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Kurzfassung 

Mehrbenutzerdetektion ermoglicht eine relevante Steigerung der spektralen Effizienz 
von CDMA-Systemen, die jedoch rnit einer stark zunehmenden Komplexitat erkauft 
wird. Diese Arbeit befasst sich rnit Entwurf und Analyse von linearen Mehrbe- 
nutzerempfangern niedriger Komplexitat fur CDMA-Systeme rnit zufalligen Spreiz- 
codes, groflen Spreizfaktoren und vielen Benutzern, wenn die Komplexitat linearer 
MMSE-Detektoren keine Echtzeitimplementierung zulasst. 

Die vorgeschlagenen Mehrstufen-Detektoren haben eine modulare Struktur, die 
auf signalangepassten Filtern aufbaut; sie fuhren eine Projektion des beobachteten 
Signals auf einen Unterraum durch und filtern dieses anschliefiend. Die Kom- 
plexitatsreduktion ergibt sich, indem man die optimalen Filterkoeffizienten eines 
groflen, aber endlichen Systems durch universelle Koeffizienten, d.h. durch die opti- 
malen Koeffizienten eines Systems rnit unendlicher Benutzerzahl und unendlichem 
Spreizfaktor approximiert. Der Entwurf universeller Gewichte geschieht mittels aus- 
gefeilter Methoden der Theorie der Zufallsmatrizen und der freien Wahrschein- 
lichkeit. Dies ermoglicht lineare Mehrbenutzerdetektion rnit einer Komplexitat pro 
Bit die, wie bei einem Enfangsfilter, das nur auf einen Benutzer angepasst ist, nur 
linear rnit der Anzahl der Benutzer wachst. 

Die vorgeschlagenen Detektoren sind robust gegenuber Kanalnichtidealitaten wie 
frequenzselektivem Schwund oder Asynchronitat; sie erreichen annahernd lineares 
MMSE-Verhalten rnit einer Anzahl von Stufen, die sowohl vie1 kleiner als die An- 
zahl der Benutzer als auch von dieser unabhangig ist. Der vorgeschlagene Entwurf 
umfasst auch CDMA-Systeme rnit mehreren Sende- und Empfangantennen und 
raumlich korrelierter Diversitat im Sender und Empfanger. 

Fur asynchrone Systeme wird ein gleitendes Beobachtungsfenster vorgeschlagen, 
wodurch die Detektorgute keinen Einbruch durch ein endliches Beobachtungsfenster 
erleidet und die Komplexitat, im Gegensatz zu linearen MMSE-Detektoren, ver- 
gleichbar rnit einem synchronen System bleibt. Dank diesem Ansatz konnen sogar 
lineare MMSE-Detektoren rnit endlichem Fenster ubertroffen werden. 

Aufbauend auf Eigenschaften von Zufallsmatrizen, die im Verlauf dieser Ar- 
beit entdeckt wurden, wird ein allgemeiner Ansatz zur asysmptotischen Analyse 
einer breiten Klasse von linearen Mehrbenutzer-Detektoren vorgestellt, inklusive der 



vorgeschlagenen Mehrstufen-Detektoren. 
Schliefilich werden die Auswirkungen von Asynchronit at,  Chip- Wellenform und 

raumlicher Korrelation der Kanale (bei mehreren Antennenelementen in Sender und 
Empfanger ) untersucht . 



Abstract 

Multiuser detection can achieve a relevant increase in the spectral efficiency of 
CDMA systems at the cost of a considerable increase in complexity. 

This work is focused on the design and analysis of low complexity linear multiuser 
receivers for CDMA systems with random spreading codes, large spreading factors 
and large number of users, when even linear MMSE detectors are computationally 
very intensive in real-time implementations. 

The proposed multistage detectors have a modular structure based on matched 
filters and perform the projection of the observed signals onto a subspace and a 
successive filtering. The reduction in complexity is achieved by approximating the 
optimum filter coefficients of a large but finite system by universal weights, i.e. the 
optimum weights of a system with infinite users and spreading factor. The design of 
universal weights uses sophisticated tools of random matrix theory and free prob- 
ability theory. Such a design enables linear multiuser detection with a complexity 
order per bit that scales linearly with the number of users as in a single user matched 
filter. 

The proposed multistage detectors with universal weights efficiently cope with 
channel non-ideality such as frequency selective fading and asynchronism. They 
achieve near-linear MMSE performance with a number of stages much lower than 
the number of users and independent of it. 

For asynchronous systems the proposed detectors include a sliding observation 
window, so that they do not suffer from performance degradation due to a finite 
observation window. They keep the same complexity as their counterpart for syn- 
chronous systems, in contrast to the linear MMSE detectors. With this approach 
they can even outperform a finite-window linear MMSE detector. 

The design of multiuser detectors includes also CDMA systems with multiple 
transmitting and receiving antennas and spatial correlation of the channels. 

Benefitting of properties of random matrices discovered in this work, a general 
framework for the asymptotic analysis of a wide class of linear multiuser detectors, 
including the proposed multistage detectors, is presented. 

The effects of asynchronism, chip-pulse waveforms, and correlated spatial diversity 
are analyzed. 
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Introduction 

In the course of time, engineers have had the challenging and exciting function of 
transforming utopia to dreams, and dreams to actual reality. So, Icarus' utopia of 
flying towards to the sun and Verne's dreams of walking on the moon and exploring 
the deep sea are concrete possibilities nowadays. A common dream of futurologists 
and visionaries, writers and children is the gift of ubiquity. As pointed out by Ne- 
groponte [l], the substitution of the heavy and slow atom with the bit, capable of 
travelling at the speed of light, allowed the dream to come true. Theoretical and ap- 
plied digital communication engineers accepted the challenge: the intense, successful 
development of wireless communications at the late 1980's has been a unprecedented 
step forward to the achievement of ubiquity. 

In contrast to the wireline medium characterized by reliability and large capacity, 
the wireless medium is unreliable and has low capacity due to path-loss, shadowing, 
and intersymbol interference. Additionally, it is intrinsically limited and can easily 
become a scarce resource when the service demand increases. Consequently, an ef- 
ficient utilization of the available radio spectrum is a key requirement to make the 
technological reality as close as possible to the dream. 

The last decades have experienced a deep rethinking and reformation of the con- 
ceptions about wireless multiuser communications, which have opened new ways 
and possibilities to exploit the wireless medium efficiently. New concepts such as 
multiuser detection, multiple antenna elements, and opportunistic communications 
are playing major roles in the field nowadays. 

For some time, it was widely believed that the interference introduced by a large 
number of equal-power users was accurately approximated by a Gaussian random 
variable and consequently the single user matched filter was almost optimal for 
large systems. The near-far effect was considered detrimental and power control was 
the only available tool to combat them. In the early eighties, Verdli recognized the 
wrong assumptions that led to this misconception [2-51 and pointed out the large 
improvements in spectral efficiency achievable by taking into account the structure 
of the multiuser interference and by mitigating the cross-talk among users with an 
optimum multiuser detector. Multiuser detection techniques efficiently compensate 
for the near-far "problem" and open the way to the recent discovery in [6] that 
turned the near-far "problem" into an advantage for heavily loaded systems. 

In the early nineties it was discovered that adding antennas in rich scattering 
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environments increases proportionally the point-to-point data rates without extra 
transmitted power or bandwidth [7 ,8] .  These systems are referred to as multiple 
input multiple output (MIMO) systems. Antenna arrays provide spatial diversity 
and introduce new degrees of freedom in the received signal. The successive joint 
processing of the multiple received signals makes use of these further degrees of 
freedom to  enhance the system capacity. 

In the last lustrum, the resource pooling effect, discovered by Hanly and Tse [g], 
demonstrated that degrees of freedom in space and frequency are interchangeable. 
Moreover, the total number of degrees of freedom is the product of the degrees 
of freedom in space and frequency. A system with spreading factor N and L re- 
ceive antennas is in many respects equivalent to a system with a single antenna 
and spreading factor NL. This suggests the idea to treat the two effects in the 
same way performing antenna array processing and multiuser detection jointly. Joint 
processing significantly outperforms techniques that exploit separately the degrees 
of freedom in space and in frequency. 

Although these techniques promise large enhancements in spectral efficiency and 
are really appealing, their implementations in real systems is not straightforward 
and several issues are still open. The major problem is related to  their complexity: 
the optimum maximum likelihood detector for CDMA systems has a complexity 
which is exponential in the number of users. This has fuelled the research on sub- 
optimum multiuser detectors with a substantially lower complexity in exchange for 
some tolerable performance degradation. 

Our work is focused on the design of low complexity multiuser detectors for sym- 
bols transmitted on the uplinki mobile radio channel of a CDMA system. Our atten- 
tion is concentrated especially on challenging scenarios with long random spreading 
sequences2, large spreading factor, and many users. Systems with these characteris- 
tics are supported by current standards- an example is the FDD mode of UMTS- 
and the use of antenna arrays makes them more and more widespread. In these 
cases, even the quadratic complexity order per bit of a linear MMSE detector or a 
decorrelator can be computationally too intensive for real-time implementations. 

This work focuses on linear multistage detectors with universal weights. They 
reach a very good compromise between performance and complexity, taking advan- 
tage exactly of what is considered to  be deleterious in such scenarios: the numerous 
users and the long spreading sequences. In fact, multiuser communication systems 
can be modelled by random matrices whose entries are in general statistically de- 
pendent and whose size depends on the number of users, the spreading factor, the 
number of receiving and transmitting antennas, the observation window length, etc. 

lThe downlink channel can be regarded as a special case of uplink channel with channel coefficients 
equal for all users. Therefore, we can focus on the uplink without loss of generality. 

2By long spreading sequences we mean spreading sequences that span more than a symbol interval. 
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The design of the universal weights benefits from the asymptotic self-averaging prop- 
erties of these random matrices and reduces the computationally most demanding 
part of the detector to a computation of a polynomial depending on the statistical 
properties of the random matrices via few essential system parameters. 

The statistical structure of random matrices considered in this work includes the 
typical non-ideality of a CDMA system. The effects of flat fading and frequency 
selective fading have been considered as well as asynchronism and the effects of the 
chip-pulse waveforms. Channel correlation in case of multiple antenna elements at 
the transmitters and the receiver has also been investigated. 

We will now present an outline of the material and results contained in the indi- 
vidual chapters of this work. 

In Chapter 2 we review the most relevant linear detectors and discuss the large 
system~erformance analysis based on random matrix theory. The principles of 
random matrix theory useful for the following developments are also illustrated. 

In Chapter 3 two families of linear multistage detectors with universal weights are 
introduced. The universal weights for asynchronous CDMA systems with flat fading 
and frequency selective fading channels are derived. A general framework for the 
performance analysis of a large class of linear multiuser detectors is proposed. 

The multistage detectors perform a projection of the received signal onto a Krylov 
subspace and a successive filtering according to some optimality criterion. In case 
of detection of multiple users, as in uplink channels, a reduction in complexity re- 
quires both an appropriate choice of the bases of the projection subspaces and the 
use of universal weights. The bases of the projection subspaces should enable joint 
projection of the received signal for all K users of interest. In such a way most of 
the computations for the projections become identical and the complexity drops by 
a factor of K. The universal weighting is based on the approximation of the weights, 
optimum according to some optimality criterion, by weights optimum in the same 
sense for large CDMA systems. 

The detectors "Type J-I" proposed in this work perform the joint projection 
of the received signal for all users and the filtering of the projections in a way 
that is asymptotically optimum in a MSE sense for each user. Thanks to the joint 
projection and the universal weighting, the Type J-I detector has near-linear MMSE 
performance with the same complexity order per bit as the single user matched filter. 

The design of universal weights for detectors Type J-I is based on a self-averaging 
property of random matrices established in this work. The convergence of the em- 
pirical eigenvalue distribution of some random matrices is well known and widely 
utilized in multiuser communications (e.g., [g-121). In this work we prove that also 

3Throughout this work we refer to CDMA systems with number of users and spreading factor 
going to infinity with constant ratio as large CDMA systems. 
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the diagonal elements of powers of some random matrices converge to a determin- 
istic limit depending on a small set of system parameters. The universal weights of 
Type J-I detectors are designed making use of these diagonal elements. 

It is possible to design multistage detectors performing joint projection and uni- 
versal weighting by utilizing the convergence of the empirical eigenvalue distribution 
at  the cost of performance degradation. This yields the class of detectors referred to 
as detectors Type J-J. They have the same complexity order per bit as the conven- 
tional detectors and worse performance than detectors Type J-I. 

Multistage detectors with universal weights based on the convergence of the eigen- 
value distribution that are presented in parallel works [13,14] utilize bases of the 
projection subspace that do not enable joint projection. In case of joint detection 
of multiple users they have the same large system performance as detectors Type 
J-I but keep the same complexity order per bit as the linear MMSE detector that 
is typically some order of magnitude higher than the complexity order per bit of a 
conventional detector. 

The usefulness of the convergence of the diagonal elements is evident when we con- 
sider that the performance of linear multiuser detectors and especially multistage 
detectors is more naturally related to these diagonal elements than to the eigen- 
value moments of some random matrices and only some optimum detector (linear 
MMSE detector and multistage Wiener filter) can be analyzed by the eigenvalue mo- 
ments. Thanks to  this property we develop a general framework for the performance 
analysis of a large class of linear detectors including the multistage Wiener filters, 
polynomial expansion detectors, and parallel interference cancelling detectors. For 
large systems, detectors Type J-I and Type J-J are equivalent to  multistage Wiener 
filters and polynomial expansion detectors, respectively. The performance analysis 
disproves the widespread belief of the equivalence between multistage Wiener filters 
and polynomial expansion detectors. In general, the former outperform the latter 
and they are equivalent only with perfect power control. 

In Chapter 4 the previous results are extended to asynchronous systems. In this 
scenario the multiple access interference is correlated from a symbol interval to  the 
other. The acquirement of sufficient statistics requires an infinite observation win- 
dow. A linear MMSE detector of practical use suffers from performance degradation 
due to  the finite observation window. Additionally, the complexity increases with 
the observation window length. We propose a slightly modified version of the mul- 
tistage detectors in Chapter 3 whose observation window expands with the number 
of stages. In contrast to the linear MMSE detector, detectors Type J-I for chip syn- 
chronous and symbol asynchronous CDMA systems are equivalent in performance 
and complexity to  the corresponding multistage detectors for synchronous systems. 
The proposed multistage detectors employ a sliding observation window. Thanks to 
this feature detectors Type J-I achieve uniform multiuser efficiency for all users. 
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Since the polynomial expansion detectors and, thus, detectors Type J-J are in- 
trinsically suboptimal for asynchronous systems, i.e. they have worse performance 
than detectors Type J-I also in case of perfect power control, the design is focused 
on detectors Type J-I. 

Two relevant topics of investigation for asynchronous systems are addressed in 
the design of multistage detectors: 

The choice of a set of observables with the twofold aim of achieving low com- 
plexity and optimum or nearly optimum performance ; 

The effects of the chip pulse waveforms. 

Processing the received signal by a lowpass filter and then sampling it at the Nyquist 
rate turned out to be the most convenient way to acquire the observables. It provides 
sufficient statistics and, in the meantime, enables joint processing and detection 
of all users. For a large class of chip-pulse waveforms, the universal weights for 
asynchronous systems take into account the chip-pulse effects via some coefficients 
that are very simply related to the power spectral density of the chip pulses. 

A linear MMSE detector with given observation window optimizes the utilization 
of the available observables. The multistage detector with expanding observation 
window performs a suboptimal utilization of the observables but uses a wider set of 
statistics. The effects on the performance of these two approaches are investigated. 
For a linear MMSE detector we provide an algorithm to determine the large system 
SINR of any symbol whose spreading sequence is partially or completely received in 
the observation window. The performance of Type J-I detectors is also investigated. 
We show that the proposed multistage detector with a sufficiently large number of 
stages can outperform the linear MMSE detector. 

The general framework for the performance analysis of a large class of detectors 
introduced in Chapter 3 is extended to asynchronous systems. 

The joint effects of chip pulse waveforms and the distribution of the arrival time of 
the signals is analyzed. As long as B, the bandwidth of the chip-pulse waveform, is 
not greater than half the chip rate &, i.e. B 5 &, the performance of asynchronous 
and synchronous systems is equivalent and independent of the arrival time distribu- 
tion. As the bandwidth increases, the effects of the arrival time distribution becomes 
relevant and dependent on the chip pulse waveform. For square root Nyquist and 
raised cosine chip waveforms, the output SINR of detectors optimum in an MSE 
sense increases with the bandwidth for large asynchronous CDMA systems. In con- 
trast, for large synchronous CDMA systems it keeps constant (square root Nyquist 
waveforms) or decreases (raised cosine waveforms) as the bandwidth increases. 

The use of random matrix theory allows a concise and insightful description of 
the asynchronous large system behaviour. Few system parameters are sufficient to 
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capture the system performance, namely the system load, i.e. the number of re- 
ceived symbols per chip, the variance of the additive Gaussian noise, the moments 
of the received power distribution and some coefficients related to  the power spectral 
density of the chip-pulse waveforms. 

In Chapter 5, CDMA systems with multiple antenna elements at the transmitters 
and the receivers (multiuser MIMO systems) and with possibly correlated channels 
are investigated. Linear multistage detectors Type J-I and Type J-J with universal 
weights are designed. The general framework proposed in Chapter 3 for the per- 
formance analysis of a large class of linear multiuser detectors is extended to this 
scenario with correlated spatial diversity. 

The large system analyses of the linear MMSE detectors, the single user Baysian 
receivers and the single user matched filters are extended to  the case of correlated 
channel gains proving rigourously and generalizing the results in [g]. 

Thanks to  the random spreading, the performance of the investigated linear multi- 
user detectors are independent of the channel correlation at  the transmitters and 
only the correlation at  the receivers plays a relevant role. 

The large system performance of the linear MMSE detector, the single user 
Bayesian filter and the single user matched filter are described by deterministic 
square matrices, A ,  with dimensions equal to  the number of receiving antenna el- 
ements. In contrast to  the case of CDMA systems with single receiving antennas, 
the multiuser efficiency does not characterize univocally the systems. In fact, the 
multiuser efficiency depends on the direction of the user channel gain vector with 
respect to  the eigenvectors of A.  

The conditions under which the resource pooling effect [g] arises, i.e., the inter- 
changeability between degrees of freedom in space and frequency holds, are gener- 
alized. 

Chapter 6 concludes the work discussing the contributions and drawing guidelines 
for future developments in this field. 



2 Linear Multiuser Detection and 
Random Matrices 

2.1 Introduction 

For some time the development of spread-spectrum systems was driven by the belief 
that matched filter receivers were approximately optimum in large systems with 
equal powers since the multiple access interference could be modelled as Gaussian 
noise. 

In its seminal work [2-41 Verdii discovered the enormous improvements in per- 
formance achievable by taking into account the structure of the multiple access 
interference instead of modelling it simply as a Gaussian noise. 

The rationale behind this is that the output of a bank of filters matched to the 
spread waveforms of users provides sufficient decision statistics for the detection of 
all users [15]. In contrast, the output of a filter matched to the spread waveform of 
the user of interest is not a sufficient statistic for the detection of such a user. 

This breakthrough opened the way to a flourishing technical and scientific pro- 
duction in multiuser detection. 

The promises of multiuser detection in terms of increase in spectral efficiency 
could be fulfilled at the cost of a considerable increase in complexity. In fact, the 
optimum receiver investigated in [l51 allows a dramatic improvement in performance 
in exchange for an increase in complexity, which is exponential in the number of the 
users. Therefore, there is a strong demand for algorithms that simplify the signal 
processing required for theoretically optimum communications. 

The significant efforts devoted to the design of detectors for signals impaired by 
structured interference from other users yielded many suboptimal algorithms. An 
exhaustive overview on multiuser detection is beyond the scope of this work. The 
interested reader can refer to [l61 and references therein. 

In this chapter we focus on a large class of detectors, called, with an abuse in 
denomination, linear detectors. A linear detector consists of a linear filter followed 
by a set of threshold devices. They have been introduced with the goal of finding 
an acceptable compromise between performance and complexity. In fact, they yield 
a substantial improvement in performance compared to the conventional matched 
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filter, while maintaining a lower complexity than the optimum detector investigated 
in 1151. 

Modelling of spreading matrices in CDMA systems by random matrices has been 
extremely fruitful for the theoretical analysis of systems with linear detectors. In this 
respect the interested reader can refer to  the pioneering works in [Ill,  [10], and 1171. 
In the large system limit, as both the transmitted signals K and the spreading 
factor N tend to  infinity with a fixed ratio, the random matrices show self-averaging 
properties. These allow the description of the system in terms of few macroscopic 
system parameters and thus provide deep insights into the system behaviour. 

Random matrix theory has proven to  be a powerful tool not only from the theo- 
retical perspective of performance analysis but also from the practical point of view 
of receiver design 1181. Since the low complexity detectors proposed in this work ben- 
efit particularly from such a tool, Chapter 2 illustrates also fundamental concepts 
of random matrix theory relevant in the development of the work. 

2.2 Linear Multiuser Detection 

The class of linear multiuser detectors consists of decision algorithms performing a 
linear transformation T : CN + CK on the decision statistics followed by a set of 
scalar quantizers. 

Let B be the set of modulation symbols. The scalar quantizer is a nonlinear 
transformation 

quant, : C + B. 

quant, associates to  a complex number the closest1 element in the set B. quantLK) de- 
notes a nonlinear function of a K-dimensional complex vectors onto a K-dimensional 
vector in B, i.e., quantLK) : CK + BK. The function quantLK) performs element-wise 
a quantB transformation. Then, the signals detected by linear multiuser detectors 
are given by 

bdet = quantLK) (T (y)) . 

2.2.1 System Model 

In this chapter a synchronous CDMA system on the upl inkhf  a flat fading mobile 
radio channel impaired by additive white Gaussian noise is considered. 

lIn this context we adopt the Euclidian distance as metric. 
2The system model of the downlink channel can be regarded as a special case of the system model 

of an uplink channel with fading coefficients equal for all signals. Therefore, all results presented 
in this work can be specialized to the downlink channel. In the following, we will not consider 
the donwlink channel explicitly. 
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The use of such a system to illustrate the most relevant linear detectors enables l us to keep the exposition simple and, in the meanwhile, to capture the features of 
linear detectors. 

K users are active in the system and use a common spreading factor N. The 
system load, i.e., the number of transmitted symbols per chip, is defined as 

Each user and the base station are equipped with a single antenna. User k trans- 
mits a spread signal given, in the base-band domain, by 

sk(t) = bk[m]cim) ( t ) .  

Here, bk [m] is the mth transmitted symbol belonging to the modulation symbol set l 

B; 
N - l  

l 
cim'(t) = ~ ~ , ~ [ u ] $ ( t  - mTs - uTc) (2.4) 1 

u=o 

is the spreading waveform; and skjm[u], U E [0, . . . , N- l ] ,  are elements of the sig- 
nature sequence of user k in the mth symbol interval. The spreading sequences are 
normalized to have unit energy, i.e. I s ~ , ~ [ u ]  l 2  = 1, V k ,  m. Ts and Tc are the 
symbol and chip intervals, respectively. $(t) is a square root Nyquist chip pulse 
waveform with unitary energy common to all users. The received signal is given by 

where akk is a flat fading channel coefficient of user k and n(t) is additive zero mean 
l complex white Gaussian noise with two sided spectral density No. The received 

signal is processed by a filter matched to the chip-pulse waveform and sampled at ' 

the chip rate0. 
The discrete-time baseband signal at the receiver in the mth symbol interval is 

given by 

K 

~ [ p ]  = akxbx[m]skm(p - Nm] + nb] p = Nm, . . . , N(m + 1) - 1 (2.6) 
k=l 

where n(p] is white additive Gaussian noise with variance a2 = No. 

3This approach will be further discussed and analyzed in Section 4.4.3. 
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In matrix notation, the system model is given by 

y (m) = S(m)  Ab(m) + n ( m )  

= H (m) b(m) + n (m) 

where y(m) is the N-dimensional vector of received signal in the mth symbol interval, 
i.e. y(m) = (y[mN], . . . y[N(m + 1) - l]), and b(m) is the K-dimensional vector 
of transmitted symbols. Hereinafter, we assume that the transmitted symbols are 
uncorrelated with zero mean" and, without loss of generality, with unit variance. 
Additionally, they are independent of the noise. A is a K X K complex diagonal 
matrix whose kth diagonal element a k k  is the channel fading coefficient of user k. 
S (m)  is the N X K matrix of spreading sequences whose kth column is the spreading 
sequence of user k in the mth symbol interval. 

Throughout this chapter we focus on the detection of the symbols transmitted in 
the mth symbol interval and we drop the index m in (2.7) without causing confusion. 

2.2.2 Matched Filters 

The single user matched filter, also called conventional detector, is the simplest strat- 
egy to  demodulate CDMA signals and the optimal solution in single user systems. 

In case of fading channels we consider a coherent matched filter and assume perfect 
knowledge of the fading coefficients. The soft detected symbol of user k is given by 

in continuous time. In discrete time 

where hk is the kth column of H. 
The matched filter is widely used in CDMA systems because of its low complexity. 

It is optimized for single user systems and does not take into account the effects of 
the structured multiple access interference. Therefore, its performance is very poor. 

Interestingly, the output of a bank of filters matched to  the spreading waveforms 
of all users provides a sufficient statistic [l51 for multiuser detection. Thus, the 
matched filters are often used as the receiver front-end for the subsequent multiuser 
detection. 

4 ~ h e  assumption on the mean is typically verified by the modulation constellations in use. 
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2.2.3 Linear MMSE Detection ~ 
The concept of linear MMSE detection originates from turning the problem of de- 
tection of transmitted symbols in a CDMA system into a problem of linear estima- 
t ion [l91 followed by a quantizer (see (2.1)) and from requiring the minimization of 
the mean square error between b, the vector of transmitted symbols, and its linear 
estimate c. Thus, the linear MMSE detector consists of 

A linear estimator defined by the matrix TMMSE such that the linear estimate ; 
h h 

b = TMMsEy minimizes the mean square error (MSE) E{ll b - g(12}; I 

A subsequent set of threshold devises. i 
The output of the linear MMSE detector is given by l 

The linear transform TMMsE that minimizes the MSE can be obtained by applying 
the following results of Bayesian estimation theory for general linear models (e.g. 
[20]) to system model (2.7). 

Theorem 1 (Bayesian Gauss-Markov theorem) Let the observed data be de- 
scribed by the Bayesian linear model form 

where y is  an  N X 1 observed data vector, H is a N X K observation matrix, b i s  1 
a K X 1 random vector of parameters whose realization is to  be estimated and has ~ 

l 

mean E{b) and covariance matrix Cb, and n is a n  N X 1 random vector with zero 
mean and covariance matrix C,. It is  uncorrelated with b (the joint p.d.f. f (n, b) 
is otherwise arbitrary). Then, the linear MMSE estimator of b is  

The performance of the estimator is  measured by the error a = b -g whose mean 
is zero and whose covariance. matrix is  

The kth diagonal element of the error covariance matrix coincides with the mini- 
m u m  Bayesian MSE for the estimation of bk, the kth element of b. 
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This general result enables plenty of flexibility in the definition of the H  ma- 
trix to model non-ideality of communication systems (e.g. asynchronism, frequency 
selectivity of the channel, multiple antennas at the receiver). 

Applying (2.9) to system model (2.7) and taking into account the statistical con- 
straints on the transmitted symbols and the noise yields 

where R = H H H  and T = H H H .  
The linear MMSE estimator maximizes the SINR [21]. This is a reasonable opti- 

mality criterion, especially when the multiuser receiver supplies soft decisions, rather 
than hard detected data, to an error control decoder. 

The linear MMSE estimator in (2.9) is optimum in the general MMSE sense, with- 
out the constraint of linearity, for the estimation of a Gaussian complex parameter 
impaired by Gaussian noise. Its application to the detection of discrete symbols 
requires some attention depending on the modulation symbol set B. 

In case of binary symbols, the symbol set is better approximated by a one di- 
mensional parameter space than by the two dimensional complex space, as noticed 
in [22]. This leads to the widely linear MMSE detectors. The interested reader is 
referred to [22] for further details on this topic. 

If the power of modulated symbols is not constant the so-called bias problem of 
the linear MMSE detector arises. In this case, the unbiased linear MMSE detector 
should be adopted. Further details on it can be found in [17]. 

2.2.4 Parallel Interference Cancellation 

Historically, the linear parallel interference cancellation (PIC) approach was pro- 
posed in [23,24] to improve the performance of the nonlinear PIC techniques pro- 
posed first by Varanasi and Aazhang in [25]. 

Linear PIC detectors answer to the need of avoiding the matrix inversion required 
in the linear MMSE detector and perform substantially better than the matched 
filter. 

They rely on simple processing elements and are constructed around the matched 
filter concept. The first estimate of the signal at the output of the matched filter 
is utilized to estimate the interference from all users. This estimation is subtracted 
from the original signal and an improved estimate of the transmitted symbols is 
performed. The PIC detectors are based on the iteration of this procedure. The 
linear PIC detectors differ from the original PIC detector in [25] in the fact that 
they benefit from the soft estimates of the interference while the latter estimates 
the interference making use of detected symbols. 



2.2 Linear Multiuser Detection 13 

Given bi-1, the soft estimates of the symbols at the ( i  - l ) th  iteration, the i th 
stage of a weighted linear PIC detector is described by 

where T is a scalar that can be conveniently designed to optimize the quantity of 
interference to be cancelled. In case of error on the estimates, a complete cancellation 
of the estimated interference obtained by assuming T = 1 can have a detrimental 
effect. The parameter T can be optimized to minimize this effect. 

The weighted linear PIC detector is given by 

with M E Z+ and 

The scalar coefficients W k  depends only on T but do not depend on any system pa- 
rameter, e.g. number of users, spreading factor, spreading sequences, channel gains. 
For T = 1 the weighted linear PIC detector reduces to the standard PIC detector. 

2.2.5 Polynomial Expansion Detection 

The polynomial expansion detectors approximate the inverse matrix (R+  a21)-I in 
the linear MMSE detector (2.1 l.)  by a matrix polynomial in the correlation matrix 
R so that 

M-l 
A 

b = E w ~ R ~ H ~ ~  (2 .15 )  

with M = 0, l , .  . . K - 1 and wk scalar coefficients designed according to some 
optimality criterion. 

The rationale behind this approximation is that a K X K matrix (R+ a21)-' can 
be expanded into a matrix polynomial of degree K. This is a direct consequence of 
the Cayley-Hamilton theorem. Let n ( x )  = C,=, a k x k  be the characteristic polyno- 
mial of the matrix R + a21 with coefficients a k ,  as well known, dependent of the 
eigenvalues of R + a21 or, equivalently" of the eigenvalues of R and on the variance 

5As well known, if Xi, i = 1,. . . , K ,  are the eigenvalues of R ,  the eigenvalues of R + a21 are 
X i + a 2 , i = 1  ,..., K. 
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a2.  Thanks to  the Cayley-Hamilton theorem R + a21 is a zero of ll(x), i.e. 

Substituting (R + a21)0 = (R + a21)-'(R + a21) in (2.16) yields 

with 

In contrast to  the weighted linear PIC detector, the weights Ge of a polynomial 
expansion detector depend on the system through the characteristic polynomial 
coefficients ak. Usually M < K so that (2.15) is only an approximation of the linear 
MMSE detector. In [26] the weights wk in (2.3.5) are designed by minimizing the 
average power of the soft output error between the full rank linear MMSE detector 
(2.11) and the polynomial expansion detector, i.e. 

where W = (wl, ~ 2 , .  . . , w ~ ) ~ .  
This criterion is equivalent to  the joint minimization of the mean square error of 

all received signals: 

The solution of the previous optimization problem is [26] 
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where is an M X M matrix whose elements can be expressed in terms of the traces 
of powers of the autocorrelation matrix R as 

and cp is an M-dimensional vector with elements cpi = t r ( ~ ~ ) .  
As in the case of linear PIC detectors, the matrix inversion required in the linear 

MMSE detector can be avoided. However, this approach requires the computation 
of t r ( ~ ~ ) ,  i = 1, . . . , 2 M  (complexity 0 (K3) )  and the inversion of an M X M matrix 
instead of a K X K matrix in order to compute the weights in (2.18). Therefore, the 
complexity order of polynomial expansion detection is determined by the complexity 
of the weight computation. 

An alternative design criterion for the weights has been proposed in [l81 for CDMA 
systems with random spreading and with perfect power control, i.e. A = I. The pro- 
posed weights minimize the signal-to-total-power-and-noise ratio of a large system 
with K,  N + oo and -- p, where p is the system load of the actual finite system 
with finite number of users and finite spreading factor. 

Thanks to the properties of random matrices, this asymptotic approximation of 
the weights makes them independent of the spreading sequences. If M << K ,  it 
enables a low complexity computation of the weights with negligible complexity by 
using the asymptotic spectral analysis of random matrices. With this design of the 
weights, the complexity order of polynomial expansion detection is determined by 
the complexity of the multiplications in (2.15). Asymptotically and for equal powers, 
the weight design in [l81 is equivalent to the minimization of the MSE proposed 
in [26]. We will elaborate further on this equivalence in Chapter 3. 

2.2.6 Multistage Wiener Filters 

The reduced rank multistage Wiener filter has been proposed first in [27] as a byprod- 
uct of a multistage decomposition of the Wiener filter for the estimation of a scalar 
process when the observed signal is a vector process. The analytical description of 
such a decomposition is quite cumbersome and not directly necessary for the future 
developments in this work. Therefore, we omit it here and focus on some proper- 
ties and equivalent representations useful for further studies. We refer the interested 
reader to [27-291 for analytical details on the original multistage Wiener filter rep- 
resentation. 

The reduced-rank multistage Wiener filtering is concerned with the compression, 
or reduction in dimensionality, of the observed data prior to Wiener filtering. A 
"good" rank reduction aims to minimize the MSE between the output of a filter 
in the projection subspace and the output of a filter using all observables. In this 



16 Chapter 2 - Linear Multiuser Detection and Random Matrices 

respect, the projection subspace method proposed in [27] is very effective and outper- 
forms other well known reduced rank techniques (e.g. principal components, cross- 
spectral methods [30]) as shown numerically in [27] and analytically in [28]. Because 
of the compression of the observed data prior to the Wiener filter the reduced-rank 
multistage Wiener filters provide only an approximation of the full rank Wiener 
filter. 

Equivalent representations of the reduced-rank multistage Wiener filter are ob- 
tained by projecting the observables onto the same projection subspace proposed 
in [27] and then performing a linear MMSE filtering of the projection. Throughout 
this section, these equivalent representations are illustrated. 

Let us consider the CDMA system in (2.7) and let us denote with xM,k(H) the 
M-dimensional projection subspace for the estimation of the kth user symbol by 
the reduced rank multistage Wiener filtering in [27ICi. Let Bk be the matrix whose 
column vectors form a possibly nonorthogonal basis of xM,k(H). The projection of 
the observed signal onto x ~ , k ( H )  yields 

where y' is an M-dimensional column vector. 
The subsequent linear MMSE filter in x M , k ( H )  satisfies the Wiener-Hopf equation 

with 
I IH 

E{Y y } = (B:B~)-'B:(T + O ~ I ) B ~ ( B , H B ~ ) - ~ ,  
T defined in Section 2.2.3, and 

For further studies, it is convenient to define 

The soft estimate is given by 
h H H bk = wk Bk Y. 

6To avoid to go into the details of the reduced rank multistage Wiener filter in [27], we intentionally 
do not specify the subspace xM,k(H) and its basis here. Later on in this section, we will present 
several possible bases of xM,k(H) of practical interest. 
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The reduced-rank Wiener filter computes the M statistics7 

Then, it filters xk by wk. 
Different choices of the basis of x ~ , ~ ( H )  yield equivalent representations of the 

reduced-rank multistage Wiener filter. Bases of xM,k(H) are given by [28]: 

M-l 
X M , ~  (H) = ~ p a n { U F h k ) ~ = ~  

with U k  = T - hhf  + a21 or U k  = T - hkhf  and have been adopted in several 
works [13,14,28]. With this choice of the basis of xM,k(H) the reduced rank Wiener 
filter is given by 

M-l  
h 

bk = C ( ~ k ) ,  ( ~ % h k ) *  Y. 
m=O 

Although filters using different bases are equivalent in the sense that they show 
equal performance, the choice of the basis of the projection subspace can have rel- 
evant effects on the complexity of the detector. We will elaborate further on this 
aspect in Section 3.3. 

Hereinafter, we refer to the reduced rank multistage Wiener filters shortly as 
multistage Wiener filters or MSWF. 

2.3 Performance Analysis 

2.3.1 Performance Measures 

Very useful performance measures in multiuser communication systems are the bit 
error rate (BER), i.e. the probability of decoding erroneously the transmitted bits, 
and the symbol error rate (SER), i.e. the probability of detecting erroneously the 
uncoded symbols. The analytical computation of BER and SER in a multiple access 
system is far from being trivial. They depend on the set of modulation symbols B. 
The former depends also on the mapping. In order to simplify the computation of 
these performance measures we consider the simple case when all users transmit bi- 
nary, equiprobable, antipodal symbols and the received signal is impaired by additive 
white Gaussian noise. If C is the linear transformation applied to the received vector 
y and CB is its kth row, SO that the detected bit of user k is bdet,k = quantB(cfy), 
then the probability of detecting erroneously bk, conditioned on bk = 1 and on the 

'Hereinafter, with an abuse of denomination, we refer to this computation as "projection". 
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vector of interfering bits bI = (bl,. . . bkFl, bk+l,. . . bK), is given by 

2 

where Q(z) = S:" e-kdt. The error probability is obtained by averaging over 
all sequences of interfering bits bI: 

We can recognize by inspection that the computation of has a complexity 
exponential in the number of interfering users. However, the average error probability 
can be accurately approximated by 

where SINRk is the SINR of user k a t  the output of the detector C. The reader 
is referred to  Section 3.4 in [l61 for the rationale behind this approximation. The 
accuracy of this approximation is supported by the results in [31]. Whereas a t  low 
signal-to-noise ratios the approximation (2.21) is generally good, for high signal-to- 
noise ratios it may be unreliable. 

Equation (2.21) shows the relevance of the SINR at  the output of a detector as 
performance measure. As it will be clear in the following, the output SINR of a 
linear detector can be computed with low complexity also for CDMA systems with 
a large number of users. 

Denoting by Pk and P the useful power of user k and the total power at  the 
output of the linear detector C ,  respectively, the output SINR of C is given by 

A performance measure widely used in multiuser communications is the multiuser 
efficiency. In order to  introduce the concept of multiuser efficiency, we define the 
eflective energy of user k to  achieve a certain target bit error rate BERo. It would 
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be the energy that user k would require to achieve BERo in a single-user Gaussian 
channel with the same background noise level and maximum-a-posteriori (MAP) 
detection. Given BE&, the multiuser efficiency of user k is the ratio between the 
effective energy and the actual energy required for user k to achieve BE& with the 
detector in use. This concept can be formalized in the following definition. 

Definition 1 Let E,k(~2, R, det) denote the average symbol error probability of 
user k after transmission through the multiple access channel with covariance ma- 
trix R and additive white Gaussian noise with variance a2 and after detection with 
detector det. The multiuser eficiency of user k with detector det is the number qk 
such that - 

p e , k  (a2, R1 det) = P e , k  (a2/qkl 1 1  MAP). (2.23) 

The identity matrix in the r.h.s. of (2.23) guarantees that the channel is free of 
multiple access interference. 

Since Fe,* (a2/rlk, I, MAP) Q (qk 9) , the substitution of (2.1 1) in (2.23) 

yields 
U 

rlk = - 
hPhk 

SINRdet,k 

where SINRd,,k is the SINR of user k at the output of detector dec. Since the 
effective energy is never greater than the actual energy required by user k to achieve 
the same BER, rlk = [O, l]. 

The concept of multiuser efficiency can be illustrated graphically. Let us plot, in 
logarithmic scale, the BER of user k at the output of detector det as a function of 
the SNR of user k in the following two cases: 

(a) The channel of user k is not impaired by MA1 and MAP detection is performed 
at the receiver. 

(b) User k transmits its signal through the real communication system to be an- 
alyzed, i.e. a system affected by multiuser interference and equipped with a 
multiuser detector. 

The curve describing scenario (a) is referred to as curve (a). Similarly, curve (1 ) )  is 
associated to scenario (I:)). For BERo, a fixed value of BER, the multiuser efficiency 
in decibels is the negative shift that would bring the curve (b) to intersect the curve 
(a) in BERo. Figure 2.1 illustrates this graphical interpretation. 

The multiuser efficiency is a very interesting and useful performance measure 
in the performance analysis of large systems, i.e. when the number of users and 
the spreading factor of the system tend to infinity with their ratio converging to a 
constant. In fact, we will see in the following sections that, asymptotically, qk is a 



2 0 Chapter 2 - Linear Multiuser Detection and Random Matrices 

Figure 2.1: Graphical illustration of the concept of multiuser efficiency. 

function of the SNR and of the system load independent of user k for some relevant 
detectors. 

The asymptotic multiuser e f ic iency  is defined as the multiuser efficiency for van- 
ishing noise: 

It can be shown that it measures the slope with which 'P,,k goes to  zero (in loga- 
rithmic scale) in the high SNR region (see [16]). The graphical interpretation of the 
multiuser efficiency in Figure 2.1 shows that the asymptotic multiuser efficiency r]o ,k  

is a nonzero constant when curve (a) tends to  be parallel to  curve (11) in the high 
SINR region. When the BER does not vanish as the SNR goes to  infinity, as for the 
curve (c), or it vanishes with slower rate than curve (a), the asymptotic multiuser 
efficienpy vanishes, i.e. q 0 , k  = 0. 

The near-far resistance of user k is defined as the asymptotic multiuser efficiency 
minimized over the received energies of all interfering users, i.e. 

being ajj the received signal amplitudes introduced in Section 2.2.1. 
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2.3.2 Matched Filter 

The SINR at the output of a matched filter is obtained from (2.22) for c k  = hk 

If the spreading sequences are not orthogonal the error probability does not vanishes 
as a2 tends to zero [16]. This implies that the single user matched filters suffer from 
zero asymptotic multiuser efficiency, unless the spreading sequences are orthogonal: 

1 sFsk = O V i  # k 
rl0,k = 

0 otherwise. 

The large system performance under the assumption of random spreading has 
been investigated in [10,11]. The asymptotic multiuser efficiency, as N, K -+ oo with 

+ p, converges in probability to a deterministic value that is independent of the N 
spreading sequences and the users. It is a constant that characterizes unequivocally 
the detector and provides an insightful description of its performance. 

Let us assume that the sequence of the empirical eigenvalue distributions of the 
matrix AHA converges to a limit c.d.f. FIA12 (X) as the number of users tends to 
infinity. The limit multiuser efficiency as K,  N + oo with 5 -+ ,O is given by 

mr = (l + $. / AdfiAl2 (A)) . 

With random spreading, the asymptotic performance is simply described by the 
system load P, the variance of.the noise 02, and the mean of the received powers. 

It is straightforward to verify that the asymptotic multiuser efficiency vanishes 
for large systems. 

2.3.3 Linear MMSE Detection 

The SINR at the output of a linear MMSE detector can be derived from (2.22) 
taking into account that c k  = hf(R + a21)- l .  It results as 

Theorem 1 allows us to derive a simple relation between the SINR at the output of 
the linear MMSE detector and the MSE. In fact, (2.10) for Cb = I yields 
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and thus the following relation holds: 

The linear MMSE detector is also the linear detector maximizing the SINRs of all 
users. This property can be verified by maximization of (2.22) with respect to c k .  

The SINR at the output of the linear MMSE detector depends on the spread- 
ing sequences of all users, the channel realization, and the variance of the noise. 
Therefore, this performance measure does not provide general indications on the 
system behaviour. Better insight into the system performance is provided by a large 
system analysis. This asymptotic analysis investigates systems whose dimensions go 
to infinity with their ratio converging to a constant. It assumes random spreading 
sequences and benefits from the theory of random matrices. The asymptotic SINR of 
linear MMSE detectors in flat fading channels has been derived for spreading matrix 
S with i.i.d. entries in [10]. Systems with orthogonal spreading matrices modelled 
by random isometric matrices have been considered in [12]. The convergence rate 
has been investigated in [32]. 

The following theorem recapitulates the result for random spreading matrices with 
i.i.d. elements. 

Theorem 2 [l01 Let us consider the system model (2.7). Let the N X K matrix S 
be a random matrix whose entries are centered i .  i.  d. with variance E{IsiJ 1 2 }  = and 
fourth moment such thatt' limN,, N2E{ls, 1 4 }  < +m. Let the empirical distribution 
of the received powers lakkI2 converges to a fixed distribution q A I 2 ( X )  as K -+ m. 
Then, conditionally on lakkI2, the received power of user k, the SINR of user k at 
the output of a linear MMSE detector converges in probability to the unique solution 
to the following fixed point equation, as K ,  N + m with 5 4 P: 

where the expectation is taken over the limiting c.d. f. q A 1 z  ( X )  of the received powers 
of the interferers. 

SINR a2 The multiuser efficiency can be derived from (2.26) by substituting qk = lakx;2 . 
This yields l 

8Note that the constraints on the chips of the spreading sequences are verified in cases of practical 
interest (see e.g. binary spreading or Gaussian spreading). ~he'constraint on the variance takes 
into account the usual normalization on the spreading sequences to have unit energy. The 
constraints on moments higher than 2 require that the higher moments of n s t j  are upper 
bounded. This is a mathematical constraint verified in physical systems. 
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The multiuser efficiency is independent of the user and characterizes unequivocally 
the system. 

The spectral efficiency of CDMA systems with linear MMSE detectors has been 
investigated by Shamai and Verd6 for AWGN channels [l11 and flat fading channels 

2.3.4 Parallel Interference Cancellation 

The weighted linear PIC detector (2.13) can be regarded as a polynomial expansion 
detector with nonoptimized weights (2.14). The filter of user k is 

with T = H H H .  
The SINR of user k is obtained by substituting (2.28) in (2.22). For finite systems, 

SINRk is a random variable depending on the channel realizations, the variance of 
the noise, the spreading sequences and the parameter T .  

The large system performance of a modified version of the weighted PIC detectors 
(2.13) is analyzed in [34]" assuming equal received powers, i.e. A = 01. The 
weighted PIC detector (2.13) is substituted by 

where Swk is the matrix obtained from S by suppressing s k ,  the kth column of S .  
If the spreading matrix S satisfies the same assumptions as in Theorem 2, SINRk 
converges to a deterministic value as K, N -+ m with 5 -+ P,  

- 
with = (Wo,Ti71,. . . , W M - I ) ~ ,  (PMS = (Ppi, , P M ~ ~ ) T ,  

order to keep a uniform approach in presenting the system performance, the expression of 
SINRk proposed in this work is equivalent but not identical to the the expression in [34]. 
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ve are the moments of the MarEenko-Pastur distribution [35]: 

The following will be shown in Chapter 3: 

m The complexity of the weighted PIC filter in (2.13) is lower than the complexity 
of the modified version (2.29) by a factor of K' if the detection of K' users is 
required. 

m The performance of the weighted PIC detector in (2.13) coincides with the 
performance of the modified PIC detector (2.29) only in case of equal received 
powers. 

A general framework that enables the performance analysis of standard PIC detec- 
tors is presented in Chapter 3. The results in Chapter 3 can be applied to the analysis 
of PIC detectors with unequal received powers and multipath fading channels. The 
performance of PIC detectors in asynchronous CDMA systems can be analyzed ben- 
efitting from the general results in Chapter 4. PIC detectors for CDMA systems with 
spatial diversity can be investigated using the results in Chapter 5. 

2.3.5 Polynomial Expansion Detector 

The asymptotic performance of polynomial expansion detection has been analyzed 
in [l81 for the case of random spreading and matrices with i.i.d. entries and equal 
received powers. If the matrix S satisfies the conditions of Theorem 2, the limit 
SINR of user k, as K, N + oo with 5 + 8, is deterministic and given by1': 

with 'PMs and vMs defined in Section 2.3.4. 

The performance of the polynomial expansion detectors for flat fading channels 
and multipath fading channels is investigated in Chapter 3. The performance analy- 
sis of asynchronous CDMA systems or systems with spatial diversity is based on the 
results presented in Chapter 4 and Chapter 5, respectively. 

1°As for the PIC detectors, we propose an expression for the SINR different but equivalent to the 
expression in [l81 to keep a uniform approach. 
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2.3.6 Multistage Wiener Filtering 

The asymptotic performance of the reduced rank multistage Wiener filter (MSWF) 
has been analyzed in [28,29]. For large1' systems with perfect power control, i.e. equal 
received power for all users, the SINR converges to the deterministic value given in 
(2.32). In this scenario, MSWF and polynomial expansion detectors have the same 
performance. This supported the erroneous belief of their equivalence [36-381 in 
the general case. The equivalence of MSWF and polynomial expansion detectors is 
disproved in Chapter 3. 

Based on the following theorem, the performance of MSWF can also be expressed 
as a continued fraction. 

Theorem 3 [28] Let S be as in Theorem B and A = P I .  As K = ,ON -+ oo the 
output SINR of the rank M MSWF converges in probability to the limit 

SINRM = 
P 

P 
for M 2 1 

a2 + P  
1 + SINRM-i 

P is the large system limit of the output SINR for with SINRo = 0. SINRi = m 
the matched filter. 

Thus, for example 
D 

In absence of background noise SINRM = C:=:=, h. This relation shows two impor- 
tant characteristics of the MSWF that hold also for more general situations than in 
absence of noise and can be verified both analytically and numerically: 

m The rank of the MSWF needed to achieve a target SINR within some small E 
of the full rank SINR does not scale with the system size ( K  and N). 

m As M increases, the limit SINR converges rapidly to the limit SINR of the full 
rank MMSE detector [28,39]. Numerical results 1281 show that the full-rank 
MMSE performance is essentially achieved with M = 8, for SNRs and system 
loads P  of practical interest. 

In analogy to the uniform power case, a continued fraction expression of the limit 
SINR is suggested in [28]. Let q A 1 2 ( X )  be an arbitrary distribution of the received 

llIn this work we refer to systems with number of users and spreading factor that goes to infinity 
with ratio converging to the system load P as large CDMA systems. 
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powers. Then, the limit SINR at  the output of a rank M MSWF is approximated 
by: 

P 

Recently, an exact continued fraction expression of the limit SINR of MSWF has 
been proposed in [38]. 

2.4 Useful Results from Random Matrices 

In quantum mechanics, the energy levels of quanta are not directly observable, but 
can be characterized by the eigenvalues of matrices of observations. The empirical 
distribution of the eigenvalues of a random matrix is very complicated for large ma- 
trices. This fuelled the research on the limiting spectral analysis of large dimensional 
random matrices in the 1950s. 

The application of random matrix theory to  signal processing [40] and analysis of 
communication systems [8,10,17,41-431 goes back to  the 1990s. Since then, random 
matrix theory received much attention because random matrices appear in many 
applications of statistics and communication theory. 

This section introduces some basic results on random matrices that will be useful 
in the remainder of this work. For general short introductions to  random matrices 
and free probability the interested reader is referred to [44-461. Monographs on these 
topics are due to  Mehta [47], Girko [48], Voiculescu [49], and Hiai and Petz [50]. 
Applications of random matrices to  communication theory are presented in [51]. 
This reference list does not claim to be exhaustive. 

A random matrix of dimensions N X K consists of NK random elements and can 
be described by the joint distribution of its elements. 

As an example, let us consider an N X K matrix S with i.i.d. zero mean entries of 
variance k .  As N is finite, the eigenvalues of the matrix T = ssH are random. Let 
X,, n = 1,. . . , N denote the eigenvalues of T and let l (x )  be the indicator function 
on a right unbounded interval, i.e. l (x )  = 1 for X 2 0 and zero elsewhere. The 
empirical distribution of the eigenvalues F$~'(.N)(X) = C:, 1 ( X  - X,) is a random 
function depending on the realization of the matrix S .  Five empirical distributions 
of eigenvalues of a matrix T are plotted in Figure 2.2. They correspond to five inde- 
pendent realizations of the matrix S with constant aspect ratio" X = f and various 
sizes of S, namely K = 4,8,64,256,1024. For small matrices the empirical distri- 
bution of eigenvalues is completely arbitrary in a nonnegative support. However, 
as the matrix size becomes large the empirical eigenvalue distribution of T seems 

12The aspect ratio is the ratio of the number of columns to the number of rows of a matrix. 
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Eigenvalues h 

Figure 2.2: Empirical eigenvalue distributions of five independent realizations of the 
K 1  matrix T = ssH, with different size of S but equal aspect ratio P = = Z, namely 

K = 4, 8, 64, 256, 1024. 

to converge to a deterministic distribution function. In Figure 2.2, the empirical 
eigenvalue distributions for K = 256 and K = 1024 are indistinguishable. 

The convergence observed in Figure 2.2 is a general property. In fact, as K, N + cm 
with ratio converging to a constant value P, the empirical eigenvalue distribution 
of T converges to a deterministic function known as MarCenko-Pastur distribution. 
The corresponding probability density function, for aspect ratio 5 = P, is 

.\/- (1 - f i) - - ~ T ( W  = 
" ~ < ( l + f i ) ~  

(1 - P)S(A) elsewhere. 

Its moments have been already introduced in (2.31) and this result has been utilized 
in [ll, 17,34,52] to analyze the performance of multiuser detectors in terms of SINR, 
multiuser efficiency, or spectral efficiency. Since the asymptotic eigenvalue distrib- 
ution is deterministic, the expectation of any function g(X) with respect to FT(X), 
i.e. E{g(X)) is deterministic. In particular, the normalized traces k t r ~ ~ ,  l E Zf, 
converge to the deterministic eigenvalue moments m& = p! in (2.31). Figure 2.3 
illustrates this property. Let us consider random matrices S with different sizes, but 
identical aspect ratios. For each random matrix we generate 100 independent real- 
izations. In Figure 2.5, %& and %$, the normalized traces of T' and T2, are shown 
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Let U and V be an N X N Hermitian matrix and a K X K diagonal matrix, 
respectively. Let S be defined as above, i.e. S is an N X K matrix with i.i.d. zero 
mean entries of variance k. The limiting spectral distribution of the random matrix 
U + S V S ~ ,  with S, U ,  and V independent, has been investigated by MarEenko 
and Pastur [54] and Silverstein and Bai [55]. 

Theorem 4 [55] Let the matrix SN, N E Z+, be an N X K matrix with complex 
(NI random i.i.d. entries qj such that ~{lsifi) - E{sifi)}12} = h. Let V K  be a K X K 

diagonal matrix with real entries whose empirical eigenvalue distribution converges 
almost surely in distribution to a probability distribution function Fv, as K --+ oo. 
Finally, let UN be a Hermitian N X N matrix whose empirical eigenvalue distribution 
converges almost surely to a nonrandom distribution function Fu. 

If SN, VK, and U N  are independent and K and N tend to infinity with ratio 5 
converging to the constant P, then, almost surely, the empirical distribution of the 
eigenvalues of UN + SNVNS~;: converges, as N + m, to a nonrandom distribution 
F ,  whose Stieltjes transform G(z) satisfies 

where Gu and Gv are the Stieltjes transforms of FU and Fv, respectively. 

Theorem 4 has been applied to derive Theorem 2 and Theorem 3l" Additionally, it 
has been utilized for the analysis of CDMA systems in [33,57-601. 

--H Girko analyzed the limiting spectral distribution of Gram random matrices1%= 
with elements of E statistically dependent and possibly not identically distributed. 
More precisely, Girko consider matrices a of size nl X n2, with nl  = nl(n), 7-12 = 

n2(n), and n E Z+, structured in blocks of size ql X q2  such that nl  = qlpl(n) and 
n2 = q2p2(n). nl(n) and n2(n) are increasing functions of n. The ( i ,  j)-element of E 
is denoted with 6; the (i, j)-block of H is denoted by 9$). The matrix E is of the 

13The proofs of Theorem 2 in [l01 and Theorem :) in [56] clarify the existing relation between the 
SINR at the output of a linear MMSE detector and the output of a reduced rank MSWF for 
user k and the eigenvalues moments of the matrix R - hkhk with hk and R defined in Section 
2.2.2 and Section 2.2.3, respectively. Additional examples are in (2.30) and (2.32). Note that 
these relations hold only for special cases as the linear MMSE detectors and the reduced rank 
multistage Wiener filters. A more general relation between the SINR of a large class of linear 
detectors and the diagonal elements of the matrix R will be discussed in Chapter 3. 

14The Gram matrix of the vectors { x l ,  2 2 , .  . . x K )  with respect to the inner product < S , .  > is the 
K X K matrix G = (gi j ) i , j=l  ,,,, K defined by gi j  =< x j ,  xi > . Defining X = ( x l ,  x2, . . . x K ) ,  
G = X ~ X .  
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following form 

j=l, ...,p2 We adopt the notation E = (S. 23 .). %=l, ...,p l to represent the matrix E by its elements 
-(n) j=1,...,p2 Eij and the notation 8 = (c,, ,.,., pl to represent the matrix E as a block matrix. 

Girko's results are focused on random matrices E whose blocks are independent 
but, within a block E:,") the elements are possibly correlated and with nonzero 

mean. Girko's theorem shows that, under some conditions on the statistics of E!,"), 
i = 1, .  . . ,p1 and j = 1, .  . . , p2, the sequence of the empirical eigenvalue distribution 

--H of the matrix cc converges almost surely to a deterministic probability distribu- 
tion function as n -+ m. This distribution function is characterized by its Stieltjes 
transform. The Stieltjes transform is obtained as solution of a system of equations 
called canonical sys tem of equation. Let us denote by A!,") the mean of the matrix 

E ,  i.e. A!,") = E{=!,")}. The theorem requires that some conditions on /A$)/, the 

spectral norm of the matrix A!;), and on 1 1 ~ ~ ; " )  - A!;)//, the F'robenius norm of the 

centered matrix H!,") - A:;), are satisfied. 

The following theorem summarizes Girko's results. 

j=l ... n2 Theorem 5 ' "611 Let 8,, = (5. v .) %=l . ... nl be a random matr ix  composed of com- 
plex blocks Elf) of size ql x Q. W e  consider n o n  symmetric block matrices EplXp2 of 
the form 

whose entries are the complex matrices E;;). pl, p2, ql , q2 are certain positive integers. 
p1 and p2 are increasing functions of n E Z+. They  go to  infinity as n t m. Let 

(n) the random blocks c, , i = l . .  p j = l . .  . p be independent for every n, 

E{=!,")} = 2.7 and 

15The discrepancies in (2.37) and (2.38) between the statement of the theorem here and in [61] 
are due to typos in [61] discussed with the theorem's author in personal correspondence. 
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Let Lindeberg's condition be satisfied, i.e. for every r > 0 ,  

where l{, l , j:)-Aj~)ll>Tl(E$)) is the indicator function of a random event equal t o  1 

i f  the random argument E$) satisfies the condition 11E$) - A E ) / ~  > T and zero 
otherwise. Additionally, let 

P2 P1 

lim [ max c A!;) 1 + m- (2.36) 
n--too i=l, ...,p l i=l, ...,p 2 , j=1 

EH Then, with probability one, ~n { X ,  ~ p ~ q ~ u ~ ~  ql xp2q2 ), the empirical eigenvalue 
distribution of the matrix E,,,, xp2q2 YPlq l  X P 2 q 2 ,  satisfies 

lim ( / ~ n { x ,  =plql  X P 2 q 2 E ~ q 1  xP2. 1 - Fn(x)  I Dd' 0 ,  
n-+w 

where & ( X )  is  the distribution function whose Stieltjes transform is equal to  

The expectation is taken over c,, i = 1 , .  . . , nl and j = 1 , .  . . , n2. Aplxp2 is a block - - (A ,  .)<=l... P2 - (1)  - ( 2 )  
matrix, mean of E,, x p 2 ,  i.e. A,, - 

2.7 %=I ...PI cpl xPl and c,, X P Z  are diagonal 
block matrices, i.e. 

( 1 )  whose matrix elements Ckk ( 2 )  of size ql X ql and ~ g ( t )  of site q2 X q2 satisfy the 
canonical system of equations: 

k= l , .  . . ,P I ,  (2.37) 
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(1) There exists a unique solution C,,, C!:) to the previous canonical system of egua- 
(1) tions in the class of analytic functions C,, (z) and Cf1(z),  k = l . . . , p l = 

1, . . . , p2 such that C:i(z) and C::)(z) a n  definite positive for Re(z) > 0. 

At first glance Theorem 5 seems to  be of little practical use since the system of 
canonical equations (2.37) and (2.38) consists of infinite equations as K, N + m .  
However, there are matrices of practical interest for which the system of canonical 
equations reduces to  a finite number of equations, although K, N + m .  

This result has been applied to  determine the capacity of MIMO Ricean channels 
in [62,63]. In such a case, the systein of canonical equations reduces to  two equations. 
In Chapter 5 it will be applied to  the analysis of CDMA networks with multiple 
antennas a t  the receiving sites. The system of canonical equations consists of a 
number of equations equal to  the square of the number of receiving antennas, in the 
most general case. 

An intermediate result due to  Bai and Silverstein [64] plays an important role 
in the following of this work. It analyzes the behaviour of a quadratic form QN = 

x$CNxN, with CN an N X N complex matrix and XN an N-dimensional random 
vector 

Lemma 1 [64] Let XN be an N-dimensional complex random vector with i.i.d. 
zero mean entries such that E { l ~ ~ 1 ~ }  = and let CN be an N X N complex matrix 
independent of XN. Then, for any p 2 2 

where K, is a constant that does not depend on N ,  C N ,  or the distribution of xj. 

As a direct consequence of the previous lemma, for large matrices the quadratic 
form QN is well approximated by the normalized trace of C, 9 for large N .  Since 

N trCrJ = Xi 
N N , where Xi denote the eigenvalues of CN, the quadratic form QN is 

well approximated also by average of the eigenvalues of CN. This is formalized in 
the following lemma. 

Lemma2 Let XN and CN be as in Lemma I .  Additionally, let 
limN,,N3E{lxi16) < +m.  Let {CN) be a sequence of matrices CN such 
that F&~) ,  the corresponding sequence of empirical eigenvalue distributions, con- 
verges to a nonrandom limit distribution Fc and X P ~ F & ~ ) ( X )  < +m for p = ! 
and 2 and VN1" Then, as N + m, the quadratic form QN = x$CNxN converges 

16This result is presented in the literature (e.g. [65]) under more restrictive conditions: Fc is 
required to have bounded support. 
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almost surely to the first moment of Fc, i.e. 

a.8. trCN lim x;cNxN = lim - = /XdFc(X). 
N-+m N-+m N 

The proof of this lemma is provided in Appendix A. 
In the following lemma, a similar result is established for the form x:CNyN, 

where X N  and yN are two independent random vectors. 

Lemma 3 Let X N  and C N  be as in Lemma 2. Let yN be a vector similar to X N  

and independent of it and of C N .  Then, 





3 Efficient Multistage Detection for 
Synchronous Systems 

3.1 Introduction 

This chapter is focused on the design and analysis of low complexity multiuser 
detectors for synchronous CDMA systems with flat and frequency selective fading 
channels. 

Making use of some properties of random matrices discovered in this work we 
introduce two multistage detectors with linear complexity order per bit, the same 
complexity order as the single user matched filter. A unified framework capable of 
describing large classes of multiuser detectors, such as the PIC detectors, the multi- 
stage Wiener filters and the polynomial expansion detectors, is adopted. A general 
result for the asymptotic performance of all detectors that fit into this framework is 
presented. 

As shown in Chapter 2, the linear MMSE detector yields substantial improve- 
ments in performance, while maintaining a lower complexity than the optimum 
detector investigated in [15]. However, in systems with time-varying multiple access 
interference - due to, for example, long spreading sequences or fading channels - 
its computation in real time is very expensive. In fact, the linear MMSE detector 
requires the inversion of matrices that are at least of size min(K, N) X min(K, N), 
where K is the number of active users and N the spreading factor. When the system 
size is large, the complexity of a linear MMSE detector is prohibitive for real-time 
applications. 

There is a large class of multiuser detectors that avoids matrix inversion: the linear 
multistage detectors. They are characterized by a modular structure and consist of 
a projector onto a subspace and a subsequent filter. The PIC, the MSWF filters, and 
the polynomial expansion detectors presented in Chapter 2 belong to such a class. 
All these detectors use the same Krylov subspace [36]. Hereafter, we refer to this 
subspace as the  projection subspace. As already noticed in Section 2.3.5, the Krylov 
subspace has several useful properties: 

m It need not be tracked. 
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The subspace rank required to  achieve a fixed level of performance does not 
scale with the system size [28]. 

The multistage detector output SINR converges exponentially in the detector 
rank towards the linear MMSE detector output SINR [39] so that a low number 
of stages'is sufficient to  achieve near-linear MMSE performance. 

The use of subspace methods does not allow for a significant reduction of the 
complexity order by default. In fact, the filter design, optimum in an MSE sense, 
has the same complexity order as the linear MMSE detector. A significant reduc- 
tion in complexity can be obtained by approximating the optimum filter coefficients 
(also called weights) by asymptotic approximations [18,52] at  the cost of a slight 
degradation in performance [66] due to  mismatch. The asymptotic multistage de- 
tectors, proposed first in [18,52], take advantage of some asymptotic properties of 
random matrices such as the convergence of the eigenvalue moments to  deterministic 
limits. These are independent of the spreading sequences and the channel realiza- 
tions. Since these values can be expressed as a linear function of a small set of 
parameters, the asymptotic multistage weights can easily be computed off-line as 
a function of the eigenvalue moments. The complexity reduction promised by the 
use of asymptotic filter coefficients in [18,52] inspired studies to  design asymptotic 
weighting in different scenarios [37,67-701. Multistage detectors for systems with 
multipath fading channels have been considered only recently in parallel works for 
the downlink [13,14,70] and the uplink [13,69]. Cottatellucci and Miiller applied the 
multistage approach with asymptotic weights to  both multiuser channel estimation 
for multipath fading and symbol detection [69]. The asymptotic performance of mul- 
tistage detectors with no channel state information at  the receiver is also analyzed 
in [69]. However, the application of this approach to channel estimation is beyond 
the scope of this work and it will not be considered further. 

Thanks to  the negligible computational complexity of the asymptotic filter de- 
sign the complexity order of the detector is determined by the complexity of the 
projection onto the subspaces. Nevertheless, the projection complexity received lit- 
tle attention. In this work we consider jointly the projection complexity and the 
weighting complexity to  significantly reduce the detector complexity. From the point 
of view of receiver complexity, it is desirable to  perform the projection for all users 
jointly rather than using different projectors for each user if one wants to detect 
all users. In such a way most of the calculations of the projection become identical 
for all users and the complexity drops by a factor of K. This complexity reduction 
is possible only if the bases of the Krylov subspaces for all users can be chosen in 
an appropriate way to  support the joint projection. Fortunately, such a set of bases 
does exists. 
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The low complexity of weight design and the asymptotic performance analysis 
of multistage detectors using such a set stem from the asymptotic convergence of 
the diagonal elements of random Gram matrices and their positive powers. This 
convergence is established in this work for the first time. 

We design and analyze multistage detectors for CDMA systems in uplink with 
any kind of phase shift keying (PSK) symbol alphabets, random spreading, and 
multipath fading channels. We use subspace bases supporting the joint processing 
of all users so that all proposed multistage detectors have a linear complexity order 
per bit. From a conceptual point of view we focus on two asymptotic multistage 
detectors differing in the filter coefficients. Detector Type J-J uses a single set of 
weights satisfying the MMSE criterion jointly for all users. It is the counterpart with 
asymptotic weights of the polynomial expansion detector in Section 2.2.5. In detector 
Type J-I, the filter weights satisfy the MMSE criterion individually for each user. 
Detector Type J-I performs as well as the asymptotic multistage detectors in [13,37] 
but its complexity is  reduced by almost a factor of K on the uplink CDMA channel. 
The detectors in [13,37] will be referred to as detector Type 1-1 in the following. 

Our analysis applies to a wider class of detectors than just Type J-J and J-I. It 
is applicable to any multistage detector using the same projection subspace bases, 
e.g. the linear "standard" partial parallel interference cancellation detectors. The 
asymptotic analysis can also be applied to the multistage Wiener filter. In fact, the 
asymptotic performance of the MSWF, the Type 1-1 detector, and the Type J-I 
detector are the same. This observation shows also the actual relation between the 
polynomial expansion detector and the MSWF. In the literature, the idea that those 
two detectors are equivalent is widely spread, explicitly claimed in [36] and implicitly 
assumed in [37,38]. In contrast to this belief, we show that the two detectors differ 
and the MSWF outperforms the polynomial expansion detector in [26] for equal 
number of stages in general. The latter detector does not maximize the output SINR. 
This loss of optimality also affects the characteristics of its multiuser efficiency: In 
contrast to many of the other detectors analyzed in the literature, the multiuser 
efficiency of detector Type J-J depends on the received power of the user of interest. 

The MSWF and the polynomial expansion detector coincide asymptotically in 
case of equal received powers for all users and, under these conditions, they are also 
equivalent to the multistage detector proposed in [18]. Therefore, polynomial expan- 
sion detectors can be efficiently utilized in scenarios with classical power control' 
whereas they degrade in performance, compared to MSWF, in CDMA systems with 
power imbalances. 

We refer to control mechanisms that force the received power of all users to be equal as classical 
power control. These mechanisms are adopted in systems that do not adopt multiuser detection 
and thus suffer from near-far effects. However, the current developments [6] show that heavily 
loaded systems can benefit from power imbalances. 
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Similarly to the asymptotic analysis of the linear MMSE detector in Section 2.3.3, 
the performance and the weighting of both detector Type J-J and detector Type 
J-I are independent of the spreading sequences and the fading channel realizations. 
They depend only on few macroscopic parameters, namely, the number of users per 
chip, the received power statistics, the noise variance, and the received power of the 
user of interest. The analysis proposed in this work provides deep insight into the 
system behaviour and clear guidelines for the design. 

Recently, implementations of low complexity polynomial expansion detectors 
which do not benefit from the asymptotic approximation of the weights have been 
proposed in [71]. This approach utilizes an alternative basis of the projection sub- 
space obtained by a Gram-Schmidt orthogonalization (GSO) [72]. With such a basis, 
it is possible to avoid the asymptotic weight design problem at the cost of the GSO, 
which can cause numerical problems for fixed-point arithmetic. Both the polynomial 
expansion detectors with universal weights and the polynomial expansion detectors 
in [71] require the multiplication of the received signal by the basis vectors. However, 
while the former perform the subsequent processing with negligible complexity, the 
latter requires the GSO, and then, the application of the Lanczos algorithm (see 
e.g. [72]) for the inversion of a symmetric Hessenberg matrix. As all other polyno- 
mial expansion detectors, the detectors in [71] also suffer from power imbalances. In 
the absence of a perfect power control they have worse performance than the MSWF 
and Type J-I detectors as apparent from Figure 3.4 and Figure 5.1. 

These aspects of the polynomial expansion detector in [71] are magnified when 
the system is not synchronized. In fact, as it will be discussed in Chapter 4, the 
polynomial expansion detectors perform worse than the MSWF detectors also in case 
of perfect power control. Additionally, when applied to asynchronous systems, the 
finite approach in [71] has a complexity increasing with the length of the observation 
window, similar to the linear MMSE detector. In contrast, as it will be apparent in 
Chapter ;l, multistage detectors with universal weights keep the same complexity as 
the equivalent detect or for synchronous CDMA systems. 

The linear multiuser detectors considered in this work assume perfect knowledge 
of the spreading sequences and the channel gains for both the desired users and 
the interfering users. Typically, this information is not available in the downlink. 
Then, an alternative class of detectors has to be utilized: the adaptive linear multi- 
user detectors. They approximate the ideal MMSE filter making use of adaptive 
algorithms. In this case training sequences for the estimation of the linear MMSE 
detector have to be transmitted or the spreading sequence of the user of interest 
has to be known. A complete overview on adaptive multiuser detectors is beyond 
the scope of this work. The interested reader is referred to the bibliographical notes 
in [l61 and references therein. We emphasize here that adaptive implementations of 
MSWF are available [73-751 and their asymptotic performance has been analyzed 
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in [29]. 
This chapter is structured as follows. Section 3.2 introduces the system model and 

the notation. In Section 3.3, we discuss criteria for the choice of the subspace bases 
and for filter optimization. We analyze their impact on performance, complexity, and 
design. The design of detectors Type J-J and Type J-I with universal asymptotic 
weights is illustrated in Section 3.4. Section 3.5 provides a performance analysis 
in asymptotic conditions. Section 3.6 presents numerical results and simulations 
assessing the degradation introduced by the asymptotic multistage detectors when 
used for finite systems and compares detector Type J-J and detector Type J-I in 
terms of performance. Conclusions on the analysis and design of low complexity 
multistage detectors for synchronous systems with flat and frequency selective fading 
are drawn in Section 3.7. 

3.2 System Model 

Let us consider a synchronous CDMA communication system with spreading fac- 
tor N and K physical users, multipath fading, and additive noise at the receiver. 
Throughout this work the delay spread of the channel is small compared to the 
symbol interval so that the intersymbol interference can be neglected. Then, the 
equivalent baseband signals at the chip matched filter output are given by 

where y(n) is the N-dimensional received vector and b(n) is the K-dimensional 
column vector of transmitted symbols (one signal per each physical user) at the 
time instant n. The transmitted symbols belong to a finite alphabet in (C, they are 
zero mean and satisfy the relation E{b(n)b(p)H) = n(n )  is the N-dimensional 
additive noise vector at the time instant n.. The additive noise is circularly symmetric 
complex-valued white Gaussian with zero mean and variance 02. 

The influence of spreading, transmission amplitudes, and fading is described by 
the N X K matrix [65] 

H ( n )  = S(n)A(n).  

A(n) is the K L  X K block diagonal matrix of received amplitudes taking into account 
the fading channel amplitudes and the transmitted powers. It consists of blocks of 
size L X 1, assuming that the channels have impulse responses of lengths L with2 
L << N. a k  is the /cth block diagonal element of A. The multipath channels are 
perfectly known at the receiver. In the asymptotic design and analysis carried out 

This last condition is implied by the assumption that the delay spread of the channel is small 
compared to the symbol interval. 
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in this work, we assume that the sequence of the joint empirical distributions of 
(K) 1 K L  

a k ,  Fa (al,  a2, . . . , aL) = 3 Ck=l  ne=1 l (ae - (ak)l), converges almost surely, as 
K oo, to  a non-random limit distribution function F,(al, a2, . . . , aL) with upper 
bounded support. The eigenvalues of the matrix A H A  are given by Xk = aFak.  
Hereafter, we denote by q A 1 2  (X) their asymptotic distribution. The matrix of ran- 

Figure 3.1: Structure of the spreading matrix S(n) .  

dom signature sequences S ( n )  is an N X KL random block matrix in @ with blocks 
Sk = ( s ( ~ - ~ ) ~ + ~ ,  S(k-1)~+2,. . . , skL), 1 5 k < K ,  of size N X L. Its structure is shown 
in Figure 3.1. The elements in a column vector S ( k - 1 ) ~ + 1  are i.i.d. with zero mean 
and variance E { ~ s ~ , ( ~ - ~ ) ~ + ~  12} = h. Additionally, they are also i.i.d. from block to 
block. Within a block, the vector S ( k - l ) ~ + ~  is S ( k - 1 ) ~ + 1  cyclically shifted by s - l po- 
sitions. This downshift of the spreading sequence models the multipath fading. The 
cyclical downshift of the spreading sequence is a technical approximation justified 
by the assumption that L << N. These structures of the matrices A and S allow us 
to take into account the interchip interference due to  multipath fading. 

We adopt the following notation: 

p = for the system load; 

hk (n) denotes the kth column of H (n) ; 

T ( n )  = H ( n ) H ( n ) H ;  

R(n )  = H ( n ) H H  (n); 

HWk (n) is the N X (K - 1) matrix obtained from H (n) by removing the kth 
column; 
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By neglecting the intersymbol interference only quantities at the symbol-time index 
n appear in the system model. Therefore, the symbol-time index n will be omitted 
in what follows. 

3.3 Multistage Detectors 

3.3.1 Definitions 

A linear multistage detector of order M for user k is a multiuser detector performing 
1. a projection of the observed signal onto the Krylov subspace 

Note that, although other non-orthogonal bases slightly different have been 
proposed in literature too, these two" are capable to catch the main features 
of all non-orthogonal bases investigated in literature. 

2. A subsequent processing of the projections by a filter designed according to 
an optimality criterion. 

The choice of the Krylov subspace is motivated by two different observations. First, 
as shown in Section 2.2.3, the full-rank linear MMSE detector lies in xK,k(H), i.e. 
it is a linear combination of the basis vectors of x K , k ( H ) .  Second, the multistage 
filter output SINR converges exponentially in the filter rank M toward the full rank 
linear MMSE filter output SINR (see Section 2.3.6). Moroever, under the MMSE 
optimality criterion, the dimension M of the subspace needed to obtain a target 
SINR (e.g. within a small E of the full rank SINR) does not scale with the system 
size (i.e. K and N) [28]. 

Both the projection and the filter design can be performed jointly for all users or 
individually for each user. This influences both the performance and the complexity 
of the resulting multistage detector. The joint projection is obtained using the vec- 
tors in (3.3) as a basis of xMtk(H) .  In this case, the projector'' consists of a matched 
filter and M stages each of them performing respreading - filtering by H - 
and successive matched filtering. The corresponding multistage detector is shown 
in Figure 3.2. Using the vectors in (3.2), no joint computation of the projections is 
known for M > 2 and K different projectors are required. 

3About the identity of the subspaces spanned by the two bases in (3.2) and (3.3) see [28]. 
4We use here the word projection in the wide sense discussed in Section 2.2.6. 
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For the basis (3.3), the filter design can be performed jointly using the same 
filter coefficients for all users and choosing them, for example, by enforcing the 
minimization of the MSE averaged over all users [67]. Alternatively, we can design 
a different filter for each user minimizing the MSE individually. Table 3.1 shows the 
possible combinations and states the denominations. 

Table 3.1: Multistage detector classification. 

Joint 
Filtering 
Individual 
Filtering 

Detectors Type J- J are detectors with asymptotic weights approximating the poly- 
nomial expansion detectors in Section 2.2.5. Detectors Type 1-1 approximate the 
multistage Wiener filters in Section 2.2.6. Detectors Type J-I combine the advan- 
tages of detectors Type J-J in terms of complexity and of detectors Type 1-1 in 
terms of performance and are introduced in this work. Detectors Type J-I and Type 
1-1 adopt the same optimality criterion in the same subspace and differ only in the 
choice of the subspace basis. Therefore, they have identical performance. However, 
they need, in general, different weights. 

3.3.2 Complexity 

Joint 
Projection 

TYPE J-J 

TYPE J-I 

Being a subspace methods does not imply that the multistage detectors have lower 
complexity order than the full rank linear MMSE detector. In fact, if we choose 
the minimization of the MSE as optimality criterion, the complexity of the filter 
coefficient design is identical to the complexity order of the linear MMSE detector. 
However, by approximating the optimum filter coefficients with the corresponding 
asymptotic limits in large systems, i.e. as K, N + m with g + 0, as proposed 
in [18,52], the complexity of coefficient design becomes negligible with respect to 
the projection complexity. This justifies the efforts devoted to determine the as- 
ymptotic weighting in this work and, independently, in [13,14,37]. Referring to the 
denominations introduced in Table 3.1, the asymptotic weights of Type 1-1 detectors 
are designed in [13,14] for the downlink and in [13,37] for the uplink. 

The complexity order per bit, driven by the projection complexity for detectors 
with asymptotic filter coefficients, is shown in Table 3.2. Table 3.2 distinguishes two 
cases: a single user is detected, typically in the downlink, and all users are detected, 
typically in the uplink. When the multiuser detection can be performed jointly for all 

Individual 
Projection 

8 

TYPE 1-1 
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Table 3.2: Complexity order per bit ( K  = PN is the number of active users). 

users the complexity order per bit drops by a factor of K compared to the multiuser 
detection of a single user. In fact, for multistage detectors Type J-I and Type J-J 
the most of computations in the projection are common to all users, for the linear 
MMSE detector the matrix inversion is performed only once for the detection of all 
active users. Considering the advantages of the Type J-J and Type J-I detectors in 
terms of complexity with respect to Type 1-1 detectors and linear MMSE detectors, 
we focus on Type J-J and Type J-I detectors. 

Detect ion of 
all users 

O ( K )  

O ( K )  

Q ( K 2 )  

O ( K 2 )  

Detector 

SUMF 

TYPE J-J 
TYPE J-I 
TYPE I-P 
LMMSE 

3.3.3 Individual Filtering: Type J-I Detectors 

Detect ion of 
one  user 

O(K2)  

O F 2 >  

O(K2)  

O(K3)  

Projecting the received signal onto the subspaces X M , ~ ( H )  with M < K we obtain an 
M-dimensional non-sufficient statistic of the received signal. We denote this statistic 

The finite Type J-I detector for user k is defined as the linear transformation in 

X M , ~  (H)" 
M - l  

5For Type 1-1 detectors with one stage (M = 2) an implementation with complexity order O ( K )  
is possible if all users are detected (e.g. uplink). 

6Detectors Type J-J and Type 1-1 denote the detectors with asymptotic weights corresponding to 
polynomial expansion detectors and multistage Wiener filter, respectively. Thus, we keep the 
historical distinction between the finite optimum detectors and their asymptotic approximation. 
In contrast, detector Type J-I denotes both the finite optimum detector and the asymptotic 
approximation. In fact, the association of the Type J-I detector to the MSWF detector can be 
confused with a Type 1-1 detector with exact weights. It  will be specified in the context which 
detector we refer to. 
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that satisfies the MMSE criterion, i.e. the weight vector wk is given by 

= arg min - E { l i ~ f x ~  - bk112) . 
W k  

{ 
F'rom the second expression, the finite Type J-I detector reduces to scalar linear 
MMSE estimation on the non-sufficient statistic xk. Thus, the Wiener-Hopf theorem 
can be applied [20]: 

wk = @ i 1 9 k ,  (3.7) 

where Qk = E {xkxf}  and 9, = E {b;xk). It is straightforward to verify that the 
following expressions hold 

= arg  in E 
W k  

and 
(Ok = ( ( R ) k k ,  (R2)kk, - 7 ( ~ ~ ) k k ) ~ ,  

H m  C (TZk)mhk T y  - bk 

where ( R S ) k k  is the kth diagonal element of the matrix R'. 
The Type J-I detector is also the multistage detector in xM,k(H) that maximizes 

the signal-to-interference-and-noise-ratio SINRk of user k at the detector output. 
This will be shown in Section 3.3.5. 

The Type J-I detector for all users has structure 

where W, is the diagonal matrix whose kth diagonal element is the mth component 
of wk. It minimizes E { I I M ~  - bj12}. 

3.3.4 Joint Filtering: Polynomial Expansion Detectors 

In this section the concept of polynomial expansion detector presented in Section 
2.2.5 is revisited from a completely different perspective. The polynomial expan- 
sion detectors are presented here as a subspace method in analogy to Type J- 
I detectors. The polynomial expansion detector is the linear transformation in7 

7Note that in this case we consider the vector space of complex matrices of dimension K X N. A 
basis in a vector subspace consists of elements of the vector space. In this case, the elements of 
the basis are K X N matrices. 
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H m M-l 
XM (H) = span{H T )m=O , 

such that the scalar weights W, minimize the mean square error E { 1 1  Ly - b112}. 
Let us compare the polynomial expansion detector with the Type J-I detector. They 
differ in the weights: scalar weights characterize L while matrix weights appear in 
M. 

The weighting is 
W = @-lv (3.12) 

where the elements of the M-dimensional vector (o and the elements of the M X M 
matrix O can be expressed in terms of the traces of the powers of R as (0)ij = 

tr(Ri+j) + o2tr(RZtj-l) and = t r ( ~ 7 ) .  This implies (o = C:='=, rpk and O = 

CL1 Ox, with and (ok defined in (3.8) and (3.9), respectively. 
From the definition and the expression of polynomial expansion detectors in Sec- 

tion 2.2.5 it is evident that the polynomial expansion detectors minimize also the 
MSE between its own output and the output of a full rank linear MMSE detector. 

3.3.5 Performance 

For the full-rank linear MMSE detector, it is well known that the minimization of 
the MSE per user is equivalent to the minimization of the sum of the MSE of each 
user and also to the maximization of the SINR at the output of the filter for each 
physical user [76]. This is due to the fact that the detector is free to lie in the full 
space of the linear transformations that map (CN into (CK. This property does not 
hold if the detector is forced to lie in a specific subspace as in the case of multistage 
detectors. Here, a difference between the joint minimization of the MSE (proposed 
in [26]) and the minimization of the MSE for each user (proposed in [28]) appears. 
The maximization of the SINR is achieved only in the latter case. 

For any multistage detector in xM,k(H) with weight vector Wk, the MSE of user 
Ic is given by 

Recalling that E{xkxF) = Ok and E{xkbi) = (ox, we obtain 

MSEk = 1 - 2 Re ((o;?Ek) + mfakWk.  (3.14) 

The corresponding SINR for user Ic is given by 
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where Pk is the useful power of user k at the detector output and P is the total 
power. We have 

P = E { G ~ x ~ x ~ E ~ )  = @ @ k ~ k  (3.16) 

where e k  is a K-dimensional vector with all components equal to zero except the 
kth that is equal to 1. Thus, (3.15) becomes 

and 

for any weight vector Ek. Specializing (3.14) and (3.18) to Type J-I detectors with 
wk = wk in ( : 3 . ' 7 ) ,  we obtain 

H m  
(wk),hk T Hekbk 

Calculating the gradient of SINRk in (3.1 8) with respect to Ek it is possible to verify 
that the Type J-I detector maximizes each SINRk as already noticed in Section 3.3.3. 

For the polynomial expansion detector, the performance becomes with Ek = W 

in (3.12) 

= s F ~ ~ ~ ~ E ~ ,  (3.17) 

It can be shown that the polynomial expansion detector does not null the gradient 
of each SINRk or the gradient of SINRk. Therefore, the polynomial expansion 
detector does not maximize the SINR. Since the Type I-J detector with exact weights 
as well as the multistage Wiener filter do maximize the SINR, it also follows that 
the Type J-I detector outperforms the polynomial expansion detector in the same 
projection subspace. 
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Note that (3.21), the relation between SINRk and MSEk, also holds for the full- 
rank linear MMSE detector, while the equivalent relation (3.24) for the polynomial 
expansion detector is more involved. For M = K ,  both the polynomial expansion 
detector and the Type J-I detector coincide with the full-rank linear MMSE detector. 
This is a well known,equivalence stated in [27] for the multistage Wiener filter and 
in [26] for the polynomial expansion detector. 

In the following section we attack the problem of asymptotic weight design. The 
design of asymptotic weights entails the use of a stronger property of random matri- 
ces than the well known convergence of the eigenvalue distribution: the convergence 
of the diagonal elements of its positive integer powers. This property is established 
in Section 3.4. 

3.4 Asymptotic Detector Design 

The asymptotic multistage detectors are based on the idea of approximating the 
weights of the optimum multistage detectors with the corresponding weights of the 
detector for large systems. In fact, for finite K and N both t r (Rm) and (Rm),,, for 
m E Z+ and k = 1, . . . , K ,  are random variables because of the random assignment of 
the spreading sequences and of the channel gains. Their computation has complexity 
O(K3).  However, it is known that, as K,  N -+ m with 5 -+ P, t r (Rm)  tends to  a 
deterministic value independent of the spreading sequences and depending only on 
the system load P and the limiting eigenvalue distribution F,(al, a2,. . . , aL). These 
asymptotic values can be computed at complexity O(1) [77] and need updating only 
when p and/or Fa(al, a2, . . . , aL) change. We show that the same property holds also 
for the diagonal elements of the matrix Rm.  We will efficiently use this property for 
the design of Type J-I asymptotic weighting. 

First, for the sake of simplicity, we derive the deterministic limit for flat fading 
channels and then we extend the results to  multipath fading channels. 

Theorem 6 Let A be a K X K diagonal matrix in C with bounded elements and 
such that the sequence of the eigenvalue distribution of A H A  converges almost 
surely, as K -+ m, to a deterministic distribution function qA1z (X )  with upper 
bounded support. Let S E CNx K have random i.i.d. zero mean entries with variance 
E{lsu12) = 1 N'  and limN+, E{N31s,I6} < +m. Let R = A H s H s A .  Then, con- 
ditioned on akk, the kth diagonal element of A,  (R'),, converges almost surely, as 
N, K -+ m with $$ -+ P, to the conditionally deterministic quantity 
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with 

for any k , l  E Z+. Here, mk = E { k t r  (Rs)}.  The initial values of the recursion 
are REk,, = 1 and m& = ,F1. 

Theorem 6 is proven in Appendix B.1. 
Note that the constraints on the chips are typically satisfied in practical systems 

with binary or Gaussian spreading. In fact, in order to normalize the spreading 
waveform to have unit energy the variance of the chips is typically h. The additional 
constraint lirnN400 < +m implies that S:, = a s i j ,  the chip re-scaled 
to have unit variance, has finite sixth moment. This property is also usually verified 
in physical systems. 

A closed-form expression for the moments mh can be found in [77]. Let us recall 
a fundamental property of linear algebra: If X k ,  k = 1 , .  . . K are the eigenvalues of 

= Q$. Thus, an alternative recursive expression for the , the matrix R, then K 

eigenvalue moments of R can be obtained noting that 

m& = E{X} 

= lim C:=, % 
K=PN-+oo K 

t r ( ~ ~ )  
= lim - 

K=PN+m K 

Substituting the right hand side of (3.26) in the right hand side of (3.27) we obtain 
the recursive expression of m&. 

Corollary 1 Let A, S and q A 1 2 ( X )  be as i n  Theorem 6. Then, the asymptotic 
eigenvalue moments of R are given by 

where the expectation is taken over the c.d.f. qA12(X). The initializing moment is 
m& = P-'. 
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Note t ha t ,  thanks  t o  [55],  (3.28) can b e  also used t o  calculate the  eigenvalue moments 
for random matrices whose elements sij do  not satisfy t he  constraint o n  t he  sixth 
moment.  Theorem G and Corollary 1 suggest a simple algorithm t o  determine R:*,, 
and m&: 

Algorithm 1 

Initialization: Let po(x)  = 1 and p. = P-'. 
-Ph step: Define pe(x)  = / 3 ~ ~ f ~ ~ p ~ ( x ) p ~ - ~ - ~  and write i t  as a poly- 

nomial i n  X. 

Assign p!(lakk 1 2 )  to  Rfk,,. 
Replace all monomials X ,  x 2 ,  . . . , xe i n  the polynomial pe(x)  by 

respectively and assign the moments mf , , ,  , mfA12, .  . . , mlA12, 
the result to m&. 

A closed-form expression for l E Z+, is provided i n  Appendix 13.2. However, 
this expression requires an exhaustive search over the  sum indices since t hey  are not 
explicitly given. An exhaustive search is also required i n  t he  closed-form expression 
for the  moments m& i n  [77]. Therefore, t h e  recursive approach is more practical. 

T h e  extension o f  t he  previous results t o  multipath fading is supported b y  the  
following theorem. 

Theorem 7 Let S be an N X K L  random block matrix i n  C with blocks Sk = 

( S ( ~ - ~ ) L + ~ ,  S(k-1)~+2,.  . . skL) ,  1 5 k < K ,  of size N X L. The elements i n  a column 
vector S ( ~ - ~ ) L + ~  are i .  i. d. with zero mean, variance k ,  and limN,, E{N3 Isw 16} < 
+oo. They are also i.i.d. from block to block. Within a block, the vector S ( k - l ) ~ + ~  is 
s ( k - l ) ~ + l  cyclically down-shifted by s - 1 positions. The empirical joint distribution 
of the received channel amplitudes al, aa, . . . , a~ converges to  a limiting joint distri- 
bution with upper bounded support F'(al, a2, . . . , a L )  and the eigenvalue distribution 
of R = AHsHsA converges almost surely to  a limiting distribution with bounded 
supportK. 

Additionally, let us  assume that the joint probability density function 
f a (a l ,  a2, .  . . , a L ) ,  corresponding to  the c.d.f. Fa (a l , a z , .  . . , a L ) ,  is  an  even func- 
tion" of Re (ak )  and Im(ak )  for any k and for any value of the parameters 
( a l ,  . . . , ak-l, ak+l, . . . , aL) .  Then, the following equivalences hold: 

8This assumption is of technical nature. Indeed, we conjecture that it follows from the nature 
of the support of Fa(al , .  . . , aL) and the statistics of the spreading sequences. Additionally, 
this condition can be substituted by a less restrictive condition. Applying Lemma 2 in its most 
general version, only the eigenvalue moments of R are required to be bounded. 

gThis condition is satisfied in the case of uncorrelated Rayleigh fading for example. 
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Equivalence-l The empirical eigenvalue distribution of R converges to the same 
limit as the eigenvalue distribution of the covariance matrix of a sys- 
t e m  with flat fading, received amplitude matrix 2 = ( A ~ A ) ~ ,  and 

! same system load P.  The same property holds for the diagonal ele- 
ments R:,,,. 

Equivalence-2 The empirical eigenvalue distribution of R converges to  the same 

l 
limit as the eigenvalue distribution of the covariance matrix = 

H-H- 
A S S A  where is an  N X LK matrix with all i.i.d. elements. 

The proof is in Appendix B.3. 
Thanks to Equivalence 1 we can apply Algorithm 1 substituting \akk l 2  by a f a k .  

An algorithm to compute the diagonal elements of R', as N, K -. M with -. P, 
in the general case (no assumptions on f,(al,.  . . , a L ) )  is formulated in Appendix 
n.3. 

The conditions of Theorem 7 are verified when the channel gains are indepen- 
dent and Gaussian distributed. Therefore, Theorem 7 proves the conjecture of 
Equivalence-2 already in [65] for independent and Gaussian distributed channel 
gains. Additionally, the analysis in [65] can be extended to all multipath fading 
channels whose limit eigenvalue density functions satisfy the conditions of Theorem 
7. 

In order to derive the asymptotic weighting let us define the M X M matrices 

~ @ p =  lim ak 
K=PN+co 

(3.29) 

and 
a 

@O" = lim - 
K=RN-+m K '  

(3.30) 

Their elements are (Or),,  = R:& + g2~S+t-1  k k , ~  and (a,),, = R 
2 ,ft-l 

respectively. Additionally, let cp? and p* be the M-dimensional vectors with re- 
spective elements (p?), = R;,,, and (v"), = m&. 

The Type J-I  detector with asymptotic weights is obtained using the weights that 
minimize (3.14) or, equivalently, maximize (3.18) as K, N + co with 5 -. oo: 

l 
where (3.7) was used. 

l 

The Type J - J  detector is obtained as asymptotic approximation of the polynomial 
expansion detector with weights (3.1 1). The asymptotic weights of the Type J-J  
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detector minimize the quantity 

where (3.1.4) was used. This yields 

Let us consider the case when all received signals have the same power, i.e. AHA = 

P I .  Then, due to  Theorem 6 and Corollary 1, ( R ~ ) ~ ~  converges almost surely, as 
K ,  N + m with 5 + p, to  a value R : ~ , ~ , ~ ~ ~  = R',(P) that does not depend on the 
index k :  

Corollary 2 Let S,  A, and R be as in Theorem 6. Additionally, let the matrix A 
be such that AHA = PI. Then, for any l ,  k E Z+, ( R ~ ) ~ ~  converges almost surely, 
as N ,  K -+ m with 5 constant, to the deterministic quantity 

Corollary 2 ensures that @$ = @" and p$ = pm for A ~ A  = PI . Thus, Type J-J 
and Type J-I detectors coincide asymptotically in the equal power case. Additionally, 
in this case, the two asymptotic multistage detectors coincide also with the detector 
proposed in [18], which maximizes the ratio between the total useful power and 
the total noise and interference power a t  the detector output. For AHA = PI, a 
closed-form expression of the eigenvalue moments is given by (2.31). 

3.5 Asymptotic Performance Analysis 

Let us consider a multistage detector for the kth user using the basis (3.3) and 
weighting TZk. As K, N + m with g + p, the MSE and the SINR are given by 
taking the limits of (3.114) and (3.18) 
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Equation (3.35) can be immediately specialized to Type J-J and Type J-I detectors 
with (3.32) and (3.31) respectively: 

- 1 
SINRS*_,,, - 1 (3.37) 

m T @ w  1 W - 1 
(cpk ) ( k 1- cpk  

They are the asymptotic limits of (3.23) and (3.20), respectively. In the asymp- 
totic case, the performance depends only on the limiting distribution function 
F,(al,. . . , a L ) ,  as well as on p and a'. If the conditions of Theorem 7 are fulfilled 
the performance depends on the eigenvalue moments of A ~ A ,  r n l ~ 2 ,  the received 
power of user k, Pk, as well as on p and a2. 

As shown in [28], the output SINRs of detector Type J-I and of detector Type 
1-1 are proportional to the received power of user k, Pk .  Therefore, the multiuser 

is independent of Pk like for the linear MMSE detector (see Section 2.3.3). This is 
due to the fact that the filter coefficients of each user are optimum in the projection 
subspace. In contrast to many detectors analyzed in the literature, the SINR of 
detector Type J-J depends on Pk by a non-linear relation as can easily be verified 
by inspection. Therefore, the multiuser efficiency of this latter detector does depend 
on Pk .  This reflects the fact that the filter coefficients are optimized with respect 
to an ideal average user. The farther the users are away from the average the more 
sub-optimal is their detection. The system suffers from a sort of near-far effect that 
results in poorer performance for users with higher or lower received powers than 
the average. 

A straightforward implication of the fact that the Type J-I detector outperforms 
the Type J-J detector (or equivalently the multistage Wiener filter outperforms 
the polynomial expansion detector) is that, for any user, the constant multiuser 
efficiency of detector Type J-I is an upper-bound for the multiuser efficiency of 
detector Type J-J (see Figure 3.4 in Section 3.6). In Section 3.6, this behavior is 
verified numerically. 

Whereas Equations (3.34) and ( 3 . 3 5 )  provide asymptotic performance of multi- 
stage detectors, Equations (3.14) and (3.18) allow the performance evaluation of 
detectors Type J-J and Type J-I when they are used in real scenarios with finite 

''We implicitly assume that the remaining noise and interference are Gaussian. 
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system size by setting Zk = @ C O q w  and Zk = @rvr,  respectively. However, the 
performance for finite systems depends on the specific realizations of A and S .  

3.6 Numerical Results 

Numerical results and simulations presented in this section were obtained using 
for each user a channel with an exponentially decaying power-delay-profile (PDP) 
with a decrease of 30 dB within the channel length L = 15 and block Rayleigh 
fading. Denoting the variances of the L taps of the PDP with po, pl, . . . ~ L - I ,  the 
Eth tap of each channel is complex Gaussian distributed with variance pt. Then, the 
characteristic function of the eigenvalues of A ~ A  is given by 

dn@1~12 We calculate the eigenvalue moments from the relation jnrnkl2 = I W = O ,  the 
SINRs of Type J-J and Type J-I detectors in asymptotic conditions by (3.36) and 
(3.37), and the multiuser efficiency for the two detectors by (3.38). In Figure 3.3 
the families of the curves qEI versus $ parameterized by the system load ,8 are 
plotted for M = 2 in dashed lines and for M = 4 in solid lines. The improvement in 
q obtained by increasing the number of stages is negligible for low g and becomes 
more and more relevant for increasing 5. 

In Figure 3.4, the large system multiuser efficiency of Type J-J detectors (solid 
lines) is plotted as a function of Pk, the received power of the user of interest for 
different level of the background noise. In Figure 3.4, the multiuser efficiency of Type 
J-J detectors is also compared to multiuser efficiency of Type J-I detectors (dotted 
lines). As already mentioned, in contrast to many other detectors analyzed in the 
literature and in contrast to Type J-I detectors, the multiuser efficiency of Type J-J 
detectors depends on Pk. This dependence is stronger for low system loads and high 
SNR while it tends to vanish for systems heavily loaded and at low SNR. As shown 
analytically in Section 3.5, the constant multiuser efficiency of detector Type J-I 
provides an upper bound for the multiuser efficiency of detector Type J-J. 

The performance degradation of both Type J-J and Type J-I detectors with as- 
ymptotic weighting compared to the polynomial expansion detector, the MSWF, 
and the full-rank linear MMSE detector were assessed by simulations. The simula- 
tions were performed using QPSK modulation, in the presence of multipath fading, 
and assuming perfect knowledge of the channel. Figure 3.5 shows the BER versus1' 

''Since we use a QPSK modulation and we focus on uncoded transmission, we have % = a. 
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Figure 3.3: Multiuser efficiency 7 versus SNR for Type J-I detector with M = 4 
(solid line) and M = 2 (dashed line). Ftequency selective fading with exponentially 
decaying PDP and channel length L = 15. 
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Figure 3.4: Multiuser efficiency versus power of the user of interest Pk for Type J-J 
detector (solid line) and Type J-I detector (dotted line). Frequency selective fading 
with exponentially decaying PDP and L = 15. Parameter setting: M = 4, ,O = 0.5, 
and E{Pk) = 1. 

2 for multistage detectors with M = 4, ,8 = 0.5, and N = 128". The performance 
degradation due to  the asymptotic approximation of weights is negligible in situa- 
tions of practical interest. In fact, for N = 128 the curves of Type J-J and Type J-I 
detectors wit h asymptotic weights almost match the corresponding detectors wit h 
exact weighting. Using the same exponentially decaying PDP for all users, the per- 
formance degradation of the Type J-J detector with respect to  the Type J-I detector 
is negligible for small 2 and becomes relevant at larger g, as expected from the 
theoretic performance in Figure 3.4. 

Figure 3.6 shows how the performance of the Type J-I detector with asymptotic 
weights increases for an increasing number of stages. 

The effects of the mismatch between asymptotic and exact weights has been an- 
alyzed assuming flat fading channels, QPSK modulation, and ,O = ;. Figure 3.7 
compares BERJWI, the BER at  the output of a Type J-I detector, with BERMSWF, 

12This value of the spreading factor is in use in the UMTS FDD mode. This has motivated its 
choice. 
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Exponentially decaying PDP, L=15, M=4, K=64, N=128 
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1 0-40 5 10 15 

Figure 3.5: BER versus 2 for P = 0.5. 
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- Exponentially decaying PDP, L=15, K= 128, N=256 

+MatchedFilter,M=l 
&Type J-Idetector, M=2 
++Type J-Idetector,M=3 
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Figure 3.6: BER versus 2 for P = 0.5 and varying number of stages. 

the BER at the output of a MSWF, for M = 4 stages and increasing spreading 
factors. Performance degradation becomes visible when 2 increases. However, this 
mismatch at high 2 becomes rapidly irrelevant when the spreading factor is in- 

BERJ-l-BERMsw~ creased. Figure 3.8 plots E = , the relative mismatch of the BER at 

the output of the two compared detectors, as a function of g.  The logarithmic scale 
allows to make visible also the mismatch at low 2, otherwise not visible. 

3.7 Conclusions 

In this chapter we identified a general framework that is able to catch the main 
features of multistage detectors with asymptotic weights in terms of performance 
and complexity. Both the projection onto the Krylov subspace and the filtering can 
be performed jointly for all users or individually for each single user. The type of 
projection affects essentially the complexity while the type of filtering has an impact 
on the performance. 

Considerations on the projection showed that only a joint projection can decrease 
the complexity order per bit from quadratic to linear. 
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Flat fad~ng channel, K=8, N=16 Flat fadmg channel, K=16, N=32 
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Flat fadine channel, K=32, N=61 Flat fading channel, K=@, N=128 

Figure 3.7: Comparison between BERJPI and BERMswF for M = 4 stages, increas- 
ing spreading factors, N = 16, 32, 64, 128, and constant system load P = i. 
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of a single user is required. 

For low complexity multiuser detection with Type J-I detectors we use statistics 

(4. . 
The general result for the asymptotic analysis and design of multiuser detectors 

provided in this chapter can be useful for the optimization of chip-pulse waveforms. 
However, this application is beyond the scope of this work. 

Chapter 4 is organized in six sections. Section 11.2 introduces the general system 
model for asynchronous systems. Section 4.3 is focused on the analysis of a wide class 
of linear detectors and the design of low complexity multistage detectors for chip 
synchronous but symbol asynchronous systems. A detector structure with sliding 
observation window that does not suffer from windowing effects is proposed. Chip 
asynchronous but symbol quasi synchronous CDMA systems are studied in Section 
4.4, and the effects of the chip pulse waveforms and the time delay distribution 
on the system performance are investigated. In Section 3.5, the results of Section 
4.3 and Section 4.4 are applied to the design and analysis of totally asynchronous 
CDMA systems. Some conclusions are drawn in Section 4.6. 

4.2 General System Model 

Let us consider an asynchronous CDMA system with K users in the uplink channel. 
Each user and the base station are equipped with a single antenna. The channel is 
flat fading and impaired by additive white Gaussian noise. Then, the signal received 
at the base station, in complex base-band notation, is given by 

Here, akk is the received signal amplitude of user k, which takes into account the 
transmitted amplitude, the effects of the flat fading, and the carrier phase offset; 
~k is the time delay of user k; n(t)  is a zero mean white, complex Gaussian process 
with two-sided power spectral density No; and sk( t )  is the spread signal of user k. 
We have 

+m 

where bk[m] is the rnth transmitted symbol of user k and 
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is its spreading waveform at time m. Here, sk,,, is the spreading sequence of user k 
in the mth symbol interval" with elements sktm[U], U = 0, .  . . , N - l, T, and T, = 3 
are the symbol and chip periods, respectively. 

The users' symbols bk[m] are uncorrelated and identically distributed random 
variables with E{lbk[m] 12} = 1 and E{bk[m]) = 0. The elements of the spreading 
sequences S ~ , ~ [ U ]  are assumed to be i.i.d. random variables with E{lsr,,[u]12} = h 
and E { s ~ , ~ [ u ] )  = 0. This assumption properly models the spreading sequences of 
some CDMA systems currently in use, such as the long spreading codes of the FDD 
(Frequency Division Duplex) mode in a UMTS uplink channel. 

The chip waveform $(t)  is bandlimited with bandwidth B and energy E+ = 

l$(t)12dt. Because of the the constraint on the variance of the chips, 
i.e., E{lsk,,[k]12} = h, the mean energy of the signature waveform satisfies 

E {S:: 1cim) (t) J2d t )  = E+. Without loss of generality we can assume (i) user 1 

as reference user so that 7 1  = 0, (ii) the time delay to be, at most, one symbol 
interval so that 7-k E [0, T,) . l'' 

The front-end of the multiuser detector performs: 

A lowpass filtering with lowpass band I f  l 5 & where r E Z+ satisfies the 
constraint B 5 & so that condition of the sampling theorem is satisfied. The 
filter is normalized to obtain an overall amplification factor for the information 
bearing signal equal to one, i.e., the frequency response of the lowpass filter is 

A subsequent continuous-discrete time conversion by conventional sampling at 
rate 6. 

With this choice of the front-end, the conditions of the sampling theorem are satisfied 
so that the sampled signal provides sufficient statistics and the chip rate is a multiple 
of the sampling rate. Additionally, the discrete-time noise is still white with zero 
mean and variance a2 = &. 

The discrete-time signal at the front-end output is given by 

k=l m=-cm 

gThe spreading sequence of user k possibly varies from symbol to symbol. This model is general 
and enables a proper description also of the spreading sequences of some CDMA systems 
currently in use such as the long spreading codes of the FDD (Frequency Division Duplex) 
mode in a UMTS uplink channel. 

''For a thorough discussion on this assumption the reader can refer to [16]. 
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with p E Z and 

Here, n b ]  is discrete-time, complex-valued, zero mean, white Gaussian noise with 
variance o2 = E and $(t) is the pulse shape $(t) normalized to have unit energy, 

4.3 Symbol Asynchronous but Chip Synchronous 
CDMA Systems 

4.3.1 System Model 

In this section we focus on the analysis of symbol asynchronous but chip synchronous 
systems, i.e. we assume that the time delays r k  are integer multiples of T,, as in [81] 
and [80]. Without loss of generality we assume that the users are ordered according to  

n 
increasing time delay with respect to  the reference user. Let r k  = 2 E [O, 1 , .  . . , N-l] 
be the time delay normalized to the chip period. Under the additional assumptions of 

11 4,) chip synchronicity, use of sinc chip pulses, and sampling at  the chip rate , ck (qTc- 
rk), q E Z simplifies to  

Then, the received signal from user k at  the time instant qT, = (p + mN)Tc with 
p E 0 , .  . . , N - 1, is given by 

llThe results presented in this section hold also for CDMA systems transmitting square root 
Nyquist pulses and using as front-end an analog filter matched to  the chip pulse followed by 
a sampler at  the chip rate. The constraint on the sinc chip pulse is imposed here only to be 
consistent with the general system model (3.1) and the choice of the front-end made in Section 
4.2. 
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Finally, the general system model (4.1) simplifies to 

where yb + mN] is the sampled received signal at time instants ( p  + mN)T,, and 
n[p+mN] is the complex-valued white Gaussian noise with zero mean and variance 
U - - &. dk,,[p] is the received signal at time instant p + mN from user k and it 
is given by 

bk[m-l]sk,m-l [N+p-rk] if p < rk 
dk,,[p] = and p E [O,. . . ,  N-l]. 

bk[m]sk,rn[p-rk] if p 2 rk 

This definition reflects the fact that, if p < rk the receiver is still receiving the 
(m - symbol of user k and dk,,b] depends on bk[m - l ]  and the spreading 
sequence Sk,rn-l at time instant m - 1. Otherwise dk,,[p] depends on bk[m] and the 
spreading sequence sk,,. 

For the following developments it is convenient to rewrite the system model (4.2) 
in matrix notation. Let y(m) = (y[mN], y[l+mN], . . . , y[(m+l) N - I ] ) ~  and b(m) = 

(bl[m], b2[m], . . . , b ~ [ m ] ) ~  be the vector of the observed signal and the vector of the 
transmitted symbols in the mth symbol interval, respectively. We denote by S,(m) 
the N X K matrix containing columnwise and appropriately shifted the parts of the 
spreading sequences sk,, received in the mth symbol interval. Similarly, Sd(m) is 
the N X K matrix containing columnwise and appropriately shifted the parts of the 
spreading sequences S*,, received in the (m + l)st symbol interval. More specifically, 
the elements of S,(m) and Sd (m) are given by 

In this chapter, with a slight abuse of notation, we denote the matrix of the spread- 

ing sequences for asynchronous systems with S(m) = [ ] and the matrix 

of spreading sequences for synchronous systems" with ~ ' ( m )  E kNxK . More in- 
tuitively the matrix S(m) E ( C 2 N x K  can be obtained by a vertical concatenation of 

121n the previous chapter S was used to denote the matrix of the spreading sequences for synchro- 
nous systems. 
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S1(m) with an N X K matrix of zeros and by a subsequent cyclic down-shift of the 
kth column by r k  positions Vk. S,(m) and Sd(m) are the upper and lower block 
of the matrix S(m),  respectively. Figure 4.1 illustrates the structure of the matrix 

S(m>.  

Figure 4.1: Graphical representation of the matrix S (m)  (bold frame) and its blocks 
S,(m) and Sd(m). The vertical bars represent the spreading sequences sk,, shifted 
by r k  elements. The down-shift of the kth spreading sequence, r k ,  equals the time 
delay of user k normalized by the chip period T,. The element of the matrix not 
covered by bars are zero. 

Let A = diag(al,l, a2,2,. . . a ~ , ~ )  denote the K X K diagonal matrix of complex 
received amplitudes. Furthermore, let H (m) = S(m) A and, consistently with the 
definitions of S, (m) and Sd (m), H, (m) = S, (m) A and Hd (m) = Sd (m) A. Then, 
the baseband discrete-time asynchronous system in the uplink is described by 

where y = [. . . , yT (m - l), yT (m), yT(m + l) . . .lT and B = [. . . , bT(m - 
l), bT(m), bT(m + 1) . . .lT are the infinite-length vectors of received and transmitted 
symbols respectively; hf is an infinite-length vector of white Gaussian noise with 
variance a2; and 'H is a bi-diagonal block matrix with infinite block rows and block 
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columns that is given by 

for m E Z. This matrix models the effects of the spreading sequences, of the received 
amplitudes, and of time delays. 

We will also consider the system corresponding to a finite observation window of 
length W symbols centered at the mth transmitted symbol of the reference user. 
In order to keep the notation simple we assume W to be an odd integer. However, 
the results presented in the following hold for any rational number W such that 
WN E Z. The system model has the following form: 

YN,W (m) = %N,W ( ~ ) B N , w  (m) + NN,W (m) (4.5) 

and 

Throughout this section we adopt the following notation: 

h(k, m) is the column of % corresponding to user k at the symbol interval 
m, i.e., it is the infinite-length column of 'H. containing the lcth column of the 
matrix H ( m ) ;  

h(s : r, m) denotes the matrix made up of the S - r + 1 columns of 'H., 
h(s ,m),h(s  + l , m ) , .  . .h(r ,m);  
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RN,W (m) =.%$,W ( ~ ) % N , w  (m). 

For K + m, the sequence of the empirical eigenvalue distributions of AAH con- 
verges almost surely to q A 1 2 ( X ) ,  a non-random distribution function with upper 
bounded support. Let p ( N )  = % = % denote the random variable of the time delays 

normalized by T,. For a given N ,  ~ $ ~ ) ( p )  denotes the empirical distribution function 
of p. We assume that, as N + m, the sequence converges to the proba- 
bility distribution function Fp(p) .  For the sake of generality, we do not assume that 
the random variables of the received powers X and time delays p are independent; 
their joint probability distribution function will be denoted by q A 1 2 , P ( X ,  p ) .  This 
model is appropriate for the design of coherent detectors since both the time delays 
r k ,  k = 1 , .  . . , K  and the received powers laklkI2, k = 1,. . . , K are known, i.e. are 
deterministic. In this case, given the system load P = 5 ,  

where l (2 ,  y) is the bi-dimensional indicator function on right unbounded intervals. 

4.3.2 Linear MMSE Detection 

For a given observation window of length W and symmetric around the mth symbol 
interval the linear MMSE estimator of BN,w(m) is given by 

(m) = %$,W (m) [ 7 N , W  (m) + 0 2 ~ i V , w ] - ' y  N,W (m) 

= [ ~ N , w  (m) + o 2 I N , W ] - ' ~ E , w  ( m ) y N , W  (m). 

By applying the multistage decomposition of the Wiener filter proposed in [27] 
and discussed in Section 2.2.6 the linear MMSE estimator can be rewritten as follows 

Note that (4.6) coincides with the Type J-I detector with K (W + l )  - 1 stages intro- 
(K(W+l)-l)(m) are diagonal matrices whose jth duced in Section 3.3.3 (see (3.10)). 

diagonal elements are obtained as solution of the Yule-Walker system of equations: 

(K(W+l)-1)  (K(W+l)-1)  (K(W+l)-1)  
and w j ( m )  = ((W,,,,, m )  N W 1  ( m ) ) j y  - . . , ( W N , w , , ( w + l , - l ( m ) ) j ) .  

For s E Z+, @$iWjj(m) is an s X s real matrix with elements (@$~w,j(m))u,, = 
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('R$$ (m))jj + 02 ('R=' (m)) jj, and (m) is an S-dimensional column vector 

with elements (pglw (m)), = (R&,,(m)) jj. Let us introduce the quantities 

For s 2 K(W + 1) - 1, S I N R ~ ~ ( ~ + ' ) - ' )  is the SINR of the kth transmitted symbol in 
BN,w (m) at the output of the linear MMSE detector for asynchronous systems1". For 
S < K(W+l )  -1, S I N R ~ )  is the SINR of the kth transmitted symbol at the output of 
an S-stage Wiener filter. Therefore, S I N R ~ ) ,  S = 1,2 , .  . ., provides a family of lower 
bounds for the SINR of the kth transmitted symbol in BNlw(m) at the output of the 
full rank linear MMSE detector. For synchronous CDMA systems the output SINR 
of reduced rank multistage filters converges exponentially in the filter rank toward 
the output SINR of a full rank linear MMSE filter [39]. Throughout this section we 
utilize this property and we analyze the performance of multistage detectors with 
finite observation windows and increasing number of stages. In Section 4.3.3 we 
verify numerically that, also for asynchronous systems, for s 2 8 the lower bounds 
S I N R ~ )  are so close to the supremum to be indistinguishable from it. 

Making use of (4.7)) the problem of determining the family of lower bounds reduces 
to determining the diagonal elements of the matrix ~ & , ~ ( m ) ,  t = 1, . . . ,2s, as K = 

P N  -t m. Recursive algorithms to determine l i m ~ = B N + o o ( ~ ~ , W ( m ) ) , j ,  l E Z', 
are provided in Theorem 8 and Theorem 9 for equal and unequal received powers, 
respectively. 

In Theorem 8 we consider an asynchronous system with finite observation window 
length W and equal received powers. Thus, without loss of generality, we can assume 
that A = I in (4.5). The assumptions in Theorem 8 summarize and formalize the 
characteristics of the system model (4.5) introduced in Section 4.3.1. 

Theorem 8 Let {p(lN)} be a non  decreasing sequence of elements i n  
{ 0 ,  h, . . . , F, ), obtained by sorting K independent realizations of a ran- 
dom variable and let Fpc~ l (p (N) )  be its empirical distribution function (e.d.f.)'4. 

"(NI Let h, (t), i, j = 1,2 , .  . . and t = 1,.  . . , W  + 1 be random variables'%n C. Let 
(NI the matrix ~ ( ~ ) ( l )  E C2Nx K ,  l = 1, . . . , W + 1 have elements h, (t) = ;!:)(l), 

for p j N ) ~  + l 5 i 5 p $ N ) ~  + N, 1 < j < K ,  and the remaining elements equal to  

13The equivalence of a linear MMSE detector and a full-rank multistage Wiener filter has been 
thoroughly discussed in Chapter 3 

14p:N) models the time delays, normalized to the chip interval, of user j. The order reflects the 
ordering of the users assumed in the system models (4.3) and (4.5). 

15The random variable ̂ hifi)(l) models an element of the spreading sequence of user j at the symbol 
period l .  
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zero'" Let HLN)( l ) ,  H i N ) ( [ )  E C N x K  be, respectively, the lower and upper block of 
the matrix i.e. = [ ( H ~ ~ ) ( c ) ) ~ )  ( H L N ) ( l ) ) ~ ] ~ .  Finally, let 'HN,, 
be a W N  X ( W  + l ) K  random bi-diagonal block matrix structured as follows: 

Let us assume that: 

" (NI  -W) (a) h ,  (l), i , j  = 1,2 , . . .  a n d l  = 1  , . . . ,  W + 1 ,  are i.i.d. w i t h E { h ,  ( l )}  = 0 ,  
" (NI  E{jhij (l)I2} = k, and UrnN,, E { N ~ / ~ I Y ) ( ~ ) ~ ~ )  < +M. 

(b) A s  N  + oo, the sequence of e.d.f. { F p c ~ , ( p ) )  converges almost surely to  a 
cumulative distribution function (c. d . f )  Fp(p) j 7 .  

(c) The spectral radius of the matrix 'HN,, is  almost surely upper bounded.'" 

( d )  K  is a function of N ,  i.e. K  = K ( N ) ,  satisfying limN+, v = ,L?. 

Then, the diagonal elements of the Gram matrices I:,, = ('HN,w'HG,w)m and 
'RE;,, = ( ' H $ , , W ~ , ~ ) ~  converge with probability one to  a deterministic value 

. . .  where X = limN,, %, being n a function of N  with values i n  { l , .  W N ) ,  i.e. 
n = n ( N )  : Z+ + { l , .  . . ,  W N ) ;  y  = limN,, X, being k a function of N  with 

. . . .  values i n  { l , .  . . .  ( W  + 1 ) K ) ,  i.e. k = k ( N )  : Z+ -+ { l ,  ( W  + 1 ) K ) ;  and R E ( y )  

l6 The matrix H ( ~ ) ( ! )  models the spreading sequence matrix of transmitted symbols at time 
instant ! taking into account the time delays. It corresponds to the matrix S(!) or equivalently 
to the matrix H(!) ,  since in this theorem we focus on the case A = I. 

"Note that by assuming the independent with identical distribution function Fp(p) the 
Glivenko-Cantelli theorem (see e.g. [89]) guarantees the almost sure convergence of {F~(N)  (p)) 
to Fp(p). Therefore, condition ( I ) )  is redundant and stated explicitly in the theorem only for 
the sake of clarity. 

18Theorem 8 holds also under the less restrictive condition that the eigenvalue moments of the 
matrix X:,wXN,w are upper bounded. 
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and 7,"(x) determined by the following recursion: 

where 

with 

The recursion is initialized by 7$(x) = 1, R$(y) = 1, f (Rb, X) = p, and 

g(7$,y) = L ( Y )  with 

Theorem 8 is proven in Appendix C. 
The assumption (c), i.e., that the spectrum of the matrix RN,W is upper bounded, 

is of technical nature. Indeed, we conjecture that it follows from the assumptions 
on hij(lc) since we verified this property by extensive computer simulations. For the 
matrix H' for synchronous systems, the fact that the spectral radius is bounded 
was verified by computer simulations in [40] and it was proven in [64]. However, no 
analogous result for the matrix R N , w  is known to the author. 

In the following we give an interpretation of the quantities that appear in the 
recursion of Theorem 8. Figure 4.2 illustrates the structure of the matrix W N w  as 
N, K -t oo and the meaning of the functions r(x), and l(y). The shaded region 
of the matrix corresponds to random nonzero elements while the remaining region 
corresponds to zero elements. The function l(y) is the "height" of the shaded region 
in position y; the function r(x) is the "width" of the zero region on the left of the 
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Figure 4.2: Graphical representation of the structure of the matrix 3CNlw as K, N -, 
m with 5 and the functions r(x),  c(y), and l (y). 

shaded region in position X;  finally c(y) is the "height" of the zero region on the 
right of the shaded region in position y. The functions R",y), l$ (X),  f (R", X),  

and g(T$, y) admit interesting interpretations. By definition R"(y) and T$(x) are 
the asymptotic deterministic values of the diagonal elements of the matrices Rk,W 
and 7k,W, respectively, as 5 -, m with ratio converging to a constant P. Being 
f (R", X) the integral of R" (g) over the interval [yl , y2] with yl = r (X) and y2 = 

r(x) +p,  f (R", X) can be interpreted as the trace, normalized by N ,  of a submatrix 
of R$ including all rows and columns of R",hose indices, normalized by N ,  are 
in the interval [yl, y2]. Similarly, since g(T$, y) is the integral of T$(x) over the 
interval [xl, x2] with x1 = max(0, c(y) - 1) and x2 = min(W, c(y)), g(T$, y) can be 
interpreted as the normalized trace of a submatrix of 7; including all rows and 
columns of 7",hose indices, normalized by N ,  are in the interval [xl, x2]. 

The following example explains the use of the theorem. Let us assume W = 3 and 
the time delay uniformly distributed in the interval [0, T,], then the limit distribution 
of the normalized time delay p is Fp(p) = p, with p = [O, l], r(x) = ,Ox with X E [O, 31, 
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Therefore, &'(X) = P and R: (y) = l (y), 

and g(Wi, y) = P, 0 5 y < 4P. Then, we can apply (4.11) and (4.12) to determine 
1,2(x) and R;(y) and proceed recursively. 

In Figure 4.3 the asymptotic values Ry(y)  for m = 1 . .  . 6  are compared to the 
values of a single realization of %N,3, for N = 2048 and P = i. Simulations 
with various distributions of the elements h, show that the diagonal elements of 
finite large matrices match very well the asymptotic values Ry(y)  determined by 
the recursion in Theorem 8. 

At first glance the recursion in Theorem 8 seems to be useful for the asymptotic 
analysis of linear detectors whereas it appears too complex for the design of low 
complexity multistage detectors similar to the detectors proposed for synchronous 
CDMA systems. However, a more careful analysis demonstrates very useful prop- 
erties of the asymptotic values RE(y)  for the design of low complexity multistage 
detectors. With the goal of reducing the complexity of multiuser detector for asyn- 
chronous CDMA systems, we consider a symbol asynchronous but chip synchronous 
CDMA system with an observation window length W = 6 and P = i. The asymp- 
totic values of the diagonal elements of R;,,, R? (g), m = 1,2,3,4,5 are plotted 
in Figure 4.4. The solid lines show the shape of R?(y) while the dashed lines show 
the corresponding values of R r ( y )  for a completely synchronous system. and 

coincide with the corresponding values of the synchronous system in the in- 
terval y E [P,. . . ,6P]. In the interval [0, p] and [6P, 7P] the values of R+(y) and 
R$(y) for synchronous and asynchronous systems differ. Ram a mathematical point 
of view, this is due to the "tails" of the length of the spreading sequence l(y) in the 
intervals [0, p] and [6P, 7P] (see Figure 4.2, l(y) = 1 for any value of X except in the 
intervals [0, p] and [WP, (W + l)P]. We refer to these intervals as the "tails" of l (y) .) . 
From a physical perspective, this behaviour stems from the fact that the symbols at 
the border of the observation window are observed only partially, i.e. only a subset 
of the chips of the whole spreading sequence is observed. For increasing powers of 

the effects of the "tails" start propagating inside the observation window. 
R:(y) and R;(y) for asynchronous systems coincide with the corresponding values 
for synchronous systems only in the interval [2P, 5P]. Ri(y) for synchronous and 
asynchronous systems is equal in the interval [3P, 4P]. 
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This behaviour is completely general and shows that,  for fixed s E Z+, there exists 
an observation window sufficiently large such that, in the center of the observation 
window, the values RE(y ) ,  m = 1,. . . ,  s for synchronous and asynchronous systems 
are equal. Then, the values of RE(y )  for synchronous systems are very simple to 
compute using Algorithm l in Section 3.4 and the design of low complexity multiuser 
detectors for symbol asynchronous but chip synchronous systems can benefit from 
this "local equivalence". 

In the following this property is established rigorously for CDMA systems with 
unequal received powers. First, Theorem 8 is generalized to  the case of unequal 
received powers in the following Theorem 9. Then, the "local equivalence" is derived 
from Theorem 9 in Corollary 3. The assumptions of Theorem 9 summarize and 
formalize the characteristics of the system model (4.3) in case of power imbalances. 

(NI (N) Theorem 9 Let {(Xi ,pi  )), for i = 1 , .  . .  , K ,  be a sequence of K pairs i n  R+ X 
N- l (NI < (NI (NI) = {0, h, . .  T )  sorted so thatf" piN) 5 pt - .. .S ,OF). Let FAi~ , ,p i~ l  (X , p 

k C:, I ( x ( ~ )  - XiN)) l (p(N) - piN)) be the correspondent empirical joint distribution. 
4 N )  Let sij (l), i ,  j = 1 ,2 , .  . .  and l = 1 , .  . .  , W  + 1, be complex random variables. Let 

(N) 4 N )  the matrix ~ ( ~ ) ( l )  E l = 1, . . . ,  W + 1 have elements sij (l) = S ,  (l) 

for p j N ) ~  + 1 5 i 5 p J N ) ~  + N, 1 5 j < K ,  and the remaining elements equal 

to  zero'". Furthemore, let SLN)(l), SLN)(l) E CNxK be, respectively, the lower and 
upper block of the matrix i.e. = [ ( s ~ ~ ) ( L ) ) ~ ,  (sLN)(l))lT. Let SN,w 
be a W N  X ( W  + l ) K  random bi-diagonal block matrix structured as follows: 

. . . .  Additionally, let AK = diag{AK, AK) be a (W + 1) K X (W + l )K block diagonal 
v 

W+1 times 

matrix with (W + 1) block equal to  AK. ~urtherrnore '~,  (AKA;)~~ = XiN). Finally, 
let be the W N  X (W + l ) K  matrix given by 'HN,w = SN,WAK.  

lgIn a pair {(hiN), ,oiN))}, AiN) models the received power laiiI2 of user i and piN) models the time 
delay of user i normalized by the symbol period T,. The order reflects the ordering of the users 

(4.18) SN,W = 

assumed in the system models ('1.3) and (4.5). 
20 s ( ~ ) ( , )  models the spreading sequence matrix of transmitted symbols at time instant l .  
21The matrix AK models the matrix of received amplitudes in the system models (4.3) and (4.5). 

. . .  . . .  . . .  ( l )  ( 2  0 

. . .  . . .  0 s p ( 2 )  s p ( 3 )  0 

. . .  . . .  0 sjW(w-l)s:N(w) 0 
. . .  . a .  . a .  0 sLW(w+l) - 

Additionally, Ai is the received power from user i ,  consistently with the definition of AIN) in 
the pair (AiN), PiN)) 
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Let us assume that: 

4 N )  4 N )  (a) sij ( l) ,  i , j  = 1,2 , . . .  and l = 1 , . . . ,  W + 1, are i.i.d. with E{sij ( l ) )  = 0 ,  
4 N )  3 4 N )  E{lsij ( ) ) l 2 }  = h, and l im~, ,  E{N Isij (!)l6) < + m .  

l 

(b) A s  N  -+ m, the sequence of e.d.f. {FA(N)P(N)(X, p))  converges almost surely to  
a dzgerentiable c.d. f. FAp(X, p). 

I 
1 (c) X and p are deterministically related, i.e. FAlp(Xlp = po) = 1(X - X(po)). Here, 

X = X ( p )  denotes p as a deterministic function of X. X ( p )  is  upper bounded. 

(d) The spectral radius of the matrix 'l-tNTw is almost surely upper bounded?" 
l 

l 

I (e) K  is a function of N ,  i.e. K  = K ( N ) ,  satisfying limN4, 7 K ( N )  = P. 
1 

Then, the diagonal elements of the Gram matrix 7 G , w  = ('l-tN,w'Hg,w)m converge 
with probability one to  a deterministic value 

lim ( 7 E Y w )  nn az' T$(x) 
K = P N 4 m  

where X = limN,, G, being n a function of N  with values in { l , .  . . , W N ) ,  i.e. 
n = n ( N )  : Z+ -+ { l , .  . . , W N ) .  

l Conditioned on X ( y  - LFJP), the diagonal elements of the matrix = 

('Hg,w'HN,w)m converge with probability one to  a deterministic v a h e  

lim k k  g' RE ( y )  
K=PN--+m 

where y  = limN+, g, being k  a function of N  with values i n  { l ,  . . . , ( W  + 1) K } ,  i.e. 
k  = k ( N )  : Z+ -+ { l ,  . . . , ( W  + 1) N ) .  The limits R$ (g)  and 7$ (x )  are determined 
by the following recursion: 

where 

1 220n this condition similar considerations as in Theorem 8 hold. 
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with 

The recursion is initialized by T$(x) = 1, G ( y )  = 1, f (RL, X) = PEI~12{X) and 

g ( l " w , ~ )  = X (y - L ~ P )  Z(Y) with 

Theorem 9 is proven in Appendix C Section (2.2. 
Although the recursion proposed in Theorem 9 is perhaps too complex for being of 

great practical use in the design of low complexity multiuser detectors, the following 
useful corollary stems from it. 

Corollary 3 Let the assumptions of Theorem 9 hold. Let R$(y) and R$(y) be the 
asymptotic deterministic values of the diagonal elements of for asynchronous 
and synchronous systems, respectively, as K,  N --r CO with 5 --r P. Assume [m] < 
9. Then, for l = 0,1,  . . . , 2m  

Let us notice that from (4.5), the system model for symbol asynchronous but chip 
synchronous systems, a synchronous system is obtained when equal time delays for 
all users are assumed. The matrix RE,w then becomes a block diagonal matrix. 
Additionally, each block of for a synchronous system is equal to  the matrix 
Rm of the single-symbol system analyzed in Chapter D. Corollary 3 follows from this 
observation and by induction from Theorem 9. Corollary 3 allows us to  calculate the 
diagonal elements R&(y) by means of Algorithm 1 presented in Section 3.4. This 
result is quite useful from a practical point of view, as it will be apparent in Section 
4.3.3. In fact, the weight design for asynchronous systems reduces to  the one for 
synchronous systems already solved in Chapter 3. 
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4.3.3 Multistage Detection 

In this section we extend the concept of multistage detectors with asymptotic weights 
to asynchronous CDMA systems. 

In Chapter 3 we pointed out that polynomial expansion detectors are suitable in 
scenarios with approximately equal received powers for all users while multistage 
Wiener filters outperform polynomial expansion detectors in scenarios with power 
imbalances. To give an intuition of this we can compare (3.7) and (3.12). The poly- 
nomial expansion detectors replace the optimum values ( R S ) k k  in (3.8) and (3.9) 
by trRS. If the values of (Rs)kk are closed to trRS, as in the case of synchronous 
CDMA systems with almost equal received powers, the performance degradation of 
polynomial expansion detectors is negligible. However, if the values of (Rs)kk have 
large variance the approximation of (RYkk with t rRS can be severely suboptimal. 
In an asynchronous system, (R>,W)kk varies considerably within the observation 
window even for equal received powers, as is apparent from Figure 4.3 and Figure 
4.4. Therefore, in asynchronous systems, polynomial expansion detectors suffer more 
from their sub-optimality than in synchronous systems. In the following we focus on 
detectors Type J-I. 

The design and analysis of detectors Type J-I for asynchronous systems benefit 
mainly from the following two observations: 

From Corollary 3 it is apparent that, for an observation window sufficiently 
large, the diagonal elements of the matrices" R&, S = 1 , . . . , m, in the center 
of the observation window, coincide with the diagonal elements of the matrices 
RS, S = 1, . . . , m, of the corresponding synchronous system (see Section 3.2). 
Therefore, the design of the asymptotic weights for the detection of the trans- 
mitted symbols in the center of the observation window reduces to the low 
complexity design of the weights for synchronous systems detailed in Chapter 
3.2.1 

The band structure of the matrix 'H in (4.4) enables an implementation of 
multistage detectors with infinite sliding observation window but finite delay. 

The joint use of these two properties has the following implications: 

23Given m, the observation window length W has to be chosen to satisfy the assumptions of 
Corollary 3. 

24This observation suggests the possibility of defining a Type J-J detector for symbol asynchronous 
but chip synchronous systems simply replacing the asymptotic weights of a Type J-I detector 
with the weights of a Type J-J detector for synchronous systems. Note that this weighting would 
not correspond to any practical polynomial expansion detector with finite observation window 
since it implies an infinite observation window. Additionally, its asymptotic performance differs 
from the performance of a polynomial expansion detector, as K, N + oo with constant ratio, 
for any finite choice of the observation window W of the polynomial expansion detector. 
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The design of the asymptotic weights for symbol asynchronous but chip syn- 
chronous systems coincides with the design of the asymptotic weights for syn- 
chronous systems. 

Multistage detectors for asynchronous systems can be implemented with a 
sliding observation window. As a consequence, the multiuser efficiency of all 
received symbols from all users is identical in the large system limit. 

The complexity order per bit of multistage detectors for symbol asynchronous 
but chip synchronous systems is the same as the one of equivalent detectors 
for synchronous systems. 

Choice of the basis of the projection subspace 

As already discussed in Section 3.3, a linear multistage detector of order M per- 
forms a projection of the observed signal onto an M-dimensional Krylov subspace 
and a subsequent processing of the projections by a filter designed according to an 
optimality criterion. 

A straightforward extension of multistage detectors to symbol asynchronous but 
chip synchronous systems would replace the matrices H and T and the vector hk 
in (3.3) with the finite matrices (n) and TNjw (n) and the kth column vector 
extracted from vector 'HNlw (n) , hN,w (k, n)  , respectively. By this straightforward 
extension two kinds of performance degradation would occur. One for using a sub- 
space method instead of a full rank approach and one due to  windowing. However, 
an implementation of multistage detectors with finite delay is possible while avoid- 
ing windowing effects. Let us consider the unlimited system model (4.3) and let us 
use the subspace 

M 
XM,~,.(~.C) = span {W, n)H7m)m, , 

where 7 = 3.C3.CH and h(k, n) is the column of 3.C corresponding to  user k at the 
symbol interval n. Because of the bi-diagonal block structure of X, the matrix 7 is a 
tri-diagonal block matrix and its power Tm is a (2m+l)-diagonal matrix (see Figure 
4.5). Therefore, the vector hH(k ,n)Tm has, at  most, (2m + l ) N  nonzero elements 
and the M-stage detector for the unlimited system model can be implemented with 
a finite delay equal to MT,. This property is illustrated in Figure 4.5. Figure 4.5.a 
shows hH (k, n)3.C3.CH = hH (k, n ) l .  The unlimited row vector hH (k, n ) 7  depends 
only on H ( n  - l), H (n), H (n + 1) and has nonzero elements only in the symbol 
intervals n - 1, n,  n + 1. Therefore, the statistic hH(k, n ) T Y  depends only on y (n  - 
l), y (n) , y (n+ l ) .  Figure 4.5.b shows that this property extends to  the other elements 
of the basis of the Krylov subspace. Namely, the statistic hH(k, n ) T 2 y  depends only 

on y (n  - 2) ,y(n  - l ) , y ( n ) , y ( n  + l ) , y ( n  + 2). 
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I-_- 

This block row is a function of H,, H,+I 

This block row is a function of H,-2, Hn-I ,  Hnr H n + l ,  Hn+2 

Figure 4.5: Vectors of the basis of the Krylov subspace for asynchronous CDMA 
systems. (a) Decomposition of the basis vector R H ( k ,  n ) 7  into the product of the 
row vector RH(k ,  n)71 by the matrix ' H H .  The vector RH ( k ,  n ) 7  depends only on 
H (n- l ) ,  H (n)  , H (n+ l ) .  (b) Decomposition of the basis vector fiH ( k ,  n)T2 into the 
product of the row vector h H ( k ,  n ) % l  by the matrix 71H. The vector R H ( k ,  n)'T2 
depends only on H (n  - 2 ) )  H (n  - l ) ,  H (n) , H (n + l ) ,  H (n  + 2) .  
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The structure of a multistage detector for symbol-asynchronous but chip- 
synchronous systems with a sliding observation window expanding with the number 
of stages is shown in Figure 4.6. 

Each stage of the multistage detector consists of a re-spreading block and a sub- 
sequent matched filter, as well as a stage of a multistage detector for synchronous 
systems (see Figure 3.2). However, the spreading and re-spreading blocks process a 
signal received during two symbol periods instead of a signal received in a single sym- 
bol period, as the signal processed by a multistage detector for synchronous systems 
(for symbol asynchronous but chip synchronous systems H (m) E @2NxK, whereas 
for synchronous systems H'(m) E CNxK). Furthermore, between the re-spreading 
and the subsequent matched filter the signal is properly delayed and combined. 
The jth block receives as input the K-dimensional vector hH(l : K, n - j + l)Tj-ly, 
where h(s : r, n) denotes the matrix [h(s, n), h(s + 1, n), . . . , h(r, n)] with unbounded 
number of rows and r - S + 1 columns, and provides as output the K-dimensional 
vector hH(l : K, n - j ) T i y .  The vector hH(l :K,  n - j + 1)Tj-'y is multiplied or 
re-spread by the matrix H ( n  - j + 1). The re-spreading block provides two output 
vectors, the upper part vector v,(n, j) = H,(n - j + l )hH(l :  K, n - j + l)Ti-'y 
and the vector vd(n, j) = H d ( n  - j + l )hH( l :  K, n - j + 1 ) ~ j - ' y .  The vectors 
vd(n - l, j )  and v,(n - l, j) + vd(n - 2, j) are memorized in the delay blocks. 
The input to the subsequent matched filter is given by 

The output of the jth stage is delayed by ( M  - j)T, before being used as input of 
the filters defined by the matrix weights Wo(n  - M), Wl(n  - M), . . . , W M ( n  - M) 
to provide &(n - M), the soft estimate of b(n- M). 

The following considerations provide further insight into the structure of the 
jth stage. The jth stage calculates hH (1 : K, n - j)'Tjy from a partial knowledge 
of the vector 'HHTj-'y. This knowledge is limited to the K-dimensional vectors 
hH(l :K,  n - j - s)~j- 'y,  with s = -1,0,. . .. Thanks to the fact h(1: K, n - j) is 
nonzero only corresponding to the symbol periods n - j  and n - j + 1, the knowledge 
of the vector Tiy corresponding to those symbol periods is sufficient to compute 
RH (l : K, n - j ) T j y .  It is straightforward to verify that TJy in the symbol interval 
n - j is given by 

and in the symbol interval n - j + 1 is given by 
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i.e. the vectors provided as input of the matched filter in the jth stage (cfr. (r1.26)). 
Therefore, the signals at the output of the re-spreading block are delayed and com- 
bined to compute these two vectors and to provide the required input to the subse- 
quent matched filter. 

Asymptotic Design and Analysis 

Let Wm(n) and W, be a K X K and an unlimited diagonal matrix, respectively. 
Let us denote by wme(n) the lth diagonal element of the matrix Wm(n), then 
Wm(n) = diag(wml (n), wm2(n), . . . , wmK (n)) and Wm = diag{. . . , Wm(n), Wm(n + 
l), . . .). The multistage detector Type J-I for asynchronous systems is the linear 

M-l H m  operator M = Cm=, WmX 7 where the W, (i.e. the matrix weight of the 
filter in the Krylow subspace) are chosen such that E{// MY - 8112) is minimum. 
This is equivalent to the minimization of the mean square error for each component 
(b(n))k of 8 in the corresponding subspace XM,~ ,~ (W) .  Applying again the Wiener- 
Hopf theorem as in Chapter 3, the weight matrices Wm(n)  can be derived by the 
following equation: 

wk(n) = (@k(n))-lvk(n> 

where (wk(n)), = (Wm(n))kk, pk(n)  is an M-dimensional vector , a k ( n )  E 

aMxM, (vk(n)), = (Rm+'(n))kk, (@k(n))rm = (R1+"(n))rk + 02(.R'+"-' 
H 7 m - 1  

(n>>kk, 
R = X ~ X ,  and (Rm(n))kk = h(k, n) h(k, n) denotes the diagonal element 
of the matrix Rm corresponding to the user k at time instant n. The output SINR 
of user k is given by [67] 

In the asymptotic case, as N, K + m with 5 = P, we can apply Corollary 3 to 
obtain 

lim (Rm(n))kk = RE,, V1 5 m 5 2M, (4.28) K=pN-.m 

where RK,, are the asymptotic (deterministic) diagonal elements of the matrix 
R" for synchronous systems introduced in Chapter 3. Recursive and closed form 
expressions for RC, can be found in Theorem 6 or Algorithm 1 (see Section 3.4) 
and in Theorem 15 in Section 13.2, respectively. 

Numerical Results 

Throughout this section, we consider linear MMSE detectors with observation win- 
dow W = 3 and equal received powers within a chip synchronous but symbol asyn- 
chronous CDMA system. Figure 4.7 shows SINRLMMSE, the output SINR of a linear 
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MMSE detector, for a system with P = f and 2 = 7 dB. As for the synchronous 

case, the convergence of lower bounds S I N R ~ )  in (4.7), as s + oo, toward the SINR 
of a linear MMSE detector, SINRLMMsE is very fast and the lower bound correspond- 
ing to M = 7 (line with markers in Figure 4.7) is undistinguishable from the one 
obtained for M = 8. The SINR reaches its maximum for the transmitted symbol 
centered in the observation window and decreases smoothly for the transmitted sym- 
bols whose spread signal is still completely observed (y E [P, 3P]). The performance 
degrades rapidly for symbols only partially included in the observation window. In 
contrast to the synchronous case, in the asynchronous case the multistage detectors 
with M sufficiently large can outperform the full rank linear MMSE detector with 
finite observation window W. This is due to the fact that both detectors use only a 
subset of the sufficient statistics, but, with the proposed subspace basis, multistage 
detectors intrinsically use a wider and wider subset as the number of stages increases, 
whereas the full rank linear MMSE detector exploits always the same statistic (the 
use of a wider statistic would require a longer observation window and thus a larger 
complexity"). 

These theoretical results are completely supported by simulations. We consid- 
ered a CDMA system with 64 users, Gaussian random spreading, frequency flat 
Rayleigh fading, spreading factor 128 and QPSK modulation under two different 
conditions, namely, for synchronous received symbols and for chip synchronous but 
symbol asynchronous received symbols. We compare the BER of the multistage de- 
tectors described in Chapter 3 for synchronous transmitted symbols with the BER 
of detectors Type J-I for chip synchronous but symbol asynchronous systems intro- 
duced in this chapter. Figure 4.8 shows the BER versus 2 for a varying number of 
stages. The BER for chip synchronous but symbol asynchronous systems matches 
completely the BER for synchronous systems. 

4.4 Chip Asynchronous and Symbol 
Quasi-Synchronous CDM A Systems 

4.4.1 System Model 

In the following, CDMA systems such that the time delays of the received signals 
r k ,  k = 1, . . . , K are smaller than the chip delay, T,, are referred to as sgmbol quasi- 
synchronous but chip asynchronous CDMA systems. 

In this section we consider symbol quasi-synchronous but chip asynchronous 
systems and we assume that the time delays r k  satisfy the constraints r k  5 T,, 

2 5 ~ o t e  that complexity grows cubic with the window size, but linearly with the number of stages. 
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Figure 4.7: Chip synchronous but symbol asynchronous CDMA system with equal 
received powers, /3 = $ and 2 = 7 dB. Asymptotic SINRLMMsE for W = 3 and 
multistage detector SINR for varying M versus the position of the detected symbol 
i n  the observation window. 

Flat Rayleigh fading channel, K=64, N=128, QPSK modulation. 
! I I I l , , 

X Sinr Mdtlstase ~e t ec to r  M I 
0 Svnc. Multlstaee Detector M=5 

Figure 4.8: Comparison between the BER of multistage detectors for synchronous 
systems (solid lines) and the BER of multistage detectors for chip synchronous and 
symbol asynchronous CDMA systems (markers). BER versus 3 for P = 0.5 and a 
varying number of stages. 
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k = 1, . . . , K. Additionally, we focus on the transmission of a single symbol bk per 
user as in [82]. Then, the general system model (4.1) can be rewritten as 

where 
We 

form, 

akk, bk, s~ [u ] ,  nb] ,  r  are defined in Section 4.2. 
also assume that the chip pulse J( t )  is much shorter than the symbol wave- 
i.e. J( t )  becomes negligible for It\ > to with some to << T,. This is usually 

valid in systems with large spreading factor, which are considered in this work. In 
fact, in the systems in use the chip pulse decays rapidly and becomes negligible 

, . 
after 8-10 chip periodsLC'. We make use of the previous assumption to neglect the 
useful signal outside the symbol interval [0, T,]. Thus, the system model (4.29) with 
p = 0,1, .  . . , Nr - 1 reduces to 

where 5 and E are the Nr dimensional vectors of received signal and zero mean, 
complex-valued, circular symmetric, white Gaussian noise with variance o2 = e, 
respectively. Furthermore, v,+ is the Nr dimensional virtual spreading sequence of 
user k given by - 

Vk = q k s k ,  

where 5k is an Nr X N matrix taking into account the effects of the pulse shape 
and the time delay of user k. It is defined as 

26 TO have an idea of the decaying rate the reader can consider the sinc function that is the slowest 
decaying function among the raised-cosine functions. 
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Structuring the matrix Gk in blocks of dimension r X 1, Gk is a block-wise Toeplitz 
matrix. - 

Let be the rN X K matrix of virtual'" spreading, i.e. S = - 
52.532, . . . , !PK,,). Furthermore, let A be the K x K diagonal matrix of 

received amplitudes, and b the vector of transmitted symbols. Then, the system 
model in matrix notation is given by 

- - 
with = SA. Additionally, K k  denotes the tth column of the matrix H .  T and R " .  .- 

--H -H- 
are the correlation matrices defined as !? = HH and R = H H, respectively. 

4.4.2 Linear Detection 

Following the same approach as in Chapter :3,  the linear MMSE detector and the 
multistage detector Type J-I for symbol quasi synchronous but chip asynchronous 
CDMA systems are given by 

and 

respectively. The weights for the detection of the tth symbol are obtained as 

with 

- M  T 
Pk = ((k)kk, ( g ) k k j  , ( R  )kk) . (4.33) 

27Here, the adjective 'virtual' refers to the fact that 3 takes into account the asynchronism and 
the chip-pulse waveform. 
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The structure of the Type J-I detector coincides with the structure proposed in 
Figure 3.2 for synchronous systems by substituting H with g. Once again the 
design of the asymptotic weights reduces t o  the computation of the asymptotic 

-S 

values Rik,m = limK=pN,+m(R )kk, for S = 1,2 , .  . . ,2M.  
For further studies it is convenient to  define the concept of r-block-wise circulant 

matrices of order N:  

Definition 2 Let r and N be positive integers. An r-blockwise circulant matrix of 
order N is an r N  X N matrix of the form 

In the matrix an r X N block row is obtained by circularly right shifting of the 
previous block. Since the matrix is univocally defined by the unitary Fourier 
transforms of the sequence2"cs,~, c , ,~ ,  . . . C ~ , N - I )  

we will denote an r-block-wise circulant matrix of order N by 
d N ) (  fi (X), f2(x), . . . fr (X)) in the foll~wing"~'. 

Let R be a matrix of form similar to the form of matrix g but with the block- - 
wise Toeplitz matrices !Ifk replaced by block-wise circulant matrices C*, i.e. = 

28~hroughout this chapter we utilize unitary Fourier transforms both in the continuous time 
and in the discrete time domain. With this choice the functions of the complete orthogonal 
system for the direct Fourier transform are simply the complex conjugate of functions of the 
complete orthogonal system for the inverse Fourier transform. The unitary Fourier transform 
of a function f (t) in the continuous time domain is given by F( jw)  = -& f (t)e-jwtdt. The 
unitary Fourier transform of a sequence {. . . , c-1, Q, cl, . . .) in the discrete time domain is given 

- j w n  by C(ejY) = -& G e  . 
2gIn this section we denote the argument of a Fourier transform of a continuous time function by 

f and the argument of a Fourier transform of a sequence by X. 
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(Clsl ,  C 2 s 2 , .  . . , C K s K ) A .  - T h e  matrices Ck ,  k = 1 , .  . . , K are chosen i n  a way such 
tha t  t he  spectrum o f  \kk, k = 1, . . . , K converges asymptotically t o  t he  spectrum 
o f  Ck ,  k = 1, . . . , K .  This  choice will b e  thoroughly discussed i n  t he  following. 
Firstly, we determine the  asymptotic values o f  t he  diagonal elements o f  t he  matrices 
-e -H- 
R = ( H  H)', l E Z+,  as N ,  K -+ m with  $ + p. Then ,  we extend t he  results t o  

t he  matrices R[, l E Z+. 
T h e  convergence o f  t he  diagonal elements o f  R' t o  deterministic values is estab- 

lished i n  t he  following theorem. 

Theorem 10 Let A E C K x K  be a diagonal matrix with kth diagonal element akk. 
Given a function Z( j27rf)  : R + C with finite support and bounded i n  absolute 
value"", let 

Furthermore, let k = 1 , .  . . , K ,  be K r-block-wise circulant matrices of order 
N defined by 

- 
where r is  a positive integer". Finally, let = S A  with = 

(NI ( c \ ~ ) s ~ ,  c $ ~ ) s ~ , .  . . , CK S K ) .  

Let us assume that 

(a) s k ,  for Ic = 1, .  . . , K ,  are K independent N-dimensional column vectors with 
1 i.i.d. random elements s,k E C such that E{ snk )  = 0,  E { I s , ~ ~ ~ }  = y, and 

3 (NIl6) < +m.:19 l i m ~ , ~  E { N  Isnk 

(b) (7-1, 1-2,. . . , T ~ )  is a sequence of K random variables with r k  E [0, T,) and T, 
positive realJ3. 

' K )  (c) The sequence of the empirical joint distributions F,,,,,, ( X ,  T )  = k ~ t = ~  1 ( X  - 
lakkI2)1(T - rk) converges almost surely, as K + m, to a non-random distribu- 
t ion function F i A 1 2 , T ( X ,  T )  with bounded support. 

3 0 ~ ( j 2 n f )  models the unitary Fourier transform of the chip pulse waveform F(t) .  
31r is a sampling factor that defines the sampling rate as g. CL*) takes into account the chip-pulse 

waveforms. 
32These random column vectors model the spreading sequences. 
3 3 ~ k  corresponds to the time delay of user k. 
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-H- . 
(d) The spectral radius of the matrix R = H H zs almost surely upper bounded as 

K ,  N -, +oo with'd K N + P. 

K ( N )  (e) K = K ( N )  with limN4, 7 = P. 

Then, given (lakk12, rk),  the kth diagonal element of the matrix Z' converges with 
probability one to a deterministic value, conditionally on (lakkI2, rk),  

with R(lakkI2, rk) determined b y  the following recursion 

and 

where 

---O --O 
The recursion is initialized by setting T (X) = I ,  and R ( X ,  r )  = 1. 

Theorem 10 is proven in Appendix C Section C.3. 
For r = 1 and FIA(2,T(X, 7 )  = q A 1 2  ( X ) & ( ? - ) ,  i.e. for synchronous systems sampled 

at  the chip rate with to (x )  = sinc(x) it can be verified that equation (4.3'4) reduces 
to equation (3.26). Equation (4.37) becomes X ,  r )  = XPm& and the recursion 
in Theorem 10 coincides with the recursion in Theorem G for synchronous systems. 

34This condition can be replaced by the less restrictive condition that the integer positive eigenvalue 
moments are upper bounded. 
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Asymptotically, there exists a strong relation between Toeplitz and circulant 
matrices. In fact, given a sequence U,, m E Z that is square summable:'" i.e. 

+W xm=-, [urn l 2  < +m, and given the sequence {UN) of Toeplitz matrices 

the sequence of the empirical eigenvalue distributions of the Toeplitz matri- 
ces UN and of the empirical eigenvalue distributions of the circulant matrices 

1 +CO ej2nmx 
{CN(= Em=-W m )) converge to  the same limit eigenvalue distribution for 
N -t m 190-921. 

- (NI Let us consider the matrix \kk , with r = 1 in (~4.30) and let us determine 
the asymptotically equivalent circulant matrix. If z ( j 2 ~ f )  is the unitary Fourier 
transform of &(t), then, ej2"f"z(j2d) is the unitary Fourier transform of &(t - rk) 
and 

where, in the first step, we assume &(t) to  be real and then we make use 
of the property of the complex number z that z = (z*)*. Let us notice that 

&(mT, - r,)e-j2""" is the unitary Fourier transform of the se- 
- * 

quence { $ ( m ~ ,  - T ~ ) ) .  Then, it is possible to use the relation between the uni- 
tary Fourier transform of a sequence obtained by sampling a given function a t  
rate l/Tc and the unitary Fourier transform of the continuous time function [93]. - (NI 
Thus, the sequence of the eigenvalue distribution of the Toeplitz matrices \kk 
converges to  the limiting eigenvalue distribution of the sequence of circulant matri- 

W 
CeS CN (& cm=-,  ej2n%(x+m).;.* ( j 2 n ~ ) )  . This property suggests the following 
conjecture. 

Proposition 1 Let assumptions (a)-(c!) of Theorem 10 be satisfied and let the def- 
initions in Theorem 10 hold. Additionally, assume: 

35This condition is very general and includes almost all chip-pulse waveforms of practical interest. 
In fact, it coincides with the condition for the existence of the Fourier transform of a sequence. 
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(i) Given the function &(t) : R + R - with unitary Fourier transform Z(j27r f )  
as i n  Theorem 10, the sequence {$(Ten - 7)) is  square root summable, i.e., 

C::-,"-, l & ( ~ n  - r)I2 00, for any r E [O, Tc]. 

(ii) Let G:) be as i n  (4.30). 

-(NI -(NI - ( W  W (N) -(N) = g(WAK 
(iii) Let S = (!P1 s1, \E2 s2,. . . !PK SK) and H 

-H- 
Then, the diagonal elements of the matrix (R)' = (H H)', l E Zt, converge 
asymptoticallg t o  the corresponding diagonal elements of the matrix R', i.e. condi- 
tionally on  (Iakkl2, rk) 

Proposition 1 can be proven under the conjecture that not only the spectrum but 
also the eigenvectors of Toeplitz matrices converge asymptotically to the eigenvec- 
tors of circulant matrices. Implicitly, this last conjecture has been already used 
in the proof of Theorem 6 in [13]. Proposition 1 is supported by numerical sim- 

( ~ ( ~ ~ ~ ' ) g ~ - ~ ( l a k k 1 ~ , T k )  
ulations. In Figure 4.9, the empirical distributions of = - 

~ ~ ( l a k k 1 ~ , 7 k )  ' 
S = 2,3,5,6, i.e. the empirical distribution of the relative error made by approximat- - (512) 
ing the diagonal elements of powers of the 512 X 512 matrix R by the asymptotic 
values xs(jakk12, Q), are compared to the corresponding empirical distributions of 

cs = - )g*-R ( l a k k i 2 ' n )  , S = 2,3,5,6. The empirical distributions of 7, and Zs have 
R s ( l a k k I 2 , ~ k )  

been obtained assuming that &(t) is a raised cosine waveform with roll-off factor 
y = 0.5, using a system load P = 0.5 and sampling factor r = 2. The empirical 
distributions of F,, S = 2,3,5,6 match very well the empirical distributions of the 
corresponding 7,. Later on, the conjecture in Proposition 1 will be further supported 
by the comparison between the asymptotic performance and the performance of fi- 
nite communication systems (e.g. Figure 4.10). 

The asymptotic SINR of the multistage detector Type J-I for symbol quasi- 
synchronous but chip asynchronous systems is obtained from (3.37) by replacing 

-03 - 
pp and !Dr by G: = limN,pK4,"-,Gk and !Dk = limN,pK,, ak, respectively. 
Then, 

1 
SINRY-,,, = 1 (4.39) 

The performance of the linear MMSE detector can be approximated with arbi- 
trarily high precision by the performance of the multistage detector Type J-I with 
a sufficiently large number of stages, as already discussed in Chapter 3. 
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Empirical distribution of Zz and Z2. Empirical distribution of Z3 and 53. 

Empirical distribution of Z5 and F5. Empirical distribution of F6 and 63. 

- 
Figure 4.9: Comparison of the empirical distributions of E, - - 

- (512) ~ ( 5 1 2 )  
(R - ) " , -zs ( la l~k ,7k)  (Solidlines) and5s = (R - );k - W ( l a 1 i k 7  Q) (dashed 

Rs((IaI:k7 ~ k )  ~ ~ ( l b l i k ,  Q) 
lines) for S = 2 , 3 , 5 , 6 .  
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Let us consider a chip asynchronous but symbol quasi synchronous CDMA system 
with equal received powers, raised cosine chip pulse waveform of roll-off factor y = 

0.5, system load P = i, and a Type J-I detector with M = 4. In Figure 4.10 the 
performance of finite systems with increasing dimension ( K  = 32, K = 128, and 
K = 1024) is compared to the asymptotic performance. As expected, the variance 
of the output SINR for the finite systems decreases as the system size increases and 
the SINRs for the finite systems concentrate more and more around the asymptotic 
values computed by (4.39). 

4.4.3 Effects of Asynchronism and of Chip Pulse Waveforms 

Theorem 10 and Proposition 1 are not useful only for the design of multistage 
detectors with asymptotic weights. In fact, their application to the analysis of CDMA 
systems with random spreading and linear detectors optimal in a minimum mean 
square error sense demonstrates general properties of these systems. 

In the following we focus on three cases: 

1 Chip pulse waveforms with bandwidth B 5 z. 
Chip pulse waveforms with bandwidth & 5 B 5 &. 
CDMA systems using square root Nyquist chip pulse waveforms and chip 
matched filtering at the front-end. 

Chip pulse waveforms with B 5 & 
Chip pulse waveforms $(t) with bandwidth B non greater than & are analyzed. 
Thus, the conditions of the sampling theorem are satisfied when sampling at a rate 
that is equal to or a multiple of the chip rate, the samples are sufficient statistics 
for the detection of all users in the system. 

Denoting by E(j2rx) the unitary Fourier transform of the function J(t), the 
,(j2nx). The r-blockwise unitary Fourier transform of $(t - n) is given by e-j2"Tkx'= 

circulant matrices of order N asymptotically equivalent to the block-wise Toeplitz 
matrix (4.30)) are 

By specializing the vector A,(x) in Theorem 10 to the case B 5 &, we obtain, 
for any time delay 7 

& ~ . x T ~ x  

( j2rx)e  A,(x) = -=* 
T c  
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Equal recelved powers, raised cosmey=0.5, b 0 . 5 ,  1=2 

Equal received powers, raised cosine y 3 . 5 ,  p=0.5, r=2 
18, 1 

Equal received powers, raised cosiney=0.5, P=0.5, -2 

Figure 4.10: SINRdB versus as K = PN + M (solid line) and with a 
finite number of users (red dots), namely K = 32, K = 128, K = 1024. A chip 
asynchronous but symbol quasi synchronous CDMA system with equal received 
powers and = $ is considered. 
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Theorem 10 applied to the case B 5 & yields the following algorithm to derive 
-e 
R (X)  and the asymptotic eigenvalue moments of the matrix R. 

Algorithm 2 

Initialization: Let po(z) = 1 and po(y )  = 

lth step: Define ue-1(y) = ~ p e - ~ ( y )  and write it as a polynomial i n  y .  

Define ve-1 ( z )  = zpe-I ( z )  and write it as a polynomial i n  z.  

1 1 / 2  
2s 

Define E, = F S-,,, I~(j27rg) 1 d 2: and replace all mono- 

mials y ,  y 2 , .  . . , ye  i n  the polynomial ue-l(y)  by E l ,  E2,. . . , Ee, 
respectively. Denote the result by Ue-1. 

Define = E{ la tk lzs }  and replace all monomials 
z ,  z2,  . . . , ze in the polynomial ( z )  by the moments mh12, 
m t A 1 2 7 e .  , m f A 1 2 j  respectively. Denote the result by &- l .  

Calculate 

Assign pe(X) to  ? ( X ) .  

Replace all monomials z ,  z2,  . . . , ze i n  the polynomial pe(z) by 
2 respectively, and assign the moments m;l2, m l A 1 2 , .  . . , mlA12, 

the result t o  4. 

The derivation of Algorithm 2 is detailed in Appendix C1 Section C.4. 
- e  

The limit diagonal element $(X) of R and the eigenvalue moments m& equal 
-e R ( X )  and 4, respectively thanks to Proposition 1. 

By applying Algorithm 2 and Proposition 1 we compute the first five asymptotic 
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eigenvalue moments 

For ideal sinc functions with bandwidth B = &, we have E, = 1, S = 1,2,  . . . . It 

can here be verified that &!'(lakk12) = r ' ~ ~ ( l a ~ ~ l ~ ) ,  where ~ ~ ( l a ~ ~ 1 ~ )  are the asymp- 
totic diagonal elements obtained by Algorithm l for synchronous systems. 

In general, the eigenvalue moments of R depend only on the system load P, 
the sampling rate k, the eigenvalue distribution of the matrix A H ~ ,  and E,, S E 
Z+. The latter coefficients take into account the effects of the shape of the chip 
pulse or, equivalently, - of the frequency spectrum of the function J ( t ) .  The diagonal 
elements Re((lakk 1 2 )  and the eigenvalue moments m& are also independent of the 
delay distribution. In particular, Algorithm 2 can be applied also to synchronous 
systems with or without oversampling and any kind of chip-pulse waveform provided 
that B 5 &. Since the performance of the large class of linear detectors that admit 
a representation as multistage detectors depends only on the diagonal elements 
Re ( l  akk l ') and the eigenvalue moments m$, we can state the following corollary. 

Corollary 4 Let the assumptions of Proposition 1 be satisfied. Additionally, let us 
assume that B, the bandwidth of $(t), satisfies the constraint B 5 &. Then, the 

asymptotic limiting values &!(lax 1 2 ,  rk) are independent of the distribution of the time 
delays f T ( r )  and synchronous and asynchronous CDMA systems have the same per- 
formance when a linear detector that admits a representation as multistage detector 
is used at the receiver 

Asynchronism does not cause any performance degradation on the system if the 
time delays and the received amplitudes of the signals are known a t  the receiver and 
the sampling rate satisfies the conditions of the sampling theorem. In this way we 
have generalized the results obtained in 1821 for systems using an ideal Nyquist sinc 
waveform to  any kind of chip pulse waveforms with bandwidth B 5 &. 

The output SINR is also independent of the initial sampling time. Therefore, the 
system does not incur any degradation in SINR if, for all signals of interest, we 
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consider a discrete statistic obtained by sampling the received signal starting at a 
random instant and with a proper sampling rate, instead of considering K different 
statistics obtained by sampling the received signal at the exact time delay of each 
signal to be detected. This property has a very positive impact on the complexity of 
the system. In fact, without performance degradation we can replace a bank of K 
different samplers and K different multiuser detectors by a single sampler followed 
by a single multiuser detector processing all users jointly. Additionally, the prior 
knowledge of the time delay of each user is not required in order to sample the 
received signal. The estimation of the time delay can be done afterwards using the 
discrete time received signal. 

As already mentioned, the previous results enable also an asymptotic analysis of 
the effects of oversampling. We verified numerically that an increase of the sampling 
rate above the chip rate does not provide any benefit. This is a consequence of the 
sufficiency of the statistics obtained by sampling at rate 5, where r* is the minimum 
sampling factor such that B 5 &. 

Chip pulse waveform with & 5 B < & 
Let &(t) be a chip waveform with unitary Fourier transform B ( j 2 n  f )  and bandwidth 
1 2 ~ ,  < - B 5 &. Sufficient statistics are obtained sampling at rate & since the con- 
dition of the sampling theorem is satisfied. The asymptotic values of the diagonal 

- e  
elements of R can be obtained by specializing Theorem 10 to this scenario and then 
applying Proposition 1. The following Corollary specializes Theorem 10 to a system 
using chip pulse waveforms with bandwidth & < B < &. 
Corollary 5 Let the definitions of Theorem 10 hold and let us assume that condi- 
tions (a)-(cl) of Theorem 10 are satisfied. Additionally, assume: 

( l )  The random variables X and T are statistically independent and fT (7 ) ,  the prob- 
ability density function of the random variable T ,  with support T E [O,T,) is 
symmetric around T = 2, i.e. f T ( r  - 2) is an even function. 

(2) B(j27rf)  : R -+ R is reaP%nd banddmited with bandwidth B E [&, &] 

-(NI e 
Then, given ( l a k k 1 2 , ~ k ) ,  the kth diagonal element of the matrix ( R  ) - 
( ( R ( ~ ) ) H B ( ~ ) ) '  converges with probability one to a deterministic value, condition- 
ally on  Iakkl2, 

36This condition corresponds to the assumption that the chip-pulse waveform is an even function. 
This condition is usually satisfied in practical systems. 
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with E(X)lA=lakk12 determined by the following recursion: 

and 

f (W)  = p XR' ( ~ ) d  Fla12 ( X )  

where 

with 
z 2 ( j z x )  + E 2 ( j g ( x  + l ) )  -L < 5 0 

q1(x) = - 2 - 
E 2 ( j z x )  + z 2 ( j % ( x  - 1 ) )  0 5 5 f 

and 
-2 .2 lr  

- ; ( j E ( x  + 1 ) )  -L 2 < - X 5 0 

- z 2 ( j g ( x  - 1 ) )  0 5 X 5 4. 
The recursion is initialized by setting ~ ' ( x )  = I2 and R'(-\) = 1. 

Corollary 5 is derived in Appendix C1 Section C.5. 
Applying Corollary 5 we obtain the following algorithm. 

Algorithm 3 

Initialization: Let po(x) = 1 and po(y)  = 1. 
lth step: Define ue-1(y) = ypeFl (y )  and write i t  as a polynomial i n  y.  

Define ve-1(z) = zpeVl (z )  and write i t  as a polynomial i n  z .  

Define 

and replace all monomials y, y2, . . . , ye i n  the polynomial 
ue-1 ( g )  by E l ,  E2, . . . , Et, respectively. Denote the result by 
ue-1. 
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l 

Define msAl2 = E{lakklzS} and replace all monomials 
z, z2, . . . , xe i n  the polynomial (2) by the moments mb12, 
mfA12,. . . , mfA12, respectiveb. Denote the result by ~ - 1 .  

Calculate 

Assign &(X) to  ?(X). 
Replace all monomials z, x2, . . . , xe in the polynomial pe(z) by 

1  2 respectively, and assign the moments mlA12, m l A 1 2 , .  . . , mlA12, 

the result to  4. 
Algorithm 3 is derived in Appendix C Section C.6. 
The asymptotic limits ke(X) and the eigenvalue moments rnk of the matrix R 

can be obtained from Algorithm 3 by applying Proposition 1. 
Interestingly, the recursive equations in Corollary 5 do not depend on the time 

delay of the signal of user k ,  i.e. the performance of a CDMA system is indepen- 
dent of the sampling instants and time delays under Condition ( l )  and (2) on the 
chip waveforms and on the time delays of Corollary 5. 

Additionally, the dependence of ke(X) on the chip pulse waveforms becomes clear 
from Algorithm 3: k e ( ~ )  depends on 2(j27r f )  through the quantities E,, s = 1,2, .  . ., 
defined in (4.41). 

Proposition 1 is completely general and can be applied to the analysis of synchro- 
nous CDMA sampled at a rate that is a multiple of the chip rate. To this aim it is 
sufficient to consider that the time delays r k  of all users are deterministic and equal 
to TO. This is modelled mathematically by setting fT(r), the probability density 
function of the time delay equal to a Dirac, i.e. 

The comparison of synchronous and asynchronous systems with equal chip pulse 
waveforms enables us to analyze the effects on the system performance of the chip 
pulse waveforms jointly with the effects of the distribution of the delays . Hereafter, 
we will elaborate on these aspects focusing on square root raised cosine and on 
raised cosine chip-pulse waveforms with roll-off y E [0, l] .  To simplify the notation 
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we assume T, = 1. Let 

0 5 1x1 5 y 
(l - sin ( X  - ) )  9 5 1x1 5 

1x1 2 F. 
The energy frequency spectrum of a square root raised cosine waveform with unit 
energy is given by ~~,,,,(j2i?.x) l2 = T(x). The unitary Fourier transform of a raised 
cosine chip waveform with unit energy is B,(j2i?.x) = &T(x). The corresponding 

Y 
coefficients ESq,,,, and Er,,,, S = 1 ,2 , .  . ., are given by 

and 

respectively. 
The performance of synchronous CDMA systems with square root raised cosine 

chip-pulse waveforms is well known to  be independent of the roll-off and given in 
Chapter 3. 

For a synchronous CDMA system with raised cosine chip pulse waveforms, sam- 
pled at  rate &, and with time delay TO = 0, Proposition 1 can be applied. The 
recursive equations of Proposition 1 reduce to the recursive equations of Corollary 
5 with 

Figure 4.11 and Figure 4.12 show the large system performance, in terms of as- 
ymptotic output SINR, of detectors Type J-I with M = 4 and increasing roll-off 
versus the SNR, 5 being E, the energy per symbol in case of both synchronous 
(lines with markers) and asynchronous CDMA systems (lines without markers). The 
SINR is obtained assuming equal received powers at  the receiver and system load 
p = ' .  

2 
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While the SINR of synchronous systems with square root Nyquist waveforms is 
independent of the roll-off, it decreases as the roll-off increases, if the modulation 
is based on raised cosine waveforms. For y = 0, i.e. for an ideal sinc chip pulse 
waveform, the performance of synchronous and asynchronous systems coincides as 
already observed in the previous section. In contrast to the case of synchronous 
systems, asynchronous systems with uniform time delay distribution or time delay 
distribution satisfying condition (1) in Corollary 5 outperform the corresponding 
synchronous systems with equal roll-off, both in case of square root raised cosine and 
raised cosine chip-pulse waveforms. The comparison of Figure 4.11 and Figure 4.12 
shows that asynchronous systems with square root raised cosine largely outperform 
asynchronous systems using raised cosine waveforms and linear multiuser detection. 
The output SINR of asynchronous systems increases as the roll-off increases. 

Increasing the roll-off is equivalent to increasing the system bandwidth and to 
redistributing the available energy in the additional degrees of freedom added in 
the frequency domain. Since the bandwidth increases there is room for potential 
improvements of the SINR. These degrees of freedom can be utilized to reduce 
the multiple access interference. Let us consider identical chip-pulse waveforms of 
different users. If all waveforms have the same time delay the correlation between 
two chip-pulse waveforms is maximum and also the average correlation is maximum. 
However, if the system is asynchronous the average correlation is lower and the 
multiple access interference decreases. This gives an intuitive explanation of the 
reasons why asynchronous systems can outperform synchronous systems. 

Figure 4.13 and Figure 4.14 illustrate the output SINR of a Type J-I detector with 
M = 4 as a function of the roll-off for synchronous systems (dashed lines) and chip 
asynchronous but symbol quasi synchronous systems (solid lines) for three different 
levels of %: 15 dB, 20 dB, and 30 dB. The gap between the solid and the dashed 
lines corresponding to the same level of 5 is the improvement achievable with a 
3-stage detector (M = 4) using an asynchronous system instead of a synchronous 
system. The gap increases as the roll-off and/or the SNR increase, both for raised 
cosine (Figure 11.14) and square root raised cosine waveforms (Figure 4.13). 

In Figure 4.15 and Figure 4.16 the SINR is plotted as a function of the system load. 
The improvement achievable by asynchronous systems over synchronous systems 
increases as the system load increases, both for raised cosine and square root raised 
cosine waveforms. 

Square root Nyquist chip pulse waveforms and chip matched filtering at the 
front-end. 

Let us reconsider the chip asynchronous but symbol quasi synchronous CDMA sys- 
tem slightly modified. We assume that the used chip pulse is a square root Nyquist 
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Equal received powers, square root raised cosine chip pulses, P=1/2, M=4 

Figure 4.11: Output SINR of a Type J-I detector with M = 4 versus for syn- 
chronous systems (lines with markers) and chip asynchronous but symbol quasi 
synchronous systems (lines without markers). CDMA systems with equal received 
powers, square root raised cosine chip pulse waveforms, sampling rate $, 
and system load P = 1. Three different square root raised cosine waveforms are con- 
sidered corresponding to  different roll-offs: y = 0 (dot-dashed line), y = 0.5 (dashed 
line), and y = 1 (solid line). 

Equal received powers, raised cosine chip pulses, P=1/2, M=4 

Figure 4.12: As Figure 3.1 1 for raised cosine chip pulse waveforms. 
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Equal received powers, square root raised cosine chip pulse, P=0.5 
20 ( I I 

lob 0:l 0:2 013 Or4 015 016 0:7 018 019 
roll-off 

Figure 4.13: Output SINR of a Type J-I detector with M = 4 versus the roll- 
off y for synchronous systems (dashed lines) and chip asynchronous but symbol 
quasi synchronous systems (solid lines). CDMA systems with equal received powers, 
square root raised cosine chip pulse waveforms, sampling rate g, and system 
load ,O = i. Three different level of SNR are considered: 15 dB, 20 dB, and 30 dB. 

Equal received powers, raised cosine chip pulses, 8=1/2, M=4 

101 I I I b 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
roll-off 

Figure 4.14: Idem as Figure 4.13 for raised cosine chip pulse waveforms. 
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Equal received powers, square root raised cosine chip pulses, Es/N,=20 dB, M=4 
20 

Asynch., roll-off y=0 
- - - Asynch., roll-off y=0.5 
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Figure 4.15: Output SINR of a Type J-I detector with M = 4 versus the system 
load P for synchronous systems (lines with markers) and chip asynchronous but 
symbol quasi synchronous systems (lines without markers). CDMA systems with 
equal received powers, square root raised cosine chip waveforms, sampling rate 
2 and system load = ?. Three different raised cosine waveforms are considered 
T c  ' 
corresponding to different roll-offs: y = 0 (dot-dashed line), y = 0.5 (dashed line), 
and y = 1 (solid line). 

Equal received powers, raised cosine chip pulses, Es/No=20 dB, M=4 

Asynch., roll-off y=0.5 - % - Synch., roll-off y=0.5 

Figure 4.16: As Figure 4.15 for raised cosine chip waveforms. 
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pulse. 
The front-end consists of: 

An analog filter G(f)  matched to the chip pulse and normalized by the chip 
**(f). pulse energy, i.e. G( f )  = - 6' 

A subsequent sampler with sampling rate equal to the chip rate. 

By sampling the output of the chip matched filter at the chip rate, the discrete- 
time signal after the sampler is given by 

The notation utilized in (4.42) has been introduced in Section 4.4.1 with the excep- 
tion of &t), which - is the convolution of the chip pulse waveform with the filter at 

+( * ) the front-end, i.e. m(t) = 'l' (-' . By the definition of a square root Nyquist wave- ,& v 

forms, $(t) satisfies the Nyquist pulse-shaping criterion. The same criterion is also 
satisfied by the power spectrum of the noise. Then, after sampling at the chip rate, 
the discrete time noise process {n[p]}  is white with variance -$&. The system model 

in matrix notation is given by (4.31) with the matrix $ obtained by substituting 
$(t) with $(t) and assuming r = 1. Then, Theorem 10 can be applied. Hereafter, 
we refer to this system as System A. 

Given the square root raised cosine chip-pulse waveform with roll-off y [94] 

the matrix Q,(rc) = A,(x)A:(x) occurring in Theorem 10 reduces to the scalar 

-L < X  5 -9 L + i sin2 (:(X + i)) + 9 (I - sin2 (?;.(X + i))) - 
-eY<x5F 

2 - 
+ - (1 -sin2 (:(X - f))) 5 X 5 1. 

due to the fact that r = 1 in this case. In the following the asymptotic analysis 
of system A is performed. Equal received powers, system load P = a, Type J-I 
detectors with M = 3 define the scenario we consider for the asymptotic analysis. 

In Figure -1.17 the asymptotic output SINR (solid lines) as a function of % is 
compared to the corresponding output SINR for finite systems (dots) with 512 users. 
The performance depends on the time delay. The two groups of curves illustrate the 
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Square root raised cosine waveform, y=0.5, P=0.5, M=3 
14 1 I I I I I I 

Figure 4.17: Output SINR of a Type J-I detector with M = 3 versus 2 for large 
systems (solid lines) and finite systems with 512 users (dots). CDMA systems with 
equal received powers, square root raised cosine chip waveforms (y = 0.5), sampling 
rate &, system load P = 1 and chip matched filter at the front-end. Two user signals 
with time delays T = 0 and T = 0.5 are considered. 
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performance corresponding to the most favorable time delay (r = 0) and to the least 
favorable time delay (r = 112). The gap between these two cases is quite significant: 
it exceeds 1 dB in the analyzed range of %. 

The dependence of the performance on the time delay is illustrated in Figure 
4.18. The solid lines represent the output SINR as a function of the time delay 7- 

parameterized with respect to E .  The parameter varies from 0 dB to 20 dB in 
steps of 2 dB. The performance is maximum at the extreme points of the range of 
r, i.e. r = 0 and r = 1, and it is minimum in the middle of the interval [0, l]. The 
output SINR of asynchronous systems is compared with the SINR of synchronous 
systems using the same chip pulse waveform and sampling the signal at the best time 
instant ( r  = 0). The asynchronous system slightly outperforms the synchronous one 
around r = 0 and 7 = 1 while the performance is severely worse for signals delayed 

1 by r = 3 .  
This observation leads to the following conclusions: 

The use of square root Nyquist chip pulse waveforms jointly with the above 
described front-end requires a preliminary estimation of the time delay of the 
user of interest and a good synchronization in order to avoid severe perfor- 
mance degradation. 

In order to obtain good performance, different statistics are needed for the 
detection of different users and they have to be processed independently. This 
does not affect the complexity when detection of a single user is required (e.g. 
downlink). However, it is a significant drawback when several or all users in 
the system have to be detected (e.g. uplink) since the detection cannot be 
performed jointly. 

In Figure 4.19 system A with roll-off y = 1 is compared to a system using raised 
cosine waveforms with y = 1 and sufficient statistics. The latter system is referred 
to as system B. The SINR versus the time delay for values of the parameter 
varying between 0 dB and 20 dB in steps of 2 dB is plotted, both for system A 
(solid lines) and for system B (dashed lines). For some values of the parameter 2 
system B outperforms system A, although earlier in this section systems using square 
root raised cosine waveforms were shown to perform better than systems using raised 
cosine waveforms. The reason for this behavior is that the statistics utilized in system 
A, sufficient for synchronous systems, are not sufficient for asynchronous systems. 

4.5 Asynchronous Systems: General Case 

In this section we extend the previous results to a general asynchronous system. 
Without loss of generality we can assume that the maximum delay among users is the 
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Square root raised cosine pulse, y=l, system load P=0.5, M=3 
l2  I E /N-?.20 dB ' I I I 

0:l 0:2 0:3 0:4 0:5 016 6 7  0:8 0:9 1 
Time Delay z 

Figure 4.18: Asymptotic output SINR of a Type J-I detector with M = 3 versus the 
time delay T for asynchronous systems (solid lines) and synchronous systems (dashed 
lines). CDMA systems with equal received powers, square root raised cosine chip 
waveforms (y = l), system load P = ?, sampling rate &, and chip matched filter at 
the front-end. The curves are parameterized by 5 with 5 varying between 0 dB 
and 20 dB in steps of 2 dB. 

Square root raised cosine vs raised cosine, y=l, P=0.5, M=3 

-6b 0:1 0:2 0:) 0:4 0:5 0:6 017 0:8 0:9 1 
Time Delay z 

Figure 4.19: Asymptotic output SINR of a Type J-I detector with M = 3 versus the 
time delay T for asynchronous systems with square root raised cosine chip waveforms 
(y = 1) and sampling rate & (solid lines), and asynchronous CDMA systems with 
raised cosine chip waveforms (y = 1) and sampling rate (dashed lines). The curves 
are parameterized by 5 with 5 varying between 0 dB and 20 dB in steps of 2 dB. 
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symbol interval T, [16]. User 1 has time delay r1 = 0 and the other users are ranked in 
ascending order of delay. The chip pulse is much shorter than the symbol waveform, 
as already assumed for symbol quasi synchronous but chip asynchronous systems. 
Thus, we can neglect the intersymbol interference between symbols transmitted by 
the same user in the asymptotic analysis. 

The system model in matrix notation is 

- 
where y = [. . .  , yT (m - l), yT (m), yT(m + l), . .  .lT is the infinite-length col- 
umn vector of the received signal sampled at rate 6, with G(m) being the rN-  
dimensional vector corresponding to the mth transmitted symbol; B = [. . .  , bT (m - 
l), bT (m), bT (m + l), . .  .lT is the infinite-length vector of transmitted symbols as 
defined in Section 4.3; and 2 is the infinite-length column vector of white Gaussian 
noise with variance g2 = g. The matrix f? E CrNxK models the effects of the 
spreading sequences, the pulse shape, and the received amplitudes. It is structured 
as the matrix 'H in (11.4): 

Here, g , ( m )  and g d ( m )  E CrNXK are the upper and lower part of the matrix 
AT AT g ( m )  = [ H ,  (m), H ,  (m)lT, which is defined as g ( m )  = g ( m ) ~ ,  where A is the 

K X K diagonal matrix of received amplitudes defined in Section 4.3. Furthermore, 
g (m)  is a 2rN X K matrix obtained as follows: 

Given the sequence of the time delays { T ~ ,  72,. . . ,  rK), derive from it the two 
sequences {T1, F2, . . . ,  FK} and {Fl, F2, . . . ,  FK) with Fk = 121 and Fk = r k  - Fk, 
rE = 1 , .  . .  , K .  A system with time delays {Fl, F2,. . . ,  FK) reduces to a symbol 
asynchronous but chip synchronous system, while a system with time delays 
{c, 6, . . . .  FK) is a symbol quasi synchronous but chip asynchronous system. 

Build the r N  x K matrix S(m)  of virtual spreading for symbol quasi syn- 
chronous but chip asynchronous systems with time delays (5, F2,. . . ,  FK) as 
explained in Section 3.4.1. 

Append OINxK, an r N  X K zero matrix, to the matrix S(m),  i.e. build the 
-T 

matrix [S (m),OTNxKIT. 
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The matrix g ( m )  is obtained from [gT(rn), 0T,,,IT by circular downshift of 
the kth column, for k = 1,. . . ,K,  by rFk positions. 

By the construction of the matrix g we model the effects of chip asynchronism. The 
subsequent circulant downshift introduces the effects of delays that are multiples of 
the chip interval in the model. 

Since the system model for asynchronous systems has a structure identical to 
the structure of the system model for symbol asynchronous but chip synchronous 
systems, the considerations made in Section 4.3.3 apply. The projection subspace is 
given by 

- m  M-l X ( % )  = s ~ a n { i F ( m ) 7  }m=o 
- - H  

where ? = %% and ik is the virtual spreading sequence of the m" symbol 
transmitted by user k, i.e. the column of containing the kth column vector of the 
matrix g ( m )  defined in Section 4 . 4  1. With this choice of the projection subspace, 
it is possible to  build a multistage detector with sliding observation window that 
does not suffer from truncation effects. Its structure is identical to  the structure of 
the detector in Figure 4.6 by replacing the 2 N X K matrices H (n), . . . , H (n - M )  
by the 2 r N  X K matrices ??(n), . . . , ??(n - M),  respectively. 

The asymptotic analysis and design of multistage detectors follows the same lines 
as in the case of symbol asynchronous but chip synchronous systems treated in 
Section 4.3.3. The problem reduces once again to the computation of the diagonal 

- H -  
elements of the matrix km, with E = % %. We conjectureai that these diagonal 
elements coincide with the diagonal elements of k for symbol quasi synchronous but 
chip asynchronous systems. This conjecture is motivated by the observation that the 
diagonal elements of the matrix 'Rm for symbol asynchronous but chip synchronous 
systems are a periodical repetition of the diagonal elements of the matrix Rm for 
synchronous systems, i.e. the shift of the column of the matrix % due to  the symbol 
asynchronism does not influence the asymptotic values of the diagonal elements of 
the matrix Rm for the infinite-size matrix %. Numerical simulations support this 
conjecture. 

Numerical simulations were performed for an asynchronous CDMA system with 
maximum time delay equal to  the symbol interval. The 64 users utilized raised 
cosine chip-pulse waveforms, QPSK modulation, and random spreading sequences 
with N = 128. Perfect power control was applied; all users were received with 
the same power and sampled at  rate $. At the receiver, detection was performed 
by matched filters, by detectors Type J-I with sliding observation window, and by 
MSWF with M = 2 and 4. The performance of the various detectors is compared in 

37The author thinks that this conjecture can be proven rigorously following the lines of the proof 
of Theorem $1 and Theorem 10. This issue is left for further studies. 
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4WGN asynchronous channel, K=64, N=128, raised cosine with roll-off 0.5 
10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -Matched FIlter 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ik MSWF withM=2 .................................................... 

................................................ -Detector Type J-I with M=2 
iR MSWF with M 4  

D e t e c t o r  Type J-I with M=4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 4.20: BER of matched filters, Type J-I detectors (solid lines), and MSWF 
(markers) with M = 2 and 4 versus 3. CDMA systems with equal received powers, 
raised cosine chip waveforms (roll-off y = 0.5), sampling rate 2, and system load 
,O = 1 are considered. 2 

Figure 4.20 by plotting their BER versus 3. The performance of detectors Type J-I 
matches completely the BER of the corresponding MSWF. The comparison between 
the matched filter and the multistage detectors shows the substantial improvements 
achievable by multiuser detection. 

4.6 Conclusions 

In this chapter we studied low complexity linear multiuser detection techniques 
for asynchronous CDMA systems. Since the polynomial expansion detectors are 
intrinsically suboptimal for asynchronous systems, we focused on multistage Wiener 
filters and we extended the Type J-I detectors to asynchronous systems. In contrast 
to the full rank linear MMSE detector, the proposed implementation scheme for 
Type J-I detectors does not suffer from windowing effects and retains the same 
complexity, up to some memory elements, as the corresponding Type J-I detector 



118 Chapter 4 - Linear Detection for Asynchronous Systems 

for synchronous CDMA systems. Additionally, the proposed scheme is characterized 
by a sliding observation window. This yields a performance that is independent of 
the position of the detected symbol in the observation window. 

The performance of linear MMSE detectors with finite observation windows was 
analyzed assuming a chip synchronous and symbol asynchronous system. Given a 
finite observation window we proposed an algorithm to  determine the SINR at  the 
output of the linear MMSE detector for all transmitted symbols that can be observed 
within the observation window. Unlike synchronous systems, in this scenario the 
Type J-I detector can outperform the full rank linear MMSE detector with given 
finite observation window when a sufficiently large number of stages is utilized. In 
fact, although the Type J-I detectors do not benefit from the available statistics in 
an optimal manner, as well as the linear MMSE detector does, they can use a wider 
set of observables while keeping low complexity. 

The effects of different kinds of statistics on the SINR have been investigated. We 
considered the observables obtained at  the output of a front-end performing low- 
pass filtering and subsequent sampling a t  a rate equal to  twice the filter bandwidth. 
A second kind of decision statistics was obtained by sampling a t  the chip rate the 
output of a filter matched to  the chip-pulse waveform. The performance analysis 
showed that the first group of observables was the most convenient for low complexity 
linear multiuser detection in the uplink channel. In fact, it enables to perform linear 
multiuser detection jointly for all users without incurring a degradation of the SINR. 

The analysis of asynchronous systems revealed the effects of the chip-pulse wave- 
forms and of the time delay distribution on the system performance. 

We generalized the result for the ideal sinc waveform in [82] showing that the per- 
formance of synchronous and asynchronous systems is the same when the bandwidth 
of the chip-pulse waveform is not greater than half the chip rate. The effects of the 
chip-pulse waveform can be easily taken into account through certain coefficients E,, 
s E Z+. 

The impact of the chip-pulse waveforms on the SINR changes substantially as the 
bandwidth gets larger. In this case the system performance is significantly affected 
by the distribution of the time delays and the SINR of linear detectors may depend 
on the specific time delay of the signal of interest. We identified a large class of 
chip-pulse waveforms and time delay distributions for which the performance is 
independent of the time delay of the signal of interest and depends on the chip pulse 
waveforms through certain coefficients E, (see (4.4 l )). 

Specializing the general result on the asymptotic analysis of performance to  square 
root raised cosine and raised cosine waveforms, we showed that the SINR of linear 
multiuser detectors optimum in a mean square sense increases significantly with the 
roll-off if the time delay is uniformly distributed. In contrast, it remains constant 
(square root raised cosine waveform) or decreases (raised cosine waveform) as the 
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roll-off increases if the system is synchronous. Thus, an asynchronous CDMA sys- 
tem with linear multiuser detection and square root raised cosine or raised cosine 
waveforms outperforms the corresponding synchronous system in terms of SINR. 

The analytical tools developed in this chapter for the analysis and design of low 
complexity multiuser detectors could be utilized for the optimization of chip pulse 
waveforms in CDMA systems with linear multiuser detectors. This application is 
beyond the scope of this work. 





5 Linear Multiuser Detection and 
Correlated Spatial Diversity 

Introduction 

In this chapter we consider synchronous CDMA systems with spatial diversity both 
at the transmitting and the receiving sites. The analysis of linear multiuser detectors 
and the design of low complexity multistage detectors are extended to systems with 
correlated spatial diversity l. 

Modelling the spreading matrices as  random matrices, Hanly and Tse [g] analyzed 
a CDMA system consisting of users transmitting to a multiuser receiver with spatial 
diversity. The spatial diversity can be obtained by multiple antenna elements at a 
single base station, or by combining the signals received at multiple base stations. 
In [g], these two cases of spatial diversity are referred to as micro-diversity and 
macro-diversity, respectively. This celebrated work covered many interesting aspects 
of CDMA systems with spatial diversity: 

There is a simple relation between the degrees of freedom introduced by spatial 
diversity (L receiving antennas) and the degrees of freedom in frequency given 
by the spread spectrum techniques (spreading factor N): the multi-antenna 
system behaves like a system with a single receive antenna but with spreading 
factor multiplied by the number of receiving antennas, and with the received 
power of each user being the sum of the received powers at the individual 
antennas. This behaviour is known as resource pooling eflect. It shows the 
possibility to trade bandwidth (spreading factor) for the number of antennas 
and vice versa according to the peculiarity of the communication system. 

m The effect of a single interferer onto the user of interest is captured by the 
concept of eflective interference. 

Low complexity power control and admission control algorithms, the power- 
limited capacity region for a finite number of classes of users, and the 
interference-limited user capacity region are provided. 

'Hereafter we refer to spatial diversity due to multiple input multiple output (MIMO) channels 
with correlation at the transmitting and/or the receiving sites as correlated spatial diversity. 
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The work in [g] is based on the performance analysis of linear multiuser receivers 
under the assumption that the spreading sequences are Gaussian and the random 
channel gains are circular symmetric and independent for all users and antennas, 
and that for any user the gains to all antennas are identically distributed. The 
analysis does not address cases of practical interest like multi-antenna systems with 
correlated channels and/or line-of-sight components. 

The pioneering works in [7] and [8] on antenna arrays at the transmitter and 
receiver promise huge increases in the throughput of wireless communication sys- 
tems. These works motivated many studies of the capacity of such systems in more 
realistic situations. In this stream are works that analyze the effects of channel cor- 
relation [95-1021, line-of-sight components [62,63,103], multiple scattering [104], and 
keyholes [98] (this list does not claim to be comprehensive). Fading correlation and 
line-of-sight components were found to affect channel capacity severely. It is natural 
and of practical interest to consider their effects also in a CDMA system with spatial 
diversity. 

In this work we consider a general framework with one or more antenna arrays at 
the receive side including combined micro- and macro-diversity scenarios. The trans- 
mitting users may use multiple element antennas, but need not do so. The channel 
gains may be correlated and contain line of sight components, i.e. their mean may be 
different from zero. The analysis is based on the assumption of independent random 
spreading. Our results include the results in [g] as special cases. Additionally, we 
provide a rigorous proof of the results for the macro-diversity case, only conjectured 
in [g]. 

In the micro-diversity case with independent channel gains analyzed in [g], the 
system behaviour is captured by the multiuser efficiency defined in Section 2.3.1. 
In [g], the multiuser efficiency is shown to converge to a deterministic constant in 
the large system limit. In the macro-diversity case with L receiving antennas, L 
constants, al ,  az, . . . a ~ ,  characterize the system. With correlated channel gains, we 
show that the large system behaviour is captured by a deterministic positive definite 
square Hermitian matrix with size equal to the number of receive antennas. Table 
5.1 compares the scenarios investigated in [g] with the general case considered in 
this work. The results in [g] are revisited in the light of the general results so that 
all scenarios are represented by a matrix A: 

In the micro-diversity scenario with independent channels, A is the identity 
matrix multiplied by the constant multiuser efficiency a. 

In the macro-diversity case with independent channels, A is a diagonal matrix. 

In this chapter we analyze three linear receivers corresponding to different levels 
of knowledge of the interference structure and noise at the receiver: 
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Micro-diversity [g] 

Channel gains independent for all users and 
antennas. 

For a given user, the channel gains a t  all 
receiving antennas are identically distributed. 

Macro-diversity [g] 

Channel gains independent for all users and A = ( T  ! 1 :  1 
antennas. 

. ' a .  0 a~ 

General case 
A = A ~  

Correlated channel gains. 

Table 5.1: Asymptotic constants characterizing CDMA systems with correlated and 
independent spatial diversity. 

The linear MMSE receiver, which requires a complete knowledge of the spread- 
ing sequences and the channel gains of the interferers. 

The single user Bayesian receiver, which assumes only a statistical knowledge 
of the spreading sequences and the channel gains of the interferers. 

The single user matched filter receiver. In this case the receiver has no infor- 
mation about the noise and interference. 

Additionally, the design of low complexity multistage detectors is investigated. The 
universal weights for Type J-J and Type J-I detectors are derived. Type J-J and 
Type J-I detectors have a complexity order per transmitted bit which is linear in the 
number of transmitting antennas and in the number of users, as the SUMF receiver. 
The unified framework for the analysis of multistage linear detectors is extended to 
CDMA systems with correlated spatial diversity. 

Thanks to the assumption of independence among the chips, the analysis shows 
that the performance of these linear receivers are not affected by channel correlation 
between transmitting antennas and suffer only from channel correlations among re- 
ceiving antennas. For large CDMA systems without receive antenna diversity, the 
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multiuser efficiency is identical for all users. Therefore, a single constant .fully char- 
acterizes the system performance. In contrast, we show that the multiuser efficiency 
in CDMA systems with spatial diversity changes from user to  user, in general. Addi- 
tionally, we give sufficient conditions under which also a system with spatial diversity 
and statistically dependent channel gains is characterized by a unique multiuser ef- 
ficiency. The single user Bayesian receiver and the SUMF receiver are shown to  be 
asymptotically equivalent, in terms of SINR, to an ideal finite CDMA system with 
(i) linear MMSE detector and SUMF, respectively, at  the receiver; (ii) spreading 
factor L; and (iii) spreading sequences equal to the vector of the channel gains. 

System Model 

We consider a CDMA system with spreading factor N and K' users. Each user em- 
ploys a transmit antenna array with NT elements sending independent data streams 
through each of the elements. Thus, we may speak of a system with K = KINT 
virtual users. The signal is received by L receive antennas. These antennas can be 
part of an array or can be placed at  different locations, but processed jointly. 

Assuming the channel to  be flat fading, the baseband discrete-time system model 
is given by2 

g=Ab+n (5.1) 

where 0  is the NL-dimensional vector of received signal-samples, b is the K- 
dimensional vector of transmitted symbols, and n  is discrete-time, circularly sym- 
metric complex-valued additive white Gaussian noise with zero mean and variance 
g2. The influence of spreading and fading is described by the N L  X K matrix 

where S is the N X K spreading matrix whose kth column is the spreading sequence 
of the kth virtual user. Furthermore, the diagonal square matrix D E ( C K x  K contains 
the transmitted amplitudes of all virtual users such that its kth diagonal element 
dk is the amplitude of the signal transmitted by the virtual user indexed by k .  The 
diagonal matrices AI,  A2, . . . , AL E ( C K x K  take into account the effect of the flat 
fading channel. The kth diagonal element of Al is the channel gain between the 
transmitting antenna element of the kth virtual user and the lth receive antenna 
and will be denoted by X l k  in the following. The channel gains can, in general, be 

2As in the case of synchronous CDMA systems with multipath fading channel, the received signal 
at the symbol time interval n depends only on the transmitted signal at  the same symbol 
interval. Therefore, the symbol-time index n will be omitted in the system model (5.l). 
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correlated and contain line of sight components as in Rice channels. el is the L- 
dimensional unit column vector whose elements are zero except the lth element that 
equals 1, i.e. e, = (J l j )kl .  Finally, 8 denotes the Kronecker product. 

In the following, the spreading matrix S is modelled as a random matrix whose 
elements are independent" with zero mean, variance &, and fourth moment such 
that there exists a y > 1 for which h. This condition is satisfied 
by all chips of practical use as Gaussian or binary chips. Moreover, we assume the 
transmitted symbols to be uncorrelated and identically distributed random variables 
with zero mean and unit variance, i.e. ~ { b b ~ }  = I K .  In order to simplify the 
notation, it will be helpful in the following to define the L-dimensional vectors 
Ik = dk[Xlk, X2k,. . . , XLkIT, k = 1 , .  . . , K ,  t? = d[X1, X2,. . . , X L ] ~ ,  k = 1 , .  . . , K  and 
the diagonal square matrices Le = DAe, .e = 1 , .  . . , L. 

5.3 Linear MMSE Receiver 

Throughout this chapter we adopt the following notation: 

hk  denotes the kth column of 4; 

fik is the NL X ( K  - 1) matrix obtained from fi by suppressing the kth column 

bk. 

The linear MMSE detector generates a soft decision gk = cfl) based on the ob- 
servation 9. The linear MMSE detector c k  for the detection of bk, the transmitted 
symbol of user k, can be derived from the Wiener-Hopf theorem [20] for the estima- 
tion of zero-mean random variables. It is given by 

with the expectation taken over all variables that are unknown to the receiver, i.e. 
the transmitted symbols b  and the noise. Specializing the Wiener-Hopf equation to 
the system model (5.1) yields 

for some c E R. The second expression follows from the matrix inversion lemma. Its 
performance is measured by the signal-to-interference-and-noise ratio SINRk at its 
output which is well known [l051 to be given by 

SINRk = $F(fikfif + a21)-'bk. (5.6) 

Note that the random variables s,k are not required to be identically distributed. 
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The SINRk can be conveniently expressed in terms of the multiuser efficiency qk (see 
Definition 1 and the subsequent Equation (2.24)): 

5.3.1 General Case 

Let us notice that SINRk depends on the spreading sequences and the channel 
parameters of all users. To get deeper insights into the behaviour of the linear MMSE 
detector it is convenient to  analyze the performance, as K, N -+ oo with constant 
ratio p = 5 .  To this aim, we have to  define how the matrices D, Al, A2,.  . . , AL 
behave as the system grows large. Let us consider a system with K virtual users 
and the K corresponding (L + l)-variate random variables (dk, Xlk,  X2k,. . . , XLk) for 
k = 1 , .  . . , K .  The empirical joint distribution function for the random variables 
(dk, Xlk,  X 2 k , .  . . , XLk) for k = 1,. . . , K  is the distribution function 

where l(.) is the multidimensional indicator function (see definition in the Glossary). 
( K )  We assume that the joint empirical distribution FDjA1,A2 ,..., A, (d, XI ,  X2, . . . , XL) 

converges weakly with probability 1 to  a limit distribution function 
FD,A~,A~ ,..., (d, A l l  X2, . . . , XL) with bounded support. Let us notice that,  if 
the (dk, Xlk,  Xzk, . . . , XLk), for a11 k, are independent realizations of a common 
distribution function, then the empirical distribution function ~ h ~ i ~  ,A2,...,AL is 
the natural estimate of the common c.d.f.. The Glivenko-Cantelli theorem (see 
e.g. [89]) guarantees that,  if (dk, Xlk,  X2k,. . . , XLk) are i.i.d. over k, then the empirical 
distribution converges weakly to the common distribution function with probability 
1. For example, if, for each user k, (dk, Xlk,  XZk, . . . , XLk) is a realization of the 
same Gaussian distribution F(d,  X1, X2, . . . , XL), then the Glivenko-Cantelli lemma 
guarantees that the sequence of the empirical distribution functions converges 
almost surely to  the same distribution function F (d, XI ,  X2, . . . , XL). 

In the following, we simplify, where possible, the notation using the limit- 
ing joint distribution Fl(Z1, Z 2 ,  . . . , lL) = Fl(Z) rather than the limit distribution 
FD,A1,A2 ,..., A, (d, X I ,  X2, . . . , XL) (recall that = [11,12, . . . , 1LlT = d[X1, X2, . . . , XL]~) .  
Under the above assumptions the asymptotic performance depends on a small set 
of parameters, as shown by the following theorem. 

Theorem 11 Let S be an N X K random matrix with independent entries sij that 
are zero mean, with variance E { ~ s ~ / ~ }  = and forth moment E{1sijI4} 5 
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where y > 1. Let l = (11, 12, . . . , l L )  and let lk be the vector of received ampli- 
tudes of the virtual user k .  Assume that the norm of the channel gain vector (llkll 
is uniformly bounded for all K. Furthermore, the empirical joint distribution of 
11, 12, . . . , lk-1, lk+l, . . . lK converges almost surely to some limiting joint distribu- 
tion Fl(l) as K + m. Then, as N ,  K -, CO with + P and L fixed, the SINR of 
virtual user k ,  given the fading amplitude lk, converges in probability to  the value 

p Z ~ A Z *  
lim SINRk = - 

K,N-+W u2 

where A is the unique deterministic L X L matrix solution to the matrix-valued fixed 

such that A is positive definite for any positive value of the noise variance. 

Proof: See Appendix D Section D.1. 
Theorem 11 provides the asymptotic output SINR of a linear MMSE detector 

for a synchronous CDMA system with correlated spatial diversity. This result holds 
under very general conditions on the channel gains and demonstrates interesting and 
useful properties of synchronous CDMA systems with correlated spatial diversity 
and linear MMSE detector at the receiver. The remainder of this section is devoted 
to the discussion of these properties. More specifically, in Subsection 5.3.2 Theorem 
11 is specialized to the relevant situation of practical interest where the received 
amplitudes are correlated Gaussian distributed. In Subsection 5.3.3 Theorem l1 is 
utilized to derive sufficient conditions under which the resource pooling effect arises. 
General properties of CDMA systems with correlated spatial diversity evinced from 
Theorem I1 are presented in Subsection 5.3.4. 

5.3.2 Correlated Gaussian Received Amplitudes 

In practice, fading amplitudes are often complex Gaussian distributed and corre- 
lated. Rayleigh fading also violates the assumption of uniformly bounded channel 
gains. However, it can be approximated arbitrary closely by a distribution with 
bounded support. Thus, from an engineering perspective, we need not worry about 
that fact. Assume that the limiting joint distribution is given as 

1 
fAz) = + det Cl exp (-lH~;'1) . 

In the absence of power control, i.e. D = I K ,  this implies that Cl is the correlation 
matrix of the fading -at the receive side, with entries 

cij = E {&A;}. (5.11) 
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Consider the eigenvalue decomposition 

with @ = diag($i,. . . , $L), and the change of variables 

The components of the random vector g are statistically independent. Plugging 
(5.13) into (5.9), the matrix M also diagonalizes the deterministic limit matrix A ,  
i.e. the eigenvectors of the matrix A coincide with the eigenvectors of the correlation 
matrix Cl . Thus, we obtain for correlated Rayleigh fading 

P 1 
lim SINRk = 7 C ae lgek l 2  

K,N+oo 0 
e=i 

where the ai, i = 1 , .  . . , L are the solution to the fixed point equations 

Thus, recalling the characteristics of the macro-diversity in [g] presented in Table 5.1 
and comparing the previous result to the macro-diversity case, it is evident that to 
any correlated Rayleigh fading scenario, there exists an equivalent macro-diversity 
scenario as in [g] with independent Rayleigh fading. 

5.3.3 Uncorrelated Received Amplitudes 

It is clear from (5.7) and (5.8) that, unless the matrix A is a multiple of the iden- 
tity matrix, the multiuser efficiency is, in general, not identical for all users. In 
this section we analyze under which conditions on the limiting joint distribution 
FZ(l1, 12, . . . , lL) or, equivalently, on the corresponding limiting probability density 
function fl(ll, 12, .  . . , lL) the matrix A is diagonal or proportional to the identity ma- 
trix. In fact, for diagonal A ,  the general result in Theorem l1 simplifies to the system 
of fixed-point equations in [g], Theorem 3. The following corollary summarizes some 
sufficient conditions that yield a diagonal structure of A .  

Corollary 6 Let S and Z k  be as in Theorem 11. If the joint probability density 
function fi(ll, 12, . . . , lL) is an even function of Re(1,) and Im(l,), for any r and 
for any value of the parameters (l1,. . . , lkP1, lk+l,. . . lL), then, as N, K + oo with 
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-+ p and L fixed, the SINR of virtual user k ,  given the fading amplitude l k ,  N 
converges in probability to the value 

L 
P 1 

lim SINRk = - C ae l ler 1 2 ,  
K,N-+m o2 e=i 

where at, = l . .  . L, are the unique positive solutions to the system of fixed-point 
equations 

Proof: In order to verify that system (5.9) is equivalent to system (5.18) under the 
above mentioned conditions on fl(ll, 12, . . . , lL), it is sufficient to verify that, for all 
i ,  j = 1, . . . , L with i # j, the off-diagonal elements of A are zero. The uniqueness 
of the solution for system (5.9) guarantees that the constants ae are the solution we 
are looking for. In fact, 'dz, j = 1, . . . , L and i # j the off-diagonal elements of A are 
given by 

Since the function lj/(02 + ~k~ aelll12) is an odd function of Re(lj) and Im(lj), the 
integral with respect to lj will be always zero if fl(ll, 12,. . . , lL) is an even function 
in Re(lj) and Im(lj) for all possible values of lj with j = 1,. . . , L  and j # i. Then, 
the off-diagonal elements of A are zero and this concludes the proof of Corollary 6. 

Following the same approach used for Corollary 4 in [g] and using Corollary G we 
find sufficient conditions under which the matrix A is proportional to the identity 
matrix, i.e. A = qI .  If A = q I ,  then the scalar q coincides with the multiuser 
efficiency of a linear MMSE detector as it is apparent from (5.7) and (5.8). Let us 
assume that the conditions of Corollary G are satisfied. If we additionally assume 
that the joint probability density function fl(ll, 12,. . . , lL) is exchangeable, i.e. for 
any permutation yT of {l, . . . , L) 

then the system of equations (5.18), which defines the diagonal matrix A, satisfies 
at = q,  for all l = 1, . . . , L, A = q I ,  and the system of equations (5.18) reduces a 

l single fixed-point equation. This result is stated in the following corollary. 
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Corollary 7 Let S and fl(ll, 12, . . . , lL) be as in Corollary G. If the limiting proba- 
bility density function fl(ll, 12,. . . , lL) is exchangeable, i.e. for any permutation IT of 

{ l , .  . . ,  L} 
fi(l1, 12, . ZL) = fi(ln(l), ln(2), . . , L(L)) 

then, as N, K co with + p and L fixed, pk with Pk = / /lk 11' converges 
in probability to the deterministic constant 7, which is the unique scalar multiuser 
eficiency, solution to the fixed point equation 

Here P is the random variable defined by P = (11112 and Fp(P)  is its distribution. 

The conditions of Corollaries 6 and 7 imply that 11, 12,. . . lL are uncorrelated. How- 
ever, the converse is not true in general, i.e. the matrix A is not typically diagonal 
for asymptotically uncorrelated received amplitudes. Corollaries 6 and 7 provide suf- 
ficient conditions for the matrix A to  be diagonal and proportional to  the identity 
matrix, respectively, when the received amplitudes are asymptotically uncorrelated. 
Under the conditions of Corollary 7 the resource pooling effect arises. In fact, let us 
compare (5.19) to  (2.27). It is apparent that the multiuser efficiency of a synchro- 
nous CDMA system with L receive antennas and spreading factor N is equal to  the 
multiuser efficiency of a synchronous CDMA system with single receive antenna, 
spreading factor NL, and with received power of each user being the sum of the 
received powers at  the individual antennas. 

5.3.4 Remarks 

The empirical joint distributions (ll, 12, . . . , lL) and the limiting joint distribu- 
tion F1(l1, 12,. . . , lL) are not able to  capture and describe the effects of the correla- 
tion due to  antenna coupling at  the transmitter side. Since the effects of the channel 
gains on the system performance are taken into account only by Fl(ll, 12, . . . , lL), we 
can conclude that the correlations of the channel gains due to  coupling effects a t  
the transmitter side do not affect the asymptotic performance of the linear MMSE 
receiver. This property is intrinsically related to the assumption of the statistical 
independence of the spreading sequences of the transmitting antennas. It does not 
hold true if the condition of independence is not satisfied. In fact, in this case, 
F1(l1, 12,. . . , lL) would not be sufficient to  describe the system behaviour. 

As a consequence of Theorem 11, the asymptotic behaviour of the general system 
is completely described by an L X L matrix A. In contrast to  the case of a single 
receive antenna or the cases in which the resource pooling effect arises, the multiuser 
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efficiency of the linear MMSE receiver varies from user to user, in general. In par- 
ticular, for user k, it depends on the direction of the channel gains, lk ,  with respect 
to the eigenvectors of A: The SINR is maximum if lk  has the same direction as the 
eigenvector corresponding to the maximum eigenvalue of A. 

Typically, in order to determine the eigenvectors of the matrix A the solution of 
the matrix fixed point equation (5.9) is required. However, in the special case where 
the limiting p.d.f. fi(ll, lz, . . . , lL) is Gaussian, the eigenvectors of A coincide with 
the eigenvectors of the covariance matrix ~ { l l ~ } " .  

In the light of Theorem 11 we can revisit the known results in [g]. Theorem 1 in [g] 
states that if the elements sij are i.i.d. Gaussian random variables with zero mean 
and variance k, if the received amplitudes ln, are independent for all users k and 
antennas .l, if for any given user, the received amplitudes are identically distributed, 
and if asymptotically the sequence of the empirical distributions converges to a 
bounded distribution function, then the matrix A in (5.8) is given by 

with 

where P = lH1. 
By comparing this result to the result in Corollary (i it becomes evident that 

Corollary 7 implies Theorem 1 in [g]. 
The following result is conjectured in Theorem 3 in [g]. If the chip elements sij 

are independent, zero mean, Gaussian distributed, the received signal amplitudes 
are independent and if, asymptotically, the sequence of the empirical distribution 
converges to a bounded distribution function, then Theorem 3 in [g] conjectures that 
the matrix A in (5.8) is given by 

By comparing the previous conjecture to Corollary 6, we notice that Corollary 6 
includes and proves rigorously Theorem 3 in [g]. 

In Table 5.2 we recapitulate the results of Corollary 6 and Corollary 7 and sum- 
marize the sufficient conditions under which the resource pooling effect arises. 

4We assume here that the asymptotic channel gains XI, X z , .  . . , X L  are zero mean as is typical in 
a baseband model. 

5As already noticed in Section 5.3.3, Hypothesis A implies that 1 1 ,  1 2 , .  . . l L  are uncorrelated. 
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5.4 Single User Bayesian Receiver 

The single user Bayesian receiver is a linear detector that is suitable when the 
receiver is synchronized and has complete information about the user of interest, 
i.e. spreading sequence, and received power, but it does not know the spreading 
sequences of the interferers and has only statistical knowledge of the interference. 
More specifically, we assume that the following information is known at the receiver: 

Knowledge of the signature sequence, channel gains, and transmit power of 
user k ;  

Knowledge of the statistics of the signature sequences, channel gains, and 
transmit powers of all interferers. 

This detector has been analyzed for the case of independent channel gains in [g] 
under the denomination of matched filter. 

The Bayesian single user detector c k  for the user of interest k minimizes the mean 
h 

square error between its output, bBf,k = cfy ,  and the transmitted symbol bk. It is 
given by the Wiener-Hopf equation 

as for the linear MMSE receiver (5.3). However, in this case the expectation is taken 
not only over the transmitted signals and the noise, as for the linear MMSE receiver, 
but also with respect to the signature sequences, the channel gains, and the transmit 
powers of all interferers. Equation (5.20) yields the following explicit expression for 
the Bayesian filter 

A better insight into the Bayesian filter receiver can be obtained from (5.21) by 
performing a permutation ll of the elements of c k  and t)k and such that the elements 
corresponding to the same antenna are relocated next to each other (ll : i -, [(i - 
l)modL]N + L;] + 1). Let us denote with c: and t)" the Bayesian filter receiver 
and the received signal vector respectively obtained by such a permutation. Let 
be the lth element of the vector tk = [(p - +)C1 + a21L]-'lk. Then, 

Equation (5.22) shows that, similarly to the case of completely independent channel 
gains in [g], the Bayesian filter despreads the received signal at each antenna using 
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the spreading sequence s k  and, then, it performs a maximal ratio combining of the 
despread signals using as weights the coefficients 

The coefficients for maximal ratio combining depend on the correlation matrix of 
the channel gains of the interferers. 

The following theorem provides the performance of the Bayesian filter in terms of 
its limiting SINR as the system dimensions grow large with constant ratio. 

Theorem 12 Let l k  be the vector of received amplitudes of user k .  Let us assume 
that, almost surely, the empirical joint distribution of 1 1 ,  1 2 ,  . . . , I ? ~ - ~ ,  lk+1, . . . l K  con- 
verges to  some limiting joint distribution Fl as K -+ m. Additionally, the elements 
of the spreading vector sk are assumed to  be independent and identically distributed. 
Then, if N ,  K -+ m with 5 -+ P and L fixed, SINRk of the Bayesian filter for the 
transmitted signal k ,  conditioned on  the vector of received amplitudes l k ,  converges 
almost surely to  a constant value 

lim SINRk ai' l f ( , O ~ { 1 1 ~ )  + 0 2 ~ L ) - 1 1 k  (5.24) 
K,N-+cc 

%+P 

where l is the L-variate random variable with joint distribution F .  

Proof: See Appendix D Section D.2. 
The asymptotic analysis provides a result of simple interpretation: the SINR of 

user k is equivalent to the SINR at the output of a linear MMSE detector for a 
CDMA system with: 

m Spreading factor equal to the number of receiving antennas; 

m Spreading sequence of the user of interest equal to the vector l k  of channel 
gains; 

m Spreading sequences of the interferers equal to the vectors of the channel gains 
attenuated by a factor d. This takes into account the beneficial effects of the 
spreading in the original CDMA system. 

In contrast to the case of independent channel gains in [g], the performance depends 
on the direction of the vector of the channel gains. For a given received power the 
SINR is maximized as l k  has the direction of the eigenvector corresponding to the 
minimum eigenvalue of the matrix ( ~ ~ { l l * }  + 021)-l. 
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5.5 Matched Filter 

The single user matched filter requires only the knowledge of the spreading sequence 
of the user of interest. Its output is given by 

As in the case of the single user Bayesian receiver, the matched filter despreads the 
received signals at each antenna and then it combines the despread signals using as 
weight coefficients the received energy at each antenna. 

The asymptotic performance of the single user matched filter is given by the 
following theorem: 

Theorem 13 Let lk,  si, and Fl(ll, 12, . . . lL) be as in Theorem 12. 
Then, if N, K -+ oo with 5 + P and L fixed, SINRk of the matched filter for the 

transmitted signal Ic ,  conditioned on the vector of received amplitudes lk, converges 
almost surely to a constant value 

lim SINR a'S' 
( l f ~ k ) ~  

K,N-+m 
+-+P 

- 1f(,O~{11~} + o2IL) lk  

where 1 is the L-variate random variable with joint distribution fi(Z1, 12,. . . lL). 

Theorem 13 is proven in Appendix D Section D.3. 
Like for the single user Bayesian filter, the SINR of the matched filter is equiva- 

lent to the SINR of a matched filter for a CDMA system with spreading factor L, 
spreading sequence of the user of interest equal to the vector of the channel gains, 
and spreading sequence of the interferers equal to their channel gains attenuated by 
a factor d. 

The spectral efficiency depends on the direction of lk.  It is maximized when lk 
has the direction of the eigenvector corresponding to the maximum eigenvalue of 
the correlation matrix of the interferers, ~ ( 1 1 ~ ) .  

5.6 Multistage Detection 

The design of detectors Type J-J and Type J-I and the general result for the analysis 
of linear multistage detectors for CDMA systems with spatial diversity follows along 
the same lines as for the synchronous systems presented in Chapter 3. 

The projection subspace that enables joint projection is given by 
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where Z = BBH.  The design of the asymptotic weights reduces to the determination 
of the asymptotic values of the diagonal elements of ?Xm = m = 1, . . . ,2M. 
With obvious substitutions, equations (3.1 1) and (:3.;10) define detector Type J-J 
and Type J-I, respectively, for systems with spatial diversity. The same holds for 
equations (3.32) and (3.31). 

The following theorem states that converges almost surely to a determin- 
istic value conditionally on l k .  A recursive algorithm to compute such a limiting 
value is also provided. 

Theorem 14 Let the matrix S be as i n  Theorem 6. Let the vectors l k ,  k = 1, .  . . K 
and the c. d. f. Fl ( 1  12,  . . . , l L )  be defined as i n  Theorem l l .  Le, E = 1, . . . , L,  is a 
K X K diagonal matrix whose kth element coincides with the tth component of l k ,  
i.e. (L)kk = ( l o b .  Define6 1) = CL, SLe @I ee and assume that the spectral radius 
of the matrix ?X = I j H Z j  is upper bounded. Then, as N ,  K + oo with 5 + ,B and 
L fixed, the diagonal elements of the matrix ?Xm corresponding to the virtual user 
k, with given fading amplitude l k ,  converges with probability 1 to the deterministic 
value 

R ( )  lim (?Xm)kk  
K=PN--too 

with Rm(l)  determined by the following recursion 

m-l 

s=o 

m-l 

The recursion is initialized by RO(l)  = 1 and 3' = I L .  

The proof is in Appendix D Section D.4 . This theorem yields the following algorithm 
to compute Rm(l)  and mg ,  m E Zf, the asymptotic eigenvalue moments of the 
matrix ?Xm. 

Algorithm 4 

Initialization: Let p o ( l )  = 1 and p, = I .  
Eth step: Define ue-1(Z) = l H p e - l ~  

6Note that Zj models the transfer matrix in the system model (5.1) and its definition coincides 
with (5.2). 
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Define Ze-i(l) = pe-l(l)llH and write it as a polynomial in 
the monomials 1;' . . . 17;f,(1T)S1 . . . (lT)S~. 

(r1 ,... , ~ L , S I  ,... ,,L) = Define ml E{'~ l ( l s }  and replace all 
L monomials ne,i 1,Te (l;)'e in ZeV1 (1) by the corresponding 

( ~ ~ , . . . , ~ L , s I , . . . , s L )  
lTZl . Assign the result to Ve-i. 

Calculate 

Assign pe(l) to !Xe(l). 

Write pl(l) as a polynomial in nf=, c (l;)se and replace all 
monomials nf=, l;'(l;)'e in n ( l )  by the correspondent mo- 
ments m( r i , r z , . . . , r~ ,~ i ,~~ , . . .  

1 Assign the result to m&. 

If the received amplitudes lk.  are independent, the previous algorithm simplifies 
since the matrix 3', S E Z+ is a diagonal matrix. If the received amplitudes lk  
are asymptotically independent and identically distributed as in the micro-diversity 
scenario analyzed in [S], the limiting diagonal elements of the matrix 'Jt' and the 
eigenvalue moments m& can be derived from Algorithm 1 for synchronous single 
receiving antenna systems by replacing (i) P with P' = fi and (ii) the received 
power of user ii at a single antenna, lakkI2, by the total received power of user ii 
at all antennas, lH1. This result can be obtained directly from Theorem 1 in [g] as 
proposed in [l061 or, alternatively, from Algorithm 4 (noting that V, is proportional 
to the identity matrix and !Xe(l) is a function of lH1). 

As for synchronous CDMA systems with single receiving antennas, the limiting 
values of !Xfi enable an asymptotic analysis of any multistage detector in the Krylov 
subspace xMlk($j) for CDMA systems with correlated spatial diversity. 

5.7 Numerical Results 

In this section, we assess the performance of the detectors Type J-J and Type J-I 
proposed in 5.6 and compare them to the performance of (i) the exact polynomial 
expansion detector in Section 2.2.5, (ii) the multistage Wiener receiver, and (iii) the 
full rank linear MMSE receiver. The assessment is performed assuming independent 
and identically distributed Gaussian received amplitudes. 
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Furthermore, the effects of the correlated spatial diversity on the output SINR of 
multistage detectors are analyzed by using the theoretical results in Section 5.6. 

Figure 5.1 and 5.2 show the assessment of the performance of multistage detec- 
tors assuming independent and identically distributed Gaussian received amplitudes. 
The simulation results presented there were obtained for uncoded transmission us- 
ing ;-offset QPSK modulation, and assuming perfect knowledge of the channel. The 
receivers are compared in terms of their BER evaluated as a function of the normal- 
ized signal-to-noise ratio Eb/No where Eb is the mean energy per bit and No is the 
one sided noise spectral density. Figure 5.1 shows the BER versus Eb/No for 5-stage 
detectors, p = 2 (K' = 64, N = 64, NT = 2), and L = 4. More specifically, the 
dashed lines show the performance of an exact polynomial expansion detector and 
an exact multistage Wiener filter with 5-stages. The solid lines plot the BER of a 
Type J-J and a Type J-I detector, the corresponding approximation of the polyno- 
mial expansion detector and the MSWF with asymptotic weights, respectively. The 
performance degradation due to the large system approximation for the weights is 
completely negligible. Figure 5.2 shows the performance improvements of a Type 
J-J detector with large-system weights for an increasing number of stages. 

The effects of the correlated spatial diversity were analyzed assuming the received 
amplitudes to be Gaussian with limiting joint distribution (5.10) and correlation 
matrix 

The numerical results presented in the following were obtained using L = 3 receiving 
antennas at the base station and assuming a system load p = $. 

In case of correlated received amplitudes, the multiuser efficiency of a linear 
MMSE detector depends on the direction of the received amplitude vector of the 
user of interest as discussed in Section 5.3.4. For correlated Gaussian received am- 
plitudes the performance of a linear MMSE detector is maximum or minimum when 
the received amplitude vector is parallel to some of the eigenvectors of the correla- 
tion matrix Cl (see Section 5.3.2). The same property holds also for Type J-I and 
Type J-J detectors, as verified numerically. Let us denote by lMAX and lMIN the 
eigenvectors corresponding to the maximum and minimum eigenvalues of the ma- 
trix Cl, respectively. Figure 5.3 shows the asymptotic multiuser - efficiency of a Type 
J-I detector with M = 4 when the received amplitude vector l span the subspace 
{lMIN, lMAX}, i.e. it is a linear combination l = ulMAx + (l - u)lMIN. The solid lines 
plot the output SINR as a function of U, the coefficient of the linear combination - 
1, for different values of the input SNR. The performance is maximum when the 
channel gain vector is parallel to lMIN, i.e., U = 0 and minimum when the channel 
gain vector is parallel to lMAX, i.e., U = 1. The dashed lines illustrate the asymptotic 
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multiuser efficiency of a Type J-I detector for a multiuser MIMO system with inde- 
pendent received amplitudes for the sake of comparison. For independent received 
amplitudes, the multiuser efficiency does not depend on the direction of the chan- 
nel gain vectors and it has an intermediate value between the maximum and the 
minimum multiuser efficiency obtained in the case of correlated spatial diversity. 

In Figure 5.4 the asymptotic output SINR of a polynomial expansion detector or 
Type J-J detector (dashed lines) and of a MSWF or Type J-I detector (solid lines) 
is plotted as a function of the input SNR for three different received amplitude - 
vectors 1,  with U = 0,0.5,1 and perfect power control, i.e. the sum of received 
powers for each user k ,  l ; lk  is identical for all users. In the case of a single receive 
antenna or multiple antennas with independent and identically distributed received 
amplitudes, the MSWF and the polynomial expansion detectors are equivalent if 
perfect power control is performed (see Chapter 3). On the contrary, for correlated 
received amplitudes, even in case of perfect power control, the detector Type J- 
I outperforms the detector Type J-J with equal number of stages. The difference 
between the SINRs of the two detectors increases as the input SNR increases and/or 
U decreases. 

5.8 Conclusions 

In this chapter we determined the asymptotic performance of the linear MMSE re- 
ceiver, the single user Bayesian filter receiver, and the single user matched filter 
receiver in CDMA systems with random spreading and spatial diversity. We consid- 
ered the general case where the channel gains are correlated and there are line of 
sight components. Our results include as special cases the results in [g] that were 
derived under the constraints of independence of the channel gains and uniformly 
distributed phases. Deriving the results in [g] from the general equations (5.8) and 
(5.9), we could prove the results for the macro-diversity case, which was only con- 
jectured in [g]. 

Our Theorem 11 shows that the system is asymptotically described by an L X L 
matrix A that characterizes completely the effects of channel correlation and line of 
sight components. The efficiency of the system in recovering the symbol transmitted 
by the physical user k strongly depends on the direction of the channel gain vector 
l k  with respect to the eigenvectors of A. 

Conditions under which the resource pooling effect occurs have been given for the 
general case. 

The single user Bayesian filter and the single user matched filter in a large CDMA 
scenario with correlated spatial diversity were shown to be equivalent, in terms of 
performance, to a linear MMSE detector and a matched filter, respectively, in a 
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CDMA system with spreading factor L and spreading sequences equal to  the channel 
gains. 

The design of low complexity multiuser detectors was extended to  CDMA systems 
with correlated spatial diversity. A general framework for the asymptotic analysis of 
any multiuser detector in a "natural" Krylov projection subspace was also provided. 
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Rayleigh fading, K=64, N=64, NT=2, L=4, M=5 

I l l l l I l I I 

I + Linear MMSE detector - a- Polynomial expansion detector 
* Type J-.I detector 

Multistage Wiener filter 
Type J-I detector 

Figure 5.1: BER versus 2 for p = 2 and L = 4. 

Rayleigh fading, K=64, N=64, NT=2, L=4 

I l I I I I I I I 

Matched filter 

\ Type J-J detector 

10- 

Linear MMSE detector 

Figure 5.2: BER of a Type J-J detector versus 2 for ,O = 2, L = 4, and different 
numbers of stages M = 2 , .  . . ,5 .  
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4-stage Wiener Filter: Independent versus Correlated Spat~al Diversity 
1 4 I I I , , , 
- - - - - - - - - - - - -__ . - - - - - - - - - - - - - - - - - - - - -  

0 9 -  SNR,,= -10 

8 SNR = \  
5 0.41-. . . ' . d B .  . :  . . . . .  . .  

Figure 5.3: Asymptotic multiuser efficiency of a Type J-I detector with M = 4, L = - 
3, and p = versus the coefficient U of the linear combination 1 = ~ l ~ ~ ~ + ( 1 - ~ ) 1 ~ ~ ~  
for different values of the input SNR and correlated received amplitudes (solid lines) 
or independent and identically distributed received amplitudes (dashed lines). 

Perfect Power Control: 4-stage Wiener Filter vs Polynomial Expansion Detector 

Figure 5.4: Asymptotic output SINR in decibels of polynomial expansion detec- 
tors/Type J-J detectors (dashed lines) and MSWF/Type J-I detectors (solid lines) 
with M = 4 versus SNR for different coefficients U of the linear combination - 
l = ulryrAX + (1 - u)lILIIN (U = 0, 0.5, 1). 



Conclusions and Perspectives 

6.1 Summary and Conclusions 

Multiuser detection with its appealing benefits is a viable approach also for large 
CDMA systems thanks to the low complexity of the multistage detectors proposed 
in this work. These detectors achieve performance close to the performance of linear 
MMSE detectors with the same complexity order per bit as the single user matched 
filter. 

A large number of users in a CDMA system makes the use of multiuser detection 
challenging because of the high required computation power. The multistage detec- 
tors Type J-I and Type J-J proposed in this work benefit of the large system size. 
They take advantage of the self averaging properties of the transfer matrix of the 
system as its size becomes large, and the possibility to jointly project all users onto 
the projection subspaces. 

Detectors Type J-I and Type J-J have been designed for synchronous CDMA 
systems with flat fading and frequency selective fading and for synchronous CDMA 
systems with correlated spatial diversity. 

The multistage detectors with universal weights have been efficiently extended to 
asynchronous scenarios. An implementation with a sliding observation window and 
observation window length expanding with the number of stages enables to keep 
the same complexity per bit as for synchronous systems. This is in contrast to the 
behaviour of classical MSWF, polynomial expansion detectors, and linear MMSE 
detectors. 

The design of low complexity detectors has been based on a property of some 
Gram random matrices established first in this work: the diagonal elements of integer 
powers of these Gram random matrices converge to deterministic values when the 
matrix size grows large. Utilizing this property, we could develop simple algorithms 
to determine both the diagonal elements and the eigenvalue moments. Additionally, 
this approach enabled also the limiting spectral analysis of some Gram matrices 
not available yet in the literature (e.g. the Gram matrix that models asynchronous 
CDMA systems with random spreading). 

A unified framework for the large system performance analysis of a wide class of 
linear multiuser detectors has been provided benefitting from this new property of 
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random matrices. This framework includes well known detectors as the multistage 
Wiener filters, the polynomial expansion detectors, and parallel interference can- 
celling detectors. The analysis disproves the widespread belief of the equivalence of 
the polynomial expansion detectors and the multistage Wiener filters. The MSWF 
detectors outperform the former and they are equivalent only in the case of syn- 
chronous CDMA systems with perfect power control, i.e. when all users are received 
with the same power level. 

The proposed multistage detectors for asynchronous systems with observation 
window expanding with the number of stages can outperform linear MMSE detec- 
tors with fixed observation window. Thus, for asynchronous systems the multistage 
detectors are beneficial not only from a complexity point of view but also from a 
performance perspective. 

The effects of chip pulse waveforms have been investigated jointly with the asyn- 
chronism. As long as the chip pulse bandwidth is not greater than half the chip rate, 
synchronous and asynchronous CDMA systems are equivalent. Above that threshold, 
the output SINRs of multistage detectors and linear MMSE detectors increase with 
the bandwidth if the system is asynchronous while it remains constant or decreases 
as the bandwidth decreases if the users are synchronized. First, for chip pulse wave- 
forms of practical interest asynchronism better exploits the available bandwidth. 
Second, it does not require synchronization procedures and the proposed multistage 
detectors for asynchronous systems do not imply an increase in complexity com- 
pared to the equivalent detectors for synchronous systems. Therefore, asynchronous 
CDMA systems are the best solution both in terms of performance and in terms of 
total complexity for large CDMA systems when linear multiuser detection is per- 
formed a t  the receiver. Additionally, asynchronism and multiuser detection enable 
to  compensate to  some extent for the loss in spectral efficiency due to  the roll-off. 

We investigated the large system performance of linear MMSE detectors, of single 
user Bayesian detectors, and matched filters in scenarios with correlated spatial 
diversity. This analysis extends the results in [g] for scenarios with multiple receiving 
antennas and independent channel gains to  the practically more relevant scenarios 
with correlation at  the receivers. Our general analysis includes the micro-diversity 
and macro-diversity cases discussed in [g] and proves rigorously the results for the 
macro-diversity case only conjectured in [g]. 

The large system performance analysis of such systems if fully characterized by a 
square matrix with size equal to  the number of receiving antennas. The multiuser 
efficiency is not identical for all users and strongly depends on the direction of the 
channel gain vector. 

The correlation of the channels at  the transmitting sites does not affect the system 
performance; only the correlation at  the receiver plays a major role. 

We generalized the conditions under which the resource pooling effect arises. Ad- 
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ditionally, we provided some equivalence results for systems of practical interest. For 
any scenario with correlated Rayleigh fading, there exists a macro-diversity scenario 
with independent Rayleigh fading which obtains the same SINR in the case of linear 
MMSE detection. A CDMA system with correlated spatial diversity and single user 
Bayesian receiver is equivalent to a CDMA system with linear MMSE detection at 
the receiver, spreading factor equal to the number of receiving antennas, and spread- 
ing sequences equal to the channel gain vectors. Similar equivalence results hold also 
for the single user matched filter. 

In conclusions, the design of low complexity multistage detectors based on univer- 
sal weights resulted fruitful in three different ways. From a signal processing point 
of view, we designed detectors that are an excellent compromise between complex- 
ity and performance. From the point of view of communication theory, the system 
analysis revealed important characteristics of CDMA communication systems. From 
a mathematical perspective, useful properties of some random Gram matrices have 
been discovered. These properties have been extended also to wide classes of ran- 
dom matrices including classes whose spectral analysis was not available yet in the 
literature (e.g. Gram matrices for chip asynchronous and symbol quasi-synchronous 
systems, see Section 4.4). 

6.2 Perspectives 

The possible further developments of this work reflect its threefold nature. 

m Design of low complexity detectors for scenarios with multipath fading channels 
and intersymbol interference. In this kind of scenario, the use of an observation 
window of a single symbol interval is significantly suboptimal because the 
multiple access interference is correlated from symbol to symbol as in the case 
of asynchronous systems investigated in Chapter 4. The multistage detectors 
with an observation window length expanding with the number of stages, which 
we introduced for asynchronous systems, can be efficiently adapted to this 
scenario. In this kind of scenarios characterized by a band transfer matrix, the 
approach with universal weights provides the greatest advantages. 

Gram matrices obtained from isometric random matrices: convergence of diag- 
onal elements. The asymptotic convergence of the diagonal elements of powers 
of Gram matrices G = H ~ H  has been shown for special classes of random ma- 
trices. A common characteristic of these classes was to be built around random 
vectors, that are statistically independent with i.i.d. entries. It is of theoretical 
and practical interest to investigate if this property extends to Gram matrices 
built around random orthogonal vectors. 
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Convergence rate of the diagonal elements of Gram matrices GS = ( H ~ H ) ~ ,  
s E Z+. The analysis of the convergence rate of (Gs)kk was beyond of the 
scope of this work. Its investigation is of theoretical and practical interest. 

Analysis of asynchronous CDMA systems with orthogonal spreading. The use 
of orthogonal spreading has several advantages. Furthermore, other orthogonal 
access schemes (e.g. MC-CDMA) can be regarded as special cases of orthogonal 
CDMA systems. Because these schemes are attractive for the fourth generation 
of wireless systems, they are being studied intensively a t  the moment. However, 
the orthogonality is easily destroyed in the uplink due to non-idealities of 
the channel like asynchronism or frequency selective fading. The impact of 
asynchronism on these access schemes is not clear. An investigation of the 
level of asynchronism that can be tolerated without loosing the benefits of 
orthogonal spreading is of great interest to  evaluate the cost of the system. 

Chip-pulse waveform optimization. With conventional detection, the roll-off of 
the chip-pulse waveforms has a detrimental effect on the spectral efficiency. In 
this work we have shown that multiuser detection can compensate this loss 
to  some extent if the system is asynchronous. Additionally, we provided a 
fundamental tool, i.e. Theorem 10, for the analysis of the system performance 
with any kind of chip-pulse waveform of practical interest. This opens the way 
to  an optimization of the chip pulse waveform with linear multiuser detectors. 

Low complexity power control and admission control algorithms for CDMA 
systems with correlated spatial diversity. In [g], the performance analysis of 
large systems with statistically independent spatial diversity turned out to  
be a useful tool for the development of low complexity algorithms for power 
control and call admission control. Similarly, the results presented in Chapter 5 
could support low complexity algorithms for power control and call admission 
control in more realistic scenarios that take into account spatial correlation of 
the channels. 



A Proofs of Chapter 2 

In order to prove Lemma 2 in Section 2.4, let us notice that the Lyapunov in- 
equality (Appendix E Lemma 12) and the bound limN,, N3E{Ixj 16} < W imply 
limN,, N2E{Ixj14} < W. 

By applying Lemma 1 for p = 3, we obtain 

Thanks to the bounds on E{lxjI4} and E{lxjI6} and on the moments of Fc(X) the 

are upper bounded. tr(ccH)) ' and (N3E{[xjI } quantities ( N ~ E { I X ~ /  } 

This observation yields 

Fixing e > 0 and using Markov's inequality (Appendix E Lemma 10), it follows 

Therefore, the inequalities (A.l) and (A.2) yield 

Using the Borel-Cantelli lemma (See Appendix E Lemma 13), we conclude that with 
probability one only finitely many of the events { I x H C z  - 91 5 E )  occur, i.e., as 
N -t W, 

tr(C) a.3. , 0. x H C x  - _N_ 

This concludes the proof of Lemma 2. 





B Proofs of Chapter 3 

6.1 Proof of Theorem 6 

Let us consider any realization of the random matrix TFk of size N X N. Thanks to 
the almost sure convergence of the empirical eigenvalue distribution [107], VE and 
6 > 0 there exists an NI such that VN > NI 

where m& denotes the limiting eigenvalue moment of order n of the matrix T. 
Since the support of the limiting eigenvalue distribution 4 4 2  is upper bounded, all 
eigenvalue moments m k l 2 ,  n E Z+ are finite. Then, the same property holds for m; 
(see [77]). 

By appealing to Lemma 1 we obtain the inequality 

where C and C' are constants depending on max((mp)i ,  m p )  but not on N, and 
s k  is the kth column of S .  We use the Lyapunov inequality (see Lemma 12) to bound 

E { I ~ ~ ~ ~ ~ } .  
The almost sure convergence as N t m 

follows along the same lines as the proof of Lemma 2. 
The strong law of large numbers (see e.g. 11081) yields the almost sure convergence 

a.s. 
sFs 1 as N t m. Then, 

a.s. 
R k k  = l a k k l 2 s f s k  l a k k 1 2 .  (B.5) 

For l > 2 
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Expanding the product we can rewrite the first term on the right hand side of (13.6) 
as 

4 H H e-2 lakkl s k  sksf (TA + lakk12sksk ) s k  = Iakk2s fsk  (Re-') kk . (B.7) 

The second term on the right hand side of (13.6) can be further decomposed as 

BY further expansion of the term l a k k 1 2 s f ~ L k ( ~ , k  + lakk 1 2 ~ k ~ f ) e - 3 ~ k  we obtain 

Iterating the expansion (B.8)  we get 

e-l 

Therefore, (7-3.5), (J3.4), and the recursion yield 

. - 

R:,,, = lim ( R S ) k k  5 ( B .  10) 
K,N-+m 

s=o 

Making use of the relation m?$= , 8 m a e  obtain (3.26). 

B.2 Asymptotic Diagonal Elements: A Closed Form 
Expression 

Theorem 15 Let A, S,  and R be as in Theorem G. Conditioned on akk, the kth 
diagonal element of A, ( R ' ) ~ ~ ,  converges almost surely, as N ,  K + m with 5 + B, 
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t o  the f o l l o w i n g  d e t e r m i n i s t i c  q u a n t i t y  R:~ , ,  d e p e n d i n g  on lakk12: 

f o r  a n y  k, l E Z+. Here, ( i o , i l ,  . . . ie-1)  is an t - t u p l e  o f  n o n n e g a t i v e  i n t e g e r s  a n d  
(., S , .  . . , .)! d e n o t e s  the m u l t i n o m i a l  coeficient. 

proof: BY expanding ( ~ ' ) k k  = lakkl2s f  ( ~ ~ k  + l a r k  1 2 s k s ~ ) ' - '  s k  and using the 
asymptotic convergence in (13.4)  and (13.5)  we obtain the asymptotic convergence 

e-1 a.s. 
( R e ) k k  ---+ ~ ( i 0 ,  21 1 . , i t - l )  )akk12i0 n (pm&) ' "  

( ~ o , i l , . . . i ~ - ~ ) :  s=1 
e-1 

(B. 12) 
io+ C j i j  =l 

j=1 

where the coefficients cp( io ,  il , . . . , ie-1)  are obtained expanding the binomial 

(T& + l a k k l 2 S k s ~ ) " - ' .  

Finding a closed-form expression for RC,,, is equivalent to the combinatorial prob- 
lem of determining the coefficients cp( io ,  i l ,  . . . , ie-1)  since mh are given in closed- 
form in [77]. 

Let us consider the set S of all binary strings of length t - 1. We define two 
elements in S equivalent if both of them contain the same number of runs of ones 
with the same length, i.e. both of them contain il runs of length 1, i2 runs of 
length 2, is runs of length s for 1 5 s 5 l - 1. This equivalence relation induces a 
partition of S into classes of equivalence. The subset of the equivalent strings with 

e- I 
is runs of ones with length s and, by convention, io = l - C si, with io 2 1 is 

s=l 
denoted by Sio,il...ie-l. It is straightforward to recognize that the number of terms 

e-1 
C'O n ( X H Y Z ) ~ ~  obtained from the expansion of ciOxH (Y + C Z X H ) ~ - '  X is equal to 

s=l 
the cardinality of Sio,i,...ie-, . The latter equals the number of distinct permutations 
of a multiset with ib = io - C:.: ik > 0 elements equal to zero, is elements equal 
to S ,  for l 5 s < l - 1, i.e. the multinomial coefficient ( i b ,  i l ,  . . . z ~ - ~ ) !  [log]. 

B.3 Proof of Theorem 7 

For k = 1. .  . K we define: 
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The L ( K  - 1) X (K - 1) matrix A,, = diag(a1, a2, .  . . a k - I ,  %+l . .  . a ~ ) ;  

The N X N permutation matrix corresponding to  a cyclic down-shift by .e 
positions, IIe; 

The N X L spreading block of user k Sk = ( s ( , - ~ ) ~ + ~ ,  S(k-1)~+2,. . . , skL) = 

(nos(k- i )~+i ,  n i s (k - l )~+ i ,  - - , ~ L + I S ( ~ - I ) L + I ) .  

n 
For further studies it is useful to  define rP1(ak) = afSfTU-'II,Skak for U E Zt 

, and and to notice that rfl(ak) = (Ru)*,. By substituting T = SkakafSk + T k 

proceeding as in Theorem C i  we obtain 

H H C  H HTu-1 rp) (at) = C a, S, ~ , , s k a k r p - ' - ' ) ( a k )  + a, S, ,, n,skak for u E E+ 
e=o 

(B. 13) 
with the convention ~ i : ~ ( . )  = 0. 

Let us define 

using the same arguments as in Theorem G it is straightforward to show the 
following limits for N + oo 

(B. 15) 

where IL(s) denotes an L X L matrix with z,,,+~ = 1, for u = 1 , .  . . , L - S, and zero 
elsewhere. 

By using the limits (B.15) in (0.13) it follows that rP1(ak) converges almost surely 
to the deterministic limit pP1(ak) where pp)(a) satisfies the recursive expression 

u-2 

pp) ( a )  = E aH7Eapp-'P') ( a )  + aH7:-'a. (B.16) 
e=o 

In order to  determine 7: note that 

l 1 fors=O,  
-trII, = 
N 0 otherwise. 
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1 
Then, by using (B.17) in the definition of 7; for P = 0 we obtain 7; = IL(s) .  Let us 
focus now on computing 7: for P # 0. The property of the trace' and the definitions 

l 

I of T and R yield 

Thus, limKYN+, k t r ~ ' I I ,  = PE{p", and the matrix 7: is given by 
K 

(B. 18) 

(B. 19) 

(B. 20) 

-09 -(e) )*: where if) = ~ ( ~ $ 1 .  Note that p-, - (p, 

In order to prove Equivalence 1 let us observe that, if 

(A) TU is proportional to the identity matrix with 7; = @ ~ ) I L ,  V u  E Z+ and 
l -PO) PO = I. p1 

(B) 7: = 0, for all v # 0 and U E Z+; 

then Equivalence 1 holds. In fact, by using assumptions (A) and (B), the recursive 
expression (B. 16) reduces to 

U- l 
(e) (~ - e - l )  

pp) (a) = C aHafiO PO (a). 

~ 
! 

Since ,ot) depends on a only through the scalar P = aHa the previous recursion is 
rewritten as 

U- l 

$1 (P) = C p@f)$-'- l) (P) .  
e=o 

(B. 22) 

l 

I 'We refer here to the well know property of the trace t r A B  = t rBA,  where A is an m X n matrix 

and B is an n X m matrix. 
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a.s. If Assumptions (A) and (B) are satisfied, then REk,, 4 %(Pk), where Pk = 

a F a k .  By using the following substitutions 

(B. 23) 

it becomes apparent that (13.22) coincides with (3.26), i.e., REk,, for the matrices R 
defined in Theorems 6 and 7 in Section 3.4 are equal. The identity of the moments 
follows from the identity of REk,,, U E Z+. Therefore, Equivalence 1 holds under 
Assumptions (A) and (B). 

The proof of Equivalence 1 reduces to show that Assumptions (A) and (B) are 
satisfied if the probability density function fa(al, a2,. . . , aL) is an even function. We 
prove first that pp) = 0 for v # 0 and U E Z+. This property is shown by induction. 
We have 

(B. 24) 

Since the argument of the expectation E{a;ai+,) in (lr3.24) is an odd function 
in ai while the probability density function fa(al, a2, . . . , aL) is an even func- 
tion, then the function u ~ u ~ + ~  fa(al, a2,. . . , aL) is an odd function in ai and 
pi1) = ~ a f a ~ + ~  fa(al, a2,. . . , aL) = 0 Vv 2 1. Note that 7f) is proportional to the 
identity matrix. For the induction in S, we assume that p?) = 0 for v # 0 and 
S < U. Then, all diagonal elements of it), for v # 0 and and S < U, are zero and 
7; is proportional to the identity matrix. This implies that = aHT;'-'a, for 
v E Z+, is an odd function in all variables that appear in it so that pp) = 0 Vv # 0 . 
This completes the induction. Moreover, 7; is proportional to the identity matrix. 
Therefore, Assumptions (A) and (B) are satisfied and Equivalence 1 is proven. 

To prove Equivalence 2 we introduce the N X LK matrix S whose ele- 
ments are i.i.d, zero mean with variance E { I s ~ ~ ~ ~ }  = and sixth moment 
such that limN4,E{N31%16} < W. Let Zk denote the kth column of S. - 
Sk = (3(k-1)L+1, . . . , XkL) is the N X L "spreading" block of user k and S - k  = - - - - - 
(S1,.  . . , Sk-l, Sk+l,. . . SK). T, TNk, and R are defined similarly to T, Twk, and 
R, respectively, substituting S with 3. For K, N -+ oo with 5 + P,  Lemma 3 
yields 

An expansion of (p)kk along the lines of (13.13) yields 

(B. 26) 
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-H-!- a.s. Since Sk TkSk  + + I ~ ( o )  it is straightforward to recognize that (B.26)  and 

(8 .22 )  coincide asymptotically. Since ( R U ) k k  and for u E Z+ converge to the 
same limit, then also the eigenvalue moments of R and R are equal. This implies 
that the eigenvalue distribution of R converges to the same eigenvalue distribution 
of R and Equivalence 2 is proven. 

When the probability density function f,(al, a2, . . . , a L )  is not even the recursion 
provided by (B.16) and (B.20) does not simplify to the recursion in (B.21) and 
a more complex algorithm is required. The following algorithm obtained from the 
general recursion (I3 . l .G)  and (R.20) determines and mk for channels where 
the limiting probability density function is not even. 

Algorithm 5 
( 1 )  INITIALIZATION: Let X = ( X I ,  x2 , .  . . x L ) ~ ,  7; = IL(s ) ,  and p, ( X )  = 

L-v * xv+TxT1 2) = 1," ' L-1'  
RECURSION: 

Assume = 0 for S = 1 , .  . . , l  - 1 and (l - 1 ) ( L  - 1) 5 v 5 l ( L  - 1 ) .  

Define 

and write them as polynomials i n  X I ,  x2 , .  . . , X L  

(il ... iL) - 
Replace all monomials n l=,xF by the mixed moments m, 

il i 2  ( 4  E{al a ,  . . . a:} i n  p, ( X I ,  x2, . . . , X L ) ,  u = 1, . . . , [ ( L -  1 )  and assign the result 
to  pie). 
Build the matrices 

by using the relation P!; = (pie))*.  

( 4  e Assign p. (ak )  to  Rik,rn and p!) to  m ~ .  

( B .  28) 





C Proofs of Chapter 4 

C.l Proof of Theorem 8 

In this section we use the following definition. 

Definition 3 A p X p principal submatrix of a n  n X n matrix A, with p < n is a 
p X p submatrix of A obtained by selecting rows and columns of A with the same 
indices. 

The following lemmas are useful in the proof of Theorem 8. 

Lemma 4 Let ?iN be a n  N X K random matrix and RN = 7-153.1~ and IN = 

7-1~7-1:. If the spectral radius of 7-1 is upper bounded with probability 1 as N ,  K -+ oo 
with 5 -+ p, then also the spectral rad2us of any principal submatrix extracted from 
72: and I;, for any finite m, is upper bounded with probability 1. 

Proof: Let us consider any realization of the random matrix 'HN and any q X q 
principal submatrix of R; or 7: with q = q(N) and % 4 v > 0 for N -+ m. Since 
for N -+ oo the spectral radius of the random matrix 7 - 1 ~ )  is finite with probability 
one, for N sufficiently large any realization of 7 -1~)  and thus of 'R; and 7; (with 
m finite) has upper bounded spectral radius, except possibly in a set of matrices 
of probability zero. Applying Theorem 16 for interlacing eigenvalues of bordered 
matrices (see Section E.l) the spectral radius of any q X q principal submatrix of 
'R; or 7; is not greater than the spectral radius of 'R: or I:, respectively. 
Therefore, the spectral radius of any q X q principal submatrix of R; or 7; is 
upper bounded as N -+ m, except possibly in a set of probability zero. 

Lemma 5 Let xN be an  N X N semi-definite positive random matrix and let q = 

q(N) be a positive integer function of the positive integer N, i.e., q : Zf -+ Z+ with 
* c2 > 0 as N -+ oo. Assume N 

(NI (a) Any  diagonal element X,, , with n = n(N) and limN,, = X, of the matrix 
x ( ~ )  converges almost surely to  the deterministic limiting value X:. 

(b) 'dn E ZZC and 'dc > 0, pr{lXi;) - XLm)( 2 e} 5 o (&) w i t h c  > 1. 
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(c) The normalized trace of the matrix converges to a finite value 
limN+, k t r ~ ( ~ )  = c1 < +m. 

(d) q = q ( N )  with + c2 > O as N -+ m. 

Then, the trace of any q X q principal submatrix of normalized by  q converges 
to a finite deterministic limiting value with probability 1. 

Proof: The convergence of the trace any q X q principal submatrix of to a 
finite deterministic value is a straightforward consequence of assumption (c) and the 
properties of absolutely convergent series. In fact, the normalized trace of for 
N + m is a series of non negative elements absolutely convergent thanks to the 
fact that is semi-definite positive and to assumption (c). The normalized trace 
of a principal submatrix of is an absolutely convergent series obtained from 
the normalized trace of considering only a subset of terms. The property of 
absolutely convergent series guarantees the convergence of the normalized trace of 
any principal submatrix of 

The following considerations demonstrate the convergence with probability 1. 
Without loss of generality let us consider the principal submatrix including rows 
and columns with indices between n ( N )  and n ' (N)  = n ( N )  + q ( N )  - 1. Then, 
V€ > 0 

max ~r{l~~:)-x:l?c} 
l - q(n) kt[n(N),nt(N)] 

Bound (C.l) and assumption ( l ))  yield the convergence of the normalized trace of 
any principal submatrix of with probability 1. 
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Lemma 6 Let the assumptions of Theorem 8 or Theorem 9 be satisfied. Then, 

sup max 
N i=1, ..., W N  i=l 

( C 4  

and the Lindeberg condition is satisfied, i.e. for every r > 0 

W N  

lim ( N )  2 ( N )  2 C ~ { l h ,  / lIlhir'l>T}(h!,N')} + C ~ { l h i j  l ! = 0 
i= l  l 

(C.3) 
where lA(.) is the indicator function on the set A (see gloss am^). 

Proof: We consider first the assumptions of Theorem 9. The inequality ((1.2) follows 
from assumptions (a.) and (c) of Theorem 9. In fact, 

sup max 
N i=1, ..., W N  i=l 

< sup max I (NI  2 

N (=l, ..., W N  
C AjE{ls, I )+C~j~{lsij l1 

j +  j=l i=l J 
In order to  verify Lindeberg condition (C.3), we first show that 

Let us observe that 'di, j 

where ~ ( s j y ) )  is the distribution function of S!;) and 6 E R+. From the conditions of 
( N )  6 Theorem 8 and Theorem !) E{lsij I ) 5 with c finite constant. Then, for 6 = 4 

(NI 2 (NI  [ a .  .I6c 
E{(h, / l{lh~y~l>T}(hij )} S Let m = maXj=l ... K /ajj16. Since 4 ~ , 2 ( A )  has 
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(NI 2 upper bounded support m is also bounded and max,  E{lh, I l{lh!;),>Tl (h::))} 5 
mc 

.r4N3 ' - Therefore, 

(NI 2 mc 
lim max ' C ~ { l h ~ ~  I lllhpl>.rl(h~;N))} 5 lim - = 0. 

N+OO (=l ... WN N+CC ~ 4 N 2  j=l 
(C.6) 

The proof that 

follows the same lines as the proof of ((2.6). Thus, we conclude that Lindeberg 
condition (C.3) is satisfied. 

The hypotheses of Theorem !l reduce to  the hypotheses of Theorem 8 for X, - 1. 
This concludes the proof of Lemma 6. 
Let us consider now a matrix SN,w or a matrix 'HN,w with A = I with empirical 

distribution FkN)(p) of the time delays. In Figure C1 we illustrate the structure 
of the matrix 7-tN,w. The elements of the matrix 'HNlw in the shaded region are 
i.i.d. with zero mean and variance h. Outside the shaded region the elements of 
the matrix 'HN,w are zero. Since the time delays are random, the shaded region 
is also random for finite N and can be described by the empirical distribution of 
the time delays FkN)(p). In the following lemma we show that the random shaded 
region converges to  a deterministic region as N + oo. This deterministic region is 
illustrated in Figure (1.2. The convergence of the shaded region to  a deterministic 
region is a consequence of the convergence of the empirical distribution ~ k ~ ) ( p )  to  
a limit distribution function Fp(p). The following lemma describes the limit region 
by the functions r(x) ,  c(y), and l(y) shown in Figure 4.2. The shaded region is 
described in the following lemma by the function v(x, y) and it is the region where 

Lemma 7 Let the definitions of Theorem 8 hold. Furthermore, let the conditions of 
Theorem 8 be satis.fied. 

(a) F o r  each N, let UN : [0, W] X [0, (W + 1)P] + R be the mriance of the elements 
of the matrix SN,w normalized by h, i.e. 

where X E [O,W], y E [O,(W + 1),0], i = 1 , . . . ,  W N  and j = 1 , . . . ( W  + l ) N  
satisfy 

i i + l  j j + l  
- < X < -  and - < y < - .  

N N - N N - 
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Figure C. 1: Graphical representation of the matrix ' H N j w  or, equivalently, of the 
function v(x, y). The elements of the matrix 'HN,W in the shaded region are i.i.d. 
with zero mean and variance h. Outside the shaded region the elements of the 
matrix ' H N y w  are zero. The function v(x, y) is equal to 1 in the shaded region and 
zero elsewhere. The width of the shaded region is constant and equal to K. The 
height of the shaded region is constant and equal to N in B and C, whereas it varies 
on A and D. 
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Then, v N ( x ,  y )  converges to a limited bounded function 

1, [(),W] X [ r ( x ) , r ( x ) + P l ,  
4 x 7  Y )  = 

0 ,  elsewhere 

with 

.(X) = P [ F p ( x  - [ X ] )  + [ X ] ]  and 0 < X 5 W .  

Equivalently, 

wit h 

c ( y ) = ~ [ 1 i J + ~ ~ l ( i 1 i J ) ]  and O < y < p ( W + l ) .  

(b) Denote by l iN ,w(k)  and anw(n) the kth column and the nth row of WN,W, re- 
spectively. If L ( x )  is the number of nonzero elements of the vector X ,  then 

lim L ( a ~ , ~  (n>> 
N 4 o o  N = P  

lim L ( l i ~ . w ( n ) )  = l ( y )  
N 4 o o  N 

where y is defined by k = k ( N )  and limN,, X = y and 

p;1 ( a )  O < Y < P  

l ( y )  = { l - F F l ( ; - w )  1 P<Y<PW ~ W < Y < P ( W + ~ )  

Proof: F'rom the definition of the matrix and assumption (a) of Theorem 8 
the variance of the element hi:)([) of the matrix is equal to h for ,oiN)N + 
1 < i 5 p j N ) ~  + 1 and 1 < j < K and it is zero elsewhere. Let us consider the 
matrix WNjw described in (1.8).  The matrices ~ ( ~ ) ( 2 ) ,  ~ ( ~ ) ( 3 ) ,  . . . , ( W )  are 
submatrices of WN,W completely contained in ' H N y w .  Thus the normalized variance 
v ( x ,  y )  can be completely derived from the variance of the elements of 
l = 2 , .  . . ,W by normalizing the variance by 5,  and by appropriate shifting and 
normalization of the indices describing the interval 
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Then, v(x, y) = l for 

and p 5 y < @W. Note that the term 1% - l] is due to the down shift of the 
matrix H([) by [ - 2 blocks in 'HNw Let us focus now on the matrix ~ ( ~ ) ( 1 ) .  
Only the block HLN)(l) appears in 'HNjw. Therefore, the variance of the matrix 
'HNjw for 0 5 j < K is equal to k for 1 < i 5 p : N ) ~  + N. Then, v(x, y) = 1 for 

0 < X < ,or&, and 0 < y < P. Finally, let us consider the matrix H ( ~ ) ( W  + l) .  Only 

the block HLN)(w + 1) of the matrix H ( ~ ) ( w  + 1) appears in RN,W. Using the same 
arguments as for the matrices H ( ~ ) ( P ) ,  l = 1 , .  . . , W we obtain that v(x, y) = 1 for 

(NI K(W + 1) K W  and - < y 5 K(W + 1) 
p(yN-l)modK+l+ 1% - 4 I sx S N N N 

By using the definition N(yN, K )  = (yN- l) mod K + l  the previous results can be 
rewritten in the following way. The function.v(x, y) = 1 for 

The maximum and the minimum in (C.9) takes into account the upper and down 
"truncation" of the matrix 'HNvw, respectively. v(x, y) = 0 elsewhere. Therefore, for 
N -+ co v(x, y) = 1 in the region 

max (O, F;' (2 - [gj) + [$l - l) < x 5 min P(W + 11, F;' ( 2  - [g1) + 
- 1) P P ( P P 

and 0 < y < p(W + 1). By using the definition c(y) = F;' (8 - L$]) + L;], 
v(x, y) = 1 in the region 

[m, (0, ~ ( y )  - 1) I X I min ( ~ ( y ) ,  (W + 1)P)I X [O, P(W + 111- (C. 10) 

Note that v(x, y) corresponds to the shaded region in Figure 4.2. The set (C. 10) 
describes the shaded region in Figure 4.2 by defining the subinterval in [0, W] where 
v(x, y) = 1 for each y E [0, @(W + l)] .  We can find an equivalent representation 
of the same set by defining the subinterval of y E [0, (W + 1)P] where v(x, y) = 1 
for each X E [0, W]. This equivalent representation can be easily derived considering 
Figure C.I . The shaded region is bounded on the left by the function N ~ [ F L ~ ) ( X N  - 

LxNJ) + LxNJ] and on the right by the function NP[FL~)(XN - LxNJ) + LxNJ + l ] .  
Thus, the region where v(x, y) = 1 can also be written as 
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Therefore, for N + oo, v(x, y) = 1 in the region 

with r(x)  = P (Fp(x + [X]) + 1x1). 
Let us consider the row vector 8N,w(n). Because of the structure of 'l-tN,w there 

are K nonzero elements in aN,W(n) for any index n'. This can easily be seen in 
Figure C.1. The "width" of the shaded region is equal to K in each row. Therefore, 

lim L@,,, (72)) 
N--+m N = P  

Given the vector h ~ , ~ ( k ) ,  with k = k(N),  the number of nonzero elements in 

hN,w(k) is ~ ~ i ~ )  = N F ( ~ ) - '  P ($) = ~ ~ b ~ 1 - l  (&) w h e n l < k < K . I f K + l <  

k 5 W K ,  hhr,w (k) has N nonzero elements. Finally, if W K  + 1 5 k < (W + 1) K ,  

Then, 

lim L(h,,, (k)) 
N+m N 

with y = limN,m -. 

Proof of Theorem 8: In this proof we adopt the following notation. 
For k = 1 , .  . . , (W + 1 )K  and n = 1 , .  . . , W N  we define: 

.a fiN,w(k), the kth column of 'HN,w; 

BN,w(n), the nth row of 'HN,w; 

a 'l-tN,W,Nk, the WN X (W + l ) K  - 1 matrix obtained from by suppressing 
the kth column; 

'From a physical point of view this reflects the assumption that K users are active at the same 
time and transmit infinite streams of data. 



C.l Proof of Theorem 8 165 

'HN,W,kn, the WN - l X (W + 1) K matrix obtained from %N,W by suppressing 
the nth row; 

Theorem 8 is proven by induction. The first step proves that ( I N , W ) n n  2 P 
and (RN,w)kk l(y), as N i m, with y = and l(y) defined in (X). In the 
Ph step we assume the almost sure convergence of (T;,,)nn and (R;,W)kk for 
1 5 m 5 E - 1 and we prove that ( I ; , ~ ) ~ ~  and converge almost surely 
to the deterministic value in (4.11) and (4.12) respectively. 

First step: Let us consider ( R N , w ) ~ ~  = l i ~ , W ( k ) l i ~ , ~ ( k )  and (IN,W)~ = 
aN,w(n)Z3Ew(n), the diagonal elements of 'Rh,, and 7 h Y w .  We distinguish the 
following tko cases: (i) The number of nonzero elements in li$,w(k) or aNYw(n) goes 
to infinity as N -+ m ;  (ii) The number of nonzero elements in li{,w(k) or aN,,(n) 
keeps finite as N -+ m .  

In the first case we can apply the strong law of large numbers (see e.g. [110]) to 
prove the almost sure convergence of and (I~,,), , .  Since the variance 

A 

of the nonzero i.i.d elements is given by ~{(fi!y)(~} = h, the strong law of large 
numbers guarantees that (7Zh,w)kk and converge almost surely to the 

1 L ( ~ N  where limiting value R h ( y )  = lirnN-, L()LNr(k)) and TW(z) = limp-, ; 
L(x)  is the number of nonzero elements in the vector X. From Lemma 7,T$(x) = p 
for X E [0, W] and Rh = l (Y) for y E [0, @(W + l)]. 

Let us consider case (ii). From Lemma 7, it is apparent that case (ii) is never 
L(aN = p > 0 Vn). Then, we verified for any BN,W (n) (note that limN,, ; 

focus on fiNtw(k). Case (ii) corresponds to values of k such that l(y) = 0 with 
y = limp-, $. Let n be the finite number of elements in AN,W (5) as N -+ m, then 
the following inequality holds2 

2We recall here that h!;) denotes an element of the matrix IFI. The element h,(:) can be zero or 

h!:) = ̂ hi:), where are random i.i.d. with zero mean and variance +. 
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where K' is a constant independent of N. The last inequality derives from the 
property of the sixth moment of xik and the Lyapunov inequality that yield 
~ { l & ~ l ~ }  < 5. Applying the Bienaymh inequality (see Lemma l l in Appendix 
E) and the inequality (C.l l) ,  for any e  > 0 

The fist inequality is due to Bienaymh inequality, the second inequality follows from 
(C.11). Therefore, C~=lPr{lfi$,w(n)fiN,w(n)I > e )  < & < +mfm. This 
bound is the condition of the Borel-Cantelli lemma (see Lemma 13 in Appendix E) 
to prove that fiE,w(n)fiN,w(n) converges almost surely to 0. Therefore, by appealing 
to the Borel-Cantelli lemma we obtain 

lth step: We assume the almost sure convergence of (IF,,),, and for 
1 5 m 5 l - 1 to the deterministic values RE(y)  and T,"(x), respectively. Let us 
notice that the conditions of Theorem 5 for the matrix 'FIN,, are satisfied. In fact, 
Lemma (3 holds for matrix 'FIN.,. It follows from Lemma 6 that the conditions of 
Theorem 5 are also satisfied. Theorem 5 guarantees the almost sure convergence 
of the eigenvalue distribution of IN,, and 'RN,, to a unique deterministic prob- 
ability density function. This result, along with assumption (c), implies also the 
almost sure convergence of all eigenvalue moments of ' R a n d  7; in particu- 

t r T  W t r w ,  w lar, of the mth moments" m7N,w = limNdm and m",, - limN,, m. 
Then, the assumptions of Lemma 5 are satisfied. Let ('R;,w)kl:k2 and (7~,w)n,:n2 
be the principal submatrices extracted from R;,, and IF,, and including rows 
and columns from kl to k2 and from nl to 7x2, respectively. By appealing to Lemma 5 
$tr{('RG,,) :k,} and tr{(TF,,),, :,,} converge almost surely to the deterministic 
limit S 

1 X2 ni 
1 { ( , w ) n : n }  = 7;(x)dx with ~ + m  lim - N = xi (C.12) 

N+m N 
X 1 

1 Y2 ki 
lim - t r { ( ~ ~ , w ) k , : k 2 }  = 1 R E ( Y ) ~ Y  with N - C ~  lim - N = yi. (C. 13) 

N4co N 
Y 1  

Additionally, from Lemma 4 in this section the trace of any q X q principal submatrix 
of 'R;,, and I;,, is upper bounded with probability 1. Given the almost sure 

3Let us consider an N X N random matrix A with eigenvalues X I ,  Xz,  . . . , AN and let assume that 
the sequence of the empirical eigenvalue distribution of A converges almost surely to a limit 
eigenvalue distribution function F(X). The mth eigenvalue moment of the matrix A is given by 

m2 = XmdF(X). The almost sure convergence guarantees that m2 = limN,, &trAm. 
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convergence to a deterministic limit of the trace of any principal submatrix q X q 
of RE,,, IF,, for 1 5 m 5 l - 1 and the finite bound on its spectral radius, we 
can consider the convergence of and (I',,,),, for E 2 2. Following the 
same lines as in the proof of Theorem 6, Appendix B we can expand (G,,),, and 
(I$,,)~~ as follows: 

l-l - 
( k ) ) ~ N , w  (h)%:,, (k)) liN,w(k) 

(C. 14) 

(C. 15) 

- 
where li = ,/=h and 8 = JNa. .C@N,W (IC)) Thanks to the recursive ex- 

pressions (C.11) and (C.15)) the almost sure convergence of and 
-H - 

(I&,,),, reduces to the almost sure convergence of h,,, (k)7Xw,,kliN,w (k) and - -H 
aN,, (k)'R&,w,,kaN,W (k), respectively, to a deterministic value for s = 1, . . . E - 1. 

- Again we distinguish between case (i) and case (ii). We consider first case (i). 
liN,w (k) and BN,, (k) have nonzero i.i.d. elements in the interval [kl, k2] and [nl, nl + 
K], with 

k - l  (NI kl = (1, IT] p(.-1) mod K+' .-,+l) 

k - l  (NI 
2 = ( W  + ( l )  mod *+l 

n - l  
= KF~N)  (a - j - 3 + IT] 

(C. 16) 

(C. 17) 

(C. 18) 

Since Lemma 4 and Lemma 5 guarantee that for N sufficiently large the 
empirical eigenvalue distribution of the principal submatrices (7&,N)kl:kz and 
(7Z&,W)n1:n1+K-1 have upper bounded support and their normalized traces converge 
to a deterministic limiting value with probability one, we can apply Lemma 2 in 
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Chapter 2 to  obtain 

l 
= lim 

K=PN400 .C (fi(k;) N, W )  
r=kl 

and 

l 
= lim - C R;,W (r) 

K=PN-+oo K 
T=n1 

Therefore, defining by convention R b ( y )  = 1 for y E [O, (W+ l)P], and 7$(x) = 1 
for X E [O, W], 

Case (ii) can be verified for the vectors f i ~ , ~ ( l c )  but not for the vectors aN,W(n) 
= P > o for any n. ~ h u s ,  we In fact, as already mentioned, limN400 

W ( k ) )  = 0. This corresponds to  values of k can focus on the case as limN,, 
such that l(y) = 0. Assumption (c) implies that the spectral radius of R&,w for N 
sufficiently large is finite and bounded with probability one. Let X,, denote this 
upper bound. Lemma S in Appendix E guarantees that for any vector kN,w(k) the 
scalar (k)R$,wfiN,w(k) is upper bounded by Xmmh$,w (k)hN,w(k). Then, for 
any realization of R>,w,_, and hN,W(k) there results 
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Then, the convergence in probability 1 of (C.19) reduces to the almost sure conver- 
gence of hE,w(k)hN,w(k)  to zero as N + m for case (ii). This convergence has been 

l already shown in the proof of the first step of the strong induction for this theorem. 
This concludes the proof of Theorem 8. 

C.2 Proof of Theorem 9 

Beside the notation introduced in Section C . l  for the proof of Theorem 8, in this 
section we adopt the following notation. 

For k  = 1, . . . , (W - 1)  K and n = 1, . . . , WN we define: 

l 
I C N , W ( ~ ) ,  the kth column of SN,,. 

~ ~ , ~ ( n ) ,  the nth row of SN,,. 

a ( k ) ,  the kth diagonal element of the matrix A. 

The proof of Theorem 9 follows along the lines of the proof of Theorem 8 by strong 

I induction. The first step proves that (IN,W)nn 5 PEp{X(p)}  and (RN,w)kk 5 
X(y - [$]/3)1(y), as N + m, with y = limx=pN+m %, l ( y )  defined in (4.25), and 
X(p) defined in the statement of Theorem 9. In the Ph step we assume the almost 
sure convergence of (Tg,,),, and (R; W ) k k  for 1 5 m 5 L - 1 and we prove that 
(I;,,),, and (R; ,)kk converge almost surely to the deterministic values in (1.19) 
and (1.20) respectively 

First step: Let us consider (R;,,)kk = f i g , w ( k ) h ~ , w  ( k )  = 

I Q ( ~ )  l 2 ~ : . W ( k ) ~ ~ , w ( k ) .  Given k ,  

where akk is the kth element of the matrix A and L(x )  denotes the number of 
nonzero elements in the vector X as in Theorem 8. 

H H Let us focus on ( I $ , w ) n n  = ~ N , W  (n)a$,w (n) = U N , ,  ( n ) a  u N , w  (n)  . ON, ,  (n) 
has nonzero i.i.d. elements in the interval In, n + K].  Since the diagonal elements of 
AAH are a periodical repetition of the elements of the matrix A A ~ ,  any principal 
submatrix (AAH)n:n+K has the same trace as A A ~ .  Thanks to assumption ( c )  in 
Theorem 9 the spectral radius of the submatrix (UH)n,:n,+K is upper bounded. 
Furthermore, using the assumption that the sequence of the empirical distribution 
of (akkI2,  where akk are the diagonal elements of the matrix A, converges almost 
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surely to the deterministic distribution FA(A) ,  the normalized trace of the matrix 
A A ~  converges to a deterministic limit value 

1 1 K 

lim - t r A ~ ~  = lim - lakkI2 E p ( A ( p ) ) .  
K+m K K 4 m  K 

k=l 

Appealing to Lemma 1 in Chapter 2 and following the same line as in the proof of 
Lemma 2, we obtain 

lim ( T h , w ) n n  = PEp(A(p)  ) S  

K+PN+m 

Step l: Following along the line of Theorem 8 and making use of the same lemmas 
we can expand (7ZLYW)nn and ( ~ ( N , ~ ) k k :  

Then, the proof of almost sure convergence of (RL , , )~~  and (I&,),, reduces 
to the proof of the almost sure convergence of l a ( k )  12sN,w ( k ) l & , w , W k ~ E , w  ( k )  and 
~N,~(n)A7Z&,,,~A~og~(n), respectively, to a deterministic value. 

First let us focus on the case that the number of nonzero elements in r N W ( k )  and 
O N W ( ~ )  is infinite as N --+ oo and use the same argument as in Theorem 8 to obtain 

where k l  and k2 are defined in (C.16)  and ((1.17), respectively. 
In order to prove that oNtw (n) A7E&,w,,kAHoE,w (n) converges almost surely to 

a deterministic value and to determine that value, we introduce the functions F p ( x )  
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and X(p) corresponding to the limit distribution Fp(x) and the limit function X(p): 

-(NI In a similar way we also define FP (n) and (n) corresponding to the empirical 
distribution ~ j ~ ) ( n )  and ~ ( ~ ) ( n )  for a finite N. Then, using the definition of nl in 
(C. 18) and taking into account the relation limN=sK-m % = PFp(x), there results 

l - 
= lim - 

N=PK-oo N X(N)(~(N)(k))(~%,~,kk)kk 
~ = N P F ~ ~ '  (n) 

Equation (C. 23) holds since FP (p - [p] ) is differentiable in the intervals (X, [X + l] ) 
and ([X + l], X + 1) thanks to assumption (b). Therefore, stating by convention 
R&(y) = l for y E [0, (W + l)P], and '&$(X) = l for X E [0, W], 

In the case that the number of the nonzero elements in cNW(k) keeps finite as 
N -+ oo, we use the same argument as in the proof of Theorem 8 to prove that 

This concludes the proof of Theorem 9. 
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C.3 Proof of Theorem 10 

Let us consider an r-block-wise circulant matrix of order N ,  defined in Theorem 
10, and let us denote with F; the unitary Fourier transform matrix of dimensions 
N x N  

jzrr 
with W = e N . We can extend the well known result on the diagonalization of 
circulant matrices" to  decompose the r-block-wise circulant matrix as 

where Ak is an r N  X N block diagonal matrix with lth block 

and (FN 8 I,) is a unitary matrix. 
The matrix S can then be rewritten as 

with Zk = F;sk Assuming the elements of the spreading sequence sk i.i.d. Gaussian 
distributed, sk is also a vector with i.i.d. Gaussian distributed elements having the 
same distribution as the elements of sk. This assumption will be removed later on 
in the proof. 

In the following we focus on the asymptotic spectral analysis of the matrix R = 
H-H- -H- 

A S SA = H H with = = (A'sl ,  A2a2, . . . , AKaK)A. Considering that the 
absolute value of & ( X )  is upper bounded thanks to  the assumption of Theorem 10 
that Z(j27r f )  has finite support and is bounded in absolute value and applying the 
same arguments as in Lemma 6 ,  the matrix W satisfies the conditions of Theorem 5. 

4A circulant matrix d N ) ( f  (X)) can be decomposed as d N ) ( f  (X)) = F~DF;, with D = 

diag(f (01, f (h),  . . S ,  f (W)). 
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Then, with probability one the eigenvalue distribution of the matrix converges to 
a deterministic distribution. Additionally, its finite moments are also finite thanks 
to assumption ((3) of Theorem 10. 

As the proofs of Theorem 8 and Theorem 9, the proof of Theorem 10 is based on 
strong induction. In the first step we prove the following facts: 

1. The diagonal elements of the matrix R converge almost surely, as N -+ m,  to 
deterministic values Z(Jakk  1 2 ,  rk), conditionally on (Jakk 1 2 ,  rk) .  

H 
2. (F),,, the r X r block diagonal elements of the matrix T = HH , converge 

n(N) almost surely to deterministic blocks F(x) ,  with X = limN*oo 7. 

Then, in the recursion step, we use the following induction assumptions: 

1. For s = l, . . . , l - 1, the diagonal elements of the matrix 8, converge, as 
N -t m ,  to deterministic values rZs(lakk 1 2 ,  rk), conditionally on (Iakkl2, rk), 

2. For s = 1, . . . , l - 1, (Fs),,, the r X r block diagonal elements of the matrix Fs 
n(N) converge almost surely to deterministic blocks TS(x), with X = limN,oo 7. 

We prove: 

1. The diagonal elements of the matrix X', converge, as N + oo, to deterministic 
values R ' ( ( U ~ ~  J2,  rk), conditionally on (lakk 1 2 ,  rk). 

2. The blocks (F'),,, converge almost surely to deterministic blocks ~ ' ( x ) .  

Throughout this proof we adopt the following notation. For lc = 1, .  . . , K and 
n =  1, . . . ,  N 

m hk is the kth column of the matrix R; 

m 8, is the nth block row of H of dimension r X K ;  

m nkn is the matrix obtained from by suppressing Zn; 

m is the matrix obtained from H by suppressing h p .  
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for t = 1, .  . . , r and n = 1,. . . , N, is the K X K diagonal matrix with the - 
kth element equal to E (t-l)?-c (q). Note that FnVn,tA coincides with the 

Tk- ". 
(t + (n - l)r)th row of the matrix I?. 

(TB),, is the nth diagonal block of Ts of dimension r X r .  

-H-  HAHA HA - 
First step: Consider Rkk = h k  hk  = [akk[ sk ksk. Thanks to the assumption 
that z ( j 2 ~ f )  is bounded in absolute value with finite support also &(X) is upper 
bounded. Because of the property of - circulant matrices the limit eigenvalues of the 
matrix A%Ak are given by CL, ItTk + ~ p - ~  (X) 12 .  Therefore, the limit eigenvalue 

T 

distribution of the matrix AFA, has upper bounded support. Then, we can apply 
Lemma 1 in Chapter 2, and following the same lines as in the proof of Lemma 2 we 
prove that zkk converges almost surely to the deterministic value 

- - 
- lim Rkk R(X, 7) l(~.T)=(~akk~~.n) - K=PN+m 

1 

= X 1 A ~ ( X ) A ~ ( X ) ~ X .  (C. 24) 

Let us now consider the block matrix c, whose (U, v) element (E,),, is given by 

Thanks to assumption (c:) of Theorem 10 on the support of q A 1 2 , T ( X , ~ )  and the 
fact that &(X) is bounded in absolute value, the spectral radius of the matrix 
AV, , ,V~,A~ is upper bounded. Thus, we can apply Lemma 1 in Chapter 2 and 
proceed as in the proof of Lemma 2 to obtain 

= P 1 x~-+T~  ( x ) ~ ~ - + T ~  (x)d F(X, r), (C. 25) 



C.3 Proof of Theorem 10 175 

with 

Therefore, 

with 0 5 X 5 1. This concludes the proof of the first step. 
Step P: Following the same approach as in the proof of Theorem 6, Appendix B, 

we can expand and (pe),, as follows: 

( C .  26) 

( C .  27) 

The almost sure convergence of (ze) kk and (F'),, to a deterministic limit reduces 
-H-e-3-1- - -e-S-l-H 

to the almost sure convergence of hk T,, hk and dnRkn G ,  , for S = 0, . . . , P - 1, 
to a deterministic value. Using again the same approach as in the proof of Theorem 
8 we obtain 

1 
lim ( X n ) u n ( X ) w  = lim - ~ ~ A v , , B ~ ~ v ~ A ~  

N=PK--too K=PN--too N 
1 K n - l  n - 1  

= lim - E Iakk 1 2 & - e T c  E-+Tc (Kn)** 
K=PN-+oo N 

k = l  

We denote with f(Rs, X) the r X r matrix 

- -  
f (ZS ,  X) = lim a n ~ ; ~ ~ :  

K=PN--too 

( C .  29) 
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Furthermore, we define 

-H-s - S(TS, X, T) = lim hk TNkhk 
N=PK-+CO 

1 2 H-S 
= Iim -tr (lakkl A, T _ , A ~ )  

N=PK+oo N 

where 6 is the absolute value of the received amplitude of user k and T its time 
delay. From (C.26) 

and from (C.27) 

-e 
T (X) = lirn ( F e ) n n  

N=pK+co 

Let us remove the assumption that the elements of the vectors sk are Gaussian. For 
this wider class of spreading sequences the elements of the vector Zk  = F E S ~  are 
not i.i.d. and Lemma 1 in Section 2.4 cannot be applied. In the proof of Theorem 
6 in [l31 it is shown that Lemma I can be extended to any vector X N  = Uv where 
U is a unitary matrix and v is a vector with elements satisfying assumption (a.) 
of Theorem 10. By appealing to  this result the extension of Theorem 10 to  any 
distribution of the spreading elements is straightforward. 

C.4 Derivation of Algorithm 2 

For a signal with bandwidth B 5 &, 

with e = (l, ej2"T, . . . eJ2"?x > .  
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Specializing the recursive equation of Theorem 10 to this case the recursion can 
be drastically simplified as 

s=o 
(C. 30) 

4 --O 
with T (X) = I and R ( X , r )  = 1. 

Let us observe that g(TS, X, r )  is independent of r for any P. Considering the 
--O 

recursion on R'(x, r) and the initializing value R (X,  T) = 1, it is apparent that also 
-e 
R (X,  7) is independent of r . 

Additionally, (eeH)m = rm-leeH where r E Z+ is the dimension of the vector" 
e .  Then, it is straightforward to verify by recursion that the matrix Fs(x) ,  S = 

1,2 , .  . . , P  - 1, is proportional to the matrix eeH and we can express it as Fs(x)  = 
-S 
T (x)eeH, S = 1,2, . . . . The previous considerations yield 

(C. 32) 

P 1 1 
f (Bs, X) = - I ~ ( j ' 2 n x / ~ , )  I 2  1 Xzs (X)d qAll (X)  - 2 ' ~ ' ~  

Tc2 

4 4 
with T (X) = I and R (X) = 1. 

51n system model (3.31) r is the sampling rate normalized by &. 
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Substituting ((2.32) for f (gs, X )  in (C.31) we obtain 

(C.  33) 

-4 -0 
Recalling that T ( X )  = I and stating by convention T ( X )  = f ,  we obtain from 

(C.33) the scalar ? ( X ) :  

-1-1 
where the sum in (C.34) includes the term f (R , x ) ) T  ( X )  for S = 0. 

The following equations summarize the final recursion. 

I ( X )  = C g l ,  X)XS(X) 

(C .  34) 

-0 -4 
with T ( X )  = and R ( X )  = 1. 

Algorithm 2 is derived from the previous set of equations by using the following 
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substitutions": 

XRs (X) 

C.5 Proof of Corollary 5 

Corollary 5 is derived by specializing Theorem 10 to a unitary Fourier transform 
B(j27if) that is real and has bandwidth B with & 5 B 5 &. The unitary Fourier 
transform in the discrete time domain is given by 

A 
Let ~ ( x ,  7) = A~(X)A:(X) with r = 2. Q(X, 7) can be decomposed as 

with Q(x) defined in (4.40) and 

where 

(C. 35) 

(C. 36) 

6Note that the substitution of X with z is redundant. It is used to obtain polynomials in the 
commonly used variable z. 
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Equations (4.36) and (4.37) can be rewritten as 

If condition (I) of Corollary 2 is verified, it can be shown that g(TS, X, r) and 
- 
R'(& r), s E Z, are independent of r and Fe(x) is a matrix of the form 

These properties can be proven by strong induction. It is straightforward to verify 
4 

that they are satisfied for s = 0. In fact, R (X,  r) = 1 is independent of r and 
--O 
T (X) = I is of the form (C.39) with to,, (X) = 1 and to,2(x) = 0. Since tr(V(x, 7)) = 

0, g(?, X, r) = X St, - - tr(Q(x))dx and hence g(TO, X, r) is independent of r .  
2 

The induction step is proven using the following induction assumptions: 

m 7i" (X,  r) and g(Fs,  X, r) are independent of r; 

m For s = 0,1, . . . l - 1, T"(x) is of the form (C.39). 

-3- 
We have t r (T  Q(x, 7)) = 0, for S = 0, l , .  . . ,l-l, thanks to the form (C.39) of P S .  

Furthermore, g(TS, X, r) is independent of r .  Therefore, all quantities that appear in 

the right hand side of (1.34) are independent of r and ze(X, r) is also independent of 

r .  In the following we will shortly write ze(X). Observing that S G(x,  7 ) d F T ( ~ )  = 0 
thanks to the assumption ( I )  of Corollary 5 on the probability density function 
fT(r), (C.37) can be rewritten as 

(C. 40) 

with f (3) = P Xzs(X)dqAi2 (X). Substituting (C.40) in (4.35) yields 
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l ~ 91 (x)t81 ( X )  + qz(x) t82(~)  [!?l (x)t82(x) + Q Z ( X ) ~ ~ I  (x)le-jTx 1 
&(x)TS  ( X )  = -- < x  5 -. 

1 ( kl (x)tS2(x) + 92 ( ~ ) t 8 1  (x ) ]GTx  91 ( x ) t 3 1 ( x )  + ~ 2 ( ~ ) ~ 8 2 ( ~ )  ' 2 -  2  
(C.42) 

From (C.42) it is apparent that Q(X)T'(X) is of the form (C.39).  Since - '(X) is a 

linear combination of matrices of the form (C.39),  T e ( x )  is also a matrix of the form 

l 
(C.39). 

Let us summarize the results in the following set of recursive equations: 

--O -0 
with T ( X )  = I ,  and R ( X )  = 1. 

Then, applying again Theorem 10 we obtain that 

This concludes the derivation of Corollary 5 from Theorem 10. 

C.6 Derivation of Algorithm 3 

The eigenvalues of the matrix Q ( x )  in (4.40) are 

(C. 46) 

l Let us express the eigenvalue decomposition of the Hermitian matrix Q ( x )  as Q ( x )  = 

U D ( X ) U ~  where U is a unitary matrix and D ( x )  a diagonal matrix with elements 
d l ( x )  and d 2 ( x ) .  Considering (Cj.41) and the fact that T O ( x )  = I, it is apparent that 
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-e 
T ( X )  is a polynomial in Q ( x ) .  Therefore, it has the same eigenvectors as Q ( x )  and 
can be decomposed as 

? ( X )  = U F s ( x ) U H  (C  .48) 

where F , ( x )  is a diagonal matrix. Then, substituting Q ( x )  = U D ( x ) U H  in (C.41) 
yields 

By substituting (C.48) in (C.39) we obtain 

~ ( @ ) D ( x ) F . ( x )  ( C .  50) 

Equation (C.50) yields 

From (C.51) it is apparent that F e ( x )  is a polynomial of degree l in D ( x ) .  Using 
the identity of the traces of similar matrices, we obtain 

Therefore, (Cj.46) can be rewritten as 

where ( F s )  l ldl  and (FS )22d2  are polynomials in dl and d2 with identical coefficients. 
Denoting by u s ( y )  the polynomial in a generic variable y with these coefficients, we 
can rewrite (C.53) as 
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Let U, (y) = C;=o a, yr. Then, 

wit h 

(C. 54) 

(C. 55) 

and 

i.e. X) can be computed by substituting the integral u,(dl) + u,(dz)dx 
with the quantity obtained by replacing the monomials y, y2, . . . yS in u,(y) by 
El, E2, . . . E,, respectively. 

Using (C.54) in ((2.43) and replacing (C.44) by (C.51) the recursive equations of 
Corollary 5 can be rewritten as 

-e 
R (A) = C X W  (X) u~-,-, 

e- 1 
F&) = C f (Z~-'-~)D(~)FS(X) (C. 57) 

9(TS, X) = XU,, (C. 59) 

-4 
with U, defined in (Cr.54), Fo(x) = I, and R (X) = 1. 

Let us observe that the computation of U, requires to determine only U, (y) and not 
the diagonal matrix D ( x )  F, (X). We can easily recognize that ue(y) can be derived 
by replacing F,(x) by p,(y) and D ( x )  by y in ((2.57) to obtain 
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and by computing ue(y) = ype(y). The scalar Ue is obtained by writing ue(y) as 
a polynomials in y and by replacing all monomials y, Y ~ , .  . . ,ye  with El, £2 , .  . . ,Ee, 
respectively. 

For the computation of ze(A), we use the following substitutionsr: 

A + 
- 

(A)  + 
AB (A) + 

Then, (C.56) is rewritten as 

and L$ = 9 can be obtained from ve(z) = zh(z)  by writing ve(z) as a 
polynomial in z and by replacing the monomials zl ,  z2 , .  . . , ze by the moments 

mL12, mfA12 . . . , m;Al2, respectively. 
We conclude the derivation of Algorithm 3 by summarizing the previous consid- 

erations and substitutions: 

U, and V,  are obtained from us(y) = yps(y) and vs(z) = zps(z), respectively 

by 

- expanding us(y) and vs(z) as polynomials in y and z, respectively, 

- replacing the monomials yT and zr, r = l , .  . . , s with Es and myAlz, re- 
spectively. 

Then, ze(A) = pe(A) and the eigenvalue moment m& = E{E'(A)} is obtained 
by replacing all monomials z, z 2 , .  . . , ze in the polynomial pe(z) by the moments 

m/A12 7 mfA12 , . . . , m;A12, respectively. 

7Note that the substitution of X with z is redundant. It  is used to obtain polynomials in the 
commonly used variable z. 
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D.1 Proof of Theorem 11 

The proof of Theorem I1 is based on Theorem 5 in Section 2.4. 
First of all, let us verify that the matrix fi satisfies conditions (2.34), (2.35), and 

(2.36). ljij is the (i, j)th L X 1 block of the matrix 4. All blocks are independent since 
the channel gains are deterministic and the spreading sequence elements are inde- 
pendent. Condition (2.34) of Theorem 5 specializes for Theorem 1 l to the following 
inequality 

The second inequality in (D. 1) holds thanks to the assumption that Illi 1 1  is uniformly 
bounded for all N. Thus, condition (2.34) is satisfied. 

In order to verify Lindeberg condition (2.35), let us observe that Vi, j 

where In(-)  is the indicator function on the set A (see Glossary), F(s i j )  is the distri- 
1 bution function of sij, and 6 E B+. From the condition of Theorem l1 E{lsij J 2 )  5 F 

with y  > 1. Since lllrcll are uniformly bounded for all N, there exists an m < +m 
such that max lFli 5 m and 

i=1 ... K 

m3 
q~E{Ilfi,1121{~jajll>T)(fiv)} 23 5 m with y > l .  03.3) 
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Then, we conclude that 

The proof that 

follows the same lines as the proof of (D.$). Thus, we conclude that Lindeberg 
condition (2.35) is satisfied. 

Condition (2.36) is trivially verified. In fact, the entries of matrix fi are all zero 
mean, i.e., Aij = 0,  Vz,j  E Z+ and also their spectral norms [Aij[ are zero. Then, 
the sums in (2.36) are also zero and condition (2.36) is verified. 

Equation (2.37) can be rewritten as 

with 

- (2) The step from (D.5) to (D.6) is justified by the fact that ( [ C K x K ( ~ ) ] - l ) j j  is a scalar 
( 1  X 1 matrix). Equation (D.7) emphasizes that the matrix ~ ( l ) ( a )  is independent 
of k. This is because all rows of the matrix Ej have the same statistics. 
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Equation (2.38) can be specialized to system (5.1) as follows. 

(D. 10) 

N 

[c(')(a)]-' E E (fijlfiB}) (D. 12) 
j=l 

= 1 + Ntr ([c(')(~)]-'E {fil$3:}) (D. 13) 

(D. 14) 

(D.15) 

The step from (D.9) to (D.lO) is justified by the fact that the argument in the 
expectation operator is a scalar. From (D. 10) to (D. 11) the trace property t r (AB) = 
t r (BA)  is applied. From (D. l l )  to (D.12) we use the distributive property of trace, 
expectation, and sum. Equation (D.12) yields (D.13) thanks to the fact that the 

expectation of fijrfiz is independent of j, i.e. E {fijlfig} = E ~ j ,  j' E 

-(2) [l, . . . , K].  Let us notice that by the definition of C,,, (a )  in the statement of 
- (2) Theorem (5) in Section (2.4) ( [ C K X K ( ~ ) ] - l ) H  = ~ $ ) ( a ) .  Using (D.15) in (D.8), we 

(1) K E 4 k j 4 f .  obtain K (a )  = C,=, l+lr{ c,,,(a ;tIli. Thus, (D.7) can be rewritten as 

Then, considering the limit for K, N -+ oo 

(D. 16) 
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and using the definitions (C(')(a))-' a m we obtain (5.9) with a = a2 .  
As intermediate results of the proof of Theorem 5, Girko proved (see [61] proof2 of 

Theorem 30.2) that the L x  L  matrix block element Uij, i,  j = 1,. . . , N, of the matrix 
-1 

= (arm1 + -i-n,x,2=,H,xn2) in Theorem 5 converges in probability to the L X L 
- (1) - (2) -H matrix block element Vij of the matrix V = (XP (a )  +ApI Xp2 (XP (a))-lApl yp2)-1, - (1) - (2) $(i)(a) = diag{~f~(a))k, l , , . , ,p ,  and i = 1,2.  Here, XP ( a )  and XP ( a )  are deter- 

ministic matrices such that 

(D. 17) 

- (2) and C (a ) ,  i = 1 , 2  solutions of the canonical system of equations in Theorem 5. 
Furthermore, 

lim E{IUij - Vij 1 )  = 0. (D. 18) 
K,N+oo 
K 
F-P 

and the spectral norm of Vij is bounded by lVijI < a2. By applying these interme- 
diate results to the matrix U = (fik4-j; + a2 I)-' we obtain 

lim E{(&j-VijI)=O 
K,N-+oo 
K 
F-P 

(1) 2 with Vij = [!Pii (a )]-l& from (D.18) and 

lim ~ ~ i t ) ( a ~ )  = C(')( a2) .  (D. 20) 
K,N--too 

+L3 

from (D. 20). 
Let us denote by Ck the LN X N block diagonal matrix whose blocks are identically 

l I < +oo since lllkll is equal to lk .  Its maximum singular value is equal to fi 
uniformly bounded for all K. Then, l j k  = .Cksk where s k  is the kth column of the 
matrix S .  
P- 

lThis definition is motivated by the fact that the expression of the SINR (5.9) in Theorem 1 :I in 
Section 5.3.1 becomes more intuitive using 4 instead of ( ~ ( ' ) ( a ) ) - l .  

2We note that there are several typos in the statement of Theorem 30.2 and in its proof. So, Q 
should be defined as Q = [Ia + (A + =)(A + E)T] and not as Q = [Ia + (A_+ E ) ~ ( A  + E)], 
consistently also the definition of G changes. In the theorem statement X = G p ~ x p z  and Y = 

apl These typos have been discussed with the theorem's author in personal correspondence. 



D.l  Proof of Theorem 11 189 

The convergence in probability of SINRk = $;Mk to the quantity 
l f [ ~ ( ~ ) ( o ~ ) ] - ' l ~  is proven if 71 = E I h f M k  - l f [ c ( ' )  ( g 2 ) ] - l l k l  vanishes asymptoti- 
cally, i.e. 

K 

The rest of the proof is focused on showing ( D . 2 1 ) .  Let us observe 

71 ~ lhfw~ - hfvhkl + ~lhfvh~ - Z F [ C ( ~ ) ( C ~ ) ] - ~ Z ~ ~  
where the triangular inequality of the spectral norm is applied and V = 

(1) 2 d iag ( [@, ,  (0 ) ] - l )k=l ,  ..., N. 
By applying the submultiplicative inequality for spectral norms (D) and the tri- 

angular inequality to the first term we obtain 

Thanks to (D.19) and the fact that l f l k  < +oo 

&p 

In order to prove the convergence to zero of 72 = E l h f V l j k  - l f [ ~ ( ' ) ( o ~ ) ] - ' l ~ /  we 
consider 

< E l h f V h k  - l f [ ~ ( ' ) ( o ~ ) ] - ~ l ~ 1 ~  72 - (D .23)  
( 1 )  2 - 1  

= ~ ( ( h f v h k ) ~  - ~ $ ~ v $ ~ z ~ [ c ( ' ) ( u ~ ) ] - ~ z ~  f Z ~ [ C  ( D  ) ]  l * )  ( D .  24) 

(D. 26) 
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From (D.25) to  (D.26)  we make use of the assumptions on the second and fourth 
( 1 )  2 moments of sij. Let us observe that the spectral norm of [C (cr )I-' and Vii, for any 

i,  are bounded by 1 [ ~ ( ' ) ( c r ~ ) ] - ~ /  < cr2 and [Vii I < cr2. Then, the first term in (D.26) 
vanishes as N + m since y > 1. By applying (D.?()),  for any i ,  V, + [c(')(a2)]-'  
as K ,  N + m with 5 -+ p. Then, the second and third terms in (D.26)  converge to 
( l f [ c ( ' )  (02)]-11k)2  and -2(1f  [C(') ( 0 ~ ) ] - ' 1 ~ ) ~ ,  respectively. We can conclude that 

lim = 0 
K,N--too 
K 
W+P 

and + 0 as K, N + m as 5 + P. Therefore, (D.21)  is proven. The Markov 
inequality implies that,  YE > 0 

and the convergence in probability stated in Theorem I l is proven. 
This concludes the proof of Theorem 11. 

D.2 Proof of Theorem 12 

Let us derive first the single user Bayesian filter. To this aim we calculate E{ggH)-' 
and E{bzg)  with the expectation taken over the noise, over all transmitted signals, 
and over the transmitted powers, channel gains, and spreading sequences of all in- 
terferers. Then, E { g g H )  = E { A k f j f )  + b k b f  + a21NL. Because of the independence 
and zero mean of the elements of the spreading sequences, E { A k A f )  is a block di- 
agonal matrix with N blocks of size L X L. Each block is given by ( P  - $)Cl with 
Cl = E { l l H ) .  It follows 

By applying the Sherman-Morrison formula (see Appendix E . l )  to  (E{gpH})- '  we 
obtain 

-1 H 
( ~ { 9 g ~ } ) - '  = ( C l  + O~INL)- '  - (Ck + C ~ I N L )  b k  [l O f ( &  + O ~ I N L ) - ' b k ]  

X b f ( C k  + o ~ I N L ) - ' .  

Let us observe that E{b;g) = bk.  The single user Bayesian receiver is given by 

( D .  28) 
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The energy of the useful signal k at the output of the single user Bayesian filter is 
given by 

The energy of the noise at the output of the single user Bayesian filter is 

(D. 29) 

(D. 30) 

Finally, the energy of the interferers is 

Therefore, 

- 1  N 

= I: [(p k) c/, + g 2 ~ L ]  1. c sn.sik- 
n=l 

N 
Applying the strong law of large numbers to C n , l ~ n k s , k ,  we obtain 

N 
""' 1. This limit and (D.31) yield the convergence of SNIRk limlv-00 snk~;k = 

to l f ( , O ~ ~  + 021L)- ' lk  with probability 1 as N -t oo. 
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D.3 Proof of Theorem 13 

The proof of Theorem 13 follows the same lines as the proof of Theorem 12, taking 
into account that c k  = b k .  Then, 

- - ( b f b k ) 2  

a 2 b F b k  + b f c k b k  

- - ( z f z k  ~ n k s i k ) ~  
N (D .32) 

1: [ ( p  - h) CI, + O ~ I L ]  l k  C,=, s n k s : ,  

Applying the strong law of large numbers, we obtain the almost sure convergence of 
SINRk as K, N -+ co with 5 -t p .  More specifically, we obtain 

lim SNIRk 2' ( l f ~ k ) ~  

K = P N + w  l f ( ~ ~ 1  + u 2 I L ) 1 k .  

D.4 Proof of Theorem 14 

The proof of Theorem 14 follows the lines of the proof of Theorem 10. It is useful 
to rewrite 4 with a structure similar to  the structure of in (-1.31). 

Let us define for each user k a block diagonal matrix Ck = I N  8 l k  of dimensions 
LN X N ,  with identical diagonal blocks equal to  Zk. The matrix 4 can be rewritten 
as 

Additionally, we introduce the following notation. For n = 1, . . . N and k = 1, . . . , K 

m S ,  is the nth row block of 4 of dimensions L X K. 

m Bkn is the matrix obtained from 4 by suppressing the nth row block S , .  

m a, is the nth row of the matrix S ,  i.e. a, = ( s , ~ ,  ~ ~ 2 , .  . . s , N ) .  

m Le, l = 1, . . . , L is a K X K diagonal matrix with kth element equal to lek.  
Note that a,Le coincides with the ((n - 1) L + l)th row of the matrix 4 .  
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I:, is the nth diagonal block of Is of dimensions L X L. 

I,, = fiffik. 

The proof of Theorem l4 is based on strong induction. First, we prove the follow- 
ing: 

For a given user k ,  conditionally on .lk, Skk converges almost surely to a 
deterministic limit B1(lk) as K ,  N -+ m with 5 + p. 

The block matrix 2kn converges almost surely to a deterministic limiting ma- 
trix 3 independent of n as K ,  N + m with 5 -+ p. 

Then, in the recursion step, we use the following induction assumptions: 

For s = 0, . . . , l - 1, (Ss) kk converges to a deterministic limit Bs (1  k )  and the 
diagonal blocks (Is),, converge to a deterministic limiting matrix 3S indepen- 
dent of n as K, N + m with 5 -+ p. 

For s = 0, . . . , l - 1, the limit values RS(lk) and SS are given by the recursive 
equations (5.26) and (5 . E ) ,  respectively. 

We prove that ( S e ) k k  converges to a deterministic limit Be(l) and (Ie), con- 
verges to a deterministic limiting matrix independent of n as K, N + m with 
K N + p. Furthermore, we prove that these limit values satisfy also the recursive 
equations (5.26) and (5.27). 

First step: Skk = ~ f . C f 2 ~ s ~  and the diagonal elements of the matrix CfCk are 
bounded thanks to the condition on the distribution function Fl. Thus, appealing 
to Lemma 2 we can show that, given lk ,  !Rkk converges almost surely to the deter- 
ministic value 

%'(lk) = lim S k k  
K=PN-W 

H H  = lim sk C, Cksk 
K=PN-+w 

1 
= lim -tr(,Cf.Ck)=dlk. 

K=PN-oo N 
(D. 33) 

We apply a similar argument to the element ( U ,  v) of the bock matrix I,, to show 
its almost sure convergence to a deterministic value 

H H = lim anLuLu  a, 
K=PN-+CC 

1 
= lim - t r ( ~ , ~ ; )  

K=PN--too N 
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Equivalently, 
3 =  lim 2, ,=/3~{11~}.  

K=PN--too 

Ph step: Following the same approach as in the proof of Theorem 6, Appendix 
B, we can expand ( R e ) k k  and the L X L diagonal block of the matrix p, Z;, as 
follows: 

(D. 34) 

(D.35) 

Thanks to  the assumptions of the strong induction, for s = 1,. . . , - 1, and 
'Xin converge almost surely to the deterministic limits %'(lk) and 3",  respectively. 
Therefore, the almost sure convergence of and 'X:, reduces to  the almost sure 
convergence of $fZLiS-'hk and 6n%",~S-16~, respectively. 

Let us define 

H s  
g(3", lk) lim fix ZNk$k 

K=PN+oo 

H H s  = lim sk Ck ZWkCksk. 
K=PN+co 

In a similar way, we denote 

n 
f (Ss) = lim 6 ~ ~ ~ 6 ~ .  

K=PN+oo 

The (U, v)th element of f (Rs) is given by 

(f(W)), a K=PN+OO lim (6s&dH)tiv 

H H  = lim a,A,R~,A, U , .  
K=PN--too 

(D.37) 

Let us compute the limits (D.38) and (D.39). The condition on the spectral radius 
of R guarantees that the spectral radius of S" and 2" is upper bounded for any 
finite integer U. Applying the submultiplicative inequality of spectral norms (see 
Lemma 9 in Appendix F,. I )  the same property holds for the matrix C ~ Z L ~ C ~  and 
its powers and the matrix A,%~,,A; and its powers. Then, we can apply Lemma 2 
to  the right hand side of (D.36) and we obtain the following almost sure convergence 

l 
9(3", lk)  g' K=PN+oo lim E Z;%~,Z 

n=l 
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Applying Lemma 2 in Section 2.4 to the right hand side of (D.37) we obtain the 
almost sure convergence 

P ( f  (R")), "2 lim -tr(A,?.RaAF) 
K=PN--too K 

Thus, the matrix f (Rs) is given by 

H s  f (Rs) = PE{11 R ( l ) ) .  (D. 39) 

Finally, the limit (D.38) and the recursive equation (D.34) yield 

R e ( l )  = lim (?.Re)kk 
K=PN-+oo 

In a similar way, using the limit (D.39) and the recursive equation (D.35) we obtain 

3e = lirn %in 
K=PN-Kx 

Thus, the induction step is proven and this concludes the proof of Theorem 14. 





E Mathematical Tools 

E.1 Linear Algebra 

Lemma 8 [l 1 l ]  If B is an Hemitian matrix, then for any vector X 

(xHI3x(  5 max{(X( : X is an eigenvalue of B )  I ( x / / ~ .  (Eel) 

Theorem 16 (Interlacing Eigenvalue Theorem for Bordered Matrices) 
[l 1 l ]  Let A be a given n X n Hermitian matrix, let y E Cn be a given column vector, 
and let a E R be a given real number. Let 2 be the ( n  + 1)  X ( n  + l )  Hermitian 
matrix obtained by  bordering A with y and a as follows: 

Let the eigenvahes of A and 2 be denoted b y  { X i }  and { X i } ,  respectively, and 
assume that they have been arranged in increasing order, i.e., X 1  5 A2.. . 5 X ,  and 
A h 

X 1  5 52. .  . 5 Then 

Theorem 17 (Shemnan-Morrison Formula) [l 1 l]  Let U and v be n- 
dimensional column vectors and let A be an n X n matrix. Then, 

Lemma 9 (Submultiplicative Inequality of Spectral Norm) [l 1 l ]  Let A and 
B be two n X n matrices, then 

IABI 5 IAIIBI 

E.2 Probability Theory 

Lemma 10 (Markov Inequality) [112] Let X be a nonnegative random variable 
with E{x)  = 77, then, for any E > 0 

77 Pr{x > E )  5 -. 
E 

(E.2) 
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Lemma 11 (Bienayme' Inequality) [l 121 Let X be an arbitrary random and let 
a and n be two arbitrary numbers. Then, for any E > 0 

Lemma 12 (Lyapunov Inequality) [l121 Let Ok = E { J x J ~ }  < +m represent the 
absolute moments of the random variable X .  Then, 

Lemma 13 (Borel-Cantelli Lemma) [lot?] [l121 Let All  A2, . . . be an infinite 
sequence of events, each of which depends only on a finite number of trials. In other 
words, there exists an integer nk such that Ak is an event in the sample space of the 
first nk Bernoulli trials. Put pk = Pr{Ak), k = 1 ,2 , .  . .. 

(i) Suppose 

E p k  < +m 
k=l 

that is, the series on the left converges, Then, with probability one only finitely 
many of the events All  A2, .  . . , occur. More precisely, to eveq E > 0 there is an 
integer r such that the probability that n trials produce one or more among the 
events A,+1, . is less than E for all n.  

(ii) If the events Ak are mutually independent, and if p k  diverges, then, with 
probability one infinitely many Ak occur. In other words, for every r the probability 
that n trials produce more than r among the events Ak tends to one as n -+ m. 
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