
Master Thesis

Enterprise JavaBeans
Evaluation of different EJB platforms

carried out at the

Institute of Software Technology

and Interactive Systems

Vienna University of Technology

under the guidance of

ao. Univ. Prof. Dr. Dipl.-Ing. Gerald Futschek

by

LY The Minh

Ungargasse 41

2700 Wiener Neustadt

Vienna, January 2005

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Enterprise JavaBeans (EJB) is a promising new component architecture that is

based on the popular programming language Java. In these fast living times shorter

development iterations, the internet and electronic commerce become more and

more important aspects of the software business. As a result a new flexible and

powerful software concept is needed. Therefore this thesis wants to give an

overview of the concepts of EJB and alternative component models like XPCOM,

CCM or COM+. The evaluation and comparison of three commercial EJB platforms

(BeanTA, PowerTier and WebLogic) should illustrate the concept’s advantages and

disadvantages.

Kurzfassung

Enterprise JavaBeans (EJB) ist eine viel versprechende Komponentenarchitektur,

die auf der beliebten Programmiersprache Java aufbaut. In dynamischen Zeiten wie

diesen, in denen kürzere Entwicklungszeiten, das Internet und der elektronische

Handel eine immer größer werdende Rolle spielen, ist der Bedarf nach einem

vielseitigen und mächtigen Softwarekonzept eine natürliche Konsequenz. Deshalb

möchte diese Arbeit einen Überblick über das Komponentenkonzept von EJB und

auch alternativen Komponentenmodelle wie XPCOM, CCM oder COM+ geben.

Durch eine Evaluierung und einen Vergleich von drei kommerziellen EJB

Plattformen (BeanTA, PowerTier und Weblogic) sollen die Stärken und Schwächen

des Konzeptes dargestellt und veranschaulicht werden.

Table of Contents page i

Table of Contents

Acknowledgements ... vi

Preface... vii

Introduction...1

1.1. Component paradigm..2

1.2. The internet as marketplace..3

1.3. Application servers..3

1.4. Purpose and goals ..4

The EJB framework ..5

2.1. EJB architecture..5

2.2. Roles in the EJB framework..7

2.3. Entity Beans..8

2.3.1. Container Managed Persistence ..10

2.3.2. Bean Managed Persistence ...11

2.3.3. Primary Key Class..11

2.4. Session Beans..12

2.4.1. Stateful Session Bean ..12

2.4.2. Stateless Session Bean..13

2.5. EJB container..15

2.6. Infrastructure services...16

2.6.1. Concurrency...17

2.6.2. Transactions...18

2.6.3. Persistence ..18

2.6.4. Distributed Objects ...19

2.6.5. Naming...20

2.6.6. Security ..20

Alternative component models..22

3.1. CORBA Component Model (CCM)..22

3.1.1. CCM Containers...23

3.1.2. CCM Clients ...23

3.1.3. CCM Components..24

3.2. Lotus Domino..28

3.3. Component Object Model plus (COM+) ..35

3.4. XPCom ...40

The evaluation platforms ..45

4.1. Bean Transactions ..45

Table of Contents page ii

4.2. PowerTier ...46

4.3. WebLogic..46

The EJB reference application..47

5.1. Architecture and Design..47

5.2. Implementation ...50

5.3. Application Client ..51

Specifying the evaluation environment ...53

6.1. Hardware configuration ...53

6.2. Software configuration ..54

6.2.1. Changing the database ..54

Evaluation...55

7.1. Technical aspects ...55

7.1.1. Basic Compliance to the EJB Specification ..56

7.1.2. Clustering and Load Balancing...57

7.1.3. Activation / Passivation...57

7.1.4. Transactions...58

7.1.5. Handling of exceptions ...59

7.1.6. Persistence ..60

7.1.7. Security ..61

7.1.8. Availability ..61

7.1.9. General Specifications ...62

7.1.10. Supported OS platforms...63

7.1.11. Usability ...63

7.2. Test scenarios...64

7.2.1. Testing the basic functionality of the Bug Tracker application.............64

7.2.2. Creation and manipulation of person records (entity beans)...............64

7.2.3. Creation and manipulation of data by using a stateful session bean...65

Results and conclusions...66

8.1. Technical Aspects...66

8.2. Performance Tests..68

8.2.1. Creation of entity beans..69

8.2.2. Finding entity beans ...71

8.2.3. Removing entity beans...73

8.2.4. Retrieving data from an entity bean..75

8.2.5. Creating stateful session beans..76

8.2.6. Retrieving data from a stateful session bean......................................79

Table of Contents page iii

8.3. Summary ..81

Future perspectives ..83

9.1. Container Managed Persistence ...84

9.2. The EJB Query Language...85

9.3. MessageDrivenBean...85

List of Listings page iv

List of Listings

Listing 1 nsISupports interface..41

List of Figures page v

List of Figures

Figure 1 Example of a 3-tier EJB architecture...5

Figure 2 Enterprise JavaBean structure..6

Figure 3 Life cycle of an entity bean ...9

Figure 4 Life cycle of stateful session bean ..13

Figure 5 Life cycle of stateless session bean..14

Figure 6 EJB object, object stub and skeleton ..15

Figure 7 Sample EJB application architecture in detail ...17

Figure 8 Access to an EJB server from different distributed clients.........................19

Figure 9 CCM component...25

Figure 10 Domino three tier architecture...28

Figure 11 Domino architecture overview...29

Figure 12 Logical structure of a note...33

Figure 13 Structure of a COM component ..36

Figure 14 DCOM component instantiation ..37

Figure 15 Object Proxy and Stub..39

Figure 16 BugTracker Logical View ..48

Figure 17 BugTacker Implementation View ..51

Figure 18 Architecture of application client ...52

Figure 19 Creation of entity beans (2000 records)..69

Figure 20 Creation of entity beans (10000 records) ..70

Figure 21 Average time for creating an entity bean...70

Figure 22 Finding entity bean (2000 records) ...71

Figure 23 Finding entity beans (10000 records)..72

Figure 24 Average time for finding an entity bean...72

Figure 25 Removing entity beans (2000 records) ...73

Figure 26 Removing entity beans (10000 records) ...74

Figure 27 Average time for removing an entity bean...74

Figure 28 Average time it takes to retrieve data from an entity bean.......................75

Figure 29 Creating a data record via stateful session bean (1000 beans)...............76

Figure 30 Creating stateful session beans (2000 beans) ..77

Figure 31 Average time for creation of a data record via stateful session bean.......78

Figure 32 Retrieving a value object from the stateful session bean (1000 beans)...79

Figure 33 Retrieving a value object from the stateful session bean (2000 beans)...80

Figure 34 Average time for retrieving a value object from a stateful session bean..80

Acknowledgements
It takes more than one single person to write a thesis, because writing a thesis

requires more than simply typing words and sentences. I would not have been able

to write this thesis without the help of the following persons.

First of all I want to thank ao. Univ. Prof. Dr. Dipl.-Ing. Gerald Futschek and Ing.

Mag. Johann Kadlicsek for their incredible patience and guidance during all the

time it took me to finish this thesis. Their constant support and advices have been

an important help for this thesis and the inspiring source for many passages.

Furthermore I want to thank Dipl.-Ing. Ömer Karacan for giving me the opportunity

to write this thesis and to participate in the project at Siemens Austria. His

permanent help and support enabled me to do all the necessary research and

preparation work for this thesis.

I would also like to thank Dipl.-Ing. Franz Müller for his cooperation and teamwork.

Many details and issues became much clearer after our numerous creative

discussions and talks together. He contributed a lot to this team project and was a

very helpful and reliable partner and friend to work with.

In addition I want to thank Dipl.-Ing. Gottfried Gniesser , Dipl.-Ing. Stefan Huber

and Ing. Mag. Walter Makovicka for their comments and suggestions. They helped

me to continuously improve the quality of the thesis.

Finally I want to thank my parents and all my friends who helped me focussing on

writing this thesis. Their efforts and motivation kept me on track and allowed me to

complete my university studies successfully. Especially my parents and their support

in all those years are responsible for a major part of this success. Without them I

would not have been able to achieve this goal.

Preface
This thesis is part of a project I participated at the Program and System Engineering

department of Siemens Austria. For this project I worked together with another

student from my university who has been also writing his master thesis at Siemens

Austria. The purpose of the project was to get a deeper understanding and insight

into new emerging technologies in the software world. At the time when the project

started new component architectures and their related technologies promised to

provide a new and better way to build distributed and reliable software.

In the project we researched the two main software frameworks that were

introduced just recently that time: the .NET framework from Microsoft and the J2EE

framework from Sun Microsystems. My partner and me we were together

responsible for the implementing and analyzing the part with the J2EE framework

and its server-side component model called Enterprise JavaBeans (EJB). Therefore

we build an EJB test application with all the requirements needed for completing the

project and our thesis. While my partner focused on design patterns and issues

concerning building applications based on the EJB component architecture in his

thesis, I concentrated on the evaluation and description of the different platforms

that can be used for this kind of application.

In Chapter 1 I will give a short overview of the global context and motivation for this

thesis. The main relevant questions for this chapter are ‘Why do we need new

software architectures?’ and ‘What is the purpose of this thesis?’. This chapter will

try to give appropriate answers to these questions. Chapter 2 will describe and

explain the concepts and ideas behind the Enterprise JavaBeans framework. The

following Chapter 3 will discuss some alternative technologies and frameworks that

are based on component paradigm, too. Chapter 4 will introduce the platforms that

we will use in our evaluation and give a brief description of their origins and current

state of development at the time of testing.

Preface page viii

In Chapter 5 I will describe briefly the design and architecture of the client

application that we used for the testing and evaluation of the different EJB platforms.

For a more detailed discussion on design issues of the test application and other

software related aspects I recommend my partner’s master thesis work with the

“Object-Oriented Analysis and Design with Enterprise JavaBeans” [Mue01].The

following Chapter 6 will specify the computer hardware and software that we used

for our evaluation environment.

Chapters 7 and 8 are the core chapters for this thesis. In Chapter 7 I will discuss the

concept, the criteria and the software simulation tests for the evaluation. The main

issue is the creation of a checklist that can be used to compare different platforms.

Usually each platform has certain unique features and tweaks that can not be found

on other platforms. This fact makes it really hard to compare different platforms. So

it would be very useful to have some kind of list with the common specifications and

features that can be used for making a comparison matrix for several platforms. The

results for each platform and the conclusions that can be given from the evaluation

data are summarized in Chapter 8.

Even though the project has been completed in December 2001 it took me a long

time to finish the writing of this thesis due to my studies abroad and other

occupations. But these past years also give me the ability to see if the optimistic

promises and outsights have been fulfilled by the each of the technologies. In

Chapter 9 I will talk about how the future plans looked like at that time and compare

them to the current situation.

For this thesis I will assume that the reader will have some basic knowledge in

software engineering and computer related vocabulary. As a consequence standard

notions and terms that usually are public known and common in use will not be

explained in detail here. A glossary with important terms and abbreviations can be

found at the end of this thesis.

Chapter 1

Introduction
In general, before you can write your first line of application code you have to do a

lot of analyzing, designing and conception. At least you have to do so if your

application is expected to have more functionality than a simple ‘Hello World’

program. Therefore the first step of software engineering consists of identifying the

requirements and analyzing the problem you want to use your application for. Then

you can start to design the software and decide which architecture and

functionalities it should have. Afterwards you usually start implementing the

application and your business logic following the results of the previous conception

phases. The last step of the software engineering process is the testing phase, in

which possible errors in the software should be eliminated.

As we can see from this traditional software engineering process the conception

testing phase does indeed take a lot of work and time. Time is a very valuable

resource these days, where projects have to be finished with less time available and

products has to be on the market almost with light speed. ‘Time is money’ is the

most important consideration of many companies nowadays. Especially with the

internet and its hype as the new medium for doing business in the recent years,

competition among software producers has become far more fierce and global. So

companies are looking for ways to reduce the necessary time to market and make

the software development process more efficient.

Besides the increasing pressure to improve the software development process

companies face another problem that arises with the increasing importance of the

internet in the global economy. Companies usually already have an existing

hardware and software infrastructure and unfortunately these infrastructures differ a

lot from each other. So with the introduction and integration of new technologies into

Introduction page 2

existing legacy systems companies always face the same problem. Either change

the whole infrastructure or make the new infrastructure compatible with the old ones.

Both decisions have severe drawbacks that have to be considered when making a

decision. Changing the whole infrastructure takes a lot of money and time,

especially during the migration phase. Besides existing hard- and software are often

well tested and in use for a long time. Therefore changing the existing infrastructure

also means to take the risk of using a new system that might not be as stable as the

old systems, because it is not as well tested. On the other hand making the new

systems compatible to the old might bring up hardware or software constraints that

will reduce the advantages of the new system.

1.1. Component paradigm

In the very beginning of the computer era software was written as monolithic

programs. This proved to be very inefficient and not really applicable for the real

world, where problems tend to be more sophisticated and many objects interact with

each other. So the next step was to take an object-oriented approach in software

engineering where software can be better mapped to the problem domain in the real

world. This change in the building of software made the applications more flexible,

less error-prone and much better to handle. Each object in the real world has its

virtual counterpart in the software program.

But when applications grow to a very, very big size, the number of objects within the

application can become overwhelming for any single software developer to handle.

A more abstract and simplified view is needed for keeping the application structure

manageable. Therefore objects are grouped together by functionality, semantic or

technical dependency or any other criteria to become bigger entities that are called

components. Components can be seen as more coarse-grained objects in an

object-oriented concept.

This component architecture also allows a better modular concept for any software

application, because dependencies between components are usually kept to a

minimum. A component can be easier replaced by another component which might

implement a slightly different functionality or a better algorithm for the same

functionality as long as the external interfaces remain the same. So changing parts

of the application does not have so many side effects as there are when using a

Introduction page 3

pure object-oriented approach. Furthermore components can be easily reused and

integrated into other applications. These advantages make the component

architecture so popular for large and middle sized commercial software applications.

1.2. The internet as marketplace

In the last few years the internet has become a very important and influential aspect

of our every day’s life. The term internet and its services like e-mail or www (World

Wide Web) have found a widespread popularity. The amount of people who

communicate through e-mail is increasing rapidly, and the global penetration of

internet has already reached a very impressive level. So it was no wonder that some

people would try to integrate this new communication media and technology into

other aspects of social life. Nowadays terms like e-commerce, e-business, e-

government or e-learning are familiar expressions for everyone.

Software has become an important part of our businesses and transactions in a

more and more digitalized world. So the internet has become a very important and

crucial aspect for this kind of business software, too. Nowadays large applications

can be distributed and deployed all over the world over world, or business

applications from two different enterprises can communicate and interact with each

other. Geographic location has become a transparent and minor issue through

global networking and especially the internet. But the internet is not only a medium

for transporting and exchanging data, it has also become a large marketplace for

any company. Access to the internet is provided from a wide range of different

devices. Obviously software with access to internet has a great potential but has to

solve a lot of complex issues, too.

1.3. Application servers

Usually when you start implementing an application you will write a lot of code to

handle the whole infrastructure. This part of the application is responsible for

handling access to the database, managing transactions, monitoring security

restrictions, handling network traffic, etc. This infrastructure code usually has

nothing to do with the business logic of the application. Therefore you have to write

almost the same infrastructure code for each application again and again. So one

might ask why not reuse this kind of code? With the component architecture this

Introduction page 4

task becomes even more desirable. The code for handling the infrastructure does

not even have to be written by the company itself. This is exactly the idea of an

application server. The application server provides an environment where any

application can use the existing infrastructure services. The provider of the server

platform will only focus on the implementation of those services while the provider

and developer of the application can focus solely on the domain specific semantics

or business logic of the application.

While there have been many products and attempts to manage the issues above,

they usually only take care of one single issue. Frameworks like Java 2 Enterprise

Edition (J2EE) or .NET promise to incorporate all those advantages into one single

product. They claim to enable software developers to build distributed, modular and

flexible applications with the focus on implementing pure business logic in less time

than without the framework. Especially the simple and transparent integration of

existing legacy systems into those frameworks is often brought as an argument for

their use.

1.4. Purpose and goals

The main purpose of this thesis is to present a comparison of several specific EJB

platforms and a summary of how suitable they are for further and more widespread

use within the software development department of Siemens or in any other

software project. The result of this work should be a two dimensional matrix which

shows an overview of different EJB platforms about the most interesting features,

characteristics and technical details. This matrix should enable a project manager

who looks for the proper platform to make a qualified decision according to his

project requirements and needs. Furthermore this thesis should give a detailed

introduction into the EJB component architecture and its implementation in several

commercial products.

This thesis is based on the EJB specification Version 1.1 because the Version 2.0

had not been released by the time this project started. The relevant changes and

additions to later Version of the EJB specification will be discussed in Chapter 9.

 .

Chapter 2

The EJB framework
In March 1998 Sun Microsystems1 presented its answer to the new challenges of

the business software developing community. A new component architecture model

and framework called Enterprise JavaBeans (EJB) was meant to solve the problems

that the software developers of business software had to worry about in the years

before. This new component model was designed to enhance and ease the

development of distributed business application for the e-commerce sector. At the

same time it should provide a standardized method for the integration of legacy

systems into the migration process of corporate software. EJB is part of the Java 2

Enterprise Edition (J2EE) and is based on the Java programming language.

2.1. EJB architecture

The following figure shows the architecture of a simple 3-tier EJB application.

Figure 1 Example of a 3-tier EJB architecture

1 Sun Microsystems, Inc. (see http://www.sun.com)

Data tier Application tier Presentation tier

EJB Middleware

Database

Client

Client Bean

Bean

The EJB framework page 6

As we can see the in figure 1 the EJB concept is based on three distinctive tiers:

The presentation tier, the application tier and the data tier. In the presentation tier

the clients access the components from the application tier, which contains all the

business logic for the application. The components are called beans in the diagram

and reside in a runtime environment called EJB Container. The third tier contains all

data for the application. In most cases this would be a database, but it can also be a

legacy system which provides the data needed.

EJB Components

Each EJB component implements two interfaces: a home interface and a remote

interface (see figure 2). The home interface is used by the client to locate a certain

bean within the EJB Container and to get a reference to that bean. Furthermore the

home interface also offers the methods to create or remove a certain bean within the

EJB container. These are the method calls that control the life cycle of the bean.2

The remote interface contains all the defined business methods that the client can

invoke on the bean.

Figure 2 Enterprise JavaBean structure

There are primarily two different kinds of components within the EJB framework:

entity beans and session beans. These two different types of components serve

different purposes. While the Entity Bean type is meant for representing single data

entities in the EJB concept, the Session Bean type is meant for implementing some

kind of action or process abstraction within the framework.

2 see following chapters 2.3 Entity Beans and 2.4 Session Beans

Enterprise JavaBean

Home
Interface

Remote
Interface

Bean
Implementation

find, create, remove

invoke business method

E
JB

 C
lient

The EJB framework page 7

To get a better understanding of the different aspect of the framework and the

architecture I want to describe the roles next that are specified in the EJB concept.

These roles overview do also show which persons and what duties are involved in

the building of an EJB application.

2.2. Roles in the EJB framework

There are six different roles specified in the EJB concept, each with distinct purpose

and duties. With this kind of role specification each role can focus on its task and

responsibilities.

• Enterprise Bean Provider (Developer)

This person provides the enterprise bean, the component which contains all

necessary implementation of the business logic to fulfill a certain task.

Usually this person is a programmer who has a very good knowledge of how

a specific task or action is processed.

• Application Assembler

The Application Assembler takes several enterprise beans and combines

them into one application. Usually this person does not need to know the

implementation details of each bean, but should have a deeper

understanding for the domain and area the application is used for.

Furthermore the application assembler also integrates other non-EJB

components into the application, like JSP (Java Server Pages) components.

• Bean Deployer

The Bean Deployer is responsible for deploying the application into a given

environment and server. The deployer should have a good knowledge of the

EJB server and container into which the enterprise beans are deployed.

Usually this person does not have to have programming knowledge because

the deployment is done by graphical tools provided by the EJB server and

container provider.

• EJB Server Provider

The EJB Server Provider provides the services and infrastructure that an

EJB container relies on. One EJB server can host several EJB containers

which are the environments the enterprise beans live in. The EJB server is a

generic platform which can be used to deploy any enterprise application.

The EJB framework page 8

• EJB Container Provider

Every enterprise bean is deployed into a certain EJB container, which

manages the life cycle for every enterprise bean and provide the

infrastructure services that an enterprise bean can use. The EJB container,

which encapsulates all deployed components, is an intermediate for the EJB

server and the EJB components and provides the available interfaces for the

EJB Bean Provider. Furthermore it is responsible for security and transaction

issues, resource pooling and persistence handling.

• System Administrator

The System Administrator is responsible to provide and maintain the

necessary infrastructure for running the EJB server and to monitor the EJB

server during runtime, usually with the usage of specific tools provided by the

EJB Server Provider.

As we can see from the description for each role, the responsibilities are clearly

stated for each role except for the EJB server and container provider. The EJB

specification does not clearly define the dependencies and functionalities of these

two components in the framework.3 This fact and the close interaction between

these two roles are the reasons why these two components are usually provided by

the same vendor.

2.3. Entity Beans

Entity beans are components that represent persistent data in the EJB concept. All

the data and information that the application uses is stored and handled in a third

tier which is called data tier in figure 1. An entity bean refers to a partial view to that

data tier and adds basic functionality that is closely linked to the data content. This

data tier usually consists of some kind of large database system, in most cases a

relational one. In this case a single entity bean can be interpreted as a record in

such a database, e.g. a customer record in a contact database of a company. The

entity bean as any other object in an object-oriented concept consists of its member

attributes and methods.

3 see [Sun99], p23: “The current EJB architecture assumes that the EJB Server Provider and
the EJB Container Provider roles are the same vendor. Therefore, it does not define any
interface requirements for the EJB Server Provider.”

The EJB framework page 9

As I mentioned before each bean has a well defined life cycle. The life cycle for an

entity bean is shown in figure 3. To get an instance of an entity bean the EJB

container will explicitly instantiate a new EJB object and set the right context for this

instance by calling the setEntityContext method to make it aware of the environment

settings within the EJB container. After instantiation the entity bean becomes a

member of a global pool which is managed by the EJB container. In this Pooled

state the entity bean does not have any bean identity, which means that it does

relate to any data in the data tier, it is a simple object instance. The number of

instances in the pool depends on the EJB container and the available amount of

memory resources. If the EJB container wants to reduce the number of instances in

the pool it can call the unsetEntityContext method and remove the instance.

Figure 3 Life cycle of an entity bean

A client can insert new data into the data tier by calling the create method from the

home interface of any EJB object provided from the EJB container. This will provide

a bean identity for an instance from the pool and the instance will change to the

Does Not Exist

Pooled

Ready container initialized

client initialized

new Instance
setEntityContext () finalize Instance

unsetEntityContext ()

ejbActivate () ejbPassivate ()
create () remove ()

ejbLoad ()
ejbStore ()

business
method

The EJB framework page 10

Ready status to indicate that it is ready for use. This instance will be the entity bean

which will be returned for any client that wishes to access the data that the entity

bean refers to or to call any business method from the bean’s remote interface.

If the data that the entity bean represents is meant to be deleted, the remove

method from the home interface can be called by the client. The bean identity will be

removed from the bean instance and the data referring to that bean identity will be

deleted from the data storage. In case of a relational database the related row in the

database will be deleted. Then the bean instance returns to the pool of available

instances and can be used for assigning another bean identity.

If the EJB container needs more memory resources, it can passivate some of the

available entity beans (ejbPassivate method will be called). This means that the

bean identity will be removed from an entity bean but the data still stays in the data

storage. The order in which the entity beans will be passivated usually depends on

the last client access for the specified bean. If the entity bean is accessed again by

any client, it will be activated by reassigning the bean identity to an instance from

the instance pool (ejbActivate method will be called). This mechanism allows the

EJB container to dynamically react and adapt to the amount of available system

memory.

Any invocation of a business method from the remote interface will not change the

status of the entity bean. This is the same for the synchronization calls which will

write/update the data to/from the data storage (call of ejbStore/ejbLoad method).

The EJB framework supports two types of persistence for entity beans.

• Container Managed Persistence (CMP)

• Bean Managed Persistence (BMP)

2.3.1. Container Managed Persistence

Entity beans with container managed persistence do not have to care about how

and when data is persisted into the database. The container which manages the

beans will handle all SQL statements and transactions for creation, update and

deletion of data in the database. Usually a mapping tool is integrated in the EJB

platform which will do the mapping of the object parameters to the fields in the

The EJB framework page 11

database. According to the EJB specification the bean developer is responsible for

declaring persistent fields of the bean class as either Java primitive or serializable

types.

During the deployment of the bean into the container this mapping has to be

specified in the deployment descriptor which is a XML file for the configuring the

environment in the container. In the EJB specification, the XML deployment

descriptor of a CMP bean provides cmp-field elements for identifying the persistent

fields (container-managed fields) in the bean class. The cmp-field elements are

used to differentiate between the fields that are written to the database and those

that are not.

Managing the persistence this way enables the container to control the way how

data is persisted and makes the application independent from the underlying data

storage. The data storage can be replaced by another database or an existing

system which provides the requested data.

2.3.2. Bean Managed Persistence

When using the Bean Managed Persistence the entity bean will handle the

persistence by itself. The entity bean is responsible for running the SQL commands

against the database and handling the data synchronization. Sometimes this kind of

flexibility is useful when special handling for the persistence of the bean is required.

For example if a legacy system is used as data provider for the EJB application, this

mechanism allows the bean provider to access data and information in the legacy

system. This enables the integration of existing systems to EJB applications or a

soft migration from one system to another. The methods for managing and

synchronizing the data of the entity bean with the data storage have to be

implemented by the bean developer himself.

2.3.3. Primary Key Class

Each entity bean class has a primary key class that enables an EJB client to

uniquely identify a certain entity bean. This primary key class usually consists of one

or more persistent attributes from the entity bean. But it can be either any generic

class, as long as it is serializable and unique for any entity bean instance.

The EJB framework page 12

2.4. Session Beans

Session beans are another type of component with different purpose than the entity

beans. Session beans represent process and workflow entities in the component

concept. Because EJB clients do not have any business logic, all the business logic

for the application is modeled within session beans. Therefore an EJB client relies

on the methods and functions that the session beans offer to perform a certain task.

These tasks can be divided into two different categories according to their

complexity and necessary data and information: complex and simple tasks.

Complex tasks usually require several actions and consist of multiple subtasks that

can be performed in different order. Examples for this kind of tasks are the

processing of an online order or making a financial transaction with online banking.

For this kind of process additional data and information often has to be kept for

indicating the current status while performing different subtasks. Such tasks and

processes are represented by stateful session beans. On the opposite hand simple

tasks usually only consist of one single action and do not need such overhead; they

are represented by stateless session beans. They usually provide general purpose

and reusable services to any client. Some examples for such simple tasks are the

conversion between different currencies or scales or the calculation of available

seats in an online booking system for a theatre.

2.4.1. Stateful Session Bean

Stateful session beans have a conversational state and can only serve a single

client during the whole client session. The information stored in this conversational

state can be accessed by any invoked method of the remote interface. Figure 4

shows the life cycle for a stateful session bean.

When needed a stateful session bean can be created by calling the create method

from its home interface. The session bean switches from the Does Not Exist status

to the Method Ready status. In this status the session bean is ready for accepting

and processing any business method calls from its remote interface. After each

invocation of a business method it returns to the Method Ready status. Due to the

circumstance that each session bean is uniquely assigned to a certain client, it is

obvious that with an increasing number of clients the number of existing stateful

session beans and their amount of occupied memory will rise, too.

The EJB framework page 13

Figure 4 Life cycle of stateful session bean

In order to keep the memory usage within a reasonable bandwidth the same

passivation-activation mechanism can be used for stateful session beans as it is

done for entity beans. If the system needs more memory resources, the EJB

container will call the ejbPassivate method and the data and information for not

recently used session beans will be persisted to a secondary storage. As soon as

the session bean is needed by its client the session bean instance will be restored

with all its data and information. This whole mechanism as in the case with entity

beans is fully transparent for the client; this means that the client usually does not

know or care about the passivation or activation of any bean instances.

2.4.2. Stateless Session Bean

While stateful session beans serve a single client for an entire session, stateless

session beans can serve several different clients because they do not have any

conversational state and information. They are assigned to a certain client only for

the scope of one method invocation. As a consequence to this fact they are much

Does Not Exist

Method-Ready

Passive

container initialized

client initialized

create ()
remove ()

ejbActivate () ejbPassivate ()

business
method

The EJB framework page 14

more scalable than stateful session beans. The EJB container will have a pool with

ready instances for any stateless session bean class. The number of instances in

this pool can be easily and independently managed by the EJB container according

to the available memory and number of waiting requests.

The following figure 5 shows the life cycle for a stateless session bean. As we can

see in this figure a stateless session bean can only have one of two different states.

After being instantiated and initialized the instance will changed from the Does Not

Exist status to the Method-Ready Pool status. This is done by the EJB container

which manages the number of instances in the pool. Then each method invocation

can be forwarded to any non-occupied instance of the pool. After completion of the

method the instance becomes available for any other client requests.

Figure 5 Life cycle of stateless session bean

In case the system memory resources are running low, the EJB container can free

some memory by reducing the number of instances in the pool. Therefore the EJB

container will call the ejbRemove method to destroy each session bean instance.

For stateless session beans it makes no sense to passivate or activate them

because they have no state information that could be stored to a secondary media.

Does Not Exist

Method-Ready
Pool

container initialized

client initialized

new Instance
ejbCreate ()
setSessionContext ()

ejbRemove ()

business
method

The EJB framework page 15

2.5. EJB container

The EJB container is responsible for providing the necessary infrastructure services

to the components that live in the container. These components contain the

business logic for the application which is implemented by the bean developer. The

options and settings for those infrastructure services are configured in the

deployment descriptor for each component. With the help of this deployment

descriptor the EJB container will generate additional helper objects and classes after

the deployment of each component in the EJB container.

The generated object that is used on the client for the RMI (Remote Method

Invocation) network communication is called object stub, while its counterpart on the

server side is called object skeleton. Another helper object called EJB object is used

for adding platform functionality. figure 6 illustrate how these objects work together

to enable a smooth and proper operation of the deployed component. In this figure a

remote method invocation of a business method is shown, and how the

communication flow looks like in detail.

Figure 6 EJB object, object stub and skeleton

The client wants to invoke a certain method of the bean’s remote interface. This

request is sent to the object stub which will forward it through the network to the

proper object skeleton. The request then is sent to the EJB object which in turn will

forward it to the actual method implementation of the bean. The EJB object, object

stub and skeleton are all generated by the EJB container and invisible for the client.

Server Client

Client

Object
Stub

Object
Skeleton

Bean
Implementation

EJB Object

provided by
bean developer

generated by
EJB container

communication
flow

system border

The EJB framework page 16

The EJB object wraps the actual bean implementation provided by the bean

developer. This gives the EJB container the possibility to add any relevant code and

functionality to this deployed component, because each request and method

invocation will be intercepted by the EJB object.

With this mechanism the business logic and basic system behavior of each

component are totally separated from each other. In the EJB concept these parts

are provided by different roles. So the two parties can work independently on their

parts. The bean developer does not need to care about the basic system

functionality for each bean, while the EJB container provider can implement a

general algorithm for its infrastructure services.

2.6. Infrastructure services

In figure 7 a more detailed architecture of a sample EJB application is shown. As we

can see from the figure the EJB container encapsulates the whole application tier

with all the business logic. If the persistence is managed by the EJB container a

CMP mapping tool will be used to access the data tier, other wise the entity beans

will access the data tier directly. But no matter which kind of persistence is used the

EJB container is responsible for triggering and monitoring the access to the data

tier. On the other side the EJB container is able to intercept all communication that

runs through the Business System Interface4 as we have discussed in the chapter

before.

With this kind of control the EJB container is able to integrate infrastructure services

to all deployed components. The main infrastructure services that each EJB

container provides are

• Concurrency

• Transactions

• Persistence

• Distributed Objects

• Naming

• Security

4 layer between the business application and the client, because from the client’s point of

view the whole server-side business application appears a big system interface

The EJB framework page 17

Figure 7 Sample EJB application architecture in det ail

2.6.1. Concurrency

Due to their specification session beans (stateful and stateless) do not need to care

about concurrency. Stateful session beans are accessed only by a single client so

no concurrency will happen here. Stateless session beans are only accessed within

the scope of a single method by each client, so there will not be any concurrent

access here, too.

Entity beans can be indeed accessed by several clients at once. In the EJB

architecture several clients can reference the same EJB object, but only one client

Data - tier

”Workflow” - tier

E
JB

 C
ontainer

”Model” - tier

EJB EJB EJB Entity Entity Entity

Webbrowser

Client

Native Client

Business System Interface

CMP mapping tool

EJB EJB EJB

JSP /
Servlet JavaBean

Session Session Session

The EJB framework page 18

can access the data of the entity bean at once. The handling for this is done by the

EJB container automatically. Another important issue for concurrent access is

reentrance. A bean X is called reentrant if it is allowed that bean X invokes a method

on bean Y which in turn invokes a method on bean X. This would cause a loop back

in the thread control, which is usually not wanted. But in some exceptional cases it

might be a desired behavior. This is the reason why reentrance is possible for entity

beans according to the EJB specification, but highly discouraged.

2.6.2. Transactions

For business applications the concept of transactions are a very important aspect.

Similar to database transactions this concept will ensure that the system will not be

left in an invalid state. Transactions in a business application span over several

tasks that have to be completed together. If completion is not possible, all tasks

have to be undone. For example an ordinary bank transfer consists of two tasks: a

withdrawal from one account and a deposit to another account. If the deposit fails

the withdrawal has to be undone, too. Otherwise the money would be lost from the

system, which would produce an invalid system status.

The EJB container will monitor all tasks within a transaction automatically and

ensure that all completed successfully. This kind of transaction control is called

declarative, because this setting is declared in the deployment descriptor. Besides

the transaction control can be transferred to the bean instance itself, if this is wanted

by the EJB bean provider. This way the bean will have full control over the

transaction handling.

2.6.3. Persistence

As we have seen in chapter 2.3 there are two different ways two store persistent

data to a secondary storage. With CMP the data storing and loading is done by the

EJB container, while with BMP all the handling is done by the bean itself. The three

most common data storage for an EJB application are relational databases, object-

oriented databases and legacy systems. Usually the EJB container will provide an

integrated tool for mapping the data in the entity beans to the proper data in the data

tier. In an object-relational mapping the fields of the entity bean are mapped to the

fields in the database tables. But sometimes the mapping to a relational database

can become quite complex because not all objects can be mapped easily to a

The EJB framework page 19

relational database. Especially references between objects can be often a big

problem. An object-oriented database provides a much better storage for such

cases, because it allows a better and cleaner mapping to the database. Another

popular way is to use a legacy system as data provider, especially when it is hard to

migrate from the data from the legacy system to a database. The entity bean acts as

an object wrapper for the legacy system data. This avoids an expensive system

migration or extraction of data from the legacy system.

2.6.4. Distributed Objects

The EJB server provides an infrastructure where location transparency is achieved.

Therefore the client does not have to care about where the objects actually reside in

the network. The three most popular network protocols in use are the Java Remote

Method Protocol (JRMP), the CORBA protocol and the DCOM protocol. For a Java

client any of these protocols can be used, as long as the protocol maps to the Java

RMI specification5, because the EJB distributed interfaces are based on it. (The

scenario is illustrated in figure 8)

Figure 8 Access to an EJB server from different dis tributed clients

5 Java RMI with the CORBA protocol is called Java RMI over CORBA IIOP (Internet Inter-

ORB Protocol); Java RMI over DCOM is actually possible according to the EJB concept, but

this would be a unrealistic scenario due to the better integration for the other protocols.

CORBA Client

DCOM
compliant Client

Java Client

EJB Server

CORBA IIOP
JRMP
DCOM

CORBA IIOP

DCOM

The EJB framework page 20

Clients written in other languages require the EJB server to offer support for the

proper mapping to EJB for used protocol. If the client is written in a CORBA

compliant language as C++, Smalltalk, Ada or COBOL the EJB server has to

support an EJB-to-CORBA mapping as for example defined by Sun Microsystems

[Sun99C]. A similar EJB-to-DCOM mapping would be required for clients written in

any DCOM compliant language that want to access objects within an EJB server.

2.6.5. Naming

The naming service enables clients in the distributed environment to find other

distributed objects. A naming service usually allows a client to perform two tasks:

object lookup and object binding. With the object binding service a specific name

can be assigned to a distributed object. So this bound object can be referenced by

any client using the specified name. The object lookup service provides the interface

for the client to connect to the distributed service and look for objects with a given

name. A directory service is an advanced version of a naming service which allows

distributed objects and other resources to be organized into hierarchical structures

and adds more sophisticated management features to the whole system. Moreover

metadata is usually available for describing the objects and resources. The EJB

concept is based on the Java Naming and Directory Interface (JNDI), which has to

be supported by every EJB server.

2.6.6. Security

Security is a very crucial and important issue to commercial business applications.

The EJB architecture separates the source code handling the security from the

source code that contains the business logic. The EJB specification encourages the

bean developer to declare the security policy for a component instead of

implementing it with in the bean. The EJB runtime is responsible for monitoring and

implementing the declared security policy. This way the security policy can be easily

adapted to any changes afterwards without changing the source code for the bean.

The EJB specification differs between three different security mechanisms that can

be used for an EJB application: Authentication, Access Control and Secure

Communication.

The EJB framework page 21

Authentication

Authentication is used to validate the identity of the user and avoid unauthorized

access to the system. Authorization is usually done by requesting the user to login in

to the system with a username and password, or by using other forms to prove his

identity like ID cards or security certificates. Once the user has validated his identity

to the system he gains access to the system and can use it.

Access Control

The Access Control mechanism will ensure that the user will only be able to access

objects and resources in the system for which he has the proper permission. This is

the only mechanism that is specified more in detail in the EJB specification, because

the other two mechanisms are quite independent from the application and its

business logic. Security roles and their permissions can be defined according to the

security policy for the EJB application. These are specified during the deployment of

the components into the EJB container who will monitor and control the access to

the objects and their methods.

Secure Communication

Secure Communication between the server and the client can be achieved in two

ways: by physical isolation or encryption. While physical isolation is a very

expensive and not applicable to standard communication channels, encryption is a

convenient way of protecting communication to be intercepted or manipulated from

unauthorized persons. This is usually done by using SSL (Secure Socket Layer) for

the communication between server and client.

Chapter 3

Alternative component models
EJB is not the only component concept and framework which tries to enhance the

creation of distributed software applications. This chapter will introduce some

alternative concepts to EJB based on the same component paradigm.

3.1. CORBA Component Model (CCM)

The Common Object Request Broker Architecture (CORBA) is a standardized

specification for an open computing infrastructure in a distributed and

heterogeneous environment. The specification is maintained and released by the

Object Management Group (OMG)6, a non-profit organization that produces and

maintains computer industry specifications. To break the limitations with the earlier

CORBA object model, the OMG decided to adopt the CORBA Component Model

(CCM). Compared to the CORBA object model the CCM defines additional features

and services that enable application developers to implement, manage, configure,

and deploy components that rely on commonly used CORBA services, such as

transaction, security, persistent state, and event notification services, in a standard

environment. In addition, the CCM standard allows greater software reuse for

servers and provides greater flexibility for dynamic configuration of CORBA

applications.

The CCM will be included in the CORBA 3.0 specification. The CCM is a

specification for creating server-side scalable, language-neutral, transactional, multi-

user and secure enterprise-level applications. It provides a consistent component

architecture framework for creating distributed n-tier middleware. Component written

according to the CCM specification are called CORBA components.

6 http://www.omg.org

Alternative component models page 23

The CCM architecture contains the following parts:

• CCM Containers

• CORBA components

• Portable Object Adapter (POA)

• Object Request Broker (ORB)

• CORBA object services like ORBA Transactions, CORBA Security, CORBA

Persistence, CORBA Events, etc...

The defined roles in the CCM are very similar to the ones in the EJB role concept.

Therefore the basic architecture is almost the same. Several CCM Containers can

reside on one single server, each CCM container with its own deployed

components.

3.1.1. CCM Containers

The CCM container acts as the interface between a CORBA component and the

outside world. A CCM client never accesses a CORBA component directly. Any

component access is done through container-generated methods which in turn

invoke the component's methods. Depending upon the types of components that

they can execute, CCM Containers may be divided into four categories:

• Service containers,

• Session containers,

• Entity containers, and

• Other containers

3.1.2. CCM Clients

The CORBA Naming interface (COSNaming) enables CCM Clients to find the CCM

components they need and to create or obtain a CORBA object reference. A

CORBA object reference is an abstract handle referring to an instance of a CORBA

object. An object reference hides the location where the actual object resides and

contains protocol information defined by the CORBA specification, as well as an

opaque, vender-specific object key used to identify a servant that implements the

object. Thus, existing component-unaware clients can invoke operations via an

object reference to a component’s equivalent interface, which is the interface that

identifies the component instance uniquely.

Alternative component models page 24

3.1.3. CCM Components

The CCM components are very similar to the components in the EJB architecture.

CCM components contain the application logic for the CORBA application and are

the basic actors in the CCM architecture. The CCM framework also implies a well-

defined development cycle for CORBA components. In the first step component

developers using CCM define the IDL interfaces that component implementations

will support. Next, they implement components using tools supplied by CCM

providers. The resulting component implementations can then be packaged into an

assembly file, such as a shared library, a JAR file, or a DLL, and linked dynamically.

Finally, a deployment mechanism supplied by a CCM provider is used to deploy the

component in a CCM container that hosts component implementations by loading

their assembly files. Thus, when the components execute in the server they are

ready for processing client requests.

Figure 9 illustrate the structure of a CCM component as described in the

specification. CCM components can offer support for different interfaces that are

collectively called ports. These ports serve as interaction points with other

components, CCM clients or objects within the application environment. There are

four different types of ports each with a distinct purpose:

• Facet

• Receptacle

• Event Source

• Event Sink

Facets are interfaces that the component provides for external requests. The

component has to encapsulate an implementation for each exposed facet interface

(Facet Implementations). Interfaces that the component is able to facilitate and

accept are called Receptacles. Interfaces that can emit or publish events are called

Event Sources while their counterparts for accepting of processing of external

events are called Event Sinks. In addition to these ports, all CCM components

support inheritance and have additional Attributes that can be accessed. Inherited

interfaces from other components are called Supported Interfaces. The Component

reference is primarily used for identifying the component.

Alternative component models page 25

Figure 9 CCM component

There are four types of CCM components.

• Service components

• Session components

• Process components

• Entity components

Service Components

Each Service component is usually associated with one CCM Client and its lifetime

is restricted to that of one single operation request (or a single method call). Each

Service component is created and destroyed by the particular CCM Client that it is

associated with. Service components do not survive a System shutdown.

Session Components

Each Session component is usually associated with one CCM Client. Each Session

component is created and destroyed by the particular CCM Client that it is

associated with. A Session component can either have states or they can be

stateless. However, Session components do not survive a System shutdown. A

Session component is very similar to a session bean in EJB.

Event Source

Event Sink

Attributes

Component Reference

Facets

Supported
Interfaces

Receptacle

Facet
Implementation

Component

Alternative component models page 26

CCM containers have a right to manage their pool of instances and they use the

same mechanism as EJB containers. If additional resources are needed they may

either use CORBA persistence or a user-defined persistence mechanism to

passivate active instances to a persistent storage. When the instance becomes

activated the state of the component instance is restored by swapping it in from

persistent storage.

There are two types of Session Components.

• Stateless Session Components

• Stateful Session Components

Stateless Session Components

Like stateless session beans in EJB these types of components have no internal

state. Since they do not have any states, they need not be passivated. Because of

the fact that they are stateless, they can be pooled in to service multiple clients.

Stateful Session Components

Like stateful session beans in EJB these types of components possess internal

states. Hence they need to handle persistence to be passivated and activated by the

CCM container. These types of components can be saved and restored across

client sessions.

Process Components

Process components represent process entities in this component architecture and

they always have states. Each Process component may however be shared by

multiple CCM Clients. Their states can be persisted and stored across multiple

invocations. Hence they can survive System Shutdowns.

Entity Components

Entity components always have states. Each Entity component may however be

shared by multiple CCM Clients. Their states can be persisted and stored across

multiple invocations. Hence they can survive System Shutdowns. Each Entity

component can be uniquely identified by its Primary Key. An Entity component is

very similar to an entity bean in EJB.

Alternative component models page 27

One of the major differences between Process and Entity components are that while

the Entity component has a Primary Key to uniquely be identified by the client, a

Process component does not expose its identity to the client except through user-

defined operations. While Entity Components are used to represent entities like

customers or accounts, Process components represent business processes like

applying for a loan or creating a work order, etc.

Persistence in Entity and Process components is of two types

• Container-managed persistence

• Component-managed persistence

Container-managed persistence

Here, the CCM container is responsible for saving the component's state. Since it is

container-managed, the implementation is independent of the data source.

Persistence is automatically handled by the container.

Component-managed persistence

Here, the Entity component is directly responsible for saving its own state. The

container does not need to generate any database calls. Hence the implementation

is less adaptable than the previous one as the persistence needs to be hard-coded

into the component.

Portable Object Adapter

The POA allows programmers to construct servants that are portable between

different ORB implementations. Portability is achieved by standardizing the

skeletons classes produced by the IDL compiler, as well as the interactions between

the servants and the Object Adapter.

Packaging and Deployment

CCM uses XML descriptors for specifying information about packaging and

deployment just like EJB. However, additionally, CCM has an assembly descriptor,

which contains metadata about how two or more CCM components are wired

together.

Alternative component models page 28

3.2. Lotus Domino

Lotus Notes [Lot00] is one of the most popular groupware systems. The software is

based on a simple three tier architecture, where the tiers are called levels. The

same architecture which is shown in figure 10 is used for both client and server.

Each software component belongs to one of the three levels:

• Client and server programs

• Notes Object Services (NOS)

• Databases and files

A component in the Domino architecture is a piece of compiled C or C++ code that

is distributed as a dynamic link library (DLL). NOS are an example for such a

component. A Notes application is the design of a Notes database (or complex

application can design a whole set of individual databases that are linked to each

other), which usually has the following definitions: the type of documents in the

database, the way the documents can be indexed and viewed and the application

logic which is written in one of four interpreted languages (Notes Formula Language,

LotusScript, Java or JavaScript). A Notes database is a single file which stores the

documents and application logic for the creation and modification of those

documents.

Figure 10 Domino three tier architecture

Domino Server Notes Client

Notes Client
Domino Designer
Domino Administrator

Notes Object Services

Local Databases
Local Files

Shared Databases
Local Files

Notes Object Services

Domino Server
Server tasks

Client/Server Level

NOS Level

Database/File Level

Alternative component models page 29

An overview of the Domino architecture and the relation between server and client

computers is shown in figure 11. A Domino network usually consists of multiple

servers (called Domino Server) and numerous clients (called Notes Clients). Notes

Clients and Domino servers have a different portfolio of available programs that can

run on the Client/Server level.

Figure 11 Domino architecture overview

Client and Server Programs

Both client and server programs use NOS to create, modify, read, and maintain

databases and files. These are the main worker nodes in the network. The Notes

Client, the Domino Designer, and the Domino Administrator which are installed on

client computers allow interactive and GUI (Graphical User Interface) based access

to databases and files local to the client computer and to shared databases.

Server programs

On server computers, the Domino Server program supports the connection between

clients and the server and also manages a set of server tasks. These server tasks

can either run time triggered database queries and updates or perform other actions

like routing messages. In addition they provide connectivity for different types of

clients like a Web browser or a CORBA client which want to connect to the server.

Domino Server Notes Client

Notes Client
Domino Designer
Domino Administrator

Notes Object Services

Local Databases
Local Files

Shared Databases
Local Files

Notes Object Services

Domino Server
Server tasks

function call function call

read/write read/write

network connection

Alternative component models page 30

Notes Object Services (NOS)

The Notes Object Services is a set of portable C/C++ helper functions that allow the

Notes user to create and access information in databases and files, compile and

interpret formulas and scripts. They act as an interface to operating system services

in a consistent, portable way. Using C-language callback functions, you can

customize many NOS functions. Additional functionality can be easily added by

integrating new NOS functions.

Databases and files

As we can see from figure 11 application data can be stored in two different

storages: databases and files. Files are local. Databases can be either local or

shared. Server computers have shared databases; client computers have local

databases; and both have local files.

Shared databases can be accessed over the network by a program running on

another computer. The Domino Server program is the only program in the

framework that contains the logic to respond to incoming requests from another

computer on the network for accessing a database. As a result to this limitation

shared databases can only reside on Domino servers. Because NOS implements

the logic that posts requests to access a shared database and because NOS runs

on all client and server computers, programs running on any client or server

computer can request access to a shared server database. The server may deny

specific requests, however, if the requester lacks the proper access rights. When a

program running on one computer accesses a shared database residing on another

computer, the shared database is considered to be a remote database, with respect

to the program accessing it.

A database or file is local if it can be accessed only by programs running on the

same computer. Databases on client computers are local because client programs

do not have the ability to accept incoming requests from other computers on the

network. Client programs can only send requests for accessing a database to server

computers. Therefore only programs running on a client computer can access

databases on the client computer.

Alternative component models page 31

Databases contain most of the data in a Notes network, but some application data is

kept in non-database files, such as ID files and the NOTES.INI file. These files exist

on client and server computers and are always local because neither the client nor

the server program contains the logic required to request or provide shared access

to non-database files.

The Notes database

The Notes database is the cornerstone of Notes architecture. The majority of the

Notes program is concerned with creating, maintaining, editing, viewing, accessing,

copying, and replicating Notes databases. Each Notes database contains:

• A database header and other internal structures

• Notes, which fall into three categories: design elements, administrative

notes, and documents

• Replication history (optional)

• Objects attached to notes (optional), e.g. file attachments

• The database header and other internal structures

The database header and other internal structures keep track of key database

information, such as database creation time, and of notes and their attached

objects.

The database header

The database header stores a time stamp that indicates when the database was first

created or when it was last fixed-up. A database is fixed up, when notes that were

corrupted as a result of a server crash are purged. This time stamp also serves as

the database ID (DBID). In addition, the database header holds the unique replica

ID, as well as links to the database replication history and to other internal structures

that track database notes, attached objects, and free space in the database file.

Identifiers

Each note in a database has two identifiers: the note ID and the universal ID (UNID).

The note ID is a 4-byte value that is assigned when the note is first created. Every

database has a record relocation vector (RRV) table that maps a note’s note ID to

the position of the note within the database file. This table simplifies relocating a

note within a database. When a note changes location, the RRV table updates to

reflect the new location.

Alternative component models page 32

The UNID is a 16-byte value that is assigned to the note when the note is first

created. A UNID uniquely identifies a note relative to all other notes in the universe,

except for special copies that have the identical UNID so that they can be identified

as being the same note as the original one for special purposes. For example, when

replicating, or synchronizing, the notes in replica databases.

Every database has a UNID table that maps the note UNID to its note ID, which in

turn can be mapped through the database RRV table to the note’s position within

the database file. UNIDs are used when replicating database notes and when

replacing or refreshing a database design notes.

The named-object table maps names to associated notes and objects. For example,

this table manages per-user views, which are also known as personal or private

views, and per-user unread lists. The names assigned to these views and unread

lists are composed, in part, of the user’s name.

A note in Lotus Notes

A note is a simple data structure that stores database design elements (forms,

views, and so on), user-created data (documents), and administrative information,

such as the database access control list (ACL). Because the same note data

structure stores all these types of information, Notes requires only a single a set of

NOS services to create, read, update, and replicate most of the information in a

Notes database.

In figure 12 the logical structure of a note is illustrated. Each note has a small

header followed by a list of variable-length items, which are also known as fields.

The header holds general information about the note, including a value that

indicates the note’s class - for example, document, form, or view - and its originator

ID (OID). The OID contains the note’s unique, universal ID (UNID), which is

essential for replication. Within the item list, each item has a name, attribute flags, a

value, and a value type (e.g. text or number).

Alternative component models page 33

Figure 12 Logical structure of a note

Every note contains a set of items that is determined by the class of note. For

example, all form notes contain the same set of items, although the item values

differ from form note to form note. Similarly, all view notes contain the same set of

items, although the item values differ from view note to view note. Document notes

are different, however, because all documents do not contain the same set of items.

Because the set of items in a document depends on the form used to create the

document, two document notes may have vastly different item lists.

Data notes

Data notes, or documents, typically comprise the bulk of a Notes database. Each

document can be associated with the form note that was used to create the

document and that is used by default to view or modify the document. When

presenting a document, Notes will use that defined form note to apply to the

document. This approach provides more flexibility than does a model that tightly

binds a document to one specific form. For example, although each document has a

default form associated with it, alternative forms can be applied to the document so

that the content is presented in many different ways. In addition, through the use of

field values and/or the result of a formula computation, Notes can dynamically

control which form to use. Both the Notes client and Web browsers support this

unique late-binding model of presenting information.

Class
OID (used by replicator)
Item Count
etc.

First Item

Second Item

…

Last Item

Note header

List of variable
items

Alternative component models page 34

Although forms and documents are usually stored separately, a document’s form

may be stored within the document itself. The form is actually stored as a set of

items that belong to the document. Storing a form this way makes it possible to copy

a document from one database to another database that does not contain the form

necessary to view and edit the document. This option, however, has a drawback in

that if used too frequently, it can significantly increase the size of a database.

To support applications that categorize and subcategorize documents, individual

data notes can be arranged hierarchically. A note can be a main note, a response to

a main note, or a response to a response note. Up to 32 levels can be used to

create a hierarchical structure for those notes. For example discussions are typically

structured in threads that require a hierarchical order.

Administration notes

There are two types of notes that are created and managed by the database

manager: the access control list note and the replication formula note. Each

database has only one access control list note, which lists the access rights that

various users, servers, and groups have to other notes in the database. Replication

formula notes, which are optional, specify, on a server-by-server basis, which subset

of notes to replicate when the database replicates with replicas stored on other

servers.

Design-element notes

Design-element notes are created by the database designer, who can create

elements that can be used to create forms. Forms are graphical interface for the

user to interact with and view data in databases. These elements can include

application code (like event handlers or software agents), graphics or other

information that is used by the application developer.

Alternative component models page 35

3.3. Component Object Model plus (COM+)

Microsoft offers its own server-side component based software framework called

.NET. The .NET framework is Microsoft's platform for distributed and internet-based

applications like Web services or e-commerce portals. The server side component

model for the .NET framework is COM+, which is an extension of Microsoft’s

Component Object Model (COM). This component concept has emerged from the

Object Linking and Embedding (OLE) technology, which was driven by the idea to

integrate and combine different documents together for enhanced and more

powerful editing. This mechanism would allow different parts of a combined

document to be edited with the proper associated application or editor and without

having the user to think about how to those applications can interact with each

other. A well-known example is an Excel spreadsheet which is integrated directly

into a Word document. But the COM concept allowed even more than the OLE

functionality, because it defined a standard mechanism of how different components

can interact with each other and how they can access public methods from other

components.

In the COM concept, objects (or classes) and their methods and associated data are

compiled into binary executable modules, that are, in fact, files with a dynamic link

library (DLL) or EXE file name suffix. A module can contain more than one class.

With the emergence of distributed application and the World Wide Web applications

the Distributed COM (DCOM) technology was introduced to the COM framework.

DCOM allowed the components to reside somewhere within in a distributed

environment, instead of having all components on the same computer. Then COM

evolved into COM+ which was meant to provide an enhanced model that makes it

relatively easy to create business applications that work well with the Microsoft

Transaction Server (MTS) in a Windows NT or subsequent system.

Actually COM+ is a collection of operating system services and facilities for building

scalable, distributed and secure application. It provides a wide range of different

system services for application components, such as notifying them of significant

events or ensuring they are authorized to run in the given environment. Due to the

important role of COM for almost all Microsoft products, it is not surprising that

COM+ services and technologies has become tightly integrated into the Windows

2000 and XP operating systems.

Alternative component models page 36

COM components and interfaces

In the COM concept a component is a piece of software that is self-describing. This

means that it can be run with a mix of other components and each will be able to

understand the capabilities and characteristics of the other components.

Furthermore a new application can be usually built by reusing components which

already exist and without having to compile the whole application. Another

advantage is that it is quite easy to distribute different components of an application

among different computers in a network. A component consists of one or more

classes that describe objects and the methods or actions that can be performed on

an object. A class (or coclass in COM+ terminology) has properties described in an

interface (or cointerface). The class and its interface are language-neutral.

Interfaces are described using Microsoft’s Interface Definition Language (IDL).

In figure 13 the structure for a COM component is shown. The actual

implementation is encapsulated within the component and only the proper interfaces

that the component implements are exposed. A COM component usually

implements several interfaces. Each interface has to be derived from the basic

interface IUnknown, which offers three basic operations/methods: QueryInterface,

AddRef and Release. The QueryInterface method can be used to check weather a

given interface is supported by the component or not. If the given interface is

supported by the component the proper interface pointer will be returned.

Figure 13 Structure of a COM component

IUnknown

Component Interface

Implementation

Alternative component models page 37

The other two methods are used for the reference counting mechanism. Because all

instances are instantiated or deleted by the COM+ framework, this mechanism is

used to track if there are any existing references to the instance. If the instance is

not referenced anymore it can be deleted safely.

Component instantiation

In the following figure the creation of a remote component instance is shown and

how the request for a new component instance is processed in the framework.

Figure 14 DCOM component instantiation

In the first step the local client will request the creation of a new instance of a

component that exists on a remote computer. If the Service Control Manager (SCM)

on the local computer is not already running it will be started by the COM library.

Because the component does not exist on the local computer the local SCM will

contact the SCM on a remote server to initiate the creation of a component instance.

The remote SCM will retrieve the necessary configuration data for that component

from its registry database. Then the remote SCM will create an instance for the

requested component and return the interface pointer for the newly created instance

to the local client. With this pointer the local client can access all methods and

properties described in the associated interface.

Local Remote

Client Component

COM library

SCM SCM

Registry database Registry database

1. call create

2. start server

3. retrieve config
data

4.contact remote
SCM

5. retrieve config
data

6. create instance

7. return pointer

Alternative component models page 38

Identifiers

Clients need the ability to find and refer to s specific component. To be able to

uniquely refer to a certain component, components need some kind of identification

mechanism. The COM+ framework uses two different identifiers for this purpose: an

Interface Identifier (IID) to identify interfaces and a Class Identifier (CLSID) to

identify classes. Both identifiers have to be so called Globally Unique Identifiers

(GUID), which are 128-bit long, automatically generated character combinations.

System services

 The COM+ framework provides different infrastructure services for COM

components. These services include security, concurrency, persistence and life

cycle management.

The security concept differs between two types of security checks: Activation

Security and Call Security. Activation Security controls which users are allowed to

start a server. The list of authorized users is stored in encrypted Access Control

Lists (ACL). These lists allow a more detailed and fine grained configuration. The

Call Security checks control the access to existing components and their interfaces.

The access rights for this mechanism can be configured on system process or

interface level. If they are set for a specific system process the check will be done

when the system process starts. Otherwise the access rights can be managed on

interface level by the developer within the client or component source code.

The concurrency concept is based on the mechanisms for threads of a 32-bit

Windows operating system. Besides it offers compatibility to 16-bit operating

systems and components by supporting the Apartment Model mechanism. With this

mechanism the components can run in a Single-threaded Apartment (STA) or a

Multi-threaded Apartment (MTA). A STA can serialize access to components that do

not support Multi-threading. So these components can be used safely within a

multithreaded environment, because all access requests are automatically pooled

and controlled by the framework. Whereas components that run in a MTA are

accessed directly, because they implement their own concurrency control.

The persistence concept in COM+ differs much from the persistence concept in

EJB. COM+ does not offer any automatic persistence of data or mapping to

databases. The component developer is responsible for writing the necessary

Alternative component models page 39

information of a component to a persistent storage. The framework does only offer

several interfaces that can be used by the developer for this purpose.

All components live in a component server which handles the life cycle for each

component instance. These servers also make the location of a component

transparent to any client. For a client it is irrelevant where the requested component

actually is, because it does not matter if the component exists in the same computer

or not. The component will be accessed by the client always in the same way. This

location transparency is illustrated in figure 15. An interesting difference to EJB can

be seen here. The server side object is called object stub in COM+ whereas in EJB

the client side object is called object stub. The client side object in COM+ is called

object proxy.

Figure 15 Object Proxy and Stub

Mono

The .NET framework is language independent but platform specific, which means

that the components can be implemented in any programming language but they will

only run on Windows platforms. An open source project called Mono 7 has re-

implemented the .NET framework to provide support for multiple platforms

especially Linux. The first release has been finished recently and is available for

download on the project’s homepage.

7 see http://www.mono-project.com

Client Server

Object Proxy

COM
Component

Object Stub

Client generated
objects

communication
flow

system border

COM
Component

Alternative component models page 40

3.4. XPCom

The Cross Platform Component Object Module (XPCOM) is a framework which

allows developers to break up monolithic software projects into smaller modularized

pieces. These pieces are then assembled back together at runtime. XPCOM is part

of the open source project Mozilla8, which provides a freely available Web browser

and Email client. But XPCOM can be used for other kinds of standalone

applications, too.

With XPCOM it is possible to split up larger software projects into smaller pieces,

that can be developed and build independently of one another. These pieces, known

as components, are usually delivered in small, reusable binary libraries (a DLL on

Windows, for example, or a DSO on UNIX), which can include one or more

components. When there are two or more related components together in a binary

library, the library is referred to as a module. In order to provide interoperability

between components within an application, XPCOM separates the implementation

of a component from the interface.

But XPCOM also provides several tools and libraries that enable the loading and

manipulation of these components, services that help the developer write modular

cross-platform code, and versioning support, so that components can be replaced or

upgraded without breaking or having to recreate the application. Using XPCOM,

developers create components that can be reused in different applications or that

can be replaced to change the functionality of existing applications.

XPCOM not only supports component software development, it also provides much

of the functionality that a development platform provides, such as:

• component management

• file abstraction

• object message passing

• memory management

8 http://www.mozilla.org

Alternative component models page 41

Although it is in some ways structurally similar to Microsoft COM, XPCOM is

designed to be used principally at the application level and under multiple operating

systems like Windows and Linux.

Interfaces

Interfaces allow developers to encapsulate the implementation and inner workings

of their software, and allow clients to ignore how things are made and just use that

software. An interface can be seen as a contractual agreement between

components and clients. Usually in component-based programming, a component

guarantees that the interfaces it provides will be immutable. The clients will be able

to access the same methods of a component via the interface because the clients

are shielded from the inner workings of the component. Even if the implementation

changes, e.g. across different component versions, the client code does not need to

be changed. In this respect, interface-based programming is often referred to as

programming by contract.

In XPCOM all interfaces are derived from the base interface nsISupports, which

provides crucial functionality to all XPCOM components. The definition of the

nsISupports interface is shown in Listing 1.

Listing 1 nsISupports interface

The method QueryInterface is used to check if the component for which this method

is invoked supports the interface given by its IID (Interface Identifier). If the interface

is supported the proper result code is returned and the client can safely call the

methods of the specified interface. The methods AddRef and Release are used to

manage the reference count of the component during runtime. The components

reference count and the ability to ask a component for the supported interfaces are

necessary for solving two fundamental programming issues in XPCOM: Object

Interface Discovery and Object Ownership.

class nsISupports
{
 public:
 long QueryInterface (const nsIID & uuid, void *result) = 0;
 long AddRef (void) = 0;
 long Release (void) = 0;
};

Alternative component models page 42

Object Interface Discovery

In general components implement a set of different interfaces. Therefore a client will

need a mechanism to check what interfaces are supported by a specific component.

When a client wants to discover if an object supports a given interface, the client

passes the IID assigned to that interface to the QueryInterface method of that

object. The IID is used to uniquely identify an interface. If the object supports the

requested interface, it adds a reference to itself and passes back a pointer to that

interface. If the object does not support the interface an error is returned and the

return value will be null.

XPIDL and Type Libraries

All public interfaces in XPCOM have to be defined in XPIDL (Cross Platform

Interface Definition Language) syntax. XPIDL is a variant of the CORBA OMG

Interface Definition Language (IDL), which allows you to specify methods, attributes

and constants of a given interface, and also to define interface inheritance. There

are some drawbacks to defining your interface using XPIDL. For example multiple

inheritance is not supported. This means that a new interface cannot derive from

more than one interface. Another limitation of interfaces in XPIDL is that method

names have to be unique. Two methods with the same name that take different

parameters are not allowed.

However, there are some major advantages that XPIDL provides. XPIDL allows you

to generate type libraries, or typelibs, which are files with the extension .xpt. A type

library is a binary representation of an interface or interfaces. When components are

accessed from other languages than C++ they use the binary type library to access

the interface, learn what methods it supports, and call those methods. This aspect of

XPCOM is called XPConnect. XPConnect is the layer of XPCOM which provides

access to XPCOM components from languages such as JavaScript. When a

component is accessible from a language other than C++, such as JavaScript, its

interface is said to be ‘reflected’ into that language. Every reflected interface must

have a corresponding type library. Currently components can be implemented in C,

C++, JavaScript, or Python, and there are efforts on the way to build XPCOM

bindings for Ruby and Perl as well.

Object Ownership

Alternative component models page 43

Because components in XPCOM may implement any number of different interfaces,

interfaces must be reference counted. This reference count is an integer inside the

component that specifies how many clients are maintaining a reference to the

component. This integer is incremented automatically when the client instantiates

the component; over the course of the component's life, the reference count goes up

and down, always staying above zero. At some point, all clients lose interest in the

component, the reference count hits zero, and the component deletes itself.

XPCOM Identifiers

In addition to the IID interface identifier used to identify different interfaces, XPCOM

uses two other very important identifiers to distinguish classes and components.

• Class Identifier (CID)

• Contract ID

A CID uniquely identifies a class or component in much the same way that an IID

uniquely identifies an interface. The IID and CID are universally unique identifiers

(UUID). A UUID is a unique, 128 bit number. A contract ID is a human readable

string used to access and identify a component. Both CID and contract ID may be

used to get a component from the component manager. Like a CID, a contract ID

refers to an implementation rather than an interface, as an IID does. But a contract

ID is not bound to any specific implementation, as the CID is, and is thus more

general. Instead, a contract ID only specifies a given set of interfaces that it wants

implemented, and any number of different CIDs may step in and fill that request.

Factories

Once code is broken up into components, client code typically uses the factory

design pattern to create new instances of components. The factory design pattern is

used to encapsulate object construction and initialization. The purpose of factories is

to create objects without exposing clients to the implementations and initializations

of those objects. The factory is the class that actually manages the creation of

separate instances of a component for use. Another purpose for using the factory

design pattern is that factories can easily handle singleton objects.

When clients use components, they typically instantiate a new object each time they

need the functionality the component provides. This is the case when, for example,

Alternative component models page 44

clients deal with files: each separate file is represented by a different object, and

several file objects may be being used at any one time.

But there is also a kind of object known as a service, of which there is always only

one copy (though there may be many services running at any one time). Each time

a client wants to access the functionality provided by a service, they talk to the same

instance of that service. When a user looks up a phone number in a company

database, for example, probably that database is being represented by an "object"

that is the same for all co-workers. If it weren't, the application would need to keep

two copies of a large database in memory, for one thing, and there might also be

inconsistencies between records as the copies diverged.

Providing this single point of access to functionality is what the singleton design

pattern is for, and what services do in an application. If a factory creates an object

that is supposed to be a singleton, then subsequent calls to the factory for the object

should return the same object. Singleton objects are called Services in XPCOM.

In XPCOM, in addition to the component support and management, there are a

number of services that help the developer write cross platform components. These

services include a cross platform file abstraction which provides uniform and

powerful access to files, directory services which maintain the location of

application- and system-specific locations, memory management to ensure

everyone uses the same memory allocator, and an event notification system that

allows passing of simple messages.

Chapter 4

The evaluation platforms
Because of our limited resources and our goal to present a compact overview of our

results and experiences, we decided to focus on three commercial EJB platforms:

• Bean Transactions 2.1

• PowerTier 6.54

• WebLogic 5.1.0

All three platforms are all based on the EJB specification 1.1 and have already been

field-tested and offer several distinct features. Former versions of all three platforms

have been used in projects at Siemens. So we had some experienced persons to

work with.

4.1. Bean Transactions

The EJB platform Bean Transactions (BeanTA) is part of the OpenSEAS product

family from Fujitsu Siemens Computers9 (FSC). This product family consists of three

products: Web Transactions, Biz Transactions and Bean Transactions. Web

Transactions is a web server-based runtime for presenting any business object or

information from an underlying application. It can format and convert the output data

from the application to any suitable presentation form for the client (e.g. as HTML

Website or Java Applet). Biz Transactions is an integration platform for defining

business processes and integrating heterogeneous, existing applications into new

systems. BeanTA is the EJB application server and platform that complete this

product package. For our evaluation we only used the BeanTA platform.

The BeanTA platform is based on OpenUTM, a high end transaction monitor that

offers sophisticated transaction management and monitoring. Because BeanTA

9 http://www.fujitsu-siemens.com

The EJB reference application page 46

does not include a CMP tool, a 3rd party tool called MPF/J from MicroDoc10 is used

as persistence framework for the CMP data mapping. The BeanTA software and the

technical support through email and telephone have been provided by FSC during

the whole time of our evaluation project.

4.2. PowerTier

The PowerTier application server is a product from Persistence Software11. This

application server evolved from a former object-relational mapping tool. The version

6.54 of the software was provided to us by Persistence for our evaluation project.

Technical support was provided via email.

4.3. WebLogic

The WebLogic Server is a product from the BEA Systems12. Because the version

6.x of the WebLogic Server did not support the EJB specification 1.1 correctly, we

had to use the version 5.1.0 with service pack 10 for the evaluation. The software

was downloaded from the homepage of BEA Systems. No technical support was

provided during our project.

10 http://www.microdoc.de
11 http://www.persistence.com
12 http://www.bea.com

Chapter 5

The EJB reference application
For testing and evaluating the different platforms we used a reference application

that has been designed and built especially for this project. We tried to keep the

application as simple as possible because our focus was on testing the platforms.

On the other hand we wanted to have an application which included both simple and

complex tasks, and which is of a domain where we had certain expert knowledge of.

So we decided to write a bug managing application called BugTracker.

5.1. Architecture and Design

The BugTracker application is meant to be used to track and manage software bugs

for different projects within a software company. In general software developers do

not only have to car about bugs when developing a new software version. They are

often faced with change requests that users want to be included in a future version

of the software. Managing large software projects with many people is a very

complex task for every project manager, especially when it comes to maintain the

status of each bug or request in the software. Therefore usually this is done

decentralized by an application which allows each authorized person to access a

database to view or update the current status for a specific software bug or request.

Because a software bug report is quite similar to a change request the term software

issue will be used to refer to both.

The application will only be used within the scope of the software company. As a

consequence a software issue can be submitted in two different ways. The software

issue can be reported and submitted by a customer of the company or by some

member of the project team. If a customer is the reporter of the software issue he

will have to contact some person from the company (e.g. customer contact) who will

enter the issue into the application’s database. The other way the issue will be

reported and entered by the same person, who might be the software tester for that

The EJB reference application page 48

project. Therefore any access from external applications is not assumed within the

scope for the BugTracker application. Any person that is related to the project is

called Employee. The logical structure for the application is shown in.

For each person one or several addresses can be stored. Each address specifies a

certain location related to the employee. This represents a typical data structure that

is stored in company databases with personal records. The zip codes of the

addresses are stored separately to serve as a pool for validating (i.e. to offer only

valid values to choose from) and can be provided and maintained by an external

system.

Figure 16 BugTracker Logical View

Employees working on projects can take several roles in the same project and also

in several projects. Such roles can be customer contact, project contact (leader) or

developer. The customer contact is responsible for entering the reported software

issues into the system. The project contact is supervising a whole project, and

assigns an open issue that has been released for implementing to a certain

developer of the project. The developer is responsible for assigned issues and their

implementation.

Change Request Bug

Customer

ZIPAddress

n 1n 1

Person

n1 n1

LogEntry Release

Employee

Project

1n 1n

1..n

1..n

1..n

1..n

hasRole RightRole

1 n1 n 1..nn 1..nn

CustomValue

CustomAttributeValue

1

n

Issue

n

1..n

n

+Reported by

1..n

n 1n 1
n 1

+found inn 1

0..11..n 0..1
+fixed in1..n

1

n

+Assigned to
1

n

1

n

+Created by

1

n

CustomAttribute

n1 n1n1 n1

nn nn
1

n

The EJB reference application page 49

Each role has a set of rights stored separately to serve as a pool of available valid

rights in the system. The rights specify which action can be performed by a specific

role within the project, i.e. changing the state of an issue or the assignment to a

developer. For each project one can define project specific customizable attributes

as well as possible values for these attributes. These attributes belongs to each

issue related to the project that has defined these attributes. So each issue is

related to a set of CustomAttributeValue objects that contains the current values for

these attributes of the issue.

As already mentioned above, there are two types of issues: bug reports and change

requests. They only differ minimal, but are logically two different things. The main

difference is the use of separate ID ranges for each type. An issue is assigned to a

previously registered customer (who reported it), to a project (to which it belongs)

and to a developer (who have to fix/implement it). It can also have a set of project

specific attributes with currently assigned values. An issue once created will never

be deleted; it just changes its state!

When a set of issues belonging to a project has passed the test phase, then a new

software release for that project will be distributed. Each release should fix one

software issue at least, otherwise it would not make sense to bring out a new

release if there is no new feature or any bug fixed. Each bug or request is

associated with the release it is found or requested in, and the release it is fixed in.

Like any other application of this type every action taken on the issue is logged to

provide a history of changes and tracing its life cycle. These log entries can not be

modified after being inserted into the history.

Issue Life Cycle

A sample life cycle process for the issue could look like this: An issue is reported by

a customer or project member and will get entered into the system. The project

leader of the project will get notified of the arrival of a new issue. If the process

regulation of the company requires special approval (voting by conference or

email…) and/or there is need for more/additional information, the issue goes in the

state “Voting” until a decision is taken: if the decision is negative, the issue is

rejected and gets the state “Rejected”. Else the issue gets accepted (goes in the

state “Accepted”) and finally gets properly analyzed. Using the results of the

analysis, the project leader or any other company decision organ (e.g. Change

The EJB reference application page 50

Control Board – CCB) can then decide if the issue will be finally fixed/implemented.

If the decision is negative, the issue is rejected and gets the state “Rejected”,

otherwise it goes in the “Ready” state – a pool of issues waiting for the assigned

developer.

The developer takes an issue from the associated pool and opens it (the issue goes

in the state “Open”) for fixing/implementing and marks it as implemented (state

“Implemented”) when finished and ready for testing. This is the pool for the testing

team who decides then if the issue is correctly fixed/implemented: if it is not, then

the issue will be reopened – goes in the “Ready” state where it waits once again for

the developer to open it (the associated developer can eventually be changed by

e.g. the project leader), else the issue will be closed and ready to be included into

the new release (by e.g. project leader).

5.2. Implementation

The application as described in the previous chapter has been implemented by me

and my partner, using the Extreme Programming Method13. With this approach we

could dynamically adapt our application design and had significantly shorter

development iterations. This way we were also much more flexible during the

implementation of the application when minor adaptations have to be done to the

design and architecture.

In figure 17 the implementation view for the BugTracker application is shown. It

shows the implementation classes for the related logical entities from figure 16. All

logical classes have been either implemented as session beans or entity beans. The

various design patterns and issues relevant to the architecture and implementation

of the BugTracker application are discussed in the master thesis “Object-Oriented

Analysis and Design with Enterprise JavaBeans” [Mue01].

13 see [Bec00]

The EJB reference application page 51

Figure 17 BugTacker Implementation View

Only the use cases required for our testing and evaluation have been implemented

by us, because otherwise the implementation of the application would have taken

too much time for realizing functionality that actually would never have been used.

So we focused on several major use cases that we implemented and tested.

5.3. Application Client

The client for this application is written as stand-alone Java program with Java

Swing as graphical toolkit. The architecture for the application client is shown in

figure 18. The client is divided into two different layers to achieve a clean separation

between graphical representation and business logic on the client side: the layer

with the graphical user interface (GUI layer) and the layer with the client business

logic (Client layer).

The GUI layer provides the graphical user interface and basic input verification. For

example if a certain data format is expected for an input field in the user interface,

the GUI layer is responsible for checking the format and giving feedback to the user

if necessary. Other than that the GUI layer does not contain any other functionality.

The whole graphic user interface is structured into several modules, so the client

can be easily extended with additional modules and functionality.

The EJB reference application page 52

Figure 18 Architecture of application client

The Main GUI is the primary entry point for the graphical application. It provides the

main window and controls the access to the other modules. Each module represents

a certain use or test case. A module can be easily integrated into the application by

adding a reference or entry into the Main GUI’s menu list. Each of the GUI modules

has access to a client class, which implements the business logic for that use or test

case. These client classes encapsulate all the logic to connect to a remote server or

to find a bean in the EJB container. Actually these clients can run without any

graphical user interface. For example a small Java program can be written that

access these clients to perform multiple tasks in the background, without the

necessity to show a graphical user interface.

The client classes only contain the necessary code for finding and working with the

bean components deployed on the application server. These bean components

should provide all necessary business methods to perform the requested task. The

client modules directly access the beans on the application server and invoke the

business methods on the remote interface of the bean. During the performance tests

for our evaluation all logged data will be stored in memory and written to a simple

text file after the test run finishes.

Main GUI

Project
GUI

Project
Client

Bug GUI

Bug
Client

Role
GUI

Role
Client

Person
GUI

Person
Client

Application server

Extra
GUI

Client L ogic

Graphical

User

Interface

Business
Logic

Chapter 6

Specifying the evaluation
environment
For the evaluation infrastructure architecture we decided to use a simple client

server system consisting of one PC which acts as server computer and one PC

which acts as client computer. At the same time both PCs were used as

development workstations to modify and write the application source code.

6.1. Hardware configuration

We used the following hardware for our evaluation project:

• Server:

Intel Pentium III, 800 MHz

 512 MB RAM

10 GB Hard Disk

• Client:

Intel Pentium, 266 MHz

128 MB RAM

5 GB Hard Disk

• Network connection:

Cross over RJ-45 Patch cable

10 Mbit Ethernet cards

The server computer differs from the client computer by having much better

equipment available. Both computers are connected using a simple cross over

network cable. They are not connected to the Siemens company network to avoid

any interference with the network traffic within the company and with the result for

our performance tests. This isolated system configuration provides the necessary

Specifying the evaluation environment page 54

environment to run our tests equally on all platforms without any external

disturbance.

6.2. Software configuration

The following Software was used during the project to implement and deploy the

reference application:

• Server:

MS Windows NT 4, Service Pack 5

Informix Database Server

• Client:

MS Windows NT 4, Service Pack 5

• Developer Tools:

Togethersoft Together 5.02

Borland JBuilder 4 Enterprise Edition

Together 5.02 has been used during the design and implementation of the server

side application, JBuilder 4 has been used for writing the client application. The

Together software supports the design of the application by providing integrated

CASE tools that can be used to manage and generate basic source code that can

be used for further implementation. If there are any changes in the design diagrams

the related source code will automatically updated. The JBuilder provides certain

tools that enhances and simplify the creation of EJB client applications.

6.2.1. Changing the database

First we intended to use the MS SQL Server 2000 as the underlying database for

our tests. But during our attempts to integrate the MS SQL Server into the three

platforms and the deployment process we had to realize that there are big difficulties

when using the MS SQL Server in a Java based environment. Microsoft itself does

not provide any JDBC driver for its database product. So we had to look for a third-

party JDBC driver with free license that we can use for our test. Unfortunately each

of the few free drivers we found, are limited in their functionality or configuration.

Therefore we decided to switch to the Informix database which has its own JDBC

driver. With a proper JDBC driver the integration of the database into the server

platform was rather easy and simple for all three platforms.

Chapter 7

Evaluation
The evaluation of the three EJB application servers will consist of two parts. In the

first part I will just compare and analyze some technical details and characteristics of

each EJB platform. Therefore I will first list all criteria that I use for this evaluation to

create a matrix which compare all three EJB platforms. In the second part I will do

some performance testing based on different scenarios. The results for all three EJB

platforms will be discussed and compared with each other.

7.1. Technical aspects

The technical evaluation criteria are listed in the following tables with a row for each

criterion and five columns. The fist column contains a short abbreviation of the

criterion. This abbreviation will be used in the final matrix to refer to this criterion. In

the next column we will find a code letter that indicates what kind of evaluation will

be performed on this criterion. The possible values for this column are:

• T - indicates that the criterion will be tested and/or measured within our test

application

• A - indicates that the criterion will just be evaluated through a conceptual

analysis of the platform

The third column includes a brief description of the test criterion. This description

specifies what the criterion is about and what we have to consider when we evaluate

this issue. The fourth column lists all the possible values that can be assigned to this

criterion. For example if the criterion can only be evaluated with yes or no, these two

values will be listed in this field. Finally in the last column we put a reference of the

criterion to the related section in the EJB specification is placed. If the criterion is not

covered by the EJB specification, this field in the last column will be left empty.

Evaluation page 56

7.1.1. Basic Compliance to the EJB Specification

In this part of the list we will evaluate whether each platform complies with the EJB

specification. According to the EJB specification each EJB platform has to provide a

basic functionality. We will list these essential functionalities here within this section.

Due to the fact that not every detail of the EJB component model has been

documented in this specification, there can be misunderstandings in some parts of

the specification. This is likely because that the authors of the specification have not

been clear enough about some aspects of the implementation.

For example the life cycle of a Bean has to follow a certain life cycle model. I will

ensure that these basic requirements are provided by the EJB platform vendor

according to the EJB specification. If the criterion is fulfilled by the EJB platform the

value for the criterion will be set to ok otherwise it will be set to not ok.

Criterion Type Description Values EJB 1.1

GenJNDI T
Functionality of JNDI is verified by

connecting to the EJB server via JNDI and
retrieving a reference to the home object

ok
not ok 5.2.1

GenHome T
Functionality of the EJB Home interface is

verified by testing methods for creating and
removing instances

ok
not ok 5.3

GenMeta T

Functionality of the metadata facility is
verified by obtaining a reference to an EJB
MetaData object and testing this object’s

methods

ok
not ok 5.3

GenObj T

Functionality of the EJB Object interface
implementation is verified by obtaining a

reference to an EJB object and invoking all
methods of the EJB Object interface on this

object

ok
not ok 5.4

GenSec T
Basic security functionality of the EJB

container is tested by invocation of methods
with various security attributes

ok
not ok

15.3

15.6

SesFulLifeCycle T

The lifecycle of a stateful session bean is
checked by a series of concurrent method
invocations with and without a transaction

context

ok
not ok 6.6

SesLesLifeCycle T

The lifecycle of a stateless session bean is
checked by a series of concurrent method
invocations with and without a transaction

context

ok
not ok 6.8

EntLifeCycle T

The support of the EJB container for the
lifecycle of entity beans is checked by a
series of method invocations on a set of

entity beans

ok
not ok 9.1.4

Evaluation page 57

7.1.2. Clustering and Load Balancing

Clustering is one way to make a system highly scalable. Clustering means to group

several containers together in a way the load can be distributed among the different

containers. With this mechanism they will appear as a single entity. It is not part of

the EJB specification. So this is a proprietary feature of the platform and should be

listed in the additional feature section. I decided to add it here though, because

clustering does heavily influence the scalability.

Load Balancing is another very important concept for improving the scalability of a

computer system. Usually a computer system does not have a constant rate of

requests for processing. There are periods which require more performance than

usual and periods which do not have the need for such a high demand of

performance. During these peak times with a higher demand for performance the

requests can be distributed to several machines so that each machine just has to

process a part of the requests. There are different mechanisms to implement this

feature; primarily based on the algorithm for the request distribution.

Criterion Type Description Values EJB 1.1

ClusAvail A
This criterion indicates whether the EJB
platform is supporting clustering or not
(grouping several EJB containers together)

yes
no -

LoadBalAvail A

This criterion indicates whether the EJB
platform is supporting automatic load
balancing or not (grouping several EJB
containers together)

yes
no -

7.1.3. Activation / Passivation

The activation / passivation process is an interesting mechanism provided by the

EJB model to deal with a large amount of Enterprise Beans, especially stateful

Session Beans. In case the application server requires more resources it can

acquire new resources by passivation of some beans in the container that have not

been used for a specific time. During this passivation process the instance’s identity

is automatically serialized and saved to a secondary storage and the bean is put

back to the instance pool, where it can be used for the creation of other bean

instances. If the passivated bean instance is needed the container will de-serialize

the saved instance identity from the secondary storage and assign it to a new bean

instance from the instance pool.

Evaluation page 58

These criteria will test if the activation / passivation mechanism works properly and

ensure that the EJB platform behaves in the way it is described in the EJB

specification. Furthermore I will evaluate if the activation /passivation mechanism

can be customized or not. Usually this happens by adjusting the number of beans

when the EJB platform should start with passivation of inactive beans.

Criterion Type Description Values EJB 1.1

PassSesFul T

This criterion indicates whether the
passivation for stateful session beans
works properly as described in the EJB
specification

ok
not ok 6.4.1

ActivSesFul T

This criterion indicates whether the
activation for stateful session beans works
properly as described in the EJB
specification

ok
not ok 6.4.1

PassEntity T
This criterion indicates whether the
passivation for entity beans works properly
as described in the EJB specification

ok
not ok 9.1.5

ActivEntity T
This criterion indicates whether the
passivation for entity beans works properly
as described in the EJB specification

ok
not ok 9.1.5

PasActivCustom A
This criterion indicates whether the
activation passivation mechanism can be
customized by the user

yes
no -

7.1.4. Transactions

The transaction management is a very crucial criterion of an application server.

Especially business applications often require the ability of managing a large

number of transactions at once. Transactions ensure that the manipulated data that

the computer system relies on stays consistent and correct. Therefore operations on

persistent data are usually running in a transactional context. The EJB specification

is specifying 6 different categories of transactions for EJB components, which are

listed in the following table. Additionally the 2PhaseCom criterion will specify if the

EJB platform supports transactional 2-phase commits or not. A 2-phase commit

transaction is a transaction that spawns over two processes or systems. This feature

is not part of the EJB specification, but it is a very powerful feature especially when

the EJB platform is used in connections with legacy systems. Therefore I will check

if the EJB platform provides this feature or not.

Evaluation page 59

Criterion Type Description Values EJB 1.1

TxNotSupported T
Functionality of the
TX_NOT_SUPPORTED transactional
attribute is verified

ok
not ok

11.4.1
11.6.2

TxSupports T Functionality of the TX_SUPPORTS
transactional attribute is verified

ok
not ok

11.4.1
11.6.2

TxRequired T Functionality of the TX_REQUIRED
transactional attribute is verified

ok
not ok

11.4.1
11.6.2

TxRequiresNew T Functionality of the TX_REQUIRES_NEW
transactional attribute is verified

ok
not ok

11.4.1
11.6.2

TxMandatory T Functionality of the TX_MANDATORY
transactional attribute is verified

ok
not ok

11.4.1
11.6.2

TxNever T Functionality of the TX_NEVER
transactional attribute is verified

ok
not ok

11.4.1
11.6.2

2PhaseCom A
This criterion indicates whether the EJB
platform supports 2-phase commits of
transactions or not

yes
no -

7.1.5. Handling of exceptions

Besides the functionalities that the different platforms should have, it is also very

important to know how robust a platform is. One main concept and feature of the

Java programming language is the use and handling of exceptions. This concept

can avoid many problems that occur when something is going wrong. So within this

section I will evaluate how exceptions are handled for different test scenarios. The

responsibilities of an EJB platform provider are described in the EJB specification.

Furthermore I will check if the EJB platform supports recovering of stateful session

beans or not. Stateful session beans can sometimes contain important information

that would be lost after a server crash, because session beans are not persistent

components according to the EJB specification. But some platforms offer

sophisticated caching for those stateful session beans, so that the information can

be recovered after the EJB server crashed. The more robust a server is, the better

availability can be guaranteed.

Criterion Type Description Values EJB 1.1

EjbExepGen T

General exception handling support of the
EJB container is checked by a series of
method invocations causing various kinds
of exceptions

ok
not ok -

EjbExepEntity T

Exception handling support of the EJB
container is checked by a series of method
invocations causing various kinds of
exceptions. This test is performed for an
entity bean

ok
not ok 12.3

Evaluation page 60

EjbExepSesFul T

Exception handling support of the EJB
container is checked by a series of method
invocations causing various kinds of
exceptions. This test is performed for an
stateful session bean

ok
not ok 12.3

EjbExepSesLes T

Exception handling support of the EJB
container is checked by a series of method
invocations causing various kinds of
exceptions. This test is performed for an
stateless session bean

ok
not ok 12.3

RecSesBean A
This criterion indicates whether the EJB
platform supports the recovery of stateful
session beans after a server crash or not

yes
no -

7.1.6. Persistence

The persistence mechanism in the EJB model allows two ways of making data

persistent. One is the concept of Container Managed Persistence (CMP), where the

EJB container is responsible for making the data persistent to any kind of storage

system, e.g. a database or a legacy system. The alternative way is to implement the

persistence mechanism in the Entity Bean itself (BMP). So the responsibility for the

data persistence lies within the scope of the Bean provider. Because the first

approach is the one which will be usually used and provided by the EJB platform I

will check the proper working of the CMP mechanism within this section. Another

criterion that will be evaluated is the data mapping mechanism of the EJB platform.

Some EJB platforms use their own integrated mapping mechanism, other EJB

platform use a 3rd party product. This can be a relevant issue when the data

mapping should be replaced by another mechanism. A 3rd party product would offer

more flexibility but might be not that well integrated into the EJB platform.

Criterion Type Description Values EJB 1.1

PerCmpFindKey T

The functionality of the
findByPrimaryKey method provided by
the EJB container for CMP entity beans
will be verified

ok
not ok 9.4

PerCmp T

The correct and proper working of the
CMP mechanism is verified by a series
of method invocations on CMP entity
beans

ok
not ok 9.3

PerMapMech A

This criterion indicates how the data is
mapped to the data storage. Does the
EJB platform use its own integrated
mapping tool or a 3rd party product?

Integrated
3rd party -

Evaluation page 61

7.1.7. Security

One aspect that the bean provider usually does not have to care about when

implementing the bean code is the security management. They security can be

managed by the application server and the security policy can be set up at deploy

time. If the EJB platform supports Hot Security Administration the security settings

can be changed and applied while the server is running. The EJB specification does

not require Hot Security Administration, but it is a very comfortable feature, because

the server does not have to be restarted when changing the security settings. The

SecurAdminLevel criterion specifies the level of security that the EJB platform offers.

Unfortunately this issue is not well specified in the EJB specification, so that usually

security settings are applied to a whole bean component. So EJB platforms offer the

support to make more fine grained settings for each bean component, so that the

custom security settings can be applied to single methods of each bean component.

Criterion Type Description Values EJB 1.1

SecurMech T

The correct and proper working of the
security mechanism provided by the EJB
container will be verified by a series of
method invocations with different security
roles

ok
not ok 15.6

SecurAdminLevel A This criterion indicates the level of security
that can be used for the bean components

bean
method -

HotSecurAdmin A
This criterion indicates if it is possible to
change and apply the security settings and
rights while the server is running

yes
no -

7.1.8. Availability

High availability is a precondition for every successful e-commerce application.

Expressions like “24x7 availability” are commonly used and always asked for among

all enterprises that have to deal with e-commerce. So a criterion that has to be

evaluated, too, is the grade of availability that each application server provides by

using different techniques. Hot Deployment is a feature that allows bean

components to be deployed into the EJB container without restarting the server. The

automatic restart of the server after a server crash can be very useful, too. Another

interesting feature is the use of multiple Java Virtual Machines (JVM). A EJB

platform that is based on this feature will run each EJB container in a separate JVM,

so the crash of one EJB container would not influence the other EJB containers.

This can significantly increase the availability of a working system.

Evaluation page 62

Criterion Type Description Values EJB 1.1

HotDeploy A
This criterion indicates if it is possible to
deploy bean components into the EJB
container while the server is running

yes
no -

AutoRestart A
This criterion indicates if the EJB
platform supports automatic restarting of
the server after a servercrash

yes
no -

JvmMech A
This criterion indicates if the EJB
platform uses a single JVM for all EJB
containers or not

SingleJVM
MultiJVM -

7.1.9. General Specifications

The following table lists some essential basic information about each EJB platform,

like version number and provider of the EJB platform. The necessary version of the

Java Development Kit (JDK) and the minimum system hardware requirements for

running the server are listed, too. If no information about the minimum requirement

can be provided n/a (not available) will be used. The criterion SubEjbVer specifies

which version of the EJB specification is supported by the EJB platform. The

possible values for this criterion are only 1.0 or 1.1. The field Remarks contains

some information about important issue that the user should know about when

working with the platform.

Criterion Type Description Values EJB 1.1

ProductVer A
This criterion indicates the version of the
EJB platform that we used for our
evaluation.

- -

Provider A This criterion specifies the provider of the
EJB platform

ReqJdkVer A This criterion indicates the version of the
JDK required for using the EJB platform

1.2
1.3 -

ReqCpu A This criterion indicates the required CPU
clock frequency for running the EJB server - -

ReqRam A
This criterion indicates the required
amount of system memory needed for
running the EJB server

-

SupEjbVer A
This criterion indicates the version of the
EJB specification that is supported by the
EJB platform

1.0
1.1 -

Remarks A
This field specifies information about
different issues that occur up during the
evaluation

-

Evaluation page 63

7.1.10. Supported OS platforms

This section lists all the OS platforms that are supported by the EJB platform.

Criterion Type Description Values EJB 1.1

Windows NT A This criterion indicates support for
Windows NT

yes
no -

Windows 2000 A This criterion indicates support for
Windows 2000

yes
no -

Sun Solaris A This criterion indicates support for Sun
Solaris

yes
no -

HP-UX A This criterion indicates support for HP-UX yes
no -

IBM AIX A This criterion indicates support for IBM AIX yes
no -

Linux A This criterion indicates support for Linux yes
no -

Reliant UNIX A This criterion indicates support for Reliant
UNIX

yes
no -

OS/390 A This criterion indicates support for OS/390 yes
no -

OS/400 A This criterion indicates support for OS/400 yes
no -

TRU64 UNIX A This criterion indicates support for TRU64
UNIX

yes
no -

IRIX A This criterion indicates support for IRIX yes
no -

7.1.11. Usability

In this section we will evaluate how user friendly the administration of the application

server is for the user. Furthermore which support the application server provides for

the developing or testing of an EJB application. Finally we will rate the installation

and set up routine of each application server, too.

Criterion Type Description Values EJB 1.1

UsaAdminTools T
This criterion indicates the grade of
usability for the administration tools
provided by the EJB platform

good
sufficient

bad
-

UsaDevTools T
This criterion indicates the grade of
usability for the administration tools
provided by the EJB platform

good
sufficient

bad
-

UsaInstall T
This criterion indicates the grade of
usability for the installation of the EJB
platform

good
sufficient

bad
-

UsaSerDebug T
This criterion indicates whether the EJB
platform offers support for debugging the
EJB server or not

yes
no -

Evaluation page 64

7.2. Test scenarios

We will have three different scenarios for our evaluation project. Each scenario will

be discussed in the following subchapters. These scenarios can be divided into two

groups. The first one is just testing the Bug Tracker application itself. After that is

done we can run our load tests against the server and measure the time it takes to

complete the different method invocations. The database is restored to its initial

state each time before testing one scenario.

7.2.1. Testing the basic functionality of the Bug T racker application

With this series of tests we will ensure that the Bug Tracker application is functioning

properly. Besides the different method invocations according to the use cases will

verify that the server is working in the intended way. Therefore we will simulate

normal use cases through the GUI of the Bug Tracker application and check then if

the data and inputs were processed and stored in the right way. The right

functionality is a requirement before running the load tests against the server.

7.2.2. Creation and manipulation of person records (entity beans)

This test scenario will simulate some load tests for the use with entity beans. First

we will create a series of data records, measuring the time it takes to insert the data

record into the database. To get more accurate time intervals we will perform

several method invocations in a loop and then calculate the average time for each

method invocation. For example 5 entity beans are created in a loop and the time it

takes to complete that loop will be used to calculate the average time for each

creation of an entity bean. Next we will measure the time it takes to get a reference

to a certain entity bean identified by its primary key.

After these two tests we will compare the efficiency of retrieving data from the entity

bean through single method invocations and through the use of a value object on

each server. The single method invocations will require several network calls, while

the value object will only require one. The time it takes to get the whole data record

is measured in this test. Finally each entity bean will be removed from the database

by removing the entity bean. The time it takes to complete this method invocation is

measured and logged.

Evaluation page 65

7.2.3. Creation and manipulation of data by using a stateful session bean

In this scenario we will measure the time it takes to create a project data record

through the use of a stateful session bean. The time that is measured includes the

creation of a stateful session object and its assignment to the client, the time it takes

to create a project entity bean and the time to update the necessary state

information in the stateful session bean. Similar to the former test process we do

create several data records at once and then calculate the average time for each

session bean. Furthermore we will check the time it takes for the client to get a value

object for the desired data record in the database via the stateful session bean. How

long does it take from the method invocation on the client side to receive the value

object from the server?

Chapter 8

Results and conclusions
This chapter contains the results for our evaluation project. In the following chapter

the results for evaluating the technical aspects of all three evaluation platforms are

shown in a matrix. The next chapter presents some figures and statistics for the time

measurement during the performance tests. The BugTracker application was used

for both, the performance tests and the tests to verify several technical aspects.

8.1. Technical Aspects

The following table shows the results for the technical evaluation for the three EJB

platforms in the project:

Criterion PowerTier WebLogic BeanTA

Basic compliance to the EJB specification

GenJNDI ok ok ok

GenHome ok ok ok

GenMeta ok ok ok

GenObj ok ok ok

GenSec ok ok ok

SesFulLifeCycle ok ok ok

SesLesLifeCycle ok ok ok

EntLifeCycle ok ok ok

Clustering and Load balancing

ClusAvail no no yes

LoadBalAvail no yes yes

Activation / Passivation

PassSesFul ok ok ok

ActivSesFul ok ok ok

Results and conclusions page 67

PassEntity ok ok ok

ActivEntity ok ok ok

PasActivCustom no yes yes

Transactions

TxNotSupported ok ok ok

TxSupports ok ok ok

TxRequired ok ok ok

TxRequiresNew ok ok ok

TxMandatory ok ok ok

TxNever ok ok ok

2PhaseCom no no yes

Handling of exceptions

EjbExepGen ok ok ok

EjbExepEntity ok ok ok

EjbExepSesFul ok ok ok

EjbExepSesLes ok ok ok

RecSesBean no no yes

Persistence

PerCmpFindKey ok ok ok

PerCmp ok ok ok

PerMapMech Integrated Integrated 3rd party

Security

SecurMech ok ok ok

SecurAdminLevel bean method method

HotSecurAdmin no no yes

Availability

HotDeploy no yes yes

AutoRestart no no yes

JvmMech SingleJVM SingleJVM MultiJVM

General specification

ProductVer 6.54 5.1.0 SP10 2.0A

Provider Persistence BEA Systems Fujitsu Siemens

ReqJdkVer 1.3 1.3 1.3

ReqCpu 233 MHz n/a 250 MHz

ReqRam 128 MB 64 MB 256 MB

SupEjbVer 1.1 1.1 1.1

Results and conclusions page 68

Remarks propriety O/R
mapping - -

Supported OS platforms

Windows NT yes yes yes

Windows 2000 yes yes yes

Sun Solaris yes yes yes

HP-UX yes yes yes

IBM AIX yes yes no

Linux yes yes yes

Reliant UNIX no yes yes

OS/390 no yes no

OS/400 no yes no

TRU64 UNIX no yes no

IRIX no yes no

Usability

UsaAdminTools sufficient good good

UsaDevTools good sufficient good

UsaInstall sufficient good good

UsaSerDebug yes yes yes

8.2. Performance Tests

According to the test scenarios described in chapter 7 the BugTracker application

was used to measure the time it took to perform the requested tasks. For the

performance tests with entity beans I chose to do three test series with different

number of entity beans. Due to the hardware limitations the first test series have

been done with 2000 beans, the second one with 4000 beans and the third one with

10000 beans. These numbers should represent realistic figures for a simple real

world scenario. Comparing the average time for each test series should allow me to

draw conclusions for the scalability for each EJB platform. In the following

subchapter only the test series with 2000 and 10000 beans are illustrated. The test

series with 4000 beans is discussed in the overview figure. Because the number of

stateful session beans will in general be much lower than the number active entity

beans, the performance tests for stateful session bean have been done in two test

series with 1000 and 2000 beans.

Results and conclusions page 69

8.2.1. Creation of entity beans

In these test series a given amount of CMP entity beans are created through in a

loop in the client program. Figure 19 shows the time needed for the creation of each

bean in the test series with 2000 beans. As we can see from this figure the BeanTA

platform requires a lot more time to insert a new data record into the database. The

cause for this result might be the overhead generated by using a 3rd party product

for the data mapping. This support requires a more complex integration of the

mapping tool than in case of an integrated mapping tool, where a much better

optimization can be achieved. The peaks in each data row are indicators for the

caching algorithm (including activation/passivation policy) of each platform.

WebLogic seems to have a better caching mechanism than PowerTier or BeanTA.

0

50

100

150

200

250

300

0 250 500 750 1000 1250 1500 1750

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 19 Creation of entity beans (2000 records)

The next figure 20 illustrates the test series with 10000 entity beans. In this figure

the scalability for each platform can be seen. While the PowerTier graph shows an

obvious upward trend, the WebLogic and BeanTA graph do not change much.

However the BeanTA graph has much more peak values than the other two graphs.

Figure 21 shows a summary of all three test series where we can see that WebLogic

scales much better than the other two EJB platforms.

Results and conclusions page 70

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 20 Creation of entity beans (10000 records)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Time in ms

10000 records 51,31 29,21 7,47

4000 records 45,26 19,25 7,95

2000 records 42,81 16,22 7,47

BeanTA PowerTier WebLogic

Figure 21 Average time for creating an entity bean

Results and conclusions page 71

8.2.2. Finding entity beans

The following test series show the time it took to find a specific entity bean

depending on the number of existing entity beans in the EJB container. Figure 22

shows the figure for the test series with 2000 beans. Here again the BeanTA

platform requires more time to find a certain entity bean due to the more complex

integration of the data mapping tool.

0

10

20

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500 1750

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 22 Finding entity bean (2000 records)

In figure 23 the test series we can see that the BeanTA and PowerTier platforms do

both need increasingly more time to find an entity bean when the number of existing

entity beans rises. While again the BeanTA graph fluctuate a lot the graphs for the

WebLogic and PowerTier platforms are quite straight. In figure 24 the average time

is shown for all three platforms and a summary for all three test series. The

conclusions are here the same as in test series with 10000 beans: WebLogic

achieves to keep a constant time for performing the search in all three test series

whereas the performance of the other two platforms is depending on the amount of

existing entity beans.

Results and conclusions page 72

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 23 Finding entity beans (10000 records)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Time in ms

10000 records 54,79 15,58 3,14

4000 records 44,59 10,39 3,44

2000 records 39,09 6,79 3,54

BeanTA PowerTier WebLogic

Figure 24 Average time for finding an entity bean

Results and conclusions page 73

8.2.3. Removing entity beans

In these test series the performance of deleting data from the database is evaluated.

An entity bean represents a data record in the data storage, so removing an entity

bean will also delete the correspondent data record in the data storage. Figure 25

shows the illustration for the test series with 2000 existing entity beans in the EJB

container. In this test the BeanTA performance is much better than in the other test

series with entity beans.

0

50

100

150

200

250

2000 1750 1500 1250 1000 750 500 250

No. of existing beans

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 25 Removing entity beans (2000 records)

The next figure 26 shows the results for the test series with 10000 entity beans. The

illustration shows some common characteristics among all three platforms:

• All three platforms need less time to delete an entity bean when the number

of existing entity beans is decreasing, too.

• All three graphs seem to fluctuate a lot, especially at the beginning of the

test. These masses of peaks indicate that a lot of caching is done in the

background during the deletion of the entity bean.

• At the beginning of the test the performance of all three platforms is almost

the same. But PowerTier and WebLogic scale down better than the BeanTA

platform.

Results and conclusions page 74

0

50

100

150

200

250

300

10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

No. of existing beans

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 26 Removing entity beans (10000 records)

Figure 27 shows the average time for the three test series. The performance of all

three platforms is much closer than in the other tests.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

Time in ms

10000 records 44,35 28,10 24,76

4000 records 32,88 14,11 5,36

2000 records 24,56 10,04 5,31

BeanTA PowerTier WebLogic

Figure 27 Average time for removing an entity bean

Results and conclusions page 75

8.2.4. Retrieving data from an entity bean

Figure 28 is showing the average times for retrieving data from an entity bean during

each test series. In this test we compare two different concepts of getting the data in

a distributed application. In one case we use a value object to encapsulate all data.

So the network calls are minimized to one single client request and one server reply.

This concept provides some overhead in managing and creation of the value object.

In the other case all data is retrieved through a separate call from the client

requesting the specified data field. This might end up in a lot of network calls. So the

value object seems to be the better solution concept for strongly fragmented data

that is changed quite often, whereas the single call concept is a better alternative for

very static data, where only partial data information is requested. In our test with

entity beans we used data records that contain four data elements. So the value

object in our test has to encapsulate four data fields. In the case of single calls we

have to send four network calls to receive the requested data. The time in our test is

measured from the moment when the request is sent to the server till the moment

where we have the proper value object received from the server or the properties

filled with the data from the single calls approach.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

T
im

e
in

 m
s

10000 records 155,53 56,24 52,74 121,45 165,23 158,49

4000 records 130,04 26,32 6,71 97,88 72,24 14,11

2000 records 116,24 11,29 8,06 88,16 22,99 13,69

BeanTA PowerTier WebLogic BeanTA PowerTier WebLogic

as value object as single calls

Figure 28 Average time it takes to retrieve data fr om an entity bean

Results and conclusions page 76

The interesting result of our test is that on the PowerTier and the WebLogic platform

the value object approach provides a better performance, whereas on the BeanTA

platform the single calls are much faster than retrieving the data via the value object

approach. It seems that the performance on BeanTA is much better without the

overhead of handling the value object. Another interesting result of this test is that

BeanTA is much faster than the other two platforms when it comes to retrieve the

data via single calls under high load. In the test series with 10000 entity beans

BeanTA is providing better performance than the other two EJB platforms.

WebLogic scales very well in the lower level, but in the higher level it seems to have

some problems with the scalability.

8.2.5. Creating stateful session beans

In the next test series the creation of a data record via stateful session beans is

evaluated and how the performance for this task is depending on the number of

already existing session beans in the EJB container. Figure 29 shows the first test

series with the creation of 1000 session beans.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 29 Creating a data record via stateful sessi on bean (1000 beans)

Results and conclusions page 77

The performance of the WebLogic and PowerTier platforms is again much better

than the performance of the BeanTA platform. Here again the integration of a 3rd

party mapping tool seems to be the cause for this performance gap. Another aspect

might have influence on this result, too. Due to the fact that it has evolved from a

high end transaction monitor, the BeanTA platform also incorporates a very

sophisticated transaction management and monitoring. In general all three platforms

need more time to generate a data record via stateful session bean than directly via

entity bean, because the creation via session bean requires more internal status

information, more method invocations and causes a larger overhead to handle.

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600 1800

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 30 Creating stateful session beans (2000 bea ns)

Figure 30 shows the test series for 2000 session beans for the BeanTA and

WebLogic platform. The PowerTier graph is missing because the data for the

PowerTier graph could not be retrieved due to a bug in the PowerTier platform

which causes the server to crash undetermined before it can create all 2000 session

beans. The bug was fixed only after the end of the testing phase of this project. That

is why the PowerTier data could not be considered anymore for this test series. A

summary of those two test series is shown in figure 31. The number of existing

stateful session beans does not seem to influence the time it take to create a data

record in the database as we can see from the graphs in figure 29 and figure 30.

Results and conclusions page 78

These graphs do not show an upward trend or pattern. The higher values for the

average time in the summary figure are caused by the numerous peak values in the

graph. The overhead caused by the more complex and linked handling for the data

record seems to outweigh the cost caused by the growing number of instances.

0,00

100,00

200,00

300,00

400,00

500,00

600,00

Time in ms

2000 beans 564,89 0,00 61,04

1000 beans 475,90 97,50 55,17

BeanTA PowerTier WebLogic

Figure 31 Average time for creation of a data recor d via stateful session bean

The results of these test series encourage the use of entity beans on the client side.

Some design patterns for EJB application recommend that the client should only

work with session beans, because that would provide a safer and clearer approach

for an EJB application. The resulting overhead in forwarding a method call would be

not that bad. But the results of these test series show that this would happen at the

cost of reduced application performance. Creating data records directly with the use

of entity beans is 10 times faster than using stateful session beans to do this on the

server side. In an application where data records are frequently added and modified,

this design decision can result in a huge performance gap.

Results and conclusions page 79

8.2.6. Retrieving data from a stateful session bean

In these test series a value object is retrieved via the use of stateful session beans.

The session bean acts on behalf of the client to get the requested data which is

encapsulated in a value object. Figure 32 shows the result of the test series with

1000 session beans. The graphs for these test series seem to be within a certain

bandwidth. The peak values that we can see in the graphs for the BeanTA and

PowerTier platforms seem to occur quite randomly.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 32 Retrieving a value object from the statef ul session bean (1000 beans)

The following figure 33 shows the graphical illustration for the test series with 2000

session beans. Due to the reason mentioned in the last subchapter, the graph for

the PowerTier platform is missing in this figure, too. The graphs here do not indicate

any upward tendency or pattern. While the graph for the WebLogic platform stays

quite constant the graph for the BeanTA platform shows a more random behavior

with many peak values. In figure 34 a summary of the two test series is shown and

the average time value for each test series. When we compare the average value in

this figure with the average value, we can see again that the direct access to the

entity bean does make a big difference in the performance for this task.

Results and conclusions page 80

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

No. of beans created

T
im

e
in

 m
s

BeanTA PowerTier WebLogic

Figure 33 Retrieving a value object from the statef ul session bean (2000 beans)

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

Time in ms

2000 beans 397,05 0,00 25,62

1000 beans 363,37 196,37 27,58

BeanTA PowerTier WebLogic

Figure 34 Average time for retrieving a value objec t from a stateful session bean

Results and conclusions page 81

8.3. Summary

All three EJB platforms differ in their list of feature and performance. When you start

working with each platform it is quite obvious where each platform has its

advantages. While the BeanTA platform offers very good usability by providing a lot

of excellent graphical support and configuration tools and business critical features

like Hot Deployment, Multi JVM architecture or sophisticated transaction

management, its performance is not that good. As we have seen in the performance

tests WebLogic offers much better performance and a good web-based interface for

managing the server configuration. PowerTier offers a similar good performance and

good O/R mapping but the fact, that most configuration and deployment tasks have

to be done with command line tools, makes it less suitable to non-experts14. So the

right platform choice will depend on the preferences of the developer. If transactions

and high availability are main concerns, then a platform like BeanTA would be a

proper choice. But if the performance of the application is the crucial issue then

WebLogic would be a possible candidate.

The performance of an EJB application also depends on a good application design.

On the one hand if we compare the results for the creating data records via stateful

session beans and via entity beans and the results for retrieving data and

information via stateful session beans and via entity beans we can see that clients

working directly with entity beans have much better performance. However, on the

other hand clients should be designed as thin as possible to achieve great flexibility

and portability of applications. Besides the client application should not implement

any business logic. All the necessary business logic should be provided by the

server components. So if all these aspects are taken into consideration when

designing an EJB application, we can state the following rules:

• When only the data from a single entity bean should be accessed or

modified, the entity bean should provide the proper business logic and the

client should directly work with the entity bean.

• When multiple entity beans have to be used for performing a specific task or

the process consists of several more complex tasks, the business logic

should be implemented within a session bean.

14 PowerTier 6.54 does offer a basic graphical interface for the server configuration and

deployment, but these tools do only provide a few basic functions and still have to mature.

Results and conclusions page 82

With these considerations the client of an EJB application can be kept lightweight

and flexible without losing much performance. Another example for the influence of

good application design on the application’s performance is the use of value objects

to reduce network traffic and improve the data request. As we have seen in the test

series of subchapter 8.2.4 the use of value objects can bring significant performance

advantage.

Despite the fact that all platforms are based on the same specification and every

application should be easily deployed on another platform without changing the

application, it is often quite difficult to achieve this portability. Because every

platform usually provides distinctive features and special options, it is not that easy

to have applications running on two different platforms without changing the source

code. For example PowerTier offers a very powerful mapping tool which assists in

the creation of CMP entity beans. But since PowerTier has a proprietary object-

relational mechanism for better performance, these CMP beans created with

PowerTier’s mapping tool can not be deployed on other platforms. This makes it

very hard to write standard components and applications that can be deployed on

any EJB platform, especially when you use proprietary platform features.

One main problem of the EJB specification is that some details are not completely

specified. So there is much space for wrong interpretations and misunderstandings.

Every vendor will interpret these details in the way it is advantageous for his

product. A better and more detailed EJB specification should avoid these problems

in the future. In the next chapter the future perspectives for the EJB specification will

be discussed more in detail.

Chapter 9

Future perspectives
Software architecture that is based on components is a very flexible and powerful

concept that will surely become a major architecture for future software projects.

Due to the growing support for the necessary software infrastructure and platforms

and the technical advantages of this concept it is getting more and more popular

among software vendors and developers. However the development of the last few

years did not keep up to the high expectations that some people had in these

component frameworks.

In this chapter I want to give a short overview of changes that have occurred and

introduced with newer versions of the EJB specification. Since the fact that several

years has passed since the completion of the evaluation and this writing, some new

versions of the EJB specification has been already released. With EJB 2.0 some

substantial changes have been made to the EJB specification. A new persistence

model for CMP entity beans is the most important one. But there are also interesting

new features like a new query language for the finder methods and a new type of

enterprise bean. The EJB 2.1 specification focused primarily on a better support for

Web Services by providing new APIs for developers. The draft for EJB 3.0 does also

promise some interesting new features like Dependency Injection, component

inheritance or the mapping of an entity bean to multiple tables.

In the following chapters I want to give a short overview over the changes and

innovations of the EJB 2.0 specification. Many points and issues that have been

criticized in the EJB 1.1 specification has been improved and adopted in EJB 2.0.

The main change in EJB 2.0 has been done to the persistence model of the CMP

entity beans. As part of the new CMP persistence model a new query language has

been defined: the EJB Query Language (EJB QL). Furthermore a new type of bean

called MessageDrivenBean completes the list of new features in EJB 2.0.

Future perspectives page 84

9.1. Container Managed Persistence

The new CMP model is radically different from the old CMP model because it

introduces an entirely new participant: the persistence manager. The persistence

manager is responsible for mapping the entity bean to the database based on a new

bean-persistence manager contract called the abstract persistence schema. In

addition, the persistence manager is responsible for implementing and executing

find methods based on EJB QL.

The container vendor or a vendor that specializes in persistence to a particular

database system may provide the persistence manager. The main idea is to

separate the mechanism used to manage bean relationships and persistence from

the EJB container, which is responsible for managing security, transactions, and

resources. The separation of these responsibilities allows different persistence

managers to work with different containers. It also allows entity beans to become

more portable across different EJB platforms as well as persistence managers. The

persistence manager is not, however, limited to a relational database. In general

persistence managers may also be developed for object databases as well as

legacy and Enterprise Resource Planning (ERP) systems such as SAP.

One of the main drawbacks and most criticized aspect of the old CMP model was

the missing support to model object relationships. The new CMP model is far more

flexible than the previous model, allowing entities to model complex object graphs

while providing for more portability across containers. Entity beans can define

dependent classes that will be handled properly by the CMP mechanism. This

feature greatly enhances and simplifies the creation of CMP entity beans.

EJB 2.1 added some minor improvements to the CMP persistence model introduced

by EJB 2.0. With EJB 3.0 this new concept is extended by more powerful features.

With the new EJB specification entity beans can now get their data from multiple

tables in the database. In addition inheritance of entity beans can be modeled and

used with the new CMP persistence model.

Future perspectives page 85

9.2. The EJB Query Language

In EJB 1.1 the database queries for the finder methods had to be specified in the

deployment descriptor. Usually each EJB platform uses its own slight different

syntax. So these statements always have to be adapted to the new platform where

the beans should be deployed. EJB 2.0 introduces a new query language called

EJB Query Language (EJB QL) for this purpose.

EJB QL is based on SQL-92 and specifies how the finder methods which are

defined in the home interface should be implemented. Developers using an EJB 2.0

implementation will be freed from writing finder methods. Instead, the container

provider's tools will be responsible for generating the finder methods based on the

EJB QL expressions defined for the bean. With EJB 3.0 the persistence manager is

responsible for generating these correct implementations. With this approach CMP

entity beans become more portable and easier to deploy.

9.3. MessageDrivenBean

In EJB 1.1 the communication between beans and clients is done through remote

procedure calls (RPC). A typical example would be a client who invokes a method of

another remote bean somewhere on a server. But until the method invocation

returns, the client is blocked; it must wait for the method invocation to end before it

can execute the next instruction. Such a system is called synchronous whereas

messaging systems are asynchronous. With a messaging system like Java

Messaging Service (JMS) a client can send a message without having to wait for a

reply. The JMS client executes the send operation and moves on to the next

instruction. The message might eventually be forwarded to one client or many, none

of which need to reply.

With EJB 1.1 support for the JMS API has already been integrated into the EJB

framework. JMS lets you send messages from one JMS client to another through a

messaging service, sometimes called a message broker or router. A message is an

object in JMS, which has two parts: a header and a message body. The header is

composed of routing information and metadata about the message. The message

body carries the application data or payload. There are several message types

Future perspectives page 86

depending on the type of payload, including message types that carry simple text

(TextMessage), serializable objects (ObjectMessage), a collection of properties

(MapMessage), byte streams (BytesMessage), primitive values streams

(StreamMessage), or no payload (Message).

With EJB 2.0 a new type of enterprise bean has been introduced: the

MessageDrivenBean (message bean). The message bean is designed to handle

asynchronous JMS messages. The message bean is a complete enterprise bean

just like the session and entity beans, but there are some important differences. A

message bean does not have a remote or home interface. That is because the

message bean is not an RPC component. It does not have business methods that

are invoked by EJB clients. A message bean listens to a virtual message channel

(topic or queue) and consumes messages delivered by other JMS clients to that

channel.

Message beans are composed of a bean class that implements the

MessageDrivenBean interface and a XML deployment descriptor. Message beans

are similar to stateless session beans in that both beans maintain no state between

requests. Message Beans are therefore stateless but, like stateless session beans,

they may have instance variables, which are maintained throughout the bean

instances' life.

As a final note on the message bean, it is important to understand that incoming

messages do not have to be produced by other enterprise beans in order for the

message bean to consume them. Message beans can consume messages from any

topic or queue which are provided by a JMS-compliant vendor. Messages

consumed by message beans may have come from other beans (session, entity, or

message beans), non-EJB Java applications, or even non-Java applications that

use a JMS-compliant vendor. A legacy application might, for example, use IBM's

MQSeries to deliver messages to a queue, which is consumed by other legacy

applications as well as message beans.

Bibliography

[Bec00] K. Beck, Extreme Programming: die revolutionäre Methode für

Softwareentwicklung in kleinen Teams,

Addison-Wesley, Munich, 2000

[Den00] S. Denninger / I. Peters, Enterprise JavaBeans,

Addison-Wesley, Munich, 2000

[Fei00] J. Feiler, Application Servers, Powering the Web-Based Enterprise,

Academic Press, San Diego, 2000

[FlFa99] D. Flanagan / J. Farley / W. Crawford / K. Magnusson, Java

Enterprise in a Nutshell, O’Reilly & Associates, Inc., Sebastopol

(USA), 1999

[GrTh00] V. Gruhn / A. Thiel, Komponentenmodelle

Addison-Wesley, Munich, 2000

[Lot00] Lotus Development Corporation, Inside Notes, The Architecture of

Notes and the Domino Server, available at

http://www-10.lotus.com/ldd/notesua.nsf/find/inside-notes (last visited

2004-12-11), 2000

[MaSt01] V. Matena / B. Stearns, Applying Enterprise JavaBeans, Component-

Based Development for the J2EE Platform

Sun Microsystems, Inc., San Diego, 2001

[Mon99] R. Monson-Haefel, Enterprise JavaBeans,

O’Reilly & Associates, Inc., Sebastopol (USA), 1999

[Mue01] F. Müller, Object-Oriented Analysis and Design with Enterprise

JavaBeans, Institute of Software Technology and Interactive

Systems, Vienna University of Technology, Vienna, 2001

[Som95] I. Sommerville, Software Engineering, Fifth Edition,

Bibliography page 88

Addison-Wesley, Harlow (England), 1995

[Sun02] Sun Microsystems, Inc., Enterprise JavaBeans Specification, Final

Release, Version 2.0, available at

http://java.sun.com/products/ejb/docs.html (last visited 2004-11-23),

2002

[Sun04] Sun Microsystems, Inc., Enterprise JavaBeans Specification, First

Draft, Version 3.0, available at

http://java.sun.com/products/ejb/docs.html (last visited 2004-11-23),

2004

[Sun99] Sun Microsystems, Inc., Enterprise JavaBeans Specification, Final

Release, Version 1.1, available at

http://java.sun.com/products/ejb/docs.html (last visited 2004-11-23),

1999

[Sun99C] Sun Microsystems, Inc., Enterprise JavaBeans to CORBA Mapping,

Version 1.1, available at http://java.sun.com/products/ejb/docs.html

(last visited 2004-11-27), 1999

 [Tre01] P. Tremblett, Instant Enterprise JavaBeans,

The McGraw-Hill Companies, Inc., New York, 2001

 [Tre01] R.S. Pressman, Software Engineering : A Practitioner’s Approach,

Fifth Edition, The McGraw-Hill Companies, Inc., New York, 2001

Web Links

http://www.sun.com

 Homepage of Sun Microsystems, Inc.

http://java.sun.com/products/ejb

 Resources, technical papers and downloads for EJB

http://www.microsoft.com

 Homepage of Microsoft Corporation

http://www.microsoft.com/net

 Introduction and further information to Microsoft .NET framework

http://www.mono-project.com

 Open source implementation of the .NET framework

http://www.mozilla.org

 Open source browser project

http://www.mozilla.org/projects/xpcom

 Introduction and further information to XPCOM

http://www.fujitsu-siemens.com

 Homepage of Fujitsu Siemens Computers GmbH

http://www.microdoc.de

 Homepage of MicroDoc GmbH

Abbreviations

API, Application program interface

BMP, Bean Managed Persistence

CMP, Container Managed Persistence

CORBA, Common Request Object Broker Architecture

CPU, Central Processing Unit

DBMS, Database management system

EJB, Enterprise JavaBeans

HTML, Hypertext markup language

IDE, Integrated Development Environment

IDL, Interface Definition Language

JAR, Java archive

JDBC, Java Database Connectivity

JDK, Java Development Kit

JMS, Java Messaging Service

JSP, Java Server pages

JVM, Java Virtual Machine

ODBC, Open Database Connectivity

OOA, Object-oriented Analysis

OOD, Object-oriented Development

OOP, Object-oriented Programming

O/R, Object - Relational

OS, Operation System

OSI (Open system interconnection) reference model

PC, Personal Computer

RMI, Remote method invocation

RMI-IIOP, Remote method invocation over Internet Inter-ORB Protocol

SOAP, Simple object access protocol

WWW, World Wide Web

XML, Extensible markup language

