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Kurzfassung

Mehrbenutzerdetektion ermoglicht eine relevante Steigerung der spektralen Effizienz
von CDMA-Systemen, die jedoch mit einer stark zunehmenden Komplexitat erkauft
wird. Diese Arbeit befasst sich mit Entwurf und Analyse von linearen Mehrbe-
nutzerempfiangern niedriger Komplezitat fiir CDMA-Systeme mit zufélligen Spreiz-
codes, groflen Spreizfaktoren und vielen Benutzern, wenn die Komplexitat linearer
MMSE-Detektoren keine Echtzeitimplementierung zulésst.

Die vorgeschlagenen Mehrstufen-Detektoren haben eine modulare Struktur, die
auf signalangepassten Filtern aufbaut; sie fithren eine Projektion des beobachteten
Signals auf einen Unterraum durch und filtern dieses anschlieflend. Die Kom-
plexitdtsreduktion ergibt sich, indem man die optimalen Filterkoeffizienten eines
grofen, aber endlichen Systems durch universelle Koeffizienten, d.h. durch die opti-
malen Koeffizienten eines Systems mit unendlicher Benutzerzahl und unendlichem
Spreizfaktor approximiert. Der Entwurf universeller Gewichte geschieht mittels aus-
gefeilter Methoden der Theorie der Zufallsmatrizen und der freien Wahrschein-
lichkeit. Dies ermoglicht lineare Mehrbenutzerdetektion mit einer Komplexitat pro
Bit die, wie bei einem Enfangsfilter, das nur auf einen Benutzer angepasst ist, nur
linear mit der Anzahl der Benutzer wachst. '

Die vorgeschlagenen Detektoren sind robust gegeniiber Kanalnichtidealitidten wie
frequenzselektivem Schwund oder Asynchronitét; sie erreichen annahernd lineares
MMSE-Verhalten mit einer Anzahl von Stufen, die sowohl viel kleiner als die An-
zahl der Benutzer als auch von dieser unabhangig ist. Der vorgeschlagene Entwurf
umfasst auch CDMA-Systeme mit mehreren Sende- und Empfangantennen und
raumlich korrelierter Diversitat im Sender und Empfanger.

Fiir asynchrone Systeme wird ein gleitendes Beobachtungsfenster vorgeschlagen,
wodurch die Detektorgiite keinen Einbruch durch ein endliches Beobachtungsfenster
erleidet und die Komplexitat, im Gegensatz zu linearen MMSE-Detektoren, ver-
gleichbar mit einem synchronen System bleibt. Dank diesem Ansatz konnen sogar
lineare MMSE-Detektoren mit endlichem Fenster iibertroffen werden.

Aufbauend auf Eigenschaften von Zufallsmatrizen, die im Verlauf dieser Ar-
beit entdeckt wurden, wird ein allgemeiner Ansatz zur asysmptotischen Analyse
einer breiten Klasse von linearen Mehrbenutzer-Detektoren vorgestellt, inklusive der
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vorgeschlagenen Mehrstufen-Detektoren.

SchlieBlich werden die Auswirkungen von Asynchronitdt, Chip-Wellenform und
raumlicher Korrelation der Kanale (bei mehreren Antennenelementen in Sender und
Empfanger) untersucht.




Abstract

Multiuser detection can achieve a relevant increase in the spectral efficiency of
CDMA systems at the cost of a considerable increase in complexity.

This work is focused on the design and analysis of low complexity linear multiuser
receivers for CDMA systems with random spreading codes, large spreading factors
and large number of users, when even linear MMSE detectors are computationally
very intensive in real-time implementations.

The proposed multistage detectors have a modular structure based on matched
filters and perform the projection of the observed signals onto a subspace and a
successive filtering. The reduction in complexity is achieved by approximating the
optimum filter coefficients of a large but finite system by universal weights, i.e. the
optimum weights of a system with infinite users and spreading factor. The design of
universal weights uses sophisticated tools of random matrix theory and free prob-
ability theory. Such a design enables linear multiuser detection with a complexity
order per bit that scales linearly with the number of users as in a single user matched
filter. _

The proposed multistage detectors with universal weights efliciently cope with
channel non-ideality such as frequency selective fading and asynchronism. They
achieve near-linear MMSE performance with a number of stages much lower than
the number of users and independent of it.

For asynchronous systems the proposed detectors include a sliding observation
window, so that they do not suffer from performance degradation due to a finite
observation window. They keep the same complexity as their counterpart for syn-
chronous systems, in contrast to the linear MMSE detectors. With this approach
they can even outperform a finite-window linear MMSE detector.

The design of multiuser detectors includes also CDMA systems with multiple
transmitting and receiving antennas and spatial correlation of the channels.

Benefitting of properties of random matrices discovered in this work, a general
framework for the asymptotic analysis of a wide class of linear multiuser detectors,
including the proposed multistage detectors, is presented.

The effects of asynchronism, chip-pulse waveforms, and correlated spatial diversity
are analyzed.
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I, identity matrix of size n X n
m  the number pi 7 = 3.141592653589793 . ..
e  Euler’s number e = 2.7182818284459045 . . .
7 imaginary unit

Functions
1a(z) indicator function on the set A
1 €A,
1a(z) =
A(_ ) {0 otherwise.
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0 otherwise.
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' 0ij Kronecker symbol

Matrix Notation
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matrix X;
X>0 positive definite matrix
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Landau operator
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Kronecker product
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C field of complex numbers
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1 Introduction

In the course of time, engineers have had the challenging and exciting function of
transforming utopia to dreams, and dreams to actual reality. So, Icarus’ utopia of
flying towards to the sun and Verne’s dreams of walking on the moon and exploring
the deep sea are concrete possibilities nowadays. A common dream of futurologists
and visionaries, writers and children is the gift of ubiquity. As pointed out by Ne-
groponte [1], the substitution of the heavy and slow atom with the bit, capable of
travelling at the speed of light, allowed the dream to come true. Theoretical and ap-
plied digital communication engineers accepted the challenge: the intense, successful
development of wireless communications at the late 1980’s has been a unprecedented
step forward to the achievement of ubiquity.

In contrast to the wireline medium characterized by reliability and large capacity,
the wireless medium is unreliable and has low capacity due to path-loss, shadowing,
and intersymbol interference. Additionally, it is intrinsically limited and can easily
become a scarce resource when the service demand increases. Consequently, an ef-
ficient utilization of the available radio spectrum is a key requirement to make the
technological reality as close as possible to the dream.

The last decades have experienced a deep rethinking and reformation of the con-
ceptions about wireless multiuser communications, which have opened new ways
and possibilities to exploit the wireless medium efficiently. New concepts such as
multiuser detection, multiple antenna elements, and opportunistic communications
are playing major roles in the field nowadays. :

For some time, it was widely believed that the interference introduced by a large
number of equal-power users was accurately approximated by a Gaussian random
variable and consequently the single user matched filter was almost optimal for
large systems. The near-far effect was considered detrimental and power control was
the only available tool to combat them. In the early eighties, Verdu recognized the
wrong assumptions that led to this misconception [2-5] and pointed out the large
improvements in spectral efficiency achievable by taking into account the structure
of the multiuser interference and by mitigating the cross-talk among users with an
optimum multiuser detector. Multiuser detection techniques efficiently compensate
for the near-far “problem” and open the way to the recent discovery in [6] that
turned the near-far “problem” into an advantage for heavily loaded systems.

In the early nineties it was discovered that adding antennas in rich scattering
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environments increases proportionally the point-to-point data rates without extra
transmitted power or bandwidth [7, 8]. These systems are referred to as multiple
input multiple output (MIMO) systems. Antenna arrays provide spatial diversity
and introduce new degrees of freedom in the received signal. The successive joint
processing of the multiple received signals makes use of these further degrees of
freedom to enhance the system capacity.

In the last lustrum, the resource pooling effect, discovered by Hanly and Tse (9],
demonstrated that degrees of freedom in space and frequency are interchangeable.
Moreover, the total number of degrees of freedom is the product of the degrees
of freedom in space and frequency. A system with spreading factor N and L re-
ceive antennas is in many respects equivalent to a system with a single antenna
and spreading factor NL. This suggests the idea to treat the two effects in the
same way performing antenna array processing and multiuser detection jointly. Joint
processing significantly outperforms techniques that exploit separately the degrees
of freedom in space and in frequency. -

Although these techniques promise large enhancements in spectral efficiency and

are really appealing, their implementations in real systems is not straightforward
and several issues are still open. The major problem is related to their complexity:
the optimum maximum likelihood detector for CDMA systems has a complexity
which is exponential in the number of users. This has fuelled the research on sub-
optimum multiuser detectors with a substantially lower complexity in exchange for
some tolerable performance degradation.
" Our work is focused on the design of low complexity multiuser detectors for sym-
bols transmitted on the uplink! mobile radio channel of a CDMA system. Our atten-
tion is concentrated especially on challenging scenarios with long random spreading
sequences?, large spreading factor, and many users. Systems with these characteris-
tics are supported by current standards— an example is the FDD mode of UMTS—
and the use of antenna arrays makes them more and more widespread. In these
cases, even the quadratic complexity order per bit of a linear MMSE detector or a
decorrelator can be computationally too intensive for real-time implementations.

This work focuses on linear multistage detectors with universal weights. They
reach a very good compromise between performance and complexity, taking advan-
tage exactly of what is considered to be deleterious in such scenarios: the numerous
users and the long spreading sequences. In fact, multiuser communication systems
can be modelled by random matrices whose entries are in general statistically de-
pendent and whose size depends on the number of users, the spreading factor, the
number of receiving and transmitting antennas, the observation window length, etc.

1The downlink channel can be regarded as a special case of uplink channel with channel coefficients
equal for all users. Therefore, we can focus on the uplink without loss of generality.
2By long spreading sequences we mean spreading sequences that span more than a symbol interval.
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The design of the universal weights benefits from the asymptotic self-averaging prop-
erties of these random matrices and reduces the computationally most demanding
part of the detector to a computation of a polynomial depending on the statistical
properties of the random matrices via few essential system parameters.

The statistical structure of random matrices considered in this work includes the
typical non-ideality of a CDMA system. The effects of flat fading and frequency
selective fading have been considered as well as asynchronism and the effects of the
chip-pulse waveforms. Channel correlation in case of multiple antenna elements at
the transmitters and the receiver has also been investigated.

We will now present an outline of the material and results contained in the indi-
vidual chapters of this work.

In Chapter 2 we review the most relevant linear detectors and discuss the large
system® performance analysis based on random matrix theory. The principles of
random matrix theory useful for the following developments are also illustrated.

In Chapter 3 two families of linear multistage detectors with universal weights are
introduced. The universal weights for asynchronous CDMA systems with flat fading
and frequency selective fading channels are derived. A general framework for the
performance analysis of a large class of linear multiuser detectors is proposed.

The multistage detectors perform a projection of the received signal onto a Krylov
subspace and a successive filtering according to some optimality criterion. In case
of detection of multiple users, as in uplink channels, a reduction in complexity re-
quires both an appropriate choice of the bases of the projection subspaces and the
use of universal weights. The bases of the projection subspaces should enable joint
projection of the received signal for all K users of interest. In such a way most of
the computations for the projections become identical and the complexity drops by
a factor of K. The universal weighting is based on the approximation of the weights,
optimum according to some optimality criterion, by weights optimum in the same
sense for large CDMA systems.

The detectors “Type J-I” proposed in this work perform the joint projection
of the received signal for all users and the filtering of the projections in a way
that is asymptotically optimum in a MSE sense for each user. Thanks to the joint
projection and the universal weighting, the Type J-I detector has near-linear MMSE
performance with the same complexity order per bit as the single user matched filter.

The design of universal weights for detectors Type J-I is based on a self-averaging
property of random matrices established in this work. The convergence of the em-
pirical eigenvalue distribution of some random matrices is well known and widely
utilized in multiuser communications (e.g., [9-12]). In this work we prove that also

3Throughout this work we refer to CDMA systems with number of users and spreading factor
going to infinity with constant ratio as large CDMA systems.
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the diagonal elements of powers of some random matrices converge to a determin-
istic limit depending on a small set of system parameters. The universal weights of
Type J-I detectors are designed making use of these diagonal elements.

It is possible to design multistage detectors performing joint projection and uni-
versal weighting by utilizing the convergence of the empirical eigenvalue distribution
at the cost of performance degradation. This yields the class of detectors referred to
as detectors Type J-J. They have the same complexity order per bit as the conven-
tional detectors and worse performance than detectors Type J-L.

Multistage detectors with universal weights based on the convergence of the eigen-
value distribution that are presented in parallel works [13, 14] utilize bases of the
projection subspace that do not enable joint projection. In case of joint detection
of multiple users they have the same large system performance as detectors Type
J-I but keep the same complexity order per bit as the linear MMSE detector that
is typically some order of magnitude higher than the complexity order per bit of a
conventional detector. '

The usefulness of the convergence of the diagonal elements is evident when we con-
sider that the performance of linear multiuser detectors and especially multistage
detectors is more naturally related to these diagonal elements than to the eigen-
value moments of some random matrices and only some optimum detector (linear
MMSE detector and multistage Wiener filter) can be analyzed by the eigenvalue mo-
ments. Thanks to this property we develop a general framework for the performance
analysis of a large class of linear detectors including the multistage Wiener filters,
polynomial expansion detectors, and parallel interference cancelling detectors. For
large systems, detectors Type J-I and Type J-J are equivalent to multistage Wiener
filters and polynomial expansion detectors, respectively. The performance analysis
disproves the widespread belief of the equivalence between multistage Wiener filters
and polynomial expansion detectors. In general, the former outperform the latter
and they are equivalent only with perfect power control.

In Chapter 4 the previous results are extended to asynchronous systems. In this
scenario the multiple access interference is correlated from a symbol interval to the
other. The acquirement of sufficient statistics requires an infinite observation win-
dow. A linear MMSE detector of practical use suffers from performance degradation
due to the finite observation window. Additionally, the complexity increases with
the observation window length. We propose a slightly modified version of the mul-
tistage detectors in Chapter 3 whose observation window expands with the number
of stages. In contrast to the linear MMSE detector, detectors Type J-I for chip syn-
chronous and symbol asynchronous CDMA systems are equivalent in performance
and complexity to the corresponding multistage detectors for synchronous systems.
The proposed multistage detectors employ a sliding observation window. Thanks to
this feature detectors Type J-I achieve uniform multiuser efficiency for all users.
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Since the polynomial expansion detectors and, thus, detectors Type J-J are in-
trinsically suboptimal for asynchronous systems, i.e. they have worse performance
than detectors Type J-I also in case of perfect power control, the design is focused
on detectors Type J-1.

Two relevant topics of investigation for asynchronous systems are addressed in
the design of multistage detectors:

o The choice of a set of observables with the twofold aim of achieving low com-
plexity and optimum or nearly optimum performance ;

e The effects of the chip pulse waveforms.

Processing the received signal by a lowpass filter and then sampling it at the Nyquist
rate turned out to be the most convenient way to acquire the observables. It provides
sufficient statistics and, in the meantime, enables joint processing and detection
of all users. For a large class of chip-pulse waveforms, the universal weights for
asynchronous systems take into account the chip-pulse effects via some coefficients
that are very simply related to the power spectral density of the chip pulses.

A linear MMSE detector with given observation window optimizes the utilization
of the available observables. The multistage detector with expanding observation
window performs a suboptimal utilization of the observables but uses a wider set of
statistics. The effects on the performance of these two approaches are investigated.
For a linear MMSE detector we provide an algorithm to determine the large system
SINR of any symbol whose spreading sequence is partially or completely received in
the observation window. The performance of Type J-I detectors is also investigated.
We show that the proposed multistage detector with a sufficiently large number of
stages can outperform the linear MMSE detector.

The general framework for the performance analysis of a large class of detectors
introduced in Chapter 3 is extended to asynchronous systems.

The joint effects of chip pulse waveforms and the distribution of the arrival time of
the signals is analyzed. As long as B, the bandwidth of the chip-pulse waveform, is
not greater than half the chip rate —:,1,:, ie. B< 5%, the performance of asynchronous
and synchronous systems is equivalent and independent of the arrival time distribu-
tion. As the bandwidth increases, the effects of the arrival time distribution becomes
relevant and dependent on the chip pulse waveform. For square root Nyquist and
raised cosine chip waveforms, the output SINR of detectors optimum in an MSE
sense increases with the bandwidth for large asynchronous CDMA systems. In con-
trast, for large synchronous CDMA systems it keeps constant (square root Nyquist
waveforms) or decreases (raised cosine waveforms) as the bandwidth increases.

The use of random matrix theory allows a concise and insightful description of
the asynchronous large system behaviour. Few system parameters are sufficient to
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capture the system performance, namely the system load, i.e. the number of re-
ceived symbols per chip, the variance of the additive Gaussian noise, the moments
of the received power distribution and some coefficients related to the power spectral
density of the chip-pulse waveforms.

In Chapter 5, CDMA systems with multiple antenna elements at the transmitters
and the receivers (multiuser MIMO systems) and with possibly correlated channels
are investigated. Linear multistage detectors Type J-I and Type J-J with universal
weights are designed. The general framework proposed in Chapter 3 for the per-
formance analysis of a large class of linear multiuser detectors is extended to this
scenario with correlated spatial diversity.

The large system analyses of the linear MMSE detectors, the single user Baysian
receivers and the single user matched filters are extended to the case of correlated
channel gains proving rigburously and generalizing the results in [9].

Thanks to the random spreading, the performance of the investigated linear multi-
user detectors are independent of the channel correlation at the transmitters and
only the correlation at the receivers plays a relevant role.

The large system performance of the linear MMSE detector, the single user
Bayesian filter and the single user matched filter are described by deterministic
square matrices, A, with dimensions equal to the number of receiving antenna el-
ements. In contrast to the case of CDMA systems with single receiving antennas,
the multiuser efficiency does not characterize univocally the systems. In fact, the
multiuser efficiency depends on the direction of the user channel gain vector with
respect to the eigenvectors of A.

The conditions under which the resource pooling effect [9] arises, i.e., the inter-
changeability between degrees of freedom in space and frequency holds, are gener-
alized.

Chapter 6 concludes the work discussing the contributions and drawing guidelines
for future developments in this field.




2 Linear Multiuser Detection and
Random Matrices

2.1 Introduction

For some time the development of spread-spectrum systems was driven by the belief
that matched filter receivers were approximately optimum in large systems with
equal powers since the multiple access interference could be modelled as Gaussian
noise. :

In its seminal work [2-4] Verdu discovered the enormous improvements in per-
formance achievable by taking into account the structure of the multiple access
interference instead of modelling it simply as a Gaussian noise.

The rationale behind this is that the output of a bank of filters matched to the
spread waveforms of users provides sufficient decision statistics for the detection of
all users [15]. In contrast, the output of a filter matched to the spread waveform of
the user of interest is not a sufficient statistic for the detection of such a user.

This breakthrough opened the way to a flourishing technical and scientific pro-
duction in multiuser detection.

The promises of multiuser detection in terms of increase in spectral efficiency
could be fulfilled at the cost of a considerable increase in complexity. In fact, the
optimum receiver investigated in [15] allows a dramatic improvement in performance
in exchange for an increase in complexity, which is exponential in the number of the
users. Therefore, there is a strong demand for algorithms that simplify the signal
processing required for theoretically optimum communications.

The significant efforts devoted to the design of detectors for signals impaired by
structured interference from other users yielded many suboptimal algorithms. An
exhaustive overview on multiuser detection is beyond the scope of this work. The
interested reader can refer to [16] and references therein.

In this chapter we focus on a large class of detectors, called, with an abuse in
denomination, linear detectors. A linear detector consists of a linear filter followed
by a set of threshold devices. They have been introduced with the goal of finding
an acceptable compromise between performance and complexity. In fact, they yield
a substantial improvement in performance compared to the conventional matched
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filter, while maintaining a lower complexity than the optimum detector investigated
in [15].

Modelling of spreading matrices in CDMA systems by random matrices has been
extremely fruitful for the theoretical analysis of systems with linear detectors. In this
respect the interested reader can refer to the pioneering works in [11], [10], and [17].
In the large system limit, as both the transmitted signals K and the spreading
factor N tend to infinity with a fixed ratio, the random matrices show self-averaging
properties. These allow the description of the system in terms of few macroscopic
system parameters and thus provide deep insights into the system behaviour.

Random matrix theory has proven to be a powerful tool not only from the theo-
retical perspective of performance analysis but also from the practical point of view
of receiver design [18]. Since the low complexity detectors proposed in this work ben-
efit particularly from such a tool, Chapter 2 illustrates also fundamental concepts
of random matrix theory relevant in the development of the work.

2.2 Linear Multiuser Detection

The class of linear multiuser detectors consists of decision algorithms performing a
linear transformation T : C¥ — CX on the decision statistics followed by a set of
scalar quantizers.
Let B be the set of modulation symbols. The scalar quantizer is a nonlinear
transformation
quanty : C — B.

quanty associates to a complex number the closest' element in the set B. quant]%K) de-
notes a nonlinear function of a K-dimensional complex vectors onto a K-dimensional
vector in B, i.e., quant]%K) : CK — BX. The function quant]%K) performs element-wise
a quanty transformation. Then, the signals detected by linear multiuser detectors
are given by

baet = quant]g{) (T(y)). (2.1)

2.2.1 System Model

In this chapter a synchronous CDMA system on the uplink” of a flat fading mobile
radio channel impaired by additive white Gaussian noise is considered.

1In this context we adopt the Euclidian distance as metric.

2The system model of the downlink channel can be regarded as a special case of the system model
of an uplink channel with fading coeflicients equal for all signals. Therefore, all results presented
in this work can be specialized to the downlink channel. In the following, we will not consider
the donwlink channel explicitly.
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The use of such a system to illustrate the most relevant linear detectors enables
us to keep the exposition simple and, in the meanwhile, to capture the features of
linear detectors.

K users are active in the system and use a common spreading factor N. The
system load, i.e., the number of transmitted symbols per chip, is defined as

B = (2.2)

Each user and the base station are equipped with a single antenna. User k trans-
mits a spread signal given, in the base-band domain, by

se(t) = Y belmlel™ (2). | (2.3)

Here, by[m] is the m'" transmitted symbol belonging to the modulation symbol set

B;
N-1
(1) = spmlultp(t — mT, — uTy) (2.4)
u=0
is the spreading waveform; and sy, [u), u € [0,..., N—1], are elements of the sig-

nature sequence of user k in the m'® symbol interval. The spreading sequences are
normalized to have unit energy, i.e. Zivz_ol lsem[u]|? = 1, Vk,m. Ty and T, are the
symbol and chip intervals, respectively. 1(t) is a square root Nyquist chip pulse
waveform with unitary energy common to all users. The received signal is given by

y(t) =Y awese(t) +n(t), (2.5)

where ay;, is a flat fading channel coefficient of user k and n(t) is additive zero mean
complex white Gaussian noise with two sided spectral density Ny. The received
signal is processed by a filter matched to the chip-pulse waveform and sampled at

the chip rate®.
The discrete-time baseband signal at the receiver in the m'™ symbol interval is

given by
y[P] = Zakkbk[m]skm[p - Nm] + n[p] p= va .- 7N(m + 1) - 1 (26)

where n[p| is white additive Gaussian noise with variance o2 = Nj.

3This approach will be further discussed and analyzed in Section 4.4.3.
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In matrix notation, the system model is given by

y(m) = S(m)Ab(m) + n(m)
= H(m)b(m) + n(m) (2.7)

where y(m) is the N-dimensional vector of received signal in the m** symbol interval,
ie. y(m) = (y[mN],...y[N(m + 1) = 1]), and b(m) is the K-dimensional vector
of transmitted symbols. Hereinafter, we assume that the transmitted symbols are
uncorrelated with zero mean® and, without loss of generality, with unit-variance.
Additionally, they are independent of the noise. A is a K x K complex diagonal
matrix whose k" diagonal element ay is the channel fading coefficient of user k.
S(m) is the N x K matrix of spreading sequences whose k'™ column is the spreading
sequence of user k in the m* symbol interval.

Throughout this chapter we focus on the detection of the symbols transmitted in

the m'® symbol interval and we drop the index m in (2.7) without causing confusion.

2.2.2 Matched Filters

The single user matched filter, also called conventional detector, is the simplest strat-

egy to demodulate CDMA signals and the optimal solution in single user systems.
In case of fading channels we consider a coherent matched filter and assume perfect

knowledge of the fading coefficients. The soft detected symbol of user k is given by

bates = / axcl(B)y(t)dt

—o0

in continuous time. In discrete time
N H
bur i = by v,

where hy is the k* column of H.

The matched filter is widely used in CDMA systems because of its low complexity.
It is optimized for single user systems and does not take into account the effects of
the structured multiple access interference. Therefore, its performance is very poor.

Interestingly, the output of a bank of filters matched to the spreading waveforms
of all users provides a sufficient statistic [15] for multiuser detection. Thus, the
matched filters are often used as the receiver front-end for the subsequent multiuser
detection.

4The assumption on the mean is typically verified by the modulation constellations in use.
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2.2.3 Linear MMSE Detection

The concept of linear MMSE detection originates from turning the problem of de-
tection of transmitted symbols in a CDMA system into a problem of linear estima-
tion [19] followed by a quantizer (see (2.1)) and from requiring the minimization of
the mean square error between b, the vector of transmitted symbols, and its linear
estimate b. Thus, the linear MMSE detector consists of

° A linear estimator defined by the matrix T\sg such that the linear estimate
b = Tvivsey minimizes the mean square error (MSE) E{|[b — b||2};

o A subsequent set of threshold devises.

The output of the linear MMSE detector is given by

bymsE = quantB )(TMMSEy)

The linear transform Tywmse that minimizes the MSE can be obtained by applying
the following results of Bayesian estimation theory for general linear models (e.g.
[20]) to system model (2.7).

Theorem 1 (Bayesian Gauss-Markov theorem) Let the observed data be de-
scribed by the Bayesian linear model form

y = Hb+n, (2.8)

where y is an N x 1 observed data vector, H ts a N x K observation matriz, b is
a K x 1 random vector of parameters whose realization is to be estimated and has
mean E{b} and covariance matriz Cp, and n is an N X 1 random vector with zero
mean and covariance matriz C,. It is uncorrelated with b (the joint p.d.f. f(n,b)
is otherwise arbitrary). Then, the linear MMSE estimator of b is

b=E{b} + CoHY(HC,H" + C,) ' (y — HE{b})
= E{b} +(C;' + HIC;*H)'HYC;'(y — HE{b}). (2.9)

The performance of the estimator is measured by the error € = b — b whose mean
is zero and whose covariance matrix is

C. = E{e"}
=Cy,~ CoHY(HCyH" + C,) 'HC,
=(Cy* + HYC;'H)™. (2.10)

The k'™ diagonal element of the error covariance matriz coincides with the mini-
mum Bayesian MSE for the estimation of by, the k'™ element of b.
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This general result enables plenty of flexibility in the definition of the H ma-
trix to model non-ideality of communication systems (e.g. asynchronism, frequency
selectivity of the channel, multiple antennas at the receiver).

Applying (2.9) to system model (2.7) and taking into account the statistical con-
straints on the transmitted symbols and the noise yields

b= (R+0)'Hy (2.11)
= HY(T +o°1) 1y (2.12)

where R= HYH and T = HHY.

The linear MMSE estimator maximizes the SINR [21]. This is a reasonable opti-
mality criterion, especially when the multiuser receiver supplies soft decisions, rather
than hard detected data, to an error control decoder.

The linear MMSE estimator in (2.9) is optimum in the general MMSE sense, with-
out the constraint of linearity, for the estimation of a Gaussian complex parameter
impaired by Gaussian noise. Its application to the detection of discrete symbols
requires some attention depending on the modulation symbol set B.

In case of binary symbols, the symbol set is better approximated by a one di-
mensional parameter space than by the two dimensional complex space, as noticed
in [22]. This leads to the widely linear MMSE detectors. The interested reader is
referred to [22] for further details on this topic.

If the power of modulated symbols is not constant the so-called bias problem of
the linear MMSE detector arises. In this case, the unbiased linear MMSE detector
should be adopted. Further details on it can be found in [17]

2.2.4 Parallel Interference Cancellation

Historically, the linear parallel interference cancellation (PIC) approach was pro-
posed in [23,24] to improve the performance of the nonlinear PIC techniques pro-
posed first by Varanasi and Aazhang in [25].

Linear PIC detectors answer to the need of avoiding the matrix inversion required
in the linear MMSE detector and perform substantially better than the matched
filter.

They rely on simple processing elements and are constructed around the matched
filter concept. The first estimate of the signal at the output of the matched filter
is utilized to estimate the interference from all users. This estimation is subtracted
from the original signal and an improved estimate of the transmitted symbols is
performed. The PIC detectors are based on the iteration of this procedure. The
linear PIC detectors differ from the original PIC detector in [25] in the fact that
they benefit from the soft estimates of the interference while the latter estimates
the interference making use of detected symbols.
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Given b;_y, the soft estimates of the symbols at the (i — 1)*® iteration, the it"
stage of a weighted linear PIC detector is described by

b, =HYy+ (I - R)b;_;

where 7 is a scalar that can be conveniently designed to optimize the quantity of
interference to be cancelled. In case of error on the estimates, a complete cancellation
of the estimated interference obtained by assuming 7 = 1 can have a detrimental
effect. The parameter 7 can be optimized to minimize this effect.

The weighted linear PIC detector is given by

M-1
TPIC = (Z Ti(I—- R)l) HH
=Y w,R"HY (2.13)

with M € Z* and
M-1 ’
W=y 7(-1)" ( - > : (2.14)

The scalar coefficients W, depends only on 7 but do not depend on any system pa-
rameter, e.g. number of users, spreading factor, spreading sequences, channel gains.
For 7 = 1 the weighted linear PIC detector reduces to the standard PIC detector.

2.2.5 Polynomial Expansion Detection

The polynomial expansion detectors approximate the inverse matrix (R+ o?I)7'in
the linear MMSE detector (2.11) by a matrix polynomial in the correlation matrix

R so that
M-1

b=> wRH"y (2.15)
k=0
with M = 0,1,... K — 1 and w; scalar coefficients designed according to some
optimality criterion.

The rationale behind this approximation is that a K x K matrix (R+02I)"! can
be expanded into a matrix polynomial of degree K. This is a direct consequence of
the Cayley-Hamilton theorem. Let II(z) = Z/f:o a,z* be the characteristic polyno-
mial of the matrix R + o021 with coefficients oy, as well known, dependent of the
eigenvalues of R+ I or, equivalently®, of the eigenvalues of R and on the variance

5As well known, if A;, ¢ = 1,..., K, are the eigenvalues of R, the eigenvalues of R + ¢2I are
Mi+o?,i=1,...,K.
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o2. Thanks to the Cayley-Hamilton theorem R + oI is a zero of II(z), i.e.

i ax(R+ o2k = 0. (2.16)

k=0

Substituting (R + 02I)° = (R +

2171 (R + 02I) in (2.16) yields
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In contrast to the weighted linear PIC detector, the weights w; of a polynomial
expansion detector depend on the system through the characteristic polynomial
coefficients . Usually M < K so that (2.15) is only an approximation of the linear
MMSE detector. In [26] the weights wy in (2.15) are designed by minimizing the
average power of the soft output error between the full rank linear MMSE detector
(2.11) and the polynomial expansion detector, i.e.

M—1 2

w = argmin E H ((R +o%I)™ nge) Hy

=0

where w = (wy, Wa, ..., war)7.
This criterion is equivalent to the joint minimization of the mean square error of
all received signals: '

M-1 2

b-> wR'H"y

w = argmin E
: w £=0

The solution of the previous optimization problem is [26]

w=®& (2.18)
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where @ is an M x M matrix whose elements can be expressed in terms of the traces
of powers of the autocorrelation matrix R as

®;; = tr(R) + o*tr( R,

and ¢ is an M-dimensional vector with elements ¢, = tr(R').

As in the case of linear PIC detectors, the matrix inversion required in the linear
MMSE detector can be avoided. However, this approach requires the computation
of tr(RY),i=1,...,2M (complexity O(K?)) and the inversion of an M x M matrix
instead of a K x K matrix in order to compute the weights in (2.18). Therefore, the
complexity order of polynomial expansion detection is determined by the complexity
of the weight computation.

An alternative design criterion for the weights has been proposed in [18] for CDMA
systems with random spreading and with perfect power control, i.e. A = I. The pro-
posed weights minimize the signal-to-total-power-and-noise ratio of a large system
with K, N — oo and % — (3, where [ is the system load of the actual finite system
with finite number of users and finite spreading factor.

Thanks to the properties of random matrices, this asymptotic approximation of
the weights makes them independent of the spreading sequences. If M « K, it
enables a low complexity computation of the weights with negligible complexity by
using the asymptotic spectral analysis of random matrices. With this design of the
weights, the complexity order of polynomial expansion detection is determined by
the complexity of the multiplications in (2.15). Asymptotically and for equal powers,
the weight design in [18] is equivalent to the minimization of the MSE proposed
in [26]. We will elaborate further on this equivalence in Chapter 3.

2.2.6 Multistage Wiener Filters

The reduced rank multistage Wiener filter has been proposed first in [27] as a byprod-
uct of a multistage decomposition of the Wiener filter for the estimation of a scalar
process when the observed signal is a vector process. The analytical description of
such a decomposition is quite cumbersome and not directly necessary for the future
developments in this work. Therefore, we omit it here and focus on some proper-
ties and equivalent representations useful for further studies. We refer the interested
reader to [27-29] for analytical details on the original multistage Wiener filter rep-
resentation.

The reduced-rank multistage Wiener filtering is concerned with the compression,
or reduction in dimensionality, of the observed data prior to Wiener filtering. A
“good” rank reduction aims to minimize the MSE between the output of a filter
in the projection subspace and the output of a filter using all observables. In this
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respect, the projection subspace method proposed in [27] is very effective and outper-
forms other well known reduced rank techniques (e.g. principal components, cross-
spectral methods [30]) as shown numerically in [27] and analytically in [28]. Because
of the compression of the observed data prior to the Wiener filter the reduced-rank
multistage Wiener filters provide only an approximation of the full rank Wiener
filter.

Equivalent representations of the reduced-rank multistage Wiener filter are ob-
tained by projecting the observables onto the same projection subspace proposed
in [27] and then performing a linear MMSE filtering of the projection. Throughout
this section, these equivalent representations are illustrated.

Let us consider the CDMA system in (2.7) and let us denote with xasx(H) the
M-dimensional projection subspace for the estimation of the k'™ user symbol by
the reduced rank multistage Wiener filtering in [27]°. Let By be the matrix whose
column vectors form a possibly nonorthogonal basis of x . (H). The projection of
the observed signal onto xarx(H) yields

y = (By By)"'Bily

where ¢’ is an M-dimensional column vector.
The subsequent linear MMSE filter in x s x(H ) satisfies the Wiener-Hopf equation

wi, = (E{y'y""}) "E{v'bi}

with
E{y'y'"} = (B By) "' B{ (T + 0°I) Bx(B{/ By)™,

T defined in Section 2.2.3, and
E{y'b} = (Bf B,) ' Bf hy.
For further studies, it is convenient to define

®, = Bf(T + o*I)B;,
Pr = thk
wi = (1) oy (2.19)

The soft estimate is given by
by = wi Bily.

6To avoid to go into the details of the reduced rank multistage Wiener filter in [27], we intentionally
do not specify the subspace xas,,x(H) and its basis here. Later on in this section, we will present
several possible bases of xas,x(H) of practical interest.
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The reduced-rank Wiener filter computes the M statistics’

Then, it filters x; by wy.
Different choices of the basis of xasx(H) yield equivalent representations of the
reduced-rank multistage Wiener filter. Bases of xarx(H) are given by [28]:

xmx(H) = span{Ujhy } 2123

with U, =T — hhf +0Tor U, =T — hkhf and have been adopted in several
works [13,14,28]. With this choice of the basis of xarx(H) the reduced rank Wiener
filter is given by

M~-1
b= (we)m (Urhi)™ y.
m=0

Although filters using different bases are equivalent in the sense that they show
equal performance, the choice of the basis of the projection subspace can have rel-
evant effects on the complexity of the detector. We will elaborate further on this
aspect in Section 3.3.

Hereinafter, we refer to the reduced rank multistage Wiener filters shortly as
multistage Wiener filters or MSWF.

2.3 Performance Analysis

2.3.1 Performance Measures

Very useful performance measures in multiuser communication systems are the bit
error rate (BER), i.e. the probability of decoding erroneously the transmitted bits,
and the symbol error rate (SER), i.e. the probability of detecting erroneously the
uncoded symbols. The analytical computation of BER and SER in a multiple access
system is far from being trivial. They depend on the set of modulation symbols B.
The former depends also on the mapping. In order to simplify the computation of
these performance measures we consider the simple case when all users transmit bi-
nary, equiprobable, antipodal symbols and the received signal is impaired by additive
white Gaussian noise. If C is the linear transformation applied to the received vector
y and cf is its k*® row, so that the detected bit of user k is bget s = quantg(cy),
then the probability of detecting erroneously by, conditioned on by = 1 and on the

"Hereinafter, with an abuse of denomination, we refer to this computation as “projection”.
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vector of interfering bits by = (by, ... bk—1, bk+1, - - - bx), is given by

Per(br = 1,b1) = Pr(baet e 7 brlbx = 1,b5)

P cilhy + 3 ¢l hjb;
Vaiefey

+o0 _£2

e

where Q(z) = \/% I zdt. The error probability is obtained by averaging over
all sequences of interfering bits b;:

il hi + 3 iy ©f s

= 1
’Pe = N
MY E bZIQ ( Voielley )

We can recognize by inspection that the computation of fe,k has a complexity
exponential in the number of interfering users. However, the average error probability
can be accurately approximated by

Por~Q (\/s_ﬁ\Tka) . (2.21)

where SINR; is the SINR of user k at the output of the detector C. The reader
is referred to Section 3.4 in [16] for the rationale behind this approximation. The
accuracy of this approximation is supported by the results in [31]. Whereas at low
signal-to-noise ratios the approximation (2.21) is generally good, for high signal-to-
noise ratios it may be unreliable.

Equation (2.21) shows the relevance of the SINR at the output of a detector as
performance measure. As it will be clear in the following, the output SINR of a
linear detector can be computed with low complexity also for CDMA systems with
a large number of users.

Denoting by P, and P the useful power of user k and the total power at the
output of the linear detector C, respectively, the output SINR of C is given by

(2.20)

P,
P- P
~ E{licf habilP}
— E{llcf (y — hibi)|I?}
— cfhkhfck (2 22)
cH(HHY - hihi +02I)ey, ’

SINRy =

A performance measure widely used in multiuser communications is the multiuser
efficiency. In order to introduce the concept of multiuser efficiency, we define the
effective energy of user k to achieve a certain target bit error rate BER,. It would
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be the energy that user k£ would require to achieve BERy in a single-user Gaussian
channel with the same background noise level and maximum-a-posteriori (MAP)
detection. Given BERy, the multiuser efficiency of user k is the ratio between the
effective energy and the actual energy required for user k to achieve BERy with the
detector in use. This concept can be formalized in the following definition.

Definition 1 Let P.x(0?, R, det) denote the average symbol error probability of
user k after transmission through the multiple access channel with covariance ma-
triz R and additive white Gaussian noise with variance o® and after detection with
detector det. The multiuser efficiency of user k with detector det is the number n
such that '

Per(0?, R, det) = Pey(o?/nk, I, MAP). (2.23)

The identity matrix in the r.h.s. of (2.23) guarantees that the channel is free of
multiple access interference.
_ H
Since P.x(o?/ne, I, MAP) = Q (nkﬁﬁ;zh—") the substitution of (2.21) in (2.23)
yields

M = 77— SINRaet (2.24)
where SINRgex is the SINR of user k at the output of detector dec. Since the
effective energy is never greater than the actual energy required by user & to achieve
the same BER, n; = [0, 1].

The concept of multiuser efficiency can be illustrated graphically. Let us plot, in
logarithmic scale, the BER of user k at the output of detector det as a function of
the SNR of user k in the following two cases: ‘

(a) The channel of user k is not impaired by MAI and MAP detection is performed
at the receiver.

(b) User k transmits its signal through the real communication system to be an-
alyzed, i.e. a system affected by multiuser interference and equipped with a
multiuser detector.

The curve describing scenario (a) is referred to as curve (a). Similarly, curve (b) is
associated to scenario (b). For BERy, a fixed value of BER, the multiuser efficiency
in decibels is the negative shift that would bring the curve (b) to intersect the curve
(a) in BERg. Figure 2.1 illustrates this graphical interpretation.

The multiuser efficiency is a very interesting and useful performance measure
in the performance analysis of large systems, i.e. when the number of users and
the spreading factor of the system tend to infinity with their ratio converging to a
constant. In fact, we will see in the following sections that, asymptotically, nx is a
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BERg

Figure 2.1: Graphical illustration of the concept of multiuser efficiency.

function of the SNR and of the system load independent of user k for some relevant
detectors.

The asymptotic multiuser efficiency is defined as the multiuser efficiency for van-
ishing noise:

0,k = lim k-
Th 024)77

It can be shown that it measures the slope with which fe,k goes to zero (in loga-
rithmic scale) in the high SNR region (see [16]). The graphical interpretation of the
multiuser efficiency in Figure 2.1 shows that the asymptotic multiuser efficiency 7o x
is a nonzero constant when curve (a) tends to be parallel to curve (b) in the high
SINR region. When the BER does not vanish as the SNR goes to infinity, as for the
curve (c), or it vanishes with slower rate than curve (a), the asymptotic multiuser
efficiency vanishes, i.e. mox = 0.

The near-far resistance of user k is defined as the asymptotic multiuser efficiency
minimized over the received energies of all interfering users, i.e.

’ Va;ji,j#k

being a;; the received signal amplitudes introduced in Section 2.2.1.
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2.3.2 Matched Filter
The SINR at the output of a matched filter is obtained from (2.22) for ¢, = hy

|akk|”
S]IC{HHH.S}C - |akk|2 + o2

SINRy =

If the spreading sequences are not orthogonal the error probability does not vanishes
as o2 tends to zero [L6]. This implies that the single user matched filters suffer from
zero asymptotic multiuser efficiency, unless the spreading sequences are orthogonal:

1 sfs,=0Vi#k
Mok = .
0 otherwise.

The large system performance under the assumption of random spreading has
been investigated in [10,11]. The asymptotic multiuser efficiency, as N, K — oo with
% — (3, converges in probability to a deterministic value that is independent of the
spreading sequences and the users. It is a constant that characterizes unequivocally
the detector and provides an insightful description of its performance.

Let us assume that the sequence of the empirical eigenvalue distributions of the
matrix A7 A converges to a limit c.d.f. Fj42()) as the number of users tends to

infinity. The limit multiuser efficiency as K, N — oo with % — (3 is given by

. -1
TMF = (1 + 'f_g/)‘dFIAIZ()\)> .

With random spreading, the asymptotic performance is simply described by the
system load 3, the variance of the noise o2, and the mean of the received powers.

It is straightforward to verify that the asymptotic multiuser efficiency vanishes
for large systems.

2.3.3 Linear MMSE Detection
The SINR at the output of a linear MMSE detector can be derived from (2.22)

taking into account that ¢, = hi (R + ¢2I)~}. It results as
hZ (R + o?I)'hy,
1 - hf(R+o2I)hy
Theorem 1 allows us to derive a simple relation between the SINR at the output of
the linear MMSE detector and the MSE. In fact, (2.10) for Cp = I yields
MSE; = (Co)kk
=1-h{(R+ 1) 'hy (2.25)

SINRy =
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and thus the following relation holds:

1 _ 1
MSE,
The linear MMSE detector is also the linear detector maximizing the SINRs of all
users. This property can be verified by maximization of (2.22) with respect to cj.

The SINR at the output of the linear MMSE detector depends on the spread-
ing sequences of all users, the channel realization, and the variance of the noise.
Therefore, this performance measure does not provide general indications on the
system behaviour. Better insight into the system performance is provided by a large
system analysis. This asymptotic analysis investigates systems whose dimensions go
to infinity with their ratio converging to a constant. It assumes random spreading
sequences and benefits from the theory of random matrices. The asymptotic SINR of
linear MMSE detectors in flat fading channels has been derived for spreading matrix
S with i.i.d. entries in [10]. Systems with orthogonal spreading matrices modelled
by random isometric matrices have been considered in [12]. The convergence rate
has been investigated in [32]. '

The following theorem recapitulates the result for random spreading matrices with
i.i.d. elements. ' '

Theorem 2 [10] Let us consider the system model (2.7). Let the N X K matriz S
be a random matriz whose entries are centered i.i.d. with variance E{|s;;|*} = + and
fourth moment such that® limy_., N2E{|s;;|*} < 4+00. Let the empirical distribution
of the received powers |aw|* converges to a fized distribution Flap(X) as K — oo.
Then, conditionally on |akk|?, the received power of user k, the SINR of user k at
the output of a linear MMSE detector converges in probability to the unique solution
to the following fized point equation, as K, N — oo with % — [

SINRy =

|akk|2 .
SINR, = —— (2.26)
0+ p {|akk|2+ASINR,?}

where the expectation is taken over the limiting c.d.f. F, A{z()\) of the received powers
of the interferers. :

The multiuser efficiency can be derived from (2.26) by substituting 7, = SINRgg®

laxk|?
This yields )

JETY ) -

(2.27)

Mk

8Note that the constraints on the chips of the spreading sequences are verified in cases of practical
interest (see e.g. binary spreading or Gaussian spreading). The ‘constraint on the variance takes
into account the usual normalization on the spreading sequences to have unit energy. The
constraints on moments higher than 2 require that the higher moments of VN §;; are upper
bounded. This is a mathematical constraint verified in physical systems.




2.3 Performance Analysis | 23

The multiuser efficiency is independent of the user and characterizes unequivocally
the system.

The spectral efficiency of CDMA systems with linear MMSE detectors has been
investigated by Shamai and Verdd for AWGN channels [11] and flat fading channels
[33]. '

2.3.4 Parallel Interference Cancellation

The weighted linear PIC detector (2.13) can be regarded as a polynomial expansion
detector with nonoptimized weights (2.14). The filter of user k is

]

-1
WrhdT™ (2.28)
0

2]
=
Il

3
Il

with T = HH .

The SINR of user k is obtained by substituting (2.28) in (2.22). For finite systems,
SINR, is a random variable depending on the channel realizations, the variance of
the noise, the spreading sequences and the parameter 7.

The large system performance of a modified version of the weighted PIC detectors
(2.13) is analyzed in [34]° assuming equal received powers, i.e. A = VPI. The
weighted PIC detector (2.13) is substituted by

M~1
TPIC,k = Z —ka%SE(SNkSEk)m (2.29)
m=0

where S..; is the matrix obtained from S by suppressing s, the k™™ column of S.
If the spreading matrix S satisfies the same assumptions as in Theorem 2, SINR;
converges to a deterministic value as K, N — oo with % — 0,

(W ys)’
SINR = — _ (2.30)
W (Pus — PusPits)
With w = (@o,ﬂ)—l, e ,_’Ll_]M__l)T, CPMS = (PgOl, ey PMQDM)T,
P2%py + 0* Py o PMPloyig +0?PMoy
By = S e
PMtlpy i+ 02 PMoy o PMooy 4+ 02 PPy

9In order to keep a uniform approach in presenting the system performance, the expression of
SINR;, proposed in this work is equivalent but not identical to the the expression in [34].
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¢ are the moments of the Marcenko-Pastur distribution [35]:

£—-1

¢e=2ﬁ7(j><£;1)ﬁj+l. (2.31)

=0
The following will be shown in Chapter 3:

e The complexity of the weighted PIC filter in (2.13) is lower than the complexity
of the modified version (2.29) by a factor of K’ if the detection of K’ users is

required.

e The performance of the weighted PIC detector in (2.13) coincides with the
performance of the modified PIC detector (2.29) only in case of equal received
powers.

A general framework that enables the performance analysis of standard PIC detec-
tors is presented in Chapter 3. The results in Chapter 3 can be applied to the analysis
of PIC detectors with unequal received powers and multipath fading channels. The
performance of PIC detectors in asynchronous CDMA systems can be analyzed ben-
efitting from the general results in Chapter 4. PIC detectors for CDMA systems with
spatial diversity can be investigated using the results in Chapter 5.

2.3.5 Polynomial Expansion Detector

The asymptotic performance of polynomial expansion detection has been analyzed
in [18] for the case of random spreading and matrices with i.i.d. entries and equal
received powers. If the matrix S satisfies the conditions of Theorem 2, the limit
SINR of user k, as K, N — oo with £ — 8, is deterministic and given by'’:

H (P—l
SINR, = —2MS “Ms¥s (2.32)
1- ‘P,MS‘I’MS‘PMS

with ®ys and g defined in Section 2.3.4.

The performance of the polynomial expansion detectors for flat fading channels
and multipath fading channels is investigated in Chapter 3. The performance analy-
sis of asynchronous CDMA systems or systems with spatial diversity is based on the
results presented in Chapter 4 and Chapter 5, respectively.

10 A5 for the PIC detectors, we propose an expression for the SINR different but equivalent to the
expression in [18] to keep a uniform approach.
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2.3.6 Multistage Wiener Filtering

The asymptotic performance of the reduced rank multistage Wiener filter (MSWF)
has been analyzed in [28,29]. For large'! systems with perfect power control, i.e. equal
received power for all users, the SINR converges to the deterministic value given in
(2.32). In this scenario, MSWF and polynomial expansion detectors have the same
performance. This supported the erroneous belief of their equivalence [36-38] in
the general case. The equivalence of MSWEF and polynomial expansion detectors is
disproved in Chapter 3.

Based on the following theorem, the performance of MSWF can also be expressed
as a continued fraction.

Theorem 3 [28] Let S be as in Theorem 2 and A = PI. As K = 3N — oo the
output SINR of the rank M MSWF converges in probability to the limit

SINRy = P P for M>1
0%+ B
1+ SINRp/—1
with SINRy = 0. SINR; = 75 +ﬂp is the large system limit of the output SINR for
the matched filter.
Thus, for example '
SINR; = — P
a +ﬁ1—+_—F_'
STigF

In absence of background noise SINRys = ZZ_I F This relation shows two impor-
tant characteristics of the MSWF that hold also for more general situations than in
absence of noise and can be verified both analytically and numerically:

e The rank of the MSWF needed to achieve a target SINR within some small €
of the full rank SINR does not scale with the system size (K and N).

e As M increases, the limit SINR converges rapidly to the limit SINR of the full
rank MMSE detector [28,39]. Numerical results {28] show that the full-rank
MMSE performance is essentially achieved with M = 8, for SNRs and system
loads 3 of practical interest.

In analogy to the uniform power case, a continued fraction expression of the limit
SINR is suggested in [28]. Let Fj432(A) be an arbitrary distribution of the received

UTn this work we refer to systems with number of users and spreading factor that goes to infinity
with ratio converging to the system load 3 as large CDMA systems.
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powers. Then, the limit SINR at the output of a rank M MSWF is .approximated

by:
P

© oo P

2 AR
0y P ASINR,,
Recently, an exact continued fraction expression of the limit SINR of MSWF has
been proposed in [38].

SINRM+1 ~

dFjap())

2.4 Useful Results from Random Matrices

In quantum mechanics, the energy levels of quanta are not directly observable, but
can be characterized by the eigenvalues of matrices of observations. The empirical
distribution of the eigenvalues of a random matrix is very complicated for large ma-
trices. This fuelled the research on the limiting spectral analysis of large dimensional
random matrices in the 1950s.

The application of random matrix theory to signal processing [40] and analysis of
communication systems [8,10,17,41-43] goes back to the 1990s. Since then, random
matrix theory received much attention because random matrices appear in many
applications of statistics and communication theory.

This section introduces some basic results on random matrices that will be useful
in the remainder of this work. For general short introductions to random matrices
and free probability the interested reader is referred to [44-46]. Monographs on these
topics are due to Mehta [47], Girko [48], Voiculescu [49], and Hiai and Petz [50].
Applications of random matrices to communication theory are presented in [51].
This reference list does not claim to be exhaustive.

A random matrix of dimensions N x K consists of N K random elements and can
be described by the joint distribution of its elements.

As an example, let us consider an N x K matrix S with i.i.d. zero mean entries of
variance % As N is finite, the eigenvalues of the matrix T' = S SH are random. Let
A, n=1,..., N denote the eigenvalues of T and let 1(z) be the indicator function
on a right unbounded interval, i.e. 1(z) = 1 for £ > 0 and zero elsewhere. The
empirical distribution of the eigenvalues FQ(,N)()\) =% SN 1(A = \) is a random
function depending on the realization of the matrix S. Five empirical distributions
of eigenvalues of a matrix T are plotted in Figure 2.2. They correspond to five inde-
pendent realizations of the matrix S with constant aspect ratio'? % = % and various
sizes of S, namely K = 4,8, 64,256,1024. For small matrices the empirical distri-
bution of eigenvalues is completely arbitrary in a nonnegative support. However,
as the matrix size becomes large the empirical eigenvalue distribution of T' seems

12The aspect ratio is the ratio of the number of columns to the number of rows of a matrix.
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Figure 2.2: Empirical eigenvalue distributions of five independent realizations of the
matrix T = S8 with different size of S but equal aspect ratio 8 = £ = 1, namely
K =4, 8, 64, 256, 1024.

to converge to a deterministic distribution function. In Figure 2.2, the empirical
eigenvalue distributions for K = 256 and K = 1024 are indistinguishable.

The convergence observed in Figure 2.2 is a general property. In fact, as K, N — 00
with ratio converging to a constant value [, the empirical eigenvalue distribution
of T converges to a deterministic function known as Maréenko-Pastur distribution.
The corresponding probability density function, for aspect ratio % =, is

fr(A) = {A@E (1-VB)? <A< (1+VB)?
(1—8)5()\)  elsewhere.

Its moments have been already introduced in (2.31) and this result has been utilized
in [11,17,34,52] to analyze the performance of multiuser detectors in terms of SINR,
multiuser efficiency, or spectral efficiency. Since the asymptotic eigenvalue distrib-
ution is deterministic, the expectation of any function g()\) with respect to Fr()),
i.e. E{g(\)} is deterministic. In particular, the normalized traces £trT¢, ¢ € ZT,
converge to the deterministic eigenvalue moments m& = ¢, in (2.31). Figure 2.3
illustrates this property. Let us consider random matrices S with different sizes, but
identical aspect ratios. For each random matrix we generate 100 independent real-
izations. In Figure 2.3, M. and Mm%, the normalized traces of T and T2, are shown
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Figure 2.3: First two moments for 100 realizations of T' with i.i.d. Gaussian entries.

for all realizations. It is apparent that M} and M2 converge to 1 and %, respectively,
as the size of S increases. The asymptotic moments m4. depend only on the aspect
ratio 3, as evident from (2.31).

The matrix T belongs to a wider class of random matrices whose limiting spec-
tral analysis has been the object of thorough studies. In order to introduce the more
general result, the Stieltjes transform is required. The Stieltjes transform was intro-
duced by Stieltjes in 1894 [53] to address the problem of moments, i.e. to find an
unknown probability distribution given its moments.

The Stieltjes transform G(z) of a probability distribution function F'(z) is defined

by
G(2) =/dF(m)

xr—Zz

1 [ X gm
=~—/Z%dp(x)

A m=0z

with z € C and Im(z) > 0. Given G(2), the Stieltjes transform of F(z), it is
straightforward to derive the moments of F'(z) and the probability density function
f(z). In fact, the following relations hold (e.g. [50]):

m -1
— lim 4" G =m!/mmdF(33)

2—0 dzm V4
and

f(z) = lim lIm(G(:r: + 7Y))-

y—0t 7T
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Let U and V be an N x N Hermitian matrix and a K x K diagonal matrix,
respectively. Let S be deﬁned as above, i.e. § is an N x K matrix with i.i.d. zero
mean entries of variance 5. The limiting spectral distribution of the random matrix
U+ SVSH with S, U, and V independent, has been investigated by Marc¢enko
and Pastur [54] and Silverstein and Bai [55].

Theorem 4 [55] Let the matriz S, N E Z*, be an N x K matriz with complex
random i.1.d. entries s( ) such that E{|s E{s(N)}| }=x% Lt Vg bea K x K
diagonal matrixz with real entries whose empmcal eigenvalue distribution converges
almost surely in distribution to a probability distribution function Fy, as K — o0.
Finally, let U y be a Hermitian N X N matriz whose empirical eigenvalue distribution
converges almost surely to a nonrandom distribution function Fy.

If Sy, Vi, and Uy are independent and K and N tend to infinity with ratio —}1\%
converging to the constant B, then, almost surely, the empirical distribution of the
eigenvalues of Uy + SV ySE converges, as N — oo, to a nonrandom distribution
F, whose Stieltjes transform G(z) satisfies

rdGy(z)
Gl2) = < —p / 1+ 2G(z )
where Gy and Gy are the Stieltjes transforms of Fy and Fy, respectively.

Theorem 4 has been applied to derive Theorem 2 and Theorem 3!3. Additionally, it
has been utilized for the analysis of CDMA systems in [33,57-60].

Girko analyzed the limiting spectral distribution of Gram random matrices
with elements of Z statistically dependent and possibly not identically distributed.
More precisely, Girko consider matrices = of size n; X ng, with n; = ni(n), ny =
na(n), and n € Z*, structured in blocks of size ¢; x ¢y such that n; = g1p1(n) and
ng = qapa(n). n1(n) and ny(n) are increasing functions of n. The (4, j)-element of &
is denoted with &;;; the (4, j)-block of E is denoted by _.( The matrix E is of the

==H
e S

13The proofs of Theorem 2 in [10] and Theorem 3 in [56] clarify the existing relation between the
SINR at the output of a linear MMSE detector and the output of a reduced rank MSWF for
user k and the eigenvalues moments of the matrix R — hihy with h; and R defined in Section
2.2.2 and Section 2.2.3, respectively. Additional examples are in (2.30) and (2.32). Note that
these relations hold only for special cases as the linear MMSE detectors and the reduced rank
multistage Wiener filters. A more general relation between the SINR of a large class of linear
detectors and the diagonal elements of the matrix R will be discussed in Chapter 3.

14The Gram matrix of the vectors {1, @2, ... xx } with respect to the inner product < -,- > is the
K x K matrix G = (gij)i,j:l,...K defined by 9ij =< Ly, Ty > . Deﬁning X = (331,1172, “a .a:K),
G=Xx"Xx.
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following form

'-,_:(n) :.(n) ':(")
~11 1.2 ~1,p2
=(n ':'( ) ':(”)
—21 =272 =2 ps.
=) =) ()
‘—‘plal Hp1’2 ‘-‘plvp2

We adopt the notation E = (&; )7 - '>% to represent the matrix E by its elements

&; and the notation E = ("‘(”))’ b ’p 3 to represent the matrix E as a block matrix.
Girko’s results are focused on random matrices = whose blocks are independent
but, within a block EfJ") the elements are possibly correlated and with nonzero
mean. Girko’s theorem shows that, under some conditions on the statistics of Eg-’),
1=1...,prand j = 1,..., po, the sequence of the empirical eigenvalue distribution
of the matrix 2= converges almost surely to a deterministic probability distribu-
tion function as n — oo. This distribution function is characterized by its Stieltjes
transform. The Stieltjes transform is obtained as solution of a system of equations

called canonical system of equation. Let us denote by Ag-’) the mean of the matrix
g, ie. A(”) = E{:(")} The theorem requires that some conditions on lAl(.;l)], the

spectral norm of the matrix A™, and on ||Ef;’) — AE;L)H, the Frobenius norm of the

ij )
centered matrix & _. A( ), are satisfied.

The following theorem summarizes Girko’s results.

Theorem 5 15 [61 ] Let Epyxn, = (&)1217% be a random matriz composed of com-
plex blocks 2 ._. of size g1 X go. We consider non symmetric block matrices & Epixps Of

the form

J

= (B28)yizl (2.33)

ij Ji=l..p

JI

'P1Xp2 T h'pl 91 Xp2g2

whose entries are the complex matrices 2 ~( n) . P1, P2, Q1, 2 are certain positive integers.
p1 and pg are increasing functions of n e Z*. They go to infinity as n — oco. Let
the random blocks g‘), i=1,...,p1, J = 1,...,p2 be independent for every n,

E{=’} = AL, and

b2
lim {max ZE{””(”) A<”>||2}+ max ZE{HH —A§?)||2}} < 00
j=1 -

n—oo |i=1,..,p1 £
(2.34)

1®The discrepancies in (2.37) and (2.38) between the statement of the theorem here and in [61]
are due to typos in [61] discussed with the theorem’s author in personal correspondence.




2.4 Useful Results from Random Matrices ' 31

Let Lindeberg’s condition be satisfied, i.e. for every T > 0,

: =(m) _ a(my2 . =)
Jirgo{z-max ZE{“ A T gmtr_ag > (B )}

yernyP

r-(n) (n)y12 =(n) _
where 1 (IE-AD > }(Eg?) ) is the indicator function of a random event equal to 1
if the random argument ;z) satisfies the condition H_..(") g?) Il > 7 and zero
otherwise. Additionally, let
. (n) (n)
nh_{& [Z_max Z'Al I—I— max ZlA } (2.36)
Then, with probability one, pp{z,Ep,q sz‘h’-ll]’{‘h xpage ) the empirical eigenvalue
distribution of the matriz _plqlxpzqz._.flql xpages SGLLSfiES

,}Lngown{w, Ep1q1xpzq2~;};{1q1xp2q2} — Fu(z)| = 0,

where F,(x) is the distribution function whose Stieltjes transform is equal to
> ) 1 (a0 o~ =@ \“lom \7
J/,n (:E'4—;Z') - (j"l:;1 (:1:) = i;;j;;;”]rir (:(::71)1 )(1)1 '{‘ J‘!ﬂgl )<])2 <:(::Y172 )(192:) 141771 )(172 :) 9 ];{(3 (12:) ::> ()-
0

The expectation is taken over &, i =1,...,n1 and j =1,...,no. Aplxp2 s a block
~ ~ . ~ (1)
. — . _ j=1...p2 ( .
matriz, mean of Bp xp,, 1€ Apixpy = (Aij)ict e+ Cpxp, and C paxp; 7€ diagonal

block matrices, t.e.

~ (1) ) ~ (2) )
Cpixpy = diag{CR(2)},  Cpp, = diag{CP(2)}

whose matriz elements CSC) (2) of size 1 X q1 and C’,(jc)(z) of size qa X qo satisfy the |
canonical system of equations: J

n ~(1) | _17% - n
C(k—ZIq1XQ1+ZE{ ‘—‘k] A(Icg)) ([C sz2+A 1><pz[Cp1><p1] 1A:D1><p2] ) (:(I?] A(k] H}’

Jj=1 i

k=1,....p1, (2.37) ’

~1) |~ ~(2) -1 )_ Al
ll - quQ2+Z E { (Jrll))H( [CPIXPI+APIXP2[CP2Xp2] lApIng] ) (E‘(;ll n))}
2

I=1,...,pa, (2.38)
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There exists a unique solution C,(clk), Cl(f) to the previous canonical system of equa-
tions in the class of analytic functions Cil,c)(z) and C’gf)(z), k=1,...,p,1 =
1,...,po such that C,Sc)(z) and Cl(lz)(z) are definite positive for Re(z) > 0.

At first glance Theorem 5 seems to be of little practical use since the system of
canonical equations (2.37) and (2.38) consists of infinite equations as K, N — oo.
However, there are matrices of practical interest for which the system of canonical
equations reduces to a finite number of equations, although K, N — oo.

This result has been applied to determine the capacity of MIMO Ricean channels
in [62,63)]. In such a case, the system of canonical equations reduces to two equations.
In Chapter 5 it will be applied to the analysis of CDMA networks with multiple
antennas at the receiving sites. The system of canonical equations consists of a
number of equations equal to the square of the number of receiving antennas, in the
most general case.

An intermediate result due to Bai and Silverstein [64] plays an important role
in the following of this work. It analyzes the behaviour of a quadratic form Qn =
mﬁC NZy, with Cx an N x N complex matrix and y an N-dimensional random
vector.

Lemma 1 [64] Let xy be an N-dimensional complex random vector with i.i.d.

zero mean entries such that E{|z;|*} = & and let Cy be an N x N complex matriz

independent of xy. Then, for any p > 2
p
E{ } < K, [(B{l;[*}x(CNCH)E + Bz, ¥}tx(CnCH)E
(2.39)

where K, is a constant that does not depend on N, Cy, or the distribution of z;.

tI'CN

iB]I\{;CNCCN -

As a direct consequence of the previous lemma, for large matrices the quadratic
form Qp is well approximated by the normalized trace of C, %ﬁ for large N. Since

N oy

Er—gﬁ = ;"7:—\,&, where )\; denote the eigenvalues of Cy, the quadratic form @y is
well approximated also by average of the eigenvalues of Cy. This is formalized in
the following lemma.

Lemma 2 Let =ny and Cpx be as in Lemma 1. Additionally, let
limy_o N3E{|z;|®} < +oo. Let {Cn} be a sequence of matrices Cy such
that F((;N), the corresponding sequence of empirical eigenvalue distributions, con-
verges to a nonrandom limit distribution Fc and [ )\”dFéN)()\) < 400 forp =3

and 2 and YN'¢. Then, as N — oo, the quadratic form Qn = zHCnxy converges

16This result is presented in the literature (e.g. [65]) under more restrictive conditions: Fg is
required to have bounded support.
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almost surely to the first moment of Fe, i.e.
. a.s. q. tI'C’N
A}gnooa:%CNmN = A}grcl)o N =/)\dFC()\). (2.40)

The proof of this lemma is provided in Appendix A.
In the following lemma, a similar result is established for the form ¥ Cyyy,
where y and y, are two independent random vectors.

Lemma 3 Let zn and Cy be as in Lemma 2. Let yy be a vector similar to xn

and independent of it and of Cy. Then,

. a.s.
N—oo







3 Efficient Multistage Detection for
Synchronous Systems

3.1 Introduction

This chapter is focused on the design and analysis of low complexity multiuser
detectors for synchronous CDMA systems with flat and frequency selective fading
channels.

Making use of some properties of random matrices discovered in this work we
introduce two multistage detectors with linear complexity order per bit, the same
complexity order as the single user matched filter. A unified framework capable of
describing large classes of multiuser detectors, such as the PIC detectors, the multi-
stage Wiener filters and the polynomial expansion detectors, is adopted. A general
result for the asymptotic performance of all detectors that fit into this framework is
presented.

As shown in Chapter 2, the linear MMSE detector yields substantial improve-
ments in performance, while maintaining a lower complexity than the optimum
detector investigated in [15]. However, in systems with time-varying multiple access
interference — due to, for example, long spreading sequences or fading channels —
its computation in real time is very expensive. In fact, the linear MMSE detector
requires the inversion of matrices that are at least of size min(K, N) X min(K, N),
where K is the number of active users and N the spreading factor. When the system
size is large, the complexity of a linear MMSE detector is prohibitive for real-time
applications.

There is a large class of multiuser detectors that avoids matrix inversion: the linear
multistage detectors. They are characterized by a modular structure and consist of
a projector onto a subspace and a subsequent filter. The PIC, the MSWF filters, and
the polynomial expansion detectors presented in Chapter 2 belong to such a class.
All these detectors use the same Krylov subspace [36]. Hereafter, we refer to this
subspace as the projection subspace. As already noticed in Section 2.3.5, the Krylov
subspace has several useful properties:

e It need not be tracked.
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e The subspace rank required to achieve a fixed level of performance does not
scale with the system size [28].

e The multistage detector output SINR converges exponentially in the detector
rank towards the linear MMSE detector output SINR [39] so that a low number
of stages is sufficient to achieve near-linear MMSE performance.

The use of subspace methods does not allow for a significant reduction of the
complexity order by default. In fact, the filter design, optimum in an MSE sense,
has the same complexity order as the linear MMSE detector. A significant reduc-
tion in complexity can be obtained by approximating the optimum filter coefficients
(also called weights) by asymptotic approximations [18,52] at the cost of a slight
degradation in performance [66] due to mismatch. The asymptotic multistage de-
tectors, proposed first in [18, 52|, take advantage of some asymptotic properties of
random matrices such as the convergence of the eigenvalue moments to deterministic
limits. These are independent of the spreading sequences and the channel realiza-
tions. Since these values can be expressed as a linear function of a small set of
parameters, the asymptotic multistage weights can easily be computed off-line as
a function of the eigenvalue moments. The complexity reduction promised by the
use of asymptotic filter coeflicients in [18,52] inspired studies to design asymptotic
weighting in different scenarios [37,67-70]. Multistage detectors for systems with
multipath fading channels have been considered only recently in parallel works for

the downlink [13,14,70] and the uplink [13,69]. Cottatellucci and Miiller applied the

multistage approach with asymptotic weights to both multiuser channel estimation
for multipath fading and symbol detection [69]. The asymptotic performance of mul-
tistage detectors with no channel state information at the receiver is also analyzed
in [69]. However, the application of this approach to channel estimation is beyond
the scope of this work and it will not be considered further.

Thanks to the negligible computational complexity of the asymptotic filter de-
sign the complexity order of the detector is determined by the complexity of the
projection onto the subspaces. Nevertheless, the projection complexity received lit-
tle attention. In this work we consider jointly the projection complexity and the
weighting complexity to significantly reduce the detector complexity. From the point
of view of receiver complexity, it is desirable to perform the projection for all users
jointly rather than using different projectors for each user if one wants to detect
all users. In such a way most of the calculations of the projection become identical
for all users and the complexity drops by a factor of K. This complexity reduction
is possible only if the bases of the Krylov subspaces for all users can be chosen in
an appropriate way to support the joint projection. Fortunately, such a set of bases
does exists.
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The low complexity of weight design and the asymptotic performance analysis
of multistage detectors using such a set stem from the asymptotic convergence of
the diagonal elements of random Gram matrices and their positive powers. This
convergence is established in this work for the first time.

We design and analyze multistage detectors for CDMA systems in uplink with
any kind of phase shift keying (PSK) symbol alphabets, random spreading, and
multipath fading channels. We use subspace bases supporting the joint processing
of all users so that all proposed multistage detectors have a linear complexity order
per bit. From a conceptual point of view we focus on two asymptotic multistage
detectors differing in the filter coefficients. Detector Type J-J uses a single set of
weights satisfying the MMSE criterion jointly for all users. It is the counterpart with
asymptotic weights of the polynomial expansion detector in Section 2.2.5. In detector
Type J-I, the filter weights satisfy the MMSE criterion individually for each user.
Detector Type J-I performs as well as the asymptotic multistage detectors in {13,37]
but its complezity is reduced by almost a factor of K on the uplink CDMA channel.
The detectors in [13,37] will be referred to as detector Type I-I in the following.

Our analysis applies to a wider class of detectors than just Type J-J and J-L. It
is applicable to any multistage detector using the same projection subspace bases,
e.g. the linear “standard” partial parallel interference cancellation detectors. The
asymptotic analysis can also be applied to the multistage Wiener filter. In fact, the
asymptotic performance of the MSWF, the Type I-I detector, and the Type J-I
detector are the same. This observation shows also the actual relation between the
polynomial expansion detector and the MSWF. In the literature, the idea that those
two detectors are equivalent is widely spread, explicitly claimed in [36] and implicitly
assumed in [37,38]. In contrast to this belief, we show that the two detectors differ
and the MSWF outperforms the polynomial expansion detector in [26] for equal
number of stages in general. The latter detector does not maximize the output SINR.
This loss of optimality also affects the characteristics of its multiuser efficiency: In
contrast to many of the other detectors analyzed in the literature, the multiuser
efficiency of detector Type J-J depends on the received power of the user of interest.

The MSWF and the polynomial expansion detector coincide asymptotically in
case of equal received powers for all users and, under these conditions, they are also
equivalent to the multistage detector proposed in [18]. Therefore, polynomial expan-
sion detectors can be efficiently utilized in scenarios with classical power control’
whereas they degrade in performance, compared to MSWF, in CDMA systems with
power imbalances.

1We refer to control mechanisms that force the received power of all users to be equal as classical
power control. These mechanisms are adopted in systems that do not adopt multiuser detection
and thus suffer from near-far effects. However, the current developments [6] show that heavily
loaded systems can benefit from power imbalances.
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Similarly to the asymptotic analysis of the linear MMSE detector in Section 2.3.3,
the performance and the weighting of both detector Type J-J and detector Type
J-I are independent of the spreading sequences and the fading channel realizations.
They depend only on few macroscopic parameters, namely, the number of users per
chip, the received power statistics, the noise variance, and the received power of the
user of interest. The analysis proposed in this work provides deep insight into the
system behaviour and clear guidelines for the design.

Recently, implementations of low complexity polynomial expansion detectors
which do not benefit from the asymptotic approximation of the weights have been
proposed in [71]. This approach utilizes an alternative basis of the projection sub-
space obtained by a Gram-Schmidt orthogonalization (GSO) [72]. With such a basis,
it is possible to avoid the asymptotic weight design problem at the cost of the GSO,
which can cause numerical problems for fixed-point arithmetic. Both the polynomial
expansion detectors with universal weights and the polynomial expansion detectors
in [71] require the multiplication of the received signal by the basis vectors. However,
while the former perform the subsequent processing with negligible complexity, the
latter requires the GSO, and then, the application of the Lanczos algorithm (see
e.g. [72]) for the inversion of a symmetric Hessenberg matrix. As all other polyno-
mial expansion detectors, the detectors in [71] also suffer from power imbalances. In
the absence of a perfect power control they have worse performance than the MSWF
and Type J-I detectors as apparent from Figure 3.4 and Figure 5.1.

These aspects of the polynomial expansion detector in [71] are magnified when
the system is not synchronized. In fact, as it will be discussed in Chapter 4, the
polynomial expansion detectors perform worse than the MSWF' detectors also in case
of perfect power control. Additionally, when applied to asynchronous systems, the
finite approach in {71] has a complexity increasing with the length of the observation
window, similar to the linear MMSE detector. In contrast, as it will be apparent in
Chapter 4, multistage detectors with universal weights keep the same complexity as
the equivalent detector for synchronous CDMA systems.

The linear multiuser detectors considered in this work assume perfect knowledge
of the spreading sequences and the channel gains for both the desired users and
the interfering users. Typically, this information is not available in the downlink.
Then, an alternative class of detectors has to be utilized: the adaptive linear multi-
user detectors. They approximate the ideal MMSE filter making use of adaptive
algorithms. In this case training sequences for the estimation of the linear MMSE
detector have to be transmitted or the spreading sequence of the user of interest
has to be known. A complete overview on adaptive multiuser detectors is beyond
the scope of this work. The interested reader is referred to the bibliographical notes
in [16] and references therein. We emphasize here that adaptive implementations of
MSWF are available [73-75] and their asymptotic performance has been analyzed
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in [29]. _

This chapter is structured as follows. Section 3.2 introduces the system model and
the notation. In Section 3.3, we discuss criteria for the choice of the subspace bases
and for filter optimization. We analyze their impact on performance, complexity, and
design. The design of detectors Type J-J and Type J-I with universal asymptotic
weights is illustrated in Section 3.4. Section 3.5 provides a performance analysis
in asymptotic conditions. Section 3.6 presents numerical results and simulations
assessing the degradation introduced by the asymptotic multistage detectors when
used for finite systems and compares detector Type J-J and detector Type J-1 in
terms of performance. Conclusions on the analysis and design of low complexity
multistage detectors for synchronous systems with flat and frequency selective fading
are drawn in Section 3.7.

3.2 System Model

Let us consider a synchronous CDMA communication system with spreading fac-
tor N and K physical users, multipath fading, and additive noise at the receiver.
Throughout this work the delay spread of the channel is small compared to the
symbol interval so that the intersymbol interference can be neglected. Then, the
equivalent baseband signals at the chip matched filter output are given by

y(n) = H(n)b(n) + n(n) (3.1)

where y(n) is the N-dimensional received vector and b(n) is the K-dimensional
column vector of transmitted symbols (one signal per each physical user) at the
time instant n. The transmitted symbols belong to a finite alphabet in C, they are
zero mean and satisfy the relation E{b(n)b(p)¥} = Ié,,. n(n) is the N-dimensional
additive noise vector at the time instant n. The additive noise is circularly symmetric
complex-valued white Gaussian with zero mean and variance o

The influence of spreading, transmission amplitudes, and fading is described by
the N x K matrix [65]

H(n) = S(n)A(n).

A(n) is the K Lx K block diagonal matrix of received amplitudes taking into account
the fading channel amplitudes and the transmitted powers. It consists of blocks of
size L x 1, assuming that the channels have impulse responses of lengths L with?
L <« N. a; is the k* block diagonal element of A. The multipath channels are
perfectly known at the receiver. In the asymptotic design and analysis carried out

2 This last condition is implied by the assumption that the delay spread of the channel is small
compared to the symbol interval.
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in this work, we assume that the sequence of the joint empirical distributions of

ag, FéK)(al,ag,...,aL) = —113 Zszl Hle 1(a; — (ax)e), converges almost surely, as
K — o0, to a non-random limit distribution function F,(a1,as,...,ar) with upper

bounded support. The eigenvalues of the matrix A7 A are given by \; = afla;.
Hereafter, we denote by Fjap2(\) their asymptotic distribution. The matrix of ran-

L L
-
n S]_ n n SK n

Figure 3.1: Structure of the spreading matrix S(n).

dom signature sequences S(n) is an N x K L random block matrix in C with blocks
Si = (stk_l)L+1, S(k—1)L+2,- - -, SkL), 1 £ k < K, of size N x L. Its structure is shown
in Figure 3.1. The elements in a column vector 8(;—1)z41 are i.i.d. with zero mean
and variance E{|s;x—_1r11|*} = &. Additionally, they are also i.i.d. from block to
block. Within a block, the vector 8(—1)r+s i 8(k—1)z+1 cyclically shifted by s—1 po-
sitions. This downshift, of the spreading sequence models the multipath fading. The
cyclical downshift of the spreading sequence is a technical approximation justified
by the assumption that L <« N. These structures of the matrices A and S allow us
to take into account the interchip interference due to multipath fading.

We adopt the following notation:

o = % for the system load;

e hy(n) denotes the k*® column of H(n);

e T(n) = H(n)H(n)¥;
R(n)

H._,(n) is the N x (K — 1) matrix obtained from H (n) by removing the &**
column,;

= H(n)"H (n);
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o T (n) = (H.k(n)H(n)")™;
o R7.(n) = (Hx(n)? H. (n))™

By neglecting the intersymbol interference only quantities at the symbol-time index
n appear in the system model. Therefore, the symbol-time index n will be omitted
in what follows.

3.3 Multistage Detectors

3.3.1 Definitions

A linear multistage detector of order M for user £ is a multiuser detector performing
1. a projection of the observed signal onto the Krylov subspace

xux(H) = span{T™ hi } -] (3.2)
= span{T™h;} 2} (3.3)

Note that, although other non-orthogonal bases slightly different have been
proposed in literature too, these two® are capable to catch the main features
of all non-orthogonal bases investigated in literature.

2. A subsequent processing of the projections by a filter designed according to
an optimality criterion.

The choice of the Krylov subspace is motivated by two different observations. First,
as shown in Section 2.2.3, the full-rank linear MMSE detector lies in xkx(H), i.e.
it is a linear combination of the basis vectors of xx(H ). Second, the multistage
filter output SINR converges exponentially in the filter rank M toward the full rank
linear MMSE filter output SINR (see Section 2.3.6). Moroever, under the MMSE
optimality criterion, the dimension M of the subspace needed to obtain a target
SINR (e.g. within a small € of the full rank SINR) does not scale with the system
size (i.e. K and N) [28].

Both the projection and the filter design can be performed jointly for all users or
individually for each user. This influences both the performance and the complexity
of the resulting multistage detector. The joint projection is obtained using the vec-
tors in (3.3) as a basis of X (H). In this case, the projector* consists of a matched
filter H and M stages each of them performing respreading — filtering by H —

and successive matched filtering. The corresponding multistage detector is shown

in Figure 3.2. Using the vectors in (3.2), no joint computation of the projections is
known for M > 2 and K different projectors are required.

3 About the identity of the subspaces spanned by the two bases in (3.2) and (3.3) see [28].
4We use here the word projection in the wide sense discussed in Section 2.2.6.
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Figure 3.2: Type J-I detector for synchronous systems.
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For the basis (3.3), the filter design can be performed jointly using the same
filter coefficients for all users and choosing them, for example, by enforcing the
minimization of the MSE averaged over all users [67]. Alternatively, we can design
a different filter for each user minimizing the MSE individually. Table 3.1 shows the
possible combinations and states the denominations.

Joint Individual
Projection | Projection
. Joint
Filtering Type J-J ?
In.dwu.iual TypE J-1 TyPE I-1
Filtering

Table 3.1: Multistage detector classification.

Detectors Type J-J are detectors with asymptotic weights approximating the poly-
nomial expansion detectors in Section 2.2.5. Detectors Type I-I approximate the
multistage Wiener filters in Section 2.2.6. Detectors Type J-I combine the advan-
tages of detectors Type J-J in terms of complexity and of detectors Type I-I in
terms of performance and are introduced in this work. Detectors Type J-I and Type
I-I adopt the same optimality criterion in the same subspace and differ only in the
choice of the subspace basis. Therefore, they have identical performance. However,
they need, in general, different weights.

3.3.2 Complexity

Being a subspace methods does not imply that the multistage detectors have lower
complexity order than the full rank linear MMSE detector. In fact, if we choose
the minimization of the MSE as optimality criterion, the complexity of the filter
coefficient design is identical to the complexity order of the linear MMSE detector.
However, by approximating the optimum filter coeflicients with the corresponding
asymptotic limits in large systems, i.e. as K, N — oo with % — 3, as proposed
in [18,52], the complexity of coefficient design becomes negligible with respect to
the projection complexity. This justifies the efforts devoted to determine the as-
ymptotic weighting in this work and, independently, in (13,14, 37]. Referring to the
denominations introduced in Table 3.1, the asymptotic weights of Type I-I detectors
are designed in [13, 14] for the downlink and in [13,37] for the uplink.

The complexity order per bit, driven by the projection complexity for detectors
with asymptotic filter coefficients, is shown in Table 3.2. Table 3.2 distinguishes two
cases: a single user is detected, typically in the downlink, and all users are detected,
typically in the uplink. When the multiuser detection can be performed jointly for all
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Detection of | Detection of
Detector
one user all users

SUMF O(K) O(K)
TYPE J-J O(K?) O(K)
TypE J-1 O(K?) O(K)
TypE I-I° O(K?) O(K?)
LMMSE O(K?) O(K?)

Table 3.2: Complexity order per bit (K = BN is the number of active users).

users the complexity order per bit drops by a factor of K compared to the multiuser
detection of a single user. In fact, for multistage detectors Type J-1 and Type J-J
the most of computations in the projection are common to all users, for the linear
MMSE detector the matrix inversion is performed only once for the detection of all
active users. Considering the advantages of the Type J-J and Type J-I detectors in
terms of complexity with respect to Type I-I detectors and linear MMSE detectors,
we focus on Type J-J and Type J-I detectors.

3.3.3 Individual Filtering: Type J-1 Detectors

Projecting the received signal onto the subspaces xp (H) with M < K we obtain an
M-dimensional non-sufficient statistic of the received signal. We denote this statistic
as Ty

hi'y
hiTy

Y

T (3.4)
hf TM 1y

The finite Type J-I detector for user k is defined as the linear transformation in

X, (H)°

[ay

M-
mfl = (wi)mhf T™ (3.5)
m=0

5For Type I-I detectors with one stage (M = 2) an implementation with complexity order O(K)
is possible if all users are detected (e.g. uplink).

8Detectors Type J-J and Type I-I denote the detectors with asymptotic weights corresponding to-
polynomial expansion detectors and multistage Wiener filter, respectively. Thus, we keep the
historical distinction between the finite optimum detectors and their asymptotic approximation.
In contrast, detector Type J-I denotes both the finite optimum detector and the asymptotic
approximation. In fact, the association of the Type J-I detector to the MSWF detector can be
confused with a Type I-I detector with exact weights. It will be specified in the context which
detector we refer to.




3.3 Multistage Detectors 45

that satisfies the MMSE criterion, i.e. the weight vector wy is given by

M-1 2

Z (ﬁk)mthmy — bk

wy = arg min E
Wy,
m=0

= arg min E{ |[wffe, b}
Wi

From the second expression, the finite Type J-I detector reduces to scalar linear
MMSE estimation on the non-sufficient statistic &. Thus, the Wiener-Hopf theorem
can be applied [20]:

Wy = q’lzl‘Pka (3'7)
where ®; = E {@izf’} and ¢, = E {bjxi}. It is straightforward to verify that the
following expressions hold

(R*)ik + 0*(R)gk oo (B + 0?(RM)
(I)k _ (R3’)kk + ?2(R2)kk o (RM+2)kk + 02(RM+1)kk (3.8)
(RM M) + 2R ... (R + X (R )
and
or = (R)rk, (R, - -, (RM)kk)T, (3.9)

where (R®)y is the k** diagonal element of the matrix R°.

The Type J-I detector is also the multistage detector in xnx(H) that maximizes
the signal-to-interference-and-noise-ratio SINRy of user k at the detector output.
This will be shown in Section 3.3.5.

The Type J-I detector for all users has structure

M-1 M-1
M=) W.H'T"=> W,R"H", (3.10)
m=0 m=0

where W, is the diagonal matrix whose k*® diagonal element is the m®" component
of wy. Tt minimizes E {||My — b||*}.

3.3.4 Joint Filtering: Polynomial Expansion Detectors

In this section the concept of polynomial expansion detector presented in Section
2.2.5 is revisited from a completely different perspective. The polynomial expan-
sion detectors are presented here as a subspace method in analogy to Type J-
I detectors. The polynomial expansion detector is the linear transformation in’

"Note that in this case we consider the vector space of complex matrices of dimension K x N. A
basis in a vector subspace consists of elements of the vector space. In this case, the elements of
the basis are K x N matrices.
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xu(H) = span{ H¥T™}M-2

M-1 M-1
L=) w,H'T" =) w,R"H" (3.11)
m=0 m=0

such that the scalar weights wy, minimize the mean square error E {||Ly — b||2}.
Let us compare the polynomial expansion detector with the Type J-I detector. They
differ in the weights: scalar weights characterize L while matrix weights appear in
M.

The weighting is

w=®lyp ' (3.12)

where the elements of the M-dimensional vector ¢ and the elements of the M x M
matrix ® can be expressed in terms of the traces of the powers of R as (®);; =
tr(R) + o%r(R™1) and (p); = tr(RY). This implies ¢ = S"p; ¢, and & =
SN ®y, with @ and ¢, defined in (3.8) and (3.9), respectively.

From the definition and the expression of polynomial expansion detectors in Sec-
tion 2.2.5 it is evident that the polynomial expansion detectors minimize also the
MSE between its own output and the output of a full rank linear MMSE detector.

3.3.5 Performance

For the full-rank linear MMSE detector, it is well known that the minimization of
the MSE per user is equivalent to the minimization of the sum of the MSE of each
user and also to the maximization of the SINR at the output of the filter for each
physical user [76]. This is due to the fact that the detector is free to lie in the full
space of the linear transformations that map CV into CX. This property does not
hold if the detector is forced to lie in a specific subspace as in the case of multistage
detectors. Here, a difference between the joint minimization of the MSE (proposed
in [26]) and the minimization of the MSE for each user (proposed in [28]) appears.
The maximization of the SINR is achieved only in the latter case.

For any multistage detector in xx(H) with weight vector Wy, the MSE of user
k is given by

MSE;, = Wi E{xyxf }w, — 2Re(wy E{xb}}) + 1. (3.13)
Recalling that E{z;x} = ® and E{x\b;} = ¢, we obtain
MSE; = 1—2Re(piwi) + wy ®wy. (3.14)
The corresponding SINR for user k is given by

Py

SINRk=P P
— 4k

(3.15)
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where P, is the useful power of user k£ at the detector output and P is the total
power. We have

P = E{wlzxlw,} = o &, (3.16)
and
M-1 2
P =ES Y (@k)mh{ T Hexby| 3 = W % Wk, (3.17)
m=0

where e;, is a K-dimensional vector with all components equal to zero except the
k™ that is equal to 1. Thus, (3.15) becomes
W PP} W
SINRy = —pThETR 2 (3.18
Wy (®r — PrPr) Wi : )

for any weight vector Wy. Specializing (3.14) and (3.18) to Type J-I detectors with
Wy, = wy, in (3.7), we obtain

MSEj_1x = 1— i ®; ¢y, (3.19)
' T@—l
SINRj_1x = _Sﬂc_Tk_gk__ (3.20)
1 - @
1 |
= ———— 1. 3.21
MSE;_1 (3:21)

Calculating the gradient of SINRy, in (3.18) with respect to wy, it is possible to verify
that the Type J-I detector maximizes each SINRy, as already noticed in Section 3.3.3.

For the polynomial expansion detector, the performance becomes with wy = w
in (3.12)

MSEJ-_]JG = 1- 2¢£@_1Q0 -+ QOT@—IQIC‘IJ—ICPT (322)
1
SINR;_ 3.23
J—-J,k (PTQ_lék@_l(E _ ( )
(p27'p)’
T@—l 2
= (vi2” ) (3.24)

MSE‘]_J’]C - (gaf@—lcp - 1)2'

It can be shown that the polynomial expansion detector does not null the gradient
of each SINRy, or the gradient of Zszl SINRg. Therefore, the polynomial expansion
detector does not maximize the SINR. Since the Type I-J detector with exact weights
as well as the multistage Wiener filter do maximize the SINR, it also follows that
the Type J-I detector outperforms the polynomial expansion detector in the same
projection subspace.

L — e e men
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Note that (3.21), the relation between SINR, and MSEy, also holds for the full-
rank linear MMSE detector, while the equivalent relation (3.24) for the polynomial
expansion detector is more involved. For M = K, both the polynomial expansion
detector and the Type J-I detector coincide with the full-rank linear MMSE detector.
This is a well known equivalence stated in [27] for the multistage Wiener filter and
in [26] for the polynomial expansion detector.

In the following section we attack the problem of asymptotic weight design. The
design of asymptotic weights entails the use of a stronger property of random matri-
ces than the well known convergence of the eigenvalue distribution: the convergence
of the diagonal elements of its positive integer powers. This property is established
in Section 3.4. '

3.4 Asymptotic Detector Design

The asymptotic multistage detectors are based on the idea of approximating the
weights of the optimum multistage detectors with the corresponding weights of the
detector for large systems. In fact, for finite K and N both tr(R™) and (R™ ), for
meZtandk=1,..., K, arerandom variables because of the random assignment of
the spreading sequences and of the channel gains. Their computation has complexity
O(K3). However, it is known that, as K, N — oo with £ — 8, tr(R™) tends to a
deterministic value independent of the spreading sequences and depending only on
the system load § and the limiting eigenvalue distribution F,(a1,as,...,ar). These
asymptotic values can be computed at complexity O(1) [77] and need updating only
when 3 and/or F,(ay,as, ..., ar) change. We show that the same property holds also
for the diagonal elements of the matrix R™. We will efficiently use this property for
the design of Type J-I asymptotic weighting.

First, for the sake of simplicity, we derive the deterministic limit for flat fading
channels and then we extend the results to multipath fading channels.

Theorem 6 Let A be a K x K diagonal matriz in C with bounded elements and
such that the sequence of the eigenvalue distribution of AT A converges almost
surely, as K — oo, to a deterministic distribution function Fjap2(\) with upper
bounded support. Let 8 € CV*K have random i.i.d. zero mean entries with variance
E{|s;j|*} = %, and limy_o E{N?|s;|°} < +oco. Let R = AHPSHSA. Then, con-
ditioned on agx, the k™ diagonal element of A, (R converges almost surely, as
N, K — oo with % — 3, to the conditionally deterministic quantity

-

Ri:k:,oo = RiO(A)b\:lakklz (325)
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with
-1
REMN =)) R (NBmyz",  >1 (3.26)
s=0

for any k,£ € Z*. Here, m§y = E{+tr (R°)}. The initial values of the recursion
are Ry, oo =1 and m% = 671, 0

Theorem 6 is proven in Appendix B.1.

Note that the constraints on the chips are typically satisfied in practical systems
with binary or Gaussian spreading. In fact, in order to normalize the spreading
waveform to have unit energy the variance of the chips is typically 7{]— The additional
constraint limy—.oo E{/V3|s35|°} < +o0 implies that s;; = V/Ns,;, the chip re-scaled
to have unit variance, has finite sixth moment. This property is also usually verified
in physical systems. »

A closed-form expression for the moments m% can be found in [77]. Let us recall
a fundamental property of linear algebra: If Ay, k = 1,... K are the eigenvalues of

K £
. <X . . .
the matriz R, then Z—k;{l—& = % Thus, an alternative recursive expression for the

eigenvalue moments of R can be obtained noting that

mbk = E{\}
K~
)\Z
_ : k=1"k
o K=1ﬁlIrVn—»oo K
4
_ lim tr(R")

_ / R (\) dF ap (V). (3.27)

Substituting the right hand side of (3.26) in the right hand side of (3.27) we obtain
the recursive expression of mf,.

Corollary 1 Let A, S and Fa2(\) be as in Theorem 6. Then, the asymptotic
eigenvalue moments of R are given by

£-1
mb =8 m T E{ARL ()} (3.28)
s=0 .

where the ezpectation is taken over the c.d.f. Flap(A). The initializing moment is
0 -1
mR - /8 . D
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Note that, thanks to [55], (3.28) can be also used to calculate the eigenvalue moments
for random matrices whose elements s;; do not satisfy the constraint on the sixth
moment. Theorem 6 and Corollary 1 suggest a simple algorithm to determine R,ch,oo
and m&;:

Algorithm 1

Initialization:  Let po(z) = 1 and po = 7. ‘
2th step: e Define py(z) = Bz Zﬁ;g ps(T)pe_1_s and write it as a poly-
nomial in x.

o Assign py(lak|?) to Rf;,mo.

Replace all monomials =, z2,. .., z¢ in the polynomial py(z) by

the moments m|1A|2, mfAP,. . mf aps Tespectively and assign

the result to m&;.
A closed-form expression for Rf;k,oo, ¢ € 7%, is provided in Appendix B.2. However,
this expression requires an exhaustive search over the sum indices since they are not
explicitly given. An exhaustive search is also required in the closed-form expression
for the moments mé% in [77]. Therefore, the recursive approach is more practical.

The extension of the previous results to multipath fading is supported by the

following theorem. '

Theorem 7 Let S be an N x KL random block matriz in C with blocks Sy =
(8(k=1)L+1, S(k—1)L+2: - - - 8kL), 1 <k < K, of size N x L. The elements in a column
vector Sg—1)L+1 are i.i.d. with zero mean, variance 4, and limy_e E{N?|s;|°} <
+00. They are also i.i.d. from block to block. Within a block, the vector Su_1)r+s 1S
S(k—1)L+1 cyclically down-shifted by s — 1 positions. The empirical joint distribution
of the received channel amplitudes aq, @, . . ., ax converges to a limiting joint distri-
bution with upper bounded support Fy(ai,as,...,ar) and the eigenvalue distribution
of R = AESHS A converges almost surely to a limiting distribution with bounded
support®,

Additionally, let wus assume that the joint probability density function

fa(ay,as,...,a1), corresponding to the c.d.f. Fo(ay,as,...,ar), is an even func-
tion? of Re(ar) and Im(ay) for any k and for any value of the parameters
(ai,...,0k_1,08k+1,---,01). Then, the following equivalences hold:

8This assumption is of technical nature. Indeed, we conjecture that it follows from the nature
of the support of F,(ay,...,ar) and the statistics of the spreading sequences. Additionally,
this condition can be substituted by a less restrictive condition. Applying Lemma. 2 in its most
general version, only the eigenvalue moments of R are required to be bounded.

9This condition is satisfied in the case of uncorrelated Rayleigh fading for example.
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Fquivalence-1 The empirical eigenvalue distribution of R converges to the same
limit as the eigenvalue distribution of the covariance matriz of a sys-
tem with flat fading, received amplitude matriz A= (A" A)%, and
same system load 8. The same property holds for the diagonal ele-
ments Rik’oo.

Equivalence-2 The empirical eigenvalue distribution of R converges to the same
limit as the eigenvalue distribution of the covariance matriz R =
ATS"S A where S is an N x LK matriz with all i.i.d. elements.

The proof is in Appendix B.3.

Thanks to Equivalence 1 we can apply Algorithm 1 substituting |axx|? by af ax.

An algorithm to compute the diagonal elements of R’ as N, K — oo with % — B,
in the general case (no assumptions on fg(a1,...,ar)) is formulated in Appendix
B.3. _

The conditions of Theorem 7 are verified when the channel gains are indepen-
dent and Gaussian distributed. Therefore, Theorem 7 proves the conjecture of
Equivalence-2 already in [65] for independent and Gaussian distributed channel
gains. Additionally, the analysis in [65] can be extended to all multipath fading
channels whose limit eigenvalue density functions satisfy the conditions of Theorem

{.
In order to derive the asymptotic weighting let us define the M x M matrices

P = K:lﬁllr\/'n—voo b, | (3.29)
and
o . o : ,
H>* = K=,16111Vn—>oo 72 | (3.30)

Their elements are (B)y = Rifl, + o?Riis.t and (9%°)y = my* + o*mg™™!
respectively. Additionally, let ¢$° and ¢* be the M-dimensional vectors with re-
spective elements (¢f°)s = Ry o, and (9™); = mk.

The Type J-I detector with asymptotic weights is obtained using the weights that
minimize (3.14) or, equivalently, maximize (3.18) as K, N — oo with & — oo

wi = (B°) et (3.31)

where (3.7) was used.
The Type J-J detector is obtained as asymptotic approximation of the polynomial
expansion detector with weights (3.11). The asymptotic weights of the Type J-J
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detector minimize the quantity

K
. . 1 Z T g T

= wl ®°w — 2wl ™ +1
where (3.14) was used. This yields
w™ = (%) 1. (3.32)

Let us consider the case when all received signals have the same power, i.e. A7 A =
PI. Then, due to Theorem 6 and Corollary 1, (Re)kk converges almost surely, as
K,N — oo with £ — 8, to a value Ry ;1 = R’.(P) that does not depend on the
index k: ‘

Corollary 2 Let S, A, and R be as in Theorem 6. Additionally, let the matriz A
be such that A A = PI. Then, for any £,k € Z*, (R converges almost surely,
as N, K — oo with % constant, to the deterministic quantity

O

Corollary 2 ensures that ®° = & and ¢ = > for A¥A =PI . Thus, Type J-J
and Type J-I detectors coincide asymptotically in the equal power case. Additionally,
in this case, the two asymptotic multistage detectors coincide also with the detector
proposed in [18], which maximizes the ratio between the total useful power and
the total noise and interference power at the detector output. For A¥A = PI, a
closed-form expression of the eigenvalue moments is given by (2.31).

3.5 Asymptotic Performance Analysis

Let us consider a multistage detector for the k™ user using the basis (3.3) and
weighting wy. As K, N — oo with % — (3, the MSE and the SINR are given by
taking the limits of (3.14) and (3.18)

MSE® = 1-—2Re ((¢2) W) + W, BXWi (3.34)
1
SINR® = . 3.35
Wy o () T
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Equation (3.35) can be immediately specialized to Type J-J and Type J-I detectors
with (3.32) and (3.31) respectively:

1
| SINR® ,
| N I I (3:39
oo\T ocoy—1, 00\ 2 -1
((‘P )" (@) ‘Pk)
1

~1
(@) T (PF) e

They are the asymptotic limits of (3.23) and (3.20), respectively. In the asymp-
totic case, the performance depends only on the limiting distribution function
Fu(ai,...,ar), as well as on 8 and o2 If the conditions of Theorem 7 are fulfilled
the performance depends on the eigenvalue moments of AP A m| 42, the received
power of user k, Py, as well as on 8 and o2,

As shown in [28], the output SINRs of detector Type J-I and of detector Type
I-1 are proportional to the received power of user k, Pj. Therefore, the multiuser

efficiency'®
2

M = %;SINRk : (3.38)

is independent of Py like for the linear MMSE detector (see Section 2.3.3). This is
due to the fact that the filter coefficients of each user are optimum in the projection
subspace. In contrast to many detectors analyzed in the literature, the SINR of
detector Type J-J depends on P, by a non-linear relation as can easily be verified
by inspection. Therefore, the multiuser efficiency of this latter detector does depend
on Pi. This reflects the fact that the filter coeflicients are optimized with respect
to an ideal average user. The farther the users are away from the average the more
sub-optimal is their detection. The system suffers from a sort of near-far effect that
results in poorer performance for users with higher or lower received powers than
the average.

A straightforward implication of the fact that the Type J-I detector outperforms
the Type J-J detector (or equivalently the multistage Wiener filter outperforms
the polynomial expansion detector) is that, for any user, the constant multiuser
efficiency of detector Type J-I is an upper-bound for the multiuser efficiency of
detector Type J-J (see Figure 3.4 in Section 3.6). In Section 3.6, this behavior is
verified numerically.

\ Whereas Equations (3.34) and (3.35) provide asymptotic performance of multi-
stage detectors, Equations (3.14) and (3.18) allow the performance evaluation of
detectors Type J-J and Type J-I when they are used in real scenarios with finite

10We implicitly assume that the remaining noise and interference are Gaussian.
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system size by setting Wy = ®®p™ and W, = PP}, respectively. However, the
performance for finite systems depends on the specific realizations of A and S.

3.6 Numerical Results

Numerical results and simulations presented in this section were obtained using
for each user a channel with an exponentially decaying power-delay-profile (PDP)
with a decrease of 30 dB within the channel length L = 15 and block Rayleigh
fading. Denoting the variances of the L taps of the PDP with po,p1,...pr-1, the
21 tap of each channel is complex Gaussian distributed with variance p,. Then, the
characteristic function of the eigenvalues of A¥ A is given by

o 3.3
() 11 —2Jpew (3.39)

drd
We calculate the eigenvalue moments from the relation j m[ Az = TJ:‘E R the

SINRs of Type J-J and Type J-I detectors in asymptotic conditions by (3. 36) and
(3.37), and the multiuser efficiency for the two detectors by (3.38). In Figure 3.3
the families of the curves nj°; versus % parameterized by the system load ( are
plotted for M = 2 in dashed lines and for M = 4 in solid lines. The improvement in

n obtained by increasing the number of stages is negligible for low % and becomes

more and more relevant for increasing %;

In Figure 3.4, the large system multiuser efficiency of Type J-J detectors (solid
lines) is plotted as a function of Py, the received power of the user of interest for
different level of the background noise. In Figure 3.4, the multiuser efficiency of Type
J-J detectors is also compared to multiuser efficiency of Type J-I detectors (dotted
lines). As already mentioned, in contrast to many other detectors analyzed in the
literature and in contrast to Type J-I detectors, the multiuser efficiency of Type J-J
detectors depends on P,. This dependence is stronger for low system loads and high
SNR while it tends to vanish for systems heavily loaded and at low SNR. As shown
analytically in Section 3.5, the constant multiuser efficiency of detector Type J-I
provides an upper bound for the multiuser efficiency of detector Type J-J.

The performance degradation of both Type J-J and Type J-I detectors with as-
ymptotic weighting compared to the polynomial expansion detector, the MSWF,
and the full-rank linear MMSE detector were assessed by simulations. The simula-
tions were performed using QPSK modulation, in the presence of multipath fading,
and assuming perfect knowledge of the channel. Figure 3.5 shows the BER versus'!

118ince we use a QPSK modulation and we focus on uncoded transmission, we have % = 5%;
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Figure 3.3: Multiuser efficiency 7 versus SNR for Type J-I detector with M =4
(solid line) and M = 2 (dashed line). Frequency selective fading with exponentially
decaying PDP and channel length L = 15.
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Figure 3.4: Multiuser efficiency versus power of the user of interest Py for Type J-J
detector (solid line) and Type J-I detector (dotted line). Frequency selective fading
with exponentially decaying PDP and L = 15. Parameter setting: M = 4, 3 = 0.5,
and E{P:} = 1.

% for multistage detectors with M = 4, 8 = 0.5, and N = 128', The performance
degradation due to the asymptotic approximation of weights is negligible in situa-
tions of practical interest. In fact, for NV = 128 the curves of Type J-J and Type J-I
detectors with asymptotic weights almost match the corresponding detectors with
exact weighting. Using the same exponentially decaying PDP for all users, the per-
formance degradation of the Type J-J detector with respect to the Type J-I detector

is negligible for small —g and becomes relevant at larger 3! —‘L as expected from the

‘theoretic performance in Figure 3.4.

Figure 3.6 shows how the performance of the Type J-I detector with asymptotlc
weights increases for an increasing number of stages.

The effects of the mismatch between asymptotic and exact weights has been an-
alyzed assuming flat. fading channels, QPSK modulation, and § = % Figure 3.7
compares BER;_1, the BER at the output of a Type J-I detector, with BERuswr,

12This value of the spreading factor is in use in the UMTS FDD mode. This has motivated its
choice.
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Figure 3.6: BER versus % for 8 = 0.5 and varying number of stages.

the BER at the output of a MSWF, for M = 4 stages and increasing spreading

factors. Performance degradation becomes visible when 1}_\3,,1 increases. However, this

mismatch at hlgh becomes rapidly irrelevant when the spreading factor is in-

creased. Figure 3.8 plots €= @—%éRBE—MM the relative mismatch of the BER at
MSWF

the output of the two compared detectors, as a function of —Jl The logarithmic scale
allows to make visible also the mismatch at low E” otherw1se not visible.

3.7 Conclusions

In this chapter we identified a general framework that is able to catch the main
features of multistage detectors with asymptotic weights in terms of performance
and complexity. Both the projection onto the Krylov subspace and the filtering can
be performed jointly for all users or individually for each single user. The type of
projection affects essentially the complexity while the type of filtering has an impact
on the performance.

Considerations on the projection showed that only a joint projection can decrease
the complexity order per bit from quadratic to linear.
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Figure 3.7: Comparison between BER; 1 and BERyswr for M = 4 stages, increas-
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of a single user is required.

For low complexity multiuser detection with Type J-I detectors we use statistics
(A).

The general result for the asymptotic analysis and design of multiuser detectors
provided in this chapter can be useful for the optimization of chip-pulse waveforms.
However, this application is beyond the scope of this work.

Chapter 4 is organized in six sections. Section 4.2 introduces the general system
model for asynchronous systems. Section 4.3 is focused on the analysis of a wide class
of linear detectors and the design of low complexity multistage detectors for chip
synchronous but symbol asynchronous systems. A detector structure with sliding
observation window that does not suffer from windowing effects is proposed. Chip
asynchronous but symbol quasi synchronous CDMA systems are studied in Section
4.4, and the effects of the chip pulse waveforms and the time delay distribution
on the system performance are investigated. In Section 4.5, the results of Section
4.3 and Section 4.4 are applied to the design and analysis of totally asynchronous
CDMA systems. Some conclusions are drawn in Section 4.6.

4.2 General System Model

Let us consider an asynchronous CDMA system with K users in the uplink channel.
Each user and the base station are equipped with a single antenna. The channel is
flat fading and impaired by additive white Gaussian noise. Then, the signal received
at the base station, in complex base-band notation, is given by

K

y(t) = amse(t — ) +n(t)  t€[~00,+00].
k=1

Here, ax; is the received signal amplitude of user k, which takes into account the
transmitted amplitude, the effects of the flat fading, and the carrier phase offset;
Tx is the time delay of user k; n(t) is a zero mean white, complex Gaussian process
with two-sided power spectral density Np; and si(t) is the spread signal of user k.
We have
+0o0
se(t) = be[mlel™(#),

m=—0Q

where bi[m] is the m'™® transmitted symbol of user k and

N-1
cfcm)(t) = Z Semu]Y(t — mTs — uTe)
u=0 '
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is its spreading waveform at time m. Here, sy, is the spreading sequence of user k&
in the m*" symbol interval® with elements sgmlu], u=0,...,N=1, T, and T, =%
are the symbol and chip periods, respectively.

The users’ symbols bi[m] are uncorrelated and identically distributed random
variables with E{|bx[m]|?} = 1 and E{bx[m]} = 0. The elements of the spreading
sequences s, [u] are assumed to be i.i.d. random variables with E{|sim[u]|?} = %
and E{sgm[u]} = 0. This assumption properly models the spreading sequences of
some CDMA systems currently in use, such as the long spreading codes of the FDD
(Frequency Division Duplex) mode in a UMTS uplink channel.

The chip waveform (t) is bandlimited with bandwidth B and energy E,; =
f " |y(t)[2dt. Because of the the constraint on the variance of the chips,

-0
ie, E{|stm[k]|’} = &, the mean energy of the signature waveform satisfies

E { [ ™ (1)]2d t} = Ey. Without loss of generality we can assume (i) user 1
as reference user so that 71 = 0, (ii) the time delay to be, at most, one symbol

interval so that 7, € [0, T%)."
The front-end of the multiuser detector performs:

e A lowpass filtering with lowpass band |f| < 35 where r € Z* satisfies the
constraint B < 5 so that condition of the sampling theorem is satisfied. The
filter is normalized to obtain an overall amplification factor for the information

bearing signal equal to one, i.e., the frequency response of the lowpass filter is

o [T 5%

0 |f1 > 57

e A subsequent continuous-discrete time conversion by conventional sampling at
T
rate T

With this choice of the front-end, the conditions of the sampling theorem are satisfied
so that the sampled signal provides sufficient statistics and the chip rate is a multiple
of the sampling rate. Additionally, the discrete-time noise is still white with zero
mean and variance o2 = Eﬂ‘%

The discrete-time signal at the front-end output is given by

ol =Y Y belml” (27— ) + iy (4.1)

m=—0oQ

9The spreading sequence of user k possibly varies from symbol to symbol. This model is general
and enables a proper description also of the spreading sequences of some CDMA systems
currently in use such as the long spreading codes of the FDD (Frequency Division Duplex)
mode in a UMTS uplink channel.

10For a thorough discussion on this assumption the reader can refer to [16].
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with p € Z and

N-1
&Y =" sumluldt — @+mN)T).
u=0 -

Here, n[p] is discrete-time, complex-valued, zero mean, white Gaussian noise with
variance 02 = -——Q— and w( ) is the pulse shape 1 (t) normalized to have unit energy,

ie ¥(t) = \/%

4.3 Symbol Asynchronous but Chip Synchronous
CDMA Systems

4.3.1 System Model

In this section we focus on the analysis of symbol asynchronous but chip synchronous
systems, i.e. we assume that the time delays 74 are integer multiples of T, as in [81]
and [80]. Without loss of generality we assume that the users are ordered according to

increasing time delay with respect to the reference user. Let 1y = £ Zel0,1,...,N-]]

be the time delay normalized to the chip period. Under the addltlonal assumptlons of

chip synchronicity, use of sinc chip pulses, and sampling at the chip rate'!, ¢ am )(qT —
k), ¢ € Z simplifies to

N-1
™ (qT. — 7)) = Z Skm[ulsinc(q — u — mN — 1)

u=0

N-1
=" skmluld(g —u—mN —ry)

u=0
| skmlg—mN —r] formN 41, <g<(m+1)N+re =1,
o otherwise.

Then, the received signal from user k at the time instant 7, = (p +mN)T, with
pe0,...,N—1, is given by

b — 1lsgm—1|V - if ,
Z bk p+mN)T k)= k[m ]Sk, 1[ +p T‘k] 1 pP<Tk
bk[m]sk,m[p — T‘k] lfp 2 Tk

m=--0oQ

11The results presented in this section hold also for CDMA systems transmitting square root
Nyquist pulses and using as front-end an analog filter matched to the chip pulse followed by
a sampler at the chip rate. The constraint on the sinc chip pulse is imposed here only to be
consistent with the general system model (4.1) and the choice of the front-end made in Section
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Finally, the general system model (4.1) simplifies to

K

ylp+mN] = awdimlp] +nlp+mN],  p=0,...,.N-1,meZ (42)
k=1

where y[p + mN] is the sampled received signal at time instants (p + mN)T,, and
nfp+mN] is the complex-valued white Gaussian noise with zero mean and variance
0% = %ﬁ di,m[p] is the received signal at time instant p + mN from user k£ and it

is given by

bem—1]sgma[N+p—1i] ifp<ry

_ and pe€|0,...,N-1].
bk[m]si,m[p—7&] if p > 7y | ]

dk,m [P] = {

This definition reflects the fact that, if p < 7 the receiver is still receiving the
(m — 1) symbol of user k and dim[p] depends on by[m — 1] and the spreading
sequence 8y m-1 at time instant m — 1. Otherwise di ., [p] depends on bg[m] and the
spreading sequence S .

For the following developments it is convenient to rewrite the system model (4.2)
in matrix notation. Let y(m) = (y[mN],y[1+mN],...,y[(m+1)N=1])7 and b(m) =
(bi[m), ba[ml, . .., bx[m])T be the vector of the observed signal and the vector of the
transmitted symbols in the m'* symbol interval, respectively. We denote by S,(m)
the NV x K matrix containing columnwise and appropriately shifted the parts of the
spreading sequences 8y, received in the m'" symbol interval. Similarly, S4(m) is
the V x K matrix containing columnwise and appropriately shifted the parts of the
spreading sequences S, received in the (m+1)%* symbol interval. More specifically,
the elements of S,(m) and S4(m) are given by

0 i—1<7"j,

(8u(m)); :{

Sj'm[l.—l—Tj] i—1 > Tjs

(Sd(m))w _ {Sj’m[N'*“’l:—l—T‘j] 1 S Ty

Z>7'j.

In this chapter, with a slight abuse of notation, we denote the matrix of the spread-
Su(m)
Sq(m)
of spreading sequences for synchronous systems'? with §'(m) € C¥*¥X .| More in-
tuitively the matrix §(m) € C*V*X can be obtained by a vertical concatenation of

ing sequences for asynchronous systems with S(m) = [ ] and the matrix

12Tn the previous chapter S was used to denote the matrix of the spreading sequences for synchro-
nous systems.
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S'(m) with an N x K matrix of zeros and by a subsequent cyclic down-shift of the
k*® column by 7 positions Vk. Sy(m) and Sq(m) are the upper and lower block
of the matrix S(m), respectively. Figure 4.1 illustrates the structure of the matrix

S(m).

S(m)

Figure 4.1: Graphical representation of the matrix S(m) (bold frame) and its blocks
S.(m) and S4(m). The vertical bars represent the spreading sequences sy, shifted
by 7 elements. The down-shift of the k't spreading sequence, 7k, equals the time
delay of user k normalized by the chip period T;. The element of the matrix not
covered by bars are zero.

Let A = diag(ai 1,022, --ak,k) denote the K x K diagonal matrix of complex
received amplitudes. Furthermore, let H(m) = S(m)A and, consistently with the
definitions of S,(m) and S4(m), H,(m)=S,(m)A and H4(m)=S4(m)A. Then,
the baseband discrete-time asynchronous system in the uplink is described by

Y=HB+N (4.3)

where Y = [..,yT(m — 1),y7(m),yT(m + 1)...]7 and B = [..,b"(m —
1), b7 (m), b (m+1)...]¥ are the infinite-length vectors of received and transmitted
symbols respectively; A is an infinite-length vector of white Gaussian noise with
variance o2; and H is a bi-diagonal block matrix with infinite block rows and block
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columns that is given by

0. Hd(m.——2) Hu(m:—l) 0.
H=1| ... ... 0 Him-1) H,(m) 0 (4.4)
0 Hy(m) H,(m+1) 0

for m € Z. This matrix models the effects of the spreading sequences, of the received
amplitudes, and of time delays.

We will also consider the system corresponding to a finite observation window of
length W symbols centered at the m'" transmitted symbol of the reference user.
In order to keep the notation simple we assume W to be an odd integer. However,
the results presented in the following hold for any rational number W such that
WN € Z. The system model has the following form:

Yuw(m) = Hyw(m)Byw(m) +Nyw(m) (4.5)
[y(m—¥5L)] [b(m—21)] n(m—252)]

with Vyw(m)=|  ym) | Buw(m)=| bm) |;NMww(m)=| n@m) |;

|y (m+Y3)) | b(m+552)] [n(m+752),
and
Hy(m— Y1) Hy(m— Wz;i) ( 0 wa
0 H;m—- *~) H,(m- ==
Hyw(m) = 2 : 2

0 Hy(m+%=3) H,(m+ %2)
Throughout this section we adopt the following notation:

e fi(k,m) is the column of H corresponding to user k at the symbol interval
m, i.e., it is the infinite-length column of H containing the k** column of the
matrix H(m);

e A(s : r,m) denotes the matrix made up of the s — 7 + 1 columns of H,
h(s,m), k(s + 1,m),...HA(r,m);

o T =HHY:
e R=HIN;
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o Tyw(m)=Huw(m)Hyw(m);
o Ryw(m) ="Hyw(m)Hyw(m).

For K — oo, the sequence of the empirical eigenvalue distributions of AAT con-
verges almost surely to F| A|z()\), a non-random distribution function with upper
bounded support. Let p) = & denote the random variable of the time delays

normalized by T. For a given N F( )( ) denotes the empirical distribution function

of p. We assume that, as N — oo, the sequence {FI(DN) (p)} converges to the proba-
bility distribution function Fp(p). For the sake of generality, we do not assume that
the random variables of the received powers A and time delays p are independent;
their joint probability distribution function will be denoted by Fja32 p(A, p). This
model is appropriate for the design of coherent detectors since both the time delays
Te, kK =1,..., K and the received powers |as|?, k = 1 .., K are known, i.e. are
determmlstlc In this case, given the system load 8 = N

r
Flap,p(X p) =% Z [ak,k|2, - 'fk)

where 1(z,y) is the bi-dimensional mdlcator function on right unbounded intervals.

4.3.2 Linear MMSE Detection

For a given observation window of length W and symmetric around the m* symbol
interval the linear MMSE estimator of By w (m) is given by
By (m) = Hiyy (m)[T ww(m) + 0* Inw] ™ Ynw(m)
= [Ryw(m) + o* Inw] " Hiw(m)Ynw(m).

By applying the multistage decomposition of the Wiener filter proposed in [27]
and discussed in Section 2.2.6 the linear MMSE estimator can be rewritten as follows

K(W+1)-1
Buwm)= Y WE D m)RE w (myHE w (m)Ynw(m). (46
£=0

Note that (4.6) coincides with the Type J-I detector with K (W +1) -1 stages intro-
duced in Section 3.3.3 (see (3.10)). W%{V(VMZH Y(m) are diagonal matrices whose 5
diagonal elements are obtained as solution of the Yule-Walker system of equations:

KW+1)—1 W+1)—1
w;(m) = (e TV m) el (m)

K(W -1 KW+1)-1 K(W4+1)—-1
and w;(m) = (WESTDD (m));, WS (M), .., W vty —1(m));)-

For s € Z*, @AS,)W](m) is an s X s real matrix with elements (@gf,?w,j(m))u,v =
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(Rt (m)j; + (R (m));;, and goN w,;(m) is an s-dimensional column vector
with elements (go(s) (m))u = (R w(m));;. Let us introduce the quantities

(PR () (@R (1))~ PN i ()
1= (@R () (B4 (1)) 0 ()

SINR") = seZt. (4.7

Fors > K(W+1)-1, SINR;CK(WH) ™1 is the SINR of the k't transmitted symbol in
Byw(m) at the output of the linear MMSE detector for asynchronous systems'?. For
s< K(W+1)-1, SINR,(:) is the SINR of the k*! transmitted symbol at the output of
an s-stage Wiener filter. Therefore, SINR&S), s=1,2,..., provides a family of lower
bounds for the SINR of the k*® transmitted symbol in By w(m) at the output of the
full rank linear MMSE detector. For synchronous CDMA systems the output SINR
of reduced rank multistage filters converges exponentially in the filter rank toward
the output SINR of a full rank linear MMSE filter [39]. Throughout this section we
utilize this property and we analyze the performance of multistage detectors with
finite observation windows and increasing number of stages. In Section 4.3.3 we
verify numerically that, also for asynchronous systems, for s > 8 the lower bounds
SINR}CS) are so close to the supremum to be indistinguishable from it.

Making use of (4.7), the problem of determining the family of lower bounds reduces
to determining the diagonal elements of the matrix ’RN wim), £=1,...,2s,as K =
BN — oo. Recursive algorithms to determine limg._ ﬂN—»oo(RN W( ))jj, ¢ e Zt,
are provided in Theorem 8 and Theorem 9 for equal and unequal received powers,
respectively.

In Theorem & we consider an asynchronous system with finite observation window
length W and equal received powers. Thus, without loss of generality, we can assume
that A = I in (4.5). The assumptions in Theorem 8 summarize and formalize the
characteristics of the system model (4.5) introduced in Section 4.3.1.

Theorem 8 Let {pgm} be a mnon decreasing sequence of elements n
{O, N N , Y, obtained by sorting K independent realizations of a ran-
dom variable and let Fpw(p™)) be its empirical distribution function (e.d.f.)™.
Let hgj )(2), i,j=12...and £ = 1,...,W + 1 be random variables’® in C. Let
the matric HM (@) € C*N*K ¢ =1,...,W + 1 have elements h( o) = h,(N)(é)
for p( IN+1<i< p(N)N + N, 1< j <K, and the remaining elements equal to

13The equivalence of a linear MMSE detector and a full-rank multistage Wiener filter has been
thoroughly discussed in Chapter 3

14p§-N) models the time delays, normalized to the chip interval, of user j. The order reflects the
ordering of the users assumed in the system models (4.3) and (4.5).

15The random variable h(N) (£) models an element of the spreading sequence of user j at the symbol
period £.
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zero’. Let H fiN) (0), H™M (¢) € CN*K pe, respectively, the lower and upper block of

the matriz H(Q)™, i.e. HM () = [(HM ()T, (HM (0)TIT. Finally, let Hyw
be a WN x (W + 1)K random bi-diagonal block matriz structured as follows:

HY1) HY2) 0 ..
o HM2) HM(3) 0 .. ..
Hyw=| . . (4.8)

’

Let us assume that:

(a) B )( ), i,j=12..and £ =1,...,W +1, are i.i.d. with E{}"(0)} = 0,
E{Ihij (@7} = L, and limy_c0 E{N3|h(N)( 0)[6} < +oo.

(b) As N — oo, the sequence of e.d.f. {Fpw(p)} converges almost surely to a
cumulative distribution function (c.d.f.) Fp(p)'”.

(c) The spectral radius of the matriz Hyw is almost surely upper bounded"®.
(d) K s a function of N, i.e. K = K(N), satisfying limy_o, %2 = g.

Then, the diagonal elements of the Gram matrices Ty = (’HN,W’Hg,W)m and
Nw = (’Hg’W’HN,W)m converge with probability one to a deterministic value

. m a.5. m
K:,lﬁllr\lnﬁoo (TN,W)nn = Ty (z) (4.9)
where x = th_,o0 2, being n a function of N 'wzth values in {1,...,WN}, t.e.
n = n(N) : — {1,...,WN}; y = limy.co &, being k a functzon of N with

values in {1,...,(W+1)K}, ie. k=k(N):Z* - {1,...,(W+1)K}; and R} (y)

16 The matrix H®) (£) models the spreading sequence matrix of transmitted symbols at time
instant £ taking into account the time delays. It corresponds to the matrix S(£) or equivalently
to the matrix H (£), since in this theorem we focus on the case A = I.

1"Note that by assuming the p( ) independent with identical distribution function Fp(p) the
Glivenko-Cantelli theorem (see e.g. [89]) guarantees the almost sure convergence of {Fpw)(p)}
to Fp(p). Therefore, condition (b) is redundant and stated explicitly in the theorem only for
the sake of clarity.

18Theorem 8 holds also under the less restrictive condition that the eigenvalue moments of the
matrix 'Hﬁ,WHN,W are upper bounded.
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and T (x) determined by the following recursion:

T (z) = Y Ty () f(Ry*, x) 0<z<W (4.11)
s=0
Ry (y) =D Ry ®)o(T*,y) 0<y<(W+1)8  (412)
s=0
where
r(@)+8
f(R'v‘v,w)é/ ' Rw (y) dy 0<z<W
r(x)
A min(W,c(y))
o2 [ T3 (x)dz 0<y<(W+1)F  (413)
max(0,c(y)—1)
with
r(z) & B[Fp(z — |z)) + |z)] 0<z<W, (4.14)
) 2 1) +F7 (% - L%J) O<y<(W+1B  (415)

The recursion is initialized by T%(z) = 1, R%(y) = 1, f(RY,z) = B, and
9(T,y) = Uy) with

F,;l(%) 0<y<p
(k) =4 1 B<y<Wp
1-F' (§-W) W <y< W +1)

Theorem 8 is proven in Appendix C.

The assumption (c), i.e., that the spectrum of the matrix Ry w is upper bounded,
is of technical nature. Indeed, we conjecture that it follows from the assumptions
on h;;(k) since we verified this property by extensive computer simulations. For the
matrix H’ for synchronous systems, the fact that the spectral radius is bounded
was verified by computer simulations in [40] and it was proven in [64]. However, no
analogous result for the matrix Ry w is known to the author.

In the following we give an interpretation of the quantities that appear in the
recursion of Theorem &. Figure 4.2 illustrates the structure of the matrix Hyw as
N,K — oo and the meaning of the functions r(z), and I(y). The shaded region
of the matrix corresponds to random nonzero elements while the remaining region
corresponds to zero elements. The function I(y) is the “height” of the shaded region
in position y; the function r(z) is the “width” of the zero region on the left of the
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o B W W w

o0 N

Figure 4.2: Graphical representation of the structure of the matrix Hyw as K, N —
oo with £ and the functions r(z), c(y), and I(y).

shaded region in position z; finally ¢(y) is the “height” of the zero region on the
right of the shaded region in position y. The functions Ry, (v), Ty (2), f(Riy, ),
and g(7:2,y) admit interesting interpretations. By definition R}, (y) and 7y (x) are
the asymptotic deterministic values of the diagonal elements of the matrices RY 1/
and 7 %y, respectively, as 1% — oo with ratio converging to a constant . Being
f(R%, x) the integral of R}, (y) over the interval [y, o] with y; = r(z) and y, =
r(z)+ 8, f(RY, ) can be interpreted as the trace, normalized by N, of a submatrix
of R}, including all rows and columns of Ry, whose indices, normalized by N, are
in the interval [y;,s). Similarly, since g(7%,y) is the integral of 7y, (x) over the
interval [z, z2] with 2; = max(0,c(y) — 1) and z2 = min(W, c(y)), 9(Ti%,v) can be
interpreted as the normalized trace of a submatrix of 7Ty, including all rows and
columns of T}, whose indices, normalized by N, are in the interval [y, z3].

The following example explains the use of the theorem. Let us assume W = 3 and
the time delay uniformly distributed in the interval [0, T5], then the limit distribution

of the normalized time delay p is Fp(p) = p, with p = [0, 1], r(z) = Bz with = € [0, 3],

5 0<y<§p
y)=41 B<y<3p . (4.16)
4—-4% 3B<y<4p

B
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Therefore, T3'(z) = B8 and R}(y) = I(y),

( B Bz+p
[4dy+ [ dy 0<z<1
Bx B
Bz+p
f(R},x) = ﬁ [ dy 1<z<2 (4.17)
Bz
38 Bxz+pB
fdy+ [ (4—%)dy 2<r<3
[ Bz 3p

and gOW},y) = 8, 0 <y < 40. Then, we can apply (4.11) and (4.12) to determine
T2(x) and R2(y) and proceed recursively.

In Figure 4.3 the asymptotic values R}*(y) for m = 1...6 are compared to the
values ('R«7Nn,3)kk of a single realization of Hy 3, for N = 2048 and § = % Simulations
with various distributions of the elements h;; show that the diagonal elements of
finite large matrices match very well the asymptotic values R%'(y) determined by
the recursion in Theorem 8.

At first glance the recursion in Theorem 8 seems to be useful for the asymptotic
analysis of linear detectors whereas it appears too complex for the design of low
complexity multistage detectors similar to the detectors proposed for synchronous
CDMA systems. However, a more careful analysis demonstrates very useful prop-
erties of the asymptotic values R} (y) for the design of low complexity multistage
detectors. With the goal of reducing the complexity of multiuser detector for asyn-
chronous CDMA systems, we consider a symbol asynchronous but chip synchronous
CDMA system with an observation window length W = 6 and 8 = % The asymp-
totic values of the diagonal elements of Ry ¢, R§(y), m = 1,2,3,4,5 are plotted
in Figure 4.4. The solid lines show the shape of R*(y) while the dashed lines show
the corresponding values of R (y) for a completely synchronous system. R§(y) and
R2(y) coincide with the corresponding values of the synchronous system in the in-
terval y € [3,...,60)]. In the interval [0, 8] and [68,70] the values of R}(y) and
R2(y) for synchronous and asynchronous systems differ. From a mathematical point
of view, this is due to the “tails” of the length of the spreading sequence [(y) in the
intervals [0, 8] and [63, 78] (see Figure 4.2, [(y) = 1 for any value of x except in the
intervals [0, 8] and [W 3, (W +1)83]. We refer to these intervals as the “tails” of {(y).).
From a physical perspective, this behaviour stems from the fact that the symbols at
the border of the observation window are observed only partially, i.e. only a subset
of the chips of the whole spreading sequence is observed. For increasing powers of
Re N, the effects of the “tails” start propagating inside the observation window.
RE(y) and R¢(y) for asynchronous systems coincide with the corresponding values
for synchronous systems only in the interval [23,58]. R3(y) for synchronous and
asynchronous systems is equal in the interval [33, 40].
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This behaviour is completely general and shows that, for fixed s € Z*, there exists
an observation window sufficiently large such that, in the center of the observation
window, the values R (y), m = 1,..., s for synchronous and asynchronous systems
are equal. Then, the values of R} (y) for synchronous systems are very simple to
compute using Algorithm 1 in Section 3.4 and the design of low complexity multiuser
detectors for symbol asynchronous but chip synchronous systems can benefit from
this “local equivalence”.

In the following this property is established rigorously for CDMA systems with
unequal received powers. First, Theorem 8 is generalized to the case of unequal
received powers in the following Theorem 9. Then, the “local equivalence” is derived
from Theorem 9 in Corollary 3. The assumptions of Theorem 9 summarize and
formalize the characteristics of the system model (4.3) in case of power imbalances.

Theorem 9 Let {( ) ! MY fori=1,...,K, be a sequence of K pairs in R* x
{0, W LAl 1} sorted 5o that'? o )<p(N) <P Let Fyony pon (O™, pM) =
e Ei:l (AW )\E ))1(p(N ) — pEN)) be the correspondent empirical joint distribution.
Let fsﬁv)(f), i,j=1,2,...and £ = 1,...,W + 1, be complex random variables. Let
the matm’z SM (g € CzNXK £=1,....,W +1 have elements s( o) = A(N)(E)
for pJ IN+1<i< p MN + N, 1 < j < K, and the remaining elements equal
to zero®. Furthermore, let S((iN (0), SN (0) € CN*X be, respectively, the lower and
upper block of the matriz S(€)™), i.e. SM(£) = [(SM(8))7, (S ()T, Let Snw
be a WN x (W + 1)K random bi-diagonal block matriz structured as follows:

[s™(1) sM2) o
0 SM2)sM3) o
Syw=| . . - : (4.18)
o SsMw-1)sMw) o
! 0o SPw) sMw),
Additionally, let Ax = diag{ Ak, ..., Ak} be a W+1)K x (W +1)K block diagonal
W+1 times

matriz with (W + 1) blocks equal to Ag. Furthermore®, (AxAj)i = )\EN). Finally,
let Hyw be the WN x (W + 1)K matriz given by Hyw = SnwAx.

19Tn a pair {0, )"}, AY) models the received power |a;;|? of user i and P models the time
delay of user i normalized by the symbol period T. The order reflects the ordering of the users
assumed in the system models (4.3) and (4.5).

20 gV )(é) models the spreading sequence matrix of transmitted symbols at time instant £.

21The matrix Ax models the matrix of received amplitudes in the system models (4.3) and (4. 5).
Additionally, ); is the received power from user i, consistently with the definition of )\(N) in

the pair (A", p{"™)
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Let us assume that:

(a) 337°(0), 4,5 = 1,2,... and £ = 1,...,W + 1, are i.i.d. with E{§(0)} = 0,
E{[557(0)2} = &, and limy_.oo E{N*5" (0)|} < +c0.

(b) As N — oo, the sequence of e.d.f. {FA(N)P(&)()\,p)} converges almost surely to
a differentiable c.d.f. Fyp(\, p).

(c) X and p are deterministically related, i.e. Fpp(A|lp = po) = L(A — A(po)). Here,
A = X(p) denotes p as a deterministic function of A. X(p) is upper bounded.

(d) The spectral radius of the matriz Hyw is almost surely upper bounded®.
(e) K is a function of N, i.e. K = K(N), satisfying limpy_, EI(V—Nl = f.

- Then, the diagonal elements of the Gram matriz T y, = (HN,WHII{,,W)"‘ converge
with probability one to a deterministic value

lim (TTA’},W)M T (x)

K=BN—oo

where x = limy_ %, being n a function of N with values in {1,...,WN}, ie
n=n(N):Z* - {1,...,WN}.
Conditioned on A (y—— L%Jﬂ), the diagonal elements of the matriz RYy =

(HRwHnw)™ converge with probability one to a deterministic value

m (RRw),, = Ri)

where y = limy_ %, being k a function of N with values in {1,...,(W+1)K}, i.e.
k=k(N):Z" — {1,...,(W +1)N}. The limits Ry (y) and T;*(x) are determined
by the following recursion:

Tt (z ZTS FRE, x) 0<z<W (4.19)
Ry (y) = ZRiv(y)g(Tv’&‘s,y) C 0<y<(W+1)B  (4.20)
where
r(z)+
5/() (y—L JB) dFp(y) 0<z<W (4.21)
min(W,ce(y))
o(Tpy) 2 (y—L m) / Tp@de  0<y<(W+1p (422)
max(0,¢(y)—1)

220n this condition similar considerations as in Theorem § hold.
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with
r@) £ p[Fpa—z))+|z]]  0<z<W, (4:23)
w2 |8 +rr (5-4])  osvsovens

The recursion is initialized by Ty (z) = 1, Ry (y) = 1, f(RY,z) = BE|ap{\} and
9q(Tw,y) = A (y = L%Jﬁ) I(y) with

F7' (%) 0<y<p
OERS! B<y<WB . (4.25)
1-F;' (§-W) AW <y<BW +1)

Theorem 9 is proven in Appendix C Section C.2.

Although the recursion proposed in Theorem 9 is perhaps too complex for being of
great practical use in the design of low complexity multiuser detectors, the following
useful corollary stems from it.

Corollary 3 Let the assumptions of Theorem 9 hold. Let Ry, (y) and Ry (y) be the
asymptotic deterministic values of the diagonal elements of Ry for asynchronous
and synchronous systems, respectively, as K, N — oo with —Il\g, — (. Assume [m] <
%ﬂ. Then, for £ =0,1,...,2m

Riy(y) = Riw(v)
fory € [BIE),B(W +1-[£])].

Let us notice that from (4.5), the system model for symbol asynchronous but chip
synchronous systems, a synchronous system is obtained when equal time delays for
all users are assumed. The matrix Ry then becomes a block diagonal matrix.
Additionally, each block of Ry, for a synchronous system is equal to the matrix
R™ of the single-symbol system analyzed in Chapter 3. Corollary 3 follows from this
observation and by induction from Theorem 9. Corollary 3 allows us to calculate the
diagonal elements RY, (y) by means of Algorithm 1 presented in Section 3.4. This
result is quite useful from a practical point of view, as it will be apparent in Section
4.3.3. In fact, the weight design for asynchronous systems reduces to the one for
synchronous systems already solved in Chapter 3.
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4.3.3 Multistage Detection

In this section we extend the concept of multistage detectors with asymptotic weights
to asynchronous CDMA systems.

In Chapter 3 we pointed out that polynomial expansion detectors are suitable in
scenarios with approximately equal received powers for all users while multistage
Wiener filters outperform polynomial expansion detectors in scenarios with power
imbalances. To give an intuition of this we can compare (3.7) and (3.12). The poly-
nomial expansion detectors replace the optimum values (R®) in (3.8) and (3.9)
by trR®. If the values of (R®);, are closed to trR°, as in the case of synchronous
CDMA systems with almost equal received powers, the performance degradation of
polynomial expansion detectors is negligible. However, if the values of (R®)x have
large variance the approximation of (R®)g; with trR° can be severely suboptimal.
In an asynchronous system, (R} y-)re varies considerably within the observation
window even for equal received powers, as is apparent from Figure 4.3 and Figure
4.4. Therefore, in asynchronous systems, polynomial expansion detectors suffer more
from their sub-optimality than in synchronous systems. In the following we focus on
detectors Type J-I.

The design and analysis of detectors Type J-I for asynchronous systems benefit
mainly from the following two observations:

e From Corollary 3 it is apparent that, for an observation window sufficiently
large, the diagonal elements of the matrices® Ry, s = 1,...,m, in the center
of the observation window, coincide with the diagonal elements of the matrices
R® s=1,...,m, of the corresponding synchronous system (see Section 3.2).
Therefore, the design of the asymptotic weights for the detection of the trans-
mitted symbols in the center of the observation window reduces to the low
complexity design of the weights for synchronous systems detailed in Chapter
3.24

e The band structure of the matrix H in (4.4) enables an implementation of
multistage detectors with infinite sliding observation window but finite delay.

The joint use of these two properties has the following implications:

23Given m, the observation window length W has to be chosen to satisfy the assumptions of
Corollary 3.

24This observation suggests the possibility of defining a Type J-J detector for symbol asynchronous
but chip synchronous systems simply replacing the asymptotic weights of a Type J-I detector
with the weights of a Type J-J detector for synchronous systems. Note that this weighting would
not correspond to any practical polynomial expansion detector with finite observation window
since it implies an infinite observation window. Additionally, its asymptotic performance differs
from the performance of a polynomial expansion detector, as K, N — oo with constant ratio,
for any finite choice of the observation window W of the polynomial expansion detector.
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e The design of the asymptotic weights for symbol asynchronous but chip syn-
chronous systems coincides with the design of the asymptotic weights for syn-
chronous systems.

e Multistage detectors for asynchronous systems can be implemented with a
sliding observation window. As a consequence, the multiuser efficiency of all
received symbols from all users is identical in the large system limit.

e The complexity order per bit of multistage detectors for symbol asynchronous
but chip synchronous systems is the same as the one of equivalent detectors
for synchronous systems.

Choice of the basis of the projection subspace

As already discussed in Section 3.3, a linear multistage detector of order M per-
forms a projection of the observed signal onto an M-dimensional Krylov subspace
and a subsequent processing of the projections by a filter designed according to an
optimality criterion.

A straightforward extension of multistage detectors to symbol asynchronous but
chip synchronous systems would replace the matrices H and T and the vector hy
in (3.3) with the finite matrices Hy w(n) and 7 yw(n) and the k™ column vector
extracted from vector Hyw(n), Anw(k,n), respectively. By this straightforward
extension two kinds of performance degradation would occur. One for using a sub-
space method instead of a full rank approach and one due to windowing. However,
an implementation of multistage detectors with finite delay is possible while avoid-
ing windowing effects. Let us consider the unlimited system model (4.3) and let us

use the subspace
M

X k(M) = span {A(k,n)¥T™} " _,
where T = HHY and A(k,n) is the column of H corresponding to user k at the
symbol interval n. Because of the bi-diagonal block structure of H, the matrix 7 is a
tri-diagonal block matrix and its power 7™ is a (2m+1)-diagonal matrix (see Figure
4.5). Therefore, the vector A (k,n)T™ has, at most, (2m 4 1)N nonzero elements
and the M-stage detector for the unlimited system model can be implemented with
a finite delay equal to MT;. This property is illustrated in Figure 4.5. Figure 4.5.a
shows A (k,n)HH? = B¥(k,n)T. The unlimited row vector A (k,n)7T depends
only on H(n — 1), H(n), H(n + 1) and has nonzero elements only in the symbol
intervals n — 1,n, n+ 1. Therefore, the statistic % (k,n)Z"Y depends only on y(n —
1), y(n), y(n+1). Figure 4.5.b shows that this property extends to the other elements
of the basis of the Krylov subspace. Namely, the statistic A% (k,n)7>Y depends only

on y(n —2),y(n — 1),y(n),y(n+1),y(n + 2).
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| EEh

This block row is a function of H,—y, H,, Hp41

This block row is a function of Hp—o, Hp—1, Hpn, Hpy1, Hnio

(b)

Figure 4.5: Vectors of the basis of the Krylov subspace for asynchronous CDMA
systems. (a) Decomposition of the basis vector A (k,n)7 into the product of the
row vector ¥ (k,n)H by the matrix H”. The vector £”(k,n)T depends only on
H(n—1), H(n), H(n+1). (b) Decomposition of the basis vector ¥ (k,n)7 into the
product of the row vector A (k, n)HT by the matrix H. The vector A" (k,n)T?
depends only on H(n —2), H(n — 1), H(n), H(n + 1), H(n + 2).
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The structure of a multistage detector for symbol-asynchronous but chip-
synchronous systems with a sliding observation window expanding with the number
of stages is shown in Figure 4.6.

Each stage of the multistage detector consists of a re-spreading block and a sub-
sequent matched filter, as well as a stage of a multistage detector for synchronous
systems (see Figure 3.2). However, the spreading and re-spreading blocks process a
signal received during two symbol periods instead of a signal received in a single sym-
bol period, as the signal processed by a multistage detector for synchronous systems
(for symbol asynchronous but chip synchronous systems H(m) € C*V*X whereas
for synchronous systems H'(m) € CV*¥). Furthermore, between the re-spreading
and the subsequent matched filter the signal is properly delayed and combined.
The 5 block receives as input the K-dimensional vector A7 (1: K,n — j + 1)T771Y,
where fi(s:r,n) denotes the matrix [f(s, n), (s +1,n),...,f(r, n)] with unbounded
number of rows and r — s + 1 columns, and provides as output the X-dimensional
vector B (1: K,n — j)T?Y. The vector A¥(1:K,n — j + 1)777'Y is multiplied or
re-spread by the matrix H(n — j 4+ 1). The re-spreading block provides two output
vectors, the upper part vector vy(n,j) = Hy(n —j + DE¥(1:K,n — j + )77y
and the vector vg(n,j) = Ha(n —j+ DA¥(1:K,n—j+1)T77'Y. The vectors
vg(n — 1,7) and vy(n — 1,j) + vg(n — 2,5) are memorized in the delay blocks.
The input to the subsequent matched filter is given by

_[(Hu(n—ﬁﬁ”(l:K,n—j)+Hd(n—j~1>ﬁH(1:K,n—j—l))T’_’—ly]
T (Hyn—j+DEH (1: K, n—j+1)+ Han— k" (1 K,n—-)T"1y "
(4.26)

vu(n~1,_7)+'vd(n—2,]):|
Vy (naj)'}"vd(n—la .7)

The output of the j** stage is delayed by (M — j)T before being used as input of
the filters defined by the matrix weights Wo(n— M), Wi(n—M),...,Wy(n— M)
to provide b(n— M), the soft estimate of b(n—M).

The following considerations provide further insight into the structure of the
jth stage. The j™ stage calculates A¥(1:K,n — j)77Y from a partial knowledge
of the vector H¥T7~1y. This knowledge is limited to the K-dimensional vectors
RE(1:K,n —j—s)T77'Y, with s = —1,0,.... Thanks to the fact A(1:K,n — j) is
nonzero only corresponding to the symbol periods n—j and n— 5+ 1, the knowledge
of the vector T7Y corresponding to those symbol periods is sufficient to compute
EH(1:K,n— §)T7Y. It is straightforward to verify that 77Y in the symbol interval
n — j is given by

[Hofn— )" (1: K, n—j)+ Halo—j— DB (L: K,n—5 - 1)] T Y
and in the symbol interval n — j + 1 is given by

Hfo—j+ DR (1: K,n~j+ 1)+ Halp— YA (1: K, n= 1T,
[
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i.e. the vectors provided as input of the matched filter in the j** stage (cfr. (4.26)).
Therefore, the signals at the output of the re-spreading block are delayed and com-
bined to compute these two vectors and to provide the required input to the subse-
quent matched filter.

Asymptotic Design and Analysis

Let W,,(n) and W,, be a K x K and an unlimited diagonal matrix, respectively.
Let us denote by wme(n) the ¢8 diagonal element of the matrix Wp,(n), then
W (n)=diag(wmi (n), Wma(n), . .., wmk(n)) and W,, = diag{..., Wp(n), Wy(n+
1),...}. The multistage detector Type J-I for asynchronous systems is the linear
operator M = S MW, HHET™ where the W,,, (i.e. the matrix weight of the
filter in the Krylow subspace) are chosen such that E{[| MY — BJ|?} is minimum.
This is equivalent to the minimization of the mean square error for each component
(b(n)) of B in the corresponding subspace X kn(H). Applying again the Wiener-
Hopf theorem as in Chapter 3, the weight matrices W ,(n) can be derived by the
following equation:
wi(n) = (Bx(n)) " pi(n)

where  (wi(n))m = (Wmn(n))e, @r(n) is an M-dimensional vector , ®x(n) €
RMM (o (m))m = (R™H0)irs (Bi(n))im = (R (0))ik + 0> (R (n) ),
R = HYH, and (R™(n))wx = A(k,n)¥T™ 'K(k,n) denotes the diagonal element
of the matrix R™ corresponding to the user k at time instant n. The output SINR
of user k is given by [67]

() (@) puln)
T T () (®x () pr()’ (4.27)

In the asymptotic case, as N, K — oo with % = 3, we can apply Corollary 3 to
obtain :

: m — m < < .
K:lglzr\&oo(k M)k = Ripoo V1 <m < 2M, (4.28)

where Rfj} ., are the asymptotic (deterministic) diagonal elements of the matrix
R™ for synchronous systems introduced in Chapter 3. Recursive and closed form
expressions for R}, can be found in Theorem 6 or Algorithm 1 (see Section 3.4)
and in Theorem 15 in Section B.2, respectively.

Numerical Results

Throughout this section, we consider linear MMSE detectors with observation win-
dow W = 3 and equal received powers within a chip synchronous but symbol asyn-
chronous CDMA system. Figure 4.7 shows SINRLymsE, the output SINR of a linear
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MMSE detector, for a system with § = % and % = 7 dB. As for the synchronous

case, the convergence of lower bounds SINRLS) in (4.7), as s — o0, toward the SINR
of a linear MMSE detector, SINRyvsE is very fast and the lower bound correspond-
ing to M = 7 (line with markers in Figure 4.7) is undistinguishable from the one
obtained for M = 8. The SINR reaches its maximum for the transmitted symbol
centered in the observation window and decreases smoothly for the transmitted sym-
bols whose spread signal is still completely observed (y € [3,303]). The performance
degrades rapidly for symbols only partially included in the observation window. In
contrast to the synchronous case, in the asynchronous case the multistage detectors
with M sufficiently large can outperform the full rank linear MMSE detector with
finite observation window W. This is due to the fact that both detectors use only a
subset of the sufficient statistics, but, with the proposed subspace basis, multistage
detectors intrinsically use a wider and wider subset as the number of stages increases,
whereas the full rank linear MMSE detector exploits always the same statistic (the
use of a wider statistic would require a longer observation window and thus a larger
complexity®®).

These theoretical results are completely supported by simulations. We consid-
ered a CDMA system with 64 users, Gaussian random spreading, frequency flat
Rayleigh fading, spreading factor 128 and QPSK modulation under two different
conditions, namely, for synchronous received symbols and for chip synchronous but
symbol asynchronous received symbols. We compare the BER of the multistage de-
tectors described in Chapter 3 for synchronous transmitted symbols with the BER
of detectors Type J-I for chip synchronous but symbol asynchronous systems intro-
duced in this chapter. Figure 4.8 shows the BER versus 1—’31; for a varying number of
stages. The BER for chip synchronous but symbol asynchronous systems matches
completely the BER for synchronous systems.

4.4 Chip Asynchronous and Symbol
Quasi-Synchronous CDMA Systems

4.4.1 System Model

In the following, CDMA systems such that the time delays of the received signals
Tk, k= 1,..., K are smaller than the chip delay, T, are referred to as symbol quasi-
synchronous but chip asynchronous CDMA systems.

In this section we consider symbol quasi-synchronous but chip asynchronous
systems and we assume that the time delays 7, satisfy the constraints 7, < To,

25Note that complexity grows cubic with the window size, but linearly with the number of stages.
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Figure 4.7: Chip synchronous but symbol asynchronous CDMA system with equal
received powers, § = % and % = 7 dB. Asymptotic SINRpymse for W = 3 and
multistage detector SINR, for varying M wversus the position of the detected symbol
in the observation window.

Flat Rayleigh fading channel, K=64, N=128, QPSK modulation.
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Figure 4.8: Comparison between the BER of multistage detectors for synchronous
systems (solid lines) and the BER of multistage detectors for chip synchronous and
symbol asynchronous CDMA systems (markers). BER versus 1%’% for 5 =0.5 and a
varying number of stages.
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k=1,..., K. Additionally, we focus on the transmission of a single symbol b; per
user as in [82]. Then, the general system model (4.1) can be rewritten as

ylp] = EI_{: i Dk ]{j su[ulw ((1—: - U) T. - Tk) +nlp] peZ (4.29)

u=0

where agg, bi, sk[u], n[p], r are defined in Section 4.2.

We also assume that the chip pulse ¥(t) is much shorter than the symbol wave-
form, i.e. ¥(t) becomes negligible for |t| > ¢, with some ¢, < Tj. This is usually
valid in systems with large spreading factor, which are considered in this work. In
fact, in the systems in use the chip pulse decays rapidly and becomes negligible
after 8-10 chip periods?*. We make use of the previous assumption to neglect the
useful signal outside the symbol interval [0, T§]. Thus, the system model (4.29) with
p=20,1,..., Nr — 1 reduces to

K
Y= abrvi+7

k=1
where ¥ and n are the Nr dimensional vectors of received signal and zero mean,
complex-valued, circular symmetric, white Gaussian noise with variance o2 = ET%Q“Z’
respectively. Furthermore, vy is the N7 dimensional virtual spreading sequence of
user k given by _

v = Wiy,
where \ik is an Nr x N matrix taking into account the effects of the pulse shape
and the time delay of user k. It is defined as

W(=7k) P(~Te—) | B-N+D)T—7)
J(L"%@—m J((ﬁf,—ll—zl)Trrk) J((f%ll—NiH)TC—m)
P(Te—Ts) %(—7k) | BU(N+2)T—7)
= J(ﬁ?ﬂln—m J((L";—Q:)Tc—m N J((@—Aﬂz)ﬂ—m
PN —=)Te—) Y(N-2)Te—7i) |- p(i)
J(”%ITC+(N — )T, —7%) J((’%I+N:—2m—m) J((—’:—l):ﬂ“c—rk)

(4.30)

26 To have an idea of the decaying rate the reader can consider the sinc function that is the slowest
decaying function among the raised-cosine functions.
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Structuring the matrix \ik in blocks of dimension r x 1, @k is a block-wise Toeplitz
matrix. _

Let § be the rN x K matrix of virtual® spreading, i.e. S =
(‘DlSl,‘I’QSQ,...,CI;KSK). Furthermore, let A be the K x K diagonal matrix of
received amplitudes, and b the vector of transmitted symbols. Then, the system
model in matrix notation is given by

y=SAb+7 (4.31)
=Hb+n

with H = SA. Additionally, h; denotes the & column of the matrix H. T and R

—~—

are the correlation matrices defined as T = H H and R=H H respectively.

4.4.2 Linear Detection

Following the same approach as in Chapter 3, the linear MMSE detector and the
multistage detector Type J-I for symbol quasi synchronous but chip asynchronous
CDMA systems are given by

~ ~H ~ _

byvse = H (T +0°I) 'y
~ ~H

=(R+0I)'H gy

and ,
N M-1 H~m
brtk =Y (@)mh T (4.32)
m=0

respectively. The weights for the detection of the &*" symbol are obtained as

~—1_

wi =Py P
with
e+ 2B ... B+ 2® )
D, = (ﬁs)’“’“ + 02(R2)kk e (RM+2)kk + Uz(ﬁM+1)kk
(R e+ 2R .. R+ 2B
P = ((R)kk, (R, (RM)kk)T- (4.33)

2"Here, the adjective ‘virtual’ refers to the fact that S takes into account the asynchronism and
the chip-pulse waveform.
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The structure of the Type J-I detector coincides with the structure proposed in
Figure 3.2 for synchronous systems by substituting H with H. Once again the
design of the asymptotic weights reduces to the computation of the asymptotic
values Eikm = limK=ﬂN_,+oo(ﬁs)kk, fors=1,2,...,2M.

For further studies it is convenient to define the concept of r-block-wise circulant

matrices of order N:

Definition 2 Let 7 and N be positive integers. An r-block-wise circulant matriz of
order N is an rN x N matriz of the form

( o €Cin ... CI N1 \
Cr0 C1 ... CrN-1
¢iN-1 Cpo ... C1,N-2
cWN) =
CrN-1 Cr0 ... CrN-2
C11 01,2 e C1,0
\ Cr1 Cr2 .. Cr0 )

In the matrix CY) an r x N block row is obtained by circularly right shifting of the
previous block. Since the matrix C™) is univocally defined by the unitary Fourier

transforms of the sequence® {cs0,¢s1,. .- CsN-1}

N-1
1 :

o(z) = —= ) cye Ik s=1,...,7

f() /——zﬂg sk

we will denote an 7r-block-wise circulant matrix of order N by
CM(fi(z), fa(x), . .. fr(z)) in the following®. .

Let H be a matrix of form similar to the form of matrix H but with the block-
wise Toeplitz matrices \ik replaced by block-wise circulant matrices Cj, i.e. H =

28Throughout this chapter we utilize unitary Fourier transforms both in the continuous time
and in the discrete time domain. With this choice the functions of the complete orthogonal
system for the direct Fourier transform are simply the complex conjugate of functions of the
complete orthogonal system for the inverse Fourier transform. The unitary Fourier transform
of a function f(t) in the continuous time domain is given by F(jw) = \/#2—” [ f(t)e~7wtdt. The
unitary Fourier transform of a sequence {...,c_1,¢p,¢1, ...} in the discrete time domain is given
by C(e’*) = % Foo L cpeTivn,

29Tn this section we denote the argument of a Fourier transform of a continuous time function by

f and the argument of a Fourier transform of a sequence by z.
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(C181,C289, ... ,CKSK)A. The matrices Cy, k = 1,..., K are chosen in a way such
that the spectrum of ¥y, k = 1,..., K converges asymptotically to the spectrum
of Ci, k = 1,...,K. This choice will be thoroughly discussed in the following.
Firstly, we determine the asymptotic values of the diagonal elements of the matrices

R = (ﬁHﬁ)e, L€ Z*t, as N, K — oo with % — 3. Then, we extend the results to

~¢
the matrices R, £ € Z*.
The convergence of the diagonal elements of R’ to deterministic values is estab-
lished in the following theorem.

Theorem 10 Let A € CE*K pe q diagonal matriz with k% diagonal element ay.
Given a function Z(j2rf) : R — C with finite support and bounded in absolute
value®, let
a1 &R ( j2m
(z) & = _7‘27r—7'5—c z—l—s)E* 2 (r+s )
SEEE DI (Fra+s)

§=—00

Furthermore, let CfCN), k=1,...,K, be K r-block-wise circulant matrices of order
N defined by

" 2 (6 (2),6,_n (@), &, _rum (@),

where T is a positive integer’. Finally, let H = SA with S =
(CMs1,CMs,,...,C%sx).
Let us assume that

(a) sy, for k = 1,...,K, are K independent N-dimensional column vectors with
i.i.d. random elements sn, € C such that E{sn} = 0, E{|sn|?} = %, and

limy—oo E{N?|s|6} < 4-00.52

(b) (11,72,...,7Tk) is a sequence of K random variables with 7, € [0,T¢) and T
positive real®’.

(c) The sequence of the empirical joint distributions Fl(ffll,T(,\,r) =+ le 1A —
lake|?)1(T — 7%) converges almost surely, as K — oo, to a non-random distribu-
tion function Fjap (A, 7) with bounded support.

30Z(j27 f) models the unitary Fourier transform of the chip pulse waveform W(t).

31y is a sampling factor that defines the sampling rate as TLC CiN) takes into account the chip-pulse
waveforms.

32These random column vectors model the spreading sequences.

337, corresponds to the time delay of user k.
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(d) The spectral radius of the matriz R = HH is almost surely upper bounded as
K,N — +oo with* & — p.

() K = K(N) with limy_.o X = 3.

Then, given (|ark|?, %), the k¥ diagonal element of the matriz R converges with
probability one to a deterministic value, conditionally on (|axk|?, T¢),

. —f a.s. = 2
K:}alzxvn_.oo(R Jek = R (lak|®, k)

with R(|agk)?, 7x) determined by the following recursion

-1

}_Ze()\,'r) = Zg(Te_s_l, ATVR (A7) (4.34)
and
e-1 '
T'(2)=Y f(R 2T () 0<z<1 (435
£#(R,z) = / A, @A @R O Fagr(\ 1)  0<z<1  (436)
g(T° \7) = )\/0 AR ()T’ (2) A (z)d (4.37)
where
&-(z)
£, 1 (z)
A (z) = T

£, _re-n) ()

T

The recursion is initialized by setting To(x) =1I, and ﬁo()\, T) = 1.

Theorem 10 is proven in Appendix C Section C.3.

For r = 1 and Flap (A, 7) = Flap(A)é(r), ie. for synchronous systems sampled
at the chip rate with &(z) = sinc(z) it can be verified that equation (4.34) reduces
to equation (3.26). Equation (4.37) becomes g(T", \,7) = ABm% and the recursion
in Theorem 10 coincides with the recursion in Theorem 6 for synchronous systems.

34This condition can be replaced by the less restrictive condition that the integer positive eigenvalue
moments are upper bounded.
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Asymptotically, there exists a strong relation between Toeplitz and circulant
matrices. In fact, given a sequence u,,, m € Z that is square summable®, i.e.

+0 o |um|? < +00, and given the sequence {U y} of Toeplitz matrices

Uo U_1 U ... U_(N-1)

(75} Ug U_1 o U (N=2

Uy = (N-2)
UN-1 UN-2 UN-3 ... Ug

the sequence of the empirical eigenvalue distributions of the Toeplitz matri-
ces Uy and of the empirical eigenvalue distributions of the circulant matrices

{Cn(z +0 o Im&2™™)} converge to the same limit eigenvalue distribution for
N — 00 [90-92].

~(N
Let us consider the matrix \II,(C ), with 7 = 1 in (4.30) and let us determine
the asymptotically equivalent circulant matrix. If =(j2nf) is the unitary Fourier
transform of ¢(¢), then, e’/ =(j27 f) is the unitary Fourier transform of 4 (t — 7%)
and

ﬁ 'l/J(mTc — Tk_)ej%rmit — (7_‘_' Z w(mTc _ Tk)e—]Z'frma:>
400 *
€ k=—o0 ¢

where, in the first step, we assume J(t) to be real and then we make use
of the property of the complex number z that z = (2*)*. Let us notice that

# +o LW(mT, — Tk)e‘jz"mm) is the unitary Fourier transform of the se-

quence {zZ(mTc — 7¢)}. Then, it is possible to use the relation between the uni-
tary Fourier transform of a sequence obtained by sampling a given function at

rate 1/T, and the unitary Fourier transform of the continuous time function [93].
Thus, the sequence of the eigenvalue distribution of the Toeplitz matrices \TI,(CN)
converges to the limiting eigenvalue distribution of the sequence of circulant matri-
ces Cn (Tlc > ejz"%(“m)E*(j%r%cm)) . This property suggests the following
conjecture.

Proposition 1 Let assumptions (a)-(e) of Theorem 10 be satisfied and let the def-
initions in Theorem 10 hold. Additionally, assume:

35This condition is very general and includes almost all chip-pulse waveforms of practical interest.
In fact, it coincides with the condition for the existence of the Fourier transform of a sequence.
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(i) Given the function P(t) : R — R with unitary Fourier transform Z(j27 f)
as z'n Theorem 10, the sequence {¢(T,n — 7)} is square oot summable, i.e.,
A |6(Ton — 7)|2 < 00, for any T € [0, Ty).

(ii) Let B be as in (4.30).

(i) Let 8 = (@1, 8Ws,, . W sk) and B = 3™ 4K

Then, the diagonal elements of the matriz (R)! = (ﬁ H)Y, ¢ € Z*, converge

asymptotically to the corresponding diagonal elements of the matriz I_Ze, i.e. condi-
tionally on (|awk|?, %)

lim Ry, =R 2 ).
K=pN 400 Kk (o], 7)
Proposition 1 can be proven under the conjecture that not only the spectrum but
also the eigenvectors of Toeplitz matrices converge asymptotically to the eigenvec-
tors of circulant matrices. Implicitly, this last conjecture has been already used

in the proof of Theorem 6 in [13]. Proposition 1 is supported by numerical sim-

=(512),, ms 2,
ulations. In Figure 4.9, the empirical distributions of € = R) (Ia::P(l::)kl Th)

= 2,3,5,6, i.e. the empirical distribution of the relative error made by approximat-

ing the dlagonal elements of powers of the 512 x 512 matrix R by the asymptotic
values R (|akk|?, 7¢), are compared to the corresponding empirical distributions of
= = B R (alhime)
s R (Jaxsl?, ) )
been obtained assuming that ¥ (¢) is a raised cosine waveform with roll-off factor
v = 0.5, using a system load § = 0.5 and sampling factor 7 = 2. The empirical
distributions of €, s = 2,3,5,6 match very well the empirical distributions of the
corresponding €. Later on, the conjecture in Proposition 1 will be further supported
by the comparison between the asymptotic performance and the performance of fi-
nite communication systems (e.g. Figure 4.10).

The asymptotic SINR of the multistage detector Type J-I for symbol quasi-
synchronous but ch1p asynchronous systems is obtalned from (3. 3/) by replacing
¢ and B by @p = limy—gr—oo Py and @k = limy=gK 0o Pk, respectively.
Then,

, s =2,3,5,6. The empirical distributions of €; and € have

1
1

~ =0 ~
(@) (2 ) pr
The performance of the linear MMSE detector can be approximated with arbi-

trarily high precision by the performance of the multistage detector Type J-I with
a sufficiently large number of stages, as already discussed in Chapter 3.

SINRSO_I,]‘: = (4.39)
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Empirical distribution of €; and €.
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Let us consider a chip asynchronous but symbol quasi synchronous CDMA system
with equal received powers, raised cosine chip pulse waveform of roll-off factor v =
0.5, system load 8 = %, and a Type J-1 detector with M = 4. In Figure 4.10 the
performance of finite systems with increasing dimension (K = 32, K = 128, and
K = 1024) is compared to the asymptotic performance. As expected, the variance
of the output SINR for the finite systems decreases as the system size increases and
the SINRs for the finite systems concentrate more and more around the asymptotic
values computed by (4.39).

4.4.3 Effects of Asynchronism and of Chip Pulse Waveforms

Theorem 10 and Proposition 1 are not useful only for the design of multistage
detectors with asymptotic weights. In fact, their application to the analysis of CDMA
systems with random spreading and linear detectors optimal in a minimum mean
square error sense demonstrates general properties of these systems.

In the following we focus on three cases:

e Chip pulse waveforms with bandwidth B < 5.
o Chip pulse waveforms with bandwidth 5= < B < 7.

e CDMA systems using square root Nyquist chip pulse waveforms and chip
matched filtering at the front-end.

. - 1
Chip pulse waveforms with B < -

Chip pulse waveforms {bv(t) with bandwidth B non greater than s are analyzed.

2T,

Thus, the conditions of the sampling theorem are satisfied when sampling at a rate

that is equal to or a multiple of the chip rate, the samples are sufficient statistics

for the detection of all users in the system. N
Denoting by E(j2nz) the unitary Fourier transform of the function #(t), the

unitary Fourier transform of 9(t — 73) is given by e=72"%*Z(j2mrz). The r-blockwise

circulant matrices of order N asymptotically equivalent to the block-wise Toeplitz

matrix (4.30), are

J2r T j21r(7'k—3;‘1)a: '27r(7'k—$3:-%&)z
Ci =Chx (e = (j2ﬂ' z ) - (j2ﬂ'£—) LT P <j27r£-) .

T. T. T. T. T. T.

By specializing the vector A, (z) in Theorem 10 to the case B < %;, we obtain,

for any time delay 7
ej27r7‘ka:
A (z) = E*(j2nrz)e
T.
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Figure 4.10: SINRg4g versus (1%;

Equal received powers, raised cosiney=0.5, p=0.5, r=2
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Ja as K = BN — oo (solid line) and with a

finite number of users (red dots), namely K = 32, K = 128, K = 1024. A chip
asynchronous but symbol quasi synchronous CDMA system with equal received

powers and § = 1 is considered.
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with e = (1,e7927%= e

—]21r-—§——2T°T ! )T

Theorem 10 applied to the case B < == 2T yields the following algorithm to derive

7 (A) and the asymptotic eigenvalue moments of the matrix R.

Algorithm 2

Initialization: Let po(z) =1 and po(y) = +

It step: .

1
x.
Define up—1(y) = ype—1(y) and write it as a polynomial in y.

Define vp_1(2) = 2ps—1(2) and write it as a polynomial in z.

2s
Define €, = T—12; _152 ‘E(j27r—T’”:) dz and replace all mono-

mials y, 92, ... ,y° in the polynomial ue_1(y) by €1,&s, ..., &,
respectively. Denote the result by U,_;.

Define mjy. = E{|ak|**} and replace all monomials
2,2%,..., 2" in the polynomial v,_1(2) by the moments mllAlz,
ml2A|2" e mf A2 respectively. Denote the result by Vj_;.
Calculate
-1
= Z TQZUZ—S—lpS(z)
$=0
-1
Y) =1 ByVe s 1ps(y).
s=0
Assign pg(A) to -Re()\).

Replace all monomials z, 22, . .., 2 in the polynomial po(z) by
the moments mj' 42, m|2A|2,. e mf ap» Tespectively, and assign

the result to mf%.

The derivation of Algorithm 2 is detailed in Appendix C Section C.4.

~ ~¢
The limit diagonal element R‘(\) of R and the eigenvalue moments m% equal

T%e(A) and m%, respectively thanks to Proposition 1.

By applying Algorithm 2 and Proposition 1 we compute the first five asymptotic
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eigenvalue moments

M, = Tmjapél

m, = rB(miap) €2 + miypEl]

m, = r°[82E3(mja12)® + 3miapEalBmiaps + miapéi]

mi, = r26°E3ml e (mlap)” + 4BETEsm g + 4B°ErEamfan (Miap)” + B Ea(miap)’

+ 2BE7E2(mgp)” + Elm4]]
mf;)'_:t = Ts[m?Apglsﬂ‘l + 55 (mllAlz)s + 5B35154m[2A|z(m|1A|2)3 + 5ﬁ38352m12A|2 (m|1A|2)3
 SEEI Mg (mlge)” + 567 i) g+ SPEE g Pl

+56°E3Eimiap (mia)? + 5BELE Mg a2 + 5EE Mg ap].

For ideal sinc functions with bandwidth B = 2_;“?’ wehave £,=1,8=1,2,.... It

can here be verified that B(|axe|?) = r’R:(|awk|?), where RY(|axk|?) are the asymp-
totic diagonal elements obtained by Algorithm 1 for synchronous systems.

In general, the eigenvalue moments of R depend only on the system load g,
the sampling rate TLC, the eigenvalue distribution of the matrix AT A, and &, s €
Z*. The latter coefficients take into account the effects of the shape of the chip
pulse or, equivalently, of the frequency spectrum of the function J(t) The diagonal
elements R’(|axg|?) and the eigenvalue moments m¢, are also independent of the
delay distribution. In particular, Algorithm 2 can be applied also to synchronous
systems with or without oversampling and any kind of chip-pulse waveform provided
that B < %; Since the performance of the large class of linear detectors that admit
a representation as multistage detectors depends only on the diagonal elements
R (Jaxx|?) and the eigenvalue moments m%, we can state the following corollary.

Corollary 4 Let the assumptions of Proposition 1 be satisfied. Additionally, let us
assume that B, the bandwidth of 1¥(t), satisfies the constraint B < i Then, the

asymptotic limiting values R(|ax|?, 7) are independent of the distribution of the time
delays fr(7) and synchronous and asynchronous CDMA systems have the same per-
formance when a linear detector that admits a representation as multistage detector
is used at the receiver.

Asynchronism does not cause any performance degradation on the system if the
time delays and the received amplitudes of the signals are known at the receiver and
the sampling rate satisfies the conditions of the sampling theorem. In this way we
have generalized the results obtained in {82] for systems using an ideal Nyquist sinc
waveform to any kind of chip pulse waveforms with bandwidth B < —,;Tc

The output SINR is also independent of the initial sampling time. Therefore, the
system does not incur any degradation in SINR if, for all signals of interest, we
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consider a discrete statistic obtained by sampling the received signal starting at a
random instant and with a proper sampling rate, instead of considering K different
statistics obtained by sampling the received signal at the exact time delay of each
signal to be detected. This property has a very positive impact on the complexity of
the system. In fact, without performance degradation we can replace a bank of K
different samplers and K different multiuser detectors by a single sampler followed
by a single multiuser detector processing all users jointly. Additionally, the prior
knowledge of the time delay of each user is not required in order to sample the
received signal. The estimation of the time delay can be done afterwards using the
discrete time received signal.

As already mentioned, the previous results enable also an asymptotic analysis of
the effects of oversampling. We verified numerically that an increase of the sampling
rate above the chip rate does not provide any benefit. This is a consequence of the
sufficiency of the statistics obtamed by sampling at rate % -, where 7* is the minimum

sampling factor such that B < 37

- . 1 1
Chip pulse waveform with 3= < B < o

Let ¥(¢) be a chip waveform with unitary Fourier transform Z(j27 f ) and bandwidth
2T <BK< 1 . Sufficient statistics are obtained sampling at rate = Z since the con-
dition of the samphng theorem is satisfied. The asymptotic values “of the diagonal

elements of R can be obtained by specializing Theorem 10 to this scenario and then
applying Proposition 1. The following Corollary specializes Theorem 10 to a system
using chip pulse waveforms with bandwidth -2% <B< 1%

Corollary 5 Let the definitions of Theorem 10 hold and let us assume that condi-
tions (a)-(d) of Theorem 10 are satisfied. Additionally, assume:

(1) The random variables X and T are statistically independent and fr(r), the prob-
ability density function of the random wvariable T, with support T € [0,T¢) is

symmetric around T = —:gﬁ, i.e. fr(r— T—zﬁ) is an even function.

(2) E(j2rf) : R — R is real® and bandlimited with bandwidth B € (g, 7]
(3) r=2.

Then, gwen (law|? 7), the k™ diagonal element of the matriz (E(N))e =
((H (N))H_I—J—(N))e converges with probability one to a deterministic value, condition-
ally on |akx?,

a5 pt 2
Kgfvnqoo(R ) = R (la]®)

36This condition corresponds to the assumption that the chip-pulse waveform is an even function.
This condition is usually satisfied in practical systems.
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with R(A)|xzja,.p2 determined by the following recursion:

=1
—¢ —f—s5—1 =5
RN=> 9T " NEW
s=0
and
0 = 251 1 1
T (z) = B T —I<g< =
FR) =8 [ BN Fae(Y)
1
o(T°, )) = A / " (T (@)Q(z))d o
_1
where @) (2)e-!
ai(z)  golz)e™™
= . 4.40
with
(@) 1 |22 Zz) +E2(jZ(z+1)) -1 <z<0
q m ———— [+ ) [+
! T2 E%j%x)-l—?(g%—t(x—l 0<z< %
and
@) = {52(]'2;—%) ~E(jE(z+1) -i<z<0
20\%) = 75\ =/ . 2n —5/ -2m
2 |2(jZz) - 22(jE(z-1) 0<z<y.
The recursion is initialized by setting To(x) =I5 and FO(/\) = 1.
Corollary 5 is derived in Appendix C Section C.5.
Applying Corollary 5 we obtain the following algorithm.
Algorithm 3
Initialization:  Let po(z) = 1 and uo(y) = 1.
I*t step: e Define up_1(y) = yue_1(y) and write it as a polynomial in y.
e Define vy_1(2) = zpp_1(2) and write it as a polynomial in z.
e Define
2\° [t _, (.27
= (= =2 (1 41
(B [ (5w
and replace all monomials y,v%,...,y° in the polynomial

ue_1(y) by &1,&, ..., &, respectively. Denote the result by

Up—1.
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o Define miy. = E{|axx|*} and replace all monomials
2,22,...,2% in the polynomial v,_;(2) by the moments mllAIZ’
mfAIz,. c mf aj2» respectively. Denote the result by Vp_.

e Calculate

-1

pl(z) = Z ZUé—s—lps(z)
s=0
£-1

pe(y) =D ByVeos-1pts(y)-

s=0

o Assign py(A) to Ee()\).
Replace all monomials z, 2%, ..., z* in the polynomial py(z) by
the moments m,lA,Z, m|2A121' . mf ap2» Tespectively, and assign

the result to m%.

Algorithm 3 is derived in Appendix C Section C.6.

The asymptotic limits R‘(x\) and the eigenvalue moments m% of the matrix R
can be obtained from Algorithm 3 by applying Proposition 1.

Interestingly, the recursive equations in Corollary 5 do not depend on the time
delay 71 of the signal of user k, i.e. the performance of a CDMA system is indepen-
dent of the sampling instants and time delays under Condition (1) and (2) on the
chip waveforms and on the time delays of Corollary 5.

Additionally, the dependence of RY()\) on the chip pulse waveforms becomes clear
from Algorithm 3: Rt (\) depends on E(j27 f) through the quantities &, s = 1,2,.. .,
defined in (4.41).

Proposition 1 is completely general and can be applied to the analysis of synchro-
nous CDMA sampled at a rate that is a multiple of the chip rate. To this aim it is
sufficient to consider that the time delays 7 of all users are deterministic and equal
to 7o. This is modelled mathematically by setting fr(7), the probability density
function of the time delay equal to a Dirac, i.e.

fr(r) = 6(r — 10).

The comparison of synchronous and asynchronous systems with equal chip pulse
waveforms enables us to analyze the effects on the system performance of the chip
pulse waveforms jointly with the effects of the distribution of the delays . Hereafter,
we will elaborate on these aspects focusing on square root raised cosine and on
raised cosine chip-pulse waveforms with roll-off v € [0, 1]. To simplify the notation
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we assume T, =1. Let

0< 2| < 55
(1-sinZ (2l -1)) 3 <lal
2] > 11,

J “L

T(z) =

O N =

The energy frequency spectrum of a square root raised cosine waveform with unit
energy is given by |Zgqe(j27z)|2 = T(z). The unitary Fourier transform of a raised
cosine chip waveform with unit energy is E,.(j27z) = —4\/47—7T(:c). The corresponding
coefficients Eqre s and s, s =1,2,.. ., are given by

1ty
s z m (1
Eoqrt,s=2°(1 — ) + 2 sin® [ - | ==z | |dz
Fo\T\2

and
2 2s - 1—;:1 1 2s
S,W:( ) [ / [1 sm( (x——))] dx—l—/ [1+sm( (a:—i— ))] dx} ,
4—vy 1oy 2 i v
respectively.

The performance of synchronous CDMA systems with square root raised cosine
chip-pulse waveforms is well known to be independent of the roll-off and given in
Chapter 3.

For a synchronous CDMA system with raised cosine chip pulse waveforms, sam-
pled at rate —, and with time delay 7y = 0, Proposition 1 can be applied. The
recursive equatlons of Proposition 1 reduce to the recursive equations of Corollary
5 with

4 .
1 —jmT
Q(CE) = ﬁ 1 e~IT gin (1 (l _ |ml))
4 v A2 Ly < g) < 2
- ing o (7 .o 2 = =7
T\ e sin (; (- |a:|)) sin? (; (1- |a:|)>

\

Figure 4.11 and Figure 4.12 show the large system performance, in terms of as-
ymptotic output SINR of detectors Type J-I with M = 4 and increasing roll-off
versus the SNR, belng E; the energy per symbol in case of both synchronous
(lines with markers) and asynchronous CDMA systems (lines without markers). The
SINR is obtained assuming equal received powers at the receiver and system load

p=1
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While the SINR of synchronous systems with square root Nyquist waveforms is
independent of the roll-off, it decreases as the roll-off increases, if the modulation
is based on raised cosine waveforms. For v = 0, i.e. for an ideal sinc chip pulse
waveform, the performance of synchronous and asynchronous systems coincides as
already observed in the previous section. In contrast to the case of synchronous
systems, asynchronous systems with uniform time delay distribution or time delay
distribution satisfying condition (1) in Corollary 5 outperform the corresponding
synchronous systems with equal roll-off, both in case of square root raised cosine and
raised cosine chip-pulse waveforms. The comparison of Figure 4.11 and Figure 4.12
shows that asynchronous systems with square root raised cosine largely outperform
asynchronous systems using raised cosine waveforms and linear multiuser detection.
The output SINR of asynchronous systems increases as the roll-off increases.

Increasing the roll-off is equivalent to increasing the system bandwidth and to
redistributing the available energy in the additional degrees of freedom added in
the frequency domain. Since the bandwidth increases there is room for potential
improvements of the SINR. These degrees of freedom canbe utilized to reduce
the multiple access interference. Let us consider identical chip-pulse waveforms of
different users. If all waveforms have the same time delay the correlation between
two chip-pulse waveforms is maximum and also the average correlation is maximum.
However, if the system is asynchronous the average correlation is lower and the
multiple access interference decreases. This gives an intuitive explanation of the
reasons why asynchronous systems can outperform synchronous systems.

Figure 4.13 and Figure 4.14 illustrate the output SINR of a Type J-I detector with
M = 4 as a function of the roll-off for synchronous systems (dashed lines) and chip
asynchronous but symbol quasi synchronous systems (solid lines) for three different
levels of %;: 15 dB, 20 dB, and 30 dB. The gap between the solid and the dashed
lines corresponding to the same level of ]%g is the improvement achievable with a
3-stage detector (M = 4) using an asynchronous system instead of a synchronous
system. The gap increases as the roll-off and/or the SNR increase, both for raised
cosine (Figure 4.14) and square root raised cosine waveforms (Figure 4.13).

In Figure 4.15 and Figure 4.16 the SINR is plotted as a function of the system load.
The improvement achievable by asynchronous systems over synchronous systems
increases as the system load increases, both for raised cosine and square root raised
cosine waveforms.

Square root Nyquist chip pulse waveforms and chip matched filtering at the
front-end.

Let us reconsider the chip asynchronous but symbol quasi synchronous CDMA sys-
tem slightly modified. We assume that the used chip pulse is a square root Nyquist
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Equal received powers, square root raised cosine chip pulses, f=1/2, M=4

20 ,

15
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Figure 4.11: Output SINR of a Type J-I detector with M = 4 versus ]]f,—g for syn-
chronous systems (lines with markers) and chip asynchronous but symbol quasi
synchronous systems (lines without markers). CDMA systems with equal received

powers, square root raised cosine chip pulse waveforms, sampling rate

2
T’

and system load § = % Three different square root raised cosine waveforms are con-
sidered corresponding to different roll-offs: v = 0 (dot-dashed line), v = 0.5 (dashed

line), and v = 1 (solid line).

Equal received powers, raised cosine chip pulses, f=1/2, M=4

16 T

10

»=%=Synch., y=0
14K == Asynch., y=0
- n - Synch., y=0.5
12+ = = = Asynch., y=0.5
——Synch., y=1
—— Asynch,, y=1

(SINR) B

: 1 .....................................................
7Y 0 RN . £5) DUNCRS ...............
05. ..........................................
) :E -
< 1 2 3; 4 | s
0 5 10 15 20 25 30
(Es/NO)dB




4.4 Chip Asynchronous and Symbol Quasi-Synchronous CDMA Systems 109
Equal received powers, square root raised cosine chip pulse, 3=0.5
20 ! ! ! ; ! g g T g
ol
18k - ,,,,,,,,,, S N A R L g ]
T RO S S T T R
. 16"E'S'IN‘(§')£30'di3' ________ ....... ......... _________ _________ e .........
B 15 S
Z)
14
3 E T i o e e
12
11
o
0 01 02 03 04 05 06 07 08 09 1
roll-off
Figure 4.13: Output SINR of a Type J-I detector with M = 4 versus the roll-
off 4 for synchronous systems (dashed lines) and chip asynchronous but symbol
quasi synchronous systems (solid lines). CDMA systems with equal received powers,
square root raised cosine chip pulse waveforms, sampling rate T%, and system
load 8 = % Three different level of SNR are considered: 15 dB, 20 dB, and 30 dB.
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Figure 4.14: Idem as Figure 4.13 for raised cosine chip pulse waveforms.
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Equal received powers, square root raised cosine chip pulses, ES/N 0=20 dB, M=4
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Figure 4.15: Output SINR of a Type J-I detector with M = 4 versus the system
load B for synchronous systems (lines with markers) and chip asynchronous but
symbol quasi synchronous systems (lines without markers). CDMA systems with
equal received powers, square root raised cosine chip waveforms, sampling rate
1’%’ and system load § = % Three different raised cosine waveforms are considered
corresponding to different roll-offs: v = 0 (dot-dashed line), v = 0.5 (dashed line),
and v = 1 (solid line).

Equal received powers, raised cosine chip pulses, ES/N ,=20dB, M=4

20 l l l l l T T T T
----- Asynch., roll—off y=0
»=%=" Synch., roll-off y=0
= = = Asynch., roll-off y=0.5
~ X = Synch., roll-off y=0.5
: : : : == Asynch., roll-off y=1
A NRING T Asynch, oll-ofy=1
B2
z
z
: : : : : : . : :
10_ ........ ......... ......... ......... ......... ......... .\;\E.; ...... ......... ........ -
5 1 i I ;
0 0.1 02 03 04 0.5 0.6 0.7 0.8 09 1

Figure 4.16: As Figure 4.15 for raised cosine chip waveforms.
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pulse.
The front-end consists of:

e An analog filter G(f) matched to the chip pulse and normalized by the chip

pulse energy, i.e. G(f) = i"j(g_fl;
\VEy

o A subsequent sampler with sampling rate equal to the chip rate.

By sampling the output of the chip matched filter at the chip rate, the discrete-
time signal after the sampler is given by

ylp] = Zakk Z by [ ]Nz—:lsk,m[u]a(<§——u~mN)Tc—Tk)+n[p]. (4.42)

m=—o0 u=0

The notation utilized in (4.42) has been introduced in Section 4.4.1 with the excep-

tion of ¢(t), which is the convolution of the chip pulse waveform with the filter at

the front-end, i.e. ¢(t) = %ﬁ By the definition of a square root Nyquist wave-
Y

forms, ¢(t) satisfies the Nyquist pulse-shaping criterion. The same criterion is also
satisfied by the power spectrum of the noise. Then, after sampling at the chip rate,
the discrete time noise process {n[p]} is white with variance —Q— . The system model

in matrix notation is given by (4.31) with the matrix v obtamed by substituting
¥(t) with () and assuming r = 1. Then, Theorem 10 can be applied. Hereafter,

we refer to this system as System A.
Given the square root raised cosine chip-pulse waveform with roll-off v [94]

B(t) = ) costn Stz_lv_) (4);; ;lzr)l( = 7)z) v € [0,1] (4.43)

the matrix Q, (z) = A,(z)AH(z) occurring in Theorem 10 reduces to the scalar

14+ 1sin® (—:—(as—l-%))+5’§22—”1(1—sin2 (l;-(x+%))) 1<z < -5
— 1— 1
Q.(z) =11 —F<esF
1+ 1sin ( (x — )) GO AT (1 — sin? (%(x - %))) Lr<z<i

due to the fact that » = 1 in this case. In the following the asymptotic analysis
of system A is performed. Equal received powers, system load 8 = %, Type J-1
detectors with M = 3 define the scenario we consider for the asymptotic analysis.
In Figure 4.17 the asymptotic output SINR (solid lines) as a function of % is
compared to the corresponding output SINR for finite systems (dots) with 512 users.
The performance depends on the time delay. The two groups of curves illustrate the
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Square root raised cosine waveform, y=0.5, 8=0.5, M=3
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Figure 4.17: Output SINR of a Type J-I detector with M = 3 versus —% for large
systems (solid lines) and finite systems with 512 users (dots). CDMA systems with
equal received powers, square root raised cosine chip waveforms (v = 0.5), sampling
rate 7-, system load 8 = 1 and chip matched filter at the front-end. Two user signals
with time delays 7 = 0 and 7 = 0.5 are considered.
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performance corresponding to the most favorable time delay (7 = 0) and to the least
favorable time delay (7 = 1/2). The gap between these two cases is quite significant:
it exceeds 1 dB in the analyzed range of £*.

The dependence of the performance on the time delay is illustrated in Figure
4.18. The solid lines represent the output SINR as a function of the time delay 7
parameterized with respect to % The parameter 1%3 varies from 0 dB to 20 dB in
steps of 2 dB. The performance is maximum at the extreme points of the range of
7,1.e. 7=0and 7 = 1, and it is minimum in the middle of the interval [0, 1]. The
output SINR of asynchronous systems is compared with the SINR of synchronous
systems using the same chip pulse waveform and sampling the signal at the best time
instant (7 = 0). The asynchronous system slightly outperforms the synchronous one
around 7 = 0 and 7 = 1 while the performance is severely worse for signals delayed
by 7 = -;—

This observation leads to the following conclusions:

e The use of square root Nyquist chip pulse waveforms jointly with the above
described front-end requires a preliminary estimation of the time delay of the
user of interest and a good synchronization in order to avoid severe perfor-
mance degradation.

e In order to obtain good performance, different statistics are needed for the
detection of different users and they have to be processed independently. This
does not affect the complexity when detection of a single user is required (e.g.
downlink). However, it is a significant drawback when several or all users in
the system have to be detected (e.g. uplink) since the detection cannot be
performed jointly.

In Figure 4.19 system A with roll-off y = 1 is compared to a system using raised
cosine waveforms with v = 1 and sufficient statistics. The latter system is referred
to as system B. The SINR versus the time delay for values of the parameter %
varying between 0 dB and 20 dB in steps of 2 dB is plotted, both for system A
(solid lines) and for system B (dashed lines). For some values of the parameter %
system B outperforms system A, although earlier in this section systems using square
root, raised cosine waveforms were shown to perform better than systems using raised
cosine waveforms. The reason for this behavior is that the statistics utilized in system
A, sufficient for synchronous systems, are not sufficient for asynchronous systems.

4.5 Asynchronous Systems: General Case

In this section we extend the previous results to a general asynchronous system.
Without loss of generality we can assume that the maximum delay among users is the
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Square root raised cosine pulse, y=1, system load f=0.5, M=3
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Figure 4.18: Asymptotic output SINR of a Type J-I detector with M = 3 versus the
time delay 7 for asynchronous systems (solid lines) and synchronous systems (dashed
lines). CDMA systems with equal received powers, square root raised cosine chip
waveforms (y = 1), system load 8 = %, sampling rate Tic, and chip matched filter at
the front-end. The curves are parameterized by % with % varying between 0 dB
and 20 dB in steps of 2 dB.

Square root raised cosine vs raised cosine, y=1, p=0.5, M=3
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Figure 4.19: Asymptotic output SINR of a Type J-I detector with M = 3 versus the
time delay 7 for asynchronous systems with square root raised cosine chip waveforms
(v = 1) and sampling rate Tlc (solid lines), and asynchronous CDMA systems with

raised cosine chip waveforms (y = 1) and sampling rate T% (dashed lines). The curves
are parameterized by £= with £ varying between 0 dB and 20 dB in steps of 2 dB.
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symbol interval T [16]. User 1 has time delay 7; = 0 and the other users are ranked in
ascending order of delay. The chip pulse is much shorter than the symbol waveform,
as already assumed for symbol quasi synchronous but chip asynchronous systems.
Thus, we can neglect the intersymbol interference between symbols transmitted by
the same user in the asymptotic analysis.
The system model in matrix notation is
Y=HB+N

where Y = [..., 35 (m — 1),3"(m),7"(m + 1),.. |7 is the infinite-length col-
umn vector of the received signal sampled at rate -, with y(m) being the rN-
dimensional vector corresponding to the m'® transmitted symbol; B = ..., bT(m —
1), " (m),b"(m + 1),...]T is the infinite-length vector of transmitted symbols as
defined in Section 4.3; and NV is the infinite-length column vector of white Gaussian
noise with variance o? = TE—NQ The matrix H € C™V*K models the effects of the
spreading sequences, the pulse shape, and the received amplitudes. It is structured
as the matrix H in (4.4):

0 Hym—2) H,(m~-1

)
H = 0 Hy(m—1) Hy(m) 0
0 Hy(m) Hy(m+1) 0

Here, H,(m) and Hy(m) € C"V*K are the upper and lower part of the matrix
H(m) = [ﬁ:(m),ﬁf(m)]T, which is defined as H(m) = S(m)A, where A is the
K x K diagonal matrix of received amplitudes defined in Section 4.3. Furthermore,
S(m) is a 2r N x K matrix obtained as follows:

e Given the sequence of the time delays {r1,72,..., 7k}, derive from it the two
sequences {71, 7s,...,7k } and {71, 72, ..., Tk} with 7} = L%J and Ty = Ty — Tk,
k=1,...,K. A system with time delays {71,72,...,7x} reduces to a symbol

asynchronous but chip synchronous system, while a system with time delays
{71, 72,..., Tk} is a symbol quasi synchronous but chip asynchronous system.

e Build the rN x K matrix S (m) of virtual spreading for symbol quasi syn-
chronous but chip asynchronous systems with time delays {71,72,...,7x} as
explained in Section 4.4.1.

e Append O,yxx, an rN X K zero matrix, to the matrix g’(m), i.e. build the

~

T
matrix [S (m), 0Zy.]%.
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e The matrix S(m) is obtained from [g' (m), 0%y, x| by circular downshift of
the k* column, for k = 1,..., K, by 77} positions.

By the construction of the matrix S we model the effects of chip asynchronism. The
subsequent circulant downshift introduces the effects of delays that are multiples of
the chip interval in the model.

Since the system model for asynchronous systems has a structure identical to
the structure of the system model for symbol asynchronous but chip synchronous
systems, the considerations made in Section 4.3.3 apply. The projection subspace is
given by

X(H) = span{R, (m)T"}=)

where T = ’ft'RH and ﬁk is the virtual spreading sequence of the m' symbol
transmitted by user k, i.e. the column of H containing the £** column vector of the
matrix H(m) defined in Section 4.4.1. With this choice of the projection subspace,
it is possible to build a multistage detector with sliding observation window that
does not suffer from truncation effects. Its structure is identical to the structure of
the detector in Figure 4.6 by replacing the 2N x K matrices H(n),..., H(n — M)
by the 2r N x K matrices ﬁ(n), . ,f—I\(n — M), respectively.

The asymptotic analysis and design of multistage detectors follows the same lines
as in the case of symbol asynchronous but chip synchronous systems treated in
Section 4.3.3. The problem reduces once again to the computation of the diagonal

elements of the matrix ‘f\’,m, with R = ’ﬁH’ft We conjecture®” that these diagonal
elements coincide with the diagonal elements of R for symbol quasi synchronous but
chip asynchronous systems. This conjecture is motivated by the observation that the
diagonal elements of the matrix R™ for symbol asynchronous but chip synchronous
systems are a periodical repetition of the diagonal elements of the matrix R™ for
synchronous systems, i.e. the shift of the column of the matrix ‘H due to the symbol
asynchronism does not influence the asymptotic values of the diagonal elements of
the matrix R™ for the infinite-size matrix . Numerical simulations support this
conjecture.

Numerical simulations were performed for an asynchronous CDMA system with
maximum time delay equal to the symbol interval. The 64 users utilized raised
cosine chip-pulse waveforms, QPSK modulation, and random spreading sequences
with N = 128. Perfect power control was applied; all users were received with
the same power and sampled at rate = 2. At the receiver, detection was performed
by matched filters, by detectors Type J I with sliding observation window, and by
MSWF with M = 2 and 4. The performance of the various detectors is compared in

37The author thinks that this conjecture can be proven rigorously following the lines of the proof
of Theorem 9 and Theorem 10. This issue is left for further studies.
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AOWGN asynchronous channel, K=64, N=128, raised cosine with roll-off 0.5
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Figure 4.20: BER of matched filters, Type J-I detectors (solid lines), and MSWF
(markers) with M = 2 and 4 versus 1% CDMA systems with equal received powers,
raised cosine chip waveforms (roll-off v = 0.5), sampling rate T%, and system load
B = 3 are considered.

Figure 4.20 by plotting their BER versus —1]:3—,% The performance of detectors Type J-1
matches completely the BER of the corresponding MSWEF. The comparison between
the matched filter and the multistage detectors shows the substantial improvements
achievable by multiuser detection.

4.6 Conclusions

In this chapter we studied low complexity linear multiuser detection techniques
for asynchronous CDMA systems. Since the polynomial expansion detectors are
intrinsically suboptimal for asynchronous systems, we focused on multistage Wiener
filters and we extended the Type J-I detectors to asynchronous systems. In contrast
to the full rank linear MMSE detector, the proposed implementation scheme for
Type J-I detectors does not suffer from windowing effects and retains the same
complexity, up to some memory elements, as the corresponding Type J-I detector
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for synchronous CDMA systems. Additionally, the proposed scheme is characterized
by a sliding observation window. This yields a performance that is independent of
the position of the detected symbol in the observation window.

The performance of linear MMSE detectors with finite observation windows was
analyzed assuming a chip synchronous and symbol asynchronous system. Given a
finite observation window we proposed an algorithm to determine the SINR at the
output of the linear MMSE detector for all transmitted symbols that can be observed
within the observation window. Unlike synchronous systems, in this scenario the
Type J-I detector can outperform the full rank linear MMSE detector with given
finite observation window when a sufficiently large number of stages is utilized. In
fact, although the Type J-I detectors do not benefit from the available statistics in
an optimal manner, as well as the linear MMSE detector does, they can use a wider
set of observables while keeping low complexity.

The effects of different kinds of statistics on the SINR have been investigated. We
considered the observables obtained at the output of a front-end performing low-
pass filtering and subsequent sampling at a rate equal to twice the filter bandwidth.
A second kind of decision statistics was obtained by sampling at the chip rate the
output of a filter matched to the chip-pulse waveform. The performance analysis
showed that the first group of observables was the most convenient for low complexity
linear multiuser detection in the uplink channel. In fact, it enables to perform linear
multiuser detection jointly for all users without incurring a degradation of the SINR.

The analysis of asynchronous systems revealed the effects of the chip-pulse wave-
forms and of the time delay distribution on the system performance.

We generalized the result for the ideal sinc waveform in [82] showing that the per-
formance of synchronous and asynchronous systems is the same when the bandwidth
of the chip-pulse waveform is not greater than half the chip rate. The effects of the
chip-pulse waveform can be easily taken into account through certain coefficients &,
sEZT.

The impact of the chip-pulse waveforms on the SINR changes substantially as the
bandwidth gets larger. In this case the system performance is significantly affected
by the distribution of the time delays and the SINR of linear detectors may depend
on the specific time delay of the signal of interest. We identified a large class of
chip-pulse waveforms and time delay distributions for which the performance is
independent of the time delay of the signal of interest and depends on the chip pulse
waveforms through certain coefficients &, (see (4.41)).

Specializing the general result on the asymptotic analysis of performance to square
root raised cosine and raised cosine waveforms, we showed that the SINR of linear
multiuser detectors optimum in a mean square sense increases significantly with the
roll-off if the time delay is uniformly distributed. In contrast, it remains constant
(square root raised cosine waveform) or decreases (raised cosine waveform) as the




4.6 Conclusions 119

roll-off increases if the system is synchronous. Thus, an asynchronous CDMA sys-
tem with linear multiuser detection and square root raised cosine or raised cosine
waveforms outperforms the corresponding synchronous system in terms of SINR.

The analytical tools developed in this chapter for the analysis and design of low
complexity multiuser detectors could be utilized for the optimization of chip pulse
waveforms in CDMA systems with linear multiuser detectors. This application is
beyond the scope of this work.







5 Linear Multiuser Detection and
Correlated Spatial Diversity

5.1 Introduction

In this chapter we consider synchronous CDMA systems with spatial diversity both
at the transmitting and the receiving sites. The analysis of linear multiuser detectors
and the design of low complexity multistage detectors are extended to systems with
correlated spatial diversity'.

Modelling the spreading matrices as random matrices, Hanly and Tse [9] analyzed
a CDMA system consisting of users transmitting to a multiuser receiver with spatial
diversity. The spatial diversity can be obtained by multiple antenna elements at a
single base station, or by combining the signals received at multiple base stations.
In [9], these two cases of spatial diversity are referred to as micro-diversity and

* macro-diversity, respectively. This celebrated work covered many interesting aspects

of CDMA systems with spatial diversity:

e There is a simple relation between the degrees of freedom introduced by spatial
diversity (L receiving antennas) and the degrees of freedom in frequency given
by the spread spectrum techniques (spreading factor N): the multi-antenna
system behaves like a system with a single receive antenna but with spreading
factor multiplied by the number of receiving antennas, and with the received
power of each user being the sum of the received powers at the individual
antennas. This behaviour is known as resource pooling effect. It shows the
possibility to trade bandwidth (spreading factor) for the number of antennas
and vice versa according to the peculiarity of the communication system.

e The effect of a single interferer onto the user of interest is captured by the
concept of effective interference.

e Low complexity power control and admission control algorithms, the power-
limited capacity region for a finite number of classes of users, and the
interference-limited user capacity region are provided.

1Hereafter we refer to spatial diversity due to multiple input multiple output (MIMO) channels
with correlation at the transmitting and/or the receiving sites as correlated spatial diversity.
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The work in [9] is based on the performance analysis of linear multiuser receivers
under the assumption that the spreading sequences are Gaussian and the random
channel gains are circular symmetric and independent for all users and antennas,
and that for any user the gains to all antennas are identically distributed. The
analysis does not address cases of practical interest like multi-antenna systems with
correlated channels and/or line-of-sight components.

The pioneering works in [7] and [8] on antenna arrays at the transmitter and
receiver promise huge increases in the throughput of wireless communication sys-
tems. These works motivated many studies of the capacity of such systems in more
realistic situations. In this stream are works that analyze the effects of channel cor-
relation [95-102], line-of-sight components [62,63,103], multiple scattering [104], and
keyholes [98] (this list does not claim to be comprehensive). Fading correlation and
line-of-sight components were found to affect channel capacity severely. It is natural
and of practical interest to consider their effects also in a CDMA system with spatial
diversity. '

In this work we consider a general framework with one or more antenna arrays at
the receive side including combined micro- and macro-diversity scenarios. The trans-
mitting users may use multiple element antennas, but need not do so. The channel
gains may be correlated and contain line of sight components, i.e. their mean may be
different from zero. The analysis is based on the assumption of independent random
spreading. Our results include the results in [9] as special cases. Additionally, we
provide a rigorous proof of the results for the macro-diversity case, only conjectured
in [9]. -

In the micro-diversity case with independent channel gains analyzed in [9], the
system behaviour is captured by the multiuser efficiency defined in Section 2.3.1.
In [9], the multiuser efficiency is shown to converge to a deterministic constant in
the large system limit. In the macro-diversity case with L receiving antennas, L
constants, ai, as, . . . ar, characterize the system. With correlated channel gains, we
show that the large system behaviour is captured by a deterministic positive definite
square Hermitian matrix with size equal to the number of receive antennas. Table
5.1 compares the scenarios investigated in [9] with the general case considered in
this work. The results in [9] are revisited in the light of the general results so that
all scenarios are represented by a matrix A:

e In the micro-diversity scenario with independent channels, A is the identity
matrix multiplied by the constant multiuser efficiency a.

e In the macro-diversity case with independent channels, A is a diagonal matrix.

In this chapter we analyze three linear receivers corresponding to different levels
of knowledge of the interference structure and noise at the receiver:
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Micro-diversity [9]

e Channel gains independent for all users and
antennas. . A=aqal;

e For a given user, the channel gains at all
receiving antennas are identically distributed.

Macro-diversity [9] ap O
e Channel gains independent for all users and A= 0 a 0
antennas. R
0 ay,
General case
A= A"

e Correlated channel gains.

Table 5.1: Asymptotic constants characterizing CDMA systems with correlated and
independent spatial diversity.

"o The linear MMSE receiver, which requires a complete knowledge of the spread-
ing sequences and the channel gains of the interferers.

e The single user Bayesian receiver, which assumes only a statistical knowledge
of the spreading sequences and the channel gains of the interferers.

e The single user matched filter receiver. In this case the receiver has no infor-
mation about the noise and interference.

Additionally, the design of low complexity multistage detectors is investigated. The
universal weights for Type J-J and Type J-I detectors are derived. Type J-J and
Type J-I detectors have a complexity order per transmitted bit which is linear in the
number of transmitting antennas and in the number of users, as the SUMF receiver.
The unified framework for the analysis of multistage linear detectors is extended to
CDMA systems with correlated spatial diversity.

Thanks to the assumption of independence among the chips, the analysis shows
that the performance of these linear receivers are not affected by channel correlation
between transmitting antennas and suffer only from channel correlations among re-
ceiving antennas. For large CDMA systems without receive antenna diversity, the




124 Chapter 5 - Linear Multiuser Detection and Correlated Spatial Diversity

multiuser efficiency is identical for all users. Therefore, a single constant fully char-
acterizes the system performance. In contrast, we show that the multiuser efficiency
in CDMA systems with spatial diversity changes from user to user, in general. Addi-
tionally, we give sufficient conditions under which also a system with spatial diversity
and statistically dependent channel gains is characterized by a unique multiuser ef-
ficiency. The single user Bayesian receiver and the SUMF receiver are shown to be
asymptotically equivalent, in terms of SINR, to an ¢deal finite CDMA system with
(i) linear MMSE detector and SUMF, respectively, at the receiver; (ii) spreading
factor L; and (iii) spreading sequences equal to the vector of the channel gains.

5.2 System Model

We consider a CDMA system with spreading factor N and K’ users. Each user em-
ploys a transmit antenna array with Nt elements sending independent data streams
through each of the elements. Thus, we may speak of a system with K = K'Nr
virtual users. The signal is received by L receive antennas. These antennas can be
part of an array or can be placed at different locations, but processed jointly.
Assuming the channel to be flat fading, the baseband discrete-time system model
is given by?
p=Hb+n (5.1)

where p is the NL-dimensional vector of received signal-samples, b is the K-
dimensional vector of transmitted symbols, and n is discrete-time, circularly sym-
metric complex-valued additive white Gaussian noise with zero mean and variance
o2. The influence of spreading and fading is described by the NL x K matrix

(SDA;) ®@ e (5.2)

L
H =

[=
where S is the N x K spreading matrix whose k" column is the spreading sequence
of the &t virtual user. Furthermore, the diagonal square matrix D € CK*¥ contains
the transmitted amplitudes of all virtual users such that its k*" diagonal element
dy, is the amplitude of the signal transmitted by the virtual user indexed by k. The
diagonal matrices A, Ag,..., A € CE*K take into account the effect of the flat
fading channel. The k" diagonal element of A, is the channel gain between the
transmitting antenna element of the k' virtual user and the [*" receive antenna
and will be denoted by Ay in the following. The channel gains can, in general, be

2 As in the case of synchronous CDMA systems with multipath fading channel, the received signal
at the symbol time interval n depends only on the transmitted signal at the same symbol
interval. Therefore, the symbol-time index n will be omitted in the system model (5.1).
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correlated and contain line of sight components as in Rice channels. e; is the L-
dimensional unit column vector whose elements are zero except the I*! element that
equals 1, i.e. €, = (dlj)g.;l. Finally, ® denotes the Kronecker product.

In the following, the spreading matrix S is modelled as a random matrix whose
elements are independent® with zero mean, variance #, and fourth moment such
that there exists a v > 1 for which E{|s;1|*} < 7. This condition is satisfied
by all chips of practical use as Gaussian or binary chips. Moreover, we assume the
transmitted symbols to be uncorrelated and identically distributed random variables
with zero mean and unit variance, i.e. E{be } = Ik. In order to simplify the
notation, it will be helpful in the following to define the L-dimensional vectors
lk = dkp\lk,)\Qk,---,)\Lk]Ta k= 1,...,K, l = d[Al,Az,...,)\L]T, k= 1,...,K and
the diagonal square matrices Ly = DAy, £=1,...,L.

5.3 Linear MMSE Receiver

Throughout this chapter we adopt the following notation:
e B, denotes the k** column of $;
o $); is the NL x (K — 1) matrix obtained from § by suppressing the k™ column
B

The linear MMSE detector generates a soft decision by = cHy based on the ob-
servation §. The linear MMSE detector ¢ for the detection of by, the transmitted
symbol of user k, can be derived from the Wiener-Hopf theorem [20] for the estima-
tion of zero-mean random variables. It is given by

cr = E{on"} 'E{t;p} (5.3)

with the expectation taken over all variables that are unknown to the receiver, i.e.
the transmitted symbols b and the noise. Specializing the Wiener-Hopf equation to
the system model (5.1) yields

ce = (997 + 2I)7'hy
=c- (9D + 20y

for some ¢ € R. The second expression follows from the matrix inversion lemma. Its
performance is measured by the signal-to-interference-and-noise ratio SINRy at its
output which is well known [105] to be given by

SINRy, = by (995 + o>I) " 'hy. (5.6)

3 Note that the random variables s,; are not required to be identically distributed.




126 Chapter 5 - Linear Multiuser Detection and Correlated Spatial Diversity

The SINR, can be conveniently expressed in terms of the multiuser efficiency 7 (see
Definition 1 and the subsequent Equation (2.24)):

o2

5.3.1 General Case

Let us notice that SINR, depends on the spreading sequences and the channel
parameters of all users. To get deeper insights into the behaviour of the linear MMSE
detector it is convenient to analyze the performance, as K, N — oo with constant
ratio § = % To this aim, we have to define how the matrices D, A, Ag,..., AL
behave as the system grows large. Let us consider a system with K virtual users
and the K corresponding (L + 1)-variate random variables (di, Ak, Aok, . . ., ALk) for
k = 1,...,K. The empirical joint distribution function for the random variables
(di, Mgy A2ks - - -5 ALk) for £ =1,..., K is the distribution function

K
1
F s s (A A2y M) = 2 D 1(d = di Ax = A, Ao = Aok An = Ark)
k=1 ‘

where 1() is the multidimensional indicator function (see definition in the Glossary).
We assume that the joint empirical distribution F(D}fj)h’Az,_“,AL(d, A1y Agy .oy AL)
converges weakly with probability 1 to a limit distribution function
Fp Ay Ag,. AL (ds A1, A2, ..., AL) with bounded support. Let us notice tha, if
the (dg, Mk, Aok, .-+, ALg), for all k, are independent realizations of a common
distribution function, then the empirical distribution function Fl()IfI)M, Ao, A 8
the natural estimate of the common c.d.f.. The Glivenko-Cantelli theorem (see
e.g. [89]) guarantees that, if (di, Ak, Aok, - . ., ALk) are i.i.d. over k, then the empirical
distribution converges weakly to the common distribution function with probability
1. For example, if, for each user k, (dk, A1k, Aok, - .-, ALk) is a realization of the
same Gaussian distribution F(d, A1, Ay, ..., AL), then the Glivenko-Cantelli lemma
guarantees that the sequence of the empirical distribution functions converges
almost surely to the same distribution function F(d, A1, A, ..., AL).

In the following, we simplify, where possible, the notation using the limit-
ing joint distribution Fy(ly,la,...,lr) = Fi(l) rather than the limit distribution
FD A A Ay (ds A1, Agy ooy Ar) (recall that U= [Iy, L, ..., Ip])T = d[A, Mg, ..., AL]T).
Under the above assumptions the asymptotic performance depends on a small set
of parameters, as shown by the following theorem.

Theorem 11 Let S be an N x K random matriz with independent entries s;; that

are zero mean, with variance E{|s;;|*} = L and forth moment E{|s;;|*} < 35
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where v > 1. Let I = (ly,la,...,11) and let I, be the vector of received ampli-
tudes of the virtual user k. Assume that the norm of the channel gain vector ||lx||
is uniformly bounded for all K. Furthermore, the empirical joint distribution of
Ii,lo, ... L1, ky1, ... lg converges almost surely to some limiting joint distribu-
tion Fy(l) as K — oco. Then, as N, K — oo with %— — B and L fized, the SINR of
virtual user k, given the fading amplitude ly,, converges in probability to the value

A
lim SINR, Z p b 2l’°
K,N—oo o

(5.8)

where A is the unique deterministic L X L matriz solution to the matriz-valued fized
point equation

=Ip+ dF(l 5.9
v+ [ S 4R (5.9
such that A is positive definite for any positive value of the noise variance.

Proof: See Appendix D Section D.1.

Theorem 11 provides the asymptotic output SINR of a linear MMSE detector
for a synchronous CDMA system with correlated spatial diversity. This result holds
under very general conditions on the channel gains and demonstrates interesting and
useful properties of synchronous CDMA systems with correlated spatial diversity
and linear MMSE detector at the receiver. The remainder of this section is devoted
to the discussion of these properties. More specifically, in Subsection 5.3.2 Theorem
11 is specialized to the relevant situation of practical interest where the received
amplitudes are correlated Gaussian distributed. In Subsection 5.3.3 Theorem 11 is
utilized to derive sufficient conditions under which the resource pooling effect arises.
General properties of CDMA systems with correlated spatial diversity evinced from
Theorem 11 are presented in Subsection 5.3.4.

5.3.2 Correlated Gaussian Received Amplitudes

In practice, fading amplitudes are often complex Gaussian distributed and corre-
lated. Rayleigh fading also violates the assumption of uniformly bounded channel
gains. However, it can be approximated arbitrary closely by a distribution with
bounded support. Thus, from an engineering perspective, we need not worry about
that fact. Assume that the limiting joint distribution is given as

Y (Ee
frl) = T, exp (-1"C;'l). (5.10)

In the absence of power control, i.e. D = Ik, this implies that C} is the correlation
matrix of the fading at the receive side, with entries
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Consider the eigenvalue decomposition
Ci=MIMH, (5.12)
with ¥ = diag(¢1, ...,%.), and the change of variables
g=M" (5.13)
gi = [owk, - - 9" = MFL,, (5.14)

The components of the random vector g are statistically independent. Plugging
(5.13) into (5.9), the matrix M also diagonalizes the deterministic limit matrix A,
i.e. the eigenvectors of the matrix A coincide with the eigenvectors of the correlation
matrix C; . Thus, we obtain for correlated Rayleigh fading

L
. p 1
lim SINR, = — ;aglggklz (5.15)
where the a;, i = 1,..., L are the solution to the fixed point equations
1
ap = - ~ Ve=1,...,L. (5.16)
1+ ;r% Y| H exp(—|zn|?)d z,

o+ 25:1 anPn|Tn|? n=1

Thus, recalling the characteristics of the macro-diversity in [9] presented in Table 5.1
and comparing the previous result to the macro-diversity case, it is evident that to
any correlated Rayleigh fading scenario, there exists an equivalent macro-diversity
scenario as in [9] with independent Rayleigh fading.

5.3.3 Uncorrelated Received Amplitudes

It is clear from (5.7) and (5.8) that, unless the matrix A is a multiple of the iden-
tity matrix, the multiuser efficiency is, in general, not identical for all users. In
this section we analyze under which conditions on the limiting joint distribution
Fy(li,1ls,...,11) or, equivalently, on the corresponding limiting probability density
function fi(l1, 1o, . .., lr) the matrix A is diagonal or proportional to the identity ma-
trix. In fact, for diagonal A, the general result in Theorem 11 simplifies to the system
of fixed-point equations in [9], Theorem 3. The following corollary summarizes some
sufficient conditions that yield a diagonal structure of A.

Corollary 6 Let S and l; be as in Theorem 11. If the joint probability density
function fi(ly,la,...,11) is an even function of Re(l;) and Im(l;), for any r and
for any value of the parameters (ly, ..., lk—1, lks1,-.-12), then, as N, K — co with
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% — B and L fized, the SINR of virtual user k, given the fading amplitude I,
converges in probability to the value

L
) p 1
i SINR, = — ;aeum?, (5.17)

where ag, £ = 1... L, are the unique positive solutions to the system of fized-point
equations '

1

ae:l |Le|? - N
"0 | R e WAl

(5.18)

Proof: In order to verify that system (5.9) is equivalent to system (5.18) under the
above mentioned conditions on fi(l1,1s,...,11), it is sufficient to verify that, for all
i,7 = 1,..., L with i # j, the off-diagonal elements of A are zero. The uniqueness
of the solution for system (5.9) guarantees that the constants a, are the solution we
are looking for. In fact, V4,7 = 1,..., L and i # j the off-diagonal elements of A are
given by

1. Lifilly, bo...
/ l’l’f‘(l;’lz ) dll...dlL=/lidll...dlj_l,dlj+1...dlL/ Jf‘(ll’bz i) .
02 + g1 aellef? 02 + 3 4l aellel?

Since the function L;/(0® + 3_7_, ae|le|?) is an odd function of Re(l;) and Im(l;), the
integral with respect to I; will be always zero if fi(l1,ls,...,1z) is an even function
in Re(l;) and Im(l;) for all possible values of I; with j = 1,...,L and j # 4. Then,
the off-diagonal elements of A are zero and this concludes the proof of Corollary 6.

Following the same approach used for Corollary 4 in [9] and using Corollary 6 we
find sufficient conditions under which the matrix A is proportional to the identity
matrix, i.e. A = nl. If A = nI, then the scalar 1 coincides with the multiuser
efficiency of a linear MMSE detector as it is apparent from (5.7) and (5.8). Let us
assume that the conditions of Corollary 6 are satisfied. If we additionally assume
that the joint probability density function fi(l1,1s,...,1;) is exchangeable, i.e. for
any permutation 7 of {1,..., L}

fl(lla l2) ceey lL) = fl(lﬂ’(l)a l7r(2)) st alW(L))

then the system of equations (5.18), which defines the diagonal matrix A, satisfies
ag=m, forall {=1,...,L, A =nl, and the system of equations (5.18) reduces a
single fixed-point equation. This result is stated in the following corollary.
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Corollary 7 Let S and fi(ly,la,...,11) be as in Corollary 6. If the limiting proba-
bility density function fi(ly,ls,...,11) is exchangeable, i.e. for any permutation © of

{1,...,L}

Jills, lg, .. 1) = filleqy bng)s -+ 5 ery)
then, as N, K — oo with £ — 8 and L fized, SI—I\IP%L"E, with Py = ||lx]|? converges
in probability to the deterministic constant n, which is the unique scalar multiuser
efficiency, solution to the fized point equation

1

= : (5.19)
1+ £ [ 22 5d Fp(P)

n

Here P is the random variable defined by P = ||l||?> and Fp(P) is its distribution.

The conditions of Corollaries 6 and 7 imply that l,ls,...[; are uncorrelated. How-
ever, the converse is not true in general, i.e. the matrix A is not typically diagonal
for asymptotically uncorrelated received amplitudes. Corollaries 6 and 7 provide suf-
ficient conditions for the matrix A to be diagonal and proportional to the identity
matrix, respectively, when the received amplitudes are asymptotically uncorrelated.
Under the conditions of Corollary 7 the resource pooling effect arises. In fact, let us
compare (5.19) to (2.27). It is apparent that the multiuser efficiency of a synchro-
nous CDMA system with L receive antennas and spreading factor N is equal to the
multiuser efficiency of a synchronous CDMA system with single receive antenna,
spreading factor NL, and with received power of each user being the sum of the
received powers at the individual antennas.

5.3.4 Remarks

The empirical joint distributions Fl(K)(ll, la,...,lr) and the limiting joint distribu-
tion Fi(l3,la,...,11) are not able to capture and describe the effects of the correla-
tion due to antenna coupling at the transmitter side. Since the effects of the channel
gains on the system performance are taken into account only by Fi(ly,lz,...,11), we
can conclude that the correlations of the channel gains due to coupling effects at
the transmitter side do not affect the asymptotic performance of the linear MMSE
receiver. This property is intrinsically related to the assumption of the statistical
independence of the spreading sequences of the transmitting antennas. It does not
hold true if the condition of independence is not satisfied. In fact, in this case,
Fi(l1,1y, . ..,11) would not be sufficient to describe the system behaviour.

As a consequence of Theorem 11, the asymptotic behaviour of the general system
is completely described by an L x L matrix A. In contrast to the case of a single
receive antenna or the cases in which the resource pooling effect arises, the multiuser
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efficiency of the linear MMSE receiver varies from user to user, in general. In par-
ticular, for user k, it depends on the direction of the channel gains, I, with respect
to the eigenvectors of A: The SINR is maximum if I has the same direction as the
eigenvector corresponding to the maximum eigenvalue of A.

Typically, in order to determine the eigenvectors of the matrix A the solution of
the matrix fixed point equation (5.9) is required. However, in the special case where
the limiting p.d.f. fi(l1,le,...,I1) is Gaussian, the eigenvectors of A coincide with
the eigenvectors of the covariance matrix E{lI7}*.

In the light of Theorem 11 we can revisit the known results in [9]. Theorem 1 in [9]
states that if the elements s;; are i.i.d. Gaussian random variables with zero mean
and variance —]1\7, if the received amplitudes lg are independent for all users £ and
antennas £, if for any given user, the received amplitudes are identically distributed,
and if asymptotically the sequence of the empirical distributions converges to a
bounded distribution function, then the matrix A in (5.8) is given by

A=aIL

8 P -
(l:(l*{—zE —__02-{—@]3
where P = 171,

By comparing this result to the result in Corollary 6 it becomes evident that
Corollary 7 implies Theorem 1 in [9].

The following result is conjectured in Theorem 3 in [9]. If the chip elements s;;
are independent, zero mean, Gaussian distributed, the received signal amplitudes
are independent and if, asymptotically, the sequence of the empirical distribution
converges to a bounded distribution function, then Theorem 3 in [9] conjectures that
the matrix A in (5.8) is given by

with

A = diag(ay,as,...,ar)

-1
|L[?
a,= |14+ pPE £=1,...,L.
‘ ( g <U2+Z£=1anlln|2

By comparing the previous conjecture to Corollary 6, we notice that Corollary 6
includes and proves rigorously Theorem 3 in [9].

In Table 5.2 we recapitulate the results of Corollary 6 and Corollary 7 and sum-
marize the sufficient conditions under which the resource pooling effect arises.

with

4We assume here that the asymptotic channel gains A1, Ag, ..., A[ are zero mean as is typical in

a baseband model.
5As already noticed in Section 5.3.3, Hypothesis A implies that I,,12, ..., are uncorrelated.
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Hypothesis A The joint probability density function f(ly,ls,...,[.) is an even function
of Re(l;) and Im(l;) fori=1,..., L.

Assumptions Y
Received amplitudes uncorrelated at the receiver®.

Hypothesis B f(ly, 1o, ..., 11) is exchangeable, i.e. for any permutation 7 of {1,2,..., L}
fU b, ) = flr), e - - - lery)

Implications Hypothesis B A is diagonal
Hypothesis A and B A=al
Conclusions The resource pooling effect arises if both hypotheses A and B are satisfied.

Table 5.2: Summary of Corollary 6 and Corollary 7.
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5.4 Single User Bayesian Receiver

The single user Bayesian receiver is a linear detector that is suitable when the
receiver is synchronized and has complete information about the user of interest,
i.e. spreading sequence, and received power, but it does not know the spreading
sequences of the interferers and has only statistical knowledge of the interference.
More specifically, we assume that the following information is known at the receiver:

e Knowledge of the signature sequence, channel gains, and transmit power of
user k;

e Knowledge of the statistics of the signature sequences, channel gains, and
transmit powers of all interferers.

This detector has been analyzed for the case of independent channel gains in [9]
under the denomination of matched filter.

The Bayesian single user detector ¢ for the user of interest £ minimizes the mean
square error between its output, /I;Bf’k = ckH y, and the transmitted symbol by. It is
given by the Wiener-Hopf equation

cx = E{yy™} 'E{b;p} | (5.20)

as for the linear MMSE receiver (5.3). However, in this case the expectation is taken
not only over the transmitted signals and the noise, as for the linear MMSE receiver,
but also with respect to the signature sequences, the channel gains, and the transmit
powers of all interferers. Equation (5.20) yields the following explicit expression for
the Bayesian filter

_ Ino®[B- +)Ci+ oI e
L+ (B = £)Ci+ oI 1) Hi)sH s

Ck (5.21)

A better insight into the Bayesian filter receiver can be obtained from (5.21) by
performing a permutation IT of the elements of ¢, and ) and such that the elements
corresponding to the same antenna are relocated next to each other (I : ¢ — [(i —
1)modL]N + [ %] + 1). Let us denote with ¢ and 9™ the Bayesian filter receiver
and the received signal vector respectively obtained by such a permutation. Let &
be the I element of the vector &, = [(8 — & )C1 + ¢®I]  i. Then,

sT T T
m_ £18 » {154 . (5.22)

T TT e sse) U T+ (7€) (s se)

Equation (5.22) shows that, similarly to the case of completely independent channel
gains in [9], the Bayesian filter despreads the received signal at each antenna using

|
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the spreading sequence sy and, then, it performs a maximal ratio combining of the
despread signals using as weights the coefficients

&
1+ (17 &) (sH sk)

The coefficients for maximal ratio combining depend on the correlation matrix of
the channel gains of the interferers.

The following theorem provides the performance of the Bayesian filter in terms of
its limiting SINR as the system dimensions grow large with constant ratio.

I=1,...,L (5.23)

Theorem 12 Let I}, be the vector of received amplitudes of user k. Let us assume
that, almost surely, the empirical joint distribution of ly,1ls, ..., lg—1, k41, ... lx con-
verges to some limiting joint distribution F; as K — oco. Additionally, the elements
of the spreading vector sy, are assumed to be independent and identically distributed.
Then, if N, K — oo with % — 8 and L fized, SINRy, of the Bayesian filter for the
transmitted signal k, conditioned on the vector of received amplitudes I, converges
almost surely to a constant value

Jim SINR, I HBE{UTY + o217, (5.24)
K-p
where 1 is the L-variate random variable with joint distribution F'.

Proof: See Appendix D Section D.2.

The asymptotic analysis provides a result of simple interpretation: the SINR of
user k is equivalent to the SINR at the output of a linear MMSE detector for a
CDMA system with:

e Spreading factor equal to the number of receiving antennas;

e Spreading sequence of the user of interest equal to the vector l; of channel
gains;

e Spreading sequences of the interferers equal to the vectors of the channel gains
attenuated by a factor +/B. This takes into account the beneficial effects of the
spreading in the original CDMA system.

In contrast to the case of independent channel gains in [9], the performance depends
on the direction of the vector of the channel gains. For a given received power the
SINR is maximized as I, has the direction of the eigenvector corresponding to the
minimum eigenvalue of the matrix (BE{ll¥} + o2I)~.
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5.5 Matched Filter

The single user matched filter requires only the knowledge of the spreading sequence
of the user of interest. Its output is given by

Emf,k =by.

As in the case of the single user Bayesian receiver, the matched filter despreads the
received signals at each antenna and then it combines the despread signals using as
weight coefficients the received energy at each antenna.

The asymptotic performance of the single user matched filter is given by the
following theorem:

Theorem 13 Let ly, s, and Fy(ly,la,...11) be as in Theorem 12.

Then, if N, K — oo with % — B and L fized, SINRy, of the matched filter for the
transmitted signal k, conditioned on the vector of recetved amplitudes I, converges
almost surely to a constant value

lim SINR; % (b L’
K N—oco © T HBE{UTY + 211,

ks

(5.25)

where 1 is the L-variate random variable with joint distribution Fi(ly,la, ... IL).

Theorem 13 is proven in Appendix D Section D.3.

Like for the single user Bayesian filter, the SINR of the matched filter is equiva-
lent to the SINR of a matched filter for a CDMA system with spreading factor L,
spreading sequence of the user of interest equal to the vector of the channel gains,
and spreading sequence of the interferers equal to their channel gains attenuated by
a factor v/B.

The spectral efficiency depends on the direction of I. It is maximized when I
has the direction of the eigenvector corresponding to the maximum eigenvalue of
the correlation matrix of the interferers, E{l117}.

5.6 Multistage Detection

The design of detectors Type J-J and Type J-I and the general result for the analysis
of linear multistage detectors for CDMA systems with spatial diversity follows along
the same lines as for the synchronous systems presented in Chapter 3.

The projection subspace that enables joint projection is given by

xm () = span{T™hi } o
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where ¥ = HH . The design of the asymptotic weights reduces to the determination
of the asymptotic values of the diagonal elements of R™ = ($7H)™, m =1,...,2M.
With obvious substitutions, equations (3.11) and (3.10) define detector Type J-J
and Type J-1, respectively, for systems with spatial diversity. The same holds for
equations (3.32) and (3.31).

The following theorem states that (J8™)g, converges almost surely to a determin-
istic value conditionally on l;. A recursive algorithm to compute such a limiting
value is also provided.

Theorem 14 Let the matriz S be as in Theorem 6. Let the vectors ly, k=1,... K
and the c.d.f. Fy(ly,lo,... 1) be defined as in Theorem 11. Ly, £ =1,...,L, is a
K x K diagonal matriz whose k™ element coincides with the £ component of I,
i.e. (D)er = (Lo)i. Define® $ = Y i, SL; ® e, and assume that the spectral radius
of the matriz R = HTH is upper bounded. Then, as N, K — oo with % — 3 and
L fized, the diagonal elements of the matriz R™ corresponding to the virtual user
k, with given fading amplitude li,, converges with probability 1 to the deterministic
value

R™(l) = K:}}gl_)oo(mm)kk

with R™(l) determined by the following recursion

(1) = 3 937 DR (5.26)
3m = mz—: BE{R™1(1)1IH 3¢ (5.27)

g(3™ 1 1) =173°1.
The recursion is initialized by R°(1) =1 and 3° = I

The proof is in Appendix D Section D.4 . This theorem yields the following algorithm
to compute R™(l) and m, m € Z*, the asymptotic eigenvalue moments of the
matrix ™.

Algorithm 4

Initialization:  Let po(l) =1 and py = I.
£ step: o Define ug_1(1) = 1" p,_4l.

6Note that $ models the transfer matrix in the system model (5.1) and its definition coincides
with (5.2).
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e Define Zy_1(1) = pe_r (DU and write it as a polynomial in
the monomaals I7* .. IFF(I7)% ... (IF)%*.

e Define mgn ..... TLy810SL) E{Hle l;e(lz)sg} and replace all
monomials [T5_, [t(13)% in Z,1(l) by the corresponding

ml(”""’rL’sl""’sL). Assign the result to Vo_;.

o Calculate

£—-1
pe() = > s 1 (1)ps(l)

s=0
-1

He = Z ﬂVe—s-lﬂs-

8=0

o Assign py(l) to RE(D).

o Write pi(l) as a polynomial in T[], I(13)* and replace all
monomials T[], ;£ (1)* in pe(l) by the correspondent mo-
ments ml(”’”""’”’sl’sz""’SL). Assign the result to m,.
If the received amplitudes li- are independent, the previous algorithm simplifies
since the matrix 3%, s € Z% is a diagonal matrix. If the received amplitudes I
are asymptotically independent and identically distributed as in the micro-diversity
scenario analyzed in [9], the limiting diagonal elements of the matrix MR’ and the
eigenvalue moments mf;‘ can be derived from Algorithm 1 for synchronous single
receiving antenna systems by replacing (i) § with 8 = L—va— and (ii) the received
power of user k at a single antenna, |ax|?, by the total received power of user &
at all antennas, I¥I. This result can be obtained directly from Theorem 1 in [9] as
proposed in [106] or, alternatively, from Algorithm 4 (noting that V is proportional
to the identity matrix and SR¢(l) is a function of 171).
As for synchronous CDMA systems with single receiving antennas, the limiting
values of R, enable an asymptotic analysis of any multistage detector in the Krylov
subspace X k() for CDMA systems with correlated spatial diversity.

5.7 Numerical Results

In this section, we assess the performance of the detectors Type J-J and Type J-I
proposed in 5.6 and compare them to the performance of (i) the exact polynomial
expansion detector in Section 2.2.5, (ii) the multistage Wiener receiver, and (iii) the
full rank linear MMSE receiver. The assessment is performed assuming independent
and identically distributed Gaussian received amplitudes.
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Furthermore, the effects of the correlated spatial diversity on the output SINR of
multistage detectors are analyzed by using the theoretical results in Section 5.6.

Figure 5.1 and 5.2 show the assessment of the performance of multistage detec-
tors assuming independent and identically distributed Gaussian received amplitudes.
The simulation results presented there were obtained for uncoded transmission us-
ing Z-offset QPSK modulation, and assuming perfect knowledge of the channel. The
receivers are compared in terms of their BER evaluated as a function of the normal-
ized signal-to-noise ratio E,/ Ny where Ej is the mean energy per bit and N is the
one sided noise spectral density. Figure 5.1 shows the BER versus E},/ N, for 5-stage
detectors, 8 = 2 (K' = 64, N = 64, Ny = 2), and L = 4. More specifically, the
dashed lines show the performance of an exact polynomial expansion detector and
an exact multistage Wiener filter with 5-stages. The solid lines plot the BER of a
Type J-J and a Type J-I detector, the corresponding approximation of the polyno-
mial expansion detector and the MSWF with asymptotic weights, respectively. The
performance degradation due to the large system approximation for the weights is
completely negligible. Figure 5.2 shows the performance improvements of a Type
J-J detector with large-system weights for an increasing number of stages.

The effects of the correlated spatial diversity were analyzed assuming the received
amplitudes to be Gaussian with limiting joint distribution (5.10) and correlation

matrix
1 05 0.3

C,=105 1 05
03 05 1

The numerical results presented in the following were obtained using L = 3 receiving
antennas at the base station and assuming a system load § = %

In case of correlated received amplitudes, the multiuser efficiency of a linear
MMSE detector depends on the direction of the received amplitude vector of the
user of interest as discussed in Section 5.3.4. For correlated Gaussian received am-
plitudes the performance of a linear MMSE detector is maximum or minimum when
the received amplitude vector is parallel to some of the eigenvectors of the correla-
tion matrix C; (see Section 5.3.2). The same property holds also for Type J-I and
Type J-J detectors, as verified numerically. Let us denote by Imax and Iyvin the
eigenvectors corresponding to the maximum and minimum eigenvalues of the ma-
trix C|, respectively. Figure 5.3 shows the asymptotic multiuser efficiency of a Type
J-I detector with M = 4 when the received amplitude vector l span the subspace
{lvin, Luax}, i-e. it is a linear combination I = ulmax + (1 — w)lvin. The solid lines
plot the output SINR as a function of u, the coefficient of the linear combination
T, for different values of the input SNR. The performance is maximum when the
channel gain vector is parallel to Iy, i-e., v = 0 and minimum when the channel
gain vector is parallel to lyax, i.e., u = 1. The dashed lines illustrate the asymptotic
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multiuser efficiency of a Type J-I detector for a multiuser MIMO system with inde-
pendent received amplitudes for the sake of comparison. For independent received
amplitudes, the multiuser efficiency does not depend on the direction of the chan-
nel gain vectors and it has an intermediate value between the maximum and the
minimum multiuser efficiency obtained in the case of correlated spatial diversity.

In Figure 5.4 the asymptotic output SINR of a polynomial expansion detector or
Type J-J detector (dashed lines) and of a MSWF or Type J-I detector (solid lines)
is plotted as a function of the input SNR for three different received amplitude
vectors I, with v = 0,0.5,1 and perfect power control, i.e. the sum of received
powers for each user k, [['l; is identical for all users. In the case of a single receive
antenna or multiple antennas with independent and identically distributed received
amplitudes, the MSWF and the polynomial expansion detectors are equivalent if
perfect power control is performed (see Chapter 3). On the contrary, for correlated
received amplitudes, even in case of perfect power control, the detector Type J-
I outperforms the detector Type J-J with equal number of stages. The difference
between the SINRs of the two detectors increases as the input SNR increases and/or
u decreases.

5.8 Conclusions

In this chapter we determined the asymptotic performance of the linear MMSE re-
ceiver, the single user Bayesian filter receiver, and the single user matched filter
receiver in CDMA systems with random spreading and spatial diversity. We consid-
ered the general case where the channel gains are correlated and there are line of
sight components. Our results include as special cases the results in [9] that were
derived under the constraints of independence of the channel gains and uniformly
distributed phases. Deriving the results in [9] from the general equations (5.8) and
(5.9), we could prove the results for the macro-diversity case, which was only con-
jectured in [9)].

QOur Theorem 11 shows that the system is asymptotically described by an L x L
matrix A that characterizes completely the effects of channel correlation and line of
sight components. The efficiency of the system in recovering the symbol transmitted
by the physical user k strongly depends on the direction of the channel gain vector
l;, with respect to the eigenvectors of A.

Conditions under which the resource pooling effect occurs have been given for the
general case.

The single user Bayesian filter and the single user matched filter in a large CDMA
scenario with correlated spatial diversity were shown to be equivalent, in terms of
performance, to a linear MMSE detector and a matched filter, respectively, in a
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CDMA system with spreading factor L and spreading sequences equal to the channel
gains.

The design of low complexity multiuser detectors was extended to CDMA systems
with correlated spatial diversity. A general framework for the asymptotic analysis of
any multiuser detector in a “natural” Krylov projection subspace was also provided.
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Rayleigh fading, K=64, N=64, NT=2, L=4, M=5
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~— Linear MMSE detector

- 0= - Polynomial expansion detector
—— Type J-J detector
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Figure 5.1: BER versus % for 3=2and L =4.

Rayleigh fading, K=64, N=64, N =2, L=4

T T T T T T T T T

Matched filter

Type J-J detector

BER

Figure 5.2: BER of a Type J-J detector versus -]%-g— for B = 2, L = 4, and different
numbers of stages M = 2,...,5.
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4-stage Wiener Filter: Independent versus Correlated Spatial Diversity
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Multiuser Efficiency for Large Systems
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Figure 5.3: Asymptotic multiuser efficiency of a Type J-I detector with M =4, L =
3,and § = % versus the coefficient u of the linear combination I = ulmax+(1—u)lyn
for different values of the input SNR and correlated received amplitudes (solid lines)
or independent and identically distributed received amplitudes (dashed lines).

Perfect Power Control: 4~stage Wiener Filter vs Polynomial Expansion Detector
12

10

SNR

Figljre 5.4: Asymptotic output SINR in decibels of polynomial expansion detec-
tors/Type J-J detectors (dashed lines) and MSWEF/Type J-I detectors (solid lines)
with M = 4 versus SNR for different coefficients u of the linear combination

7: UlM_AX + (1 — u)lMIN (u =0, 0.5, 1).




6 Conclusions and Perspectives

6.1 Summary and Conclusions

Multiuser detection with its appealing benefits is a viable approach also for large
CDMA systems thanks to the low complexity of the multistage detectors proposed
in this work. These detectors achieve performance close to the performance of linear
MMSE detectors with the same complexity order per bit as the single user matched
filter.

A large number of users in a CDMA system makes the use of multiuser detection
challenging because of the high required computation power. The multistage detec-
tors Type J-I and Type J-J proposed in this work benefit of the large system size.
They take advantage of the self averaging properties of the transfer matrix of the
system as its size becomes large, and the possibility to jointly project all users onto
the projection subspaces.

Detectors Type J-I and Type J-J have been designed for synchronous CDMA
systems with flat fading and frequency selective fading and for synchronous CDMA
systems with correlated spatial diversity.

The multistage detectors with universal weights have been efficiently extended to
asynchronous scenarios. An implementation with a sliding observation window and
observation window length expanding with the number of stages enables to keep
the same complexity per bit as for synchronous systems. This is in contrast to the
behaviour of classical MSWF, polynomial expansion detectors, and linear MMSE
detectors.

The design of low complexity detectors has been based on a property of some
Gram random matrices established first in this work: the diagonal elements of integer
powers of these Gram random matrices converge to deterministic values when the
matrix size grows large. Utilizing this property, we could develop simple algorithms
to determine both the diagonal elements and the eigenvalue moments. Additionally,
this approach enabled also the limiting spectral analysis of some Gram matrices
not available yet in the literature (e.g. the Gram matrix that models asynchronous
CDMA systems with random spreading).

A unified framework for the large system performance analysis of a wide class of
linear multiuser detectors has been provided benefitting from this new property of

e——
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random matrices. This framework includes well known detectors as the multistage
Wiener filters, the polynomial expansion detectors, and parallel interference can-
celling detectors. The analysis disproves the widespread belief of the equivalence of
the polynomial expansion detectors and the multistage Wiener filters. The MSWF
detectors outperform the former and they are equivalent only in the case of syn-
chronous CDMA systems with perfect power control, i.e. when all users are received
with the same power level.

The proposed multistage detectors for asynchronous systems with observation
window expanding with the number of stages can outperform linear MMSE detec-
tors with fixed observation window. Thus, for asynchronous systems the multistage
detectors are beneficial not only from a complexity point of view but also from a
performance perspective.

The effects of chip pulse waveforms have been investigated jointly with the asyn-
chronism. As long as the chip pulse bandwidth is not greater than half the chip rate,
synchronous and asynchronous CDMA systems are equivalent. Above that threshold,
the output SINRs of multistage detectors and linear MMSE detectors increase with
the bandwidth if the system is asynchronous while it remains constant or decreases
as the bandwidth decreases if the users are synchronized. First, for chip pulse wave-
forms of practical interest asynchronism better exploits the available bandwidth.
Second, it does not require synchronization procedures and the proposed multistage
detectors for asynchronous systems do not imply an increase in complexity com-
pared to the equivalent detectors for synchronous systems. Therefore, asynchronous
CDMA systems are the best solution both in terms of performance and in terms of
total complexity for large CDMA systems when linear multiuser detection is per-
formed at the receiver. Additionally, asynchronism and multiuser detection enable
to compensate to some extent for the loss in spectral efficiency due to the roll-off.

We investigated the large system performance of linear MMSE detectors, of single
user Bayesian detectors, and matched filters in scenarios with correlated spatial
diversity. This analysis extends the results in [9] for scenarios with multiple receiving
antennas and independent channel gains to the practically more relevant scenarios
with correlation at the receivers. Our general analysis includes the micro-diversity
and macro-diversity cases discussed in [9] and proves rigorously the results for the
macro-diversity case only conjectured in [9)].

The large system performance analysis of such systems if fully characterized by a
square matrix with size equal to the number of receiving antennas. The multiuser
efficiency is not identical for all users and strongly depends on the direction of the
channel gain vector.

The correlation of the channels at the transmitting sites does not affect the system
performance; only the correlation at the receiver plays a major role.

We generalized the conditions under which the resource pooling effect arises. Ad-
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ditionally, we provided some equivalence results for systems of practical interest. For
any scenario with correlated Rayleigh fading, there exists a macro-diversity scenario
with independent Rayleigh fading which obtains the same SINR in the case of linear
MMSE detection. A CDMA system with correlated spatial diversity and single user
Bayesian receiver is equivalent to a CDMA system with linear MMSE detection at
the receiver, spreading factor equal to the number of receiving antennas, and spread-
ing sequences equal to the channel gain vectors. Similar equivalence results hold also
for the single user matched filter.

In conclusions, the design of low complexity multistage detectors based on univer-
sal weights resulted fruitful in three different ways. From a signal processing point
of view, we designed detectors that are an excellent compromise between complex-
ity and performance. From the point of view of communication theory, the system
analysis revealed important characteristics of CDMA communication systems. From
a mathematical perspective, useful properties of some random Gram matrices have
been discovered. These properties have been extended also to wide classes of ran-
dom matrices including classes whose spectral analysis was not available yet in the
literature (e.g. Gram matrices for chip asynchronous and symbol quasi-synchronous
systems, see Section 4.4).

0.2 Perspectives
The possible further developments of this work reflect its threefold nature.

e Design of low complexity detectors for scenarios with multipath fading channels
and intersymbol interference. In this kind of scenario, the use of an observation
window of a single symbol interval is significantly suboptimal because the
multiple access interference is correlated from symbol to symbol as in the case
of asynchronous systems investigated in Chapter 4. The multistage detectors
with an observation window length expanding with the number of stages, which
we introduced for asynchronous systems, can be efficiently adapted to this
scenario. In this kind of scenarios characterized by a band transfer matrix, the
approach with universal weights provides the greatest advantages.

o Gram matrices obtained from isometric random matrices: convergence of diag-
onal elements. The asymptotic convergence of the diagonal elements of powers
of Gram matrices G = H* H has been shown for special classes of random ma-
trices. A common characteristic of these classes was to be built around random
vectors, that are statistically independent with i.i.d. entries. It is of theoretical
and practical interest to investigate if this property extends to Gram matrices
built around random orthogonal vectors.
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o Convergence rate of the diagonal elements of Gram matrices G° = (H” H)?,

s € Z%. The analysis of the convergence rate of (G*)xx was beyond of the
scope of this work. Its investigation is of theoretical and practical interest.

Analysis of asynchronous CDMA systems with orthogonal spreading. The use
of orthogonal spreading has several advantages. Furthermore, other orthogonal
access schemes (e.g. MC-CDMA) can be regarded as special cases of orthogonal
CDMA systems. Because these schemes are attractive for the fourth generation
of wireless systems, they are being studied intensively at the moment. However,
the orthogonality is easily destroyed in the uplink due to non-idealities of
the channel like asynchronism or frequency selective fading. The impact of
asynchronism on these access schemes is not clear. An investigation of the
level of asynchronism that can be tolerated without loosing the benefits of
orthogonal spreading is of great interest to evaluate the cost of the system.

Chip-pulse waveform optimization. With conventional detection, the roll-off of
the chip-pulse waveforms has a detrimental effect on the spectral efficiency. In
this work we have shown that multiuser detection can compensate this loss
to some extent if the system is asynchronous. Additionally, we provided a
fundamental tool, i.e. Theorem 10, for the analysis of the system performance
with any kind of chip-pulse waveform of practical interest. This opens the way
to an optimization of the chip pulse waveform with linear multiuser detectors.

Low complexity power control and admission control algorithms for CDMA
systems with correlated spatial diversity. In [9], the performance analysis of
large systems with statistically independent spatial diversity turned out to
be a useful tool for the development of low complexity algorithms for power
control and call admission control. Similarly, the results presented in Chapter 5
could support low complexity algorithms for power control and call admission
control in more realistic scenarios that take into account spatial correlation of
the channels.




A Proofs of Chapter 2

In order to prove Lemma 2 in Section 2.4, let us notice that the Lyapunov in-
equality (Appendix E Lemma 12) and the bound limy_., N*E{|z;{%} < oo imply
limy—o N2E{|z;]*} < 0.

By applying Lemma 1 for p = 3, we obtain

E{ trC’N3

elCxy — ‘ } < Kj; [(E{|rj| Hr( C’H)) + E{|z;|5}tr(CCH)2 ]

< K [(NzE{uﬂ‘*}ti%gﬁ)% N3

Hy\2
+ <N3E{|xj|6}fr(_c_€_)_2> N—Q} .
N
Thanks to the bounds on E{|:cj|4} and E{|z;|°} and on the moments of Fc(\) the

quantities (N2E{| J|4}tr(cl\f7 )) and <N3E{|x |° }tr(CC )2 ) are upper bounded.

This observation yields
E { xi

Fixing € > 0 and using Markov’s inequality (Appendix E Lemma 10), it follows

3
} < K|N? (A.1)

H _ tr(0)
o o o)) P <E{‘:c e w } (A.2)
r x N |2 3 : .
Therefore, the inequalities (A.1) and (A.2) yield
ZPr{wHC _ (©) Z€}<Z K33<oo. (A.3)
N=1 N itk

Using the Borel-Cantelli lemma (See Appendix E Lemma 13), we conclude that with
probability one only finitely many of the events {ImH Czx — '%VQI < e} occur, i.e., as
N — o0,

eHCx - HQ 22, o,

This concludes the proof of Lemma 2.







B Proofs of Chapter 3

B.1 Proof of Theorem 6

Let us consider any realization of the random matrix T, of size N x N. Thanks to
the almost sure convergence of the empirical eigenvalue distribution [107], Ve and
d > 0 there exists an N’ such that VN > N’

Pr{1

‘NtrTZk — mg"

<5}>1—e (B.1)

where mj. denotes the limiting eigenvalue moment of order n of the matrix T
Since the support of the limiting eigenvalue distribution Fjap is upper bounded, all
eigenvalue moments mrAlz’ n € Z* are finite. Then, the same property holds for m%
(see [77]).

By appealing to Lemma 1 we obtain the inequality

E { ST, — L } <ON[E{lsulDE +E{lsul}]  (B2)
.
< e (B.3)

where C and C' are constants depending on max((m2?)3,mS") but not on N, and
8y, is the k' column of S. We use the Lyapunov inequality (see Lemma 12) to bound

E{[su]*}-
The almost sure convergence as N — 00

SkHT:’:kSk ——QL) m% (B4)

follows along the same lines as the proof of Lemma 2.
The strong law of large numbers (see e.g. [108]) yields the almost sure convergence
sfls —2*4 1 as N — co. Then,

Ry = lag|? s s, —2 |aw|?. (B.5)

For¢ > 2
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(R rk = |aw|?sET sy
= |awk|*st sksf (Tok + !akk|2sksf)e_2 S,

f—
+ lawe st (lank|*ssfl + Ti) ? s (B.6)

Expanding the product we can rewrite the first term on the right hand side of (B.6)
as

H

|akkl4skHsksk (TNk + |akk[23ksf) 8 — [akk|2sfsk (Re_l) (B?)

kk *

The second term on the right hand side of (B.6) can be further decomposed as

2 —
S = |akk|2SkHTNkSk (RZ Z)kk

+ Iakk|23£IT,2\,k (TNk + |akk|23kskH)

|akk|2skHTNk (TNk + |akk|2SkSkH)

3
Si.

(B.8)
By further expansion of the term |ag|2s2 T2, (T + |axk|?sks )3 s, we obtain

(B) = lawnl* st sic (RY)  + lasi| s Toksi (R),,
¢4

+ Iakklzsziksk (Re_?,)kk + ’akkl28£{Tik (TNk + lakkl23k3£1) i Sk.

Iterating the expansion (B.8) we get
-1

(Re)kk = Z |akkl23£ITi—kl_33k (R%) 1 (B.9)
=0

Therefore, (B.5), (B.4), and the recursion yield

£~-1
Bipoo = Jm (B *5 D law'mg ' R oo (B.10)
%——»ﬁ s=0

Making use of the relation m% = Bm', we obtain (3.26).

B.2 Asymptotic Diagonal Elements: A Closed Form
Expression

Theorem 15 Let A, S, and R be as in Theorem 6. Conditioned on ay, the k™
diagonal element of A, (Re)kk, converges almost surely, as N, K — oo with % — £,
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to the following deterministic quantity Rf;k’oo depending on |age|?:

£—1 -1 .
Rik,oo = Z io—z ij, 11, ... %01 ![akk[z’o H (ﬁm‘;{)ls
(i0,81,-.-Te—1)" ij=1 s=1
io-|-£i1 Jiz=£ (Bll)
=1

£—1
i0— Y, i; >0
Jj=1
for any k,£ € Z*. Here, (ig,%1,...1¢—1) 1S an £-tuple of nonnegative integers and
(-y+,...,)! denotes the multinomial coefficient.

Proof: By expanding (R, = |awx|?st (Twr + |akk|23ks,€[)e_1 8y and using the
asymptotic convergence in (B.4) and (B.5) we obtain the asymptotic convergence

41 .
(Re)kk is—._) o ] Q0(7;07 7:17 s 7i£—1)lak‘kl2m H (IBmSR)lS .
(zo,zzl.i.zg_l): s=1 (B12)
io+ 3 Jjij=¢
i=1

where the coefficients ¢(ig,41,...,%-1) are obtained expanding the binomial
-1
(T + lare|®sis)

Finding a closed-form expression for Rit oo 18 equivalent to the combinatorial prob-
lem of determining the coefficients ¢(ig, i1, ...,%-1) since m% are given in closed-
form in [77].

Let us consider the set S of all binary strings of length £ — 1. We define two
elements in S equivalent if both of them contain the same number of runs of ones
with the same length, i.e. both of them contain i; runs of length 1, i, runs of
length 2, 7, runs of length s for 1 < s < ¢ — 1. This equivalence relation induces a
partition of S into classes of equivalence. The subset of the equivalent strings with

-1
is runs of ones with length s and, by convention, ig = ¢ — >_ sis with 49 > 1 is
s=1
denoted by S;4,..i,_,- It is straightforward to recognize that the number of terms
-1 . . _
¢ I] (Y z)" obtained from the expansion of coz# (Y + cxz )e ' is equal to
1

S=
the cardinality of S;y,..4,_,. The latter equals the number of distinct permutations

of a multiset with 4y = i — Zi;ll ir > 0 elements equal to zero, is elements equal
to s, for 1 < s < £ —1, i.e. the multinomial coefficient (4y, %1, . ..%-1)! [109].

B.3 Proof of Theorem 7

For k = 1... K we define:

[ |
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e The L(K — 1) x (K — 1) matrix A, = diag(ai, as,... k-1, Ak41... ak);

e The N x N permutation matrix corresponding to a cyclic down-shift by £
positions, I1y;

e The N x L spreading block of user k Sy = (S(h—1)1+1, 8(k=1)L+2, - - -+ SkL) =
(To8k-1)2+1, 18(k—1) 1415 - - HL+13(Ic—1)L+1)

For further studies it is useful to define 7" )( ) = af/ SYT* 'I1,8,a;, for u € Z*
and to notice that r “)( %) = (R*)gx. By substituting T' = Syaral Sy + Ty and
proceeding as in Theorem 6 we obtain

—2
T(u) ak Za SkHTikSkakT’S}u_e_l)( ) + a; SHTZ,,CIH Skak for ue Z+

(B.13)
with the convention 3, () = 0. '
Let us define
Ltr(TL)  tr(TLy) o Hte(TToep-1)
1 ¢ 1 0 :
T = lim ~tr(TI ;) wtr(T71L) (B.14)
K,N—oo ‘. ‘. . .
ko |
| (T 4) o Eer(TUIL)

Using the same arguments as in Theorem 6 it is straightforward to show the
following limits for N — oo

sill,sy  —> do,s
SHIL,S, 2% I(s) (B.15)
SATt 11,8, =2 T¢

where I1(s) denotes an L x L matrix with iy ,4s =1, foru=1,..., L —s, and zero

elsewhere.
By using the limits (B.15) in (B.13) it follows that r$ (ax) converges almost surely
to the deterministic limit p%" )(ak) where p{* )( ) satisfies the recursive expression

P (a Z a T ap 4 V(a) +a"T' a. (B.16)

In order to determine 7 note that

1 1 fors=0
—trIl, = ’ B.17
N Y { 0 otherwise. ( )
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Then, by using (B.17) in the definition of T for £ = 0 we obtain 72 = I(s). Let us
focus now on computing 7~ ﬁ for £ # 0. The property of the trace! and the definitions
~of T and R yield

1., 1 -
T T = ~tr (AT SHT 'L, S A) (B.13)
1 K
=% > (B.19)
k=1

Thus, limg ¥ NtrTZI'I = BE{p!} and the matrix T is given by

___,ﬂ
[ _ 0 .. i
ge) Pg-|)-1 . p.(s-{)—L—l
—(0) =0 .. 50
T =8 p's—l o psj}-L—2 (B.20)
(& . ) _
L Pg L+1 - ge)

where p ,0 = E{p}}. Note that 25 = (P
In order to prove Equivalence 1 let us observe that, if

(A) T4 is proportional to the identity matrix with 7g (u) I, Vu € Z* and
o) = 3;
(B) T =0, for all v # 0 and u € Z*¥;

then Equivalence 1 holds. In fact, by using assumptions (A) and (B), the recursive
expression (B.16) reduces to

o (a Z“ aB o (a). (B.21)

Since p, () depends on a only through the scalar P = aa the previous recursion is
rewritten as

o (p Zmp“ s (p). (B.22)

1We refer here to the well know property of the trace trAB = trB A, where A is an m X n matrix
and B is an n X m matrix.
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If Assumptions (A) and (B) are satisfied, then Ry . ——— f¥(Px), where Py =

af ay. By using the following substitutions

Pi — lags|®
2 —mby (B.23)

it becomes apparent that (B.22) coincides with (3.26), i.e., R}y ., for the matrices R
defined in Theorems 6 and 7 in Section 3.4 are equal. The identity of the moments
follows from the identity of Ry ., u € Z7. Therefore, Equivalence 1 holds under
Assumptions (A) and (B).

The proof of Equivalence 1 reduces to show that Assumptions (A) and (B) are
satisfied if the probability density function f,(ai,as,...,ar) is an even function. We
prove first that 7 = 0 for v # 0 and u € Z*. This property is shown by induction.
We have

) {E{Z aioi} 1SvSL-1
Py = (B.24)
0 v>L

Since the argument of the expectation E{afa;i,} in (B.24) is an odd function
in a; while the probability density function fa(ai,as,...,ar) is an even func-
tion, then the function afa;iyfa(ai,as,...,ar) is an odd function in a; and
Y = [ataiivfalar,ag, ... az) =0 Vo > 1. Note that T( is proportional to the
identity matrix. For the 1nduct10n in s, we assume that pgs) = 0 for v # 0 and
s < u. Then, all diagonal elements of T(S for v # 0 and and s < u, are zero and
T§ is proportional to the identity matrix. ThlS implies that ,0 W = oHT u=lq, for

v € Z*, is an odd function in all variables that appear in it so that p{*) = 0 Vo # 0.
This completes the induction. Moreover, 7 is proportional to the identity matrix.
Therefore, Assumptions (A) and (B) are satisfied and Equivalence 1 is proven.

To prove Equivalence 2 we introduce the N x LK matrix S whose ele-
ments are i.id, zero mean with variance E{[sii|?} = + and sixth moment
such that limy_. E{N33;|®} < oo. Let 3 denote the k" column of S.
S, = (E(k DL+1, - - - skL) is the N x L “spreading” block of user k and S.x =
(81,...,8k-1,8k41,---Sk). T, T, and R are defined s1m11arly to T, T, and
R, respectlvely, substituting S with S. For K, N — oo with £ 5 — B, Lemma 3
yields

ST, 8m —25 0 (B.25)

An expansion of (Eu)kk along the lines of (B.13) yields

u—2

—R—u)kk = Zafgffikg’-kak(ﬁ‘

"Mk (B.26)
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Since EfTi'S_k 22 m&I.(0) it is straightforward to recognize that (B.26) and
(B.22) coincide asymptotically. Since (R“) and (R )uk, for u € Z* converge to the
same limit, then also the eigenvalue moments of R and R are equal. This implies
that the eigenvalue distribution of R converges to the same eigenvalue distribution
of R and Equivalence 2 is proven.

When the probability density function fs(ai,as,...,ar) is not even the recursion
provided by (B.16) and (B.20) does not simplify to the recursion in (B.21) and
a more complex algorithm is required. The following algorithm obtained from the
general recursion (B.16) and (B.20) determines R}, . and mp for channels where
the limiting probability density function is not even.

Algorithm 5

INITIALIZATION: Let ¢ =
L_

Sz e, v=1,...L-1

RECURSION:

o Assume o) =0 fors=1,...,0—1and ({ —1)(L—1) <v < (L —1).

(z1,29,...20)T, Ty = IL(s), and p(x) =

e Define
-2
PO (21, 9, ..., 7L) = Za:HTgmpffs‘l + 25T 0<v<{L-1)
s=0
(B.27)
and write them as polynomials in z1,Zq,...,2L.

e Replace all monomials [[r,xif by the mized moments mG-in)
E{da? ... a%} in pq(,e) (z1,To,...,2L), v =1,...,8(L—1) and assign the result
to pO).

e Build the matrices

ﬁﬁ ﬁ£+1 ﬁf}+L~1
Pt Py T Pirres
To=08| - : (B.28)
Po—ryz - o Phn
| ﬁf}—L-{-l ﬁﬁ—m—z ﬁﬁ—l ﬁﬁ

by using the relation 2 = (PO)*.

—v

o Assign pi¥(ay) to R}, o and 29 to mb,.

A e







C Proofs of Chapter 4

C.1 Proof of Theorem 8

In this section we use the following definition.

Definition 3 A p X p principal submatriz of an n x n matrizc A, withp < n s a
p X p submatriz of A obtained by selecting rows and columns of A with the same
indices.

The following lemmas are useful in the proof of Theorem 8.

Lemma 4 Let Hy be an N x K random matric and Ry = ’Hﬁ’HN and Ty =
H N'Hg. If the spectral radius of H is upper bounded with probability 1 as N, K — oo
with —Il\ﬁ, — (3, then also the spectral radius of any principal submatriz extracted from
RY and T, for any finite m, is upper bounded with probability 1.

Proof: Let us consider any realization of the random matrix Hy and any q X ¢
principal submatrix of Ry or T with ¢ = ¢(N) and & — v > 0 for N — co. Since
for N — oo the spectral radius of the random matrix Hy, is finite with probability
one, for N sufficiently large any realization of Hy, and thus of Ry and Ty (with
m finite) has upper bounded spectral radius, except possibly in a set of matrices
of probability zero. Applying Theorem 16 for interlacing eigenvalues of bordered
matrices (see Section E.1) the spectral radius of any ¢ x ¢ principal submatrix of
RY or T is not greater than the spectral radius of Ry or Ty, respectively.
Therefore, the spectral radius of any ¢ x ¢ principal submatrix of Ry or Ty is
upper bounded as N — o0, except possibly in a set of probability zero.

Lemma 5 Let XV be an N x N semi-definite positive random matriz and let ¢ =
q(N) be a positive integer function of the positive integer N, i.e., g : Zt* — Z1 with
v,

—N—)—>c2>0asN—>oo. Assume

(a) Any diagonal element Y with n = n(N) and limy %VI—V—) = z, of the matriz

XM converges almost surely to the deterministic limiting value xX°.

(b) Vn € Z* and Ve > 0, Pr{|x1(f,\p - ngo)[ > e} <o(m) withe> 1.
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(c) The mnormalized trace of the matric X converges to a ﬁm’te value
limpy—co ﬁtrX(N) = ¢ < +o0.

(d) g =q(N) wz’thﬂjy—)—»02>0asN—+oo.

Then, the trace of any q X q principal submatriz of X ™) normalized by q converges
to a finite deterministic limiting value with probability 1.

Proof: The convergence of the trace any ¢ X ¢ principal submatrix of X®) to a
finite deterministic value is a straightforward consequence of assumption (c¢) and the
properties of absolutely convergent series. In fact, the normalized trace of X (M for
N — o is a series of non negative elements absolutely convergent thanks to the
fact that X@) is semi-definite positive and to assumption (c). The normalized trace
of a principal submatrix of X®™) is an absolutely convergent series obtained from
the normalized trace of X'™ considering only a subset of terms. The property of
absolutely convergent series guarantees the convergence of the normalized trace of
any principal submatrix of X (V)

The following considerations demonstrate the convergence with probability 1.
Without loss of generality let us consider the principal submatrix including rows
and columns with indices between n(N) and n'(N) = n(N) + ¢(N) — 1. Then,
Ve >0

n'(N) n'(N)
Prol S0 O — x| <aNep 2Prd S iy —x°) < g(V)e
k=n(N) k=n(N)
n'(N) y
>Prd () { - x5l <}
k=n(N)
n'(N)
=1-Pr U {|X(N)—Xm|>e}
k=n(N)
n'(N)
N
=3 P - x> ¢}

k=n(N)

>1— Pr{|x\™ — 3| >
>1—gq(n) . r{lxik) — x| > €}
(C.1)

Bound (C.1) and assumption (b) yield the convergence of the normalized trace of
any principal submatrix of X (V) with probability 1.
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Lemma 6 Let the assumptions of Theorem 8 or Theorem 9 be satisfied. Then,

(W+1)K

(N) |2 (N)
sup | max Z E{|h;; I} + Z E{|h;; < 400 (C.2)
j=1,.,(W+1)N Jj=1

and the Lindeberg condition is satisfied, i.e. for every 7 > 0

(W+1)K

. (N) 29 (N (N)
. l\llgvnw 1_ ma:)‘s‘,N Z E{lhij ‘ {Ih(N)|>T} } + Z E{lh {|h§;")|>7}(hij )}
| wWanN L 9=t

| (C.3)

where 14(-) is the indicator function on the set A (see Glossary).

Proof: We consider first the assumptions of Theorem 9. The inequality (C.2) follows
from assumptions (a) and (c¢) of Theorem 9. In fact,

‘ (WH+1)K
‘: (N)
‘ sup _max > E{lh |}+ZE{lh
: i=L...,(W+1)N J=1
(W+1)K

()2 ()2
<swp _max > NE{lsg] }+ZA E{|si; 1*}
j=1,...,(W+1)N Jj=1

< s%p [@—El—)]{— + W] < +o00. (C.4)

In order to verify Lindeberg condition (C.3), we first show that

et (N2 (N)
lim max > E{lh; |1{,h<N>I>}(h )} =0.

N—oooi=1 -
J=1

Let us observe that Vi, j

N)|2q a2 ' (N2 (N)
B P Loy WS = el [ |, 1557FAFGE)

Iakklz}
|a.,|z+5 N N
< oo |55 P dF (s (C5)

where F' (sgv)) is the distribution function of sgv) and § € R*. From the conditions of
Theorem 8 and Theorem 9 E{lS(N)| } < %% with c finite constant. Then, for § = 4

E{Ihg.v)[21{lh£;v>l>7}(h§N))} < —“&J]—\l,-af Let m = maxj_1. g |a;;|®. Since Fjap()) has

R
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upper bounded support m is also bounded and max;; E{lhg-v)|21 (hg-v) )} <

™
(RN >}

—ins- Lherefore,

(W+1)K

: (N)2
Am max Zl E{lAd; 1L (a0 )5r }( <)
]=

mc
N>oo TAN?2

=0. (C.6)
The proof that

- (V)
I\}l—rflooi:l..l.r(lv%/)-lc—l)KZE{'hﬂ i 1{Ih(N)I>T}(h )} =0

follows the same lines as the proof of (C.6). Thus, we conclude that Lindeberg
condition (C.3) is satisfied.

The hypotheses of Theorem 9 reduce to the hypotheses of Theorem 8 for A; = 1.

This concludes the proof of Lemma 6.

Let us consider now a matrix Sy w or a matrix My w with A = I with empirical
distribution FI(,N) (p) of the time delays. In Figure C.1 we illustrate the structure
of the matrix Hy w. The elements of the matrix Hyw in the shaded region are
i.i.d. with zero mean and variance % Outside the shaded region the elements of
the matrix Hyw are zero. Since the time delays are random, the shaded region
is also random for finite N and can be described by the empirical distribution of
the time delays F( )(p). In the following lemma we show that the random shaded
region converges to a deterministic region as N — oco. This deterministic region is
illustrated in Figure 4.2. The convergence of the shaded region to a determlmstlc
region is a consequence of the convergence of the empirical distribution F )( ) to
a limit distribution function Fp(p). The following lemma describes the limit region
by the functions r(z), ¢(y), and I(y) shown in Figure 4.2. The shaded region is

described in the following lemma by the function v(z,y) and it is the region where
E{hi;|*} = %

Lemma 7 Let the definitions of Theorem 8 hold. Furthermore, let the conditions of
Theorem 8 be satisfied.

(a) For each N, let vy : [0, W] x [0, (W +1)B] — R be the variance of the elements
of the matriz Sy w normalized by %, i.e.

on(z,y) = NE{|hy[*}

where z € 0,W],y e 0,(W+1)B,i=1,.... WN andj=1,...(W+1)N
satisfy
j+1

N

. 1 .
%§x<Z; and %§y<
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B ' !
| Ne() = N = NIFED) (3 u
<
Vo | M) = N G16)
Ne(y) = Npx + 1= N (FE™™ (- [4]) +1)
7LV T ST SO SN SOOI RO
2N (- 3])+2)
1 (FE) " w8 - W)
3N

N

Figure C.1: Graphical representation of the matrix Hyw or, equivalently, of the
function v(z,y). The elements of the matrix Hyw in the shaded region are i.i.d.
with zero mean and variance ]iv Outside the shaded region the elements of the
matrix Hyw are zero. The function v(z,y) is equal to 1 in the shaded region and
zero elsewhere. The width of the shaded region is constant and equal to K. The
height of the shaded region is constant and equal to N in B and C, whereas it varies

on A and D.




162 Chapter C - Proofs of Chapter 4

Then, vy(x,y) converges to a limited bounded function

o(ery) = {1, 0, W] x [r(2), (z) + ),

0, elsewhere

with
r(z) = B[Fp(z — |z]) + |z]] and 0<z<W.
Equivalently,
_ )1, [max(0,c(y) - 1), min(W, c(y))] x [0, B(W + 1)],
vi@y) = 0, elsewhere
with

wsllgfesm (5-[2])] e osvsswen

(b) Denote by by w(k) and Byw(n) the k™ column and the n™ row of Hyw, re-
spectively. If L(x) is the number of nonzero elements of the vector x, then

o SOl _ o
Jim EOm ) _ ) (©3)

where y is defined by k = k(N) and limy_.oo t =y and

F?(@ 0<y<p
Hy)=<1 B<y<pW
1—F;1<%—W) BW <y < f(W +1)

Proof: From the definition of the matrix H™(£) and assumption (a) of Theorem 8
the variance of the element hz(-j-v) (0) of the matrix H™(£) is equal to & for p§-N)N +
1 <31 <L pg.N)N +1land 1 < j < K and it is zero elsewhere. Let us consider the
matrix Hyw described in (4.8). The matrices HM(©2), HM(3),..., HM (W) are
submatrices of My w completely contained in Hy,w. Thus the normalized variance
v(z,y) can be completely derived from the variance of the elements of H M (p),
¢ = 2,...,W by normalizing the variance by %, and by appropriate shifting and
normalization of the indices describing the interval

PN +1<i < VN +1, 1<j<K
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Then, v(z,y) = 1 for

(N) Ny () Ny
p(yN—l)modK+1+[ K 1J 1<z< p(yN—l)modK+1+ [‘E‘ - 1J

and 8 < y < BW. Note that the term ‘_%ﬂ — 1_[ is due to the down shift of the
matrix H(£) by £ — 2 blocks in Hyw. Let us focus now on the matrix H®™(1).
Only the block H fiN)(l) appears in Hy,w. Therefore, the variance of the matrix
Hyw for 0 < j < K is equal to % for1 <i< pg-N)N+ N. Then, v(z,y) = 1 for
0<z< p(L;Vg,J and 0 < y < (. Finally, let us consider the matrix H (N )(W+ 1). Only
the block H™M (W +1) of the matrix H®™) (W +1) appears in My w. Using the same
arguments as for the matrices H™ (¢), £ =1,..., W we obtain that v(z,y) = 1 for

N Ny K(W +1) KW _ _KW+1)
pgyl\)/-l)modK+1+‘:_K—_1 -1<z< ———+ and —j-\r—— <y< — N

By using the definition R(yN, K) = (yN—1) mod K +1 the previous results can be
rewritten in the following way. The function v(z,y) = 1 for

1 Ny 1 . (N) Ny 1 KW+1)
(maX(N,pN(yNK)HK —1J—1+N)stmm<W,pN(yNK)+L7—1J ﬂ NSyS—N— .

(C.9)

The maximum and the minimum in (C.9) takes into account the upper and down
“truncation” of the matrix Hy w, respectively. v(z,y) = 0 elsewhere. Therefore, for
N — oo v(z,y) = 1 in the region

(055 (3131 3] ) so5mm s 07 (3-13) )

and 0 < y < B(W + 1). By using the definition c(y) = Fp' (% - L%J) + 4],
v(z,y) = 1 in the region

[max (0, ¢(y) — 1) <z < min (c(y), (W + 1)B)] x [0, B(W +1)]. (C.10)

Note that v(z,y) corresponds to the shaded region in Figure 4.2. The set (C.10)
describes the shaded region in Figure 4.2 by defining the subinterval in [0, W] where
v(z,y) = 1 for each y € [0, (W + 1)]. We can find an equivalent representation
of the same set by defining the subinterval of y € [0, (W + 1)8] where v(z,y) =1
for each z € [0, W]. This equivalent representation can be easily derived con81der1ng
Figure C.1. The shaded region is bounded on the left by the function N [F ( N-—
|zN]) + |zN]] and on the right by the function NS[Fp FM(zN - |zN )+ |zN| +1].
Thus, the region where v(z,y) = 1 can also be written as

(% <z< w) N (5]\‘,— (F (@ +la)+1e)) <y < 2 (F,EN’<x+LxJ>+LxJ+1)) -
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Therefore, for N — oo, v(z,y) = 1 in the region
O<z<W)[\(r(z) <y <r(z)+P)

with r(z) = 8 (Fp(z + |z]) + |z]).

Let us consider the row vector 8y, (n). Because of the structure of Hy w there
are K mnonzero elements in Oy w(n) for any index n'. This can easily be seen in
Figure C.1. The “width” of the shaded region is equal to K in each row. Therefore,

. L(@Onw(n))
AT

-6

Given the vector hiyw(k), with K = k(N), the number of nonzero elements in
B (k) is NpM = NFM 71 (k) = NP (%N) when 1< k<K IfK+1<
k < WK, fiyw(k) has N nonzero elements. Finally, f WK +1 < k < (W + 1)K,

LFinw(k) =N = Np&e

_N_ N1 (k- KW
=N - NF§ ( = )
_ _pma (k-
(i w))
Then,
F;l(%) 0<y<p
A
Nhl‘ioﬁ( N],\va(k)) ) B<y<pW

1-F7' (§=W) AW <y < AW +1)
k(N)

Proof of Theorem 8: In this proof we adopt the following notation.
Fork=1,...,(W+1)Kandn=1,...,WN we define:

o fixw(k), the k% column of Hy w;
e 3y w(n), the n® row of Hyw;

o Hy wn~k, the WN x (W +1)K — 1 matrix obtained from Hy 1 by suppressing
the k' column;

From a physical point of view this reflects the assumption that K users are active at the same
time and transmit infinite streams of data.
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® Hywen, the WN —1 x (W +1)K matrix obtained from Hy,w by suppressing
the n'* row;

__ H .
o Rywen = Hy wen N WEn;

H
* Tywek = HywkHnw ok

Theorem 8 is proven by induction. The first step proves that (Tyw)nn — B
and (Ryw)ek = U(y), as N — oo, with y = £ and I(y) defined in (8). In the
{™ step we assume the almost sure convergence of (T3 w)mn and (R w)rk for
1 <m < {¢—1 and we prove that (7" gv,w)nn and (’Rfv’w)kk converge almost surely
to the deterministic value in (4.11) and (4.12) respectively.

First step: Let us consider (Ryw)i, = Byw(K)finw(k) and (Tyw)s, =
On,w(n)3Y (), the diagonal elements of Ryw and T Nw- We distinguish the
following two cases: (i) The number of nonzero elements in A% y, (k) or 8y w(n) goes
to infinity as N — oo; (ii) The number of nonzero elements in A% y (k) or Sy w(n)
keeps finite as N — oo.

In the first case we can apply the strong law of large numbers (see e.g. [110]) to
prove the almost sure convergence of (Rl w )k and (77 Nw)nn- Since the variance

of the nonzero i.i.d elements is given by E{ |ﬁf]N)|2} = &, the strong law of large

numbers guarantees that (’R}V’W)kk and (7 w)an converge almost surely to the
L@n,w(n))
N

limiting value Riy(y) = limy—oo E(ﬁNI\?’ ®) and T} (z) = imy—eo , Where
L(z) is the number of nonzero elements in the vector x. From Lemma 7, Ty (z) = 3
for z € [0, W] and Riy (y) = l(y) for y € [0, B(W + 1)].

Let us consider case (ii). From Lemma 7, it is apparent that case (ii) is never
verified for any Oy w(n) (note that limy_ .o C(aNA‘;" &) — 3> 0 Vn). Then, we
focus on Ay w (k). Case (ii) corresponds to values of k such that I(y) = 0 with
y = limy_eo 1% Let & be the finite number of elements in Ay w (k) as N — oo, then
the following inequality holds?

NW 2
E{(Bf w(n)hyw(n))’} =E (Z |h,~k|2>

NW NW
% {z Ihml“} SBL S Pl
=1

i,5=1
17#]
!

= kE{[hu|*} + 26(x — D(E{R4l])? < =

<5 (€1

2We recall here that hEkN) denotes an element of the matrix . The element hg,iv) can be zero or
hEkN) = hgcv), where hgﬁl) are random i.i.d. with zero mean and variance 7.

— 4

e -




= OGS S
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where «' is a constant iridependent/\ of N. The last inequality derives from the
property of the sixth moment of hs and the Lyapunov inequality that yield
E{|h4|*} < 1’3—'; Applying the Bienaymé inequality (see Lemma 11 in Appendix
E) and the inequality (C.11), for any € > 0

E{(BNw (nAvw(n)*} &

< .
€2 €2N?2

Pr{|Ay w (n)finw (n)| > €} <

The fist inequality is due to Bienaymé inequality, the second inequality follows from
(C.11). Therefore, Y%, Pr{|A¥ \ (N)hixw(n)] > €} < S ¥ #z < +oo. This
bound is the condition of the Borel-Cantelli lemma (see Lemma 13 in Appendix E)
to prove that ﬁ.ﬁ,w(n)ﬁN,W(n) converges almost surely to 0. Therefore, by appealing
to the Borel-Cantelli lemma we obtain

(Rnw)nn = ﬁ'g,w(n)ﬁN,W(n) 0.

I™ step: We assume the almost sure convergence of (73 )nn and (R w e for
1 < m < £ -1 to the deterministic values R (y) and 7;7*(x), respectively. Let us
notice that the conditions of Theorem 5 for the matrix Hy w are satisfied. In fact,
Lemma 6 holds for matrix Hyw. It follows from Lemma 6 that the conditions of
Theorem 5 are also satisfied. Theorem 5 guarantees the almost sure convergence
of the eigenvalue distribution of Ty w and Ry w to a unique deterministic prob-
ability density function. This result, along with assumption (c), implies also the

almost sure convergence of all eigenvalue moments of Ry, and 7y, in particu-
tr’TﬁW . tr’R,NW
lar, of the m' moments® MZ, w = IMN oo —F7— and mg = limy_e ROW+1)"

Then, the assumptions of Lemma 5 are satisfied. Let (’R,NW);C1 kp A0d (TN )nyng
be the principal submatrices extracted from Ry, and Ty and including rows
and columns from k; to ky and from n, to ny, respectively. By appealing to Lemma 5
S{(RF w)kiiko } a0d tr{(T R 1y )nymy } converge almost surely to the deterministic

limits
1 w2 m . . n;
1\}1_{%0 —tr{(T N w)nma} = a T (z)dz with A}Enw N = G (C.12)
: Y2 kz
hm —tr{(’R,I\,W);Cl ko } = R (y)dy with hm ~ = Y (C.13)

Y1

Additionally, from Lemma 4 in this section the trace of any ¢ x ¢ principal submatrix
of Ry w and Ty y is upper bounded with probability 1. Given the almost sure

3Let us consider an N x N random matrix A with eigenvalues A1, Ag, ..., An and let assume that
the sequence of the empirical eigenvalue distribution of A converges almost surely to a limit
eigenvalue distribution function F()\). The m® eigenvalue moment of the matrix A is given by
m% = [ A™d F()). The almost sure convergence guarantees that m7 = limy_.o LtrA™,
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convergence to a deterministic limit of the trace of any principal submatrix ¢ X g
of R w, Thw for 1 <m < £~1 and the finite bound on its spectral radius, we
can consider the convergence of (R )i and (77 W )nn for £ > 2. Followmg the
same lines as in the proof of Theorem 6, Appendix B we can expand (’R,NW),m and
(T% w)k as follows:

H ~ ~H -1
(R =2 NEE 1) (T + COR O R 1)) o8
-1
L ) SR T o (B) R (€14

Il
<]

8

~H

,C(BN W(k‘)) ~H

(T =20 NG ) (R + L0 DG o) Byl

~L@xnlB) 5 Zawm RGBTl (C.15)

where fi = ,/mﬁmh and 3 = ,/—(———(mﬁ Thanks to the recursive ex-

pressions (C.14) and (C.15), the almost sure convergence of (RN,W)kk and
~H ~
(T fv,w)nn reduces to the almost sure convergence of fiy w (k)T w.xhivw (k) and

= ~H
Bnw (k) Ry wexOn w(k), respectively, to a deterministic value for s =1,...£— 1.

Again we distinguish between case (i) and case (ii). We consider first case (i).
ﬁNW(k) and 3N,W( ) have nonzero i.i.d. elements in the interval [k, k2] and [n1,ny +
K], with

k—1
' k=1
_gpm (L), |n=t
= KF$ (N [NJ N>+{ = JK. | (C.18)

Since Lemma 4 and Lemma 5 guarantee that for N sufficiently large the
empirical eigenvalue distribution of the principal submatrices (T3 n)k,:k, and
(R¥,w )nymy+ k-1 have upper bounded support and their normalized traces converge
to a deterministic limiting value with probability one, we can apply Lemma 2 in
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Chapter 2 to obtain

1>

9Ty p) 2 tim By (6T wshivw (B)

K=8N—o0
i 2y 5 T
K= ﬂN——»ooL:(ﬁ(k)NW Nw T )
r=k1
ws. 1 ein(WlEI+F (v-1516))
= —/ Ty (z)dz

H
{Y) Jimax(0,)+F5 (s-1%18)-1)

and

8 A : > ] zH
f(Ry,z) = K*hm Onw(n)Ry WhnaN,W(n)

n1+K

1 ﬁ(Fp(z—LmJ)+LwJ+1)

= R (y)dy
B JoFp@-1z))+z))

r(z)+6
RS, (y)d
ﬁ / (y)dy.

Therefore, defining by convention Ry, (y) = 1 for y € [0, (W +1)8], and Tp),(z) = 1
for z € [0, W],

lm

-1

Riy(y) = 1) Y 9(T* " 9)Riy (v)

s=0

£—1
ZfRZsl Ts()
s=0

Case (ii) can be verified for the vectors fiyw (k) but not for the vectors 3y w(n)

In fact, as already mentioned, limpy_.o ﬂ]\‘;"—(@ = # > 0 for any n. Thus, we
Lkn,w (k)
N

can focus on the case as limy_ oo = 0. This corresponds to values of k
such that {(y) = 0. Assumption (c) implies that the spectral radius of Ry, for N
sufficiently large is finite and bounded with probability one. Let Apax denote this
upper bound. Lemma 8 in Appendix E guarantees that for any vector Ay w (k) the
scalar Af y (k)R whn,w(k) is upper bounded by Amaxfify w (K)fin,w (k). Then, for
any realization of Ry ., and fiyw (k) there results

15w (B) Ry wifinw (B)| < Amasting w (k) w (). (C.19)
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Then, the convergence in probability 1 of (C.19) reduces to the almost sure conver-
gence of Yy, (k)An,w (k) to zero as N — oo for case (ii). This convergence has been
already shown in the proof of the first step of the strong induction for this theorem.
This concludes the proof of Theorem 8.

C.2 Proof of Theorem 9

Beside the notation introduced in Section C.1 for the proof of Theorem 8, in this

section we adopt the following notation.
Fork=1,...,(W—-1Kandn=1,...,WN we define:

e snw(k), the k** column of Sy w.
e onw(n), the n'* row of Sy w.
o a(k), the k'™ diagonal element of the matrix A.

The proof of Theorem 9 follows along the lines of the proof of Theorem 8 by strong
induction. The first step proves that (Tnw)en = BEp{A(0)} and (Ryw)im =5
Ay — %1B)Uy), as N — oo, with y = limk—pN—c0 £, I(y) defined in (4.25), and
A(p) defined in the statement of Theorem 9. In the £*" step we assume the almost
sure convergence of (T vy )nn and (R )k for 1 < m < £ —1 and we prove that
(T4 w)nn and (R )k converge almost surely to the deterministic values in (4.19)
and (4.20) respectively.

First step:  Let us consider (R )ik = B w (k)hnw (k) =
loe(k) |2 N w(k)snw (k). Given &,

a.s . E(gNW(k))
. 1 1.S. 2_—’_—.
Kzglr\fn—»oo(RN’W)kk = K=1ﬁllrvn—>oo lak—L’“—ElﬁJ,k—L%ﬁJl N

ST

where ay is the k*® element of the matrix A and L£(x) denotes the number of
nonzero elements in the vector  as in Theorem 8.

Let us focus on (T )en = Onw (n)BR 1 (n) = onw(n) AA ok 1 (n). onw(n)
has nonzero i.i.d. elements in the interval [n,n + K]. Since the diagonal elements of
AAT are a periodical repetition of the elements of the matrix AA | any principal
submatrix (AA7),..4x has the same trace as AA. Thanks to assumption (c) in
Theorem 9 the spectral radius of the submatrix (.AAH Jnyma+k 18 upper bounded.
Furthermore, using the assumption that the sequence of the empirical distribution
of |axx|?, where ayy are the diagonal elements of the matrix A, converges almost
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surely to the deterministic distribution Fx(A), the normalized trace of the matrix
A A converges to a deterministic limit value

K

. 1 . 1 a.s.
I}l_r& EtrAAH = I}I_I}IOOE kzﬂ |ark|* = Ep(A(p)). (C.20)

Appealing to Lemma 1 in Chapter 2 and following the same line as in the proof of
Lemma 2, we obtain

K—BN—oo

Step £: Following along the line of Theorem 8 and making use of the same lemmas

we can expand (’R,f\,’w)m and (Tﬁ/,w)kl&

(R )ik = (k)P (k) (T nwis + (k) Ponw (K)snw () s (k)
= ZZ:; (k) P ¥ (RYT v ks vw (B) (R )k (C.21)
(T w)nn = onw (W) A (Rywen + Aoty (n)oww(n)A) " Aol (n)
= § onw (N ARG L AT 08w () (T w ) (C.22)
=0 |

Then, the proof of almost sure convergence of (Rjyu )w and (T ?v,w)nn reduces
to the proof of the almost sure convergence of |a(k)|*sn,w (k)T § w,xShw (k) and
o nw (n) ARy wen A 0% 1 (n), respectively, to a deterministic value.

First let us focus on the case that the number of nonzero elements in ¢yw (k) and
o nw(n) is infinite as N — oo and use the same argument as in Theorem & to obtain

< A . s
9(Tyy,y) = lim |a(k)IQCN,W(k)TN,W,NkC%,W(k)

K=BN—oo
ka2
= lim |a,_ &= x-1 K| 3
v o et K 2 (TR
r=K1

ws A(y_ [g J ﬂ) /min(W,L%HF;(y_L%m)) S~

B max(0, 14 |+F5* (v-1%16) 1)

where k; and ky are defined in (C.16) and (C.17), respectively.
In order to prove that o nw(n) ARy werA ok 1 (n) converges almost surely to
a deterministic value and to determine that value, we introduce the functions F,(z)
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and A(p) corresponding to the limit distribution Fp(x) and the limit function A(p):

Fp(l‘), 0S-’E<1

a Fp(z — 1)+ 1, 1<zx<?2

F,(z) = Fp(z — |z]) + |=]

Fple —WH+D)+W—-1, W—-1<z<W
Xo)EXp—lp)), O0<p<W

In a similar way we also define ﬁp )(n) and A\ (n) corresponding to the empirical
distribution F, (n) and A (n) for a finite N. Then, usmg the definition of n; in
(C.18) and takmg into account the relation imy—gx—c0 3 = ﬁF (z), there results

f(Ry 5’3) hm OOU'N w(n )AR?\T,W,t:kA O'N,W(")

NBFM (ny+K

1 ~
= }31}1?_)00 ¥ Z: A (oM (k) (R 3w )
k=NBEF™ (n)

ﬁf'p(x)+ﬂ —
- /ﬂ N(F(2)Riy (2)d 2

ﬁp<m>

-/ ()R (BF(0))BAF )
lz+1]
=/ i Xp— o) )Ry (BFp(p — o)) + Blel)BdFp(p — o))

. /L " X0 = o)) Riy (BFr (o — Lol) + Blol)BdFr(o — Lol).  (C.23)

z+1]
Equation (C.23) holds since Fp(p — |p)) is differentiable in the intervals (z, {z +1])
and (|z + 1],z + 1) thanks to assumption (b). Therefore, stating by convention
RY, (y) =1 for y € [0, (W +1)8], and T (z) = 1 for = € [0, W],

Ry(y) = lim kak—gA(y—H 8) (T DR )

K=BN—occ

Th) = lim (Thy ifnf“x):rw()

K=8N—-ooo

In the case that the number of the nonzero elements in ¢yw (k) keeps finite as
N — o0, we use the same argument as in the proof of Theorem 8 to prove that

3 2 .H ] a.8.
N=1ﬁ11¥1_%oo|04(k)| Svw (B)T yw,kSvw (k) = 0.

This concludes the proof of Theorem 9.
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C.3 Proof of Theorem 10

Let us consider an r-block-wise circulant matrix of order N, C,(CN) defined in Theorem
10, and let us denote with F'{ the unitary Fourier transform matrix of dimensions
N xN

1 1 1
7 1 1 wl w2 .. wN—l
NTUN : . ;
1 W= 2N-1) L (N-1)(N-1)

with w = e’¥. We can extend the well known result on the diagonalization of
circulant matrices® to decompose the r-block-wise circulant matrix C’,(CN) as

c™M = (Fy @ I,)AFy

where A is an rN x N block diagonal matrix with £ block

T.

a1l &R 2m
57'(:3) S - Z e]2ﬂ'T—c(:Z+s)E* (.7 (x + S)> ,
‘ §=—00 T

and (F'y ® I,) is a unitary matrix.
The matrix S can then be rewritten as

S = (Fn® I.)(A131, A48, ..., Ak3k),

with 5, = F'¥ s;. Assuming the elements of the spreading sequence sy i.i.d. Gaussian
distributed, 8, is also a vector with i.i.d. Gaussian distributed elements having the
same distribution as the elements of s;. This assumption will be removed later on
in the proof.

In the following we focus on the asymptotic spectral analysis of the matrix R =
AYSYSA = H'H with H = (A31, Ay, ..., AxSk)A. Considering that the
absolute value of &,(z) is upper bounded thanks to the assumption of Theorem 10
that Z(j2n f) has finite support and is bounded in absolute value and applying the
same arguments as in Lemma, 6, the matrix H satisfies the conditions of Theorem 5.

4A circulant matrix C™)(f(x)) can be decomposed as CcN(f(z)) = FyDF¥, with D =
diag(f(0), f()s--» F(PRH))-
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Then, with probability one the eigenvalue distribution of the matrix R converges to
a deterministic distribution. Additionally, its finite moments are also finite thanks
to assumption (d) of Theorem 10. v

As the proofs of Theorem 8 and Theorem 9, the proof of Theorem 10 is based on
strong induction. In the first step we prove the following facts:

1. The diagonal elements of the matrix R converge almost surely, as N — oo, to
deterministic values R(|az|?, 7x), conditionally on (|ak|?, 7k).

2. (T)nm, the r x 7 block diagonal elements of the matrix T = HH H, converge
almost surely to deterministic blocks T'(x), with z = limy_, E(NM
Then, in the recursion step, we use the following induction assumptions:

1. For s = 1,...,£ — 1, the diagonal elements of the matrix R’, converge, as
N — o0, to deterministic values R (Jax|?, 7¢), conditionally on (|axk|?, Tx),

2. Fors=1,...,£-1, (Ts)nn, the r x r block diagonal elements of the matrix T
converge almost surely to deterministic blocks T?(z), with z = limy_,« Q(%l

We prove:

1. The diagonal elements of the matrix _Re, converge, as N — o0, to deterministic
values R%(|axk|?, 7x), conditionally on (lakk)?, 7x)-

2. The blocks (_’fe),m, converge almost surely to deterministic blocks —Te(x).

Throughoﬁt this proof we adopt the following notation. For £ = 1,..., K and
n=1,...,N

e h, is the k™ column of the matrix H;;
e 3, is the n'® block row of H of dimension r x K;

H., is the matrix obtained from H by suppressing On;

e H ., is the matrix obtained from H by suppressing hy.

Rl’—‘n = —ﬁ-fnﬁ—':n ;

a'—n = (gnla_s-n% o ,gnK)'
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e Vyy,fort=1,...,randn=1,...,N,is the K x K diagonal matrix with the
k' element equal to ng__(t—lzTc (”ﬁl) Note that ,V, A coincides with the

(t + (n — 1)r)*™® row of the matrix H.

o (T"), is the n' diagonal block of T* of dimension 7 x .

First step: Consider Ry, = Efﬁk = |aw|*3 A,CH AS;. Thanks to the assumption
that Z(j2f) is bounded in absolute value with finite support also & (z) is upper
bounded. Because of the property of circulant matrices the limit eigenvalues of the
matrix AF A, are given by >;_, |£Tk_(t—:2Tc (z)|2. Therefore, the limit eigenvalue

distribution of the matrix A A has upper bounded support. Then, we can apply
Lemma 1 in Chapter 2, and following the same lines as in the proof of Lemma 2 we
prove that Ry, converges almost surely to the deterministic value

ROl own=towtto = o lm R

L lakk|®, ~H—
o K:,IHIII\?—»oo tr(Ak Ak)

N
. akkP
= Kz};}&m' N ;mf Jee(Br)e

Y /0 " AH(@)A, (0)ds. (C.24)

Let us now consider the block matrix T',,, whose (u,v) element (T',,)y, is given by

(Tnn)uv = —U_nAvn,quvAH—G_f

Thanks to assumption (c) of Theorem 10 on the support of Fjazr(),7) and the
fact that & (z) is bounded in absolute value, the spectral radius of the matrix
AVn,qu,vAH is upper bounded. Thus, we can apply Lemma 1 in Chapter 2 and
proceed as in the proof of Lemma 2 to obtain

lim (Tpp)uw =0  lim Tl(;trAVn,anH,vAH

B K n—1 n—1
. 2 * ———
:K;%Iloo?{_;mkl fm—ﬁ?Tc( N )%—1%112( N )

=5 [ i @ (@AF L), (©.25)
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with
& ()
A )= ff_%(fv)
£ _ oo (a)
Therefore,

T(z) = K_}gigl T,

gg/dAA@AmeF@J>

with 0 < z < 1. This concludes the proof of the first step.
Step £: Following the same approach as in the proof of Theorem 6, Appendix B,
we can expand (ﬁe) xk and (Te)nn as follows:

(R )i = ZhH T (R )k (C.26)
Za B (T . (C.27)
s=0

£ — IR T
The almost sure convergence of (R )ik and (Te),m to a deterministic limit reduces
—————————— H
to the almost sure convergence of h, TZ hk and 0 R,zns 16 ,fors=0,...,0-1,
to a deterministic value. Using again the same approach as in the proof of Theorem
8 we obtain
—<H

: <\ D — : 1 DS H p7H
Nzlﬁl};.n_’oo(én)uR!:n(an )v - K=16111\}1——>oo NtrAvnuRt:nvnvA

K
- 1 n — 1 * mn— 1 —S
= il N Z laxk[ 6, —sar, ( N ) &r-sar, ( N ) (B ik

=4 / A g (2)€_emig (2 YR\ 7YdF(\ 7). (C.28)

We denote with f (—Rs, z) the r X r matrix

f(R’ z) = Py 1,3}&00‘5 iy 0

=£ / MACATR(N 1A PN, 7). (C.29)

n
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Furthermore, we define

g (T87 )‘7 T) = N=1ﬁiIr(I'l—>oo _ﬁf—fikﬁk

. 1 oy
= lim Ntr (lakk|2AfTNkAk)

N=FGK—o0
= lim '-“FEEXN:(A)HT (A)
N=ﬁK—->OO N nn nn nn

n=1

=) /0 AH ()T ()AL (2)d o

where v\ is the absolute value of the received amplitude of user k£ and 7 its time
delay. From (C.26)

and from (C.27)

Let us remove the assumption that the elements of the vectors s, are Gaussian. For
this wider class of spreading sequences the elements of the vector 3 = F,Iésk are
not i.i.d. and Lemma 1 in Section 2.4 cannot be applied. In the proof of Theorem
6 in [13] it is shown that Lemma 1 can be extended to any vector xy = Uv where
U is a unitary matrix and v is a vector with elements satisfying assumption (a)
of Theorem 10. By appealing to this result the extension of Theorem 10 to any
distribution of the spreading elements is straightforward.

C.4 Derivation of Algorithm 2

For a signal with bandwidth B < '2ch’

1 —_ . _i2rTz 1 1
A (x) = i—:(ﬂwx/Tc)e e, —5 <z< 5

- o (r=1)
with e = (1,e9277,...e/2™ = ).
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Specializing the recursive equation of Theorem 10 to this case the recursion can
be drastically simplified as

£-1
B => g A7) . B\ 1)
s=0
(C.30)
y =L r—s—1 1 1
T (z) = TN DT ——<z<=
@=2 SR AT @ 5 <3<3
55 ﬁ —_ 2 -3 H 1 ]_
f(R ,z)= ﬁ|:(]27r:c/Tc)| AR (A, 7)ee”d Fiap () T) ~3 <z< 5
A [ s
9T AT =7 [ (Bl TP T @)e da
Tc -1/2

with T'(z) = I and R°(\,7) = L.

Let us observe that g(Ts,)\, 7) is independent of 7 for any £. Considering the
recursion on ~Re()\, 7) and the initializing value EO()\, T) = 1, it is apparent that also
—RZ(A, 7) is independent of 7.

Additionally, (ee®)™ = r™~lee” where r € Z* is the dimension of the vector®
e. Then, it is straightforward to verify by recursion that the matrix Ts(x), s =
1,2,...,£ —1, is proportional to the matrix eefl and we can express it as Ts'(a;) =
_Ts(x)eeH , s =1,2,.... The previous considerations yield

-1
B0 =3 9T NEW

-1

T (z)ee = Zf(_R—e_sal,x)Ts(x)eeH + R 0T (2) (C.31)
f(R,z) = f(R,z)ee” (C.32)
FR',2) = 1= (2n/ TP [ 3B () Fiar () L<o<t

2\ 1/2 -
o(T*,3) = 7 / I=2(j2rz/T) P T (2)d 2
c J-1/2

with _Cl_“o(:v) = I and _RO()\) = 1.

5In system model (4.31) r is the sampling rate normalized by 7+
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Substituting (C.32) for f(R’,z) in (C.31) we obtain

-1
T (z)ee” = Zf(ﬁg_s_l,a:)T (z)eeee + f( _l,sc)TO(w)eeH
-1
=rS f®R T )T (2)ee” + F(R,2)T (zx)ee (C.33)

Recalling that Tﬂ(a:) = I and stating by convention TO(:E) = 1, we obtain from
(C.33) the scalar 7_"2(9:)

-1
=r [ Y FE® )T (2) + - f( >ir‘°<x))
-1
=S FE 0T (2) (C.34)

{1

where the sum in (C.34) includes the term f(R ,x))TO(x) for s = 0.

The following equations summarize the final recursion.

£-1

B =Y o N0

s=0
-1
=rY fE 2T ()
s=0

f(R ) = gy EG2me/ TP [ VR NdFap() =

N
IA
8
IN
N =

2 /2
r — ==
g(T*,\) = (T-) )\/1/2 |2(j2rz/T.)|°T (z)dz

with T°(z) = L and B'(\) = 1,

Algorithm 2 is derived from the previous set of equations by using the following
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substitutions®:
A — z
z |2
RN — ps(2)
T (z) — )
1 —_—. T 2—3
= [EU2r)| T'() - us(0)
AR (N) ~ vs(2)
1/2 1
/~1/2 T2 ::(jZWE) T (z)dz — U,
/ AR’ (A\)d Flap()\) — V..

C.5 Proof of Corollary 5

Corollary 5 is derived by specializing Theorem 10 to a unitafy Fourier transform
=(j2r f) that is real and has bandwidth B with %; <B< -:,—1,; The unitary Fourier
transform in the discrete time domain is given by

5 ( ) e‘i?w% E(] ) + e—]Zﬂ'T"“(j 27"(’19i+1)) % <z< 0
\ZT) = . — m(x K
T, E(ﬂ%—c) +e?E(TEY) 0<z <y,

Let Q(z,7) = A, (z)AH (z) with r = 2. Q(z,7) can be decomposed as
Q(z,7) = Q(2) + Q(z,7)
with Q(z) defined in (4.40) and

— o cos(2nT)  —je I sin(2nT)
Q(z,7) = 2(x) ( jei™® sin(27T) — cos(277) (C.35)
where
3 1 (]ZWI)E( - 27 ( a:+1)) 1 <z<0
(_I(.’E) = ? 211;::: = 27r(x 1) 2- 1 (036)
¢ |EUFHEGT—) 0<z<3.

6Note that the substitution of A with z is redundant. It is used to obtain polynomials in the
commonly used variable z.
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Equations (4.36) and (4.37) can be rewritten as

F(®,2) = HQ() / B O, 7)dF arz(A 1)

+8 [ XEO\ @, )dFap 2 (7). i <ax

g(T° N\ 1) = )\/§ tr(T Q(z))dz + )\/_5 tr(T° Q(z, 7))dz. (C.38)

1
2

N=

If condition (1) of Corollary 2 is verified, it can be shown that g(T’°, \,7) and
R’(\,7), s € Z, are independent of 7 and Te(:c) is a matrix of the form

T(z) = ( tei(z)  toa(z)e™™ ) . (C.39)

te,g(x)ej” tg,l(x)

These properties can be proven by strong inilgction. It is straightforward to verify
that they are satisfied for s = 0. In fact, R (A\,7) = 1 is independent of 7 and

To(x) = I is of the form (C.39) with ¢o1(z) = 1 and toa(z) = 0. Since tr(Q(z, 7)) =
0, g(f’o, A7) =X [% tr(Q(z))dz and hence g(T’O, A, 7) is independent of 7.
2

The induction step is proven using the following induction assumptions:
e B°()\,7) and g(T", )\, 7) are independent of 7;
e For s=0,1,...£—1, T (z) is of the form (C.39).

We have tr(T"Q(z, 7)) = 0, for s = 0,1,...,£—1, thanks to the form (C.39) of T,
Furthermore, g(Ts, A, 7) is independent of 7. Therefore, all quantities that appear in
the right hand side of (4.34) are independent of 7 and R_e()\, 7) is also independent of

7. In the following we will shortly write }_%e(/\). Observing that [ Q(z,7)dFr(r) =0
thanks to the assumption (1) of Corollary 5 on the probability density function
fr(r), (C.37) can be rewritten as

F(R 2) = BQ(z) / B (\)dFiap ()
= f(R)Q(z) (C.40)

with f(R) =3[ AR’ (\)dF|ap2()). Substituting (C.40) in (4.35) yields

<z< (C.41)

N
—~
8
g
Il
~
~~
=)
p
py
8
g
N
/_\UJ
8
hoad
|
[ R
l\’).l —
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Fors=1,2,...,£—1,

(O T i S Fea@ ) L
q1

QDT (@)= 14, @)tna(@) + @@ @™ D(2)fr(2) + 2 @sa(2) 3 S

'“xon—n

z <
(C42)
From (C.42) it is apparent that Q(z)T (z) is of the form (C.39). Since T (z) is a
linear combination of matrices of the form (C.39), T (z) is also a matrix of the form
(C.39).

Let us summarize the results in the following set of recursive equations:

-1
=Y T TNR W) (C.43)
s=0
e _
)= f(R)QET (2) | (C.44)
5=0
. s 1 1
1
o(T°,)) = A / F (T (2)Q(x))d z (C.46)
~32
with T'(z) = I, and B (\) =
Then, applying again Theorem 10 we obtain that
. ¢ a.s. =t
e ) T
This concludes the derivation of Corollary 5 from Theorem 10.
C.6 Derivation of Algorithm 3
The eigenvalues of the matrix Q(z) in (4.40) are
2, 1,
== \UT° 2=%=73
2 [EXjE(x+1), —-1<z<0
x c -7 C.47
Bl = T2{E(j§—’;(—1 0<z<3 (©40

Let us express the eigenvalue decomposition of the Hermitian matrix Q(z) as Q(z) =
U D(z)U* where U is a unitary matrix and D(z) a diagonal matrix with elements
di(z) and da(x). Considering (C.41) and the fact that To(a:) = I, it is apparent that
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o214 . C g .
T (z) is a polynomial in Q(z). Therefore, it has the same eigenvectors as Q(z) and

can be decomposed as
T (z) = UF,(2)UY (C.48)

where F(z) is a diagonal matrix. Then, substituting Q(z) = UD(z)U" in (C.41)
yields

T (z)=) fRUDE)UT (). (C.49)
s=0
By substituting (C.48) in (C.49) we obtain

£-1
UFy(z)U" =) f(R)UD(z)F(z)U"

=U <i f»(ﬁs)D(x)Fs(x)> UX. (C.50)
Equation (C.50) yields
Fys) =Y f(®)D@)Fx). (C:51)

From (C.51) it is apparent that Fy(z) is a polynomial of degree £ in D(z). Using
the identity of the traces of similar matrices, we obtain

(T (2)Q(x)) = tr(Fs(z) D(z))-

Therefore, (C.46) can be rewritten as

1

(T2 \) = A / ? 4e(F,(x)D(x))ds (C.52)

[SILNY 1

~ ) / (F)udi + (Fy)sds)dz (C.53)

1
2

where (F*)11d; and (F*)22d, are polynomials in d; and d, with identical coefficients.
Denoting by u,(y) the polynomial in a generic variable y with these coefficients, we
can rewrite (C.53) as

1

g(TS’ >‘) = )‘/—2 [us(dl(x)) + us(dz(x))] dz.

=
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183
Let us(y) = >-;_ @ry"- Then,
=\ Zar l(dl(m + (do())"dz.
r=0 ~3
=A Z o, &,
r=0
with
%
&= / (d] + d}) dz
_1
2
2 T 1 B '2’”_ 2r
() [ () e
and

ie. g(T°,\) can be computed by substituting the integral [us(di) + us(ds)dz

with the quantity obtained by replacing the monomials y,y?, ..

81,82, <.

. &, respectively.

Using (C.54) in (C.43) and replacing (C.44) by (C.51

Corollary 5 can be rewritten as

-1
= Z)\ﬁs()\

fR

Q(Tsv A) =

with U, defined in (C.54), Fo(z)

.y® in u,(y) by

) the recursive equations of

We—s—1 (C.56)
Zﬂ#31 (2)F.(2) (C.57)
y / AR () dFap(Y) (C.58)
AU, (C.59)
=I,and R'()) =

Let us observe that the computation of U, requires to determine only u,(y) and not

the diagonal matrix D(z)

F,(x). We can easily recognize that u,(y) can be derived

by replacing Fs(z) by us(y) and D(z) by y in (C.57) to obtain

-1
=S FR T N yny)

§=0
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and by computing u,(y) = yue(y). The scalar U, is obtained by writing u,(y) as
a polynomials in y and by replacing all monomials y,%?,...,4° with £,&,,...,&,
respectively.

For the computation of _R_e()\), we use the following substitutions":

A — z
B |
AR (N) — ' vs(2).

1
)
"]
=
X

Then, (C.56) is rewritten as

-1
pl(z) = ZZUZ—S—IPS(Z)
s=0 '
¢
and V, = £ (? ) can be obtained from ve(2) = zpe(z) by writing v,(2) as a
polynomial in z and by replacing the monomials 2!, 2% ... ,2* by the moments
M g2 Migps - - ’mfAI% respectively.

We conclude the derivation of Algorithm 3 by summarizing the previous consid-
erations and substitutions:

£-1
pl(z) - Z ZUé—s—lps(z)

s=0

£-1
pey) = ByVesmapts(y).
s=0

e U, and V, are obtained from u,(y) = yus(y) and v,(2) = 2p,(2), respectively

by
— expanding us(y) and vs(2) as polynomials in y and z, respectively,
— replacing the monomials 3" and 2", 7 = 1,...,s with & and Mgz, Te-
spectively.

Then, _R_l()\) = pg()\) and the eigenvalue moment me = E{Fe()\)} is obtained
by replacing all monomials z,22,...,2¢ in the polynomial p,(2) by the moments
m|1A|2, Mmegjes - ,mfAlz, respectively.

"Note that the substitution of A with z is redundant. It is used to obtain polynomials in the
commonly used variable z.
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D.1 Proof of Theorem 11

The proof of Theorem 11 is based on Theorem 5 in Section 2.4.

First of all, let us verify that the matrix §) satisfies conditions (2.34), (2.35), and
(2.36). $;; is the (3, 7)™ L x 1 block of the matrix §. All blocks are independent since
the channel gains are deterministic and the spreading sequence elements are inde-
pendent. Condition (2.34) of Theorem 5 specializes for Theorem 11 to the following
inequality

K N
12 12 Hy
sup ig%;E{llﬁull }+igg;<K;E{uﬁﬂu }} < sup [(8+1) max 14| < +oo.
(D.1)

The second inequality in (D.1) holds thanks to the assumption that ||l;|| is uniformly
bounded for all N. Thus, condition (2.34) is satisfied.
In order to verify Lindeberg condition (2.35), let us observe that Vi, j

E{1951 101,157 (9} = /{ | 15, 1dF (s5)

1$:5112>72}

= l;{l] / ) |S7;j‘2dF(8ij)
{Ise51%> 7}
37

(lflj)1+6 2
S e LA i 2dF (si; D.2
[ el (02)

where 1 4(-) is the indicator function on the set A (see Glossary), F'(s;;) is the distri-
bution function of s;;, and § € R*. From the condition of Theorem 11 E{|s;;|*} < 75
with v > 1. Since ||lx]| are uniformly bounded for all N, there exists an m < +oo

such that rria,)g{ lf{li < m and
1=1...

m3

e with > L (D.3)

max E{|19411*L(is; 1573 (96} <
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Then, we conclude that

. mp :
A ZE{”%” Haisg1>r (9y) < lim —= = 0. (D.4)

K i=1
N8

The proof that

lim max ZE{Ilﬁnll Lisseli>7) (950} =

N—oooi=

follows the same lines as the proof of (D.4). Thus, we conclude that Lindeberg
condition (2.35) is satisfied.

Condition (2.36) is trivially verified. In fact, the entries of matrix § are all zero
mean, i.e., A; = 0, Vi,j € Z* and also their spectral norms |A;;| are zero. Then,
the sums in (2.36) are also zero and condition (2.36) is verified.

Equation (2.37) can be rewritten as

() = aIHZI_(;E{% (Clhonre(@] ™95 } (D.5)
oy 4 3 (B0 (510} 05)
= ol + I;'(l)(a) = CW(a), (D.7)
with
K(a) Z([CSLK I)iE {91595} (D)

The step from (D.5) to (D.6) is justified by the fact that ([Eﬁ)x,{(a)]“l)jj is a scalar
(1 x 1 matrix). Equation (D.7) emphasizes that the matrix K () is independent
of k. This is because all rows of the matrix $ have the same statistics.
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Equation (2.38) can be specialized to system (5.1) as follows.

N
P(@) = 1+ 3 E{8(Crn(@)) )i (D.9)
=1+ 3 B{tlnf (CP(@] )%, (D.10)
1+ E {tr[[C(l) ()] 955 } (D.11)

| I=

| =1+ Y tr ([CW(@)]'E {595} )

=1+tr ([C’(l)(a)]'l ZE {995 > (D.12)
=1+ Ntr ([C(l)(a)]‘lE (557 ) (D.13)
=1+tr ([c<1>(a)]—lz zH) (D.14)
=1+ [CcW ()], (D.15)

The step from (D.9) to (D.10) is justified by the fact that the argument in the
expectation operator is a scalar. From (D.10) to (D.11) the trace property tr(AB) =
tr(BA) is applied. From (D.11) to (D.12) we use the distributive property of trace,
expectation, and sum. Equation (D.12) yields (D.13) thanks to the fact that the

expectation of ,ﬁﬂﬁ 7 is independent of j, i.e. E {ﬁ]lﬁ } =E {ﬁj/lﬁﬁl} V7, j/ €
[1,...,K]. Let us notice that by the definition of cY Kx K(a) in the statement of
Theorem (5) in Section (2.4) ([6’g)><K(a)]‘1)jj = C’g)(a). Using (D.15) in (D.8), we

obtain KV (a) = ZJ -1 IHngf)?Z;]} e Thus, (D.7) can be rewritten as

5 E{%y9)}
1 . 172 kg
C() aIL+Zl+lH[C(1) J)] lj

117
=al; +— I3 .
N ; 1+ [CW(a))~1;

Then, considering the limit for K, N — oo

H

T

CW(a)=ol, + ﬂ/ dFi(ly, by, ..., 11) (D.16)

L.
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and using the definition! (C™(a))™! = 2 we obtain (5.9) with a = o2,

As intermediate results of the proof of Theorem 5, Girko proved (see [61] proof? of
Theorem 30.2) that the L x L matrix block element U;, 4,5 = 1, ..., N, of the matrix
U = (aI ny + _nlxnz"flxnz)_ in Theorem 5 converges in probablhty tothe L x L
matrix block element V;; of the matrix V' = (\Il( )(a)-{—Amxpz(\I’( )(a))‘lzl: xpa)
= (1) . i . e~ =
¥"(a) = dlag{\Il,(c,g(oz)}kﬂ,_“,pi and ¢ = 1,2. Here, \Il(l)(a) and \I'(z)(oz) are deter-
ministic matrices such that

im %) =¢C

K,N—oo
ks

(a) i=1,2 (D.17)

and 6'(1)(a), i = 1,2 solutions of the canonical system of equations in Theorem 5.
Furthermore,

K,llifrgoo E{‘UU - Vijl} = (. (D18)
E_,ﬁ
N
and the spectral norm of V;; is bounded by |V ;| < o%. By applying these interme-
diate results to the matrix 8 = (995 + oI)~! we obtain

clm E{t; —Vyl} =0 (D.19)

i
with V;; = [\I:S)(ﬁ)]—léij from (D.18) and

(1 — V(2
Klgfr_r&@@ (o) = CY(c?). (D.20)

___,ﬁ

from (D.20).

Let us denote by £, the LN x N block diagonal matrix whose blocks are identically
equal to l;. Its maximum singular value is equal to \/lf_lk < oo since ||li| is
uniformly bounded for all K. Then, h; = £, where s; is the k*® column of the
matrix S.

1This definition is motivated by the fact that the expression of the SINR (5.9) in Theorem 11 in
Section 5.3.1 becomes more intuitive using 2 instead of (CW(a))~t.

2We note that there are several typos in the statement of Theorem 30.2 and in its proof. So, Q@
should be defined as Q = [Ia + (A + E)(A + E)T] and not as Q = [Ta+ (A + E)T(A + E)),
con51stent1y also the definition of G changes. In the theorem statement X = Gpgx pp and Y =
Qp1 xp, - These typos have been discussed with the theorem’s author in personal correspondence.
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The convergence in probability of SINR, = §HUh, to the quantity
1 [CW(62)]7 1y is proven if n = E|bHith;, — IF[CV (0)) 711, vanishes asymptoti-
cally, i.e. .
K’llbrgoo m = 0. (D.21)
k6
The rest of the proof is focused on showing (D.21). Let us observe
m < Elfthy b7V + BIbE Vb, — 1 (C) (%)) i

where the triangular inequality of the spectral norm is applied and V =

. 1 —
(LG

By applying the submultiplicative inequality for spectral norms (9) and the tri-
angular inequality to the first term we obtain

ElbY (8 — V)bl = E| > shbi (80 — V)uelesji

i€
<> Elily — Vil LB shsi]
il

= ZElu.. - V-~|ﬂ’3
- (X2 1 N
< Il max Elil; — V. (D.22)

Thanks to (D.19) and the fact that 15l < +oo

. H _ —
Jim B~ V)il =0
~—B
In order to prove the convergence to zero of n, = E|hEVh, — IH[CD (62)]711,| we
consider

n? < BRIV hy, — 1 [CV ()], (D.23)
= E((b V) — 25 VI [CD (0®)] i + 1T [CD (%) W) (D.24)

=E (Zlf VililfV jililsie*sjel” — 27 [CO (0] 70 > W Vil six?
i i

+ [CP) 1)) (D.25)
1 1

= Z(lkHVﬁlka + Z(lfviilk)(lkHijlk)N

' :#JJ ’

2 _ _

— -Nzg’ [COE)) ™D I Vali + FCWV (0] )% (D.26)
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From (D.25) to (D.26) we make use of the assumptions on the second and fourth
moments of s;;. Let us observe that the spectral norm of [C ) (02)]‘1 and V', for any
i, are bounded by |[C™ (02)]"!| < 02 and |V;| < 02. Then, the first term in (D.26)
vanishes as N — oo since v > 1. By applying (D.20), for any i, V; — [CM(c2)]7!
as K, N — oo with £ — 3. Then the second and third terms in (D.26) converge to
(I CW(6?))711y)? and —2(lF[C™(0?)]71;)?, respectively. We can conclude that

K11{7§oo772 =0

___,B

and 7, —» 0 as K,N — 00 as % — f3. Therefore, (D.21) is proven. The Markov

inequality implies that, Ve > 0

. 1 _
Kgngr{lkaﬂbk—lkH[C(l)(U N7k} < - Elbi{ﬂbk—lH[C (o) =0
ks gy

and the convergence in probability stated in Theorem 11 is proven.
This concludes the proof of Theorem 11.

D.2 Proof of Theorem 12

Let us derive first the single user Bayesian filter. To this aim we calculate E{ty

and E{by} with the expectation taken over the noise, over all transmitted signals,

and over the transmitted powers, channel gains, and spreading sequences of all in-

terferers. Then, E{ypT} = E{H:H} + hibE + 0°Iy1. Because of the independence

and zero mean of the elements of the spreading sequences, E{$,$7} is a block di-

agonal matrix with N blocks of size L x L. Each block is given by (8 — %)C} with
= E{lI"}. It follows

H}——l

€ =E{H5:9,}=In® (ﬂ - —]1\7) C. (D.27)

By applying the Sherman-Morrison formula (see Appendix E.1) to (E{py”})~"
obtain

(E{py"}) ™" = (€ + 02 Inz) ™t — (€ + o Inr) "B [1 + by (€ + 0°Ive) byl
X ka(Qk + 0211\/,;)_1

Let us observe that E{b}9} = ;. The single user Bayesian receiver is given by

(€ + o2 InL) s
. D.28
1+ b2(€ + 02InL) b ( )

C =

[



D.2 Proof of Theorem 12 191

The energy of the useful signal k£ at the output of the single user Bayesian filter is
given by

_ b (€x + 02 InL) M 2
E{|c£1bkbkl2} - (1+b£(€k+U2INL)—lbk) ) (D.29)

The energy of the noise at the output of the single user Bayesian filter is

f)f(e:k + U2INL)_2bk

[1+bi (€ + 02Inp) " hi)? (D-30)

B{jefnl’} = o

Finally, the energy of the interferers is

K K
ES S lefpibi* b =EQ > cffhsbie
j=1

Jj= ]::1
J#k J#k

K
=c]'E ijbf Cr
j=1

itk
= c/E{9:91 }e
=€ cr.
Therefore,
E{|chby|?
SINR, = {lci brbe|’}

K
E{lcfn|?} + ES 3 lei’h;bs)?
po
OF(€, + 02T ny)'h)?
ol (€, + 02T n1) 20 + BF (€ + 02T 1) € (€ + 02T v )~ hi

= b (€ + *In) h

-1 N
=17 [(,8 - %) C,+ O'ZIL] I Z SnkSnk- (D.31)
n=1

Applying the strong law of large numbers to Zil SnkSnk, We obtain
limpy o 277:1 Snkst; 2 1. This limit and (D.31) yield the convergence of SNIRy

to 1 (BCy + 0*I)~l;, with probability 1 as N — oo.
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D.3 Proof of Theorem 13

The proof of Theorem 13 follows the same lines as the proof of Theorem 12, taking
into account that ¢, = hi. Then,

_ B{b/bibil?)
E{[bn} + E{Zg’;}é; 1B;0;12)
iy
o2h{h, + b ELh,
(lkHlk 271:’:1 SnkSpi)” D
_ .32
17 [(ﬂ - %) C,+ O'ZIL] s Zf;;l SnkSky, ( )

SINRy

Applying the strong law of large numbers, we obtain the almost sure convergence of
SINRy as K, N — oo with % — (3. More specifically, we obtain

. a.s. (lglk)2
lim SNIR; = - .
K=BN—0c0 1. (BC,+ oIl

D.4 Proof of Theorem 14

The proof of Theorem 14 follows the lines of the proof of Theorem 10. It is useful
to rewrite §) with a structure similar to the structure of H in (4.31).

Let us define for each user k a block diagonal matrix £, = Iy ® I of dimensions
LN x N, with identical diagonal blocks equal to I,. The matrix § can be rewritten
as

ﬁ = (2131,2282, e ,£K3K)
= (blab2a v abK)-

Additionally, we introduce the following notation. Forn=1,...Nandk=1,..., K
e &, is the n* row block of § of dimensions L x K. |
e $He, is the matrix obtained from $ by suppressing the n'* row blocklén.
o Ry = HE Hirn.
e o, is the n'® row of the matrix S, i.e. &, = (8n1, Sn2, - - - San)-

o L, 0 =1,...,Lisa K x K diagonal matrix with k¥*" element equal to lg.
Note that ¢, L, coincides with the ((n — 1)L + £)*® row of the matrix .
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e T¢ is the n'® diagonal block of T¢ of dimensions L x L.

o T i = HTHy.
The proof of Theorem 14 is based on strong induction. First, we prove the follow-
ing:
e For a given user k, conditionally on I, Ry converges almost surely to a
deterministic limit R (l;) as K, N — oo with £ — 3.

e The block matrix T2, converges almost surely to a deterministic limiting ma-
trix 3 independent of n as K, N — oo with % — S.

Then, in the recursion step, we use the following induction assumptions:

e For s=0,...,£— 1, (R®)g converges to a deterministic limit {R°(lx) and the
diagonal blocks (T*),, converge to a deterministic limiting matrix 3° indepen-
dent of n as K, N — oo with ]—Kv— — 0.

e For s=0,...,¢ — 1, the limit values R*(l;) and 3° are given by the recursive
equations (5.26) and (5.27), respectively.

We prove that (9¢)x converges to a deterministic limit Ré(1)];—, and (Z*)nn con-
verges to a deterministic limiting matrix independent of n as K, N — oo with
% — f. Furthermore, we prove that these limit values satisfy also the recursive
equations (5.26) and (5.27).

First step: Ry = s LH Ly s, and the diagonal elements of the matrix £HE, are
bounded thanks to the condition on the distribution function Fj. Thus, appealing
to Lemma 2 we can show that, given lj, Ry converges almost surely to the deter-
ministic value

1 :
R (L) = K=ﬂ1]1;ln_*oomkk
= K:gﬁl——»oo sfﬂkHSksk

1
= Jm -Ntr(sf £ = U1,. (D.33)

We apply a similar argument to the element (u,v) of the bock matrix %, to show
its almost sure convergence to a deterministic value

3uv = K=lﬂijrvn_>oo(gnn)uv
: H __H
p— K='1'31r\‘}1—+00 anLuL,u dn

1 H
= D)

= )BE{lul:}
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Equivalently,

— : _ H
3=, lim . =pE{U"}

£ step: Following the same approach as in the proof of Theorem 6, Appendix
B, we can expand (R¢)y, and the L x L diagonal block of the matrix T¢, T¢ as
follows:

-1

(R = be‘zi—ks—lbk(ms)kk (D.34)
§=0
Za Ri-s-15Hgs | (D.35)

Thanks to the assumptions of the strong induction, for s = 1,...,£— 1, (R*)xx and
s converge almost surely to the deterministic limits 2R°(lx) and 3°, respectively.
Therefore, the almost sure convergence of (), and T¢,, reduces to the almost sure
convergence of hZE**71h, and &, mﬂ s=16H  respectively.

Let us define

93 ) tim bi’s,ikbk

K=0gN—oo

In a similar way, we denote

f(mS)é lim  6%g, 6.

_ N—»oo

The (u,v)™ element of f(R*®) is given by
s A\ : H
(f(R ))uv = Kz}}gl_)oo(‘smiina Juv
= lim o AR AT (D.37)
K=8N—oo

Let us compute the limits (D.38) and (D.39). The condition on the spectral radius
of ;R guarantees that the spectral radius of R* and T* is upper bounded for any
finite integer u. Applying the submultiplicative inequality of spectral norms (see
Lemma 9 in Appendix E.1) the same property holds for the matrix L% 8y and
its powers and the matrix A, 0 AE and its powers. Then, we can apply Lemma 2

Enttu
to the right hand side of (D.36) and we obtain the following almost sure convergence

s a.s. Heps
9(3% )% | lim NZl T 1,

= 1730, (D.38)
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Applying Lemma 2 in Section 2.4 to the right hand side of (D.37) we obtain the
almost sure convergence

s a.s. ﬂ ] H
(f(m ))uv T ke %}I\In—»oo }(—_tr(A anAv )
= BE{lulvms( )}
Thus, the matrix f(2R°) is given by
f(R°) = BE{UTR(1)}. (D.39)

Finally, the limit (DD.38) and the recursive equation (D.34) yield

R = lim (R

_,BN —00

£—
ZSZ 3€s1lmsl)
s=0

In a similar way, using the limit (D.39) and the recursive equation (D.35) we obtain

3= lim Te

—ﬂN—boo
s Z BE{R 1 ()IIT}3°.
s=0

Thus, the induction step is proven and this concludes the proof of Theorem 14.
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E.1 Linear Algebra

Lemma 8 [111] If B is an Hermitian matriz, then for any vector x
jef Bx| < max{|)\| : X is an eigenvalue of B}||z||*. (E.1)

Theorem 16 (Interlacing Eigenvalue Theorem for Bordered Matrices)
[111] Let A be a given n x n Hermitian matriz, let y € C" be a given column vector,
and let a € R be a given real number. Let A be the (n + 1) x (n + 1) Hermitian
matriz obtained by bordering A with y and a as follows:

~ Ay
A= .
[ y" «a ]
Let the eigenvalues of A and A be denoted by {\} and {/)\\l}, respectively, and
assume that they have been arranged in increasing order, i.e., A1 < Ag... < Ay and
)\1 S )\2 _<_ >\n+1- Then

N <N SX2S}‘2-'-S>\n_<./Xn+1-
Theorem 17 (Sherman-Morrison Formula) [111] Let uw and v be n-
dimensional column vectors and let A be an n X n matriz. Then,
A luvfA™!
1+vA™u

Lemma 9 (Submultiplicative Inequality of Spectral Norm) [111] Let A and
B be two n X n matrices, then

(A+uv®)T=A"1—

|AB| < |A||B|

E.2 Probability Theory

Lemma 10 (Markov Inequality) [112] Let © be a nonnegative random variable
with E{z} =, then, for any € > 0

=

Pr{z > €} < (E.2)

e .
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Lemma 11 (Bienaymé Inequality) [112] Let = be an arbitrary random and let
a and n be two arbitrary numbers. Then, for any € > 0

Eflz —al"}

Prile —af 2 ¢} < ——

(E.3)

Lemma 12 (Lyapunov Inequality) [112] Let 6, = E{|z|*} < +oco represent the
absolute moments of the random variable x. Then,

1

8

X

<0 k> 1. (E.4)

=

Lemma 13 (Borel-Cantelli Lemma) [108] [112] Let A;, As, ... be an infinite
sequence of events, each of which depends only on a finite number of trials. In other
words, there exists an integer ny such that Ay is an event in the sample space of the
first ny Bernoulli trials. Put p, = Pr{As}, k=1,2,....

(1) Suppose

Zpk < 400

k=1
that is, the series on the left converges, Then, with probability one only finitely
many of the events Ay, Aa, ..., occur. More precisely, to every € > 0 there is an
integer v such that the probability that n trials produce one or more among the
events Ay11, Aria, ... is less than € for all n.

(it) If the events Ay are mutually independent, and if Z',::? pr diverges, then, with
probability one infinitely many Ay occur. In other words, for every r the probability
that n trials produce more than r among the events Ay tends to one as n — oo.
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