

M A S T E R A R B E I T

Foundations for Music-Based Games

Ausgeführt am Institut für

Gestaltungs- und Wirkungsforschung

der Technischen Universität Wien

unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Purgathofer

und Univ.Ass. Dipl.-Ing. Dr.techn. Martin Pichlmair

durch

Marc-Oliver Marschner
Arndtstrasse 60/5a, A-1120 WIEN

01.02.2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

 ii

Abstract

The goal of this document is to establish a foundation for the creation of music-based computer and
video games.

The first part is intended to give an overview of sound in video and computer games. It starts with a
summary of the history of game sound, beginning with the arguably first documented game, Tennis
for Two, and leading up to current developments in the field. Next I present a short introduction to
audio, including descriptions of the basic properties of sound waves, as well as of the special
characteristics of digital audio.

I continue with a presentation of the possibilities of storing digital audio and a summary of the
methods used to play back sound with an emphasis on the recreation of realistic environments and
the positioning of sound sources in three dimensional space. The chapter is concluded with an
overview of possible categorizations of game audio including a method to differentiate between
music-based games. These classifications are then illustrated by means of an example.

In the second part of the thesis (technical foundations) I present two enhancements of the Torque
Game Builder (TGB) engine and present a prototype of music-based game taking advantage of these
improvements, Radiolaris. Chapter one of this section deals with the technical issues of
implementing the support of gamepads and joysticks for the Mac OS X version of the Torque Game
Builder engine. I summarize a technique for communication with HID (Human Interface Device)
compliant USB devices by using libraries present in the operating system and show a possible way of
handling the output of these devices within the game engine.

In the second chapter of part two, I portray a way to integrate the FMOD Ex audio library into the
TGB engine. The TGB engine already includes support for loading and playing music data, OpenAL,
but unfortunately this library is geared towards using three dimensional sound sources, an approach
not suitable for the use with the chosen game engine (the TGB engine is used exclusively for two
dimensional games). In comparison, the FMOD Ex library incorporates functions to control sound
sources directly in two dimensions as well as offering a selection of different predefined audio
effects. My approach includes this functionality in the TGB Engine to substitute the OpenAL library.

I conclude the second part with a presentation of Radiolaris, a prototype developed by Martin
Pichlmair and Fares Kayali. The music-based game incorporates many of the new functions for the
TGB engine as presented in the thesis.

 iii

Zusammenfassung

Diese Arbeit ist der Versuch, eine Grundlage für das Erstellen von musikbasierten Spielen zu geben.

Das erste Teil beschäftigt sich mit den theoretischen Grundlagen von Klang in Computer- und
Videospielen. Er bietet eine Übersicht über die Geschichte von Klang in Spielen, beginnend mit dem
wohl ersten dokumentierten Spiel, Tennis for Two, bis hin zu den aktuellen Entwicklungen auf dem
Gebiet. Dabei wird auch auf die zu der jeweiligen Zeit verfügbare Hardware eingegangen.

Des Weiteren bietet das Kapitel eine Einführung in die Entstehung und die Eigenschaften von Klang,
sowie die elektronische Erzeugung desselbigen. Ferner wird kurz auf die verschiedenen
Möglichkeiten eingegangen, Klang elektronisch zu speichern und wiederzugeben, wobei das
Hauptaugenmerk bei der Beschreibung der Wiedergabe auf der Positionierung und realistischen
Darstellung von Klangquellen liegt.

Abschließend wird eine Übersicht über die Möglichkeiten der Klassifizierung von Klang in Computer-
und Videospielen geliefert. Zusätzlich wird eine Möglichkeit beschrieben, musikbasierte Computer –
und Videospiele zu kategorisieren. Anhand eines Beispiels werden diese Einteilungen dann
anschaulich gemacht.

Der zweite Teil bietet eine technische Beschreibung der Implementierung einer Gamepad- und
Joystickunterstützung für die Torque Game Builder (TGB) Engine in der Mac OS X Version und eine
Beschreibung der Einpassung der FMOD Ex Bibliothek in die Engine. Im ersten Kapitel dieses Teils
wird zusammengefasst, wie ein Gerät, dass der HID (Human Interface Device) Geräteklasse, einer
Untergruppe des USB-Standards, angehörig ist, in Mac OS X mittels systemeigenen Bibliotheken
angesprochen werden kann. Des Weiteren wird ein Weg beschrieben, die Ausgabe des Gerätes in
der TGB Engine zu verarbeiten.

Das zweite Kapitel von Teil zwei beschäftigt sich mit der Integrierung einer alternativen Audio
Bibliothek in der TGB Engine. FMOD Ex ist eine Bibliothek, die es dem Nutzer ermöglicht,
Musikdateien zu laden und wiederzugeben. Zusätzlich enthält FMOD Ex diverse vorgefertigte Effekte.
Zwar bietet die TGB Engine mit OpenAL schon eine solche Bibliothek an, leider ist diese aber auf die
Nutzung dreidimensionaler Klangquellen ausgerichtet und somit für die zweidimensionale
Darstellung in der TGB Engine ungeeignet. Meine Arbeit zeigt eine Möglichkeit auf, wie FMOD Ex
anstelle der OpenAL Bibliothek verwendet werden kann.

Als Abschluss des technischen Teils präsentiere ich einen Prototyp für ein musikbasiertes Spiel.
Radiolaris, entwickelt von Martin Pichlmair und Fares Kayali verwendet viele der neu in der TGB
Engine integrierten Funktionen, die in diesem Teil vorgestellt wurden.

 iv

Acknowledgements

I would like to express my gratitude to the following people helping me in the creation of this thesis.

Univ.Ass. Dipl.-Ing. Dr.techn. Martin Pichlmair for his constant input while writing this thesis. No
matter how small the question, I always promptly received an answer to my problem.

Dipl.-Ing. Fares Kayali, for all the input I received from him during the time of writing – especially in
the hunt for bugs in the technical part of my thesis.

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Purgathofer, whose lessons sparked my interest in Media and
Computer Science.

Last but definitely not least my parents, Grazyna and Frank Marschner who patiently supported me
in my studies and assisted me in widening my horizon.

 v

Content

Abstract ..ii

Zusammenfassung...iii

Acknowledgements ...iv

List of Figures..vii

Introduction... 1

Part 1: Theoretical Foundations .. 4

The History of Sound in Video Games... 5

The Beginning (1958) - 1979 ... 5

1980 - 1984.. 5

1985 - 1989.. 6

1990 - 1994.. 9

1995 - 1999.. 12

2000 - 2004.. 17

2005 - Present ... 21

Creating Electronic Audio.. 25

What is Sound?.. 25

Waveforms .. 25

Digital Sound ... 27

Creating Digital Sound... 27

Storing Digital Audio.. 29

Dimensions of Sound... 31

Sound in Games... 34

Music-Based Games .. 38

Presenting an Example: Phase .. 38

Conclusion ... 41

 vi

Part 2: Technical Foundations ... 42

The Torque Game Builder Engine.. 43

The Importance of Engines in Prototyping.. 43

Adding Joystick/Gamepad Support to the Torque Game Builder Engine ... 44

Preface... 44

Overview.. 44

Implementation... 44

Finding Devices.. 47

Getting input from the device ... 48

Communicating events to the Torque Game Builder Engine.. 50

Initiating and Controlling Force Feedback Events ... 52

Accessing and Controlling Devices from within the Game ... 55

Using the FMOD Ex Library with the Torque Game Builder Engine .. 57

Preface... 57

Overview.. 58

Implementation... 58

Creating a Connection to the Fmod Ex Libary ... 59

Loading and Playing Samples .. 60

Using DSPs to Modify the Output.. 62

Removing Samples and DSPs... 64

Controlling the FMODExPlugin Object through the Console .. 66

The Prototype.. 69

Conclusion ... 70

Appendix A .. 71

Apple’s Force Feedback Framework ... 72

Variables of the FMOD Ex DSPs used within the FMODExPlugin Class ... 74

References... 75

 vii

List of Figures

Figure 1: The sound hardware of the consoles presented in the chapter "History of Sound in Video
Games" .. 25
Figure 2: A sine wave, the most basic sound wave. Retrieved from [Preve, 2007] 25
Figure 3: A saw tooth wave, a combination of a sine wave of a certain frequency summed with all
harmonics of that frequency. Retrieved from [Preve, 2007] .. 26
Figure 4: A square wave, the sum of all odd harmonics with the fundamental frequency, with the
volume linearly reduced for each successive harmonic. Retrieved from [Preve, 2007]....................... 26
Figure 5: Like the square wave, the triangle wave is the sum of all odd harmonics with their
fundamental frequency. Instead of reducing the volume in a linear fashion, the volume is reduced
exponentially. Retrieved from [Preve, 2007] .. 26
Figure 6: A typical level of Phase by Harmonix Music Systems, in this case using the “music festival”
graphics set. Retrieved from [Harmonix Music Systems, 2007] ... 39
Figure 7: UML-Diagram representing the joystick control classes.. 46
Figure 8: Layout of the InputEvent class ... 50
Figure 9: UML-Diagramm representing the FMODExPlugin Class .. 59
Figure 10: Radiolaris in its most current revision (at the time of writing) .. 69
Figure 11: A small overview over the functions of Apple’s Force Feedback Framework 72
Figure 12: These are the structs used by the Force Feedback Framework. Please note that all listed
structs have a type definition of their own name... 73
Figure 13: The parameters for the different DSPs are stored in enumerations. Please note that only
the DSPs used in FMODExPlugin are listed here ... 74

Page |1

Introduction

Introduction

Page |2

From its humble beginnings in the seventies the game industry has risen to become an important
sector of today’s entertainment business. According to data collected by the Entertainment Software
Association (ESA), the U.S. computer and video game industry more than doubled its sales in dollars
between the years 1996 and 2006, while nearly tripling the amount of games sold in the same
timeframe1. [Entertainment Software Association, 2008]

Over the years the industry has seen great leaps in the quality and production values of video games.
Graphics have improved tremendously since the industry’s early days; starting from a nearly
unrecognizable accumulation of pixels to highly detailed three dimensional environments and
characters in high resolutions. The possibilities of game play have also expanded greatly, introducing
players to new genres like first person shooters, role playing games or real time strategy games over
the years. Of course the field of game sound production did not stand still either with current titles
delivering more than one hundred different sound sources positioned throughout the three
dimensional space and delivered to the player through sound systems using up to eight speakers at
once.

Throughout game history, several companies have tried to combine audio and game play to convey a
new gaming experience to the player. Music-based games entered the mainstream with Parappa the
Rapper on the PlayStation and Beatmania in the (Japanese) arcades in 1997. Since then, a steady
stream of music-based games has been released. With the release of SingStar, Karaoke Revolution
and especially Guitar Hero the genre has really started surging.

In my thesis I give a foundation for the creation of prototypes for music-based games. For this I use
the first part (theoretical foundations) to give an introduction to music in video games in general,
offering an overview of the history of sound in games, and then describing the properties of sound in
general, as well as digital sound in particular. This is followed by an overview of the most common
ways of storing audio for games and a summary of the methods used to play back sound in games. In
this summary I put a strong emphasis on the approaches used to create realistic sound (in three
dimensional environments).

The chapter is concluded with an overview of means to categorize sounds, including an approach for
the classification of music-based games. These categorizations are then illustrated by employing an
example, the game Phase, released by Harmonix Music Systems in 2007.

In the next two chapters (part 2, the technical foundations) I present methods to extend a game
engine with functions necessary to allow rapid prototyping of music-based games. The engine
chosen, the Torque Game Builder (TGB) engine, is designed for two-dimensional games. It offers easy
accessibility for users through its built-in editor while maintaining the possibility to create more
advanced procedures by including support for a scripting language.

Unfortunately the TGB engine has two disadvantages. One of them is only present in the Mac OS X
version used in this thesis while the other one is inherent to all versions of the engine.

1 The terms “computer games” and “video games” are normally used to describe different kinds of software,
with “computer games” referring to games played on a PC and “video games” describing games normally
played on a console. In this thesis, I will use the term “video games” to describe both groups of games.

Introduction

Page |3

The drawback of the Mac OS X version of the TGB engine is the missing joystick and gamepad
support. I present a method of finding and using HID (Human Interface Device) devices described by
Apple and I offer a way of reading and handling the output of game control devices found this way
within the game engine. Further I present an approach to use Apple’s Force Feedback Framework to
induce Force Feedback effects within the game device, usable with the script language included.

The TGB engine uses the OpenAL Library to handle sound, a feature inherited from the Torque Game
Engine which it is based upon. While OpenAL is suitable for the Torque Game Engine, a framework
designed for three-dimensional games, it is rather complicated to work with it in a two-dimensional
environment – the prime discipline of the TGB engine. To remedy this, I propose a method to allow
the user to utilize another sound library, FMOD Ex. This library allows an uncomplicated handling of
two-dimensional sound sources without burdening the user with unnecessary calculations. Further
the library includes a selection of predefined effects. My approach makes these functions accessible
through the script language of the TGB engine.

Both of these TGB engine modifications are built to make their inclusion within the game engine as
easy as possible by not requiring any modifications of existing files. The extension of the engine with
these capacities should make it easier for users to create music-based games.

As a conclusion of the second part I present Radiolaris, a prototype of a music-based game created
by Martin Pichlmair and Fares Kayali. Many of the new functions integrated into the TGB engine are a
direct result of requirements that appeared in the development of this prototype. This makes the
game a prime example to illustrate the capabilities of the additions to the TGB engine.

Page |4

Part 1: Theoretical Foundations

The History of Sound in Video Games

Page |5

The History of Sound in Video Games

The Beginning (1958) - 1979
“Video game music has come a long way, baby. “ [McDonald, 2004]

The arguably first video game ever created, Tennis for Two, does not have any sound at all. It was
designed by William Higinbotham in 1958 as a presentation for visitors at his workplace, the
Brookhaven National Laboratory. The same is true of Steve Russell’s Spacewar, created in 1963 –
again, the game features no sound effects, as well as no soundtrack.

1972 sees the release of the Magnavox Odyssey gaming console, the first gaming system created for
the home market. This console also does not feature any sound output. In the same year, Nolan
Bushnell’s Pong is released to a small audience. This game features the first sound effect ever
presented in any game – a “sonar-blip” played as the ball hits one of the two paddles. [McDonald,
2004]

Until 1977 sound in video games is restricted to arcade machines. Atari releases the Video Computer
System (VCS, called the Atari 2600 after the introduction of the 5200) and brings sound effects to the
home user. The console features two independent audio channels with three registers, each
controlling “a noise-tone generator (what kind of sound), a frequency selection (high or low pitch of
the sound), and a volume control.” [Wright, 1979] It still takes one more year until the first game
featuring what could be considered a sound track is released. Space Invaders ,developed by Taito and
released first in the arcades, includes a pulsing sound that increases in speed as the aliens attacking
the player move closer to the bottom of the screen and thereby the player’s position. By changing
pace depending on the games state, the soundtrack of Space Invaders can be considered the first
interactive/adaptive soundtrack used in a video game. [Pidkameny, 2002]

1980 - 1984
The next important steps in terms of music are taken in 1980. The arcade game Berzerk is among the
first games to feature voice synthesizers, being the first to include talking enemies taunting the
player. The same year Pac-Man, arguably one of the most popular games of all time, is released.
[McDonald, 2004] Pac-Man’s opening can be considered “the first instance of a melody used to
complement the mood of a game.” [Pidkameny, 2002]

IBM starts selling the IBM PC, specifically the model 5150, in October of 1981. [Polsson, 2007] In
order to save on production costs, cuts are made when possible, resulting in a minimum of audio
playback capabilities: As the IBM PC is intended to be an office machine, only the PC Speaker is
included. The hardware can output a rectangle signal at fixed volume and possesses one sound
channel. [Goehler, 2003] Chords can be emulated through alternating between different notes
quickly (also called arpeggio), but results are poor. Sample playback is made possible later in the
same way it is created on the Commodore C64 – by quickly turning on and off the speaker. [Weske,
2000]

In 1982 Atari releases the Atari 5200 system that includes the POKEY chip as sound generator. POKEY
(POtentiometer and KEYboard Integrated Circuit) provides four semi-independent audio channels

The History of Sound in Video Games

Page |6

which can be configured in three ways: four channels with 8-bit resolution output, two channels with
16-bit, or one channel with 16-bit and two channels with 8-bit output. Again, all channels feature
frequency, noise and volume controls. [Atari, 1982] Already in 1981 Tempest is released with two
POKEYs, allowing eight voices at the same time. In 1983, Dragon’s Lair features real human voices
and stereo sound [McDonald, 2004], but such sound quality comes at a price: As it is dependant on
laser-disc technology the game does not feature a lot of interactive elements.

Commodore presents the C64 in 1982. The so called home computer is released with the first self
developed sound-chip in a home computer, the MOS Technology 6581 Sound Interface Device (SID).
Created by Bob Yannes between 1981 and 1982 [Kubarth, 2006], the sound hardware can arguably
be considered to be among the best of the 8-bit generation. The 6851 chip features three synthesizer
channels that can be used independently. Each channel consists of a waveform generator, an
envelope generator (enabling the use of Attack, Decay, Sustain and Release), and an amplitude
modulator. Later models of the C64 include a new version of the MOS Technology 8580 SID sound-
chip. This version had slightly different waveforms and reduces the volume of sample playback2.
[Kuphaldt, 2007]

In 1983 IBM releases a competitor on the home computer market, the PCJr. [Weske, 2000] This
machine expands the audio capabilities of the original IBM PC, featuring a chip by Texas Instruments
providing 3 sound channels and one noise channel. Tandy produces a clone of this machine under
the name of Tandy 1000. A later model, the Tandy TL/SL allows direct playback of samples while
using the synthesizer at the same time. [Goehler, 2003]

Automata UK Ltd, a British based publisher uses a novel concept for music in games: The game Deus
Ex Machine, published in 1984 for the Sinclair ZX Spectrum and later released for the C64, includes an
audio tape intended to be played along with the game. The soundtrack, sound effects, and voice
narration are stored on the tape. [Bridgett, 2005]

1985 - 1989
The first home video-game system to really become popular in the mainstream is released in 1985.
[Pidkameny, 2002] The Nintendo Entertainment System creates its voices (one sine, one noise and
two pulse-wave voices and one sample channel) digitally and converts them to analog output with 4-
bit DACs [Tätilä, 2007]. The system is able to output four sounds at once. While early games use
three channels for music and one for sound effects, later games employ all four channels for music
playback by applying certain tricks like switching less important voices off for the duration of a sound
effect and playing the effect on that channel instead. [Belinkie, 1999] The included sample channel’s
main purpose is outputting heavy compressed drum sounds, but some game developers use it to
output speech instead. [Tätilä, 2007]

Shortly after the appearance of the Nintendo Entertainment System, Super Mario Bros. is released in
1985. Super Mario Bros. is the first to include constant background music written by a professional
composer. The game “established many conventions for game music, which survive to the present
day. “ [Belinkie, 1999] “With the Super Mario Bros. soundtrack, video game sound design begins to

2 The original chip emits a crackling noise as the sound volume is turned up and down in fast succession. This
error is used to generate sample playback. The later revision reduces the volume and makes sample playback
nearly inaudible.

The History of Sound in Video Games

Page |7

move in a new direction, away from cinematic conventions and toward something altogether new. “
[McDonald, 2004]

The same year the first Amiga computer by Commodore, renamed Amiga 1000 following the release
of the Amiga 500 and Amiga 2000, is presented at the Lincoln Centre in New York. [The Purple Owl,
2004] The sound hardware of the Amiga is able to play four independent channels. Each of these is
capable of playing high quality samples back at different sampling rates. Samples are used for game
music and sound effects. A new type of file is created for this kind of playback, the module file,
commonly referred to as MOD. “Mod files are music files that have the note and other control data
stored in the file but more importantly mods allow you to store pieces of digitized sound (samples)
and use them as instruments. “ [Tätilä, 2007] This marks the difference to the MIDI file format, as
MIDI files only contain instructions on how to play a sound which can make the same piece of music
sound different on different hardware (it is up to the sound hardware manufacturer to decide how to
implement instruments). [Velden, 1998]

Sega releases the Master System in 1986, a machine with graphic- and sound-chips superior to the
ones used in the Nintendo Entertainment System. The console uses the Texas Instruments SN76489
chip for sound generation, allowing three channels for music and one for noise generation. Later
versions of the console in Japan also include the Yamaha YM2413 FM sound-chip. This chip uses
frequency modulation (FM) to create sound, a kind of synthesis that is good for metallic and bell like
sound and resembles real instruments more closely than analog synthesizers. [SegaStuff, 2007]
[Tätilä, 2007] Atari also releases a new console, the Atari 7800. The sound hardware does not change
from the Atari 2600, but games can be outfitted with POKEY chips residing on the cartridges
themselves to provide appropriate sound. [AtariAge, 2006]

In the same year the first part of the Dragon Quest series is released. The composer Koichi Sugiyama
recreates the sound of classical music on the Nintendo Entertainment System, a feat everyone had
previously considered impossible. “For the first time, game music aspired to be musical, and not just
bearable. “ [Belinkie, 1999]

In the PC world, 1986 marks the year of the release of the Covox Speech Thing and the Disney Sound
Source. [Goehler, 2003] Instead of using an extension slot, both devices are connected to the
machine through the parallel port. The Covox Speech Thing even gets released in different versions,
allowing recording or stereo playback. The sound hardware only receives lukewarm support by game
developers. [Weske, 2000]

In 1987, the first part of Final Fantasy, another classic franchise, is developed and released by
Square. The composer of the game music is Nobuo Uematsu, the most famous and successful game
music composer of all time. [Belinkie, 1999] Uematsu combines melodies with classic sounding
background parts, breaking entirely new ground in the process. [McDonald, 2004]

Also in 1987, the first part of the Zelda series is released. Created by Shigeru Miyamoto, the creator
of Mario and many other Nintendo franchises, the game features a well-received soundtrack by Koji
Kondo (also the composer of the Super Mario Bros. soundtrack) and went on to incorporate music
strongly into its game-play in the later parts. [Nintendo, 2005]

AdLib releases its sound card for the PC in the same year. Up to this point “other systems sounded
more or less like the multiplicity of interconnected PC-Speakers” [Goehler, 2003] The Yamaha

The History of Sound in Video Games

Page |8

YM3812 (more commonly known as OPL2) located on the card, used in low-end-keyboards before,
employs frequency modulation to either allow six voices and five percussion instruments or playback
of nine voices. IBM introduces the IBM Music Feature Card which basically represents a Yamaha FB-
01 synthesizer. The card features 8 FM voices, stereo with pan and voices controlled by four
operators (as opposed to AdLib’s two). Additionally it offers a library of over 300 synthesized high-
quality instruments. Further, two of these cards can be used at the same time to offer 16
simultaneous voices. [Goehler, 2003]

The Famicom Disk System, a peripheral for the Nintendo Entertainment System only released in
Japan, sees the release of Otocky, published by ASCII in 1987. “The goal of the game is that players
collect a certain amount of “notes” to finish a game while avoiding and destroying enemies. Players
launch a missile called a Music Ball to shoot enemies and collect “notes”. When players fire a Music
Ball, it emits a sound. The most interesting things in the game are that players are allowed to launch
a missile in eight different directions which are directly correspond[sic] to the tonal score.
“[Takeshita, 2003]

In 1988 Creative Music Systems (now called Creative Labs) releases the Game Blaster/Creative Music
System. The sound card itself offers 12 channels able to output a sine wave or to generate noise, and
represents no competition in quality for AdLib, but it marks the entry point of Creative Labs in the
business of producing sound cards. Roland also releases its own sound card, the LAPC-I based on the
MT-32 chipset by the same company. The card offers 32 MIDI-channels (with reverb effect, 32
simultaneous instruments are not guaranteed3) and 128 predefined instruments. Further, the card
allows the upload of new instruments and puts an emphasis on high-quality playback. [Goehler,
2003]

At the end of the eighties, in 1989, several new gaming machines are introduced to the market.
[Pidkameny, 2002] The portable Nintendo GameBoy, one of the best selling consoles in the world, is
released with a sound-chip allowing stereo output. The GameBoy hardware can create sound on four
channels (white noise, quadrangular wave patterns with sweep and envelope functions,
quadrangular wave patterns with envelope functions, voluntary wave pattern) that can be controlled
independently, and are able to output sound to both or either one of the two stereo channels.
[Fayzullin, et al., 1998]

In addition to the GameBoy, two other systems are released. The NEC TurboGrafx-16 (called PC
Engine in Japan), a collaboration of NEC and Hudson Soft, offers six channels in stereo. [Hernandez,
2007] NEC also releases an attachment to support CD playback. Sega releases the Genesis (called
Mega Drive in Europe) with the Z80 CPU and the Yamaha YM2413 from the later Japanese Master
System model as sound processors, offering six-channel stereo sound. [McDonald, 2004]

In 1989 Sega also brings Moonwalker to the Genesis. In the game the player controls Michael Jackson
fighting against criminals while trying to save children. The player as Michael Jackson can beat them
by using a variety of dance moves, up to a fully choreographed dance number including the enemies
on the screen. Of course, while playing the game the player can hear different songs from Michael
Jackson’s repertoire, including “Smooth Criminal”, “Billie Jean”, “Bad”, “Another Part of Me”,

3 Although 32 channels are featured, the card uses up to 4 of these channels to recreate an instrument.
Theoretically, the card can only play 8 instruments at once. [Goehler, 2003]

The History of Sound in Video Games

Page |9

“Thriller” and “Beat It”. [DeRienzo, 2007] This is the first time a pop artist has such a major
involvement in a game’s soundtrack. [Pidkameny, 2002]

The same year, Creative Labs releases the first card in a series that defines the market for sound
cards in the nineties – the Sound Blaster. The card represents an evolution of the previous effort, the
Game Blaster, improved in the way the game industry requested. One channel allows playback of 8-
bit mono sound at 22.05 kHz and recording at 13 kHz is added. [Goehler, 2003] Furthermore, the
card features a game port for joysticks and gamepads and can offer compatibility to the AdLib
product with the use of the same OPL 2 synthesizer chip. Creative Labs also offers extensive support
for its product, shipping out new drivers to developers as fast as possible and providing cheap
developer’s kits. The company can also offer the card at a cheap price: Unlike AdLib sound cards
manufactured in Canada, Sound Blaster cards are produced in high quantities in Asia. [Weske, 2000]
Later versions of the Sound Blaster make the compatibility to the Game Blaster optional (version 1.5),
offer a new redesigned layout that also removes crackling in the sound rendering (version 2.0) and
allows sound playback at 44.1 kHz (version 2.1). [Goehler, 2003] The card also inspires other
manufactures to produce “Sound Blaster–compatible” hardware. Due to the revisions of the Sound
Blaster (and subsequent alterations to the digital signal processor hardware) the compatibility is not
always guaranteed. Also, many of the products are of inferior quality compared to Creative Labs’
hardware. [Weske, 2000]

1990 - 1994
SNK releases the NeoGeo in 19904, offering a true arcade experience for the home user by basically
repackaging the arcade hardware in console format. The system uses a Yamaha YM2610 sound-chip
that is able to output 15 channels in stereo (seven sample channels, four FM channels, three
programmable sound generators (PSG) and one noise channel) simultaneously. [PC Vs Console, 2007]

The nineties see the rise of sampling as the preferred method of sound generation. The first console5
to completely rely on sample playback is Nintendo’s Super Nintendo Entertainment System, is
released in Japan in 1990, followed by North America in 1991 and Europe in 1992. The machine uses
a Sony SPC700 sound-chip, allowing the playback of samples over eight separate channels. As well as
simple playback, every channel also offers “looping, sample interpolation, lowpass filtering and delay
effects as well as an ADSR-amplitude envelope.” [Tätilä, 2007]

LucasArts releases Loom in 1990. The games music is based on Tchaikovsky’s “Swan Lake”, featuring
different sections of the piece in MIDI with additional original music by the game’s composer George
Sander. Loom does not have a continuous soundtrack, “since almost all of the game-play involves the
player making his own music; assuming the role of Bobbin Threadbare, a member of the Weavers’
Guild, the player weaves the very fabric of reality by casting spells or “drafts” consisting of four
musical notes, solving puzzles by learning new sequences of notes from the world around him and
applying them in the appropriate situations.” [Pidkameny, 2002]

Joe Montana Sportstalk Football II is released on the Sega Genesis in 1991, offering the user
continuous play-by-play commentary of the action happening on the screen. Since then this has

4 The console is introduced at a price point of $599 (including two arcade controllers and a game, with games
priced at $200 to $300).
5 The Commodore Amiga (1000) provided sample playback earlier but should be considered more of a general
purpose computer than a dedicated gaming machine.

The History of Sound in Video Games

Page |10

become a staple of the sports genre, with known commentators often being employed to do the
commentary. The most famous of these is arguably John Madden, giving play-by-play commentary in
the football game series by EA Games named after him, Madden. [McDonald, 2004]

In the same year Creative Labs releases the next card of the Sound Blaster series, the Sound Blaster
Pro. The first version offers the same capabilities as the last revision of the original Sound Blaster, but
allows playback in stereo as well as stereo recording at 22,05 kHz. Furthermore a second OPL 2 is
added onto the card to guarantee stereo music playback. Later revisions of the card replace the two
OPL 2 chips with one fully backwards compatible OPL 3 chip. [Goehler, 2003] The Yamaha YMF262,
also known as OPL3, offers more complex waveforms, 18 instead of nine voices and stereo
capabilities, but no panning, forcing sounds to be one the left, right or on both outputs. The
hardware apparently has a bug in some revisions, switching stereo channels around. [Microsoft,
2003]

Creative Labs also has to face strong competition that year. Advanced Gravis Technologies releases
the Gravis UltraSound card. The card is able to play back 16-bit stereo samples at 44 kHz and can
sample 8-bit stereo sound at the same frequency. [Indiana University, 2004] One of the strong
points of the card is its ability to output 32 channels simultaneously, albeit at the cost of a quality
drop6. The Gravis UltraSound has one drawback – due to it missing an OPL chip the card has to
emulate the AdLib soundcard and Sound Blaster compatibility has to be provided through software.
Gravis therefore creates its own platform with no initial support, but by publishing extensive
programming tools and source code the company can ensure that game developers start supporting
the product. [Goehler, 2003]

Almost at the same time as Creative Labs releases the Sound Blaster Pro, AdLib updates its product
by releasing the AdLib Gold. The card maintains full backwards compatibility with its own
predecessor while providing 12-bit quality sound at 44.1 kHz. On its release the card is the only one
to offer the OPL 3 chipset – the Sound Blaster Pro is still in its first revision. As a specialty, the card
can also be extended with an additional board that allows virtual surround sound with echo. The
problem is that the card is not Sound Blaster compatible - a feature demanded by most games of that
time to allow sample playback. Although games supporting the card follow, it does not have success
and marks the end for AdLib. [Goehler, 2003]

In September 1991 the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards
Committee (JMSC) adopt the “General MIDI System Level 1” specification. [MIDI Manufacturers
Association, 2008] The standard defines a set of 128 sounds arranged in a specific order and requires
the compliant devices to be able to play 16 instruments at once and have a minimum playback of 24
voices. Additionally, one standard drum set or kit is required. [Tyler, 2006] The standard is a big help
for composers, who can assure that their music will sound nearly the same on all systems supporting
General MIDI.

The Miles Sound System is released in its first version in 1991. The API becomes one of the most
popular libraries for sound, having appeared in more than 4200 games at the time of writing. The
middleware is available on nearly all major platforms. [RAD Game Tools, 2007]

6 „With 14 active voices, the card can play back at 44100 Hz, while at 28 active voices, the playback rate drops
to 22050 Hz. The maximum 32 voices yields [sic] a playback rate of 19293 Hz. “ [Indiana University, 2004]

The History of Sound in Video Games

Page |11

QSound brings 3D sound to arcade games in 1991. [QSound Labs, 2007] The QSound chip is used first
as an extension of the Capcom Play System 1 (CPS-1), an arcade system allowing interchangeable
games similar to the NeoGeo arcade system. Only a few games are released with the QSound
hardware as Capcom introduces the Capcom Play System 2 (CPS-2) in 1993, containing QSound by
default. [Richards, 2003] Super Street Fighter 2, a huge arcade hit, is one of the games to use the
technology.

In 1991 (1992 in North America, 1993 in Europe) Sega releases the Sega CD as a hardware add-on for
the Sega Genesis in Japan. [McDonald, 2004] Although this is not the first time that a system uses CD-
based media instead of cartridges, the Sega Genesis with the Sega CD is the first mainstream console
to feature usage of CDs, especially outside of Japan.7 The console also supports QSound technology.
[QSound Labs, 2007]

Creative Labs reacts on the advances its competitors make with their products in 1992 and
introduces its own 16-bit sound card, the Sound Blaster 16. By upping the card’s capabilities to 16-bit
sound at 44.1 kHz the sound card is able to output CD quality sound. The hardware also features an
interface to connect a secondary wavetable board to it, extending its capabilities to match the ones
of the Gravis UltraSound or the Roland LAPC-I. Creative Labs also licenses QSound technology to be
used on the card. [QSound Labs, 2007] On the downside the card is not fully compatible to the rest of
the Sound Blaster family as it is not able to play stereo in the Sound Blaster Pro compatibility mode.
Nevertheless, the card is adopted fast by users and game developers and represents the standard for
sound playback devices for all DOS games to come. [Goehler, 2003]

1993 sees the release of two new consoles which are both unable to win over the consumer.
Panasonic releases the 3DO console, a CD-based system8. [McDonald, 2004] The console uses a
custom 16-bit chip “specifically designed for mixing, manipulating, and synthesizing CD quality
sound.“ [Terlecki, 1998] Atari releases the Jaguar, a system advertised as a 64-bit console actually
featuring two 32-bit co-processors. One of these co-processors, nicknamed “Jerry”, handles audio
and is able to output CD-quality sound in stereo with the number of sound channels limited by
software. [Jung, 2003]

 The same year Sonic CD is released on the Sega CD by Sega. “Breaking new ground in home gaming
sound fidelity, Sonic CD for the Sega CD system boasts what is perhaps the first truly CD-quality
soundtrack. ” [McDonald, 2004]

Creative Labs soon realizes that the wavetable add-on card for the Sound Blaster 16, called Wave
Blaster does not provide the quality wanted by consumers. The follow up, the Wave Blaster II,
includes the EMU 8000 chip by E-mu Systems Inc, a company acquired by Creative Labs, providing
effects like reverb and chorus. It also makes a MPU-401 MIDI interface available. The combination is
also released as a single board in 1993, the Sound Blaster AWE32. The abbreviation stands for
“Advance Wave Effects”, the number refers to the maximum number of channels that can be

7 The first console to ever have a CD drive is the FM Towns Marty, produced by Fujitsu in 1991. The console,
based on a 386 processor, is never released outside of Japan. [Console Database, 2005] Also, the CD addon to
the TurboGrafx 16/PC Engine is released before the Sega CD in the US but sells very poorly.
8 3DO is first and foremost a set of specifications created by the 3DO company. Several companies (Panasonic,
Sanyo, Goldstar, Creative Labs and others, some of the projects have been cancelled) build their own versions
of the hardware adhering to these specifications. Panasonic is the first company to release 3DO hardware.
[Terlecki, 1998]

The History of Sound in Video Games

Page |12

processed simultaneously. [Goehler, 2003] The card offers one megabyte of General MIDI samples
and another 512 kilobytes of space to download additional samples. The card is released in two
versions, the standard and the value edition. The cheaper value edition cannot be upgraded with
more RAM while the higher priced version can take as much as 28 more megabytes. What’s more,
only the standard edition features a Wave Blaster connector. [Creative Labs Technical Support, 1999]

In 1994 the sixth part of Final Fantasy, named Final Fantasy III in North America, is released on the
Super Nintendo Entertainment System. The game is a huge success, providing a game-play based on
plot, events, and character. Journalist Tim Rogers even defines the game as a opera in [Rogers,
2004]: “Square, whose Final Fantasy IV is one of the masterpieces of the first age of narrative
videogames because it is bold and dumb, and garish, gay, even, yet full of fear, slinked off into their
cave in the hills of Tokyo, and set about making their next game neither a comic book nor a novel nor
a home drama. Oh no, they were going to make an opera.” [Rogers, 2004](emphasis by Rogers) The
score of the composer Uematsu reflects the direction the game takes - “every character has his/her
distinct theme, and events are scored with an operatic sense of grandeur. “ [Schweitzer, 2008]

1995 - 1999
Sega and a newcomer to creating consoles, Sony, present their new systems in 1995 in North
America after releasing the Sega Saturn and the Sony PlayStation in 1994 in Japan. After putting the
unsuccessful Sega 32X on the market in 1994(an add-on for the Sega Genesis, extending the Genesis’
capabilities with a 32-Bit architecture9), Sega releases the completely new developed Sega Saturn.
[Burkart, 2006] The machine uses two chipsets to create sound: A Yamaha FH1 24-bit digital signal
processor and a Motorola 68EC000 sound processor. This hardware enables the Sega Saturn to
deliver 32 PCM (pulse code modulation) as well as 8 FM channels at 44.1 kHz. [Gerritse, 2006] The
console can also play Redbook Audio10 CDs and supports QSound technology. The first game to make
use of QSound is Sega’s Sega Rally Championship. [QSound Labs, 2007]

“The industry was revolutionized in 1995 with the introduction of the Sony PlayStation.”[Belinkie,
1999] The system is capable of playing back 24 sampled voices and uses three methods of sound
generation. Next to MIDI11 and MOD playback the PlayStation also offers the option to use Redbook
Audio, providing CD sound quality. The machine is able to play “really long samples, even sampled
phrases or melodies.”[Tätilä, 2007]

The release of Windows 95 separates the game developers from direct access to the hardware,
instead programs communicate through drivers offered by the manufacturers of the hardware.
[Weske, 2000] In September of 1995 Microsoft ships the first version of DirectX for Windows 95,
including DirectDraw, DirectSound, and DirectPlay. This collection of interfaces is meant to help game
developers get the most out of the hardware by providing “fast and relatively convenient access (at
least in versions 5 and above) to graphics as well as audio hardware.” [Weske, 2000] As long as a
DirectX compliant driver for sound hardware exists, each game can access it through DirectX. [Eisler,
2006]

9 The Sega 32X extends the available sound channels of the Genesis by two but these as well as the extended
graphic abilities are only available to special games made to work with the 32X. [Burkart, 2006]
10 Redbook Audio define the specifications for CD sound, important for games are the required 16-bit sound
quality with a sample frequency of 44.1 kHz.
11 The built-in synthesizer of the PlayStation does not have any stored instruments but offers the ability to load
patches. [Tätilä, 2007]

The History of Sound in Video Games

Page |13

In 1996 (1997 in Europe) Nintendo reacts upon the releases by Sega and Sony and starts selling its
own new console, the Nintendo 64. The Nintendo 64 is not based on CD media but relies on
cartridges to store game content [Belinkie, 1999], making it at the time of writing the last (non-
portable) game console using cartridge-based media with a mass market audience. In an unusual
move, the hardware does not contain a specialized chipset for handling audio. Instead, the CPU and
the graphics chipset are responsible for audio playback. The hardware is able to output sound at CD
quality, but due to the use of cartridge based media no Redbook Audio is possible, making game
developers rely on sample based playback. [Tätilä, 2007]

The same year also sees the releases of games renowned for their soundtracks. Quake by id Software
is released on the PC with a soundtrack composed by Trent Reznor, front man of the band Nine Inch
Nails (the logo of the band is even featured in the game). The soundtrack is stored as Redbook Audio
on the CD the game is delivered on and thus playback is possible on any CD player.

On Sony’s PlayStation the second part of the wipEout racing series is released. The first part already
makes full use of Redbook Audio and features (at least in some versions) tracks by electronic artists
like Leftfield and the Chemical Brothers.12 [MobyGames, 2008b]The successor, wipEout XL/wipEout
2097, boasts a soundtrack that “stands out as being made up of licensed songs from popular techno
artists such as Underworld, Future Sound of London, The Prodigy, and The Chemical Brothers. The
game also allowed players to select which song they wanted to listen to, a feature which now
appears in many racing games. ” [Pidkameny, 2002] Redbook Audio is used to allow CD quality
playback of the songs as it is done in the first part.

On the same system, PaRappa the Rapper is released in 1996 in Japan and brought to North America
and Europe in 1997. [MobyGames, 2008] The game is based on a toy released by Milton-Bradley,
called SIMON.13 “The reason why I call it the “Simon Says” genre is that this kind of game has the
same structure as the “Simon Says,” in which players have to perform the actions that Simon (a
leader) orders to advance to the next level. Each level gets increasingly difficult. In the genre of
games with sound, players also have to mimic a master’s play by pressing the correct buttons at the
correct moments, all in time to the music.“ [Takeshita, 2003] The game becomes a top-selling hit in
Japan. [McDonald, 2004]

With the release of DirectX 3 in 1996 Microsoft introduces a new part of DirectX, DirectSound3D. The
release of this product creates some controversy between the manufacturers of sound cards and
Microsoft. Instead of just defining an API and providing a basic 3D audio algorithm in software that
could be accelerated by hardware, Microsoft opts to not allow any third party 3D algorithms by not
passing any coordinates, source, or listener parameters down to the device driver. The sound card
manufacturers react by creating sets of non-Microsoft API calls that pass the data required down to
the device driver. Two of these sets emerge, called A3D and Dev3D. Later on both are unified into the
3Dxp standard, created by the IA-SIG 3DWG (Interactive Audio- Special Interest Group: 3D Working
Group) which at the same time negotiates with Microsoft to change its stance.14 [Schmidt, 1997]

12 The game even spawns a soundtrack, called „Wipeout – the Music“, which differs from the in-game
soundtrack. The sampler features many well-known electronic artists. [MobyGames, 2008b]
13 Interestingly the creator of SIMON is Ralph H. Baer, himself creator of the first console, the Magnavox
Odyssey. The game itself is based on a coin-op machine by Atari, called Touch-Me. [Baer, 1998]
14 3Dxp is further developed to “The IA-SIG’s Interactive 3D Audio Rendering and Evaluation Guide – Level 1”
(I3DL1). “The main purpose of I3DL1 was to help define a consistent behavioral model for interactive 3D sound

The History of Sound in Video Games

Page |14

Intel (in collaboration with Analog Devices, Creative Labs, National Semiconductor and Yamaha)
develops the Audio Codec ’97 (AC’97) as a high-quality, 20-bit audio architecture for use in desktop
PCs. The architecture plans the separation of the hardware into the codec and the audio controller,
effectively separating analog and digital circuitry to avoid digital noise in analog sound generation.
[Barish, 1998] The specification is meant “to provide system developers with a standardized
specification for integrated PC audio devices.” [Intel, 2008] The specification is widely adopted and
used by a lot of manufacturers as an integrated audio solution.

Another important step is taken in PC audio technology in the same year. Diamond releases the
Monster Sound, the first sound card to support 3D audio acceleration, in the case of this card
accelerating Aureal’s A3D algorithms. [Smith, 1999] A3D allows developers to include Doppler
effects, volume dependent on the distance between source and listener and sound cones. [Hagén,
2001]

The first part of the Grand Theft Auto series comes out in 1997 [Kruczek, 2008]. The game follows the
protagonist on his career in crime, which is mostly spent in cars stolen by the player. One of the
staples of the series is already included in the first part – the soundtrack consists of a combination of
different radio stations playing a variety of music. The audio is once again stored in the Redbook
format and can be played on any CD player.

Konami presents the first entry, Beatmania, in its soon extended Bemani music series in the same
year in Japanese arcades. [Bemanistyle, 2008] The game features an unusual controller including a
turntable. The goal of the game is to hit notes and scratch the turntable at the right time.

With the shipment of DirectX 5 in 1997 Microsoft allows third party acceleration of the
DirectSound3D API. [Eisler, 2006] “With DirectX 5, DirectSound3D has the capability of having sound
cards that use third party 3D audio algorithms accelerate DirectSound3D properly, through
Microsoft-approved methods (xyz parameters now get sent from the API to the driver). Therefore,
with DirectX 5, the workarounds A3D, Dev3D and 3Dxp become unnecessary.” [Schmidt,
1997](emphasis by Schmidt) The API offered by Microsoft with DirectX 5 is very similar to Aureal’s
A3D, in fact, many sound card manufacturers achieve A3D compatibility by translating calls from A3D
to DirectSound3D. [Hagén, et al., 2002a]

In 1998 Nintendo releases the Legend of Zelda: Ocarina of Time on the Nintendo 64 to rave reviews.
“Besides boasting an amazing soundtrack, it’s one of the first titles to feature music-making as part of
its gameplay. “ [McDonald, 2004] The game includes a playable instrument, the ocarina of time,
which lends its name to the game. The instrument features a basic five-note scale, “though
additional manipulation from other control buttons makes it possible for a skilled player to
reproduce a complete scale. Successfully playing a melody fragment unlocks an animation which
completes the melody and performs the specified action when appropriate. Not only do these
musical themes flavor the experience of play, they are also reproduced in the backgrounds of several
of the game’s environments.” [Whalen, 2004]

Also in 1998, Konami extends its range of music themed arcade games and releases Dance Dance
Revolution in Japanese arcades. The concept of the game is simple: The player’s controller consists of

and to help consumers and magazine reviewers differentiate between true 3D sounds and the “pseudo-3D“
sound (stereo enhancement) that was popular at the time.“ [Miller, 1999]

The History of Sound in Video Games

Page |15

a platform with eight direction arrows, corresponding to arrows shown on the screen. The player’s
task is to hit the right direction with the feet at the moment the arrow pointing in that direction hits
the top of the screen. All of these arrows are synchronized to music – choosing a certain song sets
the difficulty for the game. “Other benami [sic] games include Guitar Freaks (play a guitar to music),
DrumMania (play a drum kit peripheral), and HipHopMania (scratch turntables to music).”
[McDonald, 2004]

“The OpenGL-GameDev mailing list, which hosts more than its average share of developers
interested in portable code, spawned in 1998 a list dedicated to discussion of a new, open audio
library—tentatively named OpenAL. Proposals were written and posted, and several developers
spent significant time coming up with a good solution. However, it quickly became apparent that
between us, “good” was measured by very different metrics.” [Kreimeier, 2001] As a result of these
differences, the project does not go ahead and interest in it decreases for some time. [Kreimeier,
2001]

Sega begins the new round of the next generation console releases by starting to sell the Sega
Dreamcast in Japan in the fourth quarter of 1998 and later on releasing the machine in North
America15 and Europe in 1999. [The History of Computing Project, 2005] The Sega Dreamcast uses a
Yamaha Super Intelligent sound processor running at 45 MHz. The chipset can use two megabytes of
RAM and is capable of producing sound on 64 channels at CD audio quality of 44.1 kHz with
additional effects like reverb, delay and surround sound. [Tyson, 2000] As with the other consoles
from the Sega CD on, the system supports QSound technology for 3D sound generation. [QSound
Labs, 2007]

Creative introduces its own 3D sound API in early Fall 1998. The acronym EAX stands for
Enviromental Audio eXtension. The API is an extension of DirectSound3D, “a primitive set of 26
presets and 3 parameters for more accurate adjustment of the Listener Parameters and 1 parameter
for for[sic] the Sources.“ [Menshikov, 2003] These variables allow the developers to specify what
type of room the player is located in and consequently set the values for the reverb algorithm.
[Hagén, et al., 2002a] Creative Labs own Sound Blaster Live! with the new E-mu Systems Inc.
EMU10K1 processor is the first card to feature EAX. [Hagén, et al., 2002b]

The same year Aureal releases the second version of A3D. The A3D 2.0 API introduces wave tracing, a
computationally intensive approach. [Hagén, et al., 2002a] “Aureal’s Wave tracing algorithms analyze
the geometry describing the 3D space to determine ways of wave propagation in the real-time mode,
after they are reflected and passed through passive acoustic objects in the 3D environment.”
[Menshikov, 2003]

On the Sony PlayStation two notable skateboard games are released in 1999. Trasher: Skate and
Destroy by Rockstar Games and Tony Hawk’s Pro Skater by Neversoft both include a lineup of
licensed songs by popular bands, with “Trasher: Skate and Destroy” using old-school hip-hop from
acts like Run DMC, Public Enemy, Sugarhill Gang, Grandmaster Flash, Afrika Bambaataa and Eric B.,
and Rakim. “The competing title, Tony Hawk’s Pro Skater, goes alt-punk instead,[sic] with songs by
the Dead Kennedys, Goldfinger and Primus.” [McDonald, 2004] The latter game spawns a long

15 The Sega Dreamcast is released under heavy advertisement on September 9, 1999, thus on 9/9/99.
[Robinson, 1999]

The History of Sound in Video Games

Page |16

running series, still continuing today, that offers an extensive soundtrack with licensed music in each
entry.

Another game with a unique sound design is also released on PlayStation that year. Silent Hill by
Konami is part of the survival horror genre established by Infogrames’s Alone in the Dark in 1992
[MobyGames, 2008a] and further developed by Capcom’s Resident Evil in 1996. [McDonald, 2004]
The genre is based on horror movie conventions. Often using dramatic camera angles, slow moving
protagonists and a low amount of ammunition, keeping the player in constant state of suspense is a
goal of the genre. “By combining conventions both of videogame and horror film, the designers of
Silent Hill create an experience that is driven musically by the grotesque exaggeration of musical
functions familiar from earlier videogames. The safety state/danger state binary of music which
drives the motivational function of the music is shifted to correspond to the threatening, intrusive
atmosphere of the city. Overall, the music in Silent Hill drives home the unique game play aspects
that direct home its status as a classic Survival Horror title.” [Whalen, 2004]

Microsoft starts shipping DirectX 6.1 on February 3, 1999, marking the first release of the DirectMusic
API. [Microsoft, 1999] “DirectMusic starts out by addressing the major problems of Windows' old
MidiOut API, such as shaky timing and limited real-time control. It offers consistent playback of
custom sound sets using an open standard, Downloadable Sounds Level 1 (DLS1). On top of that,
DirectMusic opens more than one door to achieving adaptive musical scores in games.” [Hays, 1998]
The component of the DirectX API, as well as an application called DirectMusic Producer, is intended
to allow game developers to create dynamic scores to accompany their games, based on MIDI
output. [Hays, 1998]

In September 1999 the IA-SIG 3DWG releases the 1.0a revision of its “Interactive 3D Audio Rendering
Guidelines Level 2.0” (I3DL2). [Interactive Audio Specialist Interest Group, 1999]. The guideline
extends I3DL1 with an environment reverberation model, an enhanced distance model, taking
advantage of the reverberation cues, and occlusion as well as obstruction models for muffling
effects. [Miller, 1999]

Creative Labs reacts to the introduction of I3DL2 (that is largely based on EAX) by introducing EAX 2.0
in 1999 [Miller, 1999], offering the functionality presented in the I3DL2 paper and adding a few high-
end parameters while keeping backwards compatibility to the EAX 1.0 specification. [Hagén, et al.,
2002a]

“Load the game, follow the beat, make the jump, this is neat[sic] Music a bit sad? Change the CD.
This game moves to your melody. Once the game is loaded you can put your own music CD into
PlayStation.[sic] The beat of the music dictates the game.” [Sony Computer Entertainment Inc., 2000]
The text from the advertisement page for Vib Ribbon is a good description of the game. The player’s
task is to direct Vibri, a female bunny, along a white line. The lines layout changes according to the
soundtrack played in the background. Slow songs produce fewer obstacles, fast songs make the
levels themselves frantic and furious. The game itself has a very simple presentation, only showing
stick figures. This allows the whole title to fit in the PlayStation’s internal memory which again allows
players to change the CD containing the soundtrack of the game to any audio CD they like, creating
an unlimited number of levels. The game is never released in North America, but is distributed in
Japan in 1999 and Europe in 2000. [McDonald, 2004] “Interestingly, the mickey mousing sound

The History of Sound in Video Games

Page |17

effects of Vibri jumping and walking over the obstacles can be turned off, turning the game into a
visual performance tool.” [Pichlmair, et al., 2007]

“Back in 1999 a Japanese company called Warp released what could be considered to be the very
first big commercial audio game. The game's title was Real Sound: Kaze no Riglet (sometimes also
Kaze no Regret) which translates into "Regrets in the Wind" or "The Riglet of the Wind". The game,
that consists of 4 cd's (!), was only released in Japan for the Sega Saturn and the Dreamcast.“
[AudioGames.net, 2008b]

2000 - 2004
One of the most popular consoles of all time is released by Sony in the year 2000. The Sony
PlayStation 2 is the first mainstream console to include the ability to play DVDs. The system can
output 32-bit stereo sound at a maximum sample rate of 48 kHz, with 48 channels available. [CNET,
2001] As a further improvement to the PlayStation, the PlayStation 2 contains two megabytes of
sample memory instead of 512 kilobytes. The console is able to pass through AC-3 and DTS, in 2002
SSX Tricky and NHL 2002 by EA Sports use DTS to generate in-game 5.1 audio. [Shimpi, 2001]

After the release of the Sound Blaster Live! Aureal and Creative Labs engage in a court battle which
continues until the end of 1999. Although Aureal claims victory, the financial assets of the company
are used up and the company has to file for bankruptcy. Aureal is bought by its rival Creative Labs
which takes over the A3D technology, by then in its third version. The acquisition is performed on
September 21, 2000. [ALive!, 2003]

Sega and Nintendo both introduce games featuring voice recognition in 2000. [McDonald, 2004]
Seaman by Sega is released for the Sega Dreamcast and revolves around a creature called Seaman.
After the creature hatches, the player has to take care of it and talk to the Seaman. While the
Seaman grows to adulthood it begins building up a vocabulary for conversations with the player. The
creature will start being more active in conversations, ask questions and even insult the player
depending on its mood, using a vocabulary with over 10,000 words. [Cordeira, 2008]

Nintendo releases a similar game, called Hey You, Pikachu! for the Nintendo 64. The game can be
categorized as “friendship simulation”. [Provo, 2000] The player takes responsibility for a Pikachu,
the best known character from Nintendo’s franchise Pokémon. Interaction with Pikachu is done
through the use of a microphone included with the game. “Pikachu’s understanding of the English
vocabulary is limited to approximately 200 words and phrases, but the game’s voice recognition is
fairly solid – it even allows for the sloppy speech patterns of younger children and toddlers.” [Provo,
2000]

Sega releases Samba De Amigo on the Dreamcast in North America and Europe in 2000, after
releasing an arcade and a Dreamcast version in Japan in 1999. The game features a special
peripheral, consisting of two maracas and a floor sensor to locate the maracas’ positions while
playing. The game requires the players to shake the maracas the right way in the right place at the
right time. The music used in the game is mostly based on Latin music, the non-Japanese version
even includes cover versions of Ricky Martin songs. [Gerstmann, 2000]

The History of Sound in Video Games

Page |18

After DirectX 7 failed to change much in regards to how music and sound are handled by DirectX16,
Microsoft introduces major changes with DirectX 8 in November 2000. [Microsoft, 2000]
DirectSound and DirectMusic are consolidated into one interface and DirectShow is enhanced,
providing real-time compositing and editing of audio/video timelines by the Editing Services API and
supporting Windows Media Audio and Video files. DirectSound3D receives a major improvement,
upping its abilities to the ones laid out in I3DL2.[Hagén, 2001]

Since 2000 video game music is allowed to compete in the Grammy Awards. The 42nd Annual
Grammy Awards ceremony includes three categories accepting video games as nominees: “Best
Soundtrack Album for Motion Picture, Television, or Other Visual Media; Best Song for a Motion
Picture, Television, or Other Visual Media; and Best Instrumental Composition for Motion Picture,
Television, or Other Visual Media.” [Marks, 2000] No video game music has yet been nominated for
one of the three categories. Chance Thomas explains in an interview: “In 1999 I wrote a proposal that
was successful in getting three new categories added to include game music. That marked the first
time in history that game music was eligible to compete for a Grammy Award. But the road since
then has been sluggish. I think publishers have been indifferent about making submissions, while
audio professionals have been intimidated by the competition. The result is, very few game
soundtracks have actually even been submitted for Grammy consideration.” [Brightman, 2007]
Submitting soundtracks is also made harder by requirements asking for the game score to be
commercially available as a separate music CD, stored in Redbook Audio, or stored as an “enhanced”
CD. [Marks, 2000]

Development of OpenAL picks up in 2000 and in June 2000 the Version 1.0 Draft Edition is released.
Aureal expresses interest in the API in 1999, but neither the company nor the OpenAL mailing list can
report significant progress. This situation changes in late 1999 with the involvement of Loki, a
developer tasked with porting Heretic 2 and Heavy Gear to Linux at that time. Creative Labs
expresses interest in the project and at the Game Developer Conference in March 2000 both
companies announce their initiative leading to the June 2000 paper. [Kreimeier, 2001] At the time of
writing, version 1.1 has been released and the following platforms are supported by at least version
1.0: OS 8/9, OS X, Linux (OSS, ALSA), BSD, Solaris, IRIX, Windows (MMSYSTEM, DirectSound,
DirectSound3D, NVIDIA nForce, Creative Audigy 1/2/4, Creative X-Fi), Microsoft Xbox, and Microsoft
Xbox 360. [OpenAL, 2007]

Rez is created by United Game Artists in 2001 and published by Sega on the Dreamcast, with a later
version published on the PlayStation 2. [MobyGames, 2008] The game itself is a rail-shooter, forcing
the player on a certain path and only granting limited control to the user. “In the game, players at
first move around a cursor to lock on an enemy as a target. Players are allowed to lock on a few
enemies at once. On the screen, when players have, for instance, three enemies locked on, they
simultaneously see three cursors on three enemies. Then when players press a button to destroy
them all together, they hear a sequence of the sound effects. By constantly shooting them and
hearing the sound, players feel like they are putting the sound on the techno background music.”
[Takeshita, 2003]

16 The major changes from DirectX 6.1 to DirectX 7 are a new voice manager and a new software 3D sound
engine. [Hagén, 2001]

The History of Sound in Video Games

Page |19

A similar looking, but differently functioning game is released by American developer Harmonix
Music Systems in the same year. [McDonald, 2004] FreQuency offers game play similar to Tempest
from the eighties. The player flies down an octagonal pipe with each wall representing a part of the
song played in the background. Each part is again split in to a series of jewels, located on the left,
middle or right side of the wall. These jewels represent notes the player has to hit at the right
moment. “If you successfully complete a section of a wall without any mistakes, the wall will clear
out and start playing automatically, letting you move on to another wall.” [Davis, 2001] The game
features a soundtrack including BT, Crystal Method, Orbital, DJ Q-Bert, Powerman 5000 and Paul
Oakenfold. The successor, Amplitude, replaces the pipe in favor of a planar playing field with multiple
lanes and introduces multiplayer. [Davis, 2003]

Gitaroo Man by Koei is released on the PlayStation 2 in 2001 in Japan and brought to North America
in 2002. The game play of the title alternates between two different modes, switching between game
play based on timing and a mechanic requiring the player to follow a line on the screen with
movements of the analog stick. “Gitaroo-Man is arguably the most original and inventive rhythm
game since the advent of Dance Dance Revolution or the original Parappa the Rapper, and it's easily
one of the best rhythm games for the PlayStation 2.” [Davis, 2002]

With Microsoft a new company enters the console business. The first product, called Microsoft Xbox,
resembles in large parts a PC. The sound chip of the Xbox, called MCP (Media & Communications
Processor) offers Dolby Digital encoding support and is designed “to bring 5.1 channel gaming to the
mainstream market”. [Shimpi, 2001] The processor is I3DL2 compliant with abilities to output 64
voices and features 64 megabytes of unified memory and 200 MHz bandwidth to the CPU.
[McDonald, 2004] Another important feature is custom soundtracks for games (as long as the game
developers allow it), stored on the internal hard disk. [Microsoft, 2007]

Nintendo is the last major producer of consoles to switch to disk based media. In 2001 the Nintendo
GameCube is released [McDonald, 2004], featuring a proprietary 8cm optical disk, allowing storage
of up to 1.5 gigabyte. The console includes a custom Macronix digital sound processor (DSP)
connected to 16 megabytes of RAM. The chip is able to produce up to 64 simultaneous channels at
48 kHz and supports stereo, Pro Logic and Dolby Pro Logic 2. [Shimpi, 2001]

The same year the handheld line by Nintendo, the GameBoy, receives an update too. Nintendo starts
offering the GameBoy Advance in 2001. [Thorsberg, 2001] Unlike its predecessor, the GameBoy Color
[Strietelmeier, 1998], the GameBoy Advance features sound hardware much advanced in comparison
to the original GameBoy system. The new machine is able to output samples on two channels next to
the four standard channels of the GameBoy. The output is played in mono over the speaker or in
stereo when headphones are used. [Strickland, 2002]

With the release of the Audigy cards Creative Labs introduces EAX Advanced HD in 2001. EAX
Advanced HD allows 64 simultaneous voices. Environments can be positioned and morphing allows
smooth transitions between them. Further, sound reflections can be calculated and sound can be
filtered to simulate wide open spaces better. Creative Labs has since released two updates to EAX
Advanced HD, upping the version number to 5.0. The newer versions support multiple reverb
environments, better recreation of effects close to the player, a more flexible creation of hardware
effects, inclusion of the player’s voice in the environment, and support for 128 simultaneous 3D
voices. [ALive!, 2001] [Hagén, et al., 2002a] [Creative Labs, 2008]

The History of Sound in Video Games

Page |20

Grand Theft Auto: Vice City is released by Rockstar North, formerly DMA Design, in 2002 on the
Playstation 2 with PC and Xbox versions released later on. The game is the successor to the smash hit
Grand Theft Auto III, taking its game play and transferring it to a city similar to Miami in the eighties.
The game keeps the series’ presentation of sound through radio stations, using a large collection of
eighties music to convey the feeling of that era. The soundtrack even sees a standalone release. The
developers also use famous actors like Ray Liotta, Dennis Hopper and Burt Reynolds for voice work.
The same concept of licensed tracks to immerse the player in the game world and quality voiceovers
by famous actors is used again for Grand Theft Auto: San Andreas. [Chan, 2007]

In 2003 Konami and Harmonix Music Systems release Karaoke Revolution. The game presents the
player with a song that has to be sung along with. Karaoke Revolution then rates players on how well
they can sing. Although the songs scroll along the screen like they would in a Karaoke machine
players can sing whatever they want, as long as they stay within the games limits of pitch and timing
for that song. [McDonald, 2004] Numerous versions of the title, including different songs, are
released.

At the end of that year Creative Labs announces the acquisition of Scipher Sensaura, one of the
competitors left in the field of 3D audio technology. [The Inquirer, 2003] At that point Sensaura
provides licenses for about 60% of the PC sound chip manufacturers as well as providing 3D sound
technology for the Xbox. [Gamasutra, 2001] The company also offers GameCODA, a cross platform
solution. [Creative Technology, 2004] With this purchase Creative Labs further reinforces its position
as market leader in 3D sound technology.

In 2004 Sony Computer Entertainment Europe releases a game very similar to Karaoke Revolution.
SingStar becomes a smash hit in Europe, spawning numerous special editions, many localized for
specific countries, such as SingStar Deutsch Rock-Pop and SingStar Die Toten Hosen for Germany or
SingStar Svenska Hits Schlager for Sweden. [Sony Computer Entertainment Inc., 2007] The game
itself uses the same game mechanic as Karaoke Revolution, whilst changing the presentation of the
songs. Instead of using 3D backgrounds and models to represent singers, SingStar plays the music
video of the song in the background, also supporting the EyeToy accessory to put images of the
players on the screen. The lyrics of the song are displayed over the video with bars indicating the
location of the player in the song and the pitch the passage has to be sung at. [Bramwell, 2004]

The same year Nintendo, together with Namco, releases Donkey Konga for the Nintendo GameCube.
The game is sold including a peripheral for the console in the shape of bongo drums. The DK Bongo
controller supports three actions: hitting the left drum, hitting the right drum, and a detection of
sound through a small microphone. The game-play of Donkey Konga consists of hitting drums with
symbols on them at the right time. These drums run over the screen from right to left and can
contain a yellow (left bongo), red (right bongo), pink (both bongos), or blue (clap) symbol. Donkey
Konga allows up to four simultaneous players (with additional bongos or through the use of standard
controllers). The game’s soundtrack features a wide selection of songs, all of them cover versions.
The game sees two sequels, the latter only being released in Japan. [Davis, 2004]

The Taiko Master series, published by Namco, can be seen as template for Donkey Konga. The series
is very popular in Japan, spawning numerous arcade and console versions. The game named Taiko
Drum Masters is published for the first time outside of Japan on the PlayStation 2 in 2004. Included

The History of Sound in Video Games

Page |21

with the game is a plastic replica of a Taiko drum and two drumsticks. The game itself has very similar
game play to Donkey Konga and supports up to two players. [Calvert, 2004]

In November 2004 Nintendo releases the Nintendo DS in North America,with Japan and Europe
following. [Duryee, 2004] The handheld console features two screens in vertical alignment, with the
lower one being a touch screen. The audio hardware is again improved from the GameBoy Advance,
offering 16 sound channels. The DS further includes a built-in microphone and is equipped with two
speakers, allowing stereo sound without the use of headphones. [GBATEK, 2007]

Late in 2004 the Sony PlayStation Portable is available in Japan, with the rest of the world receiving
the handheld console in 2005. [Williams, 2004] The portable uses Universal Media Discs (UMD) as
storage format, allowing the release of other media (audio and movies) alongside games. Owners can
also store movies and songs on small flash cards called Memory Sticks PRO Duo that can be read and
written by the console. The console is able to output stereo sound over its speakers or connected
headphones. [CNET, 2008]

Also in 2004, Intel releases the “High Definition Audio Specification” as a replacement for the AC’97
codec. The High Definition Audio architecture is not backwards compatible to AC’97. [Intel, 2004]
“Intel HD Audio hardware is capable of delivering the support and sound quality for up to eight
channels at 192 kHz/32-bit quality, while the AC‘97 specification can only support six channels at 48
kHz/20-bit. In addition, Intel HD Audio is architected to prevent the occasional glitches or pops that
other audio solutions can have by providing dedicated system bandwidth for critical audio
functions.” [Intel, 2007] The new architecture allows 7.1 channel output.

2005 - Present
As the first of the three big console manufactures Microsoft releases its new machine to the North
American market in November 2005, the Microsoft Xbox 360. [Morris, 2005] The console includes 32-
bit audio processing with over 256 audio channels and 320 independent decompression channels.
Supporting 16-bit audio at 48 kHz the Xbox 360 can output multiple channels for surround sound.
[Microsoft, 2007] The console also keeps the custom soundtracks in games from the original Xbox,
but again the support of that feature is up to game developers. [Ransom-Wiley, 2005]

Late in 2005 Harmonix Music Systems introduces Guitar Hero on the PlayStation 2. The developer is
approached by peripheral producer Red Octane to create a title for a product produced by the
company, a guitar. [Simons, 2007] The result lends from previous titles by the developer, keeping
the concept of jewels from FreQuency and Amplitude and the 3D backgrounds as well as the concept
of the “crowd meter” (called “rock meter” in Guitar Hero) from Karaoke Revolution. The goal for the
player is to hit all jewels at the right time by holding the same colored button on the neck of the
guitar controller and strumming the flipper located where the strings would be on a real guitar. The
player can try to hit special jewels to fill up the “Star Power Meter” which in turn allows them to
activate the “Star Power” by holding the guitar peripheral vertically. This way the player can attain an
even higher score. The game also includes a career mode to help new players get accustomed as well
as a multiplayer mode for two players. [Gerstmann, 2005b] Guitar Hero becomes a runaway hit, with
Harmonix Music Systems developing two sequels (one also appearing on the Xbox 360) before
handing over the franchise to Neversoft. [Gamespot.com, 2008]

Released as part of the Bit Generations series, Sound Voyager is published by Nintendo for the
GameBoy Advance in 2006. The title, officially only available in Japan, features seven mini games, all

The History of Sound in Video Games

Page |22

of which are audio games: Sound Catcher, Sound Drive, Sound Chase, Sound Cock, Sound Slalom,
Sound Cannon, and Sound Picker. [AudioGames.net, 2008a]

The DK Bongo Controller introduced with the Donkey Konga in the previous year gets a new use with
Nintendo publishing Donkey Kong Jungle Beat in 2005 (released in Japan in 2004). The game itself is a
platformer. The player controls the monkey “Donkey Kong” by hitting the right drum to move the
character to the right and the left bongo to move the character to the left. Hitting both drums at the
same time initiates a jump, clapping emits sound waves that can be used to acquire bananas placed
within the levels; it also makes the character interact with the environment, if possible. The game-
play is broken up by boss fights and some other challenges within the levels, more or less mini
games. [Gerstmann, 2005a]

The same year Nintendo releases the localized version of Osu! Tatakae! Ouendan, developed by iNis
(the Japanese Version is released in 2005) for the Nintendo DS. Originally featuring a squad of male
cheerleaders helping people master their problems by cheering them on, the localized version, called
Elite Beat Agents introduces some changes. The male cheerleaders are replaced by agents of a
fictional government organization and the stories, as well as the songs, are adapted to the different
audience. “Think of the whole experience as a cross between Charlie’s Angels, Saturday morning
anime, and Mama Mia!-esque musical theater.” [Navarro, 2006] The game play stays the same
between the versions. While the story evolves on the upper screen of the Nintendo DS, the player
has to tap small circles in the beat of the song playing in the background. Occasionally a ball must be
dragged along a predefined path or a wheel must be spun. [Navarro, 2006]

Also in 2006, Nintendo brings Electroplankton to North America and Europe (the Japanese Version is
released on the Nintendo DS in 2005). The title can be better classified as a mixture of a toy and an
instrument than a game. “Imagine a set of synthesizers that you can manipulate through the familiar
microphone and touch screen interfaces of the Nintendo DS, and you're pretty close. Electroplankton
is comprised of 10 such musical toys, and a playful visual style is employed to give the impression
that each takes place in some sort of bizarre petri dish--or perhaps a very musical aquarium--filled
with different species of plankton that can produce sound and light when you interact with them.”
[Davis, 2006]

Sony introduces its third console to the market in November 2006. The PlayStation 3 is released in a
range of configurations with different hard drive sizes and different levels of backwards compatibility
to the previous PlayStations. Sound generation is handled by the Cell architecture within the
machine. [Kotaku, 2005] The console supports a variety of output formats, including Dolby 5.1, DTS
and LPCM. [Dobson, 2006] It is also able to output 7.1 surround sound.

Nintendo follows up the GameCube with the Nintendo Wii also in November 2006. As with the
GameCube, the Wii supports Dolby Pro Logic II for surround sound. [McDonough, 2006] “But
Nintendo does something different with sound, putting the Wii Remote to work in a new way by
providing built-in speakers within the controller.” [Dobson, 2006]

In the same year Nintendo releases Rhythm Tengoku for the GameBoy Advance in Japan. The title
consists of a number of very short games that are based on rhythm. If five of these mini games are
completed, a remix combining all of them with a new musical twist is unlocked. “Completing remixes
unlocks new ladders of games, which offer either new, more difficult twists on earlier mini-games or
new rhythm concepts. None of them require anything more than timed button-presses from the

The History of Sound in Video Games

Page |23

player, and all of them, from the clap-along singing to bunny-marching to the extra-terrestrial
baseball, are wonderfully bonkers.” [MacDonald, 2006]

In March 2007 EA Games releases Def Jam: Icon for the Xbox 360 and the PlayStation 3. The fighting
game series Def Jam uses Hip Hop as an underlying theme – the first part, Def Jam: Vendetta, as well
as Def Jam: Fight for New York, employ music created by the artists of the Hip Hop label Def Jam and
use the rappers themselves as fighting characters. Up to Def Jam: Icon, the Hip Hop music scene is
only used as a theme – the game play itself is akin to the one featured in wrestling games. The third
installment of the series introduces music as a game-play element. While the two rappers are
fighting each other, the music playing as score is affecting the environment the brawl takes place in.
This can be a cosmetic effect, like the spinning hubcaps moving to the beat, but it can also affect the
characters themselves by triggering explosions or similar events able to hurt the players. Both
protagonists can try to change the music through a special move. If their own song is playing,
characters get stronger and by repeating the special move they rewind their song and trigger
explosions in the scenery. [Gerstman, 2007]

The Guitar Hero franchise sees its official third part in October 2007. The game is released for every
major console as well as for the PC and Mac OS X. Guitar Hero III features the basic game play of
previous renditions with the introduction of boss battles and online play on all platforms, with all but
the Nintendo Wii version allowing the download of additional content. [Pfister, 2007]

Ubisoft publishes Jam Sessions in the last quarter of 2007, based on the Japanese game Sing & Play
Guitar DS M-06. [Chester, 2007] Jam Sessions is less a game than a guitar simulator, turning the
Nintendo DS into an acoustic guitar. The game presents a string on the lower screen that can be
strummed by moving the stylus up and down. The upper screen presents the player with a choice of
eight chords with another eight available by pressing the shoulder button of the DS. The chords can
be selected out of 120 stored. Further, effects can be applied to the guitar. Jam Sessions includes
chord progressions for a number of songs, varying between the regions (the European version
includes 41 songs while the North American version offers 20 songs). The game makes use of the DS’s
microphone if headphone output is selected, but unlike the guitar sound itself, voices cannot be
recorded. [Thomas, 2007]

Harmonix Music Systems releases Phase in November of 2007. The game can be seen as the final
part of the “modulation trilogy”, also containing the games FreQuency and Amplitude. [Graft, 2007]
Unlike the aforementioned games that have been published on the PlayStation 2, Phase is released
for Apple’s IPod.17 The game features a similar, but simpler game play than FreQuency and
Amplitude, reducing the action to three static lanes. The jewels still show up in three possible
positions, left, right and center, but a new element is introduced: Sweeps have to be followed by
rotating the IPod’s click wheel. The real innovation of the game is the use of all songs available on the
players IPod, with some restrictions. “When you download it, a new Playlist will appear in your
iTunes window on your PC, and you have to individually drag tracks over to it. ITunes will then
analyze and generate gameplay[sic] data for each track individually, which takes five to ten seconds
per song (you'll see the progress bar).” [Kohler, 2007]

17 “Phase is playable on the 5th generation iPod®, the new iPod® Nano, and the iPod® Classic!” [Harmonix
Music Systems, 2007b]

The History of Sound in Video Games

Page |24

Rock Band, Harmonix Music Systems’ follow-up to Guitar Hero is released in late 2007. [Sinclair,
2007] The game extends the idea of Guitar Hero by introducing three new instruments: The bass
guitar, the drum kit, and the microphone. Game play for the guitar peripherals remains largely
unchanged, but with the introduction of new instruments the game also contains new game modes.
Using the microphone is very similar to game play in games like Karaoke Revolution or SingStar, with
the same measures of success. The drum set consists of four pads and a kick pedal. As with the
guitars, the game play for the drums also requires the player to hit the right pad or press the kick
pedal corresponding to the jewels on the screen. “There's really no reference point for the drums
portion of the game except for, well, real drums. You hit the pads in time as you would with a
realistic drum kit, and on expert, the game practically maps out each song's drum part note for note.
Make no mistake: When you are playing on expert, you are playing the drums.” [Navarro, 2007] Rock
Band puts a strong emphasis on multiplayer gaming, with the versions for the Xbox 360 and the
PlayStation 3 also allowing online play, as well as the download of new songs for the game.
[Navarro, 2007] The game also appears on the PlayStation 2 with a reduced feature set. [Navarro,
2007]

Console Sound Hardware

Magnavox Odyssey None
Atari 2600 Two audio channels
Atari 5200 POKEY - four semi-independent audio channels
Commodore C64 MOS Technology 6581 Sound Interface Device (SID) – three

independent channels
Nintendo Nintendo Entertainment System Four synthesizer voices and one sample channel
Sega Master System Three channels for music and one for noise generation (later

version additionally feature the Yamaha YM2413 FM sound-
chip)

Nintendo GameBoy Four synthesizer voices with the ability to output stereo sound
NEC TurboGrafx-16 Six stereo channels
Sega Genesis/Mega Drive Z80 CPU and the Yamaha YM2413 – six stereo channels
SNK NeoGeo Yamaha YM2610 sound-chip - 15 channels in stereo
Nintendo Super Nintendo Entertainment System Sony SPC700 sound-chip – 8 channels for stereo sample

playback
Sega Sega CD Adds CD playback capabilities to the Sega Genesis, QSound

technology
Panasonic 3DO custom 16-bit chip for CD quality playback
Atari Jaguar CD-quality sound in stereo with the number of sound channels

limited by software
Sega 32X Two additional sound channels for the Sega Genesis
Sega Saturn Yamaha FH1 24-bit digital signal processor and a Motorola

68EC000 sound processor – 32 sample channels and eight
synthesizer channels at 44.1 kHz, QSound technology

Sony PlayStation 24 sampled voices and three methods of sound generation
Nintendo N64 CPU and the graphics chipset are responsible for audio

playback (CD quality)
Sega DreamCast Yamaha Super Intelligent sound processor running at 45 MHz –

64 channels at CD audio quality, QSound technology
Sony PlayStation 2 32-bit stereo sound at a maximum sample rate of 48 kHz - 48

channels available, DVD playback, AC-3 and DTS
Microsoft Xbox Media & Communications Processor – 64 channels, I3DL2

compliant
Nintendo GameCube Macronix digital sound processor – 64 channels, 48 kHz, Dolby

Pro Logic, Dolby Pro Logic 2
Nintendo GameBoy Advance Four synthesizer voices and two sample channels with the

ability to output stereo sound
Nintendo DS 16 sound channels
Sony PlayStation Portable stereo sound

Creating Electronic Audio

Page |25

Microsoft Xbox 360 32-bit audio processing, 256 audio channels and 320
independent decompression channels, surround sound capable

Sony PlayStation 3 Cell architecture - Dolby 5.1, DTS and LPCM
Nintendo Wii Similar to the Nintendo GameCube

Figure 1: The sound hardware of the consoles presented in the chapter "History of Sound in Video Games"

Creating Electronic Audio

What is Sound?
“Sound is created by vibrations, such as those produced by a guitar string, vocal cords, or a speaker
cone. These vibrations move the air molecules near them, forcing molecules together, and as a result
raising the air pressure slightly. The air molecules that are under pressure then push on the air
molecules surrounding them, which push on the next set of air molecules, and so forth, causing a
wave of high pressure to move through the air; as high pressure waves move through the air, they
leave low pressure areas behind them. When these pressure lows and highs – or waves – reach us,
they vibrate the receptors in our ears, and we hear the vibrations as sound.” [Adobe, 2003]

Sound waves can be characterized by three properties: The amplitude, the frequency and the
wavelength of a wave. The amplitude is the change in pressure the wave produces – points on the
wave with a positive amplitude mark increased pressure, negative amplitude indicates lower
pressure. [Janus, 2006] The higher the amplitude of wave, the louder it can be heard. “Loudness is
measured in decibels, (dB).” [Collins, 2007b]

Frequency is the number of times a wave repeats, measured in cycles per second. The unit
measurement is Hertz (Hz), with one Hertz indicating one cycle per second. [Adobe, 2003] High
frequencies result in a high pitched sound, low frequencies in a low pitched sound. The wavelength, a
measure of the length of one full wave cycle, and the frequency are inversely proportional to each
other – a small wavelength gives a high frequency and vice versa. [Collins, 2007b] An important
frequency is 440Hz. This tone, also called A440, is the A above the middle C and marks the standard
pitch that all instruments are set to. [Heaton, 2007]

When talking about frequency, harmonics should also be mentioned. For any given frequency f, one
can create sequence of frequencies f, 2f, 3f, 4f, … nf …etc, with n being a whole number and f being
the fundamental frequency. This series of frequencies is called harmonic series and the single
frequencies inside the series are called harmonics. [Wolfe, 2007] These harmonics can be used to
create specific waveforms.

Waveforms
Sine waves are the most basic waves. They are also called “pure” as they do not contain any
harmonics. [Collins, 2007b] Sine waves can be used to support other waveforms (adding additional
deep or high pitched frequencies). Figure 2 shows a simple sine wave.

Figure 2: A sine wave, the most basic sound wave. Retrieved from [Preve, 2007]

Creating Electronic Audio

Page |26

The opposite of the sine wave is the sawtooth wave, also called ramp wave. A perfect sawtooth wave
consists of the sum of the fundamental frequency with all the harmonics of that frequency. The
resulting pattern resembles the teeth of a saw, hence the name of the wave. The wave generates an
extremely bright and buzzy sound. [Preve, 2007] Figure 3 illustrates a sawtooth wave.

Figure 3: A saw tooth wave, a combination of a sine wave of a certain frequency summed with all harmonics of that
frequency. Retrieved from [Preve, 2007]

Square waves consist of all odd numbered harmonics of a fundamental frequency, the volume
linearly descending with each added harmonic. [Preve, 2007] “Square waves are often referred to as
“hollow” sounding.” [Collins, 2007b] A square wave is shown in figure 4.

Figure 4: A square wave, the sum of all odd harmonics with the fundamental frequency, with the volume linearly reduced
for each successive harmonic. Retrieved from [Preve, 2007]

Triangle waves equal square waves as they also only contain all odd numbered harmonics of a
fundamental sine wave. The difference lies in the reduction of the volume – instead of reducing the
volume in a linear fashion, the reduction is done exponentially, resulting in a much faster descent of
volume. “In plain English, this means that the triangle sounds like a more muted – or duller – square
wave.” [Preve, 2007] Figure 5 shows the representation of a triangle wave.

Figure 5: Like the square wave, the triangle wave is the sum of all odd harmonics with their fundamental frequency.
Instead of reducing the volume in a linear fashion, the volume is reduced exponentially. Retrieved from [Preve, 2007]

Pulse waves, also called rectangle waves, are a more general case of a square wave. [Preve, 2007]
The difference lies in a variable duty cycle. The duty cycle represents the ratio between the time the
signal strength is at its maximum and the time it’s at its minimum (in this case, there are no values
between the maximum and the minimum). While the duty cycle of a square wave equals 1 (same
time at maximum and minimum), a general pulse wave can have any kind of ratio. [Collins, 2007b]

“White Noise is created by generating every possible frequency at the same volume.” [Preve, 2007]
Two additional colors of noise exist, pink noise and blue noise. Pink noise filters out higher
frequencies slightly while blue noise does the same with lower frequencies. [Preve, 2007] [Collins,
2007b]

Creating Electronic Audio

Page |27

Digital Sound
The main difference between analog sound as it was discussed up until now and digital sound is that
digital sound is not stored as continuous waveform but as a series of discrete samples. In order to
transform the sound wave into this series of samples, the wave needs to be quantized. The bit depth
and the sample rate play a big role in how good the quality of the quantization will be. [Collins,
2007a] Bit depth determines the amplitude resolution. An amplitude resolution of 8-bit means that it
is possible to store 256 different levels of amplitude, a very low number. Using a low bit rate
introduces noise, as the amplitude of a data point sampled from the wave cannot be stored at its
exact value. Instead, it has to be matched to the nearest available value.

This problem can be tackled by using a higher resolution. “CD-quality sound is 16-bit, which means
that each sample has 65,536 possible amplitude values.” [Adobe, 2003] DVDs offer even higher
quality by allowing audio with 20-bit depth(1,048,576 values) or even 24-bit depth(16,777,216
values). [Adobe, 2003]

The second parameter affecting audio quality is the sample rate. It specifies the number of samples
taken from an audio wave per second and is measured in Hertz. “The Nyquist-Shannon sampling
theorem states that a continuous-time band-limited signal x(t) with maximum frequency ƒmax can be
recovered or reconstructed exactly from its discrete-time samples x[n] if the samples are taken at a
sampling rate ƒs> 2ƒmax.” [Howard, 2007] The human ear can hear sounds between frequencies of 15
- 20Hz and 20,000 Hz.[Errede, 2007] In order to capture the full spectrum of frequencies audible to
human beings the sampling rate must thus be above 40,000 Hz.

The CD audio specification calls for a rate of 44.1 kHz and thereby satisfies this condition. The DVD-
Audio standard defines even higher rates, allowing 48 kHz or 96 kHz sampling. [Motion Picture
Experts Group, 2007]

Creating Digital Sound
Until the beginning of the nineties, sound synthesis is the major, and very often the only, method to
create sound and music in games. Starting with simple tone generation, the technology soon goes on
to subtractive synthesis, additive synthesis, frequency modulation synthesis and peaks with
wavetable synthesis. [Collins, 2007b]

The first kind of synthesis used to create sound is still rooted in analogue technology, using voltage
controlled oscillators, filters and amplifiers, a technology invented by Robert Moog in the late sixties.
Subtractive synthesis is based on the idea of producing a waveform rich in harmonics and then using
lowpass filters to thin out the high frequencies. The voltage controlled amplifier is used to shape the
sound wave into its final form with the control of an envelope generator. [Winfield, 2003]

The most common envelope generator is the ADSR envelope generator. The acronym stands for the
four phases of the generators output: Attack, decay, sustain and release. The generator takes five
parameters. The level parameter sets the output value reached after the attack phase. The next two
parameters define the attack and decay durations, the time needed to reach the level value and the
time required to fall back down to the value of the fourth parameter, sustain, which is defined as a
fraction of the level parameter. The final parameter is the release duration, specifying how long the
drop to zero takes. The length of the sustain phase is calculated by subtracting the attack, decay and
release values from the total length of the envelope. [Puckette, 2006] This kind of envelope is still in

Creating Electronic Audio

Page |28

use today. As an example, Force Feedback technology uses the basic waveforms and ADSR envelopes
to define the shape of its effects.

Additive synthesis is the counterpart to subtractive synthesis. Based on Joseph Fourier’s discovery of
the Fourier series and the fact, that this mathematical expression can represent any periodic signal
(provided the signal only contains a finite number of frequencies) the synthesis starts out with a
simple wave form like a sine wave. [Puckette, 2006] The final sound is generated by adding more
(simple) wave forms to create the complex wave form asked for. Although theoretically able to
reproduce any sound, the creation of complex sounds requires a lot of processing. [The Sonic Spot,
2007]

Frequency Modulation (FM) synthesis, published the first time by John Chowning in 1973, is the
dominating sound creation method until the beginning of the nineties. [Smith, 2007] It is also the
first commercial digital sound synthesis method in the world. [Horner, 1999] “FM synthesis
techniques generally use one periodic signal (the modulator) to modulate the frequency of another
signal (the carrier). If the modulating signal is in the audible range, then the result will be a significant
change in the timbre of the carrier signal. Each FM voice requires a minimum of two signal
generators. These generators are commonly referred to as "operators", and different FM synthesis
implementations have varying degrees of control over the operator parameters.” [Heckroth, 1995]

Wavetable synthesis is the term for two different methods of creating sound. At the end of the
seventies, Wolfgang Palmer creates a digital synthesizer that uses “wavetables” with each of these
tables storing 64 different waveforms. These waveforms can be accessed through a continuously
variable control, implemented in software, allowing other elements of the synthesizer to step
through the waveforms. [Cullen, 2006]

The second method called wavetable synthesis, also called PCM synthesis, found widespread use
among sound card manufacturers in the nineties. The idea is that instead of recreating the sound of
an instrument, for example a grand piano, within the synthesizer, one could also record each note of
the instrument, store it, and play it back on demand. This theoretical approach is constrained by the
storage size available on a sound card. To circumvent this restriction, not all notes of an instrument
are stored, instead, to get the full spectrum of an instrument, certain instrument sounds are stored
and then varied in their pitch (by speeding up or slowing down the playback) to achieve the targeted
tone. [Winfield, 2003] The problem is finding the right ratio between sounds stored and sounds
recreated as shifting the pitch too far from its original state makes the resulting sound tinny or dull,
depending on whether the pitch is increased or lowered.

A special case of the wavetable/PCM synthesis is the Linear Arithmetic synthesis. “L/A (Linear
Arithmetic) synthesis is Roland's trademarked term for their own wavetable/sample playback
principle. A sample of the beginning of a note (called the attack) is spliced onto a simple oscillator
waveform. The resulting output goes to a conventional chain of enveloped filters and amplifiers. In
acoustic instruments, the attack is usually the most complex part of the sound, and this approach
provides an easy way to capture that complexity.” [Seum-Lim, 1992]

The main problem with wavetable/PCM synthesis is the varying quality of the sets between the
different sound card manufacturers, resulting in a large difference between playbacks of the same
song.

Creating Electronic Audio

Page |29

From the nineties on sample playback replaces sound synthesizing more and more. The first console
to really make use of sample playback (previous consoles only included it as a supplement to other
methods of synthesis, like the Nintendo Entertainment System) is the Super Nintendo Entertainment
System, offering up to eight simultaneous channels for samples. [Tätilä, 2007]

Storing Digital Audio
Up to the beginning of the eighties, creating sound for games means programming the sound
hardware directly. The first big step forward is taken in 1983 with the publication of the official MIDI
1.0 Detailed Specification. The acronym MIDI stands for Musical Instrument Digital Interface. [Akins,
2004] MIDI data does not contain any sound itself. Instead, commands on how to play music are
stored which are then executed by the sound devices. As no audio data has to be stored, MIDI files
are comparatively small, an important feat at a time where space was expensive and scarce.

Unfortunately, MIDI also has a downside. As already mentioned, no sound data is stored. This in turn
means, that the composer does not have any control over how the piece composed will actually
sound. The definition on how a certain instrument sounds is up to the manufacturer of the sound
device, until the introduction of the General MIDI standard in 1991 it is not even guaranteed, which
instrument will actually get used. “One of the main problems that had caused headaches for MIDI
users, was the inconsistent way that various instrument sounds were numerically arranged between
different brands of MIDI synthesizers. On one synthesizer, instrument sound #1 might be piano,
while on another it could be some weird sound like "aeroglide." You never knew. It was a salad toss-
the instrument and drum sounds were numbered and arranged in completely different orders, from
one brand to the next!“ [Tyler, 2006]

The General MIDI standard ensures consistency of instrument types, at least for the first 128, next to
some other minimum requirements. Nevertheless, this does not mean that a song played as MIDI will
sound the same across all platforms – the sound of the instrument is still at the manufacturer’s
discretion. Over the years General MIDI is unofficially extended by Roland with the GS and by
Yamaha with the XG specification. [Tyler, 2006] In 1999 General MIDI is officially extended by the
General MIDI 2 specification18. [MIDI Manufacturers Association, 2008] Another important step is
taken with the introduction of “Downloadable Sounds Level 1.x”19 (DLS) in 1997. [MIDI
Manufacturers Association, 2008] This allows custom sounds to be loaded into the systems memory,
basically providing a limitless extension of the sounds controllable by MIDI.

The next big change in music formats is the introduction of the MOD format. The format was used
for the first time in 1987 in an application written by Karsten Obarski, called Ultimate Soundtracker.
[SoundTracker, 2008] As with MIDI files, MOD files contain all control data used to play music, but
unlike MIDI the files also contain all sounds used within the music piece. Originally developed for the
Amiga hardware, MOD files only support four simultaneous channels and the original Ultimate
Soundtracker only allows 15 instruments, but after the release of the source code similar programs
extend the format’s capabilities. At the beginning of the nineties, applications supporting the format
also appear on the PC. [Wright, 1998] Including the samples needed for playback of course results in
files larger than the size of a similar MIDI file. On the other hand, composers are guaranteed to
always have exactly the same instruments playing exactly the same sounds as the samples are bound

18 General MIDI 2 is currently in version 1.2, updated in February 2007. [MIDI Manufacturers Association, 2008]
19 Downloadable Sounds is currently in version 2.2, updated in April 2006. [MIDI Manufacturers Association,
2008]

Creating Electronic Audio

Page |30

to the control data – the only difference can lie in the quality of playback, depending on the output
capabilities of the sound device.

The final way to store audio is basically storing the whole music in one sample. This method has
some benefits to it. The music can be recorded in one piece instead of having to split it up and put
the pieces together. This allows for example real orchestral sound instead of the combination of
instrument tones. It also allows soundtracks consisting of musical pieces by other artists – a good
example for this would be the wipEout series; one of its staples is the soundtrack, consisting of
electronic music written and performed by famous artists. The same goes for nearly all rhythm-based
games like Dance Dance Revolution, Guitar Hero, Elite Beat Agents or SingStar. All of these games
employ prerecorded music to accompany the game-play.

Unfortunately, there are also downsides to completely prerecorded music. For one, the amount of
storage needed is much higher compared to the sizes of MIDI or MOD files. This is one of the reasons
for this kind of game music only becoming popular with the introduction of CD technology in gaming
platforms – previous methods of storage, such as floppy disks and cartridges just did not have the
space to accommodate a few songs in full CD audio quality, not to mention a whole soundtrack.
There are, of course, a few methods to reduce the size requirements of prerecorded music but most
of the time it is a tradeoff – one has to sacrifice quality in sound or the music needs more processing
power to be played.

The main method of quantizing sound to be stored digitally is called Pulse Code Modulation. It is
basically the method already described for quantization: Sample a wave with a certain amplitude
resolution at a certain sample rate. The problem is the amount of data one gets. Using CD quality as a
measure, 44,100 samples are taken at 16-bit size each every second, resulting in 705,600 bits per
second. Stereo sound needs double the size, reaching 1,411,200 bits per second. Translated into
megabytes this means that one minute of CD quality stereo audio takes slightly more than ten
megabytes of storage. Even when the quality is reduced by halving the sample rate and the bit rate, a
significant drop in quality, the required space is still approximately 2.5 megabytes. Comparing that to
the size of a standard 3.5” inch floppy disk – 1.44 megabytes – one can see that size was a major
hindrance in the use of prerecorded audio. Over the years several methods have been devised to
cope with this problem, some without losing any information (for example DPCM and ADPCM as
different kinds of quantization20 [Jeffay, 1999] and FLAC21 as a compression format) as well as some
with the loss of information (MP3 is the best known of these). Although this does not pose a problem
for most hardware nowadays, decoding compressed audio requires significant processing power not
available in earlier machines, especially within the context of a game.

As well as having to deal with a much higher size requirement, prerecorded audio has some other
drawbacks as well. Interactive/adaptive music is not possible with prerecorded audio as there is no
way to change the music stored. What’s more, the costs of producing complete tracks can be very
high. Unlike having a composer arranging instruments together and then letting the sound device
play the music, prerecorded audio requires actual musicians playing their instruments. This can start

20 In Differential-PCM (DPCM), instead of taking the value of the sample, the difference between two samples is
measured. This can be represented in much fewer bits. Adaptive DPCM (ADPCM) uses different sized words –
small differences are stored in fewer bits than large differences. [Jeffay, 1999]
21 “FLAC stands for Free Lossless Audio Codec, an audio format similar to MP3, but lossless, meaning that audio
is compressed in FLAC without any loss in quality. “ [FLAC, 2007]

Creating Electronic Audio

Page |31

by just taking one or two musicians in to replace samples not up to the required quality standards
and stop at employing a whole orchestra to record a complete game’s soundtrack22. [Wall, 2002]
When using songs from other artists, licensing fees can play a big role too.

Dimensions of Sound
The easiest and most forward way to play digital sound, or any kind of sound at all, is to mix all
signals into one single channel and push that data to the output. If more than one output is
connected, all outputs would receive exactly the same information; in the case of loudspeakers every
loudspeaker would play exactly the same sound (with minor delays between them, depending on the
distance of the different speakers from the source). This kind of playback is commonly called mono
playback, in the context of dimensions one could call this sound one dimensional (this is only
concerning positioning, not the sound quality itself).

The next logical step is adding a second dimension to allow basic positioning of sound sources. This is
done by introducing a second channel and thus splitting up the sound into a left output and a right
output. Called stereo playback, this method represents today’s minimum standard in entertainment
electronics. The existence of two channels is already enough for the simulation of sound sources
positioned in three dimensional space, as well as the movement of these sources.

The most basic way to move a sound source is called panning. Depending on the position towards
the listener, the sound is played through both outputs at different levels. If the sound source moves,
the level of volume gets adjusted for each speaker. As an example, if one wants to move a sound
source from the complete left of the listener to the complete right, the signal strength of that source
would be at 100% at the left and at 0% at the right output in the beginning. With the movement of
the sound source the left output would continuously lose strength and the right side would gain
strength until the ratio is reversed with now 100% of the signal’s strength at right output. “Such
system has no vertical positioning but it's possible to change the sound a little (for example, by
filtering high frequencies) when it comes from behind the listener because in this case he hears it a
little muffled.“ [Menshikov, 2003]

Another easy to implement technique is adjusting the volume based on the distance, also called
attenuation. [Microsoft, 2008] The simplest way to implement the attenuation is to set a certain
distance from the listener. If the sound source is within that border, the volume stays at a predefined
level, past the distance the sound volume is lowered at a rate set by the developer. The sound can be
lowered until it reaches zero, but in a game environment the preferred way should be to switch the
source off at a predefined distance to free resources. This effect can be extended by the so-called
“rolloff”, simulating additional atmospheric effects. [Menshikov, 2003]

One final effect that can be implemented with relative ease is the Doppler effect. The Doppler effect
is a physical effect that affects the wave length of any wave emitted by a source. If the source moves
towards a receiver the wavelength is shortened. The opposite happens when source and receiver
move away from each other – the wavelength increases. For sound waves, this means that the pitch
of a sound increases if source and listener move closer to each other, and decreases if the distance
between source and listener increases. The pitch can be calculated based on the relative speed of the

22 A 30 minute score, recorded with an orchestra from Seattle, Salt Lake City or San Diego can cost $21,000 to
$26,000. [Wall, 2002]

Creating Electronic Audio

Page |32

source and the listener to each other. The Doppler effect is mainly used in racing and flight games,
but all genres can benefit from it. [Menshikov, 2003]

A more precise method of positioning (or better, the emulating of the position of a sound source) is
made possible with the use of the Head Related Transfer Function (HRTF). ”HRTF (Head Related
Transfer Function) is a transfer function which models sound perception with two ears to determine
positions of the sources in space. Our head and body are actually obstacles modifying the sound, and
our ears hidden from the sound source perceive sound signals altered; then the signals proceed to
our head to be decoded in order to determine the right position of the sound source in space.”
[Menshikov, 2003](emphasis by Menshikov) Unlike panning and attenuation, HRTFs also allow
adjustments in height of the source. The HRTFs are recorded by inserting microphones into the ears
of humans or by using a special head model with built-in microphones. It is important to note, that
every human being has different HRTFs – the reason is quite simple. Every human has a different
head and ear form. “A complete description of a subject’s head response requires hundreds of HRTF
measurements from all directions surrounding the subject.” [Gardner, 2004] Some companies use
synthetic HRTFs applying the same laws occurring in real HRTFs while other companies use averaged
HRTFs. [Menshikov, 2003] The HRTF is supposed to be used as a filter function for the sound source;
a direct convolution can be implemented using a finite impulse response (FIR) filter. [Filipantis Jr.,
1994]

The HRTF has some downsides to it. Sound can be distorted and applying the HRTF can be slow.
Another problem is immovable sound sources, as humans are used to turning their heads towards
unexpected sounds. This allows the brain to get additional samples of the sources position. “If the
sound source does not generate a special frequency forming the difference between the front and
rear HRTF function, the brain ignores such sound; instead, it uses data from the memory and
compares the information about location of known sound sources in the hemisphere.” [Menshikov,
2003] Another problem is the separation of the signals. Only headphones allow an easy method to
deliver one signal to each ear. For speaker systems, crosstalk cancellation is needed.

Unlike with headphones, using speakers will always result in a listener hearing both channels, the
one for the left, as well as the one meant for the right ear only on both ears. This effect is called
“crosstalk”. “Crosstalk cancellation is a technique for sending arbitrary, independent signals to the
two ears of a listener from conventional stereo loudspeakers; it involves canceling the crosstalk that
transits the head from each speaker to the opposite ear.” [Gardner, 1997] In order for crosstalk
cancellation to work, the listener has to be positioned in the middle of the two speakers, with just a
small margin to all sides. The area allowing the listeners to hear 3D sound effects as intended with
the optimum of crosstalk cancellation is called “sweet spot”. [Menshikov, 2003] More speakers can
allow a larger sweet spot.

The introduction of more speakers seems to be the current method of improving the quality of 3D
audio. In particular 5.1 systems (one center speaker, two front and two rear speakers, one
subwoofer) are supported by many current sound cards and consoles23. To simulate 3D sound on
such systems, panning is very often used. Some technologies use separate HRTFs for each speaker to
simulate the 3D environment, including extended crosstalk cancellation - the resulting sweet spot is

23 Examples are the Xbox, Xbox360, GameCube, Wii, PlayStation 2, PlayStation 3 and Soundblaster X-Fi as well
as Audigy and some Live! models (with the PlayStation 3, Audigy and X-Fi cards supporting up to 7.1
configurations).

Creating Electronic Audio

Page |33

larger than the one of stereo speakers. These kinds of systems need a lot of processing power,
resulting in hybrid methods, for example using HRTF for front speakers and panning for rear
speakers. [Menshikov, 2003]

Next to the positioning of the sound source, some other effects play an important role, such as the
already mentioned Doppler effect. Special care is given to the environment the listener is situated in
and on how it affects the sound heard by the listener. Two different approaches have been
developed to emulate the environment. The first one is called “wave tracing”, the other
“reverberation”.

Wave tracing is very similar to ray tracing, a technique used in computer graphics. The concept of
both these techniques is to follow the path of emitted elements while they are reflected in the
environment. For wave tracing, this means tracking the direct path the sound wave takes, while also
taking the 1st order reflections (reflected once) as well as the 2nd order reflections (reflected twice in
the environment) of the sound wave in the environment into consideration.

An example for the implementation of such a method is Aureal’s A3D 2.0. “Aureal's Wavetracing
algorithms analyze the geometry describing the 3D space to determine ways of wave propagation in
the real-time mode, after they are reflected and passed through passive acoustic objects in the 3D
environment.” [Menshikov, 2003] This approach guarantees a highly realistic representation of the
acoustic environment the listener is located in, but wave tracing is a very demanding technique. In
addition to requiring a lot of processing power, developers have to represent the 3D environment of
the game in a way A3D can use. Due to the power requirements, calculations of higher order
reflections are also not possible. [Menshikov, 2003]

Another method to simulate a surrounding environment is using reverberation. Instead of calculating
the reflections for each sound source, an environment is defined. This environment defines certain
parameters used for all sounds occurring, mainly reverb variables. Reverberations are reflections of
the original sound source in the environment. They are very similar to echo but arrive in a much
shorter timeframe. “'Echo' generally implies a distinct, delayed version of a sound, as you would hear
with a delay more than one or two-tenths of a second. With reverb, each delayed sound wave arrives
in such a short period of time that we do not perceive each reflection as a copy of the original sound.
Even though we can't discern every reflection, we still hear the effect that the entire series of
reflections has.” [Harmony Central, 2008] Reverb can be separated in two sets of reflections. Early
reflections arrive in a short period after the direct sound and are well defined and directional
reflections, relating directly to the environment. Late reflections, also called diffuse reverberation,
arrive at a much higher rate after the early reflections and are much more random. “It is believed
that the diffuse reverberation is the primary factor establishing a room's 'size', and it decays
exponentially in good concert halls.” [Harmony Central, 2008] Of course, the shape, size, and
material of the environment as well as the distance between the sound source and the listener affect
the reverb.

EAX, developed by Creative Labs, is an extension to the DirectSound3D component of DirectX that
allows developers to use reverb for 3D sound. The basic principle behind the technology is to define
a set of reverb variables for the listener and to set the values of these variables so as to reflect the
environment the listener is located in. The distance between the listener and the sound source can
then be represented by the wet/dry ratio, the ratio between the strength of the reverb and the

Creating Electronic Audio

Page |34

strength of original sound source.24 [Hagén, 1999] Over the years EAX has evolved greatly. Today EAX
Advanced HD 5.0 features a large set of defined parameters, including volume level, reverb,
reflection and attenuation variables, as well as parameters for delay and decay times, sound tone,
granularity, panning and pitch modulation for the listener. Instead of just defining an environment
for the listener, sound sources have their own environments too now. The transition of the listener
between different environments is greatly improved – instead of just switching between two reverb
settings, the transition is done gradually. Sources also have their own set of parameters including
volume control, 3D properties as well as occlusions, obstructions and exclusions controls.
[Menshikov, 2003]

Occlusion, obstruction and exclusion are important for creating realistic sound. The easiest of these
effects is occlusion. Occlusions represent a solid barrier between the sound source and the listener.
This means that the direct path, as well as the path of the sound reflections, is blocked. As a result,
the listener only receives a muffled sound from both the sound source and its reflections. The effect
can be varied by defining various material properties as well as the shape and thickness of the
barrier.

Obstructions are obstacles that block the direct path of the sound, but allow the reflections to travel
freely. In this case the distortion effect, with material, shape and thickness of the obstacle taken into
consideration, has to be applied only for the direct sound reaching the listener.

Exclusions represent the opposite case of obstructions. The direct path between listener and sound
source is open, but the reflections are at least partially blocked. To simulate sound travelling through
such a barrier the direct sound is left unaffected and the reflections are played with a distortion
effect, using again the shape, thickness and material as parameters.

These effects add a great deal of realism to 3D audio, but require a lot of computational power.
”Anyway, no matter how the effects are realized (with Aureal A3D, Creative Labs EAX or manually on
your own audio engine), it's necessary to trace geometry (wholly or only the sound part) to find out
whether there is a direct contact with the sound source. This is a very strong blow on performance.”
[Menshikov, 2003]

Sound in Games
Sound in games has a number of different functions to fulfill and can take different appearances.

One way to differentiate sound is to use a classification from film theory, a separation in diegetic and
non-diegetic sound25. A sound is called diegetic if the sound source is visible on the screen, or if the
sound is assumed to be heard within the action of the film. In games diegetic sound can be defined
as sound originating in the game environment. Examples for such sound are voices of characters,
sounds made by objects in the game or music created by instruments within the game’s
environment. “Digetic[sic] sound can be either on screen or off screen depending on whatever its
source is within the frame or outside the frame.” [FilmSound.org, 2007](emphasis by FilmSound.org)

Non-diegetic sound is a term for sounds that do not originate within the story space of a movie or, in
the terms of games, sound not originating in the game’s environment. Examples for non-diegetic

24 100% dry would mean sole playback of the original sound source, while 100% wet would mean that just the
effect is played.
25 “Diegesis is a Greek word for "recounted story"”. [FilmSound.org, 2007]

Creating Electronic Audio

Page |35

sound include commentary by a narrator, mood music or sound effects added for dramatic effect.
[FilmSound.org, 2007]

Axel Stockburger gives a more detailed classification of sound in games, creating a typology of sound
objects according to their use in [Stockburger, 2003]. He identifies five different objects within the
games environment, based on the game Metal Gear Solid 2: Sons of Liberty, developed by Konami.

The first group he identifies is the category of speech sound objects. Speech can be used as a diegetic
or non-diegetic element in games. “Mostly it is employed as an intrinsical element of the diegetic
system, developing the narrative of the game.” [Stockburger, 2003] Speech is also an element used
to convey emotion and immerse the player in the game world. Up until recently, space requirements
of game media restricted the widespread use of speech in games, especially games heavy on
dialogues, like role-playing games. Instead of having characters interact which each other by speech,
text was displayed to convey information. Voice acting was mostly restricted to cut scenes or
relevant lines. Although this does not pose a problem nowadays, some game developers make the
conscious choice of not including speech samples for their characters. Examples of such games are
the Zelda series by Nintendo, which still relies solely on text with a few non-speech emotions like
surprised shouts or angry screams added, and the Half-Life series by developer Valve. The Half-Life
games are a special case, as voice acting is used selectively – all characters but the player’s character
speak within the game.

Stockburger describes effect sound objects as sounds that seem to be originating from visual objects
and events within the game world. “The realm of the effect sound objects is generally constituted by
all the sounds, which are at the forefront of the user’s attention with the exception of intelligible
speech.” [Stockburger, 2003] Examples of such objects include the opening of doors, the sound of
guns fired and cars driving but also sounds the player’s own character or other, non player
characters, produce. Stockburger further includes sound effects indicating the health status or signals
to player, conveying that the player has picked up a special game item or that the player has reached
a new high score, for example. This allows effect sound objects to be diegetic or non-diegetic, as
some effects, like gunfire, will definitely originate within the game world while others like the signal
announcing a new high score will clearly come from outside the game environment. Another
example for a non-diegetic effect sound object is “mickey mousing”, a technique used to convey the
action on the screen through music. A good example would be the “jump” sound from Super Mario
Bros., illustrating the action on the screen with “an ascending chromatic glissando or slide – think of a
“boing” sound.” [Whalen, 2004]

Zone sound objects are defined by Stockburger as sounds that are connected to a specific game
environment, in other words, zone sound objects can be described as ambient sound. “Zones are
separated by differing causally linked visual, kinaesthetic or auditory qualities. In special cases
different zones overlap. Zone sound objects are aurally defining zones within the game
environment.” [Stockburger, 2003] It is important to note that zone sound objects do not have to
have a visual representation within the game environment as long as it is believable for them to
originate in that environment. An example for a zone sound object with a visual representation
would be the sound of raindrops combined with rain falling within the environment. The sound of
birds in a forest without the existence of a visual representation of these birds is a good example of
the other type of zone sound object. Although the player cannot see the birds, the sounds still fit the

Creating Electronic Audio

Page |36

environment (provided the right bird sounds were chosen) and contribute to the immersive
experience. Zone sound objects can be classified as diegetic sounds.

The soundtrack of a game is defined as collection of score sound objects. “The game score or music
consists of a number of sound objects that belong to the non-diegetic part of the game environment.
In numerous games the player can decide to switch the music on or off independently from the
sound effects.” [Stockburger, 2003] Score sound objects have different uses within the game. One of
its main functions is to convey emotions and set the mood of a scene. Very often, different pieces of
the score are linked to different environments. Score sound objects are also used to mask transitions
within the game world and moments of inactivity, like loading times and idle situations. Although
Stockburger defines game music as a non-diegetic part of the game environment this classification
can prove to be problematic in special situations. For example, many racing games feature a
soundtrack consisting of different songs by known artists, most often allowing the user to switch
between songs on the fly. Some of these games portray the control of the sound track as controls of
the car radio, sometimes even playing radio jingles between the songs. Examples for such games are
Project Gotham Racing 2 by Bizarre Creations and Burnout 3: Takedown by EA Games, both released
on the Xbox. Although being seemingly controlled from within the game environment, the sounds
themselves do not originate from the car’s speaker system (as the properties of the sound do not
change when switching the perspective from within the car to outside cameras) and can also not be
defined as zone sound objects.

The last object listed by Stockburger is the interface sound object. “Interface sound objects share
most of the qualities of effect sound objects with the notable exception that they are usually not
perceived as belonging to the diegetic part of the game environment.” [Stockburger, 2003] The
classification cannot be made distinctively as some games incorporate the interface within the game
environment. Stockburger himself lists Metal Gear Solid 2: Sons of Liberty as an example - the
interface for saving this game is included within the game narrative. To save the game, the player has
to contact another character through the player’s own character’s communication device. Generally
interface sounds objects are sounds that can be heard traversing and using the menu of a game, for
example the settings or the load/save dialogs. [Stockburger, 2003]

Karen Collins uses another method of categorizing game audio. Building upon the already mentioned
diegetic/non-diegetic properties of game audio she further specifies sound as being non-dynamic,
adaptive, and interactive.

Both adaptive and interactive audio can be grouped together under the term dynamic audio. “I use
the term dynamic audio to encompass both interactive and adaptive audio. Dynamic audio, then, is,
audio which reacts to changes in the gameplay[sic] environment or in the response to a user.”
[Collins, 2007c] Adaptive audio is sound changing without the direct control of the user, responding
to the game play. Interactive audio is defined as sound events directly responding to the player’s
actions.

Collins defines six groups of game sounds in [Collins, 2007c], making a primary distinction between
diegetic and non-diegetic sound. These two broad categories are further split up in three subgroups
each, distinguished by being non-dynamic, adaptive, or interactive sounds.

Creating Electronic Audio

Page |37

The first group, non-dynamic diegetic audio, is sound that is rooted within the game environment but
cannot be affected in any way. The ambient sound of machinery in a factory, provided the player has
no control over the machines, is an example for this group of sounds.

Adaptive diegetic audio describes music that is created within the game’s world and is affected by
game play. Collins uses environmental sound effects that change between the daytime and nighttime
presentation of the scene as an example for this group of sounds.

The last group of diegetic sounds, interactive diegetic sounds, can be directly triggered by the player
and of course exist within the game environment. Most actions a player is able to perform fall under
this category, starting with the sound emitted when firing a gun or the sound of footsteps, and
moving on to games like Electroplankton giving the player control over animals emitting sounds when
touched.

Non-dynamic, non-diegetic sound is mostly used for cut-scenes. “In these cases the player has no
control over the possibility of interrupting music (short of resetting or turning off the game).”
[Collins, 2007c] According to Collins, this represents the most basic level of game audio.

Super Mario Bros. contains a basic example of non-diegetic adaptive game audio, sound that is
affected through game play but not contained within the game environment. The game has
background music that is non-dynamic for the most part of the game, but changes when the timer
starts to get low. The music gets faster and faster, provoking a sense of urgency in the player. Collins
offers The Legend of Zelda: Ocarina of Time as an example – the theme of the game environment
changes between night and day.

The last group contains the interactive non-diegetic sounds. Again, Super Mario Bros. offers a good
example for this group, using “mickey mousing” as a technique for many movements of the player
character. The already discussed jump sound is an interactive non-diegetic sound.

In addition to categorizing game sounds into these six categories, Collins identifies nine functions of
game audio:

• commercial functions: Games can be used as marketing tools. Music released as the
soundtrack of a game can become more popular through the game.

• kinetic functions: Some games feature a “direct participatory and performance aspect to
listening to the songs.” [Collins, 2007c] In this cases music becomes a driving force in
motivating the player while remaining in the focus of the player’s attention at the same time.

• anticipating action: Game audio can foreshadow certain events by cueing scores informing
the player of certain situations lying ahead. Sound effects can play the same role.

• drawing attention: Audio in games can be used to identify goals, environments, obstacles or
special events by giving the player cues or making certain aspects of the game world stand
out. “Recurring musical themes can situate the player in the game matrix, in the sense that
various locales or levels are usually given different themes.” [Collins, 2007c]

• structural functions: Game audio can be used to give scenes in a game a frame by using
identifiable openings and closing sounds. By fading the music out, players can be animated to
move on. Breaks can signal changes in the narrative, continuous music over different scenes
can give these scenes a common context.

Creating Electronic Audio

Page |38

• reinforcements: Reinforcements can be delivered through dialogue, in a direct way by giving
clues and goals, but also indirectly through accents, language used, and the timbre of the
delivery.

• illusionary and spatial functions: Game audio can help deepen the immersion by delivering a
realistic aural representation of the environment. Through ambient sound, non-diegetic
music and sound effects, all orchestrated to create one game world, audio can reinforce the
player’s feeling of experiencing a “real” world.

• environmental functions: Sound can be used to attract people towards the game, or to mask
sounds of the surrounding environment.

• communication of emotional meaning: As in movies, sound is of course also used in games to
communicate emotions and induce moods.

Music-Based Games
Music-based games are a special case of audio used in games, as the entire game play revolves
around sound. Looking at the list of functions defined by Collins in [Collins, 2007c], the most
prominent function taken by sound in music-based games is definitely the kinetic one. “In many
music games, the player is placed in the role of the star, the performer, even if these games are
meant primarily for home play.” [Collins, 2007c]

Collins also mentions kinetic gestural interaction, a very direct method of interacting with audio in
games that is prevalent in music-based games. “At its simplest level, a joystick or controller could be
argued to be kinetically interactive in the sense that a player can, for instance, play an ocarina by
selecting notes through pushing buttons on a controller; but more significantly, here I refer to when
a player may physically, gesturally mimic the action of a character, dancer, musician, etc. in order to
trigger the sound event.“ [Collins, 2007c]

Martin Pichlmair and Fares Kayali present in [Pichlmair, et al., 2007] a classification scheme for
music-based games. They identify seven qualities of music-based games:

• active scores (the player is allowed to alter the score)
• rhythm action (game play based on timing)
• quantization (actions by the player are automatically synchronized with the score)
• synaesthesia (a combination of visual and aural, sometimes also haptic, sensations)
• play as performance (requirement of a physical performance)
• free-form play (using the game as an instrument without any restrictions imposed through

the game)
• sound agents (“Sound Agents are visual elements primarily existing for affecting, emitting, or

accompanying sound.” [Pichlmair, et al., 2007])
By analyzing the existence of these qualities in different games, Pichlmair and Kayali establish two
types of music-based games: Rhythm games, and what they call instrument games. [Pichlmair, et al.,
2007]

Presenting an Example: Phase
To illustrate the categorizations described in the last two sections I will employ a game example,
Phase, developed by Harmonix Music Systems (of Guitar Hero fame) and published by MTV Games.
The game was released in the beginning of November 2007 for IPods, specifically, the 5th generation

Creating Electronic Audio

Page |39

of IPods, the video version of the IPod Nano and the IPod Classic. The game is available through the
iTunes music store, costing €4.99 at the time of writing. [Harmonix Music Systems, 2007a]

The game offers two game modes, “quick spin” and “marathon”, with “quick spin” consisting of one
song, while “marathon” plays five songs in a row, becoming consistently more challenging. The
player has the initial choice of three difficulty settings, “easy”, “medium”, and “hard” with two
additional settings that can be unlocked. “Expert” is unlocked by beating a marathon on “hard” and
“insane” is available to the player after beating a marathon on “expert”. Both “expert” and “insane”
offer the same levels, with “insane” requiring a higher accuracy.

One song equals one level in the game, with no song being allowed to last longer than 30 minutes or
shorter than 30 seconds. Phase includes a soundtrack with seven songs, but the game is meant to be
played with the player’s own music. These songs are selected in iTunes by dragging them onto a
special play list, called “Phase-Musik” in the German version of iTunes, and letting iTunes then
analyze these songs to be usable in Phase. No matter if a song is chosen from the included playlist or
added through iTunes, upon starting a level the user finds herself in one of six different graphic sets,
called journeys.

While playing, the game moves steadily through these sets presenting different environments, called
“deep sea” or “sonic city” for example. The surroundings always consist of a plane with a straight
track on it, presenting three lanes pointing away from the player. Small figures fitting into the
context of the surroundings (deep sea fish in the “deep sea” set for example) pass by the player while
she moves along towards the goal shown on the horizon. On the three lanes jewels approach the
player, colored in green and blue, as well as so called sweeps, dotted blue lines traversing all three
lanes.

Figure 6: A typical level of Phase by Harmonix Music Systems, in this case using the “music festival” graphics set.
Retrieved from [Harmonix Music Systems, 2007]

The player’s role in the game is to hit each of the jewels and to follow the sweeps to gather points.
Each level consists of several checkpoints, requiring a certain number of stars to pass. By collecting
points the player can get up to five stars. If not enough stars are collected, the number of missing
stars is deducted from the number of hearts in the player’s health bar. The player starts out with
three hearts but can collect new ones by receiving more stars than required in between checkpoints–

Creating Electronic Audio

Page |40

for each of these bonus stars one heart is added up to a maximum of four hearts. If all hearts are lost
at a checkpoint, the game ends immediately.

Phase makes use of the unique controls located on an IPod. Jewels have to be hit by pressing the
button associated with each lane, the “backwards” button for the left lane, “center” for the center
lane, and “forward” for the right lane. The click wheel on the IPod is used for the sweeps – the player
has to scroll on the wheel to follow the line presented on the screen. Green jewels don’t give many
points but are required to get a high multiplier (by not missing any for an extended amount of time),
blue jewels give more points if a whole sequence of them is hit without failing but turn into green
jewels if one is missed, and sweeps also give high points but only if followed completely. If the player
misses a part of the sweep, the whole line turns green and does not give any more points (but the
multiplier is kept). Every missed jewel, blue or green, resets the multiplier.

As already mentioned, iTunes calculates the level a player has to go through by analyzing the song
playing for that particular level. This is done once on the PC with the analyzed song then being
transferred to the IPod to be playable. Jewels and sweeps are set in the level depending on the song
itself, although it is sometimes not clear what parts of a song are used – sometimes the rhythm of
the jewels is affected by several different instrument tracks of the song at the same time.

Obviously, Phase can be considered a music-based game, so it is appropriate to apply [Pichlmair, et
al., 2007]’s classification scheme. Although the user is allowed to alter the games score by adding
new songs and removing others, one cannot speak of an active score, as the changes happen outside
of the game. Inside the game the user has to follow a strict pattern, every button press not hitting a
jewel is considered a miss. The game is definitely based on timing and rhythm, thus possessing the
quality of rhythm action.

If the player hits a jewel at the right time, a small click sound is emitted. A wrong hit is also indicated
by a short sound, the same sound is used for failed sweeps. None of these sounds is synced up to the
music playing, so no quantization takes place. Synaesthesia is not existent either, as the graphics
shown in the game are not affected in any way by the player’s action. Playing the game as a
performance, as well using it as an instrument are not applicable. Finally, sound agents also do not
exist within in the game – one of the tips presented to the player before the start of a level actually
advises users that they can switch off sound effects completely to only hear the music playing.

Out of the seven qualities specified by Pichlmair and Kayali only one, rhythm based game play, is
applicable. This puts Phase clearly in the category of rhythm games.

The background track is non-diegetic in nature, as it has no representation in the game’s
environment. Although the layout of jewels is based on the songs played, the jewels do not generate
the music. Based on Collins’ classification in [Collins, 2007c] one can speak of a non-dynamic, non-
diegetic sound. The sounds created by the jewels and sweeps can be considered diegetic, as they are
created within the game’s world. The sounds are adaptive, as the game decides which sound is
made, not the player, by detecting if the button press was a hit or miss.

When trying to categorize sound using Stockburger’s classification of sound objects in [Stockburger,
2003], one can rule out speech sound objects immediately, as the game offers no interaction with
other characters, and also no non-diegetic narration. Speech is present in the game, but only as part
of the songs playing in the background, making it a score sound object by Stockburger’s definition.

Conclusion

Page |41

Effect sound objects are also present, if only in a minimal form. The game developers obviously did
not want to take attention away from the music itself, and unlike in other games, like Guitar Hero, it
is not possible to remove certain parts of the songs to make them “playable” by the user (by basically
mixing these back in if the player can hit a certain sequence without miss). Interface sound objects
exist in the same minimal way, zone sound objects are not present at all in the game.

As one can see, the game audio is completely based on the song running in the background of the
level being played – the music is mainly fulfilling a kinetic function as described by Collins in [Collins,
2007c], all other sound effects are subordinate to the background music. The music defines the
whole game: The levels are set to the beats of the song playing, the level ends at the moment the
song ends, and the goal for the player is to reach the end to hear the full song, instead of being
stopped at a checkpoint in the middle of the track. Thereby the music also satisfies the structural
function in the conventional sense (as far as the condensed game play allows it), but also very
literally – without the songs loaded into the game the user would not be able to play as there would
be no levels to use. Phase is, in this way, very similar to Vib Ribbon.

Conclusion
The last two chapters are meant to provide a theoretical introduction to sound as it is used in games
with an emphasis on music-based video games.

 “The History of Sound in Video Games” provides an overview of the advancements in sound
technology over the last 30 years. By mentioning several games I also portray the evolution of music-
based games in the same timeframe.

“Creating Electronic Audio” establishes the basics of sound generation. In this chapter, I first explain
what sound is general and then concentrate on digital sound in particular. I present the methods
used in games to generate sound and provide a summary of the possible methods of storing digital
audio for playback. Finally, I introduce two different models of game sound categorization by
Stockburger and Collins and outline the seven qualities of music-based games, as defined by
Pichlmair and Kayali.

All of these classification schemes are then illustrated by employing an example, the game Phase.
Phase was developed by Harmonix Music Systems and published by MTV Games and is currently
available for the 2nd generation of the IPod Nano, the IPod Classic and the 5th generation of the IPod.

The foundations established in this part of the thesis are used to create an own prototype on the
basis of the Torque Game Builder engine.

Page |42

Part 2: Technical Foundations

The Torque Game Builder Engine

Page |43

The Torque Game Builder Engine

The Importance of Engines in Prototyping
In his article on “Common Game Prototyping Pitfalls” [Cook, 2005], the first point Daniel Cook
mentions is the need for an engine to create a prototype in. “Of all the pitfalls, the need for
infrastructure is the most difficult to overcome. Most games need substantial game engine
system[sic] in place before they can be prototyped. The list ranges from graphics engines to
networking support. It is nearly impossible to prototype a game like Doom if you don’t have a 3D
engine. It is also difficult to prototype an online game when your engine had not[sic] networking
support.” [Cook, 2005]

The solution he offers is very simple – instead of creating the whole system from scratch, most of the
time it is much more straightforward to use an already existing engine, be it freeware or a
commercial product. This allows designers to go straight to working on the game itself instead of
being involved in a process that is “is costly, time consuming and gets in the way of the real task at
hand: rapidly exploring a series of game mechanics.” [Cook, 2005]

Rapidly exploring a series of game mechanics, in this case the game mechanics of music-based video
games, is the goal of the prototype developed by Pichlmair and Kayali. The TGB engine is used as the
underlying system for this prototype, called Radiolaris.

The TGB engine is described as “the world’s most powerful 2D game engine” by its developer,
GarageGames [Garage Games, 2008a]. The engine offers an easily accessible editor with drag and
drop functionality, as well as its own scripting language, called TorqueScript. “TorqueScript is an easy
to use C++ like scripting language that ties all of the various elements of your game together. It
supports a large complement of functions including math, object manipulation, fileIO, and more.”
[Garage Games, 2008b]

The engine is available in two different versions, a standard version and a “pro” version. The only,
albeit large, difference between the two versions is the inclusion of the engine’s source code in the
“pro” version, making it possible to change, extend, or add certain aspects of the engine. The cost of
the engine is variable, starting at $100 for the standard version with an “indie” license (only sold to
companies making less than $250,000 in a year, with some other restrictions applying in the use of
the engine) and continuing up to $1250 for the “pro” license for commercial developers.

As the changes described in the next two chapters, namely the addition of joystick and gamepad
support and supplementing the OpenAL library with the FMOD library, require access to the source
code, it is necessary to buy a “pro” license for “indie” or commercial development – both licenses
include the same code. The TGB engine works with Windows, Mac OS X, and Linux, but in this thesis
only the Mac OS X version is used. At the time of writing this part of the thesis, version 1.5.1 was the
newest version, but recently version 1.6 has been released. [Garage Games, 2008a]

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |44

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Preface
The Torque Game Builder (TGB) engine includes support for gamepads and joysticks in a Windows, as
well as a Linux environment. In Windows the Direct Input Library, part of the Direct X API, is used to
administer joystick and gamepad functions. The Linux build of the TGB engine uses SDL, the Simple
Direct Media Layer, to provide the same utilities.

The Mac OS X version does not recognize any joystick or gamepads at all. This is unfortunate - as
already mentioned, Collins describes “kinetic gestural interaction” in [Collins, 2007c] as the most
direct audio interaction possible. She argues that this interaction is already present in a joystick or
gamepad at the simplest level. Keyboard and mouse, the two control methods present on nearly
every PC offer even less of a tangible user interface for games, while depriving the user of analog
control sticks and Force Feedback technology. On this account, gamepad and joystick support was
the first addition to game engine.

Overview
Basically there are two ways of adding joystick support. The first method involves building the TGB
Engine with the Mac OS X version of the SDL library and using the functions offered through SDL (by
taking the Linux implementation of the TBG Engine as an example). Unfortunately, this method does
not allow for Force Feedback effects in the game, as those are not supported by the current version
of SDL at the time of writing, SDL 1.2.

The second method involves using Apple’s own I/O Kit framework to connect to the joystick and to
handle the incoming input. Furthermore, Force Feedback effects can be created through the use of
the Force Feedback framework. The drawback of this approach is the necessity to create the
connection and the device management from scratch. The advantage of Force Feedback still
outweighs this disadvantage, thus, this method was chosen.

Implementation
As already mentioned, the basis for the connection to the game controllers is the I/O Kit framework.
As described in Apple’s introduction, “the I/O Kit is a collection of system frameworks, libraries, tools,
and other resources for creating device drivers in Mac OS X.” [Apple Inc., 2003b] Of main interest is
the HID family, a collection of classes that defines the basis for developing drivers for HID devices.
The group of HID devices is a subset of the USB devices which “consists primarily of devices that are
used by humans to control the operation of computer systems.” [USB Implementers' Forum, 2001]
This naturally also includes joysticks and gamepads. [USB Implementers' Forum, 2007]

Using HID instead of straight USB is easily explained: HID devices can be queried for a set of
parameters which then can be matched to filter out any unwanted objects. Each element of the
device can also be examined for its function, which again allows those properties to be matched
against predefined tables and thereby the input scheme to be constructed.

The two steps of first finding a device and then defining it are carried out by two different classes in
the implementation. Naturally, more than one joystick or gamepad can be connected to the system
at any given time. This requires the implementation of a system which can manage several joystick

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |45

devices as well as finding them. The functions necessary are contained in the JoystickHandler class.
If a matching HID device is found, an instance of the JoystickDevice class is created. This class will
then further manage the assigned device. Figure 7 illustrates both classes. The source code used is
an extended and modified version of the source code presented by Apple in [Apple Inc.,

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |46

2001].

Figure 7: UML-Diagram representing the joystick control classes

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |47

Finding Devices
The search for the game control devices is handled by the JoystickHandler class, more specifically
by the “start” method which is called when an instance of the JoystickHandler is initiated. Below is
an excerpt of the method showing the search for joystick devices, finding gamepad devices differs
only marginally.

//Look for joysticks
io_object_t hidDevice = IO_OBJECT_NULL;
hidObjectIterator = FindHIDDevices(kIOMasterPortDefault, kHIDPage_GenericDesktop,
kHID_USAGE_GD_Joystick);
counter = 0;
int i = 0;
if(hidObjectIterator != (int)NULL)
{
 while((hidDevice = IOIteratorNext(hidObjectIterator)))
 {
 if(counter < 4)
{
 joystickDevice[i] = new JoystickDevice(hidDevice, i);
Con::printf(“%i. joystick initialized: %s %s\n”, i, joystickDevice[i]->getVendor(),
joystickDevice[i]->getProduct());
 i += 1;
 counter += 1;
}
 }
}

The first step is the creation of an object that will be used to keep a reference to a joystick device.
Next, the method FindHIDDevices is called. This method returns a collection of device references
that match the selected set of usage and usage page - in this case joystick devices that declare
themselves as generic desktop devices. The source code of the method shows the two important
lines, first the creation of a suitable dictionary to match against with use of the function MatchHID,
and the retrieval of all matching devices by using IOServiceGetMatchingServices. The number of
game control devices is capped at four as the game that is intended to be used with this
JoystickHandler class only needs two inputs and more than four game controllers are very rarely
needed.

//initialize needed variables
CFMutableDictionaryRef hidMatchDictionary = 0;
IOReturn ioReturnValue = kIOReturnSuccess;
io_iterator_t hidObjectIterator = 0;
//Create a matching dictionary
hidMatchDictionary = MatchHID(usagePage, usage);

if (hidMatchDictionary == NULL)
{
 Con::printf(“Failed creating the dictionary.\n”);
}

ioReturnValue = IOServiceGetMatchingServices(masterPort, hidMatchDictionary,
&hidObjectIterator);
if (hidObjectIterator == 0)
{
 Con::printf(“No usable devices found.\n”);
}
else if(ioReturnValue != kIOReturnSuccess)
{
 Con::printf(“Could not create iterator.\n”);
}
hidMatchDictionary = NULL;
return hidObjectIterator;

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |48

Unless the returned collection is empty (in that case an error will be printed to console), every
element of the collection is passed on to the constructor of the JoystickDevice class along with a
counter, used as the ID of the device. Afterwards, the ID of the device is written to the console, as
well as the vendor name and the device name, if applicable. The same operation is executed with
minor adjustments to find all devices reporting themselves as gamepads.

Getting input from the device
Finding devices is only the first step - in order to get input from the device, several more have to be
taken. This is the task of the JoystickDevice class. This class represents one found device and
handles all input and output from that device. The following source code shows the initialization of a
device found by the JoystickHandler class. The code is located in the JoystickDevice constructor.

hidDevice = hidDevicePassed;
hidDeviceInterface = NULL;
//Initialize the Force Feedback system
FFinit();
//This is the default value for the dpad
previousValue[0] = 8;
previousValue[1] = deviceNumber;
//Create an interface to the device
hidDeviceInterface = CreateHIDDeviceInterface(hidDevice);
if(hidDeviceInterface != NULL)
{
 //Use the created interface to get the deviceCookies
 gamepadCookies = GetHIDCookies((IOHIDDeviceInterface122**)hidDeviceInterface);
 //Create an eventqueue that sends eventcalls to the QueueCallBackFunction
 GetHIDInterface(hidDeviceInterface, gamepadCookies);
}

The constructor of the JoystickDevice class includes some more code to allow the display of the
vendor and the device name but the main functionality lies in the calls to three methods:

• CreateHIDDeviceInterface

• GetHIDCookies

• GetHIDInterface

These methods are responsible for creating an interface to the device, getting listeners for the
services the device offers, and creating an event queue that allows for callbacks. For this reason each
will be discussed in detail.

The name of the CreateHIDDeviceInterface method is already a good indicator for the function of
the method. In order to communicate with the device and query its services, an interface needs to be
created. The source code is as follows:

//initialize needed variables
HRESULT plugInResult = S_OK;
IOReturn ioReturnValue = kIOReturnSuccess;
IOCFPluginInterface **plugInInterface = NULL;
IOHIDDeviceInterface ** hidDeviceInterface = NULL;
SInt32 score = 0;

//create a core foundation plugin interface for HID devices
ioReturnValue = IOCreatePluginInterfaceForService(hidDevice, kIOHIDDeviceUserClientTypeID,
kIOCFPlugInInterfaceID, &plugInInterface, &score);
if (ioReturnValue == kIOReturnSuccess)
{
 //get the device’s interface from the plugin interface
plugInResult = (*plugInInterface)->QueryInterface (plugInInterface, CFUUIDGetUUIDBytes
(kIOHIDDeviceInterfaceID), (void *) &hidDeviceInterface);

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |49

if (plugInResult != S_OK)
 Con::printf(“Couldn’t query HID class device interface from plugInInterface.\n”);
(*plugInInterface)->Release (plugInInterface);
}
else
 Con::printf(“Failed to create **plugInInterface via
IOCreatePlugInInterfaceForService.\n”);
return hidDeviceInterface;

This code is a modified version of the source presented in “Creating a HID Class Device Interface”,
part of Apple’s HID Class Device Interface Guide. [Apple Inc., 2001] After the preliminary initialization
of the variables needed an intermediate Core Foundation plug-in interface is created, using
IOCreatePlugInInterfaceForService. This temporary interface is then used to get the specific
type of device interface needed. This is done by calling the QueryInterface method of the plug-in
interface with several parameters, one of them being the address of the device interface intended to
contain the new device interface. [Apple Inc., 2003a]

Cookies are unique identifiers for an element of the HID device. When added to an IOHIDQueue, they
act as listeners on their respective element and report all events to queue, which then can initiate a
callback. The GetHIDCookies function takes an IOHIDDeviceInterface as parameter, which is
queried for all its elements. Next the function iterates over the array containing these elements and
tries to match usage and usage page IDs of each element to predefined values representing inputs on
the game controller. If a match is reported, the corresponding IOHIDElementCookie is stored inside
the matching value of the cookie struct.

Instead of just using the struct with four cookies as in the example presented by Apple an adapted
version is used. The extended cookie_struct_t structure is able to represent every function on the
gamepad used for development, a Logitech Rumblepad 2 controller. Next to all 12 buttons on the
gamepad both analog sticks are tracked. Although the descriptions for the HID usage would ask to
map the secondary analog stick’s axes to the values 0x33 and 0x34 (standing for the Rx and the Ry
axes respectively) the axes need to be mapped to 0x32 and 0x35 (being the Z and the RZ axes).
According to [Wayper, 2003] and [Stahl, 2003] it seems to be a convention among joystick and
gamepad producers to map secondary x and y axes to the z rotation and the slider, a fact that has to
be considered in our mapping. The following code shows the matching of the axes in the code.

//Check for 1st x axis
if(usage == 0x30 && usagePage == 0x01)
cookies->gX1AxisCookie = cookie;
//Check for 1st y axis
if(usage == 0x31 && usagePage == 0x01)
cookies->gY1AxisCookie = cookie;
//Check for 2nd x axis
if(usage == 0x32 && usagePage == 0x01)
cookies->gX2AxisCookie = cookie;
//Check for 2nd y axis
if(usage == 0x35 && usagePage == 0x01)
cookies->gY2AxisCookie = cookie;

Additionally, a directional pad is mapped. HID normally provides a cookie for every direction of the
directional pad but in the case of the Logitech Rumblepad 2 the directional pad is mapped on the
coolie hat, a device commonly found on the top of joysticks. Rather than requiring one cookie for
every direction of the directional pad it allows every movement to be tracked with one cookie
reporting back nine positions. The values for these directions seem to differ a bit between different

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |50

game controllers – for the Rumblepad 2 the following are used (in clockwise rotation, starting north,
45 degree steps) : 0 1 2 3 4 5 6 7. The value 8 represents the Null value reported when no button is
pressed.

After creating the HID device interface and mapping the elements of the device to their individual
cookies the GetHIDInterface function can be called. The function takes the IOHIDDeviceInterface
and the now filled cookie_struct_t structure as parameters. It opens an interface to the device and
allocates a queue. All the previously found element cookies are then added to that queue to allow
them to report events to it. Again the source follows closely the code presented in [Apple Inc., 2001],
combining different functions laid out in the text.

By creating an asynchronous event source, a listener is added to the queue, waiting for new events
being reported from the cookies registered with the queue. These events are then handled by calling
a callback function that communicates with the game engine. The asynchronous event source is then
added to the main loop and the start method of the queue is called, thus making it ready to receive
events. The source code shows the creation of the event source, adding the callback, adding the
event source to the main loop and starting the queue. One important action in this snippet is the
passing of the address of the previousValue variable. This allows a specific check in the callback
function which in turn permits the implementation of diagonal button presses on the directional pad.
The procedure will be explained in detail in the description of the callback function.

result = (*queue)->createAsynchEventSource(queue, &eventSource);
result = (*queue)->setEventCallout(queue, QueueCallBackFuntion, queue, &previousValue);
CFRunLoopAddSource(GetCFRunLoopFromEventLoop(GetMainEventLoop()), eventSource,
kCFRunLoopDefaultMode);
result = (*queue)->start(queue);

Communicating events to the Torque Game Builder Engine
The callback function QueueCallBackFunction represents the connection to the TGB Engine, albeit
only a unidirectional connection. This means that events can only be sent to the engine, with no way
to retrieve any information. This restriction is eased by including functions in the game engine’s
console, accessible through TorqueScript, which bypass the engine and affect the game controller
directly.

In order to communicate with the engine an InputEvent has to be created and passed to the main
game loop. The structure of an InputEvent is shown in figure 8.

+InputEvent()

+deviceInst : U32
+fValue : float
+deviceType : U16
+objType : U16
+ascii : U16
+objInst : U16
+action : U8
+modifier : U8

InputEvent

Event

Figure 8: Layout of the InputEvent class

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |51

The deviceInst data field stores the device instance. Within the engine these IDs are represented as
integers, therefore passing a simple ‘0’ for the first game control device and a ‘1’ for the second
game control device is sufficient (for each controller added further the ID is increased by one, up
until the maximum of four) . The value field stores values between -1.0 and 1.0. Button presses are
registered as 1.0, button releases as 0.0. Analog joystick axes pass a value between 0 and 255 that is
then mapped to the -1.0/1.0 range.

Mouse and Keyboard control are handled by the TGB Engine by default, so the only option needed
for the deviceType field is “JoystickDeviceType”. The ascii (as well as the modifier) field is not
needed for game control devices and thus is set to zero. The objType field contains the type of input
– SI_BUTTON, SI_XAXIS, SI_YAXIS and SI_POV (the last value representing the directional pad). The
objInst variable specifies the event source more accurately – here the number of buttons and the
orientation of the directional pad are passed, axes do not need that value. The data field action
represents the action that is supposed to be executed. For buttons and the directional pad SI_MAKE
and SI_BREAK are used to signal pressing or releasing of a button, axes use SI_MOVE. The code
snippet shows the creation of an input event for a buttons including code checking if the button was
pressed. [Garage Games, 2007a] [Garage Games, 2007b]

//Check if the button is pressed or not
S32 action = (event.value == 1) ? SI_MAKE : SI_BREAK;
//Set object instance to buttonnumber + the 0 button
S32 objInst = ((unsigned long)event.elementCookie – 5) + KEY_BUTTON0;
//Set bool according to the button being pressed or not
bool pressed = (event.value == 1) ? true:false;
U8 buttonNum = (unsigned long)event.elementCookie – 5;

InputEvent ievent;

ievent.deviceInst = deviceID;
ievent.deviceType = JoystickDeviceType;
ievent.modifier = 0;
ievent.ascii = 0;
ievent.objType = SI_BUTTON;
ievent.objInst = objInst;
ievent.action = action;
ievent.fValue = (action == SI_MAKE) ? 1.0 : 0.0;
Game->postEvent(ievent);

Unfortunately the TGB Engine only supports a four-way directional pad with the directions north,
south, east and west. [Garage Games, 2007a] The directional pad on the Logitech Rumblepad 2
supports 8 directions and being a coolie hat instead of a “real” directional pad it can only report one
at a time. To include the diagonals offered by the coolie hat on the gamepad, a workaround had to
be implemented. The TGB Engine supports 32 buttons but the gamepad chosen only implements 12.
This leaves 20 unused buttons that can be mapped to other functions. To allow other game control
devices to be implemented without restricting the number of available buttons too much, the last
four supported buttons (KEY_BUTTON28 to KEY_BUTTON31) were selected to represent the
diagonals on the gamepad. This still allows a theoretical maximum of 28 supported buttons on a
game control device.

After solving the problem of unique identifiers for the diagonals another problem emerged. The
directional pad reports button presses and releases with special identifiers: SI_UPOV, SI_DPOV,
SI_LPOV and SI_RPOV, one for each of the four directions supported by the TGB engine. These
identifiers need to be passed when a direction is pressed but also in the case of a release of a

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |52

direction. The directional pad, as implemented on the Logitech Rumblepad 2, reports the direction in
instances of button presses but returns 8, the specified Null value when a button is released.

The naïve approach to solving this problem is sending an “SI_BREAK” command to all four IDs on the
directional pad as well as the four buttons specified as diagonals. This would create an unreasonably
large overhead every time the orientation on the directional pad is changed or released. This
drawback was circumvented by passing along the last direction pressed on the pad. Every time an
orientation is activated, the value passed from the joystick is stored in the first position of the
previousValue array (the second being occupied by the ID number of the game control device).

This in turn allows easy distinction between the directions. Every time an event from the directional
pad is passed on to the CallbackFunction, it gets sorted into one of two different cases. If the value
passed through the previousValue variable is uneven, the previous orientation of the directional
pad was a diagonal. This means that a button press has to be deactivated. The cancellation is then
executed with the previous orientation specifying the button ID.

In the other case, the last press was a “real” directional pad orientation, thus a button press on the
pad gets cancelled with the appropriate ID. Afterwards the new button press is created,
distinguishing between the two cases of “button press” and “directional pad press” by testing if the
current value passed is even or uneven. In the case of a value of eight, nothing is passed to the
engine (as any previous orientation was already deactivated).

Initiating and Controlling Force Feedback Events
Force Feedback describes the ability of devices to give haptic feedback to actions. In games, these
effects are used to augment the sensation of playing the game and can give viable game-play clues to
the person playing.

Force Feedback devices for home use on the PC seem to have appeared for the first time by the end
of 1997 although haptic support was already introduced earlier to the console market with the
release of the Rumble Pak for the Nintendo 64 console in the middle of the same year. [Johnston,
1997]

Apple supports the Force Feedback technology with its own Force Feedback Framework which offers
functionality very similar to the one provided by Microsoft’s Direct Input API. [Apple Inc., 2006]
Please refer to “Apple’s Force Feedback Framework” in the Appendix A for an overview of the API.

Basically, Force Feedback devices can be separated into two groups:

• Devices that support time-based effects. The effects these devices produce are commonly
known as rumble effects as the effect produced makes the game control device vibrate. This
is done by rotating one or more unbalanced weights inside the game controller. Most
gamepads described as having Force Feedback effects (like the Rumblepad 2 used in this
project) support only time-based effects. The ones supported by Apple’s own Force Feedback
framework are as follows [Apple Inc., 2007]:

o Constant force: The game control device emits a Force Feedback effect constant in
strength over the whole length of the effect.

o Ramp force: Starting at one point, the strength of the effect follows a curve towards
a second specified point.

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |53

o Square Wave: The strength of the effect follows a square wave.
o Sine Wave: The strength of the effect follows a sine wave.
o Triangle Wave: The strength of the effect follows a triangle wave.
o Sawtooth Up: The strength is determined by a wave looking similar to saw teeth

pointing upwards
o Sawtooth Down: The strength is determined by a wave looking similar to saw teeth

pointing downwards. [Microsoft, 2007]
• Devices supporting additional interactive effects. These control devices are able to produce

time-based effects, as well as interactive effects. These effects “are based on the state of the
stick (position, velocity, and/or acceleration).” [Walters, 1997] This means that these effects
react to user input. An example for such an effect would be the simulation of a plane
controlled by hydraulic steering – the faster the plane is diving towards the ground, the
harder it becomes to pilot the plane into a horizontal position by using the ailerons. This
effect is emulated by the control device by applying force against users pulling on a joystick.
Devices allowing for these effects are mostly joysticks and steering wheels, as gamepads do
not include the appropriate controls for such an effect. The following effects are supported
by the Force Feedback framework provided by Apple:

o Spring: The further away the game device is moved from a predefined position, the
more force will be applied.

o Damper: The faster the device is moved, the more force is applied.
o Inertia: The Inertia effect is similar to the Damper effect but uses acceleration instead

of velocity.
o Friction: Apply force the moment the game device is moved. [Microsoft, 2007]

Apple’s Framework additionally supports custom effects and envelopes. “An envelope defines an
attack value and a fade value, which modify the beginning and ending magnitude of the effect.
Attack and fade also have duration, which determines how long the magnitude takes to reach or fall
away from the sustain value, the magnitude in the middle portion of the effect.” [Microsoft, 2007]

The actual implementation of Force Feedback effects is straightforward. After verifying that the
chosen device does actually support Force Feedback effects, a new device object for handling these
effects is created. All further communication to the game device concerning Force Feedback is
handled through this device object. The snippet illustrates this process (the error handling for the
device creation was removed).

HRESULT FFresult
//check if Force Feedback is supported
FFresult = FFIsForceFeedback(hidDevice);
If(FFresult == FFERR_NOINTERFACE)
{
 Con::printf(“Device does not support Force Feedback”);
 isFFDevice = false;
}
else if(FFresult == FF_OK)
{
 isFFDevice = true;
 //create the FF device object
 FFresult = FFCreateDevice(hidDevice, &FFHandler);

The game that is intended to be used with this project only needs minor Force Feedback support. For
this reason, the only effect created will be a constant effect. To allow for easy control of the effect,

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |54

most variables are predefined – in the end, the only controllable elements of the effect will be the
gain and its duration as this has proven sufficient enough for the purposes of the game. Additionally,
no envelopes will be used.

In order to get a strong effect, the magnitude of the constant force effect will be set to the maximum
allowed value. The Logitech Rumblepad 2 includes two axes which can both be used at the same
time, allowing for a stronger perception of the rumble effect. All of the mentioned variables have to
be entered into data fields in order to create an effect which can be passed to the game control
device. The source code shows the creation of a constant effect at maximum strength (also using
both axes), lasting for 3 seconds.

//The axes and direction arrays required by the FFForceEffect struct
DWORD dwAxes[2] = {FFJOFS_X, FF_JOFS_Y};
LONG lDirection[2] = {0, 1};

//set the parameters for the constant effect
FFConstantEffect.lMagnitude = FF_FFNOMINALMAX;

//set the general parameters for an effect
FFForceEffect.dwSize = sizeof(&FFForceEffect);
FFForceEffect.dwFlags = FFEFF_CARTESIAN;
FFForceEffect.dwDuration = 3*FF_SECONDS;
FFForceEffect.dwSamplePeriod = 0;
FFForceEffect.dwGain = 10000;
FFForceEffect.dwTriggerButton = FFEB_NOTRIGGER;
FFForceEffect.dwTriggerRepeatInterval = FF_INFINITE;
FFForceEffect.cAxes = 2;
FFForceEffect.rgdwAxes = dwAxes;
FFForceEffect.rglDirection = lDirection;
FFForceEffect.lpEnvelop = NULL;
FFForceEffect.cbTypeSpecificParams = sizeof(&FFConstantEffect);
FFForceEffect.lpvTypeSpecificParams = &FFConstantEffect;
FFForceEffect.dwStartDelay = 0;

//Create the constant effect
FFresult = FFDeviceCreateEffet(FFHandler, kFFEffectType_ConstantForce_ID, &FFForceEffect,
&FFEffectHandler);

Once a Force Feedback effect gets requested by the game engine the method
FFEffectSetParameters is called to edit the effect according to the parameters passed by the game.
As only duration and gain are changed, the same struct that was used to create the effect is reused
with the duration and gain set to new values. The next snippet shows the usage of the
FFEffectSetParameters method.

//Edit affected parameters
FFForceEffect.dwDuration = length * FF_SECONDS;
FFForceEffect.dwGain = gain;

//Edit the effect to represent passed parameters
FFResult = FFEffectSetParameters(FFEffectHandler, &FFForceEffect, FFEP_DURATION|FFEP_GAIN);

After updating its parameters, the effect is ready to be passed on to the game control device. This is
accomplished by calling the FFEffectStart method with the FFES_SOLO flag as parameter,
instructing the game control device to stop any other active effects still playing.

The last methods used are FFDeviceReleaseEffect and FFReleaseDevice to free the memory in
case the JoystickDevice object is stopped.

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |55

Accessing and Controlling Devices from within the Game
In order to use all of these functions discussed in the chapter, an instance of the JoystickHandler class
has to be instantiated at the start of the engine, and has to be accessible by the game itself to
communicate with the game control devices connected to the system. This functionality was
implemented in two different ways.

The first method used to integrate the JoystickHandler within the engine was mimicking the calls
made by the Windows and Linux implementations to their respective control devices. To ensure full
functionality, activate/suspend functions as well as start/stop functions had to be created and called
at the appropriate places within the engine. This worked well, but unfortunately this approach
required modification of core engine files instead of keeping all functionality within newly created
files, and it also did not allow easy communication with the game device to enable Force Feedback.

The second option proved to be more fruitful: By allowing the JoystickHandler class to be
controlled by the console module all the functionality could be contained within the
macCarbInputManager.cc and macCarbInputManager.h files. Furthermore, console functions provide
an easily usable and extendable way of accessing the JoystickHandler and by proxy the
JoystickDevice objects – only a static pointer to a JoystickHandler instance is required.

Console functions are easily added by including the console header file from the console folder in the
game engine source. As well as making it possible to send messages to the console (by using the
Con::print command) this also allows the creation of personal callable console functions with the
ConsoleFunction method. The snippet presents the usage of the ConsoleFunction method, in this
case used to specify the InitJoystickHandler method.

static JoystickHandler *JoystickHandler = NULL;

ConsoleFunction(InitJoystickHandler, void, 1, 1, “InitJoystickHandler()”)
{
 if(!joystickHandler)

{
 Con::printf(“JoystickHandler not found”);
 Con::printf(“*****INITIALIZING JOYSTICKHANDLER*****”);
 joystickHandler = new JoystickHandler();
 Con::printf(“%i Joystick(s) found”, JoystickHandler->getCount());
}
else
{
 Con::printf(“JoystickHandler already initiated”);
}

}

The parameters of the ConsoleFunction method are the name of the new console function, the
return type, the number of minimum input parameters, the number of maximum parameters and a
small description of the console function displayed if the function is used incorrectly. It is important
to note that the minimum amount of parameters is one, as the object calling the function is always
passed to the console function. If the minimum and/or the maximum amount of input parameters is
set to zero, the function can take an unlimited number of input parameters. Also, the first parameter
does not need to be explicitly passed – this means that the first “real” parameter in the parameter
array is located at index one, not zero.

Adding Joystick/Gamepad Support to the Torque Game Builder Engine

Page |56

The following console functions were defined to handle input from game control devices as well as
controlling the devices themselves – this includes suspending the devices, shutting the game
controllers down and sending Force Feedback commands:

• InitJoystickHandler(): Initiates an instance of the JoystickHandler class and reports
back the number of game control devices found. If the JoystickHandler object is already
initiated, the init command is skipped. The function does not have a return value.

• SwitchJoysticks(OnOff): This method needs an integer variable as input. If the integer is
zero, all connected game control devices are suspended. If a one is passed all connected
game controllers are activated. The function returns false if no JoystickHandler object is
initiated or if another value than one or zero is passed as parameter.

• RebindJoysticks(): This method basically first stops all functionality of the initiated static
JoystickHandler object, resetting it back to the status prior to calling the start function of the
object. By then calling start afterwards, the object runs through the whole loop of finding
game control devices and setting them up. This enables the JoystickHandler object to find
devices that have been connected since the last call and to remove references to game
controllers that have been disconnected from the system.

• StopJoysticks(): This function stops all registered game control devices. It returns false if
no JoystickHandler object was found. All device objects are released.

• FFPlayRumble(id, length, gain): This method sends a constant rumble effect of specified
length and strength to the game control device located at the index ID in the array of control
devices. The function returns false if no JoystickHandler was found or if playing the Force
Feedback effect failed.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |57

Using the FMOD Ex Library with the Torque Game Builder Engine

Preface
The Mac OS X version (like any other version) of the Torque Game Builder supports sound playback.
This is accomplished through OpenAL, the Open Audio Library.

“OpenAL is a cross-platform 3D audio API appropriate to use with gaming applications and many
other types of audio applications.” [OpenAL, 2007] OpenAL is based on three objects – listeners,
sources and buffers. Buffers contain the actual audio data for playback, sources represent the audio
emitting source positioned in 3D space and listeners represent the audio receiver, also placed in 3D
space. [OpenAL, 2007]

Unfortunately, this approach is less than optimal for use in a 2D context, as the positioning of the
sources and listeners still applies and is executed in 3D. OpenAL further does not support real
panning or pitch shifts and sound effects have to be implemented before use. These drawbacks
prompted the search for a substitute which might prove to be more suitable for the task at hand. A
good candidate was found in FMOD, specifically the newest version of it, FMOD Ex.

FMOD Ex is a proprietary sound library developed and distributed by Firelight Technologies Pty, Ltd.
It is the successor of the FMOD 3 sound library and presents a completely new structure to the
developer. At the time of writing the library supports 22 input file formats and is available on all
major platforms.

FMOD Ex allows easy separation between 2D and 3D sounds. Instead of having to define positions in
3D space for all kind of sources that are eventually used as 2D sounds one can simply ignore all 3D
sound controls and just use methods like play and stop to control sounds, at most the pan of the
sound, as well as its volume, have to be specified. Another major advantage of the FMOD Ex library
over its predecessor is the possibility to use a build in DSP effects suite. This allows utilization of
several effects supported by default:

• Oscillators
• Low-pass filters
• High-pass filters
• Echo
• Flange
• Distortion
• Normalizer
• Parametric EQ
• Real-time Pitch Shifter
• Chorus
• Reverb [Firelight Technologies, 2007b]

FMOD Ex also supports virtual voices which allow the usage of a great number of sounds on limited
hardware, without worrying about handling the logic to switch sounds off and on themselves.
[Firelight Technologies, 2007a]

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |58

Overview
The current version of FMOD Ex is 4.06.23 and was released on the 2nd of August 2007. It can be
downloaded from the developer’s website and is free of use without any kind of restrictions for non-
commercial products.

The download package for the Mac OS X version includes several header files as well as two different
versions of FMOD Ex, distributed as dynamic libraries – one including all plug-ins (libfmodex.dylib)
and one without the plug-ins compiled into the library (libfmodexp.dylib). For ease of use the
dynamic library including all plug-ins was used in this project.

The FMODExPlugin class, that was implemented to utilize the FMOD Ex sound library, allows samples
to be loaded as well as playing, pausing and stopping them. Further, each sample can have one or
more DSPs connected to it to change its output to match certain effects. As long as a sample is stored
it can be played over again, but each sample can only be played once at any given time. If playback is
still active on a sample while another play request is issued to that sample, previous playback stops
and the sample is played from the beginning.

Further, the volume and pan of each sample can be controlled and each sample can also be muted.
Samples can also report their volume and pan and their status on being paused and muted.

Implementation
The following implementation is in a small part based on the FMOD implementation of Zachary
McMaster, found in [McMaster, 2002].

FMOD Ex uses eight objects to control sounds:

• System: This class represents the underlying system for communication with the soundcard
and the file system. Speaker modes, output options, the number of voices in hard- and
software as well as recording, geometry and network functions are handled within the class.
It also controls the creation and retrieval of instances of the other four classes. System is also
the only class allowed to start playback of sounds and DSPs.

• Sound: Sounds represents the actual audio data. In addition to the data they also contain
information for 3D positioning, synchronization and looping. The usage of a unified sound
object is one the improvements from FMOD 3.

• Channel: The channel class represents the audio channels that allow playback of sounds.
Functionality specific to playback like pausing and stopping, as well as controlling the volume
and pan are conducted by this class.

• Soundgroup: Soundgroups control a group of sounds. The main function of this class is to
control the maximum audibility of the sounds within the group.

• Channelgroup: As soundgroups control sounds, channelgroups control channels.
Channelgroups can set parameters like volume and pitch relative to the channels connected
to the group and also override several parameters (volume, frequency, pan, reverb
properties, 3D attributes and the speaker mix). A channelgroup can also pause, mute and
stop all connected channels channels.

• DSP: DSPs are used to apply effects on channels or channelgroups by taking the input from
those objects and modifying it. All the effects previously mentioned are enabled by adding a
DSP. The DSP object offers methods to control the DSP input in addition to offering
functionality to edit the parameters of a DSP.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |59

• Geometry: The geometry class implements methods for importing geometry into the library
for calculation of proper sound reflection and occlusion in a 3D environment.

• Reverb: This class is used to store the 3D space attributes necessary for reverb manipulation.

Out of these eight objects, the class FMODExPlugin uses five: system, sound, channel, channelgroup
and DSP. Figure 9 shows the layout of the FMODExPlugin.

+Init(in filepath : const char*) : bool
+LoadSample(in filename : const char*) : int
+UnLoadSample(in id : int) : bool
+PrepSample(in id : int) : bool
+PlaySample(in id : int, in volume : float) : bool
+StopSample(in id : int) : bool
+PauseSample(in id : int, in OnOff : int) : bool
+MuteSample(in id : int, in OnOff : int) : bool
+SetVolume(in id : int, in OnOff : float) : bool
+SetPan(in id : int, in pan : float) : bool
+GetPaused(in id : int) : bool
+GetMuted(in id : int) : bool
+AddDSP(in ChannelID : int, in DSPtype : int) : int
+RemoveDSP(in id : int) : bool
+SetDSPParam(in id : int, in index : int, in value : float) : bool
+BypassDSP(in id : int, in OnOff : int) : bool
+Update() : bool
+GetDSPInfo(in id : int) : bool
+GetVolume(in id : int) : float
+GetPan(in id : int) : float
+GetVirtual(in id : int) : bool
+reportNumSounds() : int
+FMODExPlugin()
+~FMODExPlugin()

#sytem : FMOD::System*
#sound : FMOD::Sound[MAXSOUNDS]*
#channel : FMOD::Channel[MAXSOUNDS]*
#channelGroup : FMOD::ChannelGroup[MAXSOUNDS]*
#oscillator : FMOD::DSP[MAXSOUNDS]*
#dsp : FMOD::DSP[MAXSOUNDS]*
#numSoundIDs : int
#numDSPIDs : int
#filepath : char*
#startChannel : freeID*
#endChannel : freeID*
#startDSP : freeID*
#endDSP : freeID*
#result : FMOD_RESULT

FMODExPlugin
+id : int
+nextID : freeID*

«struct»freeID

MAXSOUNDS defined as 1024

Figure 9: UML-Diagramm representing the FMODExPlugin Class

Creating a Connection to the Fmod Ex Libary
As mentioned before, the system class controls all communication with the sound hardware and the
file system, as well as keeping track of the other objects. This necessitates the first step being the
creation of a system object. In order to do this, an instance of the FMODExPlugin class has to be
initialized. A call to the constructor will create all necessary variables, including two linked lists that
will be used to keep track of available sample and DSP ids. Please note that samples are not equal to
sound objects. The FMODExPlugin is laid out to play each sound-generating entity (be it a sound

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |60

object or a DSP generating sound, like an oscillator) in its own channel. For this reason each
generator and its corresponding channel are treated as one sample.

Another variable of importance is the file path. By default the FMODExPlugin will search for
requested sound files within the root directory of the game it is bound too. By specifying a file path
(for example “mp3/”) it is possible to tell the object another search location.

The file path itself is passed on to the class when calling the Init method. After saving it in the
filepath variable, the FMOD system object is created. The system object is then initiated normally
with the maximum number of sounds audible at the same time passed as variable. The next code
snippet illustrates this procedure (error handling has been omitted).

//create the FMOD system to communicate to FMOD
result = FMOD::System_Create(&system);
if (result != FMOD_OK)
{
 //Error Handling
}
//initiate the system, using the defined maximum number of sounds with a normal initiation
//and no extra driver data
result = system->init(MAXSOUNDS, FMOD_INIT_NORMAL, 0);
if (result != FMOD_OK)
{
 //Error Handling
}
Con::printf(“Successfully initialized the FMOD Ex Plugin: %s \n”, FMOD_ErrorString(result));
return true;

 With this call, the FMOD Ex system is ready to use.

Loading and Playing Samples
In order to play a sample with the use of the FMODExPlugin class, three steps have to be taken. First,
a sample has to be loaded, be it from a sound object source or a generating DSP. Next, the sample
has to be prepared which basically means creating a channelgroup for it. Finally, the sample can be
played at a specified volume (which can be changed at runtime). These three steps are accomplished
by calling three different functions: LoadSoundSample/LoadOscillatorSample, depending on which
type of sound generator is required, PrepSample and PlaySample.

LoadSoundSample loads the data from the file system into a FMOD Ex sound object,
LoadOscillatorSample creates an oscillator DSP of specified type and at the set frequency rate. In
both methods the first step lies in allocating a free ID – the methods return with a failure message
immediately if the maximum number of available channels is reached. For this purpose, a linked list is
created in the constructor with both a pointer for the first and the last element of that list. When the
methods call for a free ID, a new temporary pointer is set on the first element in the list and a new
sound or DSP object is created with the ID of the element. If the creation was successful, the starting
point of the list is moved one element further up the list and the element still referenced by the
temporary pointer is deleted (after storing the ID contained in that element to for use as a return
value).

The list is composed of freeID structures. Each of these holds a variable of the name id with a
unique number between 0 and the maximum number of sounds (set to 1024). Each of these
numbers specifies a position in one of the arrays initialized in the class’ constructor. If a number is
used, the corresponding struct is removed from the list.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |61

Given one of these numbers, the createSound method or the createDSPByType method (for the
sound and the DSP object respectively) of the system object are called, allocating the data within the
specified position on the appropriate array. The following snippet shows the creation of a sound
object.

//get the first available ID out of the list
freeID * firstFreeChannel = startChannel;
//create the sound
result = system->createSound(path, FMOD_SOFTWARE, 0, &sound[firstFreeChannel->id]);

The creation of the oscillator has a few more steps. The createDSPByType method creates an
oscillator with the default values, requiring two more calls of the setParameter method of the DSP
object to assign the right type of oscillator and the right frequency rate. These steps are shown in the
next snippet, error handling was omitted.

//get the first available ID out of the list
freeID * firstFreeChannel = startChannel;
//Waveform type. 0 = sine. 1 = square. 2 = sawup. 3 = sawdown. 4 = triangle. 5 = noise.
if(type < 0 || type > 5)
{
 //Error Handling
}
result = system->createDSPByType(FMOD_DSP_TYPE_OSCILLATOR, &oscillator[firstFreeChannel->id]);
if(result != FMOD_OK)
{
 //Error Handling
}
result = oscillator[firstFreeChannel->id]->setParameter(0, type);
if(result != FMOD_OK)
{
 //Error Handling
}
result = oscillator[firstFreeChannel->id]->setParameter(1, rate);

Before the sound or oscillator can be played, PrepSample has to be called. This method loads a
channelgroup with the id passed as parameter. The system object’s method for creating a
channelgroup requires a char variable as title for it. This problem is solved by converting the id
parameter value into a string.

The channelgroup is needed to keep DSP objects reusable – if the DSPs were connected directly with
a channel, they would need to be connected again every time the channel is replayed. The code
illustrates creating the channelgroup.

char buffer[20];
snprintf (buffer, (size_t)20,”%d”, id);
char * title = buffer;
result = system->createChannelGroup(title, &channelGroup[id]);

The PlaySample method brings the created sound or oscillator and channelgroup objects together.
After ensuring that a channelgroup object exists, a channel is created, receiving the sound or DSP
object as input and getting put on pause before starting. The channel’s index is set to be reused
with the FMOD_CHANNEL_REUSE flag. If the PlaySample method is called while the channel is still
in use, the same channel will be used again, effectively restarting the playback. Oscillator DSP objects
will unfortunately report errors when used this way, thus the DSP object’s remove method is called
prior to disconnecting the oscillator from any channels before reusing the channel occupied by the
DSP.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |62

The channel is then connected to the previously created channelgroup. As one can see the
sound/DSP object, the channel and the channelgroup all reside in arrays of the same size. This
makes it possible to use the same ID for all three arrays, making it much easier for the user to keep
track by just requiring one “sample ID”.

The PlaySample method also receives a second parameter to set the initial volume of the channel
playing. Previous versions of FMOD used 256 levels of volume, with FMOD Ex the volume control is
switched to a floating point value representation. The maximum volume is 1.0, the minimum value is
0.0. Thus, any number higher or lower is adjusted to these boundaries. The volume is then set for the
channel and finally the channel is un-paused.

Due to the channel already being paused on creation, the output starts immediately with all
connected DSPs affecting output and the volume at the specified value – the user cannot hear any
adjustments at the beginning of the sample. The next source code snippet shows the operations
described above, excluding error handling and controlling the volume’s boundaries.

if(sound[id] == 0)
{
 //in this case an oscillator will be played->playDSP
 //remove all inputs to avoid cyclic errors
 result = oscillator[id]->remove();
 if (result != FMOD_OK)
 {
 //Error Handling
 }
 //play the dsp with a paused state
 result = system->playDSP(FMOD_CHANNEL_REUSE, oscillator[id], true, &channel[id]);
}
else if(oscillator[id] == 0)
{
 //this is a sound object -> playSound
 result = system->playSound(FMOD_CHANNEL_REUSE, sound[id], true, &channel[id]);
}
else
{
 //Error Handling
}
if (result != FMOD_OK)
{
 //Error Handling
}
//this connects the channel to the dsps meant to be used with it
result = channel[id]->setChannelGroup(channelGroup[id]);
if (result != FMOD_OK)
{
 //Error Handling
}
//control if volume value is within boundaries
//set the volume
result = channel[id]->setVolume(volume);
if (result != FMOD_OK)
{
 //Error Handling
}
//play the channel
result = channel[id]->setPaused(false);

Using DSPs to Modify the Output
Digital Signal Processing means “changing or analysing information which is measured as discrete
sequences of number”. [Bores Signal Processing, 2007] In the context of the FMOD Ex library digital
DSPs are used to modify the input they receive and to output it again, thus producing various effects.
FMOD Ex offers by default several effects which can be sorted into effects creating their own output

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |63

and effects modifying output from other sources. A sound generating effect, the oscillator, was
already described in the prior chapter, this chapter deals now with effects affecting output.

DSPs can be added onto existing channels and channelgroups or, as implemented for the
oscillators, be played straight through the system. Unfortunately, stopping a channel or letting a
channel finish its playback will result in losing all connected DSPs. For this reason, channelgroups are
introduced.

Every sample receives its own channelgroup that acts as a hook for the DSPs. After being created
with the PrepSample function, channelgroups remain practically unchanged over the full lifetime of
the sample - DSPs are added and removed from them, but a sample finishing, getting stopped,
paused or muted does not affect the state of the channelgroup or the DSPs connected to it – the
DSPs will still be exactly the same for every time the PlaySample function is called.

This means that although it may look to the user as though DSPs being added to the channel of the
target sample, in reality the DSPs are getting all connected to the channelgroup which the channel
is then connected to.

Following from the previous paragraphs, DSPs can be added to a sample from the moment its
PrepSample function was called. If the DSPs are added before calling PlaySample, they will affect
output from the beginning of the sample, but DSPs can be added to and removed from a sample at
any time during playback too.

The following effects are available through the FMODExPlugin implementation, sorted by value of the
ID that has to be passed to choose them (starting at zero):

• FMOD_DSP_TYPE_LOWPASS: A typical lowpass filter – attenuates high frequencies and
passes low frequencies.

• FMOD_DSP_TYPE_HIGHPASS: The lowpass filter reversed – high frequencies are passed, low
frequencies are reduced.

• FMOD_DSP_TYPE_ECHO: This effect creates an echo on the input.
• FMOD_DSP_TYPE_FLANGE: “Two identical signals are mixed together, with one of the signals

time-delayed by a small and gradually changing amount.” [Cole, 2006]
• FMOD_DSP_TYPE_DISTORTION: This effect distorts the input.
• FMOD_DSP_TYPE_NORMALIZE: Normalize or amplify the input to a certain level.
• FMOD_DSP_TYPE_PARAMEQ: This effect represents a parametric equalizer, attenuating or

amplifying selected frequency ranges.
• FMOD_DSP_TYPE_PITCHSHIFT: This effect changes the pitch of the input without slowing the

input down or accelerating it.
• FMOD_DSP_TYPE_CHORUS: The input is mixed with identical copies that are slightly shifted

in pitch and offset by a few milliseconds.

DSP effects are added by calling the AddDSP method with two parameters, the first specifying the ID
of the channelgroup the DSP should be added to and the second defining the type of DSP that should
be used. As well as the sample ID specified by the user, DSPs have their own list of IDs available to
them, managed in the same way as the list containing the sample IDs. The AddDSP function will
return the ID used for that specific DSP. The next source code sample shows the procedure until the

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |64

attachment of the DSP to the channelgroup, with error handling and the DSP type cases in the switch
statement omitted.

if(numDSPIDs == MAXSOUNDS)
{
 //Error Handling
}
if(ChannelID < 0 || DSPtype < 0)
{
 //Error Handling
}
freeID * firstFreeDSP = startDSP;
startDSP = firstFreeDSP->nextID;
if(ChannelID >= MAXSOUNDS)
{
 //Error Handling
}
if(DSPtype > 11)
{
 //Error Handling
}
FMOD_DSP_TYPE type;
switch(DSPtype)
{
 //determine the type of the DSP
}
result = system->createDSPByType(type, &dsp[firstFreeDSP->id]);
if (result != FMOD_OK)
{
 //Error Handling
}
result = channelGroup[ChannelID]->addDSP(dsp[firstFreeDSP->id]);

Unlike using channels, channelgroups and sound/DSP (oscillator) objects together transparently
under the term “sample”, the user has to track which DSP was added on which channel. This is a
result of allowing users to use any number of DSPs on a channel, starting at zero up to the maximum
number of DSPs available. Allowing only a certain set of DSPs to be used per channel (one of each
type for example) would restrict the user, allowing an unlimited number of DSPs would require an
overhead out of the scope of this project. By giving control to the user, a compromise is made – the
user has an acceptable number of DSPs available, while the overall number of DSPs and the
functionality needed to manage these stays within reasonable boundaries.

All DSPs created with the AddDSP function are initialized with default values that might fit but most of
the time at least one parameter has to be adjusted. Each type of DSP has up to eight parameters and
none of them share a common set of values. To adjust DSPs after creation, SetDSPParam is used. The
method takes an ID, an index and a value as input parameters. It changes the value at a given index
of a DSP identified by the id. Of course, this has to be done after the DSP specified by the id was
created. It is also important to note that every value of a DSP can be changed at any moment, no
matter if the DSP is currently in use or not. Changes are propagated immediately. For an overview of
the parameters available for each DSP please refer to figure 13 in Appendix A.

Removing Samples and DSPs
FMOD Ex can by default use an arbitrary number of sounds at the same time without running out of
channels to play them in, or having to steal channels from other sounds. Furthermore the value
stated when initializing the FMOD Ex System object does not represent the maximum number of
available channels but the maximum number of channels allowed to be played at the same time.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |65

Even the size of that number does not significantly affect performance, as voices that are played but
not audible (as determined by the FMOD Ex system object) are virtualized. This means that playback
of these channels is simulated until some part is actually audible. At this moment, the channel is
switched back to real playback until it becomes inaudible (and by that, set to the virtual state) again.

Nevertheless, another issue remains. The createSound method of the System object will try to fully
load sounds into memory by default, thus making FMOD Ex memory-restricted. There are
possibilities to access sound files as streams or to keep them in a compressed state within the
memory, but these methods require a higher CPU usage which is not advisable when many sounds
are played at once, a scenario present in the project using the FMODExPlugin class.

For this reason, the total number of sounds available to users through the FMODExPlugin class is
limited to the maximum number of sounds allowed to play at the same time. Because of the
restricted range of IDs available, a way to remove samples must be offered to the users. This also
applies for using DSPs, as the maximum number of DSPs available equals the maximum number of
sounds.

In order to free up IDs and memory, two methods are available to the user. UnLoadSample, as the
name already indicates, allows samples to be released and their ID reused, RemoveDSP does the same
for DSPs.

UnloadSample is callable at any stage of the loading, preparing and playing process. The method will
always follow the same sequence. First, it will check if a channelgroup exists at the ID specified (by
checking whether the value at that position is not zero, the default value for not initialized objects).
Given an existing channelgroup, a call is made to the stop function of the channelgroup to stop any
playback making use of that specific channelgroup. If the call is successful the channelgroup is
instructed to release the memory it is occupying with a call to its release function. The last step
taken is setting the array position the channelgroup was residing at to zero, the default value.

After taking care of the possibly existing channelgroup, a similar course of action is taken to remove
a potential channel object. This object does not contain a release method, so it is sufficient to call
the stop method (once again ensuring that the sample is actually stopped) and set the value in the
array position to zero.

The last step in the hierarchy is releasing the sound or oscillator DSP object. After determining which
kind of object is used by the sample in question, the release method is called on the object and the
value of the position in the appropriate array is set to zero.

By completing the last step, the ID held by the sample can be considered available again for use by
the LoadSoundSample and LoadOscillatorSample methods. To allow these functions to see the ID,
it must be appended to the list of free IDs.

One special case exists, however, in which appending is not possible. If all IDs in the list are used up,
the pointer usually pointing to the start and end element of the list are no longer available. These
hooks must be recreated again by using the now free ID as start and end point. To find out if this case
is applicable, the number of used sample is compared to the maximum number of available samples.
If both values are the same, the list needs to be recreated. The following source code shows this
procedure, error handling was omitted.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |66

freeID * newLastChannel = new freeID;
newLastChannel->id = id;
newLastChannel->nextID = NULL;
//if there are no more free ids, create a new starting point for the list.
if(numSampleIDs == MAXSOUNDS)
{
 endChannel = newLastChannel;
 startChannel = newLastChannel;
}
//add id to the back of the list, set pointer from previous end to that node
else
{
 endChannel->nextID = newLastChannel;
 endChannel = newLastChannel;
}

Controlling the FMODExPlugin Object through the Console
Even more than the previously explained JoystickHandler class, the FMODExPlugin class needs to
offer functions that allow the user to access the methods discussed above. Again, console functions
are used to allow this access. The process of the implementation of these console functions is the
same as the one already explained in the JoystickHandler class, so it will not be repeated here.

The following functions are available to the user from within the console:

• InitFMODExPlugin(filepath): This function creates a FMODExPlugin object and calls the
init method of that object, with the filepath variable (a char array specifying the relative path
in the file system from the root of the game to the folder containing the sound files) passed
to it as input parameter. If the creation or initialization fails, the function will return false,
otherwise true.

• FMODExPluginUpdate(): This function should be called at every frame. It contains a call to
the update method of the System object. It does not have a return value and also does not
need any input parameters.

• LoadSoundSample(filename): Using the filename passed to it as input parameter this
console function calls the LoadSample method of the FMODExPlugin. It returns the ID of the
sample created with that sound object and ‘-1’ on failure.

• LoadSoundSamples(Samples): Unlike LoadSoundSample, this function allows a batch of
samples to be loaded at once. Essentially, instead of passing only one filename at a time an
arbitrary number of filenames (configured as char arrays) can be passed, separated with
commas. The function will then call the LoadSample method for every one of these
filenames. Instead of returning the ID of the created element, this function returns Boolean
values, thus it cannot really be used programmatically, but it is more intended to be actually
used by the user inside the console, as it writes the ID of every file loaded to the console. If
one file cannot be loaded, the function quits, but all files loaded up to this point are still
available.

• LoadOscillatorSample(type, rate): This function creates an oscillator sample of the
specified type at the specified frequency rate. It returns the ID to the user, if the function
fails, ‘-1’ will be returned.

• PrepSample(id): PrepSample is used to call the FMODExPlugin method of the same name. It
will return true on success and false otherwise.

• PlaySample(id, volume): This calls the PlaySample method of the FMODExPlugin, passing
its input parameters on to that function. It will return true on success and false otherwise.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |67

• UnloadSample(id): Calls the appropriate method to unload the sample specified by the id
passed as input parameter. Again, this function will return true on success and false
otherwise.

• StopSample(id): Stops the sample located at the specified ID. This function will return true
on success and false otherwise.

• PauseSample(id, OnOff): This function can be used to pause a sample. The sample stored
at the specified ID will be paused or un-paused, depending on the OnOff parameter having
the value one (pause) or zero (un-pause). Again, this function returns true if running
correctly, false otherwise. If the same state is requested twice in a row (pausing a sample
twice, for example), the function will still return true, if no other errors occur.

• MuteSample(id, OnOff): MuteSample works the same way as PauseSample, except the
sample is muted instead paused (or un-muted, if a zero is passed as second parameter). Also,
if the same request is repeated, the function will also react the same way as PauseSample
(return true if no other errors are reported). It is important to note that setting the sample
volume to zero and muting the sample are considered two different operations, thus, a
sample with a volume of zero can still be muted (and the other way around). A sample with a
volume of zero will also not return true when GetMuted is called on it and it was not muted
before.

• SetSampleVolume(id, Volume): Using the ID passed to identify a specific sample, this
function tries to set the volume of that sample to the value stored in the second parameter.
This value has a range of zero to one and is passed as a float variable. The function returns
true when operating correctly, false otherwise.

• SetSamplePan(id, Pan): This function determines the position of a sample between the left
and the right output. Depending on whether the sample is pushed more to the left (by
defining the Pan variable closer to minus one) or the right (setting Pan in the vicinity of plus
one) the sample will be played louder through the left or right output, with minus one and
plus one defining the borders on both sides. By default all sample have a pan of zero and will
be played equally loud through both outputs. The function returns true on successful
completion and false otherwise.

• GetPaused(id): This function returns the current status on being paused (return value true)
or playing (return value false) of the sample specified.

• GetMuted(id): This function returns the current status on being muted of the selected
sample. If the sample is muted the function will return true and false otherwise.

• GetSampleVolume(id): GetSampleVolume returns the current value of the volume set for the
selected sample as a float value.

• GetSamplePan(id): Returns the current pan value of the sample specified by the id
parameter as a float variable.

• GetVirtual(id): This function reports if a channel was set to virtual playback (return value
true) or not (return value false).

• AddDSP(ChannelID, DSPType): As the name already implies, this function adds a DSP of a
specific type (as set by the second function parameter) to the channel specified by the
ChannelID variable. If the function can execute correctly, an integer value containing the ID
of the DSP will be returned. If any errors occur, the function return value will be set to minus
one.

Using the FMOD Ex Library with the Torque Game Builder Engine

Page |68

• RemoveDSP(id): This function represents the counterpart to AddDSP and is responsible for
removing the DSP specified by the ID. Executed correctly, the function returns true and the
return value will be false if any errors occur.

• EditDSP(id, Params): Every DSP type has its own set of variables defining several
characteristics of that DSP. This function is dependent on the user to specify the number of
input parameters to be used with the specific DSP defined by the id variable. That means
that the user has to know how many parameters a DSP needs. All DSP parameters are
expressed as float variables and the function will always start with setting the DSP parameter
at the index zero. The function will return true on successful completion and false otherwise.
All DSP parameters up to the one throwing the error will be set to the new values defined by
the passed parameters.

• BypassDSP(id, OnOff): Sometimes one or more DSPs added to a channel are not meant to
be played for a short time and will be played again shortly after with no values changed.
Instead of removing them and adding them back at a later point in time, these DSPs can be
bypassed by using this function. The DSP at the position determined by the id variable will
be bypassed if the second function parameter, OnOff, is set to one and will be put back onto
the channel if OnOff is set to zero. The function itself will return true on success and false
otherwise.

• GetDSPInfo(id): This function writes a list of the parameters of the specified DSP into the
console window. The parameters values are listed in the same order they are stored in the
enumeration belonging to the selected DSP. The function returns false if the DSP does not
exist or the retrieval of the parameters fails and true otherwise.

• OscillatorSetRate(id): Unlike samples incorporating a Sound object, the output of
oscillators can be edited directly without the use of further DSPs. This function allows the
frequency rate of an oscillator sample to be changed at any time. It will return true on
success and false otherwise.

• GetCurrentSampleNumber(): This function returns the number of samples currently in use as
an integer return value.

The Prototype

Page |69

The Prototype
The goal of all these additions to the TGB engine is to support the development of a prototype of a
music-based game. The development of Radiolaris, as this prototype is called, has been carried out
by Martin Pichlmair and Fares Kayali. At the time of writing, the game was going through many
revisions, its look, sound, and game play changing significantly from the early versions.

The current version is pictured in figure 9. The game is meant to be played by two players
simultaneously, who try to destroy each other’s “mother ship” by shooting at it. In order to create
shots, players first have to collect gems emitted by the “mother ships”. These gems create a tail on
the player’s avatar, similar to the well known game Snake. These gems are the basis for all weapons
and defense mechanisms the players have at their disposal. To create a specific item, the player has
to press the appropriate button on the gamepad at the right time – only if the button was pressed in
beat with the rhythm of the game’s music is the requested item created, otherwise the player’s
avatar only emits some debris and loses its tail.

Figure 10: Radiolaris in its most current revision (at the time of writing)

The objects created by the player fulfill different offensive and defensive actions in the game, such as
being an offensive or defensive tower. More importantly, they also emit sound and become part of
the games soundtrack.

The game in its current state incorporates several of the qualities discussed in [Pichlmair, et al.,
2007]. For one, Radiolaris contains an active score – players can determine the timing of sound
effects playing by the position of the object in the game. The white stripe visible in the screenshot in
figure 9 moves steadily between the left and the right side of the screen. If it touches an object
positioned by the players, that object is “fired” and emits a sound. Another quality possessed by the
game is the rhythm based game play – all of the players’ actions have to be executed in a certain
rhythm to generate the wanted object instead of debris. The game also contains a third quality,

Conclusion

Page |70

quantization. The playback of every sound in the game is arranged to be consistent with the overall
beat of Radiolaris.

The prototype makes heavy use of the additional features added to the TGB engine. Currently,
gamepads are the only way to control the game, as Radiolaris requires at least an analog stick to
move the player’s avatar. As already mentioned, the game allows two players to play simultaneously,
thus supporting two gamepads connected to the system. Radiolaris further uses the Force Feedback
functions present in the utilized Logitech RumblePad 2 gamepads to hint the game’s rhythm at the
player by sending short rumble effects on every beat.

As for the sound in the game, Radiolaris uses the FMOD Ex library exclusively. The prototype in its
current version uses the provided functions (namely two methods to load, play, and stop samples, as
well as the volume and pan controls) to create a sequencer written in TorqueScript. By using
TorqueScript to circumvent the sound functionality already provided with the engine, the OpenAL
library could be conveniently ignored.

At the time of writing this thesis, no DSPs are used in the game, including oscillators. Radiolaris is still
in a prototyping stage though, so further versions of the game could definitely include these
functions of the FMOD Ex engine as well.

Conclusion
In this part of the thesis I present some technical aspects of creating a music-based game. I start with
a short overview of the TGB engine and explain two disadvantages of that system, missing game
controller support and an unsuitable audio library.

The next two chapters deal with overcoming these disadvantages. First, I introduce a method to
realize game controller support in the TGB engine by using the HID functions provided by the IOKit
framework by Apple. I implement the complete functionality of the target hardware, the Logitech
RumblePad 2, and also include functions for the use of Force Feedback with the help of Apple’s Force
Feedback Framework.

By including the FMOD Ex audio library in addition to the OpenAL library in the TGB engine I can solve
the problem of having an audio library unsuitable for two-dimensional games. I make most the
functionality of FMOD Ex available for the use through TorqueScript, the scripting language of the
TGB engine, including the ability the load, play, pause, mute, and remove sounds as well setting the
volume and the pan of a sound object. Furthermore I include most of the effects provided by the
FMOD Ex library.

I conclude this part of my thesis with a short presentation of the prototype developed on the basis of
the improved TGB engine. Radiolaris, developed by Pichlmair and Kayali, was created to explore
different game play aspects of music-based games and is still under development at the time of
writing.

Conclusion

Page |71

Appendix A

Apple’s Force Feedback Framework

Page |72

Apple’s Force Feedback Framework

+FFCreateDevice(
in hidDevice : io_service_t,
in pDeviceReference : FFDeviceObjectReference*) : extern HRESULT

+FFDeviceCreateEffect(in deviceReference : FFDeviceObjectReference,
in uuidRef : CFUUIDRef,
in pEffectDefinition : FFEFFECT*,
in pEffectReference : FFEffectObjectReference*) : extern HRESULT

+FFDeviceEscape(
in deviceReference : FFDeviceObjectReference,
in pFFEffectEscaoe : FFEFFESCAPE*) : extern HRESULT

+FFDeviceGetForceFeedbackCapabilities(
in deviceReference : FFDeviceObjectReference,
in pFFCapabilities : FFCAPABILITIES*) : extern HRESULT

+FFDeviceGetForceFeedbackProperty(
in deviceRefernce : FFDeviceObjectReference,
in property : FFProperty,
in pValue : void*,
in valueSize : IOByteCount) : extern HRESULT

+FFDeviceGetForceFeedbackState(
in deviceReference : FFDeviceObjectReference,
in pFFState : FFState*) : extern HRESULT

+FFDeviceReleaseEffect(
in deviceReference : FFDeviceObjectReference,
in effectReference : FFEffectObjectReference) : extern HRESULT

+FFDeviceSendForceFeedbackCommand(
in deviceReference : FFDeviceObjectReference,
in flags : FFCommandFlag) : extern HRESULT

+FFDeviceSetCooperativeLevel(
in deviceReference : FFDeviceObjectReference,
in taskIdentifier : void*,
in flags : FFCooperativeLevelFlag) : extern HRESULT

+FFDeviceSetForceFeedbackProperty(
in deviceReference : FFDeviceObjectReference,
in property : FFProperty,
in pValue : void*) : extern HRESULT

+FFEffectDownload(
in effectReference : FFEffectObjectReference) : extern HRESULT

+FFEffectEscape(
in effectReference : FFEffectObjectReference,
in pEffectEscape : FFEFFESCAPE*) : extern HRESULT

+FFEffectGetEffectStatus(
in effectReference : FFEffectObjectReference,
in pFlags : FFEffectStatusFlag*) : extern HRESULT

+FFEffectGetParameters(
in effectReference : FFEffectObjectReference,
in pFFEffect : FFEFFECT*,
in flags : FFEffectParameterFlag) : extern HRESULT

+FFEffectSetParameters(
in effectReference : FFEffectObjectReference,
in pFFEffect : FFEFFECT*,
in flags : FFEffectParameterFlag) : extern HRESULT

+FFEffectStart(
in effectReference : FFEffectObjectReference,
in iterations : UInt32,
in flags : FFEffectStartFlag) : extern HRESULT

+FFEffectStop(
in effectReference : FFEffectObjectReference) : extern HRESULT

+FFEffectUnload(
in effectReference : FFEffectObjectReference) : extern HRESULT

+FFIsForceFeedback(
in hidDevice : io_service_t) : extern HRESULT

+FFReleaseDevice(
in deviceReference : FFDeviceObjectReference) : extern HRESULT

«interface»
Force Feedback

Figure 11: A small overview over the functions of Apple’s Force Feedback Framework

Apple’s Force Feedback Framework

Page |73

Figure 12: These are the structs used by the Force Feedback Framework. Please note that all listed structs have a type
definition of their own name

Variables of the FMOD Ex DSPs used within the FMODExPlugin Class

Page |74

Variables of the FMOD Ex DSPs used within the FMODExPlugin Class

+FMOD_DSP_LOWPASS_CUTOFF
+FMOD_DSP_LOWPASS_RESONANCE

«enumeration»
FMOD_DSP_TYPE_LOWPASS

+FMOD_DSP_HIGHPASS_CUTOFF
+FMOD_DSP_HIGHPASS_RESONANCE

«enumeration»
FMOD_DSP_HIGHPASS

+FMOD_DSP_ECHO_DELAY
+FMOD_DSP_ECHO_DECAYRATIO
+FMOD_DSP_ECHO_MAXCHANNELS
+FMOD_DSP_ECHO_DRYMIX
+FMOD_DSP_ECHO_WETMIX

«enumeration»
FMOD_DSP_ECHO

+FMOD_DSP_FLANGE_DRYMIX
+FMOD_DSP_FLANGE_WETMIX
+FMOD_DSP_FLANGE_DEPTH
+FMOD_DSP_FLANGE_RATE

«enumeration»
FMOD_DSP_FLANGE

+FMOD_DSP_DISTORTION_LEVEL

«enumeration»
FMOD_DSP_DISTORTION

+FMOD_DSP_NORMALIZE_FADETIME
+FMOD_DSP_NORMALIZE_TRESHHOLD
+FMOD_DSP_NORMALIZE_MAXAMP

«enumeration»
FMOD_DSP_NORMALIZE

+FMOD_DSP_PARAMEQ_CENTER
+FMOD_DSP_PARAMEQ_BANDWIDTH
+FMOD_DSP_PARAMEQ_GAIN

«enumeration»
FMOD_DSP_PARAMEQ

+FMOD_DSP_PITCHSHIFT_PITCH
+FMOD_DSP_PITCHSHIFT_FFTSIZE
+FMOD_DSP_PITCHSHIFT_OVERLAP
+FMOD_DSP_PITCHSHIFT_MAXCHANNELS

«enumeration»
FMOD_DSP_PITCHSHIFT

+FMOD_DSP_CHORUS_DRYMIX
+FMOD_DSP_CHORUS_WETMIX1
+FMOD_DSP_CHORUS_WETMIX2
+FMOD_DSP_CHORUS_WETMIX3
+FMOD_DSP_CHORUS_DELAY
+FMOD_DSP_CHORUS_RATE
+FMOD_DSP_CHORUS_DEPTH
+FMOD_DSP_CHORUS_FEEDBACK

«enumeration»
FMOD_DSP_CHORUS

Figure 13: The parameters for the different DSPs are stored in enumerations. Please note that only the DSPs used in
FMODExPlugin are listed here

Variables of the FMOD Ex DSPs used within the FMODExPlugin Class

Page |75

References

Adobe. 2003. A Digital Audio Primer. adobe.com. [Online] 2003. [Cited: January 9, 2008.]
http://www.adobe.com/products/audition/pdfs/audaudioprimer.pdf.

Akins, Joseph. 2004. A Brief History of MIDI. [Online] April 13, 2004. [Cited: January 10, 2008.]
http://www.mtsu.edu/~jakins/4190/4190midihistory.html.

ALive! 2001. Audigy Review - EAX and Gaming. ALive! [Online] December 31, 2001. [Cited: January 6,
2008.] http://alive.singnet.com.sg/audigy/review/eax.htm.

—. 2003. Aureal vs Creative. ALive! [Online] January 8, 2003. [Cited: January 5, 2008.]
http://alive.singnet.com.sg/features/aureal-creative.htm.

Apple Inc. 2003a. Accessing Hardware From Applications: Putting It All Together: Accessing A Device.
Apple Developer Connection. [Online] 2007-02-08, Apple Inc., May 15, 2003a. [Cited: December 1,
2007.]
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/AccessingHardware/AH_Find
ing_Devices/chapter_4_section_4.html.

—. 2007. Force Feedback Device Access Reference. Apple Developer Connection. [Online] Apple Inc.,
October 31, 2007. [Cited: December 1, 2007.]
http://developer.apple.com/documentation/DeviceDrivers/Reference/ForceFeedback/index.html.

—. 2006. Getting Started with Games. Apple Developer Connection. [Online] Apple Inc., May 23,
2006. [Cited: December 1, 2007.]
http://developer.apple.com/referencelibrary/GettingStarted/GS_games/index.html.

—. 2001. HID Class Device Interface Guide. Apple Developer Connection. [Online] 2006-10-13, May 1,
2001. [Cited: December 1, 2007.]
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/HID/hid.pdf.

—. 2003b. I/O Kit Fundamentals. Apple Developer Connection. [Online] 2007-05-17, September 18,
2003b. [Cited: December 1, 2007.]
http://developer.apple.com/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/IOKitFun
damentals.pdf.

Atari. 1982. POKEY Datasheet. The Atari Historical Society. [Online] March 9, 1982. [Cited: December
28, 2007.] http://www.ionpool.net/arcade/atari_docs/pokey_datasheet.pdf.

AtariAge. 2006. Atari 7800 FAQ. AtariAge. [Online] October 11, 2006. [Cited: December 30, 2007.]
http://www.atariage.com/7800/faq/index.html.

AudioGames.net. 2008a. Bit Generations Sound Voyager. AudioGames. [Online] 2008a. [Cited:
January 7, 2008.] http://www.audiogames.net/db.php?action=view&id=SoundVoyager.

References

Page |75

—. 2008b. Real Sound - Kaze No Riglet. AudioGames. [Online] 2008b. [Cited: January 7, 2008.]
http://www.audiogames.net/db.php?action=view&id=realsoundkazenoregret.

Baer, Ralph H. 1998. The SIMON Story. Classic Consoles Center. [Online] December 12, 1998. [Cited:
January 3, 2008.] http://www.dieterkoenig.at/ccc/english/se_story_simon.htm.

Barish, Jeffrey. 1998. New Sound Technology for PCs. Gamasutra. March 6, 1998, Vol. 2, 10.

Belinkie, Matthew. 1999. Video game music: not just kid stuff. VGMusic. [Online] Videogame Music
Archive, December 15, 1999. [Cited: December 30, 2007.] http://www.vgmusic.com/vgpaper.shtml.

Bemanistyle. 2008. beatmania for JP Arcade Game Information. Bemanistyle. [Online] Too Much
Dedication, 2008. [Cited: January 4, 2008.]
http://www.bemanistyle.com/gameinfo/game.php?game_id=77.

Bores Signal Processing. 2007. Introduction to DSP - basics: what is DSP? Bores Signal Processing.
[Online] Bores Signal Processing, March 20, 2007. [Cited: December 08, 2007.]
http://www.bores.com/courses/intro/basics/1_whatis.htm.

Bramwell, Tom. 2004. Review - SingStar // PS2 /// Eurogamer. Eurogamer. [Online] June 1, 2004.
[Cited: January 6, 2008.] http://www.eurogamer.net/article.php?article_id=55663.

Bridgett, Rob. 2005. Hollywood Sound: Part Three. Gamasutra. [Online] CMP Media LLC., October
12, 2005. [Cited: January 7, 2008.]
http://www.gamasutra.com/features/20051012/bridgett_01.shtml.

Brightman, James. 2007. Video Game Music Today & Tomorrow. GameDaily. [Online] May 8, 2007.
[Cited: January 6, 2008.] http://www.gamedaily.com/articles/features/video-game-music-today-and-
tomorrow/70389/?biz=1.

Burkart, Jörg. 2006. Hardware. sega-32x.de. [Online] February 8, 2006. [Cited: January 3, 2008.]
http://www.sega-32x.de/hardware.htm.

Calvert, Justin. 2004. Taiko Drum Master for PlayStation 2 Review. Gamespot.com. [Online] CNET
Networks, October 28, 2004. [Cited: January 7, 2008.]
http://www.gamespot.com/ps2/puzzle/taikodrummaster/review.html?tag=tabs;reviews.

Chan, Norman. 2007. A Critical Analysis of Modern Day Video Game Audio. Nottingham : Department
of Music, University of Nottingham, 2007.

Chester, Nick. 2007. Destructiod review: Jam Sessions. Destructiod. [Online] October 22, 2007.
[Cited: January 7, 2008.] http://www.destructoid.com/destructoid-review-jam-sessions-49986.phtml.

CNET. 2001. Sony PlayStation 2 Specs. Consoles Specifications. CNET Reviews. [Online] CNET
Networks, November 20, 2001. [Cited: January 4, 2008.] http://reviews.cnet.com/consoles/sony-
playstation-2/4507-10109_7-30012264.html.

—. 2008. Sony PSP Specs. Consoles Specifications. CNET Reviews. [Online] CNET Networks, 2008.
[Cited: January 8, 2008.] http://reviews.cnet.com/consoles/sony-psp/4507-10109_7-30895581.html.

References

Page |76

Cole, Jason. 2006. Audio Effects – Noise Gate & Flange. Buzzle.com. [Online] Buzzle.com, September
1, 2006. [Cited: December 8, 2007.] http://www.buzzle.com/editorials/8-31-2006-107181.asp.

Collins, Karen. 2007a. An introduction to sampling. GamesSound.com. [Online] 2007a. [Cited:
January 9, 2008.] http://www.gamessound.com/bitdepth.pdf.

—. 2007b. An introduction to sound waves. GamesSound.com. [Online] 2007b. [Cited: January 9,
2008.] http://www.gamessound.com/soundwaves.pdf.

—. 2007c. An Introduction to the Participatory and Non-Linear Aspects of Video Game Audio. [book
auth.] Stan Hawkins and John Richardson. Essays on Sound and Vision. Helsinki : Helsinki University
Press, 2007c.

Console Database. 2005. FM Towns Marty/FM Towns Marty 2. Console Database. [Online] April 18,
2005. [Cited: January 2, 2008.]
http://www.consoledatabase.com/consoleinfo/fujitsufmtownsmarty/.

Cook, Daniel. 2005. Common Game Prototyping Pitfalls. Lost Garden. [Online] August 21, 2005.
[Cited: January 22, 2008.] http://lostgarden.com/2005/08/common-game-prototyping-pitfalls.html.

Cordeira, Jim. 2008. Seamn Review for Dreamcast. Gaming Age. [Online] 2008. [Cited: January 5,
2008.] http://www.gaming-age.com/cgi-bin/reviews/review.pl?sys=dreamcast&game=seaman.

Creative Labs. 2008. EAX - About EAX. Sound Blaster - Hear to Believe. [Online] Creative Technology,
2008. [Cited: January 6, 2008.] http://www.soundblaster.com/eax/abouteax/.

Creative Labs Technical Support. 1999. Frequently Asked Questions for SB AWE32. Gamedev.
[Online] Gamedev.net, July 7, 1999. [Cited: Januar 1, 2008.]
http://www.gamedev.net/reference/articles/article445.asp.

Creative Technology. 2004. Creative Expands Audio Creation Arsenal with New Console Game
Development Solution. PR Newswire. [Online] United Business Media , March 24, 2004. [Cited:
January 8, 2008.] http://www.prnewswire.com/cgi-
bin/stories.pl?ACCT=104&STORY=/www/story/03-24-2004/0002133817&EDATE=.

Cullen, Micheal. 2006. Q. Can you explain the origins of wavetable, S&S and vector synthesis? Sound
On Sound. February, 2006.

Davis, Rayn. 2003. Amplitude for PlayStation 2 Review. Gamespot.com. [Online] CNET Networks,
March 26, 2003. [Cited: January 8, 2008.]
http://www.gamespot.com/ps2/puzzle/amplitude/review.html?tag=tabs;reviews.

Davis, Ryan. 2004. Donkey Konga for GameCube Review. Gamespot. [Online] CNET Networks,
September 27, 2004. [Cited: January 7, 2008.]
http://www.gamespot.com/gamecube/puzzle/donkeykonga/review.html?tag=tabs;reviews.

—. 2006. Electroplankton for DS Review. Gamespot.com. [Online] CNET Networks, January 6, 2006.
[Cited: January 7, 2008.]
http://www.gamespot.com/ds/puzzle/electroplankton/review.html?tag=tabs%3Breviews&page=2.

References

Page |77

—. 2001. Frequency for PlayStation 2 Review. Gamespot. [Online] CNET Networks, November 27,
2001. [Cited: January 6, 2008.]
http://www.gamespot.com/ps2/puzzle/frequency/review.html?tag=tabs;reviews.

—. 2002. Gitaroo Man for PlayStation 2 Review. Gamespot.com. [Online] CNET Networks, February
14, 2002. [Cited: January 17, 2008.] http://www.gamespot.com/ps2/puzzle/gitarooman/review.html.

DeRienzo, David. 2007. Hardcore Gaming 101: Michael Jackson's Moonwalker. GameSpy.com.
[Online] IGN Entertainment, December 30, 2007. [Cited: December 39, 2007.]
http://hg101.classicgaming.gamespy.com/moonwalker/moonwalker.htm.

Dobson, Jason. 2006. Dolby Audio Support Clarified For PS3, Wii. Gamasutra. [Online] CMP Media
LLC., September 22, 2006. [Cited: January 7, 2008.] http://www.gamasutra.com/php-
bin/news_index.php?story=10975.

Duryee, Tricia. 2004. Nintendo DS will be on shelves in time for Christmas season. The Seattle Times.
[Online] The Seattle Times Company, September 22, 2004. [Cited: January 8, 2008.]
http://seattletimes.nwsource.com/html/businesstechnology/2002042597_nintendo22.html.

Eisler, Craig. 2006. DirectX Then and Now (Part 1). Craig's Musings. [Online] February 20, 2006.
[Cited: January 3, 2008.] http://craig.theeislers.com/2006/02/directx_then_and_now_part_1.php.

Entertainment Software Association. 2008. Sales & Genre Data. Entertainment Software
Associations. [Online] 2008. [Cited: January 16, 2008.]
http://www.theesa.com/facts/sales_genre_data.php.

Errede, Steven. 2007. Physics 199 Physics of Music - Lecture Notes Week VII. University of Illinois.
[Online] 2007. [Cited: January 9, 2008.]
http://online.physics.uiuc.edu/courses/phys199pom/Lecture_Notes/P199POM_Lect7_Ch7.pdf.

Fayzullin, Marat, et al. 1998. Everything You Always Wanted To Know About GAMEBOY but were
afraid to ask. Emu-Docs. [Online] March 12, 1998. [Cited: January 5, 2008.]
http://www.emudocs.org/Game%20Boy/Gbspec.txt.

Filipantis Jr., Frank. 1994. 4.2 HRTF Implementation. Design and Implementation of an Auralization
System with a Spectum-Based Temporal Processing Optimization. [Online] May 1994. [Cited: January
12, 2008.] alumni.caltech.edu/~franko/thesis/Chapter4.html.

FilmSound.org. 2007. Diegetic and non-diegetic sounds. FilmSound.org. [Online] July 16, 2007.
[Cited: January 14, 2008.] http://filmsound.org/terminology/diegetic.htm.

Firelight Technologies. 2007a. FMOD Ex. [Dokument]. September 14, 2007a.

—. 2007b. FMOD Ex Feature List. FMOD music & soundeffects system. [Online] Firelight
Technologies, 2007b. [Cited: December 06, 2007.]
http://www.fmod.org/index.php/products/fmodex.

FLAC. 2007. introduction. flac - free lossless audio codec. [Online] December 12, 2007. [Cited: January
11, 2008.] http://flac.sourceforge.net/features.html.

References

Page |78

Gamasutra. 2001. GDC News. Gamasutra. [Online] CMP Media LLC., March 24, 2001. [Cited: January
8, 2008.] http://www.gamasutra.com/gdc2001/news.html.

Gamespot.com. 2008. Search results for 'Guitar Hero'. Gamespot.com. [Online] CNET Networks,
January 7, 2008. [Cited: January 7, 2008.]
http://www.gamespot.com/search.html?type=11&stype=all&tag=search%3Bbutton&om_act=conver
t&om_clk=gssearch&qs=Guitar+Hero&x=0&y=0#game.

Garage Games. 2007a. Input system constants. Torque Game Engine Documentation. [Online] 1.3.x,
Garage Games, 2007a. [Cited: December 1, 2007.]
http://www.garagegames.com/docs/tge/engine/group__input__constants.php.

—. 2007b. InputEvent Struct Reference. Torque Game Engine Documentation. [Online] 1.3.x, Garage
Games, 2007b. [Cited: December 1, 2007.]
http://www.garagegames.com/docs/tge/engine/structInputEvent.php.

—. 2008a. Torque Game Builder. Garage Games. [Online] Garage Games, 2008a. [Cited: January 16,
2008.] http://www.garagegames.com/products/torque/tgb/.

—. 2008b. TorqueScript. Torque Game Builder Features. [Online] Garage Games, 2008b. [Cited:
January 17, 2008.] http://www.garagegames.com/products/torque/tgb/features/torquescript/.

Gardner, William G. 1997. 3-D Audio Using Loudspeakers. s.l. : Massachusetts Institute of
Technology, 1997.

—. 2004. Spatial Audio Reproduction: Toward Individualized Binaural Sound. The Bridge. Winter,
2004, Vol. 34, 4.

GBATEK. 2007. DS Technical Data. GBATEK. [Online] October 4, 2007. [Cited: January 8, 2008.]
http://nocash.emubase.de/gbatek.htm#dstechnicaldata.

Gerritse, Michel. 2006. SaturnSystemInfo. Eidolon's Inn. [Online] December 12, 2006. [Cited: January
3, 2008.] http://www.eidolons-inn.net/tiki-index.php?page=SaturnSystemInfo.

Gerstman, Jeff. 2007. Def Jam: Icon for Xbox 360 Review. Gamespot.com. [Online] CNET Networks,
March 7, 2007. [Cited: January 14, 2008.]
http://www.gamespot.com/xbox360/action/defjam3/review.html?tag=tabs;reviews.

Gerstmann, Jeff. 2005a. Donkey Kong Jungle Beat for GameCube Review. Gamespot.com. [Online]
CNET Networks, March 11, 2005a. [Cited: January 8, 2008.]
http://www.gamespot.com/gamecube/action/donkeykongjunglebeat/review.html?tag=tabs;reviews
.

—. 2005b. Guitar Hero for PlayStation 2 Review. Gamespot.com. [Online] CNET Networks, November
1, 2005b. [Cited: January 7, 2008.]
http://www.gamespot.com/ps2/puzzle/guitarhero/review.html?tag=tabs%3Breviews&page=1.

—. 2000. Samba de Amigo for Dreamcast Review. Gamespot.com. [Online] CNET Networks, June 16,
2000. [Cited: January 17, 2008.]
http://www.gamespot.com/dreamcast/puzzle/sambadeamigo/review.html?tag=tabs;reviews.

References

Page |79

Goehler, Stefan. 2003. Phonomenal! Crossfire Designs. [Online] Crossfire Designs, September 30,
2003. [Cited: January 1, 2008.] http://crossfire-
designs.de/index.php?lang=en&what=articles&name=showarticle.htm&article=soundcards.

Graft, Kris. 2007. Harmonix on Rock Band and Beyond. Next Generation. [Online] Future Network
USA., October 23, 2007. [Cited: January 7, 2008.] http://www.next-
gen.biz/index.php?option=com_content&task=view&id=7570&Itemid=50.

Hagén, Mikael. 2001. A Gamer's Guide to Direct Sound 3D and A3D 1.x. 3D Sound Surge. [Online]
March 15, 2001. [Cited: January 6, 2008.]
http://www.3dsoundsurge.com/features/articles/ds3d.html.

—. 1999. A Gamer's Guide to EAX. 3D Sound Surge. [Online] October 14, 1999. [Cited: January 13,
2008.] http://3dsoundsurge.com/features/articles/EAX.html.

Hagén, Mikael and Muschett, Mark. 2002a. Gamer's Guide to 3D sound and reverb APIs. 3D Sound
Surge. [Online] January 8, 2002a. [Cited: January 4, 2008.]
http://www.3dsoundsurge.com/features/articles/APIs/APIs.html.

—. 2002b. Gamer's Guide to 3D sound and reverb engines. 3D Sound Surge. [Online] January 8,
2002b. [Cited: January 4, 2008.]
http://www.3dsoundsurge.com/features/articles/3DSoundEngines/3DSoundEngines.html.

Harmonix Music Systems (2007a): Phase, MTV Games, IPod

—. 2007b. Phase | FAQ. Phase | your music is the game. [Online] Harmonix Music Systems, Inc.,
2007b. [Cited: January 7, 2008.] http://www.yourmusicisthegame.com/faq/.

—. 2007c. Phase | Media. Phase | your music is the game. [Online] Harmonix Music Systems, Inc.,
2007c. [Cited: January 17, 2008.] http://www.yourmusicisthegame.com/media/.

Harmony Central. 2008. Reverberation. Harmony Central. [Online] 2008. [Cited: January 12, 2008.]
http://www.harmony-central.com/Effects/Articles/Reverb/.

Hays, Tom. 1998. DirectMusic For The Masses. Gamasutra. November 6, 1998, Vol. 2, 44.

Heaton, Barrie. 2007. Standard Pitch of Concert Pitch for Pianos. UK Piano Page. [Online] November
30, 2007. [Cited: January 9, 2008.] http://www.uk-piano.org/history/pitch.html.

Heckroth, Jim. 1995. Tutorial on MIDI and Music Synthesis. La Habra, CA : The MIDI Manufacturers
Association, 1995.

Hernandez, Christopher. 2007. What are the Technical Specs of the Turbo Grafx/PC Engine. Dark
Watcher's Console History. [Online] September 25, 2007. [Cited: December 30, 2007.]
http://darkwatcher.home.att.net/console/details/turbo16.htm.

Horner, Matthew. 1999. Digital Sound Synthesis Using FM. [Online] 1999. [Cited: January 9, 2008.]
http://www.wam.umd.edu/~mphoenix/dss/dss.html.

References

Page |80

Howard, Sheryl. 2007. EE 348: Lab3, Spring 2007 - Sampling and Interpolation. Northern Arizone
University. [Online] February 27, 2007. [Cited: January 9, 2008.]
http://jan.ucc.nau.edu/sh295/EE348/Labs/Lab3S07.pdf.

Indiana University. 2004. What is a Gravis UltraSound card? Knowledge Base. [Online] Indiana
University, June 11, 2004. [Cited: January 2, 2008.] http://kb.iu.edu/data/acre.html.

Intel. 2008. Audio Codec. Intel.com. [Online] 2008. [Cited: January 3, 2008.]
http://www.intel.com/technology/computing/audio/.

—. 2004. High Definition Audio Specification. Intel.com. [Online] April 15, 2004. [Cited: January 8,
2008.] ftp://download.intel.com/standards/hdaudio/pdf/HDAudio_03.pdf.

—. 2007. Intel® High Definition Audio. Intel.com. [Online] Intel, November 6, 2007. [Cited: January 8,
2008.] http://www.intel.com/design/chipsets/hdaudio.htm.

Interactive Audio Specialist Interest Group. 1999. Interactive 3D Audio Rendering Guideline - Level
2.0. Interactive Audio Special Interest Group. [Online] September 20, 1999. [Cited: January 5, 2008.]
http://www.iasig.org/pubs/3dl2v1a.pdf.

Janus, Scott. 2006. Audio in the 21st Century. Audio DesignLine. [Online] October 17, 2006. [Cited:
January 9, 2008.] http://www.audiodesignline.com/howto/193303241.

Jeffay, Kevin. 1999. The Audio Data Type - Coding & Compression Basics. Department of Computer
Science - University of North Carolina at Chapel Hill. [Online] August 26, 1999. [Cited: January 11,
2008.] http://www.cs.odu.edu/~cs778/jeffay/Lecture2.pdf.

Johnston, Chris. 1997. Rumble Pak Titles On The Rise. Gamespot.com. [Online] Gamespot, May 23,
1997. [Cited: December 1, 2007.]
http://www.gamespot.com/news/2466717.html?q=Rumble%20Pak.

Jung, Robert. 2003. Atari Jaguar Frequently Asked Questions. Atari Age. [Online] August 3, 2003.
[Cited: January 2, 2008.] http://www.atariage.com/Jaguar/faq/index.html?SystemID=JAGUAR.

Kohler, Chris. 2007. Hands-On: Phase, Harmonix's iPod Game. Game | Life from Wired.com. [Online]
CondéNet, Inc., November 6, 2007. [Cited: January 7, 2008.]
http://blog.wired.com/games/2007/11/hands-on-phase-.html.

Kotaku. 2005. Playstation 3: Full Specs. Kotaku. [Online] Gawker Media, May 16, 2005. [Cited:
January 7, 2008.] http://kotaku.com/gaming/playstation-3/playstation-3-full-specs-103733.php.

Kreimeier, Bernd. 2001. The Story of OpenAL. Linux Journal. [Online] January 1, 2001. [Cited: January
5, 2008.] http://www.linuxjournal.com/article/4400.

Kruczek, Thilo. 2008. Allgemeine Infos. gtaplanet.de. [Online] Gamigo AG, 2008. [Cited: January 4,
2008.] http://gtaplanet.gamigo.de/content/index.php?men_open=gta.

Kubarth, Darius. 2006. SID History. SID in-depth information site. [Online] November 23, 2006.
[Cited: December 30, 2007.] http://sid.kubarth.com/sid_history.html.

References

Page |81

Kuphaldt, Thorsten. 2007. SID 6581 / 8580. Commodore Computer Online Museum. [Online]
November 25, 2007. [Cited: December 30, 2007.] http://cbmmuseum.kuto.de/zusatz_6581_sid.html.

MacDonald, Keza. 2006. Rhythm Tengoku - Rhythm Heaven // GBA /// Eurogamer. Eurogamer.
[Online] September 26, 2006. [Cited: January 7, 2008.]
http://www.eurogamer.net/article.php?article_id=67953.

Marks, Aaron. 2000. Working the Grammy Angle. Gamasutra. [Online] CMP Media LLC., Feburary 25,
2000. [Cited: January 6, 2008.] http://www.gamasutra.com/features/20000225/marks_01.htm.

McDonald, Glenn. 2004. A History of Video Game Music. Gamespot. [Online] CNET Networks, March
29, 2004. [Cited: December 28, 2007.]
http://www.gamespot.com/features/6092391/index.html?tag=result;title;0.

McDonough, Amy. 2006. Wii Get It Now: Technical Specs from 1UP.com. 1UP.com. [Online] Ziff Davis
Publishing Holdings Inc. , November 6, 2006. [Cited: January 7, 2008.]
http://www.1up.com/do/feature?cId=3154939.

McMaster, Zachary. 2002. FMod for torque. Garage Games. [Online] Garage Games, March 6, 2002.
[Cited: January 18, 2008.]
http://www.garagegames.com/index.php?sec=mg&mod=resource&page=view&qid=2305.

Menshikov, Aleksei. 2003. Modern Audio Technologies in Games. Digit-Life. [Online] 2003. [Cited:
January 4, 2008.] http://www.digit-life.com/articles2/sound-technology/index.html.

Microsoft. 2007a. Basic Concepts of Force Feedback. DirectX Developer Center. [Online] Microsoft,
2007a. [Cited: December 1, 2007.] http://msdn2.microsoft.com/en-us/library/bb172346.aspx.

—. 2007b. Conditions. DirectX Developer Center. [Online] Microsoft, 2007b. [Cited: December 1,
2007.] http://msdn2.microsoft.com/en-us/library/bb204846.aspx.

—. 2008. How To: Apply Attenuation and Doppler 3D Audio Effects. MSDN Library. [Online]
Microsoft, 2008. [Cited: January 12, 2008.] http://msdn2.microsoft.com/en-
us/library/bb447686.aspx.

—. 2000. Microsoft Announces Release of DirectX 8.0. PressPass - Information for Journalists.
[Online] Microsoft, November 9, 2000. [Cited: January 6, 2008.]
http://www.microsoft.com/presspass/press/2000/Nov00/DirectXLaunchPR.mspx.

—. 1999. Microsoft Ships DirectX 6.1. PressPass - Information for Journalists. [Online] Microsoft,
February 3, 1999. [Cited: January 5, 2008.]
http://www.microsoft.com/presspass/press/1999/feb99/direct61pr.mspx.

—. 2003. Sound System: Description of Yamaha OPL3 and OPL2 Chips. Help and Support. [Online]
Microsoft, November 17, 2003. [Cited: January 2, 2008.] http://support.microsoft.com/kb/89877/en-
us.

—. 2007c. Xbox 360 Technical Specifications. Xbox.com. [Online] Microsoft, July 23, 2007c. [Cited:
January 7, 2008.] http://www.xbox.com/en-AU/support/xbox360/manuals/xbox360specs.htm.

References

Page |82

—. 2007d. Xbox: Description of custom soundtracks. Help and Support. [Online] Microsoft, April 25,
2007d. [Cited: January 7, 2008.] http://support.microsoft.com/kb/909942/en-us.

MIDI Manufacturers Association. 2008. About Downloadable Sounds (DLS). MIDI Manufacturers
Association. [Online] 2008. [Cited: January 10, 2008.] http://www.midi.org/about-
midi/dls/abtdls.shtml.

—. 2008. About General MIDI. MIDI Manufacturers Association. [Online] 2008. [Cited: January 2,
2008.] http://www.midi.org/about-midi/gm/gminfo.shtml.

Miller, Mark. 1999. 3D Audio. Gamasutra. [Online] CMP Media LLC., November 2, 1999. [Cited:
January 5, 2008.] http://www.gamasutra.com/features/19991102/gameaudiosupp/3daudio.htm.

MobyGames. 2008a. Alone in the Dark. MobyGames. [Online] 2008a. [Cited: January 6, 2008.]
http://www.mobygames.com/game/alone-in-the-dark.

—. 2008b. Game Trivia for Wipeout. MobyGames. [Online] 2008b. [Cited: January 3, 2008.]
http://www.mobygames.com/game/wipeout.

—. 2008c. Release Information for PaRappa the Rapper. MobyGames. [Online] 2008c. [Cited: January
3, 2008.] http://www.mobygames.com/game/playstation/parappa-the-rapper/release-info.

—. 2008d. Rez. MobyGames. [Online] 2008d. [Cited: January 6, 2008.]
http://www.mobygames.com/game/rez.

Morris, Chris. 2005. XBox 360: Good, but not great. CNNMoney.com. [Online] CNN, November 21,
2005. [Cited: January 7, 2008.]
http://money.cnn.com/2005/11/17/commentary/game_over/column_gaming/index.htm.

Motion Picture Experts Group. 2007. Audio. mpeg.org. [Online] September 3, 2007. [Cited: January
9, 2008.] http://www.mpeg.org/MPEG/DVD/Book_B/Audio.html.

Navarro, Alex. 2006. Elite Beat Agents for DS Review. Gamespot.com. [Online] CNET Networks,
November 6, 2006. [Cited: January 7, 2008.]
http://www.gamespot.com/ds/puzzle/elitebeatagents/review.html?tag=tabs;reviews.

—. 2007a. Rock Band for PlayStation 2 Review. Gamespot.com. [Online] CNET Networks, December
18, 2007a. [Cited: January 8, 2008.]
http://www.gamespot.com/ps2/puzzle/rockband/review.html?mode=gsreview.

—. 2007b. Rock Band for Xbox 360 Review. Gamespot.com. [Online] CNET Networks, November 20
20, 2007b. [Cited: January 7, 2008.]
http://www.gamespot.com/xbox360/puzzle/rockband/review.html?tag=tabs;reviews.

Nintendo. 2005. The Legend of Zelda. Das Zelda Universum. [Online] Nintendo, 2005. [Cited:
December 30, 2007.] http://zelda.nintendo-europe.com/deDE/index.php?mId=106.

OpenAL. 2007a. OpenAL. OpenAL. [Online] OpenAL, June 1, 2007a. [Cited: December 6, 2007.]
http://www.openal.org/.

References

Page |83

—. 2007b. Platforms. OpenAL. [Online] June 1, 2007b. [Cited: January 6, 2008.]
http://www.openal.org/platforms.html.

PC Vs Console. 2007. Console Specs (4th Generation). PC Vs Console. [Online] December 30, 2007.
[Cited: December 30, 2007.] http://www.pcvsconsole.com/features/consoles/gen4.php.

Pfister, Andrew. 2007. Guitar Hero III: Legends of Rock Xbox 360 Review Index, Guitar Hero III:
Legends of Rock Reviews. 1UP.com. [Online] Ziff Davis Publishing Holdings Inc. , October 30, 2007.
[Cited: January 7, 2008.] http://www.1up.com/do/reviewPage?cId=3164068&sec=REVIEWS.

Pichlmair, Martin and Kayali, Fares. 2007. Playing Music: On the Principles of Interactivity in Music
Video Games. Tokio, Japan : Situated Play, Proceedings of DiGRA 2007 Conference, 2007.

Pidkameny, Eric. 2002. Levels of Sound. VGMusic. [Online] Videogame Music Archive, May 15, 2002.
[Cited: December 28, 2007.] http://www.vgmusic.com/information/vgpaper2.html.

Polsson, Ken. 2007. Chronology of Personal Computers (1981). Chronology of Personal Computers.
[Online] November 7, 2007. [Cited: January 1, 2008.]
http://www.islandnet.com/~kpolsson/comphist/comp1981.htm.

Preve, Francis. 2007. Oscillators: Essential Waveforms. beatportal.com. [Online] October 25, 2007.
[Cited: January 9, 2008.] http://www.beatportal.com/blogs/post/oscillators-essential-waveforms/.

Provo, Frank. 2000. Hey You, Pikachu! for Nintendo 64 Review. Gamespot. [Online] November 3,
2000. [Cited: January 5, 2008.] http://www.gamespot.com/n64/puzzle/heyyoupikachu/review.html.

Puckette, Miller. 2006. Theory and Techniques of Electronic Music, Draft: December 30, 2006.
[Online] December 30, 2006. [Cited: January 8, 2008.]
http://crca.ucsd.edu/~msp/techniques/latest/book.pdf.

QSound Labs. 2007. QSound Chronology. QSound Labs. [Online] November 23, 2007. [Cited: January
11, 2008.] http://www.qsound.com/corporate/chronology.htm.

RAD Game Tools. 2007. The Miles Sound System. RAD Game Tools. [Online] December 21, 2007.
[Cited: January 6, 2008.] http://www.radgametools.com/mssds.htm.

Ransom-Wiley, James. 2005. Xbox 360 custom music controlled by developer. Joystiq. [Online]
Weblogs, Inc. Network, November 9, 2005. [Cited: January 7, 2008.]
http://www.joystiq.com/2005/11/09/xbox-360-custom-music-controlled-by-developer/.

Richards, Lee. 2003. Capcom Board List. Cybercade. [Online] August 1, 2003. [Cited: January 11,
2008.] http://www.system16.com/cybercade/capcom_list.html.

Robinson, John. 1999. Sega unleashes a 128-bit monster on the gaming world. CNN. [Online] CNN,
September 9, 1999. [Cited: January 4, 2008.]
http://cnnstudentnews.cnn.com/TECH/computing/9909/09/dreamcast/index.html.

Rogers, Tim. 2004. Final Fantasy VI. insert credit. [Online] October 16, 2004. [Cited: January 2, 2008.]
http://www.insertcredit.com/reviews/ffvi/.

References

Page |84

Schmidt, Brian. 1997. What's the deal with 3D sound under DirectX. GameDev. [Online]
Gamedev.net, June 1997. [Cited: January 5, 2008.]
http://www.gamedev.net/reference/articles/article593.asp.

Schweitzer, Ben. 2008. Final Fantasy VI OSV. RPGFan. [Online] 2008. [Cited: January 2, 2008.]
http://rpgfan.com/soundtracks/ff6ost/index.html.

SegaStuff. 2007. Sega Master System. SegaStuff. [Online] September 28, 2007. [Cited: December 30,
2007.] http://www.segastuff.de/index.php?option=com_content&task=view&id=92&Itemid=35.

Seum-Lim, Gan. 1992. Digital Synthesis of Musical Sounds. [Online] 1992. [Cited: January 10, 2008.]
http://xenia.media.mit.edu/~gan/Gan/Education/NUS/Physics/MScThesis/.

Shimpi, Anand Lal. 2001a. Hardware Behind the Consoles - Part I: Microsoft's Xbox. AnandTech.
[Online] November 21, 2001a. [Cited: January 6, 2008.]
http://www.anandtech.com/printarticle.aspx?i=1561.

—. 2001b. Hardware Behind the Consoles - Part II: Nintendo's GameCube. AnandTech. [Online]
December 1, 2001b. [Cited: January 6, 2008.] http://www.anandtech.com/printarticle.aspx?i=1566.

Simons, Iain. 2007. Book Excerpt: INside Game Design: Harmonix Music Systems. Gamasutra.
[Online] CMP Media LLC., December 5, 2007. [Cited: January 7, 2008.]
http://www.gamasutra.com/view/feature/2801/book_excerpt_inside_game_design_.php.

Sinclair, Brendan. 2007. $169 Rock Band on November 23. Gamespot.com. [Online] CNET Networks,
September 28, 2007. [Cited: January 7, 2008.]
http://www.gamespot.com/xbox360/puzzle/rockband/news.html?sid=6180056&om_act=convert&o
m_clk=newlyadded&tag=newlyadded;title;1.

Smith, Julius O. 2007. Spectral Audio Signal Processing, March 2007 Draft. [Online] March 2007.
[Cited: January 9, 2008.] http://ccrma.stanford.edu/~jos/pasp/.

Smith, Will. 1999. Review: Diamond Monster Sound MX300. Ars Technica. [Online] Ars Technica,
1999. [Cited: January 4, 2008.] http://arstechnica.com/reviews/1q99/mx300.html.

Sony Computer Entertainment Inc. 2000. music interaction. vib_ribbon (flash version). [Online] Sony
Computer Entertainment Europe, 2000. [Cited: January 4, 2008.] http://www.vibribbon.com/#.

—. 2007. SingStar. SingStar. [Online] Sony Computer Entertainment Europe, 2007. [Cited: January 6,
2008.] http://www.singstargame.com/.

SoundTracker. 2008. What is SoundTracker? SoundTracker. [Online] 2008. [Cited: January 10, 2008.]
http://www.soundtracker.org.

Stahl, Geoff. 2003. Re: joystick mappings in HID? Apple Mailing Lists. [Online] Apple Inc., October 22,
2003. [Cited: December 1, 2007.] http://lists.apple.com/archives/Mac-games-
dev/2003/Oct/msg00232.html.

References

Page |85

Stockburger, Axel. 2003. The game environment from an auditive perspective. AudioGames.net.
[Online] 2003. [Cited: January 14, 2008.]
http://www.audiogames.net/pics/upload/gameenvironment.htm.

Strickland, Chris. 2002. Audio Programming on the GameBoy Advance Part 1. Gamedev. [Online]
Gamedev.net, May 21, 2002. [Cited: January 8, 2008.]
http://www.gamedev.net/reference/articles/article1823.asp.

Strietelmeier, Julie. 1998. The Gadgeteer - Gameboy Color Review. The Gadgeteer. [Online]
December 6, 1998. [Cited: January 8, 2008.] http://the-
gadgeteer.com/review/gameboy_color_review.

Takeshita, Yohei. 2003. Soundpond. Parsons School of Design : s.n., 2003.

Tätilä, Veli-Pekka. 2007. An Informal History of Game Music. [Online] September 27, 2007. [Cited:
December 28, 2007.] http://www.student.oulu.fi/~vtatila/history_of_game_music.html.

Terlecki, Daniel. 1998. Frequently Asked Questions List v5.3. 3DO FAQ - Classic Gaming. [Online]
1998. [Cited: January 2, 2008.]
http://classicgaming.gamespy.com/View.php?view=ConsoleMuseum.Detail&id=39&game=12.

The History of Computing Project. 2005. Videogames - Sega Dreamcast. History of Computing.
[Online] February 4, 2005. [Cited: January 4, 2008.]
http://www.thocp.net/software/games/consoles/sega/sega_dreamcast.htm.

The Inquirer. 2003. Creative snaps up Scipher Sensaura business. The Inquirer. [Online] Incisive
Media, December 4, 2003. [Cited: January 8, 2008.]
http://www.theinquirer.net/en/inquirer/news/2003/12/04/creative-snaps-up-scipher-sensaura-
business.

The Purple Owl. 2004. The Commodore Amiga 1985 - 1994. The Purple Owl. [Online] July 24, 2004.
[Cited: January 1, 2008.] http://home.iprimus.com.au/danmcpharlin/purpleowl/commodore-amiga-
history.html.

The Sonic Spot. 2007. Tpyes of Synthesis. The Sonic Spot. [Online] April 27, 2007. [Cited: January 9,
2008.] http://www.sonicspot.com/guide/synthesistypes.html.

Thomas, Aaron. 2007. Jam Sessions for DS Review. Gamespot.com. [Online] CNET Networks,
September 14, 2007. [Cited: January 7, 2008.]
http://www.gamespot.com/ds/puzzle/jamsessions/review.html?tag=tabs;reviews.

Thorsberg, Frank. 2001. Nintendo Ships Game Boy Advance. PCWorld.com. [Online] PC World
Communications, June 11, 2001. [Cited: January 8, 2008.]
http://www.pcworld.com/article/id,52406/article.html.

Tyler, Micheal. 2006. General MIDI - Why You Need It. Computer Music Products. [Online] November
21, 2006. [Cited: December 2, 2008.] http://musicmall.com/cmp/article3.htm.

Tyson, Jeff. 2000. How Dreamcast Works. Howstuffworks. [Online] October 19, 2000. [Cited: January
4, 2008.] http://entertainment.howstuffworks.com/dreamcast.htm.

References

Page |86

USB Implementers' Forum. 2001. Device Class Definition for Human Interface Devices (HID).
USB.org. [Online] 1.11, June 27, 2001. [Cited: December 1, 2007.]
http://www.usb.org/developers/devclass_docs/HID1_11.pdf.

—. 2007. USB.org - HID Tools. USB.org. [Online] USB Implementer's Forum, 2007. [Cited: December
1, 2007.] http://www.usb.org/developers/hidpage/.

Velden, C.C. van der. 1998. The MIDI FAQ by CC. MIDI Papa's. [Online] 1998. [Cited: January 1, 2008.]
http://members.aol.com/midipapa/midi_faq.htm.

Wall, Jack. 2002. Using a Live Orchestra in Game Soundtracks. Gamasutra. [Online] CMP Media LLC.,
May 20, 2002. [Cited: January 11, 2008.]
http://www.gamasutra.com/resource_guide/20020520/wall_01.htm.

Walters, Chuck. 1997. Cop a Feel....with Haptic Peripherals. Gamasutra. [Online] CMP Media LLC.,
December 19, 1997. [Cited: December 1, 2007.]
http://www.gamasutra.com/features/19971219/walters_01.htm.

Wayper, Timothy. 2003. Re: HID Manager shortcomings. Apple Mailing Lists. [Online] Apple Inc.,
January 22, 2003. [Cited: December 1, 2007.] http://lists.apple.com/archives/mac-games-
dev/2003/Jan/msg00168.html.

Weske, Jörg. 2000. Sound on the PC. Digital Sound and Music in Computer Games. [Online]
December 2000. [Cited: January 1, 2007.] http://www.tu-
chemnitz.de/phil/hypertexte/gamesound/pcsound-main.html.

Whalen, Zach. 2004. Play Along - An Approach to Videogame Music. Game Studies. November, 2004,
Vol. 4, 1.

Williams, Martyn. 2004. Sony's PSP Hits the Streets. PC World. [Online] PC World Communications,
Inc., December 12, 2004. [Cited: January 8, 2008.] http://www.pcworld.com/article/id,118912-
c,gameconsoles/article.html.

Winfield, Alan. 2003. The Principles of Electronic Music Synthesis. University of West of England.
[Online] October 14, 2003. [Cited: January 9, 2008.] http://www.ias.uwe.ac.uk/~a-
winfie/teach2003/st_pems1.htm.

Wolfe, Joe. 2007. What is a Sound Spectrum? School of Physics - The University New South Wales.
[Online] August 10, 2007. [Cited: January 10, 2008.]
http://www.phys.unsw.edu.au/jw/sound.spectrum.html.

Wright, Mark. 1998. Retrospective - Karsten Obarski. [Online] March 1, 1998. [Cited: January 10,
2008.] http://www.textfiles.com/artscene/music/information/karstenobarski.html.

Wright, Steve. 1979. 2600 (STELLA) Programmer's Guide. 1979.

