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Preface

Motivated by the omnipresent issue of missing values in databases, the development of new
approaches for estimating missing data is always subject of research, especially in depart-
ments with focus on applied statistics as the ”Department of Statistics and Probability
Theory” at the TU Wien, Austria.

The fundaments of this thesis was the aim of developing novel robust imputation methods
in combination with principal component analysis. Since there is hardly any literature on
this topic, a paper of Sven Serneels et al. [7] has been considered as initial point for this
development. Originally the proposal of Serneels was only intended as inspiration for further
development, however several aspects have been identified which lead to an improved version
of the algorithm proposed by Serneels, with respect to missing data estimation. Aside the
mathematical prerequisites of imputation based on principal component analysis, the devel-
opment of this improved method with all its issues has been summarized in this thesis.

However not only the theoretical background has been treated in this context, but also an
implementation of the mentioned methods, which has been optimized regarding to runtime
behaviour and memory consumption. Since robust methods can usually be characterized as
computational intensive, efficient implementation is one of the key aspects in this context
in order to be able of applying these methods on large amounts of data. As the environ-
ment R is methodically very powerful and mature, it cannot be considered as economical in
terms of resource consumption. To avoid these drawbacks critical components are usually
implemented in C++ or Fortran. So the mathematical development of new methods in com-
bination with the challenging implementation with respect to limited capacities, were the
reasons for my decision to write this thesis as conclusion of my studies in informatics.
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Chapter 1

Introduction

Nowadays almost every process which deals with any kind of information, is based upon a
database containing the data this information is made of. No matter what kind of automated
task is considered, in the background a database keeps and manages all the data which is
necessary for keeping things running. While issues like consistency, reliability, stability, etc.
of databases have been treated amply, there are only few approaches which check the con-
tents of databases for plausibility. Not only the basics of keeping such a system alive and
intact are essential, but also the quality of contents affects the efficiency of the tasks and
procedures which are running in such environments.

This thesis will mainly focus on plausibility of the contents of databases. On the one hand,
methods for estimating the plausibility of single entries with respect to the whole data struc-
ture will be presented, and on the other hand, methods for estimating missing data will be
discussed and improved. Since missing values are one of the main issues of data aquirement,
efficient algorithms for estimating these values are conductive for improving the quality of a
database, regarding to its contents. Since the field of such imputation methods as described
by Little and Rubin (2002) is very wide, this thesis will mainly focus on single imputation
methods, dealing with continuous data. The development of methods for categorical data
and multiple imputation based on the methods discussed here, is already in progress, but
would go far beyond the scope of this thesis.

The fundament for the estimation of missing data is in this context a paper, written by Wal-
czak et al. (2001), and Serneels et al. (2007) who propose a method for principal component
analysis on data containing missing values. After discussing the theoretical background of
the mentioned issues, the approach of Walczak et al. (2001) will be adopted and a rather
new imputation method will be presented.

An aspect which will be omnipresent is robustness. Since single entries from a database,
which do not fit the general structure, shall not distort any estimations and assumptions
based on these data, the considered methods and algorithms are designed to minimize the
influence of such outlying entries, in order to obtain results representing the structure which
stands behind the majority of observations. Croux et al. (2007) as well as Rousseeuw et al.
(1999) have developed several methods, which will be very useful in this context.
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Chapter 2

Plausibility of Databases

2.1 Databases in Statistical Context

Since this thesis deals with algorithms, applied on the contents of databases, first of all,
the way databases are treated in this context should be specified exactly. In contrary to a
database oriented approach, tables will not be considered as entities with relations to each
other but such multivariate data structures are represented by matrices. If not specified
explicitly these matrices are of size n x p which means, the underlying entity had n entries
and p attributes. In our context the attributes are considered as dimensions. This means,
that each entry or observation from our entity is located at an exact defined position in a p
dimensional space.

Further the content has to be adapted in order to fit the prerequisites of mathematical algo-
rithms. In general only numerical values can be processed by these routines. Data which is
usually represented by strings or other not exact defined data types has to be converted to
numerical values. This applies usually to categorical data (e.g. gender, colour of eyes, . . . )
which has to be coded in some way (e.g. male = 1, female = 2 or blue = 1, green = 2, brown
= 3, . . . ). Of course the original meaning of the coded values is kept in order to interpret the
results of miscellaneous methods appropriately, but it should be mentioned here, that most
of the algorithms can only deal with numerical data and therefore the data format has to be
adjusted. Considering R (www.r-project.org) as a tool which has been designed for statistical
research and calculation, this functionality has already been implemented and the user does
not need to care about the representation of categorical data any longer. Nevertheless in
some cases it may be very helpful to be aware of these prerequisites and the way information
is coded internally. For instance, if the considered data contains local information which is
coded by addresses, a conversion into geographic coordinates which represent exactly the
same information may be necessary for the mathematical algorithm, in order to be able to
interpret the local relations between single observations correctly.

In general variables can be categorized into three basic types:
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• Nominal variables
Simple names are assigned to objects. These names may be coded by numbers, however
ranking these values would not make sense at all. (e.g. colors, countries, gender, . . . )

• Ordinal variables
Similar to nominal variables, but the values can be ordered and compared to each other
(e.g. grades at school). Simple methods like median calculation are possible in this
context.

• Continuous variables
In contrary to the other types of variables, which are also called categorical types,
this type may contain all values ∈ R or a subset of R. Further these values may be
compared to each other, as well as added, multiplied and divided by each other (e.g.
length, mass, speed, . . . ).

2.2 Basic Diagnostic Plots by Data Projection

A very common method for getting a first impression of a dataset is the so called biplot
as proposed by Gabriel (1971), shown in Figure 2.1 (b). The plot shows data of different
types of iris flowers. The underlying data set contains four variables, named Sepal.Width,
Sepal.Length, Petal.Width and Petal.Length, which are characteristic for these flowers. Fur-
ther a categorical variable indicating the species of iris (Iris Setosa, Versicolor and Virginica)
is available. As ordinate and abscissa, the first two principal components are chosen, which
are two orthogonal directions in our 4-dimensional space. These directions are chosen in a
way, that a scale measure of the data projected onto these directions is maximized. Such
directions can be determined by principal component analysis or PCA (Hotelling 1933). In
other words, the biplot shows the data from a direction which is very informative and shows
much of the structure of the data. Compared to this approach we also could plot two vari-
ables against each other as shown in Figure 2.1 (a). In this plot the structure of the data is
not as clear as on the right side. Without any knowledge about the type of the observations,
we could easily identify the setosa-type at the very left edge of the biplot, which is much
more difficult in (a). Further, two other species may be distinguishable without additional
information in the biplot. When considering only plot (a), one would never be able to iden-
tify the three groups of iris flowers correctly without any additional information.

The system of coordinates in the biplot intimates, that it is usually influenced by each single
variable, whereas a two dimensional plot obviously depends only on two variables. This sys-
tem of coordinates indicates the influence of the single variables on the plot itself, and gives
additional information concerning the correlation of the variables. If two axes point into a
similar direction, one can assume that these variables are highly positive correlated. Axes
pointing into opposite directions indicate a negative correlation, and a pair of approximately
orthogonal axes indicates a very low or no correlation.

Of course one could plot each pair of variables separately, but especially when processing
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Figure 2.1: Fisher’s iris data set. Two dimensional plot (a) vs. biplot (b)

high dimensional data, a simple biplot gives much more information on the structure than
a pairwise comparison of the variables. The concept of biplots can be extended a little by
adding plots of the first versus the third or the second versus the third principal component.
This may give a more detailed and comprehensive insight in the structure.

A first, very brief check of our data using the biplot does not give any information on strange
observations which do not follow the general structure of the data. However if there was an
observation at the very right in the biplot which actually belongs to the setosa group, this
would be an indicator for some irregularities or contamination in our data. In this case one
should have a closer look at the concerned observation and, if possible, figure out where this
irregularity comes from.

2.3 Principal Component Analysis

Talking about principal components, we should first exactly specify the mathematical model
which stands behind, and discuss various possibilities of calculating these components - the
different kinds of principal component analysis. As already mentioned PCA tries to find
directions in the data space which maximize a scale measure of the data projected onto
these directions. Usually PCA is carried out with centered data matrices which requires a
center estimation in advance. From now on the estimated center of a data matrix X with n
rows and p columns will be denoted as T and the estimated covariance as C, regardless of the
estimation method. Appropriate methods for centering multivariate data will be discussed
later on (Section 2.4.1).
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Further scaling the data in a preceding step may also be useful due to different ranges of
the variables. Considering geometric characteristics of objects, it appears obvious that the
variables should represent the same units (e.g. mm). If variables which are coded differently
(let’s say in mm and m) are mixed, the mm measures would dominate the model due to
the high values in comparison to m-measures. To avoid this problem, scaling in advance is
an appropriate approach. Classical PCA methods require an estimation of the covariance
structure in advance, which explains pairwise relations between the variables. The covariance
matrix of a data set X is classically estimated by the sample covariance matrix

S =
1

n− 1

n∑

i=1

(xi − x̄) (xi − x̄)> (2.1)

where xi are the p-dimensional observations and x̄ = 1
n

∑n
i=1 xi is the arithmetic mean vector.

However, both location and covariance can be estimated in a different way, denoted by T
and C, respectively. From now on we will consider X as already centered and scaled data
matrix, which makes the formal explanation of PCA a little bit easier. PCA is usually based
on covariance decomposition:

C = ΓΛΓ> (2.2)

The covariance matrix is decomposed into its eigenvectors, columnwise represented by Γ and
its eigenvalues, represented by the diagonal matrix Λ as its main diagonal. By calculating
the eigenvalues the largest extent of the ellipsoid which is given by the covariance matrix is
being searched. This extent is the first eigenvalue, and the corresponding direction gives the
first eigenvector. The second largest extent of this ellipsoid, orthogonal to the first direction
which has been determined, gives the second eigenvalue and so on. As our data matrix X
was of dimension n×p, (Γ) containing p eigenvectors of length p is of dimension p×p, as well
as Λ with its p eigenvalues, arranged on its main diagonal. Each eigenvector contained in Γ
gives the direction of one principal component and the corresponding eigenvalue of Λ defines
its length. As the eigenvalues are in descending order, the first eigenvector and eigenvalue
represent the largest principal component, the last eigenvector and corresponding eigenvalue
represent the smallest principal component.

As seen in Figure 2.2 (b), the first principal component explains 73% of the variance contained
in the data. Since all principal components are orthogonal to each other, they can simply be
considered as a rotated system of coordinates. Γ which is orthogonal, is the corresponding
rotation matrix which performs this transformation of the system of coordinates:

Z = XΓ (2.3)

whereas Z is called scores and represents the rotated data matrix. These scores contain
exactly the same information as X, only represented in a different way. The rotation matrix
is usually called loadings. Since it is orthogonal, rotating the scores back to the original data
is very simple:

X = ZΓ> (2.4)

The advantage of expressing the whole data structure by these scores, is that compared
to the original structure, the information is distributed differently among the columns. As
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Figure 2.2: Fisher’s iris data set. (a): Plot of the first 3 variables of the dataset including
the fist two principal components and a screeplot of the same dataset (b).

described in Figure 2.2 (b), the third and fourth principal component only describe 2.5%
of the variance, which means, that 95% of the information of the original data matrix is
contained in the first two columns of the scores. So by dropping the third and fourth column
of the scores, we make very little mistake and can reduce the amount of data needed to
represent 95% of the information by half. Of course data compression is not the main
purpose of PCA but in certain cases this may be helpful.

By simply dropping the last few columns of Z, the data is being projected onto a hyperplane
spanned by the remaining principal components. The number of principal components which
contain relevant information is in this context denominated as k <= p. Figure 2.3 (a), shows
an example of this projection in two dimensional space, where all observations are projected
onto the first principal component (p = 2, k = 1). Again both systems of coordinates
are displayed: Outside the original system which has been centered, and the inner axes
representing the rotated system. The projection onto the princiapl components is done by
setting the scores of the second principal component to zero or by dropping the according
columns of Z which is equal. Compared to the projection done in the original system of
coordinates this is very simple. Afterwards the projected data has to be rotated back which
is done by Equation (2.4). If we had set column k + 1, . . . , p of Z to zero this fits perfectly,
however if we have dropped these columns completely, we have to drop them in Γ too, in order
to be able to use (2.4) which simply results from the prerequisites of matrix multiplication.
Mathematically this is the same, but becomes important during implementation of this back-
transformation.
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Figure 2.3: Fisher’s iris data set. Sepal.length vs. sepal.width, only showing observations of
type setosa

2.3.1 Number of Relevant Components

A question which arises in this context is the determination of k - the number of relevant
components in the structure. The aim is to represent the data with as few components as
possible and a minimum of loss of information. These are two quite contradictory ideas and
require a sort of trade-off between the number of components and loss of information. In the
introducing example the decision was rather easy as dropping 50% of the components only
resulted in 5% loss of information which is quite unusual. Normally it is very hard to make
a clear decision in this context. In literature several rules are proposed which are in fact
only rules of thumb, based on experience and not on statistical methods or facts. A rule for
example would be to chose as many components so that 90% of the variance is explained.
Following another rule one has to drop the components which explain less variance than the
medium variance explained by all components. There are numerous approaches of this kind
which all have been developed in a specific context and may have been appropriate but it is
not possible to formulate a general rule which solves this problem.

2.4 Robustification of PCA

As shown in Figure 2.3, (b) PCA as it has been explained up to this point is very sensitive
to outliers. The plot shows some artificially added outliers which contaminate the dataset
and distort the original principal components in a way, that they change their directions
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completely. Further one can see, as intimated by the grey dashed ellipsis, that the covariance
structure has changed tremendously. The system as shown in (b) is very instable, because
no matter which direction is considered, the variance of observations projected onto this
direction is quite constant - the corresponding ellipse is nearly a circle. In such a case a
slight change of the data may result in a totally new constellation of principal components
which is of course not desired. Robustification of this method tries to reduce the influence
of some individual observations in order to gain a result which is only influenced by the
majority of the data.

There are two main reasons which are responsible for this sensitive behaviour: One the one
hand the classical mean, which is here used as center estimation, and moreover the classical
covariance estimation is very sensitive to single outliers. Since deviations from the center are
squared and so affect the classical covariance estimation tremendous it is obvious, that this
approach cannot be appropriate in such a context. Solutions to this issue are still object of
research, and permanently new approaches are developed for robustifying existing methods.

A first approach of robustifying PCA is to choose robust location estimates for centering,
and robust covariance estimates for determining the principal components. The advantage of
this approach is, that the development of these estimators is completely independent of PCA
which only requires centered data and information on the covariance structure regardless of
the estimation method. In context with robust methods a term which occurs quite often is
the so called breakdown point, specifying the amount of outliers which may be contained by
the dataset without resulting in non-sense estimation.

The following section gives a short overview of common robust location and scale, as well as
covariance estimators:

2.4.1 Robust Location Estimation

As alternative to the classical mean

x̄ =
1

n

n∑

i=1

xi (2.5)

which is affected easily by outliers, the following location estimates are usual:

• The median of a sample x = (x1, x2, . . . , xn) has a breakdown point of 50% and is
defined as

x̃ =

{
x(n+1)/2, n odd
1
2
(xn/2 + xn/2+1), n even

(2.6)

However this estimate is not optimal in a multivariate environment because the loca-
tion estimation is done for each column separately and not with respect to the whole
multivariate structure.
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• The L1-median, also known as spatial median estimates the center of the structure
as it returns the point with the minimum distance to all observations:

n∑

i=1

‖xi − T ‖ → min (2.7)

As this concept is derived from the classical median, the L1-median has a 50% break-
down point as well.

2.4.2 Robust Scale Estimation

Scale estimation apart from covariance estimation has not been considered yet but will be
very important in the subsequent chapters dealing with alternative approaches of PCA.

Instead of the classical standard deviation

SD(x) =

√√√√ 1

n− 1

n∑

i=1

(xi − x̄)2 (2.8)

one of the following robust scale estimates may be used:

• Median Absolute Deviation with breakdown point of 50%, also known as MAD.
The MAD of a sample x is defined as

MAD (x) = med
i

(|xi − x̃|) (2.9)

If the underlying distribution can be assumed as normal distribution, the MAD has to
be adjusted in order to be comparable with SD estimates:

SMAD =
MAD

0.675
(2.10)

• QN as proposed by Rousseeuw and Croux (1993) is an even more efficient alternative
and defined as

QN(x) = d {|xi − xj|; i < j}(k) (2.11)

SQN = 2.2219QN (2.12)

whereas 2.2219 is again an adjusting factor for compatibility with SD estimates under
normal distribution and k =

(
h
2

)
≈

(
n
2

)
/4 and h =

[
n
2

]
.
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Figure 2.4: Fisher’s iris data set. Sepal.length vs. sepal.width, only showing observations of
type setosa. Covariance and location estimation.

2.4.3 Robust Covariance Estimation

A common approach of covariance estimation of multivariate normally distributed data is
the Minimum Covariance Determinant (MCD) estimator, described in Rousseeuw and Leroy
(1987). The idea behind is to find an ellipsoid with minimal determinant which covers at least
h observations whereas bn+p+1

2
c ≤ h ≤ n. The choice of h determines the efficiency which

increases with higher values of h, as well as the breakdown point which is n−h
n

and decreases
with increasing h. Again here has to be made a compromise between high breakdown point
and efficiency.

Since considering each possible set of h out of n observations is computational too intensive
for processing larger amounts of data, Rousseeuw and van Driessen (1999) have developed ”A
fast algorithm for the minimum covariance determinant estimator”which can handle sample
sizes up to n = 50.000, which was, apart from its efficiency and robustness, decisive for this
method to become popular.

The procedure proposed by Rousseeuw and van Driessen (1999) mainly consists of two steps:

• h observations are chosen randomly which define the index set I1. The classical center
x̄1 and covariance structure S1 is estimated only considering these h values. Further
the Mahalanobis distance of each observation is calculated, which is defined as:

MD(xi) =
√

(xi − T )> C−1 (xi − T ) , i = 1, . . . , n (2.13)
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wheras C is replaced by S1, and T by x̄1 in this situation.

• All observations are sorted according to their Mahalanobis distance, and a new index set
I2 is chosen which contains the h observations, with the smallest distance estimation.
Again the classical covariance S2 and location x̄2 are estimated.

Since det (S2) ≤ det (S1), repeatedly applying these steps continuously reduces the deter-
minant until convergence. The obtained location and covariance estimate can then be con-
sidered as representing the robust structure of the whole data set. In order to avoid local
optima, the whole algorithm is applied repeatedly with different initial index sets I1, and
the covariance estimation with smallest determinant is then chosen as final result.

Figure 2.4 shows the difference between the classical (a) and the robust (b) covariance and
location estimation. The robust estimation has been done with the MCD algorithm as de-
scribed above. As the covariance structure on the left is strongly attracted by few outliers,
the structure on the right is stable, and represents the majority of the observations, which
are in this case the real observations, quite well.

2.5 PCA by Projection Pursuit

Robustification of PCA as described above is quite useful in certain cases, but there are
circumstances which make the underlying estimators fail. These drawbacks were the moti-
vation of the development of even more powerful PCA methods as described by Croux et
al. (2007). The idea was to avoid the covariance decomposition which is fundamental for
classical PCA and to determine the single components by projection pursuit. The advantage
of this approach is, that it is especially useful for flat data matrices (n ≤ 2p) and for very
large, high dimensional data sets. The first issue concerns covariance estimates which always
need a minimum number of observations, usually (n ≥ 2p) is required, and since covari-
ance estimation is not necessary in this context, this restriction can be ignored. The second
advantage is the iterative manner the components are determined. Classical PCA, regard-
less of the underlying estimation methods, always calculates all components at once. The
projection pursuit approach finishes with the first component before processing the second
component and so on. If only a certain amount of components is needed, the algorithm can
be stopped, which is a great saving of time, especially when computing big data matrices.

The basic idea of projection pursuit is to project the data onto a hyperplane and watch the
change of the structure of these projected data while the hyperplane is rotating. In our case
we want to maximize a scale measure of our projected data, which gives us then the desired
principal components. So what has to be done, is to choose a direction in our p-dimensional
space and try to rotate it in a way that a chosen scale measure is being maximized. Croux
and Ruiz-Gazen (2005) suggest the MAD or QN estimator for this purpose. The problem
which arises at this point, is the incredible amount of possible directions which have to be
checked, so there must be rules decreasing this amount to a reasonable set of directions,
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Figure 2.5: Fisher’s iris data set - only showing observations of type setosa. Candidate
directions for PCAproj (a) and PCAgrid method (b).

which can be considererd as candidate set for the principal components.

Since all principal components point through the center of the data, the first rule is obvious
which eliminates all directions that do not fit this prerequisite. This reduces the amount
of candidate directions enormous but their number is still infinite. The R package pcaPP
implements this method and supports two types of direction selection:

• PCAproj
The first method, illustrated in Figure 2.5 (a), as suggested by Croux and Ruiz-
Gazen (2005) is called PCAproj and basically focuses on directions which directly point
through observations. So as first approximation only directions are checked which point
through the center and single observations. When a proper candidate for the first prin-
cipal component is found, the search is being continued in the orthogonal subspace to
the found component until no dimensions are left or the desired number of principal
components is reached. As mentioned by Croux et al. (2007) this algorithm has se-
rious drawbacks concerning the eigenvalues, which may drop to zero, especially when
computing very flat matrices and using robust scale estimates. Considering the orthog-
onal subspace of a principal component, which is defined by a specific observation, this
observation is exactly in the center of the new subspace. Considering a dataset with
few observations and many dimensions, the estimation of the k-th principal component
is strongly disturbed, since k − 1 observation are exactly located in the center of the
considered subspace, which leads to an effect, called implosion of scale.
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A known solution to this problem is an updating step, which adjusts the principal
components afterwards, in order to increase the quality of the result. The components
are rotated and shifted slightly in a way, that observations which have been used as
candidate directions are not located exactly on the resulting components, so the prob-
lem of implosion of scale can be reduced.

Another possibility, which has been implemented in the mentioned package, is to add
additional observations which can be chosen randomly or generated as linear combi-
nations of the existing observations. These additional observations are obviously not
considered, when calculating the scale estimate which is being maximized. However,
they help to stabilize the system, since the chance, that a principal component exactly
points through an observation and thus the effect of implosion of scale can be reduced.

• PCAgrid
The grid algorithm, as proposed by Croux et al. (2007), avoids these problems by
following a completely different approach: Variables are ordered decreasing by their
scale in advance, and the optimization is only done in a two dimensional subspace
spanned by the first two variables instead of the whole p-dimensional space which is
computational less intensive. As shown in Figure 2.5, the plane is separated into a
fixed number of sectors and the direction with the highest scale estimate is chosen.
The procedure is repeated for the first and third variable, the first and the fourth,
. . . , until the first principal component is found. In the subspace orthogonal to the
first principal component the second principal component is evaluated in the same
way. Since this approach is not oriented on single observations which are considered
as candidate directions, the chance that a principal component exactly points through
an observation is very small, thus the problem of implosion of scale negligible.

Concluding it should be mentioned, that the grid algorithm delivers practically the
same result as classical PCA, when classical location and spread estimates are used for
determining candidate directions.

As already mentioned, the computation of principal components using the projection pursuit
approach is not based on any preceding estimation of a covariance structure. Robust covari-
ance estimation (e.g. by the MCD) can only be done when n ≥ p and the considered robust
methods do even need a larger set of observations where approximately n ≥ 2p is required.
Still many common multivariate methods depend on preceding covariance estimation which
makes them useless in the considered case of rather flat data matrices.

At this point PCA by projection pursuit can help, as described in Equation (2.2). A co-
variance estimation can be done, by simply using the calculated loadings and lengths of the
principal components. Thus when a PCA method has been applied on a dataset, which does
not need a covariance estimation in advance, PCA can be reversed, in order to obtain an
estimation for the covariance structure. Even when n < p a covariance estimation can be
done, with the obvious restriction, that the resulting covariance matrix is only of rank n−1.
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2.6 Outlier Detection

After discussing the principals of multivariate statistics, and the robust analysis of data sets,
these methods shall now be used to identify observations, which do not belong to the main
structure represented by the data. One of the central elements in diagnostic is the covariance
structure, as the good observations are located corresponding to it. As already shown in
2.4.3, outlying observations can be identified by considering the Mahalanobis distance. This
measure represents the distance of an observation from the estimated center of a dataset
with respect to the covariance structure. Obviously we will consider a robust covariance
estimate, since calculating Mahalanobis distances based on a classical covariance estimation,
usually leads to masking. Masking is an effect which appears, when the covariance structure
is influenced by strongly outlying observations in a way, that other outlying observations
appear as they belong to the general data structure.

In Figure 2.6 a data set is shown, which contains body- and brain weights of 28 animals. Plot
(a) and (c) show the logarithm of theses values which are highly correlated. In plot (a), the
robust covariance structure is represented by a dashed ellipse. All points on this ellipse have

a Mahalanobis distance of
√

χ2
2,0.95 = 2.45, and since the squared Mahalanobis distances of

multivariate normally distributed observations are χ2
p- distributed, all observations outside

a certain quantile (e.g. 0.95) can be considered as outliers. In this example five observations
point out, three of them with lower brain mass than the average, and two observations with
higher brain mass compared to their body weight. Plot (b) shows the Mahalanobis distances
of each observation, where again these five outliers can be seen. The group containing three
outliers can here be identified as dinosaurs. Since it is very likely, that observations which
represent dinosaurs do behave different in this context, it seems plausible, that they point out
in such a diagnostic plot. Two other outliers which have been detected have Mahalanobis
distances barely larger than the considered threshold and represent Human and Rhesus
monkeys. When lowering the distance threshold, the next observation which points out
stands for chimpanzees, so another group can be identified, which represents primates. Since
primates are in general more intelligent than the majority of animals, this is also coherent.

By considering robust Mahalanobis distances we were able to identify two groups which
consist of outlying observations, and by having a second look, we were even able to ascertain
the reason for this behaviour. When considering the covariance structure, estimated in the
classical way, as shown in plot (c), we can also identify two observations as outliers, which
again are dinosaurs. However, since we know that our dataset contains five observations
which do obviously not belong to its main structure, we have to assume, that classical
covariance estimation in this context is insufficient. Some observations, which here represent
dinosaurs distort the covariance structure in a way, that observations which are in fact
outliers do appear as regular observations, which is called masking.
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Figure 2.6: Body and brain weights of 28 animals. Source: P. J. Rousseeuw and A. M. Leroy
(1987) Robust Regression and Outlier Detection. Wiley, p. 57. (a) Brain- vs. body weight
plot with robust classical covariance structure. (b) Robust Mahalanobis distance plot. (c)
Brain- vs. body weight plot with classical covariance structure. (d) Classical Mahalanobis
distance plot.
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Chapter 3

Imputation Methods

3.1 Introduction

Not only identifying observations, which do not fit the general structure of the data is relevant
when checking a data set for consistency, but also repairing observations may be considered
in this context. Let us consider single observations, which have been identified as outlying,
and the reason for this irregularity is, for instance, an error in the process generating the
data. The simple approach to treat this issue would be to delete these observations. However
the loss of information which comes along with this approach is not tenable. A more elab-
orate idea would be to correct these errors in order to use as much information contained
in the data set as possible. This is obviously only possible when it can be assured, that
the underlying distribution is homogeneous and all observations belong to the same group.
When a whole group of outliers has been detected (Figure 2.6 (a)), which behaves different
in comparison to the majority of the data, forcing this group into a structure it does not
belong to, is obviously not appropriate. Single values of an observation, which have been
identified as defective may from now on be considered as missing values. The only thing we
know about them is, they have been determined incorrectly and maybe the reason for this
error, but usually they do not contain any further useful information.

Since a data matrix with blanked entries cannot be left in this condition, we have to re-
estimate these values in order to obtain a complete data set again. For this purpose so called
imputation methods have been developed (see Little and Rubin, 2002). These methods try
to estimate missing values in a way, that they fit the general structure of the data set as
good as possible.

However, the main issue which was decisive for the development of imputation methods is
the problem of missings, which is always present when dealing with empirical data. The
problems which arise in this context are the prerequisites of common statistical methods
which are in many cases designed to handle complete datasets only. Without imputation
methods the only chance to apply such statistical methods on incomplete data is to delete
observations with missings, which is not tenable because of the enormous loss of statistical
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power. If a high dimensional data set with p = 100 is considered and an overall, chance of
5% that a single value is missing, the probability that a single observation does not contain
any missings is 0.6%. So skipping all observations with missings in such a high dimensional
data set would require to drop 994 out of 1000 observations, which is obviously unaccept-
able. Further, the reason for the data to be missing may be a component of the underlying
structure which must not be ignored and then cannot be seen anymore when observations
containing missing elements are simply dropped.

3.1.1 Types of Missing Values

Each process which generates data is influenced by circumstances, which may not have been
considered when defining or implementing such a process. In such situations values may be
either recorded wrong, or simply no data can be acquired. This may occur, when measuring
devices fail, when people do not want to give all information required by a survey - there
are many reasons which can lead to incomplete datasets, but not all of the resulting missing
values can be treated equally. The difference is the reason why this value is missing, with
respect to the not observed and observed values. Rubin and Little (2002) categorize missing
values in three different types:

• Missing Completely At Random (MCAR)
There is no relation between observed or not observed values, and the probability that
a value is missing.

P (I ij = 0|X iM ,X iM̃) = P (I ij = 0) (3.1)

whereas I ij = 0 means, that value X ij is missing, X iM stands for the observed, and
X iM̃ for missing values of the i-th observation.

• Missing At Random (MAR)
The probability, that a value is missing depends on the observed values.

P (I ij = 0|X iM , X iM̃) = P (I ij = 0|X iM) (3.2)

• Not Missing At Random (NMAR)
Both, observed and not observed values are related to the chance, that a value is
missing. An example would be a survey where people are asked for their income.
Usually people with high salary do not willingly give information about their wealth,
whereas people with normal or low income would answer this question. So the income
may be directly correlated to the probability of a value to be missing, which is a
classical example for NMAR.
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Sepal.Length Sepal.Width
1 NA 3.03
2 NA 3.71
3 5.10 NA
4 4.78 NA
5 5.01 NA
6 NA 2.93
7 NA 3.57
8 5.31 NA
9 NA 3.45

10 5.61 NA

Table 3.1: Additional random observations to Fisher’s iris data set with each exactly one
missing value.

3.2 Common Imputation Methods

After discussing the different types of missings, we will have a look at methods for estimating
missing values in order to be able to apply statistical methods on data matrices which
originally contained blanks. Before considering more elaborate algorithms, we will have a
look at common imputation methods, their advantages and disadvantages:

• Deductive Imputation

This method is based on logical dependencies between variables. Some variables may be
computed exactly based on others (e.g. age of a person can be calculated when date of
birth is known). Since this method requires exactly defined, logical dependencies, which
describe the relations between single variables, missings can be restored completely and
exactly. A missing value in this context does not mean missing information, so this
method cannot be considered as imputation method in its classical sense.

• Deterministic Imputation

The simplest method for imputation is to replace all missing values by a location
estimate of the according variable. In this case each column of the data matrix is con-
sidered separately, the missing values are removed and the location of the remaining
vector is estimated. Afterwards all missings are replaced by this single estimation. The
problem of this method is, that replacing all missings with only one value may bias
scale estimators, which are strongly affected by the unusual amount of observations
exactly in the center of the data.

Again the iris data set is used to illustrate this approach in Figure 3.1 (a). Artificial
observations from Table 3.1 have been added to the data set, whereas each obser-
vation has exactly one missing value, coded with NA. The values are drawn from a
normal distribution with parameters estimated from the original iris data set, again
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Figure 3.1: Fisher’s iris data set - only showing observations of type setosa with 10 imputed
observations each. Deterministic (a) and stochastic imputation (b).

only considering observations of type setosa. The dashed lines represent the center of
variables Sepal.Width and Sepal.Length. Black triangles represent observations where
Sepal.Length = NA, observations with Sepal.Width = NA are represented by black
diamonds. Since only one variable is available, the second value is set to the center, so
all imputed observations are exactly positioned on one of the two dashed lines, which
are given by the center of the data.

• Stochastic Imputation

As an extension of deterministic imputation, stochastic imputation adds a random error
term ε ∼ N (0, σ2

ε) to the location estimation. So imputed values do not concentrate
that strongly on the center of the data. Since the real location of the data is not known,
the imputation is always based on an estimation of the center which is a further issue,
usually biasing the resulting structure. A further drawback of these methods is, that
they are not intended to be applied on discrete data.

Figure 3.1 (b) shows an example of stochastic imputation with error term (σε = 0.01SD,
see Equation (2.8)). Additional observations are again taken from Table 3.1. The
dashed lines represent the 2σε interval around the center of the data. Observations
with missings do here not concentrate exactly on two lines, but are a little bit scattered
in between these borders.

If imputed and original observations from Figure 3.1 would not be represented by
different symbols, they would not point out as irregular observations. This, however
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is only because of the second principal component, which is quite large in comparison
to the first principal component. In Figure 3.2 (a) a data set is shown with high
correlation between x and y values. 100 values have been drawn from a multivariate
normal distribution:

X ∼ N2

(
(4, 3.2) ,

(
1 0.8

0.8 0.68

))
(3.3)

x values of observations 81 to 90 and y value of observation 91 to 100 have been
blanked and again imputed by stochastic imputation. Since the portion of the second
principal component is smaller, three different types of observations point out: The
original observations on a diagonal, and the imputed observations on a horizontal
and vertical line, depending which variable has been blanked. Since the estimation of
missing values does only depend on location information, and is completely independent
of any information concerning the covariance structure, deterministic and stochastic
imputation are very inefficient since only a fraction of the available information is used,
which is a real drawback of these methods. This can be seen in Figure 3.2 (b) which
shows the Mahalanobis distances of the original and imputed observations. The dashed

line at 2.72 represents the
√

χ2
2,0.975 - quantile. Only 5 out of 20 imputed observations

are below this boundary, whereas only one observation out of 80 original observations
is slightly above, which is usual. So 75% of the imputed values can immediately be
identified as outliers which is a rather bad characteristic of stochastic and deterministic
imputation.

• Donor Imputation

Donor imputation, also known as Matching, concentrates on single, complete observa-
tions. Estimation of missing values of a specific observation always depends on one
complete observation, so imputed values follow the general structure of the data. By
considering Mahalanobis-distances, it is impossible to distinguish between original and
imputed observations.

In order to estimate missing values of observations, say xk, this method tries to find the
most similar observation xl without missings, which serves as donor. Missing values
of xk will be replaced by the available values of xl. In order not to bias the result,
one complete observation must not serve as donor too often. This issue is similar to a
problem of deterministic imputation: Imputing the same values repeatedly may create
artificial accumulations of data, which do not belong to the actual structure and may
influence the result of subsequent methods. Since location estimation is not necessary
for this method, but only distances are measured, this approach may also be applied
to datasets with discrete values, especially in high dimensional cases.

The calculation of distances may be a little bit tricky, as categorical and continuous
variables are usually mixed up. A simple approach for estimating the distance of two
observations containing both types of variables may be defined as follows:

d = (x,y) =
√∑

i∈C

(xi − yi)
2 + c

∑

i∈D

nequal (xi, yi) (3.4)
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Figure 3.2: A random sample of 100 multivariate normally distributed two-dimensional
observations. 10 x-, and 10 y-values have been blanked and the concerning observations have
been imputed by stochastic imputation (a). Distances of orignial, and imputed observations
(b).

with C an index set representing continuous variables, D an index set representing
discrete variables, and c a constant for adjusting the influence of discrete variables in
comparison to continuous variables on the distance estimation. nequal returns 0 if the
arguments are equal, otherwise 1 is returned.

Figure 3.3 illustrates donor imputation. For this example only three randomly drawn
observations have been added with values for Sepal.Length = 4.45, 4.75 and 5.25.
Values of Sepal.Width are missing. Imputed observations are displayed as black dots,
observations which serve as donor have been marked additionally. Concerning this
example, two problems should be mentioned:

– For the additional observation 1 on the left, a rather outlying observation has
been chosen as donor. Since the imputed values of an observation with missings
depends on only one complete donor, this method is very instable concerning
outliers.

– The second issue concerns the imputed observations 2 and 3. Although a plausible
value has been chosen for the variable Sepal.Width, there is not only one donor
with minimum distance regarding variable Sepal.Length. There are several solu-
tions which are equal in terms of goodness, without any chance of finding a best
solution. The problem arises in this context because the data type of Sepal.Length
and Sepal.Width is not really continuous, but the values have been rounded to
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Figure 3.3: Fisher’s iris data set - only showing observations of type setosa with three
imputed observations each. Donor (a) and kNN imputation (b).

tenths of millimeters, so these variables may be considered as discrete under cer-
tain circumstances. If the variables were really continuous, or the data set consists
of more than two discrete dimensions, the problem of two possible candidates for
donors won’t be that outstanding. However, apart from outliers, imputed values
are obviously located corresponding to the general structure of the data.

• kNN Methods

The k-Nearest Neighbors method may be considered as extension of Donor Imputation.
Not only one similar observation, but k similar observations are considered in order to
estimate missing values. These k observations are referred to as the k Nearest Neigh-
bors. Usually an average of the concerned observations is being calculated and replaces
the missing values. An advantage of this algorithm is the adjustable variance, which
decreases with increasing k. Further this method is parameter-free, so no distribution
assumptions have to be made in advance.

The kNN-approach is shown in Figure 3.3 (b). In comparison to the previous method,
an imputed observation does here not depend on one, but on k donors, so the es-
timation of missing values is more robust concerning single outliers. The value for
Sepal.Width of the mentioned observation 1 on the left has now changed, so that it fits
quite well into the general structure. Further the chance of obtaining more than one
possible solution which is equal in quality is not that high anymore, so there are even
less problems with discrete variables in this context.
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3.3 Notation, Indexing and Definitions

In the following sections we will often transfer observations and other expressions from one
system of coordinates to another. This is usually done with rotation matrices, which is in our
case Γ, the loadings of the principal components. Since we will primarily consider sub-spaces
of our p-dimensional data space, we will refer to parts of matrices which will be denoted in
the following way:

AMK Amk (3.5)

Capital letters in this context always represent index sets. So AMK stands the matrix A,
only considering rows from index set M and columns identified by index set K. Small letters
represent indices, so Amk stands for the k-th element in the m-th row of A. Further, whole
columns or rows from a matrix may be referred to as

A.K AM. (3.6)

whereas A.K stands for all columns of A which are given by index set K, and AM. represents
the rows, given by index set M . This can be again done with small letters, thus only one
column or row is selected. The priority of indexing is higher than any other matrix operation,
so

A>
.K = (A.K)> (3.7)

Since we permanently refer to k relevant components of our data structure, we will often
need the first k columns of a matrix so the index sets

K := {1, . . . , k} (3.8)

and
K̃ := {k + 1, . . . , p} (3.9)

shall here be defined a priory. Further we often split a vector representing an observation
into its observed and missing variables, which can easily be done by index sets

Mi = {j = 1, . . . , p|X ij 6= NA} ; mi = |Mi| (3.10)

and the complementary

M̃i = {j = 1, . . . , p|X ij = NA} = {1, . . . , p} \Mi; m̃i = |M̃i| (3.11)

So Mi indicates variables which values are known in a observation X i., whereas M̃i indicates
variables with missing values. Further mi is the number of available values and m̃i ist the
number of missing values of the considered observation.

Since we will primarily use index sets K and M for Γ, where rows represent variables and
columns represent principal components, when referring to Γ the ’.’ for indexing a whole
column or row with index sets K, K̃, M or M̃ , will be omitted. So ΓK stands for the
columns of Γ specified by index set K, whereas ΓM stands for rows of Γ given by M .

Further the p-dimensional identity matrix, which is usually denoted as Ip will be here dis-
played as Ip, as with this notation indexing of such a matrix is more comfortable.
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3.4 Imputation based on Principal Components

Since imputed values should fit the structure of the majority of the observations as good as
possible, and if the observations are from a multivariate normal distribution, this structure is
described sufficiently by principal components. Thus they can be used for imputing missing
values. The first task which has to be solved is to develop an algorithm for PCA which can
be applied on data containing missings. For this purpose Walczak et al. (2001) introduced
a method for PCA, which can cope with missing values at random. Serneels et al. (2007)
suggested to extend this method by using robust PCA. This approach can be used for impu-
tation purpose as well, since the algorithm iteratively estimates missing values for applying
common PCA methods.

3.4.1 PCA on Data Containing Missing Elements

Generally the algorithm repeatedly estimates principal components, projects observations
containing missing onto these components and stops when the estimation of the missings
does not change anymore. Before going into detail, a matrix I shall be defined with entries

I ij =

{
1 if Xij observed
0 if Xij missing

(3.12)

which represents the pattern of missing values. Since missings are usually coded and denom-
inated as NA (Not Available) this pattern may also be called NA-pattern. The procedure is
described as follows:

1. Missing values are initialized with a location estimate or by a donor imputation.

X̂
′
ij :=

{
X ij, I ij = 1
initial estimate, I ij = 0

(3.13)

2. The singular value decomposition is performed on X̂
′
. It is mentioned, that PCA can

also be applied at this point. Serneels et al. (2007) suggest to use a robust PCA
method in order to robustify the result. So eigenvalues Λ̂ and eigenvectors Γ̂ of the
actual structure are estimated. Scores are calculated in the usual way (see 2.3):

Ẑ := X̂
′
Γ̂ (3.14)

3. The original data matrix is reconstructed with k components, k < p

X̂
′′

:= ẐK̂Γ̂
>
K̂ (3.15)

whereas ẐK and Γ̂K denote in this context the first k columns of Ẑ and Γ̂.
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Figure 3.4: Fisher’s iris data set - only showing observations of type setosa. Comparison of
the iterative projection algorithm as proposed by Walczak et al. (2001) (a) and the straight
projection method (b).

4. The missing values of the original matrix are replaced by the values from the recon-
structed matrix.

X̂ ij =

{
X̂ ij, I ij = 1

X̂
′′
ij, I ij = 0

(3.16)

The procedure is continued at step 2 until convergence of the system. Walczak et al.
(2001) do not suggest a convergence criterion, but Serneels et al. (2007) suggest to use
the difference of the estimated values between two iterations. Other convergence crite-
ria like the movement of the principal components will be described later in Section 4.3

A further cross-validation step is suggested in order to determine the optimal number of
components for reconstructing the data matrix. In fact, the number of principal components
which should be used, is the number of relevant components contained in the data structure.
However, as mentioned in Section 2.3.1, the decision how many components shall be consid-
ered when examining a specific set of data is not easy, as there are no formal rules which
can be applied on this issue.

Figure 3.4 (a) illustrates the movement of imputed observations from their initial estimation
to their final position in converged state. Dashed lines represent step 3, which projects the
observation onto the principal component. However this projection is orthogonal to the es-
timated principal components and not to the original system of coordinates which implies
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an alteration of observed values, which of course is illegitimate. In the mentioned Figure an
observation with missing information of Sepal.Width is intimated by the dashed vertical line.
An imputed value must always be located exactly on this line, which here is the case with
the initial estimate.

The projection onto the first principal component not only changes the value of Sepal.Width
but Sepal.Length is also affected. So step 4, represented by the dotted line, has to correct
this deviation from the dashed vertical line, which is simply done by only adopting values of
Sepal.Width. With iteration #2 the observation will be again projected onto the principal
component and then moved back onto the dashed line. The only difference to iteration #1
is, that meanwhile the principal components have been estimated again, and since some
observations have changed their positions, the principal components have moved as well.
For the sake of simplicity Figure 3.4 (a) refers to a situation, where the moving observation
does not have any influence on the principal components, which may be the case when the
considered observation is outlying and a robust PCA algorithm is applied.

Figure 3.4 (b) shows how several observations would be projected onto the first principal
component. Observations with missing values of Sepal.Width are displayed as white circles,
observations without information concerning Sepal.Length are represented by white squares.
Black items represent again the converged state of imputed observations. The situation
displayed here is similar to prediction with linear models, where one or more dependent
variables are explained by one ore more independent variables. The difference here is, that
during one iteration each variable may become dependent or independent - depending on
the NA-pattern of the currently considered observation.

Since the algorithm must not change observed values, and there may be different NA-patterns
for each variable, the direction of the projection is very likely to be different for different
observations, especially when considering high dimensional matrices. In a two dimensional
case there are obviously two possible directions for projecting single observations (parallel to
the ordinate or parallel to the abscissa), but in p-dimensional space there are 2p− 2 possible
directions. This results from 2p possible NA-patterns for each observation, minus 2 for the
trivial cases which do not require projection: No value is missing, so no imputation is neces-
sary, and all values are missing, which is a rather unusual situation and may be treated by
deleting such observations, or as no information is available, only deterministic, or stochastic
imputation may be applied in such cases.

Convergence

Serneels et al. (2007) points out, that robust PCA methods may have problems with con-
vergence because of certain observations which prevent the algorithm from termination.

As convergence criterion Serneels et al. (2007) consider the movement of an imputed value
between two iterations. In some cases the estimated values for missing values may differ
strongly between two iterations. Serneels et al. (2007) try to explain this behaviour by
dividing the observations containing missings into two groups: normal and not normal data
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points which are in fact outlying and not outlying observations. Since robust PCA does
not consider outlying observations, estimation for such observations with missings may alter
strongly between two iterations. To bypass this problem the convergence criterion, which
measures the movement of estimations of missing values between single iterations should

only consider observations, which do not exceed a distance threshold of
√

χ2
df,0.99.

The explanation of Serneels et al. (2007) only considering this problem in relation to ro-
bust PCA methods may not be sufficient, as using classical PCA in this context may cause
similar problems. Observations with high Mahalanobis distance would still make enormous
movements, even when the components do hardly move anymore. So a small movement
of principal components which can occur even in (nearly) converged state may prevent the
algorithm from termination because of some outlying observations containing missings and

breaking the convergence criterion. So the
√

χ2
df,0.99 boundary for the distance measurement

between observations may even be considered when using classical PCA.

3.4.2 Estimating Concrete Values

Walczak et al. (2001) and Serneels et al. (2007) originally intended to estimate principal
components, but since an estimation of missings values is done anyhow, the proposed algo-
rithm actually does the whole job. Since a corresponding implementation of the mentioned
method would only return PCA-information, slight changes have to be done in order to re-
trieve the estimated values as well, which usually can be done very easily by modifying the
return structure of the corresponding method.
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Chapter 4

Improvement of Existing Imputation
Methods

In this chapter we will try to adopt the algorithm, proposed by Walczak et al. (2001),
and Serneels et al. (2007), in order to develop a new imputation method. This original
algorithm will from now on be referred to as the iterative algorithm. Since they did not
intent to develop an algorithm for imputation, but an algorithm for (robust) PCA on data
containing missings, several issues arise, which have not been mentioned in their publications
yet. Improvement of the existing algorithm considering PCA is not possible, but the quality
of imputation can be increased in several situations.

In order to increase the quality of the existing algorithm with respect to imputation, we will
consider the following aspects:

• Projection Algorithm

We will have a closer look at the projection of observations containing missings onto the
principal components. As alternative to the iterative projection algorithm illustrated
in Figure 3.4 (a) we will find a straight way of projecting these observations like shown
in Figure 3.4 (b).

• Convergence Criterion

The convergence behaviour of the existing algorithm will be considered, and alterna-
tives will be discussed. At the moment convergence is measured depending on the
movement of imputed observations. We will see, when using different projection meth-
ods, convergence of the algorithm can also be measured based upon the movement of
the principal components.

• Runtime

A critical aspect concerning robust algorithms is always the computational effort, which
usually exceeds the effort of classical estimates by far. Since many robust algorithms
are based on sort mechanisms, which are computationally expensive, trying to find a
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way of reducing the number of iterations of an algorithm would be very helpful in this
context.

• Quality Criterion

In order to compare different imputation algorithms, it will be necessary to formulate
criteria which represent the quality of an estimation. These criteria may depend on
the deviation of missing observations from their original value or may be based on the
deviation of estimated principal components from the original components. Usually
original values and components are not known, so the only way to estimate the quality
of different algorithms in this way is to set up a simulation study. A complete data
set is chosen and a certain portion of the values is blanked randomly. Afterwards the
imputation algorithm tries to re-estimate the blanked values, and these estimates can
then be compared to the original values.

4.1 Types of Projections

The issue treated here is the improvement of step 3 and 4 from Section 3.4.1, the projection
of observations with missing values on a hyperplane, spanned by several principal compo-
nents. The iterative projection of the data is unnecessary since all information concerning
the projection is available at the first iteration. The only difference between projecting the
components in one step like shown in Figure 3.4 (b) from projecting them iteratively (a) is,
that during iterative projection the components move, and so the result may be a little bit
different. However, we will show that this difference can be ignored in most cases.

Before being able to formalize projection algorithms, we must have a closer look at different
types of projections which can occur when imputing missing values based on principal com-
ponents. We have already figured out, that we do not have only one direction the data is
being projected (e.g. Figure 3.4 (b): parallel to Sepal.Width vs. parallel to Sepal.Length) but
the projection itself depends on the NA-pattern. Considering the projection, observations
with the same NA-pattern can be treated equally, so we actually categorize types of NA-
patterns, according to their number of missings values and the number of relevant principal
components in the system.

The projection of observations in the two dimensional case (p = 2) is done along a straight
line, which is defined by the available values. Such lines are shown in Figure 3.4 (a). Since
only the value of Sepal.Length is known, the observation has to be located somewhere on the
corresponding vertical line (m = m̃ = 1). We assume, that the displayed data set has one
relevant principal component (k = 1). So there is exactly one point, where the first principal
component and the vertical line cross, which is marked by the black dot. At this point the
observation will be positioned when the algorithm of Walczak et al. (2001) has converged.

In high dimensional cases it is not always that simple, as already intimated by the huge
amount of possible directions for projecting the data. In order to keep the explanations as
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simple as possible we will from now on focus on one specific observation x := X i and the
according NA-pattern, so the index of Mi, M̃i, and so forth will be omitted.

Further two hyperplanes shall be mentioned, which will be important from now on:

Φ (γ) = T + ΓKγ, (4.1)

whereas T is a location estimate of the data, and ΓK are the first k columns of the loadings
Γ. γ is any vector ∈ Rk. When iterating through each possible value of γ, each point on
the hyperplane, which is spanned by the first k principal components, is generated. In the
example shown in Figure 3.4, Φ is identical with the first principal component.

Ψx (η) = Ip
.MxM + Ip

.M̃
η (4.2)

This hyperplane of dimension m̃ is given by the observation x. It covers all points where an
imputed observation may be located without changing observed values xM . Ip

.P , in general,
is an identity matrix of size p× p but only using columns contained by index set P . So what
Ψx (η) actually does, is to combine the observed values from x and an estimation of missing
values η to one vector in the appropriate order.

For example an observation

x> = (NA, 1, NA, 2, 3, NA, NA)

can then be considered as a hyperplane Ψx (η), whereas η represents missing values. So by
only specifying η, we again obtain a vector which represents a complete observation:

Ψx (9, 8, 7, 6) = (9, 1, 8, 2, 3, 7, 6)

Such a formal definition, which only merges two vectors may seem dispensable, but in future
we will treat observed and missing values as separated vectors. So it will be very helpful to
have a mathematical expression merging these vectors back to a complete observation which
then can be rotated and shifted like a complete observation.

Since the direction of Ψ only depends on the NA-pattern of an observation, such hyperplanes
of observations with the same NA-pattern are always parallel. Observed values only specify
the location of this hyperplane. Further the direction of this hyperplane is always different
for observations with different NA-patterns. An example for Ψ is given in Figure 3.3 (b),
where all dashed lines are such hyperplanes. Since this is only a two dimensional example
and m = 1, these hyperplanes are one dimensional and thus lines.

When considering a higher-dimensional data set, it is not always that simple. At first we will
consider all possible constellations in three dimensional space, and then extend these cases
to p dimensional spaces. Figure 4.1 shows principal components and observations containing
missings in three dimensional space, and demonstrates two possibilities of projection.

• k = 2, m = 2

31



Projection onto Principal Components (k = 2, m = 2)
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Projection onto Principal Components (k = 1, m = 1)
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Figure 4.1: Schematic illustration of the intersection of Ψx and Φ. Observations are omitted
but concentrated on a plane (a) and one principal component (b). Since the considered type
of projection delivers an exact and unambiguous solution, the intersection of Φ and Ψx is a
point, marked as cross. The considered observation is displayed as line (a) and as grid (b).

In this case we consider an observation which has one missing value, which here is
the z-variable. This observation is intimated by the vertical, dashed line in Figure
4.1 (a), which is given by the known values of x and y. Further this line represents
the hyperplane Ψx. In this example we assume, that our data set has two relevant
principal components, represented by PC1 and PC2 in this plot. The grid is a plane,
which is spanned by these components and so illustrates Φ. Since we know, that our
data set is scattered among the first two principal components, and we are searching
for an observation which is located Ψx, it is obvious, to select the intersection of Ψx

and Φ. This point is marked by a × in both plots.

• k = 1, m = 1

Another possibility, demonstrated in Figure 4.1 (b) would be, that all observations
are mainly scattered around one principal component which would then be equal to
Φ, and we consider an observation which consists of two missings and one available
value, which here are x and z missings and y known. So the imputed observation
will be located anywhere on a plane which is parallel to the plane orthogonal to the
y-axis with distance y from the center. This plane is represented by Ψx in this context,
and displayed as the vertical grid. Again we have exactly one point, where Ψx and
Φ intersect. Since our observation is locally forced onto Ψx, and we know, that it is
most likely, that an observation occurs exactly on Φ, we again choose the point of
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Projection onto Principal Components (k = 1, m = 2)
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Figure 4.2: Schematic illustration of projecting an observation onto Φ. Φ and Ψx are both
one-dimensional, they do not intersect in three dimensional space (a). Φ and Ψx are both
two-dimensional, the intersection is displayed as thick, dashed line (b). Observations are
omitted.

intersection for the location of our observation.

In this context cases with all or no values missing (m = 0 or m = p) are irrelevant, since
no projection or imputation can be done. So two further possibilities are left, which are
mixtures of the preceding situations:

• k = 1, m = 2

Figure 4.2 (a) illustrates an example where again only one principal component explains
a relevant amount of variance, and an observation with only one missing value, so Ψx,
represented by the dashed line, and Φ, the first principal component, are both one-
dimensional.

The first problem regarding our projection model shows up, as Φ and Ψx do not
intersect at all. In this situation we have to make a compromise. Since our observation
is forced onto Ψx, but it is more likely, that an observation occurs anywhere on Φ,
we have to search two points on the hyperplanes with minimum distance. Here these
points are shown as ◦ at the ends of the line connecting these hyperplanes. Though the
lines in the plot may look like they are intersecting in one point, they have a certain
distance to each other. The projection of the first principal component onto the ”floor”
which is the plane spanned by the x- and y-axis should make it clear, that those lines
are not intersecting at any point. Of course in certain cases Φ and Ψx may have a
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point of intersection, but the chance that the principal component hits Φ exactly is
zero when real continuous data are considered.

• k = 2, m = 1

The fourth, and last possibility in the three-dimensional space is, that the majority of
variance is explained by two principal components, and an observation contains two
missing values. This situation is shown in Figure 4.2 (b). Ψx represented by the grey
bordered area, as well as Φ, displayed as black bordered area, are both two-dimensional.
So the intersection of these hyperplanes is now a line, and no more a single point. So
the projection of our observation onto the principal components delivers an ambiguous
solution. In this case, the observation may be located anywhere on the resulting line,
which is displayed thick and dashed in the corresponding plot.

Since the approach of projecting observations onto principal components is no more
sufficient in this case, we will have to find another criterion, which identifies the best
of all possible solutions. This criterion will be discussed in Section 4.2.3 and basically
depends on the Mahalanobis distance.

Since up to this point only two and three dimensional spaces have been considered, the
preceding approach for categorizing different projection types shall now be generalized to
p-dimensional data sets:

• m = k ⇔ k + m̃ = p

The number of relevant principal components plus the number of missing values equals
p, the dimensionality of the data set, so in most cases the system can be solved exactly.
If Φ and Ψx intersect, there is exactly one point of intersection. Still it is possible, that
these hyperplanes are parallel and they do not intersect, but this means, that at least
one principal component has to be exactly parallel to an axis, or the space spanned by
several axes of the original system of coordinates, which is rather unusual.

• m < k ⇔ k + m̃ < p

In this case, dim (Φ) + dim (Ψx) is smaller than p, which means that the hyperplanes
do usually not intersect, so the system is over-determined. However there is a chance,
that the planes have a point of intersection, but this chance is practically zero (Ψx and
Φ in Figure 4.2 (a) would have to intersect). In this case we search a point in Ψx which
has minimum distance to Φ.

• m > k ⇔ k + m̃ > p

Here dim (Φ) + dim (Ψx) is greater than p. We get more than one solution of our
problem, and so the system is under-determined. In Figure 4.2 (b) all possible solutions
are located on the thick, dashed line. Generally we can say, that the solution obtained
with this approach is a third hyperplane Ω of dimension k + m̃− p. An unambiguous
solution for this case will be developed later, when exactly specifying the projection
algorithms.
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For the sake of completeness, it should be mentioned, that even this case may not
deliver any solution, since Ψx and Φ could be parallel, which again is very unlikely.
This would imply, that principal components are parallel to the axes of the original
system of coordinates, which only occurs, when there is no covariance between the
single variables of X at all (C is diagonal). Since there would be no relation between
the variables, in such a case an estimation or imputation of a variable based on other
variables is not possible at all, so all imputation methods based on the covariance
structure would fail. The only possibility in this case would be to apply stochastic
or deterministic imputation methods, which are, as discussed in Section 3.2 not very
powerful.

4.2 Projection Methods

After discussing different situations which can occur when projecting observations contain-
ing missing values onto k principal components, and specifying Φ and Ψx, two importatnt
subspaces in this context, we will find a way of calculating the point of intersection of these
hyperplanes, if possible, and if not possible we will develop alternative approaches in order
to find an appropriate solution.

4.2.1 Over-Determined Systems

We start with a rather complicated situation, which occurs when Φ and Ψx do not intersect.
As already discussed, this case appears when k+m̃ < p. Since our observation is forced onto
Ψx, but we want to locate it as near to Φ as possible, we will find a point ∈ Ψx with minimum
distance to Φ. What has to be done now, is to develop an expression which represents the
distance of a point ∈ Ψx, depending on xM̃ which then can be minimized.

As we want to keep the model for explaining those relations as simple as possible, we will
now consider the situation in the system of the principal components. From this point of
view the principal components are equal to the axes of the system. Φ is simply a hyperplane
which is spanned by the first k axes. This is shown in Figure 4.3 (a) and (b). The principal
components are equal to the axes of the system. In Figure 4.3 (a) dim (Φ) = 2, in Figure 4.3
(b) dim (Φ) = 1. The original system of coordinates is here omitted, since it is not relevant
in this context.

From this point of view it is now very easy to measure the distance of an observation from
Φ. Since Φ is orthogonal to the system of coordinates, a movement of an observation in the
direction of one of the first k principal components does not change its distance to Φ. In
Figure 4.3 an observation is displayed as black dot, and three arrows intimate a movement
into the directions of the principal components. When the observation is moved in direction
D1 or D2, the movement would be parallel to the grid, which represents Φ, and no change of
distance would occur. However when the observation moves in direction D3, its movement
is orthogonal to Φ, and the distance is influenced. In this example only the distance in
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Figure 4.3: Distances of observations from Φ with dim (Φ) = 2 (a), and dim (Φ) = 1 (b).

direction D3 which is the value of the third principal component is relevant. When rotating
a centered observation x = (x1, x2, x3) into the system of principal components

x(pc) = Γ>x (4.3)

the distance from Φ would simply be
∣∣∣x(pc)

3

∣∣∣.

Figure 4.3 (b) shows a similar situation, but here the dimensionality of Φ has been reduced
to 1, so there is only one principal component available. In this case a movement of the
observation in direction D2 and D3 influences the distance from Φ, thus we will have to
consider the amount of the second and third component for distance calculation.

d2 =
(
x

(pc)
2

)2
+

(
x

(pc)
3

)2
(4.4)

When extending this approach to p dimensions, we have to calculate the Euclidean distance
of observation x(pc) from the origin on a hyperplane, spanned by principal components k +
1, . . . , p:

d2
(
x(pc)

)
=

p∑

i=k+1

(
x

(pc)
i

)2
=

(
x

(pc)

K̃

)> (
x

(pc)

K̃

)
(4.5)

We now have found a way of calculating the distance of an observation to Φ, which has been
centered and transformed into the system of principal components. In order to find the point
∈ Ψx with minimum distance to Φ we express Ψx in the system of principal components:

Ψ(pc)
x (η) = Γ>Ψx (η) (4.6)
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= Γ>
(
Ip
.MxM + Ip

.M̃
η

)

= Γ>Ip
.MxM + Γ>Ip

.M̃
η

(see (4.2))and since Ip
.P simply copies the columns from the preceding matrix which are

contained in index set P :
Ψ(pc)

x (η) = Γ>MxM + Γ>M̃η (4.7)

whereas xM are the observed values of observation x, and η again represents the missing
values. By choosing η, so that d

(
Ψ(pc)

x (η)
)

is minimized, we obtain a point ∈ Ψx with
minimum distance to Φ.

η∗ = argmin
η

L (η) (4.8)

L (η) = d2
(
Ψ(pc)

x (η)
)

= Ψ(pc)
x (η)>K̃ Ψ(pc)

x (η)K̃

=
(
Γ>MxM + Γ>M̃η

)>
K̃

(
Γ>MxM + Γ>M̃η

)
K̃

=
(
x>MΓM + η>ΓM̃

)
K̃

(
Γ>MxM + Γ>M̃η

)
K̃

=
(
x>MΓMK̃ + η>ΓM̃K̃

) (
Γ>MK̃xM + Γ>M̃K̃η

)

= x>MΓMK̃Γ>MK̃xM + x>MΓMK̃Γ>M̃K̃η + η>ΓM̃K̃Γ>MK̃xM + η>ΓM̃K̃Γ>M̃K̃η

∂

∂η
= 2ΓM̃K̃Γ>MK̃xM + 2ΓM̃K̃Γ>M̃K̃η := 0 (4.9)

ΓM̃K̃Γ>M̃K̃η = −ΓM̃K̃Γ>MK̃xM

η̂ = −
(
ΓM̃K̃Γ>M̃K̃

)−1
ΓM̃K̃Γ>MK̃xM = AxM (4.10)

We finally have obtained a projection matrix A, which transforms the observed values xM

into the missing values xM̃ = η̂, and so finds the point ∈ Ψx with minimum distance to Φ.
Since A does not depend on observed values, but only on Γ and the index vectors M , M̃
and K̃, it has to be calculated for each NA-pattern only once.

This approach can also be used when k + m̃ = p which is the case, when Φ and Ψ have
exactly one point of intersection. So the minimum distance of these hyperplanes must be
exactly zero in one point, which obviously is the point with minimum distance to each of the
hyperplanes, and so is returned by this projection. However the calculation of the point of
intersection in this case can be simplified as shown in the next section.

4.2.2 Exactly Determined Systems

This situation is the most comfortable one, since we know that if Ψx and Φ intersect, the
system delivers exactly one solution. We want to find a point ψ ∈ Ψx, which is also ∈
Φ, so the distance of ψ to Φ is zero. When an observation is located on the hyperplane
spanned by the first k principal components, the scores of the principal components (k +
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1, . . . , p) have to be zero. Since we have already developed the term Ψ(pc)
x (η) (Equation (4.7)),

which represents all possibilities of imputing an observation x, in the system of principal
components, we only have to set its last p− k values, indexed by K̃, to zero:

(
Ψ(pc)

x (η)
)

K̃
= 0 (4.11)

Γ>MK̃xM + Γ>M̃K̃η = 0

Γ>M̃K̃η = −Γ>MK̃xM

η = −
(
Γ>M̃K̃

)−1
Γ>MK̃xM = AxM (4.12)

Again we have determined the projection matrix A which can be used to project an obser-
vation containing missings onto Φ. Since A only depends on principal components and the
NA-pattern, it has to be calculated only once for each NA-pattern, and can then be used for
all variables according to this pattern.

As this situation is a special case of the over-determined system which has been considered
above, it might be interesting comparing the projection matrix A from Equation (4.10) and
from Equation (4.12): The only difference which arises from minimizing the distance is, that
in (4.10) the term Γ>MK̃ is extended by ΓM̃K̃ .

4.2.3 Under-Determined Systems

The third, and most complicated situation occurs, when Φ and Ψx intersect, but the inter-
section is not a point, but again a hyperplane Ω of dimension w := k + m̃−p. This happens,
when k+ m̃ > p. A solution to this issue is to choose a point ∈ Ω with minimal Mahalanobis
distance in Φ. Since the mathematical formulation of this construction is rather complex, we
will formulate an approximation to this approach which will then be evaluated by simulation.

Figure 4.4 illustrates the problem in the two dimensional space. Multivariate normally dis-
tributed observations have been drawn randomly with a correlation of 0.3. The dashed lines
show Ψx for two observations, x1 = (−1.5, NA), and x2 = (NA,−0.5). In this case the
first principal component alone cannot explain the majority of variance, so we would assume
k = 2. In this special case Ω = Ψx, so the dashed lines represent the intersection of Φ and
Ψx. Since the two projection methods above force us to choose k, so that k+m̃ ≤ p, we have
to reduce k to one, when applying the exact projection algorithm. This is a serious problem,
because this implies loss of information since components may be dropped randomly. Of
course PCA returns an exact ranking of principal components, according to their size, but
when lengths do not differ significantly, we cannot argue why we drop component a, and use
component b, when a and b are similar in length.

When applying the exact projection method onto the system shown in Figure 4.4, we would
have to drop one principal component, which here is obviously the second. However in high
dimensional cases this decision is more complicated since we have to compare more than two
components, several of them similar in length. When projecting the observations, displayed
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Figure 4.4: A random data set drawn from a multivariate normal distribution. Two obser-
vations are imputed, each by minimizing the Mahalanobis distance (dots) and by projection
onto the first principal component (triangles).

as dashed lines, onto the first principal component we obtain estimations of the incomplete
observations, which are appropriate, but we did not use all the information we have on our
data structure. When projecting these observations in a way that the Mahalanobis distance
is being minimized, we can use information of both principal components, so we are not
confronted with the question which components to drop. The difference between the exact
and Mahalanobis projection in Figure 4.4 is not negligible, so we have to make a decision
for one of those methods.

As we have not yet developed any quality criterion, we can only argue formally: The lower
the Mahlanobis distance of an observation, the higher is the probability that an observa-
tion occurs at that point, which is an argument for this approach. Dashed ellipses which
represent all points with the Mahalanobis distance as the imputed observations, emphasize
the difference of these two approaches, since an observation imputed by the exact projection
algorithm can never be located inside such an ellipse, so its Mahalanobis distance will always
be greater or equal to the distance of an observation imputed with the Mahalanobis method.
Further the mentioned loss of information, caused by dropping principal components, is an-
other argument against the exact projection method in such situations.

Since it is rather complex to express Ω formally, we will develop an approximative method,
which delivers similar results: The idea behind this approach is to locate an observation in
Ψx, so that its Mahalanobis distance in the p-dimensional space is being minimized. This
is not exactly the same solution as searching a point ∈ Ω and minimizing the Mahalanobis
distance in Φ, but this approach is nearly as good, awnd the development is not that com-
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plex. When considering the formal definition of the squared Mahalanobis distance, for an
observation x,

MD2(x) = (x− T )> C−1 (x− T ) (4.13)

with T , the location and C the scatter estimate. However, we will make slight changes, in
order to simplify the calculation. Since we know, that our data matrix has already been
centered, we can omit T . Further it is necessary to invert the covariance matrix C, which
can be very easily done, when this matrix is diagonal. This is the case when considering the
data in the system of the principal components, where the covariance matrix

C(pc) = Λ (4.14)

can be expressed very simply. Λ is taken from Equation (2.2) (A diagonal matrix containing
the eigenvalues of C). Since we already have estimated the principal components, Λ is

known, and so calculating
(
C(pc)

)−1
is trivial. When transforming the covariance structure

in the system of principal components, we also have to express x transformed. We can do
this, by using the expression for Ψ(pc)

x , which we developed in the previous Section (Equation
(4.7)). With all these changes the expression we have to minimize is

MD2 (x) =
(
Ψ(pc)

x (η)
)>

C−1
(
Ψ(pc)

x (η)
)

(4.15)

η̂ = argmin
η

(
MD2 (x)

)

(4.16)

In this context η = xM̃ again represents the missing values which influence the Mahalanobis
distance of x.

MD2 (x) =
(
Γ>MxM + Γ>M̃η

)>
C−1

(
Γ>MxM + Γ>M̃η

)
(4.17)

=
(
x>MΓM + η>ΓM̃

)
C−1

(
Γ>MxM + Γ>M̃η

)

= x>MΓMC−1Γ>MxM + 2η>ΓM̃C−1Γ>MxM + η>ΓM̃C−1Γ>M̃η

∂

∂η
= 2ΓM̃C−1Γ>MxM + 2ΓM̃C−1Γ>M̃η := 0 (4.18)

ΓM̃C−1Γ>M̃η = −ΓM̃C−1Γ>MxM

η̂ = −
(
ΓM̃C−1Γ>M̃

)−1
ΓM̃C−1Γ>MxM = AxM (4.19)

Again we obtained a simple transformation matrix A, which computes the missing values of
an observation so, that the Mahalanobis distance is as small as possible. An advantage of
this transformation is, that A is independent of k, so we do not need to evaluate the number
of relevant principal components in advance.

Since this projection matrix is calculated based on all principal components k = p ⇒ k+m̃ >
p, this projection can be done with any NA-pattern, which is not the case with the projections
considered above. So the cross validation step for estimating k, as proposed by Walczak et
al. (2001), described in Section (3.4.1) is unnecessary when applying this type of projection.
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As discussed in 2.3.1, the estimation of k is a task which cannot really be formalized, so this
characteristic of Mahalanobis distance based projection methods is really convenient.

As already mentioned, this method is only an approximation of the exact solution, which
minimizes the Mahalanobis distance on hyperplane Ω generated by intersecting Φ and Ψx.

Our imputed observation is not exactly located on Φ, but diag
(
C(pc)

)−1
can be considered

as vector which penalizes deviations from the center with respect to the inverse length of
principal components. So a deviation from the center of the structure in direction of a
principal component i > k which eigenvalue is very small will be penalized strongly, whereas
a deviation in the direction of principal component 1, or i ≤ k, which eigenvalue is rather
large, will barely be penalized. So an observation imputed by this method will be forced
into the structure of the data as good as possible, but when too few degrees of freedom are
available for sufficiently moving an observation, it may not be exactly located on Φ in order
not to change observed values.

When considering projection matrix A from Equation (4.19) and from Equation (4.10) it
turns out, that the solutions are again similar, but this Mahalanobis distance based method
uses all available information which has been obtained by the preceding PCA (eigenvectors
and eigenvalues). The length of principal components, which are contained by C(pc) is not
considered in exact and over determined situations. Also Walczak et al. (2001) and Serneels
et al. (2007) do not consider this information in their algorithm. So optimistically speaking,
we can say, that since this third method can handle more information of our data structure,
its results will be at least as good as the results of the algorithm proposed by Walczak et al.
(2001) and Serneels et al. (2007).

4.2.4 Drawbacks

As we do not project observations exactly onto Φ, in certain situations this behaviour may
influence the estimation of principal components. This happens, when the amount of missings
in one variable is much higher than in other variables.

Figure 4.5 (a) illustrates this issue by adding 20 observations to the iris data set, which
all have a missing value in variable Sepal.Width. These observations have been imputed
with the Mahalanobis method (k = 2). All of them attract the principal components in the
same direction, which here is clockwise. So in the following iteration, estimated principal
components are deviated noticeable.

In Figure 4.5 (b) missing values are distributed equally on both variables. The deviation
of principal components in the second iteration is much smaller, since imputed observations
are located on both sides of the real principal components.

A further problem, which points out in this context is, that imputation not only influences
the direction of principal components, but also their length, the eigenvalues of the resulting
structure. This is very conspicuous in Figure 4.5 (a), where the second component shrinks
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Figure 4.5: Fisher’s iris data set - only showing observations of type setosa. The influence
of non-uniformly distributed missing values (a) vs. uniformly distributed missings (b) on
iterative PCA.

to half of its length during one iteration. The reason for this behaviour is, that observations
are located around Φ, so the deviation from Φ is tried to be minimized by all of the discussed
methods. A scale estimation in a direction which is orthogonal to Φ (e.g. PC2 in Figure 4.5
(a)) then may break down which is the reason for the shrinkage of principal components.

Both problems can also be noticed when applying the algorithm of Walczak et al. (2001) and
Serneels et al. (2007) where iterative projection may even increase the deviation of principal
components, so this is not a drawback of the Mahalanobis approach in particular.

4.3 Convergence Criterion

In step 4 of the algorithm proposed by Walczak et al. (2001), described in Section (3.4.1),
convergence is mentioned without any suggestion how to obtain a convergence measurement.
As Walczak et al. (2001) append Mathlab - code to their paper, it shows that they measure
the absolute change of the estimated values. Serneels et al. (2007) proposes only to con-
sider observations with a robust Mahalanobis distance below χ2

p,0.99, since strongly outlying
observations may break down the convergence criterion.

However a big difference between the method of Walczak et al. (2001) and Serneels et al.
(2007) and the direct projection method is, that in our case the location of imputed values
only changes, when the directions of principal components change. This holds not true for
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iterative projection as illustrated in Figure 3.4, where an observation is iteratively approach-
ing towards a principal component, which does not change in that example.

This characteristic of direct projection enables us to develop a more straightforward con-
vergence criterion. Since a movement of an observation can only occur, when the principal
components move, we can measure convergence by calculating the difference of principal
components within two iterations. Hubert et al. (2005) refer to Krzanowski (1979) who
describes how to measure the angle between hyperplanes, spanned by two sets of princi-
pal components, here denoted by Γ and Π. The angle between the systems of principal
components is called maxsub in this context:

maxsub := arccos
(√

λk

)
(4.20)

whereas λk is the smallest eigenvalue of Γ>.KΠ.KΠ>
.KΓ.K . When the systems of principal

components are exactly orthogonal to each other, maxsub = π
2
, so this measurement may be

standardized by dividing it by π
2
.

This method can be imagined as rotating p points, which all are on the axes of the original
system of coordinates, into the system of the k principal components. Then these points are
rotated back, but with the second rotation matrix. If the matrices are not equal, the points
are not rotated back exactly onto the axes of the original system of coordinates, and so the
deviation from those axes can be used to calculate the angle between the two sets of the
principal components.

The advantage of using maxsub as convergence criterion is, that it does not depend directly
on the imputed values, but on the estimation of the principal components. So this conver-
gence criterion is automatically as robust as the applied PCA method itself, and thus cannot
be affected by single outlying observations. So the decision which observations to consider
for measuring convergence is dispensable, which is another advantage, since the χ2

p,0.99 -
boundary cannot be argued formally (a 0.975 or 0.95 - quantile may also be appropriate in
certain situations).

4.4 Implementation

When considering all aspects, which have been treated in the previous sections, we now can
adopt the algorithm of Walczak et al. (2001) and Serneels et al. (2007):

1. If not already done, the data matrix is scaled and centered. Location and scale esti-
mates are calculated columnwise, whereas missing values are omitted.

2. Missing values are initialized. When considering a location estimate as initial value, all
missings may be set to zero, since the data is centered. Donor imputation, as described
in Section 3.2 may also be considered here, in order to decrease the number of necessary
iterations since the initial values are already plausible, and the change of these values
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may not be that tremendous. However, usually initializing all missings with zero does
it as well.

3. Create an index array (or sort the multivariate observations), such that observations
with equal NA-patterns can be treated at once.

4. PCA is applied to the data set. Since we are interested in minimizing the influence of
outliers on our estimation, a robust PCA-method is recommended.

5. Since PCA methods are usually based on their own center estimation, the data set
has to be centered again, because the subsequent projection methods require exactly
centered data.

6. One of the discussed projection methods is applied to each observation. As each of those
methods depends on the current NA-pattern, a projection matrix must be calculated
for each NA-pattern. At that point, the number of observed values m is relevant:

• m > k: Apply the projection for over-determined systems (4.2.1).

• m = k: Apply the projection for exact determined systems (4.2.2).

• m < k: Apply the projection for under-determined systems (4.2.3).

Observations with m = 0 or m̃ = 0 are ignored.

7. Goto step 4 until convergence (until maxsub drops below a certain threshold), or a
certain number of iterations is reached.

8. Undo centering from step 5. This can be done by adding all center vectors during the
iteration, and subtracting this vector from the data matrix at the end.

9. Undo scaling and centering from step 1.

So we finally obtained an improved algorithm of the imputation method derived from the
approach of Walczak et al. (2001), and robustified by Serneels et al. (2007). At this point
we want to emphasize again, that Walczak et al. (2001) and Serneels et al. (2007) did not
intend to develop an algorithm for imputation, but for (robust) PCA on data containing
missings. Most of the issues and problems which have been discussed here, are only relevant
when intending to impute values, and not when estimating principal components. As we will
see shortly, the estimation of principal components cannot really be improved by this new
algorithm, the only improvement affects the quality of imputation, which was not the aim
of Walczak et al. (2001) and Serneels et al. (2007).

The source code of this algorithm has been appended to this thesis. It has been designed
for the statistical environment R, with extensions written in C++. Since the proposed
algorithm treats each NA-pattern individually, an implementation without the support of
C++ would be computational inefficient. Further matrix multiplications with subsets of
Γ like ΓMK have been implemented very frugal. In environments like R such subsets of
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matrices have to be copied into memory before being processed. The implementation in the
appendix always operates on one and the same instance of Γ, whereas subsets of matrices
are virtually constructed by smart indexing. At that level matrices are no more represented
by objects, but the memory where the single values are stored is accessed directly. So the
mentioned operations which project observations into a subspace of the original structure can
be implemented very efficient. Aside the improvement concerning runtime of the projection
algorithm, which could be reduced by a factor far beyond 10, the memory consumption has
been reduced enormously as well, compared to an according implementation in R.

4.5 Simulation Study

After theoretically discussing a new method for imputation of missing data, this algorithm
shall be tested in order to assure, that it really performs better than existing approaches. For
this purpose we will need to generate artificial data sets. The advantage of using artificial
over real data sets is that we know the number of relevant components, the amount of white
noise which has been added, and the real principal components.

4.5.1 Quality Criterion

In order to compare the quality of different imputation methods, we have to formulate an
appropriate criterion. As we want to measure the precision of the imputation it is obvious
to calculate the mean or median absolute difference between imputed and original values.
Since we are not interested in the quality of the imputation of outlying observations, we will
focus on the deviation of non-outlying observations only, and ignore the deviance of imputed
outlying observations.

Further we apply PCA algorithms on imputed data, so we are interested in the quality
of PCA estimation. On the one hand we want to know whether our projection method
influences the estimation of principal components in a bad way, and on the other hand we
want to know if we can keep up with the quality of the iterative projection method concerning
the estimation of principal components. For this issue we will again consider the maxsub
criterion as discussed in (4.3) which enables us to calculate the angle between real principal
components, and the estimation returned by the imputation algorithm.

4.5.2 Generation of Test Data

For testing the described algorithms in an exactly known environment, we have to generate
artificial test data with pre-defined characteristics, like a certain number k of relevant princi-
pal components. So we do actually not generate the data matrix X directly, but we generate
the scores Z, and transform them into the data matrix (Equation (2.3)). So the generation
of the test data consists of generating the scores Z, the loadings Γ and the eigenvalues, or
lengths of the components Λ.
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1. A n × p matrix ZI is created , with the values of the first k columns drawn from a
standard normal distribution N (0, 1), and the columns k + 1, . . . , p are set to zero.
This matrix can be considered as scaled scores.

2. The p eigenvalues are defined by the following expression:

diag (Λ) =
(
1−c, 2−c, . . . , k−c, 0, . . . , 0

)
(4.21)

with a constant c ∈ R+.

3. The values of a matrix Γ of dimension p × p are drawn from a standard normal dis-
tributed, with the restriction, ΓΓ> = Ip.

4. Since principal components ZI are now all of same length, they are stretched according
to their eigenvalues:

Z = ZIΛ0.5 (4.22)

5. The scores are projected into the original p dimensional system of coordinates, which
creates the data matrix:

X = ZΓ> (4.23)

6. An error term ε ∼ Np (0, σ2
εI

p) is added to each observation of X, with σε chosen
with respect to the scale of the scores. An error term with larger variance than the
underlying data makes reasonable imputation impossible. Since all eigenvalues of the
structure are ≤ 1, σε should not exceed a value of ∼ 0.2 in order not to destroy the
structure of the data completely.

7. A certain portion p.blank of data is randomly blanked, with equal probability for each
cell.

Outliers

Since we also want to test the influence of outliers on our method, we also have to add some
contamination to our data. This contamination is produced by drawing v observations from
a different distribution, whereas two different types of outliers may be generated:

1. The center of the scores is moved by t0:

Z∗
j = Zj + 1pt

0 , j = 1, . . . , v, (4.24)

whereas t0 represents the shift of the outliers, and can be chosen arbitrarily. The
smaller t0 is chosen, the more similar are the distributions of normal and outlying
observations.

2. The order of the scores of v observations is changed:

Z∗
j = (Zjp, . . . , Zj1)

> , j = 1, . . . , v (4.25)

Outliers generated this way are orthogonal to normal observations.

The portion of contaminated data will be referred to as p.out, whereas the type of outliers
will be denoted as type.out.
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Figure 4.6: Median absolute errors returned by the discussed imputation methods for σε =
0.01, 0.05 and 0.1

4.5.3 Iterative Behaviour

Since we have made severe changes which affect the iterative projection algorithm of Walczak
et al. (2001), we will consider the performance of both algorithms during execution. So we
will calculate the median absolute error of the imputed values and the deviance of principal
components in each iteration. For this puropse a dataset with the following parameters will
be drawn randomly, and the appearing error will be logged: (n = 1000, p = 10, k = 6,
c = 1.5, p.out = 0.4, p.blank = 0.2).

Figure 4.6 shows the median absolute errors of the imputed values after applying both im-
putation algorithms. Black dots represent the Mahalanobis distance approach, white dots
represent the error of the approach of Walczak et al. (2001) and Serneels et al. (2007). The
classical method has been applied on a dataset without outliers, and the robust method with
MCD as covariance estimator has been applied on a dataset with 40% outliers of type 1,
as described in Equation (4.24), with tO = 5. The process of imputing missing values of a
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Figure 4.7: Median maxsub criterion returned by the discussed imputation methods for σε

= 0.01, 0.05 and 0.1

blanked data matrix has been repeated 20 times for each parameter constellation and the
median of the errors has been calculated in order to obtain a representative estimation of
the error.

The plots show how the median absolute error of imputed values changes, while repeatedly
estimating principal components, and applying the mentioned projection methods. The er-
ror of the iterative algorithm changes significantly from iteration to iteration, whereas the
error of the Mahalanobis distance approach is rather constant, except for the first iteration.
So terminating the Mahalanobis distance based algorithm after two iterations seems to be
as good, as waiting for the algorithm to converge. The approach of Walczak et al. (2001)
needs more iterations until convergence, and there are even situations, where the error in-
creases significantly , so the principal component estimation seems to be influenced badly
by imputed values. In the following simulation we will compare the results of the converged
approach of Walczak et al. (2001) and the Mahalanobis distance approach terminated after
two iterations in order to get an idea whether the early terminated algorithm can keep up
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Figure 4.8: Performance of different PCA methods in combination with the Mahalanobis
distance based projection approach. Quality of imputation (a) and PCA (b).

with the converged iterative algorithm. In these plots the Mahalanobis distance based algo-
rithm performs persistently better than the iterative approach.

Figure 4.7 shows the deviance of principal components, measured with the maxsub criterion.
The lower these values are, the better is the estimation of principal components. Consid-
ering this criterion, the algorithm needs more iterations in order to obtain a stable level,
which is contradictious to the assumption that the result of the Mahalanobis approach does
not improve after two iterations. This may be caused by the error term ε added to the
data, which reduces the correlation between the quality of principal component- and missing
value estimation. This is very outstanding in situation (c), where PCA performs better with
the iterative approach, but the performance regarding imputation is still better with the
Mahalanobis method.

4.5.4 Alternative PCA Methods

One further aspect which should be analyzed is the behaviour of the PCAproj (Croux
et al., 2005) and PCAgrid (Croux et al., 2007) algorithm in connection with the developed
projection method. The simulation setup is similar to the previous situation, but we will only
add an error ε ∼ Np (0, 0.012Ip) and we do only consider the result of one single run and not
calculate the median absolute errors of several runs. The PCA methods PCAproj, PCAgrid
from the R-package pcaPP , and PCA based on covariance estimation with MCD have been
used. The results can be seen in Figure 4.8. In plot (a) the error of imputed values is shown,
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which are highly auto-correlated when using MCD for PCA. When applying PCAproj or
PCAgrid these values are scattered strongly, so the iterative improvement of the imputed
values fails completely. This effect is even stronger, when considering the maxsub criterion
which is very low and stable when applying the MCD estimator, so principal components
are estimated pretty well with this method. Principal components estimation with the
pcaPP functions again fail completely, whereas the quality of the estimation is no more auto-
correlated at all, and seems to be random. So in the context of the Mahalanobis distance
projection algorithm, PCA based on MCD covariance estimation can be recommended,
whereas pcaPP -methods do not work at all. This may be due to the special characteristics
of these algorithms, which are incompatible with the considered projection methods.

4.5.5 Performance Tests

For testing the performance of the developed algorithm, the median absolute imputation
error of several simulations with different parameters has been acquired. Tests with different
types and portions of outliers have been simulated. σε has been set to 0.01 and the portion
of outliers has been raised from 0% up to 30%. The amount of missing values over the
complete dataset was fixed to 20%. For generating outliers of type 1, t0 has been set to
5. Again the test-data comes from a 10 dimensional multivariate normal distribution, with
6 relevant principal components. Each test has been repeated twenty times with the same
parameter set, and the median of the resulting errors has been determined. The number of
principal components which should be considered for imputation has been iterated from 1 up
to 10, so each possibility in this context has been tested. Several imputation methods have
been applied: On the one hand the iterative algorithm, as well as the approach developed
here with only two iterations. On the other hand a kNN algorithm as proposed by Hastie
et al. (1999) has been applied too, in order to get an idea how the algorithms perform
in comparison to common imputation methods. Further principal components have been
estimated regarding the proposals of Walczak et al. (2001) and Serneels et al. (2007), and
afterwards the Mahalanobis projection method has been applied with k = p, which is in the
plot referred to as the combination of the iterative and Mahalanobis approach.

Figure 4.9 shows the corresponding results. In general the projection algorithm developed
here, in combination with the iterative estimation of missing values performs better than
the imputation method based on Walczaks proposal. In order to compare the performance
of the Mahalanobis based approach with k = p with the other results, a corresponding
horizontal dashed line has been added, which represents the error the Mahalanobis approach
produces when setting k = p. This line is in most cases lower than each result of projection
based algorithms, so when applying this method with simply setting k = p seems to be an
appropriate approach which can be calculated as quick solution. Improvements of this first
result by modifying k can be made afterwards, but are computational very expensive, since
the real k is unknown.

Since there are several parameters which can be modified when defining such simulations
(p.out, p.miss, σε, p, k, c), these 10 plots do only represent a subset of possible situations
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which can be simulated. There might be situations where even the iterative algorithm
performs better. Especially when a very large error term is added onto the dataset the
difference in quality between both algorithms decreases drastically. However in common
situations the advantage of the developed algorithm can be shown with the plots in Figure
4.9. The advantage which points out by the these plots are the runtime, which can be reduced
significantly, since we can usually terminate the Mahalanobis distance based algorithm after
two iterations, and on the other hand, that the estimation of k can be omitted.

4.6 Conclusion and Future Development

Up to this point a new robust imputation algorithm, based on a proposal of Walczak et
al. (2001) and Serneels et al. (2007) has been developed, which estimates missing values
according to principal component estimates. As simulation shows, this new algorithm per-
forms better than the approach of Walczak in most cases, however when the amount of white
noise increases, a kNN approach still delivers even better results. Since the behaviour of the
approach presented here has not been analyzed completely, there still might be aspects which
have not been considered yet, and which may help to improve the quality of this method in
future research.

Problems which will be considered next would be the application of this method on data sets
containing nominal and categorical variables as well as extending this approach for multiple
imputation. Since the Mahalanobis distance approach presented here is only an approxima-
tion, it may be improved by exactly defining Ω, the hyperplane of intersection, and then
minimizing the Mahalanobis distance in this subspace. This has not been done yet due to
the mathematical complexity, which goes beyond the scope of this thesis. Such developments
should increase the quality of the algorithm, and maybe it will be possible to obtain even
better results than the kNN-algorithm delivers, in all situations.
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Figure 4.9: Median absolute errors of different imputation algorithms.
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Appendix A

Source Code (R)

gentest <- function (n = 1000, p = 10, k = 5, sderr = 0.01, exp = 1.5,

p.out = 0, loc.out = 5, type.out = 1)

{

###########################################################################

##

## AIM: Generate random testdata

##

## INPUT: n number of observations to generate

## p number of variables per observation

## k number of relevant principal components in the dataset

## sderr standard deviation of error term

## exp exponent for calculating the deviation of scores

## p.out portion of outliers

## loc.out location of outliers

## type.out type of outliers

##

## OUTPUT: x n x p data matrix containing the testdata

## cov theoretical covariance structure of data

## center center of the data (= 0) - just for completeness

## sdev standard deviation of scores

## n.out number of outliers generated

## obsok logical array indicating outliers (FALSE)

## and regular observations (TRUE)

##

###########################################################################

## generate scores

sdev = ((1:k)^-exp)

td <- matrix (rnorm (n * k, rep (0, k),sd = 1),

ncol = k) %*% diag (sdev)
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td = cbind (td, matrix (0, nrow = n, ncol = p-k))

p.out = min (max (p.out, 0), 1)

n.out = as.integer (n * p.out)

fn = n - n.out

obsok = rep (T, n)

if (n.out > 0)

{

if(type.out == 1)

td [fn:n, ] = td [fn:n, ] + loc.out ## creating outliers

else

td [fn:n, 1:p] = td [fn:n, p:1]

obsok [fn:n] = FALSE

}

## randomly rotating data

rot = qr.Q(qr(matrix(rnorm(p * p), p)))

tdr <- td %*% t(rot[,1:p])

## adding error term

tdr = tdr + rnorm (n * p, mean = 0, sderr)

## calculating covariance structure of the data

# datacov = t(rot) %*% diag(c((1:k)^-exp,rep (0, p-k))) %*% rot

datacov = (rot) %*% diag(c(sdev^2,rep (0, p-k))) %*% t(rot)

## adding error to theoretical covariance structure

datacov = datacov + diag (rep (sderr^2, p))

list (x = tdr, cov = datacov, center = rep (0, p),

sdev = c(sdev^2 ,rep (0, p-k)), n.out = n.out,

idx.out = fn:n, obsok = obsok, loadings = rot)

}
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blank = function (x, p = 0.1)

{

###########################################################################

##

## AIM: Blanks values of a data matrix

##

## INPUT: x the data matrix to be blanked

## p the portion of values to blank

##

## OUTPUT: the blanked data matrix

##

###########################################################################

np = length (x)

## draw random indices which will be blanked

blank.idx = sample (np, as.integer (np * p))

ret = as.numeric (x)

## blank data

ret [blank.idx] = NA

ret = matrix (ret, ncol = ncol (x))

## copy attributes of input matrix

attributes (ret) = attributes (x)

ret

}
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pcImpute <- function (x, method="robust", eps=0.1, k,maxiter = 30,

convmode = 1, projfunc = pcNAProj, PC.control,

scale = T, kreal, ...)

{

###########################################################################

##

## AIM: Imputes missing values according to principal components

##

## INPUT: x The data matrix containing observations with missings

## method Specifies the PCA - method. allowed values are:

## "robust" PCA, based on covMCD

## "PCAgrid" Perform the grid-algorithm from Package pcaPP

## "PCAproj" Perform the proj-algorithm from Package pcaPP

## else do classical PCA

## eps threshold for convergence

## k number of relevant principal components

## maxiter maximum number of iterations

## projfunc which function to use for projecting the data onto PCs

## PC.control a list containing parameters for the PCA method

## scale Logical value indicating whether the data matrix

## should be scaled previously

##

## OUTPUT: x a data matrix containing the complete dataset

## niter the number of executed iterations

## converged a logical value indicating whether the algorithm has

## converged

## pc the last estimation of PCs

## gcm the center which has been used for centering in advance

## gsd the scale which has been used for scaling in advance

## angleLD if realPC has been specified, this vector returns the

## angle between estimated and original PCs

## err if realDat has been specified, this vector returns the

## median absolute error between estimated and original

## data

##

###########################################################################

if (sum (is.na(x)) == 0)

return (0) ;

xorig = x

## convmode: 1 .. serneels, 2 .. Hubert

## nSWMaxIter - when m > k --> serneels & wlaczak projection necessary
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p= ncol (x)

if (missing (k))

k = p - 1

if (k > p)

{

k = p-1

warning ("k reduced to p-1")

}

n = nrow (x)

## calculate NA-pattern for all observation

I = !is.na (x) + 0

## Generates an index vector which orders the observations

## according to their NA-pattern

pat = CalcNAPattern_II (x, zeroisone = 0)

w <- which(is.na(x), arr.ind=TRUE)

w <- w[order(w[,1]),] ## sort w for pcImpDataDistance.C which

## requires a sorted index structure

NACount = nrow (w)

ws <- apply (x, 1, function(x) {sum (is.na(x))})

wr <- ws != 0

sumws = sum(ws)

nm = sum (wr) ## # observations with missings

gcsd = rep (1, p)

if(any (method == c("robust", "PCAgrid", "PCAproj")))

{ ## calculate roust center and scale

gcm <- apply (x, 2, median, na.rm = T)

if (scale)

gcsd <- apply (x, 2, mad, na.rm = T)

}

else

{ ## calculate classical center and scale

gcm <- colMeans (x, na.rm = T)

if (scale)

gcsd <- sd(x, na.rm = T)

}
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## z-transformation of the data matrix

x = scale.C (x, gcm, gcsd) ## Z - trans

## initializes missings with a center estimate (= 0)

x[w] = 0

d <- 1

niter = 0

D= array (NA, 2)

convmode = min (2, max (1, convmode))

while(d > eps && niter <= maxiter)

{ ## do until convergence or maxiter has been reached

xneu = x

## the specified PCa method is applied on the current data matrix

if( method == "robust" ) ## calculate robust ...

{

xneu[w] = xneu[w] + rnorm (NACount, sd = 0.005)

if (missing (PC.control))

pc = princomp (cov = covMcd(xneu))

else

pc = princomp (cov = covMcd(xneu, control = PC.control))

}

else if (method == "PCAgrid")

pc = PCAgrid (xneu, k = p, control = PC.control)

else if (method == "PCAproj")

pc = PCAproj (xneu, k = p, control = PC.control)

else ## ... or classical covmat

pc = princomp (xneu)

## center current data matrix according to the PCs

xneu = scale.C (xneu, center = pc$center)

## apply projection function on the current dataset

xneu = projfunc (x = xneu, pc = pc, k= k, NAPattern = pat[[1]],

NAOrder = pat[[2]], I = I, ...)

scores = xneu %*% pc$loadings ## calculate scores

## undo centering

xneu <- scale.C (xneu, center = pc$center, zTrans = F)
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{

## calclate mahalanobis distances of imputed observation

## (convergence should not be measured based on outliers..)

obsok = mahalanobis (scores, center = rep (0, p),

cov = diag (pc$sdev^2))[wr] < (qchisq (df = p, 0.99))

## only observations which were in proper range

## (mahabdist < chisq(df, .99)) shall be considered

curobsok = obsok #& lastobsok

if (any(curobsok))

D[1] = pcImpDataDistance (x, xneu, w, curobsok)

else

{

D[1] = 1

print ("Switching to convmode 2!")

convmode = 2

}

}

D[2] = 1

if (niter >= 1)

{ ## calculate angle between PCs of two iterations as convergence

## criterion

D[2] = CompPCs.R (oldLd, pc$loadings, kreal)

}

print (c(D[2], NA, D[1], mean (obsok)))

d = D[convmode]

oldLd = pc$loadings

x[w] <- xneu[w]

niter = niter + 1

}

## reverse Z - transformation from the beginning

x = scale.C (x, gcm, gcsd, F)

list (x = x, niter = niter, converged = niter < maxiter, pc = pc,

gcm = gcm, gcsd = gcsd, angelLD = angelLD, err = err)

}
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iterproj = function (x, pc, k, NAPattern, NAOrder, nSWMaxIter = 20, I)

{

###########################################################################

##

## AIM: wrapping function for "iterproj", implemented in C++

## implementation of the projection algorithm by walczak

## projects observations containing missings on a hyperplane

## spanned by k PCs

##

## INPUT: x a data matrix

## pc a structure containing the principal components

## k number of relevant components

## NAPattern an optional vector identifying the NA pattern of

## each observation

## NAOrder an optional index vector which orders observations

## according to their pattern

## nSWMaxIter the maximal number of iterations of the algorithm

## I an optional matrix which identifies observed (1)

## and missing (FALSE) values

##

## OUTPUT: a matrix containing the projected observations

##

###########################################################################

## if not specified: calculate I

if (missing (I))

I = !is.na(x) + 0

## if not specified: calculate NA-pattern

if (missing (NAPattern) || missing (NAOrder))

{

pat = CalcNAPattern_II (x, zeroisone = 0)

NAPattern = pat$NAPat

NAOrder = pat$NAOrd

}

matrix (

.C ("iterproj",

as.integer (c(nrow(x), ncol (x), k, nSWMaxIter)), x = as.double (x),

as.double (pc$loadings), as.integer (NAPattern), as.integer (NAOrder),

as.integer (I), packate = "fImp", NAOK = TRUE )$x, ncol = ncol (x))

}
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pcMahaProj <- function (x, pc, k, NAPattern, NAOrder, boost = F, I)

{

###########################################################################

##

## AIM: wrapping function for "mahaproj", implemented in C++

## implementation of the projection algorithm developed in

## this thesis

## projects observations containing missings on a hyperplane

## spanned by k PCs

##

## INPUT: x a data matrix

## pc a structure containing the principal components

## k number of relevant components

## NAPattern an optional vector identifying the NA pattern of

## each observation

## NAOrder an optional index vector which orders observations

## according to their pattern

## nSWMaxIter the maximal number of iterations of the algorithm

## I an optional matrix which identifies observed (1)

## and missing (FALSE) values

##

## OUTPUT: a matrix containing the projected observations

##

###########################################################################

if (!is.matrix (x))

{

x = as.matrix (x)

if (ncol(x) == 1 && nrow (x) > 1)

x = t(x)

}

## if not specified: calculate I

if (missing (I))

I = !is.na(x) + 0

## if not specified: calculate NA-pattern

if (missing (NAPattern) || missing (NAOrder))

{

pat = CalcNAPattern_II (x, zeroisone = 0)

NAPattern = pat$NAPat

NAOrder = pat$NAOrd

}

p = ncol (x)

n = nrow (x)
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if (p != dim(pc$loadings)[1])

stop (paste ("Loadings have wrong dimension (should be ", p, ")",

sep =""))

if (boost)

#pc$sdev = pc$sdev - pc$sdev[p] + 0.0001

pc$sdev[p] =0.0001

if (missing (k))

k = sum (pc$sdev > 0.0001)

ret = .C("mahaproj", ret = as.integer (c(n,p,k)), x = as.double (x),

as.double (pc$loadings), as.double (pc$sdev), as.integer (NAPattern),

as.integer (NAOrder), as.integer (I), package = "fImp", NAOK = TRUE)

matrix (ret$x, ncol = p)

}

scale.C <- function (x, center = rep (0, ncol(x)),

scale = rep (1, ncol(x)), zTrans = T)

{

###########################################################################

##

## AIM: wrapper function for "scale" - written in C++

## fast centering and scaling

##

## INPUT: x data matrix

## center center applied to the data matrix (numerical vector)

## scale scale applied to the data matrix (numerical vector)

## zTrans logical value indicating whether regular zTrans (TRUE)

## or inverse zTrans (FALSE) should be done

##

## OUTPUT: centered and scaled data matrix

##

###########################################################################

matrix (

.C("scale",

ret = as.integer (c(nrow(x), ncol(x), zTrans)),

x = as.double (x), as.double (center), as.double (scale),

package = "fImp", NAOK = TRUE)$x, ncol = ncol(x))

}
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CalcNAPattern_II <- function (x, zeroisone = 1)

{

###########################################################################

##

## AIM: Wrapper for "CalcNAPattern_II" implemented in C++

## The function sorts all observations according to their

## NA-pattern and returns the corresponding index - array

##

## INPUT: x data matrix

## zeroisone value for conversion between 0/1 indices

## (first element is 0/1)

##

## OUTPUT: NAPat a identifier for each obsevations NA-pattern

## NAOrd index vector which orders observations according

## to their NA-pattern

##

###########################################################################

n = nrow (x)

ret = .C("CalcNAPattern_II",

as.integer (c(n,ncol(x))),

as.double (x),

NAPat = integer (n),

NAOrd = integer (n),

package = "fImp",

NAOK = TRUE

)

ret$NAOrd = ret$NAOrd + zeroisone

return (ret[3:4])

}
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iterproj.R = function (x, pc, k, NAPattern, NAOrder, nSWMaxIter, I)

{

###########################################################################

##

## AIM: Does Walczak - projection (one iteration)

##

## INPUT: x a data matrix

## pc a structure containing the principal components

## k number of relevant components

## NAPattern dummy - for compatibility with other methods

## NAOrder dummy - for compatibility with other methods

## nSWMaxIter dummy - for compatibility with other methods

## I dummy - for compatibility with other methods

##

###########################################################################

x %*% pc$loadings [,1:k] %*% t(pc$loadings [,1:k])

}

CompPCs.R <- function (ld1, ld2, k)

{

###########################################################################

##

## AIM: comparison of two systems of principal compontnts given by

## loadings ld1 and ld2 with k interesting components

##

## INPUT: ld1, ld2 loadings of systems which shall be compared

## k number of relevant components

##

## OUTPUT: angel between ld1 and ld2

##

###########################################################################

sld = t(ld1[,1:k]) %*% ld2 [,1:k] %*% t(ld2[,1:k]) %*% ld1[,1:k]

esld = eigen(sld)

acos (sqrt (esld$values [k])) * 2 / pi

}
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Appendix B

Source Code (C++)

class CNAPattern

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Node for the binary tree, created to sort the NA-patterns

// For sorting the observations according to their NA-patterns a binary

// tree is created. each level of the tree represents a variable. if an

// observation has an missing value at the respective variable, the it is

// stored in the "left" subtree, otherwise in the "right"

//

///////////////////////////////////////////////////////////////////////////

public:

CNAPattern () ;

~CNAPattern () ;

CNAPattern *m_pNA ; // pointer to "left" item

// in the last level not other CNAPattern objects

// are referred, but an index array of the

// corresponding observations

CNAPattern *m_pNum ; // pointer to "right" item

// in the last level not other CNAPattern objects

// are referred, but the number of corresponding

// observations

char m_cLastLevel ; // indicating whether this object belongs to the

// last level of the tree

} ;

CNAPattern::CNAPattern ()
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{

m_pNA = NULL ; // or int *

m_pNum = NULL ; // or int

m_cLastLevel = 0 ;

}

CNAPattern::~CNAPattern ()

{

if(m_cLastLevel)

{

delete [] (int *) m_pNA ;

return ;

}

if (m_pNA)

delete m_pNA ;

if (m_pNum)

delete m_pNum ;

}

void WriteNAPattern (CNAPattern *pNA, int *&pnPattern, int *&pnOrder)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Recursively writes an index vector from nodes pNA to pnPattern

// and stores the pattern IDs

//

// INPUT: pNa the parent (topmost) node of the binary tree

// pnPattern the array with pattern ids to be filled

// pnOrder the index array to be filled

//

///////////////////////////////////////////////////////////////////////////

if (pNA->m_cLastLevel)

{ // if already reached bottom level: fill pnPattern und pnOrder

memcpy (pnOrder, pNA->m_pNA ,sizeof (int) * (int ) pNA->m_pNum) ;

// copy index array of current NA-pattern to the big index-array

pnOrder += (int ) pNA->m_pNum ;

int i ;

// write a(any) pattern ID - since only the current position of the

// index array is available, which differs for each call of this

// function, the pointer to the current position in the index

// array is used as pattern ID

66



for (i = (int ) pNA->m_pNum - 1; i>= 0; i--)

*pnPattern++ = (int) pnOrder ;

return ;

}

// do recursions for both branches of the current node

if (pNA->m_pNA)

WriteNAPattern (pNA->m_pNA, pnPattern, pnOrder) ;

if (pNA->m_pNum)

WriteNAPattern (pNA->m_pNum, pnPattern, pnOrder) ;

}

void CalcNAPattern_II (int *pnPar, double *pdDat, int *pnPattern, int *pnOrder)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: calculates an index array which orders the observations

// according to their NA-pattern. Further an pattern ID is assigned

// to each observations. This ID is equal, when two observations

// have the same NA-pattern. If the NA-pattern differs, these IDs

// differ too.

//

// INPUT: pnPar array containing parameters:

// 0: rowNum of matrix pdDat

// 1: colNum of matrix pdDat (not needed here)

// pdDat Data Matrix containing observations to project (nxp)

// pnPattern an array which is filled with the pattern IDs

// pnOrder the index array which is calculated

//

///////////////////////////////////////////////////////////////////////////

int &n = pnPar [0] ;

int &p = pnPar [1] ;

int i, j ;

CNAPattern *pNAStart = new CNAPattern ;

CNAPattern **ppCurNA = &pNAStart ;

double *pdCurVal ;

// creating the tree:

for (i = n - 1; i >= 0; i--)

{ // iterate through all observations
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pdCurVal = pdDat + i ;

ppCurNA = &pNAStart ;

for (j = p - 1; j >= 0; j--)

{ // iterating through all variables & stepping down the tree

if (R_IsNA (*pdCurVal))

ppCurNA = &(*ppCurNA)->m_pNA ;

else

ppCurNA = &(*ppCurNA)->m_pNum ;

// if the according node has not yet been created:

if (!*ppCurNA)

*ppCurNA = new CNAPattern ; // create node

pdCurVal += n ;

}

// set last level-flag for last level-node

(*ppCurNA)->m_cLastLevel = 1 ;

// increases the counter

(*ppCurNA)->m_pNum = (CNAPattern *) ((char *)(*ppCurNA)->m_pNum + 1) ;

}

CNAPattern *pCurNA = pNAStart ;

// again step through the tree (and all observations)

for (i = n - 1; i >= 0; i--)

{

pdCurVal = pdDat + i ;

pCurNA = pNAStart ;

// gets the according node for the current observation

for (j = p - 1; j >= 0; j--)

{

if (R_IsNA (*pdCurVal))

pCurNA = pCurNA->m_pNA ;

else

pCurNA = pCurNA->m_pNum ;

pdCurVal += n ;

}

// if the index array for the current NA-pattern has not yet been

// created

if (!pCurNA->m_pNA)
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{ // creating index - array

int nCount = (int) (pCurNA->m_pNum) ;

pCurNA->m_pNA = (CNAPattern*) new int [nCount] ;

pCurNA->m_pNum = NULL ;

}

// stores the index of the current observation

((int*) pCurNA->m_pNA) [(int) pCurNA->m_pNum] = i ;

pCurNA->m_pNum = (CNAPattern *) ((char *)pCurNA->m_pNum + 1) ;

}

// recursively writes all indices from all last level-nodes to one

// big index array pnOrder

WriteNAPattern (pNAStart, pnPattern, pnOrder) ;

delete pNAStart ;

}

void matmult (double *pMat1, int *pnRow1, int *pnCol1, double *pMat2,

int *pnCol2, double *pMatRet)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Multiplies two matrices pMat1 and pMat2

//

// INPUT: pMat1 array of length *pnRow1 * *pnCol1

// pnRow1 Number of rows of pMat1

// pnCol1 Number of columns of pMat1

// pMat2 array of length *pnCol1 * *pnCol2

// pnCol2 Number of columns of pMat2

// pMatRet double array of length *pnRow1 * *pnCol2

// the resulting matrix is returned by this array

//

///////////////////////////////////////////////////////////////////////////

int &nRow1 = *pnRow1 ;

int &nCol1 = *pnCol1 ;

int &nCol2 = *pnCol2 ;

int i,j,h ;

for (i = 0; i < nRow1; i++) // iterate through tows of pMat1

for (j = 0; j < nCol2; j++) // iterate through coloumns of pMat2

{
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double *pdCurPoint = pMatRet + i + j * nRow1 ;

*pdCurPoint = 0 ;

// iterate through rows of pMat2

for (h = 0; h < nCol1; h++)

*pdCurPoint += pMat1 [i + h * nRow1] * pMat2 [h + j * nCol1] ;

}

}

void pcImpDataDistance (int *pnPar, double *pdDat, double *pdImp,

int *pnWhich, int *pnObsOk, double *pdDistance)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Calculates the distance of two matrixes (pdDat and pdImp) for

// estimating the quality of an imputation.

// Only elements which have been missing in the original

// matrices are considered. Further values are ignored which are

// "not ok", as indicated by array pnObsOk

//

// INPUT: pnPar array containing parameters:

// 0: rowNum of matrix pdDat

// 1: colNum of matrix pdDat (not needed here)

// 2: number of missings in original matrix

// 3: flag indicating whether manhattan (0) or

// square distances (1) shall be calculated

// pdDat first matrix to compare

// pdImp second matrix to compare

// pnWhich indizes of elements which have been missing in the

// original dataset

// pnObsOk array specifying observations which shall be compared

// pdDistance the resulting distance is returned via this variable

//

//////////////////////////////////////////////////////////////////////////

// the first coloumn of pnWhich must be ordered ascending in order

// to find the right indizes for pnObsOk

int &n = pnPar [0] ; // pdat and pImp are of size n x p

int &nMiss = pnPar[2] ; // pnWhich is of size nMiss x 2

int &nSqrDist = pnPar[3] ; // Flag indicating whether manhattan (0) or

// square distances (1) shall be calculated

int i ;
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int *pnWhichCol = pnWhich + nMiss ;

*pdDistance = 0 ;

double dTempDist = 0 ;

int nLastRowIdx = *pnWhich ;

int nCurIdx ;

double dSqr ;

int nCountVals = 0 ;

for (i = 0; i < nMiss; i++)

{ // iterating through all missing values

if (nLastRowIdx != pnWhich[i])

{ // all distances of the current observation have been added

if (nSqrDist)

{

*pdDistance += sqrt (dTempDist) ;

dTempDist = 0 ;

}

pnObsOk ++ ;

}

nLastRowIdx = pnWhich[i] ;

if (!*pnObsOk ) // corresponding observation is outlier - do not

// include in distance calculation

continue ;

// calculating index for current observation

nCurIdx = pnWhich[i] - 1 + (pnWhichCol[i] - 1) * n ;

if (nSqrDist) // when euclidean distance should be calculated:

{ // square distance & add to dTempDist

dSqr = pdDat[nCurIdx] - pdImp[nCurIdx] ;

dTempDist += dSqr * dSqr ;

}

else // otherwise: add distance to dTempDist

dTempDist += fabs (pdDat[nCurIdx] - pdImp[nCurIdx]) ;

nCountVals ++ ;

}

if (nSqrDist)

dTempDist = sqrt (dTempDist) ;

*pdDistance += dTempDist ;

*pdDistance /= nCountVals ;
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}

void iterproj_ll_one (int p, int naccess, int nM_, int *pnNAIdx,

double *pdData, double *pdProjMat, double *pdTemp_p,

int nIterMax)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: projects one observation iterativel onto a set of princiapl

// components, given by pdProjMat = gamma[,1:k] %*% t(gamma[,1:k])

//

// INPUT: p dimensionality of data space

// naccess rowNum of the underlying matrix containing the

// considered observation (for addressing only)

// nM_ number of missing values

// pnNAIdx array containing indices of missing values

// pdData Data matrix, starting with the considered observation

// the imputed values are directly written into this

// matrix

// pdProjMat projection matrix - basically consisting of loadings

// = gamma[,1:k] %*% t(gamma[,1:k])

// pdTemp_p array of length p - used for buffering results

// nIterMax maximum number of iterations

//

///////////////////////////////////////////////////////////////////////////

int j, h ;

double dDist ;

double *pdCurData ;

double dConvergenceThreshold = 0.001 * nM_ ;

double *pdCurProjMat ;

int nCurIter ;

// checking all variables for NAs and replacing them with 0

for (j = nM_ - 1; j >= 0; j--)

if (R_IsNA (pdData[pnNAIdx[j] * naccess]))

pdData[pnNAIdx[j] * naccess] = 0 ;

dDist = 1 ;

nCurIter = 0 ;
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while (dDist > dConvergenceThreshold && nCurIter++ < nIterMax)

{

pdCurProjMat = pdProjMat ;

// performing Matrix multiplication

// pdTemp_p = curobs %*% pdProjMat

for (j = 0; j < nM_; j++)

{

pdCurData = pdData ;

double &dCurEst = pdTemp_p[j] = 0 ;

pdCurProjMat = pdProjMat + pnNAIdx[j] * p ;

for (h = 0; h < p; h++) // Matmult - jeweils eine spalte

{

dCurEst += *pdCurData * *pdCurProjMat ++ ;

pdCurData += naccess ;

}

}

// calculates distance & writes estimations vor missing values

// back to data matrix

dDist = 0 ;

for (j = 0; j < nM_; j++)

{

double &dCurPos = pdData[pnNAIdx [j] * naccess] ;

dDist += fabs (dCurPos - pdTemp_p[j]) ;

dCurPos = pdTemp_p[j] ;

}

}

}

void iterproj (int *pnPar, double *pdDat, double *pdPC, int *pnNAPattern,

int *pnNAOrder, int *pnI)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: projects n observations iteratively onto k principal components

// given by pdPC, by calling iterproj_ll_one

//

// INPUT: pnPar array containing parameters:

// 0: n := rowNum of matrix pdDat

// 1: p := colNum of matrix pdDat (not needed here)
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// 2: k := number of relevant PCs

// pdDat Data Matrix containing observations to project (nxp)

// pdPC Matrix containing loadings (Gamma) (pxp)

// pnNAPattern array of length n, containing an ID of the

// NA-pattern of each observation. Equal ID means

// NA-patterns are ident, different IDs: NA-patterns

// differ.

// pnNAOrder Index - array which sorts observations in a way,

// that observations with equal NA-pattern are blocked

// pnI array of size n*p indicating whether a values has

// been observed (1) or was missing (0)

//

///////////////////////////////////////////////////////////////////////////

int &n = pnPar [0] ;

int &p = pnPar [1] ;

int &k = pnPar [2] ;

int i, j, h;

double *pdCurDat ;

int *pnNAIdx = new int [p], *pnNotNAIdx = new int [p] ;

double *pdTemp = new double [p] ;

int nLastNaPattern = pnNAPattern[0] - 1 ;

double *pdProj = new double [p * p];

int nCurIdx, nM_ = 0 , nM = 0 ;

int *pnCurI ;

double *pdGTG = new double [p * p];

{ // Calculate gamma [,1:k] %*% t(gamma[,1:k]) for iterproj_ll_one

for (i = 0; i < p; i++)

for (j = 0; j < p; j++)

{

double &dCurGTG = pdGTG[j + i * p] = 0 ;

for (h = 0; h < k; h++)

dCurGTG += pdPC[j + h * p] * pdPC[i + h * p] ;

}

}
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for (i = 0; i < n; i++)

{ // for each row of pdDat

nCurIdx = pnNAOrder [i] ; // position of current observation

if (nLastNaPattern != pnNAPattern[i])

{ // if the NA-pattern has changed..

nLastNaPattern = pnNAPattern[i] ;

nM_ = nM = 0 ; // nM ... number of not missings in current pattern

pdCurDat = pdDat + nCurIdx ;

pnCurI = pnI + nCurIdx ;

// get NA-pattern (which observations were missing)

// out of I

for (j = 0; j < p; j++)

{

if (!*pnCurI)//R_IsNA (*pdCurDat))

pnNAIdx [nM_++] = j ;

else

pnNotNAIdx[nM ++] = j ;

pdCurDat += n ;

pnCurI += n ;

}

}

// call iterproj_ll_one (for each observations)

iterproj_ll_one (p, n, nM_, pnNAIdx, pdDat + nCurIdx, pdGTG, pdTemp,

pnPar[3]) ;

}

delete [] pdGTG ;

delete [] pnNAIdx ;

delete [] pnNotNAIdx ;

delete [] pdTemp ;

delete [] pdProj ;

}

void mahaproj (int *pnPar, double *pdDat, double *pdPCs, double *pdSdev, int *pnNAPattern, int *pnNAOrder, int *pnI)

{

///////////////////////////////////////////////////////////////////////////

//

// AIM: implements the Mahalanobis distance based projection method

//

// INPUT: pnPar array containing parameters:
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// 0: n := rowNum of matrix pdDat

// 1: p := colNum of matrix pdDat (not needed here)

// 2: k := number of relevant PCs

// pdDat Data Matrix containing observations to project (nxp)

// pdPCs Matrix containing loadings (Gamma) (pxp)

// pdSdev array of length p convaining the eigenvalues ^0.5

// pnNAPattern array of length n, containing an ID of the

// NA-pattern of each observation. Equal ID means

// NA-patterns are ident, different IDs: NA-patterns

// differ.

// pnNAOrder Index - array which sorts observations in a way,

// that observations with equal NA-pattern are blocked

// pnI array of size n*p indicating whether a values has

// been observed (1) or was missing (0)

//

///////////////////////////////////////////////////////////////////////////

int &n = pnPar[0] ;

int &p = pnPar[1] ;

int &k = pnPar[2] ;

int *pnipiv = new int [p] ;

int nFoo ;

int nCurIdx, nLastNaPattern = *pnNAPattern -1;

int *pnNAIdx = new int [p], *pnNotNAIdx = new int [p] ;

double *pdGS = new double [p * p] ; // G %*% Sigma^-1

double *pdProj = new double [p * p] ;

double *pdInv = new double [p * p] ;

double *pdGSG = new double [p * p] ;

int *pnCurNAPattern = new int [p] ;

double *pdCurDat ;

int nM ; // # of not missing in the current observation

int nM_ ; // # of missing in the current observation

double *pdSigmaInv = new double [p] ;

double *pdSigmaOne = new double [p] ;

double *pdSigmaUsed ;
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int i, j, h, l ;

int *pnPtP = new int [p] ; // p times p

for (i = 0; i < p; i++)

{

pnPtP[i] = p * i ;

pdSigmaOne[i] = i >= k ;

if (pdSdev[i] < 10e-12)

pdSigmaInv[i] = 10e12 ;

else

pdSigmaInv[i] = 1/(pdSdev[i] * pdSdev[i]) ;

}

double *pdNewObs = new double [p] ;

double *pdCurGS ;

double *pdCurPC ;

double *pdCurProj ;

double *pdCurInv ;

double *pdCurGSG ;

int nMode = 0 ;

int nkUsed ;

int *pnCurI ;

for (i = 0; i < n; i++)

{

nCurIdx = pnNAOrder [i] ;

if (nLastNaPattern != pnNAPattern[i])

{ // NA-pattern has changed -> calculate new projection matrizes

pdCurDat = pdDat + nCurIdx ;

pnCurI = pnI + nCurIdx ;

nLastNaPattern = pnNAPattern [i] ;

nM_ = nM = 0 ;

// get an index array for missing and the not missing values

for (j = 0; j < p; j++)

{

if (pnCurNAPattern[j] = !(*pnCurI))
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pnNAIdx [nM_++] = j ;

else

pnNotNAIdx[nM ++] = j ;

pdCurDat += n ;

pnCurI += n ;

}

if (nM_ == 0)

{ // no missing values

nMode = 0 ;

continue ;

}

else if (nM >= k)

// over-determined - 2 hyperplanes which do not cross - calculate

// minimum distance between hyperplanes

{ // Mahalanobis algorithm may be applied, but may be unstable

// instead of using diag (Sigma), use 0,0,0..,0,1,...,1

// which results in the original minimum distance projection

nMode = 1 ;

pdSigmaUsed = pdSigmaOne ;

pdCurGS = pdGS ;

pdCurInv = pdInv ;

// GS = G[!m,!k] %*% t(G[!m,!k])

for (j = 0; j < nM_; j++)

for (h = 0; h < nM_; h++)

{

// filling diagonal matrix into pdInv - mat (for mat inversion)

*pdCurInv++ = j == h ;

double &dCurGS = *pdCurGS++ = 0 ;

for (l = k; l < p; l++)

dCurGS += pdPCs [pnNAIdx [j] + pnPtP[l]] *

pdPCs [pnNAIdx [h] + pnPtP[l]] ;

}

// pdInv = GS^-1

F77_CALL(dgesv)(&nM_, &nM_, pdGS, &nM_, pnipiv, pdInv, &nM_, &nFoo) ;

pdCurGS = pdGS ;

// GS = G[m,!k] %*% t(G[!m,!k])

for (h = 0; h < nM_; h++)
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for (j = 0; j < nM; j++)

{

double &dCurGS = *pdCurGS++ = 0 ;

for (l = k; l < p; l++)

dCurGS += pdPCs [pnNotNAIdx [j] + pnPtP[l]] *

pdPCs [pnNAIdx [h] + pnPtP[l]] ;

}

matmult(pdGS, &nM, &nM_, pdInv, &nM_, pdProj) ;

nFoo = nM_ * nM ;

}

else

{ // exactly defined (nM_ == k) or under-determined

// - find point with minimum Mahalanobis distance.

// Apply Mahalanobis algorithm (minimize mahalanobis distance)

nMode = 2 ;

nkUsed = p ; // this projection only works with all dimension

pdSigmaUsed = pdSigmaInv ;

// pdGS = G %*% Sigma^-1

pdCurGS = pdGS ;

for (j = 0; j < nkUsed; j++)

{

pdCurPC = pdPCs + pnPtP[j] ;

double &dCurSigmaInv = pdSigmaUsed [j] ;

for (h = 0; h < nM_; h++)

*pdCurGS++ = pdCurPC[pnNAIdx [h]] * dCurSigmaInv ;

}

// pdProj = pdGS %*% t(G) (nM_ x nkUsed) x (nkUsed x nM_)

pdCurProj = pdProj ;

pdCurInv = pdInv ;

for (j = 0; j < nM_; j++)

{

for (h = 0; h < nM_; h++)

{

*pdCurInv++ = h == j ;

// filling diagonal matrix into pdInv - mat (for mat inversion)
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double &dCurProj = *pdCurProj ++ = 0 ;

for (l = 0; l < nkUsed; l++)

dCurProj += pdGS [nM_ * l + h] * pdPCs[pnNAIdx [j] + pnPtP[l]] ;

}

}

F77_CALL(dgesv)(&nM_, &nM_, pdProj, &nM_, pnipiv, pdInv, &nM_, &nFoo) ;

{ // GSG = GS %*% Gamma [,1:k]

pdCurGSG = pdGSG ;

for (j = 0; j < nM_; j++)

for (h = 0; h < p; h++)

{

double &dCurGSG = pdGSG[j+h * nM_] = 0 ;//*pdCurGSG++ = 0 ;

for (l = 0; l < nkUsed; l++)

dCurGSG += pdGS[j + l * nM_] * pdPCs[h + pnPtP[l]] ;

}

}

// pdProj = pdInv %*% pdGSG

matmult (pdInv, &nM_, &nM_, pdGSG, &p, pdProj) ;

nFoo = nM_ * p ;

}

InvertSgn (pdProj, &nFoo) ;

}

if (nMode == 1)

{ // over determined

// multiplies current observation with pdProj[M,]

pdCurDat = pdDat + nCurIdx ;

for (j = 0; j < nM_; j++)

{

double &dCurNewObs = pdNewObs[j] = 0 ;

for (h = 0; h < nM; h++)

dCurNewObs += pdCurDat [pnNotNAIdx [h] * n] * pdProj [j * nM + h] ;

}

// write imputed values back to data matrix

for (j = 0; j < nM_; j++)
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pdCurDat [pnNAIdx [j] * n] = pdNewObs [j] ;

}

else if (nMode == 2)

{ // under determined (or exactly)

// multiplies current observation with pdProj[M,]

for (h = 0; h < nM_; h++)

{

pdCurDat = pdDat + nCurIdx;

pdCurProj = pdProj + h ;

double &dCurNewObs = pdNewObs[h] = 0 ;

for (j = 0; j < p; j++)

{

if (!pnCurNAPattern [j])

dCurNewObs += *pdCurDat * *pdCurProj ;

pdCurProj += nM_ ;

pdCurDat += n ;

}

}

// write imputed values back to data matrix

pdCurDat = pdDat + nCurIdx ;

for (h = 0; h < nM_; h++)

pdCurDat [pnNAIdx [h] * n] = pdNewObs [h] ;

}

}

delete [] pnNAIdx ;

delete [] pnNotNAIdx ;

delete [] pdGS ;

delete [] pdProj ;

delete [] pdInv ;

delete [] pnipiv ;

delete [] pdSigmaOne ;

delete [] pdSigmaInv ;

delete [] pdNewObs ;

delete [] pnCurNAPattern ;

delete [] pdGSG ;

delete [] pnPtP ;

}

void scale (int *pnPar, double *pdDat, double *pdMean, double *pdScale)
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{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Scales a data-matrix pdDat according to center Vector pdMean

// and scale vector pdScale

//

// INPUT: pnPar array containing parameters:

// 0: n := rowNum of matrix pdDat

// 1: p := colNum of matrix pdDat (not needed here)

// 2: bAdd := flag whether z-Transformation (1) or

// inverse z-Transformation should be done

// pdDat array of length (n*p) representing the data matrix

// pdMean mean vector (array of size p)

// pdScale scale vector (array of size p)

//

///////////////////////////////////////////////////////////////////////////

int &n = pnPar[0] ;

int &p = pnPar[1] ;

int &bAdd = pnPar[2] ;

int i, j ;

if (bAdd) // if the data should be centered

for (j = 0; j < p; j++)

{ // for each variable

double &dMean = pdMean[j] ;

double &dScale = pdScale[j] ;

// for each observation

for (i = n - 1; i >= 0; i--)

*pdDat++ = (*pdDat - dMean) / dScale ;

}

else // if the data is already centered and the resulting

// dataset should have center pdCenter and sd = pcScale

for (j = 0; j < p; j++)

{

double &dMean = pdMean[j] ;

double &dScale = pdScale[j] ;

// for each observation

for (i = n - 1; i >= 0; i--)

*pdDat++ = (*pdDat * dScale) + dMean ;

}

}

void InvertSgn (double *pd, int *pn)
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{

///////////////////////////////////////////////////////////////////////////

//

// AIM: Inverts the signs of array pd of length pn

//

// INPUT: pd array containing values which signs shall be changed

// pn points to an int containing the number of elements of pd

//

//////////////////////////////////////////////////////////////////////////

int &n = *pn, i ;

for (i = n; i > 0; i--)

*pd++ = _chgsign (*pd) ;

}
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