
.

DISSERTATION

Robot Motion Planning with Genetic Algorithms

ausgeführt zum Zweck der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von

Univ.Prof. Dipl.Ing. Dr.Dr.h.c.mult Peter Kopacek

E 325

Institut für Mechanik und Mechatronik

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Dipl.-Ing. Mag. Georg Sommer

88 25 373

Liesingbachstrasse 21

A-1100 Wien

Wien, am 18. Oktober 2005

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



.

Acknowledgment

I want to thank my academic advisor, Univ.Prof. Dipl.Ing. Dr.Dr.h.c.mult

Peter Kopacek for giving me the opportunity to work on that topic and

for all the helpful comments and discussions.

Many thanks go to Dipl.Ing. Dr. Man-Wook Han for introducing me into

the world of the Nomad 200 robot and his support during the work.

Special thanks go to Univ.Prof. Dipl.Ing. Dr.Dr.h.c.mult Peter Herbert

Osanna for taking on the second supervision.

Finally, I want to thank my family for all their support during the work.



Kurzfassung

Die autonome Navigation ist eines der zentralen Forschungsfelder im Bereich

der mobilen Robotik. Einen wichtigen Punkt zur Erreichung dieses Zieles stellt

die Kollisionsvermeidung von Hindernissen dar. Daher ist die Planung von kol-

lisionsfreien, zusammenhängenden Pfaden zwischen Anfangs- und Endpunkten

eine fundamentale Voraussetzung für die autonome Fortbewegung von mobilen

Robotern.

Das Gebiet der Bewegungsplanung für Roboter ist seit drei Jahrzehnten ein ak-

tives Forschungsgebiet und zahlreiche klassische Algorithmen zur Pfadplannung

wurden entwickelt. Ihnen allen gemeinsam ist, dass sie zuerst einen möglichst

exakten Plan der Umgebung entwickeln und danach einen Algorithmus zum

Auffinden eines optimalen Weges zwischen Anfangs- und Endpunkt darauf an-

wenden. Der Schwachpunkt dieser Methoden liegt darin, dass sie sehr unflexibel

auf Änderungen in der Umgebung reagieren und sehr langsam in großen und

komplexen Umgebungen sind.

Einen vielversprechenden Weg diese Probleme zu überwinden, stellen heuris-

tische Methoden dar. Diese unterscheiden sich von den klassischen Pfadpla-

nungsalgorithmen dadurch, dass sie eine Umgebungskarte mittels stochastis-

chen statt deterministischen Methoden erstellen. Eine beliebte heuristische

Methode sind Evolutionäre Algorithmen. Sie basieren auf dem Darwinschen

Prinzip ’Überleben der Geeignetsten’ und haben sich als eine effektive Opti-

mierungsmethode für komplexe Suchräume herausgestellt.

In dieser Arbeit werden Genetische Algorithmen zur Pfadplanung eines syn-

chrongetrieben Roboters verwendet. Wir zeigen, dass solche Algorithmen schnelle

und robuste Werkzeuge für Planungsaufgaben in Umgebungen mit Hindernissen

sind. Es werden zuerst Ergebnisse von Simulationsstudien vorgestellt, die an-

schließend auf der mobilen Roboterplattform Nomad 200 implementiert wer-

den.



Abstract

Autononomous navigation is one of the key problems in the field of mobile

robots. To achieve this goal an important factor is to prevent the vehicle from

colliding with obstacles. Planning a collision free, feasible path from the start-

ing to the goal point is therefore a fundamental requirement for autonomous

navigation.

Robot motion planning has been an active research area for the last three

decades and numerous classical path planning algorithms have been developed.

They all have in common that they build a preferable exact map of the environ-

ment at first and then use a certain algorithm to find an optimal path to reach

the desired goal. The drawback of these methods is that they are inflexible

with respect to changes of the environment or target points and that they are

rather slow in large and complex environments.

A promising way to overcome that difficulties is to use sampling-based or heuris-

tic methods . They differ from the classical ones by constructing a roadmap

with probabilistic or random techniques instead of a deterministic way. A popu-

lar heuristic optimization method are Evolutionary algorithms. They are based

on the Darwinian principle ’survival of the fittest’ and have demonstrated to be

effective procedures in complex search spaces.

In this work we use Genetic algorithms for planning motions of a synchronous

drive robot. We show that such planners are fast and robust tools for planning

tasks in environments with obstacles. We first did some simulation studies and

tested it afterwards on the Nomad 200 platform.



Contents

1. Introduction and Motivation 8

1.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . 11

2. Mobile Robots 14

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3. Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5. Important Aspects of Service Robots . . . . . . . . . . . . 34

2.5.1. Care-O bot II . . . . . . . . . . . . . . . . . . . . . 36

2.5.2. Roby-Go . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3. Transcar . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.4. Nomad2000 . . . . . . . . . . . . . . . . . . . . . . 40

3. Robot Motion Planning 42

3.1. Path Planning of mobile robots . . . . . . . . . . . . . . . 44

3.2. Mathematical Background . . . . . . . . . . . . . . . . . . 46

3.3. Representing Space . . . . . . . . . . . . . . . . . . . . . . 54

3.4. Basic Motion Planning Problem . . . . . . . . . . . . . . . 55

3.4.1. Potential Field Method . . . . . . . . . . . . . . . . 56

3.4.2. Roadmap . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3. Cell Decomposition . . . . . . . . . . . . . . . . . . 61

3.5. Sampling-based Planner . . . . . . . . . . . . . . . . . . . 63

5



3.5.1. Probabilistic Roadmap Planner . . . . . . . . . . . 64

3.5.2. Rapidly-Exploring Random Trees . . . . . . . . . . 66

3.5.3. Deterministic Sampling . . . . . . . . . . . . . . . . 69

4. Genetic Algorithms 71

4.1. A brief history of Evolutionary Computation . . . . . . . . 71

4.2. Elements of an Genetic Algorithm . . . . . . . . . . . . . . 73

4.3. Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4. Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5. Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6. Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1. Roulette wheel selection . . . . . . . . . . . . . . . 82

4.6.2. Stochastic universal sampling . . . . . . . . . . . . 83

4.6.3. Tournament selection . . . . . . . . . . . . . . . . . 84

4.6.4. Truncation selection . . . . . . . . . . . . . . . . . 85

4.6.5. Elitism . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7. Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8. Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9. Reinsertion and Termination . . . . . . . . . . . . . . . . . 88

4.10. Schemata . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11. Strengths and weaknesses of EA . . . . . . . . . . . . . . . 90

5. Genetic Path Planning 93

5.1. Representation . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2. Fitness function . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3. Genetic Operators . . . . . . . . . . . . . . . . . . . . . . 100

5.4. Simulation in an environment without obstacles . . . . . . 103

5.5. Simulation in an environment with obstacles . . . . . . . . 105

5.6. GPP with the Nomad 200 . . . . . . . . . . . . . . . . . . 111

6. Conclusion and Outlook 115

A. Source Code of the GPP 117

6



B. Programming the Nomad 200 126

List of Figures 133

Bibliography 136

7



1. Introduction and Motivation

The world of robotics currently undergoes a breathtaking development.

Since the first industrial robots, which were build in the late 50´s and

early 60´s1, we passed the 800 000 barrier of installed industrial robots in

2004 and expect a number of 1 000 000 not later than 2007 [1]. This

growth was possible because of the rapidly fallen prices of industrial

robots. A robot sold in 2004 for example, would have cost about a

fourth of what a robot with the same performance would have cost in

1990. In many cases robots approximate pay-back periods of about 1-2

years.

Industrial robots are important devices in a flexible automated produc-

tion environment, due to their strength in repetition and precision at high

velocities. They are primary used as handling devices, for arc welding, var-

nishing or assembling in an environment, where the objects to manipulate

are fixtured to be in the right place at the right time. These manipulators

lack any kind of intelligence and therefore their range of application is

restricted to well defined tasks e.g. in production technology or transport

systems. With the improvement of computational power and sensor sys-

tems the aim is to build more intelligent systems, which can plan, decide

and act autonomously. Particularly with the demand of mobile systems,

the ability to navigate purposefully in an environment needs some kind of

intelligence.

1The first industrial robots were developed by George Devol and Joe Engelberger
from Unimation Company .

8



The first examples of industrial-suited mobile robots were designed for

transport tasks in assembly hangars. The locomotion of that AGVs (auto-

mated guided vehicles) based on induction loops, which were milled into or

glued on factory floors. This kind of mobile vehicles are of course inflexible,

to altering the route is costly and any unforeseen changes (such as objects

blocking the path) can lead to failure in completing a task.

The only way to overcome these obstacles is to build autonomous robots,

which have some kind of intelligence in order to reason about a shapelarge

scale space, i.e. regions of space that are much larger than a system can

observe from a single point. There has been made tremendous progress

in the world of mobile robots within the past 10 years and the topic is

still under rapid development. Today, we find mobile robots in various

operational areas like transportation, cleaning, inspectations [97], guid-

ance in museums [96], [95], [2] or in environments hostile to humans like

underwater inspection [99] or mine detectors [4]. Great strides have also

been made within the last 3 decades in the field of Human-computer In-

teraction [3]. This shows good promises, that in the nearly future robotic

assistants could do some work for elderly or handicapped people such as

fetching newspapers and mail, getting things out of high or low cabinets

or carrying laundry, e.q. [98], [5]. As most of the presently used robots are

driven by wheels or chains, the surmount of obstacles like steps, ditches

or rough terrain is complicated or even impossible. The answer to that

problem is to copy the kinematics and control system of humans, which

leads to one of the most sophisticated topics in modern robotics, the area

of Humanoid Robots.

The most famous representative is Honda’s Asimo (Advanced Step in In-

novative Mobility) [94], which appeared in public for the first time in

2000. The most impressive aspect of Asimo is it´s smooth and natural

locomotion even when it climbs up steps (Fig.1.1). This is possible be-

cause of a predicted movement control (intelligent-WALK), that means,

Asimo predict its next movement in real time and shift its center of gravity

9



(a) (b)

Fig. 1.1.: Honda’s Asimo [94].

in anticipation2. The other technical facts of Asimo aren´t less impres-

sive:

• 26 DOF (Degrees of Freedom) .

• Weight 43 kg , height 120 cm

• Vertical arm movement up to 105◦ .

• Velocity 1.6 km/h (walking), 3.0 km/h (running) .

• Recognise and respond to some 50 different calls, greetings and

queries.

The development of Asimo was a milestone in the field of robotics and the

continuous evolution in Hard- and Software technologies give hope, that

mobile robots will be an important contribution to the improvement of

life in human society in the 21st century. One the key aspects to realize

this intention is the development of intelligent autonomous navigation

2That´s the same way how human beings walk .

10



concepts, which work fast and stable even in a noisy environment. Nearly

all animate systems show some sort of structured navigation, i.e. they

know where they are, plan a path to reach a goal point and are able

to build a map3 of the environment. Each of these aspects provides a

large number of problems and challenges of there own and especially in

combination with each other. In that work we will focus on the motion

planning aspects, which is a fascinating and challenging research field for

nearly 30 years.

1.1. Problem Definition

The problem of finding collision free paths between a starting and a goal

point in an environment with randomly distributed obstacles is one of

the key problems in robotics. In recent years it has been shown, that

the insights in path planning algorithms are also interesting for other

fields than robotics like computer graphics, virtual reality [6], industrial

CAD, or even protein-ligand docking and drug design (see e.g. [7]). There

exists a rich literature of classical path planning methods (Section 3.4).

They all have in common that they build a preferable exact map of the

environment at first and then use a certain algorithm to find an optimal

path to reach the desired goal. This approach tends to be inflexible with

respect to changes of the environment, target points or optimization goals.

A further drawback of most of the classical path planning algorithms is

their rapidly increasing computational time if the environment becomes

too large and complex.

An auspicious way to overcome that difficulties is to use sampling-based or

heuristic methods (Section 3.5) for motion planning. They differ from the

classical methods by constructing a roadmap with probabilistic or random

3In this context, the word map denotes any kind of one-to-one mapping of the real
world onto an internal representation. A well known example is the 2-dim street
map of a city.

11



techniques instead of a deterministic way. A big advantage is that their

complexity tends to be dependent on the difficulty of the path and much

less on the global complexity of the scene.

A popular heuristic method for planning and searching problems are evo-

lutionary algorithms. Evolutionary Algorithms are a class of global, par-

allel, stochastic and robust search methods founded on Darwinian prin-

ciples. The central idea behind these techniques is the following: The

fitness of a starting population will be improved from generation to gen-

eration through environmental pressure (Survival of the fittest). That

means, given a function to optimize, we randomly generate a set of possi-

ble solutions (the starting population) and use the function values as an

abstract fitness measure. In analogy to biological systems we apply the

operations of selection, recombination and mutation to that population

to improve the fitness from generation to generation until an optimum is

reached. The planning of a path with evolutionary methods can therefore

be represented in the following algorithm:

Create a number of different paths

DO

Measure fitness (e.g. the length of paths)

Select the fittest paths

Recombination to create offsprings

Mutation of some genes (as in nature)

UNTIL (an optimum is reached)

The challenging tasks are now to find an adequate data structure of

the population, the optimal design of a fitness function and the opti-

mal choice of some parameters for selection, reproduction and mutation.

In chapter 5 we present the results of the genetic motion planning algo-

rithms. We first did simulation studies to optimize the parameters of the

GA and then tested it on a the robot platform Nomad2000 (see section

2.5.4).

12



The rest of the theses is organized as follows: In chapter 2, we give an

survey about mobile robots and discuss the most important aspects of

their Hard- and Software. In chapter 3 the Motion Planning problem

will be formulated in a mathematical sense and some important classical

planning methods will be introduced. In chapter 5 we discuss in detail the

method of Genetic algorithms, which are the most popular representative

of evolutionary algorithms. In Chapter 6 we summarize the results and

give an outlook for further developments.

13



2. Mobile Robots

2.1. Introduction

Mobile robotics is a relatively young and interdisciplinary field, bring-

ing together Engineers, Computer Scientists, Mathematicians, Physiolo-

gists and Physicians. It is an fascinating but sophisticated research field,

because mobile robots have to consider all of the problems associated

with static industrial robots but must also cope with a continually chang-

ing and uncertain environment. Therefore we are faced with manifold

problems concerning kinematics, energy, vision systems and especially

the intelligence for planning and acting autonomously or at least semi

autonomously. There are three main questions, which a mobile robotic

systems has to answer for itself:

• Where am I ?

• Where am I going ?

• How do I get there ?

Thus from an intelligent robot we expect the ability to move in it´s envi-

ronment, to learn from previous experiences and to create some internal

imagination of it´s world in order to reason about it and make some de-

cisions [9]. In that sense, mobile robots are a physical embodiment of

14



what Computer Scientists call intelligent Agents1, e.g. a piece of au-

tonomous, or semi-autonomous proactive and reactive, computer software.

The concept of ’agents’ was first introduced in the 1970s in connection with

systems of distributed artificial intelligence (DAI). The main characteris-

tics of agent systems are [17],[18]:

• Autonomy, because agents should perform most of their tasks with-

out interventions of humans. This implies that agents need some

control over their actions and internal state.

• Social Ability, because agents should be able to act with other

agents or humans.

• Responsiveness, because agents should observe their environment

and respond to changes in a suitable time.

• Proactivness, because agents should act goal-oriented.

• Adaptability, because agents should learn from former experiences.

• Mobility, because agents should have the ability to chance their

location if it is necessary to perform a task.

• Veracity, because agents must not knowingly communicate wrong

information.

• Rationality, because agents are expected to act in order to achieve

their goals.

As many tasks are too complicated for one agent, modern research focuses

on the cooperation of many agents. Robot Soccer [12],[13] is a well-known

example of these so-called Multi Agent Systems (MAS) [17], [15], [16]

and has gained a lot of interest in the past years. The most important

characteristics of such MASs are that each agent has incomplete informa-

tion or capabilities for solving the problem and that there is no system

1The Hardware representation of Agents are also called Holons. The word Holon is a
combination of the greek ’holos’ (the whole) and ’on’ (the particle), first introduced
by Koestler in 1967 [8].

15



global control. Each agent is an autonomous entity and can act either

cooperative or selfish. This provides the opportunity, that agent systems

can share a common goal (like an ant colony) or pursue their own inter-

ests.

In opposite to Software Agents, robotic systems need also an interface for

sensing the environment and actuators for acting in it. In Fig. 2.1 we

find a detailed picture of a Sense - Decide - Act control scheme, which

is common in mobile robotic systems. Sensors observe the surrounding

area of the robot and convert these dates into useful information for the

modeling system. This information is then used either to build a model

of the environment or to compare it with an already existing model. The

next step is to plan an action based on the robot´s model of the world

(which is of course a simplified picture of the real environment) and finally

to execute these actions by controlling the robot´s actuators. This Sense

- Decide - Act process is repeated continuously until the final goal is

reached2.

In the next section we will discuss the most important hardware aspects

of mobile robots, as far as it is necessary to understand their impact on

planning and decision algorithms. There has been made a tremendous

progress in robotic hardware recently, which is a necessary condition for

developing intelligent agent systems.

2.2. Locomotion

Locomotion is the physical interaction between the robot and it´s envi-

ronment. There exist countless possibilities of kinematical structures, de-

2In the last decade, that Sense - Decide - Act scheme has been criticized for a lot
of reasons, especially due to the symbol grounding problem [22]. It states that
symbols per se are meaningless and that reasoning based on such symbols is also
meaningless. Therefore it´s impossible to develop real intelligent systems with
such an control scheme. New approaches, like the Behavior-Based Robotics try
to overcome these problems [25], [24], [23].

16



Fig. 2.1.: General Control Scheme for a mobile robot [10]

pendent on the application area and the environment where the robot has

to operate. The most important questions for the design process concern

the stability, the characteristics of contact and the type of environ-

ment. In the case of a flat ground the most efficient type of locomotion

system is a wheel driven robot, i.e. two or more wheels are powered by DC

motors and exploit the ground contact to move.

Differential Drive

Due to it´s simple steering mechanism, Differential drive is the most

popular drive mechanism for ground-contact mobile robots. As depicted

in Fig. 2.2 two wheels with distance l are fixed on a common axis. They

are controlled by two separate motors and we suppose that there is no

slipping. If we vary the two wheel speeds the robot must rotate about the

point ICR (instantaneous center of rotation), which lies on the extended

axis of the wheels. The distance R of the ICR with the center of the

17



Fig. 2.2.: Differential drive robot [29].

wheels (x, y) thus is a function of vr(t), vl(t). Let v denote the track

velocity and ω the angular velocity, we find using the relation ~v = ~r ×
~ω:

vr = ω(R + l/2) ,

vl = ω(R− l/2) . (2.1)

Solving this system, we get

ω(t) =
vr − vl

l
, (2.2)

R(t) =
l

2

(vr + vl)

(vr − vl)
(2.3)

V (t) = ω ·R =
1

2
(vr + vl) . (2.4)

There are two interesting special cases:

18



• vr = vl ⇒ ω = 0 and R→∞, i.e. the path of the robot is a straight

line.

• vr = −vl ⇒ R = 0, i.e. the robot rotates about the center of the

wheels with ω = 2v .

The possibility to turn around it´s own axis makes a differential driven

robot attractive for navigation in narrow environments. For all other val-

ues of vr(t), vl(t), the robot follows a curved trajectory with ICR as the

center of rotation and the angular velocity ω. It´s important to note, that

there is no combination of vr(t), vl(t) that allows the robot to move side-

wards along the wheels axis. This is an example of a nonholonomic sys-

tem, which means, that adjacent areas in the environment are not directly

achievable by the robotic system. Therefore it is much more complicated

to plan feasible paths for nonholonomic systems as everyone knows, who

has to drive a car into a small parking spot.

Starting from a pose x0, y0, θ0, the control parameters vr(t), vl(t) determine

the pose x(t), y(t), θ(t) at any time t3. Integration over the time t gives us

the pose for a robot with the velocity V (t):

x(t) =

∫ T

0

V (t) cos(θ) dt ,

y(t) =

∫ T

0

V (t) sin(θ) dt ,

θ(t) =

∫ T

0

ω(t) dt , (2.5)

where V (t) and ω(t) can be inserted from Equ.(2.4) and Equ.(2.2).

The calculation of the Inverse Kinematical Problem, how to choose

the control parameter to get a certain pose, is much more difficult and

3This is also called the Forward Kinematics.

19



Fig. 2.3.: Synchronous drive robot [29].

analytical solutions exist only for special cases like vl(t) = vl, vr(t) = vr

and vl 6= vr .

Synchronous Drive

Synchronous (or Synchro) drive robots are usually equipped with 3

wheels, which are driven and can be steered. The wheels are arranged in

a way, that they build an equilateral triangle and are coupled so that they

turn and drive in the same direction (Fig.2.3). Usually two independent

motors are used, one for driving and one for turning the wheels. In oppo-

site to a differential drive, a synchro drive robot can drive in any desired

direction4 and is therefore a convenient model for an idealized point robot

However the robot has to stop and realign it´s wheels and that´s the rea-

son why it´s sometimes called an almost holonomic vehicle. As a syn-

chro drive system rotates about it´s center with ω and drives with a veloc-

ity Vw we get the forward kinematics (see Equ.(2.5)):

4Therefore the shape is often cylindrical.

20



x(t) =

∫ t

0

Vw cos(θ) dt′ , (2.6)

y(t) =

∫ t

0

Vw sin(θ) dt′ , (2.7)

θ(t) =

∫ t

0

ω(t) dt′ . (2.8)

The inverse kinematics is similar to the differential drive and therefore we

can find simple solutions only in special cases. Two of them are interest-

ing:

• Vw = 0 and ω(t) = ω ⇒ the robot rotates about it´s center.

• Vw(t) = Vw and ω(t) = 0 ⇒ the robot moves along the direction of

it´s wheels.

Ackerman (Car like) Drive

This driving concept is found in most cars today. There are two combined

driven rear wheels and two front steering wheels, which can rotate on

separate arms (Ackermann) or on a common arm (car like). An Ackerman

Steering needs two independent motors, one for linear driving and one for

rotation. The forward kinematics of the car robot can be calculated with

the help of Fig. 2.4:

The center of the rear wheels drives with the velocity V , which leads to

the following expressions for (x, y)

x(t) =

∫ t

0

V cos(θ) dt′ , (2.9)

y(t) =

∫ t

0

V sin(θ) dt′ . (2.10)

(2.11)

21



Fig. 2.4.: A car like robot

To derive an equation for θ̇ we first use the geometric relation (see Fig.

2.4)

ρ(φ) =
l

tanφ
. (2.12)

This relation is reasonable, because if the steering angle φ→ 0⇒ ρ→∞
(the robot drives straight ahead) and if φ → π/2 ⇒ ρ → 0 (the robot

changes it´s direction instantly). As the latter case is only possible for

a tricycle, an Ackerman steering has a maximum steering angle φmax <

π/2, which implies a minimum turning radius ρmin. If we fix the steering

angle and consider an infinitesimal displacement ds of the rear wheel center

we get ds = ρdθ. With ds = V dt and Equ. (2.12) we find the relation for

θ

θ(t) =

∫ t

0

V

l · tanφ dt′ . (2.13)

22



Fig. 2.5.: A Mecanum Wheel [101]

In Tab. 2.1 we shortly summarize the strength and weaknesses of the

presented locomotion systems. All of them are common in mobile robot

systems and it depends on the application areas which one will be pre-

ferred.

Omni-directional Drives

All of the above locomotion systems suffer from the kinematical restriction

that they can´t drive sidewards5. In opposite to such non-holonomic

systems omni-directional wheels allow movements in all directions from

any configuration. Such systems have vast advantages in congested en-

vironments which are usually found in factories, warehouses or hospitals.

Most of them are based on the ideas developed by the company Mecanum

AB [26], [11] in the 70’s. In general, Mecanum wheels consist of a driven

central wheel, which is covered with a number of free rollers (Fig.2.5).

The rollers are placed at an certain angle to the wheel axis. Therefore

the force vector of the rotating wheels splits into a component forward

to the direction and a component perpendicular to that. Depending on

5One exception is the Synchro drive which allows sidewards driving but only after
stopping the translation and reorientation of the wheels.

23



Locomotion Pros Cons
Differential
Drive

simple design, no turning
radius

as there are two inde-
pendent drive wheels,
the control for moving
a straight line can be
very difficult.

Synchronous
Drive

Simpler motion control due
to two separate motors
for translation and rota-
tion. Straight line motion
is guaranteed mechanically.
Nearly holonomous system.

Wheel alignment is
critical, especially
on corrugated floors.
The driving mecha-
nism is mechanically
more complex.

Ackermann
Steering

Straight-line driving is sta-
ble. Simpler motion control
due to two separate motors
(as synchro drive).

Minimum turning
radius. The inverse
kinematics is quite
complicated as it is
a non holomomous
system (Car parking).
Rear driving wheels
tend to slippage in
curves.

Table 2.1.: Advantages and Disadvantages of the classical wheeled driving
systems

each individual wheels direction and speed the resulting forces allow the

movement in any direction of a 2D plane.

2.3. Sensing

Sensors are the interface between the robot and the environment. As

mobile robots usually act in dynamic regions with frequently changing

obstacles, sensor signals and their correct interpretation play a key role

for a safe navigation. As each real sensor suffers from some physical limi-

tations like noise, returning of faulty signals or non-linearities it is

important to provide mobile robots with a lot of different sensor systems

24



in order to get trustful signals. There exists a broad variety of sensor

systems like

• Range Sensors (distance) ,

• Position Sensors (absolute position) ,

• Environmental Sensors (temperature, pressure, concentrations),

• Optical Sensors (image recognition),

• Internal Sensors (acceleration) .

In order to find the most useful sensor for an application one has to con-

sider a lot of properties like

• Speed of Operation: the response time of a change in input .

• Sensitivity: ratio of change of Output to change of Input .

• Robustness: sensitivity to environmental influences .

• Error Rate: difference between ’real’ data and measured ones .

• Linearity: ratio of input to output should be constant .

• Range: minimum and maximum values to be measured).

• Resolution: smallest observable increment in input.

• Computational Requirements: e.g. in the case of optical sen-

sors.

• Cost: reaches from a few cents for a cheap infrared sensor to several

thousand euros for an optical system.

• Size, power, weight: especially for mobile robots the dimension

should be as small as possible.

25



The sensors can be classified into the following scheme:

Sensors

internal external

tactil non tactil

acoustical optical other

Internal sensors monitor the robots internal state (e.g. acceleration) while

external sensors monitor the robots environment. Tactile sensors detect

physical contact with the robot, while non tactile sensors measure acousti-

cal or optical waves, which are reflexed by distant obstacles. These sensors

can be further subdivided into active systems (i.e. emitting energy) and

passive systems (like a camera). Further on we can distinguish between

local sensors, which are installed on the robot and global sensors, which

are mounted outside the robot (e.q. a web-cam). Due to the fact, that no

single sensor system is able to provide enough information for navigating

safely, modern robot systems are equipped with different sensor systems

which we will describe in the following.

Bumper

Bumpers are tactile sensors mostly based on micro switch or whisker tech-

nologies. In their simplest form they build an array of binary switches,

which are embedded in a compliant material. After a physical contact one

ore more of the switches are depressed and send a signal to the controller.

More sophisticated bumpers use strain gauges or piezoelectric transducers,

which return signals depending on the applied pressure. In some robots

bumpers are directly connected to the e-stop circuit (e.g. Cybermotion

Navmaster), providing the last possibility for collision avoidance, while in

other systems they are just returning the position of the contact. As many

26



Fig. 2.6.: Cone-Shaped form of the sonar signal.

indoor robots are not equipped with active breaking systems or their in-

ertia is too large for stopping within a small distance, bumpers are mostly

not used for sensing reasons but for providing a force-absorbing material

to avoid or reduce damage.

Sonar

Sonar sensors are active sensing systems which emit sound impulses and

measure the time of flight and the difference in phase shift and attenuation

of the reflected signals. Most of the commercial sonar systems based on ul-

trasonic waves at a frequency about 40−50 kHz. They use a physical trans-

ducer both as an emitter and an receiver. Due to residual oscillations in

the transmitter after generating an acoustic pulse it is unable to detect in-

coming signals for a short period of time (blanking interval). Therefore

sonar sensors are blind for obstacles in short distances to the robot. Sonar

sensors suffers a lot of further restrictions:

• Due to the cone-shaped form (Fig.2.6) of the signal an obstacle de-

tected at distance d can be anywhere within that sonar cone .

• Most of the common objects are reflectively and therefore a detected

signal might be the result of a series of reflections at different obsta-

cles.

• The speed of sound depends on temperature and humidity.

27



In the last years their is an increasing interest of using RADAR Systems.

Although they are still rather costly and bulky they are attractive due to

the fact that they can provide some information about surface properties

and geometry of obstacles.

Infrared Sensors

Infrared sensors are the simplest and cheapest type of non- contact sen-

sors. They emit an infrared signal, which is often modulated with a

low frequency to differentiate it from ambient light sources. In an ideal

environment, where all objects are of the same color and surface struc-

ture, infrared sensors can easily be used for measuring distances d to

obstacles as the intensity I of the reflected light is proportional to d−2.

This relation also explains why infrared sensors are inherently short range

sensors. The drawback of such sensors is their strong dependency on

obstacle colors, e.g. black bodies are nearly invisible to infrared sen-

sors.

Laser Rangefinder

Laser Rangefinger sensors work similar to Sonar systems with the impor-

tant improvment of using light instead of acoustic waves. The wavelength

of that Laser sensors is near infrared light and therefore much smaller than

sonar waves, which reduces the problem of specular reflections. The typi-

cal range of Laser systems is up to a several hundred meters, which make

such systems also attractive for outdoor applications. There are three dif-

ferent methods of using Laser Range finders:

• Time of flight, which is analog to the sonar sensor. These system

is very expansive because of the complicated electronics which is

needed to resolve the picoseconds pulses.

• Phase Shift, means that a amplitude modulated light at a known

frequency is emitted and the phase shift of the received signal is

28



measured. The distance D of the obstacle and the phase difference

θ are related through

D =
λ · θ
4π

,

where λ is the known wavelength. We see that the distance of an ob-

stacle can be ambiguous as we get for all distances D = λ ·n/2, (n =

1, 2, . . .) the same angle θ. But in practice the range of the sensor is

much lower than λ due to the attenuation of laser light in the air.

• Triangulation is a method of using geometric properties of the

emitted and received signal. Today most of the receivers are CCD

or CMOS cameras because they can recover distances to a large

set of points, which gives information about the geometry of the

obstacle. The emitter sends a structured light, like a laser stripe or

another known pattern, onto the obstacle. In Fig. 2.7 we see that

light source and the camera at a distance d enclose an known angle

Ω. With the geometric relations z/a = f/x′ and tanΩ = z/(d+ x′)

find that the distance z can be recovered from the projection of the

line x′ in the camera as

z =
fd

f cotΩ− x′

.

Due to their coherent light, which remains collimated over a large dis-

tance, Laser Systems are very accurate distance sensors over large dis-

tances. The disadvantage is, that they are blind to optically transparent

materials like glass, which can be significant problem for indoor use (e.g.

museums).

Visual Sensor

The ability to handle complex optical patterns is the most important sen-

sor for humans and gets more and more important for technical systems,

29



Fig. 2.7.: Principle of a laser based distance measurement [29].

too. Due to rapid developments concerning both the Hard- and Soft-

ware of optical devices, a lot of progress had been made in the field of

Machine Vision. The current Hardware technologies for optical systems

are CMOS and CCD cameras. Both generate a two dimensional array

where each pixel carries the gray level or color information. While the

CCD (Charged Coupled Devices) Chip is an array of light sensitive pic-

ture elements, which will be readout line-by-line, CMOS (Complementary

Metal Oxide Semiconductor) Chips readout each pixel. The advantages of

CMOS over CCD are that the CMOS technology is simpler and therefore

easier and cheaper to produce, that it consumes significantly less power

and that there is no Blooming effect6. On the other hand, the advan-

tages of CCD are to be more sensitive, they better compensate defective

pixel and that the technology is older and therefore more mature. It is

far beyond the scope of that work to give an overview of the countless

possibilities to get information out of the gray-level matrix after a pic-

6A too bright illumination causes spill from one photo sites into the adjacent photo
sites of the transfer row, which leads to incorrect values.

30



a b c
d e f
g h i

Table 2.2.: A 3x3 matrix of color information.

ture is taken. However, there are a few basic image processing techniques,

especially for detecting edges and reducing noise, which are widely used

and easy to understand and implement7. The fundamental principle of

all that image processing operators is to modify individual pixels of the

original matrix X by applying an matrix operator H, called the convo-

lution mask. The new Matrix Y is the result of the discrete convolution

Y = X ∗H, which is defined as:

Y (x, y) =
i=∞
∑

i=−∞

j=∞
∑

j=−∞

X(x+ i, y + j)H(i, j)

The convolution maskH is in general a 3×3, 5×5, . . .matrix.

In Tab. 2.2 we have a small color image matrix, where the letters represent

some numbers (e.g. 0 . . . 255 in a 8 bit gray level), and apply a few of the

most common operators H to it:

• Median filter: We replace the middle pixel e by the median of

the 9 values. This operation eliminates peaks, which are mostly the

result of noise.

• Prewitt Operator: Edges are often associated with a sharp change

in intensity. If the intensity is a continuously differentiable function

we can apply the gradient operator. In the discrete case we can use

the operator ∇ = (∇1)
2 + (∇2)

2, with

7There is a lot of image processing literature (see e.g. [19], [20] ).

31



∇1 =







−1 0 1

−1 0 1

−1 0 1






,∇2 =







−1 −1 −1
0 0 0

1 1 1






.

If ∇ exceeds a present threshold it is retained otherwise discarded.

• Sobel Operator: is similar to the Prewitt operator and works also

as a high pass filter, but with different definitions of (∇1)
2 and (∇2)

2

∇1 =







−1 0 1

−2 0 2

−1 0 1






,∇2 =







−1 −2 −1
0 0 0

1 2 1






.

• Laplace Operator: The disadvantage of the former operators is on

the one hand that the derivative- like operators amplify any noise

and on the other hand, that the threshold has to be set a priori.

Using the Laplace Operator avoids this problem, because it is a

second derivative operator and therefore zero at discontinuities like

an edge. One possible representation of the discrete Laplace operator

4 is the following:

4 =







−1 0 −1
0 4 0

−1 0 −1






.

2.4. Control

Closed loop control (Fig.2.8) is an essential topic in mobile robotics con-

necting actuators and sensors with the control software, in order to coun-

teract a certain deviation from a desired behavior. When a robot shall

move along a special trajectory, the encoder values are sent as actual

32



Fig. 2.8.: The closed loop control scheme of a PID Controller.

values to the controller. The speed setpoint is sent as a pulse width mod-

ulation (PWM) signal to the controller and differences between actual

va(t) and desired values vd(t) are measured. The task of the controller

is to minimize this difference as rapidly as possible without generating

oscillations of the system. A standard way to do this is to use a PID

(proportional, integral, differential) controller, which can be written in

the following way:

y(t) = gp · ev(t) + gI ·
∫

ev(t)dt+ gD ·
d

dt
ev(t) ,

where ev(t) = vd(t)−va(t) is the error function and y(t) the motor output

function.

The tuning of the tree parameters gp, gI , gD is a tricky matter but there

exists a few guidelines that can be used for experimentally finding suitable

values (see e.g. [105], [27]).

33



2.5. Important Aspects of Service Robots

As prices of Hard- and Software components fall steadily and simultane-

ously their capability and quality raises, robots leave more and more the

manufacturing halls and become part of every day life. In opposite to a

relatively narrow application area of industrial robots, these service robots

occur in a tremendous variety concerning their design, functionality and

use. A useful definition of service robots originates from the Fauenhofer

IPA 1994 [21]:

A Service robot is a freely programmable mechanism, which per-

forms a service task. A Service task is an activity, which isn´t

made for producing real assets but accomplish a benefit for hu-

mans and facilities.

Although most of the ’non industrial’ robot systems are experimental and

used for education or research some mobile solutions are already com-

mercially available. At the end of 2003 about 21.000 Service robots for

professional use were installed [1]. The areas of application are for exam-

ple:

• Underwater systems (∼ 23%)

• Cleaning robots (∼ 16%)

• Laboratory robots (∼ 15%)

• Medical robots (∼ 12%)

• Defense, Rescue and Security applications (∼ 5%)

• Agriculture systems (∼ 4%)

34



The value of the stock of professional service robots is estimated at $2.4

billion8 Approximately 600.000 other units for domestic use and almost

700,000 units for entertainment and leisure were sold at the end of 2003

and and it is expected that several millions of these mobile platforms will

be installed in the next few years [1]. These numbers show that besides the

exciting research problems which mobile robots offer, there is an increasing

market potential for such systems.

The increasing interest of mobile robots is based on the fact, that such

systems are especially well suited for tasks that exhibit one of the following

characteristics:

• Hostile or inaccessible environment, e.g. the deep sea or mine fields

.

• Contaminated environments, e.g. in a nuclear reactor .

• Locations which are far away, e.g. other planets .

• Tasks with a very high fatigue factor, e.g. security control .

The next generation of service robots go beyond these applications and

will display an enormous progress in the field of Human-Robot Interaction,

which enables such systems for tasks like

• Support for elderly or handicapped people ,

• Edutainment ,

• Medical applications ,

• Cleaning of homes .

8It´s also interesting to throw a glance at the unit prices (in 2004) for professional
service robots [1]; the most expensive robots are the underwater systems ($ ∼
300.000) , followed by milking robots ($ ∼ 200.000). The average price of a medical
robot is about ($ ∼ 150.000).

35



Fig. 2.9.: Care-O bot II, Frauenhofer Institute IPA [98]

Successful applications in these areas involve a highly secure and fault-

tolerant technology. Due to the innovative character of mobile service

robots, specifications and standards for the construction and operation

of such systems are still lacking. Nevertheless, a lot of systems which

are already in use now provide a high degree of functionality. In the

following we want to describe 3 interesting representatives of intelligent

mobile systems.

2.5.1. Care-O bot II

Care-O-bot II [100], developed at the Frauenhofer Institute (IPA) Stuttgart,

is a mobile service robot which has the capability to interact with and as-

sist humans in typical housekeeping tasks. It supports humans in tasks

like grasping, holding, or lifting, can execute everyday jobs such as setting

the table, operating the microwave, or simple cleaning tasks or control the

home infrastructure as e.g. heating system, lights or doors.

36



The increasing number of elderly people and thus the number of people

impaired by diseases or handicaps will rise quickly in the next future9.

Therefore technical aids will play an important role for an adequate sup-

port for all elderly people.

The Care-O-bot is equipped with a differential drive including shaft en-

coders for motion tracking. It is able to move at a speed of up to 1.2

m/s. Four castor wheels are further used for keeping the robots up-

right. A gyroscope is integrated to the robot platforms to track their

current orientations. A 2D laser scanner is attached to the front of each

robot. It is used for self-localization, navigation, and obstacle detec-

tion.

As Care-O-bot interacts with handicapped people a redundant safety

system is of great importance. It is equipped with a lot of additional

safety sensors like a bumper at the bottom of the robots, several in-

frared sensors, a laser scanner and a magnetic sensor facing toward the

ground, which is used to prevent the robot from leaving their assigned

area10.

The navigation is completely autonomous with the laser scanner used for

detecting the current position. The robots integrate automatic self-test,

start-up, and shutdown capabilities and can therefore easily be operated

by untrained personnel. The communication system is based on wireless

LAN and allows for a a remote control and diagnosis using a stationary

PC.

37



(a) Roby-Go. (b) Roby-Go 2.

Fig. 2.10.: Roby-Go and it’s successor, TU Vienna.

2.5.2. Roby-Go

The mobile robot Roby-Go [102], developed at the TU Vienna, is a

differential drive system with 4.05 W electric drives with a speed of 8000

1/min and a maximum speed of 2.54 m/s which can be reached within 500

ms . It´s main application is as a soccer player in the category MiroSot

(FIRA) but it also serves as an education tool for students in the field

of control engineering and mechantronics as well as a test-bed for Multi-

Agent Systems. The edge length of the cube is 75 mm and the robot is

equipped with two wheels with a diameter of 48 mm and a width of 8 mm

and weighs 450 g (with batteries). The power supply will be ensured by 9

9According to numbers of the Federal Statistical Office, in 2001 around 24 percent out
of 82.5 million people living in Germany were senior citizens over 60 years. With
demographic development continuing, the number of people over 60 years old will
reach 35 percent of Germanys population in the year 2040. In 1999 the number
of elderly people that were treated by one nurse was around nine. According to
current predictions, in 2050, this ratio will lie at about 1:17.

10This area is surrounded by a magnetic band.

38



Fig. 2.11.: Transcar, an AGV from Swisslog [103].

NIMH cells with a total capacity of 700 mAh by 1.2V, which gives enough

power for driving 20 min with full speed. The electronic system is designed

modular and with an open architecture consisting two PCB boards with

C167CR-LM (Infineon) micro controllers with a CAN-Bus Interface and

which are programmable by a serial interface. The communication of

the robot with the environment is by a radio module using the serial

interface. The required velocities of the left and right wheel will be send

by a standard PC.

2.5.3. Transcar

The Swisslog AGV Transcar [103] is a transport system for a variety of

bulk items through a hospital. The robots are ideally suited for moving

routine, on-demand or large quantity items, like meals/soiled, dishes or

surgical cases, between centralized functions such as kitchens, laundries

and storerooms.

Transcar offers:

• Low profile, compact, fully symmetric bi-directional vehicles ,

• a contour-following laser guidance system for maximum safety, flex-

ibility and cost efficiency ,

39



Fig. 2.12.: Nomad200

• a dual range non-contact laser obstacle detection ,

• an automatic lifting and transport of four-wheel carts of varying

configurations and loads ,

• quick charging NiCD batteries for maximum vehicle availability ,

• advanced PC computer system directing all vehicle movement, track-

ing, diagnostics and information feedback .

• a communication system, which is a combination of wired and wire-

less LAN.

2.5.4. Nomad2000

The Nomad200 from Nomadic Technologies is an integrated mobile robot

system widely-used in teaching and research in Robotics and Artificial

Intelligence. It is based on a three wheel synchronous drive kinemat-

ics controlled by two motors, one for translation and one for rotation.

Servo control is performed by a MC68008/ASIC microprocessor system.

40



It has a maximum translational speed of 0.6 m/s and a rotational speed

of 60◦/s.

There are 6 different sensory systems installed: tactile, infrared, ultra-

sonic, Laser scanner, vision system and compass. The tactile system works

with 20 switches, which are organized in two rings with 10 switches in each

ring. The sonar system has 16 channels giving range information from 17

to 255 inches with 1 % accuracy over the entire range. It is based on a

time of flight measuring method of acoustic signals at a frequency of 49.9

kHZ. The infrared system is build up of 16 sensors, which measure the

reflective intensity up to 24 inches.

The vision system consists of a Sony XC-75 standard CCD camera with

a resolution of 490 × 512 pixels, a frame grabber as an interface to the

motherboard and a software library, providing low level vision algorithms

for edge detection, line extraction, distance transformation, etc. Together

with a Sick Laser scanner it builds a Laser range finder sensor. The

operating range is from 18 to 120 inches and has a power requirement of

2000 mA at 12 V .

The Energy Systems consists of 5 12V-12Ah batteries providing 840 Wh

usage, which is about 7h driving time for the robot.

Programming of the robot will be done off line on a standard Linux PC

using the language C. Before the program is send to the robot via a wire-

less Ethernet Connection , it can be tested in a simulation environment

(see App. B).

The Nomad200 is a perfect Hardware platform for testing various kinds of

problems in the field of mobile robotics and will also be used as a testbed

in that work.

41



3. Robot Motion Planning

One of the key challenges of autonomous robots are adequate planning

strategies. The goal is to specify a task in a high level programming lan-

guage, or as a long-term objective in everyday speech, and the robot is

able to transform it into motion and control instructions. The fundamen-

tal task in motion planning is to find a path for a robot, whether it is a

robot arm, a mobile robot, a humanoid or a virtual agent, from a start to

a goal configuration without collisions. Thereby we are confronted with

two kinds of constraints: global constraints, which arise from obstacles

in the environment and local constraints, which arise from the kine-

matics of the robot. As the power and generality of planning algorithms

increases, we are able to handle applications of increasing difficulty, like

systems with high degrees of freedom, complicated geometric and differ-

ential constraints. In Fig.3.1 and 3.2 we find demonstrative examples that

path planning isn’t constricted only to mobile robots. Although the appli-

cations are very different1, the tasks are in both cases the same: reaching

a possible goal configuration from a given start configuration with respect

to constraints.

Since the planned motions for robotic systems have to be executed in

a world with physical laws, uncertainty and geometric constraints, path

planning has also to consider various aspects of mechanics, control theory,

1On the one hand we are facing a continuous on the other hand a discrete planning
problem.

42



Fig. 3.1.: A continuous
planning problem.

Fig. 3.2.: A discrete planning
problem.

differential geometry and computer science. This leads to a further impor-

tant aspect of autonomous motion; that a robot has to collect it´s correct

position and orientation at each time. These tasks result in three prob-

lems, which an autonomously guided robot has to solve:

• Map building, i.e. finding a useful representation of the environ-

ment.

• Target finding, i.e. planning of ’optimal’ paths.

• Target tracking, i.e. the robot has to know it´s correct position.

All of that points seem to be easy tasks for humans and animals (at least

in a known environment), but they are extreme challenging exercises for

artificial systems2. In this work the main focus lies on the path planning

tasks but will also stripe the two other aspects of navigation as far as they

are important for us.

2A prominent example is the First Grand Challenge ’04 field test of autonomous
ground vehicles organized by DARPA (Defense Advanced Research Projects
Agency), a rally from Barstow, California to Primm, Nevada about 160 miles across
the Mojave dessert. Despite a $1 million prize none of the teams reached the goal,
most of them failed after a few 100 meters [104].

43



Fig. 3.3.: Basic Path Planning Problem of two robots with different shapes
[31].

3.1. Path Planning of mobile robots

The general motion planning problem can easily be described in the follow-

ing way: Given an initial state, a final state and constraints of allowable

motion. Find a collision- free path between these two states, which satisfies

all the constraints.

We can divide this problem in three parts:

1. Finding a free path in the space where the robot is moving .

2. Planning a trajectory, e.g. at each point the robot has to know it’s

orientation, velocity and acceleration .

3. Regarding the robot’s geometry and kinematical constraints .

With that prerequisites the task is to find algorithms for collision free

paths of the moving robots. A further aspect of planning is that we

are not only searching for feasible paths but also for paths, which are

optimal in some specified manner. This could include the following as-

pects:

44



• finding those paths of minimal length,

• finding paths of minimal costs or minimal energy consumption,

• finding ”safe” paths in a dangerous environment,

• considering moving obstacles instead of fixed one,

• coordinate the motion of several robots,

• planning and coordination of sliding and pushing motions in order

to achieve a special constellation of the obstacles,

• reasoning about uncertainty to build feasible sensory- based motion

strategies.

For most of the real world problems, feasibility is already challenging

enough; finding optimal paths is much harder and sometimes even im-

possible due to the fact that we either can´t formulate the right cri-

teria for optimality or can´t find an sufficient fast algorithm. In such

cases, finding feasible paths is the only goal we can reach, but fortu-

nately these solutions are often sufficient feasible for practical applica-

tions.

If we neglect the kinematical aspects of the robot (Trajectory Planning) in

a first step, we have to solve a completely geometric problem often called

the Basic Motion Planning Problem (Fig.3.3). Under the assumption that

the geometry of the robot and the geometry and location of the obstacles

are perfectly known, a lot of algorithms to that ”Free Flying Object”

situation have been developed within the last 25 years3. They base on dif-

ferent theoretical assumptions and requirements concerning the following

questions [29]

• Environment and robot: What is the structure of the environ-

ment, what about the shape of the robots ?

3Mostly in the field of Computer Science and Mathematics as there are a lot of search
problems which can be traced back to path planning.

45



• Soundness: Is the planned trajectory collision free ?

• Completeness: Do the algorithms guarantee to find a path ?

• Optimality: Are the founded paths the optimal ones ?

• Space or time complexity: How much storage space and CPU

time is taken to find a solution ?

Dealing with realistic path planning problems means that we have to sim-

plify the mathematical model in order to get fast enough solutions, e.g.

a common prerequisite is that the obstacles of the real world are mapped

into convex polygons. Thus, we have always be aware of these simplifica-

tions and have to think about control mechanisms to repair the deviations

from the real situation.

Basically we can classify path planning methods in local and global ones.

Global methods plan in the whole environment, while local ones plan in

a definite region and summarize their part solutions at the end. Despite

the huge variety of classical planning algorithms they essentially base on

three different ideas: the roadmap, cell decomposition and poten-

tial field. In the last years there has been an increasing interest in us-

ing heuristic or probability based planning strategies as for complex

systems the classical methods proved to be too slow in finding feasible

solutions. Before we will describe these methods in detail we want to

introduce some important definitions and geometric concepts, which are

necessary for a thoroughly understanding of motion planning problems

[31].

3.2. Mathematical Background

We consider a robot A moving in a 2-dimensional environment, with some

obstacles B1, . . .Bn. This environment where a certain robot operates is

called the workspaceW ⊂ Rn (n=2,3). The robot A is a rigid object (with

46



a certain position and orientation), which can be described as a compact

subset W of the Rn (n=2,3). In most of the cases the robot A will be

a simple polygon with n vertices and n edges or a circle with radius r.

The obstacles B1, . . .Bn ⊂ Rn are fixed rigid objects in W . They will be

represented as closed polygons (not necessary convex) or circles of radius r.

In order to describe the motion of the robot we need a coordinate system

which is fixed in the workspace FW (world coordinate system) and a frame

FA, which moves with A. Since A is rigid, every point a ⊂ A has a fixed

position with respect to FW . But the coordinates of a inW depend on the

position and orientation of FA relative to FW .

As an example we consider the 2-dimensional flat plane with the standard

Euclidean coordinate System (R2) and a square shaped robot A with

vertices at (−1, 1), (1, 1), (1,−1), (−1,−1). A translational movement of

A about the vector (1, 1), denoted by A(1, 1), leads to the new vertices

(0, 2), (2, 2), (2, 0), (−2,−2). With this form of representation, a robot can

be specified by listening the vertices of A(0, 0). A different and in the case

of rigid shapes more practical way to identify the position of a robot is

by a reference point. This point is in general the origin of the coordinate

system (0, 0) and can be inside (e.g. the barycenter) or outside the robot.

Thus the notation A(x, y) specifies that the reference point is placed at

(x, y).

A pose or configuration of a robotic system in the workspace means the

position and orientation of FA with respect to FW . Any point of the

robot A has a fixed position in FA but it´s pose depends on the pose of

FA relative to FW . The set of all possible configurations is then called

the configuration space C. It is the space of all possible configurations

of a robotic system. The topology of that space is usually not that of a

Cartesian space4. In general C is described by a list of real parameters.

4To be more precise, C is a smooth manifold of dimension n. That means that the
local topological and differential structures are isomorphic to Rn. For the global
structure of the manifold this is not necessary true. This means, that we can always
find some smooth paths in a certain region but necessary in the whole configuration
space.

47



Fig. 3.4.: A 2 DOF Articulated Robot and it´s configuration space

For example (Fig.3.4), the configuration space of an 2 DOF articulated

robot is that of an torus.

Another example are car- like mobile robots, which have 2 translational

and 1 rotational DOF. They can be described by the real parameters

(x, y, θ), where (x, y) denote the position in workspace (e.g. of the center of

gravity) and θ denotes the orientation of the vehicle. In that case C isR2×
S1, which has the topology of a cylinder5. In general, for each DOF a sin-

gle parameter is needed and it´s obvious that each additional DOF compli-

cates the structure of the configuration space (Fig.3.5).

As we are interested in moving objects we need a definition of a path, which

will always be a continuous map from an initial to a final state. A path ofA
from the configuration qinit to qgoal is a continuous map

τ : [0, 1]→ C ,

with τ(0) = qinit and τ(1) = qgoal .

A trajectory is a path parameterized by time:

τ : t ∈ [0, T ]→ τ(t) ∈ C
5If we only consider the translation of a robot inR2 the configuration space is identical
to the workspace. Nevertheless a strict disjunction between these two spaces is
useful.

48



Fig. 3.5.: A 10 DOF Articulated Robot. C is (S1)7 ×R3

As a distance function we will use the metrics6

d(~q1, ~q2) = max
a∈A
||a(~q1)− a(~q2)||

where ||~x1−~x2|| denotes the Euclidean distance between two points ~x1, ~x2 ∈
Rn.

As a specific example we consider C = R2 × S1. The two configurations

are a(~q1) = (x1, y1, θ1) and a(~q2) = (x2, y2, θ2) with θ1, θ2 ∈ [0, 2π). The

distance is

d(~q1, ~q2) =
√

(x1 − x2)2 + (y1 − y′2)
2 + α2

with α = min {|θ1 − θ2|, 2π − |θ1 − θ2|} . We see that d > 0 ∀a(~q) and

a(~q1)→ a(~q2) ⇒ d→ 0.

This definition of a path implies that the moving object doesn´t have any

6The metrics induces a topology in C, so that the term ”continuity” is reasonable.

49



kinematic or dynamic constraints, thus we consider a a free flying object C.
A remark should be made about the differentiability of paths. Although

we don´t need smooth paths in the basic motion planning problem there

is little interest in generating paths which we know in advance to be in-

feasible. Thus we will only consider differentiable paths and discard non

smooth paths.

The above considerations didn´t include the obstacles Bn of the workspace.

Thus, we have to map the obstacles into the configuration space and to

look for free paths in a geometrically constraint space. Every obstacle Bi

(i = 1, . . . n) in the workspaceW maps in C to a region

CBi = {~q ∈ C| A(~q) ∩ Bi 6= ∅}

which is called a C-obstacle. The union of all the C-obstacles

q
⋃

i=1

CBi

is called the C-obstacle region and in opposite to that, the set:

Cfree = C \
q
⋃

i=1

CBi = {~q ∈ C| A(~q) ∩ Bi = ∅} ,

is called the free space. Any configuration in Cfree is called a free config-

uration. A free path is therefore a map τ : [0, 1] → Cfree. Therefore a

configuration a(~q) is collision-free, or free, if the robot placed at a(~q) has

null intersection with the obstacles in the workspace. A configuration is

called semi-free if the robot at this configuration touches obstacles without

overlap7.

A major problem of the configuration space representation is that with

increasing complexity the search space can be very large and therefore

7Such a configuration can´t be accepted for real paths because of uncertainties of the
control system or problems by touching instable objects.

50



Fig. 3.6.: A moving disc A in R2 with a polygonal obstacle B [31].

time consuming to search. A common simplification is to assume that

the robot can be approximated by a disk with radius r and is able of

omnidirectional motion8. Based on that assumption we can enlarge the

obstacles in the C space about the radius r and treat the robot as a

point particle. The dilation operation is called Minkowski Sum and is

an important tool for calculating CB. In it´s general form the Minkowski

Sum of two sets A and B is defined as follows:

Definition 3.2.1 The Minkowski sum of to sets A ⊂ R2, B ⊂ R2, de-

noted by A⊕ B, is defined as

A⊕ B :=
{

~a ∈ A,~b ∈ B| ~a+~b
}

,

where ~a+~b = (ax + bx, ay + by).

As an first example we consider a robot A, approximated by a disk of

radius r, and an obstacle B, approximated by a polygon, inW = R2. The

Minkowski Sum is received by navigating the disk along the surface of B.
Therefore the resulting CB is the obstacle dilated by the radius r (Fig.3.6)

.

Another example displays CB when A and B are convex polygons. A can

translate freely but can´t rotate. Therefore C is R2 and for CB we get the

8This is sometimes called the Point Robot Assumption.

51



Fig. 3.7.: 2 configurations of A the related C-Obstacles [31].

shapes of (Fig.3.7). It´s important to mention that for each orientation of

A we have a different shape of the C-obstacle.

As a last example we let A not only translate but also rotate freely. In that

case CB complicates dramatically an will become a volume as we now have

to introduce a third dimension (R2×S1 (Fig.3.8).

The most simple way to formulate an algorithm for computing the Minkowski

sum of two convex polygons is to simply apply the definition 3.2.1 and

compute ~a+~b for all pair ~a,~b of vertices and finally built the convec hull

of all these sums. We want to give an alternative algorithm which is much

faster and easy to implement [28]:

52



Fig. 3.8.: The free flying object A is also allow to rotate [31].

Algorithm 3.2.1 : MinkowskiSUM

Input :

2 convex polygons A = v1, . . . , vn, B = w1, . . . , wm ;

Output :

Minkowski Sum A⊕ B ;

01: i← 1, j ← 1 ;

02: vn+1 ← v1 , wm+1 ← w1 ;

03: DO

04: (i 6= n+ 1 AND j 6= m+ 1) ;

05: Add vi + wj as vertex to A⊕ B ;

06: IF

07: angle(vi, vi+1) < angle(wj, wj+1)

08: i← (i+ 1) ;

09: ELSE IF

10: angle(vi, vi+1) > angle(wj, wj+1)

11: j ← (j + 1) ;

12: ELSE

13: i← (i+ 1) ;

14: j ← (j + 1) ;

15: WHILE

16: i = (n+ 1) AND j = (m+ 1)
53



The subroutine angle(vw) denotes the angle of the vector ~vw with the

positive x-axis.

We conclude the short survey about the Minkowski sum with to important

theorems (without proof):

Theorem 3.2.1 The C- obstacle of B is B⊕−A(0), where −A = −~a : ~a ∈ A
means, that A is reflected at the origin.

Theorem 3.2.2 Let A,B be two convex polygons with n and m edges.

Then A⊕ B is a convex polygon with at most n+m edges9.

3.3. Representing Space

An important goal in developing intelligent agents capable of complex

planning tasks is that they have some internal representation of their

environment. Such an internal map is necessary for reasoning about nav-

igation, recognizing special regions or objects. We can divide such maps

in different levels of abstractions:

• Spacial Information, is a straightforward representation of the

space. The idea is to represent the space (2D or 3D) as a grid,

where the pixels represent either a free space (′0′) or an obstacle

(′1′). The big advantage is that there is no strong assumption of

the objects in the environment, the disadvantage is that the storage

space depends strongly on the resolution of the grid10.

9and can be computed in O(m + m) time.
10E.g. in a 15×15×15 m3 environment with a grid length of 3 m, 125 cells are needed,

whereas in a 100× 100× 100 m3 environment with a grid length of 1 cm, 109 cells
are needed. Using more advanced data structures like Quadtrees or BSP [31] trees
reduce the storage space.

54



• Geometric information, which is the direct product of sensor data

and important for local planning tasks and collision avoidance. Geo-

metric maps are build up of discrete geometric primitives like points,

lines, splines or surfaces.

• Topological information, is an abstract representation of the en-

vironment,which lacks any metric data. The obstacles and the free

space between it is represented as nodes an edges of a graph or tree.

Such a representation is the requirement for a global path planner.

• Semantic information, is the ability not only to detect objects as

geometric forms but also to understand their meaning. This is the

most advanced level of abstraction an we are far away from satisfying

results.

3.4. Basic Motion Planning Problem

The main ideas of the configuration space as displayed in section 3.2 can

be summarized in a recipe:

• Represent the robot A as point in the configuration space.

• Map all the obstacles of the working space into this space.

• Find an optimal path free path from the initial to the goal configu-

ration.

With the introduction of the configuration space we transform the basic

motion planning problem from planning of object motion to of planning

point motion. This is a completely geometric problem and a lot of methods

have been developed within the last 2 decades in the field of algorithmic

geometry. These methods are also referred to as exact algorithms, as in

any cases they will find a solution to the problem or at least will report

that no solution exists. In the following sections, we describe the most

55



important of them and analyse their strength and weakness [31], [34],

[33].

3.4.1. Potential Field Method

The key idea of the potential field method [35] is to treat the robot as

a charged particle acting under the influence of external potential fields

U . The obstacles carry the same charge as the robot and therefore cause

repulsive forces, while the goal point is inversely charged an acts therefore

as an attractor (Fig. 3.9). Such an artificial potential can be written

as

U(~q) = Ugoal(~q) +
∑

i

Ui(~q) .

From the potential we can derive the artificial force, which is responsible

for the trajectory of the robot

F = −∇U(~q) = −
(

∂U/∂x

∂U/∂y

)

.

(a) Equipotential lines and
the path of the robot.

(b) The resulting potential
field.

Fig. 3.9.: The potential field method [34].

56



The remaining task is to find adequate definitions for the potentials U . A

common choice for Ugoal is

Ugoal(~q) = α‖~q − ~qgoal‖2 ,

and for U

U(~q) = β‖~q − ~qobstacle‖−1 ,

where ‖ · ‖ denotes the Euclidean distance between the robot in state

~q and the closest point on the obstacle. In order to reduce complex-

ity the repulsive forces are only calculated for the next obstacles instead

of summing up all influences. This method has a lot of special advan-

tages:

• spatial paths are not preplanned and can be generated in real time ,

• the generated paths are smooth ,

• planning an control are directly coupled, which simplifies the control

algorithm .

The potential field method suffers a major setback if the obstacle has

a concave shape, because the robot can be trapped into the local min-

ima of that potential function. A lot of improvements of the classical

potential field method has been developed and implemented in robotic

systems [36], [41], especially to improve the local minima behavior, but

also to reduce the oscillations when passing a narrow space like a door.

An interesting approach is the randomized path planner (RPP) [49],

where the escape from local minima is managed with the help of random

walks.

Nevertheless due to the problems of local minima, potential field planner

will more often be used as local planner, while global planning uses graph-

like methods.

57



3.4.2. Roadmap

The central idea behind this method is to plan all possible paths in a

given two- dimensional configuration space with random distributed C-

obstacles. The nodes of that non- directed graph are the initial and goal

configuration and the vertices of the polygons. The nodes are connected

with those links, that don´t intersect the interior of a polygon. Once

the road network is build one can search for a suitable path between two

points.

Visibility Graph Method

The earliest Roadmap planning method is the visibility graph method

[38]. In Fig.3.10 we find a possible scenario, an initial and a final point

and C- obstacles between it. The next step is to build up the visibility

graph G = (V,E) (Alg. 3.4.1) as mentioned before . The problem of

finding the shortest path is now reduced to finding the shortest path from

the start to the end node in the graph. There exists a lot of efficient

algorithms for searching in the graph of n nodes, e.g. the Shortest Path

Algorithm of Dijkstra [30] or the A∗ Algorithm [68], which leads to an

overall complexity of O(n2). The general visiblity graph algorithm works

in the following way:

58



Fig. 3.10.: Visability Graph

Algorithm 3.4.1 : Simple visibility Graph Algorithm

Input :

V ← all obstacles vertices in C ;

V ← start and goal position ;

Output :

shortest path in G = (V,E) ;

01: FOR every pair of nodes u, v ∈ C
02: IF (edge (u, v) is an obstacle edge then)

03: insert (u, v) into G = (V,E) ;

04: ELSE

05: FOR every obstacle edge {e} ;

06: IF {(u, v)} ∩ {e} 6= ∅
07: then GOTO 02 ;

08: ENDIF

09: insert (u, v) into G = (V,E) ;

10: ENDIF

11: ENDFOR

12: Search in G = (V,E) using A* or Dijkstra ;

59



Fig. 3.11.: Edges with an angle < 180◦ can be replaced by a shorter edge.

Before using the algorithm Alg. 3.4.1 it is advisable to remove the unnec-

essary edges from the graph as can be seen in Fig. 3.11. All edges with an

included angle of < 180◦ can be removed as there is a shorter connection

possible.

The visability graph method is complete, e.g. if there exists a shortest

path, it will be found. The disadvantage is, that the possible paths pass

through the vertices and that the algorithm doesn’t make any assump-

tions of the size of the robot. Therefore such paths don’t have a safety

distance to obstacles, but this is necessary if the robot moves through

an environment, where it has to take care of them (e.g. if humans are

walking around). It is possible to overcome this problem at least in part

by applying the Minkowski sum to dilate the obstacles. However, for non

circular robots this method is not complete, that means the path planner

can’t find a path even if there exits one.

Voronoi Diagrams

To overcome the problem of approaching too close to the obstacles, a well

known technique from the field of computational geometry can be used,

the Voronoi diagram [39]. The general idea of Voronoi diagrams is to

maximise the clearance of fixed points, called sites. For the purpose of

robot motion planning the sites will be enlarged to polygonal obstacles

and we are searching for the maximal clearance between the robot and

60



Fig. 3.12.: Voronoi Diagram [31].

the obstacles. The Voronoi diagram (also called generalized Voronoi

diagram) is then defined as the locus of points equidistant to the closest

two or more obstacle boundaries [37]. The paths between the edges of

the obstacles are straight lines and around the corners they are parabolas.

This leads to a path as shown in Fig. 3.12.

In analogy to the visibility graph, the Voronoi algorithm is complete but

the generated paths are longer as they include curved segments.

The property of a Voronoi planner, that it maximizes the distance to the

obstacles should be regarded when short-range sensors are used, because

they will mostly fail to detect the surrounding environment which leads

to poor results in the case of self localization.

3.4.3. Cell Decomposition

The vertical cell decomposition method divides the configuration space

into areas, or cells, that are free and areas that are occupied by obsta-

cles (Fig. 3.13). At each edge of the bounding box or of an obstacle,

61



Fig. 3.13.: Vertical Cell
Decomposition of Cfree.

Fig. 3.14.: The resulting
topological graph.

a vertical line is drawn upwards and downwards until an neighbored ob-

stacle or the bounding box of the workspace is hit. If the union of the

trapezoidal and triangular cells is exactly the free space, then we call it

an exact cell decomposition otherwise an approximate cell decom-

position.

After Cfree is partitioned into n cells Ci a sample point pi ∈ Ci is chosen

in each cell. The sample points can be selected at the centers of the

cells or randomly. Then the so-called connectivity graph G = (V,E) is

constructed as follows : Each of the sample points is a vertex of the graph

and two adjacent vertices will be connected by a straight line path, which

is the edge. The accessibility condition is satisfied because every sample

point can be reached by a straight line due to the convexity of every cell.

The resulting path τ passes all the points p0, p1, . . . , pn, where τ(0) = pI

and τ(1) = pG .

In analogy to the visibility graph the cell decomposition method fails,

when the dimension of the configuration space gets higher or when the

complexity of the scene is large, as the number of cells required becomes

too large to be practical. It has been shown, that many general for-

mulations of general motion planning problems are PSPACE-hard11 and

11This means, that there is no deterministic algorithm, which needs no more than
polynomial amount of storage space during the execution. A famous example for a

62



therefore there is no hope of finding a complete and universally valid solu-

tion. Nevertheless there are at least two good reasons to study such exact

methods

• It often happens, that we are only interested in a special class of

planning problems, e.g. only a translation of the robot or an envi-

ronment with only a few obstacles. In that cases there exists a lot

of special variants of roadmap or potential field based algorithms,

which are fast, elegant and complete.

• From a theoretical point of view, it is both interesting and satisfying

to know that there are complete algorithms for an extremely broad

class of motion planning problems. Thus, even if a problem exceeds

the limiting assumptions for exact planning algorithms, they pro-

vide both a basis for an approximate solution and theoretical upper

bounds on the time and storage-space needed.

3.5. Sampling-based Planner

As the classical exact planning methods are limited to restricted prob-

lems, the focus of research switched to sampling-based12 methods. They

demonstrate a tremendous potential in solving many challenging high-

dimensional problems efficiently at the expense of completeness. How-

ever, such planners can achieve a weaker form of completeness, the so

called probabilistical completeness. This means, that if a solution

path exists, the planner will eventually find it with a probability that

converges to one when enough points are sampled. Current heuristic

planning algorithms can be divided into two classes: multiple-query

methods, where a generated roadmap can be repeatedly reused if the en-

vironment is static and single-query methods, where the Cfree is peram-

bulated for each query anew. The most prominent representative for the

PSPACE-hard problem is the piano mover’s problem [40].
12They are also often called heuristic or probabilistic methods.

63



Fig. 3.15.: A roadmap for a
point robot.

Fig. 3.16.: The calculated path
of the PRM planner [34].

former method are probabilistic roadmap planner, while for the latter

the method of rapidly-exploring random trees is getting increasingly

important.

3.5.1. Probabilistic Roadmap Planner

The probabilistic roadmap planner (PRM), developed independently

at different groups [42],[43],[45],[44], is a roadmap method where the path

isn’t generated in a deterministic but in a stochastic way.

The key idea is to choose a collection of random configurations in Cfree,
which are the nodes of a graph G = (V, E). Then a number of pairs

of those configurations will be connected by a path using a simple local

motion planner. It is typical to choose an simple straight line interpolation

between two configurations and check if this path is collision free. If this

is the case than it will be added as an edge to the graph. As a result of the

procedure Alg.3.5.1 (this is called the learning phase) we get a connected

graph of Cfree as shown in Fig. 3.15. In the following query phase, the

start configuration s and the goal configuration g are added to V. Then a

graph search tries to find the shortest possible sequence of edges between

s and g and which will afterward be transformed into a feasible path in

Cfree (Fig. 3.16).

64



Algorithm 3.5.1 : PRM Algorithm

Input :

n : number of nodes to put in the roadmap

k : number of closest neighbors to examine for each config.

Output :

A roadmap G = (V, E)

01: V ← 0, E ← 0 ;

02: WHILE (|V | < n)

03: c← a (random) configuration in Cfree ;

04: V ← V ∪ {c} ;

05: END WHILE

06: FOR ALL c ∈ V
07: Nc ← k closest neighbors to c according to |·| ;

08: FOR ALL c′ ∈ V
09: IF (c, c′) /∈ E AND local planner finds way betw. (c, c′) ;

10: E ← E ∪ (c, c′) ;

11: END IF

12: END FOR

13: END FOR

There are a lot of details to fill in this abstract scheme of algorithm 3.5.1:

what are the optimal values for n and k, which local planner should be

used, which is the best distance measure, how to select promising pairs

of nodes to connect, etc. This is on the other hand a big advantage of

the PRM, because it can be used for different classes of problems and

can be generalized to a lot of special constrained systems. A common

difficulty of the PRM planner the so-called narrow passage problem.

This means, that the probability of random samples falling inside a small

passage is very low. Therefore there are only little edges connecting the

65



nodes, which might lead to a discontinuous roadmaps. There exists sev-

eral approaches to cope with that problem like sampling on the Cfree
boundary [50], [42], Gaussian sampling [51] or Bridge-test sampling [52],

etc13.

3.5.2. Rapidly-Exploring Random Trees

While PRM Planners have some difficulties with nonholonomic systems as

they need a huge amount (typically tens of thousands) of connections be-

tween pairs of configurations, the method of Rapidly-Exploring Ran-

dom Trees (RRT) [48], [46],[47] was originally developed for motion

planning tasks under differential constraints. The key idea is to incre-

mentally construct a search tree that gradually improves the resolution

(Fig.3.17), but does not need to explicitly set any resolution parameters.

The principle construction scheme of a RRT is to start from xinit and in-

cremently add new vertices to the tree T that are biased by a randomly

selected state (Alg.3.5.2). As shown in Fig.3.17 a random state x is chosen

and the EXTEND function (Alg.3.5.3) selects the nearest state xnear ∈ T
to x. As in the case of PRM the meaning of ”‘nearest”’ depends on the

chosen metric ρ. The function NEWSTATE makes a motion toward

x. This motion depends on the state transition function ẋ = f(x, u),

where ẋ denotes the derivative of the state with respect to the time and

u ∈ U is a element of the input set U . Integrating over a fixed time

interval ∆t we get for the new state xnew ≈ x + f(x, u)∆t. The use of

a state transition function allows a great flexibility regarding constraints.

For holonomic planning, a useful definition is f(x, u) = u, with ‖u‖ < 1,

while for nonholonomic planning, the next state is constrained due to the

special choice of f . The NEWSTATE function also includes a collision

detection function to determine if a new state is element of Cfree or not.

If it is successful, the new state xnew is added to the tree T . There can

occur three possible situations :

13See e.g. [34] for further sampling strategies.

66



• Reached, i.e. xnew reaches x .

• Advanced, i.e. xnew 6= x will be added to RRT .

• Trapped; i.e. NEWSTATE fails to produce a state xnew.

As the probability for choosing a node for extension is proportional to

the volume of its Voronoi region, the RRT tends to rapidly grow in the

unexplored regions of Cfree.

Algorithm 3.5.2 : Build RRT Algorithm

Input :

xinit : root of the three

n : number of attempts to expand the tree

Output :

T = (V,E), rooted at xinit and has ≤ n configurations

01: V ← {xinit}, E ← 0 ;

02: FOR (i = 1 to i < n)

03: xrand ← RANDOMSTATE() ;

04: END FOR

67



Fig. 3.17.: The EXTEND function [33].

Algorithm 3.5.3 : Extend RRT Algorithm

Input :

T = (V,E) : a RRT

x : randomly selected state biasing the growth of T
Output :

xnew : a new configuration toward x or failure if xnew 6= x

03: xnear ← closest neighbor of x ∈ T according to metric ρ;

04: IF (xnew is collision free)

05: V ← V ∪ {xnew} ;

06: E ← E ∪ {(xnear, xnew)} ;

07: IF (xnew = x)

08: RETURN(Reached) ;

09: ELSE

10: RETURN(Advanced) ;

11: END IF

12: END IF

13: RETURN (Trappped) ;

The key advantages of RRT’s are :

• The expansion of RRT is heavily biased towards unexplored regions

68



Fig. 3.18.: A RRT explores Cfree [33].

of the state space .

• It has been proven that RRT is probabilistically complete under very

general conditions.

• RRT are relatively simple, leading to a good performance .

• RRT always remain connected in Cfree.

Even though RRTs work well in many applications, they have several

weaknesses, which cause them to perform poor in special cases. Therefore

several extensions and improvements of the basic RRT has been proposed,

like bidirectional versions, where two trees are growing from the initial

and the goal configurations or dynamic-domain RRT planner [53] ,

which try to control the bias of the nodes in the tree near boundaries in or-

der to improve the behavior in narrow passages. Further more there are re-

cent works, which try to combine PRM with RRT in order to create highly

efficient parallelized motion planners [55], [54].

3.5.3. Deterministic Sampling

In important question that arises in the field of sampling based planning

methods is, whether randomization offers any advantages when applied

to sampling strategies. This question seems absurd due the success of

randomized path planning methods, however it has been shown [57], [58],

69



that deterministic sampling has some advantages over random sam-

pling. Many PRM planners show a better performance by concentrating

samples in a nonuniform way, e.g. along C-space boundaries [42] or medial

axis [56]. Thus the key idea is to consider sampling as an optimization

problem in which a set of points should be placed in Cfree in an ’optimal’

way. Therefore it seems, that the success of sampling-based motion plan-

ner over earlier combinatorial ones are primarily due to the fact that the

are sampling-based, not due to the fact that they are usually randomized

[59].

70



4. Genetic Algorithms

4.1. A brief history of Evolutionary Computa-

tion

Evolutionary Algorithms (EA) are a class of global, parallel, stochas-

tic and robust optimization methods founded on the Darwinian principle

survival of the fittest. They are applied successfully to a wide range of

technical and scientific problems, especially when due to complexity more

classical optimization methods fail. The first attempts for using biological

computational principles go already back to the 50’s [65], however since

the 80’s evolutionary principles are an intensive research topic in the field

of Computer Science and Engineering. Basically the field of Evolutionary

Computing is divided into four areas:

• Evolution Strategies (Evolutionsstrategie) [65] ,

• Evolutionary Programming [64], [62] ,

• Genetic Algorithms [69] ,

• Genetic Programming [71] .

For a long time those four fields evolved separately even though they

have a mutual basis. With the Workshop ’Parallel Problem Solving from

Nature‘ in 1990 [80] the boundaries had broken down and the various

71



topics begin to fuse to the research field Evolutionary Computation.

In this context a lot of new techniques and improvements of the classic

EA have been developed in the last few years [73], e.g. memetic al-

gorithms, coevolution, ant colony optimization, differential evo-

lution, particle swarm optimization, cultural algorithms and the

combination of neural networks and fuzzy logic with evolutionary algo-

rithms (Computational Intelligence [78]).

The usage of EA is reasonable in all those cases, where more traditional

optimization methods fail or are too slow. Especially if the search space

is very large and riddled with many local optima EA provide excellent

results. Due to the fact that the general design of an EA is non problem-

specific1 there is a huge field of applications to practical problems, e.g.

• Robotics [86] ,

• Control System Engineering [81] ,

• Routing and scheduling [76] ,

• Surface Reconstruction [78] ,

• Production Planning [83] ,

• Automatic evolution of computer software [71] ,

• Maschine Learning [66] ,

• Traveling Salesman Problem [73] .

In the following sections we describe the most important aspects of EA.

Although all kinds of EA have a basic structure in common, we will focus

on Genetic algorithms as they are used for motion planning tasks in the

next chapter.

1That’s only half of the truth, because implementing of expert knowledge accelerate
the performance of EA enormously.

72



Fig. 4.1.: Scheme of a Genetic Algorithm

4.2. Elements of an Genetic Algorithm

The common underlying idea behind all EA is to copy the natural process

of evolution in order to improve the fitness of a population. In other

words, a starting population is given and environmental pressure shall

improve the fitness until a satisfying solution is found. As we know from

nature, evolution uses the operations of selection, reproduction and

mutation (Fig. 4.1) to maximize the fitness of a population. The general

scheme of an EA is shown in a pseudo code formulation in Alg. 4.2.1.

It can be seen that such an algorithm falls in the category of generate-

and-test until some optimum is reached. The evaluation function is a

heuristic estimation of solution quality and the optimization process is

driven by the evolutionary operators, which are applied with a certain

probability.

73



Algorithm 4.2.1 : General Genetic Algorithm

Input:

Fitness function Fit(x)

Populationsize , Chromosomes lenght ;

mutationprobability, selectionprobability ;

Output :

optimal individual of the population P (t)

01: t← 0 ;

02: Create a Starting Population P (t) ;

03: evaluation(P )← Fit((P (t)) ;

04: WHILE (evaluation(P ) NOT satisfying)

05: {
06: P ′(t)← Selection (P (t)) ;

07: P ′′(t)← Recombination (P ′(t)) ;

08: P ′′′(t)← Mutation (P ′′(t)) ;

09: evaluation(P )← Fitness(P (t)) ;

10: t← t+ 1 ;

11: }

4.3. Coding

The starting point of an EA is the representation of the candidate solu-

tions2 as a chromosome or gene. Typically these candidates are repre-

sented by strings over a finite alphabet in Genetic algorithms, real-valued

vectors in Evolution Strategies or trees in Genetic Programming. In a

more formal language we call that representation a (bijective) mapping

2A candidate solution is a member of a set of possible solutions to a given problem.

74



ϕ from the search space (Phenotype) to the ’representation space’ (Geno-

type) of the EA. The most common genotype representation of Genetic

algorithms is standard binary or Gray coding, although integer and real

number coding can be much more efficient for some problems. For ex-

ample, if we plan a path on a grid, we might use the values (0,1,2,3)

representing (North, East, South, West). Using binary coding in that

example would make the chromosomes two times larger as we need two

bits for each direction. The choice of an appropriate representation is

a key issue in EA, because the whole optimization algorithm directly

works in the genotype space. The length of each chromosome depends

on the specific problem and can be chosen freely. Besides a fixed genome

length, there are a lot of applications, where a variable length is more

efficient as it reduces unnecessary operations at parts of the chromosome,

which are irrelevant for the solution. As we will see in the next chapter,

path planning is much more efficient when using variable length chromo-

somes.

The next question to answer is the choice of an appropriate initial pop-

ulation size. On the one hand, if the population size is too small, the

algorithm may converge too quickly and could be captured in a local op-

timum. On the other hand, a large population size might cost too much

CPU time as the number of operations explode. If there doesn’t exist any

problem specific knowledge the first generation of the n chromosomes will

in general be chosen randomly.

In Tab.4.1 we find a typical example of a population consisting of m

binary coded chromosomes of the length l. If their counterparts of the

phenotype space are e.g. real numbers, then we have a mapping ϕ : R→
B.

In many cases where we have to transform binary coded strings x =

A1A2 . . . Al ∈ B
l into real valued numbers xrv ∈ R within the range [lb, ub]

we can use the following formula:

75



x1 = 1 0 . . . 0 1
x2 = 0 0 . . . 1 1
. . . . . . . . . . . . . . . . . .
xn = 1 1 . . . 0 0

Table 4.1.: A population with n binary coded chromosomes of the length m.

xrv = lb+
ub− lb

2l − 1

l−1
∑

j=0

Al−j2
j , (4.1)

The accuracy of the real values xrv depends therefore on the number of bits

l and the size of the interval. In many cases GA are most successful when

the encoding used is closed to the problem, i.e. a ’small’ change in the

phenotype space should implicate a small chance in the genotype space.

Given a genotype with l = 4 for example and a phenotype r ∈ [0, 15] , we

find that

0111
.
= 7 .

In order to increase this phenotype number by one, all genotype numbers

have to undergo changes

1000
.
= 8 .

Cray Coding remedies this problem by ensuring that any adjacent points in

the phenotype space are also adjacent in the genotype space.

Definition 4.3.1 (Gray Coding)

Given a standard binary coded bitstring A = A1A2...Al ∈ B
l. The Gray

coded bit string A = A1A2...Al ∈ B
l arises from

Bi =

{

Ai i = 1

Ai−1 ⊕ Ai i > 1

where ⊕ denotes the XOR Operator.

76



To change a Gray Coded bitstring B into a standard binary bitstring C

one has to apply to formula

Ci = ⊕i
j=1 Bj .

4.4. Fitness

In analogy to the Darwinian principle ”survival of the fittest” only those

pairs of chromosomes should reproduce, which continually improve the

fitness of the best solution at each generation, as well as the average pop-

ulation fitness. A quality measure of an individual’s fitness is given by

the objective function. The selection probability for reproduction will

be determined from that objective value of each chromosome and the ob-

jective values of the whole population. This measure is called the fitness

value of an individual and the fitness or evaluation function trans-

forms the objective values into the fitness values. To clarify this subtle

distinction between the objective function f(x) and the fitness function

F (x), let us consider a concrete example: The task is to find the optima

of a real valued function g(x). The fitness of each individual is measured

by inserting the decoded bitstrings (independent variables) into g(x) and

looking for their function values. As the fittest individuals are those with

the highest numerical values of G(x) (and should therefore obtain the

highest probability to survive), we can use g(x) directly as a fitness func-

tion. In the opposite case of finding the minima, we can’t directly use

g(x) as a fitness measure, because the fittest individuals are now those

with the lowest values of g(x). Thus, we need a transformation of high

objective values into low fitness numbers and vice versa, which could be

done e.g. by using F (x) = −g(x).
it is also possible to define fitness measures in non-numerical problems, like

finding the correct sequence of amino acids that will fold to a desired three-

dimensional protein structure. In that case the objective function could

measure the potential energy for each sequence and the fittest chromosome

77



500

300

400

200

0
102

100

64 8

Fig. 4.2.: Two highly fit individuals
dominate the population

400

200

300

82 6
0

100

4 10

Fig. 4.3.: Many fit individuals
hardly differ from each other

could be that one with the lowest potential energy. As one can imagine

especially in non-numeric problems the fitness function isn´t unique and

finding an appropriate fitness measure can be a challenging task.

In general we can distinguish between two methods of fitness assignment,

proportional and rank-based. Proportional fitness assignment means

that each individual is assigned a fitness value which is proportional to

it´s objective value. Pohlheim [75] specifies the four most important as-

signments:

linear scaling: F (x) = a · f(x) + b

linear dynamic scaling F (x) = a · f(x) + b(t)

logarithmic scaling F (x) = b− log f(x)

exponential scaling F (x) = (a · f(x) + b)k

a, b, k ∈ R some problem specific parameters.

The disadvantage of the proportional assignment can be seen in Fig.4.2

and 4.3

Two highly fit individuals (in the case of a minimization problem) in

Fig.4.3 dominate the whole population and might cause rapid convergence

78



to sub-optimal solutions. This is also called premature convergence.

On the other hand in Fig.4.2 we have little deviation in the fitness values

of the population and therefore no selection pressure towards the fittest

individuals.

To overcome these problems, rank-based fitness assignments were sug-

gested [61], where each individual is sorted according to it´s objective

value. The fitness of individuals will then be calculated with:

F (xi) = 2− σ + 2 · (σ − 1) · xi − 1

N − 1
, (4.2)

where xi is the position of the individual i, σ the selective pressure, a

real number which is typically chosen in the interval [1.1, 2.0] and

should determine the bias, N the population size. Using (4.2) with

selection pressure σ = 2 for example, the best ranked chromosome has

fitness value 2 ( independent of N) and the worst ranked chromosome has

F = 0 (so it has no chance of reproduction).

Another possibility of order is a non-linear ranking:

F (xi) =
N ·X i−1

∑N

j=1 X
j−1

(4.3)

X can be determined by

0 = (σ − 1) ·XN−1 + σ ·XN−2 + . . .+ σ ·X + σ

If we compare these ranking methods with σ = 2 we find that the non-

linear ranked fitness values of the better individuals are slightly beyond

their linear ranked counterparts. In the case of the worst ranked individ-

uals this effect turns around. The main application range of non-linear

ranking is for σ > 2.0. In figure (4.4) we find for σ = 3.0 for exam-

ple, that the fitness of the better is much higher than the fitness of the

79



Fig. 4.4.: Linear versus Non-linear Ranking [75].

worse individuals. Thus we have biased the fitness landscape towards

the fitter individuals but each one has a positive probability for selec-

tion.

4.5. Population

The role of the population is to hold the fittest individuals and bias it

towards an optimal solution. It is the population which is responsible

for the process of evolution because single individuals are static objects

and don’t change or adapt. An important aspect is the diversity of a

population. There are a lot of possibilities to measure the diversity like

the number of different phenotypes or genotypes or the entropy. A high

diversity means, that a large part of the search space is checked, thus

reducing the probability of trapping into local minima. On the other

hand we need a bias towards a fitter population, which could be done

e.g. with an elitist operation, that means the best individual of a current

80



population is seed to the next generation or the worst individual is chosen

to be replaced by another one.

The optimization process of EA is mainly based on three primary op-

erators: selection, crossover and mutation. While the operation of

selection is always applied to the whole population, crossover and muta-

tion act on individuals. Further on, the selection process according to

fitness is an exploitative resource, whereas the crossover and mutation

operators are exploratory resources. EA combine the exploitation of

past results with the exploration of new areas of the search space and the

effectiveness of finding a solution strongly depends on an appropriate mix

of exploration and exploitation.

4.6. Selection

Selection is the process of choosing the optimal individuals for reproduc-

tion and thus for offspring generation. This can be done in a probabilistic

way, i.e. each individual can be chosen with a definitive probability or in

deterministic way, i.e. the best fitness- ranked individuals are chosen.

At first sight the deterministic selection method seems to be superior but

as already mentioned nature needs diversity and therefore in most cases a

probabilistic selection method is preferred. In analogy to the fitness assign-

ment we distinguish between fitness proportional selection and rank

based selection. Among a lot of methods discussed in the literature, there

are four prominent selection operations:

• Roulette wheel selection

• Stochastic universal sampling

• Tournament selection

• Truncation selection

81



To compare these algorithms and discuss their strengths and weaknesses

we introduce some measures of performance ([61]):

• bias: difference between individuals actual and expected selection

probability,

• spread: range of possible values of offspring of an individual,

• selective pressure: probability of the fittest individuals being se-

lected compared to the average probability of selection of all indi-

viduals,

• Loss of diversity: proportion of individuals that are not selected.

4.6.1. Roulette wheel selection

This is the simplest kind of selection scheme. The individuals are mapped

to contiguous segments of a line, such that each individual’s segment is

equal in size to its fitness. The relative fitness or selection probability Pr()

of an individual xi is given by the absolute fitness of the individual F (xi)

divided by the fitness of the actual population

Pr(xi) =
F (xi)

∑N

i=1 F (xi)
. (4.4)

As a next step a random number is generated and that individual whose

segment spans the random number is selected. The process is repeated

until the desired number of individuals is obtained. In the example shown

in Tab.4.2 there is a population of 11 individuals with their given relative

fitness value and want to choose 6 individuals for offspring production.

In comparison we also listed the fitness values of a rank-based fitness

assignment3 (Equ. 4.2).

3In that case we have to enlarge the random generator to the interval [0.0, 2.2].

82



Number of individual 1 2 3 4 5 6
Rank- based fitness value 2.0 1.8 1.6 1.4 1.2 1.0

Selection probability 0.18 0.16 0.15 0.13 0.11 0.09

Number of individual 7 8 9 10 11
Rank- based fitness value 0.8 0.6 0.4 0.2 0.0

Selection probability 0.07 0.06 0.03 0.02 0.0

Table 4.2.:

Fig. 4.5.: Roulette Wheel Selection [75].

For selecting the individuals 6 independent uniform distributed random

numbers between [0, 1] are generated, e.q. 0.81, 0.32, 0.96, 0.01, 0.65,

0.42. Fig.4.5 shows the result of the algorithm - the individuals with

number 1, 2, 3, 5, 6, 9 has been selected. As we expect, the selection

probability is much higher for fitter individuals, nevertheless there is a

small (but > 0) probability for choosing an individual with a low fitness

value.

The roulette-wheel selection algorithm provides a zero bias but does not

guarantee minimum spread because of the usage of random numbers. Al-

though it is quite unlikely it could happen that all trials chose the worst

possible individual.

4.6.2. Stochastic universal sampling

Stochastic universal sampling (SUS) overcomes the disadvantage of no

guaranteed spread. As in roulette-wheel selection the individuals are

83



Fig. 4.6.: Stochastic universal sampling [75].

mapped to contiguous segments of a line, such that each individual’s seg-

ment is equal in size to its fitness. In opposite to the previous method,

equally spaced pointers are placed over the line as many as there are in-

dividuals to be selected. Let N be the number of elements to be selected,

then 1/N is the distance between the pointers. The first pointer is given

by a random number in the interval [0, 1/N ]. In our example we want to

choose 6 individuals, i.e. the distances of the pointers are 1/6 = 0.167. A

sample of one random number between 0 and 0.167 gives 0.1 and thus we

get the individuals 1, 2, 3, 4, 6, 8 (Figure 4.6).

This method, which needs only one random number, provides a zero bias

and guarantees a minimal spread. It is the best known fitness proportional

selection method.

4.6.3. Tournament selection

The previous two methods need the knowledge of the entire population in

order to select individuals. In some situations, e.g. if the population size

is very large or distributed in a special way, obtaining this knowledge is

either highly time consuming or impossible. Further more, in game play-

ing strategies for example, we can’t quantify the (absolute) strength of a

single individual, that is, a particular strategy, but we can compare any

two of them. Tournament selection is an operator, which does not require

84



any knowledge of the global population. Instead of using an ordering re-

lation of the whole population it ranks any two individuals. A certain

number q of individuals is chosen randomly from the population and the

best individual is selected by comparing their fitness values. This process

is repeated as often as the new population is complete. If q is quite large,

then there is more chance that individuals of above-fitness will be chosen

for the new population. Due to it’s simplicity and the fact that the selec-

tion pressure can be controlled by q, the tournament selection operator is

probably the most popular selection operator in modern applications of

Genetic algorithms.

4.6.4. Truncation selection

Truncation selection is directly connected to the rank-based fitness assign-

ment. Each individual is sorted according to it´s fitness and only those

one will be selected which exceed a defined threshold. This method se-

lects the best individuals with a probability of 1 and cancels the remaining

one.

4.6.5. Elitism

”Elitism” is an addition to many selection methods that forces EA to

retain some of it´s best individuals at each generation. Such individuals

could be lost if they are not selected or could be destroyed by muta-

tion. It has been shown, that for many applications the search speed

can be greatly improved by keeping the fittest individuals in the popula-

tion.

85



Fig. 4.7.: Single Point Crossover

4.7. Crossover

The basic operation for producing new chromosomes is that of crossover.

Like in nature the offsprings inherit positive characteristics from both´s

parents genetic material and thus improve their fitness. Recombination

is usually applied probabilistically according to the so-called crossover

rate, which is typically in the range of [0.5, 1.0]. In general crossover

happens between two parents, though their exists versions of three or

more parent cases, too.

The simplest of the crossover operator is the single-point crossover

(Fig. 4.7): A single crossover point is chosen at random in [0, n − 1] (n

is the length of encoding), splitting both parents into two parts. The

offsprings are generated afterward by exchanging the tails of the parent

chromosomes.

In that case of multi-point crossover m crossover points are chosen

at random and sorted in ascending order. Then, the segments between

successive crossover points are exchanged in order to produce new off-

springs. (Figure 4.8). A further interesting variant is called uniform

crossover. This method is implemented by generating a string of n ran-

dom variables. In each position of that string, if the random value is

below a threshold, the gene is ihnerted from the first parent, otherwise

86



Fig. 4.8.: Multi Point Crossover

from the second. The second offspring is generated by using the inverse

mapping.

Besides these two operators there are a lot of other crossover algorithms

discussed in the literature, e.g. Parameterized Uniform Crossover, Shuffle,

Reduced Surrogate or Intermediate Recombination. Which one of these

operators performs best depends on the specific problem, particularly if

there are known patterns within a chromosome. The randomly mixed

offsprings can strengthen or weaken such dependencies and might therefore

lead to an undesirable behavior.

4.8. Mutation

In natural evolution, mutation is a random process where one allele of a

gene is replaced by another to produce a new genetic structure. In Genetic

Algorithms, mutation is randomly applied with low probability, typically

in the range 0.001 and 0.01 in opposite to other EA, where mutation is

the primary operator for modifications. Although considered as a back-

ground operator in GA, the role of mutation is often seen as providing

a guarantee that the probability of searching any given string will never

be zero and acting as a safety net to recover good genetic material that

may be lost through the action of selection and crossover. The effect of

87



Fig. 4.9.: Mutation of a binary string

mutation on a binary string is illustrated in Figure 4.9 for a 10-bit chro-

mosome representing a real value decoded over the interval [0, 10]. It is

important to see the effect of different coding schemes, in our example

the standard binary coding and gray coding. In the case of integer- or

floating- point representations it is common to change the allele value of

each chromosome randomly within it’s domain (lower (lb) and upper (ub)

bound):

< x1, . . . , xn > → < x̄1, . . . x̄n >, with xn, x̄n ∈ [lb, ub]

With non-binary representations, mutation is achieved by either perturb-

ing the gene values or random selection of new values within the allowed

range.

4.9. Reinsertion and Termination

Once the new population is generated we determine the fitness and start

the EA again. If fewer individuals are produced by recombination than

the size of the original population, then the fractional difference between

the new and old population sizes is termed a generation gap. In the

case where the number of new individuals produced at each generation

88



is one or two, the EA is said to be steady-state or incremental. If one

or more of the fittest individuals are deterministically allowed to propa-

gate through successive generations then the EA is said to use an elitist

strategy.

Because all EA are stochastic search methods, it is difficult to formally

specify convergence criteria. A common practice is to terminate the EA

after a prespecified number of generations and then test the quality of

the best members of the population against the problem definition. If no

acceptable solutions are found, the EA may be restarted or a fresh search

initiated. In order to avoid premature convergence, operations increase

the variance within a population are often introduced. An example is the

prevention of incest [87], which means, that crossover is only allowed

if the difference (e.g. the Hamming distance in the binary case) between

two chromosomes is above a threshold.

4.10. Schemata

One of the key ideas in developing EA is to enable a parallel search in the

hyperplanes of the search space. The chromosomes that belong to such

hyperplanes exhibit a similar structure called a schema [70]. A schema is

a template that divides the strings into equivalence classes. For example,

a 3 bit binary coded chromosome schema 1 ∗ 1 represents the so-called

instances 111 and 101. In general, a population of N individuals, with

binary coded chromosomes of length l, contains a number of schemata

between 2l and N · 2l. The use of schemata offers two advantages: firstly,

they are useful for describing those components of a chromosome that pro-

vide high fitness and secondly, they allow the exploration of a much higher

number of strings than those contained in the population. Schemata also

show the influence of the genetic operators on chromosomes. In the case

of templates like 1 ∗ ∗ ∗ ∗ ∗ ∗1, the probability of being broken down by

crossover is far higher than in cases of ∗ ∗ ∗ ∗ 11 ∗ ∗ ∗ ∗. A major result

89



in the theory of EA is , that schemata with short length and high fitness

, will disproportionate reproduce. Therefore EA search a solution space

quite efficiently. Although the theory of schemata has been criticized a

lot in recent years [82], it is a helpful tool for understanding some aspects

of how EA work.

4.11. Strengths and weaknesses of EA

As already mentioned at the beginning of that chapter, EA have been suc-

cessfully implemented in many applications. Thus, we want to summarize

the strengths of EA:

• Parallelism. In opposite to other search methods like hill climb-

ing or simulated annealing, EA are intrinsically parallel due to the

fact, that multiple offsprings are generated, which explore the search

space in many directions at once. The parallelism of EA goes even

beyond this, when considering the schema theorem. By evaluating a

particular string, which is a representant of many schemata, all the

corresponding hyperspaces are sampled at the same time. There-

fore, a EA that explicitly evaluates a small number of individuals is

implicitly evaluating a much larger group of individuals.

• Multimodal spaces. Due to the parallel search behavior, EA are

predestinated for problems, where the space of all potential solutions

is truly huge and cluttered with many local optimas.

• Information exchange. As crossover is the key element, candi-

date solutions exchange information between them, which avoids the

problem of searching only in a immediate vicinity without reference

to what other individuals may have discovered.

• Simultaneous parameter manipulation. Many real-world prob-

lems cannot be stated in terms of a single value to be optimized, but

90



must be expressed in terms of multiple objectives. Due to paral-

lelism EA are well suited to find solutions for such multiobjective

optimization problems [84], [85].

Nevertheless EA also have some limitations, however, all of these can be

more or less overcome and none of them threatens the validity of biological

evolution.

• Robustness. The definition of an adequate representation of the

given problem is a key question in EA. In general there exits a lot of

possibilities to represent the candidate solutions, but the chosen rep-

resentation must be robust; i.e., it must be able to tolerate random

changes such that fatal errors do not consistently result.

• Fitness function. The choice of the fitness function must be care-

fully considered so that higher fitness is attainable and leads to a

better solution for the given problem. If the fitness function is cho-

sen poorly or defined imprecisely, the EA may be unable to find a

solution to the problem, or may end up solving the wrong problem.

• Parameter. The choice of the parameters like population size, chro-

mosome length, crossover rate, mutation rate, etc is a tedious proce-

dure as there doesn’t exist a formal way how to do that. Although

there has been made some progress in recent years, the optimal

choice of the parameters remains a procedure of trial and error.

• Premature convergence. If an individual that is more fit than

most of its competitors emerges in a early generation, it may repro-

duce so abundantly that it drives down the population’s diversity

too soon, leading the algorithm to converge on the local optimum.

This is an common problem in small populations, where even chance

variations in reproduction rate may cause one genotype to become

dominant over others.

• Performance. As EA are not designed for special optimization

tasks, their performance is usually slower than other techniques. In

91



those cases, where problem specific algorithms exist, they always

perform better as they don’t waste time for testing the fitness of

sub-optimal solutions. Furthermore, due to the stochastic nature

of a EA, the solution will only be an estimate and there exists no

guarantee that the global optimum will be found.

92



5. Genetic Path Planning

As we have seen in Chapter 3, the motion planning problem can in many

cases be formulated as an optimization problem, like minimizing the path

length or the power consumption when driving between a starting and a

goal point. Therefore EA are also predestinated for solving complex mo-

tion planning tasks in constrained environments. We will show, that Ge-

netic Algorithms are flexible a fast and flexible tool for designing feasible

paths. In opposite to the classical paths planners, Genetic path plan-

ners (GPP) don’t need an exact representation of the environment as

they perform an adaptive search on populations of candidate vehicle’s ac-

tions. In the following we describe our GPP algorithm as well as some pop-

ular genetic planners used in the literature.

5.1. Representation

We consider our path planning problem on a n×n grid, where each square

cell has the 1, which represents the diameter of the robot Nomad200. Us-

ing a grid has the advantage, that it is straightforward to represent paths

as strings of numbers, denoting the passed cells. However, the generated

paths are not smooth and ignore minimal turning radius in the case of

car like robots. Therefore the generation of those paths is two-staged: at

first the edges of the path are generated, which are a sequence of position

vectors, e.g. (xi, yi) in the Euclidean plane, and secondly a smooth curve

93



Fig. 5.1.: A 4-bit encoding.

will interpolate these points (e.g. Spline interpolation). These smooth

curve, which runs from the starting to the end point, respects the kine-

matical constraints of the vehicle and eliminates the discontinuities at the

vertices.

To represent the path in the genotype space can be done in different ways.

Using a binary representation [88], [89] we need at least two bits to repre-

sent four directions of the plane, e.g 00⇔MoveEast, 01⇔MoveNorth,

10 ⇔MoveWest, 11 ⇔MoveSouth. A typical chromosome of a certain

length n, then describes the path in each of the denoted direction, starting

from the most significant bit, like [10010011] , which denotes the four ac-

tions of the robot (MoveWest), (MoveNorth), (MoveEast), (MoveSouth).

To enable diagonal paths, too, we have to introduce at least a 3 bit

representation, with 000 ⇔ MoveEast, 001 ⇔ MoveNorthEast, 010

⇔ MoveNorth, etc. In [91] a fourth bit was introduced, which denotes

moving or not moving. Thus, we have a representation of the chromosomes

as shown in Fig.5.1.

In our path planner we use instead of an binary an integer representa-

tion. We use the numbers (1, . . . 8) to represent the directions, where 1

⇔ MoveEast, 2 ⇔ MoveNorthEast, etc. This representation has the

advantage that the chromosome lengths are much smaller and therefore

94



less time is needed for separation and recombination in the crossover pro-

cess.

Another possible representation is a floating point encoding, where the

single entries into the chromosome are the (relative) coordinates of the

robot’s position [90], [92]. In such a case a sequence like (3.2, 4.3, 1) →
(5.2, 3.7, 1)→ (7.2, 4.2, 0), . . ., where the third entry is 0 or 1, which pro-

vides information on feasibility of the point and the following path or

not. This representation has the advantage, that it can faster explore the

configuration space as it isn´t restricted to next neighbor movement. Nev-

ertheless it is rarely used, because the classical EA operators, mutation

and crossover are note applicable and have to be tailored for that kind of

representation.

The next question to answer is the optimal length of the chromosomes. As

the length of the path isn’t known in advance, a fixed string size would be

a severe restriction to the genetic planner. The reason is that a sequence of

possible movements, which result in a connected path, vary in length. This

happens when the start and goal positions vary or the number and size

obstacles change. A further reason to use variable length chromosomes is

shown in Fig. 5.2 and 5.3. The task of the robot is to move from the start

cell S to the goal cell G, where the path length is fixed. In the picture we

find two different paths, one with the sequence of [3555], the other with

[5177]. As we can see, path 2 never has a chance to reach the goal and

will therefore in general be removed although it might have some useful

sequences of actions in it.

Thus, variable length chromosomes are much more natural for path plan-

ning tasks, although the implementation of some genetic operations is

a little bit more tricky. The initialization procedure works now as fol-

lows:

A random number α ∈ [lb, ub] is chosen, which defines the length of the

chromosome. The lower bound lb of α is the length l of the bounding

box and the upper bound ub is l2, so that the robot could cover each

95



Fig. 5.2.: A path of length 4
achieves the goal point [88].

Fig. 5.3.: A path of the same
length miss the goal [88].

cell of the grid if necessary. Then, α random numbers between (1, . . . 8)

are generated, defining the chromosome. The box size has been chosen

between 10 and 20 units, which result in a chromosome length between 10

and 400. The population size has been set to 60 and the total number of

generations is up to 300.

5.2. Fitness function

The key point in designing a GPP is the definition of the fitness respec-

tively the objective function. The measuring of the fitness is even more

complicated as we have seen that there exists a lot of parameters of mo-

bile robot tasks, which can be optimized. In that work, we want to op-

timize the robot’s path with respect of the length and the feasibility, e.g.

the shortest possible, collision free paths, which achieve the goal point,

should be the fittest ones. The objective function will be chosen in such

a way, that the fittest individuals are those with the lowest fitness val-

ues.

A simple measure is to count each step a chromosome produces and weight

it with a damping factor, which should punish those steps which collide

with an obstacle ([91]). An example for such a type of function could

be

96



f =
l
∑

i=1

di · (1 + wi) ; (5.1)

where the weight factor w could be defined as follows

w =











N À 1 if the cell is occupied by an obstacle

0 if the cell is free

M < 0 if the target is achieved

whereM,N ∈ N and the distance dj is designed as

w =

{

1 if horizontal or vertical step√
2 if diagonal step

Although the objective function is very simple, it works well especially in

environments with a small number of obstacles.

Another possible way to define a fitness function is to include a ’curvature’

into the path [90], in order to guarantee a relative smooth movement of the

robot. Such a function is designed for floating point encoding, where the

single entries are the (relative) coordinates of the robot.

f = α · ‖p‖+ β · curv(p) + γ · coll(p) ; (5.2)

where α, β, γ ∈ R are weight factors and

• ‖p‖ =∑n−1
j=1 d(vi, vi+1) is the total distance of the path and d(vi, vi+1)

the distance between two adjacent points .

• curv(p) = max{s(mi), i = 2, . . . n − 1} is the maximum ’curvature’

at a vertex, where s(mi) is defined as

s(mi) =
θi

min{d(vi−1, vi), d(vi, vi+1)}
;

97



with θi ∈ [0, π] is the angle between the line segments (vi−1, vi) and

(vi−1, vi).

• coll(p) = max{ci, i = 1, . . . n− 1}, where

ci =

{

gi − τ if gi ≥ τ

ea(τ−gi) − 1 otherwise ,

gi is the minimum of the line segment (mi,mi+1) to all detected

obstacles, τ is a ’safty distance’ parameter and a ∈ R. This term

punishes paths with line segments approximating too close to obsta-

cles.

The goal of the evolutionary algorithm is, to minimize this function .

In this work, the fitness function is constructed in the following way:

First of all we have to take into account that the fitness of an individual

depends on the length of the path and the positional error of the path

from the goal position. Therefore we take the weighted sum of these two

parts

f1 = α · length+ β · poserror ,

where length =
∑n

i=1(xi−1, xi), the sum of all segments between two edges

of the path and

poserror =
√

(x− xg)2 + (y − yg)2

is the Euclidean distance between the actual and the desired position of

the path. In the same way we can use the Manhatten distance function

for measuring the positional error:

poserror = |x− xg|+ |y − yg| .

98



This term is also important to penalize those paths, which cross the goal

point due to remaining path sequences in the chromosome. The optimal

chromosome should end at the goal point and shouldn’t generate any

further steps. The two coefficients α and β can be chosen in the following

way:

• if poserror is large → β ∼ α, e.g. the length of the path and the

error of the goal position are equally weighted in the fitness function.

• if poserror → 0 ⇒ β → 1 and α → 0, e.g. we are searching for the

shortest path of all paths achieving the goal point.

To achieve these restrictions we can use the following relations [88] :

α + β = 1 , β = 0.5 · e−poserror + 0.5 (5.3)

Equ.5.3 forces the path primarily to the desired goal point and later in to

minimize the path length. We could also choose e.g. β = 0.2·e−poserror+0.8

, which bias the path search even more towards finding the goal point

instead of finding a short path.

The last term, we have to take into account is a measure for collisions.

This term counts the numbers of collisions and the ’depth of penetration’

into the obstacle. To measure the latter, we have to build the convec hull

of the obstacle vertices and count the number of steps within it. As we

are only interested in collision free pathsp, we need a strong weight factor

for collisions. This can be achieved by using the e- function. Therefore

we find for the fitness function

f(p) = (Ω− β · ε · poserror(p) + (1− β) · length(p)) · e−·coll(p) , (5.4)

where Ω is a parameter and ε is an additional parameter for forcing the

path the achieve the gaol point. We set ε to values between 1 and 5. The

advantage of such a fitness function is that we only need to choose two

99



Fig. 5.4.: The two-point crossover and the swapping operator.

parameters, while the other ones are already determined. The task now

is to find a maximum of that function, which leads to a feasible path for

the robot.

5.3. Genetic Operators

In our GPP we used the following Genetic operators:

Crossover

We use a two-point crossover in our GPP. As we use variable length chro-

mosomes this operator is similar but not identical to the classical two-point

crossover operation. The operator works in the following way: two cross-

ing points are randomly chosen for each chromosome. Then the strings

between these points are cut and exchanged. This will also change the

length of the chromosomes as shown in Fig. 5.4 The crossover operator is

applied by a probability pc.

Swapping

The swapping operation divides randomly the single chromosome in two

parts and exchange these positions (Fig.5.4) . As this is a background op-

erator it is applied by a small probability ps.

100



Fig. 5.5.: The insert and delete operator.

Mutation

As we don’t work with a binary representation, we can’t use simple bit-

flipping process. Instead we replace an existing entry with a new ran-

dom number in the interval [1, . . . , 8]. Mutation plays a key role to di-

versify the population. It is therefore not necessary that mutation im-

proves a single solution. The mutation operator is applied by a probability

pm.

Insertion

The insertion operation chooses randomly a sequence of actions and insert

it into an existing chromosome (Fig.5.5). This operation helps to stretch

those chromosomes, which produce in principle feasible but too short

paths. This operator is also applied with a small probability pi.

Deletion

This operator works in the opposite way as the insertion operator as

it deletes a sequence of random length from a chromosome (Fig.5.5).

As this operator might lead to useless short paths, which never has a

change of achieving the goal, it has be applied with a small probability

pd.

Knowledge based Operators

Although not implemented in our GPP, some authors [90], [93] suggest the

implementation of additional operators, which make use of some problem-

specific knowledge, e.g. of the environment.

101



Fig. 5.6.: Three specialized Genetic operators.

In Fig.5.6 we find some demonstrative examples. The operator repairnode

is used to move a node fallen into an obstacle out of it and to a best

grid around an obstacle. To find an optimal grid outside the obstacle,

a local search operation is used. The repairline operator works in a

similar way and repairs an infeasible line segment by introducing a suitable

node outside the obstacle. The improvement operator optimizes already

feasible line segments by moving suboptimal nodes to better grid positions,

in order to minimize path distances.

These operators can improve the quality and feasibility of the solutions

significantly [93]. However, the price to pay is performance as these addi-

tional feasibility checks consume computational time. Therefore such op-

erators are especially helpful in congested environments, where to chance

of finding feasible solutions at all is low.

Choice of the parameters

A significant problem in designing EA is the choice of the parameters.

As there exists no mathematical algorithm for correct parameter settings,

we have to do exhaustive experiments to find useful values. Nevertheless,

because of much effort in theoretical research as well as in practical imple-

mentations, there exits some standard values, which often need only small

adaption. In our experiments we find out that the following settings yield

102



acceptable results. The population size = 60, the number of generations

= up to 300, the crossover rate pc = 0.6, the mutation rate pm = 0.05, the

swappingrate = 0.1, insertionrate = 0.01 and the deletionrate = 0.1.

We use a q = 4 tournament selection and elitism, to keep back the best

chromosome in each generation. The primary goal is to generate collision

free paths that achieves the goal point. Out of that set of paths, the short-

est of them will give the optimal solution.

5.4. Simulation in an environment without ob-

stacles

The first case of our experiments consists a 20 × 20 box without obsta-

cles. The starting point is (0, 0), which is the lower left corner of the

box. The goal point is (20, 20), which is the right upper corner. Fig.5.7

shows the generated path after 10 generations. The simulations run on

a Pentium IV 1.5 GHz, 512 MB RAM and a Windows XP operating

system. The CPU time was 0.061 s for 10 generations and the best chro-

mosome is given as [1222333131223323311222]. We see that either

the shortest possible path is generated nor the goal point is achieved.

After 20 generations the optimal path has been generated by the GPP

(Fig.5.8). The CPU time was 0.101 s and the generated sequence is

[22222222222222222222].

An important feature of the GPP is its relative fast convergence as can be

seen in Fig.5.10. On the abscissa we find the number of generations and

on the ordinate the corresponding fitness value. For the sake of clarity

we plot the inverse fitness values, so that the fittest est individuals are

those with the smallest values. There is a sharp decline of the function

converging to 0 after 20 generation. We also plotted the average fitness

of each generation (dashed line), which of course shows the decline of the

fitness value, too. But there can also bee seen, that the average values of

the later generations show a slight increase of the fitness function. Thus

103



Fig. 5.7.: The generated path
after 10 generations.

Fig. 5.8.: The generated path
after 20 generations.

Fig. 5.9.: The positional error
as a function of generations.

Fig. 5.10.: The average fitness
as a function of generations.

104



Fig. 5.11.: An environment with some obstacles.

it is important to mention, that the production of arbitrary generations

does’t necessary improve the average fitness. Actually it can happen, that

additional generations worsen the result.

In Fig.5.9 we show the average position error of each generation. We

again find a sharp decline after 20 generations, representing the optimal

solution.

5.5. Simulation in an environment with obsta-

cles

The next task is to plan a path in an environment with obstacles as shown

in Fig.5.11. The starting point in that case is (3, 6), where the origin of the

coordinate system again is situated in the lower left corner, and the goal

point is at (13, 11) The challenge of that scene is the U-shaped obstacle

around the starting point and the relatively narrow passages between the

rectangular obstacles.

105



After 10 generations we find the path Fig. 5.14 (a), with a large position

error and a twisting path. Nevertheless the solution already finds a way

out of the shape after the short CPU time of 0.03 s . The parameter

ε of Equ.(5.4) has been set to 1 and as a further constraint we use the

condition that the path length has to be at least a minimum number

otherwise the fitness is set to zero. The reason to do this is, that there is

a local minimum around the starting point, which results in no or only a

small motion. This is some kind of ’expert knowledge’, which is extracted

after a few simulation runs, and an example of how the search procedure

can be accelerated by introducing some useful conditions. In the figures

Fig. 5.14 (b), (c), (d) we find the evolution of the paths as a function

of the calculated generations. As the paths are calculated by random

operations, we can’t expect only straight lines as in the case of visibility

Graphs. In some cases we have to smooth the path in a post-processing

phase.

It should also be noted, that the shown paths are only examples of a

larger class of possible ways. As a GA is a stochastic process, we can’t

generate the same paths at every run. Especially, due to the use of vari-

able length chromosomes, it sometimes happens that the chromosomes

will be too large, which results in a overflow error. In such cases, the

algorithm doesn’t return any path and the genetic procedure has to start

again.

Another severe difficulty is the correct parameter tuning of the genetic

operators and of the fitness function. If poserror is too dominant, the

planner will generate paths, which are a direct connection between the

start and the goal points, thus ignoring the obstacles in the environment.

On the other hand, if poserror is weighted too low, than the generated

paths show long detours or won’t even reach the goal point. As in the case

of an environment with no obstacles, we find, that the GPP converges

relatively fast (Fig. 5.12) and at least for environments with a complexity

of our setting, we find optimal solutions after maximal 300 generations.

Thus, calculating up to 1000 generations won’t improve the resulting paths

106



Fig. 5.12.: The average
position error.

Fig. 5.13.: The average CPU
time.

as can be seen in Fig. 5.14 (e). In Fig. 5.13 we show the average CPU

time as a function of the number of generations. The resulting curve show,

that even in the case of 1000 generations the CPU time is below 1 s and

therefore fast enough for planning tasks of mobile robots in relatively large

environments. But the CPU time on it’s own isn’t very meaningful as we

have to take the successful experiments into consideration, too. The GPP

produced an optimal path in about 80 % of the experiments, a positional

error less then 4 in about 75 % and failed to produce a path in about

8%.

Value of randomized planners

Since the seminal work of Barraquand and Latombe on the RPP [49],

randomization is ubiquitous in planning algorithms. In the case of GPP

it is a necessary element due to the nature of evolutionary algorithms.

An inescapable feature of randomized algorithms is their lack of repeata-

bility: no two runs will generate the same results. This has some ad-

vantages and disadvantages when applied to the field of robot motion

planning. It is positive that sometimes the randomized algorithm will be

’lucky’ and solve a problem very quickly. In the other side, if it takes

a long time to solve a particular problem, there is hope that it will be

107



(a) Path after 10 generations. (b) Path after 20 generations.

(c) Path after 50 generations. (d) Path after 100 genera-
tions.

(e) Path after 300 generations. (f) Path after 1000 genera-
tions.

Fig. 5.14.: Path Planning in an environment with obstacles.

108



faster next time. In the case of a deterministic algorithm, like Visib-

lity graph or cell decomposition, this is not the case. If a deterministic

algorithm performs poorly once, it will always perform poorly for that

problem.

On the other hand, the lack of repeatability caused by randomization can

easily lead to a misinterpretation of the performance of the algorithm as

some important aspects might be overlooked. In a deterministic algo-

rithm it often can be discovered quickly because a single execution may

be enough to reveal them. This results in a greater carefulness in the al-

gorithm design and implementation process, respectively occurring errors

can more easily be discovered. Further more, a greater understanding of

high-level algorithmic operation is possible since there is no random noise

in its performance and operation.

Especially in the case of Evolutionary algorithms, where the performance

is influenced by a lot of parameters, it is sometimes difficult to detect de-

sign or implementation errors. Further more, the performance of the algo-

rithm depend on the existence of a good random number generator. There-

fore it is sometimes difficult do find out, why a genetic algorithm performs

worse in a special case and a lot of runs have to be made, in order to draw

conclusions from some statistical patterns.

Path Quality

As already mentioned, the quality of randomly generated paths is some-

times ugly. A resulting path can make long detours and contain many

redundant motions. Another problem is the fact, that we plan our mo-

tions on a grid, which leads to first-order discontinuities at the nodes of

the path.

A standard method to overcome these problems is to smooth the path

in a post-processing phase. This can be done by choosing pairs of con-

figurations on the path (not necessarily nodes of the path) and trying to

109



replace the path between these two points by the path resulting from call-

ing a local (exact) planner. After the replacement of the old sections of

the path, again a collision checker has to proof the feasibility of the new

path. Unfortunately, smoothing only partially solves the problem. It does

reduce the length of the path in open areas but it often cannot correct

long detours around obstacles and it doesn’t make the path first-order

continuous .

We can’t get the problem of avoiding long detours completely under con-

trol as the primary focus of the GPP is to avoid collisions and reach

the goal point. A way out of that, is to make a few simulation runs

and choose the shortest path out of it. Another possibility is to set a

maximal path length as an upper bound and discard all other generated

paths.

Nodes in the generated path on a grid introduce first-order discontinuities

in the motion. To avoid this problem, one has to find smooth curves

connecting the nodes. One possible solution is to proceed as follows: Let

e1 and e2 be two consecutive edges of the path and mi the midpoint of

ei (i = 1, 2). In order to get a differentiable path, we replace the part of

the path between m1 and m2 by a circle arc. This arc will have its center

on the bisecting line of e1 and e2, will touch e1 and e2 and have either

m1 or m2 on its boundary. Doing this for each consecutive pair of edges

results in a smooth path. If the new path collide with an obstacle, we can

make the circle smaller, pushing it more towards the node between the

edges.

Another possibility is to use more advanced types of curves like B-splines.

A B-spline curve is expressed as

~P (u) =
n
∑

i=0

~Pi ·Ni,k(u) (tk−1 ≤ u ≤ tn+1) ,

where

110



Fig. 5.15.: Some examples of B-spline curves.

Ni,k(u) =
(u− ti) ·Ni,k−1(u)

ti+k−1 − ti
+

(ti+k − u) ·Ni+1,k−1(u)

ti+k − ti+1

,

Ni,1(u) =







1 for ti ≤ u ≤ ti+1

0 otherwise ,

and ~Pi denotes the position vector of the i-th vertex. A few examples of

possible B-splines are shown in Fig. 5.15. With the help of such curves

we are able to optimize the paths, in order to enable a smooth robot

motion.

5.6. GPP with the Nomad 200

In the final section we show, that the simulation results can’t be directly

transmitted to the real robot system Nomad 200. Besides the the planning

tasks we have additional problems to solve when working with a real robot

system. In Fig. 5.16 we find the different building blocks of mobile robot

navigation:

• Perception, the interpretation of the sensor data, in order to get

meaningful information out of them .

111



Fig. 5.16.: General schematic for mobile robot localization [10].

• Localization, the robot must determine it’s position .

• Position Prediction, the path planning problem.

• Motion Control, the control of the motor output, in order to keep

the desired path.

The localization problem has two challenges: Sensor noise and alias-

ing. When using a color CCD Camera for example, then the differ-

ent objects can be recognized by analysing the different RGB values.

But this information depends on the illumination of the environment.

When the sun is hidden by the clouds, the measured RGB values are

completely different and this method of object recognition doesn’t work

any more. The second problem we are faced with, is the non unique-

ness of sensor readings, so-called sensor aliasing. In opposite to human

sensor systems, which receive mostly unique inputs in each unique local

state, there is a many-to-one mapping from environmental states to the

112



Fig. 5.17.: Kollision avoidance
a).

Fig. 5.18.: Kollision avoidance
b).

robot’s input. Thus, the robot’s percepts cannot distinguish between these

states.

There are a lot of methods to localize the robot: Markov and Kalman filter

localization, which are extremely popular strategies for indoor robots. Be-

sides there are a lot of other localization techniques like Landmark-based

navigation, mosaic-based navigation or route-based navigation.

Another important aspect of navigation is collision avoidance of obsta-

cles, which do not exist in the pre-planned path. The task is to steer the

robot around obstacle on a detour as optimal as possible. The minimum

time and power consumption should be taken into consideration. During

his trip robot meets movable and stationary obstacles. Whether the ob-

stacle is movable or stationary the collision avoiding approach should be

different.

Two possible collision avoiding procedures are considered in case the ob-

stacle lies on pre-planned path.

• Robot follows the contour of the obstacle - like wall following - until

he meets the pre-planned path (Fig.5 a). This approach can be

easily implemented. But this approach is presumed that the working

environment is static.

• Robot sets a virtual goal position and moves to position as long as

there is no obstacle to goal position (Fig.5 b).

113



Fig. 5.19.: Virtual target position.

In this work the second procedure is used. While the mobile robot is mov-

ing along the pre-calculated path - a straight line between a present and

a target-position - the sensor system of the robot detects the environment

and it’s changes. In our case for example (Fig.5.19), the robot detects an

obstacle along his moving direction, sets a virtual target position and tries

to reach this position. After the position is reached, the robot moves to

the actual target position again.

The localization methods mentioned before has the restriction, that they

need human effort to install the robot into space. In order to behave like

an intelligent agent, we would like that the robot itself could autonomously

explore the environment,interpret it and build a map for planning a path.

This problem is also called SLAM (simultaneous localization and map-

ping) and is one of the most difficult problems to solve in the field of

mobile robots. Although SLAM has not yet been fully perfected, it is

starting to be employed in unmanned aerial vehicles, autonomous under-

water vehicles, planetary rovers and newly emerging domestic robots. As

GPP doesn’t need an exact map of the environment, they are relatively

robust against some noise of the sensor data and uncertainties of the ob-

stacle’s position. Therefore the use of GPP attenuates to some extent the

SLAM problem.

114



6. Conclusion and Outlook

In this work, Genetic Algorithms where used for planning paths of mobile

robots. As the applications of mobile robots increase rapidly, the task of

finding feasible paths in complex environments with numerous obstacles is

a necessary condition for autonomous navigation.

Since the classical path planning algorithms are mostly too slow for com-

plex environments, heuristic methods receive an increasing interest in the

path planning community. Besides the sample based algorithms, like

RPM or RRT, Genetic Path Planners provide a promising tool for plan-

ning tasks. As such planners doesn’t reason about what actions have to

be done to move safety, rather generating feasible paths by an adaptive

search, they are ideal candidates for rapid motion planning. Therefore

even in the case of noisy information of the environment, GPP provide

some usable results.

The features of our path planning algorithm is that it uses variable length

chromosomes, an integer representation of the robot’s movements, a fit-

ness function forcing the positional errors and unfeasible steps quickly to

zero and some advanced genetic operators, which accelerate the search

notable.

There are many directions in which this work can be proceed. Instead of

using fixed obstacles, one could extend the genetic path planner to moving

obstacles. Since GA are often used for scheduling tasks, the coordination

of multiple robots motion would also be an interesting case to study. Using

115



some expert knowledge improves the performance of the genetic algorithm

- therefore the implementation of Fuzzy rules for control tasks is also an

interesting challenge for future work. As the Nomad 200 is a almost

holonomic system, the use of GPP in a non-holonomic system, like a car

like robot or a robot with trailers could also provide some new insights in

the functioning of genetic algorithms.

116



A. Source Code of the GPP

In the following chapter we present the code of the GPP as we used in

the simulation. It is written in C using the LCC-Wedit Win32 Ver. 3.3.

compiler. We didn’t implement any GUI in order to keep the program

small and simple. For the same reason, we skipped all those parts of

the program, which doesn’t deal directly with the path planner. In the

following flowchart we list all the building blocks, which are needed to

control the real system.

Start

Representation of the Environment

Minkowski Sum for representing the C-Obstacle space

Path Planner

Smoothing of the generated path (e.g. B-Splines)

Generating the motion commands for the robot

Control of the position.

Fig. A.1.: Building Blocks of the robot navigation systems.

117



 
/***************************************************************/ 
/* This is a  genetic algorithm implementation where the     */ 
/* evaluation function takes positive values only and the      */ 
/* fitness of an individual is the same as the value of the    */ 
/* objective function                                          */ 
/***************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <time.h> 
 
/* Change any of these parameters to match your needs */ 
 
#define POPSIZE 60            // population size 
#define MAXGENS 100           // max. number of generations 
#define SELECT_PROB 0.6       // probability for crossoverselection 
#define PMUTATION 0.08        // probability of mutation 
#define q 4                   // Number of tournaments of the q-tourn. selection 
#define SWAP 0.2   // probability of swapping process 
#define INSERT 0.1            // probability of insert. a random sequence  
#define DELETE 0.05   // probability of deleting  a random sequence  
#define BETA 1 
#define ALPHA 10*abs(X_START-X_GOAL)        //parmaeter of the fitness function  
#define TRUE 1 
#define FALSE 0 
#define BOX 40  // The length of the square, where the robot can operate 
#define X_START 3.0 // Start and Endpoints 
#define Y_START 6.0 
#define X_GOAL  20.0 
#define Y_GOAL  20.0 
 
#define RND   rand() 
#define RNDE ((float) rand()/((float) RAND_MAX+1))  //Random number between 
[0,1] 
 
FILE *galog;                      // an output file 
FILE *bestway;                    // an output file with the best way 
 
 
int generation=0;               // number of generations, from 0 to MAXGENS 
 
struct genotype             // genotype (GT), a member of the population 
{ 
 int    *gene;               // a string of numbers [1-8], which represents  
         // the different directions to drive 
 double fitness;             // GT's fitness 
 int    length;      // number of chromosoms in each gene 
 double step;      // 1 if the step is along the axis and  
                                 // sqrt(2) if it is a median 
 double way;       // total length of the way 
  double xcoord;      // x-coordinate 
 double ycoord;      // y-coordinate 
 double collision;      // number of collisions with obstacles 
 double p_error;             // Positional Error from the desired goal  
}; 
 
struct genotype population[POPSIZE+1];    // population 
struct genotype newpopulation[POPSIZE+1]; // new population replaces old one 
 
 

struct point 
{      
      double x; 
 double y; 
} ; 
 
 
/* Declaration of procedures used by this genetic algorithm */ 
 
void initialize(void); 
int  randval(void); 
void evaluate(void); 
void clear(void); 
void keep_the_best(void); 
void elitist(void); 
void select(void); 
void crossover(int a, int b); 
void swap(void); 
void insert(void); 
void delete(void); 
void mutate(void); 
void report(void); 
void direction( double chromo, int mem); 
 
 
int obstacle(int a, int b); 
 
 
/***************************************************************/ 
/* Initialization function: Initializes the values of genes    */ 
/* within the variables bounds. It also initializes (to zero)  */ 
/* all fitness values for each member of the population. It    */ 
/* reads upper and lower bounds of each variable from the      */ 
/* input file `gadata.txt'. It randomly generates values       */ 
/* between these bounds for each gene of each genotype in the  */ 
/* population. The format of the input file `gadata.txt' is    */ 
/* var1_lower_bound var1_upper bound                           */ 
/* var2_lower_bound var2_upper bound ...                       */ 
/***************************************************************/ 
 
void initialize(void) 
{ 
int i,j; 
int chromolength; 
 
// initialize variables within the bounds 
 
for (i = 0; i <= POPSIZE; i++) 
      { 
  chromolength = rand()%(BOX*(BOX-1)+1) + BOX ; 
  //lenght of the chromosom, choosen randomly , between BOX + BOX^2 
  population[i].gene = malloc(chromolength*sizeof(int)); 
  population[i].length = chromolength; 
  population[i].xcoord = X_START; 
  population[i].ycoord = Y_START; 
  population[i].step = 0; 
  population[i].way = 0; 
  population[i].collision = 0; 
  population[i].fitness = 0; 
  population[i].p_error = 0; 
 
 
 



   for (j = 0; j <population[i].length; j++) 
  population[i].gene[j] = randval();  //string of directions to drive 
 } 
} 
/***********************************************************/ 
/*Random value generator:Generates a value                 */ 
/*between 0 and 8 (the directions to drive)                */ 
/***********************************************************/ 
 
int randval(void) 
{ 
int val; 
val = (int)(rand()%8+1);   
//numbers, representing [1,..,8] the possible directions (East,NorthEast,...) 
return(val); 
} 
 
 
/*************************************************************/ 
/* Evaluation function: This takes a user defined function.  */ 
/* Each time this is changed, the code has to be recompiled. */ 
/* The current function is:                                  */ 
/*************************************************************/ 
 
void evaluate(void) 
{ 
int i,j, k; 
double w; 
 
clear(); 
 
  for (j = 0; j < POPSIZE; j++) 
      { 
  for (i = 0; i < population[j].length; i++) 
  { 
    direction(population[j].gene[i], j); 
      population[j].way += population[j].step ; 
 
 /*********simple collision check *******************************/ 
   if(obstacle(population[j].xcoord,population[j].ycoord)==1) 
          population[j].collision += 1.0;      //counts the collisions and 
                      //the penetration into obstacle 
 /**************************************************************/ 
  } 
      //fitnessfunction has to be maximized 
      population[j].p_error = sqrt(pow(population[j].xcoord - X_GOAL,2)  
                                 + pow(population[j].ycoord - Y_GOAL,2)); 
          w  = 0.5*pow(2.7, -population[j].p_error)+ 0.5; 
 
      population[j].fitness = (ALPHA - w*BETA*population[j].p_error  
                -(1-w)*population[j].way)*pow(2.7,-population[j].collision); 
                
           if(population[j].way  < abs(population[j].xcoord - X_GOAL))   
    population[j].fitness =0; 
      if(population[j].p_error  < 10)   
  population[j].fitness =0;       
           
             // two additional constraints, in order to 
     } 
} 
 
 
 

/************************************************************/ 
/*  obstacle         */ 
/*                                                       */ 
/************************************************************/ 
 
int obstacle(int a, int b)   //int population[a].xcoord, int 
population[a].ycoord) 
{ 
 int i; 
 struct point vertex_obstacle1[2]; 
 struct point vertex_obstacle2[2]; 
 struct point vertex_obstacle3[2]; 
 struct point vertex_obstacle4[2]; 
 struct point vertex_obstacle5[2]; 
 struct point vertex_obstacle6[2]; 
 struct point vertex_obstacle7[2]; 
 
 
  vertex_obstacle1[0].x = 1; 
  vertex_obstacle1[0].y = 3; 
  vertex_obstacle1[1].x = 2; 
  vertex_obstacle1[1].y = 9; 
 
  vertex_obstacle2[0].x = 2; 
  vertex_obstacle2[0].y = 8; 
  vertex_obstacle2[1].x = 5; 
  vertex_obstacle2[1].y = 9; 
 
  vertex_obstacle3[0].x = 5; 
  vertex_obstacle3[0].y = 3; 
  vertex_obstacle3[1].x = 6; 
  vertex_obstacle3[1].y = 9; 
 
  vertex_obstacle4[0].x = 8; 
  vertex_obstacle4[0].y = 6; 
  vertex_obstacle4[1].x = 12; 
  vertex_obstacle4[1].y = 10; 
 
  vertex_obstacle5[0].x = 14; 
  vertex_obstacle5[0].y = 4; 
  vertex_obstacle5[1].x = 18; 
  vertex_obstacle5[1].y = 10; 
 
  vertex_obstacle6[0].x = 4; 
  vertex_obstacle6[0].y = 13; 
  vertex_obstacle6[1].x = 16; 
  vertex_obstacle6[1].y = 16; 
 
  vertex_obstacle7[0].x = 18; 
  vertex_obstacle7[0].y = 13; 
  vertex_obstacle7[1].x = 20; 
  vertex_obstacle7[1].y = 16; 
 
 
 
 if 
   ( 
   ((a >= vertex_obstacle1[0].x) && (a <= vertex_obstacle1[1].x) && (b >= 
vertex_obstacle1[0].y) && 
   b <= vertex_obstacle1[1].y) || 
      ((a >= vertex_obstacle2[0].x) && (a <= vertex_obstacle2[1].x) && (b >= 
vertex_obstacle2[0].y) && 
   b <= vertex_obstacle2[1].y) || 



      ((a >= vertex_obstacle3[0].x) && (a <= vertex_obstacle3[1].x) && (b >= 
vertex_obstacle3[0].y) && 
   b <= vertex_obstacle3[1].y)  || 
      ((a >= vertex_obstacle4[0].x) && (a <= vertex_obstacle4[1].x) && (b >= 
vertex_obstacle4[0].y) && 
   b <= vertex_obstacle4[1].y)  || 
      ((a >= vertex_obstacle5[0].x) && (a <= vertex_obstacle5[1].x) && (b >= 
vertex_obstacle5[0].y) && 
   b <= vertex_obstacle5[1].y)  || 
      ((a >= vertex_obstacle6[0].x) && (a <= vertex_obstacle6[1].x) && (b >= 
vertex_obstacle6[0].y) && 
   b <= vertex_obstacle6[1].y)  || 
      ((a >= vertex_obstacle7[0].x) && (a <= vertex_obstacle7[1].x) && (b >= 
vertex_obstacle7[0].y) && 
   b <= vertex_obstacle7[1].y)  || 
   (a <= 0 || b <= 0 || a >= BOX || b >= BOX)               //out of BOX x 
BOX 
    ) 
       return 1 ; 
 else 
  return 0 ; 
 
} 
/************************************************************/ 
/* Clear the chromosome entries for the next run      */ 
/************************************************************/ 
 
void clear(void) 
{ 
 int i; 
 for (i = 0; i < POPSIZE; i++) 
  { 
   population[i].step = 0; 
   population[i].way = 0; 
   population[i].collision = 0; 
   population[i].xcoord = X_START; 
   population[i].ycoord = Y_START; 
  } 
} 
 
 
/*************************************************************/ 
/* direction of the robot */ 
/*************************************************************/ 
 
void direction( double chromo, int mem) 
{ 
 switch(((int)chromo)) 
  { 
  case 1:        //right 
   { 
    population[mem].xcoord ++; 
    population[mem].step = 1.0; 
 
    break; 
   } 
  case 2:        //up-right 
   { 
    population[mem].xcoord ++; 
    population[mem].ycoord ++; 
    population[mem].step = sqrt(2.0); 
 
    break; 

   } 
  case 3:        //up 
   { 
    population[mem].ycoord ++; 
    population[mem].step = 1.0; 
 
    break; 
   } 
  case 4:        //up-left 
   { 
    population[mem].xcoord --; 
    population[mem].ycoord ++; 
    population[mem].step = sqrt(2.0); 
 
    break; 
   } 
  case 5:        //left 
   { 
    population[mem].xcoord --; 
    population[mem].step = 1.0; 
 
    break; 
   } 
  case 6:       //down -left 
   { 
    population[mem].xcoord --; 
    population[mem].ycoord --; 
    population[mem].step = sqrt(2.0); 
 
    break; 
   } 
  case 7:       //down 
   { 
    population[mem].ycoord --; 
    population[mem].step = 1.0; 
 
    break; 
   } 
  case 8:       //down-right 
   { 
    population[mem].xcoord ++; 
    population[mem].ycoord --; 
    population[mem].step = sqrt(2.0); 
 
    break; 
   } 
  } 
} 
 
 
/***************************************************************/ 
/* Keep_the_best function: This function keeps track of the    */ 
/* best member of the population. Note that the last entry in  */ 
/* the array Population holds a copy of the best individual    */ 
/***************************************************************/ 
 
void keep_the_best() 
{ 
 
int i,j; 
int index_best = 0; /* stores the index of the best individual */ 
int best; 
 



best = population[0].fitness ; 
 
   for (i = 0; i <= POPSIZE; i++) 
      { 
        if(population[i].fitness > best) 
    { 
        best = population[i].fitness; 
     index_best = i; 
       } 
} 
 
 
   /* once the best member in the population is found, copy the 
genes into 
      the last chormosome of the current generation. */ 
 
 
   population[POPSIZE].gene = 
malloc(population[index_best].length*sizeof(int)); 
  for(i=0;i<population[index_best].length;i++) 
   population[POPSIZE].gene[i] = population[index_best].gene[i] ; 
 
   population[POPSIZE].length    = population[index_best].length; 
   population[POPSIZE].way       = population[index_best].way; 
   population[POPSIZE].p_error   = 
population[index_best].p_error; 
   population[POPSIZE].collision = 
population[index_best].collision; 
 
 
} 
 
/****************************************************************/ 
/* Elitist function: The best member of the previous generation */ 
/* is stored as the last in the array. If the best member of    */ 
/* the current generation is worse then the best member of the  */ 
/* previous generation, the latter one would replace the worst  */ 
/* member of the current population                             */ 
/****************************************************************/ 
 
void elitist() 
{ 
int i; 
double best, worst;                     /* best and worst fitness values */ 
int index_best=0, index_worst=0;   /* indexes of the best and worst 
member */ 
 
best  = population[0].fitness; 
worst = population[0].fitness; 
 
for (i = 0; i < POPSIZE; i++) 
     { 
 if(population[i].fitness > best) 
  { 
    best =  population[i].fitness; 
       index_best = i; 
     } 
 if(population[i].fitness < worst) 
  { 
  worst = population[i].fitness; 
     index_worst = i; 
  } 
      } 

/* if best individual from the new population is better than */ 
/* the best individual from the previous population, then    */ 
/* copy the best from the new population; else replace the   */ 
/* worst individual from the current population with the     */ 
/* best one from the previous generation                     */ 
 
 
if (best >= population[POPSIZE].fitness) 
  { 
 population[POPSIZE].gene = 
malloc(population[index_best].length*sizeof(int)); 
    for (i = 0; i < population[index_best].length; i++) 
  population[POPSIZE].gene[i] = population[index_best].gene[i]; 
 
 population[POPSIZE].fitness = population[index_best].fitness; 
 population[POPSIZE].length = population[index_best].length; 
 population[POPSIZE].way = population[index_best].way; 
 population[POPSIZE].p_error = population[index_best].p_error; 
    } 
else 
    { 
 population[index_worst].gene = 
malloc(population[POPSIZE].length*sizeof(int)); 
    for (i = 0; i < population[POPSIZE].length; i++) 
  population[index_worst].gene[i] = population[POPSIZE].gene[i]; 
 
 population[index_worst].fitness = population[POPSIZE].fitness; 
 population[index_worst].length = population[POPSIZE].length; 
 population[index_worst].way = population[POPSIZE].way; 
 population[index_worst].p_error = population[POPSIZE].p_error; 
    } 
 
} 
 
 
 
/**************************************************************/ 
/* q-tournament selection            
*/ 
/* makes sure that the best member survives                   */ 
/**************************************************************/ 
 
void select(void) 
{ 
  int i,j; 
  int index, temp; 
 
 for(i = 0; i < POPSIZE; i++) 
 { 
   index = RND%POPSIZE ; 
 
   for(j=0;j<q; j++) 
   { 
    temp = RND%POPSIZE ; 
    if(population[temp].fitness > population[index].fitness) 
    index = temp; 
   } 
 
 
 
   newpopulation[i].gene = 
malloc(population[index].length*sizeof(int)); 
     for(j=0;j<population[index].length;j++) 



    newpopulation[i].gene[j] = population[index].gene[j] ; 
              newpopulation[i].length  = population[index].length; 
    newpopulation[i].way     = population[index].way; 
         newpopulation[i].fitness = population[index].fitness; 
         newpopulation[i].p_error = population[index].p_error; 
 
 } 
 
  for(i = 0; i < POPSIZE; i++)      //copy  newpopulation to old one , 
     { 
           population[i].gene = 
malloc(newpopulation[i].length*sizeof(int)); 
      for(j=0;j<newpopulation[i].length;j++) 
       population[i].gene[j] = newpopulation[i].gene[j] ; 
 
        population[i].length  = newpopulation[i].length; 
        population[i].way     = newpopulation[i].way; 
                  population[i].fitness = newpopulation[i].fitness; 
        population[i].p_error = newpopulation[i].p_error; 
     } 
 
} 
 
 
/***************************************************************/ 
/* Crossover, 2 random points are selected and the allele      */ 
/* within them are exchanged                                   */ 
/***************************************************************/ 
 
void crossover(int a, int b) 
{ 
 
 int crosspoint[4]; 
 int i,temp; 
 int *temp_1, *temp_2; 
 int length_1,length_2; 
 
       //choose 4 random crossing points 
 for(i=0;i<2;i++) 
 crosspoint[i] = RND%population[a].length; 
 for(i=2;i<4;i++) 
 crosspoint[i] = RND%population[b].length; 
 
 
 for(i=0;i<4;i+=2)      //crosspoint[1]<crosspoint[2] AND 
crosspoint[3]<crosspoint[4] 
  { 
  if(crosspoint[i]> crosspoint[i+1]) 
    { 
      temp = crosspoint[i]; 
      crosspoint[i] = crosspoint[i+1]; 
      crosspoint[i+1] = temp; 
        } 
  } 
 
 length_1 = crosspoint[0]+ (crosspoint[3] - crosspoint[2])+ 
(population[a].length-crosspoint[1]); 
 length_2 = crosspoint[2]+ (crosspoint[1] - crosspoint[0])+ 
(population[b].length-crosspoint[3]); 
 
 temp_1 = malloc(length_1*sizeof(int)); 
 temp_2 = malloc(length_2*sizeof(int)); 
 

  for(i=0;i<crosspoint[0];i++) 
         temp_1[i] = population[a].gene[i]; 
 
       for(i=crosspoint[0];i<crosspoint[0] + (crosspoint[3]- 
crosspoint[2]);i++) 
     temp_1[i] = population[b].gene[crosspoint[2]+(i-crosspoint[0])]; 
 
      for(i=crosspoint[0]+(crosspoint[3]- crosspoint[2]); 
       i<(crosspoint[0]+crosspoint[3]- crosspoint[2]) +  
population[a].length - crosspoint[1];i++) 
   temp_1[i] = population[a].gene[crosspoint[1]+(i-
(crosspoint[0]+crosspoint[3]- crosspoint[2]))]; 
 
  for(i=0;i<crosspoint[2];i++) 
         temp_2[i] = population[b].gene[i]; 
 
       for(i=crosspoint[2];i<crosspoint[2] + (crosspoint[1]- 
crosspoint[0]);i++) 
     temp_2[i] = population[a].gene[crosspoint[0]+(i-crosspoint[2])]; 
 
      for(i=crosspoint[2]+(crosspoint[1]- crosspoint[0]); 
       i<(crosspoint[2]+crosspoint[1]- crosspoint[0]) +  
population[b].length - crosspoint[3];i++) 
    temp_2[i] = population[b].gene[crosspoint[3]+(i-
(crosspoint[2]+crosspoint[1]- crosspoint[0]))]; 
 
  for(i=0;i<length_1;i++) 
   population[a].gene[i] = temp_1[i]; 
   population[a].length = length_1 ; 
 
  for(i=0;i<length_2;i++) 
   population[b].gene[i] = temp_2[i]; 
   population[b].length = length_2 ; 
 
} 
 
/**************************************************************/ 
/* Mutation: Random uniform mutation. A variable selected for */ 
/* mutation is replaced by a random value between lower and   */ 
/* upper bounds of this variable                              */ 
/**************************************************************/ 
 
void mutate(void) 
{ 
int i, j; 
double x; 
 
for (i = 0; i < POPSIZE; i++) 
      for (j = 0; j < population[i].length; j++) 
            { 
            x = RNDE; 
            if (x < PMUTATION) 
                  population[i].gene[j] = randval(); 
 
            } 
} 
 
/**************************************************************/ 
/* Swap divides the chromosome randomly into two parts        */ 
/* and exchanges these two parts                              */ 
/**************************************************************/ 
 
void swap (void) 



{ 
int i,j, crosspoint; 
int *temp_1, *temp_2; 
double x; 
 
for (i = 0; i < POPSIZE; i++) 
  { 
 x = RNDE; 
       if (x < SWAP) 
   { 
     crosspoint = RND%population[i].length; 
      temp_1 = malloc(crosspoint*sizeof(int)); 
   temp_2 = malloc((population[i].length-
crosspoint)*sizeof(int)); 
              for (j = 0; j < crosspoint; j++) 
                temp_1[j] = population[i].gene[j]; 
     for (j = crosspoint; j < population[i].length ; j++) 
                temp_2[j-crosspoint] = population[i].gene[j]; 
 
     for (j = 0; j <population[i].length-crosspoint ; j++) 
                population[i].gene[j] = temp_2[j]; 
     for (j = population[i].length-crosspoint; j < 
population[i].length ; j++) 
                population[i].gene[j] = temp_1[j-(population[i].length-
crosspoint)]; 
       } 
 } 
 
} 
 
 
/**************************************************************/ 
/* Insert chooses a random point an inserts a random sequence */ 
/* of allele into it                                          */ 
/**************************************************************/ 
 
void insert(void) 
 
{ 
 
int i,j, insertpoint, insertlength; 
double x; 
int *temp_1, *temp_2; 
 
for (i = 0; i < POPSIZE; i++) 
  { 
 x = RNDE; 
       if (x < INSERT) 
     { 
      insertpoint  = RND%population[i].length; 
      insertlength = RND%population[i].length; 
   temp_1 = malloc(insertpoint*sizeof(int)); 
   temp_2 = malloc((population[i].length-insertpoint)*sizeof(int)); 
 
     for (j = 0; j < insertpoint; j++) 
                temp_1[j] = population[i].gene[j]; 
     for (j = insertpoint; j < population[i].length ; j++) 
                temp_2[j-insertpoint] = population[i].gene[j]; 
 
  population[i].gene = malloc((population[i].length + 
insertlength)*sizeof(int)); 
 
    for (j = 0; j < insertpoint; j++) 

              population[i].gene[j] = temp_1[j] ; 
     for (j = insertpoint; j < insertpoint + insertlength; j++) 
    population[i].gene[j] = rand()%8+1 ; 
   for (j = insertpoint + insertlength; j < insertlength + 
population[i].length; j++) 
    population[i].gene[j] = temp_2[j - (insertpoint + 
insertlength)] ; 
    population[i].length = insertlength + 
population[i].length; 
      } 
 } 
} 
 
 
/**************************************************************/ 
/* Delete chooses a random point an deletes a random sequence */ 
/* of allele from the chromosome                              */ 
/**************************************************************/ 
 
 
void delete(void)   //Problem: The length of the chromosome can get 0 ! 
 
{ 
 
int i,j, deletepoint, deletelength; 
double x; 
int *temp_1, *temp_2; 
 
for (i = 0; i < POPSIZE; i++) 
 { 
 x = RNDE; 
       if (x < DELETE) 
     { 
   deletepoint  =  RND%population[i].length; 
      deletelength =  2; // a fixed length that the chromosom won´t get too 
small -  RND%population[i].length; 
   temp_1 = malloc(deletepoint*sizeof(int)); 
   temp_2 = malloc((population[i].length-deletepoint)*sizeof(int)); 
 
     for (j = 0; j < deletepoint; j++) 
                temp_1[j] = population[i].gene[j]; 
     for (j = deletepoint + deletelength ; j < 
population[i].length ; j++) 
                temp_2[j- (deletepoint + deletelength)] = population[i].gene[j]; 
   population[i].gene = malloc((population[i].length - 
deletelength)*sizeof(int)); 
 
   for (j = 0; j < deletepoint; j++) 
              population[i].gene[j] = temp_1[j] ; 
      for (j = deletepoint; j <  population[i].length-deletelength; 
j++) 
    population[i].gene[j] = temp_2[j- deletepoint]  ; 
   population[i].length = population[i].length - deletelength ; 
  } 
 } 
 
} 
 
 
 
/***************************************************************/ 
/* Report function: Reports progress of the simulation. Data   */ 
/* dumped into the  output file are separated by commas        */ 



/***************************************************************/ 
 
void report(void) 
{ 
int i; 
double best_val;            /* best population fitness */ 
double avg;                 /* avg population fitness */ 
double stddev;              /* std. deviation of population fitness */ 
double sum_square;          /* sum of square for std. calc */ 
double square_sum;          /* square of sum for std. calc */ 
double sum_p_error;         /* sum of positional error */ 
double avg_p_error;   /* avg positional error    */ 
double sum_way;    /* sum of path lengths */ 
double avg_way;       /* avg path length */ 
double sum_coll;   /* sum of collisions */ 
double avg_coll;   /* avg collisions */ 
double sum;                 /* total population fitness */ 
 
sum         = 0.0; 
sum_square  = 0.0; 
sum_p_error = 0.0; 
sum_way     = 0.0; 
sum_coll    = 0.0; 
 
for (i = 0; i < POPSIZE; i++) 
      { 
      sum         += population[i].fitness; 
      sum_square  += population[i].fitness * population[i].fitness; 
   sum_p_error += population[i].p_error; 
   sum_way     += population[i].way; 
   sum_coll   += population[i].collision; 
      } 
 
avg = sum/(double)POPSIZE; 
square_sum = avg * avg * POPSIZE; 
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1)); 
best_val = population[POPSIZE].fitness; 
avg_p_error = sum_p_error/(double)POPSIZE; 
avg_way = sum_way/(double)POPSIZE; 
avg_coll = sum_coll/(double)POPSIZE; 
 
fprintf(galog, "\n %d; %.3f; %.3f; %3f; %3f; %3f", generation +1, 
        best_val, avg, avg_p_error, avg_way,avg_coll); 
} 
 
/**************************************************************/ 
/* Main function: Each generation involves selecting the best */ 
/* members, performing crossover & mutation and then          */ 
/* evaluating the resulting population, until the terminating */ 
/* condition is satisfied                                     */ 
/**************************************************************/ 
 
 
int main(int argc,char *argv[]) 
{ 
 
 
 
int i, goal=0; 
int j; 
int index_best=0; 
double best ; 
 

srand( (unsigned)time( NULL ) ); 
 
if ((galog = fopen("galog.csv","w"))==NULL) 
      { 
      exit(1); 
      } 
 
if ((bestway = fopen("bestway.txt","w"))==NULL) 
      { 
      exit(1); 
      } 
 
 
 initialize(); 
 evaluate(); 
 keep_the_best(); 
 
 
 while(generation<MAXGENS) 
       { 
 
  select(); 
 
   for(i=0;i<POPSIZE;i+=2) 
    { 
    if(RNDE < SELECT_PROB)   //two chromosoms are selected for crossover 
with a probability SELECT_PROB 
          crossover(i,i+1); 
       } 
      mutate(); 
  swap(); 
  insert(); 
  //delete(); 
       evaluate(); 
        elitist(); 
  report(); 
  generation++; 
  } 
 
 
 best = population[0].fitness ; 
  for(j=0;j<=POPSIZE ;j++) 
   { 
 if(population[j].fitness > best) 
  { 
  best = population[j].fitness; 
  index_best = j; 
     } 
    } 
 
population[index_best].xcoord = X_START; 
population[index_best].ycoord = Y_START; 
 
 for (i = 0; i < population[index_best].length; i++) 
  { 
  direction(population[index_best].gene[i], index_best); 
  fprintf(bestway,"\n%3.0f; %3.0f",population[index_best].xcoord, 
population[index_best].ycoord); 
  } 
 
fprintf(galog,"\n\n Simulation completed\n"); 
fprintf(galog,"\n Best member: \n"); 
fprintf(galog,"\n\n Best fitness = %3.3f",population[index_best].fitness); 



fprintf(galog,"\n\n Weglaenge = %3.3f",population[index_best].way); 
fprintf(galog,"\n\n Position Error = %3.3f",population[index_best].p_error); 
fprintf(galog,"\n\n Collisions = %f",population[index_best].collision); 
 
fclose(galog); 
fclose(bestway); 
 
printf("Success\n"); 
 
    return 0; 
} 
 
 
 



B. Programming the Nomad 200

In principle we have two possibilities to run the Nomad from a program

(Fig. B.1):

• Direct Mode: the program communicates directly with the robot

daemon .

• Client Mode: the program communicates as a client to the server.

This mode will always be used when testing a new program.

The Graphic User Interface (GUI) provides a convenient access to the real

and simulated robots, and to the representation of the world, as shown

in Fig. B.2. Through the GUI, the user can send commands to robots,

monitor command execution by seeing the robot actually moving on the

screen, visualize instantaneous and cumulated senor data. The software

runs on a Linux operating system and shows four windows (see Fig. B.3).

The left window shows the simulated robot environment, the middle win-

dow the real robot path and the left windows the state of the infrared and

sonar sensors.

As already mentioned, the Nomad 200 is equipped with a variety of

sensors, which are controlled by the micro controller and sent to the

server. The actual states of the robot are saved in the following parame-

ters:

126



Fig. B.1.: Programming the Nomad in two possible modes.

Fig. B.2.: The graphic interface of the programming environment.

127



Fig. B.3.: Nomad200 Simulation Environment

• Position(STATE_CONF_X, STATE_CONF_Y)

STATE_CONF_X : x-coordinate of the robot

STATE_CONF_Y : y-coordinate of the robot

• Orientation(STATE_CONF_STEER, STATE_CONF_TURRET)

STATE_CONF_STEER : Steering angle

STATE_CONF_TURRET: Turret angle

• Sensor states (STATE_SONAR_0 .. STATE_SONAR_15,

STATE_IR_0 .. STATE_IR_15, STATE_BUMPER)

STATE_SONAR_0 ... STATE_SONAR_15 : Distance measure of the 16

sonar sensors

STATE_IR_0 ... STATE_IR_15 : Distance measure of the 16 in-

frared sensors

STATE_BUMPER : Bumper data

The sonar and infrared sensors are placed around the robot (Fig. B.4,B.5)

and change their shape, when approximating an obstacle (Fig. B.6,B.7).

The Control Software is written in ANSI C++, whereas a variety of addi-

tional commands are used. Programming the Nomad requires the follow-

ing steps:

• Establish communication with a robot .

• Initialize the robot and its sensors .

128



Fig. B.4.: The adjustment of
the IR Sensors.

Fig. B.5.: The adjustment of
the IR Sensors.

Fig. B.6.: IR Sensor State. Fig. B.7.: Sonar Sensor state.

129



• Repeat until done

- Send motion and sensing commands to the robot

- Get motion and sensing data from the robot

• Disconnect from robot .

In general there exist three basic classes of robot specific commands :

• Communication commands, in order to establish a connection be-

tween the robot and the server.

• Motion commands to move the robot and to obtain its current con-

figuration .

• Commands to configure and readout the sensory data.

A common property of almost all of the commands is that they update the

global vector State. The value returned by the functions themselves is

TRUE if the command was successfully transmitted to the robot and state

information came back correctly. It is not an indication that the command

was successfully completed. The reason of this is that commands are

executed asynchronously: the function itself will return immediately, and

while the intended action starts on the robot, the program will move on to

the next instruction. For instance, if one send pr(1000,0,0), a command

that tells the robot to move forward by 2.54 m, the command will return

immediately (and probably even before the robot is actually moving). If

the program’s next line is pr(-1000,0,0), this will cause the robot to stop

the previous motion and start this next one, requesting a move into the

opposite direction. The only exceptions are the commands zr and ws, that

initialize the robot’s encoders and wait for the robot to stop, respectively.

To get some impression of how the programming of the Nomad works, we

show a simple example :

#include "Nclient.h"

void main()

130



{

connect_robot(1);

zr();

sp(50,0,0);

pr(1000,0,0);

while(State[STATE_CONF_X)<1000)

gs();

disconnect_robot(1);

}

This program:

• connects to the robot

• initializes it using the command zr

• sets the translational speed to 0.127 m/s, the speeds of the two

rotational degrees of freedom to zero

• translates the robot by 2.54m

• gets the robot state during the motion

• disconnects from the robot

The include file Nclient.h contains the prototypes of the robot com-

mands.

The Robot window (Fig.B.8) allows interactive control of a robot. At

the bottom of the window we find information about the current robot

position, compass value, and the last command issued. In position infor-

mation, X and Y are the coordinates, S is the steering direction in degrees,

T is the turret direction in degrees. Degrees range from 0 to 360 with 0 as

the horizontal right. The simultaneous display of the actual position and

that position, which is calculated via the encoder, can monitor the effects

of external disturbances on the robot.

131



Fig. B.8.: The robot window

132



List of Figures

1.1. Honda’s Asimo [94]. . . . . . . . . . . . . . . . . . . . . . . 10

2.1. General Control Scheme for a mobile robot [10] . . . . . . 17

2.2. Differential drive robot . . . . . . . . . . . . . . . . . . . . 18

2.3. Synchronous drive robot . . . . . . . . . . . . . . . . . . . 20

2.4. A car like robot . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5. A Mecanum Wheel [101] . . . . . . . . . . . . . . . . . . . 23

2.6. Cone-Shaped form of the sonar signal. . . . . . . . . . . . 27

2.7. Principle of a laser based distance measurement [29]. . . . 30

2.8. The closed loop control scheme of a PID Controller. . . . . 33

2.9. Care-O bot II, Frauenhofer Institute IPA [98] . . . . . . . 36

2.10. Roby-Go and it’s successor, TU Vienna. . . . . . . . . . . 38

2.11. Transcar, an AGV from Swisslog [103]. . . . . . . . . . . . 39

2.12. Nomad200 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1. A continuous planning problem. . . . . . . . . . . . . . . . 43

3.2. A discrete planning problem. . . . . . . . . . . . . . . . . . 43

3.3. Basic Path Planning Problem of two robots with different

shapes [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. A 2 DOF Articulated Robot and it´s configuration space . 48

3.5. A 10 DOF Articulated Robot. C is (S1)7 ×R3 . . . . . . 49

3.6. A moving disc A in R2 with a polygonal obstacle B [31]. . 51

3.7. 2 configurations of A the related C-Obstacles [31]. . . . . . 52

3.8. The free flying object A is also allow to rotate [31]. . . . . 53

133



3.9. The potential field method [34]. . . . . . . . . . . . . . . . 56

3.10. Visability Graph . . . . . . . . . . . . . . . . . . . . . . . 59

3.11. Edges with an angle < 180◦ can be replaced by a shorter

edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12. Voronoi Diagram [31]. . . . . . . . . . . . . . . . . . . . . 61

3.13. Vertical Cell Decomposition of Cfree. . . . . . . . . . . . . 62

3.14. The resulting topological graph. . . . . . . . . . . . . . . . 62

3.15. A roadmap for a point robot. . . . . . . . . . . . . . . . . 64

3.16. The calculated path of the PRM planner [34]. . . . . . . . 64

3.17. The EXTEND function [33]. . . . . . . . . . . . . . . . . 68

3.18. A RRT explores Cfree [33]. . . . . . . . . . . . . . . . . . . 69

4.1. Scheme of a Genetic Algorithm . . . . . . . . . . . . . . . 73

4.2. Two highly fit individuals dominate the population . . . . 78

4.3. Many fit individuals hardly differ from each other . . . . . 78

4.4. Linear versus Non-linear Ranking [75]. . . . . . . . . . . . 80

4.5. Roulette Wheel Selection [75]. . . . . . . . . . . . . . . . . 83

4.6. Stochastic universal sampling [75]. . . . . . . . . . . . . . . 84

4.7. Single Point Crossover . . . . . . . . . . . . . . . . . . . . 86

4.8. Multi Point Crossover . . . . . . . . . . . . . . . . . . . . 87

4.9. Mutation of a binary string . . . . . . . . . . . . . . . . . 88

5.1. A 4-bit encoding. . . . . . . . . . . . . . . . . . . . . . . 94

5.2. A path of length 4 achieves the goal point [88]. . . . . . . 96

5.3. A path of the same length miss the goal [88]. . . . . . . . . 96

5.4. The two-point crossover and the swapping operator. . . . 100

5.5. The insert and delete operator. . . . . . . . . . . . . . . . 101

5.6. Three specialized Genetic operators. . . . . . . . . . . . . . 102

5.7. The generated path after 10 generations. . . . . . . . . . 104

5.8. The generated path after 20 generations. . . . . . . . . . 104

5.9. The positional error as a function of generations. . . . . . . . 104

5.10. The average fitness as a function of generations. . . . . . . . . 104

5.11. An environment with some obstacles. . . . . . . . . . . . . 105

134



5.12. The average position error. . . . . . . . . . . . . . . . . . . . 107

5.13. The average CPU time. . . . . . . . . . . . . . . . . . . . . 107

5.14. Path Planning in an environment with obstacles. . . . . . . 108

5.15. Some examples of B-spline curves. . . . . . . . . . . . . . 111

5.16. General schematic for mobile robot localization [10]. . . . 112

5.17. Kollision avoidance a). . . . . . . . . . . . . . . . . . . . . . 113

5.18. Kollision avoidance b). . . . . . . . . . . . . . . . . . . . . . 113

5.19. Virtual target position. . . . . . . . . . . . . . . . . . . . . 114

A.1. Building Blocks of the robot navigation systems. . . . . . . 117

B.1. Programming the Nomad in two possible modes. . . . . . 127

B.2. The graphic interface of the programming environment. . 127

B.3. Nomad200 Simulation Environment . . . . . . . . . . . . . 128

B.4. The adjustment of the IR Sensors. . . . . . . . . . . . . . . 129

B.5. The adjustment of the IR Sensors. . . . . . . . . . . . . . . 129

B.6. IR Sensor State. . . . . . . . . . . . . . . . . . . . . . . . . 129

B.7. Sonar Sensor state. . . . . . . . . . . . . . . . . . . . . . . 129

B.8. The robot window . . . . . . . . . . . . . . . . . . . . . . 132

135



Bibliography

[1] World Robotics (2004). Statistics, Market Analysis, Forecasts, Case

Studies and Profitability of Robot Investment. United Nations Eco-

nomic Commission for Europe, Geneva .

[2] Burgard W., Cremers A., Fox D., Hahnel D., Lakemeyer G., Schulz

D., Steiner W. and Thrun S. (1998). The Interactive Museum Tour-

Guide Robot. In Proceedings of the 15th National Conference on

Artificial Intelligence. Madison, Wisconsin. AAAI Press.

[3] Kiesler S., Hinds P. (2004). Introduction to This Special Issue on

Human-Robot Interaction Human-Computer Interaction Vol. 19 No.

1 2 (1-8) .

[4] Kopacek P., Han M.-W., Putz B. Schierer E., Würzl M., (2004). A

concept for a humanoid demining robot. Proceedings of the Inter-

national IARP Workshop on Robotics and Mechanical assistance in

Humanitarian Demining and similar risky interventions, 16-18. June

2004, Brussels-Leuven/Belgium .

[5] Miller D., Slack M. (1995). Design and testing of a low-cost robotic

wheelchair. Automomous Robots Vol. 2 77-88.

[6] Kuffner J.J. Jr. (1999). Autonomous Agents for Real-time Animation

. PhD theses, Stanford University CA .

136



[7] Apaydin M.S., Brutlag D.L., Guestrin C., Hsu D., Latombe J.-

C. (2002). Stochastic Roadmap Simulation: An Efficient Represen-

tation and Algorithm for Analyzing Molecular Motion. Proc. RE-

COMB’02, Washington D.C., 12-21.

[8] Koestler A. (1967). A Ghost in the Machine. Arkana Books, London.

[9] Nehmzow U. (2003). Mobile Robotics. A Practical Introduction

Springer, London.

[10] Siegwart R., Nourbakhsh I.R. (2004). Introduction to Autonomous

Mobile Robots. MIT Press, Cambridge, MA.

[11] Bräunl T. (2003) Embedded Robotics. Springer, Berlin.

[12] Kim J.-H., Kim D.-H., Kim Y.-J., Seow K.-T. (2004). Soccer

robotics.(Springer Tracts in Advanced Robotics) Springer, Berlin.

[13] Han M. W., Kopacek P., Putz B., Würzl M., Schierer E. (2003).

Robot Soccer - A First Step to Edutainment. Proceedings of

RAAD’03. 12th International Workshop on Robotics in Alpe-Adria-

Danube Region, Cassino .

[14] Nardi D. (Edit.) (2005). RoboCup 2004: Robot Soccer World Cup

VIII. Springer, Berlin.

[15] Weiss G. (Edit.) (2000). Multiagent Systems: A Modern Approach

to Distributed Artificial Intelligence. MIT Press, Cambridge, MA.

[16] Wooldridge M. (2002). Introduction to MultiAgent Systems. John

Wiley & Sons.

[17] Paolucci M., Sacile R. (2005). Agent-Based Maufacturing and Con-

trol Systems . CRC Press, Boca Raton.

[18] Wooldrige M,, Jennings N.R. (1995). Intelligent Agents: theory and

practice. Knowledge Eng. Rev. 10, pp. 115.

137



[19] Gonzales R.C., Woods R.E. (2002). Digital Image Processing. Pren-

tice Hall.

[20] Horn B. (1986). Robot Vision. MIT Press.

[21] Schraft R.D., Hägele M., Wegener K. (2005). Service Roboter Visio-

nen. Hanser, München.

[22] Harnad S. (1990). The Symbol Grounding Problem. Physica D 42:

335-346.

[23] Pfeifer R., Scheier C. (2001). Understanding Intelligence.MIT Press,

Cambridge, MA.

[24] Brooks R.A. (1991). Intelligence without Reason. Proc. IJCAI 91 (1)

569-595 .

[25] Arkin R. (1998). Behavior Based Robotics. MIT Press, Cambridge,

MA.

[26] Ilon B.E. (1975). Wheels for a course stable selfpropelling vehicle

movable in any desired direction on the ground or some other base.

US Patents and Trademarks office, Patent 3,876,255 .

[27] Åström K, Hägglund T. (1995). PID Controllers: Theory,Design

and Tuning. Instrument Society of America, Research Triangle Park

NC.

[28] Berg M. de et al. (2000). Computational Geometry. Springer.

[29] Dudek G., Jenkin M. (2000). Computational Principles of Mobile

Robotics. Cambridge University Press .

[30] Dijkstra E. (1955). A note on two problems in connexion with graphs

Numerische Mathematik, Vol.1 (3) 269-271 .

[31] Latombe J.-C. (1991). Robot Motion Plannning. Kluwer .

[32] Laumond J.-P. (Edit.)(1998). Robot Motion Planning and Control .

Springer LNCIS 229 .

138



[33] LaValle S.M. (2005). Planning Algorithms. To appear,

http://msl.cs.uiuc.edu/planning

[34] Choset H., Lynch K.M., Hutchingson S., Kantor G., Burgard W.,

Kavraki L., Thurn S. (2005). Principles of Robot Motion.MIT Press,

Cambridge, MA.

[35] Khatib O. (1986) . Real-time obstacle avoidance for manipulators

and mobile robots. Int. Jour. Robotics Research 5, 90-98 .

[36] Khatib M., Chatila R. (1995) . An extended potential field approach

for mobile robot sensor-based motions. Proc. Intell. Auton. Syst. IAS

4, IOS Press, Karlsruhe, 490-496.

[37] Lee D.T., Drysdale III R.L. (1981) Generalized Voronoi diagrams in

the plain. SIAM J. Comput. 10 (1), 73 - 87 .

[38] Lozano- Perez T., Weley M. (1979) . An algorithm for planning

collision-free paths among polyhedral obstacles. Communications of

the ACM 22(10) , 560-570.

[39] Aurenhammer F. (1991). Voronoi diagramms - A survey of a funda-

mental geometric structure. ACM Computing Surveys 23, 345-405.

[40] Reif J. (1979). Complexity of the mover’s problem and gernaliza-

tions. Proc. 20th IEEE Symp. Found. Comput. Scien. 421-427.

[41] Feder H.J.S., Slotin J.-J.E. (1997). Real-Time path planning using

harmonic potentials in dynamic environments. Proc. IEEE Int.Conf.

on Robotics and Automation, Albuquerique, NM.

[42] Amato N., Wu Y., (1996). A randomized roadmap method for path

and manipulation planning. Proc. IEEE Int. Conf. on Robotics and

Automation, 113- 120.

[43] Kavraki L., Latombe J.C. (1994). Randomized preprocessing of con-

figuration space for fast path planning. Proc. IEEE Int. Conf. on

Robotics and Automation, 2138-2145.

139



[44] Sv̌estka P. (1997). Robot motion planning using probabilistic

roadmaps. PhD thesis, Utrecht Univ.

[45] Overmars M.H. (1992). A random approach to motion planning,

Technical Report RUU-CS-92- 32, Dept. Comput. Sci., Utrecht

Univ., Utrecht, Ned.

[46] LaValle S.M. , Kuffner J.J. (1999). Randomized kinodynamic plan-

ning. IEEE Int. Conf. Robotics and Automation, 473-479 .

[47] LaValle S.M. , Kuffner J.J. (2001). Rapidly-exploring random trees:

Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus,

[edit.], Algorithmic and Computational Robotics: New Directions,A

K Peters, Wellesley, 293-308.

[48] LaValle S. M. (1998). Rapidly-exploring random trees: A new tool

for path planning. TR 98-11, Computer Science Dept., Iowa State

University.

[49] Barraquand J., Latombe J.-C. (1990). A Monte-Carlo algorithm for

path planning with many degrees of freedom. In Proc. IEEE Int.

Conf. Robot. & Autom., 1712-1717.

[50] Amato N. M., Bayazit O. B., Dale L. K. , Jones C., Vallejo D.

(1998).OBPRM: An obstacle-based PRM for 3D workspaces. Proc.

of the Workshop on Algorithmic Foundations of Robotics, 155 - 168.

[51] Boor V., Overmars N. H., van der Stappen A. F..(1999). The Gaus-

sian sampling strategy for probabilistic roadmap planners. In Proc.

IEEE Int. Conf. Robot. & Autom., 1018-1023.

[52] Hsu D., Jiang T., Reif J., Sun Z. (2003). The bridge test for sampling

narrow passages with probabilistic roadmap planners. Proc. IEEE

Int. Conf. Robot. & Autom.

[53] Yershova A., Jaillet L., Simeon T., LaValle S.M. (2005). Dynamic-

Domain RRTs: Efficient Exploration by Controlling the Sampling

140



Domain. Proc. IEEE International Conference on Robotics and Au-

tomation, to appear .

[54] Strandberg M. (2004). Augmenting RRT planners with local trees.

IEEE Intern. Conf. on Robotics and Automation, 3258-3262 .

[55] Plaku E., Bekris K. E., Chen B. Y., Ladd A. M., Kavraki L. E.

(2005). Sampling-Based Roadmap of Trees for Parallel Motion Plan-

ning. IEEE Transactions on Robotics, to appear .

[56] Wilmarth S. A., Amato N. M., and Stiller P. F. (1999). MAPRM:

A probabilistic roadmap planner with sampling on the medial axis

of the free space. IEEE Int. Conf. on Robotics and Automation,

1024-1031.

[57] Branicky M.S., LaValle S.M. (2002). On the relationship between

classical grid search and probabilistic roadmaps. Proc. Workshop on

the Alg. Found. of Robotics .

[58] Branicky M.S., LaValle S.M., Olson K., Yang L. (2001). Quasi-

randomized path planning. Proc. IEEE Int. Conf. on Robotics and

Automation, 1481-1487 .

[59] Lindemann S. R., LaValle S. M. (2004). Current issues in sampling-

based motion planning. In P. Dario and R. Chatila, [edit.], Proc.

Eighth Int. Symp. on Robotics Research. Springer-Verlag, Berlin.

To appear.

[60] Baker J. E. (1985). Adaptive Selection Methods for Genetic Algo-

rithms. Proc. ICGA 1, pp. 101-111 .

[61] Baker J. E. (1987). Reducing bias and inefficiency in the selection

algorithm. Proc. 2nd Int. Conf. on Genetic Algorithms and their

Applications, pp. 14-21.

[62] Fogel. L. J., Owens A. J., Walsh M. J. (1966). Artificial Intelligence

through simulated evolution. John Wiley, New York.

141



[63] M. Maxfield, A. Callahan , L.J. Fogel (Eds.) (1965). Biophysics and

Cybernetic Systems. Proc. of the 2nd Cybernetic Sciences Sympo-

sium, 131 - 155.

[64] Friedberg R. M. (1958). A Learning Machine: Part I. IBM Journal

of Research and Development, 2(1), 2-13.

[65] Friedman G.J. (1956). Selective feedback computers for enigneering

synthesis and nervous system analogy. Master Theses, University of

California, Los Angeles.

[66] Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization

and Machine Learning. Addison Wesley Publishing Company .

[67] Goldberg D. E., Deb K. (1991). A comperative analysis of selection

schemes used in Genetic Algorithms. Rawlins G.J.E. [Edit.] Founda-

tions of Genetic Algorithms. Morgan Kaufmann Pub., San Mateo,

USA, 69-93.

[68] Hart P., Nilsson N., Raphael B. (1968). A formal basis for the heuris-

tic determination of minimum cost paths . IEEE Transanctions on

Systems Science and Cybernetics, vol SSC-4 No.2 (8) 100-107.

[69] Holland J.H. (1969). A new kind of turnpike theorem . Bulletin of

the American Mathematical Society, 75(6), 1311 -1317.

[70] Holland J.H. (1975). Adaption in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, MI.

[71] Koza J.R. (1992). Genetic Programming: in the programming of

computers by means of natural selection. MIT Press, Cambridge,

MA.

[72] Michalewicz Z. (1992). Genetic Algorithms + Data Structures =

Evolution Programs. Springer.

[73] Weicker K. (2002). Evolutionäre Algorithmen . Teubner.

142



[74] Mitchell, M. (1996). An introduction to Genetic Algorithms. MIT

Press, Cambridge, MA.

[75] Pohlheim H. (2000). Evolutionäre Algorithmen. Springer.

[76] He L., Mort. N. (2000). Hybrid genetic algorithms for telecommu-

nications network back-up routeing. BT Technology Journal, 18(4),

42-50.

[77] Rizki M., Zmuda M., Tamburino L. (2002). Evolving pattern recog-

nition systems. IEEE Trans. on Evolutionary Computation, 6(6),

594-609 .

[78] Schwefel H.-P., Wegener I., Weinert K. (Eds.) (2003). Advances in

Computational Intelligence. Springer.

[79] Vankeerberghen P., Smeyers-Verbeke J., Leardi R., Karr C.L., Mas-

sart D.L. (1995). Roboust Regression and Outlier Detection for non-

linear Models using Genetic Algorithms. Chemometrics and Intelli-

gent Laboratory Systems, 28 (1995) 73-87 .

[80] Schwefel H. P., Männer R. [Edit.] (1990). Parallel Problem Solving

from Nature: 1st Workshop. Lecture Notes in Computer Science No.

496, Springer.

[81] Fleming P., Purshouse R.C. (2002). Evolutionary algorithms in con-

trol systems engineering: a survey. Control Engineering Practice, 10,

1223-1241.

[82] Reeves C., Rowe J. (2002) . Genetic Algorithms: Principles and

Perspectives. Kluwer, Norwell MA.

[83] Liu M., Wu C. (2003). Scheduling algorithm based on evolutionary

computing in identical parallel machine production line. Robotics

and Computer Integreted Manufacturing 19, 401-407 .

[84] Coello C. (2000) An updated survey of GA-based multiobjective op-

timization techniques. ACM Computing Surveys, 32 (2), 109-143.

143



[85] Fonseca C.,Fleming P. (1995). An overview of evolutionary algo-

rithms in multiobjective optimization. Evolutionary Computation,

3(1), 1-16.

[86] Nolfi S., Floreano D. (2000). Evolutionary Robotics., MIT Press,

Cambridge, MA.

[87] Eshelman L.J. , J.D. Schaffer (1991). Preventing premature conver-

gence in Genetic algorithm by preventing incest. R.K. Belew, L.B.

Booker [Edit.], Proc. 4th Int. Conf. GA (1), 115-122.

[88] Nearchou A.C. (1999). Adaptive navigation of autonomous vehicles

using evolutionary algorithms. Artificial Intelligence in Engineering

13, 159-173.

[89] Nearchou A.C. (1999). A Genetic navigation algorithm for au-

tonomous mobile robots. Cybernetics and Systems 30, 629-661.

[90] Xiao J, Michalewicz Z., Zhang L., Trojanowski K. (1997). Adaptive

Evolutionary Planner/Navigator for Mobile Robots. IEEE Trans. on

Evolutonary Computing 1(1) 18-28.

[91] Tu J., Yang S.X. (2003). Genetic Algorithm Based Path Planning for

a Mobile Robot. Proc. of IEEE Int. Conf. on Robotics & Automation,

1221 - 1226.

[92] Panda A.M., Dash R.R., Mishra S., Singh K.C. (2000). Off-line and

On-line path planning of mobile robot in an environment of static

obstacles using evolutionary computation algorithm. Jour. Electrical

& Electronics Engineering, Australia, 20(3), 211-223.

[93] Hu Y., Yang S. (2004). A knowledge based Genetic algorithm for

path planning of a mobile robot. Proc. IEEE Int. Conf. Robotics &

Automation, New Orleans, LA, 4350-4355.

144



Internet Links

[94] http://www.honda-robots.com .

[95] http://www-2.cs.cmu.edu/∼illah/SAGE/index.html

[96] http://www.care-o-bot.de/MuseumRobots.php

[97] http://www.ipa.fhg.de/Arbeitsgebiete/robotersysteme/service/service sich.php

[98] http://www.ipa.fhg.de/Arbeitsgebiete/robotersysteme/service/service haushalt.php

[99] http://www.whoi.edu/marops/vehicles/argo/index.html .

[100] http://www.care-o-bot.de .

[101] http://robotics.ee.uwa.edu.au/eyebot/doc/robots/omni.html .

[102] http://www.robosoccer.at/robygo/frameset-eng.html .

[103] http://www.swisslog.com/hcs-index/hcs-systems/hcs-agv.htm .

[104] http://www.darpa.mil/grandchallenge/index.html

[105] http://newton.ex.ac.uk/teaching/CDHW/Feedback/Setup-

PID.html .

145




