
Dissertation

Middleware Support for Adaptive
Dependability through Explicit
Runtime Integrity Constraints

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

o.Univ.Prof. Dr.techn. Mehdi Jazayeri und
Dr.techn. Karl M. Göschka

184-1
Institut für Informationssysteme

Arbeitsbereich für Verteilte Systeme
Technische Universität Wien

und

Prof. Dr.Eng. Carlo Ghezzi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

eingereicht an der Technischen Universität Wien

von

Mag. Dipl.-Ing. Lorenz Froihofer
Matr.Nr. 9825055
8654 Fischbach 69a

Wien, September 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

i

Kurzfassung

Integrität und Verfügbarkeit sind zwei konkurrierende Attribute von Sys-
temzuverlässigkeit. Während einige Systeme strikte Integrität verlangen ist
für andere – abhängig vom Systemkontext – die Verfügbarkeit bedeutender.
In diesen Systemen kann die Verfügbarkeit unter temporärer und teilweiser
Rücknahme der Integritätsanforderungen erhöht werden. Potenzielle Inkon-
sistenzen aufgrund von Netzwerkpartitionen werden basierend auf der Va-
lidierung von Integritätsbedingungen auf möglicherweise veralteten Kopien
von Daten in Kauf genommen. Diese Konsistenzbedrohungen bzw. deren
Effekte müssen entsprechend eingeschränkt und etwaige Inkonsistenzen nach
der Reparatur von Netzwerkausfällen wieder behoben werden.

Diese Dissertation präsentiert einen Middleware-basierten Ansatz, die Sys-
temzuverlässigkeit von datenorientierten Systemen durch eine Balancierung
der Integritäts- und Verfügbarkeitsanforderungen an Fehlersituationen anzu-
passen. Dieser Ansatz basiert auf zur Laufzeit explizit verwaltbaren In-
tegritätsbedingungen. Während die Unterstützung für die adaptive Zuver-
lässigkeit in die Middleware integriert wird, werden notwendige Artefakte
zur Balancierung von Verfügbarkeit und Konsistenz, z.B. Integritätsbedin-
gungen und entsprechende Metadaten, von der Anwendung bereitgestellt.
Zusätzlich werden verschiedenste Plugin-basierte Mechanismen und Call-
backs verwendet, um ein flexibles Management von Inkonsistenzen im System
zu ermöglichen.

Konfigurierbarkeit und Explizitheit zur Laufzeit fördern die saubere Tren-
nung von verschiedenen Aspekten und führen so zu verbessertem Systemde-
sign und verbesserter Wartbarkeit. Andererseits wirken sie sich im Allge-
meinen negativ auf die Leistung eines Systems aus. Die durchgeführten
Studien zeigen, dass sich die Kosten in der Größenordnung von 1-15% Ein-
buße für einige der fortgeschritteneren Ansätze für explizites Integritätsman-
agement rentieren, während andere Ansätze Overheads bis hin zu 40.000%
aufweisen.

Integritäts- bzw. Inkonsistenzmanagement basierend auf expliziten Integri-
tätsbedingungen ist ein Hauptteil des Ansatzes für adaptive Zuverlässigkeit.
Dies wird ergänzt durch Datenreplikation zur Fehlertoleranz von Rechner-
und Netzwerkausfällen. Die Evaluierungen zeigen, dass sich der entwick-
elte Ansatz vorrangig in Systemen bezahlt macht, wo (i) das Lese-/Schreib-
verhältnis hoch, (ii) die Anzahl der replizierten Knoten eher klein und/oder
(iii) die Geschwindigkeit der Schreibzugriffe nicht der limitierende Faktor ist.
Von weiterem Vorteil ist, wenn die Systeme nicht die getätigten Operatio-
nen bzw. Zwischenzustände während eines Rechner- oder Netzwerkausfalles
kennen müssen, um etwaige Inkonsistenzen zu beheben.

ii

Abstract

Integrity and availability are two competing dependability attributes. While
some applications require strict integrity, other applications exist, e.g., safety
or mission critical systems, where—depending on the specific situation—
availability is more important for dependability than strict integrity. Within
our work, we focus on data-centric systems, where availability can be in-
creased by temporarily relaxing data integrity, thereby allowing for certain
inconsistencies. Potential inconsistencies are accepted based on constraint
validation on replicated copies that are possibly stale in the face of network
partitions. Such consistency threats need to be bound and eventually re-
solved during reconciliation to re-establish a consistent system state.

This dissertation presents a middleware approach to support adaptive de-
pendability by balancing integrity and availability in distributed object sys-
tems. The envisaged balancing is based on explicit runtime management of
integrity constraints and consistency threats. While the support for adaptive
dependability is integrated into the middleware, the application provides the
necessary artefacts, e.g., integrity constraints and corresponding metadata,
on which trade-off decisions between integrity and availability can be based.
Moreover, several plugin-based or even dynamically configurable call-backs
allow for runtime interaction between application and middleware in order
to perform flexible (in)consistency management within the system.

Runtime configurability and explicitness contribute to separation of concerns
and hence to a well-structured system design, robustness, and better main-
tainability, while generally impairing system performance. Our studies show
that the increases in maintainability of some of the more advanced approaches
for explicit integrity constraints are certainly worth their performance costs
of 1–15% while other approaches might be simply too slow with overheads
of up to about 40,000%.

Consistency management based on explicit constraints is the first key part
of our adaptive dependability approach. The second major part is an inte-
grated replication service in order to provide fault tolerance for node and
link failures. Evaluations of our middleware enhancement show that it is
most worth its costs in systems where (i) the read-to-write ratio is high, (ii)
the number of replicated nodes in the system is small, and/or (iii) write-
performance is not the limiting factor. Moreover, systems can benefit most
if they do not require the history of performed operations/applied states in
order to reconcile inconsistencies of the system.

iii

Acknowledgements

First of all, I want to thank Karl M. Göschka for his excellent guidance of my
dissertation, the several fruitful discussions, the opportunities given during
the last three years, and the experience gained in project management.

Furthermore, great thanks to Mehdi Jazayeri for his guidance and interesting
discussions within the course of my PhD and for establishing the link to Karl
M. Göschka and the DeDiSys (Dependable Distributed Systems) project.
Further thanks go to Carlo Ghezzi for his interesting questions and feedback.

I am especially thankful to the master’s students who contributed to this dis-
sertation through several discussions and prototype implementations: Markus
Horehled, Klaus Fuchshofer, Gerhard Glos, Jörg Artaker, Martin Hinterndor-
fer, Gerfried Aigner, Markus Baumgartner, Bernhard Rieder, Dominik Ertl,
and Xuejun Ji.

Thanks go to my colleagues Johannes Osrael and Karl M. Göschka for the
excellent cooperation and working environment. Further thanks go to all the
colleagues at the university for the discussions and their feedback—also on
early stages of this work. Moreover, I want to thank Hubert Künig for being
“my” industry application developer, for the many in-depth discussions, the
good cooperation, and his criticism and scepticism that challenged me over
and over again.

I am thankful to my girlfriend for her patience and understanding during the
last years where my time was often a scarce resource.

Finally, I want to thank the European Community by which this work
has been partially funded under the Framework Programme 6 IST project
DeDiSys (Dependable Distributed Systems, http://www.dedisys.org, con-
tract number 004152).

http://www.dedisys.org

Contents

1 Introduction 1
1.1 Adaptive dependability . 2
1.2 Relationship to the transaction concept 4
1.3 Problem illustration & solution overview 5
1.4 Target systems and applications 7
1.5 Explicit integrity constraints 9
1.6 Target constraints and trigger points 11
1.7 Structure, contributions, publications 13

2 Constraint Validation Approaches 15
2.1 Constraint implementation strategies 15

2.1.1 Handcrafted constraints 16
2.1.2 Code instrumentation 16
2.1.3 Compiler-based approaches 18
2.1.4 Explicit constraint classes 19
2.1.5 Interceptor mechanisms 20
2.1.6 Summary . 21

2.2 Implementation & maintainability issues 22
2.2.1 Implemented approaches 22
2.2.2 Handcrafted constraints 23
2.2.3 Code instrumentation 23
2.2.4 Compiler-based approaches 26
2.2.5 Constraints encoded in interceptors 26
2.2.6 Explicit constraint classes 27

2.3 Performance studies . 27
2.3.1 Comparison conditions 27
2.3.2 Results . 28

2.4 Conclusion . 33

3 Balancing Integrity and Availability 35
3.1 The notion of a consistency threat 36

CONTENTS v

3.2 Balancing integrity and availability 39
3.2.1 Negotiation of consistency threats 40
3.2.2 Preparation for reconciliation 41

3.3 Reconciling constraint consistency 42

4 Middleware Support for Adaptive Dependability 44
4.1 System architecture . 44
4.2 Constraint consistency management 46

4.2.1 Explicit (runtime) constraint representation 46
4.2.2 Constraint configuration and registration 48
4.2.3 Constraint consistency manager 50
4.2.4 Invocation interception 51

4.3 Replication support . 53
4.4 Reconciliation phase . 54
4.5 Callbacks in Web applications 56

5 Evaluation 60
5.1 Healthy and degraded mode performance 60
5.2 Reconciliation phase . 66
5.3 Lessons from implementation and tools 69
5.4 Middleware/application interactions 71
5.5 Improvements based on evaluations 75

5.5.1 Reduced history . 75
5.5.2 Partition-sensitive constraints 76
5.5.3 Asynchronous constraints 77

6 Related Work 78
6.1 (In)consistency management 78
6.2 Explicit integrity constraints 81
6.3 Adaptive middleware and systems 83
6.4 Callbacks in Web applications 85

7 Conclusion and Future Work 86
7.1 Future work . 87
7.2 Future research challenges . 89

A Consistency Management Model 91
A.1 Functional requirements . 91
A.2 Cross-cutting requirements . 93
A.3 Model of consistency management 95

Bibliography 98

CONTENTS vi

Glossary 107

Index 109

Curriculum Vitae 111

Publications 113

List of Figures

1.1 Interrelation of consistency types 4

1.2 Trading transactional properties for adaptive dependability . . 5

1.3 Flight booking system . 6

1.4 Major system states . 7

1.5 Simplified ATS model with constraint 8

1.6 Design-phase (OCL) constraint example 9

2.1 Fastest approaches . 29

2.2 Slowest approaches . 30

2.3 Runtime slices . 30

2.4 Search overhead: R1+R2+R3+R4
R1

. 31

2.5 Interception overhead: R1+R2
R1

. 32

2.6 Overhead of invocation interception and parameter extraction
for searching the constraint repository: R1+R2+R3

R1
. 33

3.1 Consistency threats . 37

3.2 Intra- vs. inter-object constraints 39

3.3 Overview of the negotiation process 41

4.1 EJB/JBoss AS specific system architecture 45

4.2 Usage relationships of system components 46

4.3 Constraint runtime model . 47

4.4 Detection and negotiation of consistency threats 51

LIST OF FIGURES viii

4.5 JBoss invocation interception 52

4.6 Reconciliation phase and callbacks 55

4.7 Consistency threat negotiation in distributed object systems . 57

4.8 Different request/response behaviour of distributed object-based
and Web-based systems . 58

5.1 Overhead of explicit constraint consistency management . . . 61

5.2 No DeDiSys vs. DeDiSys with same number of nodes in
healthy and degraded mode 62

5.3 No DeDiSys vs. DeDiSys with three nodes (healthy) and two
nodes (degraded) . 63

5.4 Replication effects on different operations 65

5.5 Major reconciliation dimensions 66

5.6 Time required for propagation of missed updates and re-evaluation
of consistency threats . 68

5.7 Exceptions break the flow of control 73

5.8 Improvements through reduced consistency threat history . . . 75

Chapter 1

Introduction

Network partitions have been subject to extensive research for many years
and interesting results have already been achieved. In 1985, Davidson et
al. [DGMS85] contributed with a survey about consistency in partitioned
networks, where they discussed several optimistic and pessimistic strategies
to address the conflicting requirements of availability on the one hand and
correctness (integrity, consistency) on the other hand. This interdependence
is stated more precisely by the CAP principle [FB99, GL02], specifying that
a system can only fully satisfy two of the three properties: Consistency,
Availability, and Partition-tolerance (strong CAP principle). However, the
weak CAP principle already defines that the stronger guarantees are provided
for two of these properties, the weaker guarantees can be provided for the third.
Obviously, there is a trade-off between these requirements. This trade-off
potential is addressed, for example, through data partitioning [ÇÖSF01] and
optimistic replication techniques [SS05].

Data partitioning techniques address network partitions through (non-redun-
dant) distribution of data items across the system. For example, tickets of a
ticket booking system might be distributed across nodes, which subsequently
can sell their amount of tickets individually. Of course, redistribution of tick-
ets between the nodes is possible in order to avoid one node running out of
tickets. However, according to the CAP principle, this behaviour relaxes the
availability requirement as during a network partition, some partitions might
run out of tickets while other ones might still have several of them. Optimistic
replication techniques on the other hand relax the consistency requirements
based on the assumption that (write) conflicts are rare and therefore the
benefit gained in higher availability is worth the effort caused through con-
flict resolution. This dissertation contributes to this issue through explicit

1.1. ADAPTIVE DEPENDABILITY 2

(in)consistency management in order to achieve an adaptive balancing of the
two dependability [ALRL04] attributes: integrity, the absence of improper
system alterations, and availability, the readiness for correct service.

1.1 Adaptive dependability

Failures are threats to dependability and consequently to availability and
integrity. While failures affecting availability might lead to a non-responsive
system, integrity violations may lead to system inconsistencies. Strong con-
sistency requirements lead to impaired availability in the face of network
partitions, high availability requirements might result in potentially improper
system alterations in the face of network partitions, thereby possibly violat-
ing integrity and introducing inconsistencies into the system.

Consequently, dependability can be balanced with respect to the two conflict-
ing requirements integrity and availability and thereby be made adaptive to
a system’s context, environment conditions, and changing users’ needs. Such
a balancing requires appropriate means to control the amount and severity of
inconsistencies introduced in the face of network partitions in order to gain
the benefit of higher availability. This requirement is addressed within this
dissertation through explicit runtime integrity constraints for data-centric
applications: The constraints are defined and implemented according to an
application’s requirements, while the support for integrity maintenance as
well as the balancing support for adaptive dependability is provided by the
middleware.

This dissertation focuses on node and link failures, assuming the crash failure
model [Cri91] for nodes—pause-crash for server nodes—and links may fail by
losing some messages but do not duplicate or corrupt messages. Link failures
may subsequently lead to network partitions, effectively splitting a system
into parts that are not able to communicate. However, as node and link
failures cannot be differentiated at the time when they occur [FLP85], we
initially treat node failures as partitions with a single node. Whether a node
or link failed can be detected later when the node is reachable again.

Replication [HHB96], the process of maintaining multiple copies of the same
entity (data item, object), is well-known to provide fault tolerance for im-
proved availability in case of node and link failures. The primary partition
protocol [RSB93], for example, allows a single partition (the primary parti-
tion) to continue “normal” operation while other partitions are blocked or
operate in read-only mode. Such an approach prevents replica conflicts as

1.1. ADAPTIVE DEPENDABILITY 3

(write) operations are only allowed in the primary partition. To further in-
crease availability, write access in other partitions would be desirable—at the
price of replica inconsistency.

Replica consistency is only one correctness criterion for data integrity. In
total, we differentiate three different kinds of consistency with respect to
data integrity [SG04]:

• Concurrency consistency (isolation): defines the correctness of data
with respect to concurrent, interleaving access to single data items,
typically in the context of (even distributed) transactions.

• Replica consistency: defines the correct effect of operations on different
replicas (copies) of a single “logical” entity with respect to a particular
replica consistency model (e.g., 1-copy-serializability [BHG87] or looser
consistency models like ε-serializability [PL91] and eventual consis-
tency, meaning that every update eventually reaches every replica, used
for example in epidemic replication algorithms [DGH+87]). Replica in-
consistency is caused by staleness, e.g., if the backup copies differ from
the primary copy in a primary-backup replication protocol [BMST93].
Isolation of concurrent access to different replicas of the same logical
entity is also achieved by replica control—in cooperation with the (lo-
cal) isolation mentioned above.

• Constraint consistency: defines the correctness of data with respect to
data integrity constraints that stem from the application requirements.
These constraints have often to be satisfied in the course of business
transactions.

These three consistency types can be addressed through a layered approach
where replica control operates on top of local isolation and below constraint
consistency management, see Figure 1.1. The interrelationship of these types
is elaborated in more detail in the dissertation of Robert Smeikal [Sme04].
To summarize, the correctness of the isolation layer is crucial for the overall
consistency of the system as the replica control and data integrity layer both
depend on it. Replica control provides the mapping of replicated object states
to a single object that is checked at the data integrity layer. Therefore, replica
consistency directly affects data integrity. On the other hand, correct replica
control does not depend on data integrity.

This dissertation focuses on constraint consistency, influenced by replica con-
sistency, as both are affected by node and link failures. Consistency of

1.2. RELATIONSHIP TO THE TRANSACTION CONCEPT 4

Figure 1.1: Interrelation of consistency types

the constraints themselves, e.g., whether constraints represent conflicting
requirements, does not affect our balancing of integrity and availability and
is therefore not within the focus of this work. Similarly, concurrency consis-
tency is not affected by node and link failures and hence not in the focus.

1.2 Relationship to the transaction concept

Traditional systems apply ACID1 transactions [HR83], requiring that all four
properties are met. Replication (“R”) can synchronously be bound to trans-
actions, e.g., 1-copy-serializability [BHG87]. However, in case of node or link
failures, synchronous update propagation would block. Consequently, up-
date propagation can be relaxed to asynchronous behavior, e.g., synchronous
per network partition, to avoid blocking. Moreover, if constraints cannot be
checked (unreachable objects) or cannot reliably be checked (stale backup
copies involved), constraint consistency (the “C”) needs to be relaxed, too.
Interestingly, Coulouris et al. [CDK05] do not include consistency in their
list of transaction properties and rather specify that the “C” is under the
responsibility of the application developer.

Atomicity (“A”) is not relaxed in principle in our approach, although one
business transaction (completed as a single transaction in a healthy system)
may result in two or more transactions (one initial transaction during de-
graded mode and one or more transactions to resolve conflicts and perform
compensating actions during reconciliation). These considerations rather
correspond to the concepts of atomic transactions [ABH+05a] vs. business

1Atomicity, Consistency, Isolation, and Durability

1.3. PROBLEM ILLUSTRATION & SOLUTION OVERVIEW 5

activities [ABH+05b] in the area of Web services (WS). However, in our
approach we did not follow these ideas and consequently bound atomicity,
isolation, and durability strictly to transactions. Consequently, replication
and constraint consistency management operate then on top of such “AID”
transactions, see Figure 1.2.

A I D
C R

A Atomicity
C Constraint consistency
I Isolation (concurrency consistency)
D Durability
R Replication

A C I D

R

Figure 1.2: Trading transactional properties for adaptive dependability

1.3 Problem illustration & solution overview

The example for our discussion is provided by a distributed flight booking
system as illustrated in Figure 1.3. This flight booking system consists of
replicated server nodes that store identical data about flights and sold tickets
for passengers (persons). This application has a data integrity constraint,
the ticket-constraint, specifying that the number of sold tickets must be less
than or equal to the number of seats of a specific flight. As long as the
system operates in the healthy system mode, i.e., no node or link failures
are present, this constraint can easily be validated. However, as soon as the
system suffers—as illustrated—from a link failure, for example, the balancing
of availability and consistency has to be performed.

Suppose that we have a flight with 80 seats of which 70 are already booked
based on operations performed in the healthy system. Now the system suffers
from a network partition. Due to the high availability requirement for this
system, we allow write access in different partitions, temporarily accepting
potential inconsistencies. Assume that customers buy seven tickets in par-
tition A, which now has a total of 77 sold tickets. The ticket-constraint is
satisfied in this partition. Subsequently, customers buy eight tickets in parti-
tion B, leading to 78 sold tickets in partition B. The ticket-constraint is also
satisfied in this partition. After the network partitions are reunified, however,
the system has to reconcile the updates made in the different partitions, effec-
tively leading to 85 sold tickets in total. Consequently, our ticket-constraint
is now violated. To solve this issue, five tickets will be cancelled or rebooked
to another flight.

1.3. PROBLEM ILLUSTRATION & SOLUTION OVERVIEW 6

Figure 1.3: Flight booking system

The previous example shows that although a constraint is satisfied in de-
graded mode while node or link failures are present, it might be the case
that it is violated afterwards when the system recovers from a previous fail-
ure. Consequently, constraint validation is not reliable during degraded mode
if write access in different partitions is possible. We call such situations a
consistency threat.

Obviously, the effects of a consistency threat depend on the application and
have to be reconciled in an application-specific way. However, other tasks
such as detection of node or link failures, triggering the validation of con-
straints at appropriate times, detection of consistency threats or the repli-
cation support can be implemented in the middleware. To actually decide,
whether a specific consistency threat is acceptable, i.e., it does not lead to
catastrophic consequences and its effects can be cleaned up after all nodes
are reachable again, we perform an application callback. This negotiation
callback provides the constraint and the objects affected by the consistency
threat to the application-provided negotiation handler. The application in
turn can examine the situation and decide on whether to accept or reject the
consistency threat. If the threat is accepted, the current operation/transac-
tion continues—otherwise it is aborted.

Accepted consistency threats are persistently stored by the middleware and
processed again during the reconciliation phase in order to evaluate whether a
consistency threat actually introduced a constraint violation. If a constraint
is violated, e.g., 85 tickets sold for a plane with 80 seats, we use another
callback to the application-provided reconciliation handler in order to trigger
the clean-up of the inconsistencies.

1.4. TARGET SYSTEMS AND APPLICATIONS 7

1.4 Target systems and applications

This dissertation focuses on the class of tightly-coupled data-centric dis-
tributed object systems [16]. These systems have their focus on the (business)
data, typically stored in database management systems and represented by
the business objects (entities) of an application and the relations between
them. The Enterprise JavaBeans (EJB) platform, for example, represents
such business objects by entity beans. The differentiation criterion between
data-centric and other systems is based on the major design focus of the
system—and how properties and constraints are formulated and expressed.
This, however, does not imply how the system is implemented.

Furthermore, our focus is on distributed object systems where communicat-
ing objects reside on different nodes. The main reason for having objects
distributed among nodes and not being centralized is strong ownership of
these nodes, e.g., the objects might be bound to some hardware facilities
or different administrative domains. Application data are encapsulated by
objects and their relationships and are modified by (possibly nested) invoca-
tions of methods of these objects.

Figure 1.4: Major system states

The system model foresees three major states as locally perceived by each
individual node, see Figure 1.4. In a healthy system, no failures or in-
consistencies are present. In degraded mode, while node/link failures are
present, inconsistencies are potentially introduced. These inconsistencies are
cleaned up in the reconciliation phase after node or link failures were re-
paired. To limit the degree of inconsistency introduced in degraded system
periods, integrity constraints have to be explicitly available and manageable
during runtime. For this purpose, the middleware also needs metadata about
constraints, e.g., whether a constraint must never be violated or might po-
tentially be violated in degraded mode. Given this input, the middleware

1.4. TARGET SYSTEMS AND APPLICATIONS 8

afterwards provides the support for runtime-management of constraint con-
sistency in each of the three major system states.

The primary motivation for the performed work stems from a distributed
telecommunication management system (DTMS) [SG03]. The DTMS ap-
plication manages voice communication systems (VCS) installed at different
sites. Each site has its own instance of a DTMS, but configuration of the
VCS requires DTMS instances of different sites to cooperate. The hardware
facilities of the VCS are represented by objects within the DTMS that are
bound to the site of the VCS for decentralized management reasons—a fail-
ure of a DTMS site should not have effects beyond the specific site. The
objects of the DTMS are subject to integrity constraints that possibly span
objects of multiple sites, e.g., the configuration parameters for a voice com-
munication channel have to be consistent to enable communication between
different sites.

Another application scenario, where a prototype has been implemented by an
industry partner based upon our middleware, is a distributed alarm tracking
system (ATS) [Ke07]. For our studies within this dissertation, a simplified
model of the ATS is given in Figure 1.5, showing two classes: Alarm and
RepairReport. Alarms are managed by administrative operators while the re-
pair reports are filled out by technical operators. The alarmKind determines
which kinds of components might have to be repaired (affectedComponent).
Hence, the system applies certain integrity constraints between an Alarm and
a RepairReport. The example provided in Figure 1.5 specifies that an alarm
with alarmKind=“Signal” can only be removed by repairing a component that
is either a “Signal Controller” or a “Signal Cable”. Administrative operators
and technical operators are working at different locations, potentially access-
ing different servers. If a network split occurs between these servers, the
system should still be available to all of them and allow to make progress—
although the corresponding Alarm and RepairReport objects might become
inconsistent.

Figure 1.5: Simplified ATS model with constraint

1.5. EXPLICIT INTEGRITY CONSTRAINTS 9

A further application scenario is the flight booking application illustrated in
Section 1.3. A research prototype of this scenario was implemented based
upon our middleware enhancement in order to study different concepts.

Additional application scenarios are available in [Fe07] along with a corre-
sponding evaluation.

1.5 Explicit integrity constraints

Constraint validation is one of the most essential tasks of a system to en-
sure integrity. The integrity constraints are defined according to an appli-
cation’s requirements and explicitly stated (and probably negotiated with
stakeholders) during the requirements analysis phase, e.g., by stating “The
system must not sell more tickets than available seats for a flight.”. Conse-
quently, the constraints represent a subset of an application’s requirements
that should be ensured by the implementation. Being typically stated only
informally in the requirements analysis phase, e.g., written down in natural
language, the constraints are often more formally described and attached to
the application model in the design phase. The Unified Modeling Language
(UML), for example, provides the Object Constraint Language (OCL) to
explicitly specify constraints—in addition to the possibility to already ex-
press some constraints, e.g., cardinality or XOR, in the graphical notation of
UML. Figure 1.6 provides an example for the ticket-constraint.

Figure 1.6: Design-phase (OCL) constraint example

In contrast to analysis and design, the constraints are most often no longer
explicitly available in a system’s implementation, i.e., the constraint vali-
dation code is often tangled with code for the business logic. Listing 1.1
provides such an example. For some applications, this might be a reason-
able or satisfying approach. However, just following the simple approach to
use if statements to validate constraints, for example, often turns out not
to be the best solution due to several reasons: A single constraint might
have to be checked in different places in the program, which might lead to

1.5. EXPLICIT INTEGRITY CONSTRAINTS 10

inconsistent implementations of the same constraint throughout the imple-
mentation code. Obviously, ensuring that specific constraints were correctly
implemented in a system might become a tedious task and might lead to
inconsistencies between system requirements, design, and implementation.
Furthermore, constraints might also describe contracts between different sys-
tem entities. Unfortunately, an implicit constraint implementation does not
support this “design by contract” principle [Mey92]. Some systems might
even be more demanding by requiring explicit runtime handling of integrity
constraints, e.g., to support object versioning [GCG02] or adaptive depend-
ability by (temporarily) relaxing integrity requirements as addressed in this
dissertation.

Listing 1.1: Constraint implementation example

public class Fl i gh t {
. . .
public Ticket [] s e l l T i c k e t s (Person p , int t i cketCount) {

i f (ge tSea t s () >= getSo ldT icke t s () . count ()+ t icketCount) {
// S e l l t i c k e t

}
else {

// Do not s e l l t i c k e t
}

}
}

Meyer [Mey92] already proposes the “design by contract” principle where
constraints are made explicit through so called contracts. Contracts can
be expressed as preconditions and postconditions for methods and invariant
constraints for classes. This already improves the traceability of constraints
within the implementation code. However, the constraints are intertwined
with business functionality during compile time and no longer explicitly avail-
able (and manageable) during runtime.

In distributed object systems, constraint or contract enforcement becomes
more complex as node and link failures affect the constraint validation pro-
cess. For example, if nodes are unreachable, some constraints might not be
checkable due to unavailable objects. Systems requiring strict consistency
will have to (at least partially) block in such situations. However, for mis-
sion or safety-critical applications, availability might be more important than
strict consistency as blocking the system due to partial failures might lead to
disadvantageous if not catastrophic consequences. On the other hand, intro-
ducing inconsistencies to the system must be performed in a controllable way.
Relaxing consistency to improve availability can benefit from integrity con-

1.6. TARGET CONSTRAINTS AND TRIGGER POINTS 11

straints that are explicitly available and manageable during runtime. This
approach allows for constraint validation at any time or adaptation to chang-
ing consistency requirements.

Consequently, this dissertation addresses data integrity constraints as first
class runtime citizens within a distributed object system in order to balance
dependability [ALRL04] with respect to node and link failures. Similar to
[VS02], we encapsulate the constraint checking code in classes of an object-
oriented programming language—Java within the scope of this dissertation—
where one class represents exactly one integrity constraint. Each class pro-
vides a validate(...) method which is called to validate the constraint. List-
ing 1.2 provides a corresponding explicit constraint example for the ticket-
constraint. As the constraint is now separated from the business logic, appro-
priate middleware support ensures that the constraint validation is triggered
appropriately. If the constraint is violated, the middleware will abort the
current operation/transaction. Consequently, the middleware provides the
glue logic between the business code and the constraint implementation.

Listing 1.2: Explicit constraint classes

public class Fl i gh t {
. . .
public Ticket [] s e l l T i c k e t s (Person p , int t i cketCount) {

// S e l l t i c k e t (s)
}
. . .

}

public class TicketConst ra int {
public boolean va l i d a t e (ConstrVal idat ionContext ctx) {

Fl i gh t f l i g h t = ((F l i gh t) ctx . getContextObject ()) ;
return f l i g h t . g e tSo ldT icke t s () . count () <= f l i g h t . g e tSea t s () ;

}
}

1.6 Target constraints and trigger points

Generally, data integrity constraints are predicates on data, evaluating to
true, if a constraint is satisfied, or false, if it is violated. In our case, con-
straints are defined upon a class model, e.g., by using the Object Constraint
Language (OCL) of the Unified Modeling Language (UML) for UML class
diagrams. We follow the well-established approach to differentiate between

1.6. TARGET CONSTRAINTS AND TRIGGER POINTS 12

preconditions, postconditions and invariant constraints [Mey92]. Precondi-
tions are bound to and checked before a specific method invocation, postcon-
ditions are bound to and checked after a method invocation, and invariant
constraints are bound to a certain class—the context class. For invariant
constraints, we further differentiate between hard (checked at the end of an
operation during a transaction) and soft constraints (checked at the end of
a transaction) [JQ92] for transactional applications. Invariant constraints
are defined solely on the state of objects (static constraints) and hence can
be validated at any time. Dynamic constraints defined on state transitions,
sequences of states or state transitions or temporal predicates are not in the
primary focus of our work.

While pre- and postconditions are explicitly bound to methods and hence
have to be triggered before or after method invocations, invariants are bound
to a certain class and the triggering methods for validation of invariants have
to be specified. Triggering constraint validation of invariant constraints upon
each call to a method of the context class or only upon each call to a public
method of the context class are two possible options. However, invariant
constraints have at least to be checked whenever a method that potentially
might lead to a constraint violation is called. We call such a method an
affected method of the constraint.

Although an invariant constraint is defined for a certain context class, af-
fected methods might belong to other classes as well. For our ATS ex-
ample in Figure 1.5, the constraint ComponentKindReferenceConsistency has
to be checked whenever the alarmKind of an Alarm or the componentKind
of a RepairReport is changed. Consequently, Alarm.setAlarmKind(. . .) and
RepairReport.setComponentKind(. . .) are affected methods of the constraint
ComponentKindReferenceConsistency while the constraint itself is an affected
constraint of these methods with two affected objects, an Alarm object and a
RepairReport object. The validation of a constraint requires access to all af-
fected objects. Obviously, the affected methods of a constraint cannot gener-
ically be determined without further knowledge of the constraint. Moreover,
checking the ComponentKindReferenceConsistency constraint if only the de-
scription of an alarm is changed (caused by following the “trigger constraint
at all public method invocations” paradigm) unnecessarily impairs perfor-
mance. Due to these reasons, we only trigger constraint checking for affected
methods specified by the application developer.

1.7. STRUCTURE, CONTRIBUTIONS, PUBLICATIONS 13

1.7 Structure, contributions, publications

This dissertation contributes to the areas of dependability research, run-
time monitoring, and runtime program analysis with respect to adaptive
dependability and integrity/(in)consistency management in distributed sys-
tems. More specifically, it primarily contributes through the following topics:

• Chapter 2 elaborates the trade-off between performance impairments
and maintainability issues resulting from explicitness of integrity con-
straints through an overview and evaluation of constraint validation
approaches for the Java programming language [2]. Starting from a sim-
ple handcrafted approach to constraint validation, more sophisticated
approaches, such as the ones inspired by design by contract [Mey92],
aspect-oriented programming (AOP) [KIL+96], or the requirement for
explicit runtime integrity constraints are evaluated.

• Chapter 3 contributes with the theoretical foundations for adaptive
dependability by balancing integrity and availability based on explicit
runtime constraints [4, 5]. Given the fact that constraint validation
cannot be performed reliably when node and link failures are present
in distributed systems with high availability requirements, the con-
cept of a consistency threat is elaborated in order to manage potential
inconsistencies introduced to the system during degraded system peri-
ods. Additionally, the potential inconsistencies are re-evaluated and—if
necessary—reconciled after corresponding node and link failures were
repaired.

• Based on the theoretical foundations, Chapter 4 describes how adap-
tive dependability through balancing of availability and integrity can be
supported and implemented in middleware [3, 6, 1]. More specifically,
it provides details about a proof-of-concept prototype implementation
integrated into the JBoss Application Server (JBoss AS) for Enter-
prise JavaBeans (EJB) applications. This prototype implementation is
thereafter evaluated in Chapter 5.

Chapter 6 discusses related work to the topics covered in this dissertation
and Chapter 7 finally concludes this dissertation and provides ideas for future
work.

The dissertation of Johannes Osrael on “Replication Techniques for Balanc-
ing Data Integrity with Availability” [Osr07] provides complementary in-

1.7. STRUCTURE, CONTRIBUTIONS, PUBLICATIONS 14

sights and results to this dissertation. An overview of the content of [Osr07]
and some corresponding publications is found in Section 4.3 on page 54.

The publications authored and co-authored by the writer of this dissertation
provided in the references above and within the dissertation in numeric ref-
erences are used in parts of this dissertation without always being referenced
explicitly.

Chapter 2

Constraint Validation
Approaches

Several constraint validation techniques for the Java programming language
have been developed in the past. Most of these techniques are inspired by the
way constraints are integrated in the Eiffel programming language—by build-
ing upon the design by contract principle. While this principle has a strong
focus on the detection of contract violations between producers and users of
a certain piece of code, e.g., between the writer and the caller of a method,
other approaches focus on how system integrity can be achieved via valida-
tion of integrity constraints. Besides this slightly different focus, both ap-
proaches aim at improved system dependability through runtime constraint
validation. Each of these constraint validation techniques has its advantages
and disadvantages. Increasing the explicitness and runtime configurability
of constraint handling and enforcement generally comes at the price of im-
paired performance. Motivated by these considerations and our requirement
for explicit runtime handling of constraints, the following sections contribute
with an overview and evaluation of different constraint validation approaches
in Java with respect to implementation, maintainability, and performance.

2.1 Constraint implementation strategies

Starting from the simple approach of handcrafted constraints, we will con-
tinue to more flexible approaches such as constraint code generation and
explicit runtime constraints. While this section will shortly describe how
each approach is performed, sections 2.2 and 2.3 will discuss their advan-

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 16

tages and disadvantages with respect to implementation, maintainability,
and performance. To unify the trigger points for invariant constraints in
order to make our performance evaluations comparable, we check invariant
constraints before and after the invocation of public methods of our reference
application—complying with design by contract in the way that if and only
if an invariant holds before a public method invocation, it must also hold
after the method invocation.

2.1.1 Handcrafted constraints

The most simple approach to implement constraint checking in Java is to
tangle the constraint checking code with other code, e.g., for the business
logic. This approach does not require any formal specification of constraints
as the transformation from the integrity requirement to the constraint imple-
mentation has to be performed by the programmer. Generally, this results
in one or more if-statements to check a certain constraint and act according
to whether these conditions are true or false. A source code example for this
approach is provided in Listing 2.1.

Listing 2.1: Simple constraint implementation

class A {
void someMethod () {

i f (((. . .) OR (. . .)) AND (. . .)) {
// bus ine s s l o g i c code

} else i f (! . . .) {
throw SomeException () ;

} else {
i f (. . .) {

// excep t i on hand l ing code
pr intErrorMessage (. . .) ;

} else {
// bus ine s s l o g i c cont inued

}
}
// f u r t h e r bu s ine s s l o g i c

}
}

2.1.2 Code instrumentation

Code instrumentation refers to injecting automatically generated code into
a piece of original code, e.g., to add some additional functionality to the ex-
isting code. With respect to Java, we differentiate between source code and

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 17

byte code instrumentation, depending on whether the Java sources are in-
strumented with Java code before compilation (i.e., pre-compiler approaches)
or byte code is instrumented with byte code after the Java sources are al-
ready compiled. Within this section, we focus on source code instrumenta-
tion and will discuss differences to byte code instrumentation at the end of
Section 2.2.3.

However, common to both approaches is the requirement that the injected
code is generated according to constraints specified in a constraint language
known by a certain tool. Generally, tools use either UML class models
paired with OCL constraints [VS02, Wie00], constraints defined within Java
comments, or methods with names according to naming conventions. The
languages for constraint specification in the latter cases range from Java
code [KHB99] over OCL and OCL-like expressions [Kra98] to tool-specific
constraint languages [LBR99]. For source code instrumentation, the two pri-
mary approaches are in-place code injection and wrapper-based validation:

In-place validation code. This approach injects code for constraint checks
directly at the place where the validation should be performed, e.g., within
the performed method. If a constraint affects several methods of possibly dif-
ferent objects, constraint checking code for the same constraint is injected at
any place where constraint checking is required. This approach is illustrated
in Listing 2.2. An example for this approach is the iContract tool [Kra98].

Listing 2.2: In-place code injection

public int countChar (char c) {
//−−> code f o r v a l i d a t i o n o f i n va r i an t
// c on s t r a i n t s and pre cond i t i on s
//BEGIN o r i g i n a l code
int r e s u l t = 0 ;
char [] chars = toCharArray () ;
for (int i =0; i<chars . l ength ; i++) {

i f (chars [i] == c) r e s u l t++;
}
//END o r i g i n a l code
//−−> code f o r v a l i d a t i o n o f i n va r i an t
// c on s t r a i n t s and po s t c ond i t i on s
return r e s u l t ;

}

Wrapper-based constraint validation. In this case, methods restricted
by constraints are wrapped and the constraint validation code is contained
in the wrapper method. Generally, the original method is renamed and only

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 18

called via the wrapper method. For example, the original method countChar
would be renamed to countChar wrapped and the wrapper method would be
named countChar, see Listing 2.3. Consequently, calls to countChar execute
the wrapper method including the constraint validation code. A typical
example for this approach is the Dresden OCL toolkit [Wie00].

Listing 2.3: Wrapper-based validation

public int countChar (char c) {
//−−> code f o r v a l i d a t i o n o f i n va r i an t
// c on s t r a i n t s and pre cond i t i on s
//−−> Ca l l the o r i g i n a l method
int r e s u l t = countChar wrapped (c) ;
//−−> code f o r v a l i d a t i o n o f i n va r i an t
// c on s t r a i n t s and po s t c ond i t i on s
return r e s u l t ;

}

public int countChar wrapped (char c) {
int r e s u l t = 0 ;
char [] chars = toCharArray () ;
for (int i =0; i<l ength () ; i++) {

i f (chars [i] == c) r e s u l t++;
}
return r e s u l t ;

}

2.1.3 Compiler-based approaches

Compiler-based approaches build upon a specific Java compiler that is en-
hanced with functionality to read constraint specifications and integrate the
corresponding constraint validation mechanisms into the Java byte code. As
also possible for pre-compiler approaches, the constraint specifications can
be provided in special Java comments or in special statements according to
custom extensions of the Java programming language. In contrast to code in-
strumentation approaches, the transformation from source code to constraint
checking byte-code is performed in a single step. An example for a compiler-
based approach is the Java Modeling Language (JML) [LBR99]. Listing 2.4
provides an example for an input to a compiler-based approach that does not
use a custom extension of the Java programming language.

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 19

Listing 2.4: Compiler-based constraint checks

/∗∗
∗ @pre o != nu l l ;
∗ @post s i z e () == s i z e ()@pre + 1;
∗/

public void add (Object o) { . . . }

2.1.4 Explicit constraint classes

Encoding constraint validation code in explicit Java classes is an approach
that completely separates validation code from, e.g., the code for the busi-
ness logic. For example, the constraint validation code may be contained in a
validate(. . .) method that is executed with appropriate arguments whenever
a certain constraint has to be checked. This approach requires appropriate
trigger mechanisms to ensure that the validate(. . .) method is called when-
ever necessary. Trigger mechanisms include explicit code statements made
by the programmer, in-place code generation of the calls, wrapper-based ap-
proaches, and interceptor mechanisms discussed in Section 2.1.5. Explicit
constraint classes are used, for example, in [VS02] as well as in this disserta-
tion. Listing 2.5 illustrates this approach by repeating the TicketConstraint
from Listing 1.2.

Listing 2.5: Explicit constraint classes

public class TicketConst ra int {
public boolean va l i d a t e (ConstrVal idat ionContext ctx) {

//−−> Get the in s tance o f the c on s t r a i n t ’ s
// con t ex t c l a s s
Fl i gh t f l i g h t = ((F l i gh t) ctx . getContextObject ()) ;
//−−> Check the con s t r a i n t and s e t the
// re turn va lue “ r e s u l t ” depending on
// whether the con s t r a i n t i s s a t i s f i e d .
return f l i g h t . g e tSo ldT icke t s () . count () <= f l i g h t . g e tSea t s () ;

}
}

Constraint repository. Encapsulating the constraint checking code in
separate classes allows for more flexible handling of integrity constraints.
For example, all constraints of an application can be registered within a
constraint repository. At any point in time, this repository can be queried
for constraints based on different criteria such as the class of the invoked
object or the signature of invoked methods. Consequently, preconditions,
postconditions, and invariant constraints affected by method invocations can
be queried from the constraint repository. Moreover, using such a constraint

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 20

repository allows to add, remove, enable, and disable integrity constraints
even during runtime.

2.1.5 Interceptor mechanisms

Interceptor mechanisms provide the possibility to intercept different events
such as the call to a method. Subsequently, the interceptor can perform
some actions and continue or possibly abort the current action, e.g., the
method call. Hence, interceptor mechanisms are an appropriate mechanism
to implement so called “cross-cutting concerns” such as logging or—in our
case—constraint validation. For constraint validation, one can either imple-
ment the constraint checking code within the interceptor [WM05] or use a
generic interceptor that redirects calls, e.g., to explicit constraint validation
classes (Section 2.1.4). The second approach can be achieved by combining
the interception mechanism with a constraint repository. Within the follow-
ing paragraphs, we describe the major interceptor mechanisms available for
the Java programming language:

Aspect-oriented programming. Aspect-oriented programming (AOP)
[KIL+96] is closely related to code instrumentation as AOP is often achieved
through (byte) code instrumentation. It follows the programming paradigm
of interception and weaving of so called aspects into program execution. A
typical example for the weaving of an aspect is to introduce logging func-
tionality to an existing program. Today, several tools supporting the AOP
programming paradigm already exist (http://aosd.net). Within this disser-
tation, we concentrate on AspectJ and JBoss AOP as two well-known tools
with a significant user base.

Proxy implementations. The Java programming language provides the
concept of a proxy implementation for interfaces (java.lang.reflect.Proxy). If a
method is invoked on the proxy, the registered invocation handler is notified
with details about which method was invoked on which object with which
arguments.

CORBA and EJB interceptors CORBA and Enterprise JavaBeans also
provide the possibility to intercept method invocations as both technologies
separate interface from implementation. Hence, the interceptor mechanisms
of CORBA and EJB can be used as trigger mechanisms for constraint val-

2.1. CONSTRAINT IMPLEMENTATION STRATEGIES 21

idation. However, within this evaluation we concentrate on plain Java ap-
plications not building upon higher level specifications, while EJB will be
addressed within Chapter 4 and 5 discussing the adaptive middleware sup-
port.

2.1.6 Summary

Table 2.1 summarizes this section with an overview of the most influen-
tial tools supporting constraint validation. For each tool, we provide how
constraints are specified and which mechanism is used for integration of con-
straint checks.

Table 2.1: Constraint validation tools
Name and
reference

Constraint specification Integration of
constraint checks

Dresden
OCL toolkit
[Wie00]

OCL constraints defined for
a UML class model

Wrapper-based source
code instrumentation

Handshake
[DH98]

Custom language in a
separate file

Runtime byte code
instrumentation on class
load time

iContract
[Kra98]

OCL in custom tags of Java
comments

Source code
instrumentation

Jass
[BFMW01]

Custom language in special
Java comments

Source code
instrumentation

jContractor
[KHB99]

Java methods that follow a
defined naming

Byte code instrumentation
by class loader

JML
[LBR99]

JML constraints in Java
comments or separate file

Custom compiler

JMSAssert Custom language in custom
tags of Java comments

Pre-processor for standard
Java compiler, paired with
custom library

Kopi Java
compiler
[LKP02]

Extension of the Java
language with certain
keywords

Custom compiler

USE [RG00] OCL expressions Runtime interpretation of
OCL constraints

2.2. IMPLEMENTATION & MAINTAINABILITY ISSUES 22

2.2 Implementation & maintainability issues

This section provides a description of implemented constraint validation ap-
proaches and discusses several issues with respect to implementation of con-
straint checks and maintainability of the resulting code.

2.2.1 Implemented approaches

For evaluation and comparison of the different constraint validation ap-
proaches, we implemented the following particular alternatives:

• No checks: is an implementation of the application without any con-
straint checks.

• Handcrafted constraints: is the case where the constraint checks are
manually integrated into the application according to Section 2.1.1.

• Dresden OCL Toolkit: is a wrapper-based source code instrumentation
approach with tool-generated constraints.

• JML: implements a compiler-based approach with manually specified
constraints.

• AspectJ-Interceptor: is an AOP approach where the constraint valida-
tion code is implemented directly in the AspectJ aspect specifications.

• AspectJ-Repository: uses explicit constraint classes and a constraint
repository to allow flexible runtime handling of constraints.

• JBoss-Repository: implements the same as AspectJ-Repository but
uses the JBoss AOP toolkit as interception mechanism.

• Java-Proxy-Repository: uses the Proxy mechanism of Java as intercep-
tion mechanism and also makes use of the constraint repository to look
up affected constraints.

The selection of the different approaches is primarily motivated by our re-
quirement for explicit runtime constraints to balance the dependability prop-
erties availability and consistency. Consequently, we evaluate the benefits
and costs of different explicit runtime constraint checking approaches as well
as other constraint checking approaches with better performance or tool sup-
port.

2.2. IMPLEMENTATION & MAINTAINABILITY ISSUES 23

As expected, our performance studies showed a major overhead in the reposi-
tory-based approaches, caused by searching for affected constraints. Hence,
each of the repository-based approaches is also evaluated with an optimized
repository that performs caching of query results. In this case, a subsequent
query for constraints based on the same criteria reduces to a lookup in a
hash table with a key that combines our search criteria: class, method and
constraint type.

2.2.2 Handcrafted constraints

With handcrafted constraint checks, the programmer retains full control over
where, when and what is to be checked and how to react on violations. How-
ever, the programmer is also responsible for accurately documenting these
checks and to update them if the integrity requirements of an application
change. Unfortunately, this tends to lead to inconsistencies between ap-
plication requirements, documentation, and implementation of constraints.
Moreover, the same constraint might be implemented differently (and incon-
sistently) at several places within an application.

In some situations, where tool support is not sufficient because it lacks ex-
pressiveness for a specific constraint, or some exceptional error handling has
to be hand coded, this approach is the usual choice. Unfortunately, there are
major drawbacks. The programmer is responsible for accurately document-
ing and updating the constraint checks, which tends to be a time consuming
and error prone task and therefore impairs maintainability. Moreover the
business logic becomes tangled with tricky constraint checking statements,
making the program flow more complex. This may also lead to non-uniform
error handling: Some errors are caught and reported normally, while other
errors receive special treatment, provoking error retention, error masking and
cryptic error messages.

2.2.3 Code instrumentation

The main advantage of code instrumentation approaches is that they allow
a separation of business logic code from constraint checking code at design
and implementation level. The main disadvantage is that the original code is
changed through code injection. Several works [Ver01, Wie00] already inves-
tigated constraint implementation by code instrumentation and found that
code instrumentation approaches generally suffer from different problems we
can summarize as follows:

2.2. IMPLEMENTATION & MAINTAINABILITY ISSUES 24

• Return statement: The code for checking postconditions and invariant
constraints must be executed before the return statement. Hence, the
result must be available before the method actually returns. This poses
problems when the result to be computed is declared within the return
statement itself, e.g., return 2*x.

• Code duplication: Due to control flow issues, there may be several
return points for a method. Therefore, it is necessary to insert the
code for checking postconditions and invariants at several points in the
same method. Moreover, it could be necessary that constraints have
to be checked in more than one method. This leads to even more
duplication of constraint checking code.

• Reachable point: For methods of return type void it has to be decided
whether it is sufficient to only insert the code for checking postcon-
ditions at the end of the method. This depends on whether the end
is a reachable point of code—or more specifically, executed for every
method invocation. Hence, complex control flow analysis is required.

• Super statement: If a subclass calls the constructor of a superclass (by
invoking super()) in Java, the compiler allows no other statements in ad-
vance. Therefore, special measures must be taken to implement checks
for preconditions and class invariants. Moreover, wrapper-based ap-
proaches may lead to infinite loops. For example, if a method
m wrapped() of a subclass calls super.m(), m() of the superclass subse-
quently will—due to polymorphism—call m wrapped() of the subclass
again, thereby introducing an infinite loop. Consequently, appropriate
measures, such as adding the fully qualified class name to the name of
the wrapped function, have to be taken.

• Pollution of application code: The instrumented code is cluttered with
constraint checking statements.

• Shift of line numbers: Line numbers shown in compiler messages or
stack traces of exceptions point to the modified source code instead
of the original code. Hence, the mapping of the line numbers from
modified code to original code has to be performed manually by the
developer.

• Black-box instrumentation: The developer loses control over code chan-
ges, as they happen in a black box fashion. This may further lead to
unexpected behaviour and performance losses during runtime of the
program.

2.2. IMPLEMENTATION & MAINTAINABILITY ISSUES 25

• Debugging: Debugging becomes more difficult as standard debuggers
will only allow the debugging of the tangled instrumented source code.
The shift of line numbers issue described above makes debugging even
more complex.

• Naming conflicts: Conflicts in the names of, for example, methods or
variables must be prevented between the original code and the gen-
erated code, since the generated code may define variables or helper
methods.

Source code vs. byte code instrumentation. The comparison of source
code instrumentation and byte code instrumentation shows that the instru-
mentation method has a major impact on the generated code fragments:

• Source code pre-processing: translates the constraint definitions into
standard Java source code which is directly inserted into the original
source code. This leads to highly tangled code, which is hard to change
and maintain without original sources and constraint definitions.

• Byte code post-processing: translates the constraint definitions to Java
byte code and injects the generated code into the existing byte code af-
ter compilation—either before runtime or dynamically during runtime
through the usage of a custom class loader. In any case, this preserves
the original source code. Hence, the developer does not recognize any
changes to the code, but also has no control over the possibly dy-
namically instrumented code. This leads to difficulties in debugging,
possibly unexpected behaviour during runtime, and a performance loss
because of the constraint checks and—if performed at runtime—the dy-
namic code instrumentation through the class loader. However, some
issues can be solved by byte code instrumentation compared to source-
code instrumentation. For example, on byte code level, the Java Virtual
Machine allows arbitrary statements in advance of calling the superclass
constructor. This solves the problem of code insertion before a super()
statement. Another example is that in byte code the computation of
variables is separated from control flow statements (branching state-
ments). Branching statements denote the only exit points of methods.
Consequently, the issues of inline return statements and the determina-
tion of insertion points for postconditions are easier to address.

2.2. IMPLEMENTATION & MAINTAINABILITY ISSUES 26

2.2.4 Compiler-based approaches

Custom compilers are often used if the constraint definitions are not provided
within Java comments or Java annotations, i.e., the constraint-enhanced pro-
grams use an extended grammar of the standard Java language. In this case,
the program code is no longer compilable without the custom compiler—or
at least a compiler pre-processor—introducing a dependency on the vendor
of the (pre-)compiler. Using a pre-processor falls into the category of code-
instrumentation approaches described in Section 2.2.3 and hence will not
be addressed here. Compiler-based approaches perform a direct transforma-
tion from source code to Java byte code and integrate the constraint checks
during this transformation. As the example of JML shows, compiler-based
approaches are also used without extensions to the Java language. While
this allows to compile the code with a standard Java compiler, it still does
not remove the dependency on the custom compiler for constraint validation.

Generally, the principle that constraint checks are generated out of sepa-
rate constraint statements is similar to code instrumentation above. Hence,
some of the issues described in Section 2.2.3, e.g., black-box instrumentation,
debugging, and naming conflicts, also apply to this approach.

2.2.5 Constraints encoded in interceptors

Within our studies, we used constraints encoded as aspects in AspectJ as
representative for constraints encoded in interceptors. No tool support was
available for this approach. Hence, we had to manually code the constraints
as AspectJ aspects. This already provides a clear separation between con-
straint validation code and code for the business logic. While the code for
the business logic remains in *.java files, the code for constraint checking
is contained in separate *.aj files, defining the constraint checks as AspectJ
aspects.

One disadvantage of this approach is the strong coupling of the aspects to the
base code. Pointcut definitions specify the interception points for constraint
validation. If these definitions exactly match specific method signatures,
they are very susceptible to changes in the underlying base code in which
case the pointcut definitions have to be changed as well. Refactoring support
of Integrated Development Environments (IDEs) could provide support here
to improve productivity and reduce errors. General pointcut definitions that
match multiple method signatures, e.g., by using wildcards, may on the one
hand still be matching after some parts of the original method signature in the

2.3. PERFORMANCE STUDIES 27

underlying code have been changed, but on the other hand may be triggered
even when not intended. Such errors are difficult to detect and fix, especially
in the context of constraint checking as a failing constraint indicates that the
reason is a problem in the base code, rather than a mismatch in the pointcut
definitions.

2.2.6 Explicit constraint classes

Encapsulating the constraint checking code in explicit constraint classes al-
lows for explicit runtime handling of integrity constraints. The degree of flex-
ibility, however, heavily depends on the triggering mechanism for constraint
validation. While manual integration or code instrumentation are feasible
mechanisms to trigger constraint validation, we focused on the combination
of a constraint repository paired with a generic interceptor mechanism. This
combination allows for a maximum of flexibility, e.g., to add, remove, enable,
or disable integrity constraints during runtime of a system—which would re-
quire code modification and recompilation in the other constraint validation
approaches. However, this flexibility comes at the price of decreased perfor-
mance compared to other approaches that manually integrate constraints.

2.3 Performance studies

Our application scenario for the performance evaluation is the management of
projects and employees within a company. Employees participate in projects
and perform a certain amount of work on a daily basis. Within this model,
several restrictions apply, e.g., an employee can only handle a certain amount
of workload. The application contains a mixture of preconditions, postcon-
ditions and invariant constraints—78 constraints in total. This application
scenario was only used for the investigation of the different constraint valida-
tion approaches and not with respect to whether the balancing of integrity
and availability could be applied.

2.3.1 Comparison conditions

In order to allow for comparison of the different approaches, the validation
of integrity constraints was performed in a uniform way. More specifically,
we applied the following principles:

2.3. PERFORMANCE STUDIES 28

Constraint scope: Preconditions, postconditions and invariants only con-
strain public methods. Public constructors are constrained by invariants,
private constructors remain unchecked.

Constraint checking: Constraints are checked before (preconditions) or after
(postconditions) the actual code of the guarded method is executed. This
also holds true for nested method calls. Invariants are immediately checked
after public constructor calls and before and after public methods.

Constraint inheritance: In order to address object substitution and behav-
ioral subtyping, constraints of extended superclasses or implemented inter-
faces are also taken into account. Preconditions of superclasses and interfaces
are concatenated with the logical OR operator. Postconditions and invariants
are concatenated with the logical AND operator [DL96].

Error handling: To exclude runtime differences due to different treatment of
constraint violations, the measured application scenario does not violate any
integrity constraints. However, in other scenarios we ensured that all the
approaches actually check the same number of constraints and also correctly
detect constraint violations.

2.3.2 Results

To measure the performance of the individual approaches, we implemented
some use cases within our application scenario and let them run a number
of times. To reduce the effects of environmental noise and just-in-time (JIT)
compilation, we performed 2500 runs of the same example scenario before
we measured another 2500 runs of the example scenario with each constraint
validation approach. Each run triggers 4875 checks of invariants, 1097 checks
of postconditions, and 433 checks of preconditions. The constraint repository
based approaches intercept 1605 methods and trigger 7677 search operations
within the repository for each run.

2500 runs of the scenario without constraint checks take 125ms to execute on
an AMD Athlon XP 2600+ with 512MB of RAM running under Windows
XP. The handcrafted constraints approach is the fastest version, but already
runs 35 times slower than the same scenario without constraint checks. How-
ever, as this is the fastest approach, it is the baseline for comparison of the
other approaches with respect to additional overheads. These overheads are
calculated according to (2.1).

2.3. PERFORMANCE STUDIES 29

Overhead =
Runtime for approach

Runtime for baseline
(2.1)

Figure 2.1 provides an overview of the fastest constraint validation approaches
where the handcrafted constraints approach provides the baseline. This figure
shows that constraints integrated as aspects in AspectJ are almost as fast as
handcrafted inline constraints. The overhead introduced is only 1.06 times
the runtime of the handcrafted constraints approach. The second fastest
approach uses JBoss AOP for invocation interception and an optimized con-
straint repository containing explicit constraint classes. This introduces a
runtime overhead of 7.99. Using a Java proxy with an optimized repository
runs 9.54 times slower than handcrafted constraints and AspectJ with an
optimized repository shows an overhead factor of 10.86.

1.06

7.99
9.54

10.86

1.00
3.00
5.00
7.00
9.00

11.00
13.00

AspectJ-
Interceptor

JBossAOP-
Rep-Opt

Proxy-Rep-
Opt

AspectJ-
Rep-Opt

Figure 2.1: Fastest approaches

Figure 2.2 provides a comparison of the slowest constraint validation ap-
proaches where handcrafted constraint checks again provide the baseline for
comparison. The approach to use the Java proxy mechanism and a non-
optimized constraint repository requires 48.03 times the runtime of the hand-
crafted approach—nearly 4.5 times slower than AspectJ with the optimized
constraint repository, which was the slowest approach in Figure 2.1. After
the proxy mechanism follows JML requiring 61.37 times the runtime of hand-
crafted checks. AspectJ with a non-optimized repository shows an overhead
factor of 70.71 and JBoss AOP with a non-optimized repository already runs
103.17 times slower than handcrafted constraint checks. Finally, the Dres-
den OCL toolkit with tool-generated constraints shows a runtime overhead
of 405.71 times the runtime of the handcrafted approach.

Interestingly, the order of the different interceptor mechanisms with respect
to performance changes for using an optimized and a non-optimized con-
straint repository. While JBoss AOP is the fastest mechanism with the op-
timized repository, followed by the Java proxy and AspectJ, the Java proxy

2.3. PERFORMANCE STUDIES 30

48.03 61.37 70.71
103.17

405.71

1.00
51.00

101.00
151.00
201.00
251.00
301.00
351.00
401.00
451.00

Proxy-Rep JML AspectJ-
Rep

JBossAOP-
Rep

Dresden-
OCL

Figure 2.2: Slowest approaches

approach is the fastest mechanism for the non-optimized repository, followed
by AspectJ and JBoss AOP. This is an unexpected result, which we will
investigate in the following paragraphs.

Search overhead is not the only overhead introduced by constraint validation
through generic interceptors combined with a constraint repository. In order
to evaluate the additional overheads in detail, we separate the total runtime
into five major slices (Figure 2.3):

R1: Application without
constraint checks

R2: Invocation
interceptions

R3: Parameter
extractions

R4: Constraint
searches

R5: Constraint
checks

Figure 2.3: Runtime slices

R1 is the net application runtime without constraint checks

R2 is the overhead introduced through invocation interception by the dif-
ferent interceptor mechanisms (Java proxy, AspectJ, and JBoss AOP).

R3 provides the overhead to extract search parameters based on the infor-
mation that an interceptor mechanism provides. This includes getting
invoked method, method arguments and/or class of the invoked object.

R4 is the runtime overhead required for searching constraints within the
constraint repository.

R5 is the overhead introduced by the constraint checks themselves

2.3. PERFORMANCE STUDIES 31

Figures 2.1 and 2.2 showed a comparison of all approaches considering the to-
tal overhead for constraint checking. Further on, we investigate the different
overheads of the respective runtime slices in order to provide a more in-depth
comparison of the constraint repository approaches. As the following con-
figurations do not contain constraint checking code, the application without
constraint checks (R1) provides the baseline for these comparisons. For JML
and the Dresden OCL toolkit, we only considered the total overhead as the
methodology is different and cannot reasonably be fitted to the five runtime
slices provided above.

65.38 70.38 163.38

1412.62

3389.62

2224.50

1.00

501.00

1001.00

1501.00

2001.00

2501.00

3001.00

3501.00

4001.00

Java-Proxy JBoss AOP AspectJ

Optimized constraint repository
Constraint repository with search per invocation

Figure 2.4: Search overhead: R1+R2+R3+R4
R1

Figure 2.4 shows the search overhead of the optimized and non-optimized
constraint repository compared to the application without constraint checks.
These versions include the overheads R2, R3, and R4, but do not check con-
straints (R5). The difference between the optimized and the non-optimized
repository is that the runtime overhead R4 is reduced through caching of
previous queries. The performance improvements of the optimized constraint
repository reduced the overall runtime by a factor between 13.62 (AspectJ)
and 48.16 (JBoss AOP). While we configured all of the interceptor mecha-
nisms not to intercept calls performed for searching constraints within the
repository, only the Java proxy approach does not modify the Java byte
code. Consequently, we attribute the different runtime behaviour of JBoss
AOP and AspectJ with an optimized and a non-optimized repository to the
byte code modifications of the AOP tools. Compared to the Java proxy we
see an additional runtime overhead introduced by the AOP approaches be-
tween 1.07 (JBoss AOP with optimized repository) and 2.50 (AspectJ with
optimized repository).

2.3. PERFORMANCE STUDIES 32

We further evaluated the performance of constraint lookups based on combi-
nations of different numbers of classes (25, 50, 100), methods per class (10,
25, 50), and constraints (at least one per method as constraint lookup does
not depend on the number of constraints). The used repository performs
caching of results and the provided lookup times assume that the repository
is already fully initialized, e.g. after an initializing run. Consequently, the
lookup operation reduces to a single lookup in a hash table. Our evaluation
showed that the lookup time is in the range of 0.25–0.52 microseconds and
the time does not depend on the number of entries in the hash table [Glo07].
These times could also be confirmed for the sample application that was run
a number of times with and without lookups to the repository. Depending
on the interceptor mechanism, a single constraint lookup took between 0.18
(Java proxy) and 0.43 (AspectJ) microseconds. These times were acquired
according to (2.2).

Lookup time =
Total time with lookups − Total time without lookups

Number of lookups
(2.2)

Figure 2.5 illustrates the interception overhead introduced by the different
mechanisms. In this case, the intercepted method invocations were imme-
diately forwarded by the interceptors to the called method of the object
instance. Hence, the overhead of R1+R2 was compared to R1 (the plain
application). This comparison shows that AspectJ provides the fastest in-
terception mechanism, requiring 2.38 times the runtime of the plain appli-
cation. JBoss AOP shows an overhead factor of 9.25 and the Java proxy
requires 28.13 times the runtime of the plain application. As the Java proxy
is part of the Java reflection mechanism and does nothing more than invoking
the intercepted method via java.lang.reflect.Method.invoke(...), we primarily
attribute this major performance impact to the Java reflection mechanism.

2.38

9.25

28.13

1.00
6.00

11.00
16.00
21.00
26.00
31.00

AspectJ JBoss AOP Java-Proxy

Figure 2.5: Interception overhead: R1+R2
R1

2.4. CONCLUSION 33

The performance advantage of AspectJ gained through quick interception,
however, is lost during parameter extraction. While JBoss AOP and the
Java proxy mechanism already provide access to the called Method via a
java.lang.reflect.Method object, this reference to the method has to be ob-
tained via costly calls to Object.getClass().getMethod(. . .) in AspectJ. Hence,
the overhead of R1+R2+R3 compared to R1 provides a different order be-
tween the interception mechanisms, ranging from an overhead factor of 19.50
for JBoss AOP over 36.62 for the Java proxy to 98.26 for AspectJ, see Fig-
ure 2.6.

19.50
36.62

98.26

1.00
21.00
41.00
61.00
81.00

101.00
121.00

JBoss AOP Java-Proxy AspectJ

Figure 2.6: Overhead of invocation interception and parameter extraction
for searching the constraint repository: R1+R2+R3

R1

2.4 Conclusion

Integrity management in software systems has already been addressed by
several researchers and a range of possible solutions exists. However, the
selection of an appropriate solution for a specific system will also include
implementation, maintainability, and performance considerations. Within
the previous sections we described several constraint validation approaches
and contributed by discussing advantages and disadvantages of the different
approaches including performance issues. Our results show that the benefits
of some of the more advanced approaches are certainly worth their costs by
introducing a runtime overhead of only two to ten times the runtime of the
fastest approach while other approaches introduce runtime overheads of more
than 100, which might be simply too slow in certain applications.

To sum up, handcrafted constraints showed to be the fastest approach. How-
ever, to only separate constraints from, e.g., the code for the business logic,
using constraints encoded as aspects in AspectJ is a good choice, requiring

2.4. CONCLUSION 34

only 1.06 times the runtime of handcrafted constraints. If flexible runtime
handling of constraints is required, e.g., if it should be possible to add, re-
move, enable, and/or disable constraints during runtime, an optimized con-
straint repository paired with the JBoss AOP toolkit as interceptor mecha-
nism should be envisaged. With respect to performance, the automatically
generated constraint checks by JML and especially the Dresden OCL toolkit
were part of the slower approaches. However, JML provides several tools to
thoroughly support the design by contract principle. If one is only interested
in stating constraints, a thorough support of design by contract, and it is ac-
ceptable that java.lang.Errors are thrown in case of contract violations, JML
is certainly a good choice. The Java annotation mechanism introduced in
version 5.0 would be an alternative to the definition of constraints/contracts
in comments, allowing also runtime access to the constraints. This approach,
however, has not yet been exploited.

Chapter 3

Balancing Integrity and
Availability

In a distributed system, where objects are located at different nodes, con-
straint validation is affected by node and link failures as some affected objects
might not be available. If the objects are replicated, we might be able to val-
idate the constraints (partially based on backup copies). However, if updates
on replicas are allowed in different partitions, we cannot be sure whether the
validation is reliable, because backup replicas of affected objects might be
stale due to an update in another partition. Consequently, if we require high
availability for our system and want to continue operation even in the face of
such situations, we will potentially introduce inconsistencies into the system.

To use constraints as a flexible means to limit the degree of inconsistency po-
tentially introduced during degraded system periods, we classify constraints
into tradeable and non-tradeable. Non-tradeable constraints are critical for
correct operation of the system and must never be violated. Tradeable con-
straints must be satisfied in a healthy system—during degraded mode, how-
ever, they might temporarily be relaxed in order to increase availability. The
decision on whether a constraint is tradeable has to be provided by the appli-
cation developer according to an application’s requirements.

This classification between tradeable and non-tradeable constraints is mainly
useful for invariant constraints, because constraint validation can be per-
formed at any time and hence be decoupled from business activities. There-
fore, invariants can be used for re-establishing constraint consistency during
system reconciliation. Pre- and postconditions can—in principle—be traded
as well. If necessary at all, the effects of such trading have to be compensated
by invariant constraints as pre- and postconditions cannot be re-evaluated in
the reconciliation phase.

3.1. THE NOTION OF A CONSISTENCY THREAT 36

3.1 The notion of a consistency threat

In a distributed system, the validation of integrity constraints is more com-
plex as constraint validation itself becomes subject to node and link failures.
Consequently, there are three different categories of constraint checks:

• Full Constraint Check (FCC): Constraint checking is possible without
restrictions. All affected objects are up-to-date.

• Limited Constraint Check (LCC): Constraint checking is possible, but
some affected objects are possibly stale. For example, in the case of a
primary-backup protocol only a backup replica is reachable that might
have missed updates performed on the primary copy since the partition-
ing occurred. Consequently, the validation result might be something
different than if we would validate based on the primary copies.

• No Constraint Check (NCC): Constraint validation is impossible due to
the unavailability of at least one affected object (no replicas accessible).

A consistency threat occurs whenever we can only perform an LCC or cannot
validate a constraint at all (NCC). Of course, in a system that does not use
replication to provide fault tolerance, LCCs are not possible due to the lack
of redundancy.

Figure 3.1 provides an example for a consistency threat assuming a primary-
backup replication protocol where write-access is only allowed on the primary
copy in any case. Constraint C1 affects objects O1 and O2. The system
suffers from a link failure splitting the four computers in two partitions, each
containing two computers. In partition A, we can validate C1 based upon
the primary copy of O1 and the backup copy of O2. As the backup copy of
O2 is possibly stale, we can only perform an LCC for C1 which results in
a consistency threat. The situation in partition B is similar for O2 with a
backup of O1. Differently, a constraint validated on O1 and O3 in partition
A could be validated without restrictions (FCC).

Interestingly, (constraint) inconsistencies can be introduced in such a system,
although replica write-write conflicts are not possible, e.g., write access is
only allowed on the primary copy. These inconsistencies result from the fact
that replication usually considers single objects while constraints might have
several affected objects of different partitions and consequently might require
read access to possibly stale copies for validation.

3.1. THE NOTION OF A CONSISTENCY THREAT 37

Figure 3.1: Consistency threats

A more specific consistency threat example can be provided for the ATS
application scenario (Figure 1.5 on page 8). Imagine that the technical op-
erator sets the componentKind of a RepairReport while the system operates
in degraded mode, suffering from a network partition between (the primary
copies of) an Alarm and a RepairReport object. The administrative operator
might have changed the corresponding Alarm in the meantime in the other
partition. Consequently, the constraint validation performed because of the
changed RepairReport is not fully reliable, resulting into a consistency threat.

Combining the previously defined constraint checks with the general defini-
tion of a constraint to be either satisfied or violated provides three additional
constraint validation results (satisfaction degrees), identifying a consistency
threat: possibly satisfied and possibly violated in case of an LCC—uncheckable
in the case of NCC. However, differentiation between these three results is
only useful if combined with further application-specific knowledge. For the
ticket-constraint example in Figure 1.6 on page 9, we would accept pos-
sibly satisfied, meaning that we potentially sell more tickets than available
seats while possibly violated indicates that we would already sell more tickets
than available. This differentiation is based on the assumption that tickets
are mainly sold and rarely returned. On the other hand, for the ATS appli-
cation, it is also reasonable to accept possibly violated constraints under the
assumption that the technical operator exactly knows the repaired compo-
nent, but is not allowed to change the alarmKind that must be changed by
the administrative operator, which operates in a different network partition,
for example.

However, this enhanced set of possible validation results for a single con-
straint requires a specification of how the validation results of a set of con-

3.1. THE NOTION OF A CONSISTENCY THREAT 38

straints are combined into a single validation result for the whole set. Ob-
viously, the overall outcome should be a consistency threat if at least one
constraint validation provides a consistency threat. Therefore, the overall
outcome is:

• Satisfied: if all constraints in the set are satisfied.

• Possibly satisfied: if all constraints are either satisfied or possibly sat-
isfied and at least one constraint is possibly satisfied.

• Possibly violated: if all constraints are either satisfied, possibly satisfied,
or possibly violated and at least one constraint is possibly violated.

• Uncheckable: if at least one constraint is uncheckable and none is vio-
lated.

• Violated: if at least one constraint is violated.

Determining possibly stale objects. Typically, in order to provide repli-
cation transparency, respectively application independence from a particular
replication protocol, a proxy object serves as interface between the appli-
cation and the replication protocol. For the application, this proxy object
provides a local view onto the logical object based on the reachable replicas.
In our case, this object view becomes possibly stale if updates on the same
logical object can occur in another network partition. Whether or not an
object1 is possibly stale depends on the presence of node/link-failures and
the underlying replication protocol. For example, in the primary partition
protocol [RSB93], each object accessed in a non-primary partition is possibly
stale. In the case of the primary-per-partition protocol [BBG+06], objects
are possibly stale in every network partition.

Intra- vs. inter-object constraints. Intra-object constraints are con-
straints that can be evaluated on a single object and require access to the
(primitive/value) attributes of the object only. Inter-object constraints need
access to more than a single object (Figure 3.2). If the reconciliation process
merges conflicting replicas of a single object through selection of one copy
(and not by creating a new replica by merging values of disjoint sets of at-
tributes of the different replicas), a differentiation of integrity constraints into

1For simplification, we use the term “object” as synonym for the local object view onto
the logical object.

3.2. BALANCING INTEGRITY AND AVAILABILITY 39

Figure 3.2: Intra- vs. inter-object constraints

intra- vs. inter-object constraints is reasonable as intra-object constraints will
not be violated retrospectively by the replica reconciliation process. Hence,
constraint validations performing an LCC can return “satisfied” instead of
“possibly satisfied” for intra-object constraints. This reduces the number of
consistency threats and hence the amount of associated information gathered
during degraded mode and required to be processed in the system reconcilia-
tion phase. Inter-object constraints could be further classified into intra-class
(all objects of the same class, e.g., uniqueness of an attribute for all objects
of a class) and inter-class (objects of different classes, e.g., Figure 1.6) con-
straints. Although this differentiation is useful for constraint implementation
and tool support, it is not significant with respect to our balancing of de-
pendability.

3.2 Balancing integrity and availability

Building upon explicit constraint management, constraint classifications and
a validation result that takes system degradation into account enables us
to explicitly balance integrity and availability during degraded system peri-
ods. For this balancing, we decouple constraint validation from the current
business activity in the time dimension by postponing reliable constraint val-
idation until we can perform an FCC for the threatened constraints of the
current business activity. Obviously, to which extent integrity can be traded
for availability depends on the particular application.

The application-specific trade-off is configured through the specification of
tradeable and non-tradeable constraints. Consistency threats for non-trade-
able constraints are automatically rejected with the usual effect that the
current operation/transaction is aborted. Consistency threats for tradeable
constraints are subject to a negotiation mechanism to decide whether to
accept or reject the consistency threat. The negotiation mechanism will base

3.2. BALANCING INTEGRITY AND AVAILABILITY 40

its decision on parameters such as the constraint satisfaction degree and/or
the affected objects. However, if the consistency threat is accepted, the
system stores this threat and allows to associate some information with this
threat such as affected objects or application specific data.

If in the worst case all constraints are non-tradeable and all objects of the
application are covered by at least one constraint, the application completely
blocks during degraded system periods—a fallback to conventional system
behaviour. Whether the system blocks for write-operations only or for read-
and write-operations depends on the configuration of constraints, affected
methods, and the applied replication protocol.

3.2.1 Negotiation of consistency threats

For negotiation of whether or not to accept consistency threats, we differen-
tiate between two kinds:

• Static (descriptive) negotiation: is configured based on the satisfaction
degree of a constraint and optionally some freshness criteria for pos-
sibly stale affected objects. For example, the consistency threat of a
specific constraint might be acceptable if the satisfaction degree is “pos-
sibly satisfied” and the last update of the affected objects is not older
than n seconds. However, additional parameters could be considered
as well.

• Dynamic (algorithmic) negotiation: is performed by using an applica-
tion implemented callback handle—the NegotiationHandler. A Negoti-
ationHandler can be registered with a transaction of the application to
associate the negotiation mechanism with a specific use case. This kind
of negotiation can be performed with or without user intervention.

The priority of the different negotiation mechanisms is set to prefer a dy-
namic negotiation handler over static negotiation decisions over a default
application wide minimum constraint satisfaction degree. Alternatively, the
descriptive declarations could be used as a boundary within which dynamic
negotiation can be performed. A general overview of the negotiation process
is provided in Figure 3.3.

3.2. BALANCING INTEGRITY AND AVAILABILITY 41

Figure 3.3: Overview of the negotiation process

3.2.2 Preparation for reconciliation

Whenever we accept a consistency threat, we have to store some information
about the consistency threat to be able to evaluate during reconciliation time
whether or not we have actually introduced an inconsistency into the system.
For re-evaluation, we have to store at least the unique name identifying the
constraint that produced the consistency threat. Moreover, depending on the
“starting point” of constraint validation, we have to differentiate two cases:

1. Validation of the constraint starts from a context object. In this case
we have to store at least an identifier for the context object which is
later used as input to the constraint validation method.

2. Validation of the constraint starts from a set of objects, obtained by
a query operation. In this case, the constraint needs no input to the
validate method. Hence, no further information is required in addition
to the unique name of a constraint.

The previous requirements only state the minimum information necessary
to re-evaluate accepted consistency threats during the reconciliation process.
This information can be further enriched by storing identifiers or even the
serialized state of affected objects at the time the consistency threat occurred.
Moreover, we allow the application to associate application specific data with
a consistency threat. Finally, the application can also give reconciliation
instructions such as to allow rollbacks to be performed during reconciliation.

On the other hand, stored information can be reduced, if rollback/undo
operations to intermediate states are not required in which case identical

3.3. RECONCILING CONSTRAINT CONSISTENCY 42

consistency threats need to be stored only once. Two consistency threats
are identical if both of them refer to the same integrity constraint and—if
applicable—to the same context object.

3.3 Reconciling constraint consistency

So far we considered operation in a healthy system and during degraded
mode. After network links are repaired or nodes recovered, we have to re-
evaluate accepted consistency threats. For this process, we perform a re-
validation of associated constraints. Depending on the result of the constraint
validation, we take different actions:

• Constraint is satisfied.

– If there was no replica conflict (or no replication is used), remove
the threat and all identical threats from the set of accepted con-
sistency threats.

– If there was a replica conflict for the constraint and a reconciliation
instruction of at least one of the identical threats specifies that
the application should be informed of this situation, notify the
application.

• Constraint is violated.

– If the accepted consistency threat has an associated reconciliation
instruction specifying that rollback/undo is allowed, re-evaluation
can be performed based on available (serialized) historical states.
If a consistent state is found, the state of the affected objects
is rolled back. Unfortunately, availability of the system is ret-
rospectively reduced as some updates do not become effective.
Even more so, as recovery may suffer from the “domino effect”
[Ran75], the advantage of our approach may become completely
diminished. If no consistent state is found at all, a callback han-
dler provided by the application is invoked to solve the constraint
violation.

– If rollback/undo is not allowed, the system has to reconcile by
using a compensation approach, e.g., similar to the WS-Business
Activity standard. [ABH+05b]. For this process, the application
provided callback handler is invoked to reconcile the constraint

3.3. RECONCILING CONSTRAINT CONSISTENCY 43

violation. In this scenario, our approach provides the greatest
benefit, because the overhead to store the threat information is
minimal.

As an alternative to solving the violation, the system could deactivate
violated constraints in order to reach the healthy state, thereby relaxing
consistency. Similar to introducing new integrity constraints to the
system, constraints that were disabled and are enabled again have to
be checked for all context objects. This, however, is not within our
focus.

• Constraint is threatened. If the constraint is still threatened in the rec-
onciliation phase, at least one affected object is still not fully available.
Hence, although some network partitions might have been re-unified,
some partitions still exist and the system still operates in degraded
mode. In this case, re-evaluation of the constraint has to be postponed
until further partitions are re-unified.

Parallel reconciliation and business operations. During reconcilia-
tion, it is not feasible to block the system for business operations until the
whole reconciliation process is finished. Business operations that partially
involve still threatened objects can either block, if the reconciliation is al-
ready underway or be treated as if the partition were still in place, thereby
introducing new threats. Additionally, business operations can also be used
to remove existing consistency threats for constraints that are satisfied by the
current operation. In parallel, business operations with only unthreatened
objects can continue in healthy mode.

Chapter 4

Middleware Support for
Adaptive Dependability

We integrated the concepts for adaptive dependability by trading integrity for
availability into a platform independent system architecture [15], which has
been implemented in different prototypes using several technologies (EJB [3],
CORBA [BGM07], and .NET [17]). These prototype studies have been per-
formed within industrial settings in strong cooperation with companies from
communications and control engineering industry within the DeDiSys project
(http://www.dedisys.org/).

Within this dissertation, we concentrate on how our general concepts and the
general architecture were mapped to and integrated into the EJB middleware
platform as provided by the JBoss Application Server (JBoss AS). First, we
provide an overview of the system architecture as specifically mapped to EJB
and the JBoss AS with a focus on the middleware (MW) layer. Second, we
contribute with a detailed description of constraint consistency management
as a new middleware service. Moreover, we will discuss the issue of replication
support and give an insight into the implementation of the reconciliation
phase. Finally, we contribute with a problem discussion of (negotiation)
callbacks in Web-based applications along with a corresponding solution.

4.1 System architecture

Two components of our architecture are primarily responsible for the balanc-
ing of availability and integrity, the replication service (RS) and the constraint
consistency manager (CCMgr) provided within the grey area of Figure 4.1.

http://www.dedisys.org/

4.1. SYSTEM ARCHITECTURE 45

Other important components are the invocation service, used for interception
of point-to-point invocations, the transaction manager, managing distributed
transactions, persistence to store application data, information about consis-
tency threats, and historical replica versions to allow for rollback during
reconciliation, the group membership service (GMS) to detect node and link
failures as well as re-joins of nodes after recovery or network re-unification,
and the group communication component that is used for update propagation
(from primaries to backups) by the replication service. The naming service,
allowing for name to object bindings, and the activation service, responsi-
ble for appropriate activation of objects, are not of immediate interest with
respect to our solution.

Application
(Business Logic)

Administration,
Deployment and

Runtime Configuration

Transport Layer
(TCP/UDP)

JBoss Application Server

Operating System

User
Admin

CCMgr NS (JNDI)

TxMgr
(JBossTS)

GMS, GC
(Spread)

Invocation Service
(JBoss AS, JBoss AOP)

AS

Persistence
(CMP/BMP)

Replication
Support

LS

M
id

dl
ew

ar
e

La
ye

r

Generic Components
AS Activation Service
CCMgr Constraint Consistency Manager
GC Group Communication
GMS Group Membership Service
LS Location Service
NS Naming Service
TxMgr Transaction Manager

Technologies
JBoss TS JBoss Transaction Service
JBoss AOP JBoss Aspect Oriented Programming
JNDI Java Naming and Directory Interface
Spread Spread Group Communication Toolkit
CMP Container Managed Persistence
BMP Bean Managed Persistence

Figure 4.1: EJB/JBoss AS specific system architecture

Although quite common and concise, the layered representation in Figure 4.1
is not sufficient to illustrate how the components cooperate by using each
other: First, strict layering is often not possible and second, layering does
not imply actual usage. Therefore, Figure 4.2 provides an overview of usage-
relations between the major components. This figure shows that transaction
management and invocation service are the two central services where almost
all of the other services depend upon.

Above the middleware, we differentiate between two types of applications
and users. First, we have the administrator who is responsible for proper
administration, deployment, and runtime configuration of the middleware as
well as the application. These tasks may be supported by tools and appli-

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 46

Figure 4.2: Usage relationships of system components

cations different from the application performing the business logic of the
general users, which is the second category of users. Administrators are as-
sumed to have special knowledge about the application and the middleware
and maintenance and adaptation are their main tasks. The general users
are mainly interested in performing their business and do not need in-depth
knowledge about applications or middleware.

4.2 Constraint consistency management

Explicit runtime constraint consistency management is a new middleware ser-
vice we introduced for balancing integrity and availability. In our approach,
constraints are explicitly available during runtime and validated upon re-
quest of the middleware. The specification/implementation of constraints
is up to the application developer as they result from the application re-
quirements. On the other hand, triggering the validation of constraints as
well as detection and management of consistency threats is performed by the
middleware.

4.2.1 Explicit (runtime) constraint representation

Obviously, constraints are processed by the middleware (management, trig-
gering validation, etc.) as well as the application (performing the actual
validation). Hence, this concept needs a contract between the two parties.
For this purpose, we encapsulate the integrity constraints within explicit con-

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 47

Constraint

name : String
type : ConstraintType
priority : ConstraintPriority
minSatisfactionDegree :

SatisfactionDegree
description : String
isContextObjectNeeded : boolean+beforeMethodInvocation(

ctx : ConstraintValidationContext)
+isTradeable() : boolean
+validate (

ctx : ConstraintValidationContext)
: boolean {exceptions =
ConstraintUncheckableException}

ObjectClass

name : String
implementInterfaces
 : List<ObjectClass>

FreshnessCriterion

maxAge : long
*

class
Context

0..1
*

SomeOtherConstraint

constraintParameter

ObjectMethod

name : String
parameterTypes
 : List<ObjectClass>

1

*

SomeConstraint

+validate(ctx : ConstraintValidationContext) :
boolean

+validate(ctx : ConstraintValidationContext) :
boolean

freshness
Criteria

isInterface() : boolean
getClass(o : Object)

: ObjectClass

1

* 1..*
affectedConstraints affectedMethods

<<interface>>
VersionedEntity

getVersion() : long
getEstimatedLatest

Version() : long

declaring
Class

return
Type

0..1

<<interface>>
ConstraintValidationContext

getCalledObject() : Object
getContextObject() : Object
getMethod() : ObjectMethod
getMethodArguments() : Object[]
getMethodResult() : Object

Figure 4.3: Constraint runtime model

straint classes similar to Verheecke et al. [VS02]. The primary contract be-
tween middleware and application is the Constraint.validate(ctx : Constraint-
ValidationContext) method (Figure 4.3) that has to be implemented by the
application developer and provides true or false as return value or throws
an exception to indicate that constraint checking is impossible, e.g., due to
unreachable objects. The middleware’s responsibility is to ensure that vali-
date(. . .) is called appropriately. Moreover, the beforeMethodInvocation(. . .)
call to a constraint supports postconditions that check whether state transi-
tions caused by a method call are correct. Within this call, a postcondition
might store some values (state before the method invocation) and check dur-
ing the call to validate(. . .) whether the method invocation actually produced
a correct result with respect to the state before the method invocation. This
corresponds to the @pre operator of OCL.

The content of the ConstraintValidationContext provided to validate(. . .) de-
pends on the type of a constraint and the circumstances under which the
constraint is validated. It generally contains:

• The context object for invariant constraints, i.e., their “starting point”
for constraint validation. Starting from this object, the constraint is
able to reach all objects that are needed for validation of the constraint.
For example, the context object for the OCL expression context Person
inv: getAge() >= 18 would be an instance of the context class Person.

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 48

• The called object, method, and method arguments for preconditions.

• The called object, method, method arguments, and result for postcon-
ditions.

To allow the middleware to trigger constraint validation appropriately, the af-
fected methods have to be specified in addition to the constraints. Moreover,
the context class can be specified for invariant constraints. Some invariant
constraints, however, may not need a context object as they, for example,
use a query operation to get their affected objects.

Finally, constraints may have associated freshness criteria (maximum age),
one per affected class of objects (ObjectClass). These classes have to imple-
ment the VersionedEntity interface that allows to retrieve the version of the
object getVersion() and the estimated latest version getEstimatedLatestVer-
sion(). The estimated latest version is the one that the object would expect
to have. For example, if an object is usually updated every n seconds and
the last update producing version v happened 3n seconds ago, getVersion()
would return v while getEstimatedLatestVersion() would return v+3, indicat-
ing that the object most probably missed 3 updates. This mechanism can be
used by the application developer to specify conditions for the negotiation of
consistency threats.

4.2.2 Constraint configuration and registration

To allow appropriate validation, we need to know which constraints are af-
fected by which method invocations. As motivated in Section 1.6, we require
the application developer to declare constraints and affected methods as well
as other details about a constraint, e.g., the constraint type or freshness cri-
teria, in a configuration file. Similar to the EJB deployment descriptor, the
constraint configuration file is read after deployment of an EJB application.
The information contained in this file is then used to register the constraints
within a constraint repository. This constraint repository allows to look up
constraints, e.g., by class, method or constraint type. Listing 4.1 provides an
example of a constraint specification within the configuration file.

The constraint ComponentKindReferenceConsistency implements the integrity
constraint of the ATS application provided in Figure 1.5 on page 8. It is
a hard constraint, specifies that the constraint implementation requires a
context object, it can be relaxed during degraded mode, and the negotiation
process will accept any consistency threats (minSatisfactionDegree=“uncheck-
able”)—if no negotiation callback handle is registered by the application to

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 49

Listing 4.1: Constraint configuration example
<c on s t r a i n t name=“ComponentKindReferenceConsistency”

type=“HARD” p r i o r i t y=“RELAXABLE” contextObject=“Y”
minSat i s f a c t i onDegree=“UNCHECKABLE”>
<c l a s s>ComponentKindReferenceConstraint</ c l a s s>
<context−c l a s s>RepairReport</ context−c l a s s>
<a f f e c t ed−methods><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>Cal ledObject I sContextObject</ preparat ion−c l a s s>

</ context−preparat ion>
<objectMethod name=“setAffectedComponent”>

<ob j e c tC l a s s>RepairReport</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r ing</argument></arguments>

</objectMethod>
</ a f f e c t ed−method><a f f e c t ed−method>

<context−preparat ion>
<preparat ion−c l a s s>ReferenceIsContextObject</ preparat ion−c l a s s>
<params><param name=“g e t t e r ” va lue=“getRepairReport”/></params>

</ context−preparat ion>
<objectMethod name=“setAlarmKind”>

<ob j e c tC l a s s>Alarm</ ob j e c tC l a s s>
<arguments><argument>java . lang . S t r ing</argument></arguments>

</objectMethod>
</ a f f e c t ed−method></ a f f e c t ed−methods>

</ c on s t r a i n t>

be dynamically contacted for a threat-specific decision. A consistency threat
occurs whenever the satisfaction degree of a constraint is possibly satisfied
or possibly violated (constraint validation based on possibly stale objects) or
uncheckable (e.g., due to unreachable objects). Considering constraint viola-
tions the least acceptable situation and satisfied constraints the desired case,
we apply the following ordering of satisfaction degrees: violated < uncheckable
< possibly violated < possibly satisfied < satisfied.

The <class> element specifies the Java implementation class of the con-
straint that will be instantiated while the configuration file is read during
the deployment of an EJB application. The <context-class> is the class of
the context object (RepairReport) required for constraint validation. Within
the <affected-methods> element, affected methods of the constraint are pro-
vided. Each affected method is specified by stating the declaring class,
the method name, and the method parameters. As the constraint is im-
plemented for a specific context class, the ConstraintValidationContext (see
Figure 4.3) must be initialized appropriately. Values such as called object,
called method, and method parameters are already set by the middleware.
However, the <preparation-class> is responsible to extract the context ob-
ject based on these values. The context object for the method RepairRe-
port.setAffectedComponent(. . .) is the called object itself while the context
object for the method Alarm.setAlarmKind(. . .) is obtained by calling getRe-
pairReport() upon the called object (an instance of Alarm).

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 50

4.2.3 Constraint consistency manager

The CCMgr is notified by the invocation service before and after method
invocations. Upon such notifications, the CCMgr looks up preconditions,
postconditions, hard and soft invariant constraints and triggers validation
according to their constraint type. To allow such behavior of the CCMgr it
is also registered with the transaction manager (TxMgr) as a transactional
resource to take part in the two-phase commit. If any constraints are vio-
lated, the CCMgr sets the state of the current transaction to “rollback-only”.
Hence, any constraint violation (or unacceptable consistency threat) prevents
an ongoing transaction from successful commit.

In degraded system mode, the CCMgr provides additional functionality to
support the integrity/availability balancing by interacting with the replica-
tion manager in order to detect consistency threats caused by possibly stale
objects. Before the CCMgr triggers the validation of a constraint, it starts
to gather accessed objects, see Figure 4.4. After the constraint validation
returns, the CCMgr asks the replication manager whether any of these ob-
jects are possibly stale. If this is the case, the validation result (satisfaction
degree) of the constraint is changed from satisfied to possibly satisfied, or from
violated to possibly violated, as the constraint validation is not fully reliable.
If there were any unreachable objects, the validation result of the constraint
is uncheckable. These situations indicate a consistency threat and trigger
negotiation of the threat.

To perform algorithmic negotiation, the application must register a negotia-
tion callback handler with the CCMgr. Such a negotiation handler is bound
to the current transaction and responsible to decide whether to accept or
not accept arising consistency threats. If no negotiation handler is regis-
tered at the CCMgr, declarative negotiation is performed based on the cur-
rent satisfaction degree, the configured minimum satisfaction degree, and—if
applicable—given freshness criteria. For this process, the current satisfaction
degree of the constraint is compared with the minimum satisfaction degree.
Moreover, the difference getEstimatedLatestVersion() - getVersion() is com-
pared with the maximum age defined by available freshness criteria. Both,
minimum satisfaction degree and optional freshness criteria are specified in
the constraint configuration file.

Not accepting a consistency threat results in rollback of the current trans-
action. If a consistency threat is accepted, the consistency threat as well
as application-specific information associated with the threat is persisted
and used later during the constraint reconciliation phase. To reconcile con-

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 51

Gather affected objectsConstraint validation

[Consistency threat
present]

Remember consistency threat

Threat negotiation

[No consistency threat]

Start constraint
validation

[Threat
accepted]

[Threat not
accepted]

Validation result Affected objects

Continue operation

Abort operation

Middleware

Application

[Constraint
violated]

[Constraint
satisfied]

Figure 4.4: Detection and negotiation of consistency threats

straint consistency, the constraint consistency manager looks up accepted
consistency threats, re-evaluates the corresponding constraints and takes ap-
propriate actions according to Section 3.3.

4.2.4 Invocation interception

A key requirement for middleware integration of constraint consistency man-
agement is the possibility to intercept invocations. In EJB, each component
and hence entity bean must provide a home and a business interface. These
interfaces are implemented by the EJB container (a JBoss proxy in our case).
After a call to the interface implementation, the EJB container can perform
several middleware tasks, e.g., association of a security context or transaction
with the call, before it finally forwards the call to the bean implementation.

In the case of JBoss, the JBoss proxy builds up an object representing the
invocation and passes this object through the client-side interceptor chain,
where each interceptor invokes the next interceptor until the final interceptor,
the client-side JBoss invoker, transfers the invocation object over the network
to the server-side JBoss invoker. Thereafter, the invocation object passes
through the server side interceptor chain where again each interceptor invokes
the next interceptor until the final interceptor, the JBoss EJB container,

4.2. CONSTRAINT CONSISTENCY MANAGEMENT 52

Client Application

SecurityInterceptor

TxInterceptor

JBoss Invoker

EJB EntityBean
Implementation

SecurityInterceptor

TxInterceptor

...

...

JBoss Proxy Bean Invoker

1. Invoke
business function

2. Invoke client
interceptor chain

3. Invoke the
JBoss invoker

4. Invoke the server
interceptor chain

5. Invoke bean
invoker

6. Invoke bean
instance

Network boundary

7. Internal call within the same entity
bean instance is not intercepted

Figure 4.5: JBoss invocation interception

invokes the bean instance. The result of the invocation is passed back in the
reverse order. This concept of client-side and server-side interceptor chain is
illustrated in Figure 4.5. Of course, if the invocation is performed locally on
the JBoss server instance, no marshalling over the network occurs.

The interceptors are responsible to provide middleware services for the invo-
cation, e.g., transaction management or security checks like authentication or
authorization of the call. Fortunately, the invocation interceptors of the chain
can be specified in a configuration file of the JBoss AS (standardjboss.xml)
and therefore enhancing JBoss with additional functionality is rather easy to
achieve. Consequently, it was only necessary to implement a new interceptor
and put it into the interceptor chain. This interceptor is then responsible for
appropriately including the CCMgr for constraint consistency management
within the process of an invocation. The implementation of the replication
protocol is based on the ADAPT replication framework [BBM+04], which
also hooks into JBoss through custom interceptors.

Unfortunately, the interceptor chain is only traversed if the invocation comes
from a call to the interface implemented by the JBoss proxy, which then
passes the invocation through the interceptor chain. If the bean instance

4.3. REPLICATION SUPPORT 53

calls another method on itself, this (internal) invocation is not intercepted.
This applies to call number 7 in Figure 4.5.

This behavior would prevent any affected constraints of internal invocations
from being checked. This issue can be solved by using the JBoss aspect
oriented programming (AOP) framework with which plain Java method in-
vocations can be intercepted. Similarly to the approach above, the AOP
framework transforms invocations into explicit invocation objects and calls
interceptors registered with the AOP framework. Hence, we are able to use
the same approach as above for triggering constraint validations for internal
invocations as well.

4.3 Replication support

To maximize availability for systems capable of applying our concept of
adaptive dependability, the middleware should provide replication support.
Within our prototype, we implemented the primary-per-partition protocol
(P4) [BBG+06] to replicate the state of entity beans. The P4 behaves like a
traditional primary-backup replication protocol in a healthy system with the
specific setup that each object might have its primary on a different node
instead of using only a single designated primary server node. However,
during degraded mode, a temporary primary is chosen per partition. This
further increases availability because operations can be performed on objects
in different partitions as long as only acceptable consistency threats occur.
In order to prepare for the reconciliation phase and allow for generic roll-
back, the replication protocol stores intermediate states applied during the
degraded mode. During repair, detected conflicts are solved either by roll-
back to previous states or by an application-specific compensation callback.
For an in-depth specification of the protocol, please refer to [BBG+06].

For the implementation of this replication protocol, we build upon the ADAPT
replication framework [BBM+04]. This framework is a convenient toolkit for
prototyping EJB replication algorithms within the JBoss Application Server.
ADAPT plugs into the application server via invocation interceptors and
provides the necessary callbacks to intercept certain events, e.g., creation of,
calls to, or deletion of EJB entity beans, and allows appropriate replication
actions.

These callbacks are implemented by the client-side and server-side component
monitor that have to be provided by the replication algorithm in order to
achieve the replication tasks. The client-side component monitor can redirect

4.4. RECONCILIATION PHASE 54

calls to different servers, for example. The server-side component monitor is
notified about the different events mentioned above and can perform different
actions before the control is passed to the bean implementation or after
control returns from the bean implementation. For example, actions before
the bean invocation include server-side request redirection, actions after the
bean invocation include update propagation. Invocation interception also
works for nested invocations as long as the request passes through the JBoss
interceptor chain as described in Section 4.2.4.

The replication implementation performs update propagation after write re-
quests to an entity bean. Detection of write requests is performed accord-
ing to the EJB specification in the way that all methods starting with set
plus an upper-case letter are considered write requests. After such a re-
quest, the state of the replica and the transaction propagation context are
extracted by using the mechanisms provided by ADAPT, the data are packed
into a message and multicast via the Spread group communication toolkit
(http://www.spread.org) to the backup replicas. The backup replicas ex-
tract the information, associate the call with the transaction of the primary,
apply the update within this transaction to the backup replica, and send a
confirmation back to the primary replica. Due to this synchronous update
propagation, read requests can always be performed locally. Further details
about the replication implementation are found in [Ke07].

Further reading. Another replication protocol that allows for the same
kind of balancing between availability and integrity is the Adaptive Voting
Protocol [7]. This is a quorum-based protocol that adapts the quorum sizes
in order to allow operation in degraded mode. Of course, only operations
producing acceptable consistency threats are allowed. Based on the P4 and
the Adaptive Voting Protocol, a generalized model for replication protocols
allowing for a balancing between availability and integrity is presented in
[11]. A discussion of a several replication middleware architectures including
a generalized architecture is provided in [10]. Furthermore, a summarized and
integrated version of all the replication issues can be found in the dissertation
of Johannes Osrael [Osr07].

4.4 Reconciliation phase

In the reconciliation phase, inconsistencies within the system have to be
solved in order to get a consistent, healthy system. This phase is performed

http://www.spread.org

4.4. RECONCILIATION PHASE 55

in two steps as illustrated in Figure 4.6. After the group membership ser-
vice (GMS) notifies the replication service (RS) that one or more previously
unreachable nodes joined the current partition, the replication service starts
to propagate the updates of the current partition to the joined nodes. Of
course, the updates performed on the joined nodes are propagated to the
current partition.

Middleware

Application

Legend:

CCMgrGMS RS Appl.

view change with new nodes

propagate missed updates

replica consistency handler

selected replica

update propagation complete

constraint consistency handler

select replica, probably
store information about
replicas and decision

Performed per
replica conflict.

re-evaluate constraints
with consistency threats

consistent state

Performed per
violated constraint.

solve or
postpone

Figure 4.6: Reconciliation phase and callbacks

During this propagation of missed updates, write-write replica conflicts might
be detected, i.e., two different replicas of the same object were changed in
two different partitions during degraded mode. Consequently, the two incon-
sistent replicas have to be reconciled in order to produce a replica consistent
state for the current partition. As the reconciliation strategy depends on the
specific type of object, the middleware performs a callback to the application-
provided replica consistency handler in order to produce a replica consistent
state that is afterwards applied to all nodes of the current partition. Of
course, replica consistency could also be established generically, e.g., by ap-
plying the state of the primary copy or the replica with the most updates
during degraded mode.

However, after the replication service re-established a replica-consistent sys-
tem state, it notifies the constraint consistency manager (CCMgr) that it
should start re-establishment of constraint consistency. For this task, the
CCMgr re-evaluates accepted consistency threats and if the corresponding
constraint is violated, it notifies the application through the application-

4.5. CALLBACKS IN WEB APPLICATIONS 56

provided constraint reconciliation handler. This handler might clean up the
inconsistencies immediately, e.g., automatically or by blocking as long as the
human operator is working on the clean-up, or return before the inconsistency
is solved by providing this fact to the middleware. Differentiation between
these two types (immediate vs. deferred reconciliation) works via the return
parameter of the callback. If the application returns true, it specifies that
the constraint violation is resolved. In this case, the CCMgr will revalidate
the constraint and remove the threat if the inconsistency has actually be
solved. Otherwise, it will contact the reconciliation handler again. If the
application returns false, the reconciliation of the constraint violation will be
performed at some time later under the application’s responsibility. In this
second case, the reconciliation handler might apply asynchronous message
passing within the system or send an e-mail notification to the system opera-
tor. However, the cleanup of the threat by the application is detected by the
CCMgr through the fact that the corresponding constraint is satisfied by a
business operation. Subsequently, it will remove the consistency threat from
persistent storage at that point in time.

Of course, generic rollback-based solutions to conflict resolution of replica
conflicts as well as constraint violations are possible. Consequently, not every
constraint violation unconditionally leads to an invocation of the constraint
reconciliation handler. However, rollbacks to previous states of the system
retrospectively reduces availability as some operations do not become effec-
tive at the end. Moreover, it will often not produce the solutions desired
by the end user or application. Hence, generic rollback approaches were not
within our focus.

4.5 Callbacks in Web applications

Before we investigate the issue of callbacks in Web applications, we shortly
summarize the negotiation callback scenario within our middleware for dis-
tributed object systems as illustrated in Figure 4.7. At some time before a
client makes a call to an entity bean, it registers a consistency threat ne-
gotiation handler with the constraint consistency manager (CCMgr). Calls
to components in EJB and hence entity beans are made through the in-
vocation service. Several interceptors responsible for different tasks can be
registered with this invocation service. One interceptor responsible for con-
straint consistency management notifies the CCMgr before and after method
invocations in order to allow the validation of constraints affected by the cur-
rent operation. If the system operates in degraded mode, consistency threats

4.5. CALLBACKS IN WEB APPLICATIONS 57

may arise from these constraint validations. These consistency threats have
to be negotiated by contacting the registered negotiation handler, potentially
crossing a network boundary between the server and the client.

Client IS-Interceptor CCMgr EntityBean

invokeEntityBean

beforeInvocation(EntityBean)

check preconditions

invoke

result

check post-conditions and invariants

result

afterInvocation(EntityBean)

NegHandler

registerNegHandler

consistency threat

accept

remember threat

Middleware

Application

Legend:

Network boundary

Figure 4.7: Consistency threat negotiation in distributed object systems

While such behaviour is possible and straight-forward to implement in dis-
tributed object systems using remote method invocation (RMI), it is more
challenging in Web-based systems because a callback to the Web browser is
simply not possible, see also first part of Figure 4.8. Moreover, the hypertext
transfer protocol (HTTP) is based on a strict request/response behaviour.
The business request is sent to the Web server and the browser is waiting
for the response. Before the response is actually available, negotiation of
potential consistency threats has to be performed, i.e., requests from the
middleware to the application are necessary. Consequently, some logic has
to be placed into the Web application to match this request/response dis-
crepancy.

When a negotiation request arrives from the middleware, the negotiation
logic in the Web application has to extract the information provided to the
negotiation handler, examine the situation, provide an appropriate response
to the Web browser and block the thread by which the negotiation request
was received. Effectively, this forwards the negotiation callback request via
the HTTP response for the business request to the Web browser. While
the user examines the situation in front of the Web browser, the negotiation
thread is blocked in the Web server. The negotiation decision is returned via
a new HTTP request. This request is actually the response to the negotiation

4.5. CALLBACKS IN WEB APPLICATIONS 58

Figure 4.8: Different request/response behaviour of distributed object-based
and Web-based systems

callback request. Hence, the Web negotiation logic has to map the request
to the waiting negotiation thread. After certain parameters are set, e.g.,
a boolean flag of whether the consistency threat is accepted, the sleeping
negotiation thread is interrupted and resumed. In order not to block the
negotiation thread indefinitely, the Web negotiation logic can resume it by
not accepting the consistency threat after a timeout. However, in case the
threat was accepted, the business operation continues in its usual way, but
the results have to be transmitted back to the browser via the HTTP response
for the HTTP request providing the negotiation result. This further requires
to suspend the new HTTP request with the negotiation result until the result
of the business operation (or a new negotiation request) is received.

This request/response discrepancy and its solution are shown in Figure 4.8,
where the conceptual requests and responses as they could be performed
with RMI are drawn with thick grey lines1, dark grey for the business re-
quests/responses and light grey for the negotiation requests/responses. The

1In coloured printouts, blue illustrates the business requests/responses from the appli-
cation and orange the negotiation requests/responses from the middleware.

4.5. CALLBACKS IN WEB APPLICATIONS 59

HTTP requests/responses are drawn with thin black lines. Figure 4.8 first
illustrates that a callback to the browser from the Web server is not pos-
sible in the way of straightforward calls. Thereafter, it shows the solution
where the negotiation request is transferred over the HTTP response for the
business request and the negotiation response is transferred back to the Web
server via a new HTTP request. Finally, the business response is transferred
back to the browser via the HTTP response for the HTTP request with the
negotiation response.

While the previous concepts allowed the same behaviour and user experience
for Web-based applications as for distributed object systems with respect
to negotiation, it is partially impossible to achieve this for the reconcilia-
tion callback. The reconciliation handler of the application is called by the
middleware whenever a violated constraint is detected in the reconciliation
phase. Upon such a callback, distributed object systems have the possibility
to immediately clean up the inconsistency by potentially involving a human
operator and return true to the middleware, stating that the inconsistency
was solved and the middleware should re-evaluate the corresponding con-
straint. Web-based applications can only usefully apply the second option of
deferred reconciliation if interaction with a human operator is required. In
this case, the application has to take note of the inconsistency, e.g., through
database entries or sending an e-mail to an operator, and return false to
the middleware to specify that the inconsistency will be solved later and the
middleware should ignore the inconsistency at first. This decision is persis-
tently stored by the middleware along with the consistency threat. For the
ticket-constraint, the reconciliation handler would mark overbooked flights
and send an e-mail to an operator. The operator afterwards rebooks passen-
gers to other flights as appropriate, thereby cleaning up the inconsistencies.
In this case it does not matter whether reconciliation is performed through
an RMI client or a Web-based client.

We ensured the practical feasibility of our Web approach through an im-
plementation of these concepts in a flight booking prototype following the
examples provided in this dissertation. This application builds upon the
Struts Web framework (http://struts.apache.org/) and an EJB applica-
tion that is deployed within a JBoss Application Server (http://www.jboss.
org/) enhanced with support for replication and constraint consistency man-
agement.

http://struts.apache.org/
http://www.jboss.org/
http://www.jboss.org/

Chapter 5

Evaluation

The previous chapters introduced to the concept of middleware support for
adaptive dependability and provided details about the technical implemen-
tation. This chapter subsequently performs an extensive evaluation of the
implemented solution as well as the concepts and mechanisms applied. We
start with an investigation of the performance impacts of our middleware
enhancement for the healthy and the degraded mode before we analyze the
reconciliation phase. We continue with lessons learned from implementation
and tool usage before we summarize the applied middleware/application in-
teraction mechanisms along with a discussion of specific design alternatives.
Finally, we conclude this chapter with a summary of specific performance
improvements based on our (intermediate) evaluations.

5.1 Healthy and degraded mode performance

For our performance measurements, we used a mixture of different comput-
ers, each between 2–3 GHz and 1 GB of RAM, connected via 100 MBit
network links. The configuration denoted as “No DeDiSys” is a standard
JBoss AS with JBoss TS as transaction service for distributed transactions
and MySQL for persistent storage. The “DeDiSys” configuration addition-
ally applies the principles provided within this dissertation as well as the P4
replication protocol and is measured in healthy mode as well as degraded
mode. In order to ensure repeatability of the tests, we used the script-based
DedisysTest application described in [Ke07].

The test case performed for measurement started with the creation of 1000
entity beans. Afterwards, a setter for String attributes of these entity beans

5.1. HEALTHY AND DEGRADED MODE PERFORMANCE 61

was called 1000 times followed by 1000 calls getter methods of String at-
tributes and 1000 calls to an empty method without associated constraints.
The next steps only applicable to the DeDiSys configurations were 1000 calls
to an empty method with a satisfied constraint and 1000 calls to an empty
method with violated constraints. Constraint satisfaction or violation was
achieved by simply returning true or false within the Constraint.validate(. . .)
method in order to eliminate the validation overhead for reasonable overhead
comparison. This refers to the runtime slice R5 in Section 2.2. To measure
the behaviour in degraded mode when consistency threats occur, we called
an empty method with an associated constraint 1000 times. The occurring
consistency threats were negotiated with a dynamic negotiation handler and
persisted afterwards. Finally, the 1000 entity beans created in the first step
were deleted. Obviously, the create and delete case operate on 1000 different
objects. The “accepted threat” case is the primary issue to investigate for
the degraded mode and therefore split into a good case and bad case scenario.
The values for the other operations were obtained by taking the average of
1000 operations on the same object and 1000 operations on different objects,
i.e., one operation per object.

0
20
40
60
80

100
120
140
160

Create Setter
(avg.)

Getter
(avg.)

Empty
(avg.)

Delete

With explicit constraint consistency management
Without explicit constraint consistency management

Overhead of explicit constraint consistency management

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Figure 5.1: Overhead of explicit constraint consistency management

The prototype implementation indicates that explicit runtime management
of constraints is a feasible approach, causing an almost negligible perfor-
mance drop to about 87–99% as shown in Figure 5.1. Consequently, only
in case of extremely demanding performance requirements, explicit runtime
management of constraints might become too costly. Compared to our con-
straint validation performance evaluations in Section 2.3, these performance
figures are surprising. There are two primary reasons for this significant dif-

5.1. HEALTHY AND DEGRADED MODE PERFORMANCE 62

ference in performance impact: First, the invocations in Section 2.3 are plain
Java invocations while the invocations in our EJB evaluations are remote
method invocations to EJB entity beans. Second, several other services such
as authentication and authorization, transaction management, or entity bean
locking are already performed for these invocations. Consequently, the rela-
tive overhead of constraint consistency management as an additional service
does not have a major influence on invocation performance.

On the other hand, adding the implementation of the P4 replication protocol
reduces performance (depending on the number of nodes and the performed
operation) of the system to about 10% (create with four nodes) to 28% (delete
with two nodes) of the values without constraint consistency management in
Figure 5.1 for update operations and about 78% for local reads. As reads are
always performed locally, the replication protocol of course increases the total
number of reads that can be processed throughout the system—the benefit
gained for the reduced update performance. This issue is investigated in
more detail in the following paragraphs.

0

50

100

150

200

250

Create

Setter (a
vg.)

Getter (a
vg.)

Empty (avg.)

Satisfied (avg.)

Violated (avg.)

Accepted threat (1
)

Accepted threat (1
000)

Delete

No DeDiSys (single node)
No DeDiSys (average of 3 nodes)
DeDiSys healthy (3 nodes)
DeDiSys degraded (3 nodes in partition)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Figure 5.2: No DeDiSys vs. DeDiSys with same number of nodes in healthy
and degraded mode

Figure 5.2 provides an overview of the performance of three different system
configurations. “No DeDiSys” is performed on a single node (the fastest
one), “No DeDiSys (average of 3 nodes)” is the average of the single-node
performance of the three nodes taking part in the replicated setting, and
the two DeDiSys configurations (healthy and degraded mode) use a setting
with three replicated nodes. One drawback of the DeDiSys configurations is
that creation, change, and deletion of entity beans is slower than the “No
DeDiSys” setting. There are two main reasons for this performance loss.
First, the replicated setting has to store data about the replicas of entity

5.1. HEALTHY AND DEGRADED MODE PERFORMANCE 63

beans, e.g., JNDI name and primary key to identify the corresponding entity
bean and the (serialized) request used to create the entity bean (required to
create backup replicas). Second, propagating the update messages from the
primary copies to the backup copies requires network access in contrast to
the single-node “No DeDiSys” setting. Although an efficient implementation
of the P4 protocol was not in our primary focus, the provided figures give a
rough estimation of the expected performance loss due to fault- and partition-
tolerant replication.

Moreover, we observe that operation in degraded mode is slightly slower for
write operations than operation in healthy mode. This is primarily caused by
keeping a history of states per replica (requires database access). However,
this comparison serves only to show the overhead of degraded mode compared
to healthy mode if the number of nodes is equal. In practice, such a situation
can not occur as at least a single node will not be reachable and therefore
the number of nodes in degraded mode is at least one less than in healthy
mode. Consequently, the degraded mode might be even faster than the
healthy mode for operations triggering the replication protocol as Figure 5.3
shows. Whether this is true for a certain application further depends on
the configuration of constraints and hence the number of consistency threats
produced during degraded mode as the data about consistency threats have
to be replicated, too. On the other hand, read performance decreases with a
reduced number of nodes in a partition.

0

50

100

150

200

250

Create

Setter (a
vg.)

Getter (a
vg.)

Empty (avg.)

Satisfied (avg.)

Violated (avg.)

Accepted threat (1
)

Accepted threat (1
000)

Delete

No DeDiSys (single node)
No DeDiSys (average of 3 nodes)
DeDiSys healthy (3 nodes)
DeDiSys degraded (2 nodes in partition)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Figure 5.3: No DeDiSys vs. DeDiSys with three nodes (healthy) and two
nodes (degraded)

The case where methods without associated constraints were called shows
the interception overhead introduced by our middleware enhancement as well
as the ADAPT replication framework [BBM+04]. This is on the one hand

5.1. HEALTHY AND DEGRADED MODE PERFORMANCE 64

the time required by the constraint consistency manager, e.g., accessing the
constraint repository to search for affected constraints, and on the other
hand running through the replication component that does not replicate if
the called method is not a setter changing the state of an entity bean. In this
case, the performance drops to about 73% of the “No DeDiSys” configuration,
which we consider quite a good achievement as 22% of the 27% loss are
caused by the ADAPT replication framework [BBM+04]. Consequently, the
overhead introduced by our middleware enhancement for empty operations is
about 5%.

Handling of satisfied and violated constraints only occurs in the DeDiSys
configurations as this is a new middleware service added by our prototype.
Although there are some minor differences between satisfied and violated
constraints in certain scenarios, they show the same performance in average
for the healthy as well as the degraded mode.

The “accepted threats” case for operation in degraded mode primarily shows
the overhead introduced by consistency threat negotiation as well as persis-
tence and replication of consistency threats in addition to the time required
to handle satisfied constraints. In order to investigate a good case and a
bad case scenario, we performed 1000 operations on a single object produc-
ing 1000 identical consistency threats on the one hand and 1000 operations
producing 1000 different consistency threats on the other hand. Of course,
depending on the system configuration, even more than 1000 threats would
be possible. The good case scenario shows the advantage of storing identi-
cal threats only once. Consequently, only a single threat has to be stored
in this case and we could serve 74 business operations per second. On the
other hand, the bad case scenario requires replication and persistence of
1000 different consistency threats, which is a rather costly operation. In this
case, we could only serve three business operations per second. Obviously,
this case heavily depends on the specific application. However, the opera-
tion in degraded mode shows the greatest benefit of our approach compared
to traditional systems that either block, i.e., are unavailable, or operate in
an uncontrolled inconsistent way—thereby impairing dependability in one or
the other way.

Although the contribution of this dissertation is not focused on an efficient
implementation of the P4 replication protocol, the effects of replication on
the different operations are of course an interesting aspect to investigate. Our
implementation of the P4 protocol uses synchronous update propagation from
the primary to all currently reachable nodes. While this slows down updates
(create, setter, delete), the performance of read operations is enhanced as

5.1. HEALTHY AND DEGRADED MODE PERFORMANCE 65

reads can be performed on any node. Figure 5.4 shows that the performance
of one node using DeDiSys (and hence the P4 replication protocol) drops
to 71% for entity bean deletion, 43% for entity bean creation, and 57% for
local writes. This shows the overhead of the replication protocol through
database accesses to persist details about entity bean replicas. Adding a
second DeDiSys-node further reduces update performance to 28% (delete),
15% (create), and 22% (writes) compared to the “No DeDiSys” case. This
shows a little bit less than 50% performance of the single DeDiSys node case,
caused by the fact that the primary first executes the update and afterwards
propagates the updates synchronously to the backups. Even though the
backup nodes process the update messages from the primary in parallel,
adding additional nodes decreases update performance slightly further.

0

50

100

150

200

250

300

350

No
DeDiSys

1 Node 2 Nodes 3 Nodes 4 Nodes

Create
Setter (avg.)
Getter (avg.)
Empty (avg.)
Delete
Multicast + Tx handling

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

DeDiSys

Figure 5.4: Replication effects on different operations

On the other hand, read performance is increased by roughly 50% of the single
node per additional node, starting from 78% of the “No DeDiSys” case for the
single node scenario and reaching 227% in the four node replicated setting.
Empty operations only performed locally operate at a rather constant ratio
independent of the number of nodes in the system. This is also true for the
test cases with satisfied and violated constraints. However, the backup nodes
show no CPU load for non-update operations and hence can serve further
client requests.

In order to investigate the theoretical maximum of (update) operations per
second possible due to restrictions of group communication and transaction
handling, we started a transaction, sent 1000 ping messages from the primary
to the backups, associated the transaction context at the backups, responded

5.2. RECONCILIATION PHASE 66

with a pong message to the primary and finally committed the transaction.
This is the “Multicast + Tx handling” case in Figure 5.4. Obviously, the
round-trip time of multicasts and transaction handling become more and
more influential with an increased number of nodes, limiting the possibilities
for performance improvements. Finally, the empty method case shows the
same performance independently of the number of nodes. The reason for
this is that it does not trigger update propagation on the one hand. On the
other hand, as this method does not adhere to any naming convention, we
consider it a write operation—to be on the safe side—and therefore execute
it only on the primary node.

5.2 Reconciliation phase

Out of the three major system modes, the healthy system and even the de-
graded mode are rather straight-forward to implement. The complexity of
the reconciliation phase is incomparably higher. While it might be tempt-
ing to perform a rollback-approach until the system is consistent again, such
behavior retrospectively reduces the availability of the system as (some to
all) updates performed during degraded mode do not become effective after
all. Moreover, trying to perform such a reconciliation through a generic,
middleware-driven approach tends to be an complex optimization problem,
mainly determined by the number of objects, number of constraints, number
of partitions, and the size of the history (states/operations) of objects (Fig-
ure 5.5). Solving this issue in practice needs good heuristics that exclude a
large number of combinations a priori. Such heuristics, however, can only be
found with knowledge about the application requirements.

Figure 5.5: Major reconciliation dimensions

Therefore, in order to allow for more efficient compensation actions (“roll-
forward” approach to reconciliation), replica and constraint consistency should
not be re-established in a generic way by the middleware but rather in an

5.2. RECONCILIATION PHASE 67

integrated, interactive way by including the application. This requires that
middleware services are more open to applications, can be configured and
extended with application-specific behavior, e.g., through the use of plugin-
based middleware architectures. Consequently, middleware should provide
re-usable infrastructure services and allow for flexible interaction and cou-
pling between middleware and application to achieve the application-specific
parts efficiently.

One of the major issues to consider is the amount of data gathered during
degraded mode and to be processed during system reconciliation. For ex-
ample, keeping a history of states/operations of the degraded period only
makes sense, if it is required for reconciliation, e.g., for rollback to previous
states. Similar considerations apply to whether identical consistency threats
should be stored once or more than once. The more data are gathered during
degraded mode, the more data needs to be processed in degraded mode—
e.g., processing of already existing consistency threats and linking them to
identical additional threats—as well as during reconciliation, where the rec-
onciliation process might try a rollback to previous states. Obviously, the
time taken for such automatic rollback-based reconciliation grows with the
history of previous states/operations. Therefore, reconciliation should focus
on reaching a consistent state through a roll-forward approach by performing
compensating actions to remove inconsistencies. As the reconciliation phase
is highly application-specific, this further implies that applications that do
not require access to the history of the degraded mode in order to reconcile
inconsistencies have a greater benefit from the balancing of integrity and
availability. For example, if the flight booking application discovers during
system reconciliation that 82 out of 80 available seats of an air plane are
booked and two passengers have to be rebooked, the history of the degraded
mode is not that important, i.e., how this situation was produced. The only
requirement in this case is to rebook two passengers to another flight.

To evaluate the reconciliation phase, we performed several operations in
degraded mode, resulting in 200 identical consistency threats or 1000 con-
sistency threats if identical threats are stored more than once. A single
threat initially requires at least three objects to be persistently stored in
the database and two further objects per additional identical threat. After
the network partition is reunified, the replication protocol starts to prop-
agate missed updates—including consistency threats. Replica conflicts are
provided to the constraint consistency manager to support constraint recon-
ciliation. After the replica reconciliation phase finished, the CCMgr starts to
re-evaluate the accepted consistency threats, which are all actually satisfied
in our case to evaluate the best case. The worst case cannot be reasonably

5.2. RECONCILIATION PHASE 68

evaluated as it might involve user interaction to clean up inconsistencies—
possibly being performed only days after the network partition.

Figure 5.6 shows the time required for system reconciliation. As expected,
the reconciliation phase becomes slower with an increased number of updates
performed and threats occurred during degraded mode. While the number
of updates was the same in both cases, the threats were stored according to
the “identical threats only once” policy one time and another time with the
“store all occurred threats” policy. Obviously, replica reconciliation scales
worse with an increased number of identical threats than constraint recon-
ciliation as it cannot benefit from identifying identical threats. On the other
hand, re-evaluation of identical threats has to be performed only once (the
validation result for identical threats is the same) and if the constraint is sat-
isfied, all threats can be deleted. Constraint reconciliation can only benefit
from multiple threats if a constraint violation is detected, which has to be
subsequently resolved.

Time required for reconciliation

0
2
4
6
8

10
12

Replica reconciliation Constraint
reconciliation

M
in

ut
es

Identical threats once Full threat history

Figure 5.6: Time required for propagation of missed updates and re-
evaluation of consistency threats

The primary conclusion of this evaluation is that it is not feasible to block the
system during the reconciliation phase. Consequently, we allow for parallel
reconciliation and business activities by following the approach described in
Section 3.3.

Our approach to re-establish replica consistency before constraint consistency
is primarily based on the motivation to re-establish replica consistency and
hence denote a single (temporary) primary per object without too many de-
lays for the reunified partition. Alternatively, it could be tried to re-establish
replica and constraint consistency in a single step. However, this increases
the complexity of the reconciliation phase and prolongs the time required to
reach a replica consistent state. Subsequently, this may delay parallel busi-
ness requests. Moreover, replica consistency can be established immediately

5.3. LESSONS FROM IMPLEMENTATION AND TOOLS 69

in several cases while re-establishment of constraint consistency might have
to be postponed. Consequently, the separation of replica and constraint
reconciliation is a reasonable approach as it does not unnecessarily delay
re-establishment of replica consistency. On the other hand, details about
replica (write-write) conflicts and the history of replicas in different parti-
tions can support the automatic and manual re-establishment of constraint
consistency. Therefore, details about replica reconciliation, e.g., conflicting
replicas, should be available to the constraint reconciliation mechanism as
well.

Simulation studies [Se05] have shown that our approach combined with the
primary-per-partition protocol (P4) [BBG+06] can be used to increase avail-
ability in the presence of network partitions. However, the effort required for
reconciliation due to continuing operation in different partitions during de-
graded mode is most probably only worth its costs in the case of longer lasting
partitions for systems where the read-to-write ratio is high. Based on our
experience with the prototype implementation, using a generic history-based
rollback approach for consistency reconciliation tends to become a complex
and processing intensive task. For example, trying several to all possible
combinations of historical object states from different partitions is costly—
even more so if the system recovers/reconciles from a longer lasting partition.
Therefore, the reconciliation phase should focus on re-establishment of con-
sistency through application-specific compensating actions instead of generic
rollback.

5.3 Lessons from implementation and tools

Command pattern for invocations. One of the most enabling factors
for middleware integration of our balancing of integrity and availability was
the usage of the command pattern [GHJV95] for invocations by the JBoss AS
and the fact that new interceptors can be added easily via specification in a
configuration file. JBoss itself relies on this concept to provide middleware
services, e.g., to associate security contexts or transactions with an invoca-
tion. Generally, any desired additional payload can be added to such an
invocation that is explicitly represented by an object.

Aspect-oriented programming. An additional enabling factor for thor-
ough support of constraint consistency management through a constraint
consistency manager and a constraint repository was the aspect-oriented

5.3. LESSONS FROM IMPLEMENTATION AND TOOLS 70

programming paradigm and JBoss AOP as available toolkit. One limita-
tion we discovered with AOP is that it performs out-of-context invocation
interception making it necessary to explicitly maintain context information
in a way accessible to AOP interceptors. In our case, for example, the con-
straint repository is application specific (constraint names have to be unique
within an application and not within the whole application server) and uses
information provided in the context information of an enterprise bean to
differentiate between applications. This context information is available for
JBoss AS invocation interceptors as it is associated with the invocation ob-
ject. To make this context information available to AOP interceptors as
well, we had to maintain an explicit mapping between bean instances and
the context information. This, however, can also be achieved by using AOP.

Infinite loops between application and middleware. Providing mid-
dleware services requires to take special care of potentially infinite loops
caused by a control flow between middleware components and application
specific artefacts. For example, the CCMgr is integrated as a middleware
service and notified of invocations through invocation interceptors. One of
CCMgr’s tasks is to trigger validation of constraints defined upon EJB entity
beans. The validation code is again provided by the application, accessing
EJB entity beans. Hence, we had to ensure that we do not trigger constraint
validation again while we are already in the process of constraint validation.
We consider this a reasonable approach as constraints are predicates that
must not change the application’s state.

Soft constraint limitations. The concept of soft constraints can only
be applied with certain limitations. The thread committing the transaction
holds a lock on the transaction. The transactional resources—one of which
is the CCMgr—execute their activities including prepare() within another
thread not associated with the transaction. Consequently, it is not possi-
ble to associate the thread executing CCMgr.prepare() with the committing
transaction. Trying this leads to a deadlock as the second thread cannot
acquire the lock on the transaction. This has the effect that the validation of
soft constraints takes place within no or another transaction. Consequently,
the second transaction for constraint validation must be allowed to access
objects on which the first transaction of the business request holds a lock in
order to prevent a deadlock.

5.4. MIDDLEWARE/APPLICATION INTERACTIONS 71

Standards and interfaces. EJB uses entity beans to encapsulate the ap-
plication data which fits our data-centric, object-oriented approach very well.
The data integrity constraints are defined upon these entity beans and are
implemented as explicit constraint classes. The constraints of an application
are specified in a configuration file, which is read when the application is
deployed into the application server. The information provided is used to
register the constraints appropriately with the constraint repository. Con-
sequently, our middleware support integrates quite well with the general
concepts and processes of EJB, i.e., application data represented in specific
objects, usage of metadata information, application deployment procedures,
etc. Moreover and specifically due to the smooth integration of our middle-
ware enhancement, the EJB specification was quite helpful during develop-
ment as it provided the contract between the application and the middleware
and enabled to start the development of middleware enhancements as well
as the applications implemented on top of it in parallel.

5.4 Middleware/application interactions

This section discusses and summarizes the middleware/application interac-
tions within our prototype implementations as well as specific design alter-
natives we investigated during the prototype studies.

Besides the explicit (callback) interaction through predefined interfaces we
use metadata and invocation interception as programming abstractions for
coordination of and implicit interaction between application and middleware.
The metadata about constraints is provided by the application developer and
includes information such as when to check a specific constraint or whether
the constraint can be relaxed (potentially be violated) during degraded mode
or reconciliation in order to enhance availability.

Invocation interception is a well-known mechanism to provide middleware
services to an application and available in several middleware technologies,
such as EJB, CORBA, or .NET. However, middleware traditionally is a layer
between the presentation and the resource layers and hosts the application.
Consequently, the middleware or the middleware services are primarily trig-
gered in case of remote invocations. While EJB already triggers middleware
services for local invocations, this is only the case for invocations made upon
an interface but not the actual implementation of a bean itself. Therefore,
method calls of a single instance to itself are plain Java invocations. Un-
fortunately, constraints can be triggered by an arbitrary method, not only

5.4. MIDDLEWARE/APPLICATION INTERACTIONS 72

by methods invoked via remote method invocation (RMI) or via the bean
interface. Hence, integration of constraint consistency management as a mid-
dleware service requires the possibility to intercept each and every method of
an application. We use Aspect-Oriented Programming (AOP) to satisfy this
requirement—thereby complementing the traditional mechanisms for invo-
cation interception and introducing another kind of application interception
by the middleware.

One more kind of interaction between middleware and application we use is
the concept of exceptions. For example, the CCMgr throws a ConstraintVio-
lation exception if it detects that constraints of the application are violated
by a business operation in healthy mode. In degraded mode, it throws Con-
sistencyThreat exceptions for not accepted consistency threats. While the
detection of inappropriate situations is performed by the middleware, the
treatment of the consequences has to be performed by the application.

Furthermore, our middleware enhancement uses persistence to reliably man-
age consistency threats, i.e., it stores them when they occur to be able to
re-evaluate them later during system reconciliation. Thereby, we decouple
constraint validation from the business transactions. Application data asso-
ciated with a consistency threat is stored along with the threat, effectively
relieving the application from any management of threats and data associated
with them.

While there are no reasonable alternatives for invocation interception (includ-
ing AOP) or persistence, we evaluated alternatives for the explicit callbacks
between middleware and application. The negotiation of consistency threats
is a synchronous/blocking task, i.e., an operation/transaction cannot con-
tinue and especially not commit successfully as long as there is no decision
on whether to accept or not accept a specific threat. However, negotiation
can be performed immediately when a threat occurs or be deferred until the
end of a transaction. In any case, we should be able to continue and commit
the transaction if all threats are accepted. Due to this behaviour, a callback
is most appropriate to achieve the negotiation task.

An alternative to the callback for negotiation of consistency threats seems to
be to throw an exception to indicate the consistency threat. The application
would have to investigate the exception details and retry the operation by
signalling the middleware to accept the threat(s). This has the drawback
that the threat that occurs the second time, e.g., 85 out of 80 tickets booked,
might be different than the first time, e.g., 75 out of 80 tickets booked, but
might be accepted due to the decision of the application. Unfortunately,
continuing the operation at the point the exception occurred is generally not

5.4. MIDDLEWARE/APPLICATION INTERACTIONS 73

possible, as the invocation stack is already lost. This is especially true for
nested invocations and illustrated in Figure 5.7 where A would have to call
B, B call C, and C call D again after the exception indicating a consistency
threat occurred at some point in the method of D. Other mechanisms such as
asynchronous calls or message passing are not useful for threat negotiation
either due to the blocking behaviour of negotiation. The only advantage
of asynchronous behaviour would be for longer-lasting transactions where
deferred negotiation is possible. In this case, negotiation of threats could
take place in parallel while the transaction continues with the assumption
that all threats will be accepted. Of course, the transaction has to block
before commit until the decisions for all occurred threats are available.

Figure 5.7: Exceptions break the flow of control

Due to the use of a callback for constraint reconciliation, we allow for imme-
diate cleanup of constraint violations caused by accepted consistency threats
as soon as the violation is detected. However, we allow constraint reconcili-
ation via asynchronous behaviour as well. Based on our experience with the
prototype implementations, asynchronous reconciliation is the usual case as
constraint reconciliation might often require user intervention. Moreover, it
is especially useful for Web applications where a callback to a Web browser
is simply not possible. While it is possible to circumvent this limitation
by letting the browser poll for constraint violations and perform the same
technique as for the negotiation handler, this is a rather cumbersome and
resource-wasting behaviour. Another alternative would be to run a Java Ap-
plet within the Web browser. Consequently, intermediate callbacks could
be made to the applet supporting this behaviour. However, this—as any
kind of “real callback” from the server to the client—has the drawback that
intermediate firewalls might block the call.

Table 5.1 summarizes the middleware/application interaction mechanisms
within our system. Callbacks, exceptions, asynchronous behaviour, and in-

5.4. MIDDLEWARE/APPLICATION INTERACTIONS 74

teraction via persistence are interactions between middleware and applica-
tion that an application developer has to explicitly address or use. Invocation
interception is used only implicitly, i.e., transparently to the application de-
veloper, to achieve middleware tasks. Finally, the usage of metadata allows
an application-specific configuration of the middleware.

Table 5.1: Middleware/application interactions

Mechanism Purpose Remarks
Invocation
interception

Enables the
middleware to provide
middleware

AOP allows to intercept
calls that otherwise
would not trigger
middleware services.

Callback Immediate response
required.

Support for asynchronous
behaviour through
callbacks that do not
immediately have to
succeed.

Exception Indication that
“something” failed,
e.g., a constraint is
violated.

Exceptions break the flow
of control, thereby
requiring an abort/retry
behaviour.

Metadata Application-specific
configuration of the
middleware.

of constraints (classes,
affected methods, etc.)
and callbacks.

Persistence The middleware
manages consistency
threats while the
application may access
them.

This provides interaction
based on shared memory
semantics.

Asynchronous
behaviour, e.g.
message passing

For operations/tasks
lasting for longer time
periods such as
constraint
reconciliation.

Only indirectly supported
via reconciliation callback
that can opt for this
behaviour.

5.5. IMPROVEMENTS BASED ON EVALUATIONS 75

5.5 Improvements based on evaluations

Our evaluations showed that i) write operations are rather slow due to syn-
chronous replication and ii) the reconciliation phase takes quite some time
already for the best case scenario without any conflicts or constraint viola-
tions. Consequently, it is beneficial to i) reduce the number of required write
operations and ii) reduce the amount of data to be processed during the
reconciliation phase along with a reduction of the probability of constraint
violations caused by accepted consistency threats. Some improvements made
based on our evaluations are provided within the following sections.

5.5.1 Reduced history

While, of course, the middleware has no influence on the number of write
operations performed by the application, it can perform optimizations with
respect to the data gathered during degraded mode. Our middleware en-
hancement allows the association of specific application data along with a
consistency threat that will be persisted in order to be available during the
reconciliation phase. However, some applications do not require the history
of consistency threats or the threat-specific application data in order to clean
up inconsistencies. Consequently, it is sufficient to store identical consistency
threats only once.

Identical threat improvement

0,00
5,00

10,00
15,00
20,00
25,00
30,00

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Iteration
5

Accepted threats (full history)
Accepted threats (identical only once)

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Figure 5.8: Improvements through reduced consistency threat history

Figure 5.8 shows the benefit gained from storing identical threats only once—
an increase from about 4 operations per second to about 15 operations per
second. For this evaluation, 200 operations were performed on 200 different

5.5. IMPROVEMENTS BASED ON EVALUATIONS 76

operations producing 200 different consistency threats within a single trans-
action. This scenario was repeated four times leading to five iterations in
total. If the middleware was configured to store the full consistency threat
history, identical threats were stored in all five iterations. If the middleware
was configured to store identical threats only once, the consistency threats
were stored in the first iteration. The following iterations only preform read
operations on the database in order to detect that an identical consistency
threat is already persisted.

5.5.2 Partition-sensitive constraints

The motivating flight booking example in Section 1.3 shows that although
a constraint is satisfied in degraded mode while node or link failures are
present, it might be violated afterwards when the system recovers from a
previous failure. While rebooking five passengers to another flight solves the
inconsistency, it would be desirable not to introduce such an inconsistency at
all. For some applications, where the data can be partitioned like the tickets
in the flight booking example, a significant improvement is possible. Our
middleware makes use of group membership (GMS) and group communica-
tion (GC) primitives in order to implement the replication service. Similar to
Gifford’s solution of weighted replica copies [Gif79], we allow the association
of weights with server nodes. The GMS component can thereafter calculate
the weight of the current partition in relation to the whole system. This value
is provided by the middleware to the application in order to take the current
partition weight into account for constraint validation, effectively leading to
partition-sensitive integrity constraints.

Based on these prerequisites, data can be partitioned during runtime. The
ticket-constraint, for example, saves the number of tickets sold in healthy
mode. In degraded mode, it partitions the number of still available tickets t
(number of seats minus number of tickets sold in healthy mode) according to
the partition weight, effectively leading to tx available tickets for a partition
x (t =

∑n
x=1 tx). The constraint will only be satisfied within partition x, if

the number of tickets sold during degradation is below or equal tx.

This improves behaviour in degraded mode and introduces almost no incon-
sistencies based on the fact that tickets are mainly sold and rarely cancelled.
In the best case, no inconsistencies are introduced at all, although write ac-
cess in different partitions is possible. Inconsistencies could be introduced, if
the same ticket is cancelled in two partitions and a different ticket is sold per
partition afterwards. For example, assume that we already sold 80 tickets

5.5. IMPROVEMENTS BASED ON EVALUATIONS 77

for a flight with 80 seats. Then, we cancel the same ticket in two parti-
tions, effectively having 79 sold tickets in both partitions. If we now sell one
ticket per partition, we will finally end up with 81 sold tickets in the whole
system—again having an overbooking situation.

Obviously, partition-sensitive constraints allow for more precise calculations
of constraint validation results and consequently improve consistency during
degraded mode. Furthermore, this improves the reconciliation phase as less
inconsistencies have to be reconciled. On the other hand, the data parti-
tioning might reduce availability during degraded mode. For example, some
partitions might run out of tickets according to their partition weight while
other partitions might still have unsold tickets.

5.5.3 Asynchronous constraints

The validation results of some constraints might not even be important to an
application, if the result is unreliable because validation was performed on
possibly stale objects. Consequently, this provides room for optimizations:

• The overhead of constraint validation can be removed by not validating
the constraint in degraded mode at all. Consistency threat negotiation,
however, could still take place in order to decide on whether to continue
the current transaction.

• The overhead of consistency threat negotiation can be removed by sim-
ply accepting all consistency threats of a certain constraint.

In order to evaluate these optimizations, we introduced the notion of asyn-
chronous constraints. Asynchronous constraints behave like soft constraints
in the healthy system. In degraded mode, asynchronous constraints are no
longer validated, but stored to be validated in the reconciliation phase, i.e.,
we no longer check these constraints or perform negotiation of consistency
threats. Our evaluations showed that this increases degraded mode perfor-
mance up to two times the number of operations per second possible for soft
constraints where identical threats are stored only once.

Chapter 6

Related Work

This chapter groups related work into three major sections with respect to the
concepts and one minor section with respect to the implementation. First,
we start with discussion of related work on (in)consistency management in
Section 6.1 before we continue with related work on explicit integrity con-
straints in Section 6.2. Related work on adaptive middleware and systems
forms our third major block in Section 6.3. Finally, we conclude this chapter
with Section 6.4 on related work for callbacks in Web applications.

6.1 (In)consistency management

The balancing of integrity/consistency and availability has already been in-
vestigated with respect to isolation [BBG+95, HW90] and replica consis-
tency [DGMS85, FN02, PL91, YV02] and different strategies to optimistic
replication are already well-known [SS05]. The trade-off between constraint
consistency and availability did not yet receive much attention. However,
several works address inconsistency management in different settings. One
of the primary—or probably even the primary—and often cited work on “tol-
erating inconsistency” was performed by Balzer [Bal91]. He allows constraint
violations temporarily to be able to perform certain business operations in
separate steps, where an initial step might introduce inconsistencies and a fi-
nal step removes them. He uses pollution markers corresponding to integrity
constraints. If an integrity constraint is not satisfied, the corresponding pol-
lution marker is set. The pollution marker is removed at the time the in-
tegrity constraint is satisfied again. The system tolerates inconsistent data
in the way that report generators use the pollution markers to subsequently

6.1. (IN)CONSISTENCY MANAGEMENT 79

mark reports that are affected by inconsistent data. Although the storage
of consistency threats roughly corresponds to the pollution markers, Balzer
accepts constraint violations in a healthy system and is not concerned about
degraded mode due to node or link failures. On the other hand, we are
aiming at fully consistent data during healthy system periods and only trade
consistency threats (not violations) during degraded periods to increase avail-
ability. However, combining these two approaches would most likely provide
further benefits.

Inspired by the work of Balzer, Cugola et al. investigate the issue of incon-
sistencies within the execution of (business) processes in [CNGM95]. Within
their work, they distinguish between preconditions for state transitions and
invariants defined upon the process model. If certain preconditions do not
hold, e.g., due to user interaction, this is allowed as long as the invariants are
still satisfied. Such a situation is called a tolerable deviation from the pro-
cess definition. However, the data produced by this state transition might
be polluted. Consequently, their system provides appropriate support for
storing historical steps in the process execution in order to enable pollution
analysis. Pollution analysis has to be performed if the process reaches an
unacceptable state, identified by violated process invariants. The recovery
from unacceptable process states is is left to the user.

Guinea continues the work of Cugola et al. to a certain extent in his PhD
thesis [Gui07] in the area of service oriented architectures. In this work,
he focuses on business processes defined in BPEL4WS, the Business Pro-
cess Execution Language for Web Services—also BPEL for short [IBM+03].
The monitoring and recovery of business processes is carried out by the so
called supervision framework. This framework includes data collectors to
obtain the monitoring data, data analyzers to verify whether specific proper-
ties (conditions/constraints) hold, and the recovery manager responsible to
activate appropriate/defined recovery strategies if process anomalies are de-
tected. Recovery strategies include simple actions such as to ignore anomalies
or halt the process execution, but also allow to rebind a service to another
one with the same interface or perform a call to an external web service.

(In)consistency management model. From the previous works by Bal-
zer, Cugola, and Guinea as well as our work, we can observe that all of
them use explicit rules/constraints in order to monitor system state and/or
behaviour. Moreover, violations or potential violations have to be treated
explicitly in order to allow to make progress in the face of potential or even
certain inconsistencies. Finally, inconsistencies are resolved through incon-

6.1. (IN)CONSISTENCY MANAGEMENT 80

sistency analysis and repair actions. The major difference of these works lies
in the application domain, in which inconsistency management is applied.
Consequently, it is possible to abstract a general model for (in)consistency
management. Tarr and Clarke present a such a model for consistency man-
agement in complex applications in [TC98]. Although this model is primarily
motivated from consistency between source-code, abstract syntax trees, and
control flow graphs in software engineering environments, it is certainly more
generally applicable and maps to our research quite well. In fact, this work is
quite a good starting point for anyone designing an (in)consistency manage-
ment system. We reflect on their model in Appendix A by shortly addressing
their requirements to consistency management systems along with the cor-
responding mechanisms we used in our constraint consistency management
framework.

Inconsistency in requirements engineering. Finkelstein, Nuseibeh,
Easterbrook, Kramer and others address the issue of inconsistencies in soft-
ware requirements engineering based on a technique called viewpoints
[FGH+94, EN96, NER01]. Their primary motivation comes from the fact
that the development of large and complex software systems involves many
people, viewing the system from different perspectives—viewpoints. While
the viewpoints are locally consistent, several inconsistencies between the
viewpoints might occur. In order to manage these inconsistencies, viewpoints
are bound together via inter-viewpoint relations. These relations specify de-
pendencies and mappings between system components. The enforcement of
strict consistency between the different viewpoints in such environments is
counter-productive: “Enforcement of consistency means the change has to
be delayed until the problem is sorted out, during which the desired change
cannot be represented. It is often desirable to tolerate and even encour-
age inconsistency [GH91], to maximise design freedom, to prevent premature
commitment to design decisions and to ensure all views are taken into ac-
count” [EN96]. Their works are performed for software requirements engi-
neering and hence consider the software development phase while we in our
work address inconsistencies in the data of a running software system. The
mechanisms used (explicit rules/constraints), however, are again similar.

Consistency checking of distributed documents. Ellmer, Nentwich,
Emmerich, Finkelstein and others investigate the issue of inconsistency in dis-
tributed XML (eXtensible Markup Language) documents [EEF99, NCEF02,
NEF03, NEFE03], e.g., UML design documents or EJB deployment descrip-

6.2. EXPLICIT INTEGRITY CONSTRAINTS 81

tors. They use XPath [CD99] expressions to select values of the XML docu-
ments in order to use them within their rule language to define consistency
conditions. The support for consistency checking is implemented within a
tool called xlinkit. Consistency checks produce a report with details on the
inconsistencies within the documents. These repair reports can be used by
the developer to fix the inconsistencies. However, some automatic repair ac-
tions can also be performed, e.g., by defining that one artefact has precedence
over the others. Differently to us and some of the other works, there seems
to be no support for explicit or preventive inconsistency management, i.e.,
for the decision of whether inconsistencies are allowed to be introduced by
certain changes to the documents.

Several of the previous works are also addressed by Spanoudakis and Zisman
in their survey of inconsistency management in software engineering along
with an identification of open research issues in [SZ01].

6.2 Explicit integrity constraints

Several related work with respect to explicit integrity constraints focuses on
constraint validation in the sense of design by contract [Mey92] as introduced
by Meyer for the Eiffel programming language. One focus within this prin-
ciple is to decide whether the producer or user of a certain piece of code
violated the contract. This process is also called the problem of “assigning
the blame” for incorrect code.

Lackner et al. [LKP02] discuss (pre-)compiler-based approaches supporting
design by contract in Java. Starting with an overview of Jass [BFMW01],
iContract [Kra98], jContractor [KHB99], and Handshake [DH98], they finally
describe their own support for design by contract in Java through extension
of the Java language with new keywords. Furthermore, they provide how
this approach was integrated into the Kopi Java compiler and provide per-
formance studies of their approach and a comparison with some of the other
approaches. In their studies, the authors experience performance impacts for
contract checking code between 2.22 and 1389.11 times the runtime of non-
contract checking code. Obviously, these results also have such a wide range
of performance impacts as shown by our studies of the different constraint
validation approaches.

Plösch [Plö02] provides further details and an evaluation with respect to the
degree of assertion support of some tools listed in Table 2.1 on page 21.
However, these works focus on integrating constraint/contract checks into

6.2. EXPLICIT INTEGRITY CONSTRAINTS 82

Java byte code while our evaluation considers wrapper-based source-code
instrumentation, byte-code instrumentation as well as interceptor-based ap-
proaches to make constraints first class runtime entities.

While design by contract might be interesting with respect to distributed
software development and contracts between producers and users of code,
other works focus on ensuring system integrity in the sense of considering a
constraint violation an error that should be treated by corrective measures
rather than to view the violation as system failure [ALRL04]. Verheecke
and Van Der Straeten [VS02] perform a transformation from UML class di-
agrams enhanced with OCL constraints into Java objects (business objects)
and Java constraint checking classes. The generated code of the business ob-
jects already contains the hard-wired trigger points for constraint validations
and hence does not make use of a constraint repository. Therefore, although
the constraints are explicitly encoded in Java classes, they are not explicitly
managed during runtime. We on the other hand require that constraints are
explicitly available and processable during runtime for adaptivity with re-
spect to node and link failures. However, our representation of data integrity
constraints as explicit constraint classes was inspired by their work.

Wang and Mathur [WM05] apply an interceptor-based approach for con-
straint violation detection in the area of autonomic systems. Based on declar-
ative specifications of the monitoring constraints, invocation interceptors im-
plementing the constraint checking code are generated. Although these con-
straints are slightly different from the data-centric constraints in our work
(their constraints restrict method parameters and the order in which method
invocations may take place), the performance evaluation of using the JBoss
AOP framework can still be applied to our work as well. The authors iden-
tify a performance overhead of 18–20 microseconds for using AOP intercepted
method invocations compared to simple method invocations. Consequently,
the authors argue that interceptor based constraint validation is feasible be-
cause of this little AOP overhead, especially in component-based software,
such as EJB, with medium size entities.

Oakasha et al. [OCS01] use an explicit constraints approach within the area
of object-oriented databases that also regards constraints as first-class citi-
zens registered within the so called constraint-catalog—corresponding to our
constraint repository. However, the authors address the problem of consis-
tency management in object-oriented databases and only make use of the
flexibility of explicit constraints in the way that they may be turned on and
off. This, however, is an interesting aspect when importing large amounts of
data into a database, for example.

6.3. ADAPTIVE MIDDLEWARE AND SYSTEMS 83

6.3 Adaptive middleware and systems

The EU funded project ADAPT (Middleware Technologies for Adaptive
and Composable Distributed Components) provides a replication framework
to allow rapid prototyping of replication protocols in J2EE (Java 2 Enter-
prise Edition) environments [BBM+04]. This framework is based upon the
JBoss AS. The primary mechanism used is invocation interception at the
client side as well as at the server side. The replication protocol building
upon this framework is notified about different events, such as creation of,
calls to, and deletion of enterprise beans. Consequently, this framework
proved quite useful for our prototype implementation of the P4 replication
protocol.

Geihs et al. [GKR+06] address adaptation of component-based distributed
applications based on the model-driven paradigm. The adaptability of an
application is specified within the model with the goal to provide the best
possible service to the user according to context and user preferences. Based
on this model, application and middleware artefacts can be generated. While
our current systems do not apply model-driven elements, we are investigating
this approach to support the application developer with code generation for
integrity constraints similar to Verheecke et al. [VS02] and generation of the
corresponding metadata.

The usage of metadata and reflection is also proposed by Capra et al. [CEM01]
as a concept to address mobility. In their approach, metadata is specified
by the application, but is managed by the middleware. Consequently, the
middleware adapts to changes in the context, e.g., bandwidth, battery power,
network connection/connectivity, etc. according to the metadata—also called
an application profile. We support this argument to use metadata and also
see metadata as a promising approach to master the increasing complexity
in todays systems.

McKinley et al. address the issue of “composing adaptive software” in
[MSKC04]. First of all, they differentiate between parameter adaptation
and compositional adaptation. Parameter adaptation is performed through
changes in program variables in order to adapt program behaviour. Composi-
tional adaptation allows to change algorithms or structural components and is
therefore more powerful than parameter adaptation. They argue that “mid-
dleware provides a natural place to locate adaptive behaviour” and see—and
thereby they support our argumentation—the possibility of interception and
redirection of interactions between program entities at the core of composi-
tional adaptation. Moreover, McKinley et al. identify three key technologies

6.3. ADAPTIVE MIDDLEWARE AND SYSTEMS 84

for reconfigurable software design: (i) separation of concerns and AOP as
an enabling factor, e.g., for crosscutting concerns, (ii) computational reflec-
tion, which also includes metadata, and (iii) component-based design, e.g.,
to allow dynamic composition during runtime. Moreover, they provide a
summary of software recomposition techniques and address questions such
as how, when, and where to perform composition. Being in line with the
arguments of McKinley et al., we introduced adaptive behaviour into the
middleware, allow the application to perform parameter adaptation for basic
configuration tasks, and use compositional adaptation for the complex tasks
such as consistency threat negotiation or reconciliation. The resulting sys-
tem adaptivity with respect to node an link failures, however, does not fall
into the previous adaptation categories, especially as it focuses on adaptive
system behaviour and not on composition.

Schmerl and Garlan investigate how existing design tools can be reused in
order to support architectural adaptation [SG02]. Based on the component
and connector paradigm, they use integrity constraints in order to specify
correctness criteria for architectures developed in their design tool. These
constraints are monitored at runtime. Moreover, runtime monitoring results
can be observed within the design tool. If architectural adaptation at runtime
leads to violated constraints, appropriate repair tactics are carried out in
order to get back to a consistent architecture. While this work is similar to
our work and others with respect to inconsistency management and explicit
integrity constraints, the major emphasis is put on architectural adaptation
during runtime. This, however, is different from our approach to adapt the
system with respect to node and link failures in that we do not perform an
adaptation of the system architecture.

Motivated by the fact that runtime monitoring is costly, Dwyer et al. use
an adaptive approach to runtime monitoring [DKE07]. Within their sys-
tem, they check program correctness with respect to finite state automata.
To eliminate the costs of runtime monitoring, they only instrument the calls
that lead to state transitions. If a state transition occurred, no longer needed
monitoring code is removed to speed up performance while other calls might
be instrumented according to the current state. Obviously, the primary idea
is that the costs for continuous reinstrumentation are less than the gain in
performance by running parts of the system as uninstrumented code. Their
evaluations show a performance impact through adaptive analysis between
23–33% of additional runtime required. Based on our experience and com-
pared to our results, this is quite a good achievement, especially as this
includes interception overhead and monitoring code. On the other hand,
these results heavily depend on the application and the size and complexity

6.4. CALLBACKS IN WEB APPLICATIONS 85

of the monitored properties. In our case adaptive instrumentation would
only make sense by replacing the generic interceptors with direct calls to the
constraints, effectively excluding the search overhead within the repository.
This has to be paired with a support for adding and removing constraints
to/from the constraint repository, where such an operation would trigger re-
instrumentation of affected methods in addition to the constraint validation
of added constraints. While the effects of selective instrumentation of con-
strained objects, i.e., of the affected methods, would be an interesting aspect
to investigate, the potential for performance optimizations is rather minimal
as the overhead of explicit constraint consistency management is currently
in the range of 1–13%. However, for plain Java applications an investigation
of this approach could be worth the effort as in this case the potential for
optimization is much higher as the evaluations in Section 2.3 show.

6.4 Callbacks in Web applications

XMLBlaster (http://www.xmlblaster.org/) is a message-oriented middle-
ware tool that allows callbacks from a Web server to the browser via persis-
tent HTTP connections. This connection is opened by the browser (specified
via the Connection: keep-alive parameter) or a Java applet if the applet variant
is used. The server sends messages—which might actually be callbacks—over
this connection to the browser in form of data chunks. Client-side processing
of these messages is performed either via JavaScript or within the Java ap-
plet depending on the technology used. This enables callbacks to the browser
through a dedicated HTTP connection while we on the other hand use the
HTTP connection of the original request and return a usual HTML (Hy-
perText Markup Language) page. Moreover, we explicitly have to close the
connection through Connection: close in order not to produce a deadlock
caused by a single thread serving a single HTTP connection. However, these
two approaches can be combined as well.

http://www.xmlblaster.org/

Chapter 7

Conclusion and Future Work

This dissertation presented a middleware approach to support adaptive de-
pendability by balancing integrity and availability. We showed how explicit
runtime management of constraints as a middleware service can support the
application to provide the desired balancing with respect to an application’s
requirements and environment conditions. This concept allows detection and
negotiation of consistency threats as a means to bound the potentially intro-
duced inconsistency during degraded mode. Our approach allows decoupling
constraint validation of threatened constraints from the business activities
by postponing reliable validation to the reconciliation phase. This, however,
comes at the price of increased complexity: Consistency threats that result
in constraint violations during reconciliation have to be cleaned up at a point
in time where the causing business activity is usually already finished.

Generic rollback-based reconciliation solutions require a lot of data to be
gathered during degraded mode, e.g., the history of applied operations/s-
tates, which requires even more processing during reconciliation phase. More-
over, generic rollback (after the corresponding business activity is already fin-
ished) often does not lead to satisfactory solutions from the perspectives of
the application developer and the end user. Therefore, our approach should
primarily be applied to systems that are able to reconcile the system state
without requiring a full history of the degraded mode and allow for flexible
application and potentially user interaction to clean up the system.

In order to reduce consistency threats during degraded mode and reduce com-
plexity and processing effort in the reconciliation phase, system partitioning
should already be explicitly addressed in the system design phase by taking
the specific application requirements into account. Within this task, data
distribution and partitioning with the least amount of possible inter-node

7.1. FUTURE WORK 87

dependencies is of major importance. Partition-sensitive constraints are one
way towards this direction as they support a combination of optimistic repli-
cation and data partitioning in order to reduce the amount of inconsistency
introduced into a distributed system while network partitions are present.
This reduces the amount of inconsistencies to be cleaned up while the sys-
tem reconciles the updates performed in different network partitions during
degraded mode. Consequently, partition-sensitive constraints can increase
the performance of the reconciliation phase. The price to be paid on the
other hand is potentially reduced availability during the degraded mode.

While the balancing of the two dependability attributes availability and in-
tegrity is a rather complex task, it can still be achieved by building upon call-
backs as the primary explicit middleware/application interaction mechanism.
However, to fully achieve the desired behaviour, the callbacks are supported
with exception handling, asynchronous behaviour, metadata, AOP, and per-
sistence. Although callbacks are a well-known principle, they are sometimes
hard if not even impossible to achieve in systems where they are not fore-
seen to be used, e.g., Web-based systems when a callback to the browser is
required. This dissertation contributes with a solution to this callback issue
as well as a discussion of several middleware/interaction mechanisms used
to achieve the desired balancing of the two dependability attributes integrity
and availability.

According to our prototype implementation, performance impairment due to
explicit constraint consistency management is not an issue while the perfor-
mance loss through synchronous replication is acceptable if (i) the read-to-
write ratio is high, (ii) the number of replicated nodes within the system is
small, and/or (iii) write performance is not a limiting factor. However, our
approach increases availability at the expense of increased aggregate com-
plexity during system reconciliation, which is handled best, if no access to
the history of the degraded mode is required.

7.1 Future work

Within this section we summarize future work that is one step further from
the current status of our work while we provide interesting research challenges
requiring a lot more effort to achieve results in the next section.

The specification of affected methods of a constraint, is a rather tedious
task. To relieve the application developer from this work as well as from
the implementation of the constraints themselves, the MDA approach used

7.1. FUTURE WORK 88

by Verheecke and Van Der Straeten [VS02] could be integrated with our
constraint checking framework. This would support the overall software en-
gineering process by generation of entity beans, constraints and metadata
based on UML models annotated with OCL constraints. Alternatively, our
approach could be combined with the “design by contract” principle by gen-
eration of explicit constraints and specification of affected methods based
on the contracts instead of compile-time merging of business functionality
with contract checking functionality. For both of the previous approaches
we expect some necessary design extension (or workarounds) to UML and
OCL or contract specification as constraints are not first class citizens as in
our work. Especially, the specification of constraint metadata, e.g., tradeable
vs. non-tradeable constraints might be problematic. However, a third option
for improvement is to allow declarative specification of constraints (probably
even during runtime), e.g., by using OCL, perform object-graph path analy-
sis of the declarative constraints, and use the Java reflection mechanisms to
access the appropriate properties of entity beans. This, however, would most
likely result in significantly decreased constraint validation performance.

If constraints are stated in a declarative language, e.g., by using OCL for
UML class diagrams, tool support for constraint generation or interpreta-
tion could be enriched with an automatic analysis of the consistency of the
constraints themselves. For example, inconsistencies could be the result of
defects in the specification, e.g., one constraint requires A.x < 10 and an-
other constraint requires A.x > 20. However, the analysis does not only have
to take into account the constraints defined for a single class, but also has
to consider behavioural subtyping [Ame91, LW94, DL96, FF01] in order to
address object inheritance and polymorphism.

Having data integrity constraints explicit at hand provides new possibili-
ties to the management of data integrity in general. With respect to the
coupling/decoupling of constraint validation, an “integrity robot” could con-
tinuously validate invariant constraints—completely decoupled from business
activities. This, of course, is only applicable to systems that can live with
a certain degree of inconsistency. While this is probably not of interest in
small-scale tightly-coupled systems, it might well be an option for large-scale
systems, e.g., “systems of systems”. Another possibility gained through ex-
plicit runtime integrity constraints is runtime reconfigurability of constraints,
e.g., to allow for mission changes (day/night). Furthermore, each constraint
enforced in a healthy system could be paired with an alternate constraint
to be validated during degraded system periods. For mobile databases, con-
straint validation could be performed during check-out and check-in to ensure
that data checked out and checked in is consistent. Moreover, extensions to

7.2. FUTURE RESEARCH CHALLENGES 89

the framework would be possible in order to integrate the notion of time, i.e.,
to validate constraints at certain points in time. Finally, future work could
also consider the issue of checking the correctness of sequences of operations,
similar to [WM05].

7.2 Future research challenges

Our approach is currently only applicable to tightly-coupled object oriented
systems. Whether and how this approach can be applied to other system
scenarios could be investigated in future work. Two major challenges we see
with this respect are an increase in scale for the nodes maintaining application
data and a transition of the balancing concept for integrity and availability
into dynamic and mobile environments. Based on our experience, this would
require different mechanisms as some of the assumptions for our current
systems, e.g., server nodes are statically configured and maintained, will no
longer be true.

Having integrity constraints explicitly at hand throughout the software lifecy-
cle would allow for new approaches to software development and requirements
engineering by combining the work on inconsistency management in require-
ments engineering with inconsistency management during system runtime.
Moreover, integrity constraint maintenance effort could be reduced through
the gained flexibility in constraint management. However, such effects should
be subject to detailed studies within industrial settings in order to evaluate
the benefits and drawbacks.

Today, we are often thinking in terms of strict consistency and that any
threats to integrity—and hence, dependability—have to be avoided and un-
desirable effects have to be removed or repaired immediately. While this
is acceptable for small-scale and tightly-coupled systems, we currently ob-
serve a trend towards large-scale integration (systems of systems) and per-
vasive computing, leading to ultra-large-scale systems [Pol06] in the future.
Dependability will be an important aspect of these systems—and integrity
management will be part of it. However, strict consistency is not afford-
able in large- to ultra-large-scale systems. Hence, interesting future research
challenges will arise from a transition of thinking in terms of consistency
management to thinking in terms of inconsistency management—not only
for logical systems [GH91] or requirements engineering [NER01], but as a
more holistic concept in software engineering considering the whole software
lifecycle including runtime and maintenance. While this dissertation focused
on “constraints-in-the-small” defined upon objects, we will have to think of

7.2. FUTURE RESEARCH CHALLENGES 90

“constraints-in-the-large” defined upon and between systems to address the
challenges of the future. Such constraints will most probably be fuzzy, im-
precise, and potentially require negotiation to decide whether constraints are
fulfilled. An analogy that can guide our way in this direction is to view
“constraints-in-the-large” as kind of laws, often being precise enough, but
sometimes requiring court decisions (negotiations) to decide whether some-
thing was actually lawful—or not.

Appendix A

Consistency Management
Model

Tarr and Clarke present a model for consistency management in complex
applications in [TC98]. This model is primarily motivated from consistency
between source-code, abstract syntax trees, and control flow graphs in soft-
ware engineering environments, but certainly more generally applicable and
maps to our research quite well. The following sections shortly reflect on
their work and address how their requirements and model for consistency
management map to our research. This on the one hand strengthens the
definition and generality of the presented consistency management model
and on the other hand shows that our constraint consistency management
framework satisfies the requirements for consistency management in complex
applications.

A.1 Functional requirements

With respect to the requirements for consistency management, Tarr and
Clarke differentiate between functional and cross-cutting requirements. In
order to satisfy the functional requirements, they specify that a system must
be able to perform the following tasks:

• Define consistency conditions: First of all, it has to be clarified what it
means for objects to be consistent. While the differentiation between
“consistent” and “inconsistent” is a quite common approach, more fine
grained degrees of consistency or inconsistency might be required for
certain applications.

A.1. FUNCTIONAL REQUIREMENTS 92

→ Within our work, we basically follow the “consistent” and “inconsis-
tent” classification for the healthy system. However, for the degraded
mode, we differentiate between “possibly satisfied”, “possibly violated”,
and “uncheckable” as additional satisfaction degrees.

• Determine when to detect violations: This primarily refers to the trig-
ger points of a constraint, also discussed under the scope of a constraint
by Verheecke and Van der Straeten in [VS02]. While Tarr and Clarke
provide examples for operation-driven detection (constraint validation
triggered by certain operations), they argue that it might also be desir-
able to allow checks to be performed at a client’s request or at specific
process steps.

→ The primary mechanism to trigger constraint validation are oper-
ations or more specifically method invocations in our work as well.
However, the point in time when constraints are actually validated de-
pends on several circumstances, e.g., soft constraints are only validated
at the end of a transaction or validation of asynchronous constraints is
postponed to the reconciliation phase during degraded mode.

• Specify enforcement semantics: It must be possible to define appro-
priate responses to (potential) consistency violations. This includes to
reject actions leading to violations, perform roll-back or roll-forward
strategies in order to reach a consistent state, or allow objects to be in
an inconsistent state and manage them accordingly. However, it is quite
important to consider that an initial repair action may be unsuccessful
and subsequent actions may be required.

→ Basically, we support all of the provided examples. The specific
actions taken, however, depend on the system mode. While we reject
inconsistencies in the healthy system, e.g. throw a ConstraintViolation
exception and possibly abort the ongoing transaction, we perform in-
consistency management in the degraded mode. In the reconciliation
phase, we support roll-back and roll-forward strategies in order to clean
up the inconsistencies in the system.

• Manage inconsistency: “Managing inconsistency means being able to
detect inconsistencies, ensure the meaningful manipulation of inconsis-
tent objects, and ultimately, reachieve consistency.”

→ This task is actually at the core of our middleware enhancements. In
our case, it is even more complex as we have to perform inconsistency
management with respect to potential inconsistencies where we can-
not even be sure, whether an inconsistency is actually introduced into

A.2. CROSS-CUTTING REQUIREMENTS 93

the system. However, reachievement of consistency is performed dur-
ing the reconciliation phase based on the accepted consistency threats
that are the result of the inconsistency management performed dur-
ing degraded mode. This task strongly correlates to the enforcement
semantics requirement mentioned above.

• Dynamically change consistency specifications: Based on the observa-
tion that the consistency requirements of a system might change over
time, a consistency management system should support to change con-
sistency specifications as well. Similarly, the repair actions may change.

→ Due to the fact that our constraints are collected within the con-
straint repository, we are able to support this requirement in the way
that constraints can be added or removed from this repository. Dur-
ing our studies, however, we did not make use of this functionality as
system evolution was not in the primary focus of our work. Adding or
removing constraints would also require additional handling of consis-
tency threats, for example. If a constraint is removed from the reposi-
tory and hence no longer presents an integrity criterion of the system,
consistency threats for this constraint should also be removed from per-
sistent storage. On the other hand, if a new constraint is added to the
repository, it would have to be validated based upon all affected ob-
jects in order to detect whether the system is consistent with respect to
this new constraint. However, the consistency requirements in our sys-
tems primarily changed with respect to the system mode. For example,
constraints that have to be satisfied within the healthy system might
potentially be violated during degraded mode. We support this kind
of changing consistency requirements based on metadata and runtime
negotiation of consistency threats.

A.2 Cross-cutting requirements

Besides the functional requirements addressed in the previous section, Tarr
and Clarke further specify a set of cross-cutting requirements in order to
produce a flexible, broad-spectrum consistency management system:

• Completeness: “Computational completeness supports the definition of
arbitrarily complex algorithms”—for consistency conditions as well as
for enforcement semantics. “Type completeness provides the ability to
associate consistency conditions and enforcement mechanisms with any
type of object.”

A.2. CROSS-CUTTING REQUIREMENTS 94

→ While our work focused on application data and hence EJB entity
beans, the constraint consistency management part also supports other
types of objects as well, e.g., EJB session beans. Conceptually, it can
even be applied to simple Java applications as provided in Chapter 2.
The only requirement to be satisfied is that of invocation interception,
which can be achieved through integration into the middleware invoca-
tion mechanism or aspect-oriented programming, for example. Besides
the support for different types, we also support computational com-
pleteness in the way that arbitrary code can be executed within the
validate() method of a constraint. However, the code should be lim-
ited to read-only operations as constraint validation is not expected to
change an application’s business data, for example.

• Metadata: Information about system artefacts and data, i.e., metadata,
support dynamic decisions at system runtime. Examples with respect
to consistency management are the consistency conditions that are cur-
rently enforced on an object and details about an object’s consistency
status.

→ The consistency conditions in our case are the constraints in the
constraint repository that can be queried in order to get the consis-
tency conditions of different objects. The consistency status of objects,
e.g., persisted consistency threats, is data and not metadata within
the constraint consistency management framework. However, it is of
course metadata with respect to the application data. Besides these
two examples, we use additional metadata information, primarily with
respect to integrity constraints. Examples include the trigger points of
constraints or the specification of whether a constraint can be relaxed
during degraded mode.

• Generality/heterogeneity: “Generality means that a consistency man-
agement system must provide a set of primitive capabilities that facil-
itate the implementation of alternative consistency management para-
digms. Heterogeneity means that a consistency management system
must allow alternative consistency management models and implemen-
tations to coexist peacefully.

→ While generality is often a desirable goal, it often also comes at
the price of decreased performance or applicability and increased com-
plexity and configuration issues. Consequently, we limited our inves-
tigations to distributed object systems. The co-existence of different
consistency management models might be an interesting thing to inves-
tigate and probably support. In practice, however, the well-established
and commonly used consistency model, the one described in [TC98],

A.3. MODEL OF CONSISTENCY MANAGEMENT 95

and the one used in our work defines pre- and post-conditions as well
as invariant constraints. Moreover, we support sub-classifications of
invariant constraints into hard, soft, and asynchronous and an exten-
sion of the model would be possible in order to support constraints
on sequences of operations as well. To sum up, generality and hetero-
geneity are often desirable goals, but supporting all kinds of systems,
e.g., different programming paradigms or languages, within a single
consistency management system is rather unreasonable. Consequently,
the scope of target systems has to be reasonably defined in order to
achieve an optimal support for the developer applying the consistency
management system.

• First class status and identity: “First class status provides the ability
to treat all objects uniformly. The ability to pass a consistency con-
dition or action as a parameter to an operation is an example of this
requirement. Identity means that a given entity has a unique identifier
that is separate from its state.”

→ First class status of constraints is achieved in our framework through
encapsulation of consistency conditions within explicit integrity classes.
Consequently, constraints can be processed like any other object in an
object oriented programming language. The identity requirement is
addressed in the way that each constraint in the system has a unique
name by which it can be referred and looked up from the constraint
repository.

A.3 Model of consistency management

Based on their requirements, Tarr and Clarke provide a model of consistency
management. This model primarily includes four different issues:

1. Definition of consistency (conditions)

2. Trigger points of a condition—when to perform violation detection

3. Definition of enforcement mechanisms

4. Inconsistency management

Definition of consistency. Within their model, they define that the con-
sistency status of a condition might be consistent, inconsistent, partially con-
sistent if some but not all parts of a condition are consistent and unknown

A.3. MODEL OF CONSISTENCY MANAGEMENT 96

if not enough information is available to evaluate the condition. Partially
consistent and unknown address situations of uncertainty. Differently to our
consistency threats, partially consistent means that parts of a condition are
certainly inconsistent while “possibly satisfied” and “possibly violated” in
our case only provide an indication of the validation result that is unreliable
in the face of a network partition. The “unknown” state corresponds to our
“uncheckable” satisfaction degree.

Trigger points. With respect to the trigger points of constraints, Tarr and
Clarke differentiate between:

• Preinvoke: condition is checked before the invocation of the specified
operation. This type should be applied where a “failure to satisfy the
condition results in the invocation of an operation other than the one
specified.”

• Precondition: checked during the execution of the specified operation,
but before the operation takes any other actions. Preconditions as well
as postconditions require access to the runtime context of the operation.

• Postcondition: checked after the operation has performed its task, but
before it terminates.

• Postinvoke: condition is checked after the operation executed and com-
mitted.

This differentiation seems to be mainly related to the fact that their con-
sistency management system Pleiades [TC93] is implemented as a pre-
processor for Ada. Consequently, the discussion refers to the difference be-
tween in-line code instrumentation and wrapper-based approaches presented
in Chapter 2. As they state in [TC98] that only pre- and postconditions are
supported, they chose the in-line code instrumentation approach.

Several considerations apply to this decision. First, their system does not
apply the concept of transactions and therefore the only option to prevent an
inconsistent operation from commit is within the operation itself. Second,
there is no notion of invocation interception which could be used in order
perform the commit within one of the interceptors but after the operations
returned—similar to our situation in the EJB environment. Moreover, the
considerations with respect to in-line code instrumentation vs. wrapper-
based approaches apply.

A.3. MODEL OF CONSISTENCY MANAGEMENT 97

With respect to their definition, all of our pre- and postconditions are ac-
tually preinvoke and postinvoke constraints as they are checked within the
interceptor chain before and after the actual method of an object was per-
formed. As our system is integrated into EJB and thereby supports transac-
tions, the commit of an operation is not an issue as the effects of the whole
transaction can be undone through a transaction rollback. Moreover, we also
integrate consistency management with transactions through the concept of
soft constraints.

Enforcement mechanisms. The definition of enforcement mechanisms
allows to specify one or more (repair) actions within action chains to be
taken when a specific consistency condition is violated. The default action
is to throw an exception, but this can be even dynamically modified. Ac-
tions are written in the programming language and therefore can execute
basically anything in order to solve the inconsistency or send a notification
the developer.

Inconsistency management. Finally, Tarr and Clarke point out incon-
sistency management as an important task within a consistency management
system. The primary issue is that the consistency management system must
be able to handle situations in which some objects are inconsistent and con-
sider the fact that an initial action to repair the inconsistency may fail. This
further implies the support for longer-lasting repair activities, i.e., operations
performed on inconsistent objects in order to reach a consistent state.

Bibliography

[ABH+05a] Arjuna, BEA, Hitachi, IBM, IONA, and Microsoft. Web ser-
vices atomic transaction, 2005. http://www-128.ibm.com/

developerworks/library/specification/ws-tx/.

[ABH+05b] Arjuna, BEA, Hitachi, IBM, IONA, and Microsoft. Web services
business activity framework, 2005. http://specs.xmlsoap.

org/ws/2004/10/wsba/.

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and
Carl E. Landwehr. Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans. Dependable Sec. Comput.,
1(1):11–33, 2004.

[Ame91] Pierre America. Designing an object-oriented programming lan-
guage with behavioural subtyping. In Proceedings of the REX
School/Workshop on Foundations of Object-Oriented Languages,
pages 60–90, London, UK, 1991. Springer-Verlag.

[Bal91] Robert Balzer. Tolerating inconsistency. In Proceedings of the
13th international conference on Software engineering, pages
158–165. IEEE Computer Society Press, 1991.

[BBG+95] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. SIGMOD
Rec., 24(2):1–10, 1995.

[BBG+06] Stefan Beyer, Mari-Carmen Bañuls, Pablo Galdámez, Johannes
Osrael, and Francesc Daniels Muñoz-Escoi. Increasing availabil-
ity in a replicated partitionable distributed object system. In
The 2006 International Symposium on Parallel and Distributed
Processing and Applications (ISPA 2006). Springer, December
2006.

http://www-128.ibm.com/developerworks/library/specification/ws-tx/
http://www-128.ibm.com/developerworks/library/specification/ws-tx/
http://specs.xmlsoap.org/ws/2004/10/wsba/
http://specs.xmlsoap.org/ws/2004/10/wsba/

BIBLIOGRAPHY 99

[BBM+04] Özalp Babaoglu, Alberto Bartoli, Vance Maverick, Simon
Patarin, Jaksa Vuckovic, and Huaigu Wu. A framework for pro-
totyping J2EE replication algorithms. In Robert Meersman and
Zahir Tari, editors, CoopIS/DOA/ODBASE (2), volume 3291 of
Lecture Notes in Computer Science, pages 1413–1426. Springer,
2004.

[BFMW01] Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike
Wehrheim. Jass - Java with assertions. In Klaus Havel and Grig-
ore Rosu, editors, Proceedings of the First Workshop on Runtime
Verification, July 2001.

[BGM07] Stefan Beyer, Pablo Galdámez, and Francesc Daniels Muñoz-
Escoi. Implementing network partition-aware fault-tolerant
CORBA systems. In Proc. 2nd Int. Conf. on Availability, Re-
liability and Security (ARES 2007), pages 69–76, Washington,
DC, USA, 2007. IEEE CS.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[BMST93] N. Budhiraja, K. Marzullo, F.B. Schneider, and S. Toueg. The
primary-backup approach. In S.J. Mullender, editor, Distributed
systems, chapter 8, pages 199–216. ACM Press, Addison-Wesley,
Wokingham, United Kingdom, 2nd edition, 1993. ISBN 0-201-
62427-3.

[CD99] James Clark and Steve DeRose. XML path langugage (XPath),
1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[CDK05] George Coulouris, Jean Dollimore, and Tim Kindberg. Dis-
tributed Systems - Concepts and Design. Addison-Wesley, fourth
edition, 2005.

[CEM01] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Reflec-
tive middleware solutions for context-aware applications. In Aki-
nori Yonezawa and Satoshi Matsuoka, editors, Reflection, vol-
ume 2192 of Lecture Notes in Computer Science, pages 126–133.
Springer, 2001.

[CNGM95] G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantione. How to
deal with deviations during process model enactment. In ICSE
’95: Proceedings of the 17th international conference on Software

http://www.w3.org/TR/1999/REC-xpath-19991116

BIBLIOGRAPHY 100

engineering, pages 265–273, New York, NY, USA, 1995. ACM
Press.

[ÇÖSF01] Ugur Çetintemel, Banu Özden, Abraham Silberschatz, and
Michael J. Franklin. Design and evaluation of redistribution
strategies for wide-area commodity distribution. In ICDCS,
pages 154–161, 2001.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed sys-
tems. Communications of the ACM, 34(2):56–78, 1991.

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic algorithms for replicated database maintenance. In
PODC ’87: Proceedings of the sixth annual ACM Symposium
on Principles of distributed computing, pages 1–12, New York,
NY, USA, 1987. ACM Press.

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Con-
sistency in a partitioned network: a survey. ACM Comput. Surv.,
17(3):341–370, 1985.

[DH98] Andrew Duncan and Urs Hölzle. Adding contracts to Java with
Handshake. Technical Report TRCS98-32, University of Cali-
fornia, Santa Barbara, Dec. 1998.

[DKE07] Matthew B. Dwyer, Alex Kinneer, and Sebastian Elbaum. Adap-
tive online program analysis. In ICSE ’07: Proceedings of the
29th International Conference on Software Engineering, pages
220–229, Washington, DC, USA, 2007. IEEE Computer Society.

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behav-
ioral subtyping through specification inheritance. In ICSE ’96:
Proceedings of the 18th international conference on Software en-
gineering, pages 258–267, Washington, DC, USA, 1996. IEEE
Computer Society.

[EEF99] Ernst Ellmer, Wolfgang Emmerich, and Anthony Finkelstein.
Consistency management of distributed documents using xml
and related technologies. Technical Report 99-94, Dept. of Com-
puter Science, University College, London, UK, 1999.

[EN96] Steve Easterbrook and Bashar Nuseibeh. Using viewpoints
for inconsistency management. Software Engineering Journal,
11(1):31–43, 1996.

BIBLIOGRAPHY 101

[FB99] Armando Fox and Eric A. Brewer. Harvest, yield and scalable
tolerant systems. In Workshop on Hot Topics in Operating Sys-
tems, pages 174–178, 1999.

[Fe07] Lorenz Froihofer (ed.). FTNS technology comparison. Techni-
cal Report D4.1.1, DeDiSys Consortium, 2007. http://www.

dedisys.org/.

[FF01] Robert Bruce Findler and Matthias Felleisen. Contract sound-
ness for object-oriented languages. In OOPSLA ’01: Proceed-
ings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 1–15,
New York, NY, USA, 2001. ACM Press.

[FGH+94] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and
B. Nuseibeh. Inconsistency handling in multiperspective speci-
fications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[FN02] P. Felber and P. Narasimhan. Reconciling replication and trans-
actions for the end-to-end reliability of CORBA applications. In
Proc. of Confederated Int’l Conf. DOA, CoopIS and ODBASE
2002, pages 737–754, London, UK, 2002. Springer.

[GCG02] J. S. Goonetillake, T. W. Carnduff, and W. A. Gray. An in-
tegrity constraint management framework in engineering design.
Comput. Ind., 48(1):29–44, 2002.

[GH91] Dov M. Gabbay and Anthony Hunter. Making inconsistency re-
spectable: a logical framework for inconsistency in reasoning. In
Philippe Jorrand and Jozef Kelemen, editors, FAIR, volume 535
of Lecture Notes in Computer Science, pages 19–32. Springer,
1991.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns - Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[Gif79] David K. Gifford. Weighted voting for replicated data. In SOSP
’79: Proceedings of the seventh ACM symposium on Operating
systems principles, pages 150–162, New York, NY, USA, 1979.
ACM Press.

http://www.dedisys.org/
http://www.dedisys.org/

BIBLIOGRAPHY 102

[GKR+06] Kurt Geihs, Mohammad Ullah Khan, Roland Reichle, Arnor
Solberg, Svein Hallsteinsen, and Simon Merral. Modeling of
component-based adaptive distributed applications. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing,
pages 718–722, New York, NY, USA, 2006. ACM Press.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002.

[Glo07] Gerhard Glos. Performance and usability evaluation of con-
straint checking approaches in java. Master’s thesis, Vienna
University of Technology, 2007.

[Gui07] Sam Guinea. Dynamo: a Framework for the Supervision of Web
Service Compositions. PhD thesis, Politecnico di Milano, 2007.

[HHB96] Abdelsalam A. Helal, Abdelsalam A. Heddaya, and Bharat B.
Bhargava. Replication Techniques in Distributed Systems.
Kluwer Academic Publishers, 1996.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-
oriented database recovery. ACM Comput. Surv., 15(4):287–317,
1983.

[HW90] M.P. Herlihy and J.M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[IBM+03] IBM, BEA Systems, Microsoft, SAP, and Siebel Sys-
tems. Business process excecution language for web services
BPEL4WS, 2003. http://www.ibm.com/developerworks/

library/specification/ws-bpel/.

[JQ92] H. V. Jagadish and Xiaolei Qian. Integrity maintenance in
object-oriented databases. In Proceedings of the 18th Interna-
tional Conference on Very Large Data Bases, pages 469–480.
Morgan Kaufmann Publishers Inc., 1992.

[Ke07] Hubert Künig (ed.). FTNS/EJB system design & first prototype
& test report. Technical Report D3.2.2, DeDiSys Consortium,
2007. http://www.dedisys.org/.

[KHB99] Murat Karaorman, Urs Hölzle, and John L. Bruno. jContrac-
tor: A reflective Java library to support design by contract. In

http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.dedisys.org/

BIBLIOGRAPHY 103

Pierre Cointe, editor, Reflection, volume 1616 of Lecture Notes
in Computer Science, pages 175–196. Springer, 1999.

[KIL+96] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Lo-
ingtier, Cristina Videria Lopes, Chris Maeda, and Anurag Mend-
hekar. Aspect-oriented programming. ACM Comput. Surv.,
28(4es):154, 1996.

[Kra98] Reto Kramer. iContract - The Java design by contract tool. In
TOOLS ’98: Proceedings of the Technology of Object-Oriented
Languages and Systems, page 295, Washington, DC, USA, 1998.
IEEE Computer Society.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A no-
tation for detailed design. In Haim Kilov, Bernhard Rumpe, and
Ian Simmonds, editors, Behavioral Specifications of Businesses
and Systems, chapter 12, pages 175–188. Kluwer Academic Pub-
lishers, 1999.

[LKP02] Martin Lackner, Andreas Krall, and Franz Puntigam. Support-
ing design by contract in Java. Journal of Object Technology,
1(3):57–76, 2002. Special issue: TOOLS.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion
of subtyping. ACM Trans. Program. Lang. Syst., 16(6):1811–
1841, 1994.

[Mey92] Bertrand Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and
Betty H. C. Cheng. Composing adaptive software. IEEE Com-
puter, 37(7):56–64, 2004.

[NCEF02] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and An-
thony Finkelstein. xlinkit: a consistency checking and smart
link generation service. ACM Trans. Inter. Tech., 2(2):151–185,
2002.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkel-
stein. Consistency management with repair actions. In ICSE
’03: Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 455–464, Washington, DC, USA, 2003.
IEEE Computer Society.

BIBLIOGRAPHY 104

[NEFE03] Christian Nentwich, Wolfgang Emmerich, Anthony Finkelstein,
and Ernst Ellmer. Flexible consistency checking. ACM Trans.
Softw. Eng. Methodol., 12(1):28–63, 2003.

[NER01] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo.
Making inconsistency respectable in software development.
Journal of Systems and Software, 58(2):171–180, September
2001.

[OCS01] Hussien Oakasha, Stefan Conrad, and Gunter Saake. Consis-
tency management in object-oriented databases. Concurrency
and Computation: Practice and Experience, 13(11):955–985,
2001.

[Osr07] Johannes Osrael. Replication Techniques for Balancing Data
Integrity with Availability. PhD thesis, Vienna University of
Technology, 2007.

[PL91] Calton Pu and Avraham Leff. Replica control in distributed sys-
tems: an asynchronous approach. In SIGMOD ’91: Proceedings
of the 1991 ACM SIGMOD international conference on Manage-
ment of data, pages 377–386, New York, NY, USA, 1991. ACM
Press.

[Plö02] Reinhold Plösch. Evaluation of assertion support for the Java
programming language. Journal of Object Technology, 1(3):5–17,
2002.

[Pol06] Bill Pollak, editor. Ultra-Large-Scale Systems. Software Engi-
neering Institute, Carnegie Mellon University, July 2006.

[Ran75] Brian Randell. System structure for software fault tolerance.
IEEE Trans. on Softw. Eng., SE-1(2):220–232, June 1975.

[RG00] Mark Richters and Martin Gogolla. Validating UML models
and OCL constraints. In Andy Evans, Stuart Kent, and Bran
Selic, editors, UML, volume 1939 of Lecture Notes in Computer
Science, pages 265–277. Springer, 2000.

[RSB93] A. Ricciardi, A. Schiper, and K. Birman. Understanding par-
titions and the “non partition” assumption. In IEEE Proc. of
Fourth Workshop on Future Trends of Distributed Systems, 1993.

[Se05] Diana Szentiványi (ed.). Metrics. Technical Report D1.3.1,
DeDiSys Consortium, 2005. http://www.dedisys.org/.

http://www.dedisys.org/

BIBLIOGRAPHY 105

[SG02] Bradley Schmerl and David Garlan. Exploiting architectural de-
sign knowledge to support self-repairing systems. In SEKE ’02:
Proceedings of the 14th international conference on Software en-
gineering and knowledge engineering, pages 241–248, New York,
NY, USA, 2002. ACM Press.

[SG03] Robert Smeikal and Karl M. Goeschka. Fault-tolerance in a
distributed management system: a case study. In ICSE ’03:
Proceedings of the 25th International Conference on Software
Engineering, pages 478–483, Washington, DC, USA, 2003. IEEE
Computer Society.

[SG04] Robert Smeikal and Karl Michael Goeschka. Trading constraint
consistency for availability of replicated objects. In Proceedings
of the 16th IASTED International Conference on Parallel and
Distributed Computing and Systems, 2004.

[Sme04] Robert Smeikal. Trading Consistency for Availability in a Repli-
cated System. PhD thesis, Vienna University of Technology,
2004.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[SZ01] George Spanoudakis and Andrea Zisman. Inconsistency manage-
ment in software engineering: Survey and open research issues.
Handbook of Software Engineering and Knowledge Engineering,
1, 2001.

[TC93] Peri Tarr and Lori A. Clarke. Pleiades: an object management
system for software engineering environments. In SIGSOFT ’93:
Proceedings of the 1st ACM SIGSOFT symposium on Founda-
tions of software engineering, pages 56–70, New York, NY, USA,
1993. ACM Press.

[TC98] Peri Tarr and Lori A. Clarke. Consistency management for com-
plex applications. In Proceedings of the 20th International Con-
ference on Software Engineering, pages 230–239. IEEE Com-
puter Society, 1998.

[Ver01] Bart Verheecke. From declarative constraints in conceptual mod-
els to explicit constraint classes in implementation models. Mas-
ter’s thesis, Vrije Universiteit Brussel, 2001.

BIBLIOGRAPHY 106

[VS02] Bart Verheecke and Ragnhild Van Der Straeten. Specifying
and implementing the operational use of constraints in object-
oriented applications. In Proceedings of the Fortieth Interna-
tional Conference on Tools Pacific, pages 23–32. Australian
Computer Society, Inc., 2002.

[Wie00] Ralf Wiebicke. Utility support for checking OCL business rules
in Java programs. Master’s thesis, Dresden University of Tech-
nology, Dec. 2000.

[WM05] Qianxiang Wang and Aditya Mathur. Interceptor based con-
straint violation detection. In ECBS ’05: Proceedings of the
12th IEEE International Conference and Workshops on the En-
gineering of Computer-Based Systems (ECBS’05), pages 457–
464, Washington, DC, USA, 2005. IEEE Computer Society.

[YV02] H. Yu and A. Vahdat. Design and evaluation of a conit-based
continuous consistency model for replicated services. ACM
Trans. Comput. Syst., 20(3):239–282, 2002.

Glossary

ACID Atomicity, Consistency, Isolation, Durability, page 4

AOP Aspect-Oriented Programming, page 20

BPEL Business Process Execution Language, page 79

BPEL4WS Business Process Execution Language for Web Services, page 79

CAP Consistency, Availability, Partition-tolerance, page 1

CCMgr Constraint Consistency Manager, page 44

CORBA Common Object Request Broker Architecture, page 20

DTMS Distributed Telecommunication Management System, page 8

EJB Enterprise JavaBeans, page 7

GMS Group Membership Service, page 45

HTTP Hypertext Transfer Protocol, page 57

IDE Integrated Development Environment, page 26

J2EE Java 2 Enterprise Edition, page 83

JBoss AS JBoss Application Server, page 44

JIT just-in-time, page 28

JML Java Modeling Language, page 18

MW Middleware, page 44

OCL Object Constraint Language, page 9

RMI Remote Method Invocation, page 57

GLOSSARY 108

RS Replication Service, page 44

UML Unified Modeling Language, page 9

VCS Voice Communication System, page 8

XML eXtensible Markup Language, page 80

XOR Exclusive or, page 9

Index

Adaptive dependability, 2
Affected method, 12
Affected objects, 12
Alarm Tracking System, 8
Application scenarios, 8
Aspect-oriented programming, 20
ATS model, 8

Callbacks in Web applications, 56
CAP principle, 1
Code instrumentation, 25
Code instrumentation, 16

Byte code post-processing, 25
In-place, 17
Problems, 23
Source code pre-processing, 25
Wrapper-based, 17

Compiler-based constr. validation, 18
Conclusion, 86
Concurrency consistency, 3
Consistency interrelations, 3
Consistency mgmt. model, 79, 91

Core issues, 95
Cross-cutting requirements, 93
Functional requirements, 91

Consistency threat, 36
Detection and negotiation, 50
Example, 37
Identical threats, 42
Negotiation, 40
Preparation for Reconciliation, 41
Reconciliation, 42

Consistency types, 3

Constraint model
Intra- vs. inter-object, 38

Constraint check categories, 36
Constraint configuration, 48
Constraint consistency, 3
Constraint consistency manager, 50
Constraint model, 11

Affected method, 12
Affected objects, 12
Asynchronous constraints, 77
Context class, 12
Hard constraints, 12
Invariant, 12
Postcondition, 12
Precondition, 12
Runtime representation, 46
Satisfaction degrees, 38
Soft constrains, 12

Constraint repository, 19
optimized, 23
Search overhead, 31

Constraint satisfaction degrees, 38
Constraint validation approaches, 15
Constraint validation performance, 27
Constraint validation tools, 21
Constraints

ATS, 8
Flight booking, 9
Implementation and maintainabil-

ity issues, 22
Partition-sensitive, 76
Target model, see Constraint model

INDEX 110

Ticket constraint (simple), 9
Ticket constraint (explicit), 11

Context class, 12

Distributed Telecommunication Man-
agement System, 8

DTMS, 8

EJB replication prototyping, 83
Evaluation, 60

Healthy and degraded mode, 60
Lessons from implementation and

tool usage, 69
Reconciliation phase, 66
Replication, 64

Explicit constraint classes, 9, 19

Failure model, 2
Fastest validation approaches, 29
Flight booking system, 5
Future research challenges, 89
Future work, 87

Handcrafted constraints, 16

Identical consistency threat, 42
In-place validation code, 17
Inconsistency management, 78

Business processes, 79
Distributed documents, 80
Requirements engineering, 80

Inconsistency mgmt. model, see Con-
sistency mgmt. model

Interceptor mechanisms, 20
Introduction, 1
Invariant constraint, 12
Invocation interception, 20, 51

Overhead, 32
Isolation, 3

Major system states, 7
MW/application interactions, 71

Object Constraint Language, 9
OCL, 9
OCL constraint example, 8, 9
Optimized constraint repository, 23

Partition-sensitive constraints, 76
Possibly stale objects, 38
Postcondition, 12
Precondition, 12
Problem illustration, 5

Reconciliation phase, 54
Reduced history, 75
Related work, 78

Adaptive code instrumentation, 84
Adaptive MW and systems, 83
Callbacks in Web applications, 85
Design by contract, 81
Explicit integrity constraints, 81
Inconsistency management, 78

Replica consistency, 3
Replication, 2
Replication support, 53

Satisfaction degrees, 38
Slowest validation approaches, 29
Solution overview, 5
Summary

Improvements, 75
MW/app. interactions (table), 73
MW/application interactions, 71

System architecture, 44
System model, 7
System states, 7

Target constraints, 11
Ticket constraint, 5

UML, 9
Unified Modeling Language, 9

Wrapper-based validation, 17

Curriculum Vitae

Lorenz Froihofer
Year of birth: 1979

Email: lorenz@froihofer.net
WWW: http://www.froihofer.net/

Address: 8654 Fischbach 69a
Austria

Education

2004–2007 Ph.D. study at the Vienna University of Technology
2005–2006 Master’s study in Computer Science Management

at the Vienna University of Technology
1998–2004 Master’s study in Computer Science

at the Vienna University of Technology
1997–1998 Military Service
1993–1997 Grammar school with specialization in computer science

Work Experience

01/2005– Research Assistant at the Distributed Systems Group,
Vienna University of Technology, within the EU research
project Dependable Distributed Systems (DeDiSys).

Field of activity: Research on dependability in
distributed systems, middleware, replication,
(in)consistency management, system architecture.
Work package leader of several work packages
in the range of 1.5–3 person years.

mailto:lorenz@froihofer.net
http://www.froihofer.net/

CURRICULUM VITAE 112

10/2006– Lecturer of “Distributed Computing” and
“Messaging Design” at the University of Applied Sciences
FH Joanneum in Kapfenberg.

02/2006– Lecturer of “Distributed Computing and Middleware”
at the University of Applied Sciences FH Campus Vienna.

07/2003– Internship at SIEMENS Austria within the scope of
09/2003 my master’s thesis regarding WLAN Security.

07/2002– Research Assistant at the Distributed Systems Group
09/2002 of the Mediateam Oulu / University Oulu (Finland)

Field of activity: Analyzed, designed, and implemented
improvements for a distributed mobile application.

07/2002– Study Assistant at the Vienna University of Technology,
09/2002 Institute for Software Technology

Field of activity: Hold lectures about UML.
Managed two teams during a software engineering process.

08/2000– Software Programmer at CRP Schützinger, Graz
09/2000, Field of activity: Database application development
02/2001 with MS Access, VBA, and MS SQL server.

Languages

German (native)
English (excellent)
Italian (basic knowledge)

Awards

2005 Prize of the city of Vienna for excellent master’s thesis

Publications

[1] Lorenz Froihofer, Markus Baumgartner, Johannes Osrael, and Karl M.
Goeschka. Data partitioning through integrity constraints. In Fast Ab-
stract Proc. of the 37th Int. Conference on Dependable Systems and Net-
works, 2007.

[2] Lorenz Froihofer, Gerhard Glos, Johannes Osrael, and Karl M. Goeschka.
Overview and evaluation of constraint validation approaches in Java. In
ICSE ’07: Proceedings of the 29th International Conference on Software
Engineering, pages 313–322, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[3] Lorenz Froihofer, Karl M. Goeschka, and Johannes Osrael. Middleware
support for adaptive dependability. In Proc. of the 8th Int. Middleware
Conference. Springer, 2007.

[4] Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka. Trading in-
tegrity for availability by means of explicit runtime constraints. In Proc.
of the 30th Intl. Conf. on Computer Software and Applications (COMP-
SAC 2006), pages 14–17. IEEE Computer Society, 2006.

[5] Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka. Decoupling
constraint validation from business activities to improve dependability
in distributed object systems. In Proc. 2nd Int. Conf. on Availability,
Reliability and Security (ARES 2007), pages 443–450. IEEE CS, 2007.

[6] Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka. Middle-
ware/application interactions to support adaptive dependability. In MAI
’07: Proceedings of the 1st workshop on Middleware-application interac-
tion: in conjunction with EuroSys 2007, pages 31–36, New York, NY,
USA, 2007. ACM Press.

[7] Johannes Osrael, Lorenz Froihofer, Norbert Chlaupek, and Karl M.
Goeschka. Availability and performance of the adaptive voting repli-

PUBLICATIONS 114

cation protocol. In Proc. 2nd Int. Conf. on Availability, Reliability and
Security (ARES 2007), pages 53–60. IEEE CS, 2007.

[8] Johannes Osrael, Lorenz Froihofer, Matthias Gladt, and Karl M.
Goeschka. Adaptive voting for balancing data integrity with availabil-
ity. In On the Move to Meaningful Internet Systems 2006: Confederated
Int. Workshops Proc., volume 4278 of LNCS, pages 1510–1519. Springer,
2006.

[9] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. A replica-
tion model for trading data integrity against availability. In Proc. of the
12th Pacific Rim Int. Symposium on Dependable Computing (PRDC’06),
pages 377–378, Washington, DC, USA, 2006. IEEE CS.

[10] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. What service
replication middleware can learn from object replication middleware. In
MW4SOC ’06: Proceedings of the 1st workshop on Middleware for Ser-
vice Oriented Computing (MW4SOC 2006), pages 18–23, New York, NY,
USA, 2006. ACM Press.

[11] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. Availabil-
ity/consistency balancing replication model. In Workshop Proc. of the
21st Int. Parallel and Distributed Processing Symp. (IPDPS), pages 1–8.
IEEE, 2007.

[12] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. Experiences
from building service and object replication middleware. In Workshop
Proc. of the 6th Int. Symp. on Network Computing and Applications.
IEEE CS, 2007.

[13] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. On the need
for dependability research on service oriented systems. In Fast Abstract
Proc. of the 37th Int. Conference on Dependable Systems and Networks.
IEEE CS, 2007.

[14] Johannes Osrael, Lorenz Froihofer, and Karl M. Goeschka. Software
Engineering of Fault Tolerant Systems, chapter Replication in Service-
Oriented Systems. World Scientific Publishing, 2007.

[15] Johannes Osrael, Lorenz Froihofer, Karl Michael Goeschka, Stefan
Beyer, Pablo Galdámez, and Francesc Daniels Muñoz-Escoi. A system
architecture for enhanced availability of tightly coupled distributed sys-
tems. In Proc. 1st Int. Conf. on Availability, Reliability and Security

PUBLICATIONS 115

(ARES 2006), pages 400–407, Washington, DC, USA, April 2006. IEEE
Computer Society.

[16] Johannes Osrael, Lorenz Froihofer, Hubert Kuenig, and Karl Michael
Goeschka. Scenarios for increasing availability by relaxing data integrity.
In P. Cunningham and M. Cunningham, editors, Innovation and the
Knowledge Economy - Issues, Applications, Case Studies, volume 2, pages
1396–1403. IOS Press, 2005.

[17] Johannes Osrael, Lorenz Froihofer, Georg Stoifl, Lucas Weigl, Kle-
men Zagar, Igor Habjan, and Karl M. Goeschka. Using replication to
build highly available .NET applications. In Workshop Proc. of the 17th
Int. Conf. on Database and Expert Systems Applications, pages 385–389,
Washington, DC, USA, 2006. IEEE CS.

[18] Johannes Osrael, Lorenz Froihofer, Martin Weghofer, and Karl M.
Goeschka. Axis2-based replication middleware for Web services. In Proc.
of the Int. Conf. on Web Services. IEEE CS, 2007.

	Title
	Abstract
	Contents
	List of Figures
	Introduction
	Adaptive dependability
	Relationship to the transaction concept
	Problem illustration & solution overview
	Target systems and applications
	Explicit integrity constraints
	Target constraints and trigger points
	Structure, contributions, publications

	Constraint Validation Approaches
	Constraint implementation strategies
	Handcrafted constraints
	Code instrumentation
	Compiler-based approaches
	Explicit constraint classes
	Interceptor mechanisms
	Summary

	Implementation & maintainability issues
	Implemented approaches
	Handcrafted constraints
	Code instrumentation
	Compiler-based approaches
	Constraints encoded in interceptors
	Explicit constraint classes

	Performance studies
	Comparison conditions
	Results

	Conclusion

	Balancing Integrity and Availability
	The notion of a consistency threat
	Balancing integrity and availability
	Negotiation of consistency threats
	Preparation for reconciliation

	Reconciling constraint consistency

	Middleware Support for Adaptive Dependability
	System architecture
	Constraint consistency management
	Explicit (runtime) constraint representation
	Constraint configuration and registration
	Constraint consistency manager
	Invocation interception

	Replication support
	Reconciliation phase
	Callbacks in Web applications

	Evaluation
	Healthy and degraded mode performance
	Reconciliation phase
	Lessons from implementation and tools
	Middleware/application interactions
	Improvements based on evaluations
	Reduced history
	Partition-sensitive constraints
	Asynchronous constraints

	Related Work
	(In)consistency management
	Explicit integrity constraints
	Adaptive middleware and systems
	Callbacks in Web applications

	Conclusion and Future Work
	Future work
	Future research challenges

	Consistency Management Model
	Functional requirements
	Cross-cutting requirements
	Model of consistency management

	Bibliography
	Glossary
	Index
	Curriculum Vitae
	Publications

