Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Diplomarbeit

Development and Setting Up
of a 4x4 Real-time MIMO Testbed

Ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs unter Leitung von

DI Ernst Aschbacher und Prof. Dr. Markus Rupp
E389
Institut fiir Nachrichtentechnik und Hochfrequenztechnik

eingereicht an der Technischen Universitit Wien

Fakultat fiir Elektrotechnik und Informationstechnik
von

Sebastian Caban

Matrikelnummer: 0025464
Adresse: Zanaschkagasse 12/31/30, 1120 Wien

Wien, Juni 2004



I hereby certify that the work reported in this diploma thesis is my own,
and the work done by other authors is appropriately cited.

Sebastian Caban
Vienna, June 1, 2004



i

Abstract

Research on multiple antenna systems is mainly theoretical. A lot of work
has been done to prove their operation on a mathematical basis — but now
it is time for an experimental setup to demonstrate in real-time operation
whether they work in an realistic scenario.

For this purpose a testbed has been developed and set up which can
serve up to four transmit and four receive antennas simultaneously. It con-
sists primarily of two PCs, one containing the transmit hardware and the
other containing all the receive hardware. The user who wants to transmit
data interfaces this system via a network connection by the use of simple
MATLAB commands. The developed interface is very easy to use, powerful,
and platform independent. Furthermore, the user does not need to perform
any hardware programming.

Using this powerful testbed, it is very easy to add a real-time transmis-
sion to existing MATLAB simulations by just simply inserting a few MATLAB
commands. Transmissions via air or channel emulators will enable new pos-
sibilities of DSP code development and testing of, e.g., UMTS, OFDM, and
MIMO systems.

The testbed can be extended by DSP/FPGA modules. It is possible to
use these modules in a separate PC to perform testing of coding techniques
in a real-time hardware environment. They also interface the transmit and
receive hardware via a network connection and simple MATLAB commands.

First impressive results using the developed MIMO testbed have already
been achieved by Christian Mehlfiihrer. His work shows exactly matching
with existing simulation results.



il

Zusammenfassung

In den letzten Jahren wurden Mehrantennensysteme vor allem theoretisch
erforscht. Es wurde sehr viel unternommen, um ihr Funktionieren auf einer
mathematischen Grundlage zu zeigen — doch nun ist es daran in Echtzeit
zu zeigen, ob all dies auch in einem realistischen Szenario funktioniert oder
nicht.

Zau diesem Zweck wurde ein Testsystem entwickelt und in Betrieb genom-
men, mit dem bis zu vier Sende- und Empfangsantennen gleichzeitig synchron
bedient werden konnen. Das System besteht im Wesentlichen aus zwei PCs.
Einer beherbergt die Hardeware zum Senden, der andere die zum Empfan-
gen. Der Anwender, der seine Daten iibertragen mochte, kommuniziert mit
diesem System iiber eine Netzwerkverbindung und wenige einfache MATLAB
Kommandos. Die hierfiir entwickelte Schnittstelle ist sehr einfach zu verwen-
den, sehr leistungsfahig und plattformunabhéngig. Des weiteren beno6tigt der
Benutzer keine Kentnisse iiber Hardwareprogrammierung,.

Aufbauend auf dieser Grundlage ist es vergleichsweise einfach, eine beste-
hende MATLAB Simulation um eine Echtzeitiibertragung zu erweitern. Schon
ein paar einfache MATLAB Befehle geniigen fiir eine Ubertragung iiber Luft
oder Kanalemulatoren. Dies eroffnet neue Mdoglichkeiten zur DSP Codeent-
wicklung und -testung, z.B. fiir UMTS, OFDM und MIMO Systeme.

Dariiber hinaus ist es moglich das Testsystem um DSP/FPGA Module
7u erweitern. Dies ermoglicht es einem Benutzer Detektionsverfahren, Kodie-
rer und Detektoren in einer Echtzeitumgebung zu testen. Mit dem MIMO
Testsystem kommuniziert der Benutzer weiterhin mittels einiger einfacher
MATLAB Befehle iiber eine Netztwerkverbindung.

Erste beeindruckende Resultate mit diesem Testsystem wurden auch schon
von Christian Mehlfiihrer in seiner Arbeit vorgestellt. Sie zeigen eine exakte
Ubereinstimmung mit bereits vorhandenen Simulationsergebnissen.



Contents

1 Introduction

2 The MIMO Testbed

2.1 System Overview . . . . . . .. .. ...

2.2

2.3

2.4

2.5

2.1.1

The MATLAB INTERFACE . . . . . . . . v o v v o ..

Setting Up the MIMO System . . . . . . .. ... ... ....

2.2.1
2.2.2

Setting Up the MIMO Servers . . . . . . . .. .. ...
Setting Up the External Hardware . . . . . ... ...

Transmitting Data via the MATLAB INTERFACE . . . . . . ..

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7

Creating the Complex Baseband Data Samples

Triggering the Operation of Pollux . . . . .. .. ...
The Automatic Digital Up-conversion . . . . . . . . ..
The Analog Intermediate Frequency Signal . . . . . . .
Example: Transmitting a 16 QAM . . . . . . .. .. ..
Example: Signal for a Multitone Measurement . . . . .
Transmitting Multiple Blocks of Data . . . . . . .. ..

Receiving Data via the MATLAB INTERFACE . . . . . . . . ..

24.1
24.2
243
244

Handshaking of Pollux and Castor . . . . . ... ...
The Automatic Digital Down-conversion . . . . . . ..

The Complex Baseband Data Samples . . . . . .. ..
Example: 1T6QAM . . . . .. .. ...

"xvTXDataOptions” . . . . . . . . ... ... .. ... ...,

25.1
2.5.2
2.5.3
254
2.5.5

Operation Mode . . . . . . ... ... ...
TX Number of Repetitions . . . . . .. ... ... ...
TX Center Frequency . . . . . . .. . ... ... . ...
TX Interpolation Factor . . . . .. ... .. ... ...
TX External Clock . . . . .. .. ... ... ......

iv

36



CONTENTS

2.5.6 TX Delay Between Blocks . . . . .. ... ... ....
2.5.6.1 Using the C++ Sleep(...) Function . . . . ..

2.5.6.2  Using the CPU’s High Performance Counter .

2.5.7 RX Number of Samples . . . ... ... ... .....
2.5.8 RX Number of Channels . . . . ... ... ... ... .
2.5.9 RX Number of Repetitions . . . . . ... ... .....
2.5.10 RX Center Frequency . . . . . . . . . ... .. ... ..
2.5.11 RX Interpolation Factor . . . ... . ... ... ....
2512 RX Filter . . . . . . .. .
2513 Flags . . . . . . o oo
2.5.13.0 Flag 1: TX Continuous Mode . . . . . . . ..
2.5.13.1 Flag 2: RX Continuous Mode . . . . . . . ..
2.5.13.2 Flag 4: TX do not Delete .mat File . . . . . .
2.5.13.3 Flag 8 RX Use .dat File. . . . . . . ... ..
2.5.13.4 Flag 16: Create .received File . . . . . . . ..
2.5.13.5 Flag 32: TX force HDD operation . . . . . .
2.5.13.6 Flag 64: RX Force HDD Operation . . . . . .
2.5.13.7 Flag 128: Sync via File . . . ... ... ...
2.5.13.8 Flag 256: RX Check CW Data . .. ... ..

2.5.14 The Maximum Number of Samples per Block . . . . .
2.6 Interfacing the MIMO Testbed via FTP . . . . ... ... ..

3 Extending the Testbed
Conclusion

A Picture of the ICS-564 board
B Picture of the ICS-554 board
C Picture of the SMT-365 board
List of Abbreviations

Bibliography

38
38
40
41
41
41
42
42
42
43
43
44
44
45
46
47
47
47
47
48
48

49

52

53

54

55

57

58



Chapter 1

Introduction

All over the world, a lot of research has already been performed to investigate
the behavior and possibilities of multiple antenna systems but unfortunately,
most MIMO! algorithms are tested only theoretically. A lot of symbolical
calculations and numerical simulations (e.g. in MATLAB?) describe the an-
ticipated behavior of multiple antenna transmissions. But actually it is not
exactly known, whether all these results will stand the test of a real air
transmission.

MATLAB can be used to perfectly simulate the behavior of digital trans-
mitters and receivers. Every transmission needs a channel and, up to now,
there is no way to reflect a real world scenario perfectly in a simulation. A
lot of approaches exist to describe extremely simplified versions of the real
world in form of channel models. Due to a lack of computing power and
knowledge, these models are quite simple while still covering all the impor-
tant aspects of a transmission. They are continuously optimized but based
on their assumptions they remain models, not describing exact transmission
behavior.

In order to obtain realistic behavior, the physical channel should be used
instead. Therefore, the intention of this diploma thesis was to develop and
set up a MIMO testbed which is able to carry out transmissions through a
physical channel.

A user, investigating coding and decoding schemes, is usually not able to
take care of hardware developing and setting up due to a lack of time and
specialized knowledge; therefore, he must be able to use the testbed easily
with nearly no effort directly out of an environment he knows well, e.g.

IMIMO — Multiple Input Multiple Output, more than one antenna is used
2MATLAB is a trademark of MathWorks Inc.



CHAPTER 1. INTRODUCTION 2

MATLAB. Multi user operation, LAN operation, and extensive data storage
are important requirements to achieve this goal.

Chapter 2 of this thesis describes the setup of the developed MIMO
testbed (see Figure 1.1). An introduction into the parts of the testbed is
followed by a detailed description on how to use it. Code examples and a list
of all operation modes round up this chapter.

Chapter 3 describes an extension of the testbed by DSP? + FPGA* boards.
Using these boards enhances the possibilities of the MIMO testbed signifi-
cantly by introducing a real-time environment for DSP code development
and testing.

Receive PC Transmit PC

Figure 1.1: Picture of the MIMO testbed.

3DSP — Digital Signal Processor
“FPGA = Field Programmable Gate Array, a user programmable logic device



Chapter 2

The MIMO Testbed

The developed MIMO testbed is optimized to quickly transmit and receive
data over an RF channel directly out of MATLAB with minimum effort. It
can be used to implement, test, and optimize signal processing algorithms
for MIMO transmission using any modulation scheme. Detailed knowledge
of the hardware and hardware programming is therefore not needed. This
reduces code development time dramatically and enables multiple users to
operate the same very expensive hardware.

This chapter first presents a short overview about how the testbed is
built up. Since the overall system is very complex, only the basic hardware
information which is needed to understand how the overall system works is
given. Next, it is explained how to interface this testbed by using MATLAB
in order to transmit and receive data. Some code examples and a summary
of all the different opportunities of this testbed end this chapter.

2.1 System Overview

The main task of the MIMO testbed is to transmit and receive user-data over
an RF channel. This user-data is generated by a user PC which is connected
to the testbed via a LAN! connection. The whole system is made up of four
main parts as shown in Figure 2.1.1.

Furthermore, the overall testbed can be extended by DSP/FPGA boards
located in the “user PC” (see Figure 2.1.1) to implement and test signal
detection algorithms in an realistic real-time scenario. This extension of the
testbed will be described in Chapter 3.

ITLAN = Local Area Network, connection between computers



CHAPTER 2. THE MIMO TESTBED 4

PC poltux - @ | ax IF-Signal
MIMO ——
Transmitter

¢ Synchronisation | Channel (3)

PC Castor )

MIMO —
Receiver 4x IF-Signal

MATLAB
INTERFACE

Figure 2.1.1: The MIMO testbed.

The MIMO testbed consists of?:

1. one or more user PCs where the baseband signals are generated. The
so called MATLAB INTERFACE (Section 2.1.1) is used to transmit this
data to the other parts of the system via a LAN connection and by the
use of MATLAB commands.

2. a server PC, named Pollux, which gets the complex baseband data
samples from the user PC and automatically up-converts them to band-
pass IF samples. After a digital to analog conversion the PC finally
transmits the IF signal over the channel (see Section 2.3.3). This PC
also does all the handshaking needed for the MATLAB INTERFACE.

3. a channel which consists of IF to RF up-converters, RF to IF down-
converters, and RF channel emulators or a real air interface. These
parts were developed by Robert Langwieser [4] and Lukas Mayer [5]
in their diploma theses for an IF of 70 MHz and an RF of 2.45 GHz.
Figure 2.1.2 shows this channel which is not part of this diploma thesis
and is therefore considered as a working black box.

IF=70MHz RF=2.45GHz RF=2.45GHz [F=70MHz

Up Chamel Emulator Down
Converter or Air Interface Converter

Figure 2.1.2: RF channel for the MIMO testbed.

2The item numbers correspond to the numbers in Figure 2.1.1



CHAPTER 2. THE MIMO TESTBED 5

4. aserver PC, named Castor, which receives the bandpass IF signal from
the channel, converts it to the digital domain and automatically down-
converts the resulting digital samples from IF to baseband. Finally the
PC stores the complex baseband data samples on the internal hard-disk
so that the user can read them via the LAN (see Section 2.4.2).

While maintaining considerable performance and flexibility, the system
was designed to provide a very easy to use interface. To achieve this main ob-
jective, MATLAB (in combination with C++) has been used as programming
language for the server PCs and for the user interface.

2.1.1 The MATLAB INTERFACE

The above mentioned MATLAB INTERFACE is the basic idea of the system.
Using this interface, the user is able to transmit and receive data directly
delivered from MATLAB from anywhere in the LAN without hardware pro-
gramming and/or debugging.

The interface is completely implemented in MATLAB because MATLAB
is platform independent®, powerful, easy to use, and probably the most
used programming language for development and testing of signal process-
ing schemes in engineering. Furthermore, this interface uses ordinary files to
communicate and handshake, not TCP/IP commands. This enables batch
processing, reduces code development time, and gives the possibility to in-
terface the MIMO System even through a firewall by using Secure-FTP
(Figure 2.1.3):

Secure FTP
Connection
PC (1)
User
=
2
&
=

Figure 2.1.3: Interfacing via Secure-F'TP.

3MATLAB is available for the following platforms: All Windows versions, Linux, Macintosh
OSX, Solaris, AIX, Digital UNIX, HP-UX 10, HP-UX 20, and IRIX/IRIX64



CHAPTER 2. THE MIMO TESTBED 6

Without going into further details of the hardware implementation, the
operation of the MATLAB INTERFACE can be simplified to the following main
sequences® (see Figure 2.1.4):

User Pollux

S

save TX-data
save options

' @ o

save 0 byte .do-file — — > wait for this .do-file

v

do transmission

v

save RX-data or error

wait for this .done-file | -€— — save 0 byte .done- file

load error load RX-data

v v

Figure 2.1.4: The MATLAB INTERFACE, handshaking.

1. The user saves the generated complex baseband data samples and
an array of options (desired center frequency of the bandpass signal,
etc.) using the MATLAB save(...) command to a dedicated folder (see
Section 2.3).

4The item numpers correspond to the numbers in Figure 2.1.4



CHAPTER 2. THE MIMO TESTBED 7

2. After completing the save(...) command the user saves a 0 byte large
.do-file to the same folder. Because network file operations are always
processed one after the other, it is guaranteed that the complex base-
band data samples are completely saved when the .do-file is created.

3. This .do-file triggers the operation of Pollux (and Pollux triggers the
operation of Castor if needed). The overall signal transmission is
carried out automatically by the server software of these PCs (see
Section 2.3.3).

4. The user waits (polling operation) for a 0 byte large .done-file in a ded-
icated network folder that indicates that Pollux has completed opera-
tion.

5. Now the user checks whether an error file has been written by Pollux. If
such a file exists, the user loads this file containing the error messages.
If not, the user loads the received complex baseband data samples using
the MATLAB load(...) command (see Section 2.4).

This procedure can now be used to operate the whole system from a single
PC via a LAN connection using MATLAB. The user is able to:

1. transmit data over a channel (without receiving anything),
2. receive data from a channel (without transmitting anything),
3. transmit data over a channel and receive it,

4. and hibernate® Pollux and Castor if not needed any more.

These four operation modes are much related to each other and their
implementation is very similar. A detailed description and some examples
can be obtained from Section 2.5.1.

2.2 Setting Up the MIMO System

2.2.1 Setting Up the MIMO Servers

Before data can be transmitted, the two host PCs have to be set up properly.
As mentioned before, the transmitting PC is called Pollux and the receiving
PC is called Castor.

5The Windows hibernate feature saves everything in memory on the hard disk, turns off
the monitor and hard disk, and then turns off the computer. When the computer is
restarted, the desktop is restored exactly.




CHAPTER 2. THE MIMO TESTBED 8

The following steps have to be performed:
1. Castor and Pollux have to be powered on.

2. If clock synchronization between Pollux and Castor is needed, the exter-
nal frequency divider has to be turned on. See Figure 2.2.2 for further
information on how to connect this device.

3. On Pollux, the server program has to be started by double clicking at
the “MIMO TRANSMITTER” icon on the desktop if it is not already
running.

4. On Castor, the server program has to be started by double clicking
at the “MIMO RECEIVER” icon on the desktop if it is not already
running (see Figure 2.2.1).

The two server programs of Pollux and Castor look and behave very
similar. User interaction is never required; therefore, the server programs
show only a status screen like in the following Figure 2.2.1:

J Server (MIMO Transmit Data) &
Fieadyl
08:30:47 > SNR 5dB:
B ... T ... Finished |
. / - .. Reready ¥¢ . T . R Finighed 77 . Finizhed |
T Tlme.Of d . Reready ¥¢ . T . B¥ Finizshed 77 . Finizhed !
ransmission ... R ready 77 . T . B Finizhed 7 . Finizhed |
. ... T# .. Finished |
Filename A 05:31:53 -» SNR adk:
-Load Data ... Mode: T only . T
-ER ta must have 2 to 131072 rows.
Status of
Transmission / “
Error Message
| 20.572 MByte by sebastian@caban. at
Bytes / Close Server
Transmitted

Figure 2.2.1: Server program on Pollux.

If idle, the server displays “Waiting for .do file” and increments a number
next to this message. If a transmission is triggered, first the current time is
displayed and then, next to it, the filename which activated this operation.
The next line shows actual status information (the meaning is described in
Section 2.4.1), and if an error occurs, a message is displayed.



CHAPTER 2. THE MIMO TESTBED 9

2.2.2 Setting Up the External Hardware

Pollux converts the digital complex baseband data samples, made available
by the user PC, to analog IF signals. Therefore, some external hardware has
to be connected to make use of these signals. Furthermore, this hardware
also has to be connected to Castor and external synchronization is needed
(see Figure 2.2.2).

Pollux Castor
Transmit PC Receive PC
©p) Q«
100 Mbit/s LAN / 100 Mbit/s LAN
, (8p) (8c) ,

1000 Mbit/s LAN |- » 1000 Mbit/s LAN
Self Made <(713) (7¢) Self Made
BNC Connector BNC Connector

(6)
(6p) (6¢)
Clock |- 1:2 |- Clock
(5p) (5¢)
Trig. > Trig.

PCI Card PCI Card
ICS-564 ICS-554
(1p-4p) (1c-4c)

IF Output & IF Input
Channels : Channels
4
/
/
/

Insert Channel Here

Figure 2.2.2: Connections on Castor and Pollux.

e The four analog IF outputs of Pollux (1p), (2p), (3p), and (4p) have
to be connected to external RF hardware. Figure 2.2.3 shows these

SMA connectors located on the back of Pollux. They are situated on
the ICS-564 board [10] (see Appendix A). Full scale output is 1.2V,



CHAPTER 2. THE MIMO TESTBED 10

on a 502 load. Thus the achievable mean output power in operation
depends on the crest factor of the signal. The IF output signal is not
filtered as shown in Figure 2.3.4.

e The four receive IF signals (1¢), (2¢), (3¢), and (4c) have to be con-

nected to the ICS-554 board [13]| (see Appendix B) on the back of
Castor (see Figure 2.2.3). The maximum input voltage is 1.2V, on a
50 load. Thus back to back operation of the ICS-564 and the 1CS-554
board is possible for testing purposes.

Connectors of Pollux (=Transmit PC):
(Ip) 2p) Gp) (ép) (3p) (4p)
0
7 %
YHO

Sol TR TEEEs
— § = | LHO\ZHO \ DR\ \ONAS €HD \HO

B OUCCC

LHO CHO ORIl D £HO

B

(1c) (2c) (5¢) (6¢) (3c) (40
Connectors of Castor (=Receive PC):

Figure 2.2.3: External hardware connectors of Pollux and Castor.
(The orientation matches the actual orientation in the PC.)

Apart from the fact that the IF signals have to be connected, some other

external connections are necessary for a proper operation of the system:

e Reception has to be triggered with the transmission of data. There-
fore, the BNC connector (7¢), the only BNC connector on the back of
Pollux, has to be connected to the BNC connector (7p) to ensure that
a transmission only starts if the receiver is ready. Also the SMA con-
nector (5p) has to be connected with the SMA connector (5¢) so that
the reception is triggered exactly when the transmission starts. Further
information on the triggering procedure is given in Section 2.4.1.



CHAPTER 2. THE MIMO TESTBED 11

e If needed, the internal clocks of Pollux and Castor can be synchronized.
This can be achieved by connecting the 100 MHz LVTTL® clock output
of Castor (6¢) to the 50 MHz LVTTL clock input of Pollux (6p) via an
external frequency divider (6). Subsection 2.5.5 describes how to enable
this synchronization in the MATLAB INTERFACE.

Furthermore, it is also possible to synchronize Pollux at connector (6p)
with an externally generated 50 MHz LVTTL clock. Synchronizing
Castor with an external clock is not possible without modifying the
hardware since connector (6¢) is configured as an output. See [13] for
further details.

e At last, Pollux (8p) and Castor (8¢) have to be connected back to back
with a crossed network cable to provide a fast 1,000 MBit /s connection,
needed for internal data exchange. The LAN connection to the users

is provided via (9¢c) and (9p) at a speed of 100 MBit /s.

The above described external cable connections are not always needed.
For example, triggering can be done by the use of files. It is also possible to
omit external clock synchronization if not required. In order to make use of
these possibilities, the user has to set flags in the MATLAB INTERFACE as
described in Section 2.5.

2.3 Transmitting Data via the
MATLAB INTERFACE

As previously outlined in Section 2.1.1, interfacing the transmit PC is rather
simple. In order to transmit (not receive) data over one or more of the four
possible intermediate frequency channels, the user only has to

1. create complex baseband data samples in MATLAB as described in the
following Section 2.3.1,

2. save these samples, and trigger the operation of Pollux (the transmit-
ting PC) as described in Section 2.3.2.

2.3.1 Creating the Complex Baseband Data Samples

To allow maximum flexibility, the user does not provide data bits or sym-
bols to the MATLAB INTERFACE but 14 bit complex baseband data samples.

SLVTTL = Low-Voltage Transistor-Transistor Logic, logic signal level standard



CHAPTER 2. THE MIMO TESTBED 12

Therefore, the interface is independent of the modulation scheme and signal
filtering. By generating baseband data samples in MATLAB, the user is able
to create a wide range of baseband (and as a consequence IF) signals.

To fulfill the MATLAB INTERFACE specification, the user has to create a
matrix which contains all the complex baseband data samples. This matrix
must be named xvTXData’. Besides this, the real and the imaginary part of the
samples have to be smaller than 2'3—1 and larger than —2'3 before converting
them to the prescribed int16 data type. An overflow is not checked in the
MATLAB INTERFACE in order to maximize the data throughput. If needed,
this check can be easily implemented in MATLAB before transmitting the
data to the MATLAB INTERFACE.

The following code sample shows how to create a simple baseband signal:
a sine wave. A complete copy of the MATLAB source code can be obtained
from \\Pollux\MIMO_TX_Data\samples\xmTX_Sine.m.

xvTXChannels = 4; % maximum 4

xvTXBlockLen = 2°16; % maximum 2°17

xvTXData = sin((1:xvTXBlockLen)*pi/4)).’*ones(1l,xvTXChannels) ;
xvTXData = int16(xvTXData*x8176) ;

Executing this code, the following data matrix is created:

xvTXData =
5781 5781 5781 5781
8176 8176 8176 8176
5781 5781 5781 5781
0 0 0 0
-5781 -5781 -5781 -5781
-8176 -8176 -8176 -8176

Each column corresponds to one of the four possible IF output channels.
Column 1 corresponds to channel 1, column 2 corresponds to channel 2, and
so on. This assignment is fixed and cannot be changed. Thus, for example,
it is not possible to transmit data only on channel 3. As an alternative,
the cable connections can be rewired to transmit data only on channel one
(which is possible by generating just one column), or dummy data can be

transmitted on channel one and two (and three columns are generated).

"As a programming convention, to prevent accidental use of MATLAB functions, constants
always begin with xc, variables with xv, and m-files with xm.



CHAPTER 2. THE MIMO TESTBED 13

The number of columns and, as a consequence, the number of channels
can be set to 1, 2, 3, or 4. If not all four channels are needed, the amount
of memory required to store the baseband data samples is also reduced by
decreasing the number of columns.

The rows of xvTXData represent consecutive complex baseband data sam-
ples. All samples in one row are up-converted and transmitted simultane-
ously® on different channels as described later on.

If just transmitting one block, the maximum number of rows, and there-
fore, the maximum number of data samples in one data block, is
limited to 2'7 (2!7 = 131072) by the transmitter FIFOs. This value does not
depend on the number of channels transmitted simultaneously (- the number
of columns). Only half of this value is available if multiple blocks are trans-
mitted one after the other because the internal FIFOs must be able to store
the next block, while still transmitting the previous one. More information
on how to transmit more than one block of data will be given in Section 2.3.7.

2.3.2 'Triggering the Operation of Pollux

After the complex baseband data samples (xvTXData) have been generated,
they can be easily transmitted to Pollux by using the MATLAB INTERFACE.
A vector named xvTXDataOptions specifies all user configurable options, e.g.
the center frequency of the bandpass signal. These options are described in
Section 2.5.

In order to transmit the data samples and options, the user has to save
them to a .mat-file. Afterwards, he has to create a 0 byte large .do-file which
triggers the operation of the transmitting PC, called Pollux. As described in
detail in Section 2.1.1, this file also ensures that all data samples have been
saved completely to the .mat-file before triggering Pollux.

xcTXDir = ?\\Pollux\MIMO_TXData\’;
xvFileName = ’Example Sine Wave’;
xvTXDataOptions = [1, inf , 70.0, 4, O, O, O, O, 0, 0, O, 0, O]

save ([xcTXDir xvFileName ’.mat’],’xvTXData’,’xvIXDataOptions’);
xvFID=fopen([xcTXDir xvFileName ’.do’],’w’); fclose(xvFID);

After executing these five lines of MATLAB code, Pollux creates the analog
IF signal. However, there is only one block of baseband data which will be
processed by Pollux. A possibility to transmit more data blocks one after
the other is described in Section 2.3.7.

8Due to a firmware error, the up-conversion is simultaneous but not synchronous. The
maximum error is + half of a baseband sample length.



CHAPTER 2. THE MIMO TESTBED 14

2.3.3 The Automatic Digital Up-conversion

@)
.mat file
User PC do file
Pollux
(1) MA;LAB MIMO \ Transmitter PC
Optional DSP 3) PC Hard-disk
4) Server Software
®) PC Memory
. v g
= T T T T T T T T | =
NS k: ©)| |, 4x FIFO | %
9ol T I =
Vo (7)| | 4x Upconverter + 4xDAC > %
o

Figure 2.3.1: Simplified data flow for a transmission.

Triggered by a .do-file, Pollux starts its operation automatically. The up-
conversion process can be simplified to the following steps (see Figure 2.3.1):

1. As described in the previous subsection, the user at first creates the
digital baseband data samples and transmit options on his own PC. To
do so, he can either use MATLAB and/or some optional hardware.

2. Then he stores this data via a LAN connection. . .

3. ...using the MATLAB save(...) command, on the internal hard-disk
of Pollux, followed by a .do-file. As a huge number of tests showed,
this process of saving data does not affect the performance of Pollux
in any way. Therefore, it is possible to store multiple jobs on Pollux’s
hard-disk even while it is in operation and transmitting data.

4. If idle, the server program running on Pollux polls for new .do-files
available and thus, for new data to be transmitted. After setting up
the ICS-564 board [10] to fit the needs of the next transmission. ..



CHAPTER 2. THE MIMO TESTBED 15

5. ...the data samples are first moved to the internal memory of Pollux.
This is necessary because there is no direct connection between the
hard-disk and the up-converter board.

6. Next, the data samples are transferred into the internal FIFOs of the
ICS-564 board (IDT72V72100 [8]) where they stay ready until the
transmission is triggered. These four FIFOs (2'7 samples per chan-
nel), in connection with the internal memory, limit the maximum bock
size of a transmission as previously described.

7. The rest of the signal processing happens in real-time in an Ana-
log Devices chip (AD9857 [7]) located on the up-converter board (see
Appendix A). In this chip, the data, taken out of the FIFOs, is pro-
cessed as shown in Figure 2.3.2:

Complex Baseband Data Real Passband Data Analog

2x14bit/Sample 14bit/Sample = Passband

200/ (4L)MSamples/s 200MSamples/s Signal

1 2 5
J, (1) &) . J, ©) J7 Tc
o Interpolator Interpolator 14 bit &b
= % . L
— x4 xL DAC N
i =
user programmable 4)
L=1to63
Oscillator 200
MSamples/s
user programmable
0 to 100 MHz

Figure 2.3.2: Simplified data flow in the 1CS-564 board.

Since all four data streams (all four transmit channels) are equally pro-
cessed and synchronously transmitted, only the data flow of one channel will
be described in the following (see Figure 2.3.2):

1. The data samples taken out of the FIFO consist of 14 bits for the real
part and 14 bits for the imaginary part. Interpolation is achieved by a
fixed x4 interpolation filter and. ..

2. ...a user programmable (x1 to x63) (see Section 2.5.4) interpolation
filter. Thus the overall interpolation can be set from 4 to 252, in steps



CHAPTER 2. THE MIMO TESTBED 16

of 4, by the user. The output sample rate of this filtering process is
always fixed to 200 MSamples/s.

3. In the next stage, the signal is multiplied with a complex sine wave in
order to shift the signal to the IF domain.

4. This carrier is generated by a digital oscillator which is user pro-
grammable (see Section 2.5.3) in the range from 0 to 100 MHz. The
theoretical resolution is smaller than 0.1 Hz, while the accuracy is lim-
ited by the internal crystal oscillator to a much larger value.

5. In the last stage the digital 14 bit signal is converted to the analog
domain at 200 MSamples/s. The output of the converter is not filtered
as described in Section 2.3.4. Thus higher order harmonics will appear
in the spectrum at multiples of 200 MHz + center frequency.

The overall process is a lot more complex than described here but to
maintain simplicity, only necessary information to understand the overall
system was listed. Further information on the up-conversion process can be
obtained from the manuals of the ICS-564 board [10, 12|, its firmware [11],
the FIFOs [8], and the four digital up-converters [6] located on this board.

Since the up-conversion process is carried out completely automatically by

the MATLAB INTERFACE, a user does not need detailed hardware knowledge
of it in order to use the MIMO testbed.

2.3.4 The Analog Intermediate Frequency Signal

In the previous example, four lines of MATLAB code were needed to generate
the baseband signal samples, and with five more code lines this signal was
transmitted on all four IF channels.

To transmit data (1) in an endless loop (inf) at a center frequency of
70 MHz (70) with an overall interpolation factor of 4 (4) the following options
must be set in the MATLAB INTERFACE (see Section 2.5 for more details):

xvITXDataOptions=[1,inf,70,4,0,0,0,0,0,0,0,0,0]

The next Figure 2.3.3 shows the measured® output spectrum for the gener-
ated sine wave.

9An Advantest R3271 spectrum analyzer was used to obtain the measurement results via
a GPIB connection.



CHAPTER 2. THE MIMO TESTBED 17

Since in the above example the complex baseband data samples were
defined as xvIXDataln] = sin(270,n) with 6, = /s, the bandpass signal
consists of two spectral lines at T0MHz + 6, - 1/4- 200MHz = 70 MHz +
6.25 MHz. (200 MHz is the sampling frequency of the ADC and 1/; denotes
the overall interpolation factor.)

RBW =10kHz VBW =10kHz SweepTime =2s

P [dBm/10kHz]
&
o

' Ak
| I I |

70-6.25 70+6.25 100 200-70-6.25 200-70+6.25

£ [MH
70 [MHz] 200-70

filter this part of the spectrum

Figure 2.3.3: Measured IF spectrum of channel one.
xvTXDataOptions = [1,inf,70.0,32,0,0,0,0,0,0,0,0,0]

Due to the unfiltered output of the digital to analog conversion, higher
order harmonics appear in the spectrum at multiples of 200 MHz + center
frequency. They can be easily filtered with an analog low-pass filter. Lukas
Mayer built five of them with a cut-off frequency of 75 MHz in his diploma
thesis [5]. They are boxed, have two SMA connectors, and operate for any
IF lower than 75 MHz.

The maximum bandwidth of the IF signal is determined by the max-
imum sample rate of the baseband signal (200 MHz/4) minus some margin
because of the internal filtering (80%). Although it is possible to trans-
mit signals with 40 MHz bandwidth, it is not possible to receive them (see
Section 2.4.3) due to limitations of the receiver. Reception can only be per-
formed with an eight times lower maximum sample rate (6.25 MHz) which
leads to a theoretically possible reception bandwidth of 6.25 MHz minus some
margin. A detailed description will be given in Section 2.4.3.

Due to imperfect interpolation filters (especially if using higher interpo-
lation factors) there are some undesired spectral components, in addition to



CHAPTER 2. THE MIMO TESTBED 18

the higher order harmonics generated by the digital to analog conversion.
They can be easily filtered with an IF filter. Furthermore, the baseband
signal is hard limited at the beginning and at the end of each block (equal
to a rectangular window function). This may also lead to undesired spectral
lines.

2.3.5 Example: Transmitting a 16 QAM

To demonstrate how to use the MATLAB INTERFACE to generate a more com-
plex signal, the following example completely shows how to create a 16 QAM
signal. As in the previous example, the IF signal is transmitted at a center
frequency of 70 MHz in an endless loop.

The following code example is working without any additions. It can be
also found on Pollux at \\Pollux\MIMO_TXData\samples\xmTX_16QAM.m.

xvTXData = [ randsrc(5000, 1, [-3 1 1 3]1/3)...
+ j*randsrc(5000, 1, [-3 1 1 3]/3) 1;

xvFilter = rcosine (1, 4, ’fir/sqrt’, 0.22, 40);

xvTXData = rcosflt (xvTXData, 1, 4, ’filter’, xvFilter);
xvTXData = inti16 (xvTXData*x8176) ;

xcTXDir = ?\\Pollux\MIMO_TXData\’;

xvFileName = ’Test 16 QAM’;

xvTXDataOptions = [1, inf , 70.0, 32, 0, O, O, O, O, O, O, 0, O]

save ([xcTXDir xvFileName ’.mat’],’xvTXData’,’xvTXDataOptions’);
xvFID=fopen([xcTXDir xvFileName ’.do’],’w’); fclose(xvFID);

First, the MATLAB code creates a sequence of 5000 random 16 QAM
symbols. Next, these samples are filtered by a root raised cosine filter with
an interpolation rate of 4 and a roll off factor of 0.22. At last, the data matrix
plus the options are saved, and the transmission is triggered by creating a
.do-file.

The resulting QAM bandwidth of 1.90625 MHz is therefore the symbol
rate of 6.25 MHz (200 MHz/32 overall internal interpolation) divided by a
factor of 4 (root raised cosine filter interpolation) times 1.22 (for the 0.22 roll
of factor). The overall interpolation factor of 32 was chosen because it is the
minimum possible value for receiving this data after a channel, as shown in
the next Section 2.4.



CHAPTER 2. THE MIMO TESTBED 19

Figure 2.3.4 shows the measured spectrum of the IF signal. In addition
to the higher harmonics generated by digital to analog conversion, there are
also some undesired spectral components smaller -85 dBm /10 kHz outside the
area shown. They are results of imperfect internal interpolation and can be
neglected. The 70 MHz carrier, which can be seen clearly, is a result of the
transient response of the root raised cosine filter.

RBW =10kHz VBW =300Hz SweepTime =7s

-20
M<— -33dBm/10kHz

~ _
N —40
4
(]
% 60 ‘1.906MHZ‘
£ < >
I,
~ —80

-100

65 70 75
f [MHz]

Figure 2.3.4: Measured IF spectrum of a 16 QAM signal.
xvTXDataOptions = [1,inf,70.0,32,0,0,0,0,0,0,0,0,0]

Because the maximum output signal level was used in this example, the
maximum output power for a 16 QAM can be determined by simply in-
tegrating the spectral power density. Using a rectangular approximation of
-33dBm/10kHz in a 1.906 MHz range, an IF signal power of approximately
-10dBm is obtained.

2.3.6 Example: Signal for a Multitone Measurement

Not only modulation schemes can be tested using the MATLAB INTERFACE
but it can be also used in some completely different applications, e.g. arbi-
trary signal generation. The following MATLAB code creates a set of equally
spaced spectral lines. Up-converted to the IF, the resulting signal can be
used for multitone measurements:

0.1*(ones(1,9)*sin([1:9]’*[1:2“17]*pi/20))’—0.05;
int16(xvTXDatax8176) ;

xvTXData
xvTXData



CHAPTER 2. THE MIMO TESTBED 20

The measured output spectrum is shown in the Figure 2.3.5 below. This
signal has already been successfully used to implement multitone measure-
ments on an IF to RF up-converter. The complete example can be found in
\samples\xmTX_Multitone.m.

RBW =3kHz VBW =100Hz SweepTime =40s

|

\O

o
—
—
E—
—
=

P [dBm/10kHzZ]
S

-110

67 68 69 70 71 72 73
f [MHz]

Figure 2.3.5: Measured IF spectrum for a multitone measurement.
xvTXDataOptions = [1,inf,70.0,32,0,0,0,0,0,0,0,0,0]

2.3.7 Transmitting Multiple Blocks of Data

As previously described, the size of a transmit block is limited by the inter-
nal FIFOs of the up-converter boards. But using the MATLAB INTERFACE
multiple equally sized blocks of data can be transmitted one after the other
in one operation:

xcTXDir = >\\Pollux\MIMO_TXData\’;
xvFileName = ’Test Multiple Blocks’;
xvTXDataOptions = [1, 1, 70.0, 32, 0, O, O, O, O, O, O, O, O]

xvTXData = [create your data for block 1]
save ([xcTXDir xvFileName ’_1.mat’],’xvTXData’,’xvTXDataOptions’);

xvTXData = [create your data for block 2]
save ([xcTXDir xvFileName ’_2.mat’],’xvTXData’);

xvTXData = [create your data for block 3]
save ([xcTXDir xvFileName ’_3.mat’],’xvTXData’);

xvFID=fopen([xcTXDir xvFileName ’.do’],’w’); fclose(xvFID);



CHAPTER 2. THE MIMO TESTBED 21

Now, not only one .mat-file is created but a set of multiple _i.mat-files,
where i denotes the number of the transmit blocks. This number must begin
with 1 and is increased by one for every subsequent block. After saving all
these _i.mat-files, still only one .do-file is needed to trigger the operation of
the transmit PC.

e Under special conditions, it is possible to transmit multiple blocks of
data one after the other with no space in between. This is equal to
transmitting a continuous signal and limits the maximum signal length
to the free memory of Pollux (e.g. 600 MByte) divided by the num-
ber of channels (typically 4) and the bytes per complex sample (4).
The resulting signal length in this case is 37.5million samples. See
Section 2.5.13.0 for more information on how to set the needed ‘T'X
continuous mode’ flag in the MATLAB INTERFACE.

e Furthermore, it is possible to repeat all these blocks in a loop with no
space in between to further enhance the signal length. The number of
repetitions is user defined. See Section 2.5.2 for further information on
the “T'X repeat how often’ parameter.

e If a continuous wave is not needed, it is possible to transmit blocks
of maximum length with small spaces in between, one after the other,
directly from the hard-disk. Although the maximum block length is
limited to 2'7, the number of blocks is only limited by the free hard-disk
space. Assuming 25 GBytes free, a block length of 27 samples, and 4
transmit channels 25-107/(2'7-4-4) ~ 11920 blocks can be transmitted
in a row. Furthermore, repetition of this data is also possible. See
Section 2.5.13.5 for more information on how to transmit only via the
hard-disk by using the ‘TX force HDD operation’ flag.

The maximum block length of the whole transmission system is furthermore
limited by the maximum block length of the receiver. The above described
limitations only apply to the transmitter, they do not exactly match those
of the receiver. See Section 2.4.3 for further information.

The \samples\xmTXMultiple_FMradio.m example uses this ability to trans-
mit one block after the other to create an ordinary FM radio transmit signal
from a music file. Proof of operation was achieved by receiving this signal
with an FM radio at 89.9 MHz. For further information please examine the
example.



CHAPTER 2. THE MIMO TESTBED 22

2.4 Receiving Data via the MATLAB INTERFACE

Receiving data using the MATLAB INTERFACE is as simple as transmitting.
In order to transmit and receive data over a channel, the user has to perform

the following steps:

1. Generate complex baseband data samples (xvTXData) to be transmitted:

xvTXData = [ randsrc(5000, 1, [-3 1 1 3]1/3)...
+ j*randsrc(5000, 1, [-3 1 1 31/3) 1;

xvFilter = rcosine (1, 4, ’fir/sqrt’, 0.22, 40);
xvTXData = rcosflt (xvTXData, 1, 4, ’filter’, xvFilter);
xvTXData = int16 (xvTXData*x8176) ;

2. Delete a possible .done-file of a previous transmission:

"\\Pollux\MIMO_TXData\’;
"Test 16 QAM’;

xcTXDir
xvFileName

if size(dir([xcTXDir xvFileName ’.done’]),1)~=0
delete ([xcTXDir xvFileName ’.done’]);
end;

3. Save the data plus some options'® (xvTXDataOptions) to a .mat-file fol-
lowed by a .do-file to trigger the operation of Pollux:

xvTXDataOptions = [3, 1, 70.0, 32, 1, O, O, 4, 0, 0, 0, O, O]

save ([xcTXDir xvFileName ’.mat’],’xvTXData’,’xvTXDataOptions’);
xvFID=fopen([xcTXDir xvFileName ’.do’],’w’); fclose(xvFID);

4. Wait for a .done-file (polling operation) on Pollux. This .done-file
indicates that the transmission has been completed and the received
data is available:

while size(dir([xcTXDir xvFileName ’.done’]),1)==0
pause(0.2);
end;

10Please note that the fist number in xvTXDataOptions is now 3" instead of ”1” which
means to “transmit and receive data” instead of “only transmit data”. More information
about the options can be obtained from Section 2.5.1.



CHAPTER 2. THE MIMO TESTBED 23

For longer transmissions, this waiting period can be used to carry out
some other calculations. This possibility to interleave other MATLAB
code with the transmission of data is the reason, why the MATLAB
INTERFACE is not implemented using a single .m MATLAB function.

5. Check whether an error has occurred by looking if a _err.mat-file exists.
In case of an error, this error is loaded and trapped:

if length(dir([xcTXDir xvFileName ’_err.mat’]))~=0

load ([xcTXDir xvFileName °’_err.mat’]);
error (xvError) ;
end;

6. Finally the received complex baseband data samples are be obtained
by simply loading them from the hard-disk of Castor:

xcRXDir = ’\\Castor\MIMO_RXData\’;
load ([xcRXDir xvFileName ’.mat’]);
xvRXData = double(xvRXData);

If multiple blocks are received, an i_.mat-file (i denotes the block num-
ber) is created for each block as described in Section 2.5.9.

The final conversion to complex double values is not necessary but the
received data samples are of type ‘int32 complex’ and MATLAB cannot
perform further calculations with them if they are not converted.

The above described source code is complete and can be obtained from
\\Pollux\MIMO_TXData\samples\xmTXRX_Simple_16QAM.

As described in Section 2.5.13.4, it is furthermore possible to detect the
end of the data reception of Castor by using the ‘create .received file’ flag.
This makes it possible to change the channel while the received data is still
being saved to the hard-disk of Castor after reception.

2.4.1 Handshaking of Pollux and Castor

Triggered by a .do-file, Pollux starts its operation as previously described in
Section 2.3.3 but with the difference that now data is also received. This cir-
cumstance makes the overall process a lot more complicated (see Figure 2.4.1).



CHAPTER 2. THE MIMO TESTBED

User

Pollux
MIMO Transmitter

24

Castor
MIMO Receiver

J

save TX-data
save options

v

save 0 byte .do-file

Y

wait for .done-file

PN

1)
———» | wait for this .do-file
@ L
load TX data
®) L
create .doRX-file
(6) L
wait for .busy-file
7 Y
inizialize hardware
y
©) !
A wait for trigger
(10) v
trigger+
do transmission
multiple
blocks
if error, save it
16
(16) wait for no .busy-file
17) v
<4 ——— | save 0 byte .done-file

load errors

load RX-data

v

v

\

)

-

®)

(8)

4___

(11)
-

R

Y

wait for .doRXfile

L]

create .busy-file

v

initialize hardware

-l
-

Y

trigger

v

wait for trigger+
do reception

v

save RX-data

Y

if error, save it

v

delete .busy-file

y

Figure 2.4.1: Handshaking of the User, Pollux, and Castor.




CHAPTER 2. THE MIMO TESTBED 25

Although the overall process is carried out automatically, it is necessary
to understand it in order to deal with errors returned by the MATLAB IN-
TERFACE (the item numbers correspond to Figure 2.4.1):

1.

. At the same time Pollux and Castor initialize their up- (ICS-554 board)

If idle, Pollux continuously polls for the existence of a .do-file to start
operation. Multiple .do-files are processed one after the other in alpha-
betical order.

Next, all the transmit data samples are loaded into the internal memory
of Pollux. In the case of multiple transmit blocks, this can take quite
a long time, thus ‘Load Data’ is displayed on Pollux’s screen.

Now Pollux has loaded all data, it displays a ‘Mode: TX&RX’ message.
But before a transmission can be started, Pollux gets the receiving PC,
Castor, ready by creating a .doRX-file!! file.

. Castor on his part continuously polls for the existence of this .doRX-file

to start operation.

Displaying ‘Mode: TX&RX’, Castor gets ready to operate and creates
a .busy-file to signal this to Pollux.

Pollux, awaiting this .busy-file displays ‘RX ready 79’ while waiting.
Obviously, if there is still no .busy-file after some time, Castor is out
of order. Displaying ‘Timeout while waiting for receiver to be ready.’,
Pollux terminates operation and continuous at item 14 with reporting
this error to the user.

’

or rather down-converter board (ICS-554 board) and display ‘TX’ or
rather ‘RX".

The data transmission itself consists of one or more blocks that are trans-
mitted and received at exactly the same time. To do so, additional triggering
is needed before each transmission:

8.

To indicate that the internal down-converter board is ready to receive,
Castor sets the BNC Trigger output (7c¢), shown in Figure 2.2.2, high.

TAll internal handshaking files are stored in \\Pollux\MIMO_TXData\_Internal\ or
\\Castor\MIMO_RXData\_Internal\, so that a PC always polls for the existence of
a file on the own hard-disk.



CHAPTER 2. THE MIMO TESTBED 26

9. In Pollux, this high level on the BNC trigger input (7p) creates an
interrupt and starts the up-converter hardware.

10. This hardware sets a trigger impulse on the SMA trigger connection
(5p) and synchronously begins to transmit data.

11. Triggered by this triggering pulse, the receiving hardware on Castor
starts its operation and receives all the data of one block. Furthermore
the BNC trigger output (7¢) is automatically set to low by the hardware
when the first data sample is received.

The next figure shows this triggering process, which is carried out for
every block of transmitted data:

A

8

e ®)
rigger |

SMA oY \ \ \
Trigger
et i WA W
D g I f
| | e

Data Block 1 Data Block 2 Data Block 3

Figure 2.4.2: Triggering of the transmit and receive hardware.

Step (9) is often longer before the first transmit block because Pollux
needs a lot more time to initialize its internal hardware and is, therefore,
later ready to transmit.

Several tests showed that the process of receiving and transmitting data
is not disturbed by any other hard-disk operation (e.g. loading or saving
data via the LAN to the hard-disk). Further, a task running at low system
priority on Pollux or Castor does not affect the overall performance.

12. After the transmission is complete, Castor displays ‘Saving zz Blocks’
(zz is the actual number of blocks) and stores all the received data
samples from the internal memory to the internal hard-disk at a rate
of about 50 MBytes/s.

13. If the operation of Castor had to be terminated due to an error, it is
continued here. The error is displayed and saved to a _RXerr.mat-file.



CHAPTER 2. THE MIMO TESTBED 27

14

15.

16.

17.

2.4

. Pollux on his parts also continuous operation here if an error has oc-

curred. But Pollux also checks if there has been an error on Castor and
saves all errors to a _err.mat-file to be read by the user. Therefore, the
user only has to examine this _err.mat-file as previously described to
receive all error messages from Pollux and Castor.

Displaying ‘Finished’ Castor deletes the .busy-file and returns to idle
mode.

After the .busy-file has been erased, Pollux also displays ‘Finished’
which indicates that the overall transmission is complete.

As a last step the .done-file is created to signalize the user, that either
the received complex baseband data samples are ready, or a correspond-
ing error file has been crated.

. Now, the overall process starts again. If idle, Pollux continuously polls
for the existence of a .do-file to start. ..

.2 The Automatic Digital Down-conversion

In this subsection the data flow in Castor is considered, where the four inter-
mediate frequency signals at first get in touch with the ICS-554 board (see
Appendix B) [13, 14, 15] which performs the down-conversion operated by

the

MATLAB INTERFACE (see Figure 2.4.3):

Analog Real Passband Data Complex Baseband Data

Passband 14 bit/Sample 2x24bit/Sample

Signal 100 MSamples/s 100/ LMSamples/s

1 3
E J, 1) J7 . ©) J7
& 14 bit 1/L Interpolator o
20 =
2 ADC + Filters g5
]\ user programmable
L=16 to 8192
100 .
MSamples/s Oscillator
user programmable
0 to 50MHz

Figure 2.4.3: Simplified data flow in Castor’s ICS-554 board.



CHAPTER 2. THE MIMO TESTBED 28

1. At first, the analog intermediate frequency signals are sampled at a rate
of 100 MSamples/s and converted to 14 bit digital values. The AD6645
|7] used for this conversion is capable of sampling IF signals with a
center frequency of up to 200 MHz'?2 with a specified SNR of 72dB.
The full scale input voltage is 1.2 V.

Digital down conversion is then performed by the Texas Instruments
GC4016 multi-standard quad DDC chip [9] (one quad chip for each chan-
nel). This chip has a multitude of capabilities but only basic operation was
implemented in this diploma thesis as described in the following. The inter-
ested user should consult the documentation of the chip for further details
[9]. Changing its configuration is only possible by modifying the source codes
of the MATLAB server on Castor. Nevertheless, with the standard configu-
ration implemented in the MATLAB INTERFACE, everything required should
be possible because the user can always implement additional features (e.g.
filtering) in his own MATLAB code.

2. A mixer and a numerically controlled oscillator are used to quadra-
ture down-convert the signal from a user configurable center frequency
(see Section 2.5.10) to the base band. Like in the up-converter, the
theoretical resolution of the oscillator frequency is smaller than (0.1 Hz,
while the accuracy is limited by the internal crystal oscillator to a much
higher value. Although only tuning frequencies of 0 to 50 MHz are gen-
erated internally, programming higher center frequencies is possible to
perform undersampling of the bandwidth-limited IF signal.

Setting a center frequency of 70 MHz at the transmitter (the inter-
nal oscillator will be automatically set to 70 MHz) and at the receiver
(the internal oscillator will be automatically set to 30 MHz to perform
undersampling) while using external synchronization does not lead to
exact frequency synchronization. This is due to numerical limitations
in the digital generation of the oscillator frequencies.

3. After the digital down-conversion the signal is filtered. First a cascaded
integrator comb filter decimates the signal. This filter is followed by
a compensating finite impulse response filter (the standard filter used
is the ‘CFIR_80’ [9]). A programmable finite impulse response filter
(‘PFIR_80’ is the standard filter used [9]) followed by a resampler com-
pletes the filtering process. Only a switching between predefined filters

12The 100 MSamples/s ADC is able to perform undersampling of the IF signal which must
be bandwidth-limited to satisfy the Nyquist criteria.



CHAPTER 2. THE MIMO TESTBED 29

was implemented in the MATLAB INTERFACE but user configuration
of the filter coefficients is not possible.

The MATLAB INTERFACE allows the user to set the overall decimation
factor L of the down-conversion in a range of four times a value between
4 to 2048 (see Section 2.5.11). The value set in the MATLAB INTER-
FACE (2-L) is two times higher. This has the advantage that the same
value of interpolation in the transmitter and in the receiver leads to the
same baseband sample rate, although the IF sampling rates are differ-
ent. E.g. setting an interpolation rate of 32 for the transmitter and the
receiver leads to a baseband data rate of 6.25 MHz (=200 MHz/32) in
the transmitter and the receiver.

.mat file
Castor User PC
MIMO Receiver / PC
8) MATLAB
@) PC Hard-disk v
4 ) Optional DSP
(6) Server Software
©) PC Memory
T T T T T t ——————— <t =
— @i 2x FIFO ! 1D 3
E g ________________ ! wn m
% bp ——W 3 =
& (13 4xADC+4xDownconverter U LD—{

Figure 2.4.4: Simplified data flow for a reception.

4. The received data samples are stored in real-time and alternating be-
tween the two available FIFOs [8] to maximize the possible block length
of a transmission (see Figure 2.4.4).

5. After moving all the received data samples to the internal memory of
Castor. ..



CHAPTER 2. THE MIMO TESTBED 30

6. ...they are preprocessed by the server software. This processing in-
cludes de-interleaving of the serialized data stream from four channels
and two FIFOs to a MATLAB compatible data matrix for each received
block.

7. The de-interleaved data samples are next stored to a .mat-file on the
internal hard-disk. If multiple blocks are received, an i_.mat-file (i
denotes the block number) is created for each block as described in
Section 2.5.9.

8. Via a local area network connection, the user can now load these re-
ceived 2x24 bit complex baseband data samples by using the 1oad(...)
command into MATLAB.

9. As a last optional step, this data can be moved to a DSP/FPGA board
to perform real-time processing (see Chapter 3).

2.4.3 The Complex Baseband Data Samples

As an example, the following measurement setup is used to receive (not
transmit) complex baseband data samples:

MATLAB
INTERFACE
Pollux V.

Synthesizer Channel 1
Sine Wave: —»|  Castor
71MHz, -3dBm User

fcenter=70 MHz
fsample=6.25 MHz

Figure 2.4.5: Measurement setup.

A synthesizer creates a sine wave at 71 MHz with a power of -3dBm. This
signal is then received with the MATLAB INTERFACE at a carrier frequency
of 70 MHz using the following options:
xvTXDataOptions = [2,0,0,0,0,0,2°17,1,1,70.0,32,0,0]

A baseband sample rate of 6.25 MHz was chosen (=200 MHz divided by
an interpolation factor of 32). Thus the period of the sine wave is 6.25
samples. The drop of signal power outside 80% of the spectrum, shown in
Figure 2.4.6, is due to the standard filtering in the down-conversion. The



CHAPTER 2. THE MIMO TESTBED 31

complete MATLAB code can be found in \samples\xmRX_Simple.m. This all
leads to the following spectrum and baseband signal:

plot (([1:6001]1-3000)/3000%3.125, 20*1oglO(...
fftshift (abs(fft (hanning(6001) .*xvRXData(1000:7000)))))-200)

. L0 el

e NS
soll el T
TR IRIAN
IR
~120 E—e, l,/ o % \j

Figure 2.4.6: Receiving a sine wave at 71 MHz.
xvTXDataOptions = [2,0,0,0,0,0,2°17,1,1,70.0,32,0,0]

As previously described, a matrix of received data samples is loaded by
using the MATLAB load(...) command. It has exactly the same format
as the transmitted data samples described in Section 2.3.1: Each column
represents a received channel, and the rows represent consecutive baseband
data samples.

e The complex baseband data samples consist of 24 bits for the real part
and 24 bits for the imaginary part. Due to a lack of a int24 type in
MATLAB they are internally stored as int32 values and thus, 8 bytes
per sample are needed.

e The number of channels received can only be set to ‘17 or ‘4’. In the
former case only channel 1 is received, and four times less memory is
needed to store the data samples.

e The maximum block length which can be received is 2!7 samples for
one channel and 2% if data is collected at all four channels. Continuous
reception of one channel is always possible. For four channels, the data
rate has to be half of the maximum possible, in order to receive data
continuously (see Section 2.5.13.1).



CHAPTER 2. THE MIMO TESTBED 32

e The maximum bandwidth (5 MHz with the default filters) of the
received intermediate frequency signal is determined by the maximum
baseband sample rate of 6.25 MHz (=100 MHz/(4x4)) and some margin
which is set to 80% by the internal filters. This default filter configu-
ration can be changed to almost 100% by using the ‘RX filter’ option
in the MATLAB INTERFACE as described in Section 2.5.12.

A further enhancement of this theoretically possible 6.25 MHz band-
width is not possible without modifying the firmware of the FPGAs
(since it has been changed in order to maximize the FIFO space) and
rewriting the MATLAB server software of Castor. The modifications
which are necessary to change from the so called “Split-IQ mode” to
the “Wideband configuration” mode, without disturbing the current
MATLAB INTERFACE would be quite complicated. Further details can
be obtained from the ICS-554 board manual [13].

2.4.4 Example: 16 QAM

As another example, the 16 QAM signal shown in Figure 2.3.4 is now trans-
mitted and received by using the MATLAB INTERFACE at a center frequency
of 70 MHz. The internal clocks of Pollux and Castor are externally synchro-
nized but the phase offset is not since this is not possible. The following
setup has been used:

fcenter=70 MHz
fsample=6.25 MHz

Channel 1 IMATLAB
* Pollux NTERFACE
5th Order LP Filter
fe=75MHz
| Channel 1
p  Castor
User

fcenter=70 MHz
fsample=6.25 MHz

Figure 2.4.7: Measurement setup.

To suppress the higher harmonic frequencies, an analog 5™ order lowpass
filter with a cut off frequency of 75 MHz has been used. Its attenuation at
130 MHz is approximately -40 dB.



CHAPTER 2. THE MIMO TESTBED 33

Transmitting, receiving, and displaying the following spectrum and base-
band signal was performed using the \samples\xmTXRX_16QAM example. Pollux
needs approximately 0.3 seconds to complete this operation (see Figure 2.4.8):

xlO6
o 1.5
0 1.906 Mz £ yl
= = S g 1 Po
= £ sl | i
= -40 g 0.5 % ‘1 #
) 2
£ -60 g 0
¢ INPERIa
> 80 8 -05
(2 ~100 5 _1(21 \ [ \K
_ S
120 A 9 ;’94)—1,5 v W
-3 -2 -1 0 1 2 3 1000 1010 1020 1030
MHz Sample Number

Figure 2.4.8: A received 16 QAM signal (not synchronized).
xvTXDataOptions = [3,1,70,32,1,0,0,1,1,0,0,0,0]

The interpolation of the root raised cosine filter was four, thus there
are four data samples per symbol. During his diploma thesis, Christian
Mehlfithrer wrote a MATLAB script to synchronize this QAM signal to receive
blocks of random data without bit errors (see Figure 2.4.9). This script can
be found in \samples\ber\cmber.m. See [3] for further information.

Scatterplot of the Received Signal Eyediagram of the Received Signal
2

e W
g 0.5 : 1
= U
F o by
§ 0 ; ; 0
Sl M %y
-1
1l e 4 e e =
: : : : : -2
-1 -05 0 05 1 0 2 4 6 8
Inphase Sample Durations

Figure 2.4.9: A received 16 QAM signal (synchronized).
xvTXDataOptions = [3,1,70,32,1,0,0,1,1,0,0,0,0]



CHAPTER 2. THE MIMO TESTBED 34

2.5 ’xvTXDataOptions”

The way how the MATLAB INTERFACE up-converts the complex baseband
data samples to the intermediate frequency and back is basically determined
by two different sets of input data:

1. The complex baseband data samples stored in xvTXData do not only
designate the sample values but also the number of transmit chan-
nels (=number of columns in xvTXData) and the overall block length
in samples (=number of rows in xvTXData).

The column number equals the channel number on which the data is
transmitted. At a maximum four transmit channels can be served but
any value less is also possible and decreases the amount of memory
needed for baseband data. The maximum number of samples possible
is described in Section 2.5.14.

2. All the other user configurable parameters are stored in a row
vector called xvTXDataOptions. Each of the 13 elements has a specific
function the user must understand in order to use the MATLAB INTER-
FACE, for example:

xvTXDataOptions = ...
[ 3 , «.- h (1) 1 to 4 operation mode
1 s «.« % (2) int TX Number of Repetitions
70.0 , ... % ( 3) double TX center frequency in MHz
32 s .- % (4) int TX interpolation factor
1 , «.. 4 (B) boolean TX external clock
0 s -.- % ( 6) int TX delay betw. blocks in ms
0 s «-. & CT7) int RX number of samples
1 , ... 4% (8)1or 4 BRX number of channels
1 s «-« % (9 int RX Number of Repetitions
0 , ... 4% (10) double RX center frequency
0 s .. % (11) int RX interpolation ratio
0 , % (12) int RX filter
0x1 + % flag 1 TX continuous mode
0x2  + % flag 2 RX continuous mode
0x4 + ... % flag 4 TX do not delete .mat file
0x8 + ... % flag 8 RX use .dat file
0x16 + % flag 16 create .received file
0%32 + % flag 32 TX force HDD operation
0x64 + ... % flag 64 RX force HDD operation
0%128 + ... ¥ flag 128 sync via file

0%256 1; % flag 256 RX Check CW Data



CHAPTER 2. THE MIMO TESTBED 35

or in short form:
xvTXDataOptions = [3,1,70,32,1,0,0,1,1,0,0,0,0]

In the following subsection, each parameter will be discussed in detail. By
agreement, 0 does always mean that a parameter is not set. In case of a not
required parameter the MATLAB INTERFACE will evaluate this parameter if
needed. (For example, if 0, the receiver center frequency will be set to the
transmitter center frequency.)

In order to allow for a multitude of new, different setups,
the MATLAB INTERFACE does not check
the options for correctness!

This provides maximum flexibility to the user but may lead to strange results
if erroneous options are set.

2.5.1 Operation Mode

(The subsection numbers correspond to element numbers in xvTXDataOptions.)

The first element of xvTXDataOptions determines the operation mode. It
can be set to 1, 2, 3, or 4. The MATLAB INTERFACE is always used in the
same way as described in Section 2.3 and Section 2.4.

1. Only Transmit Data:

If set to 1, the MATLAB INTERFACE only performs a transmission. No
data is received and, therefore, Castor is not needed at all. Parameters
1 to 4 are required in this mode, the others can be set to 0 if not needed.

2. Only Receive Data:

If set to 2, the MATLAB INTERFACE only receives complex data samples
through Castor. The matrix xvTXData is not needed for this operation
and can be omitted. Parameters 1 and 7 to 11 are required for this
operation, the others can be set to 0 if not needed.

3. Receive Transmitted Data:

If set to 3, the MATLAB INTERFACE transmits data via Pollux and
receives data via Castor at the same time. This mode is basically used
to transmit data through an external channel which is set up between
Castor and Pollux. Parameters 1 to 4 are required for this operation,
the others can be set to 0 if not needed.



CHAPTER 2. THE MIMO TESTBED 36

4. Hibernate Pollux and Castor:

If set to 4, Pollux and Castor will hibernate instead of transmitting or
receiving data. No other parameter or data is needed for this operation.

2.5.2 TX Number of Repetitions

This parameter determines how often the complex baseband data samples
are repeated during one operation. It can be set to:

e any positive integer value

The given baseband data blocks (there can be more than one as de-
scribes in Section 2.3.7) are repeated as often as set by this integer
value. Flag ‘TX Continuous Mode’ (see Section 2.5.13.0) determines if
there is any space between the data blocks. Parameter ‘Delay Between
Blocks’ (see Section 2.5.6) can be used to set this space to a dedicated
value in ms. This works for ‘Operation Mode’ 1 and 3.

The \samples\xmTXMultiRXMulti_Sine.m program shows how to repeat
three blocks of data four times with minimum space in between. The
output signal of channel one was measured by using an Agilent 54622A
oscilloscope:

Pause=400us
BlockLength=5.24ms

Y

e
N

T A

Channel One
Voltage [V]
[en]

|
e
)

4

4
10 20 30 40 50 60 70
Time [ms]

Block 1, 2, and 3

o

Figure 2.5.1: Measurement, repeated multiple transmit blocks.
xvTXDataOptions = [3,4,70,32,1,0,0,0,0,0,0,0,0]

The transmit length of one block (5.24 ms) can be calculated by dividing
the number of samples per block (2'° in the above example) by the
baseband sample rate (200 MHz/32 times interpolation).



CHAPTER 2. THE MIMO TESTBED 37

e inf
The samples in xvTXData (in this mode only one block is allowed) are

repeated in an endless loop with no space in between. This loop can
be only stopped by the next transmission or if Pollux is turned off.

This can be very useful to generate a continuous wave signal for mea-
suring the signal power with a power meter or the spectrum with a
spectrum analyzer.

e.g.. xvIXDataOptions = [1,inf,70,32,0,0,0,0,0,0,0,0,0]

It can also be used to receive multiple blocks of this continuous wave
signal.
e.g.. xvIXDataOptions = [3,inf,70,32,1,0,2°17,1,1000,0,0,0,2]

2.5.3 TX Center Frequency

This is the center frequency of the up-converted bandpass signal. It can be
set to any value between 0 and 100 MHz. The theoretical resolution is smaller
than 0.1 Hz while the accuracy is limited by the internal crystal oscillator to
a much higher value.

See ‘TX external clock’ (Section 2.5.5) for further details on how to use
an external clock reference for the center frequency to either synchronize it
with the receiver or increase the accuracy.

2.5.4 TX Interpolation Factor

As described in autorefupconversion, the digital baseband data samples are
interpolated by a user configurable factor before they are analog to digital
converted at a sample rate of 200 MSamples/s. This factor can be determined
by this parameter to an integer value between 4 and 252 in steps of four.
The baseband sample rate is therefore 200 MHz divided by the interpolation
factor. The interpolation rate of the transmitter is independent from the
interpolation rate of the receiver.

2.5.5 TX External Clock

All'internal clocks of the transmitting hardware (and therefore also the center
frequency of the intermediate frequency signal) are derived from an on-board
50 MHz crystal oscillator if this parameter is set to 0.

By changing this parameter to 1, the user can connect an external 50 MHz
clock source (square or sine wave at LVTTL levels) to the SMA connector
(6p) shown in Figure 2.2.3.



CHAPTER 2. THE MIMO TESTBED 38

e By connecting an external oscillator, the clock of the hardware can be
set arbitrarily accurately.

e By connecting the clock output of Castor (6¢) via a frequency divider
to the transmit hardware, the internal clock of this hardware is ex-
actly synchronized with the receiver hardware. This leads to exactly
synchronized intermediate frequencies and baseband data sample rates.

Pollux Castor
Transmit PC Receive PC
Frequency
Divider

50MHz | | (6P) (©9) | | 100 MHz
Clock Input 1:2 = Clock Output
PCI Card PCI Card
I1CS-564 ICS-554

Figure 2.5.2: External clock synchronization.
(See Figure 2.2.3 on page 10 for the location of the connectors.)

It is not possible to provide an external clock to the receiver board of
Castor without modifying the hardware. This option was therefore not con-
sidered in the MATLAB INTERFACE.

2.5.6 TX Delay Between Blocks

The MATLAB INTERFACE offers two ways to introduce a delay in the trans-
mission of subsequent blocks:

2.5.6.1 Delaying by Using the C++ Sleep(...) Function:

If multiple blocks of data are transmitted, this parameter sets the delay
between subsequent blocks in ms. Therefore, it can be set to any positive
integer value.

The transmissions is delayed by using the C+-+ Sleep(...) function.
Measurements showed, that the delay introduced by this function is quan-
tized. The resulting delays last 10ms, 25ms, 41 ms, and so on (measured
values). However, this delay is highly constant, as several tests proved. If,



CHAPTER 2. THE MIMO TESTBED 39

for example, a delay of 5ms is set, the resulting delay is 10 ms, and it is
always 10ms. The exact delay measured is jittering about +0.08 ms.

Because it is not possible to detect the end of a transmission with the
used hardware, the delay is always set between the end of the reception (data
stored to the PC Memory, BNC trigger signal goes high) and the beginning
of the next transmission (BNC trigger signal goes low). The data is stored
continuously during the reception, thus the time marked “Store Data” in the
following Figure 2.5.3 is the time which is needed to complete the ongoing
storage process. See Section 2.4.1 for further details on the triggering process.

Using the same setup as for the example in Figure 2.5.1 but setting a delay
of 5ms, the following transmit signal was measured. The complete example
can be obtained from \samples\xmTXMultiRXMulti_Sine.m by changing the
“T'X Delay Between Blocks’ parameter to ‘5.

 Block Length=5.24ms
Store Data~ 360us
_ Delay=10ms

Y

i~

N

o

o

o 4; B <

N

10 20 30 40 50 60 70
Time [ms]

Block 1, 2, and 3

Voltage [V] Voltage [V]
()
N

|
o
]

Channel One BNC Trigger

o

Figure 2.5.3: Measurement, delayed multiple transmit blocks.
xvTXDataOptions = [3,4,70,32,1,5,0,0,0,0,0,0,0]

The overall delay between subsequent transmit blocks is 10.36 ms (mea-
sured value).



CHAPTER 2. THE MIMO TESTBED 40

2.5.6.2 Delaying by Using the CPU’s High Performance Counter:

To introduce highly accurate delays, the MATLAB INTERFACE is able to
delay the transmission of subsequent blocks by using the CPU’s internal
High Performance Counter. Therefore, the time is measured by using the
QueryPerformanceCounter(...) Windows function.

The ‘“T'X Delay Between Blocks’ parameter can be set to any nega-
tive value to introduce such a delay. If, for example, a delay of -11.25ms
is set, the resulting delay between the beginnings of subsequent blocks is
11.25ms, and it is always 11.25ms. The exact delay measured is jittering
about £0.06 ms.

_ Block Length=>5.24ms

Delay=11.25ms

o~

N

o

o

N \
10 20 30 40 50 60 70
Time [ms]

Block 1, 2, and 3

|
o
]

Channel One BNC Trigger
Voltage [V] Voltage [V]
()
N

o

Figure 2.5.4: Measurement, delayed multiple transmit blocks.
xvIXDataOptions = [3,4,70,32,1,-11.25,0,0,0,0,0,0,0]

As a basic drawback, the waiting function consumes 100 % of the CPU’s
processing power to introduce this delay. It has not been tested yet if this
has any negative side effects.

As an advantage, the delay introduced does not depend on the time
needed to save data to the Castor’s hard-disk. This is especially impor-
tant, if the ‘RX Force HDD Operation’ flag is set to store data directly to
the hard-disk (see Section 2.5.13.5).



CHAPTER 2. THE MIMO TESTBED 41

2.5.7 RX Number of Samples

This value only has to be set if the ‘Operation Mode’ is 2. In this case, it
determines the amount of received data samples per channel in one block.
This corresponds to the number of rows in xvRXData. The actual number of
received data samples is sometimes enlarged to fit the needs of the receiver
hardware, e.g. it must be a multiple of 128.

If data is only received (‘Operation Mode’—2), the maximum possible
value is 2'7 if one channel, and 2! if four channels are received (‘RX Number
of Channels’)

If ‘RX Number of Samples’ is set to ‘0’, the value is automatically deter-
mined as the number of transmit samples (rows in xvTXData) multiplied with
the ratio of the interpolation factors of the transmitted and received data
streams (“T'X Interpolation Factor’/‘RX Interpolation Factor’).

2.5.8 RX Number of Channels

This value, the number of received channels (the number of columns in
xvRXData), is completely independent from the number of transmit channels
(the number of columns in xvTXData).

It can be set to 1 or 4. No other value is possible. In the former case data
will be received only on channel one. Receiving data, e.g., only on channel
two is not possible.

2.5.9 RX Number of Repetitions

This value has to be set if the ‘Operation Mode’ is 2. It determines the
number of blocks received.

If set to 0, the value is automatically determined as the number of trans-
mit blocks (see Section 2.3.7) multiplied with the number of their repetitions
(‘TX Repeat How Often’).

If “TX Repeat How Often’ is set to ‘inf’, only a continuous reception of
data is possible (see ‘Flag: TX Continuous Mode’). The value must also be
set because it cannot be determined automatically:

e.g.: xvTXDataOptions =[3,inf,70,32,1,0,1,2715,1,10,0,0,2]

See \samples\xmTXInfRXMulti_Sine.m for an example on how to perform

this operation using the MATLAB INTERFACE.



CHAPTER 2. THE MIMO TESTBED 42

In contrast to Item 6 on page 23 the received blocks of data are now
stored in more than one file. Therefore, each block of data must be read
separately:

xcRXDir = ’\\Castor\MIMO_RXData\’;

load ([xcRXDir xvFileName °’_1.mat’]);
xvRXDatal = double(xvRXData) ;

load ([xcRXDir xvFileName ’_2.mat’]);
xvRXData2 = double(xvRXData);

The rest of the receiving procedure remains the same. See ‘Flag: RX use
.dat File’ for a possibility to avoid too many .mat-files.

2.5.10 RX Center Frequency

This is the center frequency of the bandpass signal to be down-converted. It
can be set to any value between 0 and 100 MHz. The theoretical resolution
is smaller than 0.1 Hz while the accuracy is limited by the internal crystal
oscillator to a much higher value.

If set to 0, the center frequency of the receiver is set to the same value as
that of the transmitter. There is no need to do so.

2.5.11 RX Interpolation Factor

As described in Section 2.4.2 on, the intermediate frequency signal is inter-
polated by a user configurable factor after the analog to digital conversion.
This factor can be determined by this parameter to an integer value between
32 and 16384 in steps of 8. Thus the baseband sample rate is 200 MHz di-
vided by the interpolation factor. The interpolation factor of the transmitter
is independent from the interpolation factor of the receiver.

2.5.12 RX Filter

This parameter sets the receive filter to be used in the down-converter. A
CFIR'" and a PFIR! filter can be chosen independently. If, e.g., a CFIR 68
(—3) and a PFIR_150 (—5) filter is desired, ‘RX Filter’ must be set to
3+5-16.

BBOFIR = Cascaded Integrator Comb Finite Impulse Response Filter, digital filter
14PFIR = Programmabe Finite Impulse Response Filter, digital filter




CHAPTER 2. THE MIMO TESTBED 43

lower 4 bits: higher 4 bits:

CFIR_.80 =0 PFIR_80 =0
CFIR_17 =1 PFIR_17 =1
CFIR_34 =2 PFIR_34 =2
CFIR_68 =3 PFIR_68 =3
CFIR_100 = 4 PFIR_100 =4
CFIR_150 =5 PFIR_150 =5
CFIR_GSM = 6 PFIR_GSM =6
CFIR_IS95 =7 PFIR_IS95 =7
CFIR_UMIS = 8 PFIR_UMTS =8
CFIR_4014 = 9 PFIR_UMTS_24X = 9

PFIR_DAMPS =10

The standard value is 0. See [13| and [9] for further information on the filters.

2.5.13 Flags

This last parameter is used to set several additional features in the MATLAB
INTERFACE. Each of these flags can be set by just adding the corresponding
value. If, for example, ‘T'X Continuous Mode’, ‘RX Continuous Mode’ and
‘Create .received File’ are desired, set the Flags to 14+2+416.

2.5.13.0 Flag 1: TX Continuous Mode

(Two to the power of the section number corresponds to the flag value)

Setting this flag forces the transmission to be continuous with time gaps
in between the blocks. If a reception is carried out, this also has to be
continuous in this case.

Due to the limited speed of the internal bus of Pollux this operation mode
does not work with a too low interpolation factor in the up-converter board
of the transmitter. To guarantee a continuous stream of baseband data, the
“TX Interpolation Factor’ must be an integer value bigger than four times
the number of channels transmitted (columns in xvTXData).

If the data is directly transferred from the hard-disk by using the “T'X
force HDD operation’ flag, the interpolation rate has to be a lot larger. The
\samples\xmTXMultiple_FMradio.m example uses this ability to transmit one
block after the other to create an FM radio transmit signal from a music file.
It can be received by using an ordinary FM radio. Further information can
be obtained by examining the example.



CHAPTER 2. THE MIMO TESTBED 44

2.5.13.1 Flag 2: RX Continuous Mode

Setting this flag, forces the reception to be continuous with no time gaps
in between the blocks. If a transmission is carried out, this also has to be
continuous or looped ‘inf’ in this case.

To guarantee a continuous stream of baseband data, the ‘RX Interpolation
Factor’ must be an integer value bigger than eight!® times the number of
channels transmitted (columns in xvRXData).

Using the same setup as for the example in Figure 2.5.1 but transmitting
continuously with no spaces between the blocks, the following transmit signal
was measured:

_BlockLength=5.24ms

A

Channel One
Voltage [V]
o

_02 \ N N
0 10 20 30 40 50 60 70
Time [ms]
Block 1, 2, and 3

Figure 2.5.5: Measurement, continuously transmitted blocks.
xvTXDataOptions = [3,4,70,32,1,0,0,0,0,0,0,0,1+2]

The \samples\xmTXMultiRXMulti_Sine.m example can be simply modified
by setting the ‘RX Continuous Mode’ and ‘RX Continuous Mode’ flags to
show this behavior.

2.5.13.2 Flag 4: TX do not Delete .mat File

This flag forces the transmitter to not delete the .mat file containing all the
data needed for a transmission. Setting this flag, it is possible to trigger
identical transmissions by just creating a .do-file.

The \samples\xmTXRX_Sine_DoNotDeleteMat.m example shows how to use
this flag.

15Tn contrast to the transmitter, a two times greater interpolation factor is needed because
the received data requires eight instead of four bytes per sample.



CHAPTER 2. THE MIMO TESTBED 45

2.5.13.3 Flag 8: RX Use .dat File

This flag forces the receiver to create a single .dat-file instead of multiple
_i.mat-files, where i is the number of the received block. This .dat-file can be
read by using the \samples\xmICS_ReceiveData.dll MATLAB function. The
following source code therefore replaces item 6 on page 23 if multiple blocks
of data are received:

xcRXDir = ’\\Castor\MIMO_RXData\’;
xvRXDataOptions = ...
[ O A int Position in Samples
2°15 , ... % ( 6) int RX Number of Samples
1 , .. & CT7) int RX Number of Channels
0 yA boolean RX Check CW Data
1;

xvRXData=double(. ..
xmICS_LoadData(xvRXDataOptions, [xcRXDir xvFileName ’.dat’]));

In fact, Castor always creates a .dat-file internally and afterwards stores
the data to multiple _i.mat-files. This last step can be omitted by setting
the ‘RX Use .dat File’ flag. The transmission gets a lot faster (the data is
not loaded and saved to _i.mat-files), and only one file is created instead of
many single ones.

Used to load data from the internal hard-disk of a PC (not from a net-
work path), the xmICS_LoadData(...) is a lot faster in reading data than
the MATLAB load(...) command. For example, 60 MBytes/s instead of
10 MBytes/s were measured on a common PC. Data must be read from po-
sitions which are multiples of the sector size of the hard-disk to show this
behavior. For a sector size of 512 bytes this is automatically ensured.

e ‘Position in Samples’ sets the position where to start reading the
data samples. It can be set to any number, even somewhere in the
middle of a block.

e ‘RX Number of Samples’ specifies the amount of data samples to
be read. Even multiple blocks of data can be read at once, by setting
this value greater than the actual block length.

e ‘RX Number of Channels’ must be set to the number of channels
which were received. If, for example, the actual transmission received
four channels, this value must be set to ‘4’, even if only one channel is
needed.



CHAPTER 2. THE MIMO TESTBED 46

e ‘RX Check CW Data’ can be set to ‘0’ or ‘1°. If set to ‘1’, the loaded
data samples are checked for being continuously received without any
gaps in between. See ‘RX Check CW Data’ flag for further details.

The \samples\xmTXMultiRXMulti_Sine_Dat.m example contains further de-
tails on how to implement this feature.

2.5.13.4 Flag 16: Create .received File

This flag forces the receiver to create a .received file when the actual trans-
mission of data has completed. In the handshaking diagram on page 24 this
is right before the block marked ‘(12)’. The user is able to, e.g., change the
channel while the data is saved to the hard-disk of Castor which can need
quite a long time.

To do so, the following code has to be inserted between item 3 and 4 on
page 22:

3a. Wait for a .received-file (polling operation) on Pollux. This .received-
file indicates that the actual transmission over the channel has been
completed. The received data is not available yet.

while ((size(dir([xcTXDir xvFileName ’.done’ 1),1)==0)&&. ..
(size(dir([xcTXDir xvFileName ’.received’]),1)==0))
pause(0.2);
end;

[Insert your own code here, e.g. to change the channell]

The \samples\xmTXMultiRXMulti_Sine_Received.m example contains futher
details. Before a transmission is initiated, the previous received-file has to
be deleted:

if size(dir([xcTXDir xvFileName ’.received’]),1)"=0
delete([xcTXDir xvFileName ’.received’]);
end;



CHAPTER 2. THE MIMO TESTBED 47

2.5.13.5 Flag 32: TX force HDD operation

This flag forces the transmitter to load the transmit data samples directly
from the hard-disk via the internal memory into the transmit FIFOs. There-
fore, less memory is needed to carry out a transmission. Instead of sufficient
memory to store all data blocks, now only enough memory for one block is
needed.

e The delay between subsequent blocks is not constant because of the not
constant transfer rate from the hard-disk. Negative ‘T'X Delay Between
Blocks’ values can be used to deal with this problem.

e ‘TX/RX Continuous Mode’ will require much higher interpolation rates
to work properly.

Using this mode is only recommended if the amount of memory is not big
enough to store all data samples needed for a transmission.

2.5.13.6 Flag 64: RX Force HDD Operation

The same as ‘T'X force HDD operation’ but for the receiving PC.

2.5.13.7 Flag 128: Sync via File

This mode is used to omit the ‘BNC Trigger connection’ described in Item
1. on page 10. Block (8) and (9) shown on page 24 still stay the same but
are realized by creating a file (8) and polling for this file (9).

As a basic drawback of this flag, synchronization via files is neither fast
nor accurate. Small and/or constant delays between subsequent blocks are
impossible. Using negative “I'X Delay Between Blocks’ values may solve the
last problem if the delay set between the blocks is big enough.

2.5.13.8 Flag 256: RX Check CW Data

The received data samples are numbered in the receiving hardware and can
therefore be checked by the MATLAB INTERFACE for being continuously
received. Use this flag to ensure that the ‘RX Continuous Mode’ is working
properly. Using this flag requires a lot of computing power; thus, omit it if
not needed.



CHAPTER 2. THE MIMO TESTBED 48

2.5.14 The Maximum Number of Samples per Block

The following strategy can be used to determine the maximum number of
transmit samples per channel and block (— the number of rows in xvTXData):

1. Assume that the number of samples per channel and block is 2'7.

2. If more than one block of data is transmitted, it is 2'°. (For receiving
data only, this limit does not apply. It also does not apply if the
transmit data is looped ‘inf’)

3. If four channels are received, it is 2'5. (For transmitting data only, this
limit does not apply.)

Although not recommended, it is also possible to receive 2'® samples
with four channels. Because a very time critical process is used for this
operation, there is no guarantee that this really works in an operating system
as Windows. Therefore, avoid to receive 2'¢ samples on four channels if
possible.

2.6 Interfacing the MIMO Testbed via FTP

As previously described, the MATLAB INTERFACE not only enables the pos-
sibility to access the MIMO testbed developed from the local area network
but also from anywhere in the world. Because the MATLAB INTERFACE uses
ordinary files to handshake, it can be easily adapted to work over a Secure
FTP connection. The \samples\ftp\xmTXRX_ftp.m example shows how to do
so and transmit a 16 QAM signal.

Tests showed, that a .do-file created via a Secure FTP connection cannot
be deleted immediately'S. Therefore, the flag numbered ‘512" has to be set
by the user to solve this problem. The example contains further details on
the implementation.

16Tt is possible to delete this file immediately after it was created but for unknown reasons
it will be created again.



Chapter 3

Extending the Testbed with
DSP/FPGA Boards

By using DSP/FPGA boards, the user is able to extend the possibilities of
the developed MIMO testbed significantly:

e These boards run a lot faster than ordinary PCs.

e This enables the opportunity implement and test DSP codes in an real-
time environment not just for transmission but also for detection.

e Furthermore, they are closer to a final product since not all that
works in MATLAB can be implemented in a final product.

Figure 3.1 shows how the MIMO testbed can be extended by Sundance
SMT-365 DSP/FPGA boards (see Appendix C) [16]. There is no direct
connection between the DSP/FPGA boards and the MIMO testbed:

User PC

MATLAB

MIMO
PCI bus Testbed
connection

DSP+FPGA
PCI Board

Figure 3.1: The Sundance SMT-365 DSP/FPGA board.

49



CHAPTER 3. EXTENDING THE TESTBED 20

The DSP/FPGA boards are equipped with a 600 MHz Texas Instruments
TMS320C6416 64 bit fixed point DSP (4800 MIPS peak performance), a Xil-
inx Virtex II XC2V1000-4-FF896 FPGA, and 8 Mbytes of high speed RAM.

Figure 3.2 shows a block diagram of the overall testbed extended by these
DSP/FPGA boards (User 3) and a Secure FTP connection (User 1):

User 1
own PC
MATLAB User 2 Oljus;li) 3&
own PC
MATLAB NllATLAB
Internet DSP
+FPGA
Firewall LAN
Transmitter Receiver
PC PC
MATLAB Server MATLAB Server
[ [

Upconverter | 4xIF 4xIF Downconverter
p +DAC — | Channel —» +ADC
] [

Figure 3.2: The complete MIMO testbed with several users.

Inserting the DSP/FPGA boards into the user PC and not into the trans-
mit /receive PC to generate complex baseband data samples has the following
advantages:

e Using the MATLAB INTERFACE there is the possibility to test code in
an DSP/FPGA environment without knowing the hardware of the up-
and down-converter boards in detail.

e Multiple users can simultaneously develop code on multiple DSP/FPGA
boards on their own PCs without interrupting the operation of the
MIMO testbed.



CHAPTER 3. EXTENDING THE TESTBED ol

e New types of DSP/FPGA boards can be integrated into the existing
structure of the testbed without any need for complicated connections
in hardware.

e By using MATLAB to transfer the data to the MIMO testbed, this
MATLAB code can also be adapted to preprocess the data. E.g., this
enables the possibility to implement receiver functions part by part
onto the DSP while still simulating all the other parts in MATLAB.

e Furthermore, MATLAB can be used to display and analyze the results
of the data processed in the DSP.

Due to a lack of time this setup was not systematically tested. Examples
on how to transfer data from the DSP/FPGA board can be obtained from
\\Pollux\MIMO_TXData\samples\sundance\#*.* and |16.



Conclusion

During this diploma thesis, a 4 x4 MIMO testbed has been set up. Several
firmware related issues of the hardware have been solved to put the overall
system into operation. Much emphasis was put on the development of an
easy to use interface.

This so called MATLAB INTERFACE is the major innovation for such a
testbed. It dramatically reduces the code development time to perform a
transmission. For example, not more than seven lines of MATLAB code are
needed to carry out a transmission.

The usage of MATLAB, in combination with the MATLAB INTERFACE
developed for accessing the testbed, allows a user to test a multitude of
different setups and signal parameters with nearly no effort. It is the power
of this combination that makes the MIMO testbed developed so attractive
for code development and testing.

By using DSP/FPGA boards and transmitting the complex baseband
data samples via the MATLAB INTERFACE, coding and encoding schemes
can be implemented in a real-time environment being close to a final prod-
uct. Multiple users can simultaneously develop DSP/FPGA code on multiple
boards on their own PCs without interrupting the operation of each other
and the MIMO testbed.

Presently, the testbed is operating continuously. More then five Tera
bytes of data have already been transmitted and received without any trou-
ble. Bit error ratio measurements showed exact matching with existing simu-
lation results, promising great possibilities for future work with this testbed.

52



Appendix A

Picture of the 1CS-564 board

Baseband
Data

FIFOs

upconverters + DACs

Figure A.1: The 1CS-554 up-converter+ADC board.
(This board is plugged onto a PCI carrier board.)

23



Appendix B

Picture of the 1CS-554 board

Baseband
Data

IF

Downconverters

Figure B.1: The 1CS-554 down-converter+ADC board.
(This board is plugged onto a PCI carrier board.)

o4



Appendix C

Picture of the SMT-365 board

Baseband
Data

FPGA

Figure C.1: The SMT-365 DSP/FPGA board.
(This board is plugged onto a PCI carrier board.)

95



List of Abbreviations

ADC

CFIR

DAC

DSP
FIFO

FPGA

HSC

ICS

IF

LAN
LVTTL

MIMO
MISO

OFDM

Analog to Digital Converter, converts digital data samples to an
analog signal

Cascaded Integrator Comb Finite Impulse Response Filter, dig-
ital filter

Digtal to Analog Converter, converts digital data samples to an
analog signal

Digital Signal Processor

First In First Out, memory to buffer a stream of data asyn-
chronously

Field Programmable Gate Array, a user programmable logic de-
vice

High Speed Channel, The interface between the DSP/FPGA
boards and the PC via the PCI bus

Interactive Circuits and Systems L.td, Canadian Company
Intermediate Frequency, in our case between 0 and 100 MHz
Local Area Network, connection between computers

Low-Voltage Transistor-Transistor Logic, logic signal level stan-
dard

Multiple Input Multiple Output, more than one antenna is used

Multiple Input Single Output, multiple antennas transmit, while

just one receives

Orthogonal Frequency Division Multiplexing, modulation scheme

26



PCI

PFIR
RF
SHB
SMT

TI

UMTS

VHDL

Xeon

Peripheral Component Interconnection, system bus in a personal
computer

Programmabe Finite Impulse Response Filter, digital filter
Radio Frequency
Sundance High Speed Bus

Sundance Multiprocessor Technology Ltd., company, manufac-
turer of the DSP/FPGA boards

Texas Instruments, company, manufacturer of the DSP on the
DSP/FPGA boards

Universal Mobile Telephone System, mobile telephone system
standard

Very High Speed Integrated Circuits Hardware Description Lan-
guage, programming language used for FPGAs or ASICs

Intel™ Xeon® Processors are processors specially designed for
server platforms

57



Bibliography

1]

2]

3]

4]

E. Aschbacher, S. Caban, C. Mehlfiihrer, G. Maier, M. Rupp: “Design

of a Flexible and Scalable /x4 MIMO Testbed,” to be published in

Proc. of the 11th IEEE Signal Processing Workshop, Taos Ski Valley,

New Mexico, USA, August 2004.

http://www.dsp2004.nmsu.edu/

http://www.nt.tuwien.ac.at/rapid_prototyping
/publications/papers_ab/paper_dsp04.pdf

S. Caban, R. Langwieser, C. Mehlfiihrer, E. Aschbacher, W. Keim, G.
Maier, B. Badic, M. Rupp, and A. L. Scholtz: “Design and Verification
of a Flexible and Scalable /x4 MIMQO Testbed,” to be presented at
RAWCON Workshop Ws2: “MIMO Implementation Aspects”, Atlanta,
Georgia, USA, September 2004.

http://www.rawcon.org/

C. Mehlfiihrer:  “Implementation Real-Time Testing of Space-Time
Block Codes,” Diploma Thesis, Technical University of Vienna, Insti-
tute of Communications and Radio-Frequency Engineering, June 2004.
http://www.nt.tuwien.ac.at/rapid_prototyping
/publications/diplomatheses/DA_Mehlfuehrer.pdf

R. Langwieser: “Entwicklung von HF-Baugruppen fir ein MIMO

Echtzeit Ubertragungssystem,” Diploma Thesis, Technical University of

Vienna, Institute of Communications and Radio-Frequency Engineer-

ing, April 2004.

http://www.nt.tuwien.ac.at/rf-electronics
/rmastheses/langwieser_dipl.pdf

28


http://www.dsp2004.nmsu.edu/
http://www.nt.tuwien.ac.at/rapid_prototyping
http://www.nt.tuwien.ac.at/rapid_prototyping/publications/papers_ab/paper_dsp04.pdf
http://www.rawcon.org/
http://www.nt.tuwien.ac.at/rapid_prototyping
http://www.nt.tuwien.ac.at/rapid_prototyping/publications/diplomatheses/DA_Mehlfuehrer.pdf
http://www.nt.tuwien.ac.at/rf-electronics
http://www.nt.tuwien.ac.at/rf-electronics/rmastheses/langwieser_dipl.pdf

[5]

6]

7l

8]

19]

[10]

[11]

[12]

[13]

L. Mayer: “Development of an RF Frontend for 5.2 GHz MIMO
Real-Time Transmission FExperiments,” Running Diploma Thesis,
Technical University of Vienna, Institute of Communications and
Radio-Frequency Engineering, Expected February 2005.
http://www.nt.tuwien.ac.at/rf-electronics

“CMOS 200 MSPS 1/-Bit Quadrature Digital Upconverter AD9857,”

Analog Devices, Inc., Rev. B, 2002.

http://www.analog.com
/UploadedFiles/Data_Sheets/28341907AD9857 _c.pdf

Analog Devices:  “14-bit, 80/105 MSPS A/D Converter AD6645,”

Analog Devices, Inc., Rev. B 2003.

http://www.analog.com
/Data_Sheets/39459366394038040210399061519954AD6645_b_ . pdf

IDT: “3.3V Volt High Density Supersync Il 72-Bit FIFO IDT72V 721007,
IDT., September 2003.
http://wwwl.idt.com

/pcms/getDoc.taf?docID=8503

“GC4016 Multi-Standard Quad DDC Chip Data Sheet,” Texas Instru-
ments Inc., Rev. 1.0, August 2001.
http://wuww-s.ti.com

/sc/ds/gc4016.pdf

ICS: ICS-564 “Operating Manual,” Interactive Circuits And Systems
Ltd., Ontario, Canada, March 2003.
http://www.ics-1td.com

ICS: “ICS-564 Hardware Delevopment Kit, User’s Manual,” Interactive
Circuits And Systems Ltd., Ontario, Canada, March 2003.

ICS: “ICS-564 Windows Software Development Kit, User’s Manual,”
Interactive Circuits And Systems Ltd., Ontario, Canada, 2003.

ICS: “ICS-554 Operating Manual,” Interactive Circuits And Systems
Ltd., Ontario, Canada, May 2003.

29


http://www.nt.tuwien.ac.at/rf-electronics
http://www.analog.com
http://www.analog.com/UploadedFiles/Data_Sheets/28341907AD9857_c.pdf
http://www.analog.com
http://www.analog.com/Data_Sheets/39459366394038040210399061519954AD6645_b_.pdf
http://www1.idt.com
http://www1.idt.com/pcms/getDoc.taf?docID=8503
http://www-s.ti.com
http://www-s.ti.com/sc/ds/gc4016.pdf
http://www.ics-ltd.com

[14] ICS: “ICS-554 Hardware Delevopment Kit, User’s Manual,” Interactive
Circuits And Systems Ltd., Ontario, Canada, May 2003.

[15] ICS: “ICS-554 Windows Software Development Kit, User’s Manual,”
Interactive Circuits And Systems Ltd., Ontario, Canada, 2002.

[16] Sundance: “SMT 365 Design Specification”, Sundance Microprocessor
Technology Limited, May 2001.
http://www.sundance.com

60


http://www.sundance.com

	1 Introduction
	2 The MIMO Testbed
	2.1 System Overview
	2.1.1 The Matlab Interface

	2.2 Setting Up the MIMO System
	2.2.1 Setting Up the MIMO Servers
	2.2.2 Setting Up the External Hardware

	2.3 Transmitting Data via the Matlab Interface
	2.3.1 Creating the Complex Baseband Data Samples
	2.3.2 Triggering the Operation of Pollux
	2.3.3 The Automatic Digital Up-conversion
	2.3.4 The Analog Intermediate Frequency Signal
	2.3.5 Example: Transmitting a 16QAM
	2.3.6 Example: Signal for a Multitone Measurement
	2.3.7 Transmitting Multiple Blocks of Data

	2.4 Receiving Data via the Matlab Interface
	2.4.1 Handshaking of Pollux and Castor
	2.4.2 The Automatic Digital Down-conversion
	2.4.3 The Complex Baseband Data Samples
	2.4.4 Example: 16QAM

	2.5 ''xvTXDataOptions''
	2.5.1 Operation Mode
	2.5.2 TX Number of Repetitions
	2.5.3 TX Center Frequency
	2.5.4 TX Interpolation Factor
	2.5.5 TX External Clock
	2.5.6 TX Delay Between Blocks
	2.5.6.1 Using the C++ Sleep(...) Function
	2.5.6.2 Using the CPU's High Performance Counter

	2.5.7 RX Number of Samples
	2.5.8 RX Number of Channels
	2.5.9 RX Number of Repetitions
	2.5.10 RX Center Frequency
	2.5.11 RX Interpolation Factor
	2.5.12 RX Filter
	2.5.13 Flags
	2.5.13.0 Flag 1: TX Continuous Mode
	2.5.13.1 Flag 2: RX Continuous Mode
	2.5.13.2 Flag 4: TX do not Delete .mat File
	2.5.13.3 Flag 8: RX Use .dat File
	2.5.13.4 Flag 16: Create .received File
	2.5.13.5 Flag 32: TX force HDD operation
	2.5.13.6 Flag 64: RX Force HDD Operation
	2.5.13.7 Flag 128: Sync via File
	2.5.13.8 Flag 256: RX Check CW Data

	2.5.14 The Maximum Number of Samples per Block

	2.6 Interfacing the MIMO Testbed via FTP

	3 Extending the Testbed
	Conclusion
	A Picture of the ICS-564 board
	B Picture of the ICS-554 board
	C Picture of the SMT-365 board
	List of Abbreviations
	Bibliography

