
DIPLOMARBEIT

„System Integration of the Global Trigger for the 
CMS Experiment at CERN“

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines 
Diplomingenieurs der technischen Physik unter der Leitung 

von

Univ.Doz. Dipl.-Ing. Dr.techn. Claudia-Elisabeth Wulz

Atominstitut der Österreichischen Universitäten 
Institutsnummer E141

in Zusammenarbeit mit

DDipl. Ing. Ildefons Magrans de Abril

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften

eingereicht an der Technischen Universität Wien
Technisch-Naturwissenschaftliche Fakultät

von

Philipp Glaser
Matr. Nr.: 9926600

Lerchenfeldergürtel 16/4
1070 Wien

Wien, am 20. März 2007

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Acknowledgements

First of all I would like to thank Dr. Claudia-Elisabeth Wulz, who roused my interest in
High Energy Physics and offered me the great possibility to work two months at CERN
in a project in autumn 2004. I enjoyed working in the scientific environment at CERN
in the CMS Global Trigger group. It was her again who encouraged me to come to
CERN for a longer period to do my thesis, starting in October 2005, a decision I will
never regret. I want to express my gratitude to her with these words.

The next person that I would like to mention is Tobias. Without him I would not
have been courageous enough to undertake the step of moving to live in Geneva and
work at CERN. He was a dear friend and colleague during good and bad times. I al-
ways could count on his great knowledge and experience with computers in general
and also on his talent in explaining complex problems with great patience.

The successful completion of this work is due to the guidance and support from my
supervisor Ildefons Magrans. He was the one who brought organization into my work
and taught me to work independently.

Thanks goes also to the whole CMS Global Trigger group for making me feel wel-
come in their midst. From the first moment on I felt recognized and my opinion was
always taken seriously. Toni and Barbara never got tired of explaining me aspects of
the complex Global Trigger system. Manfred and Ivan had always an open ear for my
problems and where not only important partners in fruitful discussions but also good
company during lunch and coffee breaks.

Finally I would express my gratitude to my family. Without my parents, grandpar-
ents and brothers I would not be the person I am.



Abstract

This document describes how existing control software for the Global Trigger system
of the CMS experiment at CERN was adapted and integrated in the infrastructure of
the CMS and Level-1 Trigger control software. Two frameworks building the support
structure are outlined and libraries providing high level access to the Global Trigger
hardware are described. The main focus of this document is the description of how fine
grained control of the Global Trigger hardware is achieved and how a consistent, flexi-
ble and extensible way configuration for the system making use of access to a database
was implemented. The layout of the database schema designed to comply with the re-
quirements of the Global Trigger is part of the present thesis too. The document gives a
selective and brief introduction for future developers continuing the work on this soft-
ware. It could also serve as a pool of ideas for people working on control software for
other Level-1 Trigger sub-systems.



Contents

1 Introduction 4
1.1 The Large Hadron Collider (LHC) at CERN . . . . . . . . . . . . . . 5

1.1.1 Motivation for the LHC . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Detectors at the LHC . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The Compact Muon Solenoid (CMS) Experiment . . . . . . . . . . . 7
1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The Level-1 Trigger of the CMS Experiment . . . . . . . . . . . . . . 12
1.3.1 Calorimeter System . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 The Global Trigger System . . . . . . . . . . . . . . . . . . . 14

1.4 Control Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Overall System Architecture . . . . . . . . . . . . . . . . . . 16
1.4.2 Run Control and Monitoring System (RCMS) . . . . . . . . . 16
1.4.3 Trigger Supervisor (TS) . . . . . . . . . . . . . . . . . . . . 18
1.4.4 Global Trigger (GT) Cell . . . . . . . . . . . . . . . . . . . . 18

2 Global Trigger Hardware 20
2.1 Timing Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Pipeline Synchronizing Buffers (PSB) . . . . . . . . . . . . . . . . . 21
2.3 Global Trigger Logic (GTL) . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Final Decision Logic (FDL) . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Trigger Control System (TCS) . . . . . . . . . . . . . . . . . . . . . 23
2.6 Global Trigger Front End (GTFE) . . . . . . . . . . . . . . . . . . . 25

3 Framework 26
3.1 Cross-Platform DAQ Framework (XDAQ) . . . . . . . . . . . . . . . 27

3.1.1 XDAQ Executable configuration and Partitions . . . . . . . . 27
3.1.2 Simple Object Access Protocol (SOAP) communication . . . 27
3.1.3 Access to the Configurations Database (TStore) . . . . . . . . 28
3.1.4 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Trigger Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Trigger Supervisor Framework . . . . . . . . . . . . . . . . . 30
3.2.2 Trigger Supervisor System . . . . . . . . . . . . . . . . . . . 34

1



CONTENTS CONTENTS

4 Global Trigger Software 36
4.1 Global Trigger Libraries . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Global Trigger Control Panels . . . . . . . . . . . . . . . . . . . . . 37
4.3 Global Trigger Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 GT Cell as part of TS system . . . . . . . . . . . . . . . . . . 38
4.3.2 GT Cell in standalone mode . . . . . . . . . . . . . . . . . . 39

5 Software Integration 40
5.1 Global Trigger Cell Objects . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 CellContext . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 CellGTCrate . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3 GtCommand . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 GTBase - An Extension to the GT Libraries . . . . . . . . . . . . . . 42
5.3 Global Trigger Command Interface . . . . . . . . . . . . . . . . . . . 42

5.3.1 Command Customization . . . . . . . . . . . . . . . . . . . 43
5.3.2 General Command Issues . . . . . . . . . . . . . . . . . . . 45
5.3.3 FDL Commands . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.4 TCS Commands . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.5 Other Commands . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Global Trigger Configuration Database . . . . . . . . . . . . . . . . . 55
5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.2 General Database Concepts . . . . . . . . . . . . . . . . . . 56
5.4.3 Global Trigger Database Implementation . . . . . . . . . . . 56

5.5 Global Trigger Operations . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.1 Global Trigger Configuration . . . . . . . . . . . . . . . . . . 57

A Appendix 62
A.1 Global Trigger ConfDB Tables . . . . . . . . . . . . . . . . . . . . . 63

A.1.1 Main Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.1.2 Board Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.1.3 Board Firmware Tables . . . . . . . . . . . . . . . . . . . . . 65
A.1.4 Board Memories Tables . . . . . . . . . . . . . . . . . . . . 66
A.1.5 Board Register Tables . . . . . . . . . . . . . . . . . . . . . 67
A.1.6 Firmware Table . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.7 Memories Table . . . . . . . . . . . . . . . . . . . . . . . . 70
A.1.8 Sequencer File Table . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Global Trigger AFS repository . . . . . . . . . . . . . . . . . . . . . 70
A.3 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.3.1 XhannelListFile . . . . . . . . . . . . . . . . . . . . . . . . 71
A.3.2 GT Tstore Views . . . . . . . . . . . . . . . . . . . . . . . . 72
A.3.3 Bunch Crossing Tables . . . . . . . . . . . . . . . . . . . . . 73
A.3.4 Memory Files . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.4 Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4.1 Retrieving the GT CONFIG table . . . . . . . . . . . . . . . 74
A.4.2 Firmware Configuration . . . . . . . . . . . . . . . . . . . . 75
A.4.3 Using the GtHttpDownloader . . . . . . . . . . . . . . . . . 76

2



List of Figures

1.1 LHC Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 CMS Detector-layout . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 CMS Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 CMS Pixel Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 CMS ECAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 CMS Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Drift Tube Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 CSC endcap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 L1-Trigger Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 GT Crate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Online Software Architecture . . . . . . . . . . . . . . . . . . . . . . 17
1.12 RCMS multisession architecture . . . . . . . . . . . . . . . . . . . . 17
1.13 TS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.14 GT Software Interaction . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Creation of a Trigger Menu . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 XDAQ Configuration Schema . . . . . . . . . . . . . . . . . . . . . 27
3.2 XDAQ Configuration File . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 TS Framework UML diagram . . . . . . . . . . . . . . . . . . . . . 30
3.4 Xhannel Infrastructure UML diagram . . . . . . . . . . . . . . . . . 32
3.5 XML SOAP Command . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 XML SOAP Command Error Reply . . . . . . . . . . . . . . . . . . 33
3.7 FSM of Configuration Operation . . . . . . . . . . . . . . . . . . . . 35

4.1 GT Cell Layered Package Diagram . . . . . . . . . . . . . . . . . . . 37
4.2 GT Cell - TS system . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 GT Cell Standalone . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Relational Database Model . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 GT ConfDB Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 GT ConfDB 1st Level . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 GT ConfDB 2nd Level . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Confgiuration Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Afs directory structure. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



Chapter 1

Introduction

4



The Large Hadron Collider (LHC) at CERN Introduction

1.1 The Large Hadron Collider (LHC) at CERN
The Large Hadron Collider (LHC) [1] experiment is currently under construction at
CERN, the European Organization of Nuclear Research in Geneva. The machine will
provide proton-proton collisions with a center of mass energy of 14 TeV and a lumi-
nosity of 1034cm−2s−1. Also heavy (Pb) ion collisions with a center of mass energy
of more than 1000 TeV will be provided. The collider is contained in a 26.7 km cir-
cumference tunnel located underground at a depth ranging from 50 to 150 meters. The
tunnel was formerly used for the Large Electron Positron collider (LEP).

1.1.1 Motivation for the LHC
All evidence indicates that new physics, and answers to some of the most profound
questions of our time lie at energies around 1 TeV . The results from the LHC might
shed light on:

The origin of particle masses: In the Standard Model (SM) the origin of particle masses
is explained by the ”Higgs Mechanism”. This mechanism predicts a scalar boson
that has not been found yet. The mass of this particle, the so called ”Higgs parti-
cle”, is a free parameter in the SM. Although the particle has not yet been found
in any high energy physics experiment, it is possible to derive a lower limit of its
mass of about 115 GeV/c2. If this particle exists with a mass below 1 TeV/c2

it will be detected at the LHC [2].

Supersymmetry: There are theories beyond the SM that propose that the SM is just
a low-energy approximation of a more fundamental theory. One of these is Su-
persymmetry or SUSY. According to this theory, for every known particle there
should be a corresponding supersymmetric partner. Some of the new particles
are expected to have masses well below the TeV scale. The LHC will there-
fore be capable of exploring this energy range and give insight to the question if
SUSY is the right extension to the SM.

New states of matter: The theory of Quantum Chromodynamics (QCD) predicts a
state of matter called ”Quark-Gluon plasma”, which is a deconfined state of
quarks and gluons, occurring at extremely high energies, and which was present
fractions of a second after the ”Big Bang”. The observation of this state of matter
may also be possible in the heavy ion collisions provided by the LHC.

Moreover the LHC will definitely provide further understanding of the physics of
known particles. Due to the high luminosity of the collider, heavy SM particles like the
b and t quarks will be produced in large quantities, and allow precision measurements
of parameters that are still not precisely known.

1.1.2 Detectors at the LHC
There are four collision points spread over the LHC ring 1.1, which house the main
LHC experiments. While CMS is described in the subsequent section the other three
detectors will be outlined here.

A Large Ion Collider Experiment (ALICE): In this experiment physics of strongly
interacting matter at extreme energies and densities will be studied [3]. It is ex-
pected to produce a new phase of matter, the state in that our universe was 20

5



The Large Hadron Collider (LHC) at CERN Introduction

Figure 1.1: The LHC tunnel and its four main experiments.

to 30 µs after the big bang - the quark gluon plasma (QGP). Collisions of lead
ions should provide the required energy for the production of this state of matter.
The main detector of ALICE is a Time Projection Chamber (TPC) with a diam-
eter of about 5 m that allows particle identification despite enormous particle
multiplicities.

A Toroidal LHC Aparatus (ATLAS): Like CMS, ATLAS [4] is a general-purpose
experiment at the LHC. Installed at interaction point 1, close to the CERN Meyrin
site, it is the largest of the four main detectors with a length of 46 m and a diam-
eter of 25 m. CMS and ATLAS are designed as complementary detectors, which
both have the capability to detect a Higgs boson over a large mass range, using
different decay channels.

The Large Hadron Collider beauty experiment (LHCb): As the name indicates, the
LHCb [5] detector is dedicated to the study of B mesons and b-quark physics
with the aim of precision measurements of CP violation and studies of rare B-
decays. The detector will be able to exploit its full potential during the low
luminosity period of the LHC. During high luminosity runs the beams have to be
de-focused due to the large number of pile-up events.

6



The Compact Muon Solenoid (CMS) Experiment Introduction

1.2 The Compact Muon Solenoid (CMS) Experiment

1.2.1 Introduction
CMS [6] is a general-purpose experiment that is installed at interaction point 5 at the
LHC. The concept of the detector was based on the requirements of having a very good
muon system whilst keeping the detector dimensions compact. Only a strong magnetic
field would guarantee good momentum resolution for high momentum muons. Studies
showed that a magnetic flux density of 4 T could be generated by a superconducting
solenoid. The experiment concept based on the above requirements was presented in
1990. It is basically unchanged since that time. The name given to the experiment
reflects the original design ideas: Compact Muon Solenoid (CMS).

Figure 1.2: The layout of the CMS detector.

Figure 1.3: A slice of the CMS detector with trajectories of different types of particles.

Figure 1.2 shows a schematic drawing of the CMS detector and its components that
will be described in detail in the subsequent section. Figure 1.3 shows a transverse slice

7



The Compact Muon Solenoid (CMS) Experiment Introduction

of the detector. Trajectories of different kinds of particles and the traces they leave in
the different components of the detector are also shown.

1.2.2 Tracker
The Tracker [7,8] is the innermost detector of the CMS experiment and consists of two
different types of silicon detectors. Close to the beam pipe silicon pixel detectors are
used to cope with the high track density. The subsequent layers of the tracker consist
of silicon microstrip detectors.

Pixel Tracker

Figure 1.4 shows the layout of the Pixel Tracker. 3 layers at a distance of 4.3 cm,
7.2 cm and 11 cm from the beam pipe will be placed in the barrel region. During the
initial period of LHC operation, the collider will run with lower luminosity, therefore
only the 2 innermost layers will be installed. During high luminosity running the outer
two layers will be used due to the enormous density of charged particles close to the
beam pipe. Two disks of pixel detectors are located at each of the endcaps of the tracker
to allow to reconstruct tracks of particles in the forward region.
The pixels of the Pixel Tracker are of rectangular shape (150 µm x 100 µm) with a
sensitive thickness of around 250 µm. The spatial resolution that can be achieved with
this pixel size, using interpolation algorithms, lies around 15 µm. With this resolution
the task of reconstructing high momentum muons, electrons and hadrons with high
accuracy is facilitated, and the precise determination of secondary vertices is possible.

Figure 1.4: The layout of the CMS Pixel Tracker.

Silicon Microstrip Tracker

The rest of the Tracker volume with a total length of 5.40 m and a radius of 1.10 m is
equipped with silicon microstrip detectors. 10 layers in the barrel region and 9 disks at
each endcap result in a minimum of 12 measurement points per charged track over a
wide range of pseudorapidity.

8



The Compact Muon Solenoid (CMS) Experiment Introduction

1.2.3 Calorimeters
Electromagnetic Calorimeter

The task of the Electromagnetic Calorimeter (ECAL) [9] is the measurement of en-
ergies and directions of electrons and photons. The reconstruction of Higgs particles
decaying into two photons imposes the strictest performance requirement on the CMS
ECAL.
To fit into the magnet the layout chosen for the ECAL is very compact utilizing dense
lead tungstate crystals with a short radiation length as scintillation material. Over
80000 of those crystals with a total weight of 92.6 t are installed in the experiment
taking up a volume of 11.18 m3.

CMS–ECAL TDR 1   General Overview

11

– stabilize the temperature of the calorimeter to ≤ 0.1 °C.

A 3-D view of the barrel and endcap electromagnetic calorimeter is shown in Fig. 1.5.

Fig. 1.5: A 3-D view of the electromagnetic calorimeter.

1.6.1 The barrel calorimeter

The barrel part of the ECAL covers the pseudorapidity range |η| < 1.479 (see Fig. 1.6).
The front face of the crystals is at a radius of 1.29 m and each crystal has a square cross-section of
≈ 22 × 22 mm2 and a length of 230 mm corresponding to 25.8 X0. The truncated pyramid-shaped
crystals are mounted in a geometry which is off-pointing with respect to the mean position of the
primary interaction vertex, with a 3° tilt in both φ and in η. The crystal cross-section corresponds
to ∆η × ∆φ = 0.0175 × 0.0175 (1°). The barrel granularity is 360-fold in φ and (2 × 85)-fold in η,
resulting in a total number of 61 200 crystals. The crystal volume in the barrel amounts to 8.14 m3

(67.4 t). Crystals for each half-barrel will be grouped in 18 supermodules each subtending 20° in
φ. Each supermodule will comprise four modules with 500 crystals in the first module and
400 crystals in each of the remaining three modules. For simplicity of construction and assembly,
crystals have been grouped in arrays of 2 × 5 crystals which are contained in a very thin wall
(200 µm) alveolar structure and form a submodule.

Figure 1.5: The Electromagnetic Calorimeter of the CMS experiment.

Hardronic Calorimeter

The Hadronic Calorimeter (HCAL) [10] measures the energy and direction of hadronic
showers and together with the ECAL the missing and total transverse energies. Fur-
thermore, information from HCAL helps to identify electrons, photons and muons.
The HCAL consists of a barrel (HB) and encaps (HE) inside the magnet and an Outer
Hadronic Calorimeter (HO) outside the coil. To achieve full hermeticity another part
of the HCAL is located in the forward regions (HF) outside the muon system. HB,
HE and HO are sampling calorimeters with copper as absorber and plastic scintillator
tiles as active material. The HF uses quartz fibers as the active element embedded in a
copper absorber matrix.

1.2.4 Muon System
Introduction

A redundant and precise muon system was one of the first requirements of CMS. The
ability to trigger on and reconstruct muons, being an unmistakable signature for a large
number of new physics processes CMS is designed to explore, is central to the concept

9



The Compact Muon Solenoid (CMS) Experiment Introduction

of CMS.

4.4 The Muon System 25

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200
Z (cm)

R
 (c

m
)

RPC

CSC

Drift Tubes η=0.8 η=1.04 η=1.2

MB1

MB2

MB3

MB4

M
E

1/3



M
E

2/2



M
E

1/1



M
E

1/2



M
E

3/2

M
E

4/2

M
E

2/1



M
E

3/1



M
E

4/1



Figure 4.9: Longitudinal view of the CMS Muon
System.

Figure 4.10: Transverse view of the CMS Barrel
Muon System.

The schematic view of a basic drift tube cell is shown in Figure4.11. It measures 42 mm
in width by 13 mm in height and has a maximum length of 4.2 m. A stainless steel anode wire
of 50µm diameter runs along the center of the DT cell. The cathodes are “I”-shaped aluminum
beams at the edges of the cell. Additional field shaping electrodes at the top and bottom of the
cell improve the linearity of the space to drift time relationship. A gas mixture of 80 % Ar and
20 % CO2 provides a saturated drift velocity and good quenching properties. The drift velocity
is around 5.6 cm/µs, resulting in a maximum drift time of 375 ns. The single cell resolution is
approximately 180µm and the efficiency as high as 99.8 %. Four staggered layers of drift tube
cells are combined into a super-layer: this allows for the removal of ambiguities in the space
measurement, for the rejection of non-muon background and for the identification of the correct
bunch crossing. The basic detector unit in the DT system is a chamber. As shown in Figure4.12,
it is made of three super-layers: the outer and inner super-layers provide a measurement of the
φ coordinate (bending plane) while the middle super-layer measures thez-coordinate. A spacer
made of aluminum honeycomb material is inserted between the middle and the inner super-
layers in order to increase the lever arm for the measurement of the bend angle. In total there
are 12 sensitive layers in a DT chamber except in the outermost chambers which only contain
the two super-layers measuring theφ-coordinate.

The DT system is divided into four concentric cylinders around the beam axis (stations MB1
to MB4) and into five wheels along thez-axis, each about 2.5 m long. Each wheel consists of
12 azimuthal sectors, covering approximately 30o. The set of five adjacent sectors alongz in
the five wheels is called a wedge. There are twelve chambers per wheel and station except in
the outermost station where the top and the bottom sector are covered with two chambers each,
giving a total of 14 chambers. In total, there are 250 chambers.

4.4.2 The Cathode Strip Chambers

Cathode Strip Chambers (CSCs) are used in the endcap regions where the magnetic field is
very intense and inhomogeneous and where the charged particle rate is high. CSCs are multi-
wire proportional chambers defined by two cathode planes, one segmented into strips, and an

H. Sakulin Design and Simulation of the First Level Global Muon Trigger
for the CMS Experiment at CERN

Figure 1.6: Longitudinal and Transverse views of the Muon System of CMS.

The muon system of CMS [12] is embedded in the iron return yoke of the magnet
( 1.2). It makes use of the bending of muons in the magnetic field for transverse mo-
mentum (pT ) measurements of muon tracks identified in association with the tracker.
The large thickness of absorber material in the return yoke helps to filter out hadrons,
so that muons are practically the only particles apart from neutrinos able to escape
from the calorimeter system. The muon system consists of 4 stations of muon cham-
bers in the barrel region and disks in the forward region 1.6, employing three different
technologies of muon detectors that will be outlined shortly in the next sections.

Drift Tube Chambers

Drift Tubes (DTs) have been chosen in the barrel region because of the large area that
has to be covered and the unproblematic radiation environment and almost vanishing
magnetic flux [13]. The DTs consist of drift cells 1.7 filled with a gas mixture of 80
% Ar and 20 % C02, achieving a resolution of approximately 180 µm. Four staggered
layers of DT cells are combined into a super layer. One DT chamber is made of three
of such super layers. The two outer layers measure the coordinate in the bending plane
(φ), the middle layer measures the coordinate perpendicular to the bending plane (z).
Four layers of chambers are mounted in cocentric cylinders around the beam axis in
five wheels of 2.5 m length, yielding a total of 250 chambers in the barrel.

Cathode Strip Chambers (CSCs)

CSCs have been chosen in the endcaps since they are capable of providing precise
space and time information in the environment of a high magnetic field and high par-
ticle rate. CSCs are multiwire proportional chambers, in which one cathode plane is
segmented into strips and anode wires run perpendicular to them. They are filled with
a gas mixture of 30 % Ar, 50 % CO2, and 20 % CF4, providing a spatial resolution
of 50 µm in φ direction. The closely spaced wires make the CSCs fast and therefore
suitable for triggering. The CSC chambers are arranged in four disks perpendicular to
the beam axis with iron disks of the magnet return yoke between them.

10



The Compact Muon Solenoid (CMS) Experiment Introduction

26 4. The CMS Experiment

 13 mm

 42 mm

ElectrodeAnode wire

Cathode

RPCRPC

RPCRPC

Figure 4.11:Schematic view of a Drift Tube cell. Figure 4.12: Schematic view of a Drift Tube
chamber with attached Resistive Plate Chambers.

array of anode wires running across, in between (see Figure4.13). An avalanche developed on a
wire induces a charge on several strips of the cathode plane and interpolation between adjacent
strips gives a very fine spatial resolution of 50µm which is used to measure theφ-coordinate.
Simultaneously, the wire signals are read out, directly, and used to measure the radial coordinate
with a coarse precision of approximately 0.5 cm. The closely spaced wires make the CSC a fast
detector suitable for triggering. The basic module of the CSC system is a chamber consisting
of six layers in order to provide high efficiency and a robust pattern recognition that can reject
non-muon background. Combining multiple layers also improves the timing resolution so that
the correct bunch crossing can be assigned with over 99 % efficiency. The cathode planes are
formed by honeycomb panels with copper clad skins, while the9.5 mm thick gas gaps are filled
with a mixture of 30 % Ar, 50 % CO2 and 20 % CF4. Chambers are of trapezoidal shape with
strips running radially (strips have constant∆φ width). They cover sectors of 10o or 20o and
have a maximum dimension of 3.5 m× 1.5 m.

Figure4.14shows the layout of one end-
muon

cathode

cathode

wires

wires

induced charge

cathode with strips

plane cathode

avalanche

3.12 mm

9.
5 

m
m

3 - 16 mm

Figure 4.13: Principle of a cathode strip chamber
layer.

cap of the CSC system: the chambers are ar-
ranged in four disks (stations ME1 to ME4)
perpendicular to the beam axis interleaved
with the iron disks of the return yoke. An-
other iron disk of 10 cm thickness is placed
outside the outermost station in order to
shield the station against backsplash induced
by particles scattered at small angles which
interact with material in the forward direction
such as the beam pipe, quadrupoles, or the
forward calorimeter. The innermost station
consists of three concentric rings of cham-
bers while the other stations consist of two rings. The gaps between the rings are non-projective.
The inner rings of stations ME2 to ME4 consist of 18 chambers while all the other rings consist
of 36 chambers. The chambers overlap inφ in order to avoid dead areas, except in the outermost
ring of the first station (ME1/3) which has gaps between the chambers.

The innermost chambers of the first station (ME1/1) are slightly different from the other

Design and Simulation of the First Level Global Muon Trigger
for the CMS Experiment at CERN

H. Sakulin

Figure 1.7: Schematic view of a Drift Tube Cell.4.4 The Muon System 27

Figure 4.14: Layout of the CSC chambers in the endcaps.

chambers as they operate in the highest magnetic field (up to 3 T) and under the highest radiation
dose: the wires are tilted by 25o in order to compensate for the tilted drifting in the magnetic
field (Lorentz effect); the gas gap is only 6 mm and the number of strips is doubled for|η| > 2.0
in order to reduce occupancy.

4.4.3 The Resistive Plate Chambers

A system of resistive plate chambers (RPCs) which is placed in the barrel and endcaps has
been specifically designed for triggering purposes. It provides independent detection of muons
with superior timing resolution. RPCs are gaseous parallel-plate detectors with a reasonable
spatial resolution and excellent time resolution of approximately 1 ns, comparable to that of
scintillators.

An RPC gap consists of two parallel plates made of very high resistivity plastic mate-
rial (bakelite), separated by a gas gap of a few millimeters (see Figure4.15). The plates are
coated with graphite on the outside which forms the high voltage electrodes. The read-out is
performed by means of aluminum strips separated from the graphite coating by an insulating
PET (poly ethylene terephthalate) film. A higher rate capability compared to traditional RPCs
is achieved by operating in avalanche mode rather than streamer mode: the electric field and
consequently the gas multiplication is reduced requiring an improved electronic signal amplifi-
cation. In order to increase the signal on the read-out strips, a double-gap design is used in CMS
with two gas-gaps of 2 mm width being read out by one set of strips in the middle. The RPCs
are operated at 9.5 kV with a gas mixture of 95 % C2H2F4 and 5 % i-C4H10. A rate capability
of 1 kHz/cm2 can be achieved. A critical point in the construction of the RPCs is the flatness
of the bakelite surface since the presence of any irregularity can lead to a local increase of field
strength. This increased field strength can cause spontaneous discharges which can lead to an
unacceptably high intrinsic noise rate. One possible solution, which recently has been adopted

H. Sakulin Design and Simulation of the First Level Global Muon Trigger
for the CMS Experiment at CERN

Figure 1.8: The CSC endcap system.

Resistive Plate Chambers (RPCs)

RPCs are used in both the barrel and endcap regions. Because of their fast response
time, comparable to scintillators, they serve trigger purposes. By being sufficiently
highly segmented the RPCs can also deliver spatial information, thus allowing to iden-
tify tracks and provide momentum information.

11



The Level-1 Trigger of the CMS Experiment Introduction

As shown in 1.6 RPCs are mounted on the DT chambers. In the inner two layers
RPCs are mounted at each side of the DTs, in the outer layers only outside the DTs,
giving a total of 6 layers. In the endcaps 4 layers are attached to the 4 CSC disks.

1.3 The Level-1 Trigger of the CMS Experiment
At the nominal LHC design luminosity the rate of interactions will be close to 109

per second, which is far more than the online computer farm could archive. Therefore
the rate has to be reduced by a factor of 107 to 100 Hz. In CMS this reduction is
achieved in two steps. The L1 Trigger, a custom-built electronic system, is designed
to reduce the rate to 100 kHz using only coarsely segmented trigger data. In case of a
Level-1 Accept (L1A), referring to an event that is considered ”interesting” by the L1
Trigger [14], high resolution data stored in pipeline memories are read out and passed
to the High Level Trigger (HLT) [15], an online computer farm built of commercial
processors, where further selection is done in software.

The L1 Trigger decision has to be taken after a fixed latency of 3.2 µs. This lim-
itation is determined by the size of the analog pipeline memories used by certain sub-
systems. Due to the physical size of the CMS detector and the underground caverns
signal propagation time represents already a significant fraction of the overall latency.
About one microsecond of the latency is left to the whole L1 trigger system to generate
a L1 Accept or reject the event. As a consequence only simple calculations can be pro-
cessed in the L1 stage of triggering, still, unlike other L1 trigger systems that rely just
on counting objects with energy or momenta above defined thresholds, the L1 Trigger
of CMS is capable of applying sophisticated topological trigger algorithms.

Figure 1.9 illustrates the treelike hierarchy of the Level-1 Trigger. First so called
trigger primitives are generated by the calorimeter systems that are the Electromagnetic
Calorimeter (Ecal) [9], the Hadronic Calorimeter (Hcal) [10] and the two Hadronic
Forward Calorimeters (HF) located at each end of the CMS detector and by the muon
systems [12] that are the Drift Tubes (DT), the Cathode Strip Chambers (CSC) and the
Resistive Plate Chambers (RPC).

1.3.1 Calorimeter System
In case of the calorimeter system 1.9 the trigger primitives refer to energy deposits in
the trigger towers of the electromagnetic and the hadronic calorimeter. The Regional
Calorimeter Trigger (RCT) then tries to find candidates for electrons or photons, jets,
isolated hadrons and calculates energy sums in different detector regions. These ob-
jects are forwarded to the Global Calorimeter Trigger (GCT) where the electrons or
photons, the τ ′s and jets are sorted according to energy and quality. The best four
objects of each category are sent to the Global Trigger (GT). Moreover, the total and
missing transverse energies are calculated as well as twelve numbers representing jet
multiplicities for twelve different transverse energy thresholds [24] and also sent to the
Global Trigger.

12



The Level-1 Trigger of the CMS Experiment Introduction

 Calorimeter System Muon System

Global Trigger (GT)

Global Calorimeter Trigger (GCT) GlobalMuon Trigger (GMT)

Regional Calorimeter Trigger (RCT)

HF HCAL ECAL RPC CSC DT

PACT CSCTF DTTF

Figure 1.9: Hierarchy of the Level-1 Trigger. Acronyms are explained in the text.

1.3.2 Muon System
The muon system 1.9 of CMS consists of dedicated trigger chambers (RPCs) in ad-
dition to the tracking chambers (DTs and CSCs). Each of the components has its own
trigger logic. The resistive plate trigger chambers are connected to a Pattern Compara-
tor Trigger (PACT) which combines hits to tracks that are sent to the Global Muon
Trigger (GMT). The Cathode Strip Chambers (CSCs) form Local Charged Tracks
(LCTs) [14]. The best three LCTs per chamber are transmitted to the CSC Regional
Muon Trigger [12]. The barrel DT chambers consist of three superlayers, each com-
posed of four staggered layers of drift cells. The inner and outer superlayers have
wires parallel to the beam direction to measure the azimuthal coordinate φ in the mag-
netic bending plane. The central superlayer has wires orthogonal to the beam line and
measures the track position along the beam, in units of pseudorapidity η. With this in-
formation track segments are formed by the Bunch and Track Identifier (BTI) for each
superlayer. For each chamber a Track Correlator (TRACO) [16] attempts to combine
segments from the inner and the outer superlayer and forwards them together with seg-
ments found in the central superlayer to the Trigger Server. Only the best two track
segments per chamber are forwarded to the DT Regional Muon Trigger.

The Regional Muon Trigger or Track Finder is made of two separate parts run-
ning in parallel. The Drift Tube Track Finder (DTTF) [17–20] and the Cathode Strip
Chamber Track Finder (CSCTF) [21] reconstruct muons out of track segments found
in the corresponding muon system and sort them according to quality and transverse
momentum. In the region where the CSCs and the DTs overlap the two Regional Muon
systems exchange information. The best four muons of each Track Finder system are
sent to the Global Muon Trigger together with the best four barrel and best four for-
ward muons from the Pattern Comparator Trigger of the Resistive Plate Chambers. The
GMT converts track parameters from all subsystems to the same η, φ and pT scales,
validates the muon sign and attempts to correlate the tracks. Furthermore, the GMT re-
ceives isolation information and an indication whether the energy deposit is compatible
with that of a Minimum Ionizing Particle (MIP) from the Global Calorimeter Trigger.

13



The Level-1 Trigger of the CMS Experiment Introduction

The final ensemble of muons is sorted based on the muons’ quality, correlation and pT .
The top four muons are sent to the Global Trigger.

1.3.3 The Global Trigger System
The Global Trigger [24, 25](GT) is the final stage of the Level-1 Trigger. For physics
data, decisions taken by the GT are based on trigger objects delivered by the GCT and
the GMT. These are:

• Four muons

• Four isolated electron/photon objects

• Four non-isolated electron/photon objects

• Four central jet objects

• Four forward jet objects

• Four τ -flagged jet objects

• Missing transverse energy

• Total transverse energy

• Twelve numbers of jets above different thresholds

The logic of the Global Trigger can be programmed to apply selection criteria, so
called trigger algorithms, on these objects. An algorithm is defined as a logic com-
bination of the trigger objects together with a set of energy or momentum thresholds,
windows in η and /or φ and topological conditions. The Global Trigger Logic module
(GTL) can calculate up to 128 of such algorithms in parallel. Another module, the Fi-
nal Decision Logic (FDL), then decides to accept an event for further processing by the
HLT and eventual storage by the Data Acquisition (DAQ) or to reject it immediately.

The GT is a complex electronic system consisting of several VME modules mounted
in a VME9U crate together with the GMT and the central Trigger Control System
(TCS). Figure 1.10 shows the simplified layout of the GT crate.

Pipeline Synchronizing Buffers (PSB): The PSB modules receive and synchronize
data coming from the GCT and send them over the back-plane to the dedicated
modules. There are three PSBs receiving MIP and isolation information for the
GMT and three receiving calorimeter objects sent to the GTL. One PSB board
receives so called Technical Trigger (TT) signals that are directly sent to the
Final Decision Logic (FDL) without further processing.

Timing Module (TIM): The TIM receives control and timing signals like the 40 Mhz
LHC-clock and the Bunch Crossing 0 (BC0) signals and propagates it to all other
GT modules over the back-plane ( 1.10).

Global Trigger Logic (GTL): The GTL combines data from the GMT and GCT and
applies algorithms to the incoming trigger objects. 128 algorithm bits are sent
via short flat cables to the Final Decision Logic.

14



The Level-1 Trigger of the CMS Experiment Introduction

VME
Slot: 1-3

L1AOUT
Slot: 5-6

TCS
Slot: 7

PSB
Slot: 9

FDL
Slot: 10

GTL
Slot: 11-12

PSB
Slot: 13-15

TIM
Slot: 16

GTFE
Slot: 17

GMT
Slot: 18

PSB
Slot: 19-21

PC BUS

TTC Network

Status signals
from TTS

Technical
Triggers

128
Algos

GCT objects

TTC

DAQ

MIP/QUIET bits

RPC / DT / CSC
muons

MIP /QUIET bits

4 muons

GCT objects

Tech.
Triggers

RO data

Clk , BCres, L1A

L1A , BGo

8 FinORs

EVM

VME
Instructions

Figure 1.10: Simplified layout of the Global Trigger Crate

Final Decision Logic (FDL): The FDL receives 128 algorithm bits from the GTL and
64 TT bits from a dedicated PSB board, optionally downscales the rate of those
and combines them according to a predefined trigger mask by a final OR function
to generate the Level1 Accept (L1A) signal that starts the CMS readout. The 8
final OR (finOR) and 8 Technical Trigger (TT) signals are sent to the TCS.

Trigger Control System (TCS): The TCS ensures that the trigger subsystems are ready
to receive L1A signals, depending on the status of the readout electronics or the
data acquisition. The L1A signals are transmitted over the L1AOut modules to
the TTC network.

15



Control Mechanism Introduction

Global Trigger Front End (GTFE): In case of a L1A the GTFE module collects the
trigger data from all GT modules and sends them to the Data Acquisition system
like any other subsystem. Figure 1.10 shows all modules that are read out.

VME Bus: Slots 1 to 3 house the standard CMS VME crate controller hardware. All
GT modules apart from the L1AOut boards have a VME interface.

1.4 Control Mechanism
The CMS detector is a system composed of a great number of physically distributed
devices that have to cooperate and interact with each other. Therefore sophisticated
control systems are needed to hide the enormous complexity of the whole system to the
people that shall operate the detector. In this chapter an overview of the architecture of
the software infrastructure is given 1.4.1. Furthermore the mechanism how the Global
Trigger hardware is controlled via the Trigger Supervisor (TS) framework is outlined
1.4.3.

1.4.1 Overall System Architecture
Figure 1.11 gives an idea of how the overall online software architecture of the CMS
experiment was layed out. The architecture consists of four main parts:

• Data acquisition components manage the readout after a L1A and concatenate
the data into a single data structure, the ”physics event”.

• Run Control and Monitor System (RCMS) provides a set of userfriendly inter-
faces that allow the user to operate the experiment.

• Detector Control System (DCS) is responsible for maintaining and monitoring
the operational state of the experiment.

• Cross-platform DAQ framework: XDAQ is a distributed processing environment
through which RCMS, DCS and DAQ components interoperate with each other.

The Global Trigger (GT) hardware will indirectly receive its orders from the RCMS
that will be described in the next sub-section 1.4.2.

1.4.2 Run Control and Monitoring System (RCMS)
The Run Control and Monitoring System (RCMS) is defined as the collection of hard-
ware and software components responsible for controlling and monitoring the CMS
experiment during data taking [15].

The RCMS views the experiment as a collection of partitions. The Data Acquisi-
tion system may be divided into up to 8 partitions, which are read out independently to
test and calibrate parts of the readout and trigger electronics in parallel. A partition is
a configurable group of resources. Up to 32 subdetector groups (TTC-partitions) can
be added to one DAQ-partition. Multiple DAQ-partitions can be active concurrently,
sharing resources if necessary, allowing several sections of the experiment to run inde-
pendently [23]. The running of a DAQ-partition is defined as a ”session”. Each session
is associated with a Session Manager (SMR) that coordinates user access to the session
and propagates commands from the users to the lower levels. For each of the involved

16



Control Mechanism Introduction

RCMS

DAQ
Components DCS

XDAQ

Figure 1.11: Architecture of the Online Software

subsystems there is a dedicated Function Manager (FM). Figure 1.12 gives an idea how
this multisession approach of the RCMS works. For each session the according FM is
instantiated dynamically. The Function managers define the interface to the subsystem
application. In case of the Trigger Control this is the Trigger Supervisor (TS) [30] that
is outlined in the next sub-section and described in detail in 3.2.

CMS control software

RCMS

TS

SMR 1 SMR 2

Sub
Detector 1

FM

Sub
Detector 2

FM
DAQ
FM

DAQ
FM

TRIGGE
R

FM

TRIGGE
R

FM
..... .....

...... ... ...

Figure 1.12: RCMS and Trigger Control in multiple partition running.

17



Control Mechanism Introduction

1.4.3 Trigger Supervisor (TS)
The Trigger Supervisor (TS) software system was designed to provide a framework
to set up, test and monitor the trigger components and to manage their interplay and
information exchange with the RCMS [30]. Figure 1.13 illustrates the architecture of
the Trigger Supervisor (TS). The system consists of one central node, also denoted as
”Central Cell” and an arbitrary number of subnodes, so called ”Subsystem Cells”. On
of these Subsystem Cells is the Global Trigger Cell (GT Cell) 1.4.4 that will access
the hardware of the GT system.

CMS control software

TS System
TS

Central node

TS
Subsystem 1

TS
Subsystem 2 ....

RCMS
FM

RCMS
FM....

TS
Subsystem n

Subsystem 1
Low LevelAPI

Subsystem 2
Low LevelAPI

Subsystem n
Low LevelAPI

Figure 1.13: Trigger Supervisor Architecture.

The TS central cell can serve several Run Control (RC) sessions in parallel and
propagates information to the Subsystem Cells. The Subsystem Cells are software
skeletons that have to be implemented in order to be able to control hardware. Both
the central and the subsystem nodes are XDAQ applications that use SOAP (Simple
Object Access Protocol) [32] messaging for exchange of information. Section 3.2
takes a closer look at the functionality of the Trigger Supervisor Framework [41].

1.4.4 Global Trigger (GT) Cell
The GT Cell is the part of the TS system that acts as an interface to control and con-
figure the GT hardware. To configure the GT hardware the GT Cell makes use of the
database access infrastructure of the TS framework to read and write registers and load
memories and firmware. Due to the well defined SOAP interface to the TS subsystem
nodes there are several ways to send commands to the GT Cell. The TS Central Cell
can either run in standalone mode configuring and controlling the GT Cell or propa-
gate RCMS orders to the GT Cell. A generic TS Graphic User Interface (GUI) based
on AjaXell [44], a C++ library implemented for the TS, permits access to the GT Cell
over a web browser. For more fine grained control GT control panels also based on
AjaXell are under development. The GT Cell uses C++ libraries 4.1 that access the
hardware through VME utilizing the Hardware Access Library (HAL) [45]. There are
also ”Expert GUIs” that use these libraries. Whereas the GT Cell currently only offers

18



Control Mechanism Introduction

    TS Framework

    GT Libraries

    GT Hardware

VME

GT Cell

TS
Central node TS GUI GT

Control Panels

Configuration
Database

Expert GUIs

Figure 1.14: Possible scenarios of interaction with the GT hardware.

a very basic interface to the hardware, those Expert GUIs allow the most fine grained
control of the GT hardware.

19



Chapter 2

Global Trigger Hardware

20



Timing Module (TIM) Global Trigger Hardware

2.1 Timing Module (TIM)
The LHC clock corresponding to the Bunch Crossing Frequency of 40 MHz and the
”Bunch Crossing 0” (BC0) signal are used to synchronize the various parts of the de-
tector electronics to each other and to the LHC-orbit structure. Along with the Level-1
Accept (L1A) signal, which is sent in case of a positive Level-1 Trigger decision, those
signals are distributed by the Timing, Trigger and Control (TTC) system [14]. The
Global Trigger (GT) crate receives those signals over a TTCrx chip mounted on the
Timing Module (TIM) that broadcasts them over the back-plane to all other GT and
GMT modules. For each module in the crate the corresponding delay register can be
set in a way to synchronize all modules in the crate to each other. By default the TIM
module sends signals to all boards in the crate. VME registers allow to inhibit signals
to boards not installed in the crate.

The TIM module also accepts external clock, L1A and BC0 signals over LEMO
connectors on the front panel. For debugging in standalone mode the 40 MHz clock
can be provided by an onboard oscillator and a memory can be loaded to send simulated
TTC messages and L1As periodically.

2.2 Pipeline Synchronizing Buffers (PSB)
The PSBs act as input modules for trigger objects sent to the GT or GMT. One PSB
module can receive 8 channels of serial trigger data from the Global Calorimeter Trig-
ger. One PSB channel corresponds to two trigger objects (2 isolated electron/photon
objects, 2 central jet-objects, ...) from the GCT ( 1.3.3). Data from each channel are
converted by receiver chips to 80-MHz parallel data multiplexing 2 GCT trigger ob-
jects in time. A synchronization chip synchronizes the channels to each other and to
the LHC clock. A programmable delay for each channel is intended to compensate for
any time skew between cables and link chips [26]. Finally data are sent to the logic
module (GTL) over the backplane.

Each PSB module has 8 input channels corresponding to two trigger objects. Two
channels carry data of one quadruplet of trigger objects from the GCT. One PSB can
therefore receive up to 4 quadruplets. Two PSB modules are reserved for the 7 quadru-
plets the GCT sends to the GT leaving two PSB channels free. The third PSB dedicated
to the GTL can receive trigger bits from other CMS subdetectors. Another PSB sends
so-called Technical Triggers (TTs) directly to the Final Decision Logic (FDL) module
where they can be used in the ”final OR” (FinOR) circuits like algorithms of the GTL.

Serial GCT data are transmitted to the PSBs over 4 ”Infiniband” connectors, each
carrying data of one quadruplet. For other trigger bits and TTs, 16 RJ45 connectors
can receive up to 64 Low Voltage Differential Signals (LVDS) at 40 MHz frequency.

Each of the eight input channels has a dedicated SIM/SPY memory that can either
be used to spy on input data or to simulate input data transmitted to the backplane.
Moreover channels 0 to 3 can also act as transmitters sending simulation data to another
PSB module or to channels 4 to 7 on the same board. Another memory can provide
data for comparison with input data.

21



Global Trigger Logic (GTL) Global Trigger Hardware

2.3 Global Trigger Logic (GTL)
The Global Trigger Logic module (GTL) [24] is the heart of the Global Trigger (GT)
system. Synchronized data from the Global Calorimeter Trigger (GCT) and Global
Muon Trigger (GMT) are combined and conditions and algorithms are calculated on
the two condition chips (COND1, COND2) from Altera company. The results (128
algorithm bits) are sent via short flat cables as parallel data to the Final Decision Logic
(FDL).

Three receiver chips REC1, REC2 and REC3 receive 80-MHz trigger data over
the back-plane and distribute them to the two condition chips. The GMT sends the 4
best muon objects that are combined into one quadruplet. The GCT sends 5 quadru-
plets: isolated electron/photon objects, non-isolated electron/photon objects, central jet
objects, forward jet objects, tau-flagged jet objects. Information on total and missing
transverse energy and 12 numbers of jets above different thresholds are combined into
groups as well and received by the receiver chips.

As a first step, conditions for each group of objects are calculated. Energy or mo-
mentum thresholds and windows of the space coordinates η and φ are applied. For
muons also the Minimum Ionizing Particle (MIP) and isolation information as well
as the quality is checked. For the quadruplets containing total transverse energy and
numbers of jets, thresholds are applied. For the missing transverse energy vector a
φ-window can be chosen. Also conditions requiring two particles of the same or of
different types having a specified distance in η and φ can be calculated. In the next step
the previously applied conditions are combined by a simple AND-OR logic to form
a trigger algorithm. As mentioned before, up to 128 algorithms can be calculated in
parallel on the two conditions chips.

One set of conditions and algorithms is called a ”trigger menu”. Should other
trigger algorithms be required for physics data taking or for a calibration task, a new
trigger menu in the form of a firmware file for the condition chips is loaded using
JTAG over VME. Setting up a new trigger menu basically involves two steps. First
the conditions and algorithms are defined with a graphical setup software [28]. The
output of this program is an XML [35] file that is processed by ”GTS”, a C++ program
that generates the according corresponding VHDL [34] code. The Quartus synthesizer
(Altera company’s software for firmware processing from Altera company) translates
the VHDL code and generates a new firmware file for the condition chips. The GTS
program also generates a second XML file that defines the base addresses of thresholds
for the conditions used in the trigger menu. Thresholds can be adjusted at any time by
simple VME access, without creating a new trigger menu. Figure 2.1 shows the data
flow diagram for the creation of a new trigger menu.

The GTL contains several memories on its FPGAs to allow a variety of self tests
and interconnection tests. The receiver chips (REC1, REC2, REC3) contain memories
to send simulated trigger data to the condition chips, according to the trigger objects
they are intended to receive. Those memories can run also in spy mode monitoring data
coming from the GMT or the GCT. On the condition chips there are memories that can
either be used to spy out the results of the trigger logic or to insert simulated algorithm
bits for the FDL.

22



Final Decision Logic (FDL) Global Trigger Hardware

GTgui
Graphical
setup of a

Trigger
Menu

GTS
C++

program to
generate

VHDL Code

Trigger
Expert

Trigger Setup
FileXML

Threshold FileXML

Firmware CodeVHDL

Quartus SW
Software to

generate
Firmware

Files

Firmware FileSFV

Trigger
Menu on

GTL

Gt Cell
Hardware
Access

utilizing GT
Libraries

Figure 2.1: Processes involved in the creation of a new Trigger Menu.

2.4 Final Decision Logic (FDL)
The Final Decision Logic (FDL) receives 128 algorithm bits from the Global Trigger
Logic (GTL) and 64 Technical Trigger (TT) bits from a dedicated Pipeline Synchro-
nizing Buffer (PSB) module. Algorithms and TTs together are denoted as ”slices”.
Each Algorithm and or TT bit increments a rate counter for the corresponding slice.
The periodicity of how often rate counters are reset to 0 can be chosen individually
for each slice. If the rate is too high a pre-scaler reducing the rate by a certain factor
can be applied. As mentioned in 1.4.2 the Data Acquisition (DAQ) of CMS can be
divided into 8 partitions. Therefore the FDL combines the algorithm and TT bits into
8 Final-OR (FinOR) signals that are sent to the Trigger Control System (TCS). A veto
mechanism permits to define each TT slice as veto-bit for one or more DAQ-partitions.
In that case the Fin-OR signal is suppressed for the selected partitions. The FDL board
contains also a SIM/SPY memory to either send simulated Algorithm and TT bits to the
FinOR circuits or monitor data from the GTL and TT-PSB module. Another memory
is permanently recording the 8 Fin-OR signals.

2.5 Trigger Control System (TCS)
The main tasks of the central Trigger Controller module (TCS) are to ensure that the
subsystems are ready to receive Level-1 Accepts from the Global Trigger [24]. This in-
formation is partly provided by the synchronous Trigger Throttling System (sTTS) that
sends warning signals to the TCS if buffers become nearly full, partly by Front-end
Emulators that have been designed for the Tracker and Preshower detectors to avoid
buffer overflows in their readout electronics. Furthermore the delivery of L1As has
to comply with a set of trigger rules, like such as one that there have to be two un-
triggered crossings between two consecutive L1As [33]. The TCS is also responsible

23



Trigger Control System (TCS) Global Trigger Hardware

for the generation of synchronization and fast commands ( 2.1) as well as calibration
and test trigger sequences to be distributed to the sub-detectors by the TTC network in
addition to the L1A signals. All signals are sent over the back-plane to the Level-1 Ac-
cept Output (L1AOUT) module that acts as interface between Global Trigger and TTC
network. Also the dead time of the experiment is monitored by dead time counters on
the TCS.

Table 2.1: BGO control signals generated by the TCS.

NAME DESCRIPTION

BC0 Resets the Bunch Crossing (BC) counters to begin a new LHC
orbit.

Test Enable Starts a calibration procedure.
Private Gap Inhibits data taking to allowing a subsystem to perform private

tasks.
Private Orbit Inhibits data taking for one orbit.
Resync Clears buffers and pipelines.
Hard Reset Resets the Hardware.
Reset Event Counter Resets the Event Counter to zero. Sent during at the end of a

resynchronization procedure
Reset Orbit Counter Resets the Orbit Counter to zero. Sent at the begin of a new run
Start Starts data taking with the next orbit.
Stop Stops data taking with the next orbit.

The logic of the TCS reflects the optional segmentation of the CMS readout system
into 8 DAQ-partitions ( 1.4.2). The TCS chip contains 8 DAQ-partition Controllers
(PTCs) running independently from each other with the sole limitation that only one
DAQ-partition at a time is allowed to send triggers. at a given Bunch Crossing (BC).
Therefore the TCS splits up the active time of a DAQ-partition according to the setting
of the TIMESLOT registers. Each PTC provides the following functions:

• A Finite State Machine (FSM) runs control procedures according to the state of
the connected TTC partitions. A detailed description of the states and responses
of the FSM to signals from the TTS can be found in the TCS manual [27].

• A BGO Generator generates and sends BGO signals ( 2.1) to the TTC partitions
of a DAQ-partition according to the FSM of the according PTC. The time behav-
ior of the signal generation is derived from the register values SETTLE TIME,
ACTIVE TIME and RECOVER TIME.

• A BC-Table implemented as two 16 bit wide and 4 K long memories permits
to define at which Bunch Crossing (BC) additional BGO control commands and
other calibration signals will be sent. The format of files that can be loaded into
the BC-Table memories can be loaded with is described in the Appendix ( A.3.3).

• A Calibration logic to run calibration cycles. First a BGO control signal starts
calibration procedures in the connected subsystems. After a certain time a L1A
is issued to read out the calibration data.

• A Trigger Merger combines all trigger sources (Final-OR, Random Trigger, Cal-
ibration Triggers) into a L1A signal.

• A periodic Signal Generator generates signals according to register values that
can be loaded over VME.

24



Global Trigger Front End (GTFE) Global Trigger Hardware

The assignment of TTC-partitions to the 8 DAQ-partitions is also done in the TCS
chip through the ASSIGN PART registers. One TTC-partition either belongs to exactly
one DAQ-partition or is disabled so that it does not receive , not receiving any L1A or
any other control signals.

The TCS sends L1As and BGO control signals to the L1AOUT module, where they
are converted to Low Voltage Differential Signals (LVDS) and transmitted to 32 TTCci
boards, which that manage further distribution them to the sub-detector crates.

2.6 Global Trigger Front End (GTFE)
A Level-1 Accept (L1A) sent to the TTC network by the TCS is also sent via the
crate backplane to will return to the Global Trigger crate via the TIM and starts the
readout of the Global Trigger (alternatively, it could also be sent to the TIM module
via the TTC system). The FDL, TCS, GMT and PSB boards contain ring buffers to
keep trigger data until the arrival of a read-out signal. When a L1A signal arrives
on each a board a Readout Processor (ROP) moves the data from the ring buffer into
a derandomizing buffer. Afterwards the ROP collects data from all derandomizing
buffers, appends format words and sends it them as a record to the GTFE. On the
GTFE merges data from all boards is merged into a GT/GMT record and sends them
to the Data Acquisition system (DAQ). In parallel, data from the FDL and TCS are
sent merged into an event record and sent to the Event Manager (EVM). A detailed
description of the readout formats can be found on the Global Trigger homepage (
[27]).he GTFE merges data from all boards is merged into a GT/GMT record and sends
them to the Data Acquisition system (DAQ). In parallel, data from the FDL and TCS
are sent merged into an event record and sent to the Event Manager (EVM). A detailed
description of the readout formats can be found on the Global Trigger homepage ( [27]).

25



Chapter 3

Framework

26



Cross-Platform DAQ Framework (XDAQ) Framework

3.1 Cross-Platform DAQ Framework (XDAQ)
XDAQ is a framework designed specifically for the development of distributed data
acquisition systems. It provides platform independent services, tools for local and re-
mote inter-process communication, configuration and control, as well as technology
independent data storage. To achieve these goals, the framework builds upon indus-
trial standards, open protocols and libraries [15]. As mentioned in 1.4.3 all Trigger
Supervisor nodes are XDAQ applications that make use of several services, that will be
described in the following sections.

3.1.1 XDAQ Executable configuration and Partitions
At the startup a XDAQ process can be configured passing the path of configuration file
as a command line argument. The configuration file contains the configuration schema
of the XDAQ process, represented in XML [35]. A configuration is hierarchically
structured into 3 levels:

Partition: Every configuration contains exactly one partition that is a collection of
XDAQ processes hosting applications.

Context: Every context defines one XDAQ process uniquely identified by its URL
that is composed of host name and port. A partition may contain an arbitrary
number of contexts. The <module> tag inside the <context> tag specifies the
location of shared libraries that have to be loaded in order to make applications
available.

Application: The <application> tag uniquely identifies a XDAQ application. Each
context can be composed of an arbitrary number of XDAQ applications. Applica-
tions can define properties that can be read during runtime using the <properties>
tag.

Partition 1..n Context Application0..n Properties0..n

Figure 3.1: Multiplicity relations of a XDAQ-Configuration

The XDAQ configuration file in figure 3.2 describes a standalone scenario of the
TS Global Trigger Cell with database access. The GT Cell is running on the first host
configured with several properties that will be described later in this document ( 3.2.1).
Two other XDAQ applications inside the same context provide control of the GT Cell
(CellGui) and manage the access in standalone mode (CellAccess). The mentioned
applications are compiled into two libraries. Their locations are given in the <module>
tags. The second process runs on a different host with one single application loaded
that acts as an interface to the Configurations Database (ConfDb). This application will
be treated later in this chapter 3.1.3.

3.1.2 Simple Object Access Protocol (SOAP) communication
SOAP [32] is a means to exchange structured data in the form of XML-based [35] mes-
sages among computers over HTTP. XDAQ uses SOAP for a concept called Remote

27



Cross-Platform DAQ Framework (XDAQ) Framework

<?xml version='1.0'?>
<!-- The following line contains a reference to an XSL file       -->
<!-- that allows the rendering of this XML file into an HTML file -->
<!-- <?xml-stylesheet type="text/xsl" href="xdaqConfig.xsl"?> -->

<xc:Partition 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 
xmlns:xc="http://xdaq.web.cern.ch/xdaq/xsd/2004/XMLConfiguration-30">

<xc:Context url="http://gtswpc3.cern.ch:3666">

<xc:Application class="Cell" id="13" instance="3" network="local">
<properties xmlns="urn:xdaq-application:Cell" xsi:type="soapenc:Struct">

<name xsi:type="xsd:string">GT</name>
<xhannelListUrl xsi:type="xsd:string"> 

                                        file://${XDAQ_ROOT}/trigger/gt/ts/cell/xml/xhannelList/cell_xhannel_list_GtMTCC.xml
</xhannelListUrl>

</properties>
</xc:Application>

<xc:Application class="CellGui" id="11" instance="3" network="local">
</xc:Application>

<xc:Application class="CellAccess" id="15" instance="0" network="local">
</xc:Application>

<xc:Module>file://${XDAQ_ROOT}/trigger/gt/ts/cell/lib/linux/x86/libCell.so</xc:Module>
<xc:Module>${XDAQ_ROOT}/trigger/ts/access/cell/lib/linux/x86/libCellAccess.so</xc:Module>

</xc:Context>

<xc:Context url="http://cmsdaquser0.cern.ch:3667">

<xc:Application class="TStore" id="120" instance="0" network="local">
<properties xmlns="urn:xdaq-application:TStore" xsi:type="soapenc:Struct">

<views xsi:type="soapenc:Array" soapenc:arrayType="xsd:ur-type[1]">
<item xsi:type="xsd:string" soapenc:position="[0]"> 

                                                ${XDAQ_ROOT}/trigger/gt/db/tcs_registers_test_view.xml
</item>

</views>
</properties>

</xc:Application>

<xc:Module>${XDAQ_ROOT}/daq/tstore/lib/linux/x86/libtstore.so</xc:Module>
<xc:Module>${XDAQ_ROOT}/daq/tstore/tstore/lib/linux/x86/libTStore.so</xc:Module>

</xc:Context>

</xc:Partition>

Figure 3.2: Example for a XDAQ configuration file for a GT Cell with database access.

Procedure Calls (RPC). This means that the SOAP message contains an XML tag that
is associated with a function call, a so called ”callback”, at the receiver side. That
way all XDAQ applications belonging to one XDAQ-partition 3.1.1 can interchange
information with each other and execute procedures on remote XDAQ nodes. It is even
possible to send SOAP messages from outside a XDAQ-partition using the curl [39]
library for instance.

3.1.3 Access to the Configurations Database (TStore)
Access to a database is a basic requirement for the configuration of the trigger compo-
nents. The XDAQ framework provides access to the Configuration Database (ConfDB)
through an application called TStore.

Data exchange utilizing TStore is done through SOAP messages. A SOAP message
specifying the name of a TStore-view that determines which data should be read or
written, is sent to the TStore application. The SOAP reply contains relevant tables

28



Cross-Platform DAQ Framework (XDAQ) Framework

as attachments. TStore-views are part of an XML-configuration file for the TStore
application. A configuration of TStore can contain an arbitrary number of TStore-
views. A detailed explanation how to configure the TStore application is given in
ref. [38].

3.1.4 Web Interface
XDAQ offers an infrastructure that allows to make XDAQ applications ”web exposed”
applications. If a browser sends a certain request to the XDAQ executable, a callback
inside a XDAQ application will dynamically create HTML [36] code making use of the
C++ library cgicc [40]. The html code is displayed by the web browser and that way
the user can interact with a XDAQ-application. In the TS framework this interface was
extended using Asynchronous XML and JavaScript Technology (AJAX) 3.2.1.

29



Trigger Supervisor Framework

3.2 Trigger Supervisor
An overview on how the Trigger Supervisor central node interacts with the Run Con-
trol and Monitoring System (RCMS) as an interface to the Trigger Control was given
in 1.4.3. This chapter will go more into detail explaining aspects of the TS framework
used in the implementation of the Global Trigger (GT) Cell as well as important fea-
tures of the TS system related to the Trigger Control, due to the fact that the hardware
is partly located in the GT crate 2.5.

3.2.1 Trigger Supervisor Framework
This section will focus on the TS as a software framework. First the functionality and
interaction of the software components will be described. Afterwards the customiza-
tion procedure of the TS framework to fit subsystem requirements is described. The
detailed description of how the customization of the TS framework was done in case
of the GT system is given in 5.

 Trigger Supervisor Framework

     Subsystem Customization

CellAbstract

#CellAbstractContext context_
+template <class Command>
void addCommand()
+template <class
OPERATION> void
addOperation()
+addPanel()

CellAbstractContext

+getXhannel(std::string name) CellXhannel *
+ getOperationFactory() CellOperationFactory *
+ getCommandFactory() CellCommandFactory *
+ getPanelFactory() CellPanelFactory *

SubsystemCommandSubsystemOperation SubsystemPanel

CellCommandFactory

std::map<std::string,
CellCommand*>

+createFromCommand(string
name, CellAbstractContext
context) CellCommand*

CellCommand

create()

CellOperationFactory

std::map<std::string,
CellOperation*> operations_;

+createFromOperation(string
name, CellAbstractContext
context) CellOperation*

CellXOperation

create()

CellPanel

CellPanelFactory

std::map<std::string,
CellPanel*>
+create(std::string
instanceName, std::string
className
CellAbstractContext context)
CellPanel*

create()

SubsystemCellSubsystemCrate

CellXhannel

+createRequestVirtual()
CellXhannelRequest *
+removeRequest
(CellXhannelRequest* req)

SubsystemContext

CellXhannelRequest

create()

Figure 3.3: Components of the TS framework and Subsystem Customization classes in an UML
diagram.

30



Trigger Supervisor Framework

Framework Components

Figure 3.3 shows a UML diagram of the most important TS framework components
as well as a possible scenario of derived or customized subsystem classes. In the fol-
lowing lines the abstract classes and the functionality they offer, the dynamic creation
of functional classes like Commands, Operations and Control Panels and the Xhannel
Architecture that acts as a means of communication, will be described.

Cell Application: The functionality of the Cell Application can be divided into three
domains. XDAQ services are made available for the Cell through inheritance
from the xdaq::Application class. A Cell Application can therefore be
added to a XDAQ partition, making it browseable through the XDAQ Web Inter-
face 3.1.4 and allowing Remote Procedure Calls (PRCs) through callbacks. In
the CellAbstract class TS framework functionality is implemented. Tem-
plate functions allow to add implemented Commands and Operations, Xhannels
are created dynamically according to a XhannelList file and generic callbacks
for SOAP messages according to calls of Commands or Operations are imple-
mented. Each subsystem Cell class inherits from the CellAbstract class
and adds custom Commands, Operations and Control Panels in the implementa-
tion.

Context: The functionality of the context of the TS framework can again be grouped
into XDAQ related functions, that are accessed over a pointer member to the
xdaq::ApplicationContext, that manages URLs and URNs, instances
and ids of modules loaded into the XDAQ executable 3.1.1. These resources are
made available to other TS components through a getter method in the CellAb-
stractContext. Furthermore the CellAbstractContext class implements
TS framework functionality like access to factory classes that dynamically cre-
ate Commands, Operations or Control Panels and Xhannels to access external
resources. If any other resources should be made available for a Subsystem Cell,
the access should be made through a descendant of the CellAbstractContext. The
GT makes the C++ API to access the hardware available for the GT Cell that way
3.3.

Xhannel Architecture: To get access to external resources or other TS nodes from a
TS Cell the Xhannel architecture was implemented in the TS framework. Xhan-
nels define transparent interfaces that decouple the development of external ser-
vices and Subsystem Cells [42]. Xhannels are created during startup by the
CellContext from an XML file that is defined through a property of the Sub-
system Cell in the configuration schema file of the XDAQ-Executable 3.1.1.
An example of this xhannelListFile can be found in the Appendix A.3.1. Cur-
rently Xhannels and the corresponding Requests to other TS Cells, to the TStore
application and to the monitoring infrastructure are implemented 3.4.

Command Interface: The TS Command Interface is a SOAP interface that allows
to make Remote Procedure Calls (PRCs) inside a Trigger Supervisor node. A
SOAP message sent to a TS node following a certain syntax 3.5 will result in
the execution of a so called ”callback function” that attempts to instantiate the
command according to the SOAP message and execute it and return a SOAP
message that informs the sender about status of the execution. To comply with
the requirements for a distributed control system the TS framework implements

31



Trigger Supervisor Framework

CellXhannel

+createRequestVirtual()
CellXhannelRequest *
+removeRequest
(CellXhannelRequest* req)

CellXhannelCell CellXhannelTBCellXhannelMonitor

create()

CellXhannel Request

CellXhannelRequestCell

<Interface to Operations and
Commands of other Cell>

CellXhannelRequestMonitor

<Interface to the subsytem
monitoring infrastructure>

CellXhannelRequesTB

<Interface to TStore database
application>

Figure 3.4: Currently implemented descendants of CellXhannel and CellXhannelRe-
quest.

an asynchronous protocol for commands. In case of synchronous commands the
sender of the command waits until the execution of the command is complete
and gets back the response from the command. During this time also the sender
of the command is blocked. For commands that are expected to take longer un-
til their execution is complete the asynchronous protocol should be used. The
receiver of an asynchronous command replies immediately acknowledging the
reception. Once the command is executed the real reply message is sent back to
the sender.

Figure 3.5 shows an example XML file for a SOAP command. The informa-
tion required to execute the command is packed into the SOAP body inside the
<soap-env:Body> tag. The name of the command - GetFinOrMask - is required
to create the command. The attributes cid and sid are identifiers for the com-
mand and of the TS Session that is running it. The async attribute determines
the mode of execution. Parameters of the command are passed as child tags. The
last three tags, callbackFun, callbackUrl, and callbackUrn are identifiers where
to send the reply of the command and are required only if the command runs
asynchronously.

The reply SOAP message that is returned to the sender after the execution of
the command contains all relevant information about the status of the com-
mand. In case of a successful execution the message contains its return value
in the <payload> tag. If some error occurred the tags <warningLevel> and
<warningMessage> are filled with information about the error. There are 3
default warning levels - INFO, WARNING, ERROR [42]. In case of INFO or
WARNING it may happen that the reply contains a payload, too. Figure 3.6
shows an example of a SOAP reply of a command that was executed without

32



Trigger Supervisor Framework

<soap-env:Envelope soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
     xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/" 
     xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap-env:Header/>

<soap-env:Body>
<cell:GetFinOrMask 
        async="true" 
        cid="GetFinOrMask1188342196" 
        sid="tsPageId1369697862" 

           xmlns:cell="urn:ts-soap:3.0">

<cell:param name="Number of DAQ Partition" xsi:type="xsd:unsignedShort">0</cell:param>
<cell:param name="Number of Slice" xsi:type="xsd:unsignedShort">0</cell:param>

<callbackFun>guiResponse</callbackFun>
<callbackUrl>http://gtswpc3.cern.ch:3666</callbackUrl>
<callbackUrn>urn:xdaq-application:lid=13</callbackUrn>

</cell:GetFinOrMask>
</soap-env:Body>

</soap-env:Envelope>

Figure 3.5: Example of a Command SOAP message.

success.

<soap-env:Envelope soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
     xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/" 
     xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/" 
     xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap-env:Header/>

<soap-env:Body>
<cell:guiResponse 

               cid="GetFinOrMask1478719249" 
                sid="tsPageId726350339" 

                            xmlns:cell="urn:ts-soap:3.0">

<cell:warningLevel xsi:type="xsd:integer">2000</cell:warningLevel>
<cell:warningMessage xsi:type="xsd:string">Invalid precondition:

Parameter "Number of DAQ Partition" out of bounds. Valid values are [0;7]. 
</cell:warningMessage>

<cell:payload xsi:type="xsd:string"></cell:payload>

</cell:guiResponse>
</soap-env:Body>

</soap-env:Envelope>

Figure 3.6: Example of a Command Reply SOAP message containing an error.

Operation Interface: For complex control sequences the command interface may not
be appropriate. Therefore the TS framework offers Operations, which is a pro-
tocol that can be represented by a Finite State Machine. The states, possible
transitions and code that should be executed during transitions, as well as errors,
warnings and other notifications and a set of parameters for the Operation can be
chosen according to requirements. Three skeletons of ”standard operations” that
should be implemented for each subsystem already exist in the CVS-repository.
Those are the Configuration, Selftest and Interconnection Test Operations that
will be controlled for the whole trigger system from the TS Central Cell. 3.2.2.

Control Panels: A server-side C++ library implemented for the TS framework called
AjaXell [44] allows Subsystems to create Graphical User Interfaces (GUIs), also
called ”Control Panels”, for their Subsystem Cells. AjaXell is based on the Asyn-
chronous Java Script and XML (Ajax) technology and has been tested with the
Apache Tomcat and the XDAQ servers. Unlike simple HTML user interfaces the
AjaXell library offers a bigger variety of widgets to create desktop like GUIs and

33



Trigger Supervisor Framework

accelerates the interaction with the back end by exchanging smaller amounts of
data. The Control Panels interact with the Command interface just like an exter-
nal sender of SOAP messages.

Framework Customization

The development of the TS requires the distribution of its implementation among the
subsystem groups. Depending on how the interface to manipulate the hardware is
defined, there are different ways of customizing the TS framework [42]:

1. If there exists a web service based approach to control the hardware like a SOAP
interface, the Subsystem Cell should interact with the hardware using the Xhan-
nel infrastructure of the TS framework.

2. If the software used to control the hardware is based on XDAQ as well, the
according libraries and the Subsystem Cell library can be loaded into the same
XDAQ executable. In this case public methods would act as a communication
channel between the Subsystem Cell and the hardware.

3. If there exists a C++ API to control the hardware of a subsystem, the corre-
sponding libraries have to be used in the code of Commands and Operations for
the Subsystem Cell. The Cell Application has to run locally in the correspond-
ing subsystem server. This scenario describes the situation of the GT and will
therefore be described in depth in 5.

3.2.2 Trigger Supervisor System
As mentioned 1.4.3, the TS was designed to setup and test the trigger components,
hiding the complexity of the involved sub components to the RCMS. How these tasks
are achieved will be described in this section, focusing on the Global Trigger as a
subsystem of the Trigger Supervisor.

Setup of the Trigger Hardware - Configuration Operation

Earlier in this document it was described how the TS system interacts with the RCMS.
Up to eight Session Managers (SMs) according to the same number of running DAQ-
partitions, communicate over SOAP with the TS Central node. The Central node co-
ordinates the access to resources that are shared among DAQ-partitions and ensures
that different sessions do not interfere with each other. This goal is achieved with the
following configuration procedure, explained as a Finite State Machine diagram in 3.7:

The first RCMS Function Manager (FM) that connects to the TS Central node ini-
tiates a Configuration Operation and executes the first transition ”Configure” with a
key as a parameter. The key corresponds to a full configuration of the trigger system
that is common for all DAQ-partitions. A ConfDb table of the TS associates this key
with keys for all subsystems and passes them as parameters to the according subsys-
tem Configuration Operations. In this way the whole trigger system is put into a well
defined working state. The next FMs attempting to connect to the TS Central have to
provide the same Configuration key as a parameter to be able to move to the Config-
ured state. They are not allowed to reconfigure the trigger system, as this would lead
to inconsistencies with the first FM. FM2 to FM8 can execute the ”Partition” transition
with a partition key as parameter that is associated with ”partition dependent” data that

34



Trigger Supervisor Framework

HALTED

TS waits for FM to
connect

CONFIGURED

Trigger System is in a
well defined state

DAQ0 PARTITIONED

PTC0 / FinOR0
in a well defined state Suspend

       Configure

DAQ1 PARTITIONED

PTC1 / FinOR1
in a well defined state

DAQ7 PARTITIONED

PTC7 / FinOR7
in a well defined state

. . .DAQ0 ENABLED

PTC0 enabled

DAQ0 SUSPENDED

PTC0 suspended

Enable

Enable

Partition

Partition

Suspend

DAQ1 ENABLED

PTC1 enabled

DAQ1 SUSPENDED

PTC1 suspended

Enable

Enable

Suspend

DAQ7 ENABLED

PTC7 enabled

DAQ7 SUSPENDED

PTC7 suspended

Enable

Enable

.

.

.

.

.

.

.

.

.

HALTED

TS waits for FM to
connect

CONFIGURED

Trigger System is in a
well defined state

       Configure

HALTED

TS waits for FM to
connect

CONFIGURED

Trigger System is in a
well defined state

       Configure Partition

.

.

.

.

.

.

FM1
FM2. .FM8

Figure 3.7: The Finite State Machine of the Trigger Configuration Operation.

affect just the DAQ-partition the corresponding FM is controlling. Partition dependent
data are:

• A TTC vector that assigns TTC partitions to a certain DAQ-partition.

• A FinOR vector that defines which Algorithms and Technical Triggers should be
used to trigger a DAQ-partition.

• A BC Table that defines which Bunch Crossings should be used for triggering
and which fast and synchronisation signals should be sent to TTC-partitions be-
longing to one DAQ-partition.

Among all subsystems the GT Cell plays a special role in the Configuration of the
Trigger System. The Configure transition in the FSM of the TS triggers a Configure
transition of the FSM of the GT Configuration Operation. The Partition transition
however will make use of the GT Command Interface 5.3. The intelligence that assures
that FMs cannot interfere with each other is implemented in the TS Central Cell.

Testing inside the TS framework

All TS nodes can run in standalone mode, which gives trigger subsystems the possibil-
ity to implement testing routines for their hardware. Simple Commands 3.2.1 could
be used to first write a register and read it back, which ensures that VME access of
a module is working correctly. The skeleton of a Selftest Operation could be imple-
mented to perform more complex testing procedures. Subsystems can even implement
new custom operations if a certain testing routine should require them.

Interconnection Tests (ITs) are a way of testing interoperability of trigger compo-
nents. Interconnection Tests involve at least two subsystem nodes and the TS Central
node that coordinates the test. A simple scenario of an IT would be to send simulation
data from one subsystem to another where the data is read out and compared with the
input. As the TS framework does not restrict the number of involved subsystems ITs
could be much more complex than that.

35



Chapter 4

Global Trigger Software

36



Global Trigger Libraries Global Trigger Software

4.1 Global Trigger Libraries
The Global Trigger Software Libraries are C++ classes based on the Hardware Access
Library (HAL) [45]. HAL is a library developed to provide high level access to VME
hardware modules. Built on top of the HAL the GT Libraries are the next step in hid-
ing complexity of the hardware to software experts. Shared libraries for each type of
GT board provide high level methods to control the module. Loading memories from
ASCII files, loading new firmware into PROMs using the JTAG Access Library [46] or
writing a sequence of registers defined in an ASCII file are features of the GT Libraries
that used by the Configuration Operation of the GT Cell.

Standalone applications for every GT module are based on the GT Libraries and
have been used for debugging the GT hardware for a long time, which makes the GT
Libraries a well tested and reliable base for other software. Figure 4.1 shows a diagram
that illustrates the hierarchy of libraries the GT Cell library relies on.

Global Trigger Cell Library

Package NameGlobal Trigger Libraries

Hardware Access Library JTAG Access Library

Trigger Supervisor
Framework Library

Figure 4.1: The most important libraries the GT Cell depends on.

4.2 Global Trigger Control Panels
The Global Trigger system as the highest instance of the L1-Trigger plays a crucial role
in physics data taking. Setting up the trigger menu is done in the Global Trigger Logic
(GTL), applying prescales to the trigger algorithms in the Final Decision Logic (FDL)
and the Central Trigger Control (TCS) manages the distribution of Level1 Accepts.
Unlike other subsystems the setup of these components has to be done more frequently
and even during a data taking period parameters might change. Therefore it has been
decided that a user friendly intuitive user interface is needed for the GT Cell that is the
only entry point to the GT hardware inside the TS framework. A prototype of these GT

37



Global Trigger Cell Global Trigger Software

Control Panels based on AjaXell has been developed. The Control Panels communicate
with the GT Cell via the implemented SOAP interface.

4.3 Global Trigger Cell
The Global Trigger (GT) Cell as a Trigger Supervisor (TS) component was described
in 1.4.4, this chapter will outline possible usage scenarios of the GT Cell, whereas the
next chapter ( 5) will describe the software components of the GT Cell in depth.

4.3.1 GT Cell as part of TS system

TS System

SOAP

SOAPAPI

GT Cell

TS
Central node

TStoreGT
Hardware

GT
Control PanelsSOAP External

User

Configurations
Database

OCCI

Login

Figure 4.2: The GT Cell as part of the TS system.

Being part of the TS system, accessed through the SOAP interface, is the default
running mode for the GT Cell. Database driven configuration operations and inter-
connection tests involving other subsystems are controlled directly by the TS Central
node. Access to the GT Control Control panels used to control shared trigger resources
like the FDL and TCS via the command interface of the GT Cell will managed by a
login-mechanism in the TS. This way different tasks are split upon involved software
components in a Model View Controller (MVC) like architecture that separates data
storage (Model) from the presentation of the data to the user (View) and the underlying
intelligence that determines the behavior of the application (Controller):

Model: The GT Cell stores and retrieves data from the database or writes and reads
data from the hardware, which can be seen as another way of storing data.

View: The GT Control Panels are the View presenting data provided by the Model to
the user.

Controller: The TS acts as the Controller in this Context implementing the intelli-
gence that manages the manipulation of the data.

38



Global Trigger Cell Global Trigger Software

Figure 4.2 shows a schematic sketch of components involved in the process of
controlling the GT hardware and their way of interaction.

4.3.2 GT Cell in standalone mode
Like every TS node the GT Cell can run in standalone mode, which is essential to
test newly implemented Commands and Operations with the hardware. For filling the
GT Configurations Database (ConfDb) it will also be necessary to use the GT Cell in
combination with the GT Control Panels, as the GT standalone applications do not have
access to the database. It is possible that the standalone mode of the GT Cell will also
be used for hardware tests, once the Cell is evolved enough. Figure 4.3 graphically
shows the interaction of the involved components. A way of filling the database with
configurations for the GT system will be proposed later in this document ( 5.4.1).

SOAPAP
I

GT Cell

TStoreGT
Hardware

SOAP GT Control
PanelsTS GUI

Figure 4.3: The GT Cell in standalone mode and required components.

39



Chapter 5

Software Integration

40



Global Trigger Cell Objects Software Integration

5.1 Global Trigger Cell Objects

5.1.1 CellContext
The CellContext class inherits from the class CellAbstractContext that im-
plements the management of the interplay of different TS framework components like
different Subsystem Cells, TS Central node, Xhannel Architecture, etc. The CellCon-
text is created in the constructor of the Cell object like all vital components of the
TS framework. The Global Trigger CellContext extends the functionality by providing
access to the CellGTCrate object that will be described in the next section.

5.1.2 CellGTCrate
The CellGTCrate class has been implemented to manage the dynamical creation of
board objects defined in the Global Trigger Libraries ( 4.1). The fact that the hardware
plugged into the Global Trigger crate changes very frequently, according to the require-
ments of a test setup, lead to the decision that the software objects would have to be
instantiated dynamically. This is done by utilizing the crate scan that is implemented
in the Hardware Access Library (HAL) for VME64x crates. For each slot of the crate
it is checked for a VME64x module. In case of success the number of the slot and the
serial number of the device are put into an associative map that is kept for the lifetime
of the CellGTCrate object. This map is the base for the next step in the initialization
of the crate. For each entry it is ensured that the module identified by its serial num-
ber is a Global Trigger module by checking if the serial number appears in the HAL
ModuleMapper.dat file. All serial numbers of GT modules are listed in this file with
an identifier of their type. This type is used by the crate object to determine which
software objects to initialize, which is done as the final initialization step. Objects ac-
cording to the type of board are initialized and pointers to them stored in an associative
map with their serial number. Providing access to this pointers the hardware can now
be manipulated through the CellGtCrate object. The code snippet below show how this
works in practice.

gtCrate_ = new CellGTCrate(*logger_);
try {

string mmf = "ModuleMapperFile.dat";
string atf = "AddressTableMap.dat";
string busAdapter = "CAEN";
gtCrate_->initializeCrate(mmf, atf, busAdapter);

}
catch( CellException& e) {

string msg;
msg = "Errormessage";

XCEPT_RETHROW(CellException, msg, e);
}

TcsBoard* board;
try {

board = gtCrate_->getBoardFromSerialNumber("TCS");
}
catch ( CellException& e) {

string msg;
msg = "Errormessage"’;
XCEPT_RETHROW(CellException, msg, e);

41



GTBase - An Extension to the GT Libraries Software Integration

}

uint32_t chipId;
try {

chipId = board->getTCSChipId();
}
catch ( HardwareAccessException& e) {

string msg;
msg = "Errormessage";
XCEPT_RETHROW(CellException, msg, e);

}

The CellGTCrate object is created and initialized in the constructor of the Cell-
Context. The parameters of the initialization are hard coded as they should not change.
The type of busadapter that should be used for hardware access is defined through a
compiler flag. This way it is ensured that the user can only work with the busadapters
that are present as libraries on the machine the GT Cell has been compiled on.

5.1.3 GtCommand
The GtCommand class is one of the base classes of all Commands for the GT. Whereas
the base class CellCommand makes a Command part of the TS framework, the
GtCommand class implements some methods that are frequently used in GT Com-
mands. Mostly these are checks if number parameters are in a certain range or string
parameters are part of a certain vector of possible strings. Any code that could be used
in more GT Commands should go into this class.

5.2 GTBase - An Extension to the GT Libraries
Procedures like the initialization of the GT crate or the configuration operation have to
work dynamically. In this context this means, that no matter which boards are in the
crate or intended to be configured, certain routines have to be executed. This requires
a common base class for all software objects referring to a GT board. The GtBoard
class has been implemented therefore, providing a set of methods to load memories,
firmware or a set of registers in a generic way. Errors that occur in the GtBoard class
like caught exceptions from the HAL are rethrown as GtExceptions by the time
being. If a more complete set of exceptions should be required those should inherit
from the GtException class.

Another part of the GTBase library is the GtHttpDownloader class that facili-
tates easy download of files over HTTP [47]. This functionality is used frequently for
downloading firmware and memory files that are located in the GT afs-repository that
will be described in the appendix ( A.2).

5.3 Global Trigger Command Interface
As described in 4.3.1 the Global Trigger Command Interface will be utilized by the
Global Trigger Control Panels and by the TS Central Cell to access the hardware.
According to the needs of these Control Panels the interface has been implemented,
focusing on the resources of the Global Trigger that have to be accessed frequently and
by non trigger experts. Those are the Central Trigger Control (TCS), the Final Decision
Logic (FDL) and partly the Global Trigger Logic (GTL). Furthermore there are some

42



Global Trigger Command Interface Software Integration

Commands that are called from inside the Configuration Operation. In this chapter an
overview of the functionality of the Command Interface is given.

5.3.1 Command Customization
To make new commands available for the GT Cell the following steps have to be un-
dertaken:

1. The GT libraries are checked if they offer methods appropriate for the requested
Command. If this is not the case the responsible has to implement new methods.

2. A set of parameters for the command is chosen with the person that would like
to make use of the Command.

3. The skeleton for a CellCommand descendant is downloaded and adapted. The
methods init() ( 5.1), code() ( 5.3) and preCondition() ( 5.2) are
implemented as described in the TS User Manual [42]

4. The source file of the new Command is added to the Makefile and compiled into
the GT Cell library.

5. The Command is added through a template function in the Cell.cc ( 5.4), to make
it available during runtime.

6. The Command can now be created and executed by the TS generic AJAX GUI.

The code snippets below illustrate the above described procedure.

Listing 5.1: Defining parameters in the init() method.

void ExampleCommand::init()
{
paramList_["Item"] = new xdata::String();
paramList_["Value"] = new xdata::UnsignedInteger();
paramList_["Serial Nr."] = new xdata::String();

}

Listing 5.2: Implementing the preCondition() method.

bool ExampleCommand::preCondition()
{
CellContext* gtCellContext = dynamic_cast<CellContext*>(context_);

if( !gtCellContext->getGtCrate() )
{
getWarning()->setMessage ("Crate is not initialized.");
getWarning()->setLevel(CellWarning::ERROR);

return false;
}

string serNr = paramList_["Serial Nr."]->toString()

43



Global Trigger Command Interface Software Integration

else if(!gtCellContext->getGtCrate()->checkBoardInitialized(serNr))
{
getWarning()->setMessage ("Requested Board not initialized." );
getWarning()->setLevel(CellWarning::ERROR);

return false;
}

else return true;
}

Listing 5.3: Implementing the code() method.

bool ExampleCommand::code()
{
CellContext* gtContext = dynamic_cast<CellContext*>(context_);
CellGTCrate* crate = gtCellContext->getGtCrate();

xdata::String* pSerNr;
xdata::String* pItem;
xdata::UnsignedInteger* pVal;

pSerNr = dynamic_cast<xdata::String*>(paramList_["Serial Nr."]);
pItem = dynamic_cast<xdata::String*>(paramList_["Item"]);
pVal= dynamic_cast<xdata::UnsignedInteger*>(paramList_["Value"]);

string sItem = pItem->toString();
string sSerNr = pSerNr->toString();
unsigned int iVal = *(pVal);

try
{
GtBoard* pGtBoard = crate->getBoardFromSerialNumber(sSerNr);

gtBoard->write(sItem, iVal );
}
catch ( CellException& e)
{
string msg = e.what();

getWarning()->setMessage ( getWarning()->getMessage() + msg);
getWarning()->setLevel(CellWarning::ERROR);
}

ostringstream result;

result
<< "Board Serial: " << sSernNr << endl;
<< "Item: " << pItem << endl;
<< "Value: " << iVal << endl;

this->payload_ = new xdata::String(result.str());
}
}

44



Global Trigger Command Interface Software Integration

Listing 5.4: Adding a new Command in the Cell.cc.

void Cell::init()
{
addCommand<ExampleCommand>();

}

5.3.2 General Command Issues
Naming Conventions and Return Values

Due to the large number of Commands required to allow fine grained control of the
GT hardware through the SOAP interface of the GT Cell the following guidelines have
been established to keep the implementation transparent:

• The class-names of GT Commands start with the prefix ”Gt”.

• If is implemented for a certain GT module another prefix according to the type
of the board is added ( ”Fdl”, ”Tcs”, ”Gtfe”,...).

• Commands that are used to read out data from a module (”getters”) have a return
value of the appropriate datatype. (xdata::UnsignedShort, xdata::UnsignedLong,
xdata::String, xdata::Boolean, ...)

• Commands that are used to write data to a module (”setters”) have a return value
of xdata::String containing relevant information concerning the write access.

Commom Command Errors

Common for all GT Commands in the preCondition() method is a check that
ensures that the CellGTCrate object is initialized. Commands that are related to
a certain board check if the board object has been initialized 5.5. Boards that are
plugged into the crate should normally be initialized automatically at the startup of
the Cell application. The Command GtCommonGetCrateStatus can be used to check
manually, which board objects have been instantiated by the CellGTCrate class.

Listing 5.5: Checks done before the execution of every GT Command.

bool ExampleCommand::preCondition()
{
CellContext* gtContext = dynamic\_cast<CellContext*>(context\_);

if(!gtCellContext->getGtCrate()) {
getWarning()->setMessage ("Crate is not initialized.
Use command InitCrate for initialization
and execute this command again.");
getWarning()->setLevel(CellWarning::ERROR);

return false;
}

else if (!gtCellContext->getGtCrate()->getTCS()) {
getWarning()->setMessage ( "TCS Board is not initialized.
Check if it is in the crate.");

45



Global Trigger Command Interface Software Integration

getWarning()->setLevel(CellWarning::ERROR);

return false;
}

else return true;
}

All Other checks in GT Commands are related to parameters given to the Command
and inform the user about the range of valid values for the parameter. In case of the
GT Control Panels addressing the SOAP interface of the GT Cell it may be assured
by a GUI widget that no invalid values are passed as parameters. But as the SOAP
interface is exposed to any other controller as well, parameters have to be checked for
consistency as well on this level.

5.3.3 FDL Commands
The FDL is one of the GT modules that is required to be accessible during the config-
uration of the Trigger System 3.2.2. Being able to manipulate the Final-Or and Veto
circuits of the FDL is essential to partitionate the trigger. After the configuration of
the trigger it is necessary to observe the L1A-rates for each FDL-slice and optionally
apply a prescaler to a certain algorithm or technical trigger.

Table 5.1: Description of Parameters used in FDL Commands

NAME TYPE VALID VALUES

Number of
Slice

xdata::UnsignedShort The Number of FDL slices depends on the
firmware. Currently there are 192 slices foreseen
on the FDL. Valid values for the parameter are
therefore [0;191].

Number of
DAQ-Partition

xdata::UnsignedShort The Number of DAQ-partitions is 8. Therefore
valid values are between [0;7].

Prescale Fac-
tor

xdata::UnsignedLong Value of the prescaler for a slice that is deter-
mined by a 16 bit register. Range of valid values
is [0;65535].

Update Step
Size

xdata::UnsignedLong Value of the update step size is determined by a
16 bit register. Range of valid values is [0;65535].

Bit for Refresh
Rate

xdata::UnsignedShort Each of 8 bits refer to a different multiplicity that
is defined in the firmware of the FDL. Valid values
are between [0;7].

SetFinOrMask:

Description: Each Slice can be added to the Final-OR of one or more
DAQ-partitions ( 2.4). This Command adds or removes a
specific Slice to or from a DAQ-partition’s Final-Or circuit
according to the ”Enable for FinOR” parameter.

Parameters: Number of Slice
Number of DAQ-Partition
Enable for FinOR

Return Value: Slice number: ”Number of Slice” ”enabled/disabled” for Fi-
nOR in DAQ partition number: ”Number of DAQ-Partition”

46



Global Trigger Command Interface Software Integration

GetFinOrMask:

Description: Reads out whether a Slice is currently part of the Final-OR
of a certain DAQ-partition

Parameters: Number of Slice
Number of DAQ-Partition

Return Value: xdata::Boolean

SetVetoMask:

Description: Each Slice can suppress a L1A for one or more DAQ-
partitions 2.4. This Command enables or disables that Veto-
mechanism for a given Slice and DAQ-partition.

Parameters: Number of Slice
Number of DAQ-Partition
Enable for Veto

Return Value: Slice number: ”Number of Slice” ”enabled/disabled” as
Veto for DAQ partition number: ”Number of DAQ-
Partition”

GetVetoMask:

Description: The getter to the above described Command. Reads if a cer-
tain Slice is a currently defined as Veto for a certain DAQ-
partition.

Parameters: Number of Slice
Number of DAQ-Partition

Return Value: xdata::Boolean

SetPrescaleFactor:

Description: To control L1A rates that are too high, a prescale factor for
each Slice can be applied. This factor can be set individually
for each Slice with this Command. Setting the factor to 0 or
1 does no prescaling.

Parameters: Number of Slice
Prescale Factor

Return Value: Prescale Factor of Slice Number: ”Number of Slice” set to:
”Prescale Factor”

GetPrescaleFactor:

Description: Reads out the Prescale Factor for a certain FDL Slice.

Parameters: Number of Slice

Return Value: xdata::UnsignedLong

47



Global Trigger Command Interface Software Integration

ReadRateCounter:

Description: Reads out the rate counter for a certain slice.

Parameters: Number of Slice

Return Value: xdata::UnsignedLong

SetUpdateStepSize:

Description: Sets the common step-size for the reset period of all rate
counters.

Parameters: Update Step Size

Return Value: Update Step Size set to: ”Update Step Size”

SetUpdatePeriod:

Description: Sets the update-period of the rate-counter for a certain Slice,
based on the common update step-size.The update-period is
chosen by setting a bit of registers. Each bit corresponds to a
factor the common update-period is multiplied with ( [27]).
An array in the code of the command maps bitnumbers to
multiplicities.

Parameters: Number of Slice
Bit for Refresh Rate

Return Value: Update Period of Slice Number: ”Number of Slice” set to:
”multiplicity”

GetNumberOfAlgos:

Description: Depending on the version of the firmware of the FDL chip,
the number of algos may differ. This Command gives back
the number of algorithms currently implemented.

Parameters:

Return Value: xdata::UnsignedShort

GetNumberOfAlgos:

Description: Depending on the version of the firmware of the FDL chip,
the number of Technical Triggers (TTs) may differ. This
Command gives back the number of TTs currently imple-
mented.

Parameters:

Return Value: xdata::UnsignedShort

48



Global Trigger Command Interface Software Integration

5.3.4 TCS Commands
The Central Trigger Control (TCS) controls the distribution of L1As 2.5 and there-
fore plays a crucial role with respect to Data Acquisition (DAQ) and Readout of the
trigger components of CMS. The Global Trigger Control Panels 4.2 will provide very
fine grained control over the TCS through the TCS Command Interface of the GT
Cell. Assigning TTC-partitions to DAQ-partitions, assigning Time Slots, controlling
the Random Trigger Generator, generation of fast and synchronisation signals and load-
ing predefined Bunch Crossing Tables separately for each DAQ partition are tasks the
Command Interface has to cope with. Commands of the TCS can be grouped into Com-
mands affecting more than one Partition Controller (PTC) and PTC dependent com-
mands. The first group of Commands therefore contains the prefix ”Master” whereas
Commands of the second group start with ”Ptc”. The second group of Commands has
the number of the PTC as a common parameter.

Table 5.2: Description of Parameters used in TCS Commands

NAME TYPE VALID VALUES

DAQ Partition xdata::UnsignedShort The Number of DAQ-partitions is 8. Therefore
valid values are between [0;7].

Number of
PTC

xdata::UnsignedShort For each DAQ-partition there is a PTC imple-
mented on the TCS chip. Therefore valid values
are between [0;7].

Detector Parti-
tion

xdata::UnsignedShort This parameter refers to one of 32 TTC partitions.
Valid values are between [0;31].

Time Slot xdata::UnsignedShort The Time Slot for a PTC is calculated from a 8 bit
value. Valid values are between [0;255].

Random Trig-
ger Frequency

xdata::UnsignedLong The Random Frequency is calculated from a
16 bit register value. Valid values are between
[0;65535].

MasterSetAssignPart:

Description: This Command assigns a TTC-partition (Detector-Partition)
to a DAQ-partition. In case the TTC-partition is already part
of a DAQ-partition it will be assigned to the new partition
anyway.

Parameters: Detector Partition
DAQ Partition

Return Value: Detector Partition: ”Detector Partition” Assigned to DAQ-
Partition: ”DAQ Partition”

MasterGetAssignPart:

Description: Returns the number of the DAQ-partition a certain TTC-
partition is part of.

Parameters: Detector Partition

Return Value: xdata::UnsignedShort

49



Global Trigger Command Interface Software Integration

MasterSetAssignPartEn:

Description: This Command enables or disables a TTC-partition. Before
a TTC-partition can be assigned to a DAQ-partition it has to
be enabled.

Parameters: Detector Partition
Enable Partition

Return Value: Detector Partition enabled/disabled

MasterGetAssignPartEn:

Description: Reads out if a certain TTC-partition is enabled or not.

Parameters: Detector Partition
Return Value: xdata::Boolean

MasterStartTimeSlotGen:

Description: Depending on the registers that define the time slots for every
DAQ-partition the time slot generator switches between the
DAQ-partitions in round robin mode. This command starts
the time slot generator.

Parameters:
Return Value: Time Slot Generator Started.

PtcSetTimeSlot:

Description: Sets the time slot for a certain Partition Controller (PTC)

Parameters: Number of PTC
Time Slot

Return Value: Time Slot for PTC ”Number of PTC” set to ”Time Slot”

PtcGetTimeSlot:

Description: Returns the current Time Slot assignment for a certain PTC.

Parameters: Number of PTC

Return Value: xdata::UnsignedShort

PtcStartRndTrigger:

Description: Starts the random trigger generator for a specified PTC.

Parameters: Number of PTC

Return Value: Random trigger generator started for DAQ partition con-
troller ”Number of PTC”

50



Global Trigger Command Interface Software Integration

PtcStopRndTrigger:

Description: Stops the random trigger generator for a specified PTC.

Parameters: Number of PTC

Return Value: Random trigger generator stopped for DAQ partition con-
troller ”Number of PTC”

PtcRndFrequency:

Description: Sets the frequency of generated Triggers by the Random
Trigger generator for a specified PTC.

Parameters: Number of PTC
Random Trigger Frequency

Return Value: Random Frequency of Partition Group: ”Number of PTC”
set to: "Random Trigger Frequency"

PtcGetRndFrequency:

Description: Reads out the frequency of the Random Trigger generator for
a PTC.

Parameters: Number of PTC

Return Value: xdata::UnsignedLong

PtcStartRun:

Description: Starts a run for a Partition Controller (PTC), by first resetting
and starting the PTC and then sending a start run command
pulse.

Parameters: Number of PTC

Return Value: Run started for PTC: ”Number of PTC”

PtcStopRun:

Description: Stops a run for a PTC.

Parameters: Number of PTC

Return Value: Run stopped for PTC: ”Number of PTC”

PtcCalibCycle

Description: Starts a calibration cycle for the specified PTC.

Parameters: Number of PTC

Return Value: Calibration cycle for DAQ-partition: ”Number of PTC”
started.

51



Global Trigger Command Interface Software Integration

PtcResync:

Description: Manually starts a rescynchronisation procedure for the spec-
ified PTC.

Parameters: Number of PTC

Return Value: Resynchronization procedure for DAQ-Partition "Number
of PTC" initialized.

PtcTracedEvent:

Description: Manually sends a traced event for a specified PTC.

Parameters: Number of PTC

Return Value: Traced event initiated for DAQ-Partition "Number of
PTC".

PtcHwReset:

Description: Manually sends a hardware reset to the PTC.

Parameters: Number of PTC

Return Value: Hardware for DAQ-Partition: ”Number of PTC” has been
reset.

PtcResetPtc:

Description: Resets the state machine of the PTC.

Parameters: Number of PTC

Return Value: PTC: ”Number of PTC” reset.

52



Global Trigger Command Interface Software Integration

5.3.5 Other Commands
Several Commands not specifically implemented for a certain type of GT module but
rather used during the initialization, for debugging or for filling the database with reg-
ister data. Those will be described in this section.

Table 5.3: Description of Parameters used in non-board-specific Commands

NAME TYPE VALID VALUES

Item xdata::String Refers to a register item, defined in the HAL Ad-
dressTable file for a module. If the specified item
is not found the HAL will throw an Exception that
is caught in the Command.

Offset xdata::UnsignedInteger The Offset to the register address specified by
an Item parameter according to the HAL Ad-
dressTable file. In case the Offset gets too large,
a HAL Exception caught by the Command will
indicate that.

Board Serial
Number

xdata::String Only Serial Numbers of GT modules that are ini-
tialized will be accepted. The ”GetCrateStatus”
Command returns a list of boards in the crate.

Bus Adapter xdata::String The GT Cell only accepts busadapters of type
”DUMMY” and ”CAEN”.

Module Mapper
File

xdata::String The full path to the HAL ModuleMapper file has
to be specified. If the file is not found a HAL ex-
ception caught by the Command will inform the
user about that.

AddressTableMap
File

xdata::String The full path to the HAL AddressTableMap file
has to be specified. If the file is not found a HAL
exception caught by the Command will inform
the user about that.

GtCommonRead:

Description: To read out register values from any GT module in the crate,
which is useful for debugging, this Command was writ-
ten. When correctly using the Offset parameter also lines
of memories can be read out.

Parameters: Item
Offset
Board Serial Number

Return Value: xdata::UnsignedLong

53



Global Trigger Command Interface Software Integration

GtCommonWrite:

Description: Generic write access for all GT modules is provided by this
Command.

Parameters: Item
Value
Offset
Board Serial Number

Return Value: Register Value for Item: ”Item” set to: ”Value” (off-
set=”Offset” ) for board with serial number: ”Board Serial
Number”

GtInitCrate:

Description: The initialization of the GT crate ( 5.1.2) is done during
startup of the Cell application. If the creation of the crate ob-
ject did not work correctly or if another type of bus adapter
or different HAL files should be used this Command is used.
Only if the ”Reinitialize Crate” parameter is set to true a
new CellGTCrate object is instantiated and registered to
the CellContextClass.

Parameters: Module Mapper File
AddressTableMap File
Bus Adapter
Reinitialize Crate

Return Value: The GT crate has been initialized with ”Bus Adapter” bu-
sadapter.
Board with serial nr.: ”Board1 Serial Number” in Slot Nr.
”Board1 Slot Number”
Board with serial nr.: ”Board2 Serial Number” in Slot Nr.
”Board1 Slot Number”
.
.

54



Global Trigger Configuration Database Software Integration

GtGetCrateStatus:

Description: The crate object dynamically creates associative maps dur-
ing its initialization where information about modules in the
crate is put. This information can be read out using this Com-
mand.

Parameters:

Return Value: The GT crate has been initialized with ”Bus Adapter” bu-
sadapter.
Board with serial nr.: ”Board1 Serial Number” in Slot Nr.
”Board1 Slot Number”
Board with serial nr.: ”Board2 Serial Number” in Slot Nr.
”Board1 Slot Number”
.
.

GtInsertBoardRegistersIntoDB:

Description: This Command reads out all registers for a specified GT
module that are Configuration Database (ConfDb) ( 5.4.3)
registers and inserts a row of values with a Primary Key and
optionally a description into the according database table.

Parameters: Board Serial Number
Primary Key
Description

Return Value: Register Values have been read from the hardware and in-
serted into table ”Name of Register Table” with Primary
Key: ”Primary Key”

5.4 Global Trigger Configuration Database

5.4.1 Introduction
Access to the Configuration Database (ConfDB) is a very important and useful feature
during the testing period and is essential during the physics data taking runs of the LHC
to be able to trace back how the hardware had been configured for a certain set of data.

As the name implies the ConfDB is meant to store data to configure the GT hard-
ware. Configuring the hardware in this contents means to set registers, check and
possibly load firmware to the FPGAs, load memories and anything else that is required
to put the hardware in a well defined working state. There will be many different con-
figurations for the Global Trigger (GT) hardware depending on what the purpose the
global trigger should be configured for. A simple selftesting procedure 5.5, a more
complex interconnection test involving several other systems like the GMT or the GCT
or a physics run. To set up the GT hardware for such purposes the GT Standalone
Applications will be used offering a more fine grained control of the hardware. After
the setup is complete and the hardware in a working state, the GT Cell will be used
to store the information in the ConfDB that is needed to achieve the same state at any

55



Global Trigger Configuration Database Software Integration

other time.

5.4.2 General Database Concepts
One very common concept for design of database schemas is the Relational Model. In
this model the the data is stored in multiple tables that are linked by keys. A key in this
contents is collection of one or more columns in one table whose values match cor-
responding columns in other tables. This concept helps to make the database schema
easier to understand, more flexible and easier to maintain.

TABLE 1

PRIMARY KEY
DATA 1
DATA 2

FOREIGN KEY 1
FOREIGN KEY 2

.

.

.

TABLE 2

PRIMARY KEY
DATA 3
DATA 4

FOREIGN KEY 3

TABLE 3

PRIMARY KEY
DATA 5
DATA 6

.

.

TABLE 3

PRIMARY KEY
DATA 7
DATA 8

.

.

.

Figure 5.1: Simple example of a Relational Database Model schema

Fig 5.1 shows conceptually the layout of a relational database schema. Every table
has one unique identifier that is called Primary Key (PK). Additionally each table can
hold some data and one or more Foreign Keys (FK) that are referencing other tables
where this value is a Primary Key. This procedure can repeat as often as necessary to
group the data into intuitive and understandable structure. How this was done in case
of the Global Trigger Configuration Database is described in the next section.

5.4.3 Global Trigger Database Implementation
When looking at the design process of the GT ConfDB the following aspects should be
mentioned. Neither the developers of the database schema nor people working with the
database in the future are or will necessarily be database experts, but rather physicists.
Moreover people working with the database will change frequently over the working
period of the experiment. Therefore the above described relational design model 5.4.2
was chosen. This way the schema is kept simple and intuitive as it somehow reflects
the hardware. Another strength of the concept is the easy extensibility that has already
proved itself in the process of development.

Figure 5.2 shows how the relational model was applied in case of the schema
for the GT ConfDB. The top level table GT CONFIG contains links to the BOARD-
CONFIG tables. For each board in the crate that should be configured there can be

a foreign key (FK) that is associated with a primary key (PK) in the corresponding
BOARD CONFIG table. To avoid storage of redundant data all PSB and GTL keys
point to just one table. The BOARD CONFIG tables contain links to resources of
the board that should be configured during a configuration. Those resources are the
firmware that can be configured using JTAG over VME, memories that are loaded
from files, HAL sequencer files and register values. Loading new firmware will play

56



Global Trigger Operations Software Integration

CRATE_CONFIG BOARD_CONFIG

MEMORY_CONFIG

REGISTER_CONFIG

FIRMWARE_CONFIG

SEQUENCER_FILE_CONFIG

Figure 5.2: The conceptual design of the GT ConfDB.

a less important role for most of the boards apart from the GTL where the new trigger
menu is loaded as firmware for the FPGAs frequently. Loading memories is especially
important for the TCS, where BC tables are implemented as memories for the Parti-
tion Controllers (PTCs) 2.5. For Interconnection Tests (ITs) it might be useful to load
SIM/SPY memories on the PSBs or the GTL from the ConfDb as well. The main usage
for HAL sequencer files will be, to send a sequence command pulses that initiate cer-
tain processes on a GT module. This is necessary because registers that are stored for
each board in the ConfDB have to be read- and writable. As described 5.4.1 there has
to be the possibility to read out a register configuration from the hardware and write it
to the database.

Figure 5.3 shows the full contents of the GT CONFIG table and the names of the
tables it is linked to. For each board a subset of tables like in 5.4 exists. Depending
on the number of memories and JTAG chains to be loaded per board the tables differ.
Also the BOARD REGISTERS table that contains the names of registers that should
be loaded is different for every board. Only the rightmost four tables of each board
contain real configuration data that is values of registers in case of the register tables
or links to files on the AFS-repository in case of firmware, memory or sequencer files.
In case of the TCS there is no firmware branch because it is not possible to load new
firmware over VME for this module.

5.5 Global Trigger Operations

5.5.1 Global Trigger Configuration
The GT Configuration Operation and the GT ConfDb schema were designed to flexibly
cope with a variety of different configuration options for the trigger hardware. The
Configuration Operation relies on the consistency of the hardware with the chosen
ConfDB-key. Figure 5.5 illustrates how the GT Configuration Operation attempts to
configure the hardware depending on the state of the hardware and the ConfDB data
according to a key. If pieces of the hardware should not be configured during a certain
configuration, the FKs referencing the configuration data should be left empty.

1. A row of the GT CONFIG table is retrieved from the database with the key that is
given as a parameter to the Operation. If a certain board should not be configured

57



Global Trigger Operations Software Integration

 GT_CONFIG

GT_CONFIG_PK

FDL_CONFIG_FK

GTFE_CONFIG_FK

GTL1_CONFIG_FK

GTL2_CONFIG_FK

PSB1_CONFIG_FK

PSB2_CONFIG_FK

PSB3_CONFIG_FK

PSB4_CONFIG_FK

PSB5_CONFIG_FK

PSB6_CONFIG_FK

PSBTT_CONFIG_FK

TCS_CONFIG_FK

TIM_CONFIG_FK

FDL_CONFIG

GTFE_CONFIG

GTL_CONFIG

PSB_CONFIG

TCS_CONFIG

TIM_CONFIG

Figure 5.3: The GT CONFIG table references the different board tables.

 BOARD_CONFIG

BOARD_CONFIG_PK

BOARD_MEMORIES_FK

BOARD_FIRMWARE_FK

BOARD_REGISTERS_FK

BOARD_SEQUENCER_FILES_FK

 BOARD_FIRMWARE

BOARD_FIRMWARE_PK

ALTERA_FK

XILINX_FK
 BOARD_REGISTERS

BOARD_REGISTERS_P
K

<REGISTER VALUES>

 MEMORIES

MEMORIES_PK

<MEMORY FILE LINK
DATA>

 BOARD_MEMORIES

BOARD_MEMORIES_PK

MEMORY_1_FK

MEMORY_N_FK  FIRMWARE

FIRMWARE_PK

<FIRMWARE FILE LINK
DATA>

 SEQUENCER_FILES

SEQUENCER_FILES_PK

<SEQUENCER FILE LINK
DATA>

Figure 5.4: Each BOARD CONFIG table references a set of sub tables.

at all, the according FK entry in the GT CONFIG table has to be left empty. If
there is no row with this PK the Configuration Operations is stopped with an
ERROR.

2. A loop over all boards that are defined in the CellGTCrate class is done.
Boards not found in the crate are logged.

3. For all boards that are initialized in the board it the BOARD FIRMWARE table
is retrieved. New firmware is attempted to be loaded for JTAG chains referenced

58



Global Trigger Operations Software Integration

in this table. New firmware is only loaded when the version numbers of the
current firmware does not match the firmware version of the configuration.

4. The same loop is done over all possible memories for a board, that are found in
the BOARD MEMORIES table. Empty links are omitted just like above.

5. The register table for each board is retrieved. If this table is empty because of a
missing link, a warning message is issued, because loading registers is essential
to put the hardware into a well defined state.

6. Finally a sequencer file is attempted to be downloaded for every board. This
sequencer file can be used to write any register for a board, whereas the registers
table of a board can only contain read and writable registers of a board.

7. The above procedure is executed for every board in the crate, before the operation
ends successfully.

Retrieve
GT_CONFIG

table

Go through all GT
boards

Board is
in Crate

YES

Get  Board
Firmware

Config

Get
Memories

Config

Load new Firmware

Load Registers
Get

Registers
Config

Get
Sequencer
File Config

Load Sequencer FileLog INFO

Log INFO

Log INFO NO

YES

YES

YES

NO

YES

START
Configuration

STOP Configuration:
WRONG KEYNO

STOP Configuration:
SUCCESS

Go through allJTAG
chainsYES

Get
Firmware

Table

Log INFO

NO

Load MemoryGo through all
MemoriesYES

Get
Memory
Table

YES

NO

Log INFO

NO

Log INFO NO

Log
WARNING NO

Figure 5.5: Flowchart of the GT Configuration Operation.

The Configuration Operation of the GT Cell involves many components and might
therefore need some more explanation for people working with it in the future. This

59



Global Trigger Operations Software Integration

following sections will therefore explain details of the implementation and provide
some pieces of code for better understanding.

Database Access using Xhannels and Tstore

To make use of TStore 3.1.3 to retrieve data from the ConfDB one or more views have
to be defined in the configuration file of the XDAQ-executable TStore belongs to. For
the GT Configuration Operation one view A.2 with two queries was defined. The first
view is used to retrieve a row from one table uniquely identified by the primary key
column. In step 1 of the GT Configuration Operation a row of the GT CONFIG table
is read from the database A.4.

• The Xhannel connects to the specified view, passing the password for the GT
ConfDb.

• A request is created by the Xhannel and a map of parameters matching those in
the used Tstore query A.2 is created.

• The name of the query that should be used is specified and given to the request
like the parameters are.

• The request is sent to the TStore application through the Xhannel.

• The reply of the query contains a xdata::Table with a row of FKs.

Steps 3,4,5 and 6 issue the second type of query ”getRowFromChildTableFor-
Board” to determine whether firmware, memories, registers or a HAL sequencer file
should be loaded or not. The firmware and memory branch of the configuration of a
GT board differ from the register and sequencer branch, as there may be more than
one firmware or memory file to be loaded per board. Therefore a loop is done over all
columns of the retrieved board firmware or memories table and another simple query to
retrieve the information from where to download the according file is done. The code
snippet in the appendix A.4.2 shows the code of the firmware branch in the Configu-
ration Operation.

• The Xhannel connects to the specified view, passing the password of the GT
ConfDb.

• A request is created by the Xhannel. The parameter map is created due to spec-
ified configuration branch, board serial number, and configuration key for the
board.

• A query of type ”getRowFromChildTableForBoard” is sent. In case of the firmware
branch the reply is the BOARD FIRMWARE table.

• A loop over all entries of the table is done. If the entry is a FK and not empty,
another simple query is sent to retrieve information to download the file.

• A pointer to the board that should be configured is used to call the method
loadJtagChainFromDb that downloads the firmware file according to the
information in the table and attempts to load the firmware file calling methods of
the GT libraries of the specific board.

60



Global Trigger Operations Software Integration

Downloading files over HTTP

Due to performance issues neither binary files nor ASCII files should be stored in the
database. In case of the GT and GMT it was therefore decided to make files required
for the configuration of the system available over HTTP. Trigger experts can upload
files over a CERN AFS account and make entries in the database linking to them. It is
planned to keep a local copy of the whole AFS repository to be able to work if AFS is
not available. The class checks the local files of the AFS repository. If it does not find
the requested file there it downloads the file to a temporary file and returns the filename
that can now be used by other methods A.4.3.

61



Appendix A

Appendix

62



Global Trigger ConfDB Tables Appendix

A.1 Global Trigger ConfDB Tables
The following naming conventions for tables and column names have been established:

• All table names as well as names of PK and FK columns contain only upper case
letters. Names consisting of more words use underscores as word separating
character.

• PK have the same name like the table with the suffix ”PK”.

• FK have the same name like the table they are referencing with the suffix ”FK”.

A.1.1 Main Table

Table Definition of the GT Main Table:

NAME TYPE REFERENCED
TABLE

TABLE GT CONFIG

PRIMARY KEY GT CONFIG PK VARCHAR2(256)

FOREIGN KEY FDL CONFIG FK VARCHAR2(256) FDL CONFIG
GTL1 CONFIG FK VARCHAR2(256) GTL CONFIG
GTL2 CONFIG FK VARCHAR2(256) GTL CONFIG
TCS CONFIG FK VARCHAR2(256) TCS CONFIG
TIM CONFIG FK VARCHAR2(256) TIM CONFIG
PSB1 CONFIG FK VARCHAR2(256) PSB CONFIG
PSB2 CONFIG FK VARCHAR2(256) PSB CONFIG
PSB3 CONFIG FK VARCHAR2(256) PSB CONFIG
PSB4 CONFIG FK VARCHAR2(256) PSB CONFIG
PSB5 CONFIG FK VARCHAR2(256) PSB CONFIG
PSB6 CONFIG FK VARCHAR2(256) PSB CONFIG
PSBTT CONFIG FK VARCHAR2(256) PSB CONFIG

A.1.2 Board Tables

Table Definition of the FDL Board Table:

NAME TYPE REFERENCED
TABLE

TABLE FDL CONFIG

PRIMARY
KEY

FDL CONFIG PK VARCHAR2(256)

FOREIGN
KEY

FDL FIRMWARE FK VARCHAR2(256) FDL FIRMWARE

FDL MEMORIES FK VARCHAR2(256) FDL MEMORIES
FDL REGISTERS FK VARCHAR2(256) FDL REGISTERS
FDL SEQUENCER FILES FK VARCHAR2(256) SEQUENCER FILES

63



Global Trigger ConfDB Tables Appendix

Table Definition of the GTFE Board Table:

NAME TYPE REFERENCED
TABLE

TABLE GTFE CONFIG

PRIMARY
KEY

GTFE CONFIG PK VARCHAR2(256)

FOREIGN
KEY

GTFE FIRMWARE FK VARCHAR2(256) GTFE FIRMWARE

GTFE MEMORIES FK VARCHAR2(256) GTFE MEMORIES
GTFE REGISTERS FK VARCHAR2(256) GTFE REGISTERS
GTFE SEQUENCER FILES FK VARCHAR2(256) SEQUENCER FILES

Table Definition of the GTL Board Table:

NAME TYPE REFERENCED
TABLE

TABLE GTL CONFIG

PRIMARY
KEY

GTL CONFIG PK VARCHAR2(256)

FOREIGN
KEY

GTL FIRMWARE FK VARCHAR2(256) GTL FIRMWARE

GTL MEMORIES FK VARCHAR2(256) GTL MEMORIES
GTL REGISTERS FK VARCHAR2(256) GTL REGISTERS
GTL SEQUENCER FILES FK VARCHAR2(256) SEQUENCER FILES

Table Definition of the TIM Board Table:

NAME TYPE REFERENCED
TABLE

TABLE TIM CONFIG

PRIMARY
KEY

TIM CONFIG PK VARCHAR2(256)

FOREIGN
KEY

TIM FIRMWARE FK VARCHAR2(256) TIM FIRMWARE

TIM MEMORIES FK VARCHAR2(256) TIM MEMORIES
TIM REGISTERS FK VARCHAR2(256) TIM REGISTERS
TIM SEQUENCER FILES FK VARCHAR2(256) SEQUENCER FILES

Table Definition of the TCS Board Table:

NAME TYPE REFERENCED
TABLE

TABLE TCS CONFIG

PRIMARY
KEY

TCS CONFIG PK VARCHAR2(256)

FOREIGN
KEY

TCS MEMORIES FK VARCHAR2(256) TCS MEMORIES

TCS REGISTERS FK VARCHAR2(256) TCS REGISTERS
TCS SEQUENCER FILES FK VARCHAR2(256) SEQUENCER FILES

64



Global Trigger ConfDB Tables Appendix

A.1.3 Board Firmware Tables

Table Definition of the FDL Firmware Table:

NAME TYPE REFERENCED
TABLE

TABLE FDL FIRMWARE

PRIMARY
KEY

FDL FIRMWARE PK VARCHAR2(256)

FOREIGN
KEY

ALTERA FK VARCHAR2(256) FIRMWARE

XILINX FK VARCHAR2(256) FIRMWARE

Table Definition of the GTFE Firmware Table:

NAME TYPE REFERENCED
TABLE

TABLE GTFE FIRMWARE

PRIMARY
KEY

GTFE FIRMWARE PK VARCHAR2(256)

FOREIGN
KEY

ALTERA FK VARCHAR2(256) FIRMWARE

XILINX FK VARCHAR2(256) FIRMWARE

Table Definition of the GTL Firmware Table:

NAME TYPE REFERENCED
TABLE

TABLE GTL FIRMWARE

PRIMARY
KEY

GTL FIRMWARE PK VARCHAR2(256)

FOREIGN
KEY

ALTERA FK VARCHAR2(256) FIRMWARE

XILINX FK VARCHAR2(256) FIRMWARE

Table Definition of the PSB Firmware Table:

NAME TYPE REFERENCED
TABLE

TABLE PSB FIRMWARE

PRIMARY
KEY

PSB FIRMWARE PK VARCHAR2(256)

FOREIGN
KEY

ALTERA FK VARCHAR2(256) FIRMWARE

XILINX FK VARCHAR2(256) FIRMWARE

65



Global Trigger ConfDB Tables Appendix

Table Definition of the TIM Firmware Table:

NAME TYPE REFERENCED
TABLE

TABLE TIM FIRMWARE

PRIMARY
KEY

TIM FIRMWARE PK VARCHAR2(256)

FOREIGN
KEY

ALTERA FK VARCHAR2(256) FIRMWARE

XILINX FK VARCHAR2(256) FIRMWARE

A.1.4 Board Memories Tables
There is a memory table for each type of GT module, containing one Primary Key col-
umn of the type VARCHAR(256) and a Foreign Key (FK) column for every memory
on the board referencing the MEMORIES Table. The type of FK columns is VAR-
CHAR(256) too. For reasons of readability for Board Memories Tables containing
many FKs, only a list of the FK column names is given.

Table Definition of the GTFE Memories Table:

NAME TYPE REFERENCED
TABLE

TABLE GTFE MEMORIES

PRIMARY
KEY

GTFE MEMORIES PK VARCHAR2(256)

FOREIGN
KEY

SIM SPY MEMORY DAQ FK VARCHAR2(256) MEMORIES

Table Definition of the TIM Memories Table:

NAME TYPE REFERENCED
TABLE

TABLE TIM MEMORIES

PRIMARY
KEY

TIM MEMORIES PK VARCHAR2(256)

FOREIGN
KEY

BC TABLE FK VARCHAR2(256) MEMORIES

FDL Memories Table Foreign Key Columns:

TTRIG MEM b31 b0 FK TTRIG MEM b63 b32 FK ALGO MEM b31 b0 FK
ALGO MEM b63 b32 FK ALGO MEM b95 b64 FK ALGO MEM b127 b96 FK
ALGO MEM b159 b128 FK ALGO MEM b191 b160 FK

66



Global Trigger ConfDB Tables Appendix

PSB Memories Table Foreign Key Columns:

SIM SPY MEM0 FK SIM SPY MEM1 FK SIM SPY MEM2 FK
SIM SPY MEM3 FK SIM SPY MEM4 FK SIM SPY MEM5 FK
SIM SPY MEM6 FK SIM SPY MEM7 FK REFERENCE MEM FK
SIM SPY MEM8 FK

GTL Memories Table Foreign Key Columns:

SIM SPY MU12 L FK SIM SPY MU12 H FK SIM SPY MU34 L FK
SIM SPY MU34 H FK SIM SPY CA1 13 FK SIM SPY CA1 24 FK
SIM SPY CA2 13 FK SIM SPY CA2 24 FK SIM SPY CA3 13 FK
SIM SPY CA3 24 FK SIM SPY CA4 13 FK SIM SPY CA4 24 FK
SIM SPY CA5 13 FK SIM SPY CA5 24 FK SIM SPY CA6 13 FK
SIM SPY CA6 24 FK SIM SPY CA7 13 FK SIM SPY CA7 24 FK
SIM SPY CA8 13 FK SIM SPY CA8 24 FK SIM SPY CA9 13 FK
SIM SPY CA9 24 FK SIM SPY CA10 13 FK SIM SPY CA10 24 FK
DPRAM b15 b0 COND1 FK DPRAM b31 b16 COND1 FK DPRAM b47 b32 COND1 FK
DPRAM b63 b48 COND1 FK DPRAM b79 b64 COND1 FK DPRAM b95 b80 COND1 FK
DPRAM b15 b0 COND2 FK DPRAM b31 b16 COND2 FK DPRAM b47 b32 COND2 FK
DPRAM b63 b48 COND2 FK DPRAM b79 b64 COND2 FK DPRAM b95 b80 COND2 FK

TCS Memories Table Foreign Key Columns:

DAQ0 BC TABLE0 FK DAQ0 BC TABLE1 FK DAQ1 BC TABLE0 FK
DAQ1 BC TABLE1 FK DAQ2 BC TABLE0 FK DAQ2 BC TABLE1 FK
DAQ3 BC TABLE0 FK DAQ3 BC TABLE1 FK DAQ4 BC TABLE0 FK
DAQ4 BC TABLE1 FK DAQ5 BC TABLE0 FK DAQ5 BC TABLE1 FK
DAQ6 BC TABLE0 FK DAQ6 BC TABLE1 FK DAQ7 BC TABLE0 FK
DAQ7 BC TABLE1 FK

A.1.5 Board Register Tables
Board Register Tables contain follow the same naming conventions as the other tables.
The table names are composed of a board-type prefix followed by ”REGISTERS”
(FDL REGISTERS, GTFE REGISTERS, ...). Data types used for the columns are
VARCHAR2(256) for key columns and NUMBER(5) for 16 bit registers and NUM-
BER(10) for 32 bit registers currently only used on the FDL board. The column names
of columns containing register data matches the item names of registers in the HAL
AddressTable file. Below register column names for every board are listed.

FDL Register Column Names:

SLICE REG UPDATE PERIODE REG UPDATE STEP SIZE REG
GENERAL REG IDLE CODE REG BOARD ID LATENCY DEL REG
ORBIT LENGTH NO ALGO PRESCALER REG NO ALGO SETUP REG

67



Global Trigger ConfDB Tables Appendix

GTFE Register Column Names:

CMD REG TTC CTRL EN CHLINK
BCRES DEL REG

DAQ CMD REG

MAX BC NUMBER INI-
TIAL CRC

CMS HEADER 19 4 BOARD ID

SETUP VERS 15 0 SETUP VERS 31 16 SPY FULL LIMIT
TEST MASK1 TEST MASK2 TEST MASK3
SEL PHASE IGNORE ERR FOR TCS EVM BCRES DEL REG
EVM CMD REG EVM MAX BC NUMBER EVM INITIAL CRC
EVM CMS HEADER 19 4 EVM BOARD ID EVM SETUP VERS 15 0
EVM SETUP VERS 31 16 EVM SPY FULL LIMIT EVM TEST MASK1
EVM TEST MASK2 EVM TEST MASK3 EVM IGNORE ERR FOR TCS
BST UPDATE DELAY

GTL Register Column Names:

SEL REG COND1 SEL REG COND2 BCRES DEL REG REC1
MAX BC NUM REC1 CMD REG REC1 BCRES DEL REG REC2
MAX BC NUM REC2 CMD REG REC2 BCRES DEL REG REC3
MAX BC NUM REC3 CMD REG REC3 BX NR REG LOW COND1
BX NR REG HIGH COND1 BCNTRES DEL REG COND1 MODE REG COND1
BX NR REG LOW COND2 BX NR REG HIGH COND2 BCNTRES DEL REG COND2
MODE REG COND2 CMD ENPROG CMD NPROG
CMD INIT CMD REG

PSB Register Column Names:

CMD ENPROG CMD NPROG CMD INIT
CMD SERLINK0 SERLINK1 SERLINK2
EN TTIN CHAN REG0 CHAN REG1
CHAN REG2 CHAN REG3 CHAN REG4
CHAN REG5 CHAN REG6 CHAN REG7
CHAN DELAY0 CHAN DELAY1 CHAN DELAY2
CHAN DELAY3 CHAN DELAY4 CHAN DELAY5
CHAN DELAY6 CHAN DELAY7 LVDS DELAY0
LVDS DELAY1 LVDS DELAY2 LVDS DELAY3
LVDS DELAY4 LVDS DELAY5 LVDS DELAY6
LVDS DELAY7 LVDS DELAY8 LVDS DELAY9
LVDS DELAY10 LVDS DELAY11 LVDS DELAY12
LVDS DELAY13 LVDS DELAY14 LVDS DELAY15
BOARD ID BCRES DELAY LATENCY DELAY
ROP SETUP MAX BC NUMBER SEL PHASE3100
SEL PHASE6332 IDLE ID LOW IDLE ID HIGH
COMP DLY0 COMP DLY1 COMP DLY2
COMP DLY3 COMP DLY4 COMP DLY5
COMP DLY6 COMP DLY7 REF REG

68



Global Trigger ConfDB Tables Appendix

TCS Register Column Names:

DAQ0 CMD REG DAQ0 RANDOM FREQ DAQ0 RANDOM START VALUE
DAQ0 TRIG TYPE A DAQ0 TRIG TYPE B DAQ0 BGO PERIOD L
DAQ0 BGO PERIOD S DAQ0 ACTIVE TIME DAQ2 RANDOM START VALUE
DAQ1 RANDOM FREQ DAQ1 TRIG TYPE A DAQ1 RANDOM START VALUE
DAQ1 TRIG TYPE B DAQ1 BGO PERIOD L DAQ1 BGO PERIOD S
DAQ1 ACTIVE TIME DAQ2 CMD REG DAQ2 RANDOM FREQ
DAQ1 CMD REG DAQ2 TRIG TYPE A DAQ2 TRIG TYPE B
DAQ2 BGO PERIOD L DAQ2 BGO PERIOD S DAQ2 ACTIVE TIME
DAQ3 CMD REG DAQ3 RANDOM FREQ DAQ3 RANDOM START VALUE
DAQ3 TRIG TYPE A DAQ3 TRIG TYPE B DAQ3 BGO PERIOD L
DAQ3 BGO PERIOD S DAQ3 ACTIVE TIME DAQ5 RANDOM START VALUE
DAQ4 RANDOM FREQ DAQ4 TRIG TYPE A DAQ4 RANDOM START VALUE
DAQ4 TRIG TYPE B DAQ4 BGO PERIOD L DAQ4 BGO PERIOD S
DAQ4 ACTIVE TIME DAQ5 CMD REG DAQ5 RANDOM FREQ
DAQ4 CMD REG DAQ5 TRIG TYPE A DAQ5 TRIG TYPE B
DAQ5 BGO PERIOD L DAQ5 BGO PERIOD S DAQ5 ACTIVE TIME
DAQ6 CMD REG DAQ6 RANDOM FREQ DAQ6 RANDOM START VALUE
DAQ6 TRIG TYPE A DAQ6 TRIG TYPE B DAQ6 BGO PERIOD L
DAQ6 BGO PERIOD S DAQ6 ACTIVE TIME DAQ7 CMD REG
DAQ7 RANDOM FREQ DAQ7 TRIG TYPE A DAQ7 RANDOM START VALUE
DAQ7 TRIG TYPE B DAQ7 BGO PERIOD L DAQ7 BGO PERIOD S
DAQ7 ACTIVE TIME RULE4 DLY RULE4 LIM
RULE4 LOW LIM RULE3 DLYH RULE3 DLYL
RULE3 LIM RULE2 DLY RULE1 2
TIMESLOT0 TIMESLOT1 TIMESLOT2
TIMESLOT3 TIMESLOT4 TIMESLOT5
TIMESLOT6 TIMESLOT7 ASSIGN PART3 0
ASSIGN PART7 4 ASSIGN PART11 8 ASSIGN PART15 12
ASSIGN PART19 16 ASSIGN PART23 20 ASSIGN PART27 24
ASSIGN PART31 28 ASSIGN LUM GT ENIO ORBIT LENGTH 1
GAP LIMITH GAP LIMITL SETTLE TIME
RECOVER TIME MON CNTR PERIOD GT STATUS
TCSM CMD REG SIM GT STATUS SIM PARTS H
SIM PARTS L V STATUS2320 V STATUS1916
V STATUS1512 V STATUS1108 V STATUS0704
V STATUS0300 V DAQ STATUS0704 V DAQ STATUS0300

A.1.6 Firmware Table
The Firmware table contains a link to a firmware file in the AFS repository. In order
to allow the Configuration Operation to check if the loaded firmware is older than
the requested version information about the date, version and id are provided as well.
The number of the JTAG chain is needed to identify the JTAG chain on the module that
should be loaded. Finally the column OFFLINE INFO LINK may be used to reference
a file that contains information corresponding to the a firmware version (e.g. a certain
trigger menu) that can be needed for off line analysis.

69



Global Trigger AFS repository Appendix

Table Definition of the Firmware Table:

NAME TYPE

TABLE FIRMWARE

PRIMARY KEY FIRMWARE PK VARCHAR2(256)

DATA COLUMNS BASE URL VARCHAR2(512)
RELATIVE URL VARCHAR2(512)
FW ID NUMBER(10)
FW REVISION NUMBER(10)
FW DATE DATE
JTAG CHAIN NUMBER(1)
OFFLINE INFO LINK VARCHAR2(512)

A.1.7 Memories Table
The Memories table contains a link to a file in the AFS repository. Optionally a de-
scription can be added to each referenced file.

Table Definition of the Memories Table:

NAME TYPE

TABLE MEMORIES

PRIMARY KEY MEMORIES PK VARCHAR2(256)

DATA COLUMNS BASE URL VARCHAR2(512)
RELATIVE URL VARCHAR2(512)
DESCRIPTION VARCHAR2(512)

A.1.8 Sequencer File Table
HAL Sequencer files are referenced from this table.

Table Definition of the Sequencer File Table:

NAME TYPE

TABLE SEQUENCER FILES

PRIMARY KEY SEQUENCER FILES PK VARCHAR2(256)

DATA COLUMNS BASE URL VARCHAR2(512)
RELATIVE URL VARCHAR2(512)
DESCRIPTION VARCHAR2(512)

A.2 Global Trigger AFS repository
The Global Trigger group has agreed to store files related to the GT hardware like
firmware files, trigger menu files or memory files should be stored in a place, where
they would be accessible from Vienna as well as from CERN. Therefore an AFS repos-
itory accessible over HTTP was created to store those files. Figure A.1 shows the
directory structure of the repository.

70



File Formats Appendix

GTFEFDL

PSBGTL

GT

TCSTIM

memory_files

firmware

HAL_sequencer

memory_files

firmware

HAL_sequencer

bc_table_files

HAL_sequencer

firmware

memory_files

firmware

HAL_sequencer

memory_files

firmware

HAL_sequencer

memory_files

firmware

HAL_sequencer

Figure A.1: The directory structure of the GT AFS repository.

A.3 File Formats

A.3.1 XhannelListFile

Listing A.1: An Example of a Xhannel List File defining a Xhannel to TStore with the name
”DatabaseXhannel”.

<?xml version="1.0" encoding="UTF-8"?>

<cell_xhannel_list
xmlns=
"http://triggersupervisor.cern.ch/cell_xhannel_list"
xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://triggersupervisor.cern.ch/

cell_xhannel_list/cell_xhannel_list.xsd">

<xhannel>
<name>DatabaseXhannel</name>
<type>tstore</type>
<target instance="0"/>

</xhannel>

</cell_xhannel_list>

71



File Formats Appendix

A.3.2 GT Tstore Views

Listing A.2: Queries needed for the GT Configuration Operation.

<tstore:configuration
xmlns:tstore="urn:xdaq-tstore:1.0"
xmlns:sql="urn:tstore-view-SQL" >

<tstore:view
id="urn:tstore-view-SQL:gtTstoreView"
name="urn:tstore-view-SQL:gtTstoreView">

<tstore:connection dbname="omds" username="globaltrigger"/>

<sql:query name="getRowFromTable">

<sql:parameter name="TableNam">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="TablePkNam">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="Pk" bind="yes">
<![CDATA[]]>

</sql:parameter>
<![CDATA[select * from $TableNam where $TablePkNam = $Pk]]>

</sql:query>

<sql:query name="getRowFromChildTableForBoard">
<sql:parameter name="BoardTableNam">

<![CDATA[]]>
</sql:parameter>

<sql:parameter name="BoardTablePkNam">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="BoardTablePk" bind="yes">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="ChildTableNam">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="ChildTableFkNam">
<![CDATA[]]>

</sql:parameter>

<sql:parameter name="ChildTablePkNam">
<![CDATA[]]>

</sql:parameter>
<![CDATA[
select * from $ChildTableNam where $ChildTablePkNam=(
select $ChildTableFkNam from $BoardTableNam
where $BoardTablePkNam = $BoardTablePk )]]>

</sql:query>
</tstore:view>
</tstore:configuration>

72



File Formats Appendix

A.3.3 Bunch Crossing Tables
Bunch Crossing (BC) Tables are actually memories implemented on the TCS chip that
contain information for the PTC for a whole orbit. There are two BC-Tables per PTC
the exact functionality of which can be found in the TCS manual. Due to their length
of 4k it was decided not to load BC-Tables directly from the database, but rather store
a link to a file in the GT AFS repository. The files used are ASCII files with a rather
simple syntax:

• Comments are indicated by the ’#’ sign at the beginning of a line.

• The first column of the file indicates the number of the Bunch Crossing.

• The second column of the file gives the value for the according Bunch Crossing.

Listing A.3: Part of a BC-Table file.

#######
#Lines starting with the number sign
#are interpreted as comments
#######

0000 0000d00d
0001 0000ffff
0002 00001f3f
0003 00000000
0004 00000000
0005 00005667

A.3.4 Memory Files
Memory Files can be used for any kind of memory on a GT module and follow exactly
the same syntax as BC-Table files. A.3. The method loadMemoryFromFile in the
GtBoard class accepts the full path (including the filename) to a file following this
syntax and the name of the item associated with the start address of the memory in the
HAL AddressTableFile for the board and tries to load the memory with data from the
file. This feature is made use of in the Configuration Operation of the GT Cell.

73



Code Snippets Appendix

A.4 Code Snippets

A.4.1 Retrieving the GT CONFIG table

Listing A.4: Querying for a row of the main table.

xdata::Table* GtCommonConfiguration::getGtConfigTableRowFromKey(
CellXhannelTB* pXhannel,
std::string key ) throw(CellException) {

try {
pXhannel->connect("urn:tstore-view-SQL:gtTstoreView","passWord");
}
catch (xcept::Exception& e) {
ostringstream msg;
msg << "Errormessage" << endl;
getWarning()->setLevel(CellWarning::ERROR);
getWarning()->setMessage(msg.str());
XCEPT_RAISE(CellException,msg.str());
return 0;
}

CellXhannelRequestTB* req =
dynamic_cast<CellXhannelRequestTB*>(pXhannel->createRequest());

map<string,string> parameters;
parameters["TableNam"] = "GT_CONFIG";
parameters["TablePkNam"] = "GT_CONFIG_PK";
parameters["Pk"] = key;

try {
req->doGetQuery("getRowFrowTable", parameters);
pXhannel->send(req);
}
catch (xcept::Exception& e) {

...
}

xdata::Table *pGtConfigTable;

try {
pGtConfigTable= req->getQueryReply();

pXhannel->removeRequest(req);
}
catch(xcept::Exception& e) {

...
}
pXhannel->disconnect();
return pGtConfigTable;
}

74



Code Snippets Appendix

A.4.2 Firmware Configuration
The code below is simplified for better readability. Try-catch blocks and error messages
are omitted and names of variables are shortened.

Listing A.5: Firmware branch of the Configuration Operation.

void GtCommonConfiguration::configureBoardFirmware(
CellXhannelTB* pXhannelTB,
string serialNum,
string colValue)
throw (CellException) {

pXhannelTB->connect("urn:tstore-view-SQL:gtTstoreView","xray2000");
CellXhannelRequestTB* req =
dynamic_cast<CellXhannelRequestTB*>(pXhannelTB->createRequest());

map<string,string> parameters =
getParamMapForQueryNest("FIRMWARE", serialNum, colValue);

req->doGetQuery("getChildTableRowForBoard", parameters);
pXhannelTB->send(req);

xdata::Table *pBoardFwTable;
pBoardFwTable= req->getQueryReply();
pXhannelTB->removeRequest(req);
pXhannelTB->disconnect();

vector<string> cl = pBoardFwTable->getColumns();
for(vector<string>::iterator it(cl.begin());it!=cl.end();++it) {

string colNam = *it;
colVal = pBoardFwTable->getValueAt(0, *it)->toString();
if (colNam.find( "_PK", 0 )!=string::npos)
{//primary key column}
else if (colNam.find( "_FK", 0 )==string::npos)
{//no foreign key found}
else if ( colVal == "" )
{//empty foreign key}
else {
pXhannelTB->connect("urn:tstore-view-SQL:gtTstoreView","xray2000");
req =
dynamic_cast<CellXhannelRequestTB*>(pXhannelTB->createRequest());

parameters=getParamMapForQuerySmpl("Firmware", key)

req->doGetQuery("getTable", parameters);
pXhannelTB->send(req);

xdata::Table *pFwTable;
pFwTable= req->getQueryReply();
pXhannelTB->removeRequest(req);
pXhannelTB->disconnect();

CellGTCrate& gtCrate=
*(dynamic_cast<CellContext*>(context_)->getGtCrate());

GtBoard *pGtBoard=
gtCrate.getBoardFromSerialNumber(serialNum);

pGtBoard->loadJtagChainFromDb( pFirmwareTable);
}}}

75



Code Snippets Appendix

A.4.3 Using the GtHttpDownloader

Listing A.6: Downloading a file over HTTP.

string baseUrl =
"http://cms-gmt-afs.web.cern.ch/cms-gt-afs";
string relativeUrl =
"GT/GTL/firmware/cond1.svf";
string mirrorUrl =
"/opt/l1global_afs_mirror/";

GtHttpDownloader d;
string fwFilename;

baseUrl += relativeUrl;
mirrorUrl += relativeUrl;
fwFilename = d.download2fileMirrored( baseUrl, mirrorUrl);

pGtBoard->loadMemoryFromFile( fwFilename, itemName );

76



Bibliography

77



BIBLIOGRAPHY BIBLIOGRAPHY

[1] LHC Project Homepage, LHC - The Large Hadron Collider, http://lhc.
web.cern.ch/lhc/

[2] C. Rubbia, A few considerations of strategy on the future of CERN, Proc. of the
Large Hadron Collider Workshop, Aachen, Germany, Oct. 1990, CERN-90-10-
V-1

[3] ALICE Collaboration, ALICE Technical Proposal, CERN/LHCC 1995-71
(1995)

[4] ATLAS Collaboration, ATLAS Technical Proposal, CERN/LHCC 1994-43
(1994)

[5] LHCb Collaboration, LHCb Technical Proposal, CERN/LHCC 1998-4 (1998)

[6] CMS Collarboration, The Compact Muon Solenoid - Technical proposal,
CERN/LHCC 1994-38 (1994)

[7] CMS Collarboration, The Tracker Project – Technical Design Report, CERN/L-
HCC 1998-6 (1998)

[8] CMS Collaboration, Addendum to the CMS Tracker Technical Design Report,
CERN/LHCC 2000-16 (2000)

[9] CMS Collaboration, The Electromagnetic Calorimeter Technical Design Report,
CERN/LHCC 97-33 (1997)

[10] CMS Collaboration, The Hadron Calorimeter, Technical Design Report,
CERN/LHCC 97-31 (1997)

[11] CMS Collaboration, The Magnet Project, Technical Design Report, CERN/L-
HCC 97-10 (1997)

[12] CMS Collaboration, The Muon Project, Technical Design Report, CERN/LHCC
97-32 (1997)

[13] Hannes Sakulin, Design and Simulation of the First Level Global Muon Trigger
for the CMS Experiment at CERN, Dissertation (2002)

[14] CMS Collaboration, The TriDAS Project – The Level-1 Trigger Technical Design
Report, CERN/LHCC 2000-38 (2000)

[15] CMS Collaboration, The TriDAS Project – Data Acquisition and High-Level
Trigger Technical Design Report, CERN/LHCC 2002-26 (2002)

[16] R. Martinelli et al., Design of the Track Correlator for the DTBX Trigger, CERN
CMS Note 1999/007 (1999)

[17] A. Kluge, T. Wildschek, The Hardware Muon Trigger Track Finder Processor in
CMS - Specification and Method, CERN CMS Note 1997/091 (1997)

[18] A. Kluge, T. Wildschek, The Hardware Muon Trigger Track Finder Processor in
CMS - Architecture and Algorithm, CERN CMS Note 1997/092 (1997)

[19] A. Kluge, T.Wildschek, The HardwareMuon Trigger Track Finder Processor in
CMS - Prototype and Final Implementation, CERN CMS Note 1997/093 (1997)

78

http://lhc.web.cern.ch/lhc/
http://lhc.web.cern.ch/lhc/


BIBLIOGRAPHY BIBLIOGRAPHY

[20] J. Ero, New Approach for the CMS Muon Trigger Track Finder Processor, Proc.
of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, Co,
USA, Sept. 1999, CERN/LHCC/99-33 (1999)

[21] D. Acosta et al., The Track-Finder Processor for the Level-1 Trigger of the CMS
Endcap Muon System, Proc. of the Fifth Workshop on Electronics for LHC Ex-
periments, Snowmass, Co, USA, Sept. 1999, CERN/LHCC/99-33 (1999)

[22] TOTEM Collaboration, TOTEM, Technical Design Report, CERN/LHCC 2004-
002 (2004)

[23] V. Brigljevic et al., Run Control and Monitor System for the CMS Experiment,
Computing in High Energy and Nuclear Physics, 2003, La Jolla, California

[24] C.-E. Wulz: Concept of the CMS First Level Global Trigger for the CMS Exper-
iment at LHC, Nucl. Instr. and Meth. A 473 (2001) 231

[25] A. Taurok, H. Bergauer, M. Padrta, Implementation and Synchronisation of the
CMS First Level Global Trigger for the CMS Experiment at LHC, Nucl. Instr.
and Meth. A 473 (2001) 243

[26] M.Jeitler et al., The Level-1 Global Trigger for the CMS Experiment at LHC,
Journal of Instrumentation (2007) P01006, http://stacks.iop.org/
1748-0221/2/P01006

[27] Global Trigger Homepage, http://wwwhephy.oeaw.ac.at/p3w/
electronic1/GlobalTrigger/GlobalTriggerCrate.htm

[28] Ph. Glaser, T. Noebauer et al., Design and Development of a Graphical Setup
Software for the CMS Global Trigger, IEEE Trans.Nucl.Sci. Vol 53 Nr. 3 (2006)
1282-1291

[29] J. Varela, Integration of Run Control and Detector Control Systems, CERN CMS
Internal Note 2005/015 (2005)

[30] I. Magrans, C.-E. Wulz, J. Varela, Concept of the CMS Trigger Supervisor,
CERN CMS Note 2005/011 (2005)

[31] J. Gutleber and L. Orsini, Software Architecture for Processing Clusters Based
on I2O, Cluster Computing 5/1 2002 55-64, (2002)

[32] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/
soap

[33] J. Varela, CMS L1 Trigger Control System, CERN CMS Note 2002/033 (2002)

[34] Very High Speed Integrated Circuit Hardware Description Language (VHDL),
Standard IEEE-1076 (1993)

[35] Extensible Markup Language (XML) - http://www.w3.org/XML/

[36] HyperText Markup Language (HTML) Home Page, http://www.w3.org/
MarkUp/

[37] X-DAQ Wiki - SOAP messaging, http://xdaqwiki.cern.ch/index.
php/SOAP_Messaging

79

http://stacks.iop.org/1748-0221/2/P01006
http://stacks.iop.org/1748-0221/2/P01006
http://wwwhephy.oeaw.ac.at/p3w/electronic1/GlobalTrigger/GlobalTriggerCrate.htm
http://wwwhephy.oeaw.ac.at/p3w/electronic1/GlobalTrigger/GlobalTriggerCrate.htm
http://www.w3.org/TR/soap
http://www.w3.org/TR/soap
http://www.w3.org/XML/
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://xdaqwiki.cern.ch/index.php/SOAP_Messaging
http://xdaqwiki.cern.ch/index.php/SOAP_Messaging


BIBLIOGRAPHY BIBLIOGRAPHY

[38] X-DAQ Wiki - TStore, http://xdaqwiki.cern.ch/index.php/
TStore

[39] CURL - groks those URLs, http://curl.haxx.se/

[40] GNU cgicc - a C++ class library for writing CGI applications, http://www.
gnu.org/software/cgicc/cgicc.html

[41] Trigger Supervisor Homepage, http://triggersupervisor.cern.ch/

[42] Trigger Supervisor - User’s Guide, http://triggersupervisor.cern.
ch/index.php?option=com_docman&task=doc_download&gid=
32

[43] Trigger Supervisor framework Documentation, http://
triggersupervisor.cern.ch/uploads/api_docs/ts/html/

[44] AjaXell sourceforge project, http://sourceforge.net/projects/
ajaxell/

[45] HAL (Hardware Access Library), http://cmsdoc.cern.ch/

˜cschwick/software/documentation/HAL/index.html

[46] JAL (JTAG Access Library), http://cmsdoc.cern.ch/˜hsakulin/
jal/

[47] HTTP - Hypertext Transfer Protocol, http://www.w3.org/Protocols/

80

http://xdaqwiki.cern.ch/index.php/TStore
http://xdaqwiki.cern.ch/index.php/TStore
http://curl.haxx.se/
http://www.gnu.org/software/cgicc/cgicc.html
http://www.gnu.org/software/cgicc/cgicc.html
http://triggersupervisor.cern.ch/
http://triggersupervisor.cern.ch/index.php?option=com_docman&task=doc_download&gid=32
http://triggersupervisor.cern.ch/index.php?option=com_docman&task=doc_download&gid=32
http://triggersupervisor.cern.ch/index.php?option=com_docman&task=doc_download&gid=32
http://triggersupervisor.cern.ch/uploads/api_docs/ts/html/
http://triggersupervisor.cern.ch/uploads/api_docs/ts/html/
http://sourceforge.net/projects/ajaxell/
http://sourceforge.net/projects/ajaxell/
http://cmsdoc.cern.ch/~cschwick/software/documentation/HAL/index.html
http://cmsdoc.cern.ch/~cschwick/software/documentation/HAL/index.html
http://cmsdoc.cern.ch/~hsakulin/jal/
http://cmsdoc.cern.ch/~hsakulin/jal/
http://www.w3.org/Protocols/

	Introduction
	The Large Hadron Collider (LHC) at CERN
	Motivation for the LHC
	Detectors at the LHC

	The Compact Muon Solenoid (CMS) Experiment
	Introduction
	Tracker
	Calorimeters
	Muon System

	The Level-1 Trigger of the CMS Experiment
	Calorimeter System
	Muon System
	The Global Trigger System

	Control Mechanism
	Overall System Architecture
	Run Control and Monitoring System (RCMS)
	Trigger Supervisor (TS)
	Global Trigger (GT) Cell


	Global Trigger Hardware
	Timing Module (TIM)
	Pipeline Synchronizing Buffers (PSB)
	Global Trigger Logic (GTL)
	Final Decision Logic (FDL)
	Trigger Control System (TCS)
	Global Trigger Front End (GTFE)

	Framework
	Cross-Platform DAQ Framework (XDAQ)
	XDAQ Executable configuration and Partitions
	Simple Object Access Protocol (SOAP) communication
	Access to the Configurations Database (TStore)
	Web Interface

	Trigger Supervisor
	Trigger Supervisor Framework
	Trigger Supervisor System


	Global Trigger Software
	Global Trigger Libraries
	Global Trigger Control Panels
	Global Trigger Cell
	GT Cell as part of TS system
	GT Cell in standalone mode


	Software Integration
	Global Trigger Cell Objects
	CellContext
	CellGTCrate
	GtCommand

	GTBase - An Extension to the GT Libraries
	Global Trigger Command Interface
	Command Customization
	General Command Issues
	FDL Commands
	TCS Commands
	Other Commands

	Global Trigger Configuration Database
	Introduction
	General Database Concepts
	Global Trigger Database Implementation

	Global Trigger Operations
	Global Trigger Configuration


	Appendix
	Global Trigger ConfDB Tables
	Main Table
	Board Tables
	Board Firmware Tables
	Board Memories Tables
	Board Register Tables
	Firmware Table
	Memories Table
	Sequencer File Table

	Global Trigger AFS repository
	File Formats
	XhannelListFile
	GT Tstore Views
	Bunch Crossing Tables
	Memory Files

	Code Snippets
	Retrieving the GT_CONFIG table
	Firmware Configuration
	Using the GtHttpDownloader



