1: Schematic representation of a queueing system

in a wide range of solution methods to be applied to solve problems
appearing in workforce management.

Obviously, the list above is far from being complete and may be extended
further to other applications as well. For more information, the reader is
referenced to publications such as IEFEE Communications Magazine, IEEE
Computers, Bell Labs Technical System Journal or similar.

1.3 Characterization

A queueing system may be described as a system, where customers arrive
according to an arrival process to be serviced by a service facility according
to a service process. Each service facility may contain one or more servers.
It is generally assumed, that each server can only service one customer at a
time. If all servers are busy, the customer has to queue for service. If a server
becomes free again, the next customer is picked from the queue according
to the rules given by the queueing discipline. During service, the customer
might run through one or more stages of service, before departing from the
system. A schematic representation of such a queueing system is given in
figure 1.1. Before going into further detail, the most important aspects of
queueing systems will be listed and briefly described.
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The arrival process is given by a statistical distribution and its para-
meters. Very often the exponential distribution is assumed resulting in
the arrival pattern to be measured as the average number of arrivals
per unit of time. When determining the trunk load in a PBX, the ar-
rival pattern is often given in calls per busy hour. More general arrival
processes are characterized by other pattern as well. These include
batch arrivals and time dependence.

The service process is described similar to the arrival process. Again,
exponentiality is often assumed in practice due to intractabilities when
releasing these assumptions. In opposite to the arrival process, the
service process is highly dependent on the state of the system. In case,
the queueing system is empty, the service facility is idle.

The queueing discipline refers to the way, customers are selected for
service under queueing conditions. Often used and most common is
the first come, first serve (FCFS) discipline. Others include last come,
first serve (LCFS), random and priority service.

The departure process is seldom used to describe a queueing system,
as it can be seen as a result of queueing discipline, arrival and service
process. Under certain conditions, arrival and departure process follow
the same statistical distribution. This has become a very important
fact in queueing network modeling.

The system capacity introduces a natural boundary in queueing sys-
tems. In life systems, there are only limited number of resources such
as trunks in a PBX, computer memory or network buffers. In queueing
networks, nodes with finite system capacities may block customers from
the previous node, when the node’s capacity limit has been reached.

The number of servers refers to the number of parallel nodes, which can
service customers simultaneously. In telephone systems servers might
describe trunks, tone detectors, tone generators and time slots.

The number and structure of service stages, a customer might have
to visit before departing the system. In a computer system, a job
might have to visit the CPU twice and the I/O processor once during a
single service. In practice, there exist a lot of situations, which can be
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modelled by complex queueing systems with service stages or simple
computer networks.

1.4 Use of Statistical Distributions in Queue-

ing Systems

As mentioned above, arrival, service and departure processes are described
by means of statistical distributions. The most common distributions are the
exponential and Poisson distributions. Statistical distributions are adjusted
for life situations by customizing their parameters. Clearly, the more parame-
ters are available for a certain distribution, the more flexible the distribution
may be adjusted. On the other hand, estimating lots of parameters might
become an infeasible task. It also turns out, that more complicated distri-
butions result in almost intractable queueing models. Therefore the main
target of selecting a proper distribution and estimating their parameters is
to provide a tractable analytical model giving a close approximation to the
life system under consideration. Sometimes the results are limited to a spe-
cific region only. One example are heavy load approximations, which fail to
provide proper results for lightly loaded systems.

The exponential distribution with density f(t) = Ae=** posseses only one
parameter A > 0. Although severely limited, the exponential distribution
is widely accepted, as queueing models based on the exponential distribu-
tion are very easy to handle. Some of shortcomings might be alleviated by
creating mixtures of exponential distributions to define more complex distrib-

(Ak)

ution types such as the Erlangian (with density f(t) = mtk_le_’w) or the

hyperezponential distribution (with density f(t) = Y15 auhe ™4 A > 0).
Seen from the perspective of a service facility, one complex service facility is
replaced by a certain arrangement of more simple service facilities each hav-
ing an exponentially distributed service time. For a graphical representation,
please refer to figure 1.2. The Erlangian distribution provides a good start-
ing point for systems with phases or stages such as conveyor belts used in
manufacturing systems. The design pattern is purely sequential, whereas the
hyperexponential service facility follows a parallel arrangement. For the den-
sities above the number of stages is denoted by k. More general arrangements
may be achieved by mixing sequential and parallel arrangements resulting in
so called phase type distributions [42][59][53][15]. This family of distributions
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Figure 1.2: Simple and complex service facilities

includes all of the aforementioned as special cases. State transitions between
phases comply to Markovian requirements thus allowing for generalization of
analytic methods for memoryless systems.

Focusing on the parameter of the exponential distribution, it turns out,
that X\ describes the average rate. For service facilities, very often the average
service time s is given, which may be easily converted to the average service
rate p by calculating the reciprocal, i.e. p = % A similar description is
available for the arrival and departure processes. Assuming an exponential
distribution for the arrival process implicitely defines, that the times between
subsequent arrivals, the so called interarrival times t, are exponentially dis-
tributed. This is graphically illustrated in figure 1.3.

Focusing on the exponential and the Poisson distribution, a useful equiv-
alency may be derived. More formally, consider ¢; as the time between two
arrivals at T and Tj_;

tj=1;—Tj

assuming t; for all j being exponentially distributed with parameter A, i.e.
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Pr{t; 2t} = e

then the number of arrivals N; within [0, ¢] follows a Poisson distribution:

Pr{N, = j} = f(j,\) = M;!)je—ﬂ (1.1)

Without loss of generality, ¢ = 1 might be assumed thus allowing for inter-
pretation of A as the average arrival rate. Thus an equivalent representation
for arrival and departure processes has been found in terms of exponentially
distributed interarrival times and Poisson distributed arrivals. A poisson
probability mass function for A = 4.0 is shown in figure 1.4. Spelled out, the
graph describes the probability of N customers arriving at a queueing sys-
tem, when the average rate of arrivals is four customers per unit time. The
related probability density and cumulative distribution functions for A = 4.0
are shown in figures 1.5 and 1.6.

In order to demonstrate several aspects of statistical distributions and
their effect on queueing models, an analysis of a life system has been included
as examples throughout the entire chapter. Instead of working through a
large example at the end of the chapter, we have chosen to work out portions
of the analysis where appropriate. In this subsection it will be shown, how
sampled data can be matched with an exponential service time distribution.

Example 1 Consider a call centre during the busy hour. Using the log of
a CTI server, call holding times for each single call have been determined.
In total 1707 calls have been measured. These calls have been arranged in
groups with unit time of 15 sec, i.e. the first group includes calls with a
holding time of 0-14 sec, the second group includes calls with holding time
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Figure 1.4: Poisson probability mass function with A = 4

Figure 1.5: Exponential probabiliy density function with A =4
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Figure 1.6: Exponential probability distribution function with A =4

between 15 and 29 seconds, etc. A call lasts 162 sec on the average, whereas
the standard deviation o of the holding time is 169, i.e. o = 169. In order to
visualize the distribution of calls, a histogram as shown in figure 1.7 has been
created. Please note, that the wording distribution has not been used in the
strong statistical sense.Giving a closer look to figure 1.7, the shape suggests
an exponential distribution. Taking into account, that mean and standard
deviation of the exponential distribution are both equal to %, it can be seen,
that measured data exhibit a similar value for sample mean and standard
deviation. We therefore ignore the slight difference and attempt a so called
two-moment approximation. As a grouping of data with interval length 15
secs has been introduced, the average holding time will be scaled as well, i.e.
% = 162/15 = 10.8. Plotting the formula for the exponential probability
density function (PDF)

ft) = e (1.2)

reveals figure 1.8.The same procedure has been applied to the cumulative dis-
tribution function (CDF)
Ft)y=1—e (1.3)

to create figure 1.9.In order to compare the result with the histogram shown in
figure 1.7, the probability density function has to be scaled by the number of
calls 1707 on the y-azis and the interval length 15 on the x-axis. The resulting
plot is shown in figure 1.10.By overlapping the two figures it turns out, that
the fitted exponential distribution provides an acceptable approrimation to
the measured data. Thus we have justified the exponentiality assumption for
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this set of data. Please note, that usually the match between measured data
and the chosen statistical distribution is verified by a so called goodness-of-fit
test. Using goodness-of-fit tests, a statistic is derived from the differences
between the theoretical distribution and matched data to allow for acceptance
or rejection of the fitted distribution.

One of the most appealing properties arising in queueing systems is the
memoryless or Markov property of the exponential distribution. The memo-
ryless property states, that the remaining (residual) time of an exponential
process does not depend on the past. Consequences for the analysis of queue-
ing systems include

e Given an exponentially distributed service time, a customer in service
to be completed at some future time is independent of the time he has
been in service so far. The remaining service time is still exponentially
distributed. End of work can be seen as a sudden event, not as a
result of work progress. The server simply forgets, how long it has
been operating.

e Given Poisson distributed arrivals, the time to the next arrival at any
point of time is exponentially distributed.

Theorem 2 The exponential distribution is memoryless.

Proof. The proof is based on the definition of conditional probability. A
random variable 7" is said to be memoryless, if

Pr{T >t +t,|T > to} = Pr{T >t}

Now a random variable 7" is assumed to be exponentially distributed with
parameter ), i.e. Pr{T <t} =1 — e~*. Hence,

PI‘{T > 14 to}

PI‘{T > t+t0’T>t0}: PI‘{T>t0}

e~ At+to) Y
= 767)\“) =€ - PI‘{T > t}
which completes the proof. W
Furthermore, it can be shown, that the exponential distribution is the
only continuous distribution exhibiting the memoryless property. For more
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Figure 1.11: Merging and splitting of Poisson streams

information, refer to [29]. The discrete counterpart of the exponential distri-
bution is the geometric distribution, which is commonly used to model cell
based networks.

Without the need to handle the residual times, the use of the exponential
distribution became very popular. In order to overcome the shortcomings
of the exponential distribution in queueing systems, very often mixtures of
exponential distributions are used in standard models instead of deriving a
new model suitable for the distribution required. In fact, it turns out, that
these mixture distributions are highly flexible due to their extensive sets of
parameters.

Based on the memoryless property of the exponential distribution, addi-
tional useful relations for Poisson processes may be derived. Given n Pois-
sonian streams, interarrival times are exponentially distributed with parame-
ter \;, where i = 1...n, i.e. F;(t) =1— e these streams may be merged
to a single Poissonian stream, where interarrival times are distributed accord-
ing to the distribution function F(t) = 1 — e~MiFreF-+2)t - Consequently,
a single Poisson stream may be splitted up still preserving the Poissonian
nature of each substream. The related interarrival times are exponentially
distributed with parameter p;\, where p; denotes the propability, that a single
customer joins substream i. For a graphical representation of these relations,
refer to figure 1.11. As a consequence, multiple independent Poisson arrival
streams may be seen as a single arrival stream. On the other hand, a sin-
gle Poisson arrival stream presented to multiple servers, may be treated like
multiple arrival streams. Special care has to be taken, if dependent streams
are considered, e.g. those in feedback systems. The Poisson assumption does
not necessarily hold under these circumstances.
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1.5 Approximation of Arbitrary Distributions

In most practical situations one will rarely encounter distributions such as
exponential and Erlang. This raises the question, which class of distributions
might be sufficient to capture almost all situations in practice. Fortunately
there is an answer to it. It turns out, that mixtures of exponential distribu-
tions in serial and/or parallel (also called generalized Erlang distributions)
are capable of reasonably approximating any distribution. Before proceeding
to the result the concept of weak convergence of probability distributions has
to be introduced

Definition 3 Given a series of distribution functions F,, and a distribution
function F with lim,, .o, F,,(x) = F(z) for all continuity points x of F', then
F,, is said to converge weakly (or in distribution). This is denoted by F,, — F.

The F,, above will become elements out of the class of exponential dis-
tributions in serial and/or paralell and F' denotes the distribution to be
approximated. In case of a continuous distribution F' the limit is valid for
all x.

Theorem 4 Choose F' to be an arbitrary distribution on the positive reals
(0, 00) with finite k-th moment uﬁf). Then for each n there exists a F), out
of the class of exponential distributions in serial and/or parallel, which con-

verges weakly to F'. Furthermore the moments ugi of F,, converge to Mﬁé) for
alll < k.

The proof is omitted here, as it consults concepts such as completeness
and denseness in probabilistic metric spaces. For the question raised above,
it is interesting to note, that the class of exponential distributions in ser-
ial/parallel is equivalent to the family of Coz distributions, which is in turn
part of the class of phase type distributions. As a consequence each of the
stated distribution families sufficiently approximates the desired target dis-
tribution. For a mathematical treatment of the subject the reader is referred
to [4].

1.6 Renewal Processes

In the previous sections we’ve learned that the Poisson process corresponds to
exponential interarrival times. By relaxing the exponential assumption, one



1.6. RENEWAL PROCESSES 19

arrives at the so called renewal process. Renewal processes are characterized
by independent interarrival times following a common distribution. They
may be applied for the arrival as well as service processes, so in the following
the event of an arrival will be called a renewal. Let T, now denote the
time between the n-1st and nth renewal, S, = ZZZI T, with Sy = 0 the
time of the nth renewal and N(¢) = sup{n: S, <t} the total number of
renewals in the interval [0,¢]. Then N(t) for all ¢ > 0 will formally describe
the renewal process. Taking expectation one arrives at the renewal function
m(t) = EN(t).

For the Poisson process the T,, were independent identically distributed
according to an exponential distribution. Consequently the distribution of
S, results from the n-fold convolution of the exponential distribution, that
is an n-stage Erlang distribution. N(¢) counts the number of renewals up to
the time ¢, which describes the Poisson process.

By denoting s = ET,, = [;tdF(t) to be the expected renewal time
(e.g. interarrival or service time), where T, is identically distributed with
distribution function F' for all n > 1, one arrives at certain interesting limits

Theorem 5 Based on the notation above the following limits hold

lim _m(t) = E

t—oo t S

and N .
Pr{lim —(t) = —} =1

t—oo S

The proof is based on the strong law of large numbers and is omitted
here. The interested reader may consult [48] or [4]. The second limit holds
only with probability one. That means, that there are exceptions to the
rule, but these exceptions are negligible. In the context of arrival and service
processes s simply describes the interarrival or service time. Consequently
both limits converge to the arrival and service rates % These results confirm
our intuition: Observing a process for a very long time and dividing the
number of occurences by the total time, one arrives at the rate of that process.

By utilizing the central limit theorem, we are also able to derive as-
ymptotic results for sufficiently large ¢t. As t — oo, N(t) is asymptotically
normal distributed with mean ﬁ and variance '5:—32 given the variance 0% =
JoS - s)>dF(t) of the renewal distribution F exists. More details may be
found in [4] and [14].
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One could ask now, why the Poisson process plays such a prominent rule
among the class of renewal processes. The answer lies in the fact of merging
and splitting. It will turn out, that this feature is unique in the class of
stationary renewal processes. A process N(t) is called stationary, if a shift
in time does not alter the distribution of the epochs, i.e. N(t+s)— N(t) has
the same distribution as N(s).

Theorem 6 Given stationary renewal processes Ny(t), ..., Np(t) and N(t) =
Ni(t)+...4+N,(t) each with common density function continues on the interval
(0,00) and right continous at 0, whereas the Ny(t), ..., No(t) are independent
for allt > 0. Then Ny(t),..., No(t) are all Poisson processes.

Again the proof is omitted, because it requires the theory of point processes,
which is not central to the current discussion. Also note the exact description
of continuity above. It stems from the fact, that distributions defined for the
positive reals can not be continous at 0 from the left. For more information
on the superposition of point processes, consult [11].

1.7 Performance Characteristics of Queueing
Systems

So far aspects of queueing models and statistical distributions have been
discussed. As the usefulness of a model varies with its results, appropriate
models and algorithms have to be selected. Another important factor is
the point of view taken. Performance values calculated with respect to an
arriving customer are not necessarily the same as those determined from
a servers viewpoint. Again, the impact of statistical distributions is not
negligible. However, it turns out, that these performance values are the same,
when using models with exponentially distributed interarrival and service
times. On the other hand, a lot of useful relations have been determined for
more general cases as well. Although queueing models vary in application and
complexity, a common set of performance characteristics may be determined
as follows.

e The state propability p, is described by the probability of n customers
residing in the system, either being served or waiting. Thus,

pn = Pr{n customers in system}



1.7. PERFORMANCE CHARACTERISTICS OF QUEUEING SYSTEMS21

e The traffic intensity p is given by the ratio of arrival rate A and service

rate u, i.e.
p=" (1.4
. .
Alternatively, the traffic intensity may also be seen as the ration of
average service time s = % and average interarrival time t = %, ie.
s
= 1.5
p=7 (1.5)

The traffic intensity is sometimes expressed in erlangs with respect to
the Danish teletraffic engineer. In the United States very often centum
call seconds (CCS) are used instead of erlang, as some manufacturers
poll traffic sensitive equipment every 100 seconds [41]. In fact, a server
being busy for an hour, carries a load of 36 CCS or equivalently 1
erlang. Expressed in a formula,

Pees = 36perl

e The proportion of time, a server or a group of servers may be busy, is
given by the server utilization

U = — = —

mp  m

Y

whereas m describes the number of servers in a queueing system. Please
note, that a system with u = 1 is called a fully loaded system. Many
common models are based on steady state concepts, which are compa-
rable to the physical concept of equilibrium. As a consequence, they
are not applicable to systems in overload, i.e. u > 1. Due to statisti-
cal effects, they don’t provide proper results in fully loaded systems as
well. Thus u < 1 defines a necessary stability condition for commonly
used models.

e The departure rate or throughput X describes the average number of
customers leaving the system. In a stable and work preserving system,
the departure rate is usually equal to the arrival rate. The throughput
is determined from the state propabilites and the service rate,

X = t,pn (1.6)
n=1
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Please note, that a load dependent service rate has been assumed. In
systems with multiple servers, p,, is different for each state. Take as an
example a call centre with 3 agents assuming each agent with the same
average call handle time. With one agent being engaged, the effective
service rate is pu. The other two agents are still waiting for a call and
this can be identified with an idle server. If the second agent receives a
call with the first agent still talking, the effective service rate becomes
21. When three or more agents are serving an active call, the effective
service rate is 3u. Clearly the fourth call in the system experiences a
waiting time as he has to queue for service. Thus a load dependent
service rate has to be assumed.

The average queueing time W, defines the time a customer has to wait,
until service begins.

The average time in system W defines the time between arrival and
departure of a customer. The average time in system is related to the
average waiting time as follows

1
W= Wyts =Wyt (1.7)

The average queue size L, defines the average number of customers in
the queue.

The average system size L defines the average number of customers in
the system and may be determined as follows

L= inpn (1.8)
n=1

Please note, that starting the summation from n = 1 delivers the same
result as starting from n = 0.

A very useful relation between average queueing time and the average

number of customers in the system has been determined by J. D. C. Little
in the year 1961. He found out, that given the average queueing time, the
average queue size may be determined by simply multiplying the former with
the arrival rate, i.e.

L, = \W, (1.9)
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Number of Customers

Time t

Figure 1.12: Little’s Law

The same applies to the average system size and the average time in system
L=\W (1.10)

These relations are called Little’s Law. Interestingly, Little’s Law remains
valid under very general assumptions. It does not assume any specific arrival
distribution or service process, nor does it depend on the queueing discipline
or the number of servers. With limited system capacity, Little’s Law does
still hold, but the arrival rate A has to be redefined to exclude the number
of customers lost due to blocking.

As shown in figure 1.12, Little’s Law may also be derived graphically. By
observing the number of customers entering and leaving a queueing system
as functions of time in the interval [0,¢] denoted by A; for the arrivals and
D, for the departures, the number of customers NV; in the system is given by

Nt - At - Dt
Defining arrival rate )\; as
Ay

t
Based on the area R; between A; and D,, the average number of customers

in the system L; can be determined as follows

_ R
ot

At

Ly

Please note, that R; can be interpretated as the cumulated waiting time in
interval [0,¢]. The average waiting time W; may now be calulated as the
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ratio between cumulated waiting time and the number of customers entering
the system A, i.e.

Ry
Wy = —
t A,
Aggregating the last three formulas leads to
A
Lt:%:WZ L= W\

Taking the limit as ¢ — oo results in Little’s well known formula. Please
note, that Little’s Law only applies to the average values, but not to the
entire distribution. Many proofs have been presented in the literature since
1961, the original text A Proof of the Queueing Formula L = AW has been
published in Operations Research No. 9 by J. D. C. Little in the year 1961.

1.8 Little’s Law for Distributions

It can be said, that Little’s law is one of the most important rules in queueing
theory. Easy to understand and simple to use it is commonly applied for
theoretical and practical purposes. It turns out, that Little’s law may be
further extended to become a distributional statement. Assume a queueing
system, where customers are served one at a time and leave the system (or
the queue) in the order of arrival (FCFS). Furthermore, customers entering
the system (or the queue) shall remain in the system (or the queue) until
served, i.e. there is no form of customer impatience. Now define the random
variables L, (number of customers in the queue) and W, (queueing time).
Also note the relations to the performance indicators used in the classic
version of Little’s law

L,=EL, W,=EW,

Let the arrivals up to time ¢ be described by a stationary renewal process
A(t). Then in steady state the average queue size L, is distributed with
A(W), that is

Pr {Eq > k} =Pr {A(Wq) > k’}

Given the time in system W and the number of customers in system Iv/, a
similar relation also holds for single server systems. With multiple servers,
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overtaking customers would violate the assumption of customers leaving the
system in order of their arrival. Our approach is based on [7] and [4], a
thorough treatment based on deterministic processes appears in [19].

1.9 Notation

Due to the wide range of applications, statistical distributions, parameters
and disciplines, the number of queueing system models steadily increases. As
a consequence, D. G. Kendall developed a shorthand notation for queueing
systems. According to that notation, a queueing system is described by
the string A/B/X/Y/Z, where A indicates the arrival distribution, B the
service pattern, X the number of servers, Y the system capacity and Z the
queueing discipline. Standard symbols commonly used in queueing systems
are presented in table 1.1.

For example, the shorthand M/D/3/100/PRI describes a queueing sys-
tem with exponential interarrival times, 3 servers each with deterministic
service time, a system capacity of 100 places and a priority service discipline.
Clearly the exponential interarrival times directly relate to Poisson arrivals.
Also note, that a system capacity of 100 places in a system with 3 servers
specify a maximum queue size of 97. Please note, that not all symbols are
mandatory, as symbols Y and Z may be omitted thus resulting in an abbre-
viated string A/B/X. In that case, the system capacity is unlimited and the
queueing discipline is first come first served per default. Thus a queueing
system denoted by M/M/1/oo/FCF'S is commonly abbreviated by M/M/1.

Kendall’s notation has been extended in various ways. One such extension
will be adopted to cover the description of impatient customers. Following
Bacelli and Hebuterne [5], an impatience distribution I will be added to the
standard string, both seperated by a plus sign. The distribution itself is
defined similar to the first two elements A, B of the standard notation. The
extended notation will then appear as A/B/X/Y/Z + I in full length or as
A/B/X + I for the abbreviated notation.

The symbols mentioned in table 1.1 are not exclusive, as some character-
istics can be seen as generalizations or specifications of other characteristics.
So an exponential distribution may be seen as Erlang distribution with one
phase, which in turn is a specialization of the phase type distribution. As a
consequence, the capabilities of queueing models may be deducted from this
short description. Formulas derived for M/G/1 are generalizations of the
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Characteristics Symbol | Description

A - Interarrival distribution D Deterministic
Ch Cox (k phases)
Ek Erlang (k phases)
G General
GI General independent
GEO Geometric (discrete)
H, Hyperexponential
M Exponential (Markov)
PH Phase Type

B - Service time distribution D Deterministic
Ck Cox (k phases)
E, Erlang (k phases)
G General
GI General independent
GEO Geometric (discrete)
H, Hyperexponential
M Exponential (Markov)
PH Phase Type

X - Number of parallel servers | 1,2, ..., 00

Y - System capacity 1,2,...,00

Z - Queueing discipline FCFS | First come first serve
RSS Random selection for service
PRI Priority
RR Round Robin
PS Processor sharing
GD General

Table 1.1: Kendall notation for queueing systems
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formulas used in M /M /1 systems.

As queueing theory originated from congestion theory in telephone sys-
tems, some application specific models survived over the years. The most
common is the so called lost calls cleared (LCC) system, which can be ex-
pressed as M /M /c/c model using Kendell notation. The LCC system does
not have any waiting places, calls arriving to a system with all servers busy
are cleared. As trunks in telephone systems usually do not have a queue-
ing mechanism, the LCC model suits the need of calculating required trunk
resources for a given offered load. The counterpart of the LCC system is
the lost calls held (LCH) system, which relates to M/M/c/K and M/M/c
models. Customers, which can not be immediately served on arrival are put
in a queue. These models are commonly used to dimension the desired tone
detector or tone generator resources in telephone systems given a certain
waiting time objective.
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Chapter 2

Simple Queueing Models

The most basic model in queueing theory is the M /M /1 model. In this sec-
tion the mathematical derivation will be combined with intuitive insights to
prepare the path for more complex models. In a M/M/1 model, random ar-
rivals and exponentially distributed service times are assumed. Please note,
that random arrivals is exactly defined to be Poisson in statistics. Further-
more, there is only a single server serving customers on a first come, first
serve base. The population is infinite, so arriving customers are unaffected
by the queue size. Parameters given for the M /M /1 model are A, the average
arrival rate, u, the average service rate, which may be calculated from the
average service time pu = % Bulk arrivals and group service are not allowed
for this type of model.

By giving a closer look on the arrivals to a queueing system, it turns out,
that time may be partitioned in slices with length At such, that only one
arrival per slice is allowed. By following a linear approach, it can be assumed,
that the number of customers entering the system during interval [¢, ¢ + At]
are proportional to A, i.e.

Pr{single arrival in [t,t + At]} = AAt
Pr{no arrival in [t,t + At]} = 1-AAt
Pr{more than one arrival in [¢t,t + At]} = 0

Please note, that more arrivals during interval [¢,t + At] can be handled by
introducing a function o(At). Due to the fact, that this term will vanish
in the subsequent derivation under very general assumptions, the presented
results will still hold.

29



30 CHAPTER 2. SIMPLE QUEUEING MODELS

The same arguments may be applied to the service process as well, but it
has to be taken into account, that departures can only occur, if the system
is not empty, i.e.

Pr{single departure in [t,t + At]|system not empty} = p At

By defining p,(t + At) as the propability of n > 0 customers residing in
the system at time ¢ + At, an expression may be found in terms of the
propabilities at time ¢, i.e.

pn(t + At) = pu(t) Pr{no departure} Pr{no arrival}
+pp—1(t) Pr{l arrival in [t,¢ + At]}
+pny1(t) Pr{l departure in [t,t + At]}

Due to the conditional nature of the departure process, a different equation
has to be specified for state 0

po(t+ At) = po(t) Pr{no arrival in [¢,t + At]}
+p1(t) Pr{1 departure in [t,t + At]}

Expressed in formulas

pu(t + A1) =p()(1 = AXA ) (1 — At
o1 (OA At +ppa()p At forn >1
po(t+ A1) =po(t) (1 —AA ) +pi(t)p At forn=0

Rearranging terms and taking the limit At — 0 gives

el — — (A4 w)pa(t) + Apn-1(t) + ppasa () for n > 1 (2.1)
ddet(t) = —Apo(t) + up1(t) forn=0 .

At this point it is guaranteed, that only one arrival per time slice /At can
arrive. Please note, that the exception of bulk arrivals and group service has
been excluded in the beginning of this section. Formula 2.1 may be used
for a time dependent, so called transient analysis of the M /M /1 model. If
someone is interested in the long term behaviour of the system, the so called
steady state equations have to be determined. These steady state equations
are related to the concepts of stochastic balance and furthermore physical
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Figure 2.1: State transition diagram for the M /M /1 model

gravity, as will be shown below. Assuming a balanced state, changes over

time are assumed to be negligible, i.e. dpg—t(t) = 0 leads to

0=—(A+p)pn+ App_1+ pppt1 forn>1

0= —Apo + up1 forn =0 (2.2)

Queueing models are often analyzed by using so called state transition
diagrams. Such a diagram is shown in figure 2.1 for the M/M /1 model. With
a single look, flows into a state and flows out of a state may be determined.
For the M /M /1 model it turns out, that the flow out of each state n > 0 is
always A+ u, whereas the the flow into a state n are A from the previous state
n — 1 and p from the next state n + 1. By following the intuitive concept of
balance, i.e. by equating the rates into a state with the rates out of a state,
the following equations may be written down immediately

A+ 1)pn = A\pn—1 + ppny1 forn >1
Apo = up1 forn =0

Comparing these equations with formula 2.2 above, they turn out to be the
same. Thus analysis of a wide range of queueing models may be carried out
based on concepts of balance. As a next step, the steady state propabilities
of the M /M /1 model are to be derived. Rearranging equation 2.2 results in

o1 = 2p, — 2poy forn > 1
p1 = %po forn =0

By using the definition of the traffic intensity p = %, and continuously sub-
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stituting, i.e.

b1 = pPPo
P2 = pp1= ,02]00
ps = pp2=p°po

Pn = pPPn—1=pP"Po

the state propabilities may be easily determined. As a last step, the propa-
bility of state 0 pg can be derived by recalling the fact, that propabilities
always sum to 1, i.e.

1= "pn=>_ 0"
n=1 n=1
Rewriting and utilizing the definition of a geometric series leads to

1
=ws ,=1-p
Zn:lp

and finally to
pn=p"(1-p) (2.3)

Please note, that the arrival rate is not allowed to exceed the service rate due
to stability of the system. This may be expressed by the stability conditions
p < 1lor A < pu In order to determine the performance characteristics
of the M /M/1 system, one statistic has to be derived from the steady state
propabilities. Most of the other statistics may be concluded from the relations

presented in the previous section. Recalling the fact, that the average system
size L is defined by

L= f: npny,
n=0
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and substituting for p,, leads to

L =<1—m§sz
= ﬂ—pMEEWWI
—(1—Mp(zsz)
= Ur—Mpﬂ;?)
- g:zgzlfp:uik 24)

Please note that Y -, np, = > oo np, and that > >2 np" ! is the first
order derivative of > ° p". By using Little’s Law, the average time in
system may be calculated as follows

1 1 1

W = —L = pu—

Aoul=p) p—A
As a next step the average queueing time may be determined by simply
subtracting the service time, i.e.

1 A
L%:WFSZW_ﬁ:uﬂim:uw—M
Applying Little’s Law another time finally leads to the average queue size
)2 2
(n=2A) 1-p
Based on the equations above, another useful relation may be obtained be-
tween the system size L and the queue size L,

Ly =AW, = - (2.5)

L=L,+p (2.6)

Due to the fact, that Little’s Law holds under very general distribution as-
sumptions, equation 2.6 is valid for almost any queueing system with a single
server. In case of system capacity limitations, the law still holds, but only
with slight modification of the arrival rate.
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Example 7 Consider a database system with an average service time of 450
msec. As database requests are inititated by a large number of clients, a ran-
dom arrival pattern may be assumed. Thus the arrival process is assumed to
be Poisson. On the average a new database query arrives every 500 msec.
Service times are assumed to be exponentially distributed, the queueing dis-
cipline is assumed to follow a first come, first serve pattern. The numbers
gwen for interarrival and service times lead to

A = ﬁsec
1
pe= 0.45Sec
A
u = p=—=09
1

With 90% utilization the database server can be deemed heavily loaded. This
is also reflected in the average system size and the average answer times, i.e.

p 0.9
L pr— —_— s — =
1—p 0.1 )
1 1
W 3 29 5 sec

Due to the high frustration level, it was decided to replace the harddisc by a
faster model. As a consequence service times were reduced to 350 msec. As
a result, performance characteristics improved, 1i.e.

1
A = ﬁsec
1
= ——sec
F= 035
A
u = p=—=07
1
p 0.7
L = — =—=2333
1—p 03
W = lL—12333—1167
= L=32 = 1. sec

As can be seen from this example, heavy loaded systems are very sensible to
small changes. In this case, the answer times have been reduced to a quarter
of the original answer times only by a compareable small increase in service
speed.
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2.1 Idle and Busy Period

The work process of a queueing system may be splitted into idle and busy
periods. The latter starts with an arrival at an empty system and ends,
when the system becomes idle again. A busy cycle is the time between two
successive arrivals at an empty system. It is also the sum of a busy and an
adjacent idle period [27]. Let the random variable T, denote the busy time.
As shown in [46], the density for a stable M/M/1 queue with one customer
present in the system at time 0 is given by

Frae(t) = \/:II (2\/_t) —Mt s (2.7)

t b

where I; is the modified Bessel function of order 1,
i /2) 21<;+1
k!
— (k+1)!

Please note, that this argument is transient, i.e. depends on time ¢. Based
on the density 2.7 or other means [27], one may derive mean and variance of

Tbusy:

1

= A
p+ A

(=)

Because of the memoryless property of the arrival process, the idle period
T;q1e is exponentially distributed with mean % The distribution of the busy
cycle is simply the convolution of the idle time and busy period distribution.
The analysis of the busy period is a standard concept in queueing theory, a
classic reference is [27].

ETbusy

Var(Thusy)

2.2 Capactity Constraints

Consequently, the next step is to extend the M/M/1 model to include a
system capacity constraint thus becoming a M/M/1/K model. A similar
condition as introduced for state 0 before has to be applied to state K as well.
This is also reflected in the state transition diagram in figure 2.2. Transition
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Figure 2.2: State transition diagram for the M /M /1/K model

rates and state propabilities for states 1... K remain the same as given by
the M/M/1 model, i.e.

Pn=p"Po
Only pg has to be derived with respect to the limited system capacity. Fol-
lowing the same approach as before leads to

K K
L= > pa=)_p"p
n=0 n=0
Dy = Kl :{% for p #1
S " B forp=1
SR e iia
K+1 orp=1

Due to the capacity constraint, the stability condition is no longer required.
Customers arriving to a system with busy servers and full queue are lost. In
order to determine the performance characteristics of the M /M /1/K model,
the same procedure is applied as has been done before, i.e.

K K
L = Y np,=pop» np""
n=0 n=1

(Yo" d 1—pit
= Dop dp —popdp( 1—p )
= Pop 2

(1-0p)

(1—p%+1)(1-p)

Tao? _ K for p=1

{ pA—(K+)p" +Kp*H1) ¢ p£1
K+l 2
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Little’s Law is still applicable, but based on the fact, that no customers are
lost. Therefore, an effective arrival rate has to be calculated. The effective
arrival rate is dependent on the fraction of calls, which suceeded in entering
the system. Giving a closer look on the state transition diagram in figure
2.2, it turns out, that up to state K — 1, an arriving customer always can
enter the system. But in state K, the call is blocked and as a consequence,
lost. Thus Zf;ol pn describes the propability, that customers can enter the
system and pg refers to the so called blocking propability. Considering the
fact, that both propabilities sum to 1 leads to the following calculation for
the effective arrival rate A

A= A1 = pxk)

By proceeding as before, all important performance characteristics may be
obtained

W o= =L
X\
1
W, = W—-—
oo
L, = \W,

Consequently, the relation between average queue size and average system
size has to be reviewed. Equation 2.6 has to be modified to include the effec-
tive arrival rate A instead of the arrival rate .

2.3 Queueing Disciplines

So far only first come, first serve has been assumed as a queueing discipline.
As all performance characteristics mentioned are averages in a statistical
sense, they are very insensible to changes of the queueing discipline. All
results remain valid for last come, first serve (LCFS), round robin (RR)
and processor sharing (PS) disciplines. In priority systems, customers are
grouped in classes and seperate characteristics are derived for each class.
Although the average values remain the same, the underlying distributions
change with the queueing discipline. This is a common feature in queue-
ing theory. One often assumes a system or queueing discipline to be work
conserving, that is [57]

e the server does not remain idle with customers waiting
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e the queueing discipline does not affect the arrival time of any message

e the queueing discipline does not affect the amount of service time

If one works within the class of work conserving queueing disciplines, the
performance key indicators such as average queueing time and average system
size will remain untouched by the choice of a dedicated member. Note, that
such an invariance property does not hold for the corresponding distributions.
A very good discussion on the topics related to different queueing disciplines
is found in [13].



Chapter 3

Birth-Death Process

Both, the M/M/1 and the M/M/1/K model considered so far, are special
cases of a more general system, which can be modelled by the so called
birth-death process. The name is related with an application in biology, the
birth-death process provides a simple frame to model populations of any
sort. In view of technical systems, the birth-death process may be used to
model load dependent systems. In such a system, arrival and service rates
are dependent on the current state of the system. This is also reflected in
the state transition diagram in figure 3.1. A wide range of queueing systems
can be modelled by customizing the parameters of the birth-death process.
Please note, that still exponential interarrival and service time distributions
are assumed.

Although more complex, the balance approach still provides easy access

1y 1, U3 Mg Hy My Mo
Ao Ay Ay Ano2 An-1 Ao Anr1

Figure 3.1: State transition diagram for a load dependent system

39
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to the solution

Ao
p1 = —DPo
Hq
A A1 o
b2 = —p1 = Po
Mo Mo flq
An—1 i
Pno = ) pn—1=H Po (3.1)

As all propabilities sum to 1, po may be readily obtained as follows
L= > pn=po+> pa=po+ Y J[=ro
n=0 n=1 n=t1i=1 Hi

1

Po = P —— (3.2)
(R Yaay | A,I.l

The average number of customers in the system L may be determined as
usual

L= (53
n=1

By defining the system throughput X as follows

X = Z [ Pn (3.4)
n=1
and using Little’s Law leads to the average time in system W
1 > n
W=—-IL= Z:ﬂ:—lnp (3.5)

X Z;.Lozl lu’npn

The formulas of the birth-death process may applied to systems with lim-
ited capacity as well, but with a slight modification. The upper summation
limit of each equation has to be replaced by the system capacity K. Before
proceeding with more complex variants, the models considered so far are
reviewed in terms of the birth-death process.

Example 8 The following parametrization of the birth death process leads
to the same results as the M/M /1 model mentioned above

A=A foralln
W, =p foralln
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There is also a parametrization available for the M/M/1/K model

\ A forn=0...K—1
no 0 forn>K-—1

{ pw form=1...K

Hn = 0 forn>K

Please note, by introducing conditions to the parameters, interchanging the
upper summation limit of the original formulae becomes obsolete.

3.1 Multiserver Systems

Queueing systems with multiple servers may be modelled by a single server
system with state dependent service rate. Given n customers are in the
system, work is processed n times as fast as a single server would need to do
so. Given a limited supply of servers, the load dependent service rate remains
the same, if the limit is exceeded. The related model is called M /M /c in the
limited case and M /M /oo in the umlimited case. The latter system is also
called delay server, as the average answer time is insensible to the number
of customers currently in the system. As a single system, the delay server is
almost useless, but if combined with other systems to a queueing network, it
plays an important role. The M /M /c requires the following parametrization

A=A foralln
p, =np forl<n=<c
p, =cpu forn>c

Substituting these parameters in equations 3.1 and 3.2 leads to

Py = { Hzlzoﬁpo=$p"pg forl<n=c
! pe Il ﬁ = —=p"py forn>c

c—1 1 . 00 1 . -1
bo = H;H’) +;c!cncp>
c—1 1 %) 1 -1
- Z Hpn * Z clen—e pn>

n=0 n—c
c—1

_ —1
B 1.1, 1
ol OOl ey

n=0
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As no system capacity constraint has been defined, a stability condition is
required to preserve proper analytical results. Based on the intuitive argu-
ment, that not more customers should arrive than can be served, a stability
condition may be written down immediately

A
S Y
c ¢

Please note, that the propability mass function p, consists of two seperate
functions. It turns out, that it is easier to determine the average queue size
L, first instead of the average system size L, as only one function is required.
A very useful parameter in the derivation of L, is the propability of delay pq,
which may be obtained as follows

== = po"
Pa = ;pn clon—c

n=c

_ SN <£>”‘C
c! c

n=c

_ pop°
- s (3.6)

Expression 3.6 is often referred to as Erlang C formula or Erlang formula
of the second kind. The Erlang C formula has been derived for lost calls
held systems (LCH) long before the M/M/c model was developed. Most
performance characteristics of interest may be expressed in terms of this
expression. Consequently it will be used to derive the average queue size L,

Ly = Z(” —C)pn = Z NPn+c
n=c n=0
= PP pop (p)”
= n T —' ni|—
s Cc:C C! 0 C
_opr e &
T T (e 1ol
A
= Pd (3.7)

cp— A
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Proceeding as before leads to the other measures of effectiveness

L 1
w, = L=
I A c,u—)\pd
1 1 1
W = Wq—l——zc Pt
poocp T
A
L = MW= 3.8
oy \Pa TP (3.8)

Example 9 Consider a supermarket with eight cashiers open and a common
queue. Customers arrive approximately every 1.25 sec and take on average
5 minutes to be served. Assuming exponential arrival and service processes
following a first come, first serve discipline, the model input is given as follows

1
A= —=0.
1.25 0.8
1
= —=0.2
a 5
c = 8

From these parameters the traffic intensity p and the server utilization u may
be calculated

p = 4
u = 0.5

thus satisfying the stability condition u < 1. Substitution into the formulas
for the M /M /c model yield

pa = 0.059
L = 4.059
L, = 0.059
W = 5.0738
W, = 0.0738

Thus the propability, that no customer has to wait is given by 1 —pg = 0.941.
Also note, that the queues are very small in this 50% loaded system, less than
one customer has to wait on the average. If three cashiers become ill, a rest
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of five employees has to serve the entire customers. By setting ¢ = 5 and
reapplying the formulas, the following performance measures are obtained

p = 4

u = 0.8

pa = 0.55641
L = 6.2165
L, = 2.2165
W = 7.7706
W, = 2.7706

Now on the average more than two customers have to wait. The propability,
that customers are served without having to wait has decreased to 1 — pg =
0.4459. Although this might still be acceptable for a supermarket, this example
shows, how sensible queueing systems might become with increased load. If an
additonal cashier becomes unavailable or the average service time increases
beyond 6.25 minutes, the supermarket can not serve their customers anymore.
This can be seen from the stability condition.

3.2 Capacity Constraints in Multiserver Sys-
tems

As already mentioned above, by customizing the parameters for the load
dependent model, capacity constraints may be introduced to a multiserver
system M/M/c/K, i.e.

A=A for0Sn< K
AMm=0 forn=K
p, =np forl<n<c
p, =cp forc<ns<K
u, =0 forn>K
Having identified the capacity limitations as the only difference between the

limited and the unlimited model, the same propabilities for states 1... K can
be assumed

H?:o %po = %p"po forl1<n=<c
Pn =14 Pellisg ﬁ = —2—=p"po forc<n<K (3.9)

0 forn > K
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Proceeding as before for the M/M/1/K model, the propability for state 0
remains to be determined

1 = an poz ',0 + Do Z c'c” P

n=c+1
~1
Po = <+Z |P+Z lcnc )
n=c+1
1y Ko -1
- (S za)

P K—c -1
_ <ZC_1 %Pn TRV ) (i),g H) for £ # 1

c!

(St len 4 (K —c41)) " for2=1

c!

Following the same procedure as for the M /M /c model, the propability of
delay pg is now derived

Z — Pop”
o 0
Pd = DPn = C!Cn_c

_ pof;—.ﬂ for £ #1
poS(K —c¢) for2=1

Please note, that no delay can occur, if no waiting room exists, i.e. K = c.
Then only blocking may occur, whereas the propability of blocking is given
by pk for all values of K. The M /M /c/K model without waiting room also
denoted by M /M /c/c directly relates to the lost calls cleared (LCC) system.
The blocking propability p, = p. = px for the M/M/c/c model is often
referred to as Erlang B formula, Erlang loss formula or Erlang formula of
the first kind. Substituting py into equation 3.9 and simplifying yields
T (3.10)
pb = pC = c < 0 3.10

Zn:O %
The most appealing property of the Erlang loss formula lies in the fact, that
its validity is not limited to exponential service times. It can be shown, that
the Erlang loss formula still holds under very general conditions, i.e. for the
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M/G/c¢/c model. Thus any service time distribution dependency has been
reduced to the mean service time only. As the proof is very extensive, it will
be omitted here. A proof M/M/1/1 = M/G/1/1 for a single server model
is presented in [27]. Turning attention back to the more general M/M/c/K
model, it remains to determine the performance characteristics. As before
L, provides the most convenient way to receive results

K K—c
D ST
n=c n=0
K—c —cC
B popn-i-c pOpC (p)n
e cl c
PorS P~ (P
—_— 0 — —_
- o¢ ;n (c)
c _(PYK—c+1
_ [ e (ME5) e
poc” (K_C)(f_cﬂ) for 2 =1
(1= — (1 u) (K — e ) for £ £1
— with v = 2
%Mw for £ =1

The other measures of effectiveness may be obtained by using Little’s Law.
Due to the system limitation, the arrival rate has to be modified to exclude
lost customers. For telephony applications, one would say the calls carried
have to be used instead of the calls offered. This may be expressed as follows
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3.3 FErlang B revisited

Instead of directly deriving the result for the Erlang B formula 3.10, the
following convenient recursion formula may be applied
PPc—1

Pe=—""—, po=1
C+:0pc—1

Substituting . = ch provides an equivalent recurrence formula
c
€e=1+—-c.1, e=1 (3.11)
p

Due to the waiting room limitation of the M/M/c/c queue, a steady
state distribution exists also for the case of heavy traffic, that is u = 2 > 1.
Assuming an arrival rate of c), the utilization u exceeds 1. In fact, one can
show [46], that the number of empty places converges weakly to a geometric
distribution with parameter %. As a consequence the following relation for
the blocking probability p. holds

1 7
limp.=1—-=1—= 3.12
With ¢ sufficiently large, formula 3.12 provides a reasonable approximation
in heavy traffic situations.

3.4 Customer Impatience

Modeling customer frustration may be achieved in different ways. In a balk-
ing scenario, customers are refusing to enter the queue given that it has
reached a certain length. At its most extreme, such a system is described by
a M/M/c/K model. Alternatively, customer discouragement may be mod-
eled by a monotonic decreasing function b,,. By carefully selecting a proper
function b,,, one is able to express customer expectations in a nice and accu-
rate way [27].

With respect to the birth-death model introduced in equations 3.1 and
3.2, balking affects the arrival rate, i.e.

An = b (3.13)

Please note, that the system arrival rate has been assumed to be constant .
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reneging
customers

arrivals successful
‘ departures

balking
customers

Figure 3.2: A queue with impatient customers

Another form of customer impatience is reneging. Other than the balking
customer, a reneging customer joins the queue waiting for service. If the
perceived waiting time exceeds customer expectations, the customer leaves
the queue. Proceeding similar as above, a reneging function is introduced

r(n) = lim Pr {

customer reneges during At
At—0

given n customers in the system

The reneging function clearly affects the service rate, as reneging customers
may be seen as virtually serviced customers in addition to regularily service
customers. Mathematically expressed

py = p+1(n) (3.14)

Both types of impatience may be combined in a single model as shown in
figure 3.2. Application of the expressions 3.13 and 3.14 to the general birth-
death equations 3.1 and 3.2 yields [27]

n A n
P = H 1L H/ﬁrr

po = (1+ZA”HM+ZT1(>>

For practical purposes, very often a more specific set of parameters is
defined. Assuming c servers with constant service rate p, i.e.

_fnp forl=n=c
Hn = cu forc<n <K
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a system capacity of K > ¢, a constant balking rate in queueing situations,
ie.

1 forn<c
bp=¢ (1—-0) forc<n=K (3.15)
0 forn > K

and that customers don’t have any knowledge about the system state [63],
ie.

r(n) = 0 forn <c
Tl (n=¢)§ forc<n<K
the model becomes
"o 1P Do forl<n<ec
Pn = H L:lpo - C!?[;:CJrl(lC;f)(ifc)&po forc <n é K
= 0 forn > K
S s e
n pc _ n—c
po = |1+ it F ; .
< ; n! n;rl c! Hi:chl Cl + (Z — C)5>
< 1 K )\nf(:(l /8) -1
n /Oc _ n—c
N a? T " - (3.16)
(2_; n n_zcﬂ ALy en+ (i - C)5>

with p set to p = ﬁ as before. This limited capacity system covers balking
as well as reneging behaviour. It is best solved by using numerical compu-
tation, as no closed form solution is known to the author. The performance
characteristics W, L and X are calculated by substituting state probabilities
3.16 in formulas 3.3 to 3.5 for the birth-death model.

By omitting the balking behaviour one arrives at the M /M /c+ M model
first introduced by C. Palm before 1960 [43]. It has also been given names
such as Erlang A or Palm/Erlang A, because it provides a tradeoff between
the Erlang C (M/M/c) queueing model and the Erlang B loss (M/M/c/c)
system. Our treatment will be based on [40]. First note, that by eliminating
the balking definition 3.15, the system becomes infinite. As a consequence
the second sum in

~1
c 1 0 pc)\n*C
= (Y = 1
Po (Z af T Z c!H?:Cch—i-(i—c)é) (3:17)

n=0 n=c+1
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must converge to allow for meaningful results of p,. In fact, convergence can
be assured by deriving an upper bound:

o pc>\n—c
n= Z D> 'H;zcﬂcwu—c)a

n=c+1
1)\ A€
- Z W 'Z H _
nOn Mcnc+1z =c+1 CM+Z 65)
2. (\/ mi 0 A
< Z( /mlf;!(ﬂa )" — Y]

n=0

Hence the M/M/c+ M queue always remains stable. Once pg is known the
entire steady state distribution may be derived from

1 n
LiP"Po forlsn=c
Pn = e forn > c (3.18)
AT,y cpt (-0 PO

To avoid numerical difficulties caused by the infinite sum in equation 3.17,
Palm presented an ingenious derivation based on the Erlang loss formula and
the incomplete gamma function. Rewriting expression 3.17 leads to

C

W= 05 Y
2

= A
H (cpp+ (i — ¢)d)

n= 0 i=c+1
RS (A/6)"
= S l=+ - .
c! [pb ;Hll (cp/6 1)
1 cu A
S e 1 1
G e (55) ] 319

The auxiliary function F' is defined as

xe¥

F(z,y) = (z,9)

where y(z,y) = [ t* te~'dt denotes the incomplete gamma function [51].
Inverting expression 3.19 results in

C_! Py
pe 1+ [F (cp/6,7/6) = 1] py

Po =
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Inserting pg in the system of equation 3.18 and realizing, that

C

De = Epo
finally leads to
m;ﬁpc for0<n<c
o= TF@mTm TN = (3.20)

/e
n-e c,u/éJripc

i=1

forn>c

The above set of formulas provides an easy way to calculate the steady
state distribution by performing the following steps

1. Calculate the blocking probability for a c server loss system py, by ap-
plying the Erlang B formula 3.10

2. Look up the value of the incomplete gamma function v (cp/6, A/6)
3. Insert both results in the expression for p,.

4. Use the remaining formulas to derive p,, n # ¢ from p,

Having derived a closed form solution for the equilibrium distribution, we
are now able to derive various performance characteristics. Let 1, denote
a random variable associated with the current queueing time. Then the
probability of delay is given by

Pd = Pr{Wq>O} :ipj

Dy
1+ [F (cpu/6,7/6) = 1] py
F (cp/6,A/6) pe
L+ [F (cp/6,7/6) — 1 py
In the M/M/c + M queue a customer decides to leave the queue at an

exponential rate. In determining the probability of getting ultimately served,
one encounters, what has been called competition of exponentials in [40]:

=

1 + n—c .
ity [limy ep/6 +i

(3.21)

oo
Po = e+ 06

s cutd Cl
P = =

e+ 2670 = cp + 26
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Proceeding further one arrives at p; the probability of the n-th customer
getting served, that is

s CH >
:—7 n_
Pn cu+(n+1)6

The probability to abandon service and loosing the customer is given by

(n+1)6
@]t >0

One can now derive the conditional probability that a customer abandons
given he does not receive immediate service

Pr{Abandon]Wq>()} = i%

. DPd
= - -1 (3.22)
pF (cu/6,A/6) p '

The calculations have been omitted, because they are rather lenghty. They
utilize an idendity derived by Palm for the function F' based on properties
of the incomplete gamma function [51]. A partial derivation is given in
[40]. If required, one may consult the original paper [43] by Palm. Due
to independence, the probability of an arbitrary customer abandoning the
queue is given by the product of the expressions 3.21 and 3.22:

po = Pr{Abandon} = Pr {Abandon|Wq > 0} Pr {Wq > O}

_ ! 11 3.23
= (resam ) (3:23)

Based on the loss probability 3.23, the average queueing time W, may be
easily derived by an application of Little’s law. First note that in equilibrium,
the rate of customers abadoning the queue and the rate of customers entering
the system have to be the same, i.e. 6L, = Ap,. So the average queue size is
given by

A
Lq = gpa

Applying Little’s law L, = AW, leads to



3.5. BOUNDED HOLDING TIMES 93

The remaining measures of effectiveness are obtained in much the same way
as has been done for the M/M/c/K model, that is

1 Pa 1
W o= W,+-="24-
LT T
APa
L = MV = s +p

In comparison to the M/M/c queueing system, performance is superior
in terms of average waiting time and mean queue length. Additionally, the
M/M/c + M system is immune to any kind of congestion. This is also,
what we encounter especially in real life situations concerned with human
behaviour. Impatience becomes a mandatory assumption for the analysis of
such models. This might be different for technical systems.

Another, although not well known form of customer impatience exists
in multiqueue systems and is called jockeying. Customer dissatisfaction is
expressed by simply joining another queue. Rather simple in description,
these models are hard to solve and will not be covered in this text. For
general information on customer impatience refer to [27]. A more specific
model with limited sources, limited capacity and reneging is described in
[1]. Equivalence relations between systems with customer impatience and
machine inference problems are derived in [28]. Balking and reneging for
birth-death processes has also been considered in [49].

3.5 Bounded Holding Times

In certain situations it becomes necessary to bound the time a customer re-
sides in the system. As an example consider a call centre, where customers
are rerouted to an IVR system, when a predefined waiting time limit has
been reached. By expressing the waiting time limit in terms of an expo-
nential distribution, the system fits nicely in the framework of birth-death
processes. It has been introduced by Gnedenko and Kovalenko in their book
[25]. Assume arrival rate, service rate, system capacity and the number of
servers to be A, u, K and ¢ similar to the M/M/c/K model. Further let
the waiting time boundary be exponentially distributed with rate 6. Then
the corresponding average is given by %. Any customer having reached the
waiting time limit will depart from the system. Combination of rates leads
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to
nu+mnd forl<n<c
p, =1 cu+nd forcEnsK
0 forn > K

Substitution of A\,, = A and p,, into the birth-death equation 3.1 leads to ex-
pression 3.18 for the steady state distribution. It follows, that the model
with exponentially bounded holding times is equivalent to the Erlang A
M/M/c+ M queueing system.

3.6 Finite Population Models

The previous discussion focused on queueing problems with infinite customer
population. Although mathematically convenient, such an assumption only
serves well as an approximation to situations with a large population. One
anticipates, that prediction errors become negligible. If this is not the case,
then one has to take care about finiteness. This is best done by modifying
the birth rate A in the standard birth-death model as follows

N (M—n)\ for0Sn< M
"o 0 forn > M

Here M denotes the size of the population. Assuming a system with ¢ < M
service units, i.e.
[ np forl=n<c
Hn = { cp  forn=c

and substituting in equation 3.1 leads to

M pr for 0 <

( P "Po or0=n<c

- n 3.24
P { (]\f) c,ﬁ!cc! p'pg forc<ns< M (3.24)
with (Af ) = (Man'),n, denoting the binomial coefficient. Applying Zi\io Prn =

1 and solving for py gives

[ ) (2]

n=0 n=c

For efficient calculation of the steady state probabilities, Gross and Harris
[27] suggest the following recursion based on the properties of the binomial
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coefficient:

M*TL < n—
_ P | o forO0=n<c B |
In= Dn _{ M=n for e <n< M’ pn_Hfpo

Using the definition of the expected value, one is now able to derive the
average system size

S [ )

n=0

cn— cclp ]p

Following [27], the average queue size L, may be derived from L as follows
M
Ly = 2 (n=) ann—czpn
= L—ann—c (1 —ann>
n=c n=0

= L—c+ ) (c—n)p,

c—1
M
= L—c+po (0_”)<n>ﬂn
n=0

In order to derive the waiting time indicators using Little’s law, one first
has to determine the mean arrival rate \. With n customers already in the
system, a maximum of M — n customers remain outside waiting for arrival.
This results in a mean arrival rate of (M — n) A. Averaging yields

—

Il
o

M M M
1= 300 = (3= Yoom ) <200 1
n=0 n=0 n=0
Using Little’s law with the just derived mean arrival rate A leads to
L L
W=—--—+ W, = —-21—
AN(M — L) T NM-1L)

Assuming the size of the waiting room to be 0 results in a finite-source
variation of the classic M/M/c/c Erlang Loss system. This model is often
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used in telecommunication applications and is called the Engset model. The
steady state distribution 3.24 simplifies to

(5)e"

Pn = 37 o
Zij\io (1\@4) P

This is also known as the Engset distribution. The probability of a customer
being blocked and getting lost due to call congestion is determined by a
full system, that is p, = p.. Similar to the general finite population model,
a recurrence relation may be deducted for easy calculation. In telephony
applications, the recursion is usually defined for the blocking probability:

Pe = (M — C) PDc—1
‘ c+ (M - C) PPc—1

0<n<M

With M getting very large, the Engset distribution approaches the probabil-
ities p,, given by the M /M /c/c Erlang loss system. As a reference related to
queueing theory consider any standard text book such as [27]. For telephony
applications we refer to [6].

3.7 Relation to Markov Chains

Now an attempt will be made to relate birth-death processes to continous
time Markov chains. For a short introduction please refer to appendix A.3. A
birth-death process may be understood as a skip-free Markov chain, meaning
that the process can only move to a neighbouring state in a single step.
Combining birth and death rates

Gnn+1 = )\n
Gnn—1 = My
dnn = — (>‘n + :un)
Gmn = 0for |m—mn|>1

leads to the infinitesimal generator

—Xo Ao 0 0
_ pr o — (M) A1 0
Q=1 o0 [ — (Aot ) A
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Alternatively one may address the discrete Markov chain embedded into the
birth-death process. By chosing the occurences of the state transitions as
regeneration points, the corresponding transition matrix becomes

0 1 0 0
My 0 Ay
A1 +pq A1 +uq
P = Ho 0 A2
A2t+pg A2+pg

Appearantly both matrices suggest irreducibility. From the conservation
equation 3.2 it follows, that an equilibrium can only be assumed, if

(3.25)

n=1 i=1 i

Due to the fact, that stationarity implies positive recurrence, equation 3.25
may be used as a criterion for positive recurrence. Focusing on the embedded
chain, it can be shown [66], that a birth-death process is recurrent, if

HiHg -
2
+nz >\0>\1 - (3.26)

holds and vice versa. Multiplying the left hand side by ¢ and omitting the
first term simplifies formula 3.26 to

ST -

n=1 i=1

S’IZ;

The stationary distribution may also be calculated using Markov chain meth-
ods. One can either chose to solve the Chapman Kolmogorov equations for
the embedded chain or apply Kolmogorov’s differential systems directly. Ei-
ther case leads to the same results. For further information please consult
[4] and [66]. Especially the latter reference provides a rigorous treatment on
the topic.
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Chapter 4

Extended Markovian Models

Because of the memoryless property of the exponential distribution, Markov-
ian models such as the birth-death process become analytically tractable. In
most cases it is possible to derive a closed form solution as well. In the cur-
rent section we enhance the models treated so far by features, which can not
be classified as typically Markovian.

4.1 Some Useful Relations

Before getting hands on some rarities in queueing we will derive some useful
tools. The first deals with an interesting property of Poisson arrivals. A
Poisson stream is sometimes called purely random. Provided the state of the
system changes at most by one, a customer arriving in the stream finds the
same state distribution as an outside observer. One can say, that Poisson
arrivals see time averages (PASTA). It turns out, that PASTA also applies
to the transient case, which obviously includes the steady state version as
special case.

Theorem 10 (PASTA) Define a,(t) as the probability of n customers in
the system seen by an arrival just after entering the system. Let p,(t) denote
the distribution of n customers in the system at an arbitrary point in time.
Then for Poisson arrivals

an(t) = pu(t) foralln>0,t>0

Proof. Define N(t) as the number of customers in the system at time ¢.
Now consider the number of arrivals A (t,¢ + h) in an infinitesimal interval

99
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(t,t+ h). Then a,(t) is defined as the limit A — 0 of the probability, that
the number of customers in the system is n given an arrival has occured just
after ¢. In mathematical terms

a,(t) = }lig(l)Pr {N(t)=n|A(t,t+h) =1}
B limPr{N(t):n,A(t,t—l—h):1}
0 Pr{A(t,t +h) =1}
- Pr{A(t,t +h) =1|N(t) =n} Pr{N(t) = n}

=1

h—>0 Pr{A(t,t+h) =1}
_ Pr{A(t,t+h)=1}Pr{N(t) =n}
s Pr{A(t,t+h) =1}

= lmPr{N(t) =n} =p, (1)

Please note, that Pr{A(¢,t + h) = 1|N(t) =n} = Pr{A(¢t,t + h) = 1} fol-
lows from the fact, that the number of arrivals occuring in two disjoint time
intervals are independent. W

Another proof based on the assumption, that future increments are inde-
pendent of the past has been given by Wolff in [64]. A proof tailored to the
requirements of the M/G/1 queue may be found in [27].

A similar result also holds for exponential service times. Assuming equi-
librium, let p,, be the probability that n customers are in the system. The
probability that n customers are in the system just prior to an arrival is
denoted by p,.

Theorem 11 (Rate Conservation Law) Consider a queueing system with
general arrivals, exponential service times, ¢ < oo servers and system limit
K < 00. Furthermore assume a work conserving queueing discipline and no
interruption of service. Then the following relation holds

min (¢,n) pp = pPn—1

Rewriting the above equation to min (¢,n) up, = Ap,—1 one may intu-
itively explain the result as follows. The left term represents a state transi-
tion from state n to state n — 1, whereas the right term is just the opposite.
Given a work conserving queueing discipline in accordance with the local
balance principle, the rate downwards must equal the rate upwards [1]. For
the proof we refer to theorem 6.4.3 of [8] or to page 154 of [56].
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We will turn attention now to a theorem from complex analysis often
employed in queueing theory. Its main use lies in assuring the existence of
roots within a closed contour such as the unit circle |z| = 1. Usually a given
function F is split into two parts, i.e. F(z) = f(2) + g(z), where f(z) has a
known number of zeros inside a given domain.

Theorem 12 (Rouche) If f(z) and g(z) are functions analytic inside and
on a closed contour C and if |g(z)| < |f(z)| on C, then both f(z) and f(z)+
g(z) possess the same number of zeros inside C.

A proof may be found in almost any standard textbook on complex analy-
sis, for example see [52]. In some cases, one wants to extend the assumptions
of Rouche’s theorem to the boundary of C' without invalidating the conclu-
sion. This is indeed possible, as shown in a recent paper by Klimenok|[38].

Theorem 13 (Extended Rouche) Let f(z) and g(z) be analytic inside in
the open unit disc |z| < 1, continous on the boundary |z| = 1 and differen-
tiable at the point z = 1. Assume, that the following relations are satisfied

19zt 1 < (R pzr

f(1)=—g(1)#0

%f(z)’z:l + d%g(zﬂz:l
f(1)

Then the number of zeros Ny and Ny.4 of the functions f(z) and f(z)+g(z)
in the unit disc |z| < 1 are related as follows:

>0

Nijtg=Ny—1

For the proof we refer to the paper of Klimenok [38]. As pointed out
there, theorem 13 is in particular very useful for matrix geometric models of
the M/G/1 type.

4.2 General impatience distribution

One possible generalization to Palm’s M/M/c + M model is to allow for a
general impatience distribution. In doing so, one arrives at the M/M/c+ G
model. A variant thereof has first been introduced by Bacelli and Hebuterne
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in 1981. Our treatment will be based on their paper [5] and the paper by
Zeltyn and Mandelbaum [65]. Although the model assumes, that arriving
customers are fully aware of the offered wait V and abandon service im-
mediately, if their patience time is exceeded, the model coincides with the
M /M /c+ G model in terms of all relevant stationary performance character-
istics. The patience time is assumed to be distributed according the G(.), in
the latter more often referenced to by the survival function G(.) =1 — G(.).
Although the exponentiality assumption is violated, the model may be de-
scribed by a Markov process {N(t),n(t) : t =2 0}, where N(t) describes the
number of customers in the system at time ¢ and 7(t) denotes the virtual
offered waiting time of a customer arriving at time t. As long as there are
¢ — 1 customers in the system, n(t) = 0, whereas from ¢ customers on 7(t)
becomes positive. In the latter case, it is only relevant to know, that there are
¢ or more customers in the system, the exakt number is irrelevant. Therefore
we choose N(t) = ¢ for n(t) > 0 and n(t) = 0 for 0 £ N(t) < ¢ — 1. With
the system described that way, one preserves the Markov property. Let v(x)
denote the density of the virtual offered waiting time and define
’U($) _ hmtﬂoo hmhﬂ[) Pr{N(t):c,mh<n(t)§:r+h} T z 0
Pn =limy oo Pr{N(t) =n,n(t) =0} 0=n=<c-1

Assign to A, p and p = ﬁ the usual meanings. Obviously the system behaves
like a classical M /M /c queue for 0 S n < ¢ — 2, ie.

Y2

pn:%po for1<n<c—-1 (4.1)

By realizing that state ¢ — 1 may only be entered from above, if an arriving
customer would not have to wait for service, one arrives at

Ape—1 = v(0) (4.2)
The case of positive virtual wait may be obtained from

Pri{n(t+h)} = Pr{n(t)>x+h}+Pr{nt+h)>znt) =0}
+Pr{n(t+h) >z,0<n(t) <z+h}

The second term on the right side describes the increase of the virtual wait
caused by an arrival occupying the last free server. This increase will exceed
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x with probability e=“**, as the intervals between service departures are dis-
tributed according to an exponential distribution with rate cu. The third
term corresponds to an arrival to a full system with positive virtual wait.
The probability of receiving service is determined by the survival function
G(z). Thus in steady state one can expect

/ v(y)dy = / v(y)dy + Ahp, 16~ + \h / e~ Vy(y)G(y)dy + o(h)
T T 0

+h

Differentiating with respect to h and letting h — 0 yields
v(x) = App_1e” H* + )\e_c’“”/ e (y)G(y)dy (4.3)
0

By observing, that H(z) = e*v(z) is a solution to the integral equation
H(z) = Apn_1+ A [y H(y)G(y)dy and solving that integral equation directly
one obtains H(z) = Ap,_1 exp {)\ fox G(y)dy} and

v(x) = App_1 €xp {)\ /Or G(y)dy — c,ua:} (4.4)

Normalizing probabilities

c—1 c—1 00
1 = an +Pr{V >0} = an + / v(x)dz (4.5)
n=0 n=0 B

c—1l p c—1 ) T
_ - P ~ _
= po; oy +)\(c—1)!/0 exp{)\/o G(y)dy cm:}da:

results in

—1 c 1 -1 o) T
Z p_ )\J . J = / exp {A/ G(y)dy — cpw} dz
0 n! 0 0

(4.6)
Please note, that we are now able to describe the steady state behaviour of the
M/M/c+ G model in terms of equations 4.1, 4.2, 4.3 and 4.6. Furthermore,
there is a straightforward generalization to include balking behaviour into
the model. As before for the birth-death equations define a state dependent

arrival rate
N bbA 0=n=<c—1
] bl A n(t) >0
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One may immediately write down the steady state equations

Dn = poH Ait :)\"]ool_[b;;1 forl<n<c-1
i=1 i=1
)\c—lpc—l = )\bc—l _U(O)
@) = A (b e [Cemawa) 0
0

. 'Czlﬁmﬂljﬁm]l
| n=0 i=1 Z,LL i=1 ZM

-1
- (DTt o T

For both models, the system may be assumed to be stable, if the integral
in the expression for J in equation 4.6 converges. This in turn is equivalent
to the condition AG(c0) < cp or uG(oo) < 1 with u the utilization. For a
proper probability distribution G(.), i.e. lim, . G(x) = 0, the system will
not become unstable and show behaviour similar to the M /M /c/K queueing
system. Otherwise G(.) is called defective and the above mentioned condition
has to be considered.

Considering the model without balking, let p, denote the probability, that
an arriving customer refrains from being serviced because of excessive wait.
Then one may express the server occupancy as @ = U(l — Pa) = 5(1 — Pa)-
Alternatlvely it may be calculated from 4 = 1 Zn onpn + Pr{V >0} =
1 Zn bnpn + (1 — 3251 pn). The last substltutlon is evident from the nor-
mahzatlon condition 4.5. Combining expressions leads to

Pa = l_g = ( ann+1_zpn>
c—1 np, c—1 c—1 ,On 1p0 c c—1
<ZT+1_Z%>:1_Z(7@—1)!+E b= p”)
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For the average waiting time one starts with equation 4.4 to derive

Pr{V >t} = )\pn_l/ exp {)\/ G(y)dy — c,u:v} dx
¢ 0

which is just the survival function of V. With V' defined only for non-negative
values, the average queueing time may be calculated as follows

W, = /OOG(t)Pr{V>t}dt

= )\pcl/ G(t exp{ /G dy—c;m}da:dt (4.8)
= Ape_ 1/ /G dyexp{ /G dy—c,ut}dt (4.9)

whereas the last expression has been derived integrating by parts. Note, that
by combining expression 4.1 and 4.6 and using Erlang’s loss formula 3.10 for
¢ — 1 servers, one derives p._; as follows

c 1

-1

(c ) 1

Pe—1 = o—1 - l_ + )\J:|
Z _ il + pc 1(6)\‘1) Db

n=0 n!

The remaining performance characteristics may be determined by an appli-
cation of Little’s Law

1
Lo= AWy W =Wyt L= W

With balking included into the model, the average queueing time 4.9 adapts
well to the modification, one has only to replace A by \b._; and calculate p._1
according to the first equation of 4.7. Giving a closer look to the effective
arrival rate and the expression for p,, the results become quite cumbersome.
It turns out, that an explicit inclusion of states above ¢ provides a feasible
solution. This will be one of the main ideas of the model by Brandt and
Brandt introduced next.

The M /M /c+ G model is a rather general one, as it includes the M/M/c
queueing system and Palm’s M /M /c+ M model as special cases. For the lat-
ter let the patience times follow an exponential distribution with parameter
§, whereas for the former assume infinite patience, i.e. G(z) = 1. Note, that
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G(r) = 1 is indeed a defective distribution putting the stability condition
1 > uG(co) = u in effect. Obviously we arrived at the stability condition
for the M /M /c model. Another important special case is the M/M/c + D
queueing system as introduced by Gnedenko and Kovalenko in their book
[25], which is based on Barrer’s derivations [49]. In practice, it applies well
to computer networks with deterministic timeouts.

As mentioned above, Brandt and Brandt derived a generalization to the
M/M/c + G queueing system by allowing for state dependent arrival and
service rates [9]. We will only provide the results here, as the derivations
are rather lengthy but in concept similar to the classic model. The main
difference lies in the fact, that steady state probabilities are now defined for
¢ or more customers and that the residual patience time has been taken into
account. As before, as long as there are servers available, the system follows
the well-known birth-death approach. It assumes a bounded sequence of
arrival rates \,, i.e. there is only a finite number of A\, > 0. This leads to
the steady-state distribution

Do (an )‘i) (H;'::nJrl Nz‘) 0<n<c

Dn = po (T ) A i) T o) Jo (J) G(z)dz)" " erevdy -1 neetd

[T+ T (T 0) 5 057 (0 Gy ey =0

The system can be considered stable, if one is able to calculate a non-trivial
po- Isolating the relevant part yields the stability condition

()3 (e

=0

Based on the effective arrival rate A = > o o AnPn, the probability, that a
customer has to wait, i.e.

1 C
pdzl_inz_;Anpn

and the probability, that an arriving customer will leave the system later due

( - )
n 0

pa:

>,|| —
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The mean queueing time may be derived by using Little’s law

o0

1
quj Z (n_c)pn

n=c+1

One may split the queueing time into two parts, representing the wait an
arriving customer is exposed to in case of being served or lost due to impa-
tience,

Wy = uf?ﬁ); i_o; <+ﬁlA> %/OOO (/OyG(Z)dZ)j (ney — 1) e Hevdy

J =0

00 ctj—1 0o Yy J
Wy = pp‘}\ Z ( H )\i> %/o </0 G(z)dz) (J+1—py)e tvdy
@ i=0

=1

For the proofs we refer to the paper of Brandt and Brandt [9]. Some of
them rely on Palm distributions and stationary point processes, especially
those, which are concerned with the relation between distributions at arrival
epochs and their general counterpart. For more information on these topics,
please consult [8]. In their paper, Brandt and Brandt also consider the
special case of an impatience time defined as the minimum of a constant and
an exponentially distributed random variable. In the extreme, one arrives
either at Palm’s M/M/c + M model or Gnedenko’s M /M /c + D queueing
system.

4.3 Retrials and the Orbit Model

Up to now it has been assumed for systems with limited capacity, that blocked
customers are lost. In the following we will consider these customers to retry
for service after some period of time. Obviously there is some dependency
introduced in the model, which violates the memoryless property of the ar-
rival stream. By describing the system as a two dimensional Markov process
{C(t),N(t) : t = 0}, one restores the desired features. Here C(t) denotes the
number of busy servers at time ¢ and N (t) describes the number of retrying
sources. One can think of blocked customers beeing redirected to an orbit
instead of getting lost. For clarification, this situation is shown in figure
4.1. From a different viewpoint, a retrial system forms a queueing network
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amvals

Server
anvals N\ &retrials successful
+ m@ departures

N

customers

Figure 4.1: Orbit Model

consisting of loss and infinite server nodes. Retrial systems have become im-
portant in telephony applications, as a typical caller retries after some time,
if he does not reach the desired target. For this reason, the service facility is
often modeled as loss system, not as queueing system with limited capacity.
We will follow this convention and introduce a M/M/c/c queue as service
facility. If the service distribution is not exponential, we’ll loose the Markov
property of the above mentioned process again. Then a supplementary vari-
able describing the elapsed service time has to be introduced to preserve
it.

Adhering to the usual notation we’ll turn attention to the single server
case now, i.e. assume a M/M/1/1 service facility. Consequently C(t) can
only take the values 0 and 1. Assume that the time lengths between the
retrials are independent and follow an exponential distribution with para-
meter n. Thus on the average every % seconds (or any other preferred time
unit) a retrial occurs. Introducing py, , := Pr{C(t) = m, N(t) = n}, we may
proceed as usual and equate the flow in with the flow out. Hence,

A +nn)pon = WP
(n + 1) NMPon+1 = >\p1,n

Following the treatment of [30], both expressions may be combined to

A
Pint1 = p ( n(n—l- 1)) P,
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This leads to

Pin = { P 1lies (1 * m) pro n=1 (4.10)

D1,0 n =20

For a single server system the server utilization u = p may be written alter-
natively as

p = Yma=mo |1+ 30T (14
n=0 i n=1 =1 "
_— 1+zpnn(”j/”)]
n=1 i=1

[ (e 0+ Af)

= pio |1+ ,
n!
i 1
> n(n+)\/n)]
= Do Y
= P1o (1 p) - A/n}

where for the last step the binomial theorem has been applied. A simple
multiplication yields

-1
pro=|1=p) M =p(1—p)ttH (4.11)

So far the steady state distribution for the single server retrial model has been
derived. The computation of the expected number of customers in orbit will
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be performed in two steps. By calculating

anl,n = ploznﬂ H( ;;)
n=1

and

one easily derives the expected number of customers in orbit

0 2
Z p A A
L np,n p,n— (1+—>—|——p
! (Po n) L—p 1 n

n=1

plon+XN)  p° Ap Ap MM/
_ I — +L 4.12
nl—p) 1-=p n(l—=p) n(l-p (4.12)
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By comparing the result with expression 2.5 for the M/M/1 model, one
identifies the second term as some kind of expected excess in the number
of customers [30]. Letting n approach infinity, the excess vanishes and we
arrive at an ordinary M/M/1 queueing model. There is no delay between
subsequent retries and so the orbit attaches as queue to the M/M/1/1 loss
model. The remaining performance characteristics are determined by an
application of Little’s law

1 Alpn + )

W, = -~ =21 T7
I A n(1-p)
p(om+A)+pmd—p) pn+A)
@ p n(1—p) n(l—p)
W lL— N+ A

AT u(1—-p)

It turns out, that the single server retrial system is stable for p < 1 [20]. One
may also derive the conditional average waiting time in orbit for an arriving
customer given a busy server. By realizing, that the arrival rate to the orbit
is Ap and using Little’s law yields

o | 1 /1 1
E{WMW>O}_X?¢_T?Z<Z+E>

Again we detect an excess to the average queueing time of the M /M /1 model.
A slightly different approach to the one presented here is given in [20] by using
a generating function approach to derive the main performance characteris-
tics. Falin and Templeton also present results for the variance of the average
number of customers in orbit and in system. Their results are stated here
for completeness without proof

s p+N)
g = 2
n(1—p)
s plom+pn—pn+ )
O'Lq = )
n(l—p)

The calculation of the variance of the average waiting time is not straight-
forward, as customers may overtake each other randomly in orbit. For a
detailed analysis on the waiting time distribution we refer to their book [20].
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The multiserver case may be approached by letting C(t) assume values
between 0 and c. Proceeding as usual leads to the following system of equa-
tions for the steady state probabilities

<P +m + g) Pmn = PPm—-1n + (m + ]-)pm—i—l,n + z (n + 1)pm—1,n+1
N
(P + C) Pen = PPc-1,n + PPcn—1 + ; (n + 1>pc—1,n+1
Please note, that we have divided the equations by u for convinience. Intro-

ducing the partial generating function P,,(z) = > o 2"Pm for 0 < m < ¢
and |z| < 1, the above system of equation may be written as [23]

<p+m>Pm<z>+§zd%Pm<z> - me_1<z>+<m+1>Pm+1<z>+gz%Pm_1<z>
(0+0) ) = ch_1<z>+szc<z>+§d%Pc_1<z>

Introducing the bivariate generating function P(y,z) = > _ y™P,(z) and
repeating the step above yields

p(1—y) Py, 2) + 1 (2 —y) 5Py, 2) + (y = 1) 5, Py, 2)
+oy (y — 2) Po(2) + L (y — 2) d%Pc_l(z) =0

o
Differentiating with respect to z, y, yy, yz, zz at the point y = 1, z = 1 leads
to a system of equations, which can be solved in terms of L, = - P(1,1), the
blocking probability p, = P.(1), the utilization u = EC(t) = d—yP(l, 1) and
other variables. Simplification yields
u = p

_ 2
L, = (1 + Q) P9 (4.13)

p) c—p

The detailed calculations have been omitted for sake of readability, they do
not provide any further insight into the problem. The interested reader is
referred to the book of Falin and Templeton [20]. It can be shown, that the
multiserver retrial system is stable for u < 1. As will be shown next, the
model is bounded from above by the classic M/M /¢ queueing system and so
the stability condition adheres to intuition.
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This is as far as one can get with exact techiques. Closed form solutions
only exist in the case of one or two servers [20], for ¢ = 3 the average number
of customers in orbit depends on the variance of the number of busy servers
0%. In the extreme for n — oo the retrial model approaches the classic
M/M/c queueing system, whereas for n = 0 it reduces to an Erlang loss
system. This allows for an approximation for high and low retrial rates n. In
the former case the blocking probability p, is approximated by the probability

of delay ng/ M/e) for the M /M /c queue given by expression 3.6. The same

applies to the average queue length, i.e. L, = L((]M/ Mfe),

For 1 small the Erlang loss formula 3.10 with traffic intensity p = % and
c servers provides a starting point for an approximation. Hereby we assume,
that the unknown retrial arrival rate » does not depend on the number of
busy servers. It is easy to verify, that the Erlang loss formula constitutes a
distribution allowing us to calculate mean and variance. For the purposes
of the current section we will denote it by E(p,c), where p and c are the
parameters. Keeping in mind, that this distribution describes the random
variable busy servers, its expectation must equal the utilization of the retrial
system, i.e. u=p=p(l — E(p,c)) leading to E(p,c) =1—p/p =

r
Atr”

Similar considerations yield o7 = p — (¢ — p) (p — p), the variance of the
random variable busy servers. Returning to the high rate approximation, the
same idea may be applied to the Erlang delay formula leading to an approx-

(M/M]/c
d

imation of the variance o3 = p (1 —p )). Although both variances are

related to the number of busy servers, we kept the suffixes to show the origin
of the formulas.

For intermediate values of 1, the most straightforward way to provide an
approximation is via interpolation, i.e.

1 b (M/M/c)
P ~ 1+ﬂE(P70)+1_|_—ﬂpd
© w
1 n
2 2 2
oo =~ 1+ﬂab+1—tﬂad
© ©
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Inserting the expression for o% into formula 4.13 yields
n _ g2 _ 042
I (1+Q>p—a%:(1+ﬁ><1+u>p % ~ %
p) c—p p (c—p)<1+g)

O+ﬁ)p—p+@—pﬂﬁ—m—ﬁp@—pymm»

= 4.14
p— (4.14)
r (M/M/c)
_ (c—/));—Ir%de :f_i_ﬁ P (M/M/e)
c—p poope—p°
SIS S
HoH
where the unknown quantity r is calulated from E()‘:", ¢) =y for given

values of A, p and ¢. Although there is an appealing relation to the M /M /c
queue, it is in general not additive as one would expect from the single server
case. The remaining performance characteristics may be determined from an
application of Little’s law, i.e.

quiLq, W:Wq+%, L=XW=L,+p
Some of the ideas presented here have to be attributed to R.I. Wilkinson [45],
but the most complete reference in the field is the book by Falin and Temple-
ton [20]. Fayolle and Brun have treated a model with customer impatience
and repeated calls in their paper [21]. Their model is rather cumbersome
and difficult to analyze.



Chapter 5

Arbitrary Service Processes

In certain cases the Poisson assumption is not appropriate. One has to
consider non-Poisson arrival and service processes. The current section will
provide some results on queueing systems with rather arbitrary distributions.
If either one of the distributions is Markovian, the corresponding queue may
be analyzed by embedding a discrete time Markov chain (see appendix A.3).
This method introduced by Kendall suggests the system to be modeled by
viewing it only at times where the Markov property holds. By careful selec-
tion of the regeneration points, one is able to nullify the impact of residual
service and residual interarrival time.

5.1 Single Server Systems

Consider a single server queue with Poissonian arrivals at rate A and ar-
bitrary (absolute continuous) service distribution B(.) with average service
time i and finite variance. As regeneration points choose the instance at
which customers complete service and depart from the system. At that time
either a waiting customer commences service or the system becomes idle.
More exact, the residual life time is zero, but the customer has not left the
system yet. Define b(s) = [° b(z)e **dx as the Laplace transform of the
service density b(.) corresponding to B(.). Due to the Poissonian nature
of the arrival process, the probability of n arrivals between two successive
departures within an interval of length ¢ is given as

e M ()"

o (5.1)

Qn|t =

75
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94
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Yo

Figure 5.1: Embedded Markov chain for the M/G/1 queue

Averaging yields the probability of n arrivals within an interval of length ¢,
that is

in= [ auibit)i
0
We are now able to assemble the matrix of transition probabilities

g 91 492
g 91 492
Q=] 0 o a
0 0 qo

The number of customers in the queue is decreased by one, if no customer
arrives in the observed interval. If only one customer arrives, the system
remains in state n. Otherwise the process can reach any state k > n. We
say, the embedded Markov chain is skip-free to the left. Also refer to figure 5.1
for a graphical representation of the possible state transitions out of state n.
As shown in appendix A.3, the equilibrium distribution p is found by solving
PQ = p and normalizing. Reverting to classic notation leads to

n+1 n

Pn = Poqn + ZpianiJrl = PoGn + ZpiJrIania n >0 (5.2)
i—0 =0
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By the use of generating functions

P(z) = > pa, |2l <1
=0
Pi(z) = Zpiﬂzi =z Zpi+1zi+l
i=0 i=0
= —z 'pp+2z7" Z pip12

i=—1

= 2 'pp+z2 Zpizi =271 (P(2) — po)
i=0
i=0 i=0 0

_ ;zi/j#b@dtzé(m—z)) (5.3)

the system of equations 5.2 may be written as

P(2) = poQ(2) + P1(2)Q(2) = poQ(2) + 27" (P(2) — po) Q(2)
Rearranging
P(z) (1-27'Q(2)) =po (1 - 27") Q(2)
finally leads to
P(l=2)Q() _p(l-2)Qe)
1—271Q(2) Q(z) — =

To determine p, one needs to apply the properties of moment generating
functions [23], that is

P(z) =

(5.4)

d A
P<1) =1, Q(l) =1, %Q(’Z”Z:l = ; =p

The last equation stems from the fact, that p is the expected value for a
transition to occur. Rearranging expression 5.4 and letting z approach 1

el (2) Q) — 2)
_isz Qz) —z
P 1 — Q0
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Applying L’Hospital’s rule provides us with the desired result

po=1—p (5.5)

Hence equation 5.4 now becomes

Pl = =220 50

To obtain a solution to equation 5.6 and derive the steady state distribution
one needs to invert the transforms involved. This is not possible without
assuming a specific service distribution B(.). Even then, it is questionable,
if the desired inversion can be carried out. From a theoretical standpoint,
one has only to isolate the coefficients of 2% in the series P(z). Strictly
speaking, we have only determined the system size distribution as seen by
arrivals. Note, that in a stable system, the system size distribution seen
by departures equals the one seen by arrivals. We are now able to apply
theorem 10 (PASTA) to see, that the latter are equal to the system size
distribution [64]. Following that daisy chain, we conclude, that expression 5.6
sufficiently describes the distribution of the number of customers in system.
To determine the average system size L, one once again makes use of the
properties of generating functions [23]:
L= diZP(z)lzzl

It turns out, that this operation also might become rather cumbersome. For-
tunately a more direct approach exists and will be presented next.

Let Ay and Dy denote the number of customers entering and leaving the
system immediately after the k-th departure has occured. Then the following
recurrence relation for the number of customers in the system Np may be
observed

Ny = { N, —1 +Ak+1 for N, >0 (57)

Ak+1 fOI‘ Nk = 0

By introducing an auxillary function

| 1 for N, >0
U<Nk)_{ 0 for N, =0

relation 5.7 may be simplified to

Niy1 = N — U (Ni) + Apa (5.8)
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Taking expectation gives
ENgi1 = EN, — EU (Ng) + BEAgq

By realizing, that the number of customers after the k-th departure N, does

not depend on k, both terms may be eliminated from the above equation.
This leads to
EU (Ni) = EAg11

Another expression for U (V) may be derived by averaging over all possible
values, i.e.

The last term on the right is simply the probability of the server being busy.
Recall from equation 5.5, that the probability of an idle system is given by
po = 1 — p. Putting it all together results in

EU (Ny) =EAp1=1-po=0p (5.9)
As a next step, equation 5.8 has to be squared
Ny = NZ+U? (Ny) + A — 2N U (Ng) — 2A51U (Ny) + 2N, Ag 1
Taking expectation and eliminating terms ENZ, ; = EN? yields

0=EU? (Ny) + EA;,, — 2B (N U (Ny)) — 2E (Ag1U (Ny)) + 2E (N Aj11)

(5.10)
Notice the two obvious relations U? (N;) = U (Ng) and NyU (Ni,) = Ny,
which follow immediately from the definition. By independence of Ax,; and
Ny, one may write B (NyAy1) = ENyEA,; = p*. Substitution of these
idendities in expression 5.10 gives

0=p+EA;,, — 2L —2p* +2pL (5.11)

As the arrivals follow a Poisson process, the number of arrivals occuring in
the interval between two subsequent departures depends only on the length
of the interval, not on the interval itself. Consequently the index may be
omitted, i.e. EA? := EA? ;. Next, the second moment is expressed in terms
of expectation and variance, that is EA? = Var(A) + (EA)* = Var(A) +
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p?. With S denoting the service time (with ES = i), one may split the

variance to Var(A) = E (Var(A|S)) + Var (E (A]S)) = E(AS) + Var (AS).
By denoting the variance of S as 0% and recalling E (AS) = M\E (S) = ﬁ =p
one arrives at the expression Var (A) = p+ \*Var(S) = p+ \*0% leading to

EA? = p+ \0% + p?
Substituting in equation 5.11 yields
0=2p—p* + N0 +2(1—p)L
Rearranging terms finally results in

_ 2p—p*+ No? — ot P>+ N
2(1-0p) 2(1—0p)
The above result 5.12 is often refered to as Pollaczek- Khintchine Formula and

enables us to derive the remaining performance characteristics by applying
Little’s law. This leads to

L

(5.12)

1 1 p*+X\o?

= —L:— _
Vs T L))
1 p*4No?
W, = W—-—=£"°278
! po 2A(1—p)
2 2 2
p°+ XNog
Ly, = \W,=2"275
! T2(1-p)

For further reading, we again refer to classic textbooks on queueing the-
ory. We were mainly led by [27]. Similar derivations may be found also in
[25] and [64]. For more advanced approaches consider [4] and [46]. Due to
the vast amount of results on the M/G/1 model, we had to omit some of
them. These include for example waiting time distributions, batch arrivals
and priorities. Much of the material not covered may be found in the given
references.

Example 14 Assume an exponential distribution for the service times, i.e.
we specialize on the M/M/1 model. Applying the Laplace transform of the
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exponential density b(s) = ﬁ to expression 5.3 and 5.6 results in

(1=p) (1 =2) 5=

P(z) = T—
pA(1—2)
(L=p)A=2)p

p—zp—2zA(1—2)
(I—pp (A—0p)

[— ZA 1—2zp

Ezxpanding the result in a geometric series, 1i.e.

1 o
1_ — 1_ n n
A=p) ;= p)g»w

and isolating the coefficients of 2™ leads to the steady state distribution

V0

pn:<1_p)p

which equals expression 2.3. We have shown, that the M/M/1 model fits
perfectly in the framework of the more general M/G/1 queueing system. To
derive a result for the average system size we first note, that exponential
distributed service times S with rate p have mean ES = i and variance
0% = ﬂ—lg Substituting these values in the Pollaczek-Khintchine formula 5.12
leads to ) -
I 20— p + XNz _

2(1—=p) 1—p
Comparing the result to expression 2.4 shows the expected result.

Example 15 Now consider deterministic service times, i.e. we specialize
to the M/D/1 model. To gain results one usually has to employ integro-
differential equations. By applying the results for the M /G /1 model we are
able to significantly reduce the mathematical effort necessary. The determin-
istic distribution is in some sense malformed, as there is only a single point

with mass 1, 1.e.
1
b(x) =6 <:E — —)
(z) p

Here the function 6 (z) describes the Kronecker function

s={1 125
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The Laplace transform of the density is given by
b(s) = ek
Applying to expression 5.8 and 5.6 leads to

(L—p) (1 —2)e X0

P(z) = eA1—2)/n _ 5
(1-p)(1-2)
1 — zer(1=2)

Ezpanding in a geometric series

PE) = (1= p)(1=2) ) 2"em0=)

and expressing the exponential function in an exponential series allows one
to isolate the coefficients of z":

p = 1—p
o= (1-p(e”—1)
n ( . n—i ip n—1 nzlelp
= (1— 1
P = p); 7 Z =) (5.13)

Compared to the calculation so far, the derivation of the average system size
gets even simpler than for the M/M/1 model. As there is no variation in
the model, i.e. 0% = 0, the Pollaczek-Khintchine formula 5.12 immediately

becomes

0

2(1-p)

Rewriting expression 5.14 reveals an interesting relation between the M /D /1
and the M/M/1 model:

L=p+ (5.14)

2 2
[P P poamny P
l—p 2(1-p) 2(1=p)

It turns out, that given the same parameters the number of customers is
always smaller for systems with deterministic service times. In case of heavy
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traffic, i.e. p — 1, the system size of the M /M /1 model is twice the size of
the M/D/1 queueing system:

1
lim L = = lim LM/M/1)
p—1 p—1
For sake of readability, some calculations have been omitted. The detailed
calculations may be found in [49].

By introducing the coefficient of variation cg = —”‘gg(s) = [og, one may
think of using it as a control parameter to interpolate between deterministic
(cs = 0) and exponential service times (cs = 1) . In fact, this is possible by
reinterpreting the Pollaczek-Khintchine formula 5.12 as follows

[ 2P0 20— p? — e+ 2pck — 2pck

2(1-p) 2(1-p)
2p 2p — p?
= A——+(1-¢3) 12—
“3n-p TS ea,)
s P oy 20— p°
= T 4+ (1= Bl
051—p+( 05)2(1—p)
= ALMMDY 4 (1 - k) LM/P) (5.15)

By Little’s law the same convex combination may also be applied to the
other performance characteristics. Although this interpretation is not very
appealing in its own sense, it becomes of great interest for the approximation
of multiserver limited capacity systems. In fact, it will turn out, that the
idea extends to the most general models.

5.2 Finite Single Server Systems

In this section we will get in touch with finite source and limited capacity
systems. We will provide some ideas and summarize the major results. For
sake of readability lengthy discussions will be omitted, the details missing
may be found in the given literature. First consider the M/G/1/K model.
As before for the exponential version a limit of K customers is allowed and
customers arriving at a full system are turned away. The service time S
follows an arbitrary distribution B(.) with expectation i and finite variance.
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No stable system needs to be assumed, as the finite waiting room provides
an upper limit for the number of customers in the system. It can be shown
[25][58], that the steady state distribution of M/G/1/K system is propor-
tional to the stationary solution of a stable M/G/1 queue given the same
parameter. The latter is sufficiently described by expression 5.6 and will be
denoted as pi"/“/Y. Following Gnedenko and Kovalenko [25], the first K

probabilities are given by

-1
K = ll—p—i-pr(M/G/l] (5.16)

Applying the usual normalization condition Zf:_ol pn leads to the expression
for px, which is also the probability of being blocked

K-1
pb:pK:/ill—,O—i- pM/G/1] (5.17)

n=0

It turns out, that a similar relation also exists, when the infinite system
becomes unstable. More details may be found in [25]. Having calculated the
blocking probability we are now in the position to derive an expression for
the effective arrival rate,

X:A(l_pK)

From the steady state distribution, the average number of customers in the
system may be determined by

K
L= Z np,
n=0

Application of Little’s law yields the remaining performance characteristics

L L
W pu— _ =
)\ )\(l—pK)
1
W, = W—=
9]

¢ = AW =M(1-pg) W,



5.2. FINITE SINGLE SERVER SYSTEMS 85

Alternatively one may follow the embedded Markov chain approach as has
been done before for the M /G /1 queueing system. This leads to a finite state
Markov chain in discrete time. Each of the results given above may then be
determined in terms of the corresponding stationary solution. For further
details we refer to one of the most complete references on the M/G/1/K
model available, that is [58].

We now proceed to the finite population M/G/1 queueing system, also
referred to as machine-repairman system. The working machines are associ-
ated with the source and the broken machines form a queue waiting for repair.
In our case a single repairman is available to perform the job. The average
time in system then becomes the expected machine outage time. Based on
such key indicators the cost of operating a production business may be in-
ferred. We will now present some results derived by Takagi in [58] without
proof. Consider a system with population size N and the other parameters
defined as in the M/G/1 model. Given the Laplace transform b(s) of the
service time density, the mean arrival rate is given by

N[ 05 () T (7' 63) — )]
14 Np [1 + 3 () TT, (071N — 1)]

From the expression for the average time in system

\ =

n

1+ ]:z_:: (Nn_ 1> [T 6N -1)

i=1

W= +

!
A

N
1

the remaining performance characteristics may be derived by applying Lit-
tle’s law

- A

L = \WW=N-Z2

W A
1
W, = W—-—
o
L, = AW,

From the results of the two above models one can image, that the correspond-
ing calculations quickly become cumbersome. Both models occur relatively
rare in queueing literature and are completely omitted in standard queueing
theory textbooks. An exception to the rule is [58], where all the necessary
details are to be found.
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5.3 Multiserver Systems

In generalizing to more servers, we loose all the powerful tools used so far.
In fact, the M/G/c queueing system does not permit a simple analytical
solution. We can not apply the method of embedded Markov chains the
usual way and there is no such relation as the Pollaczek-Khintchine formula.
The only item left in our toolbox is Little’s law. Before obtaining some
approximations for the M /G /c model, we note, that rather simple solutions
exist for two special cases. The first is the M /G/c/c model already discussed
on page 3.2. The second is the so called infinite server queue M/G /oo,
which derives from the M/G/c/c model by allowing ¢ to become infinite.
This immediately leads to the stationary distribution
e Pp"
pn =

n!

The remaining results may be determined in the same fashion [27].

One of the simplest approximations to be obtained is based on a general-
ization of the idea, which led us to expression 5.15. By considering the result
to be valid for multiple servers as well, one arrives at

L = LM 4 (1 — ) LMD/ (5.18)

The expression for L(M/M/¢) may be determined from formula 3.8. As shown
in [49] and [44], the generating function for system size distribution of the
M/ D/c model is given by

D n—oPn (2" — 2°%)
P(z) = : - e 12| <1 (5.19)

By realizing, that the numerator is a polynomial of degree ¢ and rewriting
expression 5.19 after some manipulations yields [49]

) cop =D mm) ()
P(z) = _<1 — ) (L= 2y 1 — scer(l—2)

The z,..., 2. are the zeros of the numerator within the unit circle, that is
zn = {z: |z <land P(z) =0}, 0 < n < ¢. The last zero is always given
by z. = 1. Note, that Rouche’s theorem 12 assures, that z,..., 2. are found
within the unit circle. The probabilities p, may now be obtained as the
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coefficient of 2™ in the power series expansion of P(z) for a given number of
servers c. The average system size may be determined by applying the well
known property of generating functions L = 4L P(2)|,—; to expression 5.19.
Some further algebra finally leads to

Loupg _ PP cle= 1) + 3 lefe = 1) —n(n — D] pi"
2¢(1— pJe)
(M/D/c

Due to the fact, that the py, ) have not vanished from the expression
above, the derivation of an exact solution still remains a rather tedious task.
Fortunately an approximation developed by Cosmetatos has been suggested
in [60]:

+p

1, \(M/M/c) V4 +5c—2
LIS 7 2 l1 +(1-8) (-1 g, | Tr (620

By applying a regenerative approach and including information about the
elapsed service time into the model, van Hoorn was able to deduce another
approximation. Consider the following assumptions

e The residual service times are independent random variables each with
residual life distribution

B0 =n | (1= B@)ds

e Given a full system, the time until the next departure has distribution
function B (ct). Thus the M/G/c queue is treated as M/G/1 queue
with rate cp.

By applying the following recursion scheme, one arrives at an approxima-
tion for the steady state distribution

c—1 p" p° -1
N [Zn:[) % —: c!(l—p/c):| n=0
Pn = 2 po n<0<c (5.21)

A (anfcpcfl + Z?:c /anzpl) n Z I

o = [T 0= B - By e

n!
B8, = /Ooo (1 — B(cx)) e_m"M

n!

de, n>0

de, n>0
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Proceeding further, van Hoorn was able to determine the expected queue
length

L,= {(c,u -\ / (1 — By(z)) dzx + )\—CMES2 LM/M]e) (5.22)
0

q

For all approximation presented above, the remaining performance indicators
may be determined by the help of Little’s law and the usual relations

L=1Ls+p, T/Vq:)\Lq:L—i—%7 W = AL
Now consider a system with multiple servers and waiting room limitation
K. By combining the results for the M/G/1/K model with the approxi-
mation above, van Hoorn was able to derive reasonable approximations for
the M/G/c/K queueing system. Denoting the probabilities for the infinite
server system given by 5.21 with p,(lM/ c/ c), the corresponding probabilities for
the limited capacity system are given by

pn ~ kpMEO 0<n< K

K-1 -1
n=0

Please note the similarity to expression 5.16 obtained for the single server
system. The probability for an arriving customer being blocked from entering
the system and getting lost is

K-1
Pd =Pk = ppe-1 — (1 —P>an

n=0

By noting, that the effective arrival rate A = (1 — pg) A, one may now deter-
mine the performance characteristics the same way as has been several times
before,

K L
L p— ns _—-
2 mme W= g
1

Wq = W—;7 Lq:)\(l—pK)Wq
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Classic queueing literature provides a wealth of information on bounds and
approximation, although much of it is devoted to the more general G/G/1
and G /G /c queues. For example, see [27]. A very simple relation between the
M /M /c model and the more general M/G/c queueing system with processor
sharing discipline has been derived by Wolff in [64]. Some exact results in
terms of generating functions may be found in [49].

5.4 Customer Impatience

Balking may be introduced to the M /G /1 model in a straightforward manner
by prescribing a probability b that a customer enters the system on arrival.
In modifying equation 5.1 accordingly, i.e. writing instead

e P (bAt)"
Gnjp = —— 17—
one is able to carry out the entire set of calculations as given for the classic
M/G/1 model [27]. Obviously it is much more difficult to attach more than
a constant balking rate to the mode. Even for single server systems, the
inclusion of customer impatience effects into the model becomes a tedious
task. There exist some solutions in the literature. Most of them are based
on the refinement of a G/G/1 queueing system with impatient customers to
the case of Poissonian arrivals. Bacelli and Hebuterne [5] have shown, that
the distribution for the virtual offered waiting time and the distribution for
the waiting time coincide for the extended M/G/1 + G model with impa-
tient customers. Consider a single server queue with Poissonian arrivals and
arbitrary service distribution B(.) as before for the classic M /G/1 queueing
system. Let V(.) denote the (absolutely continous) distribution of the vir-
tual offered waiting time. Define the survival function G(.) = 1 — G(.) to the
impatience distribution G(.). Note, that V(.) can be interpreted as a mixed
distribution, as there is a positive probability for an arriving customer to
join service immediately. It splits in a discrete part V' (0) and a (absolutely)
continous part with density v(.). Bacelli and Hebuterne have shown, that
v(.) is the solution of the following system of integral equations

v(t) = AV(0)(1 — B(t)) + /Otv(s)G(s)(l — B(t —s))ds

1 = V(O)+/Ooov(s)ds (5.23)
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By substitution, they were able to identify expression 5.23 as Fredholm inte-
gral equation of the second kind. The solution allows v(.) to be represented
as integral series. For details we refer to the paper by Bacelli and Hebuterne
[5]. Another approach is to generalize the equations derived by Takacs [56]
for the classic M /G /1 model to consider forms of customer impatience. This
has been carried out by Gnedenko and is shown in [49]. Transient solutions to
M/G/1 queueing systems with balking and reneging have been investigated
by Subba Rao in his papers [54] and [55]. It should be noted, that Subba
Rao assumes the service distribution to belong to a certain class of distri-
butions following an exponential pattern. He does not consider arbitrary
service distributions.

5.5 Retrials

Under the usual assumptions for a M/G/1 queue, we will now attempt to
analyze such a system with retrying customers. Time periods between retrials
are assumed to follow an exponential distribution with mean % The system
state will be described by a Markov process {C(t),&(t) <z, N(t) :t = 0},
where C(t) denotes the number of busy servers, N(t) represents the number
of retrials and £(t) describes the elapsed service time. To introduce &(t)
into the model preserves the Markov property and is called the technique of
supplementary variables. Please note, that for C'(t) = 0 there is no need to
define an elapsed service time, as no customer is present in the system. The
relevant states are collapsed into a single simpler state. Putting it together
the equilibrium probabilities are defined as

pon = Pr{C(t),N(t)}
Pin(z) = Pri{C(t),(t) <z, N(t)}

Following the approach by Falin and Templeton [20], the steady state equa-
tions are given by

(A+nn)pon = /000 P1n(2)b(x)dx

%pl,n(m) = —(A+bx))pra(z) + Ap1p-1(2)

d
P1a(0) = Apon(w) + (n+ 1) np1pia(x)
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recalling that b(z) describes the density of service times. Introducing the
generating functions Py(z) = > -, 2"pon and Pi(z,x) = >, 2"p1n(z) the
above system of equations may be written as

APy(2) + nzdiZPo(z) _ /0 " Pz, 2)b(a)da (5.24)
%Pl(z ) = —(A=Az+0b(z)) Pi(zx) (5.25)
Pi(z,0) = APy(z)+ ndilng(z) (5.26)

Solving the ordinary differential equation 5.25 yields
Pi(z,z) = Pi(2,0) (1 — b(z)) e" A (5.27)

which allows one to rewrite 5.24 as

APy(z) + nzdiipo(z) =b(A— A2) Pi(z,0) (5.28)

Expressing in terms 7-£ Py(z) and inserting in expression 5.26 leads to

1—2
Pi(2,0) = A———F
1(20) =Arn T =)
Substituting in equation 5.27 gives
1—2
P = A Py(2) (1 — b(x)) e P22 5.29
((208) =Ny S R - be)e (529)

In order to derive an expression for Py(z) one inserts Pi(z,0) into equation
5.26 and 5.28, i.e.

n[b(A—Az) — 2] iPo(z) =A[1=b(A = X2)] Po(2) (5.30)

dz
By careful inspection of b(XA — Az) — z leads to z < b(A—Az) < By
considering the limit of - 1 )\b i 2 from below, one can show, that the conver-

gence radius determmed by the generating function may be extended to the
boundary 0 < z < 1. This in turn enables one to state expression 5.30 as
ordinary differential equation

d _51—5()\—)@)
EPO(Z) N nb(A—\z) —z ()
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with solution
A zl—l_)()\—)\y)
Pz:PleXp{—/— d}

By noting, that 1 — Py(1) = u = p:= —A<Lp(2)|
at

.—o» One immediately arrives

Py(z) = (1 - p)exp {% /0 %@}

Thus the steady state solution for the single server retrial system with arbi-
trary service times is completely characterized in terms of generating func-
tions by expression 5.29 and 5.31. It can be shown, that the system remains
stable for u = p < 1, for details refer to [20]. The distribution of the number
of repeating customers is given by

(5.31)

P(z) = Po(z)—i-/oooPl(z,m)dm
B 1—b(A—X\2) A 1—b(A—\y)
e et b e i)

By using the properties of the Laplace transform one arrives at the average
number of customers in orbit, i.e.

d

_ 2p/n+ PNy L LM/G/)
q

=1 2(1—=p) n(1—p)

As highlighted above, the average queue length exceeds the one from the
classic M/G/1 model by an additive factor. Considering, that the retrial
system is not work conserving, i.e. there is a positive probability, that waiting
customers do not immediately receive service, this factor becomes intuitively
clear. Furthermore by letting 1 approach infinity, one arrives at the classic
M/G/1 model. Please note, that we encountered the same effect for the
average queue length of the exponential retrial system given in expression
4.12. The remaining performance characteristics may be determined from an
application of Little’s law, i.e.

1 1
Wo= Sla W=Wot o L=AW=1Ly+p

We have already seen for the classic M/G/c queue, that no simple ana-
lytical solution is available for more than one server. The same is true for
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the multiserver system with retrials. Fortunately the approach taken for
the classic multiserver queue also works for the retrial version. Recall from
equation 5.18 the approximation for the average system size:

L~ ELMMI 4 (1 (2) [(M/D/9

Considering equation 5.20, the average number of customers in system for the
M/D/c queue may roughly approximated by LM/P/¢) ~ 1[(M/M/e) Jeading
to

2
I~ LG puymage)
2
Replacing the M /M /c model with its retrial counterpart results in

2
I~ 1 ‘;CS (L((ZTM/M/C) +P)

where LgTM/ M/e) g given by equation 4.14 for the multiserver retrial system

with exponential service times. A slightly different argument for its deriva-
tion called the processor sharing method is given in [64]. Wolff also discusses
an approximation deploying the retrials see time averages property for retrial
models. He makes a difference between a customers initial entry and retry
and assigns different probabilities to each event. With finite probability on
retries the case of a finite (geometric) orbit is also covered by the model. Up
to now we have only considered retrial models with exponential retry times.
Note, that in relaxing this assumption, the system under consideration may
become instable even with p < 1. For more details please refer to [3].
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Chapter 6

Arbitrary Arrival Processes

In the the preceding section the M/G/1 queue was modeled as an embed-
ded Markov chain with regeneration points taken at the instances of service
departure. Using the same technique, we are able to analyze systems with ar-
bitrary arrivals and exponential service distribution even for multiple servers.
For this non-Poisson system, the regeneration points occur at the epochs of
arrival. As there is only a slight difference in derivation of the G/M/1 and
the G/M/c model, we will focus on the latter. The interarrival times are
assumed to follow a general distribution A(.) with expectation %

6.1 Multiserver Systems
To obtain the matrix of transition probabilities Q = (g;;) for the embedded

chain, one has to partition the (7, j) plane into four parts and consider each
case seperately.

OO0 Q@

99

Figure 6.1: Some state transition for the G/M/c queue

95
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e Customers do not arrive in batches, so there is obviously no transition

from state ¢ + 1 to state j fori +1 < j, i.e

ql-j:O, 1+1<y

Let a(t) denote the density of the interarrival times. With all servers
being busy, the system serves at rate cu. Defining g, as the probability
of n customers getting served within two subsequent arrivals, i.e.

oo ,—cut n
qn:/ £\ (cpt) a(t)dt
0

n!

yields
Qij = Qiv1—j> c<j<i+1

For a graphical representation refer to figure 6.1.

Now consider the case, when no customers are waiting. During an
interarrival period, ¢ + 1 — j service completions must occur at time .
Because of the exponentially distributed service time, the probability
of a customer to depart is given by 1 — e7#!. Thus the probability,
that a customer will remain in service is e #!. Employing the binomial
distribution leads to

& + 1 i+1—j - ) )
w= | (J ) (1= )™ eMatydt,  e<it1<g
0 t )

By noting, that (Zf{i]) = (iyl), one may also write [37]

< li+1 it+1—j ;
= (”- )<1—e”t)*”e%<t>dt7 c<itl<]
0 J

It remains to discuss the case j < ¢ < i+1. Following [27], assume, that
arrival goes into service after some time V', when all prior customers
have left. Then V is the time until ¢ — ¢ + 1 customers have been
served by a full system at rate cu. This V' is distributed according
to a (i —c+ 1)-stage Erlang distribution. To get from state i to j
between two subsequent arrivals, ¢ — j service departures must occur
in the interval from V to the end of the interarrival period. Again



6.1. MULTISERVER SYSTEMS 97

utilizing the binomial distribution and using the memoryless property
of the service distribution, one arrives at

c zc—i—l — ( |
i = —u(t—v)jg—co—cu g £)dt
i (c— ) (i — o / / ) e v va(t)

forc<j<i+1.

Assuming a stable system, the stationary solution for the embedded
Markov chain may be obtained by solving the linear system of equations

PQ=p > pi=1 (6.1)
=0

Please note, that we have denoted the stationary solution by p to reflect the
dependence on the arrival epochs. For j > c this leads to

ZOpz + Z Qi+1-jDi = Z Qi+1—5Di

_J 1 Z ]—1

Being familiar with the solution of the M /M /1 queueing model, this suggests
a solution of the form .
=Cuw', i>c (6.2)

where w is the root of the equation

z = Z qnz" = a(cp — cuz) (6.3)

with a denoting the Laplace transform of the interarrival density. Due to the
assumption of a stable system, we only accept solutions from inside the unit
disc, that is |w| < 1. In fact, in can be shown [56], that a unique solution
exists for the case p < 1. Please note, that for Poissonian arrivals w equals
the utilization u = £ and that v = w does not hold in general. For this
reason, w is often referred to as generalized server occupancy [13].I1t remains
to determine the constant C' from the normalization condition and the first
c¢— 1 equations of the system 6.1. Although possible, this may not be an easy
task due to the fact, that c+1 equations in ¢+ 1 unknowns containing infinite
sums have to be solved. However, Gross & Harris [27] suggest to modify the
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term to depend on py,...p. and w only by the following procedure. By
noting, that 1 =320 p; = S0 p; + C 3.2 w' one arrives at

oo LYo _ 1= h

YW we(l-w)

Based on the above calculations one may easily obtain the average queueing
time as follows. As queueing occurs only in a full system, customers are
served at a constant rate cy. An arriving customer j > ¢ has to wait for
the departure of the j — ¢ + 1 preceding customers before entering service.
Averaging over all possible cases yields [13][37]

1 C .
= R ) — 1 D, — — ) — 1 g
W, o 2 (i—c+1)p; CM;(Z c+ 1w
— 07“}2 (6.4)
cp (1l —w)

Please note, that neither the result for W, nor the queueing time distribution

itself do depend on the arrival epochs [37]. Let the random variable Wq denote
the queueing time and define A, A° as the events {arrival queues} and {arrival
does not queue}. The corresponding distribution may be written as

Pr{quw} = 1—Pr{Wq>w}
= 1—-Pr {Wq >w]A} —Pr {Wq >w]AC}
= 1-Pr {Wq>w]A} :Pr{Wq§w|A}

By summing the relevant terms, we obtain the probability of an arriving
customer being delayed

. oo~ 00 i Cuw®
pd:;pi:C;W :_1_ww

From Little’s law we may readily compute the average queue size from ex-

pression 6.4:

Cpw

Ly =AW, = =P
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Please note, that a similar result would have been obtained by applying the
rate conservation law 11 to the formula L, = >"° (i — s) p; [1]. Adding the
average service time % yields

1
W=Wyt L=Lytp

Next, consider the queue length distribution given that all servers are busy,
i.e. that an arrival is delayed. Let the random variable L, denote the queue
size. Following [37],

9y = ctn
Pr {Lq = nlarrival delayed} = p;;" = nguz =
P _
= (1-w)w" (6.5)

one has to conclude, that the conditional queue length distribution is geo-
metric. Proceeding further, one may also determine the distribution of the
queueing time [27] and the distribution of the queueing time given an ar-
rival is delayed [37]. As shown by Kleinrock, the latter is an exponential
distribution. Loosely speaking, we encountered M /M /1 behaviour in the
conditional distributions of the G/M/c queueing system. In [13] some re-
sults on the waiting time of queues with disciplines other than FCFS are
presented.

6.2 Single Server System

We may now readily apply the preceding results to the single server case
¢ = 1. Similar to the calculations for the M/M/1 queueing model one may
readily obtain from expression 6.2 the probabilities

Pn=(1—-w)" (6.6)

The root w is calculated from equation 6.3 given ¢ = 1. As stated in [37],
the number of customers found in the system by an arriving customer is
geometric. Thus we find resemblence with the system size distribution of the
corresponding system with exponential service times. Furthermore it can be
shown [37], that the queueing time distribution has the same form as for the
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M/M/1 model. The performance characteristics are now easily calculated
by substituting C =1 — w and ¢ = 1 to the relevant expressions:
pw w
L, = , W, =———=
! (1-w) Top(l-w)
p 1
L - 3 W =
(1-w) p(l—w)
Please note, that the average time in system and the queueing time are the
same for a random observer and an arriving customer. This is not true for the
average system size and the average queue size, as can be seen by applying
the rate conservation law. Rewriting the expression in theorem 11 yields
min (¢,n)p, = WPpp_1 = PPn_1. By generalizing to a random observer, we
have to scale each probability by a factor €. Fortunately this factor carries
over to the expressions for L and L, by linearity. So a simple multiplication
with % yields the desired result

2

d L=2I =

A () Ry

L

v
p
For a detailed derivation of the G/M/1 queue please consult [27]. Although
the models for single and multiple servers are similar in analysis, only some

queueing theory textbooks cover the more general case. For further interest
we refer to the literature stated in the text.

Example 16 First consider the case of exponential service times. Then the
Laplace transform of the density is given by

A
T A+

a(s)
Substituting a(s) and ¢ = 1 in equation 6.3 leads to
a ) A
w=a(p—pw) = ——"—
pen A — pw

Rearranging
pw? — A+ p)w+A=0

and factoring
(w=1)(uw =) =0
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suggests two solutions w = 1 and w = ﬁ = p. We omit the first solution as
it does not lie inside the unit disc. Applying the result to equation 6.6 yields
the well known steady state distribution

pn=(1-p)p"

By either applying PASTA or the rate conservation law, one immediately
proves the idendity of p, and p,.

Example 17 Assuming deterministic arrivals the corresponding Laplace trans-
form of the arrival process is given by

a(s) = e/
Substituting a(s) and ¢ =1 in equation 6.3 leads to

—HO (w0 /p

w=a(p—pw)=e

which can be numerically solved for predetermined values of p.

As the second example shows, even for such a intuitively simple model
as the D/M/1 model an analytic solution becomes intractable. In most
cases one resorts to the use of numeric procedures to obtain the desired
result. Fortunately some approximations devoted to more general models
are available and indeed suitable to approximate queues like G/M/c and
D/M/1. We shall discuss these topics below in the context of arbitrary
arrivals and departures.

6.3 Capacity Constraints

We will now state some results on the multiserver queue with limited capacity
first derived by Takacs as presented in [24]. Denoting the Laplace transform
of the interarrival density with a(s) as before the steady state probabilities
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seen by an arriving customer are given by

c—1 i—n (1 . oo wiax(j
By = 2o (CD)T (van(D) 2 #(](i)) Osn=<c
V9K —n c<n<K

v [Zg]+z1w_n;*m]1
Gn _ 14 ((1_2) (Cu—cuz))

n!dz" alep —cpz) —
(

(2) [Zfi}cﬂ Gi0K —c+1—i
—a(nn) S5 (5)

z=0

Wn = = +an+Z@ 1 i Zk 1 ak( . )Kﬁcﬂiiik
+Zk: 1 ak( cn)K - k_a(n#) (cfn)Kic:| OSTZ<C
(C,U)QK e+l n=c«c

- e (cpi)"
ai(n) : = H . k,u Ay = /e H %a(m)dm
—1

From these the unconditional equilibrium distribution is easily determined by
applying the rate conservation law. Using some of the functions introduced
above, the average queueing time may be calculated from

K—c
v

n=1

An arriving customer is turned away from the system and gets lost with
probability p, = px. As a consequence the effective arrival rate is readily
obtained, i.e.

A=X(1-pk)
Through the application of Little’s law we arrive at the remaining perfor-
mance key indicators in terms of W, and A:

1 : _
W=Wyt o L=, Ly =AW,

Another useful reference for the G/M/m/K model is the research paper [31]
by Per Hokstad. It also covers the connection between the time-continous and
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the embedded process, which is just another name for the rate conservation
law given by theorem 11. Hokstad managed to reduce the derivation of the
steady state solution to a linear system of equations. Finally he determines
performance key indicators and presents some examples.
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Chapter 7

Arbitrary Arrival and Service
Processes

Arriving at the most general queueing model, it is remarkable, that still some
results may be found. In the following discussion we will first focus on the
single server model and then provide some approximations for the multiserver
case.

7.1 Single Server System

The single server system has first been analyzed by Lindley in 1952. Our
approach will follow the presentation in [27]. Let the random variables Wq(n),
5’(”), T™ denote the queueing time, the service time and the interarrival
time of the n-th customer. Assume, that S™ and T™ are mutually inde-
pendent and independently indentically distributed according to B(.) and
A(.), respectively. Furthermore both distribution functions shall be non neg-
ative and absolutely continous. Consequently the densities exist and we may
denote their Laplace transforms with b(s) and a(s). Introducing the random
variable U™ = §™ — 7 a5 the difference between service time and inter-
arrival time, the Laplace transform of the density of U™ may be determined
as the convolution

u(s) = a(—s)b(s) (7.1)
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Following the given notation, we may describe the queueing time for the
(n 4 1)-th customer as

r(n+1) _
W, =

{ Wi U@ w4 U™ s 0 (72)
0

W 4o <o

Let Wq(”) (t) describe the distribution of the queueing time of the n-th cus-
tomer. Then the waiting time distribution for the subsequent customer may
be readily obtained from relation 7.2, i.e.

P — dr t>0
a ®) { 0 t<0 (7.3)

Here u(.) denotes the density function of the random variable U™ Due to the
fact, that arrivals and services are independently and indentically distributed,
we may write down the average arrival and service rates as A = 1/ ET® and
p=1/SM. Assuming p = \/p < 1, it may be shown [8], that a steady state
solution lim,, Wq(n) (t) = W,(t) for the queueing time exists. Consequently,
the two waiting time distributions in equation 7.3 must be identical, i.e.

[P Wt —2)u(z)dr >0
W,(t) = { / 0 t <0 (7.4)

The above equation is often refered to as Lindley Integral Equation and
belongs to the class of Wiener-Hopf Integral Equations. Introducing

_ 0 t>0
Wy (t) = { [f Wyt —z)u(z)ds t<0

equation 7.4 may be expressed as follows
t
W, () + W,(t) = / W, (t — x)u(z)dx

Taking the Laplace transform of both sides and substituting equation 7.1
results in
W, () + Wals) = Wy(s)u(s) = Wy(s)a(—s)b(s) (7.5)
By applying the properties of Laplace transforms [23], the Laplace transform
of the unknown queueing time density w,(s) may be expressed in terms of
its distribution functions as w,(s) = sW,(s). Rewriting equation 7.5
- 1 1

Wy () + iy (s) =~y (s)a(—5)(s)
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finally leads to
sW, (s)

a(—s)b(s) — 1
The result stated above can not provide complete satisfaction, as it still
remains to determine Wq’ (s). There exist various approaches to the solution
of the G/G /1 queueing system, but no exact closed form solution is provided.
For example, refer to the textbooks [37], [13], [4] and [64]. If a closed form
solution is desired, one has to consider approximative methods. As discussed
in section 1.4, the arrival and service distribution may be arbitrarily well
approximated by the class of exponential distributions in serial and parallel,
which is in turn part of the family of phase type distributions. This approach
has been studied in detail by Schassberger in [50].

y(s) = (7.6)

7.2 Multiserver systems

The analysis of the multiserver case poses some technical difficulties, e.g.
in certain situations, a stable system does not become empty. Additional
assumptions are required to deal with questions like which server will serve
an arriving customer in an underload situation. Main results have already
been provided by Kiefer and Wolfowitz in 1955, but we will turn attention
to approximations for the G /G /¢ queueing system. One such approximation
for the average queueing time is the Allen-Cuneen formula

o B (G

s (7.7)
p(c—p) 2

Here ¢ and ¢ describe the coefficient of variation of the interarrival and

the service time. The probability pElM/ Mfe) g given by the Erlang Delay

formula 3.6. As shown in [2], formula 7.7 is exact for the queueing systems
M/G/1 and M/M/c. Another reasonable approximation may be obtained
by extending the concepts introduced in section 5 for the M/G/c queueing
system. Following the paper [36] by Kimura, the average queueing time is
given by

-2  1-& 2@&+a-1]
Wq(D/M/C) Wq(M/D/C) Wq(M/M/C)

(7.8)
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where Wq(M/ bfe) may be derived from expression 5.20 through an application
of Little’s law. For Wq(M/ M/) one may substitute the exact result provided
by formula 3.8. The remaining term is best approximated by a relation due
to Cosmetatos, Krdmer and Langenbach-Belz

wome o (L (1 _ B) (c— 1) YAEOCT 2N atempysopy(aanare)
7 2 c 8p ?

By an application of Little’s law, the performance characteristics L, L, and W
are readily derived from expression 7.8. For some notes on the G/G /¢ model,
refer to the book [64]. The phase-type approach has been investigated by
Schassberger in [50]. An advanced mathematical discussion covering relations
between queueing processes and concepts of convergence may be found in [8].

7.3 Customer Impatience

The most straightforward way to build customer impatience into the G/G/1
model is to adapt expression 7.2 and derive a generalization of Lindley’s
integral equation. Without consideration of balking behaviour this leads to
the so called G/G/1 + G model. As before, let the random variables I/T/q(n),
S (), T™ denote the queueing time, the service time and the interarrival
time of the n-th customer. Also define U™ = S — T with the usual
meaning. A new random variable G'™ ghall describe the patience time of the
n-th customer. In order to model impatience effects, a potential customer
refuses to join the queue, if G™ < I/T/q(n). On the other hand, for G™ > Wq(n)
he enters the system to get served. Taking this into account, one arrives at

w4 gm w4 gm s 0, e > Wi

pow_ ] 0O Lgw <o 6o s i
“ Wi — Tt Wi — T >0, GO < Wi
0 W —Tm <o, GO < W

Introducing the survival function G(.) = 1 — G(.) for the distribution G(.) of
the impatience time and proceeding as before leads to

[P Wt — o) [Gla)u(z) + (1 - G(z)) a(—=)] dz ¢ >0
Wq(t)_{ [ ) ( ) a(~z)] 120
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Here u(.) and a(.) denote the density functions of the random variables 7"
and U (") respectively. If the distribution of impatience times G(.) is non-
defective, that is for lim, ., G(z) = 1 the system remains stable for p <
1. For details on a similar derivation we refer to the paper of Bacelli and
Hebuterne [5]. An approximative solution to a G/G/1 queueing system with
balking and reneging is given in [62].
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Appendix A

Stochastic Processes

A.1 Introduction

If one wishes to model real world phenomena and gain deeper insight into
them, an adequate set of mathematical and probabilistic tools is required.
One such tool is the theory of stochastic processes concerned with the ab-
straction of empirical processes. Examples include the flows of events in time
and evolutionary models in biological science. Associated with the concept of
a stochastic process are the state space and the parameter space. Whereas the
latter is often identified with time, the former contains all values the process
can assume. If the parameter space is not limited to time only, i.e. possesses
a higher dimension, stochastic processes are also called random fields. In the
following discussion, the parameter space is limited to the one dimensional
case and treated as time.

Definition 18 Let T denote the parameter space. A stochastic process is
a family of random variables {X(t) : t € T} defined on the same probability
space.

Definition 19 A stochastic chain is a stochastic process with countable (dis-
crete) state space. It will be denoted by { X, :t € T}.

As stated above, it is very important, that each random variable X (t)
assumes the same state space. Flipping a coin and throwing a dice are
independent experiments. Their combination alone does not constitute a
stochastic process.

111
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Xt X X(t) X(t)

t ) t
a) b) c) d)

Figure A.1: Examples of stochastic processes

Figure A.1 shows examples for each combination of state and parameter
space. Notation has chosen according to above definitions specifying two
stochastic chains on the left and the more general processes with continous
state space on the right. These graphs are called sample graphs, because
they reflect one possible realization of a stochastic process over time. By
keeping the time fixed and considering the possible realizations one arrives
at another view, that is the process as a random variable for a certain point
in time. These dualistic perspectives are central to the theory of stochastic
processes and give rise to concepts such as ergodicity. Ergodicity deals with
the problem of determining measures for stochastic processes. For example,
the ergodic theorem states, that under certain conditions, the time average
equals the ensemble average (almost sure). The time average is deducted
from a single realization over infinite time and the ensemble average is the
mean over all possible realizations for a certain point in time.

A central concept to the theory of stochastic processes is stationarity. It
releases the requirement of time dependence allowing for a steady state view
of certain processes.

Definition 20 A stochastic process X (t) will be called stationary, if its joint
distributions are left unchanged by shifts in time, i.e. (X(t1),..., X (t,)) and
(X(t14+h), ..., X(t, + h)) have the same distribution for all h and tq,...,t,.

The general discussion will end here and we will turn to examples impor-
tant to queueing theory. Proceeding further would require an introduction to
measure theory. For readable accounts refer to [33][34][12][32]. The standard
reference in the field is [16].
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A.2 Markov Processes

General stochastic processes may exhibit a complicated dependence struc-
ture. By restricting the dependence of the future to the present, not allow-
ing for any influence from the past, one arrives at what is called a Markov
process. At first sight such a restriction seems to be a serious one, but this
is not necessarily the case. Considering effects of births and deaths to deter-
mine tomorrows distribution of a population is only one example. Compared
to general stochastic processes, Markov processes are mathematically more
tractable. Furthermore they may serve as approximations to more elaborate
models.

Definition 21 A stochastic process {X(t) : t € T'} is called Markov process,
if for any set of n time points t; < ... < t, the conditional distribution of
X(t,), given the values X (t),..., X (tn—1), depends only on X (t,—1), i.e. for
any Ty, ..., Tp

Pr{X(t,) < z,|X(t1) = z1, .., X(tn_1) = Tp_1}
= Pr {X(tn) < mn’X(tn—l) = mn—l} (Al)

According to the type of parameter space, Markov processes are classi-
fied in discrete parameter Markov processes and continous parameter Markov
processes. They are determined by the transition probabilities P(s,t,z, A)
and an initial distribution. Here P(s,t,z, A) describes the probability of the
transition from state z to a state y € A within time |t — s|. In case A is
finite or at most countable, it can be calculated by

P(s,t,z, A) =Y Pr{X(t) = y|X(s) = 2} (A.2)

yeA

If the transition probability depends only on the difference of s and t, i.e.
P(s,t,x,A) = P(|t — s|,x, A), the Markov process is called a (time- J)homogenous
Markov process. The case of discrete parameter space will be discussed in
more detail in the next section. The literature focusing on Markov processes

is highly based on measure theory and functional analytic concepts, one clas-
sical reference is [47].
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A.3 Markov Chains

Markov chains provide the means to calculate limiting distributions under
relatively mild conditions. As such they find wide applications in modeling
real world phenomena met in engineering and science. The ease in calculation
is reached by restricting the state space.

Definition 22 A Markov process with countable (discrete) state space is
called Markov chain. Alternatively it can be seen as stochastic chain, which
satisfies equation A.1.

Markov chains are classified by their parameter space thus appearing
either as discrete time or continous time variants. Based on the definition
for Markov processes, a Markov chain will be called (time-)homogenous, if
the transition probabilities do not depend on time. In the following sections
only homogenous Markov chains will be discussed.

A.3.1 Homogenous Markov Chains in Discrete Time

As both state space S and parameter space T are now discrete, the transition
probabilities given in A.2 may be simplified to p;; = Pr{X,, = j|X,-1 = i}.
These probabilities may be assembled to the matrix of transition probabilities
of stage 1:
P11 P12
P = (pij);jer = | P20 P22

Please note, that the term matrix is used in the wide sense. It includes
the possibility of infinite dimension. A short introduction to the algebra of

denumerable matrices is given in [35]. The probability of reaching state j
(m)

starting from state ¢ within m steps is denoted by p;;” and calculated using

the Chapman Kolmogorov equations
m m—1
i = "o
keT

for m > 2. In other words, the m-step transition probabilities are recur-
sively defined by the single step transition probabilities. The idea behind the
Chapman Kolmogorov equations is, that before proceeding to state j within
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State

A

; ; - >» Time
tn

tn+m-1 tn+m

Figure A.2: Chapman Kolmogorov Equations

a single step, state k has to be reached from state ¢ within m — 1 steps. As
state k£ can be any state in state space, one has to sum up all probabilities.
This is also shown in figure A.2. In matrix notation, the system of Chapman
Kolmogorov equations is reduced to the power operation, that is P(™ = P™.
Given a vector of initial distributions a, the state of the process after m
steps is given by aP™. So a Markov chain is fully determined by an initial
distribution and the transition probabilities. This we had expected already
from the more general framework of Markov processes.

Based on the experience with empirical processes one may ask for a steady
state following a startup phase. In mathematical terms steady state is de-
scribed by a limiting distribution, which is independent of any initial distri-
bution. For such a limit to exist, certain restrictions become necessary. One
of the more obvious conditions is, that the Markov chain under analysis shall
not consist of independent subchains. Visualized as graph, there must be a
path of positive probability between each pair of states.

Definition 23 A Markov chain is irreducible, if all its states communicate,

i.e. any i # j € S satisfies

py >0

Otherwise it is called reducible.

If a chain is reducible, it can be splitted up into subchains with each of
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them analyzed seperately. Mathematically expressed irreducibility defines
an equivalence relation resulting in a certain grouping of states. It turns
out, that the properties discussed below are shared by all members of an
irreducible Markov chain. One of them is periodicity. As an example consider
a bistable flip-flop toggling between states 0 and 1 at every time instant. This
behaviour is clearly periodic, as the process returns to the starting state every
second step. The initial distribution is preserved to infinity and no steady
state can be achieved.

Definition 24 A state is called aperiodic, if the greatest common divisor of
{m!pﬁl-” ' > 0}

equals 1. If not, the state is called periodic. For an irreducibility class, the
period is the same for all class members.

In order to assume a steady state, we have to assure, that the Markov
chain does not drift to infinity or get stuck in a group of states. The visiting
behaviour of each state has to be inspected more closely.

Definition 25 Let fi(m) describe the probability to return to state v within m
steps, 1i.e.

and define f; to be the probability to return to state i in a finite or infinite
number of steps, that is
f i = Z f i(m)
m=1

then state i is called recurrent, if f; = 1. For f; < 1 it is called transient. In

case of a recurrent state
o

m; = Z mf, i(m)
m=1
s called the mean recurrence time. For m; < oo state © is called positive
recurrent, otherwise it is called null recurrent. For an irreducibility class,
these properties extend to all members.
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Figure A.3: A simple Markov chain example

Instead of assuming an almost sure return to state i for recurrence, we
could also ask for an almost sure infinite number of visits to state ¢ in the
above definition. Indeed, it turns out that both conditions are equivalent:

Theorem 26 Given v; = # (n > 0: X, = i) the number of visits to state i,
the following conditions are equivalent: f; =1 < Pr{v; =} =1< BEy; =
00.

For a proof, please refer to [12]. Combining all the properties discussed
so far leads to the concept of ergodicity.

Definition 27 An irreducible, aperiodic and positive recurrent Markov chain
15 called ergodic.

Before proceeding to the existence of the limiting distribution, consider
the example shown in figure A.3. State 0 may be reached from state 1 and vice
versa. These states communicate and are periodic. State 2 acts like a trap -
once entered the process can not escape. Such a state is called an absorbing
state. A little calculation shows that f\2) = f® = 3and Fim = fm — 0 for
m # 2. Hence fy = f1 = % < 1. Both states are transient, whereas state
2 is positive recurrent. The properties are not shared among states, so the
chain is not irreducible. This can also be seen from the fact, that there is no
communication from state 2 to state 1.

The limiting distribution assumed by a Markov chain in steady state will
be denoted by m; = lim,,_,o, Pr{X,, =i}. These probabilities are sometimes
called stationary. If they exist, no transition of the underlying Markov chain
affects the probability vector m = (7;);cs. In matrix form, the following
equilibrium conditions hold

7 =7P, Zm =1 (A.3)
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We are now ready to summarize the main results on the existence of the
limiting distribution 7r:

Theorem 28 Given an aperiodic Markov chain in discrete time, the limits
7 = lim, oo Pr{X,, = i} for alli € S exist. For an irreducible and aperiodic
Markov chain the following expression holds

Ty — —
my;
These limits are independent of the initial distribution but do not necessarily
constitute a probability distribution, because m; might become infinite. In case
the underlying Markov chain is ergodic, the vector @ = (m;);es represents a
valid probability distribution.

Turning attention to the requirement of ergodicity for the existence of
a stationary distribution it turns out, that irreducibility and aperiodicity
are easy to verify. Proving recurrence often becomes cumbersome. So one
often starts from the opposite direction, that is calculating the solution to A.3
first. By the existence of the stationary distribution vector 7r, the underlying
discrete time Markov chain may be assumed to be positive recurrent. Another
useful fact is, that every irreducible Markov chain with a finite number of
states is also positive recurrent. Furthermore standard matrix calculus may
be applied to derive the solutions.

Although a Markov chain is per definition memoryless, it may be applied
to a wider class of models. Therefore a stochastic process is observed only,
when state transitions occur. These occurences are called regeneration points.
The resulting process satisfies the definition of a discrete time Markov chain.
It is called an embedded Markov chain and proves to be useful especially in
the theory of queues.

Markov chains in discrete time have been widely explored, so there exists a
vast amount of literature. Classics include [33], [34], [12] and [16]. Numerical
aspects relevant for applied Markov chains are discussed in [53]. A very
detailed treatment is found in [35].

A.3.2 Homogenous Markov Chains in Continous Time

There are several approaches to the analysis of Markov chains in continous
time. We will follow the traditional approach, because it nicely relates to the
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methods used for discrete time Markov chains. With some slight modifica-
tions in notation to reflect the continuity of the parameter the transition prob-
abilities are defined as p;;(s,t) = Pr{X(¢) = j|X(s) = i}. Time-homogenity
allows us to write p;;(s,t) = p;;(0,t —s) =: p;;(t — s). Please note, there is
no such concept like a single step transition probability, because a dedicated
time unit does not exist. Consequently infitesimal calculus has to be applied
to gain results in continous time. This in turn requires additional restrictions
to be imposed on the transition rate matriz P(t):

Definition 29 A matriz P = (pij)ijes is called stochastic, if p;; > 0 for all
i,j €9, Zj pij = 1 for allt € S and at least one element in each column
differs from zero.

Definition 30 P(t) is called a transition semigroup on state space S, if P(t)
is a stochastic matriz, P(0) =1 and P(t + s) = P(t)P(s).

The last condition assumed for P(¢) to be a transition semigroup is the
continous time equivalent of the system of Chapman Kolmogorov equations.
Furthermore assume, that the transition probabilities are continous at 0, that
is lim; o P(¢t) = P(0) = I. This in turn implies

lim p;;(t) = pi;(0)

e (1) =0
- pij(t) — iy

%ij = 15% ’ y ’ (A.4)

with 0 < ¢;; < oo for @ # j and ¢; < 0. Rewritten in matrix notation Q :=

(qij)ij cg one arrives at the infinitesimal generator. The matrix equivalent of

Adis
Q =lim PO PO _y, PO T

t—0 t t—0 t

Based on the inifinitesimal generator we are able to define further properties
for the transition semigroup P(¢):

Definition 31 P(t) is called stable, if —q;; < oo for alli € S. P(t) is called
conservative, if —q;; = Zjesy#i gij for alli € S.

The latter probability derives from the conservation equality ies Pij (t) =
1 for fixed t. In other words, any work performed by the process is preserved.
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Rewriting the system of Chapman Kolmogorov equations as P(t+s)—P(t) =
P(t)P(s) — P(t), dividing by s
P(t+s)—P(t) P(t)P(s)—P(t)

S - S =P S

(A.5)

and passing to the limit s — oo one arrives at Kolmogorov’s forward differ-
ential system

d
P =P#)Q
Extracting P(¢) in A.5 to the right side results in Kolmogorov’s backward

differential system
d
—P(t) = QP(?)

dt
In traditional notation, these systems may be written as

d

ZPiu(t) = py(t)a + > pint)a; (A.6)
k€S, k#j

d

—Dii(t) = qupi(t) + Z ik Prj (1)

dt .
ke S, k#i

By embedding a discrete time Markov chain the concepts of irreducibility,
communication, transience, recurrence and positive recurrence are inherited.
Therefore one has to note, that for each ¢ > 0, Y,, = X(¢) with ¢t = cn
describes a Markov chain in discrete time [26]. Obviously there is no aperi-
odicity, as we miss a dedicated time unit for continous time Markov chains.

Now we are in the position to calculate the steady state distribution of a
Markov chain in continous time. Let p;(0) = Pr{X(0) = j} denote the initial
probability for state j and define p = (pj(()))jes as the initial probability
vector. Choosing equation A.6 and applying the law of total probability

P;i(t) = > ;cqPij(t)pi(0) results in

d

2 Pi(t) = a2;(t) + > pelt)a; (A.7)
ke S, k£

Irreducibility now assures the existence of the limiting probabilities p; =

limy; .o p;j(t). Assuming an equilibrium, there is no variation in p;(t), that is

4p;(t) = 0. Equation A.7 now becomes

0=g;pi(t)+ > pr(t)a
kS ki
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or in matrix notation
0=pQ (A.8)

This system of equations is often associated with the concept of global bal-
ance. Forcing the p; to form a valid probability distribution by imposing the
additional restriction

> opi=1

j€S
one has successfully derived the stationary probabilities with p the stationary
probability vector. A similar derivation also exists for Kolmogorov’s backward
differential system. Knowing how to calculate steady state distributions, one
may ask, under what circumstances such solutions remain valid. Based on
the definitions of stability and conservativity we are able to state two simple
conditions:

Theorem 32 Given a conservative continous time Markov chain, Kolmogorov’s
backward differential system is valid. Kolmogorov’s forward differential sys-
tem applies for a stable Markov chain in continous time.

Please note, that the global balance equations also remain valid for the
discrete case, as the infinitesimal generator may be constructed as Q = P—1.
In either case they have an intuitive interpretation. The flow out of a certain
state has to equal the flow into that state. Clearly this concept is related
to conservativity and stability. For further reading on the topics discussed
we recommend [10] and [53]. Proofs, which were skipped, are found in the
former reference.
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