
Master’s Thesis

The Daios Framework - Dynamic,

Asynchronous and Message-oriented

Invocation of Web Services

carried out at the

Information Systems Institute
Distributed Systems Group

Technical University of Vienna

under the guidance of
Univ.Prof. Dr. Schahram Dustdar

and
Univ.Ass. Dipl.-Ing.(FH) Florian Rosenberg

as the contributing advisor responsible

by

Philipp Leitner, Bakk.rer.soc.oec.
Sperrgasse 14/15

1150 Wien
Matr.Nr. 0225511

Vienna, 18th September 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Abstract

The principle of “publish-find-bind” is one of the cornerstones of Service-Oriented
Architectures: service providers publish their services in service registries, service
consumers use these registries to find services that they can use, and once a con-
sumer has found an adequate service he can bind and use it. In order to implement
this principle Web service clients obviously need to be able to bind to arbitrary ser-
vices at run-time. Using current client-side service frameworks such as Apache Axis
2, Apache WSIF, Codehaus XFire or Apache CXF it is hard or even impossible to
do this - if a dynamic invocation interface exists at all it is often awkward to use and
limited in power. Additional problems are introduced by the nature of WSDL: given
that WSDL is very much focused on the notion of “operations” it is not surprising
that most of the currently deployed Web services also follow a strict “RPC-like”
instead of a document-based approach, ultimately leading to tightly coupled archi-
tectures instead of SOAs.

This master’s thesis introduces the Daios framework, a client-side Web service frame-
work that overcomes these limitations by (1) providing a dynamic invocation interface
that does not rely on precompiled stubs, (2) abstracting from the unseemlinesses of
WSDL and exposing a simple and asynchronous messaging interface instead, and
(3) supporting the invocation of SOAP/WSDL-based as well as RESTful services
through a transparent interface. The thesis details the state of the art in the area
of SOA, Web services and REST, gives an overview over relevant related work in
the field, explains the design of the framework prototype implemented as part of the
practical thesis work, depicts Daios’ usage by means of real-world services, and finally
compares the performance of the framework to Axis 2, WSIF, XFire and CXF in
terms of supported functionality, runtime performance and memory usage. The eval-
uation concludes with the result that Daios is on one level with current state of the
art Web service frameworks regarding runtime performance, and that the framework
is a sound choice for developers facing the dynamic service invocation problem.

3

Kurzfassung

Das Prinzip “Publish-Find-Bind” ist einer der wichtigsten Eckpunkte von service-
orientierten Architekturen: Service Provider veröffentlichen ihre Services in einer
Registry, wo diese dann von interessierten Service Consumern gesucht und gefunden
werden können. Damit diese auch aufgerufen werden können müssen sie allerdings
gebunden werden. Es ist daher unablässig, dass Consumer in der Lage sind, beliebige
Services zur Laufzeit zu binden. Mit gegenwärtigen Web Service Frameworks (wie
z.B. Apache Axis 2, Apache WSIF, Codehaus XFire oder Apache CXF) ist dies oft
nicht möglich oder zumindest nicht einfach - die Interfaces zum Binden zur Laufzeit
sind oft umständlich zu benutzen und nicht für alle denkbaren Services anwendbar.
Auch die Struktur von WSDL verursacht Probleme: WSDL ist sehr stark auf das
Konzept von aufrufbaren “Operationen” zentriert - es ist daher nicht weiter ver-
wunderlich, dass die meisten gegenwärtigen Web Services auch sehr operations- und
RPC-zentriert arbeiten. Das Result sind meist sehr stark gekoppelte Anwendungen,
die ganz im Gegensatz zu den angestrebten service-orientierten Architekturen stehen.

Die vorliegende Master-Arbeit beschreibt das Daios Framework. Daios ist eine client-
seitige Lösung für die oben angeführten Probleme, die (1) ein Interface zum Binden
beliebiger Services zur Laufzeit bereitstellt, die (2) die RPC-zentrischen Details von
WSDL abstrahiert und statt dessen über ein simples Messaging-Interface (das auch
asynchron benutzt werden kann) verwendet wird, und die (3) die Benutzung von
SOAP/WSDL-basierten wie auch von sogenannten RESTful Services über ein ein-
heitliches Interface erlaubt. Die Arbeit beschreibt den State of the Art in den Bere-
ichen SOAs, Web Services und REST, gibt einen Überblick über wichtige verwandte
Forschung, skizziert das Design des Daios-Prototypen, der als praktischer Teil im
Rahmen dieser Master-Arbeit entstanden ist, und geht auch kurz auf dessen Verwen-
dung ein. Schließlich wird der Prototyp mit existierenden Projekten (Axis 2, WSIF,
XFire und CXF) in Bezug auf Funktionalität, Laufzeit und Memory-Verbrauch ver-
glichen. Diese Evaluierung zeigt, dass das Daios-Framework in Bezug auf Perfor-
mance auf ähnlichem Niveau ist wie die besten etablierten Service Frameworks, und
daher für Entwickler, die vor den o.g. Problemen stehen, eine gute Wahl darstellt.

4

Danksagung

Die vorliegende Magisterarbeit stellt das (glückliche) Ende fünf meistens arbeitsre-
icher, immer jedoch schöner Studienjahre der Fächer Wirtschaftsinformatik und In-
formatik in Wien dar. Viele wichtige Menschen haben mich durch diese Zeit oder
einen Teil davon begleitet.

Die Wichtigsten waren mit Bestimmtheit meine Eltern, Monika und Wolfgang Leit-
ner. Euch möchte ich hiermit meinen aufrichtigen Dank aussprechen. Ohne eure
Bestärkung, Bestätigung, finanzielle und auch anderweitige Unterstützung wäre mein
Studium in dieser Form nicht denkbar gewesen. Ein ebenso großer Dank gebührt auch
den Betreuern dieser Arbeit, Florian Rosenberg und Schahram Dustdar. Bessere Be-
treung als ich sie vorgefunden habe kann sich ein Diplomand nicht wünschen.

Einen besonderen Dank möchte ich an dieser Stelle auch an Martin Zach und das
Team der Siemens PSE SMC richten, da mir Siemens die einmalige Gelegenheit bot,
bereits während meines Magisterstudiums in die Welt der Forschung einzutauchen
und “echte” wissenschaftliche Arbeit im Rahmen eines internationalen Projekts zu
verrichten. Zum Erfolg dieser Arbeit trugen aber auch noch andere bei: besonders
möchte ich mich noch bei Philipp Glatz und Martin Treiber für ihren Input zu ver-
schiedenen Versionen dieser Magisterarbeit bedanken. Martin war es auch, der mich
überhaupt erst zum Verfassen meiner Abschlussarbeit am Institut für Information-
ssysteme motiviert hat.

Und schließlich gilt es noch ein ganz dickes “Dankeschön” an meine wichtigste Re-
viewerin auszurichten: vielen, vielen Dank an Julia Karrer für alle Unterstützung
beim Verfassen dieser Arbeit, wie auch in allen anderen Dingen. Je t’embrasse ¨̂

5

Contents

1 Introduction 10
1.1 Motivation . 11
1.2 The Daios Solution . 13

1.2.1 Requirements . 13
1.2.2 Daios . 14

1.3 Organization of this Thesis . 15

2 State of the Art Review 17
2.1 Distributed Object Middleware . 17

2.1.1 General Concepts . 18
2.1.2 Dynamic Invocation Interfaces 18

2.2 Service-Oriented Architectures . 19
2.2.1 Definition and Concepts . 19
2.2.2 Advantages . 22

2.3 Web Services . 22
2.3.1 SOAP . 24
2.3.2 WSDL . 26

2.4 REST . 28
2.4.1 Interface Description in REST 30

3 Related Work 32
3.1 Dynamic Service Invocation . 32

3.1.1 WSIF . 32
3.1.2 Apache Axis 2 . 34
3.1.3 JAX-WS . 35
3.1.4 Other Java Frameworks . 36
3.1.5 SOAP::Lite . 36
3.1.6 Dynamic Invocation using XML Type Subsumption 37
3.1.7 Design Patterns for stubless Service Invocation 38
3.1.8 Other Approaches . 39

3.2 Message-based and Asynchronous Service Invocation 40
3.2.1 Client-side Asynchrony Patterns 41
3.2.2 SSDL . 42
3.2.3 WSMQ . 43

4 Design and Implementation 46
4.1 Architecture . 47

4.1.1 Frontend . 48
4.1.2 Daios Messages . 50
4.1.3 Interface Processing . 52
4.1.4 Service Invoker . 52

6

4.2 Implementation . 56
4.2.1 Implementation Issues . 57

4.3 Client-Side Interface . 60
4.4 Advanced Features . 62

4.4.1 Intercepting the Framework . 62
4.4.2 Fixing Daios Behavior in non-standard Situations 63

5 Evaluation 66
5.1 Evaluation Scenario . 67
5.2 Detailed Analysis . 68

5.2.1 Internal Processing . 68
5.2.2 Memory Consumption . 70

5.3 Comparison to other Frameworks . 71
5.3.1 Functional Analysis . 71
5.3.2 Comparison of Runtime Performance 74
5.3.3 Memory Consumption . 77

5.4 Evaluation Summary . 78
5.4.1 Limitations . 79

6 Conclusion and Future Work 80
6.1 Future Work . 81

A List of Abbreviations 84

B SOAP RPC Example 86

C Complete WSDL Example 87

D Complete SSDL Example 89

E Structural Distance Calculation 90

F REST by Example Procedure 91

G WSDL Description to Listing 11 92

H Input Stream Data Source used in Daios 93

I Complete Daios SOAP Example 94

J Complete Daios REST Example 95

K A Logging Interceptor for Daios 96

L Performance Comparison Results 97

7

List of Figures

1 A timeline of distributed computing 10
2 The triangle of publish-find-bind . 21
3 The Web service standards stack . 24
4 Structure of a SOAP message . 25
5 Multihop transmission of a SOAP message 25
6 CPWSI in UML notion . 39
7 Service invocation using reflection . 40
8 WSMQ overview . 44
9 General dynamic invocation procedure 47
10 Daios overall architecture . 48
11 Daios Frontend Structure in UML syntax 49
12 Dynamic SOAP invocation . 53
13 Structural distance example . 55
14 Dynamic REST invocation . 55
15 REST by example . 56
16 AXIOM XML model . 58
17 Daios runtime performance - SOAP invocation 68
18 Daios runtime performance - REST invocation 69
19 Daios memory consumption - SOAP invocation 70
20 Daios memory consumption - REST invocation 71
21 Comparison of preprocessing costs . 75
22 Comparison of simple invocations - linear regression 76
23 Comparison of array invocations - linear regression 76
24 Comparison of binary invocations - linear regression 77
25 Comparison of maximum memory consumption 78
26 Comparison of simple invocations . 97
27 Comparison of array invocations . 97
28 Comparison of binary invocations . 97

8

List of Tables

1 Advantages of SOA . 22
2 Client-side asynchrony patterns . 42
3 Factory class names of Daios backends 49
4 Utility components in the Daios framework 50
5 Atomic type mapping in Daios . 51
6 Third-party software used in Daios . 57
7 Interceptable events in Daios . 63
8 Web service standards support . 72
9 Dynamic invocation features . 73
10 List of Abbreviations . 85

9

List of Listings

1 Integer stack implemented in CORBA 18
2 WSDL extensibility . 27
3 WADL example . 30
4 Dynamic invocation in WSIF . 33
5 Type mapping in WSIF . 33
6 Dynamic invocation in Axis 2 . 34
7 JAX-WS Proxy example . 36
8 SOAP invocation in Perl using SOAP::Lite 37
9 SSDL protocol definition . 43
10 Frontend creation in Daios . 50
11 Constructing Daios messages . 51
12 Parsing types in Daios . 59
13 Using XMLBeans to parse WSDL . 60
14 Blocking invocation in Daios . 60
15 Hard-coding WSDL parameters in Daios 63
16 Accessing the invocation backend in Daios 64
17 SOAP and HTTP headers in Daios . 65
18 SOAP-encoded RPC call . 86
19 Complete WSDL Example . 87
20 Complete SSDL example . 89
21 Structural distance calculation in pseudo-code 90
22 REST by example algorithm . 91
23 WSDL description corresponding to Listing 11 92
24 Input Stream Data Source for AXIOM 93
25 Complete example of Daios SOAP invocation 94
26 Complete example of Daios REST invocation 95
27 Logging SOAP payload using a Daios interceptor 96

10

1 Introduction

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.

In the Land of Mordor where the Shadows lie.
– J.R.R. Tolkien, “The Lord of the Rings” [79]

Ever since computers changed from being huge number crunching engines to smaller
“personal” computers in the mid-eighties users had the wish to be able to connect
several of these PCs to form a single, more capable processor. This need was ful-
filled with the dawn of high-speed LAN and WAN (local and wide area networks):
computers were now able to communicate and cooperate to execute tasks that none
of them could handle on its own. Computers were finally freed from their isolation
and were grouped into computer networks [77]. In the wake of this revolution dis-
tributed systems emerged as a new way of building complex software. Distributed
systems are usually defined as software systems that consist of n (with n > 1) physi-
cally independent computers, but look like one single coherent system to the user [77].

Figure 1: A timeline of distributed computing, taken from [49]

Distributed systems in varying shapes have had a huge impact on enterprise informa-
tion technology from then on: newly implemented systems have almost always been
built with distribution in mind, and existing (“legacy”) applications were integrated
into company IT networks. The idea of enterprise application integration (EAI) [54]
was born. Unfortunately EAI proved to be much harder than people had expected:
legacy systems were built on a huge number of different hardware and software plat-
forms, they were using various proprietary protocols and the number of applications
that had to be integrated was growing almost on a daily basis. These difficulties gave
rise to a number of distribution and integration technologies: message-oriented mid-
dleware [8, 47] (MOM) provided flexible integration patterns such as Publish/Sub-
scribe [30], and middleware systems for remote procedure calls [10] (RPC) massively
simplified the task of writing distributed software systems. With the wide adoption

1.1 Motivation 11

of the object-oriented programming paradigm during the nineties RPC middleware
was quickly expanded to distributed object middleware [77], providing the ability to
(apparently) call objects on remote machines as if they were standard in-memory
objects.

Despite all those achievements a few problems remained: the components that formed
distributed systems were indeed physically distributed, but logically still quite tightly
coupled. Replacing one of these components was about as hard as replacing a com-
ponent in a standalone application. Additionally few of these middleware systems
were really platform-independent, introducing new problems as soon as computers
operating on different technological platforms (such as processors, operation systems,
programming languages, . . .) had to be integrated. Service Oriented Computing [62]
(SoC) aims at eliminating these issues: components in SoC (prevalently referred to
as services) are dynamically mashed up using standardized interfaces and protocols.
Distributed systems in SoC are therefore composed of services that may be built on
various platforms, and which may be exchanged easily. For all this SoC relies on a
special architecture, the Service-Oriented Architecture [61] (SOA). Two technologies
have been established as the standard way to build SOAs: widely known are Web
services [43, 80] and the representational state transfer (REST) [33, 65] model. SOA,
Web services and REST will be explained in more detail in Chapter 2 of this thesis.

1.1 Motivation

As Chapter 2 will explain, Service-Oriented Architectures provide loose coupling of
service providers and service consumers by utilizing the triangle of the operations
“publish”, “find” and “bind” [61]. Producers publish their services using a standard-
ized interface language by registering it in a service repository (or service registry).
Consumers can then use this repository to discover (find) registered services and
bind them in order to be able to invoke these services.

The first two parts of this triangle, publish and find, particularly put requirements
on the service registry and the interface definition language: in order to be able to
publish services an expressive and extensible service definition language has to be
available and be supported by the service registry. Find (look-up) demands for a
reasonably expressive query language in the registry that allows service consumers
to discover services in an automated way. Currently, no Web service Registry imple-
mentation can fully live up to these demands. UDDI [81] does not provide a sufficient
query interface, while the ebXML registry [38] seems powerful but also overly com-
plex [26, 45].

1.1 Motivation 12

The third operation, bind, is independent from the service registry: binding has to
be handled solely by the service consumer. It is essential for the success of SoC that
the consumer can connect to any service that he might discover during the find step
without troubles, and that it is possible to change this binding at any time (specifi-
cally at run-time of the system). As Chapter 3 will summarize this is not easy with
current state of the art Web service client frameworks such as Apache Axis 2 [4]
or Apache WSIF [6]. These frameworks heavily rely on client-side stubs to invoke
services. Stubs are usually autogenerated and make the actual Web service call very
easy (almost transparent) for the developer, but they are invariably hardwired to a
specific service provider and cannot be changed at run-time. Actually the service
provider cannot even be changed at compile-time, since a re-generation of the Web
service stubs as well as a redesign of the client application has to take place as soon
as the provider changes. This is a severe problem for realizing a SOA: if service
providers are hardwired into the service consumer’s application code producers and
consumers cannot by any means be considered loosely coupled. The usage of client
stubs does not follow the idea of SOA, since find as well as bind are in such a situation
actually carried out by the developer: he (as opposed to the client application itself)
decides which Web service should be used to provide a specific service, and he (again
as opposed to the client application) binds the client to this service. An application
which relies on client-side stubs cannot realize a SOA as defined in Chapter 2.

What is needed for the realization of “publish-find-bind” using Web services is a
framework that allows for “stubless” service invocation, that is invocation of services
without depending on any kind of precompiled service access components. Such
a dynamic service invocation framework could (as the SOA vision as described in
Chapter 2 expects) bind to any Web service at run-time, and re-bind at any given
time without the need to recompile or redesign the client application. With existing
frameworks such a stubless call is usually possible using low-level functions or APIs
(what is obvious, since the generated client-side stubs also need some way to execute
the actual Web service call), but often this functionality is overly hard to use and
restricted in power. WSIF for example provides a dynamic invoker, but it is by
default not capable of calling arbitrary Web services. Only services that do not rely
on complex types as message parts are supported. This limitation does not seem ac-
ceptable for a real-life application. Apache Axis 2 on the other hand provides a fully
expressive dynamic invoker, but offers only very limited support to the client-side
application developer when constructing dynamic invocations.

Additionally, existing Web service client frameworks as they are described in Chapter

1.2 The Daios Solution 13

3 often suffer from a few further misconceptions. They are often built to be as similar
as possible to earlier distributed object middleware systems [83], implying a very
strong emphasis on RPC-centric and symmetric Web services. The reasons for this
are manifold. First of all, developers are very accustomed to RPC-style development,
while substantially different communication paradigms (for instance message-driven
or space-based computing [42, 53]) were (and still are) having a hard time to catch
on. It is therefore only natural that Web services (which offer the possibility to be
either used in the document-centric style of SoC or in RPC-style) are much more
often used RPC-centric. This is further supported by the structure of WSDL [84],
the dominant standard for Web service interface definition. As [63] puts it: “WSDL’s
focus on an interface abstraction for describing services makes it difficult to change
the object-oriented or Remote Procedure Call (RPC) mindset and focus on message-
orientation and asynchrony (. . .)”. WSDL is therefore somewhat suboptimal for a
SOA which is based on the exchange of business documents.

1.2 The Daios Solution

1.2.1 Requirements

Taking into account the fundamental maladies of currently available Web service
client-side solutions one can define the following requirements for a Web service
invocation framework that truly supports the SOA vision:

• Stubless service invocation: Given that generated stubs entail a tight coupling
of service provider and service consumer the invocation framework shall not rely
on any pre-generated and precompiled components such as client-side stubs.
Instead the framework should be able to invoke any Web service through a
single interface.

• Protocol-independent : Web service standards and protocols have not yet fully
settled. There is still ongoing discussion about the advantages of the REST ar-
chitecture as compared to the more common SOAP approach to Web services.
The invocation framework should therefore be able to abstract from the under-
lying Web service protocol, and support at least SOAP-based and REST-based
Web services transparently.

• Message-driven: Currently Web services are often seen as a collection of platform-
independent remote methods. The framework shall be able to abstract from
this RPC style which usually leads to tighter coupling and follow a message-
driven approach. The framework shall take an input message from the user, and
return an output message. The user of the framework shall not be concerned

1.2 The Daios Solution 14

with what the interface (the WSDL description) of the actual Web service looks
like more than what is semantically necessary. Hence the user shall not need to
know about operations, port types, ports, and bindings of the invoked service.

• Support for asynchronous communication: In a SOA services might take a long
time to process a single request. The currently prevalent request/response style
of communication is not suitable for such long-running requests. The frame-
work shall therefore also support asynchronous (non-blocking) communication.

• Simple API : Current dynamic invokers are often not intuitive to use. The
framework shall utilize the message-driven approach to make the API to the
user as simple as possible. The API shall make intensive use of optional pa-
rameters. All details of the Web service call shall be definable by the user, but
as few as possible shall be mandatory. Therefore the API of the framework
shall be powerful enough for the experienced, and simple enough for the casual
user.

• Acceptable runtime behavior : The framework shall not imply sizable overhead
on the Web service invocation. Using the framework shall not be significantly
slower than using any of the existing Web service frameworks.

1.2.2 Daios

With the requirements presented in Section 1.2.1 in mind a new client-side Web ser-
vice framework was designed and implemented. Daios (Dynamic and asynchronous
invocations of services) works as a dynamic invoker for any Web service that is ac-
cessible either via the SOAP [85] protocol or through a REST-based Web service
interface. Daios supports WSDL as interface definition language for SOAP-based
services and “REST by example” (see Chapter 2) for REST-based services.

Daios is designed to be used similar to MOMs: the client developer is not supposed
to “call operations” of the target service, but to simply pass a message to it. Daios
will extract the necessary low-level information (such as operation name, port and
port type, binding, . . .) from the interface definition, dynamically construct a call
and return the result to the client (again as a message). Additional low-level pa-
rameters (for instance SOAP headers) may be set in order to force Daios to exhibit
some specific behavior. Note that this approach decouples the Daios-powered client
application from the service interface: even if the description of the service changes
(but the semantics stay the same) the necessary Daios client code may still remain
unchanged.

1.3 Organization of this Thesis 15

Message-passing systems are inherently asynchronous. Daios therefore supports (be-
sides the standard synchronous request-response style) three different invocation
asynchrony patterns [82] for asynchronous communication: “Fire and Forget” is used
in cases when no response is expected from the service provider; “Poll Object” and
“Callback” both return a result as the service finished. “Poll Object” allows the
client to decide on its own when it wants to process the result, while “Callback”
immediately interrupts the client to return the result.

Chapter 4 will present the design of the Daios framework in detail, and give code
examples demonstrating how Daios can be used in real life. Chapter 5 will give a
critical evaluation of the implementation of the framework, compare its performance
against existing Web service technologies, and comment on whether the goals that
lead the Daios design and implementation have been met.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows:

Chapter 2 will detail the current state of the art in distributed object middleware
and Service-Oriented Architectures. It will explain the technological background
of Web services and show how they can be utilized to build SOAs. The Chapter
will be concluded with a look at the representational state transfer (REST) model
which is the basis of the WWW (World Wide Web), and can also be applied to SOA.

Chapter 3 will then continue with a consideration of the relevant related work in the
area of Web service invocation. It will show a selection of client-side solutions that
are available at the moment, and evaluate how useful they are for dynamic service
invocation. Special emphasis will be put on solutions in the Java programming lan-
guage, but other solutions will also be mentioned.

The design as well as the actual implementation of Daios will be described in Chap-
ter 4. This Chapter will explain the overall architecture of Daios in some detail and
will give some code examples of how Daios can be used in practice.

Chapter 5 will provide a critical evaluation of the Daios framework. It will compare
Daios to existing solutions in terms of functionality, invocation response times and

1.3 Organization of this Thesis 16

memory consumption.

Finally Chapter 6 will conclude the thesis with some final remarks and an overview
of future work.

17

2 State of the Art Review

“What does your architecture look like?” - “My architect thinks it’s
service-oriented, my developers insist it’s object-oriented, and my ana-
lysts wish it would be more business-oriented. All I can tell is that it is
not what it was before we started using Web services.”
– Discussion at a “SOA-meets-business” conference [29]

The following Chapter will detail the current state of the art in the area of distributed
computing with emphasis on distributed object middleware, Service-Oriented Archi-
tectures and Web service technologies. This Chapter is intended to explain the
technologies, concepts and notions that will be used through the rest of this thesis.

2.1 Distributed Object Middleware

In Chapter 1 the idea of operations that can be invoked remotely over a network
across the boundaries of memory spaces and physical computers (RPC invocations)
has been introduced . Distributed object middleware systems are a direct successor
of the early RPC-based systems: they combine the idea of remote invocation with
the notions of object-oriented programming (OOP) [92]. Early research systems such
as Arjuna [64] and Emerald [11] for the C++ language were not widely adopted by
practitioners for various reasons and are not in use anymore. The first industry-
strength (and still most important) distributed object systems were OMGs CORBA
(Common Object Request Broker Architecture), Microsoft’s DCOM (Distributed
Component Object Model) and the RMI (Remote Method Invocation) functionality
implemented in Java. The development of these systems has been driven by the
wish to bring the strengths of OOP such as object references, inheritance, exception
handling and polymorphism to distributed systems [28]. The general idea of all
these systems is to provide a unified view on local and remote objects [90]. This
intend has not been fully accomplished: today there are still fundamental differences
between local and remote invocations regarding latency, concurrency, error handling
and memory access [90]. Schmidt et al. have therefore dedicated the second as well
as the fourth book in the famous POSA (Pattern-oriented Software Architecture)
series to patterns for distributed computing [13, 69], describing best practices to
minimize the evident challenges of distibuted computing.

2.1 Distributed Object Middleware 18

2.1.1 General Concepts

One important concept of distributed object middleware is the notion of interface
definition through an IDL (Interface Definition Language). The IDL describes the
public interface of a remote object in the same way a class definition describes the
interface of a local Java object. Listing 1 depicts an example of an IDL definition of
a integer stack implemented in CORBA. The similarities to interface definitions in
object-oriented programming languages are rather obvious.

� �
1 i n t e r f a c e CORBAIntStack : Object {
2 except ion Overflow {} ;

3 except ion Underflow {} ;

4 void push (in i n t newVal) r a i s e s (Overflow) ;

5 i n t pu l l () r a i s e s (Underflow) ;

6 } ;� �
Listing 1: Integer stack implemented in CORBA

Other techniques used to reduce the complexity of distributed object middleware
systems include the use of client and server stubs. Stubs are “generated by remote
procedure call systems in order to implement type-specific concerns, such as mar-
shalling and operation dispatch. The input to that generation process is an interface
definition that defines the formal parameters (. . .)” [28]. Usually, middleware sys-
tems include a tool that compiles stubs from the according IDL. Stubs provide static
type safety to distributed programming: invocations using the client stubs are type
safe as long as the server interface (the IDL interface of the server) does not change.

2.1.2 Dynamic Invocation Interfaces

Although statically generated stubs exhibit distinct advantages they also impose
some restrictions on the applications developed: most importantly these stubs imply
a tight (design-time) coupling between client and server objects. Since distributed
object middleware treats local and remote objects identically this coupling is as tight
as between local objects; an interface change in one of the objects will most likely
cause all implementations to change that depend on that object. For most appli-
cation domains this restriction is not too bad, but there are problem areas where a
looser coupling is desireable or necessary.

Distributed object middleware systems therefore often specify a dynamic invocation
interface (DII). The DII allows for “on-the-fly” requests to objects not yet known
during design-time of the application. Such a dynamic request has to define at least

2.2 Service-Oriented Architectures 19

the following items [28]:

• The server object that should be invoked.

• The name of the operation that should be invoked.

• The parameters of the invocation.

• A data structure that is made available for the result.

Dynamic invocation is never type safe. It can neither be ensured that the requested
server object actually exists, nor that it exports the requested operation, nor that
the parameters given fit the operation.

Dynamic Invocation Interface is also the name of a pattern in the fourth POSA book
[13], which describes (in an abstract form) dynamic interfaces to various types of
components. DIIs of distributed object middleware systems are concrete implemen-
tations of this pattern.

2.2 Service-Oriented Architectures

Service-Oriented Architectures (SOAs) are one of the latest “buzzes” in the fast
moving computer science industry, getting a lot of attention from researchers as well
as from practitioners. SOAs are considered as “the next major step in distributed
computing” [61] by a big part of the research community today.

2.2.1 Definition and Concepts

Despite this tremendous advertence in the field an universally accepted definition
of what actually makes a SOA has not emerged so far. The Organization for the
Advancement of Structured Information Standards (OASIS) has recently published
a reference model for Service-Oriented Architectures [39] which defines a SOA as
follows:

Service-Oriented Architecture (SOA) is a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different
ownership domains. [39]

2.2 Service-Oriented Architectures 20

Unfortunately this definition is per se not very satisfying: it is so general that it can
be applied to almost any architecture for heterogeneous systems. Another definition
was stated by Thomas Erl in [29]:

SOA is a form of technology architecture that adheres to the principles of
service-orientation. When realized through the Web service technology
platform, SOA establishes the potential to support and promote these
principals throughout the business process and automation domains of
an enterprise. [29]

This definition is (very much like the OASIS definition) not very rich in content:
SOA is more than just an architecture built on top of services. The following Section
will try to highlight the defining features of any SOA in a more explicit way.

First of all, Service-Oriented Architectures are centered around services. According
to [29] services are:

• loosely coupled - services are self-contained and self-managing. The number of
necessary connections to systems “outside” of the service are minimal. Services
have low representational, identity and communication protocol coupling [59].

• defined by a service contract - services adhere to a communications and interface
definition or to a service description,

• autonomous - services have the absolute control over the function that they
realize,

• abstract - services hide all implementation details from the rest of the world,
revealing only the service contract,

• reusable - services are intended for and promote reuse,

• composable - in order to promote reuse services are easily composable, i.e.
simple services can be assembled and coordinated to build composite services
(service composition) [24, 48],

• stateless - services do not have a state, and

• discoverable - services can be found and evaluated via external discovery or
registry mechanisms.

2.2 Service-Oriented Architectures 21

As already pointed out, services are an important, yet not the only feature that
defines a SOA. One other concept is from eminent importance in that context: Figure
2 shows what will be referred to as the “triangle of publish-find -bind” throughout
the remainder of this thesis.

Figure 2: The triangle of publish-find-bind

Figure 2 shows that in any SOA three distinct roles have to be present:

• The service consumer (or service requester, service client) is interested in a
certain capability. He needs a service that provides that capability.

• The service provider (or service implementer) is able to provide a certain ca-
pability. He needs a client that he can serve (and, usually, charge).

• The service registry (or service broker, service discovery agency) is the broker
that brings the former together. The service registry knows which provider has
which capabilities, and can be queried by the client.

A typical SOA will often consist of a huge number of service requester and service
providers, while there will usually be only one service registry (although the registry
may be replicated or distributed for reasons of safety and performance).

Requester, providers and registry interact via three different operations: first of all,
providers publish their services with the service registry, so that requesters can find
these services. Once a requester has found a service that exposes a capability that
he needs he can bind to this service. Binding is independent from the registry - as
opposed to a broker in the POSA pattern [14] the service registry in a SOA is not
responsible for mediating the actual service invocation. Note that the registry has
a distinct duty in this scenario: it decouples service consumer and service provider.
Without the service registry consumer and provider have to know each other right

2.3 Web Services 22

from the start, and can therefore not be considered decoupled in space after the
categorization in [30].

Another important property of SOAs is the adherence to open standards. “Standards
are the only way”, as [49] puts it. In a SOA all operations (publish-find-bind) as well
as all used basic technologies (registry, service definition, . . .) are defined in formats
which are freely available to anyone interested.

2.2.2 Advantages

Property Advantage
Based on indepen-
dent services

Complex systems can be composed of atomic ser-
vices through service composition

Publish-Find-Bind Service Registries decouple consumers and
providers; consumers can rebind to different
providers at run-time; “late configuration” is
possible [48]

Based on open
standards

Open standards provide interoperability; no “lock
in” on vendors or platforms

Coarse granularity Planned on a high level of abstraction [48]; imple-
mentation details not visible outside of the services

Table 1: Advantages of SOA

Table 1 summarizes the properties of a Service-Oriented Architecture, and describes
what the advantages of this approach are. Simplifying it can be said that SOAs
realize loose coupling of service consumer and service provider by utilizing the trian-
gle of Publish-Find-Bind, and are interoperable by nature through relying on open
standards for all communication. Services can be reused easily through service com-
position. Such an “ideal” SOA will be referred to as the SOA vision in this thesis.
The term Service-oriented Computing (SoC) [48, 61, 62] has been established for
building a distributed system on top of such a Service-Oriented Architecture.

2.3 Web Services

One possibility to realize a Service-Oriented Architecture as defined in Section 2.2,
and the one that gets by far the most attention from the scientific community, are
Web services [23, 43, 80]. A Web service is “a self-describing, self-contained, modular

2.3 Web Services 23

application accessible over the Web. It exposes an XML interface, it is registered
and can be located through a Web service registry” [80]. Web services are all about
standards: they use SOAP [85] as communication protocol and WSDL, the Web
Service Definition Language [84], as interface definition language. SOAP as well as
WSDL are independent from programming languages or hardware platforms, and
can be processed by any system that is able to process XML, the eXtensible Markup
Language.

These attributes align Web services as a robust technology to realize the SOA vision.
Revisiting the defining features of SOA services from Section 2.2 one can see how
they map to Web service features:

• loosely coupled, autonomous, abstract and stateless - Web services are by defini-
tion self-contained and modular, and are therefore suitable for building loosely
coupled and autonomous services.

• defined by a service contract - Web services have interfaces defined in WSDL.

• composable and reusable - Web services can be composed and choreographed
using standardized technologies (for instance WS-BPEL [40]).

• discoverable - Web services can (at least in theory, see Chapter 1) be discovered
through Web service registries (e.g., UDDI [81] or the ebXML registry [38]).

This strong match between SOA and Web service features has often led people to the
misconception that SOA and Web services are more or less interchangeable terms
[29, 83], so that every application that is implemented using Web services is also
magically service-oriented, or that SOAs can only be built using Web service tech-
nology. Nothing could be farer away from the truth: many of today’s Web service
applications are as strongly coupled as any CORBA or EJB application, and many
people in the REST community argue that REST is a much better way of imple-
menting SOAs than SOAP-based Web services. It is an important message to keep
in mind that it is not sufficient to just use Web services in order to build a SOA, but
to use them in concordance with the SOA paradigm.

Web services are built on top of open standards: the enabling technologies for Web
services are XML as data encoding language, and XML Schema for the type system.
HTTP is often used as transport protocol, but other bindings (e.g., raw TCP, SMTP,
JMS, . . .) are also possible. Web services are often stated to utilize a set of three core
standards (SOAP, WSDL and UDDI) [23, 80] and optionally an almost unlimited
number of extensions (usually referred to as WS-* standards). Figure 3 shows the

2.3 Web Services 24

Figure 3: The Web service standards stack

Web service standards stack [24, 43]: on network level a transfer protocol (which is
independent from Web service technology) is necessary, a usual pick is HTTP but
others are possible; on top of this transfer protocol a messaging protocol (SOAP)
is defined; above the messaging layer the service definition layer is located, which is
implemented in WSDL; at the topmost logical level reside the Web service compo-
sition standards, WS-BPEL and WS-CDL [87]. Besides this layered structure a few
“vertical silos” are necessary: standards as UDDI, WS-Security and WS-Policy [67]
span many or all levels of the Web service stack. For reasons of brevity the WS-*
standards are not further covered in this thesis, but there are a lot of good books
(for instance [29, 67]) available which dedicate a lot of space to WS-*.

2.3.1 SOAP

SOAP is the communication protocol utilized by Web services. It is a dialect of
the XML data encoding standard, and is therefore naturally platform-independent,
reasonably human-readable and machine-processable. SOAP was initially created by
Microsoft, and further advanced in a joint effort of Microsoft, IBM, Lotus, Devel-
opmentor and UserLand [23]. Now it is a recommendation of the World Wide Web
Consortium (W3C). Originally SOAP was an acronym for “Simple Object Access
Protocol”, but with version 1.2 of the SOAP specification [85] it is considered a stan-
dalone term [29]. The obvious reason is that the protocol is no longer used to access
“remote objects”, which made the name rather misleading.

2.3 Web Services 25

Figure 4: Structure of a SOAP message

Structure. SOAP messages have a simple structure (Figure 4): they consist of an
envelope, an optional message header and a mandatory message body. The header
contains information that is important for transmitting, relaying and processing of
the message, while the body contains the actual XML payload data. SOAP is de-
fined in a very extensible way. Additional headers can be introduced to support new
functionality (such as security, transactions, . . .). Usually header fields which are
unknown to the processor of a message are simply ignored, but the mustUnderstand

attribute can be used to define headers that have to be interpreted by the processor.

Although the idea of SOAP (as of version 1.2) is to transport a payload message it
was also a distinct design goal to make the encoding of RPC calls as straightforward
as possible [85]. Appendix B shows an example of a message that wraps an RPC
call to the operation getAddress, with five arguments (in0 to in5). This message
contains an empty message header.

Figure 5: Multihop transmission of a SOAP message

Processing Model. SOAP assumes that it is not always (and with any transport
protocol binding) possible to presume a direct point-to-point connection between
sender and receiver of a message. Therefore a processing model is defined, which

2.3 Web Services 26

can be utilized to transfer messages over multiple hops. The processing model dis-
tinguishes three different roles. In any communication there is exactly one initial
sender which creates the message, any number of intermediaries which simply for-
ward the message and exactly one ultimate receiver, which finally consumes the
message. Transmission over multiple hops does not need to use the same transport
protocol for every hop. Figure 5 shows an example transmission over three hops
using three different transport protocol bindings.

2.3.2 WSDL

Another important W3C recommendation is the Web Service Definition Language
(WSDL) [84, 89]. WSDL is used to define the abstract and concrete interface of
Web services. Like SOAP it is an XML grammar and therefore inherently platform-
independent. It specifies all important service information, such as what the Web
service does, where it is located and how it can be invoked [80]. Very important in
WSDL is the separation of abstract definitions from the concrete network deploy-
ment and binding details. In its function as interface description language WSDL
has some obvious similarities to the IDL used in distributed object middleware (as
described in Section 2.1). As Chapter 1 explains, this similarity gives rise to some
problems and misconceptions, which are examined within the scope of this thesis.
WSDL currently comes in two slightly different flavors: version 1.1 [84] is not recent
anymore, but it is broadly accepted in the community and supported by almost all
tools on the market. The recent WSDL specification is version 2.0 [89], which brings
some enhancements and simplifications, but which is not yet widely supported. If
not stated otherwise the information below applies to the 1.1 version of WSDL, since
this version is by now much more relevant in the industry.

Structure. The WSDL 1.1 standard defines six major elements [84] that make up
any WSDL description:

• types provide data type definitions using XML Schema,

• messages represent abstract notifications that the service accepts or sends,

• portTypes are abstract operations,

• bindings bind portTypes to a concrete protocol and data format specification,

• ports can be considered as the “endpoints” of bindings, i.e. the address of a
certain binding, and

2.3 Web Services 27

• services are sets of ports, i.e. they group a number of related ports.

WSDL 2 renames portTypes to “interfaces”, and removes the concept of messages
entirely. Messages in WSDL 2 are specified directly in XML Schema [89]. A full
example of a WSDL 1.1 definitions file which uses all of the above major elements is
provided as appendix C.

One advantage of WSDL is the easy extensibility of the language. The WSDL stan-
dard itself [84, 89] uses extensibility to provide language bindings, for instance for
SOAP and HTTP. Listing 2 shows how extensibility (the element wsdlsoap:address)
is used to define a SOAP endpoint.� �
1 <wsd l : s e r v i c e name=”MessageBasedOrderService ”>

2 <wsd l :po r t b inding=” impl :OrderServ iceSoapBinding ”

3 name=” OrderServ ice ”>

4 <wsd l soap :addre s s l o c a t i o n=” ht tp : // l o c a l h o s t / OrderServ ice ”/>

5 </ wsd l :po r t>

6 </ w sd l : s e r v i c e>� �
Listing 2: WSDL extensibility

MEPs. As a legacy of distributed object middleware WSDL endpoints are often
invoked in a request/response manner. However, this is not the only transmission
primitive (Message Exchange Pattern, MEP) supported [84]:

• One-way - the endpoint receives a message, and does not reply.

• Request-response - the endpoint receives a message, and replies with a message.

• Solicit-response - the endpoint sends a message, and receives a response.

• Notification - the endpoint sends a message, and does not expect a reply.

WSDL 2 further extends the support for MEPs: in WSDL 2 eight MEPs are prede-
fined, and further MEPs can be introduced easily.

WSDL Binding Styles. WSDL is so frequently used in conjunction with SOAP
that the WSDL recommendation predefines two different styles of WSDL-to-SOAP
binding. The two possibilities are RPC style or document style [15]. Both of these
encoding styles can have a so-called use, either encoded use or literal use. This sums
up to four different combinations: RPC/encoded, RPC/literal, document/encoded

2.4 REST 28

and document/literal, all of them mutually incompatible. To clean up this mess an
industry organization (the “Web services interoperability organization”, WS-I) was
formed. WS-I has released a basic profile that defines interoperable Web services [91].
The WS-I basic profile basically bans the encoded use for its interoperability issues,
and promotes document/literal instead. Most modern SOAP frameworks have fol-
lowed the WS-I recommendations and have abandoned the once famed RPC/encoded

style in favor of document/literal.

A special version of document/literal which is frequently used is document/wrapped,
or document/literal with wrapped parameters. Document/wrapped is document/

literal with a few additional confinements:

• Messages in document/wrapped may not have more than one message part.

• The type of this single part (the wrapper) has a local name equal to the oper-
ation name of the operation that this message is associated with.

• The wrapper type is defined using the sequence compositor. Other composi-
tors (all or choice) may not be used.

• The wrapper type has no attributes.

In practice this means that the parameters of document/wrapped operations are all
wrapped up in a single type, which has a name equal to the name of the operation
to invoke. This has a few practical advantages: the operation name is contained in
the SOAP message (as the name of the wrapper type), and messages structured like
that can be validated against the schema contained in the WSDL description with a
standard XML Schema validator. The main disadvantage of the style is that it can
not support overloading of WSDL operations [15]. Listing C in the appendix uses
the document/wrapped WSDL-to-SOAP binding style.

2.4 REST

A different flavor of Web services was inspired by Fielding’s Representational State
Transfer (REST) architectural style [33, 34]. In its most general form (the form
originally described by Fielding) REST is a catch-all way of building extremely large-
scale distributed systems, and the architectural style that guided the development
of the HTTP [32] and URI (Universal Ressource Identifier) [9] standards. Today the
synonym “REST” is mostly associated with a certain (“RESTful”) way of building

2.4 REST 29

services and SOAs.

The motivation behind RESTful services (often seen as opposed to
SOAP/WSDL-based services) has been expressed quite well in [65]:

The problem is, most of today’s “web services” have nothing to do with
the Web. In opposition to the Web’s simplicity, they espouse a heavy-
weight architecture for distributed object access, similar to COM or
CORBA. Today’s “web service” architectures reinvent or ignore every
feature that makes the Web successful.

As a consequence, the REST community strives to promote Web services that are in
line with the ways of the WWW, instead of simply building an entirely new protocol
suite on top of the established Web standards HTTP and XML.

RESTful Web services are defined by the following properties1 [65]:

1. Resource-orientation – RESTful Web services are all about data. In the end,
most services are all about creating, retrieving or modifying some kind of
data. These resources are therefore the central element in a REST architecture.
Ressources are often represented in XML, although other representations such
as HTML, JSON (JavaScript Object Notation) or plain text are also perfectly
valid.

2. Addressability – Every resource managed by a Web service has to be directly
addressable via an URI. The URI of a resource has to contain everything nec-
essary to uniquely identify the resource.

3. Statelessness – RESTful Web services do not maintain a state. The state of a
client is entirely managed by the client, or encapsulated in the resources.

4. Uniform interface – Basically, every RESTful service exposes the same (uni-
form) interface: REST allows you to read resources (GET), create resources
(PUT or POST), modify resources (PUT) or delete them (DELETE). GET is a
safe operation (it does not alter the state of any resource), PUT and DELETE
are idempotent (issuing n DELETE or PUT operations has the same effect as
doing it just once).

1Actually, [65] uses these properties to define a special type of RESTful architecture, the

”Resource-Oriented Architecture”, but the author of this thesis thinks that these properties are

a good definition of any type of RESTful architecture.

2.4 REST 30

Theses properties also mark the main differences between a RESTful service and the
way SOAP/WSDL-based services are built. Snell states in an IBM online article
from 2004 that the main difference between RESTful and SOAP-based services is
that the first are centered on the notion of resources, while the second are based on
the notion of ”activities” [73]. Property 2 is also a distinct differentiator: SOAP-
based services are available through one or a few endpoints; nothing in a SOAP-based
service is actually addressable. Property 4 means that SOAP and RESTful services
use HTTP in a completely different manner: SOAP-based services use only HTTP
POST to transport SOAP messages (basically reducing HTTP to data transmission,
ignoring any other capabilities of the protocol). RESTful services on the other hand
use the full HTTP standard. They do not encode method information (the ”what do
you want to do” information) in the request entity, but already in the chosen HTTP
method.

2.4.1 Interface Description in REST

� �
1 <app l i c a t i o n xmlns=” ht tp : // r e s ea r ch . sun . com/wadl”

2 xmlns:ex=” ht tp : //my. example . namespace/”>

3

4 <grammars>

5 <i n c lude h r e f=”MyServiceSchema . xsd” />

6 </grammars>

7

8 <r e s ou r c e s base=” ht tp : //my. search . com/MySearch/Resource1 /”>

9 <r e s ou r c e u r i=”mySearch”>

10 <method h r e f=”#search ” />

11 </ r e sou r c e>

12 </ r e s ou r c e s>

13

14 <method name=”GET” id=” search ”>

15 <r eque s t>

16 <param name=” s e a r c h s t r i n g ” s t y l e=”query”

17 type=” x s d : s t r i n g ” r equ i r ed=” true ” />

18 </ reque s t>

19 <re sponse>

20 <r ep r e s en t a t i on mediaType=” app l i c a t i o n /xml”

21 element=”ex:MySearchResult ” />

22 </ response>

23 </method>

24

25 </ app l i c a t i on>� �
Listing 3: WADL example

Property 4 (uniform interface) also means that an interface definition language such
as WSDL is not nearly as important for REST as it is for SOAP-based services. As a
direct consequence no such language has yet seen wide use. One promising attempt
is WADL, the Web Application Description Language [46, 65]. WADL describes

2.4 REST 31

RESTful Web services by defining what resources exist in a service, how they are
represented, how they are connected and what HTTP methods can be used on them.
XML representations of resources are described in either XML Schema or RelaxNG
[37]; equally expressive languages for other formats (e.g. HTTP, JSON, . . .) are
currently not available.

Listing 3 shows a minimal WADL example. It defines a simple service that can be
invoked by issuing a HTTP GET request to http://my.search.com/MySearch/

Resource1?searchstring=WADL (note the request parameter encoded in the re-
quest). The service will return the search results in XML representation (as defined
in the XML Schema MyServiceSchema.xsd).

Unfortunately WADL is supported very poorly in the Web service community so far.
There are only basic frameworks to process WADL available, and almost no RESTful
service provides a WADL interface description.

Another (less formal) way of describing the usage of RESTful services is to simply
provide example requests (for instance on the homepage of the service). This is
often done as part of the service documentation. These samples are not intended
to be machine-processable, and are often incomplete or fragmented, but in theory
a given example can be automatically parsed and used as a “blueprint” for further
invocations. During the remainder of this theses this approach to interface definition
will be referred to as REST by example.

http://my.search.com/MySearch/Resource1?searchstring=WADL
http://my.search.com/MySearch/Resource1?searchstring=WADL

32

3 Related Work

You don’t have to be a “person of influence” to be influential. In fact,
the most influential people in my life are probably not even aware of the
things they’ve taught me.
– Scott Adams

This chapter gives an overview over relevant existing work in the field of dynamic and
asynchronous invocation of (SOAP-based) Web services. It will show examples of
how current SOAP frameworks in Java handle stubless service invocation, and discuss
what the limitations of these solutions are. It will also clarify how dynamically typed
languages such as Perl handle these issues. Subsequently, existing work in the area
of asynchronous service invocation will be presented.

3.1 Dynamic Service Invocation

As described in Chapter 2 the main advantage that Service-Oriented Architectures
can add to today’s software landscape is an extremely loose coupling of services: a
service-aware client may dynamically (at run-time, as opposed to design- or compile-
time) select an appropriate service that implements the specific functionality that the
client needs, connect to it and invoke it over standardized interfaces. If the service
does not perform well or becomes unavailable the client might just change to another
service implementing a similar functionality. Three steps are fundamental to achieve
such a loose coupling of service requesters and providers: providers publish service
descriptions in a standardized language (usually WSDL, the Web Service Definition
Language), requesters find services that deliver functionality that they need, and
finally requesters bind to these services and invoke them. This Section will detail
how the last of these steps, dynamically binding to services, can be achieved with
current SOAP frameworks.

3.1.1 WSIF

The Web Service Invocation Framework (WSIF) [6] is a client-side Web service frame-
work for the Java programming language that “allows the application-programmer to
program against an abstract service description, in a protocol-independent manner”
[25]. WSIF also pioneered the idea of dynamic Web service invocation for Java: it
was the first major framework that included an explicit dynamic invocation interface.
Listing 4 shows the usage of the DII to invoke a simple service.

3.1 Dynamic Service Invocation 33

� �
1 // crea t e WSIF port

2 WSIFServiceFactory f a c t o r y = WSIFServiceFactory . newInstance () ;

3 WSIFService s e r v i c e = fa c t o ry . g e tS e rv i c e (

4 ”http ://my. s e r v i c e . com/wsdl ” , // path to WSDL

5 ”http ://my. namespace . com” , // s e r v i c e namespace

6 ”MyService” , // s e r v i c e name

7 ”http ://my. namespace . com” , // port type namespace

8 ”MyPort”) ; // port type name

9 WSIFPort port = s e r v i c e . getPort () ;

10

11 // crea t e opera t ions and messages

12 WSIFOperation opera t i on = port . c reateOperat ion (” hel loWorld ”) ;

13 WSIFMessage input = operat i on . createInputMessage () ;

14 WSIFMessage output = operat i on . createOutputMessage () ;

15 WSIFMessage f a u l t = operat i on . createFaultMessage () ;

16 input . se tObjectPart (” hel loWorld ” , ” He l l o WSIF! ”) ;

17

18 // f i r e invoca t ion

19 opera t i on . executeRequestResponseOperat ion (input , output , f a u l t) ;

20 St r ing re sponse = (St r ing) output . getObjectPart (” re turn ”) ;� �
Listing 4: Dynamic invocation in WSIF

Dynamic invocation in WSIF as displayed in Listing 4 is very intuitive, but there is
one caveat: in principle the WSIF DII can handle only a limited number of predefined
data types (such as string, integer, short, . . .). Whenever a user-defined type should
be transferred over a service the type has to be “mapped” to a Java type before
starting the invocation. Listing 5 shows an example where an XML type MyType is
mapped to MyJavaType.� �
1 s e r v i c e . mapType(new QName(”http ://my. namespace . com” , ”MyType”) ,

2 MyJavaType . c l a s s) ;� �
Listing 5: Type mapping in WSIF

The downside is that mapping types as in Listing 5 can only be done if there is a
matching Java type readily available. In a truly dynamic invocation scenario (where
no type information is available at design-time) the WSIF DII can hardly be used.

Today the WSIF project is loosing ground to newer Web service frameworks. The
latest version is already from 2003, and there is no active work on the code base at the
moment. WSIF therefore does not support the newer trends in Web services, for in-
stance REST, MTOM (SOAP Message Transmission Optimization Mechanism) [88]
or most of the WS-* stack. WSIF is also outdated in terms of runtime performance
by now (cp. Chapter 5).

3.1 Dynamic Service Invocation 34

3.1.2 Apache Axis 2

Apache Axis 2 [4] is the direct successor of the well-known Apache Axis [3] Web
service framework. It is a complete re-write of the original Axis code, utilizes an
entirely new architecture and is claimed to be “more efficient, more modular and
more XML-oriented than the older version” [4]. One of the cornerstones of Axis 2 is
AXIOM (AXis Object Model) [2], the XML object model built within the scope of
the Axis 2 project. AXIOM is an efficient XML model based on XML Pull Parsing
[72] (more concretely on StAX, the Streaming API for XML [20]).

Apache Axis 2 incorporates a lot more of the SOA concepts described in Chapter
2 than its predecessor: it supports client-side asynchrony (with explicit support for
SOAP/WSDL Message Exchange Patterns) and works much more on a document
level than the strictly RPC-based Apache Axis. Axis 2 is still grounded on the usage
of client-side stubs to implement Web service clients, but it also supports dynamic
invocations through two slightly different APIs: the OperationClient API provides
full access to the internal DII of Axis 2, the ServiceClient API is an abstraction of
OperationClient and more straightforward to use. Listing 6 shows an DII example
of Axis 2 using the ServiceClient interface.

� �
1 // crea t e and con f i gure the Serv i ce C l i en t

2 Se rv i c eC l i e n t sender = new Se rv i c eC l i e n t () ;

3 Options ax i s2Opt ions = new Options () ;

4 axi s2Opt ions . setTo (new EndpointReference (

5 ”http ://my. s e r v i c e . com/ epr ”)) ;

6 sender . se tOpt ions (ax i s2Opt ions) ;

7

8 // crea t e SOAP payload

9 OMFactory f a c = OMAbstractFactory . getOMFactory () ;

10 OMNamespace ns = fac . createOMNamespace (

11 ”http ://my. namespace . com” , ex) ;

12 OMElement r eque s t = fac . createOMElement (” hel loWorld ” , ns) ;

13 r eque s t . addChild (f a c . createOMText (hel loWorld ” , ” He l lo World ! ”)) ;

14

15 // f i r e invoca t i on

16 OMElement r e s u l t = sender . sendReceive (r eque s t) ;� �
Listing 6: Dynamic invocation in Axis 2

A closer examination of Listing 6 discloses the big drawback of the Axis 2 DII: step 2
in the listing (lines 8 to 13) requires the application developer to manually construct
the entire XML payload of the SOAP message (as AXIOM model). In this case
Axis 2 only takes care of the network transmission, the actual SOAP encoding of the
invocation has to be handled by the client-side application. The OperationClient

API is not better in this context; it allows the application developer to set more

3.1 Dynamic Service Invocation 35

details of the Axis 2 invoker (for instance the SOAPAction), but the SOAP payload
still has to be constructed on application side.

Apache Axis 2 definitely is a step into the right direction (as compared to the first
version), but the DII still does not provide the support that would be necessary
to implement real-world SOA scenarios. In order to use Axis 2 in such scenarios a
wrapper has to be implemented that encapsulates the complexities of SOAP payload
encoding in accordance with a given WSDL definition. The Daios framework as
described in Chapter 4 will provide such a wrapper. Daios internally uses the AXIOM
XML model for XML processing, and it is possible to use the Axis 2 SOAP stack for
data transmission (as one of two alternatives).

3.1.3 JAX-WS

JAX-WS (Java API for XML-based Web Services) is the “official” specification of
how Web services in Java should be handled. JAX-WS is described in JSR (Java
Specification Request) 224 [50], and is the official follow-up to JAX-RPC [44]. The
specification has been renamed by reason that one of the distinct goals of JAX-
WS is to foster a document-centric approach (as opposed to the strictly RPC-based
JAX-RPC). JAX-WS includes support for dynamic invocation and client-side asyn-
chrony. Similarly to most other recent Web services frameworks it does not support
RPC/encoded WSDL encoding any longer and focuses on document/wrapped instead.
JAX-WS states to include support for all XML-based Web services (hence including
RESTful services), but clearly the specification is only focussing on SOAP/WSDL-
based services.

JAX-WS provides two different APIs for dynamic service invocation: the Proxy

API is using the facilities already provided by the Java programming language
(java.lang.reflect.Proxy). This interface can be used to create an invocation
interface to an existing Service Endpoint Interface. Listing 7 exemplifies this. Note
that this invocation does not use a statically generated stub, but still needs an in-
terface corresponding (after the rules defined in the JAX-WS specification [50]) to
the WSDL description of the service.

Obviously the reliance on an existing Service Endpoint Interface limits the usefulness
of the Proxy interface for truly dynamic invocations.

The other DII that JAX-WS specifies is the lower-level Dispatch interface. It pro-

3.1 Dynamic Service Invocation 36

� �
1 Se rv i c e s e r v i c e = Se rv i c e . c r e a t e (

2 new URL(”http ://my. s e r v i c e . com/wsdl ”) ,

3 new QName(”http ://my. s e r v i c e . com” , ”MyService”)) ;

4

5 MyExampleInterface s e i = s e r v i c e . getPort (”MyService” ,

6 MyExampleInterface . c l a s s) ;

7

8 s e i . he l loWorld (” He l lo World ! ”) ;� �
Listing 7: JAX-WS Proxy example

vides methods that allow the application developer to work on XML message level.
This interface supports genuinely dynamic invocations, but (much like the Apache
Axis 2 DII described in Section 3.1.2) demands for in-depth knowledge of SOAP and
the XML structure of Web service messages to be of any use.

Both the Proxy and the Dispatch API include client-side asynchrony. They support
the asynchrony patterns Fire and Forget, Poll Object as well as Callback (see
Section 3.2.1).

3.1.4 Other Java Frameworks

There are plenty of other Java-based frameworks for SOAP/WSDL Web services.
Specifically important for this thesis are (besides Apache Axis 2 and Apache WSIF)
Codehaus XFire [21] and Apache CXF [5]. CXF is a relatively new contestant on the
hard-fought Web services market, and the continuation project of the well-established
XFire. CXF is the result of a merger of the XFire project with the Celtix [58] Java
ESB runtime. Axis 2, WSIF, XFire and CXF will be evaluated in Chapter 5 of this
thesis.

3.1.5 SOAP::Lite

Most of the problems with dynamic service invocation in languages such as Java come
from the strong emphasis on providing stubs and trying to achieve static type safety
when invoking services. Dynamically typed languages such as Perl, Python or Ruby
do not support the concept of pre-compiled stubs or static type safety. Dynamic
service invocation is therefore often extremely simple in such languages.

Listing 8 clarifies this fact: it shows the dynamic invocation of a Web service using
Perl and the SOAP::Lite [74] module. SOAP::Lite “is a collection of Perl modules
which provides a simple and lightweight interface to the Simple Object Access Pro-

3.1 Dynamic Service Invocation 37

� �
1 my $soap = SOAP: : L i t e

2 −> proxy (’ http ://my. s e r v i c e . com/ epr ’)

3 −> hel loWorld (SOAP: : Data−>name(in0=> ’ He l l o World ! ’)) ;

4

5 my $ r e s u l t = $soap −> r e s u l t () ;� �
Listing 8: SOAP invocation in Perl using SOAP::Lite

tocol (. . .) both on client and server side.” [74]. SOAP::Lite is a well-established
SOAP framework that is very easy to use and extremely stable. On the other hand
it is slowly losing shares for its traditional emphasis on RPC/encoded SOAP style.

Listing 8 is remarkably concise: basically one line of Perl code suffices to do the Web
service invocation. SOAP::Lite really reduces dynamic Web service invocation to the
absolutely necessary (endpoint address, operation name and parameters). However,
SOAP::Lite is obviously not message-oriented, and there is no support for client-
side asynchrony or anything besides standard SOAP (that means no REST support,
no MTOM, not even good support for document/literal or document/wrapped

encoding).

3.1.6 Dynamic Invocation using XML Type Subsumption

Within the scope of this thesis the concept is followed that dynamic service invo-
cation can only be achieved by doing entirely without static stubs. Nagano et al.
[57] have presented a slightly different approach to the problem. They propose to
continue using stubs, but to bind them to “functional” interfaces instead of “precise”
ones, so that the same stub is able to invoke any service with a similar signature.
This approach allows for static type safety while retaining the possibility to exchange
service providers at run-time.

The main research problem here is how similarity of interfaces is defined. [57] uses
the concept of XML type subsumption [52] to define structural similarity in XML
Schema types. If two different (but similar) WSDL definitions are compared four
different types of similarity can be observed:

1. Element names are identical. Example: both definitions contain an element
“name”.

2. Element names are not identical, but synonymous. Example: one definition
contains an element “name”, the other contains an element “label”. Note that

3.1 Dynamic Service Invocation 38

it is usually domain-dependent whether two element names can be considered
synonymous. Name and label may be synonymous if they refer to product
names, but not if they refer to the names of persons (since label is usually not
used for persons). Detecting synonymous element names is therefore a hard
and most of all domain-dependent problem.

3. Two or more element names from one definition are merged in the other one.
Example: one definition contains the elements “name” and “address”, and the
other contains a complex element “contact” with the subelements “name” and
“address’.

4. Elements are only present in the one or the other definition.

For the cases 1-3 it is usually very easy to convert a message that is compliant to
one of the definitions to the other format. For case 4 conversion is also possible, but
assumes that the concerning element is not mandatory.

The idea explored in [57] is in theory very promising: it allows to combine the
undoubted gains of static type safety and the simpler programming model of static
stubs with the ability to exchange service providers at run-time. Unfortunately there
are a few practical issues that have to be taken into account: XML type subsumption
obviously only compares interfaces at a syntactical level; there is no way how such an
algorithm can estimate whether two elements with the same name are actually having
the same semantics. Case 2 demands for a well-developed catalog of synonyms for
the problem domain in question. Additionally the concept is only feasible for Web
services which are defined in an XML-based, formalized interface definition language
(what is currently not usual for RESTful services). Therefore the concept was not
adopted for the Daios system, but the idea of interface similarity has been reused in
a slightly different context within the Daios framework.

3.1.7 Design Patterns for stubless Service Invocation

Patterns are tested solutions to recurring problems in Software Engineering, which
are often accepted as the “best” solution to the problem in question. Patterns are
rarely really ingenious or innovative, but they often give names to concepts that
programmers have been using intuitively at all times. One additional benefit of pat-
terns is that they are often composable: programmers may combine several single
patterns to construct more complex structures, sometimes referred to as composite

3.1 Dynamic Service Invocation 39

patterns [66] or compound patterns [82] 2. Software Engineering patterns exist at
several levels of abstraction: the famous “Gang of Four” (GoF) has mostly published
design patterns [41], i.e. patterns at a fine-grained level of abstraction, often imple-
mented using only a couple of classes; the POSA series on the other hand describes
architectural patterns [13, 14, 69], i.e. patterns at architectural level.

Figure 6: CPWSI in UML notion, taken from [12]

Buhler et al. proposed a compound pattern for Web service invocation [12]. Their
Composite Pattern for stubless Web service Invocation (CPWSI) aims at separating
the application interface from the implementation of the service invocation. CP-
WSI combines two GoF design patterns, Factory Method and Bridge [41]. Factory
Method is a creational pattern which is often used to create objects of (at design-
time) unknown type. Bridge separates an abstraction (in the concrete case the inter-
face towards the client application) from its implementation (the actual Web service
backend). Figure 6 shows CPWSI in UML (Unified Modelling Language) [68] notion.

CPWSI “provides an agile software design for the decoupling of the invocation ser-
vices that are found and bound at run-time” [12]. The pattern is therefore an ex-
cellent design choice for dynamic Web service and SOA interfaces. The fundamental
design of the Daios framework as described in Chapter 4 has been vigorously influ-
enced by CPWSI.

3.1.8 Other Approaches

The problems with dynamic service invocation have given rise to a number of “hacks”
and workarounds: one often seen “best practice” is described for example in [51]: they

2In the meantime the community seems to have settled on the term “compound pattern” since

it is not so easily mistaken for the GoF Composite design pattern [13, 41].

3.2 Message-based and Asynchronous Service Invocation 40

Figure 7: Service invocation using reflection, simplified from [51]

use Axis’ WSDL2Java tool to generate Java types for types from WSDL definitions.
These are then compiled using the standard Java compiler javac, loaded into the
classpath and analyzed by means of the Java reflection API. Then they use the WSIF
DII to map the newly compiled Java types to the original WSDL types (as in Listing
5) and invoke the service (as in Listing 4). Finally they extract and analyze the Web
service result (again using reflection). The overall procedure is sketched in figure 7.

It is obvious that this practice can only be seen as a temporary solution: generating
bytecode at runtime is very expensive in terms of performance, and programming
with introspection (reflection) is extremely error-prone. Still, lacking a superior
alternative, practitioners are forced to employ solutions similar to the one described
on a regular basis.

3.2 Message-based and Asynchronous Service Invocation

Today’s Web services are predominantly used in an RPC fashion instead of message-
and document-oriented. This is fundamentally against the idea of SOAs and SoC
and induces some disadvantages: RPC usually implies simple request/response com-
munication, i.e. the communication between client and server is synchronous; the
client thread blocks until the server delivers a result. Even void invocations (invoca-
tions without result) are generally executed synchronously, thus blocking the client

3.2 Message-based and Asynchronous Service Invocation 41

unnecessarily until the server sends a “finished” signal. Message-based communica-
tion is in contrast usually carried out in an asynchronous fashion: client and server
are decoupled; the client does not block until he receives a result from the server.
What is even more important is that message-based communication also helps to
decouple clients and server. Message-based systems do not imply as severe interface
dependencies as RPC-based communication.

3.2.1 Client-side Asynchrony Patterns

Asynchronous communication is multifaceted; there are various subtly different fla-
vors of asynchronous interactions. In [82], four different patterns of client-side asyn-
chrony are described:

• Fire and Forget is a “best-effort” communication pattern; the client tries
to deliver the invocation to the server, but successful delivery is not ensured.
Errors and failures are not reported to the client. Fire and Forget does not
support return messages.

• Sync with Server extends Fire and Forget with delivery confirmations; the
client delivers the invocation to the server, and makes sure that the invocation
is received successfully. Return messages are not supported. Errors and failures
are only reported if they affect the delivery of the invocation.

• Poll Objects are full-fledged asynchronous invocations which deliver invoca-
tions reliably and allow for return messages. Returned data is (as soon as it
becomes available) stored in a special stub, the poll object. Clients can check
(“poll”) the stub when it is convenient for them to retrieve invocation results.

• Result Callback can be used as an alternative to Poll Objects. Just like the
former it supports return messages, but they are delivered differently. When
using Result Callback the client registers a specific callback handler which is
notified as soon as the result is available. The client therefore does not need to
poll for the result, and is interrupted on arrival of the invocation result.

Table 2 compares the four variants of client-side asynchrony. Poll Objects and
Result Callback are obviously the most powerful patterns, but they also make
some demands on the framework and the client-side developer. Fire and Forget or
Sync with Server should be used when no result message is necessary (since these
patterns are simpler to handle and less ressource-intensive).

3.2 Message-based and Asynchronous Service Invocation 42

Pattern Reliable
Delivery

Result
Message

Result Delivery

Fire and

Forget

No Not
supported

n/a

Sync with

Server

Yes Not
supported

n/a

Poll Objects Yes Supported Client has to “poll” for the
result (pull approach)

Result

Callback

Yes Supported Client is informed via call-
back (push approach)

Table 2: Client-side asynchrony patterns, after [82]

SAIWS (Simple Asynchronous Invocation Framework for Web Services) [71] is an
asynchronous Web service invocation frontend that is built around the client-side
asynchrony patterns described earlier [94, 95]. SAIWS supports all four asynchrony
patterns from above. It is implemented as a requester [82], and uses Apache Axis as
SOAP backend.

3.2.2 SSDL

Some work on asynchronous and message-based Web service invocation has been car-
ried out as part of the SSDL project. SSDL (SOAP Service Description Language)
is “designed for describing asynchronous, message-oriented, and multi-message in-
teractions between Web services” [63]. SSDL utilizes existing technologies such as
XML, SOAP and WS-Addressing [86]. The notion of invocations or operations is in-
tentionally disregarded, SSDL is instead based on the concept of one-way messages.
As in WSDL these one-way messages can be grouped into specific MEPs.

The central elements of SSDL are SSDL contracts: contracts “provide the mecha-
nisms (. . .) to describe the structure of SOAP messages that a Web service supports”
[63]. SSDL contracts are therefore similar to WSDL definitions, but with broader
scope. They make use of so-called SSDL protocols, i.e. well-defined sequences of
messages that the service accepts.

Listing 9 shows how SSDL protocols are defined: the example uses the Sequencing
Constraints (SC) framework to arrange two messages in a simple request/response
style. Appendix D extends the example from Listing 9 to a full SSDL contract:
types are defined using XML Schema, these types are used to declare messages, the
messages are arranged in communication protocols, and finally the concrete service

3.2 Message-based and Asynchronous Service Invocation 43

� �
1 < !−− de f ine messages −−>

2 <messages>

3 <message name=”InMessage”>

4 <header r e f=”myInType” />

5 </message>

6 <message name=”OutMessage”

7 <header r e f=”myOutType” />

8 </message>

9 </messages>

10

11 < !−− de f ine p ro t o co l s −−>

12 <p ro t o c o l s targetNamespace=” u r n : s e r v i c e : s c ”>

13 <pro to co l name=” exampleProtocol ”>

14 <sc>

15 <sequence>

16 <msgref r e f=” InMessage” d i r e c t i o n=” in ” />

17 <msgref r e f=”OutMessage” d i r e c t i o n=”out” />

18 </ sequence>

19 </ sc>

20 </ p ro to co l>

21 <p ro t o c o l s>� �
Listing 9: SSDL protocol definition

endpoints are defined using WS-Addressing.

SSDL is conceptually related to Daios since it also addresses many of the problems
that motivated the development of the Daios framework: SSDL criticizes WSDL for
it’s focus on the notion of operations and the predominance of synchronous RPC style
that comes along, and endorses asynchronous and message-based communication
instead. However, the scope of SSDL is significantly different to Daios’ scope: SSDL
concentrates on interactions between Web services, Daios on the other hand works on
the actual Service invocation level. SSDL is therefore more of a competitor to Web
service choreography languages, and can be regarded as complementary to Daios.

3.2.3 WSMQ

WSMQ (Web Services Message Queue) is a specific message-oriented middleware
implementation for Web services [55, 56]. It aims to foster reliability, scalability and
security of Web services while at the same time maintaining all original advantages
of the technology.

Figure 8 displays the general architecture of WSMQ. At client-side an additional
component has to be in place, the Web service simulation. This “simulator” is
implemented as an Interceptor [14] and redirects any Web service invocations to
WSMQ. In the WSMQ system Web service requests are received, classified and put

3.2 Message-based and Asynchronous Service Invocation 44

Figure 8: WSMQ overview, after [55]

into queue. Then the invocations are directed to the original target service, the result
is received and sent back to the client. To the client the whole process looks identical
to a standard invocation without WSMQ intercepting.

This additional level of indirection has a few advantages:

• Increased reliability - usually a Web service invocation simply fails if the server
becomes unavailable before or during an invocation. WSMQ has the possibility
to store the request and retry the invocation at a later time. This makes the
Web service invocation more reliable.

• Decoupling in time - standard Web service invocations are coupled in time -
client and server have to be online at the same time in order to be able to
collaborate. A message queue can loosen this requirement since it can store
requests for later invocations. This way server and client can be online at
different times and still collaborate.

• Load balancing and performance - naively it could be suspected that the addi-
tional layer of indirection reduces the performance of Web service invocations.
According to experiments described in [56] this is not so much the case. Since
WSMQ is able to balance concurrent invocations targeted at the same ser-
vice the overall runtime performance (the time it takes the clients to finish
invocations) in their test scenario is effectively better than without WSMQ

3.2 Message-based and Asynchronous Service Invocation 45

intercepting. However, [56] admits that WSMQs performance may vary in
real-world scenarios.

WSMQ is a good approach to unifying the advantages of MOM systems and Web
service technology. It should however be mentioned that many of the advantages of
WSMQ (reliability, decoupling in time, . . .) are also provided by Enterprise Service
Bus (ESB) technologies [18, 60, 70], which are currently getting a lot more research
echo than message queues such as WSMQ. Other authors are trying to use existing
messaging technologies for Web services instead of developing new ones (see [76] for
an example).

46

4 Design and Implementation

See first that the design is wise and just;
That ascertained, pursue it resolutely;

Do not for one repulse forego the purpose
That you resolved to effect.

– William Shakespeare, source unknown

Chapter 1 has introduced a set of desirable features for Web service clients that truly
support the SOA vision: dynamic service invocation, message-orientation, client-side
asynchrony and support for SOAP as well as REST-based services. Chapter 3 has
described among other things how current Web service stacks and specifications can
deal with these requirements.

The following Chapter will detail the architecture and implementation of the Daios
(Dynamic and asynchronous invocation of services) framework, which has been de-
veloped with special consideration of the requirements defined in Section 1.2.1. Daios
is a Web service invocation frontend for SOAP/WSDL-based and RESTful services.
It supports only fully dynamic invocations without any static components such as
stubs or Service Endpoint Interfaces.

Daios is grounded on the notion of message exchange: Daios clients communicate
with services by passing messages (DaiosInputMessages) to them; services return
the invocation result by answering with messages (DaiosOutputMessages). These
Daios messages are potent enough to encapsulate XML Schema complex types, but
much simpler to use than working directly on XML message level. Daios will take
care of converting DaiosInputMessages into Web service invocations (for instance
by converting them to SOAP according to a given WSDL definition), issue the
invocation, receive the result from the service and convert the result back into a
DaiosOutputMessage. This procedure abstracts most of the RPC-like internals of
SOAP and WSDL; the client-side application does not need to know about WSDL
operations, messages, endpoints or encoding. Even whether the target service is
implemented as SOAP- or REST-based service is (almost) transparent to the client
application.

The backend used to conduct the actual invocation is replaceable: the Daios re-
search prototype comes with two options of invocation backends, one which uses the
Apache Axis 2 stack and one which utilizes a custom-built (“native”) SOAP and

4.1 Architecture 47

REST stack. Unless stated otherwise the rest of this description will focus on the
native backend. Daios also puts much emphasis on client-side asynchrony. All invo-
cations, and using any backend, can be issued either in a blocking way, or as fire

and forget, callback or poll object invocations as explained by the client-side
asynchrony patterns described in Section 3.2.1.

Figure 9: General dynamic invocation procedure

The general procedure of dynamic Web service invocations with the Daios framework
is shown in Figure 9. Firstly clients have to find a service that they want to invoke.
This step is external to Daios (cp. Chapter 1). Afterwards the service has to be
bound. In Daios this step is called the preprocessing phase. During the preprocessing
Daios will compile the definition of the service into an internal representation. For
WSDL-based services this step includes compiling the WSDL definitions file and
the XML Schema contained therein, for RESTful services an example invocation for
“REST by example” can be loaded. When the service is successfully bound clients
can issue any number of invocations to this service until they decide to release the
service binding again. Service bindings can be kept alive for an unlimited amount of
time – bindings are only abstract references and do not imply a permanent connection
to the service, and therefore do not stress the server in any way. However, if the
service (i.e. the interface definition of the service) changes the binding has to be
renewed in any case. Automatic change detection is currently not supported by
the framework and therefore has to be handled by the client application if service
bindings are to be kept alive for a long time.

4.1 Architecture

Figure 10 sketches the general architecture of the Daios framework. The framework
internally splits up into three functional components: the general Daios classes which
are the core of the framework and orchestrate the individual other components, the
interface parsing component which is responsible for preprocessing and the invoker
component which conducts the actual Web service invocations using a REST or

4.1 Architecture 48

Figure 10: Daios overall architecture

SOAP stack. Clients communicate with the framework frontend using Daios mes-
sages which are Daios’ internal data representation format.

The core classes that are considered to be part of the general framework are vital to
the Daios system and irreplaceable. The interface parsing component is separated
from the rest of the system and can be replaced if necessary. The service invoker
component can be chosen and replaced during run-time. All of these components
will be described in more detail below.

4.1.1 Frontend

The frontend component contains everything that is absolutely necessary for the
Daios system to work: the interface to the client, the framework that orchestrates
the other components and a number of utility classes that provide Daios-specific al-
gorithms and procedures. Figure 11 shows a simplified UML class diagram detailing
the internal structure of the Daios framework.

Figure 11 is an instantiation of the CPWSI pattern (see Section 3.1.7 or [12]). The
GoF Bridge pattern [41] is used to separate the Daios interface from the actual

4.1 Architecture 49

Figure 11: Daios Frontend Structure in UML syntax

backend implementation. The Factory Method pattern [41] allows the client to
dynamically choose a backend at run-time by passing the fully qualified class name to
the factory. Currently Daios includes two backend implementations, the Apache Axis
2 backend and the native backend. Table 3 shows these currently available backends
and the associated factory class names. Additional backend implementations can be
provided easily; no code change in the framework is necessary for such an adaption.
Listing 10 exemplifies the creation of a new Service Frontend. Service Frontends are
Client Proxies [13, 82] that wrap concrete Web services (endpoints).

Backend Factory Class Name
Native Backend at.ac.tuwien.infosys.dsg.daiosPlugins.

nativeInvoker.NativeServiceInvokerFactory

Axis 2 Backend at.ac.tuwien.infosys.dsg.daiosPlugins.

axis2.Axis2ServiceInvokerFactory

Table 3: Factory class names of Daios backends

Listing 10 instantiates a new frontend factory (a factory for the native backend),
and uses this factory to create a Service Frontend to the SOAP-based service defined
in the WSDL file http://my.service.com/wsdl. The createFrontend() method
launches the preprocessing phase. Once these methods have returned a new Service
Frontend for the service is bound and ready for invocations.

A selection of other important utility components that are considered to be part of
the general framework are listed in Table 4.

4.1 Architecture 50

� �
1 Serv iceFrontendFactory f a c =

2 Serv iceFrontendFactory . getFactory

3 (” at . ac . tuwien . i n f o s y s . dsg . da i o sP lug in s . ”+

4 ” nat ive Invoker . Nat iveServ i ce InvokerFactory ”) ;

5

6 Serv iceFrontend f rontend =

7 f a c . createFrontend (

8 new URL(”http ://my. s e r v i c e . com/wsdl ”)

9) ;� �
Listing 10: Frontend creation in Daios

Component Responsibility
AtomicTypesMapper Provides Java-to-XSD (and vice versa) type map-

ping for built-in types.
Matcher Measures similarity of Daios messages and WSDL

operations (see Section 4.1.4).
RESTURLEncoder Serializes Daios messages as HTTP GET request

parameters.
TypeParser Converts an XML Schema type system into an

in-memory representation (see Section 4.2.1).
WSDLTypeTree Represents a compiled type system as generated

by the TypeParser.

Table 4: Utility components in the Daios framework

4.1.2 Daios Messages

Daios messages are the standard data exchange format in the framework. They are
used as input to and output from invocations, and encode arrays and complex types.
Daios messages are sufficiently powerful to handle arrays, complex XML Schema
types and arrays of such, but are relatively simple to use for the client-side developer.

Messages are simply unordered lists of name-value pairs, so-called message fields.
Every field has an unique name, a type and a value. Valid types are either built-in
types (simple field), arrays of built-in types (array field), complex types (complex
field) or arrays of complex types (complex array field). Table 5 enumerates all avail-
able built-in types and their mappings to Java types.

Complex types (types which are not represented by one of the types from Table 5) can
be constructed by nesting messages. This way users can construct arbitrarily com-
plex data structures. java.lang.Object types are serialized using the toString()

4.1 Architecture 51

XML Schema Type Java Type
xsd:int java.lang.Integer

xsd:short java.lang.Short

xsd:long java.lang.Long

xsd:boolean java.lang.Boolean

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:dateTime java.util.Date

xsd:base64Binary java.lang.Byte[]

xsd:anyType java.lang.Object

Table 5: Atomic type mapping in Daios

method of the object, and deserialized using a constructor which takes an XML string
as argument. This allows the application developer to write custom serializers and
deserializers for xsd:anyType placeholders.

Listing 11 exemplifies how Daios messages are constructed. The message has four
fields, “name”, “age”, “friends” and “address”. The fields “name” and “age” are
simple. The field “address” is a complex field and therefore represented by a nested
message, which again contains three simple fields. The “friends” field is an array
field and contains an array of simple types. The type definition section of a service
description accepting such a message is exemplified in Appendix G.� �
1 DaiosMessage message = new DaiosMessage () ;

2 message . s e t S t r i n g (”name” , ” Ph i l ipp Le i tne r ”) ;

3 message . s e t I n t (”age” , 2 4) ;

4 message . s e tS t r ingArray (” f r i e n d s ” ,

5 new St r ing [] {
6 ”Sepp Maier” ,

7 ” Fr i t z Huber” ,

8 ”Ferdinand Lang”

9 }) ;

10

11 DaiosMessage address = new DaiosMessage () ;

12 address . s e t S t r i n g (” c i t y ” , ”Vienna”) ;

13 address . s e t I n t (”house” , 1 4) ;

14 address . s e t I n t (”door” , 1 5) ;

15

16 message . setComplex (” address ” , address) ;� �
Listing 11: Constructing Daios messages

4.1 Architecture 52

4.1.3 Interface Processing

The interface processing component is responsible for the preprocessing as shown in
Figure 9. It takes an interface description (in XML notion) as input and provides a
parsed in-memory representation of the given description as output. What exactly
gets generated depends on the type of interface definition provided: if a WSDL def-
inition is given then the interface processing component will compile it, read the
WSDL encoding type, and extract the operation and signature information of all
services as well as the according endpoint addresses. Afterwards the XML Schema
type system contained in the definition is parsed.

In case of a SOAP invocation a WSDL interface is mandatory; SOAP services which
do not provide a formalized WSDL interface are not supported by Daios. In case of a
RESTful service an “example invocation” in XML representation may be provided.
In that case the interface processing component will parse the example request and
store it for later usage. RESTful services may also be used without any formal
interface definition; then Daios will simply try to default to the encoding most often
seen in RESTful services, simple HTTP GET with URL-encoded request parameters.
Other data encoding formats such as JSON are currently not supported.

4.1.4 Service Invoker

The service invocation component is probably the most interesting part of the Daios
framework: it can use the parsed information provided by the interface process-
ing component during the preprocessing phase to construct dynamic invocations to
SOAP- or REST-based Web services. The invoker component is implemented in
an extensible way: new backends (i.e. new service invoker implementations) can be
introduced into the framework very easily. The only requirement for new backends
is that they are derived from the at.ac.tuwien.infosys.dsg.daios.framework.

ServiceFrontend base class and instantiated using a factory class that inherits from
at.ac.tuwien.infosys.dsg.daios.framework.ServiceFrontendFactory. A full
backend provides two different Web service stacks, one for SOAP- and one for REST-
based services. Naturally the course of action during the dynamic invocation is
different for both protocols.

SOAP-based Services. Figure 12 pictures the course of action for a SOAP-based
invocation.

4.1 Architecture 53

Figure 12: Dynamic SOAP invocation

1. The invocation is started by the client application. It sends a DaiosInput

Message to the service invoker. In the standard case this message contains
everything that the client needs to know about the service. All other relevant
invocation metadata (e.g., endpoint address, encoding, . . .) is handled by
Daios.

2. The first step for the invoker is now to compare the received DaiosInput

Message to the WSDL operations defined in the service. The invoker there-
fore uses the facilities provided by the Matcher utility component to find a
WSDL input message with the lowest structural distance to the received Daios
message.

3. When the most fitting WSDL input message is found the DaiosInputMessage

is converted to whatever format the used SOAP stack expects. For the Apache
Axis 2 SOAP stack this results in directly converting the DaiosInputMessage

to SOAP in AXIOM notion (cp. the description of the Axis 2 DII in Section
3.1.2).

4. Then the converted message is passed (along with other necessary invocation
information such as the endpoint address to use) to the SOAP stack, which
will then carry out the invocation and receive the result.

5. The result is converted back into the Daios-internal representation (i.e. into a
DaiosOutput Message).

6. Finally the DaiosOutputMessage is returned back to the client.

This course of action is similar for synchronous and asynchronous invocations: the
main difference is just whether the client is blocked while Daios is proceeding, and
how the invocation result (if any) is returned to the client.

4.1 Architecture 54

The most challenging part of the sequence above is step 2: the Matcher implements
a structural distance calculation algorithm that defines the structural distance of a
given Daios message and a message from a WSDL definition. Structural distance
calculation follows some of the ideas of [57], and is defined by the following rules:

1. If the WSDL message is no input message (i.e. not used as input in any WSDL
operation in the definitions) the distance is ∞.

2. If the Daios message contains a field that has no corresponding part in the
WSDL message the distance is∞. Daios fields and WSDL parts are considered
to be corresponding iff the field name of the Daios field is equal to the part
name.

3. If the WSDL part corresponding to a message field is simple and has a different
type the distance is ∞. If the message field is complex calculate the distance
of the nested Daios message and the type of the WSDL part.

4. Otherwise the distance is the number of WSDL parts without corresponding
Daios fields plus the sum of all distances of nested complex fields.

This algorithm is sketched as pseudo-code in Appendix E. Note that structural dis-
tance is not symmetric: dist(A,B) is not necessarily the same as dist(B,A). The
reason is that WSDL messages may have optional parts, i.e. parts that do not have
to be specified by the client application, but Daios messages should not contain any
information not expected by the service. That means that it is perfectly valid to
have WSDL parts not contained in the Daios message (but the structural distance
will increase), but as soon as there is one field in the Daios message that cannot be
mapped to a WSDL part the distance becomes ∞ and the messages are considered
to be totally incompatible.

Daios will choose to invoke the operation whose input message has the lowest struc-
tural distance to the provided Daios message. In case no input message has a distance
lower than ∞ an error is thrown: the provided input is not compatible with the Web
service at all. If two or more messages are bound for the lowest structural distance
the client application has to specify the input message to use.

Figure 13 gives an example of the distance calculation: the Daios message depicted
left in the figure and the WSDL message in RPC/encoded style at the right side
are a perfect match, i.e. they have a structural distance of 0. If for instance the
field “First Name” would be removed from the Daios message the messages would
still be compatible, but have an increased structural distance of 1. If the Daios

4.1 Architecture 55

Figure 13: Structural distance example

message would be left unchanged, but the part “First Name” removed from the
WSDL message, then the messages would be considered incompatible and have a
structural distance of ∞. The distance would also be ∞ if the field “Door” in the
Daios message would e.g., be of type Long instead of Integer.

Figure 14: Dynamic REST invocation

REST-based Services. Figure 14 shows the necessary activities for REST invoca-
tions. The general sequence is similar to SOAP-based invocations, but for RESTful
invocations no distance calculation is needed. Instead the DaiosInputMessage is
converted to the stack-specific format (either XML or URL-encoded) according to a
given example. If no example is given the Daios message is converted to the default
URL-encoded form.

The algorithm employed for “REST by example” is currently relatively simple, and
is displayed in Appendix F. The algorithm uses the given example as blueprint, and

4.2 Implementation 56

fills all values from the Daios message into elements or attributes with the same name
in the example. If at least one field from the Daios message misses a corresponding
structure in the example then an error is thrown: the example and the provided input
are not compatible. Complex fields are filled recursively. Array fields are represented
by a sequence of two or more elements with the same name in the example.

Figure 15: REST by example

Figure 15 exemplifies REST by example as employed by Daios: the structure of
the example request is filled with the values from the Daios message to produce a
REST invocation in XML notion. Note that both XML Elements and Attributes
are represented by fields in Daios messages, but attributes are only allowed to by
represented by simple fields. Elements can be represented by simple or complex, and
as array or non-array types in the Daios message. If an attribute is represented by
a complex or array field an error is thrown to indicate that the conversion is not
possible.

4.2 Implementation

Daios has been implemented solely using the Java programming language, standard
version 6 (Java SE6). The framework is also usable with Java SE5, but the overall
performance of the system might be lower. Third-party libraries and code was used
whenever that made sense in order to keep the implementation effort low and the

4.2 Implementation 57

quality of the software high. Table 6 enumerates all used third-party software. All
of these libraries are published under an open source license.

Library Version
Apache AXIOM 1.2
Apache Axis 2 1.2
Apache Commons ArrayIterator 3.1
Apache Commons HTTPClient 3
Apache XMLBeans 2.2
Codehaus Jaxen 1.1
Codehaus Woodstox 1
soapUI 1.7
WSDL4J 1.6

Table 6: Third-party software used in Daios

One of the most important libraries used is Apache AXIOM. It has been used for
all internal XML parsing and representation. AXIOM internally uses the Woodstox
implementation of StAX. Apache Axis 2 is used in the Axis 2 backend as SOAP and
REST stack. The native backend utilizes HTTPClient for all HTTP communication
issues. Jaxen is necessary for evaluating XPath expressions against AXIOM models.
WSDL4J is used by the interface processing component to retrieve and parse WSDL
definitions. The ArrayIterator utility from the Apache Commons collection is useful
for all kinds of reflective programming with arrays in Java. The Web service test tool
soapUI [31] is not actually a library, but a standalone desktop application. The code
used to parse XML Schema type systems contained in WSDL definitions has been
extracted from the source code of the soapUI project, and produces an XMLBeans
type system.

4.2.1 Implementation Issues

During the development of the Daios research prototype a few previously unexpected
implementation issues have become apparent. The hardest problems have been the
consistent introduction of XML stream parsing throughout the entire Daios process-
ing chain, as well as the mapping of complex XML Schema types to Java types.

XML Stream Parsing. XML stream parsing increases the performance of XML
processing dramatically: if used correctly the XML document is never kept in mem-
ory as a whole, instead it is only read and wrote on demand. However, to realize this
advantage it is essential that the XML stream is never converted into an in-memory
representation at any point during the processing. If e.g., one component converts the

4.2 Implementation 58

stream into a org.w3c.dom.Document object all performance gains through stream
parsing are lost immediately. That means that application developers need to make
sure that no part in the application is buffering and converting the stream. Unfor-
tunately this will often happen implicitly, as side effect of third-party library usage.

Daios uses XML stream parsing through the AXIOM [2] XML object model. In
AXIOM the XML model can be seen as a collection of “containers”, where every
container is representing a part of the XML tree. Each of these containers is either
sourced, i.e. connected to a input data stream that contains the actual element
content, or already consumed, i.e. filled with already known content. As soon as a
sourced container is read it becomes consumed: if the content of a sourced element
is read for the first time the content is stored in the container and the stream source
is discarded.

Figure 16: AXIOM XML model

Figure 16 exemplifies this: in the figure the elements ConsumedEl1 to ConsumedEl3

are already processed and available in memory. The element SourcedEl on the other
hand is not consumed yet - the content of this element has yet to be read from the
connected data stream. When using AXIOM the developer has to be aware of this
structure, as well as of the fact that the full power of AXIOM can only be utilized
if sourced elements are never consumed preliminary. Specifically dangerous in that
context are the toString() and toStringWithConsume() methods: both are buffer-
ing and reading the whole XML tree, and negating all gains that would come from
stream processing if used properly.

In order to use AXIOM in Daios it has been necessary to define Daios-specific data
sources. Appendix H shows the input stream data source which has been used to
create a fully sourced representation of the return messages in the native backend.
Data source implementations have to provide at least a few methods to serialize their
content to various types of output streams (serialize()), and a method to create
a new XML reader that reads the data source content (getReader()).

4.2 Implementation 59

Type Handling. WSDL definitions contain XML Schema type systems to define
the data structures used in WSDL parts and messages (cp. Section 2.3.2 or [84, 89]).
For the Daios framework it has been a very important issue to parse this type system
and create in-memory representations of the WSDL types.

Even though this problem is practically as old as WSDL there is no good off-
the-shelf solution available up to now: the WSIF project contains a type parser
specifically built for WSDL (org.apache.wsif.schema.Parser), but this parser
is unable to deal with sequence constructs and is therefore basically useless for
document/literal or document/wrapped. XML Schema processors like XMLBeans
[7] or Castor [17] are able to process any valid type system, but need to be fed a
complete XML Schema document, including all namespace declarations and cross-
references. Schemata as contained in WSDL definitions are on the other hand often
fragmented into a number of smaller partial schemata, and use namespace declara-
tions from the WSDL parent document. The XML Schema part of a WSDL definition
therefore needs additional preprocessing before it can be handed to a XML Schema
processor.� �
1 St r ing s t y l e = . . . // s t y l e conta ins the WSDL encoding s t y l e , e . g . ,

2 // document/ l i t e r a l

3 IWSDL wsdl = . . . // wsdl conta ins the WSDL f i l e to parse in

4 // Daios not ion

5 URL ur l = . . . // ur l i s the o r i g i n a l l o c a t i on o f the WSDL de f i n i t i o n s ,

6 // necessary to r e s o l v e r e l a t i v e imports

7

8 WSDLTypeTree types =

9 TypeParser . g e t In s tance (s t y l e) .

10 getElementTypes (wsdl , ur l , s t y l e) ;� �
Listing 12: Parsing types in Daios

For the Daios prototype code from the open source project soapUI [31] has been
used. The code fragments extracted from soapUI are contained in the package
at.ac.tuwien.infosys.dsg.daios.wsdl.parser.soapui, and construct a XML-
Beans type system from a WSDL definition. Listing 12 shows the code necessary to
kick off type parsing in Daios.

When type parsing is started as in Listing 12 then the soapUI code will extract the
XML Schema parts of the WSDL definitions, resolve all external references, add a
few necessary standard namespaces, add all used namespaces from the main WSDL
file, and feed the resulting array of interdependent XML schemata to the XMLBeans
generator, which will produce a Java type system from them. This process is sketched
in Listing 13 (the listing is somewhat simplified for brevity).

4.3 Client-Side Interface 60

� �
1 List<XmlObject> schemas = . . . // schemas conta ins the e x t r a c t ed

2 // XML schemata

3

4 // crea t e compi la t ion op t ions

5 XmlOptions opt ions = new XmlOptions () ;

6 opt ions . setCompi leNoVal idat ion () ;

7 opt ions . setCompileNoPvrRule () ;

8 opt ions . setVal idateTreatLaxAsSkip () ;

9 // . . . a few more op t ions

10

11 // handle namespaces

12 schemas . add (soapVers ion . getSoapEncodingSchema ()) ; // soapenc :

13 schemas . add (soapVers ion . getSoapEnvelopeSchema ()) ; // soapenv :

14 schemas . addAll (defaultSchemas . va lue s ()) ; // other necessary schemata

15

16 // crea t e type system

17 SchemaTypeSystem s t s = XmlBeans . compileXsd (

18 schemas . toArray (new XmlObject [schemas . s i z e ()]) ,

19 XmlBeans . getBui lt inTypeSystem () ,

20 opt ions

21) ;� �
Listing 13: Using XMLBeans to parse WSDL

4.3 Client-Side Interface

The general procedure of using Daios follows the steps displayed in Figure 9. First
of all a fitting Web service has to be discovered. This step is not supported by
Daios (since the service discovery problem is mostly a registry issue). Afterwards
the service has to be bound. This is done as shown in Listing 10. As soon as the
preprocessing is completed the service can be invoked.� �
1 // do preproces s ing as above

2 Serv iceFrontendFactory f a c =

3 Serv iceFrontendFactory . getFactory

4 (” at . ac . tuwien . i n f o s y s . dsg . da i o sP lug in s . ”+

5 ” nat ive Invoker . Nat iveServ i ce InvokerFactory ”) ;

6

7 Serv iceFrontend f rontend =

8 f a c . createFrontend (

9 new URL(”http ://my. s e r v i c e . com/wsdl ”)

10) ;

11

12 // cons t ruc t message as above

13 DaiosMessage message = new DaiosMessage () ;

14 message . s e t S t r i n g (”name” , ” Ph i l ipp Le i tne r ”) ;

15

16 // do b l o c k i n g invoca t ion

17 DaiosOutputMessage out = frontend . requestResponse (in) ;� �
Listing 14: Blocking invocation in Daios

4.3 Client-Side Interface 61

A full example is given in Listing 14. Note how simple blocking dynamic Web service
invocations are in Daios (as for instance compared to WSIF).

Using client-side asynchrony is nothing more complex than blocking communication.
Daios defines the methods fireAndForget(), pollObjectCall() and callback()

for non-blocking invocations. Fire and forget invocations are unreliable in nature
and cannot return a result. Poll object invocations are non-blocking and immedi-
ately return a concrete subclass of at.ac.tuwien.infosys.dsg.daios.framework.
PollObject. This class defines four important methods: responseReceived() and
errorOccured() can be used to check whether the invocation is already finished or
has failed for some reason. The methods getResult() and getError() fetch the
invocation result or a subclass of java.lang.Exception in case of an error.

Callback invocations demand for a little more coding on client application side: for
this asynchrony style the client application has to provide an implementation of
the interface at.ac.tuwien.infosys.dsg.daios.framework.interfaces.IDaios

Callback. In this interface the methods onComplete() and onError() have to
be implemented. Daios will call the respective method when the invocation has fin-
ished successfully or has failed.

Listing 14 is very minimalistic. More complete and interesting examples of how
Daios can be used to invoke existing (as of 18th September 2007) real-world Web
services can be found in the Appendix. Appendix I shows an example of a real-world
SOAP invocation: the sample invokes a service that takes a German bank identifi-
cation number as parameter and returns the details of the corresponding bank. This
service is implemented using Apache Axis 2 and uses a document/wrapped WSDL
encoding style. Appendix J on the other hand exemplifies a RESTful invocation.
In this example the Flickr [35] REST interface [36] is used to retrieve a list of the
currently most “interesting” photos. The example invocation needs a Flickr API key
which can be ordered on the Flickr website for free. It is often argued that the Flickr
REST API is not actually RESTful since it (just like many other well-known REST
APIs) does not adhere to some of the rules for RESTful architectures as described
in Chapter 2 [65]. For instance the service provides only a single service endpoint
address for all invocations and therefore does not adhere to the rule of addressability.
Furthermore the API only uses HTTP GET and encodes the “method” information
as GET parameter. However, the interface is RESTful enough for the purpose of
this demo.

4.4 Advanced Features 62

Most of the Daios code is rather self-explanatory, but there are a few pitfalls and
limitations to keep in mind:

• In SOAP-based invocations it is possible but usually not necessary to explicitly
set the endpoint address of the service to invoke (since the address can be
extracted from the WSDL definition anyway). However, RESTful invocations
need an explicit endpoint address set. Omitting the endpoint address for REST
invocations will result in a runtime error being thrown.

• Daios currently does not set the SOAPAction HTTP header correctly in SOAP
invocations. If this header is actually checked by the service (usually it is not)
then the client application has to set the header explicitly.

• If no interface description is specified when preprocessing is commenced (see
for example the REST invocation in Appendix J) then Daios assumes a HTTP
GET invocation with URL-encoded parameters. If an example request is spec-
ified then HTTP POST with XML-encoded parameters is assumed. There is
currently no way of overwriting these conventions for RESTful service invo-
cations. Other HTTP methods such as PUT or DELETE are currently not
supported due to their low prevalence in current real-world service implemen-
tations.

4.4 Advanced Features

Section 4.3 has explained the basic client-side interface of Daios. This section will
detail a few more advanced features that deserve mentioning.

4.4.1 Intercepting the Framework

The Daios framework has an interceptor interface [69] that allows client application
developers to react to internal events in the framework. That way “services can be
added transparently to [the] framework and triggered automatically when certain
events occur” [69]. Interceptors may hook well-defined access points in order to an-
alyze the internal behavior of Daios, log events or even change the data flow in the
framework.

Daios interceptors are subclasses of at.ac.tuwien.infosys.dsg.daios.framework.
DaiosInterceptor. If only a few events should be hooked it might be advantageous
for the client developer to subclass at.ac.tuwien.infosys.dsg.daios.framework.

4.4 Advanced Features 63

Phase Description
Frontend Creation Preprocessing (service binding)
Invocation Service invocation
WSDL Processing Retrieving and parsing WSDL definitions
WSDL Type Parsing Parsing XML Schema types
REST example fetching Loading an example for “REST by example”
Input Conversion Converting a Daios input message to a stack-

specific format
HTTP transfer The actual service invocation
Output Conversion Converting the invocation response back

from a stack-specific format to Daios mes-
sage format

Table 7: Interceptable events in Daios

DefaultInterceptor instead, the default interceptor which provides an empty de-
fault implementation for each hook. Table 7 summarizes all available access points,
each one corresponding to important phases in the course of dynamic service invo-
cation as described in the Figures 9, 12 and 14. Each phase issues a hookable event
during entry and exit, i.e. there is an entry event and an exit event for each of the
phases in Table 7. Some of the phases are inapplicable for some invocation styles,
e.g., there is no “WSDL type parsing” phase in a RESTful invocation.

An example implementation of a Daios interceptor which logs all SOAP payload
traffic (outgoing requests and incoming responses) to System.out is provided as
Appendix K.

4.4.2 Fixing Daios Behavior in non-standard Situations

� �
1 // do preproces s ing as above

2 Serv iceFrontend f rontend = . . .

3

4 // hard−s e t endpoint and operat ion

5 f rontend . setEndpointAddress (new URL(”http ://my. s e r v i c e . com/ epr ”)) ;

6 f rontend . setWSDLOperationName (new QName(” hel loWorld ”)) ;

7

8 // . . . cont inue invoca t ion as usua l� �
Listing 15: Hard-coding WSDL parameters in Daios

For most cases the general frontend interface as used in the previous examples is
well suited, but there are situations where the application developer wants to have

4.4 Advanced Features 64

more control over Daios’ behavior. For instance the developer may want to choose
an endpoint address that differs from the one defined in the WSDL definition of the
service, or he may want to override the distance calculation algorithm of the mapper
and explicitly specify the WSDL operation to use. Listing 15 shows an example of
this functionality. The resulting application will be (very slightly) faster, but also
rather tightly coupled to the service provider. Using this functionality should there-
fore be avoided if possible.

For more complex modifications of Daios’ behavior it is possible to directly access
the underlying invocation backend. One example is displayed in Listing 16: the Axis
2 backend is accessed and configured to not chunk the request body.� �
1 // do preproces s ing as above

2 Serv iceFrontend f rontend = . . .

3

4 // s e t Axis 2 op t ions to use

5 Options opts = new Options () ;

6 opts . s e tProper ty (

7 org . apache . ax i s2 . t r anspo r t . http . HTTPConstants .CHUNKED,

8 Boolean .FALSE) ;

9 ((Ax i s2Serv i ce Invoker) f rontend . getImplementor ())

10 . se tAxis2Opt ions (opts) ;

11

12 // . . . cont inue invoca t ion as usua l� �
Listing 16: Accessing the invocation backend in Daios

Accessing the backend as in Listing 16 is powerful. It allows application developers
to use the sophisticated possibilities of the Axis 2 SOAP stack and tweak the in-
vocation in various ways. However, the disadvantage is that using specific backend
functionality ties the implementation to the backend - switching to e.g., the native
backend is not so easy anymore, and much of the flexibility provided by the CPWSI
structure of Daios is lost.

It is also possible to access the SOAP and HTTP header fields if this is necessary.
The native backend provides full support in this respect: it allows to set SOAP
and HTTP headers for the invocation request, and provides access to all SOAP and
HTTP response headers. The Axis 2 backend is a little more restricted: here only the
SOAP request headers may be set. Listing 17 gives an example of how to work with
SOAP and HTTP header fields using the native backend: a new SOAP header “mus-
tUnderstand” and a HTTP header “SOAPAction” are introduced, and the value of
the HTTP response header “Server” (the server identification string) is printed to
System.out.

4.4 Advanced Features 65

� �
1 // do preproces s ing as above

2 Serv iceFrontend f rontend = . . .

3

4 // add mustUnderstand SOAP header

5 ((Nat iveSe rv i c e Invoker) f rontend . getImplementor ())

6 . addHeader (new QName(”mustUnderstand”) , ” f a l s e ”) ;

7

8 // add new SOAPAction HTTP header

9 ((Nat iveSe rv i c e Invoker) f rontend . getImplementor ())

10 . addHTTPHeader(”SOAPAction” , ”urn : hel loWorld ”) ;

11

12 // . . . cont inue invoca t ion as usua l

13

14 // Disp lay the se rve r i den t s t r i n g o f the s e r v i c e prov ider

15 System . out . p r i n t l n (

16 ((Nat iveSe rv i c e Invoker) f rontend . getImplementor ())

17 . getResponseHTTPHeaders () . get (” Server ”)

18) ;� �
Listing 17: SOAP and HTTP headers in Daios

A few HTTP headers should not be changed: client applications for instance should
not override the Transfer-Encoding HTTP header; Daios will transfer HTTP re-
quests chunked anyway, and if the header is set inaccurately the server may fail to
process the invocation correctly.

66

5 Evaluation

Better than before.
Better, stronger, faster.

– From the movie “The Six Million Dollar Man”

Chapter 4 has described the implementation of the Daios framework for dynamic Web
service invocation. This chapter will now analyze the performance of Daios in depth:
it will give insight into the internal processing of Daios and compare its performance
to various well-established frameworks. Three different aspects of performance will
be evaluated:

• Functionality : What are the defining features of the framework in question?
What Web service standards does the framework support?

• Response Time: How long is the time span between issuing a request and
receiving the result using the framework in question? How long does every
individual step in an invocation take?

• Memory Consumption: How much memory does a framework use at most
during an invocation? How much memory is used in any step of an invocation?

In order to get a clearer view at the results of the performance comparison this
Chapter will start off by analyzing the internal processing of Daios in detail: it will
be explained what the most important phases of dynamic invocations (cp. Chapter
4) with regard to runtime performance are, and depict how memory consumption is
distributed over the course of an invocation. Afterwards Daios will be compared to
four other Web service frameworks: Apache WSIF (see Section 3.1.1), Apache Axis
2 (Section 3.1.2), Codehaus XFire and Apache CXF (both introduced very briefly in
Section 3.1.4).

Please note that this thesis will only compare dynamic Web service invocations,
and will not research general Web service performance (for instance as compared
to distributed object middleware). This topic has already been extensively covered
in the community (see for instance [19, 22, 27]). Just as little will this thesis be
covering the various possibilities of improving Web service performance (for instance
by using MTOM [88], XML compression [16] or differential SOAP serialization [1]
and deserialization [75]). Addressing any of these topics would deserve a thesis on
its own and has therefore been omitted.

5.1 Evaluation Scenario 67

5.1 Evaluation Scenario

All performance tests have been carried out in the same environment:

• Test machine was an AMD Athlon64 4000+ desktop PC with 1024 MB RAM.
The machine was running on top of Ubuntu Linux 7.04, with a Linux kernel
version 2.6.20 for the AMD64 architecture.

• The test machine was using the standard Sun JRE (Java Runtime Environ-
ment), version 1.6.0 for Linux, and all code was compiled using the Sun Java
compiler javac, version 1.6.0 for Linux.

• The test Web services have been deployed on an Apache Tomcat application
server, version 5.5.17, using either Apache Axis 1.4 (for RPC/encoded services)
or Apache Axis 2, version 1.2 (for document/wrapped services). The Tomcat
server was running on the same machine as the test clients in order to keep the
impact of network latency low.

• Two test services with three operations have been implemented and deployed.
The service implementations have been kept minimal: every operation takes
one single argument (a String, an array of Strings or base64-encoded binary
data) and simply returns the given argument to the client. These three op-
erations have been deployed on Apache Axis using the RPC/encoded WSDL
encoding style and on Apache Axis 2 using document/wrapped. The operation
with a String argument will be referred to as the “String operation”, the op-
eration with the array argument as the “array operation” and the operation
with the binary argument as the “binary operation” during the remainder of
this chapter.

During the test runs the host machine was not used for anything else, i.e. all appli-
cations not necessary for the tests were closed prior to starting the tests. Runtime
tests are subject to unpredictable fluctuations. All runtime tests have therefore
been repeated 250 times and averaged. Time has been measured using the Java
System.currentTimeInMillis() method, and memory usage has been monitored
using the javax.management API. The memory consumption of the Java Virtual
Machine (JVM) itself has been subtracted from the memory to gain a more accurate
measure of the memory overhead of the frameworks. Unless stated otherwise all
Daios tests have been carried out using SOAP and the native backend.

5.2 Detailed Analysis 68

5.2 Detailed Analysis

The following Section will examine the Daios performance on phase level. The phases
used during the evaluation are identical to the ones presented in Chapter 4, but
sometimes phases will be omitted or combined in order to produce a clearer picture.

5.2.1 Internal Processing

First of all a look at the runtime behavior of Daios will be presented: this Section
will clarify what the most expensive (in terms of runtime) phases during different
types of dynamic invocations are. All tests in this Section refer to invocations of
the “String operation”, but the findings below are also applicable to other types of
operations.

Figure 17: Daios runtime performance - SOAP invocation

Figure 17 displays the most relevant phases during a SOAP-based dynamic Web ser-
vice invocation. In the left part of the figure a single SOAP invocation with a rather
small payload is conducted. In such a situation the preprocessing is extremely dom-
inant: about 99% of the overall invocation time is spent in the preprocessing phase.
Within this phase the XML type parsing is the more expensive part (about 70%).
Other phases such as input and output conversion are not significant and are there-
fore omitted in the figure. The right part shows a single dynamic invocation with a
more sizeable payload (about 1 MB). As expected the preprocessing time is constant
for any payload size, but the time to carry out the actual invocation (the time spent
in the invocation phase) increases. This is mostly due to an increased HTTP transfer
time. For this bigger payload the preprocessing share of the total invocation time is
lower, but still very significant (roughly 75%).

However, preprocessing is only necessary for the first invocation of a certain service.

5.2 Detailed Analysis 69

All subsequent invocations can reuse the first service binding. That is, the prepro-
cessing share of the total invocation time decreases with the number of invocations
targeting the same service. It is therefore advisable for client application develop-
ers to target as many invocations to the same service as possible to minimize the
overhead resulting from WSDL processing.

Figure 18: Daios runtime performance - REST invocation

Figure 18 shows that the situation is entirely different for RESTful service invo-
cations. In REST preprocessing is a negligible factor: there is no formal interface
definition comparable to WSDL to compile in this step, and loading an example for
“REST by example” does not cause a big overhead. Even for single small invocations
preprocessing is not a dominant factor in RESTful invocations. The phase denoted
“Other Preproc.” in the figure describes a collection of all other preprocessing ac-
tivities besides example loading, for instance setting up the service invoker.

The overall invocation time for a single RESTful invocation with small payload is re-
markably short: about 35 ms as compared to 1900 ms in SOAP. For bigger payloads
the preprocessing effort becomes more and more dispensable. The actual invocation
can also be handled more efficiently in REST-based invocations: for big payloads the
SOAP invocation phase takes about 650 ms as compared to only 490 ms in REST.
The reason for this difference is the additional overhead entailed by the SOAP pro-
tocol as compared to the quite naive REST way of data transmission.

However, the shorter preprocessing phase in REST invocations does not come with-
out a cost. Since REST is lacking a strong formal interface definition language the
client application developer has to know a lot of details about the service beforehand,
and has to code this knowledge into the service client. This means that current REST
Web service clients are much more coupled to their service provider as SOAP-based
ones. It also means that the reduced runtime during the preprocessing is probably

5.2 Detailed Analysis 70

not actually saved, but only shifted to the client application.

5.2.2 Memory Consumption

A different performance measure is memory consumption. In this Section the mem-
ory footprint of Daios will be analyzed on phase level. The total memory consump-
tion will be separated into two parts, the heap memory and the stack memory. In
Java heap memory denotes the memory area where instantiated objects reside, while
native types such as ints or shorts are stored on the stack. The following tests
refer to using the “String operation” with a rather big payload of about 1.49 MB.

Figure 19: Daios memory consumption - SOAP invocation

Figure 19 shows the memory consumption during a SOAP-based invocation. During
such invocations the memory consumption increases dramatically when the WSDL
definition and XML type system are parsed, and again when the Daios input message
is converted and the HTTP response is received. The size of the later peaks is mostly
dependent on the payload size of the invocation. The overall memory consumption
is relatively high since a lot of service information has to be kept in memory.

REST invocations (figure 20) do not need so much memory since they do not require
a compiled interface definition. During RESTful invocations the memory usage in-
creases when user input is converted and when the HTTP response is received.

Note that the size of the payload is the only really significant factor for REST-based
invocations: before issuing the invocation the overall memory consumption is about
1500 KB (roughly equal to the payload size), and after the response is received
memory consumption rises to little more than 3000 KB, i.e. two times the payload

5.3 Comparison to other Frameworks 71

Figure 20: Daios memory consumption - REST invocation

size. The memory overhead of the Daios framework for REST invocations seems to
be negligible.

5.3 Comparison to other Frameworks

Section 5.2 has given a relatively fine-grained view on Daios’ performance. Now the
scope will be shifted to a more holistic view of dynamic invocations, and compare the
framework to other well-known Web services stacks: Apache WSIF, Apache Axis 2,
Codehaus XFire and Apache CXF. In this Section the frameworks will be examined
as “black boxes”, i.e. the internal structure of the candidates will not be considered.

5.3.1 Functional Analysis

This Section will compare the frameworks with respect to the first performance cri-
terion, functionality. It will detail the features and standards that the frameworks
support. To keep the comparison simple it is necessary to confine to evaluating only
the existence of certain features, and not so much their quality. Exceedingly good or
bad particular cases are commented in the textual descriptions.

Table 8 lists the frameworks’ support for standard Web services features and proto-
cols. A “!” means that the framework includes support for the respective feature.
The Table shows that WSDL 2.0 has not yet caught on: only Axis 2 supports the
new WSDL standard so far. CXF has announced WSDL 2.0 support, but it is not
included in the first release of the framework. RPC/encoded has become very un-

5.3 Comparison to other Frameworks 72

popular since “forbidden” by the WS-I basic profile: only the older test candidate
WSIF and the Daios framework support this encoding style. Supporting at least the
most important WS-* protocols, i.e. WS-Security, WS-Addressing and WS-Policy,
as well as MTOM for efficient SOAP transmission, is standard for industry-strength
Web services stacks. It is also observable that all younger frameworks have embraced
XML stream parsing for efficient handling of XML data.

Feature Daios WSIF Axis 2 XFire CXF
SOAP:

1.1 ! ! ! ! !

1.2 % % ! ! !

WSDL:
1.1 ! ! ! ! !

2.0 % % ! % %

Encoding:
RPC/encoded ! ! % % %

doc/literal % ! ! ! !

doc/wrapped ! ! ! ! !

Transport:
HTTP ! ! ! ! !

JMS % ! ! ! !

SMTP % % ! % %

local % ! % % !

TCP % % ! % %

EJB % ! % % %

WS-*:
WS-Addressing % % ! ! !

WS-Security % % ! ! !

WS-Policy % % ! % !

Other:
StAX ! % ! ! !

MTOM % % ! ! !

Table 8: Web service standards support

It is obvious that the Daios framework falls behind the other candidates in this
comparison, particularly compared to Apache Axis 2 and CXF. Daios is (as opposed
to all other candidates examined here) no industry-strength product but a research
prototype, and up to now more emphasis has been put on dynamic invocation than
on already well-understood state of the art features. However, it is important to note
that none of these missing features poses a conceptual problem, and further versions
of Daios may well include support for SOAP 1.2, WS-Security or WS-Policy.

5.3 Comparison to other Frameworks 73

Feature Daios WSIF Axis 2 XFire CXF
DII:

simple types ! ! ! ! !

arrays of simple types ! ! ! ! !

complex types ! % ! % !

arrays of complex types ! % ! % !

Client-side asynchrony:
synchronous ! ! ! ! !

fire and forget ! % ! % !

callback ! % ! % !

poll object ! % % % !

Client-side REST:
HTTP GET ! % ! % !

HTTP POST ! % ! % !

HTTP DELETE % % ! % !

HTTP PUT % % ! % !

Rest by example ! % % % %

WADL % % % % %

Table 9: Dynamic invocation features

Table 9 focuses more on non-standard features that are relevant with regard to dy-
namic service invocation.

The first block “DII” considers the expressiveness of the dynamic invocation inter-
face of the candidates. Daios and CXF support simple and complex types as well as
arrays of both. Complex type support in the XFire DII has been a long-discussed
issue, but to the best knowledge of the author this issue has never been resolved until
the XFire project was merged with Celtix. Apache Axis 2 has a fully expressive DII,
but it demands for the client application to construct the XML payload of the SOAP
message itself (cp. Section 3.1.2), hence offering very limited support for dynamic
invocations.

Client-side asynchrony is relatively wide-spread in the Web services community to-
day. All newer frameworks provide at least some non-blocking invocation facilities.

REST support is also a property of the newer frameworks: WSIF as well as XFire
do not contain any support for RESTful services while Apache Axis 2 and Apache
CXF exhibit a rather complete set of REST features. “REST by example” is a dis-

5.3 Comparison to other Frameworks 74

tinguishing feature of Daios and not supported by any other candidate so far. The
REST interface description language WADL is not supported by any candidate today.

The question whether a framework supports REST or not is often discussed on an
ideological level: it is often argued that frameworks such as Apache Axis 2 do not
really support REST, since they often reduce REST to “XML over HTTP”, ignoring
the “REST ideology” entirely. For this thesis this ideological debate has been avoided
on purpose, instead the focus has been set on purely technological issues.

5.3.2 Comparison of Runtime Performance

This Section will measure the runtime behavior of the test candidates. It will detail
what response times client applications can expect when issuing dynamic invocations
using the candidate frameworks.

As explained in detail in Chapter 4 dynamic invocations split up in two parts: the
preprocessing, when the key service data is collected and compiled, and the actual
invocation, when a SOAP request is disposed and the response received. Comparing
the DIIs of the candidates is difficult since they are variably developed and require a
different amount of work in the client application. This evaluation therefore concen-
trates on comparing Daios to WSIF, Axis 2, XFire and CXF used for ad hoc dynamic
invocations similarly to the procedure described in Section 3.1.8 or [51]: static stubs
are generated at run-time in the preprocessing phase of the invocation; these stubs
are then used to carry out the actual invocation.

In the following comparison the preprocessing and the invocation are separated:
firstly the performance of the preprocessing step will be compared, afterwards the
actual invocation times will be measured.

Preprocessing. All preprocessing in Daios takes place when a new frontend is
created using the createFrontend() method. To measure the Daios preprocessing
time it is therefore sufficient to meter the time that Daios spends in this method
during an invocation. For all other frameworks it is sufficient to launch the standard
WSDL-to-code compiler of the candidate, and measure how long it takes to create the
static stubs. For this comparison the overhead that would be introduced by loading
the static stubs into the classpath can be ignored since this overhead is extremely
small in comparison to the time necessary for stub generation. In this step the WSIF

5.3 Comparison to other Frameworks 75

framework cannot be evaluated since it does not provide a WSDL compiler of its own.

Figure 21: Comparison of preprocessing costs

Figure 21 compares the preprocessing / code generation times of the test candidates.
Preprocessing in Daios and XFire is relatively fast, about 4 times as fast as code
generation in Apache Axis 2. Interestingly the CXF framework takes almost three
times longer to generate static stubs as its predecessor XFire. Even though Daios is
comparatively fast in this respect it should not be discarded that about 2 seconds on
a standard desktop computer still is a very large overhead for dynamic invocations.

Invocation Time. In the long run the actual invocation time is more important
than the preprocessing overhead (which optimally occurs only once per service). This
Section will compare the invocation performance of the test candidates.

All three operations as described in Section 5.1 are used to evaluate the frameworks;
every test will be conducted once using RPC/encoded and once using document/wrapped
encoding. For RPC/encoded only Daios and Apache WSIF are evaluated since the
other frameworks do not support this encoding style. For every test case the time
necessary to conduct the actual invocation has been measured against linearly in-
creasing payload size.

In theory the dependency between payload size and invocation time should be linear,
but in practice implementation details (e.g., internal buffer sizes and similar) lead
to figures which are hard to read and interpret. For the following Section the data
has therefore been linearized through linear regression. The original (not linearized)
plots are given as appendix L.

Figure 22 details the linearized performance data for simple string invocations. The
left part of the figure shows the results of the RPC/encoded tests. Daios is faster than

5.3 Comparison to other Frameworks 76

Figure 22: Comparison of simple invocations - linear regression

WSIF for any invocation size, and the difference is getting bigger with increasing
payload. For 1800 KB invocations the performance difference is already about 250
ms per invocation. Looking at document/wrapped invocations (right side) one can
discover that Apache Axis 2 has the best runtime performance in this test, but the
differences to XFire, Daios and CXF are only marginal and practically constant with
growing payload size. WSIF is far behind in that test. Both Daios and WSIF are
faster in document/wrapped mode. This is to be expected and reflects the additional
overhead introduced by RPC/encoded encoding.

Figure 23: Comparison of array invocations - linear regression

Figure 23 shows the performance data for array invocations. For RPC/ encoded

(left graph) WSIF is again a lot less performant than Daios. The right graph
(document/wrapped) shows a clearer picture than figure 22: Apache Axis 2 is again
the most performant candidate, slightly faster than Codehaus XFire. The mid-field
is formed by Daios and Apache CXF, already with considerable offset (about 100
ms between Axis 2 and Daios or CXF). Apache WSIF is again by far the slowest
framework in the test field.

Figure 24 depicts the same for the last test operation, the “binary invocation”. For

5.3 Comparison to other Frameworks 77

Figure 24: Comparison of binary invocations - linear regression

RPC/ encoded invocations (left part) Daios is again faster than WSIF, but the differ-
ence is less dramatic as compared to the other test operations. For document/wrapped
invocations (right part) Codehaus XFire is decidedly the best candidate, followed by
Apache Axis 2 and Apache CXF. Daios is a little behind the best frameworks in
this test, but still a good deal before Apache WSIF. Note that the overall invocation
times are a lot higher for binary invocations because of the additional processing
time necessary for base64 encoding.

It can be concluded that Apache Axis 2 is the fastest test framework in the candidate
field, but the differences to Codehaus XFire, Apache CXF as well as Daios are only
marginal. Only Apache WSIF falls behind, most probably because of the age of the
framework. Another interesting fact is that XFire seems to be a little faster than its
successor CXF at the moment, but CXF is still in a rather early development stage
and its performance may improve during the next months and years.

5.3.3 Memory Consumption

This Section will compare the candidate field with regard to the last performance
indicator, the memory footprint. Most important in this respect is the highest total
memory consumption, that is the maximal value of heap and stack memory in use
at any time during the invocation.

Figure 25 shows the measured maxima. Daios has the highest memory consumption
of all frameworks in the test, followed by Apache Axis 2 and Codehaus XFire. Apache
WSIF as well as Apache CXF exhibit a relatively small memory footprint. However,
with a memory footprint no smaller than 10000 KB none of the test candidates is
particularly memory-efficient, and presumably none of candidates is usable for ar-
eas such as mobile and ubiquitous computing [93] where memory is a sparse ressource.

5.4 Evaluation Summary 78

Figure 25: Comparison of maximum memory consumption

Daios’ bad memory footprint in SOAP invocations is a result of the WSDL and
XML Schema parsing necessary during the preprocessing phase. For REST invoca-
tions (which do without WSDL and XML Schema parsing) Daios has a rather small
memory footprint (cp. Section 5.2).

5.4 Evaluation Summary

Chapter 1 of this thesis has defined 6 requirements for a client-side Web service
framework that truly supports the SOA vision:

• The goals “stubless service invocation”, “message-driven”, “protocol-independent”
and “support for asynchronous communication” have surely been accomplished.
Daios can only be used through a DII using a messsage-based communication
paradigm, supports both SOAP (document/wrapped as well as RPC/encoded)
and REST, and allows for various types of non-blocking invocations.

• Arguably the goal “simple API” has also been accomplished. The Daios client-
side API as described extensively in Chapter 4 is simple to use and does not
require any deeper knowledge of XML or even Web service technology. Non-
withstanding, advanced users can still control the behavior of the framework
in more detail if they need to.

• Section 5.3 showed that the goal “acceptable runtime behavior” has also been
reached. The runtime performance of the Daios framework is significantly bet-
ter than WSIF’s, and for all practical purposes on one level with the best
frameworks available today. Using Daios does therefore not result in a signifi-
cant performance penalty.

5.4 Evaluation Summary 79

5.4.1 Limitations

For all the advantages described above the current version of Daios also has a few
limitations:

• Daios is a research prototype. The implementation has therefore been centered
on the design goals described above, and only a subset of current Web service
standards and state of the art features have been implemented. Other exist-
ing frameworks are of course supporting a much broader set of Web service
standards and features than Daios.

• Daios is strictly intended for dynamic service invocations. For static scenarios
lacking any dynamics other frameworks are much more appropriate.

• Even though Daios supports both SOAP and REST the feature set for REST-
ful services is not yet as complete as for SOAP. Daios currently supports only
HTTP GET and POST, and would need to process a REST interface definition
language in order to bring REST and SOAP support to the same level. Un-
fortunately no such REST interface definition language is wide-spread enough
yet.

80

6 Conclusion and Future Work

Come, my friends,
’Tis not too late to seek a newer world.
To sail beyond the sunset, and the baths

Of all the western stars, until I die.
– Alfred Lord Tennyson, “Ulysses” [78]

The Service-Oriented Architecture vision expects distributed systems to use the “tri-
angle of publish-find -bind” to create a loosely coupled architecture, where all software
components provide services to the system as a whole. All services are either atomic
or composed of other services, and are independent from each other. Services may be
selected or substituted at run-time. Unfortunately such a system is hard to imple-
ment today: service registries are not yet sophisticated enough to allow for run-time
service selection based on service semantics or quality-of-service, and state of the
art client-side service frameworks are not well-suited for run-time service binding.
These service frameworks (including for instance Apache Axis 2, Codehaus XFire or
Apache CXF) are usually used through static stubs, and are therefore tightly coupled
to service providers. Current dynamic invocation interfaces are more like the “poor
cousins” of the stub interfaces, and struggle with fundamental problems which make
them hard to use for SOA scenarios. Support for non-blocking and document-based
communication is increasing in the service community, but RPC-style programming
models continue to prevail.

In order to bypass these issues practitioners are often forced to employ workarounds:
sometimes static stubs are generated at run-time to implement systems that are able
to arbitrarily change service providers. However, creating static stubs at run-time is
cumbersome and expensive in terms of performance.

The Daios (Dynamic and asynchronous invocation of services) framework aims at
providing a client-side service framework that is better suited for such a SOA: Daios
provides a fully expressive and easy to use DII, works entirely message-oriented and
has full support for non-blocking communication. The Daios framework has been im-
plemented in the Java programming language, taking into account state-of-the-art
development techniques such as design and architectural patterns, and using well-
established open-source libraries as for instance Apache AXIOM, Codehaus Wood-
stox, Apache XMLBeans or Apache HTTPClient. Daios is implemented in a very
extensible way: new backends providing support for new standards and service pro-
tocols can be introduced easily, possibly even at run-time of a client application.

6.1 Future Work 81

Daios is therefore very well suited for implementing long-running, loosely-coupled
distributed systems that want to fully utilize the power of SOA.

The evaluation presented in chapter 5 of this thesis has proven that Daios (although
being a research prototype) is on one level with widely used Web service frameworks
considering runtime performance. Daios is considerably faster than Apache WSIF
(which is considered the best dynamic service invocation framework so far), and
only marginally slower than Apache Axis 2 or Apache CXF. If Axis 2 or CXF is used
“pseudo-dynamically” as mentioned above, then the Daios solution is clearly supe-
rior: the Daios programming model is much more intuitive than using dynamically
generated stubs through reflection, and Daios preprocessing is faster than generating
static stubs at run-time.

Summarizing it can be stated that the Daios concept seems promising enough to solve
the issues of dynamic service invocation. Preliminary evaluation of the framework has
proven that using the Daios framework is not inefficient for practical purposes, and
that the simple message-based interface allows for a much more natural programming
model in the client application.

6.1 Future Work

However, there are a few open issues in the Daios framework left for future work:
perhaps most important is the inclusion of more state of the art features into the
Daios framework in order to make it more apt for practical use. On top of the cur-
rently missing feature list would be support for wide-spread and important WS-*
standards, in particular for WS-Security and WS-Addressing, as well as support for
the latest WSDL and SOAP standards. Another missing feature that would be im-
portant for the Daios concept is a strong support for WS-Policy - Daios should be
able to abstract transparently from different WS-Policy policies and with as few in-
put from the client application as possible.

Preprocessing is currently the weakest point of the framework in terms of perfor-
mance. Further work could probably be done to reduce the time spent in the prepro-
cessing phase (e.g., by tuning the WSDL and XML Schema processing components).
Another possible optimization of Daios would be to persist service bindings to a mass
storage device - in that case the expensive preprocessing needs to be done only once
per service. If service bindings are to be persisted a change detection mechanism
for service interface definitions has to be in place so that Daios is able to detect

6.1 Future Work 82

automatically whether a bound service has changed and needs re-binding.

Furthermore, the general REST support of Daios deserves further working on: prob-
ably most importantly Daios should at some point support all HTTP operations (i.e.
also including HEAD and OPTIONS) and WADL or whatever interface definition
language catches on in the REST community.

Finally implementing a few more default backends would be highly deservable, bring-
ing the addional power of e.g., XFire of CXF to Daios. It would also be interesting
to further investigate whether it is possible to change the backend entirely with-
out re-binding the service - such a feature would increase the overall flexibility of
the framework dramatically since it would be possible to select a suiting backend
individually for every single invocation.

83

Appendix

84

A List of Abbreviations

API Application Programming Interface
AXIOM AXis Object Model
CORBA Common Object Request Broker Architecture
CPWSI Composite Pattern for stubless Web service Invocation
Daios Dynamic and asynchronous invocation of services
DCOM Distributed Component Object Model
DII Dynamic Invocation Interface
EAI Enterprise Application Integration
ebXML electronic business over XML
EJB Enterprise Java Beans
ESB Enterprise Service Bus
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IT Information Technology
JAX-RPC Java API for XML-based RPC
JAX-WS Java API for XML-based Web Services
JEE Java Enterprise Edition
JMS Java Messaging Service
JRE Java Runtime Environment
JSON JavaScript Object Notation
JSR Java Specification Request
JVM Java Virtual Machine
LAN Local Area Network
MEP Message Exchange Pattern
MOM Message Oriented Middleware
OASIS Organization for the Advancement of Structured

Information Standards
OMG Object Management Group
OOP Object-Oriented Programming
PC Personal Computer
POSA Pattern-oriented Software Architecture
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
SAIWS Simple Asynchronous Invocation Framework for Web Services
SC Sequencing Constraints
SOA Service-Oriented Architecture

Continued on Next Page. . .

85

SoC Service-oriented Computing
SMTP Simple Message Transfer Protocol
SSDL SOAP Service Description Language
StAX Streaming API for XML
TCP Transport Control Protocol
UDDI Universal Description, Discovery and Integration
UML Unified Modelling Language
URI Universal Ressource Identifier
URL Universal Ressource Locator
WADL Web Application Description Language
WAN Wide Area Network
WS-BPEL Web Service Business Process Execution Language
WS-CDL Web Service Choreography Description Language
WSDL Web Service Definition Language
WS-I Web Services Interoperability Organization
WSIF Web Services Invocation Framework
WSMQ Web Services Message Queue
WWW World Wide Web
XML eXtensibel Markup Language

Table 10: List of Abbreviations

86

B SOAP RPC Example� �
1 <?xml ve r s i on=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

2 <soapenv:Envelope

3 xmlns:soapenv=” ht tp : // schemas . xmlsoap . org / soap/ enve lope /”

4 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”

5 xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”

6 >

7 <soapenv:Header />

8 <soapenv:Body>

9 <getAddress>

10 <in2 x s i : t y p e=” x s d : s t r i n g ”>1150</ in2>

11 <in0 x s i : t y p e=” x s d : s t r i n g ”>Phi l ipp Le i tne r</ in0>

12 <in4 x s i : t y p e=” x sd : i n t ”>14</ in4>

13 <in1 x s i : t y p e=” x s d : s t r i n g ”>Wien</ in1>

14 <in5 x s i : t y p e=” x sd : i n t ”>15</ in5>

15 <in3 x s i : t y p e=” x s d : s t r i n g ”>Sper rgas s e</ in3>

16 </ getAddress>

17 </ soapenv:Body>

18 </ soapenv:Envelope>� �
Listing 18: SOAP-encoded RPC call

87

C Complete WSDL Example� �
1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <w sd l : d e f i n i t i o n s

3 xmlns:wsdl=” ht tp : // schemas . xmlsoap . org /wsdl /”

4 xmlns :http=” ht tp : // schemas . xmlsoap . org /wsdl / http /”

5 xmlns:ns0=” ht tp : //my. namespace . com/ types ”

6 xmlns :xs=” ht tp : //www.w3 . org /2001/XMLSchema”

7 xmlns:soap=” ht tp : // schemas . xmlsoap . org /wsdl / soap/”

8 targetNamespace=” ht tp : // i n f o s y s . tuwien . ac . at / dacoss / eva l /doc/”>

9

10 < !−− type d e f i n i t i o n s −−>

11 <wsd l : type s>

12 <xs:schema xmlns:ns=” ht tp : //my. namespace . com/ types ”

13 attr ibuteFormDefau l t=” q u a l i f i e d ” elementFormDefault=” q u a l i f i e d ”

14 targetNamespace=” ht tp : //my. namespace . com/ types ”>

15 <xs : e l ement name=”hel loWorld ”>

16 <xs:complexType>

17 <xs : s equence>

18 <xs : e l ement name=” f i r s tParam ” n i l l a b l e=” true ”

19 type=” x s : s t r i n g ” />

20 <xs : e l ement name=”secondParam” n i l l a b l e=” true ”

21 type=” x s : s t r i n g ” />

22 <xs : e l ement name=”thirdParam” n i l l a b l e=” true ”

23 type=” x s : s t r i n g ” />

24 <xs : e l ement name=” fourthParam” n i l l a b l e=” true ”

25 type=” x s : s t r i n g ” />

26 </ xs : s equence>

27 </xs:complexType>

28 </ xs : e l ement>

29 <xs : e l ement name=”hel loWorldResponse ”>

30 <xs:complexType>

31 <xs : s equence>

32 <xs : e l ement name=” return ” n i l l a b l e=” true ”

33 type=” x s : s t r i n g ” />

34 </ xs : s equence>

35 </xs:complexType>

36 </ xs : e l ement>

37 </xs:schema>

38 </ wsd l : type s>

39

40 < !−− message d e f i n i t i o n s −−>

41 <wsdl :message name=”helloWorldMessage ”>

42 <wsd l :pa r t name=”parameters ” element=” ns0 :he l l oWor ld ” />

43 </wsdl :message>

44 <wsdl :message name=”hel loWorldResponse ”>

45 <wsd l :pa r t name=”parameters ” element=”ns0:he l loWorldResponse ” />

46 </wsdl :message>

47

48

49

50 < !−− port type d e f i n i t i o n s −−>

51 <wsdl :portType name=”Hel loWorldServicePortType ”>

52 <wsd l : ope ra t i on name=”hel loWorld ”>

53 <wsd l : i nput

54 xmlns:wsaw=” ht tp : //www.w3 . org /2006/05/ addre s s ing /wsdl ”

55 message=”ns0:he l loWorldMessage ” wsaw:Action=” urn :he l loWor ld ”

56 />

57 <wsdl :output message=”ns0:he l loWorldResponse ” />

88

58 </ wsd l : ope ra t i on>

59 </wsdl :portType>

60

61 < !−− b ind ing d e f i n i t i o n s −−>

62 <wsd l :b ind ing name=”HelloWorldBinding ”

63 type=”ns0:Hel loWorldServicePortType ”>

64 <soap :b ind ing t ranspo r t=” ht tp : // schemas . xmlsoap . org / soap/http ”

65 s t y l e=”document” />

66 <wsd l : ope ra t i on name=”hel loWorld ”>

67 <s oap : ope ra t i on soapAction=” urn :he l loWor ld ”

68 s t y l e=”document” />

69 <wsd l : i nput>

70 <soap:body use=” l i t e r a l ” />

71 </ wsd l : i nput>

72 <wsdl :output>

73 <soap:body use=” l i t e r a l ” />

74 </ wsdl :output>

75 </ wsd l : ope ra t i on>

76 </ wsd l :b ind ing>

77

78 < !−− s e r v i c e d e f i n i t i o n s −−>

79 <wsd l : s e r v i c e name=” Hel loWor ldServ ice ”>

80 <wsd l :po r t name=”HelloWorldBinding ”

81 binding=”ns0:Hel loWorldBinding ”>

82 <ht tp : add r e s s l o c a t i o n=” ht tp : //my. t e s t . s e r v i c e . com/ epr ” />

83 </ wsd l : po r t>

84 </ w sd l : s e r v i c e>

85 </ w s d l : d e f i n i t i o n s>� �
Listing 19: Complete WSDL Example

89

D Complete SSDL Example� �
1 <cont rac t xmlns=” u r n : s s d l : v 1 ”>

2

3 < !−− de f ine types us ing XML Schema −−>

4 <schemas>

5 <schema>

6 <element name=”myType” type=”anyType” />

7 </schema>

8 </schemas>

9

10 < !−− de f ine messages −−>

11 <messages>

12 <message name=”InMessage”>

13 <header r e f=”myType” />

14 </message>

15 <message name=”OutMessage”>

16 <header r e f=”myType” />

17 </message>

18 </messages>

19

20 < !−− de f ine p ro t o co l s −−>

21 <p ro t o c o l s targetNamespace=” u r n : s e r v i c e : s c ”>

22 <pro to co l name=” exampleProtocol ”>

23 <sc>

24 <sequence>

25 <msgref r e f=” InMessage” d i r e c t i o n=” in ” />

26 <msgref r e f=”OutMessage” d i r e c t i o n=”out” />

27 </ sequence>

28 </ sc>

29 </ p ro to co l>

30 <p ro t o c o l s>

31

32 < !−− de f ine endpoints −−>

33 <endpoints xmlns:wsa=” ht tp : //www.w3 . org /2004/12/ addre s s ing ”>

34 <endpoint>

35 <wsa:Address>ht tp : //my. example . com/ epr</wsa:Address>

36 </ endpoint>

37 </ endpoints>

38

39 </ cont rac t>� �
Listing 20: Complete SSDL example

90

E Structural Distance Calculation� �
1 // proc . : Distance Ca l cu la t i on Algorithm

2 // in : WSDLMessage or WSDLPart (handled e q u i v a l e n t l y) , DaiosMessage

3 // out : d i s t ance o f WSDLMessage to DaiosMessage

4 // (NOT DaiosMessage to WSDLMessage !)

5

6 d i s t ance = 0

7

8 i f (WSDLMessage no input message)

9 r e turn In t eg e r .MAX

10

11 e l s e

12 f o r a l l f i e l d s as f i e l d in DaiosMessage :

13 i f (WSDLMessage does not conta in part with corresponds (part , f i e l d))

14 // the DaiosMessage conta ins more informat ion

15 // than the WSDL message

16 // −−> incompat i b l e

17 r e turn In t eg e r .MAX

18 e l s e

19 i f (part i s s imple)

20 // the par t and the f i e l d s are t o t a l l y e qu i v a l en t

21 // −−> no d i s t ance

22 d i s t ance += 0 ;

23 e l s e

24 // the par t i s complex

25 // −−> probab ly compatib le , but we don ’ t know yet ,

26 // r e c u r s i v e l y go deeper

27 d i s t ance += Distance Ca l cu l a t i on Algorithm (part , f i e l d)

28 mark part used (and never use again)

29

30 d i s t ance += # of not marked par t s in WSDLMessage

31 r e turn d i s t ance

32

33 −−−
34

35 // proc . : corresponds

36 // in : Part o f WSDLMessage part , F i e l d o f DaiosMessage f i e l d

37 // out : t rue or f a l s e

38

39 i f (f i e l d . name equal part . name

40 AND

41 f i e l d . type equal part . type)

42

43 r e turn true

44

45 e l s e

46 r e turn f a l s e� �
Listing 21: Structural distance calculation in pseudo-code

91

F REST by Example Procedure� �
1 // proc . : REST by example a lgor i thm

2 // in : example in XML notion , DaiosMessage

3 // out : XML−encoded REST message

4

5 // go over each element and a t t r i b u t e in the example

6 f o r a l l e lements as element in the example

7

8 // check whether the element / a t t r i b u t e i s contained

9 // in the Daios message ;

10 // i f i t i s and s imple add the element and take the

11 // va lue f o r the element from the DaiosMessage f i e l d ;

12 // i f i t i s not s imple cons t ruc t the complex message

13 // part r e c u r s i v e l y

14 i f (e lement conta ined in DaiosMessage as f i e l d)

15 i f (f i e l d i s s imple)

16 add element to output message , with value = f i e l d . va lue

17 e l s e

18 add REST by example a lgor i thm (element , f i e l d)

19 mark f i e l d as used

20

21 // i f the element / a t t r . i s not contained add the

22 // element wi thout va lue

23 e l s e

24 add element without value to output message

25

26 i f (the r e e x i s t s any non−marked f i e l d)

27 throw e r r o r ” incompat ib l e ”

28 e l s e

29 r e turn output message� �
Listing 22: REST by example algorithm

92

G WSDL Description corresponding to Listing 11� �
1 <wsd l : type s>

2 < !−− namespace d e c l a r a t i on s omit ted −−>

3 <xs:schema>

4 <xs:complexType>

5 <xs : s equence>

6

7 < !−− s imple s t r i n g f i e l d ’name ’ −−>

8 <xs : e l ement name=”name” n i l l a b l e=” f a l s e ”

9 type=” x s : s t r i n g ” />

10

11 < !−− s imple i n t e g e r f i e l d ’ age ’ −−>

12 <xs : e l ement name=”age” n i l l a b l e=” true ”

13 type=” x s : i n t ” />

14

15 < !−− complex f i e l d ’ address ’ −−>

16 <xs : e l ement name=” address ” n i l l a b l e=” true ”>

17 <xs:complexType>

18 <xs : s equence>

19 <xs : e l ement name=” c i t y ” n i l l a b l e=” true ”

20 type=” x s : s t r i n g ” />

21 <xs : e l ement name=”house” n i l l a b l e=” true ”

22 type=” x s : i n t ” />

23 <xs : e l ement name=”door” n i l l a b l e=” true ”

24 type=” x s : i n t ” />

25 </ xs : s equence>

26 </xs:complexType>

27 </ xs : e l ement>

28

29 < !−− s t r i n g array f i e l d ’ f r i e n d s ’ −−>

30 <xs : e l ement name=” f r i e n d s ” n i l l a b l e=” true ”

31 type=” x s d : s t r i n g ” maxOccurs=”unbounded” />

32

33 </ xs : s equence>

34 </xs:complexType>

35 </ xs : e l ement>

36 </xs:schema>

37 </ wsd l : type s>� �
Listing 23: WSDL description corresponding to Listing 11

93

H Input Stream Data Source used in Daios� �
1 pub l i c c l a s s InputStreamDataSource implements OMDataSource {
2

3 pr i va t e InputStream i s = nu l l ;

4

5 // cons t ruc tor

6 pub l i c InputStreamDataSource (InputStream input) {
7 t h i s . i s = input ;

8 }
9

10 // s e r i a l i z e stream to output stream

11 pub l i c void s e r i a l i z e (OutputStream output , OMOutputFormat format)

12 throws XMLStreamException {
13

14 XMLStreamWriter xmlStreamWriter =

15 StAXUtils . createXMLStreamWriter (output) ;

16 s e r i a l i z e (xmlStreamWriter) ;

17 xmlStreamWriter . f l u s h () ;

18

19 }
20

21 // s e r i a l i z e stream to wr i t e r

22 pub l i c void s e r i a l i z e (Writer wr i te r , OMOutputFormat format)

23 throws XMLStreamException {
24

25 s e r i a l i z e (StAXUtils . createXMLStreamWriter (wr i t e r)) ;

26 }
27

28 // s e r i a l i z e stream to XML wr i t e r

29 pub l i c void s e r i a l i z e (XMLStreamWriter xmlWriter)

30 throws XMLStreamException {
31

32 StreamingOMSeria l izer s e r i a l i z e r = new StreamingOMSeria l izer () ;

33 s e r i a l i z e r . s e r i a l i z e (getReader () , xmlWriter) ;

34

35 }
36

37 // crea t e a new reader from the data source input stream

38 pub l i c XMLStreamReader getReader () throws XMLStreamException {
39

40 XMLStreamReader reader = StAXUtils . createXMLStreamReader (i s) ;

41 r e turn reader ;

42

43 }
44

45 }� �
Listing 24: Input Stream Data Source for AXIOM

94

I Complete Daios SOAP Example� �
1 St r ing b l z = . . . // b l z i s a german bank i d e n t i f i c a t i o n number

2

3 // l e t ’ s use the na t i v e backend

4 Serv iceFrontendFactory f a c t o r y = Serv iceFrontendFactory . getFactory

5 (” at . ac . tuwien . i n f o s y s . dsg . da i o sP lug in s . ”+

6 nat ive Invoker . Nat iveServ i ce InvokerFactory ”) ;

7

8 // p r ep ro c e s s i ng

9 // (This i s a SOAP−based Web s e r v i c e that takes a german

10 // BLZ and re tu rn s the bank d e t a i l s to t h i s i n s t i t u t e)

11 Serv iceFrontend f rontend = fa c t o ry . createFrontend (

12 new URL(

13 ”http : //www. thomas−bayer . com/ ax i s2 / s e r v i c e s /BLZService?wsdl ”)) ;

14

15 // cons t ruc t message

16 DaiosInputMessage in = new DaiosInputMessage () ;

17 in . s e t S t r i n g (” b l z ” , b l z) ;

18

19 // do b l o c k i n g invoca t ion

20 DaiosOutputMessage out = frontend . requestResponse (in) ;

21

22 // conver t WS r e s u l t back in to some convenient Java format

23 BankResult bank = new BankResult (b l z) ;

24 bank . s e tB i c (

25 out . getComplex (” d e t a i l s ”) . g e tS t r i ng (” b i c ”)) ;

26 bank . setName (

27 out . getComplex (” d e t a i l s ”) . g e tS t r i ng (” bezeichnung ”)) ;� �
Listing 25: Complete example of Daios SOAP invocation

95

J Complete Daios REST Example� �
1 St r ing myAPIKey = . . . // you can ge t an API key from F l i c k r f o r f r e e

2

3 // l e t ’ s use the na t i v e backend

4 Serv iceFrontendFactory f a c t o r y = Serv iceFrontendFactory . getFactory

5 (” at . ac . tuwien . i n f o s y s . dsg . da i o sP lug in s . ”+

6 nat ive Invoker . Nat iveServ i ce InvokerFactory ”) ;

7

8 // p r ep ro c e s s i ng (no i n t e r f a c e d e f i n i t i o n s means a RESTful

9 // s e r v i c e without example r eque s t)

10 Serv iceFrontend f rontend = fa c t o ry . createFrontend () ;

11

12 // s e t t i n g the EPR i s mandatory f o r t h i s type o f s e r v i c e

13 // (This i s the F l i c k r REST i n t e r f a c e)

14 f rontend . setEndpointAddress (

15 new URL(”http : // api . f l i c k r . com/ s e r v i c e s / r e s t /”)) ;

16

17 // cons t ruc t message

18 DaiosInputMessage in = new DaiosInputMessage () ;

19 in . s e t S t r i n g (”method” , ” f l i c k r . i n t e r e s t i n g n e s s . g e tL i s t ”) ;

20 in . s e t S t r i n g (” ap i key ” , myAPIKey) ;

21 in . s e t I n t (” per page ” , 5) ;

22

23 // do non−b l o c k i n g invoca t ion

24 Pol lObject po = frontend . po l lOb j e c tCa l l (in) ;

25

26 // . . . now we do some other s t u f f wh i l e the invoca t ion

27 // i s car r i ed out in the background

28

29 // OK, l e t ’ s l ook f o r the r e s u l t

30 i f (! po . responseRece ived ())

31 // no r e s u l t ye t −
32 // cont inue wai t ing / doing other s t u f f

33 e l s e {
34

35 DaiosOutputMessage out = po . ge tResu l t () ;

36 DaiosMessage [] photos = out . getComplex (”photos ”)

37 . getComplexArray (”photo”) ;

38

39 // now we could again conver t the array o f

40 // photos in to some nice Java format

41

42 }� �
Listing 26: Complete example of Daios REST invocation

96

K A Logging Interceptor for Daios� �
1 // crea t e f a c t o r y as usua l

2 Serv iceFrontendFactory f a c t o r y = . . .

3

4 // crea t e f rontend with an (anonymous) HTTP lo g g e r

5 Serv iceFrontend f rontend = fa c t o ry . createFrontend (

6 new URL(”my. example . com/wsdl ”) ,

7 new De f au l t I n t e r c ep t o r () {
8

9 pub l i c void doHTTPInvocation (S t r ing endpoint , S t r ing body ,

10 IServiceFrontendImplementor invoker) {
11

12 System . out . p r i n t l n (”HTTP Request : ”) ;

13 System . out . p r i n t l n (body) ;

14

15 }
16

17 pub l i c void receiveHTTPResult (S t r ing endpoint , S t r ing body ,

18 IServiceFrontendImplementor invoker , S t r ing re sponse) {
19

20 System . out . p r i n t l n (”HTTP Response : ”) ;

21 System . out . p r i n t l n (re sponse) ;

22

23 }
24

25 }) ;

26

27 // . . . use f rontend as usua l� �
Listing 27: Logging SOAP payload using a Daios interceptor

97

L Performance Comparison Results

Figure 26: Comparison of simple invocations

Figure 27: Comparison of array invocations

Figure 28: Comparison of binary invocations

REFERENCES 98

References

[1] Nayef Abu-Ghazaleh, Michael J. Lewis, and Madhusudhan Govindaraju. Dif-
ferential Serialization for Optimized SOAP Performance. In HPDC ’04: Pro-
ceedings of the 13th IEEE International Symposium on High Performance Dis-
tributed Computing, 2004.

[2] Apache Foundation. Apache AXIOM. http://ws.apache.org/commons/

axiom/index.html. Visited: 2007-07-28.

[3] Apache Foundation. Apache Axis. http://ws.apache.org/axis/. Visited:
2007-07-27.

[4] Apache Foundation. Apache Axis 2. http://ws.apache.org/axis2/. Visited:
2007-07-27.

[5] Apache Foundation. Apache CXF: An Open Source Service Framework. http:
//incubator.apache.org/cxf/. Visited: 2007-08-12.

[6] Apache Foundation. Web Services Invocation Framework. http://ws.apache.
org/wsif/. Visited: 2007-07-28.

[7] Apache Foundation. XMLBeans. http://xmlbeans.apache.org/. Visited:
2007-09-04.

[8] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and Daniel C.
Sturman. A Case for Message-Oriented Middleware. In Proceedings of the 13th
International Symposium on Distributed Computing, 1999.

[9] Tim Berners-Lee, Roy Fielding, and Larry Masinter. RFC 3986, Uniform Re-
source Identifier (URI): Generic Syntax. http://rfc.net/rfc3986.html, 2005.
Visited: 2007-07-31.

[10] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure
Calls. In SOSP ’83: Proceedings of the ninth ACM symposium on Operating
Systems Principles, 1983.

[11] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
Distributed and Abstract Types in Emerald. IEEE Transanctions on Software
Engineering, 13(1), 1987.

[12] Paul Buhler, Christopher Starr William H. Schroder, and José M. Vidal. Prepar-
ing for Service-Oriented Computing: A Composite Design Pattern for Stubless
Web Service Invocation. In International Conference on Web Engineering, 2004.

http://ws.apache.org/commons/axiom/index.html
http://ws.apache.org/commons/axiom/index.html
http://ws.apache.org/axis/
http://ws.apache.org/axis2/
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://xmlbeans.apache.org/
http://rfc.net/rfc3986.html

REFERENCES 99

[13] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented
Software Architecture, Volume 4 : A Pattern Language for Distributed Comput-
ing. Wiley, 2007.

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A System
of Patterns. Wiley, 1996.

[15] Russel Butek. Which style of WSDL should I use? http://www.ibm.com/

developerworks/webservices/library/ws-whichwsdl/. Visited: 2007-08-02.

[16] Min Cai, Shahram Ghandeharizadeh, Rolfe R. Schmidt, and Saihong Song. A
Comparison of Alternative Encoding Mechanisms for Web Services. In DEXA
’02: Proceedings of the 13th International Conference on Database and Expert
Systems Applications, 2002.

[17] The Castor Project. http://www.castor.org/. Visited: 2007-09-04.

[18] David Chappell. Enterprise Service Bus. O’Reilly, 2004.

[19] Christophe Demarey and Gael Harbonnier and Romain Rouvoy and Philippe
Merle. Benchmarking the Round-Trip Latency of Various Java-Based Middle-
ware Platforms. Studia Informatica Universalis Regular Issue, 4(1), 2005.

[20] Codehaus. The Streaming API for XML (StAX). http://stax.codehaus.org/.
Visited: 2007-07-29.

[21] Codehaus. XFire. http://xfire.codehaus.org/. Visited: 2007-08-12.

[22] William R. Cook and Janel Barfield. Web Services versus Distributed Objects:
A Case Study of Performance and Interface Design. In ICWS ’06: Proceedings
of the IEEE International Conference on Web Services (ICWS’06), 2006.

[23] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal
Mukhi, and Sanjiva Weerawarana. Unraveling the Web Services Web: An In-
troduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2), 2002.

[24] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva Weer-
awarana. The next Step in Web services. Communications of the ACM, 46(10),
2003.

[25] Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski, and Sanjiva Weer-
awarana. Web Services Invocation Framework (WSIF). In Proceedings of the
OOPSLA Workshop on Object-Oriented Web Services, 2001.

[26] Schahram Dustdar and Martin Treiber. A View Based Analysis on Web Service
Registries. Distributed Parallel Databases, 18(2), 2005.

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.castor.org/
http://stax.codehaus.org/
http://xfire.codehaus.org/

REFERENCES 100

[27] Robert Elfwing, Ulf Paulsson, and Lars Lundberg. Performance of SOAP in
Web Service Environment Compared to CORBA. In APSEC ’02: Proceedings
of the Ninth Asia-Pacific Software Engineering Conference, 2002.

[28] Wolfgang Emmerich. Engineering Distributed Objects. Wiley, 2000.

[29] Thomas Erl. Service-Oriented Architecture. Concepts, Technology, and Design.
Prentice Hall, 2005.

[30] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2),
2003.

[31] Eviware. soapUI. http://www.soapui.org/, 2007. Visited: 2007-08-13.

[32] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Pe-
ter Leach, and Tim Berners-Lee. RFC 2616, Hypertext Transfer Protocol –
HTTP/1.1. http://www.rfc.net/rfc2616.html, 1999. Visited: 2007-07-31.

[33] Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, CA, 2000.

[34] Roy T. Fielding and Richard N. Taylor. Principled Design of the modern Web
Architecture. ACM Transactions on Internet Technology, 2(2), 2002.

[35] Flickr. http://www.flickr.com/, 2007. Visited: 2007-08-14.

[36] Flickr Services - API documentation. http://www.flickr.com/services/

api/, 2007. Visited: 2007-08-14.

[37] Organization for the Advancement of Structured Information Standards (OA-
SIS). RELAX NG specification. http://www.oasis-open.org/committees/

relax-ng/spec-20011203.html, 2001. Visited: 2007-07-27.

[38] Organization for the Advancement of Structured Information Standards (OA-
SIS). OASIS/ebXML Registry Services Specification v2.0. http://www.

oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf,
2002. Visited: 2007-07-31.

[39] Organization for the Advancement of Structured Information Standards (OA-
SIS). Reference Model for Service Oriented Architecture 1.0. http:

//www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf,
2006. Visited: 2007-07-31.

[40] Organization for the Advancement of Structured Information Standards (OA-
SIS). Web Services Business Process Execution Language Version
2.0, Draft. http://www.oasis-open.org/committees/download.php/18714/

wsbpel-specification-draft-May17.htm, 2006. Visited: 2007-07-27.

http://www.soapui.org/
http://www.rfc.net/rfc2616.html
http://www.flickr.com/
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm
http://www.oasis-open.org/committees/download.php/18714/wsbpel-specification-draft-May17.htm

REFERENCES 101

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[42] David Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1), 1985.

[43] Karl Gottschalk, Stephen Graham, Heather Kreger, and James Snell. Introduc-
tion to Web services Architecture. IBM Systems Journal, 41(2), 2002.

[44] JSR-101 Expert Group. Java API for XML-Based RPC, Version 1.1. http:

//java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10, 2003. Visited:
2007-08-08.

[45] THALES Group. Service Registries Study. http://www.chatelp.org/work/

LUCAS_registry_study.pdf, 2006. Visited: 2007-07-31.

[46] Marc J. Hadley. Web Application Description Language (WADL). https:

//wadl.dev.java.net/wadl20061109.pdf, 2006. Visited: 2007-07-27.

[47] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[48] Michael N. Huhns and Munindar P. Singh. Service-Oriented Computing: Key
Concepts and Principles. IEEE Internet Computing, 9(1), 2005.

[49] Steve Jones. Toward an Acceptable Definition of Service. IEEE Software, 22(3),
2005.

[50] Doug Kohlert and Arun Gupta. Java API for XML-Based Web Services,
Version 2. http://jcp.org/aboutJava/communityprocess/mrel/jsr224/

index2.html, 2007. Visited: 2007-08-08.

[51] Takashi Koshida and Shunsuke Uemura. Automated Dynamic Invocation Sys-
tem for Web Service with a User-defined Data Type. In Proceedings of the 2nd
European Workshop on Object Orientation and Web Services, 2004.

[52] Gabriel M. Kuper and Jérôme Siméon. Subsumption for XML types. In ICDT
’01: Proceedings of the 8th International Conference on Database Theory, 2001.

[53] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Sys-
tems. In Proceedings of the 5th ACM Symposium on Principles of Distributed
Computing (PODC), 1986.

[54] David S. Linthicum. Enterprise Application Integration. Addison-Wesley, 2000.

[55] Piyush Maheshwari, Trung Nguyen Kien, and Abdelkarim Erradi. QoS-Based
Message-Oriented Middleware for Web Services. In WISE Workshops, 2004.

http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10
http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10
http://www.chatelp.org/work/LUCAS_registry_study.pdf
http://www.chatelp.org/work/LUCAS_registry_study.pdf
https://wadl.dev.java.net/wadl20061109.pdf
https://wadl.dev.java.net/wadl20061109.pdf
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.html

REFERENCES 102

[56] Piyush Maheshwari, Hua Tang, and Roger Liang. Enhancing Web Services
with Message-Oriented Middleware. In ICWS ’04: Proceedings of the IEEE
International Conference on Web Services (ICWS’04), 2004.

[57] Shinichi Nagano, Tetsuo Hasegawa, Akihiko Ohsuga, and Shinichi Honiden.
Dynamic Invocation Model of Web Services Using Subsumption Relations. In
ICWS ’04: Proceedings of the IEEE International Conference on Web Services
(ICWS’04), 2004.

[58] ObjectWeb. Celtix: The Open Source Java Enterprise Service Bus. http:

//celtix.objectweb.org/. Visited: 2007-08-12.

[59] Michael P. Papazoglou and Willem-Jan van den Heuvel. Service-Oriented Design
and Development Methodology. International Journal of Web Engineering and
Technology (IJWET), 2(4), 2006.

[60] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented Architectures:
Approaches, Technologies and Research Issues. The VLDB Journal, 16(3), 2007.

[61] Mike.P. Papazoglou. Service -Oriented Computing: Concepts, Characteristics
and Directions. In Proceedings of the Fourth International Conference on Web
Information Systems Engineering (WISE), 2003.

[62] Mike.P. Papazoglou and Dimitrios Georgakopoulos. Service-oriented Comput-
ing. Communications of the ACM, 46(10), 2003.

[63] Savas Parastatidis, Simon Woodman, Jim Webber, Dean Kuo, and Paul Green-
field. Asynchronous Messaging between Web Services Using SSDL. IEEE In-
ternet Computing, 10(1), 2006.

[64] Graham D. Parrington. Reliable Distributed Programming in C++: The Arjuna
Approach. In C++ Conference, 1990.

[65] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly, 2007.

[66] Dirk Riehle. Composite Design Patterns. In OOPSLA ’97: Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 1997.

[67] Jothy Rosenberg and David Remy. Securing Web Services with WS-Security
- Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML
Encryption. Pearson, 2004.

[68] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 2005.

http://celtix.objectweb.org/
http://celtix.objectweb.org/

REFERENCES 103

[69] Douglas C. Schmidt, Hans Rohnert, Michael Stal, and Dieter Schultz. Pattern-
Oriented Software Architecture, Volume 2: Patterns for Concurrent and Net-
worked Objects. Wiley, 2000.

[70] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The Enterprise
Service Bus: making Service-Oriented Architecture real. IBM Systems Journal,
44(4), 2005.

[71] Simple Asynchronous Invocation Framework for Web Services. http://saiws.
sourceforge.net/, 2003. Visited: 2007-08-01.

[72] Aleksander Slominski. Design of a Pull and Push Parser System for Stream-
ing XML. http://www.extreme.indiana.edu/xgws/papers/xml_push_pull.
pdf, 2002. Visited: 2007-07-29.

[73] James Snell. Resource-oriented vs. activity-oriented Web Services. http://

www-128.ibm.com/developerworks/webservices/library/ws-restvsoap/,
2004. Visited: 2007-07-27.

[74] SOAP::Lite for Perl. http://www.soaplite.com/. Visited: 2007-07-29.

[75] Toyotaro Suzumura, Toshiro Takase, and Michiaki Tatsubori. Optimizing Web
Services Performance by Differential Deserialization. In ICWS ’05: Proceedings
of the IEEE International Conference on Web Services (ICWS’05), 2005.

[76] Stefan Tai, Thomas A. Mikalsen, and Isabelle Rouvellou. Using message-oriented
middleware for reliable web services messaging. In Second International Work-
shop on Web Services, E-Business, and the Semantic Web, 2003.

[77] Andrew Tanenbaum and Marten van Steen. Distributed Systems: Principles
and Paradigms, 2/E. Prentice Hall, 2006.

[78] Alfred Lord Tennyson. Tennyson: Including Lotos Eaters, Ulysses and Others.
Kessinger, 2004.

[79] John R. R. Tolkien. The Lord of the Rings - 50th Anniversary Single Volume
Edition. Harpercollins, 2005.

[80] Aphrodite Tsalgatidou and Thomi Pilioura. An Overview of Standards and
Related Technology in Web Services. Distributed and Parallel Databases, 12(2-
3), 2002.

[81] UDDI.org. UDDI Technical White Paper. http://www.uddi.org/pubs/Iru_

UDDI_Technical_White_Paper.pdf, 2000. Visited: 2007-07-31.

[82] Markus Voelter, Michael Kircher, and Uwe Zdun. Remoting Patterns - Foun-
dations of Enterprise, Internet and Realtime Distributed Object Middleware.
Wiley, 2005.

http://saiws.sourceforge.net/
http://saiws.sourceforge.net/
http://www.extreme.indiana.edu/xgws/papers/xml_push_pull.pdf
http://www.extreme.indiana.edu/xgws/papers/xml_push_pull.pdf
http://www-128.ibm.com/developerworks/webservices/library/ws-restvsoap/
http://www-128.ibm.com/developerworks/webservices/library/ws-restvsoap/
http://www.soaplite.com/
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

REFERENCES 104

[83] Werner Vogels. Web Services Are Not Distributed Objects. IEEE Internet
Computing, 7(6), 2003.

[84] World Wide Web Consortium (W3C). WSDL, Web Service Description Lan-
guage. http://www.w3.org/TR/wsdl, 2002. Visited: 2007-07-31.

[85] World Wide Web Consortium (W3C). SOAP Version 1.2 Part0: Primer. http:
//www.w3.org/TR/soap12-part0/, 2003. Visited: 2007-07-31.

[86] World Wide Web Consortium (W3C). Web Services Addressing (WS-
Addressing). http://www.w3.org/Submission/ws-addressing/, 2004. Vis-
ited: 2007-07-31.

[87] World Wide Web Consortium (W3C). Web Services Choreography Descrip-
tion Language Version 1.0, W3C Working Draft. http://www.w3.org/TR/

ws-cdl-10, 2004. Visited: 2007-07-31.

[88] World Wide Web Consortium (W3C). SOAP Message Transmission Optimiza-
tion Mechanism. http://www.w3.org/TR/soap12-mtom/, 2005. Visited: 2007-
07-28.

[89] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer - W3C Candidate Recommendation 27
March 2006. http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/,
2006. Visited: 2007-07-31.

[90] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on Dis-
tributed Computing. Technical report, Sun Microsystems Labs, 1994.

[91] Web service interoperability organization (WS-I). Basic Profile Version 1.2.
http://www.ws-i.org/Profiles/BasicProfile-1.2.html. Visited: 2007-08-
02.

[92] Peter Wegner. Concepts and Paradigms of object-oriented Programming. SIG-
PLAN OOPS Messenger, 1(1), 1990.

[93] Mark Weiser. Ubiquitous Computing. IEEE Computer, 26(10), 1993.

[94] Uwe Zdun, Markus Voelter, and Michael Kircher. Design and Implementation
of an Asynchronous Invocation Framework for Web Services. In ICWS-Europe,
2003.

[95] Uwe Zdun, Markus Voelter, and Michael Kircher. Pattern-Based Design of an
Asynchronous Invocation Framework for Web Services. International Journal
of Web Service Research, 1(3), 2004.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/
http://www.ws-i.org/Profiles/BasicProfile-1.2.html

	Introduction
	Motivation
	The Daios Solution
	Requirements
	Daios

	Organization of this Thesis

	State of the Art Review
	Distributed Object Middleware
	General Concepts
	Dynamic Invocation Interfaces

	Service-Oriented Architectures
	Definition and Concepts
	Advantages

	Web Services
	SOAP
	WSDL

	REST
	Interface Description in REST

	Related Work
	Dynamic Service Invocation
	WSIF
	Apache Axis 2
	JAX-WS
	Other Java Frameworks
	SOAP::Lite
	Dynamic Invocation using XML Type Subsumption
	Design Patterns for stubless Service Invocation
	Other Approaches

	Message-based and Asynchronous Service Invocation
	Client-side Asynchrony Patterns
	SSDL
	WSMQ

	Design and Implementation
	Architecture
	Frontend
	Daios Messages
	Interface Processing
	Service Invoker

	Implementation
	Implementation Issues

	Client-Side Interface
	Advanced Features
	Intercepting the Framework
	Fixing Daios Behavior in non-standard Situations

	Evaluation
	Evaluation Scenario
	Detailed Analysis
	Internal Processing
	Memory Consumption

	Comparison to other Frameworks
	Functional Analysis
	Comparison of Runtime Performance
	Memory Consumption

	Evaluation Summary
	Limitations

	Conclusion and Future Work
	Future Work

	List of Abbreviations
	SOAP RPC Example
	Complete WSDL Example
	Complete SSDL Example
	Structural Distance Calculation
	REST by Example Procedure
	WSDL Description to Listing 11
	Input Stream Data Source used in Daios
	Complete Daios SOAP Example
	Complete Daios REST Example
	A Logging Interceptor for Daios
	Performance Comparison Results

