Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universitat Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DISSERTATION

Processing and Symbolization of Ambient Sensor Data

Submitted at the Faculty of Electrical Engineering and Information Technology,
Vienna University of Technology
in partial fulfillment of the requirements for the degree of
Doctor of Technical Sciences

under supervision of

0. Univ. Prof. Dr. Dietmar Dietrich
Institute of Computer Technology
Vienna University of Technology

and
Prof. Dr. Walter T. Penzhorn Prof. Dr. Brian M. O'Connell
Department of Electrical, Electronic and Department of Computer Science
Computer Engineering, Department of Philosophy
University of Pretoria Central Connecticut State University
South Africa New Britain, CT 06050
by

DI Gerhard Pratl
Matr. Nr. 9125984
Canisiusgasse 25/23
1090 Vienna, Austria

Vienna, April 2006







Kurzfassung

Gebdudeautomatisierung wird immer mehr zu einem integralen
Bestandteil unseres tiglichen Lebens. Durch Systeme, die in der Lage
sind, Menschen besser zu unterstiitzen, werden neue Dienste
ermdglicht. Eine Herausforderung bei der Entwicklung solcher Systeme
ist die Fahigkeit, Objekte, Ereignisse und Situationen in einer Art zu
beobachten, die an die menschliche Wahrnehmung angelehnt ist.

In dieser Arbeit wird ein Modell definiert, das auf der Adaption von
neurowissenschaftlichen, psychologischen und psychoanalytischen
Modellen basiert. Daten, die von diversitiren Sensoren stammen,
werden symbolisiert, in mehreren Ebenen verarbeitet und die fiir das
System relevante Information wird extrahiert. Die Grundlage dafiir
bildet die Anwendung der Erkenntnisse, die die Forschung iiber die
menschliche Wahrnehmung gezogen hat. Das Ergebnis dieses Prozesses
ist eine symbolische Reprisentation der Welt, die dazu verwendet wird,
Szenarien zu erkennen, also zeitliche Sequenzen von Ereignissen. Da
das Hauptaugenmerk dieser Arbeit auf Wahrnehmung und Beobachtung
liegt, werden Aktionen und Reaktionen nur zweitrangig behandelt, sind
aber als Folge von erkannten Szenarien durchaus vorgesehen. Die in
dieser Arbeit definierten Symbole sind mit der realen Welt, in der das
System operiert, verbunden (grounded symbols), dies wurde durch die
Verkniipfung der untersten Schicht von Symbolen mit Sensordaten aus
der realen Welt erreicht.






Abstract

Building automation is a constantly growing domain that becomes more
and more a part of our everyday life. Systems designed to support the
human user will provide new types of services. A challenge for the
design of such systems is the ability to observe objects, events and
situations in a way that is similar to human perception.

This work defines a model for data processing based on the adaptation
of neuroscientific, psychological and psychoanalytical models. By
symbolizing data which originates from diverse types of sensors and
processing it in multiple layers, relevant information is extracted and
separated from unimportant data. This is achieved by applying
knowledge that has been obtained from understanding how human
perception operates. The result of this process is a symbolic
representation of the world that is used to identify scenarios — sequences
of events subject to time constraints. Because the focus of this work is
on perception and surveillance, actions and reactions are of secondary
significance, but are possible as a consequence of identified scenarios.

The symbols defined in this work are linked to the real world, in which
the symbol operates — the symbols are grounded. This has been
achieved by linking the lowest symbolic layer to real-world sensory
data.

il






Preface

Technology has reached a level that allows for convenient integration of sensory equipment
and provides sufficient computing resources at reasonable prices. Looking at today's setup of
computational resources, an outside observer would expect machines with some basic human-
like abilities that capable of increasing human safety and comfort. But while we have
successfully taken pictures on the surface of Mars, the convenience of having a robot that
prepares a cup of tea in an average kitchen is still not available. While machines excel
humans by magnitudes when it comes to solving equations or processing big amounts of data,
the solution to performing apparently "simple" tasks that are part of everyday human life still
needs to be found.

This is the field of research to which this work attempts to contribute. Designing machines
that support human users in a better way requires as a first step an understanding of the world
as it is perceived by humans. Such machines need to operate in a natural environment
designed for humans, but not for machines. Thus, we have to enable machines to recognize
real-world objects, events and situations in a world of imprecise data, which so badly fit to the
requirements of formal logic. Hence, it is necessary for such a system to perceive the real
world, to classify and to identify. The goal of this process is a representation of the world that
builds the base for higher-level functions.

Building machines that are able to fulfill tasks or even create something autonomously has
been a personal goal for a long time and has motivated me to write this thesis. Sigmund Freud
once stated that women suffer from penis envy — one of his lesser noteworthy theories. He
claimed that at the age of about four girls start envying boys, because of their anatomical
difference. A countermovement to this theory is something I can much better identify with:
women are able to give birth to life and men, who lack this ability, have to compensate for it.
One possible compensation is to concentrate on the design of technical systems, which imitate
human behavior. My personal opinion is that this was one of my drives to become an engineer
in the first place and to pick this topic for my thesis.

Looking at population development in European countries, there is reason to believe that
taking care of the elderly will become more and more important in the future. People will live
longer and thus require attention and caretaking during their retirement. Technical systems
may increase comfort and safety for the elderly who live alone, by providing background
observation and detecting possibly dangerous situations. One of the goals of this thesis is to
aid these people with a system that provides safety, while respecting their privacy at the same
time.

This thesis is embedded in the research activities of the Institute of Computer Technology and
is based on the results of earlier works by colleagues and other researchers. The PhD theses
by my former colleagues Gerhard Russ and Clara Tamarit manifested my starting point for
research activities. Over the years a considerable list of scientific publications developed, to
which I contributed in one place or another. Three years ago, the project ARS was founded to
unite the department's research; and it is this project, in which this work was created.
Furthermore, my thesis is strongly influenced by the work of Mark Solms, Oliver Sacks,
Antonio Damasio and Alexander Lurija, who all provided remarkable pieces of research in
their fields and gave me an excellent starting point and further useful ideas for my work.



I want to thank my professor and supervisor Dietmar Dietrich who strongly contributed to this
work with his previous research and with whom I had many good and fruitful discussions
about this thesis. I also highly appreciate the work of my reviewers Brian O'Connell and
Walter Penzhorn, who supported me especially in the last, most important phase of this work.
My good friend Nicole Irmler rendered me a great service by applying the final touch to this
work and I want to thank her for cross reading my thesis and removing many of the numerous
typos and Germanisms.

I also have to extend my gratitude to my parents, who supported me during my long time as a
student. Finally and most important, I want to thank my fiancée Katharina Zucker, who filled
me with love and motivation ever since we met — and especially while working on this thesis..

vi



Table of Contents

TNEPOAUCTION L.ttt ettt s be e st e bt et e s bt e b e beenae 1
PART ©: PrereqUiSites ......ccovveecscnicsssnnicssnnncssnnessssnssssnsncssssesssnsssssssssssssssssanss 5
1 Biological Systems and the Human Mind...........ccccoecuveeiiiiiiniiniiiiesie e 5
1.1  The Mind as an emerging Result of Brain and Body...........cccccoceiininiinineninene, 7
1.2 Inner RePreSentations. ........ccocivieeiieiieesiiesiiesiiesiiesiteeeeete et esteesteesaeesaaeeabeebeeseenseennes 9
1.2.1  Inner Representation of the Outer World ...........ccceeviiieciiiniiiiie e, 11
1.2.2  Representation of the Inner World ...........ccceevvieviieviienieiieciecrececre e 12

1.3 Memory and Knowledge...........ccvecuierieriiniiiiieieeieeste et 13
| 2111014 o) 1 SO S U P R 14

) BT oo (1< o1 [ ) s RS U RSP SRUPS 15
1.5.1  Extracting Constance and ReleVance..........ccccceecveeiieiiiniienieniesiecee e eve e 17
1.5.2  Identification and Classification ............ccoecereerinirieriniee e 18
1.5.3  Visual PerCeption......c.cecuieiuiiiiiiieiieeie ettt ettt ettt seee s saae e 18

LT I 1 Vo D - o TSP 18
1.7 CONSCIOUSIIESS ..euveentientienuieniteeiteeteesttesteesteesutesateeate e bt e bt esbeesbeesateeabeenbeenbeesbeesuaesanenas 19

2 Brain Mechanisms and Technical COUNterparts.............ccveeveeriiereerieesiesieeieesieeseesnesenes 20
2.1  Embodied Intelligence applied to a Building..........cccccoevvievienienieniiiiieieeeeeeene 24
2.2 The Frame Problem in Artificial Intelligence.........c.ccccovveviieiiiencieeniicciie e 24

3 SYMDOIZALION ..evviiiiieiieiiectecre et et et et et eebeebeesseesbeesteesssessseasseasseesseessesssesssesssensenns 25
PART II: System DeSi@n ....ccccceeeevnricssunicssnnicssnncsssnsecssnsncssssessssasssssssssssssssnns 29
4 SYMDOLIC PrOCESSING ..c.eviieiieeiieiieiiieiieeieete et et et e ste b e eereesseesbaestaestaesesesssessseesseesssessns 30
4.1 Symbolic MOAEL......cccviiiiiiieiieiieeiteie ettt ettt re e naennnes 31
4.1.1 SymbOl HICTarChy .......cccvvieiuiiiiiieciiieciiecee ettt 33
4.1.2  Symbolization in the Inner World ..........ccccocvvvviiiiiiiiinieniecee e, 34
4.1.3  Augmenting Symbols on Representation Level ..........ccoocveveivrciieciecieneenieennen. 34

4.2 Symbolizing Physical ValUes ..........cccceriiriiiiiiiieieeetesee e 35

5 SenSOry EQUIPIMENT ....ccccviiiiiiiiiiieiiieeiie ettt et ve e et eetaeesebeeestseesssaeensseessseeenseeas 36
T N 05 74 A0 = T4 o 1<) (OO SRPRPUPRPRIUNE 36
5.2 MOtION DEIECLOT ......eeuiitieiiteeiteie ettt ettt st sttt et et ee e eenees 37
5.3 TaCHIE SENSOT ...eeuiieiiiiiiieie ettt ettt et ettt e st e et e e be et e bt e beesbeesasesneeenseens 39
5.4  Temperature and HUMIdity SENSOT .......cc.eevvviiiiiiiiiiiieeiie ettt 39
5.5 THUMINAION SENSOT ....ueitieuieiieiietietieterteeieste et te e steete sttt ete et eeesteeseenseeseeeesseeneennes 40
5.6 MICTOPNONE .....ueiiiiiiiieiieiieste st et ettt e st e esaeebe e taessaessseanseesseessaesssesssesnseesseensanns 40
5.7 CAIMETA .ttt ettt ettt e bttt e et ea e e bt e e sab e e sbt e e nbteesbeeenabeeeas 41
5.7.1  Background SUDLraCtiON .........cccueeeiuiiiiiieeiieeciee ettt eiee e e e eveeeenee e 41

5.7.2 FACE DEEECTION ...ttt e e et e e e e e e ee e e eeeeeseeseeaaaaeeeeeseasanns 42



5.7.3  HISTOZIAIMS ..uvieiieiiiieirieetieieeieesteeseeesveebeebeebeeteessaesssessseasseesseessaesssesssessseansenns 42

6 Knowledge and MEMOTY ........ccvecuieriieriierieiieeieeieesieeseesteeseresseesbeesseessnesssessseesseesasnsaens 42
6.1 Knowledge about the ENVIronment............cc.cceeouvevuieriienienienieeie et see e 42
6.1.1  Environment LaYOUL........cccccuieriiiiiiiieiieeciie ettt eieeesree e e saeeeeeeesevaeenaeees 43
6.1.2  Static Objects in the ENVIronment ............cccceeevvevieenienieniesiesrenreereeveesseesneens 45
6.1.3  Hierarchical SIrUCUTE..........ccceviiiiiiiiiiiiee e 45

0.2 ASSOCIALIONS ..e.ueieuiieiietieeiie ettt ettt et te st e st e e te et e bt e sbeesseesateenseense e seenbeesaeesanesnneans 46

7 Perception and ItS Prer@qUISItes .........cceuiiiiiieriieeiieecieeeieeeiee et e e eteeesiveesreeeveeesereesnvee s 47
7.1 Location INfOrmation ............cccceiieieiiiieesee ettt 47
7.2 ODbJect RECOZNILION ...ecuveeiiieeiieiiieiieiieriesiie sttt et esteeseeseaeenbe e beessaessaesssesnsesnseensanns 49
7.2.1  Object Feature DesCriPtion ........c.ceceerieerierienieeie et et eitesieesiee st eneeeeeeneeens 49
T.2.2 ANCROTS .ttt sttt 51
7.2.3  Object Classification and Identification .............ccccovvevrierieriieriencienreere e 51

8 WOrld RePreSentations ......ccueecvieeiieriieriieriiesteete et eteesteeseesaesbeesseesseessaessaessnesssesssesnseenns 52
8.1  Storage of Symbols and Historic Data............ccceevienieniiniiiiiiieee e 53
8.2 Outer World RepreSentation ...........cccueeevieeiieeeiieeiieeciee e esveesveeeseeeesreeeseveeseneeens 54
8.3  Inner World RepreSentation ..........c.cccueecveeiieirieniieniesiesreereereeteesseesnessnessseesseessenns 55
8.4 Scenario Evaluation .........cccceoeiiiieiiiieeieeee et 55
8.5 ACHON SUDSYSIEIM ...ceuiieiiieiieitieeiie ettt ettt ettt et ettt et e st e satesnteenteebeesseesneeenes 56

9  Reference Applications and SEIVICES ........ccueeviiiiiieeciieeiieeeieeeseeeereeeieeesaeeereeeeveesereeas 57
9.1  Environment Model ..........ooiiiiiiiieiei et 58
9.2 Application Service: Object Tracking...........ccevverieriieriieeiienieniesiesee e ereesreeseeens 58
9.3 Application Service: Person Tracking ..........cccoecevirriiiiiiiieiieiesieriee e 59
9.4  Application Service: HUmMan ACLIVILIES ......cceeeevieeiiieriieeiieerieeeieeeieeeseveeereeeseveens 59
9.5  Application: Person Surveillance............cccveeveerienieiienieeieeeeseeseesee e sre e eeeens 62
9.6  Application: Child Safety ........cceeviiiiiiiiie e 62
0.7  Application: Geriatric CaIC.........ccceereuieriiieeriieerieerreesreeeteeesreesreeessseesseeessseesseeans 63
9.8 Application: COMIOIt.........cccvieviiiriieiieiiecie ettt ereere e taesae b e sebeesseereens 63
9.9  Outline of Reference ApPliCationsS...........ccverrierierierierieerieerteeseeseeseeseresseeseesseens 64
PART III: Concepts and ReSUlLS .........cccevericicneicssnrcnssnnncssnnecssnnecssneecssnseccens 67
10 Module Description and Data-FIOW .........c.ccccevierieiieiiiiiiieeeeeeee e 67
10.1 Modules for Outer World Representation.............ccceeceeerieereenienieniieeineieeeeeeeeeenn 67
10.2 Modules for Inner World Representation .............ccccueeeeveieeieeeciieenieesiee e eevee e 69
11 SYMDBOL DEfINIEIONS. ....viiviiiiieiiiiiie ettt ettt ettt e eestbe b e ssbeesseesseesssesssenens 70
11.1 Symbol Categories and Naming CONVENLIONS ........c.eecveerreerreereereersvessvessseesseesseeneees 70
11.2  Environment MOdel ........cccooviiiiiiiiiiiieieie ettt e 72
11.3  Application Service: Object Tracking.........cccocvevviiriiiiiiiieriie e 72

11.3.1  SnapShot SYMDOIS.......ccciiiiiiiieriieiieste ettt ettt e sreseresbeesreeseesraesrnesenessneens 73



11.3.2 Representation SYMDOLS .......cc.eeeviivrieriierieiieiieeieereereereereesseesseeseaessnessnessneans 73

11.4  Application Service: Person Tracking .........cccccevevvveiieciierienieniesie e e eie e 74
L14.T  SIISOTS ..eiiiieiiiieiiie ettt ettt ettt ettt e ettt ettt e st e e bt e e sabeeesbteesabeesabaeesabeeenaaeenns 74
11.4.2  MICIOSYMDOIS .....eviiiiiiieciiieeiieecite ettt e eee et e et e et e e e teeestseesseeesaeessseeessaenns 75
11.4.3  SNapShot SYMDOIS.......cccviiiiiiriieiiieiie e ere ettt sbesereebeereereesraesraessnessneens 78
11.4.4 Representation SYMDOLS ........ccoecuirriierieriienienieeieeie et eieeeeesseeseeesaessnessveens 80

11.5 Application Service: HUMAan ACEIVITIES .....ceevueerieriieiieiierieeree et 80
L1501 ACHIVITIES ettt ettt ettt st e st ettt et e bt e sbeesaeesaaesaneens 80
11.5.2 Representation SYMDOLS ........ceeeviiriieriienieiieiieeieere e ereereesreeseeseaesrnessnessneens 81

11.6  Application: Person Surveillance...........ccecvevieriirciinciieieiesee e 81

11.7  Application: Child Safety ........ccceeieriiiiieieieee e 81
11.7.1  Scenario SYMDOIS ....c..cciviiiiiiiieiiie ettt ettt e e e sre e ereeeeaeeeveeesanaans 82
11.7.2  Action Series and Action SYmMDOIS.........cccccvervveeviierieeriieiesiesre e ere v esee e 82

11.8  Application: Geriatric CarC........c.cecuverreerieereerrerreereeseesseessaesseesaessseessessseesseesssessnes 82
11.8.1  Scenario SYMDOIS .....c.oecuiiiiiiiiiiiiiie ettt ettt st eeeens 82
11.8.2  Action Series and Action SYMDOIS..........cccueeeeiiiiriiieiiie et 83

11.9  Application: COmMIOIt ........c.cccvieeiiiiieiieiiieie ettt sre v ebeete e ae b e eebeereesreens 83
11.9.1  MICTOSYMDOIS ....eeevieiiieiieiieriiesiee e ete et ete e e et esetessbesnseessaessaesseessnesssessseensenns 83
11.9.2  Snapshot SYMDOIS......coeuiiiiieiieriierie ettt ettt s esaaesane e 83
11.9.3  Representation SYMDOLS ........cceiiiiiiiiiiii ettt eree e ereeeeee e veeeane e 83
11.9.4  Action Series SYMDOIS.......c.cccuiiiiiiieiiieiiereecee ettt sresbeesreereens 83

11.10 ACLION SUDSYSLEIM ..ecuviiiieiiieeiieeieeiiesieesiteste et e et e eteestaeseeeseressseesseesseesssesssesnseenseensens 84

T1.11 INNET WOTI ..ttt et ettt eaeas 84
T1.11.1  MICIOSYMDOIS. ...cccuiiiiiieeiiieciieeiie et e eiteeeree et e e seveeeteeesebeeesseeeesaeenseeenssaenns 84
11.11.2  Representation SYMDOLS.........cccecveriierieriieriieniesieeieeieeieesseeseeseeesnessnessseens 85
11.11.3  Action Series SYMDOIS .......cccoouiiiiiiiieiieriecie et 85

11.12 SYMDBOI OVEIVIEW ...oeiiviiiiiiiieiiiecieeeeiieeereeesite et eesiveesveeeeaeessseeesaeessseeessseessseasnseeas 85

12 Communications DESIGN.........ccuierviirierieiieiieeieeieesieeseesresresseesseeseesseesseesssesssesssenns 87

12.1 Integration between Field Level and WAN .......cccoocieiieiiinieniece e 87

12.2 Fieldbus Data Representation and Gathering............eccveveereenirriiniieenieecieeseeeeee. 92

12.3  Communication FramewWork ...........cccceriiiiiiiiiiiieesie ettt 93
12.3.1  MeSSaZE FOIMAL......cccuiiiiiieiieciie ettt et rre e e e e sereesteeeeaeeeneeenneenes 94
12.3.2  Communication INfrastructure..........coceeeeriiririerinieieceeee e 94
12.3.3  Database ACCESS .eeveeruieruiertieriieriieeteeieesieesteesteesueesnteenteeseeseenseesseesseessnesnsesnseens 95

12.4  Database StOTAZE.......ececvieeriieiiieeiieertieeiieesteeeeteeesbeesreeesaeessseeessseessseesssesesssessssees 96
12.4.1 Sensor Database DeSCIIPION ........ccvevvveiveireiieerieeieesieeseesresresresseeseeseesseens 96
12.4.2  Symbol Database DeSCription.........cccvereereriiveeiiieieeieesiesreseesvesseeseeseesseens 96

12.5  Time RepreSentation .........cccecueecuieiiiesiieniienie et eie et esiee st este et esbeesseesaeeeneeenseeneeas 97



12.5.1 Instant and Time Period......cccouuveiiieiiiieeeeeeeeeeeeeeeeeeee e e eeeee e e 97

12,52 Time as @ NUMDET.....cc.ceieiiiiiiietieieie ettt s 98
12.5.3  Time SyNChrONiZation.........ccccueeieeriiesiieniieeieeieettesttesitesee e eeeenteesieeseeesnneeane 100

13 Visualization, Simulation and Real-World Installation...........cccccccceeevvviiinveeeeeiinennn. 101
13,1 VISUAIZALION ...ttt ettt et s et ne e e saeeneeneens 101
13.2 SIMUIALION .coutiiieiietceete ettt sttt et e b ettt et et sbe e e seesbee e 103
13.3 Smart Kitchen — A Real-World Installation.............ccccoveieriiiiiininniinienieeieee 103
13.4  Virtual Time and Real Time .........cccooiiiiiniiiiii e 103
13.5 Simulation RUN GENETAtOr .........cocuiiiiiiiiiiieiieiie ettt 104
13.6 Physical Model of SIMUIAtOr .......cceeviiiiiiireiieeeeeere e 104
13.7  Strate@ic PIANNING ........ccceoiiiiiiiiiiiie ettt 104
14 CONCIUSION ...ttt et ettt e b e st e st e st et e bt enbeenaeas 105
T 101U+ T OSSR 106
L2310 A0 421 o) 1 PP 109

TNEETIIEE LLINKS e mnnnenen 115



Introduction

Building automation has over the last decades matured to become an indispensable
contribution to everyday life. This thesis shows a possibility to achieve new qualities in
supporting humans by the use of technical systems that are capable of “understanding” the
human world better.

While in former times only a few sensors and actuators were used by a system to interface
with the real world, today we there are systems that use more and more sensors and actuators.
Modern building automation systems already have some ten thousand sensors available. At
the same time, the requirements have changed and new application fields were added: climate
control should consider the presence of persons to improve energy management; the location
of persons in a building is required for both safety and security; and it should be possible to
protect persons from dangerous situations. Using more sensors provides a better view of the
world, because more details are available. On the other hand, it becomes more important to
distinguish between unimportant and important information and to not just get a process
image, but a representation of the world as a human user would perceive it.

These goals require new models on higher data processing levels. There is a good source for
such models, which has been used for decades and has recently experienced significant
progress in research: the human mind. It is able to process a huge amount of information,
extract the important facts and build a representation of the world. Recent research has
brought forth new insights into human perception and the links between language and
thought. Furthermore, consciousness has been separated into different levels of awareness.
Finally, the bridge between neuroscience and psychoanalysis has been laid — two disciplines
that were opposing each other for the longest time. Scientists now attempt to explain Sigmund
Freud's theories using a sound neuropsychological basis.

The above mentioned rich source of new models is used in this thesis to provide the outlines
of a system that is able to introduce new possibilities in building automation. Perceptive
consciousness makes the world comprehendible for a machine, adapting it in a better way to
the needs of human users.

Control engineering uses well-researched and precise processes that describe exactly how an
optimal control loop has to be designed. It models a process, describes how the system reacts
on variations of the inputs and uses this information to build a controller with defined
transmission characteristics. As long as only a few inputs and outputs are necessary, this is
indeed the best approach. However, in many systems this is not the case and it is necessary to
use information from a lot of inputs to control a lot of outputs. Furthermore, the set of
variables and configuration parameters cannot be properly modeled. When programming the
control algorithm, a human programmer has to use knowledge about the process intuitively to
get the best performing algorithm.

There is a lack of methods that allow handling complex input scenarios. These methods are
needed to produce a stable system output independent of the current operating point and deal
with nonlinear, redundant and maybe contradictory information. The parameters that are
needed to control the process have to be comprehendible for a human user without having full
understanding of the underlying process.



A common approach today is to analyze a problem and reduce it to significant parameters so
that a machine without cognitive abilities is able to fulfill the task satisfactorily; instead of
handling big amounts of partly redundant data, a model is designed that relies on a few
variables, preferably only one. This is however not the approach of the system envisioned
here.

The model that is described in this work builds the foundation for a system called ARS —
Artificial Recognition System. In today’s building automation systems, every sensor usually
has its dedicated function in an application and is used exclusively for this application (e.g. a
temperature sensor is used to measure the room temperature). Adding an additional sensor for
the same functionality is not common, because it increases the costs of the system. In
addition, it is also uncommon to use one sensor for different applications (e.g. a temperature
sensors for heating control as well as for fire alarms). Such systems keep the overall
complexity of the control circuitry low: if there is only one sensor to report the room
temperature, it has to be taken as true; if there were more sensors, additional logic would be
required to determine the most reasonable room temperature (in case the sensors report
different temperatures). Disadvantages are, however, that the system has a limited view of the
world that it operates in. An HVAC' system will perfectly adapt the room climate to meet
human requirements, but it will do so no matter whether a person is actually present in the
room or not; in case of fire, the HVAC system is unaware of it and might try to cool the room.
Failure of a sensor results in malfunction that cannot be compensated for by other parts of the
system. All types of system behavior have to be programmed into the system without it being
able to adapt to modified requirements. Moreover, even if there were more sensors to provide
additional information, it would be hard to benefit from this information due to the inability to
handle the increased complexity.

The ARS system extends the existing concept of control systems, where a system is able to
behave in a more sophisticated way. The goal is to have a system that perceives and reacts,
based on diverse, redundant sensor information from different domains and industries — an
ability that has until today not evolved too far [Lon02]. It shall extend the existing control
loop approach by reacting upon personal needs of the user. The concepts introduced here are
based on perceptive awareness (see [Tam03] and [Pra05b]) that is used to extract important
information and abandon irrelevant information. Scenarios are recognized by using the
concept of symbolization, for which foundations have been laid in [Rus03].

In the human mind, the lowest level of symbolization refers to the interface between the
neuron level and the psyche. Symbolization is largely responsible for the way in which we see
the real world. Neuroscientists have made detailed studies about the way the human brain
works [Kap00] and the ARS system applies these results: instead of working with the
information that each sensor provides, sensor information is condensed and processed as
symbols in a multi-layer model (see also section 4.1). The system described here does not
cover learning of new symbols (and associations between them), although the ability of
learning is envisioned for a future system. The mechanisms and methods used here are
predefined and do not change during the operation of the system. However, they are prepared
to be adapted and modified, so that in a next step system-triggered modifications become
possible.

! Heating, Ventilation and Air Condition



Perceptive awareness is a combination of experience (which manifests as knowledge) and
sensory updates reflecting the current state of the world. The information that is available
from sensors is insufficient for a good world representation and has to be augmented by
knowledge about the world. A human being learns these facts and rules during its lifetime and
uses them intrinsically to build a world representation. Objects are classified, for example, as
edible by their shape, size and color. This information is used to predict, for example, taste,
structure and softness, relying on earlier experiences with similar objects that have taught us
what to expect. Identification and classification of objects consider many different parameters
and features (not just the few generic ones mentioned here). For most of them, we do not even
have names. But it is this collection of knowledge and experience that enable us to build a
world representation that contains far more information than just the data coming from our
sensors. By applying predictions and hypotheses (based on earlier experience) to current
sensory information, we are able to model the world and become aware of what is happening
around us.

The ARS system is a supervisory system with limited possibilities to interact with the
environment. It is intended as a support for human operators, meaning that it can constantly
analyze incoming data and notify an operator about relevant scenarios that have been
perceived. As a permanent observer of people and their activities, the ARS system can
improve quality of life (while at the same time protecting privacy) and provide increased
safety for people with special needs for supervision (e.g. children or the elderly).






PART I: Prerequisites

In Part I, the setting of this work is laid down. The different disciplines that are needed are
presented by showing the results of past and present research. Related work is described and
relevant concepts are examined. On the biological side, the results of analyzing and
understanding different functionalities of the human brain is used for designing a model that
allows the implementation of abilities of perceptive awareness into a system. Based on the
understanding of the operation of the brain we have today, the attempt is made to apply this
knowledge to a technical system. Algorithms and methods that are necessary to do so are
identified in this part, laying the foundation for the second part of this work, where the system
design is described.

Although the model for the system is taken from its biological counterpart, attempting to
apply the knowledge gained in the fields of neurosciences, psychology and psychoanalysis,
there are considerable differences between the motivations behind these two systems.
Biological individuals follow certain needs that emerge from the requirements by the body to
stay alive’. An individual will act in an egocentric way to gain benefit for itself (or at least for
the group of individuals in which it is embedded); during most of its lifetime the main task is
to survive, no matter what the consequences or implications for others are. A machine, on the
other hand, is intended to support its human users and, for example, set human safety above
its own needs. In the vision of the designer, such a machine will silently take care of itself (by
fulfilling its basic needs) and otherwise modestly serve the human user without requesting
anything but what is needed for it to operate correctly. Assuming that evolution “builds”
humans and humans build machines, we see that there are differences in the requirements of
“designing humans” versus designing machines.

This part of the thesis describes models of the human mind based on current research. There
are two different possible approaches: either the brain is described with all its biological
properties to get a detailed model of the brain as an organ. This first approach is useful when
trying to understand human beings and the way they function. This work, however, tries to
build a technical system with mind-like capabilities. Its goal is not to build models that
describe the brain and its organic basis. Therefore, it is not sensible to describe the human
mind on a biological basis; instead, the second approach is chosen, which is to extract models
that can be used to build the envisioned system on a technical basis. In other words, the
functionality of the human mind is migrated from a biological organ towards a technical
system.

1 Biological Systems and the Human Mind

The transition between sensor level data and the symbolic processing methods is an important
step that needs to be taken in order to complete this work. While neuropsychologists analyze
— amongst other mechanisms — the operation of specialized neurons in the brain to get an

2 Of course, this does not cover the full spectrum of motivations for human beings, but it still is a
common denominator for humans and animals. On a very low but elementary level, the reason for
existence of the brain and all its abilities (including consciousness) is to give the individual better
chances to survive.



understanding of their functionality, technical system cannot rely on the abilities of neurons.
Instead, they implement existing algorithms and methods that originate from, for example,
image processing. The ability of neurons in the optical cortex to detect edges (section 1.5.3) is
substituted by edge detection algorithms known from image processing. A candidate for
extracting the invariant features of different objects that belong to the same category (which is
an ability of human visual perception) are artificial neural networks [And95]. Classification,
that is, assigning perceptions to different categories, can be done in Fuzzy Logic [Zad65].
Information technology has brought forth a lot of different tools that can today be used to
implement the behavior of human perception. Neurobiology has also made great progress in
the last few years. New technologies allow studying brain activities in a much more detailed
way than before. Human perception does not rely purely on sensor data, but depends to a
great deal on memories, knowledge and the representation of the incoming data (see also
[Sac87]). A lot of the mechanisms in the brain have been deciphered by analysis of brain
scans, by studying electrochemical reactions in the brain and running test sequences with
persons suffering from brain damage. Neuropsychologists like Mark Solms study the
functionality of the brain on patients with lesions — damages of the brain, where the location
is exactly known and usually limited to a certain area of the brain. The human mind is
analyzed by observing the changes when different areas of the brain are damaged.

Furthermore, there is psychoanalysis, a discipline that is founded on the research of Sigmund
Freud (1856-1939), who helped mentally ill people by using techniques previously unheard
of: letting the patient talk, using free associations or interpreting dreams. He developed the
model of three psychic instances: It, Ego and Superego.

Although Freud’s method of psychoanalysis had been successful and up to the 1950s, it
started being criticized when neurobiology could show successes in understanding the
functionality of the brain [Lak05]. Using new methods, the human brain appeared to be
understandable like any other organ of the human body. Since the brain is the carrier of the
psyche, it appeared reasonable to influence the human mind by influencing its main organ, the
brain. Big parts of perception were understood by scientists; memories and emotions could be
tracked down to molecular level. Freud’s theoretical constructs on the other hand were
complex and impossible to put on a sound scientific basis that is grounded in experimental
proof’. The big success that Freud and his followers had with psychoanalysis turned into the
opposite [Lak05].

Only recently, neuroscience and psychoanalysis have made combined efforts* to explain the
phenomena that make human beings special amongst other animals. Some of Freud’s
concepts are finally supported by neuroscientific observations: Mark Solms gives examples of
how the two disciplines explain the same things in different languages [Lak05]. For instance,
Mrs. Jacobs, one of his patients had a stroke that rendered the left part of her body useless.

3 At least not in the classical ways of natural science, where experiments need to be deterministic and
reproducible. In other words, it is highly unlikely for psychoanalysis to meet the requirements of
classical laboratory conditions, where there is a limited set of variables within a defined environment.

* An example for this cooperation is the journal “Neuro-psychoanalysis”, which reports regularly about
latest developments and contains commentaries from people working in the field. Its goal is to “create
an ongoing dialogue with the aim of reconciling psychoanalytic and neuroscientific perspectives on the
mind” [Neu06] thus bringing together the two disciplines that have been departed for the last decades.



She could move neither arm nor leg and could not get up, not an uncommon handicap after
having had a stroke. What is however uncommon is the fact that Mrs. Jacobs claims to be
perfectly alright, she wants to go home, do her work and not be bothered by the annoying
doctor. When being asked to move her left arm, it does not move, of course, but Mrs. Jacobs
still claims that it did — at least in her head’. The syndrome is called anosognosia — not being
aware of a physical handicap or disease — and was first described at the beginning of the 20™
century by Babinsky [Babl14]. It seems as if the conscious mind of a person protects itself
from a reality that might be too much to bear. Consciousness refuses to accept the obvious,
because the truth is too much to take, instead, another truth is created. Explanations for this
new truth are found so that the integrity of the individual can remain at least partly intact
without having to cope with the blow of realities’ impact.

While this syndrome cannot be fully explained by neuroscientific methods, the answer can be
found in Freud’s model: Mrs. Jacobs represses the fact that she is handicapped. What has
long been known in psychoanalysis as repression can now be mapped onto neuropsychologic
phenomena. Other cross-links have also been identified: Freud stated that the first few years
are fundamental for the development of individuals, which is explained by neuroscience in
that the limbic system is structurally modified during that time. Neuroscience explains why it
is impossible to remember anything from the time of our earliest childhood, at least
consciously, since this would require structures that are not fully completed at early
childhood; Freud also understood this phenomenon. And the drives — one of the most
fundamental concepts of Freud — can be identified today as systems in the brain, parallels
between the messenger substance Dopamin and what Freud called /ibido are found [Lak05].

1.1 The Mind as an emerging Result of Brain and Body

Different approaches have been made to explain the human ability to “see” things, meaning
consciously perceiving objects and events. An early idea was that the brain receives images of
the outside world and operates on these images. However, when the mind uses images, who
looks at these images to understand their meaning? This resulted in the homunculus problem:
the ability of persons to see things is explained by an inner mechanism that is responsible for
the act of seeing®. The term homunculus is borrowed from the alchemist Paracelsus’. At the
end of the 15" century, the alchemist and doctor Paracelsus (1493-1541) claimed to have
created a "homunculus" — an artificial human being made of flesh and blood [Nus04].
Therefore, the conscious perception, which had to be explained in some manner, is actually
done by a little man that sits in everybody’s head. By explaining the mechanism in this way,
the problem is deferred to another entity, where the question arises, how the homunculus
itself works.

In search for an adequate model to describe the ability of beings to interact with its
environment, R.A. Brooks has introduced the subsumption architecture [Bro86] to describe
the behavior of low animals such as insects. In this architecture, a perception directly causes

> Other patients find plausible explanations why a specific body part would not actually move (e.g.,
they claim to have a stiff shoulder or arthritis).

6 An early, enchanted attempt to explain what can be compared to Damasios hard problem of
consciousness [Dam99].

" His actual name was Philippus Aureolus Theophrastus Bombast von Hohenheim.



an action without any cognitive modification in between. This means that the action directly
depends on the stimulus and cannot be modified through the lifetime of the individual. The
architecture consists of modules that are modeled as finite state machines, a property, which
is very convenient for technical implementation. These modules are organized in layers,
which implement certain behavior (e.g. walk around, pursue object) and therefore build a
hierarchical architecture, since a higher layer can inhibit lower layers. Layers are functional
on their own, meaning that the layer responsible for basic movements and reflexes is still
operative if higher layers are disabled. Because the finite state machines are always running,
the architecture is asynchronous and parallel: asynchronous, because there is no need to
synchronize different modules with each other — higher layers simply inhibit lower layer tasks
at any given time and in parallel. Each finite state machine runs its own, separate execution
without being aware of other modules (with the exception of inhibition).

A big disadvantage of subsumption architecture for the purposes of this work is the fact that it
has no symbolic knowledge representation and no world model. On the other hand, this
makes the architecture very fast —i.e. a sensory input causes a reaction immediately — and it is
possible to build simple systems that are able to deal with a complex environment. But a
system built using subsumption architecture is purely reactive and cannot plan actions for the
near or far future. The lack of a world model makes it impossible for the system to understand
its environment and thus does not allow creating strategies. Since there is no symbolic
representation of knowledge or the environment, there is no way for the system to abstract
from sensory inputs or to reason about its behavior.

Seen from an evolutionary standpoint it appears reasonable that an architecture similar to
subsumption architecture is still the base for human interaction with the outer world. Reflexes
are a part of human behavior and a hierarchical model is fairly reasonable for the lower levels
of human actions and reactions. However, higher cognitive functions are not possible in a
system based solely on subsumption architecture. The human mind remains the system of
interest for this work.

The connections and dependencies between different brain areas have been subject to
permanent research in the last decades. The link between the brain as an organ and the human
mind can today be understood from different sides.

Recent research proposes, for example, that depressions can not only be treated by
psychologists (i.e. by operating on the human mind), but find their solution in a well-targeted
medical treatment: [Pez05] shows that the brain-circuitry between cingulate and amygdale,
two brain structures responsible for balancing feelings, can be influenced by psychiatric drugs
— with lasting effect. Long sessions with psychologists are not the only way to modify
connections between brain cells permanently, but also a medical treatment. Depressions are
treated from two different sides, by treating the organ and by treating the mind. Again, we see
two disciplines merging: some diseases can be treated better by medication, some by
psychologists.

In early attempts to understand the brain, a very persuading viewpoint was localizationism,
which assigns brain regions to functions of the brain. The goal is to identify a cluster of
neurons and refer to it as the region, which is responsible for certain functionality. Although
this is possible for regions that were inherited from our evolutionary ancestors and are
responsible for low-level functions, the attempts made by various scientists went far beyond
simple functions and were conducted mainly by intuition — and usually lacked any sound



prove. The assumption that every function of the brain can be isolated in a brain region has no
relevance any more: it is true for basic function (e.g. edge detection in the optical cortex
[Gol02]), but not for any kind of higher function, especially not for cognitive functions.
Intentional movements and manipulation require a complex functional system. Digestion and
respiration are also functional systems, which possess a goal; in case of respiration, it is
supply of oxygen for alveoli in the lounge. The way this goal is achieved depends on the
control of different body muscles and is therefore a complex system. The control of this
system cannot be located in one specific brain region. Lurija proposes to move away from
localization of functions and to not localize higher mental processes, but find out, which
groups of brain areas cooperate [Lur01]. This “systemic localization” manifests in the systems
of cooperating brain areas, which may be physically located next to each other, but can also
be cooperating over a large distance. In case of higher mental functions, the development over
the lifetime of the individual is also an important factor. Higher mental functions are not
static: first a mental function (e.g. writing) is expansive and uses external helpers; only after a
lot of practice, the function turns into automated motor actions [Lur(01].

1.2 Inner Representations

Humankind has for a long time pondered the question how the world really is, what really lies
outside of our own body. The tools we have at our disposal at first hand are the sensors we are
equipped with e.g. seeing, hearing, smelling or somatic sensors. These sensors are the
interface to the outer world and are the first level of what we can perceive as being the real,
physical world outside. When we start exploring the world while we are still toddlers, we gain
a lot of knowledge about the things that surround us. Although we are not aware of the laws
of physics, we still learn how the world works by interacting with it: things fall to the ground,
some of them break, and some do not. The process of learning continues through our life and
we refine our knowledge, which we can increasingly use to deduce facts that we have not
experienced ourselves in the first place. By having experienced that a glass vase breaks when
it falls on the floor we can predict that a drinking glass will do the same without actually
having to break it.

After years of experiencing the same physical world it becomes more and more predictable to
us, hardly anything surprises us, and if it does, we usually find a good explanation for it later
on. Sometimes glass is made in such a way that it is resistant to a certain level of physical
blows and therefore might not break. This deep knowledge of a big amount of different facts
and relations encourages us to believe that we know what the physical world really is. The
senses we are equipped with do not betray us. Moreover, since humankind has passed a long
line of evolutionary steps in its long development this is in fact true: the sensors we have are
very well adapted to the needs we have and most of the time match what can be shown to be
the real, physical world. Sometimes this does not work, as can be shown by various optical
illusions, where on the one hand our eyes tell us one set of facts, while we can use other tools
(and our mind) to prove that it can actually not be true. These illusions can tell us a lot about
how human perception and it ways of operation.

Still, there are physical effects and forces in the physical world that we are unable to perceive.
Nobody can tell whether an electric wire has a (low) voltage without using additional tools
(higher voltages would cause pain and would therefore be perceivable). The same applies to
radioactive radiation. We are not equipped with proper sensors to detect electric voltage or



radiation — it was not necessary during our evolution. The world we perceive is only a subset
of the real, physical world, the outer world. But this limited view of the world is not only true
for physical effects that we are unable to perceive by sensors. During the personal
development that every human being goes through, we collect pieces of facts and relations
that we gain from the outer world. Children are very good at ignoring facts that they are
unable to comprehend. They are robust against overloading them with too much information
(it is still possible, though). Whatever cannot be understood is ignored. Children have limited
knowledge about the world they live in and are still able to handle whatever is important for
them to survive and evolve.

This does not change when we grow up, only the amount of facts and relations we know
about the outer world becomes more fine-grained. Still it is important to understand that there
is an outer world, which we explore to create our own view inside of us. This representation
of the outer world matches to a big extent the effects we perceive and allows us to reliably
interact with the outer world. But the representation of the outer world and the outer world
itself are not identical. Even more, the inner representation is different for every human being,
since everybody has his own history of gathering facts and experiences in the outer world.
And, the inner representation of the outer world is only a subset of the outer world.

To sum up, the inner representation of the outer world is an image of the real world, which to
a great extent matches the real world, but has its own ways of representing the world.
Comprehension results from perceiving events and deducing relations, without necessarily
fully understanding the processes. A child can understand magnetism as an effect where
certain (metallic) objects are attracted to each other, but there is no need to understand the
laws of magnetism to do so. Therefore, the outer world mechanism “magnetism” is translated
to the inner representation merely by its effect.

A human being does not only have the outer world in which it is embedded, it also has an
“inner world”, which is the internal milieu of the body [Sol02]. In the early days of
humankind, the brain was the organ to fulfill the needs of the inner world by interacting with
the outer world. To keep the body alive, the individual had to get supplies from the outer
world in terms of oxygen, water and food, but also had to obey a broad variety of other
internal parameters like body temperature, heart rate, digestion and so on. The brain was
always in the middle between the two worlds and had to translate between them. It is
important is to see that both worlds have their own representations in the brain. The
representation of the outer world gives us a “world model” of the physical environment
around us, while the representation of the inner world contains the current status of our body,
its needs, pains or requirements.

The question arises how these representations can be mapped to a machine that shall perceive
its environment and what the abilities of such a system can be. Similar to humans, the system
has a representation of the outer world. Certainly, this representation is limited and not able to
compete with the one of grown up humans. It consists only of facts and relations that are
important for the system to fulfill its tasks®. In this matter, the abilities of the system are
closer to that of a handicapped person, such as Kaspar Hauser [Hau95]. Hauser was found in
1828 on the streets Nuremberg in a disoriented state of mind. From what could be
constructed, he had to spend his childhood in a cellar, isolated from the rest of the world. His

¥ The tasks that have been chosen as reference applications are described in section 9.

10



vocabulary was limited in the beginning and contained only about 50 words. However, he
was very good at comprehending and learned to read and write before he died in 1833. Kaspar
Hauser was in the beginning only able to understand a limited set of facts, since he had no
possibility to explore the world as we know it. Everything was new to him and therefore
overstrained his abilities. He had to watch, explore and understand this new world in the same
way as children do it. Only after he was acquainted with parts of this new world he was able
to behave more and more in a way that we would call “normal”. The ARS system only
comprehends a limited subset of the understanding of a human. Still it is not child-like, since
it possesses high-level cognitive functions. The inner representation of the outer world in the
system is limited to the necessary facts and relations.

1.2.1 Inner Representation of the Outer World

As said before, there is an outer world, the real, physical world; by perceiving it we build a
representation of this world, the inner representation of the outer world’. A representation of
the world is necessary, because a system without such a representation cannot implement
cognitive functionality (see section 1.1). The inner representation of the outer world contains
the world model — what the world is like when looked at from one specific individual. The
ARS system uses this principle and creates a representation of the outer world in order to
interact with the real world and understand the events that take place.

In the human brain, the sensory information is projected onto body maps, which are areas in
the cortex. Since the location of the sensor influences the position where the information is
projected to, the spatial information of the original sensor location is maintained and thus
available in the cortex. For example, the lower-left corner of the eyes’ retina is always
mapped onto the lower half of the visual projection cortex. Similarly, the whole surface of the
body can be found as body maps in the brain, where somatic sensations are projected onto the
primary sensory cortex of the parietal lobe [S0l02]"°. On a higher functional level above these
body maps the association cortex contains functions like object recognition. It is responsible
for collecting information and integrating the information into something that is actually
recognized. Recognizing a car, for example, can be done by various different views from
different sides, but it can also be perceived by mere sound without any visual information.
Each of the visual impressions and all of the different sounds a car can make contribute to
realizing the fact that there is a car in the outside world. The association cortex (with its many
sub areas) is the area in the brain where the information is integrated and combined into the
representation of one object: the car. If we wanted to identify an area in the brain where we
would look for a representation of the outer world, this would be it — but only in a very
general sense. There have been attempts to pin down sensations like the above-mentioned car
onto narrow regions or even single neurons in the brain, but they were doomed to fail. Just
like the calculation in the erroneous Pentium processor (see chapter 2) cannot be described by
pointing out a set of transistors that are responsible for doing the calculation and then
identifying the faulty transistor, it is not possible to find the world representation or even

? For reasons of brevity this representation is also called representation of the outer world, see also
section 1.2.2.

1% Wilder Penfield created a drawing of these projections, which he humorously called homunculus —
the little man inside a person [Pen50].

11



single thoughts about the world in the cortex. The calculation in the processor is a sequence of
commands, where each commands uses different areas of the processor to execute. After the
whole sequence has been executed, the result is available, but it was caused by a temporal
sequence applied to different units of the processor. The brain, on the other side, needs all its
different areas to create the world representation and — on even higher layers — allows us to
reflect consciously on this world, to abstract and to think in an abstracted manner.
Calculations in a processor are not a state, they are a process — and so is the human mind.

The inner representation of the outer world is a combination of the sensory information (after
they have been processed by other areas) and knowledge about the world. Only after learning
the different sounds and images of a car, we are able to identify just a single sound and
deduce the existence of a car (which may currently not be visible to us). The representation is
therefore based on sensory information, which is augmented by previously learnt knowledge.
In a way, the representation that we think of being the real world is merely a construction of
past memories that are used to give meaning to the current sensor information. We do not see
the real world, but rather our own creation — and because there can be more than one
interpretation, there can be more than one world representation and we chose the one that
appears most reasonable to us''.

1.2.2 Representation of the Inner World

The brain as the organ between the inner and outer world has information from its sensors
that it uses to construct the representation of the outer world. Based on this representation the
individual can interact with the real world. Similarly, the brain also has to have information
from the body itself and to know about respiration, blood pressure, body temperature and so
on so that it can act according to the needs of the body. In the language of Freud, these needs
are the drives that emerge from our bodily needs. Modifications of drives are then
experienced as emotions [Sol02]. Again, there first needs to be a representation of the inner
milieu, the representation of the inner world"”. Information about the inner milieu is
registered in the hypothalamus; the functional unit responsible for creating a representation of
the inner world — if we would want to look for it in the brain — can be identified as the limbic
system together with the frontal cortex [Sol02]. As opposed to the representation of the outer
world, there is no ambiguity in the representation of the inner world, simply because there is
only one mind in one body, thus there cannot be different opinions like in the real world. Still,
it does not necessarily mean that the mind knows the one and only truth about the body. The
origin of a pain can often be misinterpreted and might need medical assistance from an expert
to be located correctly. In any case, the body will react to the pain in the best way it can —
may it be good or not.

' The examples in section 1.5 show that our construction of the world can differ from the construction
of other people and that what we understand depends on what we know.

2 Note that the term “representation of the inner world” instead of the longer term “inner
representation of the inner world” is used (see also section 1.2.1). While sometimes the term “inner
representation of the outside world”, will be used in this work, there is no need to stress this for the
inner world, since it is an internal representation of internal impressions and will not be represented
anywhere else.

12



The inner milieu and thus its representation in the mind dictates the course of action to be
taken. This is very important for a biological system, since the correct operation of the body is
vital for the existence of the individual, but it does not play such an important role for a
technical system (which can be rebooted or repaired). Still the system can be separated into
the outer world that is not part of the system and the components that belong to it. This way it
is possible to define a “body” of the system (however peculiar it might look) and include the
state of this body into the representation of the inner world.

1.3 Memory and Knowledge

Memory and its reconstruction is a complex process in the human mind. Aside of the broad
amount of information that is not consciously accessible, but still influences our everyday
decisions and reactions to events (see section 1.4), there is the autobiographic self, which
combines events with the individuals self experience. This episodic memory allows a person
to recall incidents that have happened to herself or himself [Sol02]. Recalling here means to
consciously reconstruct the memory of this event.

Other classes of memory are semantic memory and procedural memory [Sol02]. The most
interesting one for the scope of this work is semantic memory. It contains the knowledge
about the world and its mechanisms. It is a collection of bits of information that make up our
understanding of the world in objective information. It contains facts and categories,
meanings of words as well as grammatical rules, mathematic values and knowledge of shapes.
Unlike episodic memory the information is not related to the individual, but is objective, seen
from a third-person view [Sol02] (e.g. “Fire is hot”, “Vienna is the capitol of Austria”, and so
on).

Procedural memory contains motor skills that enable a person to fulfill tasks like walking or
grabbing an object. Everything that requires movement, but is done without being controlled
consciously is part of procedural memory. By continuous repetition of a new skill, it becomes
a habitual behavior that can be executed unconsciously [Sol02].

Memories are laid down in the mind in various different ways and are thus accessible
differently. A strong difference between memory in the technical sense and human memory is
that human memory cannot be located and, for example, destroyed easily: it is a known fact
that the longer a memory is stored, the better it is protected against loss. On the basis of
clinical observations, Ribot observed that brain injury affects memories in the reverse order of
their formation. Newly gained memories are most vulnerable against brain damages, while
old memory is hardly destructible. It seems that over time memory is more and more
engraved into the brain, making deeper cuts the longer it is around. This has become known
as Ribot’s Law [Sol02].

Scientists today also differ between short-term memory and long-term memory". Short-term
memory is also called working memory [Sol02], since it refers to facts and events that the
brain can operate on. After a few seconds, memories are consolidated and become part of
long-term memory. While it appears that most of what we experience during the day is lost

13 Where short-term spans over the timeframe of a few seconds; anything that is longer ago is already
referred to as long-term memory.

13



shortly after and not available any more, it may well be that this is not the case. Sigmund
Freud stated:

Perhaps we ought to content ourselves with asserting that what
is past mental life may be preserved and is not necessarily
destroyed. It is always possible that even in the mind some of
what is old is effaced or absorbed... to such an extent that it
cannot be restored or revived by any means, or that preservation
in general is dependent on certain favourable conditions. It is
possible, but we know nothing about it. [Fre74]

The question is, whether an individual is able to consciously reconstruct events that have
happened or if conscious access is not available'*. The memory itself is still present and
influences the individual’s behavior and perception of the world. Therefore, memory is very
resistant to forgetting, especially the longer it has been around. But not necessarily all aspects
are available. Metaphorically speaking: when you dig a hole in the ground, the hole will still
be there after the act of digging; the ground will remember the hole. Who dug the hole and
with which tool, however, may well be forgotten. Models for the human way of storing
memories have not advanced very far, at least in terms of how to apply them to technical
implementations. The human memory is a complex construction that is tightly woven into all
the capabilities of the brain. Unlike the current memory architecture in computers, where
memory and data processing can be separated from each other, the architecture of human
memory merges storage and processing into one unit.

Perception appears to be an objective process, where information from the outside world is
used to update the view an individual has of the world. However, it has been shown that
perceptions strongly relies on memory [Sol02]. What is not known cannot be perceived"’.
Solms [So0l02] gives an example of a cat that has been deprived from the ability to see
horizontal lines. Consequently, it does not perceive horizontal lines (and bumps into any
horizontal bar that is in its way). In fact, what we perceive as the world surrounding us
consists to a great extent of memories of a past world as we have experienced it earlier.
Identification and categorization (section 1.5.2) rely on categories that are learned and stored
in memory. Once an apple is identified as an apple, perception can be reduced to merely
acknowledging that nothing has been found that contradicts against the believe that the object
at hand is actually an apple. Identification is similar, which can be experienced in everyday
life when, for example, not registering a new haircut of a familiar person. The image of the
person is not refreshed; instead, the old image from memory is used.

1.4 Emotion

The human brain is equipped with various subcortical emotion systems and the current state
of research suggests that there is an interconnection between these emotions and the cognitive
systems of the frontal lobes [So0l02]. Experiments have shown that the judgmental abilities of
humans strongly depend on emotions. In the lowa Gambling Task [Bec94] persons take cards
of different decks and win or lose money on every card depending on complex game rules.

1 At least for the types of memory that can be accessed consciously, namely episodic memory.

15 1t can, however, be learned and thus become known. The above statement is therefore not true for
humans, but still applies to the ARS system envisioned in this work.

14



Although the persons do not comprehend the game in its full complexity, a healthy person
(meaning a person without brain damages) is soon able to tell, which of the decks is good and
which is bad. What is described as “a hunch” or “a good feeling” is actually the information
coming from a second, non-cognitive source of information, which attaches emotions to the
card decks. Decisions are not based on analytical, cognitive evaluation of the game, but rather
on affective level [Sol02].

Human beings have two possibilities to evaluate situations: either by using cognitive analysis
of facts that can be formulated and consciously operated on or by emotion [Dam94]. While it
appears infeasible to let a decision or hypothesis be guided by an emotion rather than by
thinking it through, the two sources of information are not so far separated from each other.
[Ryd04] proposes a theory of mental representation by introducing a neuronal model. One of
the main abilities of neurons is to extract hidden environmental variables by combining
sensory input. This input contains the hidden variable in different ways; Ryder claims that
neurons are able to extract this redundant information (which is not directly visible as sensory
input). By connecting more layers of neurons, where each layer is connected to the previous
one, it should be possible to extract more complex hidden variables from sensory information.

If this concept is extended, the result is a judgment of a situation that may be beyond
conscious understanding, because the process of extracting hidden variables is not
consciously accessible. Still, the layers of neurons attach an emotion to a situation that can be
used for making a decision (as happened in the lowa Gambling Task). Emotions can then be
gained by extracting hidden environmental variables. If these emotions are stored in memory
and can later be retrieved when perceiving a situation or an object, a fast judgment of a
situation or object appears possible. Unfortunately, little is known so far about the actual
“implementation” of such brain structures, therefore it is not considered relevant for direct
application to a technical system and is thus not in the scope of this thesis.

1.5 Perception

Processing input that originates from the outside physical world is a key issue for a system
that shall operate in an environment designed for humans and not for machines. A lot of
information is available to the system by evaluating the data that comes from the various
different sensors. The task of processing information from the outer world and creating some
kind of inner representation is done by perception. Today every such system has some means
to process sensor data and react accordingly. However, when the number of data increases,
the strictly algorithmic methods become too complex to be manageable [Pra05a]. Perception
as it is meant here works differently. Scientists have been studying perception in human
beings and animals for a long time. In the 19" century, visual perception was understood as a
passive stimulation of the retina and the optical cortex. The stimulus from the outside is
reproduced in the visual cortex and the generated structure is thus isomorphic to the stimulus.
The structure of an object that a person looks at creates a stimulus pattern that reflects this
structure. This was the idea of isomorphism [Lur01].

Today psychology interprets perception as a process, which extracts features from the
available information; perception is an active process that seeks information, builds
hypotheses, compares extracted characteristic features and reaches a point where the
hypotheses match the available data [LurO1]. The brain permanently faces a vast amount of
information from the body’s sensory equipment. This information has to be separated,

15



synthesized and passed on to the responsible subsystems, which are specialized for certain
subtasks in perception. A significant property of human perception is that objects, facts and
events that are well known are perceived more easily than those, which are completely
unknown. Perception — like many other abilities of humans — is improved over time by
shortening the patterns that are necessary to fulfill a task'®.

A key issue in perception is the coding of information that can be processed by the brain. The
simple mechanistic model of the 19™ century is unable to explain the mechanisms that are
necessary to process the amount of information that is necessary for human perception. A
much better approach is to use a hierarchical model that groups pieces of information together
and translates sensory data into codes that build the base for higher-level systems.

A good idea of how human perception works is by looking at situations where the well-tuned
apparatus of perceptions fails. This is, for example, the case of visual illusions (see [Max02])
or when misunderstanding spoken words and especially when listening to lyrics of a song.
The act of mishearing text is well known throughout different countries, it even has become a
technical term in English speaking parts of the world: a Mondegreen [Hac04]. This term has
been coined by the American writer Sylvia Wright. When she was a child, she listened to the
Scottish ballad “The Bonny Earl of Murray” where she understood:

They ha’e slain the Earl of Murray / And Lady Mondegreen.
While the original lyrics of the ballad are as follows:
They ha’e slain the Earl of Murray / And laid him on the green.

The name of Lady Mondegreen — which never occurred in the original text — thus describes
misunderstanding of text spoken or sung. Such mistakes are common and show us that
understanding and perception rely not only on the available data, but also on knowledge.
Another example shall show how much this knowledge influences perception. In 1778,
Matthias Claudius created “Der Mond ist aufgegangen”, a poem that was later set to music in
a song called “Abendlied”. The first verse contains the lines

Der Wald steht schwarz und schweiget

Und aus den Wiesen steiget

Der weife Nebel wunderbar'’
The second line was misunderstood by children living in Munich, who turned it into “Und aus
der Isar steiget” [Hac04], which means “and from the Isar climbs”.

This example shows how perception is a construction process rather than a passive
mechanism for processing incoming data. The song line is matched to something that is as
close as possible to known words or facts. Since the river Isar runs through Munich, it is

' The same is true for, for example, reading or writing. Not only perceptional, but also motor tasks are
accelerated, when done frequently. In the beginning, handwriting is compiled of a sequence of single
motor impulses. After continuous practice, handwriting turns into a uniform movement that does not
require drawing each character separately [LurO1].

17 1t translates to “The forest stands dark and silent / And from the meadows climbs / A wondrous white
mist”.

16



understandable that children living in Munich find the most reasonable match for the text line
the well-known river rather than some meadows.

The same applies to other situations where perception is applied. Only that most of the time
experience ensures that most of the people observing a situation have similar enough
knowledge that the selected hypothesis of the situation (or the inner representation of the
outer world, to be more precise) overlaps to a great extent between different persons. This is
what makes interaction between human beings in a society possible: a common agreement on
a big amount of facts. On the other hand, it makes the task of actual classification difficult:
since the physical world in which we are embedded does not contain clear boundaries
between different classes of fact, events or objects, each classification'® will contain (or leave
out) something on which different persons will not reach a common agreement. A chair is a
commonly understood object, but classifying a given object as being a chair or a stool will
most likely not yield an unambiguous result when asking different persons.

1.5.1 Extracting Constance and Relevance

The real-world environment in which human beings are embedded (and which is the
environment of the system envisioned here), contains rich sources of information for different
types of sensors: visual and aural perceptions are the richest sources, but also physical
parameters like, for example, humidity and temperature provide important contributions.
While it is today possible to build sensors that can pick up all kinds of information, the
question arises how to further process this vast amount of information.

Lurija describes perception as a process that looks for information, identifies characteristic
features, compares it to stored memories and builds a hypothesis [LurO1]. The comparison
with formerly learned and thus known perceptions requires the information to be decomposed
using codes'. Visual perception has been well researched and so we know today that visual
analysis in the optical cortex is done by a big amount of neurons, where each neuron reacts on
a specific feature of the perceived object. The process of perception relies on memory (as
described in section 1.3), everything that is known can be perceived quickly, only when
something is new, we have use our full consciousness to study and experience it. Perception is
never complete, it gives an impression of the surrounding world, but is not able to grasp it
completely (this would, for example, require looking at an object from all side, before
drawing the conclusion what the object is). Therefore, perception is used to give use clues
about what is happening in the outside world; these clues are then combined with knowledge
about the world (semantic memory, see section 1.3) to create a world representation. Due to
the abilities of the human brain this world representation is usually a very close match to the
objective, physical world and it is a great challenge for any technical system to achieve
anything similar. Well known optical illusions reveal the “tricks” that the human brain uses to
create this representation, but when perceiving the environment that commonly surrounds us,
hardly any mistakes are made.

'8 The term classification is meant as the definition of boundaries between different classes of facts,
events or objects; other authors refer to it as discrimination [Har90].

' These codes build the base for what is later referred to as symbols in this work.

17



1.5.2 Identification and Classification

According to Harnad [Har90], human beings can “discriminate, manipulate, identify and
describe the objects, events and states of affairs in the world they live in”. The two most
important abilities for the ARS system are “discriminate” and “identify”. Discrimination, or
classification, is the act of assigning a level of similarity to sensory input, thus being able to
tell that two inputs belong to the same class. Identification refers to giving a “name” to a class
of inputs, that is, being able to treat inputs as belonging to the same class. Both acts require
the ability to extract constant features from the vast amount of information that is available.
Assigning an identifier is the beginning of creating a language that can be used for higher-
level cognitive processes (section 1.6).

Using what has been said in section 1.5.1, classification builds hypotheses to find proper
classes for an input. If further inputs strengthen one of the hypotheses, it becomes the favored
one. Similarly, well-known objects or events are backed by more hypotheses that allow to
classify the object faster with only limited input.

1.5.3 Visual Perception

Visual perception in the human brain has on its lowest level, i.e. closest to the visual sensors,
the task of feature extraction and pattern recognition. On the way from the eye to the visual
cortex, specialized brain cells extract various types of information. Visual impressions can be
seen as a set of lines and shapes that need to be processed. Aside of color information, cortical
cells are able to detect orientation. [Gol02] shows a cortex cell that has a receptive field,
which responds to vertically aligned bars by changing the impulses per second that are fired:
only if orientation is perfectly vertical, the cell fires with about 25 impulses per second,
changes in the angle result in lower firing rates. Additionally, hypercomplex cells can detect
corners, angles and discontinuity [Gol02]. Depending on the alignment of cells with similar
orientation preference, the brain can combine a bigger picture from the activity patterns of the
neurons. Recent research [Wol05] has explained this alignment by a self-organizing process
that produces a different architecture for every individual. Locations that are close to each
other in the visual field are coded by neurons that are also close to each other in the visual
cortex”™ [Gol02] (see also the description of body maps in section 1.2.1).

The specialization of neurons for tasks like detecting movement, edges or shapes has a long
evolutionary history and is as such present in animals as well. For example, in [Wan92] it is
shown that pigeons have the ability to detect rapidly approaching objects (which indicate
possible danger) by the use of neurons that respond selectively to objects moving on a
collision course towards the bird.

1.6 Language

Nothing is more convenient than having a word for a thing or an event. A description in
spoken language is very precise compared to the internal states of the mind that also describe
this thing or event. However, the “language” referred to in this section goes beyond the
concept of spoken or written language. Spoken language is a subset of the means of

% This is also true for aural information (adjacent frequencies are coded by adjacent neurons) and
somatosensoric information (adjacent locations on the skin are coded by adjacent neurons) [Gol02].

18



communication that operate in the human mind. A lot of facts or judgments are not easily put
into spoken words, but still contribute to perception as well as to judgment (section 1.4).

Language is today seen as the key to consciousness [Sol02] and it is understood that language
and consciousness if not dependent on each other at least share a common base [Lur01].
Many of the different properties in understanding and speaking language are analyzed by
lesions, that is, localized damages in the brain [Sol02]. Lesions in different brain regions
cause a patient to be unable to pronounce a word, although they know the meaning of it, or
the opposite: a word is heard, but the meaning cannot be retrieved. Other damages make it
impossible for patients to grasp whole sentences, although the words are understood.

Because the “internal description” is much more complex and therefore contains a lot more
details and cross connections than the spoken language, operating on spoken terms leads to
more precise results and often is the only way to achieve a result at all. An example shall
underpin this: a child learned about basic geometry in school, two-dimensional shapes and in
particular the right-angled triangle. Before learning more about the correlations between the
lengths of sides in the right-angled triangle, the child was already pondering the question of
relationships between the sides and had “a feeling” that there had to be some relationship
between the two short sides and the long side. Not long afterward the child learned about
Pythagoras’ Theorem stating ¢* = a® + b>. What was a “gut feeling” before became a clear and
precise spoken statement afterwards that could be evaluated and discussed (even
mathematically, which is a much more precise “language” than spoken language). The step
from taking the internal description of relations between triangle sides to a statement (which
is even a mathematical statement and therefore even more precise) that could then be
transported to other people easily. Still, the key remains in the internal description, in the
“feeling” that there is something that correlates (see also section 1.4).

There exists a “language”, which is outside the scope of the spoken or written language that
we use when communicating with other persons. Our inner world has means to describe facts,
events and relationships by using a description that is usually not available to conscious
contemplation®'.

1.7 Consciousness

Consciousness can be described as continuously firing neurons that follow certain patterns.
Although true, this description is as useful as describing the quality of life in a city by listing
its telephone book. Consciousness is the most complex function of the human brain. Damasio
separates consciousness into core consciousness and extended consciousness [Dam99], where
core consciousness refers to abilities that humans share with, for example, some vertebrates,
while extended consciousness is at the current state of research unique to humans and refers
to what is commonly called “consciousness”. Core consciousness gives an individual a “self-
sense” in the current here and now, without any history. It does not allow predictions of the
future and considers the past only as far as the events that recently happened [Dam99].
Consciousness is a private phenomenon that cannot be shared and remains restricted to the
person experiencing it.

1 Of course it is possible to reflect on a subset of these internal facts, events and relationships and
come up with a description that is “pronouncable” (as in the above example), but nevertheless a lot of
what we use to describe our daily life remains internal and is not consciously available to us.

19



Seen from an evolutionary standpoint consciousness contributed to the survival of an
individual. The ability to reflect upon what is happening, to get a “feeling of what happens"
[Dam99] allowed an individual to better adapt to its environment and react in a better way.

At the current state of technology, a system that implements extended consciousness, is not
expected to occur soon. Assuming that consciousness strongly depends on all other steps of
development human beings have gone through (including development of all different brain
areas), the closest goal that seems achievable is the implementation of perceptive awareness
(see [Tam03] and [Pra05b]).

2 Brain Mechanisms and Technical Counterparts

Collecting and processing big amounts of data and extracting relevant information is the base
to build a representation of the world. The brain is — seen from the anatomical point of view —
an organ like the stomach or the liver. As it is a part of the human body, it consists of cells —
the neurons — that have their own metabolism, which needs to be supplied with oxygen and
nutrients by the body’s life support system. A neuron consists of three main parts [Sol02]: the
cell body or soma, which is the central part of the neuron, the dendrites and the axon. While
there is only one axon per neuron (which can split into several branches), there are multiple
dendrites, which enable the brain to have a vast amount of interconnected neurons — the basis
for the complexity of the brain. Axons are responsible for sending out information from a
neuron; dendrites provide input into the neuron. Axons and dendrites of different neurons
connect with each other over a gap called synapse, where the information transport between
one neuron and another takes place on chemical basis. Some types of neurons can have
thousand and more dendrites, thus allowing communication between lots of neighboring cells.
In total, the human brain consists of some billion neurons with some magnitudes more of
interconnections between them.

Dendrites Axon

Cell Body

Figure 2.1 A Neuron with cell body, axon and dendrites

Just as the transistor is the basic building block for all modern computer architectures, the
neuron is the basic building block of the brain. During evolution this type of cell evolved,
which enables vertebrates like human beings to process the information received from the
outer world, to learn the regularities in the physical world and to interact with it accordingly.
The scientific community puts a lot of effort into understanding the operation of the neuron
and the complex network that they build. Recent efforts attempt to simulate neocortical
columns, which consist of approximately 60.000 neurons on cellular level by using large-
scale computer models and simulating it on the Blue Gene supercomputer [Blue04]. The
outcome of these simulations is expected to further contribute to the understanding of the
human brain and be used for future simulations with even more neurons.

On the other side neuroscience and brain research have made advances in understanding the
structure of the human brain and was able to identify various different brain regions as being

20



responsible for different functionalities. A lot of different theories and model evolved from
the attempt to understand the human brain. Early model tried to assign specific brain regions
to certain abilities, for example the brain model of Franz Gall in the early 19" century. He
identified “organs” in the brain, which were responsible for the sense of orientation, colors or
sound as well as organs for theft, jokes or art [LurO1]. It soon turned out that this mapping
was too ambitious and overshot the mark of functional brain mapping (see also section 1.1).

Today it is understood that simple physiological functions can indeed be localized in certain
brain regions (such as the senses or motion), but higher mental functions cannot be mapped
onto one specific brain region, but rather involve many different parts of the brain [LurO1].

Analyzing the human brain in this way is a difficult task and contains potential for fallacies.
Assume one would have to analyze the functionality of a car without having access to it
directly, without being allowed to open it, take it apart or measure something inside the car.
Mere observations on the outside are allowed and even those are limited. We restrict
ourselves to observing a point on a screen that shows the current position of a car. A correctly
working car could thus be observed as a device that is able to drive at a constant speed in
straight direction (as one of the many possible observations) — shown as a straight line on our
screen. Now we assume that the front left tire blows and the car is forced to drive only on the
metal rim on the front left side. The observation from the outside would notice a fault in the
front left area of the car and show a car that cannot drive straight any more, but runs around in
a circle around the left front. The next observation would be done on a car with a faulty front
right tire, which again would force the car to go around in circles, only this time to the right
side. Taking all three observations together — without a fault the car goes straight, with fault 1
the car makes left circles, with fault 2 the car makes right circles — we could deduce that the
two areas of the car in the front left, or front right, respectively, are responsible for controlling
the ability of the car to go straight. Moreover, they both need to be in balance, because, if one
of them fails, the other one is dominant and forces the car “away” from its side.

Describing the front tires as “keeping the car in straight direction” devices for a car is a
description that lacks the engineering insight into the functionality of a car, but is reasonable
when observations can only be made from the outside. To fully understand the function of
tires one has to do a lot more observations and combine them in the right way. Unfortunately,
the brain is much more complex than a car. To better understand this complexity, we take a
look at an example that is a bit closer to the complexity of the brain: a microprocessor.

In autumn 1994 a bug in the recent Intel Pentium processor became public: under certain
circumstances the processor made mistakes in simple arithmetic calculations. Most of the
time these errors were small and negligible, but sometime the result was seriously different
from the expected result. For example, the calculation

Z=x-2* y

y
should always evaluate to z=0. However, with x =4195835 and y = 3145727 the faulty
processor produced z =256 [Pet97]. The reason for this error was found to be a lookup-table
in the processor that is used to speed up calculations; this table contained 1066 values, but
five of them were not correctly accessible. If a calculation required one of these five elements,
it produced incorrect results.

21



How was it possible to find this bug? A processor like the Intel Pentium contains a few
million transistors. The functionality of a transistor is fully understood, as well as the
functionality of all other structures that can be found in a processor. Theoretically, it would be
possible to identify the “faulty transistors” (i.e. the structures that contain the five faulty table
entries), determine their position and isolate the error to be located at these transistors. Maybe
one could even correct the error in an existing chip by changing structures or connections®
and thus remove the fault.

Reality in information technology shows, however, that an error like the one described above
could never have been found, if the processor design were available only as the final silicone
chip containing transistors and connections without any additional information. Instead, the
processor designers have used different models to create a working processor of this
complexity: a model on the lower layers describes logic functions by a set of logic gates — a
logic AND or OR, for example. Gates are groups of transistor and the description of their
functionality is more abstract than that of a transistor. Other elements can store information
(called flip-flops) and also consist of a number of transistors. At this level it is, for example,
easy to build a device that is able to add two numbers and store the result. Using logic gates
and flip-flops as basic building blocks the next level of abstraction is reached by using
another model that describes sequential logic systems. Such a system maintains some kind of
state and changes this state according to information it either receives from the outside or
generates by itself. This way a system can be in a specific state, wait for some input and then
go through a sequence of actions to produce a result. At this level, it is possible to describe
simple machines like a coffeemaker that waits for coins to be inserted and then delivers hot
coffee to the user.

Based on a sequential logic system the next step is to create a more flexible system that is not
designed for one specific purpose, but is able to fulfill different tasks. This is done by
defining instructions that the system is able to execute (e.g. “add these two numbers” or “if
this number is equal to zero, stop execution’) and let it execute these instructions one after the
other. The order of instructions and the length of the sequences is arbitrary and thus allows to
build a programmable system, which is able to fulfill a broad variety of different tasks. Using
this model it is possible to build, for example, a pocket calculator, which is able to process
numbers entered by a user and apply basic arithmetic like addition, multiplication, or square
root, according to the requests of the user.

The list of models does not end here, it can be extended a lot further. Every time a new model
is introduced, it builds upon the model below and the abstractions that have been done there.
Designing a coffee machine by using only the model for transistors is an error-prone, almost
impossible task. However, using the right model allows to abstract and simplify unnecessary
effects and focus on the relevant facts, making coffee machine design a practicable task.

The big advantage of information technology over neuroscience is that all of the components
that are used have been designed by humans. Thus, we know every detail about every single
component and can use this knowledge to create models that are appropriate, that focus on

22 Corrections like these are actually done in processors today, only on a different level. Aside of the
static silicone — the hardware — a processor also contains microcode; microcode describes how the
processor shall use its resources when executing an instruction. If a bug in an already manufactured
processor is found, it is sometime possible to correct it by modifying the microcode of the processor.

22



relevant parts and leave out unimportant parts. Although it is still a challenge to create a
model that is comprehensible and easy to use (in the short history of computer science there
were always a few scientists who pushed things forward), it is possible to find such a model
and — more importantly — prove that it is correct.

When trying to apply this methodology to neuroscience there are a few problems that we face:
a processor today consists of some 100 million transistors; the human brain, on the other hand
contains some billion neurons, which are connected by about a trillion dendrites [Sol02]. The
complexity of the human brain is therefore some magnitudes higher than the state of the art in
computer science. Next, the human brains is a biologically grown organ; although in general
every brain works the same way, each individual brain has its own layout; even worse, the
connections between neurons change over time, which reflects the individuals personal
experiences. Processors are, on the other hand, designed (using all of the above described
models) before they are manufactured, and are then produced in big numbers, where each
processor is (almost) identical to all others. Moreover, they do not change over their lifetime
when executing different applications.

The circuit layout of a processor is completely known and understood by engineers. Using the
different models, the purpose of each single transistor can be traced up to the highest level
and be explained there. The “circuit layout” of the human brain is today by far not fully
understood. Using the methods described earlier, a lot has been learned about the
functionality of the brain; but compared to the design of a processor this knowledge is still
vague and imprecise, especially when looking at higher cognitive functions. And even with
the functionality of a single neuron and its interactions with other neurons being available,
this is as good as having a good transistor model. We need higher-level models, which
abstract groups of neurons to functional units, and group these functional units to even bigger
units. This kind of research is currently going on and has achieved great results already, but is
still far from being able to explain all functions of the brain (e.g. the Blue Brain Project
[Blue04] mentioned above). Single brain regions have been identified and assigned different
functions, trying to provide mid-level models for some functional units. On the other side of
the spectrum, psychology attempts to understand human perception, human memory,
language, motion, and actions. Even higher up in complexity psychoanalysis deals with
human beings in their full complexity, trying to understand the highest-level functions like
consciousness and the Ego, but of course being unable to build upon models that root in the
understanding of the organic brain.

When trying to explain human behavior, it is currently not possible to build a complete
model. Too much is still unknown, therefore models have to be designed based on what is
known today, carefully making assumptions where information is missing. This is an intrinsic
problem of any science that escapes the approach of natural sciences. In order to
experimentally prove a theory, natural science requires the experiment to be set up in an
environment that guarantees to create reproducible results. Only if an experiment can be
reproduced, it is considered, otherwise it is discarded. The approach works, if it is possible to
lock down almost all variables and observe only a few or — preferably — one variable. Exactly
these "laboratory conditions" make the natural science approach very hard to apply to
psychoanalysis (or humanities in general). The state of a human mind is a multidimensional
set of parameters, which depend on and influence each other. Thus the reproducible

23



laboratory experiment is inadequate to prove, for example, Freud's theory about
consciousness.

2.1 Embodied Intelligence applied to a Building

When applying principles of classical Al and especially embodied and situated intelligence to
building automation the problem of a missing body arises. A building automation system is
not an insulated system with well-defined boundaries of its body. Instead, it has sensor and
actuators in every room of a building. One could suggest defining the whole building to be the
body of the system. Although an intuitive suggestion, it is not reasonable, since the system is
not strongly influenced by modifications or damage to the building — after all it is dead matter
with no vital connection to the system. If a wall is modified by building a new door into it, the
system will not perceive it anyhow different as if its environment has changed.

Still the requirement of embodiment remains: what if embodiment is really the base for
intelligence? We need to take a closer look at this requirement. What we see is twofold: first
there is a very tight connection between how an entity perceives its environment and its
sensory input: if a being has eyes, it is able to perceive light within a certain wavelength
range. If it has ears, it can perceive aural information of its environment. Somatic sensors
provide input about its close vicinity and so on. Depending on where these sensors are located
on the entity and how they operate, the entity will perceive its environment differently (an eye
located on the front will influence behavior differently than an eye located on the back).

The second issue in embodiment deals with actuators. What has been said for sensors is also
true for actuators: depending on the ability and location of the actuators (in fact, their
functionality), the entity will interact differently with its environment: everyone who ever
broke an arm will agree that the modern world is a lot easier to use with two hands.

Embodied intelligence is based on the fact that sensors and actuators are tightly linked to each
other — in the same body — and they have a defined relationship. Aside of the actual sensor
information, the information about the sensor itself and its whereabouts is important for
further processing. Combined with the fact that learning on this physical level works best
when simultaneousness is given — that is, when an action causes an immediate response, we
have all ingredients to extend embodied intelligence to a disembodied building automation
system: what is needed are sensors and actuators that have a defined spatial relationship. The
system has to know where its sensors and actuators are located. Then we need to provide the
possibility for fast feedback: actions caused by actuators need to be registered by sensors and
processed quickly. This feedback-loop of actions causing reactions builds the base for
learning. What we have created is a system that, although it cannot easily be surrounded by an
envelope that would define the boundaries of its body, can still be analyzed by means of
embodied intelligence.

2.2 The Frame Problem in Artificial Intelligence

The frame problem emerged from logic-based Artificial Intelligence. It describes the question
that arises when describing facts and events as they happen in the real world, in a formal
logic. Commonly one would describe an action and its consequences on the world. A desktop
lamp can do two things: it can be turned on and off and it can be moved around. The lamp
will change its state when it is switched from off to on. What common sense tells us is that
the lamp is now turned on, but the position remains unchanged. If the above statements were

24



however written out formally, they would only allow concluding that the lamp is turned on,
but its position would no longer be clear, since it cannot be ruled out that the action of turning
on the lamp also has influence on another property of the lamp, the position.

What the frame problem (in its technical form, described in [McC69], a reinterpretation by
Fodor can be found in [Fod88]) shows, is that it is necessary to state a frame of reference.
Aside of describing, which properties an action affects, it is also necessary to describe, which
properties it does not affect (see also [Sha04]) — and this is usually the majority. Formal logic
has to deal with the problem to describe what human “common sense” is: ruling out a wide
range of unlikely consequences of an action. In order to fit logically, contradictions have to be
prevented (in the example above, pushing the button of the lamp too hard may actually move
the lamp). Most actions have only limited impact, but some can have significant impact on a
lot of properties™, which brings the question to defining a context, in which the above said is
true; only by choosing objects and properties appropriate, it is possible to apply “common
sense”. In general, it appears challenging to predict every possible outcome of an action in the
real world — formally covering every possible case will result in the conclusion that
“everything is possible”. Even more, the objects that formal logic can operate on need to be
acquired in the first place, which requires choosing carefully the definitions (What makes a
lamp a lamp?). Logic-based artificial intelligence operates on clearly defined objects (see
[Russel03] for a comprehensive description of classical Al), but the acquisition of objects and
the concepts behind them is an important issue that is covered in section 3.

3 Symbolization

The word “symbol” is used in many different disciplines, thus its usage might be a bit
overstrained. Encyclopadia Britannica [Enc04] defines the term as

A communication element intended to simply represent or stand
for a complex of person, object, group, or idea. Symbols may be
presented graphically, as in the cross for Christianity, the red
cross or crescent for the life-preserving agencies of Christian
and Islamic countries; representationally, as in the human
figures Marianne, John Bull, and Uncle Sam standing for
France, England, and the United States respectively; they may
involve letters, as in K for the chemical element potassium; or
they may be assigned arbitrarily, as in the mathematical symbol
o for infinity or the symbol § for dollar.

Symbolic representation of events, objects, and knowledge in general is a central concept of
this work. A question that arises is the connection between symbols and the real world.
Harnad in [Har90] asks:

How can the semantic interpretation of a formal symbol system
be made intrinsic to the system, rather than just parasitic on the
meanings on our heads?

» In a thought experiment, Fodor creates the concept of a fiidgeon [Fod88], which applies to any
existing particle in the universe, if and only if Fodor’s fridge is turned on. Obviously, the action of
turning Fodor’s fridge off has significant impact on a lot of particles.

25



If a symbolic alphabet is defined (together with appropriate semantics and syntax), how can
these symbols ever really represent anything else but a combination of other symbols? In
[Sea80] Searle explains the Chinese Room Experiment: A person, who is unable to speak,
read or understand Chinese is sitting in a room and receives Chinese symbols from the outside
together with a set of rules. While the symbols are incomprehensible to the person, the rules
are in English (which the person is able to understand) and describe, how to operate on
incoming Chinese symbols to return other Chinese symbols as an output. People on the
outside of the room have called the incoming symbols a script, a story, and questions (which
is unknown to the person inside). By operating on the incoming symbols and returning
Chinese symbols using the rules, an observer from the outside may come to the conclusion
that the person inside (or the system as a whole) is able to understand Chinese, because the
system responds to Chinese questions with Chinese answers. Even more, if the system is left
unchanged, only the Chinese Symbols are replaced by a story and questions in English, the
system operates just as well. Although the person in the room now actually understands what
is written, the outside observer may come to the conclusion that the result of the Chinese
version is as good as the English version.

The point of interest here is how to find a connection between the symbols of a system that
operates symbolically (or a mind, which is often modeled as such) and what the creator of the
system has intended as the meaning of the symbols. Or, to apply it to the system envisioned in
this work: how can the symbols be connected to the sensor data that the systems uses as the
interface to the real world? To build such a system, the intended meaning of symbols needs to
be replaced by links to real world information. Otherwise, symbols would be combined with
other symbols to generate even other symbols and we face another problem, sketched by
Harnad [Har90]: If a person wants to learn Chinese, but all that is available is a Chinese-
Chinese dictionary, the person is never able to learn the language, because one meaningless
symbol would always be explained by a set of other meaningless symbols. The symbol
alphabet is closed in itself without any way to obtain understanding.

In [Yu04] a multimodal interface is introduced that allows a machine to learn words of human
language and assign them to everyday tasks. The system learns unsupervised; test persons are
equipped with an eye tracker, a camera, a microphone and position sensors (for head and
arms) that allow the system to have a first-person impression of the tasks that are done by the
test persons. The data from the sensors is used in combination with a spoken description that
the test person gives while fulfilling a task. Because the meaning of the spoken description is
also contained in the sensor data, this redundancy is used to create a combination between the
utterances and the sensor data.

This is an interesting example on how to provide symbol grounding. If we call the associated
utterances “symbols”, then a set of symbols is obtained, which is intrinsically grounded to
sensor input. The semantics of these symbols is already given and the phoneme strings that
label the symbol have a high probability of sounding similar to the actual word that a human
would use to describe an object or activity.

Harnad criticizes symbolic systems for exactly this lack of grounding: if symbols (or
“tokens”, as they are also called) are manipulated by explicit rules and the rules are purely
syntactic, there are not intrinsic semantics in the system. Although the system may be
semantically interpretable by a benevolent observer, the meaning in the symbols is merely
“parasitic” [Har90], as has been shown in the Chinese Room experiment. He proposes to use

26



a connectionism (i.e. neural networks) system for these symbols to be grounded; [ Yu04] uses
more advanced methods to achieve this grounding, but the idea remains the same.

The ARS system operates on a similar basis: grounded symbols (called microsymbols, see
section 4.1) are the lowest layer of symbolization and at the same time provide the link
between sensor data and symbolic processing. Starting from microsymbols, the system is able
to operate solely on symbols. Since a basic, grounded symbol alphabet is defined, new
symbols can be created on top of it — and they will inherit the grounded meaning of their
“parent”-symbols.**

Choosing the symbolic alphabet has to be done carefully, because the selection of the
alphabet may influence the ability to find a solution to a problem. Examples are the Roman
numerals that are inferior to the digit-oriented Arabic numerals for arithmetic operations.
While a hand-crafted symbol alphabet — like the one used in the ARS system — can be tuned
to avoid unsolvable problems, this may be of interest for future versions of the system, where
the symbols are obtained automatically.

* Harnad states an example: if the symbol “horse” and the symbol “stripes” is grounded, it is possible
to create a symbol “zebra” by defining it as “horse and stripes” [Har90].

27






PART II: System Design

This part of the thesis contains the descriptions of the system and its design by taking the
principles and mechanisms described in Part I and applying them to applications in the
domain of building automation — the ARS system. First, the system model is described in
chapter 4; here symbolization and its different levels is covered, and perception as it has been
described in Part I is mapped onto the system. Chapter 5 contains descriptions of the sensors
that are used to achieve the goals of the reference implementations. The sensor behavior is
abstracted in a way that makes them generally usable for the system and the models used for
the sensors do not depend on the specific properties of the sensor. The system operates with
these generic models to create symbols and the world representation.

Beside the information that is gathered by the sensors which provide the interface to the
outside world, the system also relies on predefined knowledge that it can use to augment the
information of sensory input. This is described in chapter 5.7.3, where also the issue of
information storage is briefly covered: while the memory available to the human mind is
complex and not yet completely understood, the task of the system to store what information
has been gathered and what actions have been triggered can be achieved more easily by
storing the according symbols.

The subsequent chapters describe the whole system design starting from the primary source of
information — the perception — and following the system until it triggers actions. Chapter 6.2
describes what is needed to implement perception, the basic requirement for the system to
perceive the world. Chapter 8 builds on perception and shows how a world representation is
created based on the updates that permanently come from perception. Here the difference
between the inner and outer world are also covered. Chapter 8.4 explains how the world
representation is used to gather scenarios; these scenarios are then used in chapter 8.5 to let
the system react accordingly — which is the task of the Action Subsystem.

Chapter 9 contains the description of a set of reference applications that are used to show the
functionality of the system by using the mechanisms described in the previous chapters. Since
the intended use of the ARS system envisions surveillance tasks as well as care and
supervision of different groups of persons (seniors or children, respectively), both the basic
tasks like person tracking and object tracking and the sophisticated applications of, for
example, geriatric care are covered.

Since the system does not implement any facilities to learn new facts or rules during normal
operation, there are also no statistical methods included here. The area of machine learning by
statistical methods is part of the project that this work is embedded in [Sal05], but is left out
in this thesis.

Part II defines the requirements that the implementation in Part III needs to fulfill. The
concepts and models described here are general, while the implementation in the next part
focuses on the reference applications only. In this part the foundations are laid by constructing
models that build the base for the implementation of the system — in a way, it is a "duty book"
for the system, describing the functionality of the parts that make up the system. The bridge
between information technology and the biological, neurological and psychoanalytical
sections of this thesis is built here: bringing together what has been said before and merging
the previously described disciplines and mechanisms into one real system. However,

29



implementation is not described here. Nothing is said about which tools from information
technology is actually used to implement the functionality. At the end of this part, the reader
has a description of the intended functionality, which should be comprehendible by reading
through the previous text.

4 Symbolic Processing

Applications in today's building automation systems use fieldbus systems (e.g. LonWorks
communicating over the LonTalk protocol [Ech94]) to connect a number of sensors and
actuators. The sensors are the interface to the physical world and provide the information
necessary for the system to operate. In classical building automation, it is common to have
one sensor for each task for reasons of costs and efficiency (see also [Pal03]): room
temperature is measured by one sensor per room and presence detection is achieved by
installing motion detectors, each with a separate area of visibility. What we see is a one-to-
one relation between a sensor and its intended application. Historically, automation
technology has therefore focused on single sensor values and designed applications to handle
these values. The advantage of this approach is that sensory input can be modeled in great
detail, using well-known and deterministic mathematical models. The disadvantage is the
limited view a system can gain from the world surrounding it and the strong dependence on
the correct operation of every single sensor.

With the increasing number of sensors installed in a building or factory, this relation is
extended in two ways: one sensor is used for more than one application and applications
attempt to use more than one sensor to gain information from the physical world [Lon02].
This development required to rethink a paradigm: applications cannot be designed to process
sensor data; there is a need to introduce layers that separate sensors from applications. Sensor
fusion is an approach that implements this concept. In [EIm02] sensor fusion is defined in the
following way:

Sensor fusion is the combination of sensory data or data derived
from sensory data in order to produce enhanced data in form of
an internal representation of the process environment.

Instead of using single sensor values, an application deals with pieces of information that
represent the status of the physical world. These pieces of information can originate from a
sensor, an aggregated set of identical redundant sensors or can be created by using different
types of sensors that are merged together. A sensor value from a motion detector, a light
barrier and a tactile sensor in the floor can therefore be combined into a valuable piece of
information, namely "there is movement at this position".

Sensor information is condensed and the amount of data is reduced, while the quality of
information is increased. Instead of processing all incoming sensor information in one
application, a hierarchical structure reduces the amount of data, but improves the quality of
information. Throughout this work, such a piece of information is referred to as a symbol.
Except for the very lowest layer, the perception module, all processing of information is
based on symbols, not on sensor values.

The author is aware that the term symbol is widely used in various different domains and is
therefore bound to be misunderstood. Symbols are visual or linguistic signs that refer to
something — e.g. a fact, a piece of information or an event. There are religious symbols as

30



well as traffic signs or mathematical symbols. Symbols in data communication are used to
describe completely different concepts than the symbols a psychoanalyst uses to describe and
interpret a patients’ dream. Because of this ambiguity of the term symbol, a description of
how this term is used here is given below, followed by further information in the following
sections and a description of the implementation of symbols in chapter 11.

A symbol is a piece of information on which the system can perform operations, modify it,
create and destroy it. Symbols contain information originating from the physical world as
well as additional information that define their meaning. The symbols used in this work are
collections of information, which are contained in the symbol itself and in its properties. A
symbol can have one or more properties (e.g. the position and the current activity of a person)
that are part of the symbol and cannot be separated from it. Properties can be updated
frequently (e.g. if the position of a person changes) or remain unchanged.

The complete description of the implementation of symbols and properties is covered in
chapter 11. The following sections explain how symbols are used in this work as the basic
building blocks for processing information.

4.1 Symbolic Model

The model that is used here is taken from the work of neuroscience, psychology and
psychoanalysis (see also [Bra04], [Dic02], [Die04], [Die04b]). The attempt to apply the
models that are known in these fields to the area of building automation yielded the
hierarchical model shown in Figure 4.1. There are three layers of symbols: microsymbols,
snapshot symbols and representation symbols®. All of these exist at the same time, but on
different levels (a fact that becomes important later in the text). Symbols can be created, their
properties can be updated, and they can be destroyed. Symbols are shown as cuboids of
different volume in Figure 4.1, indicating that their level of sophistication grows with each
level. Also, the number of symbols is different on each layer: while there are a lot of (small)
microsymbols on the lowest layer, there are only a few symbols on representation layer, each
of them representing a lot more information (or information of higher quality).

Representation Symbols

Snapshot Symbols @

uondaolad

)
Microsymbols a0 g%@ =

Figure 4.1 Levels of symbolization

» The model is extended further in section 4.1.3, where more types of symbols are introduced.
However, to bring forward the idea of symbolic data processing, these three types of symbol will
suffice.

31



The three types of symbols shown in Figure 4.1 are defined as follows: a microsymbol is a
symbol that is created only out of sensory input. Similar to the many different sensations that
the human brain has to process every second, a microsymbol is created out of a few single
sensor inputs at a specific instant. Microsymbols are created every time the real world has
changed and this change has caused sensors to trigger. There are not many interrelations
between microsymbols, they are rather orthogonal. Microsymbols are symbols with event-like
character, meaning that they exist in one instant (or a very short period of time, respectively,
see section 12.5.1). The step from sensor values to microsymbols includes a first processing
of the signal in terms of debouncing and discretization. Sensors that are able to create
continuous data streams are treated specially in this lower layer, but also result in producing
microsymbols (see section 5.6 and 5.7).

A group of microsymbols is used as the base to create a snapshot symbol. These symbols
represent a part of the world at one point of time (or a short time span, respectively). All
snapshot symbols taken together represent how the system perceives the world in one instant.
If available microsymbols are, for example, footprints on the floor, interrupted light barriers
and a face that has been recognized by a camera, the according snapshot symbol that is
created out of these microsymbols is a person, present at the current time at the current
position. The creation of snapshot symbols implies a first layer of associations between
microsymbols. Since all symbols are ‘“hand-crafted”, these associations are designed
manually for each symbol. In a future step, the model will be extended to gain the ability to
create symbols by itself; this ability to learn symbols is, however, left aside here.

The next level of symbolization is the representation of the world (see also section 1.2).
Representation symbols are — compared to the previously described symbols — only few in
number and are hardly ever created or destroyed (only their properties are updated regularly).
On representation level, the system has information about the current state of the world
together with the history of what has happened. Based on snapshot symbols the system uses
all momentarily present perceptions to create a consistent and continuous representation of
the world. Representation symbols are the first level, which applications use to infer about the
world. The snapshot and microsymbol layer below shall not be used by applications, since
applications represent higher cognitive functions, which shall operate on the according set of
symbols”. It is understood that the mind does not operate on, for example, single impressions
on the retina, but rather on the perceived image”’. Therefore, the applications described in
chapter 9 use the representation to find scenarios instead of analyzing single snapshot or
microsymbols.

% Implementation does, however, not prohibit applications to access microsymbols or snapshot
symbols.

27 Although the human mind is able to focus its consciousness on one specific detail — which may be
translated into one specific microsymbol in this system — this is not the common case. The higher
cognitive functions operate on facts like “the person has left the room” rather than “the latest footprint
is not in the same room as the previous one” without being aware that both footprints belong to the
same person.

32



4.1.1 Symbol Hierarchy

The creation of snapshot and representation symbol is shown in Figure 4.2. A set of
microsymbols triggers the creation of snapshot symbols; new snapshot symbols again cause
an update of the representation symbols. These two levels belong to the perception of the
system (indicated on the right of Figure 4.2). What is not shown here is the continuity of
representation symbols: while microsymbols and snapshot symbols operate in time instances,
the representation symbols operate in time periods and thus have a long lifetime. Typically, a
representation symbol is used for one specific person that exists in the world. While this
person causes the creation of a lot of microsymbols and snapshot symbols (e.g. when walking
from one room to the next), there is always just one representation symbol for the person; this
representation symbol is permanently updated by the information coming from snapshot
symbols.

Representation Symbols

Snapshot Symbols

uondaolad

Microsymbols

Filly

Figure 4.2 Creation of symbols

The model that is shown here is strictly hierarchical, meaning that symbols on one layer may
only use information available on the adjacent layer below. It is not permitted to use, for
example, microsymbols to create representation symbols. The implication of this hierarchy is
that a symbol on one level needs to contain all the information from the layer below, which
might be needed on a higher layer. Compared to the classical automation pyramid (see, for
example, [Pfe87]) the symbolic model is similarly hierarchical and can be put aside of the
data processing in field level, process level and cell level in factory automation. The highest
level of the automation pyramid, which employs global networks on company level, has no
counterpart in the symbolic model, since cooperation between systems in different buildings
is not intended.

The human brain does not follow this hierarchical model as described above, except for the
evolutionary oldest parts of the brain. Thus, a design that attempts to consider the architecture
of the human brain would have to aim at a maximum of interaction between all levels and not
restrict interaction by a hierarchical model. On the level of symbolization, however, that is
described here, it is nevertheless sensible to apply the hierarchical model, because it allows
for a simplified design without sacrificing the ability of cross-communications. Should it

33



become necessary to access low-level information from representation level, additional feed-
through symbols can be defined to provide the necessary information on a higher level™.

4.1.2 Symbolization in the Inner World

The model introduced above is a generic description how sensor input is processed to create a
world representation. The system, however, knows two different worlds (or world
representations, to be precise): the representations of the inner and the outer world (see
chapter 8). While the principles of the process described above hold true for both
representations, it is still important to understand that these two are actually different
representations. Both worlds contain microsymbols, snapshot symbols and representation
symbols, but the two representations are only loosely connected.

Especially in the case of the inner world representation, the microsymbols that are the base
for other symbols may originate not only from sensor data, but also from data that represents
the current (maintenance) state of the system. For example, a broken communication link to
one of the sensors may not be detected by a sensor, but rather by a watchdog timer, which
expires because an issued request does not receive the expected response in time. In any case,
a microsymbol is created and the system operates identical in both worlds (of course with
different sets of symbols) to create snapshot symbols and representation symbols).

4.1.3 Augmenting Symbols on Representation Level

The world representation, which is the topmost level shown in Figure 4.1 contains the
systems’ view of the world (both of the inner or outer world). Since the representation layer is
the one where applications operate on, it consists not only of representation symbols, but also
of symbols that are created by the applications.

When an application runs, it searches the existing world representation for scenarios that the
application knows (e.g., an elderly person has collapsed on the floor). The events that are
required for the scenario to take place can all be found on representation level. Therefore, the
application augments the representation by noting that it has found a scenario. It does so by
creating a scenario symbol. This way it is later possible to study the output of applications™.
Additionally, an application can create higher level scenarios by linking together lower level
scenarios of other applications; this way the hierarchy can be even further extended by having
lower level applications looking for simple scenarios and higher level applications using these
scenarios to find more complex scenarios. One level of hierarchy between applications is
already foreseen in the system: application services fulfill different tasks that can be used by
other applications. However, application services merely update representation symbols, they
do not create scenario symbols.

A scenario symbol represents the information that a scenario has successfully been detected.
At the end of a sequence of events, an application creates a scenario symbol. Usually such a
recognized scenario requires some action to be taken. Although the ARS system is designed

** This would be similar to a simple "focus of attention", where the system carefully examines a small
detail of the world representation (just like a human would examine the sting on the finger after
touching a thorny rose).

** All symbols are stored in a database and kept for further reference (see section 12.4.2).

34



to be mainly passive and help to support human operators or personnel, in some cases it is
still necessary to trigger an action.

For this purpose, two types of symbols are defined: action symbols and action series symbols.
In the common case, the system will take an action, which consists of a sequence of single
actions®’. It therefore creates an action series symbol, which is a symbol on representation
level. An action series symbol represents what the system needs to do to react properly on a
scenario that has been detected. Further processing of action series symbols is done in the
action subsystem (described in detail in section 8.5), which is able to process action series
symbols and break it down into several action symbols. These symbols are also part of the
representation of the world, since they indicate what the system has done to react on a
situation and at which time which action has taken place.

4.2 Symbolizing Physical Values

Physical values like a time period or the speed of an object are accessible by common formal
methods and are handled by mapping the magnitude of the physical value onto a numeric
value (for example, a scalar). Using mathematical operations, the value can be combined with
outer values to derive a result. However, this is not the only way to model the physical world.
[Gol02] describes perception in the human brain, where specialized neurons detect motion
and direction; [Wan92] identified neurons in pigeon brains that are able to detect collisions
with moving objects. This research indicates that processing of, for example, motion, time,
direction and other physical values are processed differently in brains, starting from an early
time in the evolutionary process. Under the assumption that neural representations are the link
between symbolic processing and the real world, this indicates that a processing mechanism
based on symbolic representation is closer to the way the human mind processes physical
values than by using formal mathematical methods.

location

Q O O O object moves fast

O O O O object moves medium
@ object moves slow

Figure 4.3 Image comparison to symbolize physical time

In a first step, processing of physical values by symbols requires abstracting from an actual
object (or person) to a generic object. Figure 4.3 shows an object abstraction for motion; the
object moves with a certain speed, which can be symbolized by one of three motion classes.
Depending on the motion of the object, one of the symbols is selected to represent the motion
of the object. In physical values, the three symbols would represent different speed ranges,
but symbolic representation does not rely only on one physical value (e.g. the time difference
that is measured in which an object passes two locations).

3% The trivial case of an action series symbol consists of only one action, e.g. notification of a human
operator.

35



Similarly, physical relations like time instants relative to the current time have to be modeled
symbolically: instead of a time difference measured in time units, the symbolic
representations of "before" and "after" are applied. Additionally, the time axis does not
necessarily have to be linear: personal perception of time tells us that events that have
occurred a long time ago are not stored in the same resolution as recent events. By
introducing different resolutions depending on how long ago an event happened, it is possible
to model this ability.

Symbolic representations, however, do not depend on only one physical value, but consider
different sources of information, like the spatial context in which an object is embedded. In
addition, when looking at a specific object, the sound that is produced by that object while
moving, contributes to the description of the motion of an object. In case of persons or
objects, movement profiles of motion sequence (e.g. running) described as the relative
movement of body parts or angular motion descriptions of joints are evaluated to give clues
about motion. If it is possible to utilize this additional information in a technical system,
motion (and other physical values) can be described symbolically, thus substituting classical
measuring methods.

5 Sensory Equipment

The ARS system relies on the input of diverse and redundant sensors. Such sensors are today
available and will in future be even more affordable. New technologies allow having not only
cable-bound sensors, but also wireless sensors, which have sufficiently long battery lifetime
or scavenge energy from the environment [Mah04]. The sensors described here are abstract
models that represent the main functionalities of sensor. Specific properties are not taken into
consideration, instead a generic description is used wherever possible; if it is necessary to
consider specific properties of a sensor (such as the resolution of a camera in section 5.7), it is
explicitly mentioned. In further steps, it may become feasible to model sensors to match their
specific physical properties and abilities. Since the simulator that is used for the ARS system
(see section 12.5) uses the same models, it is appropriate not to differentiate between real-
world sensors and simulated sensors. Even more, the system shall be able to perceive its
environment correctly using only the abstract model of sensors.

The sensor types described here have been selected, because they contribute to the goals of
the reference applications listed in section 9: location information of persons, identity of
persons, activities of persons and object recognition. Different sensors have different abilities,
with the cameras described in section 5.7 being the most advanced sensors and in addition the
only ones that are used for object recognition.

All sensors have a position that indicates where the sensor is mounted. This position is
defined by one point in three-dimensional space®’. Sensors also have a sensitive area,
indicating the part of the world they “see”.

5.1 Light Barrier

Light barriers are used in rooms or halls to provide position information. Commonly a light
barrier uses infrared light that is focused on a receptor. When the beam is interrupted by an

3! This implies that the size and shape of sensors is not taken into consideration.

36



obstacle or a person, the receptor is not illuminated and triggers an event. Another way of
implementation is to include light emitter and receptor into one device; this eases installation,
since only a passive reflector is needed on the other side. The functionality as required for the
ARS system is not affected by this variant; therefore, the schematic drawing in Figure 5.1
separates light emitter from receptor.

Light barriers have a limited maximum distance, since the beam broadens as the distance
increases; longer distances require better focusing of the beam, which increases the price of
the device. For building automation, a distance of a few meters is sufficient, since light
barriers are usually mounted transverse to, for example, a hallway. The light barrier model
simplifies a real-world light barrier in two aspects: the broadening of the beam along the
distance between sensor and receptor is not relevant and therefore the beam is modeled as a
line. Furthermore, there is no latency between the interruption of the light beam and the
triggering of the sensor.

The information that can be gained from a light barrier (Figure 5.1) is imprecise position
information along the axis of the beam (x-axis) and precise position information in the two
axes normal to the beam (y-axis and z-axis). This information is binary with respect to the
different output values of the sensor: a light barrier can be either interrupted or not.

L.,

Light I z il Receptor

Figure 5.1 Light barrier

Within the ARS system, light barriers are used for two purposes: for once, they contribute to
gather position information about persons. For this purpose they are mounted close to the
floor in certain distances; secondly, they are used for determining the size of persons. In this
case, a set of light barriers is mounted on top of each other, for example in a doorframe.
Depending on the gap between two barriers the height of a person can be estimated roughly,
which will suffice to contribute to the decision, whether a person is a child. More details can
be found in the application descriptions in chapter 9.

5.2 Motion Detector

Motion detectors are triggered by movements within their sensitive area. As opposed to light
barriers, a motion detector does not have a single line as sensitive area, but is open to a
(usually configurable) angle that it reacts on. If there is movement within this angle, the
motion detector is triggered (Figure 5.2). To ensure that only relevant changes in the sensitive
area cause the sensor to be triggered and to avoid that the sensor is incorrectly triggered by,
for example, thermal noise, there is a threshold in the amount of difference necessary to
trigger the sensor. A motion detector has only information about its sensitive area as a whole,
since it integrates over this area. Because of the threshold of necessary differences, a motion
detector may be unable to detect moving persons or objects under the following
circumstances: the object is too small to cause a big enough difference; the person or object

37



moves too slow, which also doesn’t cause a trigger of the sensor; or the person or object
moves along a path that has a constant distance from the sensor. The latter case is only true if
the integration over the angle is linear and can be circumvented by nonlinear sensitivity over
the angle. The information provided by a motion detector is binary with respect to the output
value: either it has been triggered or not.

y
Wall z l—»X z
a
Mounted l@
Ceiling

Mounted Person

L.

Figure 5.2 Motion detector mounted on wall or ceiling

Motion detectors are used in the ARS system to detect moving persons or objects (if they are
big enough, see below) and thus contribute to location information. The model for motion
detectors assumes that the threshold for triggering a motion detector sensor meets the
requirements for person detection moving at a speed that is within walking speed and running
speed. Therefore persons moving too slowly and object that are small (compared to persons)
are not detected. A motion detector is usually mounted in a way that the geometric
representation of its sensitive area is a complex three dimensional shape (if, for example,
mounted close to the ceiling and being tilted so that it faces the ground and the walls).
Although deriving the sensitive area of a motion detector that is mounted freely in a room can
be done by solving a set of geometric equations (calculations that are nowadays done in
standard graphics card adapters in real-time), which will be necessary to completely describe
the abilities of motion detectors, the information that can be gained from these sensors does
not appear to be worth the modeling and implementational effort that would be required.
Therefore, the ARS system simplifies the model by assuming that all motion detectors are
mounted parallel to the floor and at a height where they detect persons walking on the floor.
This way the sensitive area of a motion detector can be modeled as a triangle as shown in
Figure 5.2 with additional height information (z-axis), whereas this height information is the
height of the room where the sensor is mounted in. The sensitive area of such a motion
detector is then a wedge with a free-form triangle as the base area and a height that is
identical to the room height. This wedge is however not the only possible geometric
representation of the sensitive area. Other classes of motion detectors can have different
sensitive areas, for example a fisheye sensor that is mounted on the ceiling (right picture in
Figure 5.2). The adaptation of the model for such a sensor can be done by changing the
sensitive area; in the example of the fisheye sensor, it is a cylinder with the sensor in the
center of the base circle and the cylinder height being the room height.

Off-the-shelve motion detectors often provide additional functionality: after they have been
triggered, their output signal stays active for a (usually configurable) time. This is convenient,
if the sensors are used to, for example, directly control the light in a room or hall. For the
purposes of the ARS system, this functionality is undesired, since it conceals or at least blurs
the location information that the system requires. Therefore, it is assumed that movement
detection triggers the sensor output without any time hysteresis.

38



5.3 Tactile Sensor

Tactile sensors have a lot of different applications in the ARS system. The basic principle is
to apply a certain force to the sensor in order to trigger it. They are inexpensive devices and
their output information is binary: either a switch is opened or closed. The model for tactile
sensors directly reflects this: such a contact can be mounted anywhere in the room; the sensor
itself does not have a physical dimension. A simple post-processing process removes
mechanical bouncing and provides new values in a time resolution that is feasible for building
automation applications. The resulting delay of this post-processing is assumed to be small
compared to the required time precision and is therefore not taken into consideration.

Figure 5.3 Tactile sensors in the floor

The ARS system uses tactile sensors for different types of information: first, they are mounted
as an array in the floor of a room or hall to gather information about the location of persons.
In Figure 5.3 a person triggers three sensors at the same time, they are shown as black
rectangles. Second, switches that are mounted in doors or windows and which are triggered
by opening and closing provide valuable information about the current state of the world. A
tactile sensor is used in combination with a door or window, in which case it needs a semantic
connection to the object that it is triggered by. This object is usually a window or a door, but
can also be any other movable object like a drawer, a cupboard door or a simple valve, that
can be only fully opened or fully closed. In any case, the sensitive area reflects this object.
Door and window contacts provide information about location (person enters a rooms) and
activities of persons (person opens a window or door), valve sensors provide feedback for
correct actuator operation. Finally, the model for tactile sensors is used to model switches for
human users, e.g. light switches. The sensitive area in this case is extended to a rectangular
area, which is usually positioned at a wall.

5.4 Temperature and Humidity Sensor

For climate control in buildings, it is necessary to have sensors for the different physical
effects that are relevant. The sensors have no physical dimension, since it would not
contribute to the applications of the system. The information gathered by the sensors is
temperature, humidity or illumination, respectively. The sensitive area is the zero-dimensional
point at the location of the sensor. In order to keep the model abstract, additional effects like
aging or accuracy are not considered. It is assumed that the sensor is always well calibrated.
Depending on the setup, this value can be interpreted differently: if there were, for example,
an array of temperature sensors along a wall in a room, the value of one sensor can be
modeled as representing the temperature in the area surrounding the sensor, depending on the
distance to the next sensors. This interpretation has to be done on a higher level of

39



information processing. The ARS system uses temperature and humidity sensors for HVAC
(heating, ventilation, air condition) in order to get feedback about the climate in a room.

Similarly, there are also temperature sensors for a different range of temperatures, namely
temperatures that can be dangerous for humans. Such sensors are mounted close to heat
sources that are a potential threat to humans, especially children.

5.5 Illumination Sensor

One task of providing comfort to human users is to properly adjust the brightness in a room
according to the activity of the user. Therefore, illumination photometers are used to get an
overview of the current lighting situation. The sensor is modeled as a small flat area, the
normal of which defines the direction in which illumination is measured. Since the area is
small compared to the size of the whole room, it can be reduced to a point, where the normal
vector is attached. The output is a scalar value.

5.6 Microphone

Microphones are used to detect acoustic signals within a certain frequency range. The ARS
system uses microphones to detect sounds and noise that is produced by humans, but does not
require high quality sound recording. Since sensor data are stored in a database (see section
12.4), which is infeasible for visual and aural data streams, the acoustic information is not
stored as single audio samples there, but instead needs to be preprocessed so that only discrete
pieces of information are stored and not the complete stream of audio samples. Microphones
can be freely installed anywhere in the room and are used in the ARS system as the following
sources of information: a single microphone is used to detect noise in general, therefore a
threshold between silence and noise is defined and used to determine, which of the two is
currently true. The left picture in Figure 5.4 shows such a situation. The output of this type of
microphone is binary and contributes to presence detection of persons and therefore location
information. Depending on the specific aural environment, a preprocessing filter has to
differentiate between human noises and environmental noises (e.g. air condition, traffic,
ventilators).

Person

L0
Microphone p
(r ‘o

Person

=Pl
7

Microphone e
Array L

Figure 5.4 Single microphone detecting noise and microphone array detecting location
of sound source

The second contribution of microphones is to location information of persons: By using an
array of microphones the runtime differences of sound between the different microphones
determines the location of the sound source (right picture in Figure 5.4); assuming that a
specific sound pattern can be assigned to a human, this again contributes to location
information of persons.

40



For both applications, the same physical devices are used. This way the same device once
creates simple binary information — noise or silence, which requires only little effort in
implementation, and information of higher quality — location of a sound source, which then
requires more sophisticated algorithms. For other applications this principle can be extended
and the same microphones that provide location information can, for example, also be used
for voice recognition. This multiple usage of the same physical sensor is typical for sensors
that provide a great amount of information like microphones or cameras (covered in section
5.7): depending on what is requested from a sensor, the model and preprocessing is adapted
accordingly. The output of a single microphone is discrete binary information; the output of
the microphone array is a three dimensional position of a sound source.

5.7 Camera

Cameras are the most complex sensors that are used in the ARS system and are able to
provide a lot of different information. Similar to microphones described above, the system
uses cameras as different virtual sensors, which are all based on the same physical devices. A
camera can contribute to location information of persons, it is used for identifying activities of
persons and it is the only sensor in the system able to identify objects. Cameras for
automation (which are used here) are commonly connected using IEEE 1394 (also known as
FireWire) [IEEE96]and [IEEEO00]), a high-speed serial bus for fast transfer of video and audio
data.

5.7.1 Background Subtraction

A single camera that is statically mounted can be used to detect moving objects (or persons)
by separating them from the (static) background. [Rad05] contains a comprehensive survey
about algorithms for image change detection. The model for this type of camera sensor uses a
basic approach: the camera detects differences between consecutive images; if the differences
are bigger than a defined threshold it is taken as an image of a moving person (Figure 5.5).
Two relevant features are used as an output for this sensor: the number of pixels that have
changed are counted and taken as the size of the area and the center of gravity of this area is
derived. These two scalar values are the sensor output and written into the database.

Differential camera image
Figure 5.5 Camera image of moving foreground including center of gravity

Although not a very rich source of information, this virtual camera sensor provides
information about movements in a very compact representation, namely two scalar values.
Note that there is no depth information included, since a single camera and not a stereo
camera is used. It is also important that the size of the area is given in pixels, which makes it
dependent on the resolution of the camera, which can be avoided by normalization, e.g. to the

41



visible area of the camera. Other factors are not considered, for example, the zoom of the
camera, which strongly influences the size of the two dimensional representation of a real
person. Without depth information, the meaning of the area in Figure 5.5 is strongly bound to
the camera that provides it.

5.7.2 Face Detection

Not to be confused with face recognition, the task of face detection is to determine, if there is
a human face in the current visible area. The output of a face detection algorithm is a feature
(which is mapped onto a microsymbol in the ARS system) that has a position and a size. Face
detection algorithms are today widely employed, for example as a demonstration application
in the OpenCV software platform [Open06]. Based on oriented contrasts in an image, the
features of a human face and their spatial relations are used to detect a face. While
development of face detection is an ongoing process that attempts to refine reliable detection
of faces in different orientations and for partly occluded faces, the existing OpenCV
application provides sufficient information to contribute to person detection.

5.7.3 Histograms

The detection of persons is supported by deriving histograms of relevant visual areas. Once a
face has been detected, the area is indexed by creating a color histogram. Using this
histogram, it is possible to make connections between temporally adjacent face detections and
thus contribute to tracking the path of persons. Since the common task of person tracking is
limited and does not require identifying persons (or may even prohibit identification for
reasons of privacy), the histogram can be extended from the face to the whole body of the
person. Naturally, the appearance of a person will strongly vary, depending on the clothing.
However, for the duration of a day this can be considered irrelevant.

6 Knowledge and Memory

As shown in section 1.3 knowledge about what to perceive is necessary in order to create a
world representation (and to perceive in the first place). Since the system does not learn, all
knowledge is a priori available in the system. This includes definition of symbols as well as
the necessary facts about the world and its mechanisms. Templates for symbols are used to
support perception in recognizing what is known, thus symbols contain knowledge in the way
they are defined; the same applies for symbol properties.

6.1 Knowledge about the Environment

Unlike a human being, the system is not able to completely perceive the environment it
resides in. Although equipped with cameras, the sensory input is not sufficient to create a
complete representation of the layout of rooms, halls and the rest of the building.
Additionally, the construction of such a model would be a separate task and is not within the
scope of this work. The system needs to have an understanding about the layout of the
building it operates in from the very start. This knowledge has to be represented in a way that
is understandable for the system.

42



6.1.1 Environment Layout

Since the system is embedded in the area of building automation and the basic applications
require observing persons and their activities, including tracking the position of persons in
terms of the room they are in, the model to represent the environment has been chosen to
reflect the relationships between rooms, halls and doors. A typical room setup is shown in
Figure 6.1. The office environment consists of six rooms that are connected by doors to the
hall (or to each other). The central element in the model is a cuboid, a three dimensional
figure with six rectangulars as its surface. Persons are always located within a cuboid®,
shown as dark gray areas in Figure 6.1. A special form of cuboid is a door, which is also has
the shape of a cuboid, but a different functionality: just like doors in office buildings, a door
object connects cuboids with the special property of separating rooms — as will be shown
below. Cuboids are shown in light gray in Figure 6.1. The third type is a portal, which is a
two dimensional area that defines the border between two cuboids or a cuboid and a door,
respectively; these are displayed as dotted lines in Figure 6.1. The convention is such that a
person can only change position from one cuboid to the next, if there is a portal between the
two cuboids. This way, the system knows, where persons can move and where they cannot
(the wall between cuboid 1 and 2, for example, does not contain a portal and therefore cannot
be used by persons). Using these three basic shapes it is possible to design an office
environment that represents the basic requirements for the system to operate. Based on this
model, another layer has to be defined to provide the system with the necessary knowledge
about the environment.

Cuboid 1 Cuboid 2
(o)}
©
Cuboid 3 IS Cuboid 4
3
- |
Cuboid 5 E Cuboid 6 Cuboid 7
I | e |

Figure 6.1 Environment model of an office environment

As shown in Figure 6.1 the layout of a real office environment sometimes requires a room to
be made up of a set of cuboid (the hall, for example). The definition requires these cuboids to
be connected by a portal, if persons are able to move from one cuboid to the next, as is the
case for cuboid 4, 8 and 9. Since it is necessary for the system to understand the differences
between rooms that are separated by doors (and thus represent separated entities) and rooms
that are compiled of a set of cuboids due to their shape, there is another environment model

32 In fact, persons are almost always located within a cubicle on the floor, so the three dimensional
model could be reduced to a two dimensional model (for one floor); however, the system shall also
detect children that climb on tables and similar scenarios, therefore the environment shall not over-
simplify the world representation.

43



available as shown in Figure 6.2. This model is to be used as an overlay of the previously
described model, since it only introduces a layer that defines the setup of real rooms (not
cuboids). A room is defined as consisting of an arbitrary number of connected cuboids,
limited either by doors or by terminal walls of the building (i.e. walls that mark the outer
border of the building). Figure 6.2 shows the rooms of the above layout; most of the cuboids
are mapped one-to-one on rooms, only the hall, which previously consisted of three cuboids is
now one single room with an L-shaped layout.

Room A Room B
Room C Room D
j
Room E Room F Room G

Figure 6.2 Environment model overlay for room definition

The creation of rooms made up of cuboids, doors and portals is done automatically and does
not require human interaction. The underlying model allows to determine the borders between
rooms by either an outer wall (i.e. a wall, that is at the border of the model) or by a door. For
the system, it is important to know, which rooms exist in the building, since it may control the
climate for one room and should therefore understand that the hall in Figure 6.2 is a single
room rather than three separate rooms. For person tracking it is important to know whether
two adjacent sensor values belong to the same person or not. Usually the system can assume
that a person triggers sensors in the vicinity of his or her previous position. Then the new
information can be assigned to an existing person that is close by. This is however not true, if
there is a wall between the two sensors. As said before, the system is not able to perceive the
layout of the building. Therefore, it needs knowledge about walls and layout of rooms or, to
be more precise, it needs information, whether a person can directly move from one room to
the next.

The output of the room creation is the information, which rooms are connected to each other.
A graph that contains the connections between room is shown in Figure 6.3. It is important to
see that the graph provides a reduced model of the real world: it only represents connections
between rooms, but has no information, where, for example, doors in the rooms are located
(room F has two doors that lead to room D, which is also not reflected in the graph). The
graph shall rather indicate if a person is able to get from one room directly to another.

44



Figure 6.3 Graph with connections between rooms

6.1.2  Static Objects in the Environment

The elementary environment model described in the previous section is the base for all
activities in the building. The “world” consists of the static environment, the persons that are
moving around in this environment and the objects that are of interest for the system. To get a
better representation of the static environment, the model consisting of cuboids, doors and
portals has to be augmented by a set of objects that define the layout of the rooms in more
detail. Aside of the object that the system knows and is able to perceive, there is a set of
objects that are statically built into the environment. If these are relevant for perception, their
existence (and their meaning for the system) has to be entered as a priori knowledge. Static
objects include, for example, the kitchenette in a kitchen. Parts of this kitchenette may be
relevant for the system (like the stove, which is a possibly dangerous object for children),
other parts are irrelevant, but still contribute to knowing about possible positions, where
persons may be: if there is an object, there can be no person. These static objects are therefore
merely treated as “obstacles”, which define the room layout in more detail than the cuboids
that define the outline of a room.

6.1.3 Hierarchical Structure

An additional layer of modeling the environment is introduced to define a hierarchical model
of the building by decomposing the building into entities that consist of other entities. Since
this is a purely structural relation, it can be done strictly hierarchical. What is needed is a
hierarchy that defines which floor belongs to which building and which room (or hall,
respectively) belongs to which floor. To extend this hierarchy, the building is part of a city,
which terminates in the root of the hierarchy (Figure 6.4). This way it is possible to integrate
different buildings into the same hierarchical structure®, which is especially relevant when
using the same system in different setups, e.g. for testing purposes: by defining in which sub-
branch the system operates, a change in setup can be easily done — which is especially
interesting for simulated environments as described in section 13.2.

3 A further separation into countries, counties, etc. is possible, but does not appear to be reasonable
here. It would in fact suffice to leave out cities as well and just separate the buildings. This level is
however convenient when looking at simulated environments, as they are generated by the simulator.

45



Bldg 1 Bldg 2

Figure 6.4 Structural hierarchy for the environment

The hierarchy used in this system consists — on the most detailed level — of cuboids, doors and
portals; the next level are the rooms as described in section 6.1.1. All rooms on one floor are
grouped together into a floor and all floors of a building make up a building. As said before,
the different buildings are grouped in the next higher hierarchy level without introducing any
further levels (like towns or countries). This hierarchy — cuboid/room/floor/building — is
sufficient for the building automation and observation purposes of the system.

This model of the layout does of course not contain all information about the environment,
but it serves the main purposes of person tracking. For more complex perception tasks, further
information is added and the model is extended by, for example, modeling that doors can be
locked (which requires relations between the locks and the persons possessing the right key).

6.2 Associations

The combination of symbols into new symbols is done using associations. An association
takes two or more symbols and creates a new symbol or modifies a property of an existing
symbol. A microsymbol that indicates that a person has passed by is used to update the
property position of the representation level symbol for a person (which does not happen
directly, but by using the snapshot level in between). Associations can be of different types,
the most prominent one are structural associations like the different representations of room
structure shown in section 6.1 or the spatial associations that are used for object recognition
(section 7.2.1). Scenario recognition operates with temporal and causal associations, which
define the sequence of events.

~\ L

Snapshot
Symbol

Figure 6.5 Using single features (microsymbols) and their spatial associations to perceive
an object

46



An example of associations for object recognition is shown in Figure 6.5. If an object is to be
perceived (the apple figuratively represents an object of interest), the first step is to find
different features that the object consists of. When a set of features has been detected and they
are in the correct spatial relation, the object is detected. Associations thus can be seen as steps
to acknowledge a hypothesis: when the system searches for an object, it builds a hypothesis
based on different features that need to be present. New features are associated and thus
strengthen the thesis (or weaken it, if they do not match).

oscChildInDanger Scenario symbols
orpPerson Representation symbols
osnPerson Snapshot symbols

omsObstructedLb omsObjectPassesByLb2
omsPersonHeightIrH omsObjectMovesMd omsInterrupted
omsFootprint omsNoise omsSoundSource

Microsymbols

Figure 6.6 Associations between symbols on different levels

Figure 6.6 shows how a scenario symbol is created based on associations of symbols of
different levels (the symbols are explained in detail in chapter 11, the example scenario is
described in section 9.6). The requirement for the scenario symbol oscChildInDanger to
be created is that a person, which has the property of being a child is in a room without any
other person present in this room. Therefore, the scenario symbol is associated with the
person symbol on representation level. To get the representation symbol, it is necessary to
associate it with the snapshot symbol, which again depends on different microsymbols
collected in the ellipse in Figure 6.6.

7 Perception and Its Prerequisites

The symbols used here are grounded to the real world, as explained in chapter 3; this provides
a sound base to implement perception. The system’s tasks for perception include determining
the location of person, their activities and object recognition. Location of persons is strongly
supported by diverse and redundant sensors as described in chapter 5, while detecting human
activities and objects strongly relies on the evaluation of optical input provided by cameras.

7.1 Location Information

Many sensors described in section 5 provide information about position of either persons or
objects™. The concept of position therefore requires a closer look. The different layers of the
system have a different understanding of what the position of an object is. A light barrier, for
example, can detect when a moving object interrupts its beam of light. This information is
used to determine rather precise information along the axes that are normal to the light beam.

** In this context, persons are referred to as objects.

47



Along the beam, the light barrier cannot provide exact information about the position, since it
does not know where — between light emitter and receptor — it has been interrupted. As shown
in Figure 7.1 the position information therefore is imprecise along the beam and exact in the
axes normal to it (location information is reduced to two dimension, height is not considered
in this figure). The dotted line represents the beam of the light barrier. A motion detector
detects changes in the area it observes, which is a wedge, if the sensor is mounted
horizontally. A simplified approach models its sensitive area as a wedge, a triangle with a
height. Therefore the location information gathered from it is a triangle (or a wedge,
respectively, if the third dimension is considered). Tactile sensors that are mounted in the
floor and are trigged when stepped on, provide location information in the shape of a point.

T | el |

Light Barrier Motion Detector Tactile Sensors

Figure 7.1 Location information gathered from a light barrier, motion detector and
tactile sensor

At the level of sensor input, it is sufficient to use this type of location information.
Contribution to location information by sensors is done through different geometric shapes.
For position information of persons in a building (which is the basic requirement for the
applications described in chapter 9) a 2.5 dimensional representation is sufficient (two axes
for position information on a floor and information about which floor the person is on. For
position information of objects, which can be located anywhere in the room all three axes are
needed.

Light Barriers Motion Detector

Motion [:“: Motion

Detector L | Detector

Figure 7.2 Motion detectors combined with light barriers

The ARS system is designed to work with lots of sensor data, which are redundant. In the
case of location information, this means that the different geometric shapes that are delivered
by the different sensors have to be combined to location information that represents all the
contributions. An example is shown in Figure 7.2, where light barriers and motion detectors
are used to determine the position of a person. On the left side both motion detector and the
leftmost light barrier are triggered at the same time (the triggering of the light barrier is
indicated by a continuous line instead of a dashed line). The resulting location information
that can be derived is the small line, which is the intersection of the two sensitive areas of
motion detector and the triggered light barrier. On the right side, two motion detectors are

48



triggered simultaneously, resulting in location information that is shown by the thick-lined
area in the middle.

7.2 Object Recognition

Like the other parts of perception, the object recognition module is based on the
symbolization model with its different layers as described in section 4.1. This means that the
system perceives objects in a symbolic fashion and the process goes through all symbolic
layers, namely microsymbols, snapshot symbols, and representation symbols. The idea behind
object recognition is to identify and classify objects and keep track of their position. Some
objects are rather static and therefore will not move a lot (maybe not at all), while other
objects are being transported, for example, by humans. We know that in the human brain the
optical cortex contains a lot of specialized discriminating neurons that react on a certain
features of visual perception. On the level of microsymbols, we apply this principle and
extract key features of the objects we want to include into our system.

Object recognition is special amongst the other tasks of the system, since it does not use the
abundance of different sensors that are available to the system. Instead, it has to rely on the
information that is available from the only visual sensors in the system — the cameras. Image
processing and computer vision have been researched for a long time already and a lot of
knowledge has been gained in this field. This knowledge shall be integrated into the system
and not reinvented. Since extracting information out of camera images is a tedious task that
requires a lot of research by itself, the results of these efforts shall not be ignored, but rather
be used as a base to build symbolic image recognition on top.

7.2.1 Object Feature Description

As an example Figure 7.3 show an abstracted version of a chair as an object that the system
shall recognize. The relevant features of a chair can be described as: “A chair needs a flat area
to sit on”, “A chair has at least one chair leg”, and “A chair has a back”. On the level of
microsymbols, the system needs to be provided with a set of features that identify the object.
In the case of the chair, this would be two flat areas that are used as a chair seat or chair back,
respectively, and a set of bars used as the chair legs. All these features are objects located in
three-dimensional space. Assuming that the microsymbol generator provides the object
recognition module with bars and areas, we can continue on snapshot level to check the
conditions to find a chair.

The system searches for the objects it knows in the data that are available as microsymbols®®
where there exists a set of flat areas and bars distributed over the whole environment. These
microsymbols originate from camera systems that use state of the art algorithms to process
camera images and extract edges, areas, objects and other features. The conditions that
transform a few of these flat areas and bars into a chair object are size descriptions and spatial

33 Note that the system uses hierarchical processing of data: one module has access to the data of the
module below, but not further down. Although this definitely does not comply with the way data is
processed in the human brain, it is a necessary prerequisite in the software design of the system to get a
modular design with communication paths that can be tracked easily; when it is necessary to introduce
new communication paths — and thus breaking the hierarchy — the interfaces for this communication
have to be thoroughly defined.

49



relations and other description of features. The chair seat has to be of a size that is feasible for
a human to sit on; the same applies to the chair back and the chair legs: they all need
boundaries of their size and dimension to qualify for being part of a chair. Spatial relations
between chair seat, chair back, and legs are also defined; these can be distinguished in spatial
relations between parts of the chair and spatial relations between a part and the surrounding
environment. These spatial relations can be described in a pseudo-natural description
language, in which the two types of objects are called f1atArea and bar:

Figure 7.3 Characteristic features of a chair

Definition of chairseat

orientation of flatArea is parallel to floor
distance to floor is low

Definition of chairleg

dimension of bar is long and small
orientation of bar is vertical to floor

Definition of chairback
orientation of flatArea is vertical to floor

These are the definitions for parts of a chair. Putting it all together, it is now possible to define
the features of a chair:

Definition of chair

chair consists of one chairseat

chair consists of one to four chairlegs
dimension of all chairlegs is the same
orientation of all chairlegs is the same
chair consists of chairback

Besides defining the basic parts of a chair, there are relations between the parts that have to be
fulfilled to keep the parts for further consideration. Chair legs, for example, need to be of
same dimension and orientation, otherwise they cannot belong to the same chair. Now we can
define the spatial relations between the basic parts:

all chairlegs are below chairseat

all chairlegs are connected to chairseat

chairback is above chairseat

edge of chairback is connected to edge of chairseat

50



This description language provides a high-level description of objects using terms and
descriptions that are taken from human language and are intentionally kept vague and
imprecise. The meaning of these terms has to be described in more detail (i.e. what is “low”,
“long and small”, “the same” for objects in general and a chair in particular) for an
implementation to operate with them. Lingual variables like these are known from Fuzzy
Logic [Zad65] as well as the fuzzy relationships between the variables.

In the simplified model of the world that the system operates on, only one type of chair is
known (the one described above). Obviously, the system will not be able to recognize objects
that a human would describe as chairs, but which do not match the description of a chair as
the system knows it*°. One way to deal with this issue is to define more than one description
for chairs and create a list of different types of chairs that are treated as different objects
(chairs with just one leg and wheels on the bottom, chairs without a back, chairs with
armrests, and so on). Still, they share a common property, which is that they belong to the
same class of objects.

7.2.2 Anchors

The process of perception is driven by the system: it searches for the list of objects it knows
in the current environment. Since objects can be present in many different ways (facing in
different directions, partly covered by other objects, the search for an object is done in a
sequential fashion, where the system first searches for anchors to have a starting point.
Anchors are key features of objects that allow the system to build a hypothesis about what it
might perceive. In the case of the chair, this anchor would be the chair seat, since it is an
elementary property of a chair to provide some flat area, which is parallel to the floor. Using
the anchor the system claims one (or more) hypotheses about the class of the object. By
evaluating the expressions described in the previous section, the hypothesis is either
reinforced and finally becomes confirmed (i.e. the object is perceived) or does not gain
enough confirmation to be processed further.

Objects do not necessarily have only one anchor, the recognition can start from different
anchors. Instead of using the chair seat as an anchor, the system could also look for any object
that is located on the floor and then start evaluating the description to find a chair. In
environments where there are a lot of different classes of objects with sometimes similar
properties, the description of an object also has to contain negative statements: if, for
example, horses are part of the systems perception, a certain description may be appropriate.
If, in the next step, zebras are introduced, the definition of a horse has to be extended to
clearly specify that a horse does not have stripes.

7.2.3 Object Classification and Identification

When the object recognition module has found an object that qualifies for being a chair (to
name an example), it creates a snapshot symbol indicating that there is a chair at a certain
position. This information is passed on to the representation module, which now has to match
this perception with what is known about the world so far. In the case of object recognition

3% Especially chairs that have changed their common orientation, e.g. a chair that has fallen over, will
not be recognized.

51



this means that the representation module checks, if there were any occurrences of a chair in
the vicinity of the current chair snapshot, if the position has changed and needs to be updated
or if a new chair appeared in the system. As stated earlier, perception of the system cannot
always reliably create a complete state of the outer world, since the current available data
might be lacking information. This information needs to be filled in by the representation
module.

What has been described so far is the classification of an object: what has been a collection of
bars and flat areas is combined into a chair. As soon as this process has succeeded once and
has found a chair in the environment, this specific chair is no longer just one of many chairs
in the class of chairs, but it can be identified (and tracked, as described in section 11.2).
Classification is different from identification in that first an object needs to be assigned to a
category to be able to operate on it. In the next step, the object becomes “individualized” and
this requires additional information to be attached to the object. This information is not
necessarily related to the requirements for classifying an object, but describes the specific
features of one object. In the case of a chair this is, for example, the color of the chair. In the
definitions above, the color has not been relevant for classifying an object as a chair.
However, once the chair has been found, further information will contribute to better
identification — which is especially important on representation level, where objects do not
permanently appear and disappear’’, but remain in the inner representation of the outer world,
this is the task of Object Tracking, as described in section 9.2. The relevant symbols for
Object Recognition are described in the implementation part of Object Tracking in section
11.2, since tracking of objects strongly relies on object recognition.

8 World Representations

The representations that have been introduced in section 1.2 will now build the base for the
representations used in the ARS system. The system perceives the surrounding environment
and as such creates a representation of the outer world®®. This representation can only contain
objects and facts that the system is able to understand — in case of the ARS system this means
everything that the system has available as predefined knowledge about objects, persons,
activities of person and the relations between those.

Information processing is done in different modules in the system. First, the system first has
to extract information from the sensor level. Based on this data a snapshot of the current state
of the world is created. The information gained in this module is used to create the world
representation, which contains not only the current state of the world, but also the history of
what has happened. This world representation is the highest level of understanding that the
system has of the real, physical world. The system only operates on this representation;
anything that is not included in the representation is not available to the system.

Each of these stages is done in a separate module. The perception module uses sensor
information to create snapshots, the representation module creates the world representation.

7 Which might happen on perception level if, for example, a person walks by a chair and therefore
obstructs the chair for a moment.

¥ Similarly, it creates the representation of the inner world by supervising its own components and
monitoring the health of the internal parts and communication paths.

52



Applications that analyze the world operate solely on this world representation. The modules
are separated from each other and the interfaces between them are strictly defined. This is a
simplification from the understanding of the human brain as we see it today: brain regions are
strongly interlinked with each other, allowing cross-links in various different ways. In
principle this should also be possible here, however, it would introduce too high a level of
complexity. Feedback between modules is therefore only possible using a limited interface.

The representation is the level which is intended to act as an interface for applications and
thus for future extensions. Since it is on a higher level than microsymbols and snapshots, the
amount of symbols is reduced compared to the lower layers. In fact, a wide field of different
symbols from lower layers are collected and used for updating the small set of representation
symbols. As an example, we look at the position of a person: whenever a person moves, a lot
of sensors are triggered and thus microsymbols are created. The information available from
this big amount of microsymbols (with the intermediate step of creating snapshot symbols) is
taken to update the property “position” of the representation symbol for the person. While
microsymbols are continuously created, the person on representation level is created only
once (when a person enters the system) and afterwards continuously updated (the symbol
hierarchy in Figure 4.2 also shows these relations).

8.1 Storage of Symbols and Historic Data

Similar to the process in the human brain the perception is used to create the world
representation. Perception is a transient process, meaning that it happens in an instant and is
updated or overwritten in the next instant. An important question is how the information that
enters is preserved and not overwritten by impressions that are more current. Memory as
described in section 1.3 requires some form of transformation (coding) in order to provide
access to it later on. The process of remembering past events is a complex sequence of
reconstruction in the human brain, but is solved differently in the ARS system. In principle,
the information originating in perception (that is, microsymbols and snapshot symbols) could
be discarded after they have been used to update the representation. Perception has fulfilled
its task and provided updates of the real world, which is used to update the representation of
the world. Because the flow of symbols between different modules is completely transparent
and additionally backed by a database, it is possible to store all symbols for a longer time. It is
not necessary to process information and afterwards discard the lower level symbols. Instead,
they are written to the database and remain there. By leaving perception information in the
system, it is possible to run a long-term analysis (e.g. what has happened today or this week?)
and create higher-level modules that use past information for deeper analysis of the data or
process perception data. This could include analysis of symbols that could not be fit into place
earlier, which can result in the system discarding it, but it can also indicate error conditions
(e.g. broken sensors) in the system.

The reason for the difference between a biological system and the ARS system is that the
symbols used here undergo only a simple encoding (Figure 8.1). While memories of a human
being are consolidated and transferred from short-term to long-term memory in a process that
is until now not fully understood (chapter 8), the ARS system deals with pieces of
information that can easily be stored and retrieved. However, the comparison between human
memory and symbol storage shall not be taken too far here, because both systems operate
very differently and the way the human brain stores information is by far more complex than

53



the mechanisms employed here. The ARS system for once stores its perception “as is”,
meaning just the symbols as they occur, but it also transforms the available information to
create and update the representation. A convenient side effect is that also the representation
symbols are stored in the same manner, so that the history of representation is available just
like the history of perception.

Human Mind ARS System

Encoding Retrieval Encoding Retrieval

\ / \_/

Storage -

] Storage

Consolidation
Figure 8.1 Memory of human mind [S0l02] and ARS system

The link between perception and representation also remains intact: when a snapshot symbol
has been used to update a representation symbol, this association is noted so that later on the
development and evolution of a symbol can be reconstructed. The connection between what
the system perceived and how this information was used to build the representation can be
important to explain the existence and state of representation symbols. In addition, it can be
used for later applications to implement learning and improve the associations between
perception and representation. Finally, knowing more about a person or object in the real
world (because the information from past perceptions is still available and linked to it) can
contribute to better identify the person or object in future.

8.2 Outer World Representation

The representation of the outer world is updated by information originating from sensor
information. This process does not happen directly, but goes through several modules that
process the data (chapter 10). On symbolic level, this is represented by the creation of
microsymbols on the lowest level, followed by snapshot symbols. Representation symbols are
created out of snapshot symbols and are the main component of the inner representation.

There is also another source of information for the representation of the outer world, which is
found at the other end of the information flow through the system: the system uses the
representation of the outer world together with its history to look for anything that requires
actions to be taken or represents an important sequence of events. Such a sequence of events
is called a scenario and is described in section 8.4. Every time a scenario is recognized, the
system creates an additional symbol that is also included into the representation of the outer
world. If a detected scenario requires the system to take action, the according action series
symbols (section 4.1.3) also become part of the representation. This way it is possible to have
not only the external events present, but also the reaction of the system. Since the history of
representation is stored and not discarded immediately, a later analysis allows seeing how the
system reacted to the events in its environment.

54



8.3 Inner World Representation

The second representation is the representation of the inner world. In [S0l02] Solms identifies
an inner milieu of the human body that has vital requirements to be fulfilled by the human
being. Not being able to meet the requirements of the inner milieu will cause damage to the
body and must therefore be avoided. The ARS system has components that are not part of the
outside world, but belong to the system itself. Although the system’s possibilities to satisfy its
own needs (which can be translated to needs for power supply, communication and the like)
are very limited, it is still sensitive to define an inner world (and thus a representation of the
inner world). The “inner milieu” of the system contains all the components that belong to the
system, that is, all sensors and actuators, communication lines like fieldbusses and other
networks, and the computers that run the software of the system. Wherever possible the
system gathers information about the state of the system components and considers this
information for its applications. Therefore, the representation of the inner world is built in
analogy to the inner milieu of the human body.

Three things need to be stated: for once, the ARS system is not designed to keep itself alive
and use its environment to fulfill its needs. Instead, the system is designed to fulfill needs of
human users and keep up operation. At the level of hardware, the system in fact cannot fulfill
any of its needs™ — if a sensor, actuator or communication link fails, it has no means to repair
the component. Therefore, the inner world is understood as a collection of system status data
used for maintenance purposes. Second, any needs that result from the inner world have to be
fulfilled by, for example, a human operator. In other terms, the inner world as it is defined
here contains data that is used for two purposes: by human operators for system maintenance
and by the system itself to consider any known failures of system components. Finally, the
system is not designed to have full information about the state of all its components. It is, for
example, likely that a sensor fails without the system receiving information about the failure.
Therefore, the system has “white spots” in its knowledge about the state of its components,
where it will by default assume correct operation.

8.4 Scenario Evaluation

Using the world representation and its history, the system identifies sequences of events that
are of importance; these sequences are called scenarios and are defined for different
applications in chapter 11. Scenarios are a mechanism for recognition of events that are not
limited to an instant (or short time period), but stretch over longer periods of time. While
lower animals are not equipped with higher cognitive functions and live without a concept of
time (at least for periods longer than a few seconds), higher animals and especially humans
depend on memory of events in the past to evaluate situations. Such behavior is modeled by
scenario recognition. Typically, a scenario lasts from seconds up to a few hours; it requires a
certain sequence of events to take place while certain conditions have to be met. Since the
world representation is the base for scenarios to be recognized, these conditions and
sequences are available in representation symbols and their properties.

39 «“Needs“ in this context relate to the fact that the system requires repairs or maintenance; the
emotions mentioned in section 1.4, could be used, when the system has the “need” to react on a
situation; these are however two different concepts and the word “need” is be avoided elsewhere in this
work.

55



When a scenario has been recognized, the system can react to this scenario by triggering an
action. As opposed to classical control system, scenarios are based on symbolic information,
which implies that reactions are not dependent on sensor values, but rather consider the
context of the situation on symbolic level. Instead of defining sequences of sensor values that
need to be met, a sequence of symbols on representation level provides for abstract definition
of scenarios.

Recognized scenarios cause the creation of scenario symbols; this symbol (together with any
actions that are triggered by the scenario see section 8.5) becomes part of the representation,
thus allowing for a full view of the history of the system, its environment and the reactions of
the system by querying the history of the representation.

8.5 Action Subsystem

The ARS system is mainly observing the real world, its main focus is not the interaction with
the real world. Still it has actuators that it uses to influence the real world, which is available
to the system by the representation of the outer world. Once a scenario in the representation is
found, which requires action, the action subsystem is triggered to initiate an action. The
concept of symbolization is applied to activity of the system as well. There is only one trigger
for action in the system: a scenario that has been recognized and that requires an action to be
taken (see section 8.4). While a human being has multiple means to react on influence from
the real world, e.g. very fast by reflexes or comparatively slow by cognitive analysis of a
situation, the ARS system uses only a single mechanism for acting and reacting. If necessary,
this mechanism can be accelerated to behave similar to a reflex by reducing scenarios to
single symbols that need to be present. Due to the general passiveness of the system (it
observes rather than interacts), it is not sensible to implement multiple mechanisms for
interaction with the environment.

Application

Creates
action series symbol

Representation

Action Subsystem

Executes action series and creates action symbols accordingly

Figure 8.2 Based on an action symbol created by an application, the action subsystem
executes actions

When an action needs to be taken (e.g. a room needs to be heated), the action subsystem is
instructed to execute a sequence of action. This sequence manifests in the inner representation
of the outer world as action series symbols and action symbols*. Figure 8.2 shows an action

40 As stated in section 10.1, the representation consists not only of representation symbols, but also
contains scenario symbols, action series symbols and action symbols.

56



series symbol that is created by an application, because a scenario has been recognized (not
shown in the figure). The action subsystem starts processing the actions that are required for
the action series symbol; as the actions are executed, action symbols are written into the
representation. Thus, the interface to the action subsystem is the action series symbol: such a
symbol is sent to the subsystem, which then triggers the according set of action symbols. This
way the application that set the action series symbol does not have to deal with further
execution of the action. The feedback from the action subsystem to the other modules is
identical to the communication between all other modules: symbols are written into the
representation; in the case of the action subsystem these are action symbols. This way a
module can check, if an action is currently going on and modify its behavior accordingly.

9 Reference Applications and Services

The reference applications described in this chapter are taken from different domains, but
share a common environment. The main application area of the ARS system is building
automation, therefore the system is intended to be installed in a building, either an office or a
private home. In this environment the applications of the system are designed to fulfill
different tasks, each of them one specific task, but sharing common subtasks, like determining
the position of a person. In order to demonstrate the approach of the system, a set of
applications were selected from different domains, including person surveillance, geriatric
care and child safety. All applications need information about the environment that they
operate in.

The applications described here share a common setup of the environment: a number of
rooms on one or more floors are the “world” for the applications; this environment has a
layout that is identical for all applications — all applications work in the same world"
simultaneously. The sensors that are used are also identical, and mounted in the same
positions. In this way, the symbolization mechanism shares a common set of symbols*.

Applications run in parallel and their tasks (or subtasks) overlap, therefore the following
structure has been introduced: there are application services available that can be used by
applications; these application services have three basic tasks: person tracking, object tracking
and recognizing human activities. An application that needs an object to be tracked passes this
task to object tracking. The description of the object and all necessary algorithms need to be
programmed into object tracking for the new object, meaning that some parts of object
tracking are always different for each object; still, a set of algorithms and methods remains
identical and can be used for every different object.

Obviously, the system has only a limited understanding of the world it perceives. The fact that
cameras are installed does not automatically imply that the system is able to process all the
information in a way that is similar to a human operator observing and evaluating a camera
image. For example, suppose that a dog enters the room. Since the system has no initial
concept of a dog, it could possible perceived the dog as a "person" (or, at best, as a "child").

*I Most of the applications operate in the outer world as described in chapter 8, while maintenance
applications, which are responsible for the correct operation of the system itself, operate on the inner
world.

2 Although not all symbols have to be present in all applications.

57



Hence, the system is bound to make incorrect decisions if it is confronted with facts or events
that are outside the scope of its capabilities. This system attribute is intentional, since it does
not form part of the task that needs to be fulfilled. If we introduce a new application, which
makes it necessary to distinguish animals from persons, the knowledge of the system will
have to be extended.

Applications operate only on representation level, as shown in Figure 4.1. All the processing
being done in applications has impact only on representation layer (including scenario and
action series symbols). However, the design of an application is not limited to representation
level, because the symbols available there depend on symbols of both snapshot and
microsymbol level. Therefore implementing a new application most likely requires changes in
all modules, at least by defining new symbols on each level.

9.1 Environment Model

Aside of sensor information that builds the base for perception and thus understanding of the
current status of the world, the system needs information that cannot easily be obtained by
evaluating sensor information. There needs to be information about the environment available
in the system, which allows it to know about the layout of the building, the location of doors,
the location of objects that cannot be perceived and so on. This knowledge is used when
deciding the whereabouts of persons (e.g., in which room a person is). The information does
not originate from sensor information (rather in terms of blueprints and building layout) and
is described in detail in section 6.1. It is important to understand that the model of the
environment strongly depends on the application of the system: since the reference
applications described in this work are all located in the area of building automation or private
homes, the environment model reflects this fact by representing office buildings with a
determined structure that is covered in section 6.1. The environment model includes all static
equipment that serves no purpose for the perception of the system other than defining the
layout of the building. This includes all inventories that do not have sensors or actuators,
which cannot be controlled by the system. The stove, for example, is an important “active”
object for the application Child Safety (section 9.6) and is therefore not part of Environment
Model, but rather of Object Tracking (section 9.2).

Because the ARS system does not only deal with perception of objects and persons, there is
also a symbolic representation of rooms in the system, for one specific reason: the application
Comfort (section 9.8) is responsible for controlling climate and lighting in the building. To do
so, it operates in a similar fashion as the other applications, by processing symbolic
information and creating and modifying symbols. Therefore, the Environment Model
represents the room layout in a symbolic fashion, with additional information about climate
and lighting.

9.2 Application Service: Object Tracking

This application service supervises the whereabouts of objects. In a given room or building
the system monitors a set of objects; updates and changes like an object being moved or taken
by a person® are tracked by the system and stored into the history of the according

# Or the lack of changes, meaning a permanently present, unchanged object.

58



representation symbol. Object Tracking is therefore able to tell the location of an object and —
if applicable — the owner of an object.

The Object Tracking service® is based on the ability of the system to perceive objects, which
is done in the perception module (Object Recognition, see section 7.2). The service builds
upon snapshot symbols that have been created by Object Recognition. Since Object Tracking
operates on the representation of the outer world, there are not many symbols present and new
symbols are only rarely created. Instead, the existing symbols have to be matched with
incoming symbols from perception and transformed into updates of the perception symbols:
Perception will continuously report that, for example, a chair has been perceived at a certain
position. The task of Object Tracking is then to find a chair on representation level and make
sure that it is still the same chair as the one, which is reported by the current perception.

Object Tracking is an application service, because there are different applications that need to
know about the whereabouts of certain object. While each application is only interested in a
certain subset of objects and no application will likely use all objects that this application
service knows about, it is reasonable to group the task of object recognition into one
application service. For once, the relevant object for two applications might overlap (e.g., two
applications are interested in the whereabouts of chairs). In this case, the same recognition
process would have to be done twice, and would thus be redundant. Second, the mechanisms
for tracking are similar for different objects and therefore have to be available only one, if the
tracking of objects is grouped into one application service.

Not all objects need to be perceived visually; the stove, for example, which is needed in the
Child Safety application (section 9.6) is a fixed part of the inventory, still it can change its
status (being hot and thus potentially dangerous or not) and is therefore also included into
Object Tracking.

9.3 Application Service: Person Tracking

By making use of light barriers and motion detectors, pressure sensors in the floor, door
contacts, cameras and other sensors, the system is enabled to know where people are in a
building. People are considered anonymous, which means that the system has no additional
knowledge about their identity in terms of name, social security number, or similar
identities”. The system is able to provide information about a person’s current and past
location, so that the path of a person through a building can be tracked and monitored.

9.4 Application Service: Human Activities

Aside of knowing where persons are, an application needs to recognize what persons do. The
application service Human Activities builds on the application service Person Tracking,
Object Tracking and Environment Model and analyzes the basic activities of persons, such as
walking, running, sitting, or talking. Human activities are part of the representation of the
outer world and rely on a set microsymbols and snapshot symbols. Figure 9.1 gives an
overview of the relations between the basic activities and their dependence on other

* Note that applications and application services are written with capital letters in order to separate
them from common terms, e.g. when referring to object tracking in general.

* See also the comments about privacy in section 9.5.

59



Application Services. The arrows indicate contributions from other application services to the
creation of activities. Human Activities is responsible for the basic activities talk, lie,
sit, stand, walk and run. Activities are not exclusively managed by the Human
Activities application service. Additional activities can be added by other applications (Figure
9.2). In the system described here, the application Person Surveillance (section 9.5) adds two
higher-level activities work and meet ing shown in Figure 9.2.

Object Environment Person
Tracking Model Tracking

W ¢ e 4 AW

talk lie sit stand walk run

Human Activities

Figure 9.1 Relations between basic activities in Human Activities and other application
services

Activities are recognized based on different factors. For the activities stand, walk and run
the system first needs to identify that a person is within its range of perception. This is the
task of Person Tracking (see section 9.1). Based on the current position and the history of
positions the system is able to decide, which of the three activities fits best in the current
situation. The creation of the activities stand, walk and run does not need any additional
microsymbols, since it relies on the position information provided by Person Tracking. On the
level of snapshots all three activities are present as properties in the symbol osnPerson.
They are created from the difference between the last and the current position of a person and
information that provides the direction of movement (e.g. by triggering adjacent floor sensors
in a defined time span). Two thresholds in the speed of movement decide which activity is
most accurate. The lower threshold between stand and walk is close to zero, the threshold
between walk and run is selected so that perception can accurately select between persons
who walk or run. In the representation of the outer world, the three activities are also present
in the symbol person for representation (orpPerson), but the creation of such an activity
does not only respect the last position, but rather the history of positions. Since perception
might be incorrectly assigning activities or change between two activities at a high rate, the
representation uses more data to determine the activity more precisely.

Human Activities

sit talk stand
. N\ /
\ N\ /

A

work meeting

Object
Tracking

Figure 9.2 Higher-level activities "work' and "meeting" depending on basic activities

Person Surveillance

\ Person
J Tracking

1)

60



The activities sit and 1ie need both Person Tracking and either Object Tracking (section
9.2) or Environment Model (section 9.1). The two factors that are needed are: a person that
does not move and an object nearby, which is feasible for a person to sit or lie down. Since
Object Tracking only knows chairs in the work described here, it can only contribute by
providing the position of chairs. The Environment Model can also contribute feasible seating
object, if they are declared as such. Similarly, a person can lie only on an object that is known
to be a bed (either by Object Tracking or Environment Model). With the activity 1ie the
system also has to consider the option of a person lying on the floor, which is a possibly
dangerous scenario of the Geriatric Care application (see section 9.7) and is treated specially
in the according application. When the two conditions are met (still person, feasible object for
sitting or lying nearby), the according activity is created. It is present in the snapshot symbol
for a person (osnPerson) as well as in the representation symbol for a person, only that the
representation symbol filters for plausible activities using not only current perception, but also
historical data.

The activity talk is based only on aural information originating from the microphones in the
system. It does not depend on contribution of other application services, since all stream data
bypass the way of regular sensors (which are written into to the sensor database, see section
12.4.1). Processing of stream data is done directly in the sensor or an attached networked
device, should the sensor not be capable of doing the necessary processing. The activity
talk relies on the ability of the system to determine human sounds and discriminate those
sounds from environmental sounds (e.g. wind) or sound created by machinery (e.g. air
condition). The perception of this activity uses the microsymbols from aural sources and
creates the talk activity in the person symbol on snapshot and representation level
(osnPerson or orpPerson, respectively).

There are two higher-level activities that are derived from the basic activities (Figure 9.2): in
an office environment as assumed in this context, the activity work is important to be
recognized by the system. The abstracted model of a person doing desktop work is defined as
a person that sits and a table being in front of the person. Therefore, the activity work relies
on the activity sit and additionally needs Object Tracking or Environment Model to detect a
table in correct spatial relation. Again, the activity work is present on both snapshot and
representation level.

In the same context of office buildings, the activity meeting is defined as two persons
having a talk or discussing something. Aside of the activity talk we therefore need Person
Tracking to provide us with the information of another person being present in the same
room. The spatial correlation of two people is sufficiently described by either “being in the
same room” or ‘“close to each other”. Additionally, both persons have to either sit or

stand.

Aside of the perception of activities the application has the task to classify people. There are
three different classes defined: a child, a grown-up and a senior. This classification is needed
for the two applications Child Safety (section 9.6) and Geriatric Care (section 9.7). The
decision whether a person is a child or a grown-up is done by the height of the person (see
also section 9.6) and can be improved in future implementations. Seniors can per se not be
detected by the system; the system instead has to know a priori about persons, who need
special treatment; this information is also available to Human Activities, thus it is responsible

61



for classifying a person as one of the three defined classes. Since Human Activities is
expected to have more detailed analysis of persons and their activities than any other module
in the system, the task of person classification is assigned to it, as it will emerge as a side
result during analysis. The information resulting from classification is stored in a property
called 11 feStage in the representation symbol orpPerson.

9.5 Application: Person Surveillance

Person Surveillance deals with the whereabouts of persons and their activities. The term
surveillance may be misleading in the sense that the right for personal privacy might be
compromised by the system, but has been chosen nevertheless for the following reason:
systems that are available today do in fact have the potential to be abused for observation.
Closed Circuit Television (CCTV) systems with the possibility to record the events that are
monitored contain all the available information from a camera image. The Person
Surveillance system that is intended here goes the opposite direction: since the system itself is
able to process the available information, the sensor information — and especially the camera
images — does not have to be stored in order to reconstruct the events that have happened.
Instead the system processes all sensor information, symbolizes them and creates a world
representation that only contains information that is comprehensible for the system, for
example, where persons are or which activities they posses. These activities are limited to the
applications that the system implements. The information that two persons have met (i.e. had
a meeting) may be available, while information about the topic or what has actually been
spoken, is completely stripped from the symbol-based world representation.

This application is strongly based on the combination of two services: Person Tracking and
Human Activities. It combines them to gain a view of the world where persons are shown
together with their activities. The Application Person Surveillance does not create scenario
symbols, since the information that is relevant for this application is already represented in the
symbols of the inner representation of the outer world. It relies on position information
provided by Person Tracking (section 9.3) and the basic activities provided by Human
Activities (section 9.4). Using this information (and other information available from Object
Tracking and Environment Model) the application Person Surveillance creates higher-level
activities, derived from the basic activities. The two activities that are in the scope of this
work are work and meet ing (see also section 9.4).

Another task of Person Surveillance is to know, whether a person possesses a classified
object. To do so it cooperates with the application service Object Tracking to know about the
location of objects. When objects disappear or remain near a moving person, it is assumed
that the person carries the object in question. By setting the property possessor of the
object, this information is stored and available for later reference.

9.6 Application: Child Safety

The second application considered is a child safety system. The system recognizes when a
particular person is actually a child, and can monitor and guard the actions of the child. When
it appears that the safety of the child may be compromised due to a hazardous situation, the
system alerts a (human) supervisor. This is done by creating a scenario symbol indicating that
a dangerous scenario has been detected.

62



The decision that a particular person is actually a child is based on diverse sensor information,
similar to other mechanisms in the system. On microsymbol level, this includes the use of
camera images that allow a decision regarding the height and shape of a person, as well as
information from light barriers that are mounted at different heights. All this information is
collected and processed to set the property 1ifeStage in the symbol person, where children
are identified (and separated from grown-ups or seniors, respectively). Situations that are
classified as hazardous are: a hot stove, or a child climbing on a table. There are additional
conditions and criteria that have to be taken into consideration. For example, a situation is
only classified as hazardous if a child is alone and unattended (meaning that no adult is
nearby) and the stove is indeed hot.

9.7 Application: Geriatric Care

The third application is concerned with a geriatric system to care for elderly people. In this
case, the system recognizes when an elderly person collapses or faints. Furthermore, the
system makes use of Object Tracking by providing information of the whereabouts of
specified things. This is intended as a support for absent-minded seniors, who require
assistance in finding necessary items such as glasses or books. However, the main application
of Geriatric Care is still the safety of elderly persons. Aside of detecting collapses, the system
shall also know the position of an elderly person and communicate this position to personnel.
This way seniors, who are lost and are not in their usual environment, can be found by
support of the system. The necessary position information comes directly from Person
Tracking. Additionally, the application identifies a senior, who is lying or sitting in a room,
where the temperature has dropped to a possibly dangerous level (e.g. because the senior
opened the window and forgot to close it before going to sleep).

9.8 Application: Comfort

Controlling room climate and lighting in an office building or private home is a classical task
of building automation. The ARS system with its extended understanding of persons and their
activities can support HVAC (heating, ventilation, air conditioning) applications as well as
illumination. The difference to the other applications described in this chapter is the
permanent use of actuators: while other applications rely on observing objects and persons
without direct interference, the Comfort application permanently controls lights and air
conditioning systems. It is not the goal of this reference application to implement a new set of
algorithms for efficient comfort control, but to show how the use of sensors of different
industries can operate together to achieve a better result. This is still not common in today’s
building automation applications ([Lon02]), where each industry uses its own set of sensors
and actuators to fulfill its tasks. When the number of sensors increases this will result in more
and more redundant sensors, where redundancy is not used, but ignored by other applications.
Since the system described here is designed to use many different sensors to extract different
kinds of information for different applications, it fills the gap of today’s lack of inter-industry
interoperability.

The tasks that have been selected for the Comfort application include setting the room
temperature to a comfortable level*® depending on the presence of persons; the lighting level

* This is done by employing already existing HVAC systems and not by implementing a new system.

63



is set accordingly in order to implement not only comfort for persons working or living in the
environment, but to also use energy efficiently when rooms are not used.

9.9 Outline of Reference Applications

Figure 9.3 sums up the previously described applications and application services. The
services provided by the three application services (the environment model is not explicitly
mentioned here, since it is an integral source of information for all application services) are
used by the applications to fulfill the according tasks. The structure avoids redundancies and
thus inconsistencies, because different applications need similar information. By the set of
application services that is defined here, each task has to be done only once and not separately
for each application.

Person Geriatric o
m App“catlons
Person Object Application
Tracking

Tracking Services
Figure 9.3 Applications depending on Application Services

Human
Activities

A more detailed view of the interconnections between applications and application services is
given in Table 9.1. The information provided by Person Tracking is needed by all
applications, since it is not possible to operate on a person symbol and its properties without
knowing the position of the person. The different basic activities provided by Human
Activities are also needed by all applications, where Person Surveillance uses them to create
higher-level activities. Objects that are in the environment are used for different purposes in
the applications, either for higher-level activities (Person Surveillance), to detect possibly
dangerous situations (Child Safety) or to support elderly persons (Geriatric Care). The
application comfort has one special communication path, since it uses not only the basic
activities, but also the higher-level activities created by Person Surveillance; therefore it
depends not only on application services, but also on the output of another application. This
behavior is expected, especially when seeing it in the light of future extensions. Since
applications are thought of as functions or duties that the system has to fulfill (or, when
compared to the human mind: a goal that a person pursues), it is likely that the results of one
of the tasks contributes to the fulfillment of another task and that information, which is
available to the system, is used in many different, cross-linked paths. The implementation of
this cross-link is solved by sharing a common data pool, that is, symbols, which are
consistently available throughout all applications and application services.

64



Person Human Activities Object Tracking
Tracking
Person Surveillance yes stand, sit, walk, run, talk table, chair, placeholder
object (orange ball)
Child Safety yes stand, sit, walk, run, lie, all dangerous objects
classification of children (table, stove)
Geriatric Care yes stand, sit, walk, run, lie, glasses, keys (represented
classification of seniors by placeholder object)
Comfort yes stand, sit, walk, run; from
Person Surveillance: work,
meeting

Table 9.1 Requirements of basic functionalities by each application

This pool of symbols is stored in a database and accessible by a communication infrastructure
(see section 12.3). In principle, every module can access all information, since there are not
access restrictions implemented on communication level. Still, applications access different
sets of symbols than applications services as shown in Figure 9.4. While application services
are responsible for creating and updating lower level symbols (i.e., perception and
representation symbols), the applications use these symbols to create scenario symbols
(which, consequently, cause the creation of action and action series symbols)*’. It is also
important to understand that every application needs the whole system, which means that the
introduction of a new application (i.e. giving the system a new goal that it should pursue)
might require changes on all symbol levels. This is because a new application, e.g. adding
gesture control to the comfort application or voice control for the whole system, has new
requirement to perception of the environment. To understand gestures the system needs a
much more fine-grained visual image of the person that interacts with the system, therefore
more microsymbols, snapshot symbols and properties for representation symbols are
necessary. Figure 9.4 does not show these relations, it rather shows the hierarchy between
applications and application service and their allocation in the different levels of symbols.

- ) Person Geriatric Child o
< Care >< Comfort >< Safety > Applications
Person Human Object Application
Tracking Activities Tracking Services

Figure 9.4 Applications and application services access different levels of symbols

snapshot symbols

microsymbols

*7 Note that the top three categories are also considered being part of the representation; they augment
the representation symbols and become part of the representation (section 4.1.3).

65






PART III: Concepts and Results

This part describes the concepts and methods, which lead to a prototype of the model that has
been designed. Sensor data is obtained in two different ways: a real-world implementation is
used to get accurate sensor data, while a simulated environment is used to generate big
amounts of data, which would be infeasible to generate in a real-world installation. The
interface to these two different data sources is identical and is implemented as a database for
sensor values. The symbolic alphabet that builds the core of the model is described and
assigned to the reference applications. The communication infrastructure, which is necessary
to run the distributed system is explained. Finally, visualization and simulation are described.

10 Module Description and Data-Flow

This section describes the system design in terms of information flow and software design.
The description consists of two parts; the first part contains the description for the data flow
that leads to the inner representation of the outer world. It explains all modules necessary to
get there and showing how data are exchanged between the modules.

The second part describes how the representation of the inner world is created. The modules
and data flow paths are very similar to the ones in the first part — an intentional design
decision. The two representations of the inner and outer world shall be created in similar ways
(the system shall use the same mechanisms no matter whether it “looks” inside itself or into
the real world). In fact, the modules are partly identical, using only different sets of symbols
and associations to combine them. Still it is important to separate the two representations with
all their data paths and data records.

10.1 Modules for Outer World Representation

The source of real world information is the sensor data, which is collected in a database
scheme described in section 12.4.1. The first processing step is done in a module called
microsymbol factory (Figure 10.1); it creates microsymbols based on sensor data and writes
these microsymbols into the database scheme described in section 12.4.1. Microsymbols are
the information source for creating snapshots. Snapshots contain the current state of the
world; they are created in the perception module and use the information from microsymbols
to create a snapshot that is eligible to become the next update of the world representation. The
step from snapshot symbols to representation symbols is done in the representation module.
The task of the representation module is to take the snapshot symbols that have been created
and evaluate them. If they fit as a plausible continuation of what has been the world
representation so far, the representation is updated. It may discard snapshot information that
appears not plausible and it may insert information that was not perceived by the perception
module.

67



S
E Microsymbol S Perception
Factory o Module

Sensor
Values \—— Microsymbols

A 4

Snapshot

Application Symbols
Framework |gcenario
Symbols .
<<App“0aﬁons - QA Representation
) — Module
Representation

Symbols
Application
Services Ej Sensor

\—;—) Database
Action Series —— Symbol
Symbols . i
Action Symbols Database

Action

Subsystem

Figure 10.1 System components and data-flow for outer world

The representation with its different symbols is the highest level of symbolization that is
created in the ARS system. To get such a representation the information from sensors has to
be processed by all modules (with additional symbols added by the applications whenever a
scenario is recognized, see section 8.4 and 8.5). As opposed to pure perceptions (which
manifest as snapshots) the representation contains information that is augmented by
knowledge about “how the world works” (section 1.2.1) and can be used in combination with
additional knowledge to which the system has access. Thus it represents information of higher
quality — a lot of condensed information is used and combined with knowledge.

Based on the representation of the outer world and its history the system looks for scenarios
(see section 8.4). A scenario represents a (temporal) sequence of events that were perceived
by the system. An application (section 9) that runs in the application framework therefore has
to define one or more of these scenarios*.

Only when an application recognizes a scenario an action is triggered. A common action is to
notify a human operator that a certain scenario has taken place, other actions include control
of actuators by using the action subsystem (section 8.5), such as adjusting the room
temperature or lights. There is no ‘“shortcut”, which would allow faster reaction by, for
example, triggering directly on a single sensor input™.

Modules are designed to work as stand-alone pieces of software, therefore each interface they
have to another module has to be defined according to the specifications in section 12.3) and
use only the mechanisms described there. This way the system can be designed in a modular

* An example taken from the geriatric care application: a senior goes to sleep, leaves the window open
and the temperature in the room drops to a possibly dangerous level.

* This would be an analogy to a reflex in a human being — a fast system reaction that circumvents the
higher cognitive functions, similar to the subsumption architecture described in section 1.1. Although
possible, it is not in the concept of this system in order to avoid unnecessary complicatations. The one
existing mechanism that triggers actions should suffice the requirements of the applications.

68



way and extended without knowledge of all system components. This is vital, since for once it
is expected to continue development on the system for future projects; second, the different
components might consume considerable resources (at least in the prototype implementation),
which could lead to bottlenecks, if the complete system would have to run on the same
machine. This modular design rule is also a reason why the “reflexes” mentioned above are
not implemented. If, for extended application scenarios, they appear sensitive to be
implemented, a new interface between application and sensor database would have to be
defined.

The exchange of information between the different modules as shown in Figure 10.1 is
backed by databases: the sensor database (section 12.4.1) and the symbol database (section
12.4.2). The microsymbol factory creates microsymbols from sensor values and writes them
into the symbol database. From there the perception module reads microsymbols and creates
snapshots that are written into the symbol database. Similarly, the representation module
reads new snapshot symbols and updates the representation symbols in the symbol database.

The representation symbols that make up the representation of the outer world are examined
by the applications running in the application framework to find scenarios. If a scenario is
found, the application writes a scenario symbol back into the database. This implies that the
representation module has to query the database, if it wants the complete representation,
including the scenario symbols.

When an application has recognized a scenario that requires actions to be taken, it does so by
writing an action series symbol into the symbol database; this is read by the action subsystem,
which executes the action series. The action symbols that are required by the action series are
created by the action subsystem and written into the symbol database.

10.2 Modules for Inner World Representation

Figure 10.2 shows the modules and data flow for the process that creates the representation of
the inner world. The modules are named identical to the definitions in section 10.1 and have
identical functionality. The sensor database on the left is now the source for data coming from
the components of the system. This includes status information of sensors, reports about
failures in the network, error messages from the communication system, actuator failures and
so on. The rest of the process up to the representation module is identical. An instance of the
microsymbol factory applies its methods and algorithms to create microsymbols as pieces of
perception of the inner world; the perception module assembles these microsymbols to create
snapshots of the inner world and the representation module builds the representation of the
inner world.

There is no dedicated action system that uses the representation of the inner world. If the
representation module finds failures in the system, it writes an according symbol into the
symbol database. The substitute of the action system (not shown in Figure 10.2) is a
periodical scan for error symbols; if an error is found, it is reported to a human user.

69



Perception
Module

Microsymbol
Factory

A\ 4

Sensor &

Status
Information Snapshot
Symbols
Sensor .
Database Representation
Module
@ Symbol

Database Status Information

about System Components

Figure 10.2 Data-flow for representation of the inner world

11 Symbol Definitions

Symbolic processing requires a set of symbols; this alphabet of symbols is presented here,
assigned to the reference applications presented in chapter 9. The symbols belong to different
applications and are located on different levels of symbolization, they are listed with their
properties, of which some may be modified by different applications, thus a symbol does not
exclusively belong to one application.

In this chapter the symbols defined, which are then used during operation. While the
definition of symbols is static and remains unchanged during the lifetime of the system, they
are nevertheless repeatedly instantiated during runtime of the system. Consequently, symbol
instances are destroyed at the end of their lifetime. To avoid the lengthy term "symbol
instance" in the following text, the differentiation between symbols and symbol instances is
not mentioned; whenever symbols are created or destroyed, this refers to instances of
symbols, not to the definition of symbols.

11.1 Symbol Categories and Naming Conventions

The different classes or levels of symbols that have been introduced in section 4.1 are used in
the implementation to create the symbolic information-processing scheme that is a vital
concept of this system. The symbol hierarchy starts at microsymbols, which are created only
out of sensor data, followed by snapshot symbols, which contain a momentary view of the
world as the system sees it. Snapshot symbols are created by evaluating microsymbols and
build the base for representation symbols. These three layers build the “passive” part of the
system, where the system observes its environment (or inner world) and creates a
representation of this world. The active parts of the system include creating scenario symbols,
which means that the system was able to identify a scenario (which usually requires some
action to be taken). Action series symbols are made up of action symbols and are — together
with the scenario symbols — also part of the world representation. They are created by the
system whenever interaction with the world is required; this includes notification of a human
operator as well as modifying room climate settings.

Symbols can be created and destroyed; lower level symbols typically have a shorter lifespan
than high-level symbols. A symbol can have one or more properties, which contain further
information relevant for the symbol. Properties can be updated individually by different

70



applications. However, if a symbol is destroyed, all according properties are destroyed as
well, since properties cannot exist alone.

Symbols are commonly specific to an application or application service. This means that
implementing a new application requires new symbols to be created on all levels™. However,
symbols do not need to be unique for each application; especially on representation level the
number of symbols is low, meaning that different applications can work on the same symbol,
e.g. by modifying different properties.

In order to avoid ambiguities between symbols of different levels’' some naming conventions
were adopted, which indicate what kind of symbol is used. Aside of different levels the
system also knows the inner representation of the outer world and the representation of the
inner world (see section 8.2 and 8.3). Although the symbols existing in both representations
are not similar, the affiliation of a symbol to inner or outer world representation is also
indicated.

Symbol level and inner or outer world representation are indicated by a prefix to the symbol
name: first, the representation is pointed out by either an “o” for outer or “i” for inner world
representation. The following two letters provide the symbol level:

e ms for microsymbol

e sn for snapshot symbol

e rp for representation symbol
e sc for scenario symbol

e ac for action symbol

e as for action series symbol

The microsymbol for a footprint originating from a tactile floor sensor is therefore called
omsFootprint, the representation symbol for a person is orpPerson.

If ambiguity is still possible, e.g. because different sensors create a similar microsymbol, but
with a slightly different meaning, the type of sensor creating a microsymbol can be appended
to the end of the microsymbol name:

e 1D for light barrier

e md for motion detector

e ts for tactile floor sensors

e irH for infrared height sensor
e mi for microphone

e ca for camera

For descriptions that are more detailed this suffix may be extended, for example, 1b1 for
light barriers of type 1, 12 for light barriers of type 2, and so on.

%% Implementing new applications can be compared to the system “learning” new skills.

31 A person symbol created on snapshot level is different from a person symbol created on
representation level: snapshots only exist for an instance, while representation symbol persons only
have their properties updated.

71



11.2 Environment Model

Aside of perception, which is responsible for persons and objects, there is additional
knowledge in the system. The environment, meaning the layout of the rooms in the building,
is not perceived by sensor information. The ARS system is not designed to understand and
reconstruct the layout of rooms; this information is available a priori (see section 6.1). Still,
some of the information about the environment is available symbolically, by means of
representation symbols. It is used for the application Comfort (section 11.9), which controls
climate and lighting in the building. The Environment Model defines only one representation
symbol.

orpRoom: A static representation symbol that is created upon start-up of the system and
never destroyed. It represents one room in a building (where “room” means all places where
persons can be, including halls).

Properties

orpRoom has two properties, temperature and humidity, which contain information
about the climate in the room and 1ighting, which represents the illumination level in the

room.

11.3 Application Service: Object Tracking

The task of the application service Object Tracking is to identify and follow objects that are
not static, but can be moved around in the environment. One special object is the stove, since
it is actually part of the layout and cannot be perceived by the system, but it is still part of
Object Recognition, since it can change its status from harmless to possibly dangerous.

The objects of interest defined here are a table, a chair and an orange ball. Table and chair are
used for the child safety application and for general purposes of person surveillance (i.e.
position determination and activities like “working”, which requires the presence of a table).
An example for perception of a chair is given in section 7.2.1, perception of tables happen
accordingly. The orange ball is a substitute for more complex objects, which require deeper
integration of image recognition methods. However, covering image recognition as a separate
research topic is not the goal of this work. The orange ball is an object that is commonly used
in, for example, robot soccer, where autonomous robots determine the location of the ball and
score a goal. It is easy to detect, since it has a distinctive color and a shape that is identical
from all side. Therefore, it is used here as a placeholder for other, more complex objects, if
the focus is on the application around an object and not the perception of the object itself.
Such an application is, for example, the support of elderly people in finding lost objects
(glasses, keys, books and the like, see section 9.7). Although it is a complex task to detect, for
example, glasses in a real-world environment, the application itself is modularized and can be
interfaced and separated from the object recognition itself. More advanced image recognition
methods can later substitute the orange ball object by more sophisticated objects with little
interference to the application.

Object recognition relies heavily on the sensors that are suited best for the task: cameras.
Since it is hard to perceive different objects by use of sensors like motion detectors or tactile
sensors, the focus of object recognition is on visual perception. Cameras provide a constant
stream of images and are therefore treated specially in terms of data storage: compared to

72



other sensors the amount of data originating from cameras is considerably higher and cannot
easily be stored in a database as described in section 12.4.2. Therefore processing of video
data is done differently in the lower layers of perception: the input stream is processed in a
separate application (that may run on a separate machine). The whole process of object
recognition is contained in a piece of software, which has the implication that recognized
objects are transformed into symbols directly (see also the comments on privacy in section
9.5) Aside of this peculiarity the flow of symbols is identical: Object Recognition creates
symbols and writes them into the database, where they can be used by other applications or
application services, especially the Object Tracking application service described here. The
symbols created by Object Recognition are defined below.

As stated earlier, these objects represent a certain set of generic tables or chairs without the
requirement of being able to perceive every possible object that belongs to these classes. In
the real world, there are many different types of chairs, which the system is unable to perceive
as such; the same applies for tables’”. By adding different descriptions of the same class of
object (i.e. more different tables or chairs), the system becomes enabled to perceive a more
complex environment. A prototype chair is described in section 7.2.1; the definition of a table
describes a regular office table, with a rectangular desktop and four legs, one at each corner.
Accordingly, the property dimension consists of a length and a width and the only other
property needed (aside of the position, which is a common property of all objects) is the
height, at which the desktop is located. The chair needs some additional information: aside of
the height of the chair seat the orientation is also important. This is done by providing the
position of the chair back.

11.3.1 Snapshot Symbols

osnTable: A table object on snapshot level, which contains the properties position,
indicating the center of the table, dimension, which contains the length and width of the
table and height, which contains the height of the desktop.

osnChair: Similar to the table, this symbol represents a chair with its properties
position, containing the center of the chair, seatHeight for the height of the chair seat
and chairBack, containing the position of the chair back.

osnOrangeBall: The orange ball, which is used as the placeholder for other objects has
just t property, position, containing the position of the ball.

11.3.2 Representation Symbols

The snapshot symbols created by Object Tracking can be mapped directly onto the
representation symbols of Object Recognition; they build the base to update the whereabouts
of representation level symbols.

orpTable: A table with its properties position, indicating the center of the table,
dimension, which contains the length and width of the table and the height of the desktop,
contained in the property height.

52 The orange ball object is different, since it is a placeholder that is defined as being unique in its
shape and color. Chairs and tables do not have a possessor in this model.

73



orpChair: Similar to the table, this symbol represents a chair with its properties
position, containing the center of the chair, seatHeight for the height of the chair seat

and chairBack, containing the position of the chair back.

orpStove: The stove is only present on representation level, because it does not have to be
perceived visually. Its existence and position is given to the system as a priori knowledge.
The task ob Object Tracking is to track the changes of its status: when the stove is not turned
on and cold, it is harmless, which has influence on the Child Safety application, described in
section 11.7. A hot stove is a possibly dangerous object and the information about this
possible danger is contained in the property i sHot.

orpOrangeBall: The orange ball object has a new property on representation level: the
possessor. This is a reference to a person of which the system assumes that it currently
possesses the object (e.g., a person has taken a book). The application Person Surveillance
(section 9.5) sets this property by observing symbols on snapshot and representation level. If
an object remains unchanged (e.g. a book lying on the table), the system knows about this
fact. If a person comes close to the book and the book can afterwards not be located again, the
system assumes that the person now possesses the book. Even if the system is not able to
detect all the details of the scene (i.e. the person actually taking the book), the assumption is
still valid (with a certain credibility). This shows one of the core properties of perception:
information that is not available by sensory input is replaced by knowledge about “how the
world works”. Even if the scene described above were perfectly visible from all sides by use
of many cameras, the effort to detect the actual act of a person taking an object requires a lot
of computational and algorithmic effort, whereas the much simpler assumption of “there was
an object, then the person came and the object was gone” benefits from a priori knowledge.
The requirements to image processing decrease, because it is not necessary to detect body
parts and their spatial and temporal relations; instead, a “differential image” of the scene
before and after suffices.

11.4 Application Service: Person Tracking

11.4.1 Sensors

The application service Person Tracking uses the most diverse set of sensors to determine the
position of persons in a building. Light barriers, motion detectors, tactile floor sensors,
microphones and cameras are used and combined to determine there whereabouts of persons.

e Light barrier type 1: single barrier mounted across floor or hall

e Light barrier type 2: two barriers mounted closely together to detect direction of
movement

e Light barrier type 3: set of light barriers mounted vertically above each other

e Motion detector: mounted on a wall at half the distance between floor and ceiling
with sensitive area of a wedge; alternatively it can be mounted on the ceiling with a
sensitive area of a cylinder

74



e Tactile floor sensor type 1: single sensor mounted on the floor with a sensitive area of
a rectangle breadth time width

e Tactile floor sensor type 2: array of sensors mounted on the floor, each without
physical dimension (single point)

e height measuring sensors: infrared sensors mounted above persons (e.g. in a door) to
measure the height of a person

e Microphone type 1: mounted anywhere in the building; detect noise in a room

e Microphone type 2: array of microphone able to detect a sound source

e (Camera: color camera defined by resolution, frame rate and visual area

11.4.2 Microsymbols

Due to the many different sensors that contribute to Person Tracking there is also a number of
microsymbols defined. As is common with microsymbol, there are not many properties in a
single microsymbol; instead, the number of microsymbols is important. Symbols with lots of
properties are common on representation level, but not on microsymbol level. If a
microsymbol has properties, they are listed in the according section.

omsInterrupted: This microsymbol requires a single light barrier to be triggered from 1
to 0 (where 1 means “not interrupted”). The timestamp for the creation of the symbols is set,
the end timestamp is set to infinity. Once the light barrier is not interrupted again, the end
timestamp is set and the microsymbol is terminated (see Figure 11.1).

Properties

position: The position for an interrupted light barrier is represented as a line that goes

from the start to the end point of the barrier.

creation of new creation of new
, omsInterrupted omsInterrupted

not interrupted

interrupted

time
Figure 11.1 Creation of a microsymbol based on de-bounced sensor data

This symbol is also created by a set of light barriers (light barrier type 3), but only once and
not for each light barrier of the set. The time representation of this symbol is “period”.

omsObstructedLb: If a single light barrier or set of light barriers is interrupted for a time
longer than a definable t;,., this microsymbol is created with the beginning timestamp being
the first interruption. When the light barrier is free again, the ending timestamp is set and the
symbol is terminated. While this symbol exists for one specific light barrier, there cannot be a
symbol omsInterrupted or omsObjectPassedByLb2 for the same light barrier.

75



Therefore, all existing symbols for this specific light barrier or set of light barriers have to be
terminated before. A light barrier that is blocked by an object or a person is not necessarily
useless to the system. It may easily happen that a person stops and blocks a light barrier, in
this case the light barrier contributes to location information of that person by the
microsymbol omsObstructedLb. The time representation of this symbol is “period”.

Properties

position: The position for an interrupted light barrier is represented as a line that goes
from the start to the end point of the barrier.

omsObjectPassesByLb2: When two light barriers mounted closely together are triggered
consecutively, the direction of the movement is derived and written into the property
direction. The symbol is created when the first sensor is triggered (meaning interrupted
for a time not longer than t;,.), followed by the second sensor being triggered (which shall
not take longer than time t,.,) and both sensors resetting to uninterrupted state. Similar to
single light barriers this sensor might be obstructed. If either of the two barriers is obstructed
for a time period longer than t;,. the symbol omsObjectPassesByLb2 is destroyed and
a symbol omsObstructedLb is created. The time representation of this symbol is
“period”.

creation of new
omsObjectPassesBy_1b2

------- light barrier 1

not interrupted .............. E e __ ||ght barrier 2
H -

1

1

1

interrupted ] JU

time

Figure 11.2 Creation of microsymbol omsObjectPassesBy 1b2 using two adjacent
light barriers

Properties

position: The position for an interrupted light barrier is represented as a line that goes
from the start to the end point of the barrier.

direction: the direction can have two values that represent left or right. The convention
for these values is to look from the side where the receptive device of the sensor is mounted
(which might be the device that includes the photodiode and the light source or just the
photodiode). Looking from this point into the area where the light beam goes to defines left
and right. Naturally, it is not possible to define a global direction for a single sensor; therefore
the direction relative to the sensor is used. The above definition assumes that both light
barriers have the receptive device mounted next to each other. If this is not the case, an
arbitrary definition has to be used.

76



omsPersonHeightLb3: A set of vertically mounted light barriers at different heights is
used to determine the height of a person. The symbol is created when all light barriers starting
from the lowest position up to a certain height are interrupted. Note that a person walking
through such a set of light barriers creates two symbols: omsPersonHeightLb3 and
omsInterrupted. If one of the light barriers stays interrupted for longer than time t;,.,
no new symbol omsPersonHeightLb3 is created, but rather omsObstructedLb (only
one symbol for all light barriers of the set).

Other patterns than the one for determining the height are ignored and do not create a symbol,
except if one of the light barriers stays interrupted for longer than time t;i.., then

omsObstructedLb is created. The time representation of this symbol is “instant”.

Properties

position: The position for an interrupted set of light barriers is represented as a line that
goes from the start to the end point of the (parallel) barriers.

height: the detected height, derived as the mean value between the two light barriers
involved, that is, either the last light barrier that was not triggered or, if all light barriers have
been triggered, the predefined maximum size (defined by the layout of the area where the
sensor set is mounted).

omsPersonHeightIrH: This microsymbol is created by the height-measuring sensor.
When a person passes by underneath such a sensor and the height can be reliably determined,
omsPersonHeightIrH is created, indicating that additional information (the height) about
the person is available. The time representation of this symbol is “instant”.

Properties

height: the height of the person as detected by the sensor like the property height in
omsPersonHeightLb3, only more precise.

omsObjectMovesMd: This microsymbol indicates that an object or a person has moved in
the sensitive area of this motion detector, which is modeled as a wedge or a cylinder,
depending on where the sensor is mounted. Unlike light barriers, a motion detector is not
blocked when a person remains in its sensitive area. In order to avoid the creation of too many
symbols in a short time, this symbol has a timestamp for begin and end (like
omsInterrupted). When the microsymbol is created the begin timestamp is set; the end
timestamp is only set when no more object or person is detected in the sensitive area. If there
happens to be more movement later on, a new microsymbol is created.

If a motion detector has time hysteresis, meaning that it triggers upon movement and stays
active for a defined time period, this behavior is reflected in the microsymbol: it is created
and the end timestamp is set when the hysteresis ends. The time representation of this symbol
is “period”.

77



Properties

position: The position for a motion detector is represented as a wedge or a cylinder,
depending on the active area of the sensor.

omsFootprint: When a tactile floor sensor is triggered, this microsymbol is created.
Along with all other microsymbols, a footprint does not carry along the physical properties of
the sensor; in the case of the footprint, this means that the contact, which triggers it, has to be
de-bounced in order to avoid creation of too many microsymbols in a short time.
omsFootprint is created by tactile floor sensors; if these are replaced by more advanced
sensors that are able to measure weight or dynamic characteristics of a walking person, this
microsymbol will have to be extended (or replaced by another one). Since the sensors used
here have only a binary output, they indicate merely whether they have been triggered or not.
Similar to omsInterrupted, this microsymbol has a begin timestamp that is set upon
creation and an end timestamp that is initialized with infinity and set when the sensor is no
longer being triggered. The time representation of this symbol is “period”.

Properties

position: The position for a tactile floor sensor is represented as a point or a rectangular,

depending on the active area of the sensor.

omsNoise: The basic microsymbol that is created by a microphone. It indicates that the
microphone has received sound with an intensity higher than a definable threshold. The
microsymbol is created when the sound is received with the end timestamp set to infinity; the
end timestamp is set when the sound falls below the threshold. This microsymbol is intended
to contribute to person detection in a room, assuming that persons make noises. Of course, it
will also be triggered by any machine or event that is noisy, but the decision whether a person
is in the room is done at a higher level anyway. The time representation of this symbol is
“period”.

Properties

soundPosition: The position is the room where the sound is detected or, in case of big
rooms, a rectangle that is limited to the vicinity of the sensor.

omsSoundSource: This microsymbol is created by a microphone array that is able to
locate sound sources. If the underlying algorithm is able to detect multiple sound sources,
then multiple microsymbols are created. The time representation of this symbol is “period”.

Properties

soundPosition: The position of the sound source represented as a point.

11.4.3 Snapshot Symbols

This section contains the list of snapshot symbols that are created by the Person Tracking
application service.

78



osnPerson: When the system has found evidence that it currently perceives a person, it
creates this symbol and sets the property position. The information contained in this
symbol is sufficient to create a representation symbol of a person, the representation has no
access to microsymbols.

Properties

The following are the properties in osnPerson that are set by the application service Person

Tracking:

position: The position of this person as it can be derived at this time. From the sensor
information that is contained in the microsymbols of the Person Tracking application service,
different possibilities arise. A single light barrier can only define the position of a person to be
along a line, a motion detector has location information in the shape of a wedge or a cylinder.
The determination of the position takes all available position information into account; this
includes all microsymbols that contribute to position information and the quality of their
information. The resulting position is in general a shape in three-dimensional space, where a
few simplifications may be applied. Persons have a shape that cannot be perceived by any
sensor (with the exception of cameras). This information is added to the snapshot symbols
without actually having been registered by sensors. A light barrier, which is triggered by a
person has no information about the z-axis of the position, therefore the snapshot symbol in
this case will have a z-axis that is on the floor — assuming that persons remain on the floor
most of the time. Only in special cases (e.g. the child safety application described in section
9.6), the z-axis position will be different from being on the floor.

The following microsymbols contribute to position information with a specific geometric
shape (the sensitive area of the sensors triggering the microsymbol):

e light barrier: line

e motion detector: wedge or cylinder
e floor sensor: point or rectangle

e microphone: rectangle

e microphone array: point

o height sensor: rectangle

Overlapping microsymbols are used to further determine position and result in other
geometric shapes. A snapshot symbol always contains only one geometric shape as the
position of a person, which is a point, a line, a rectangle, a triangle or a circle™.

direction: the direction of a person as a three dimensional vector.

height: the height of the person as it originates from the height-measuring sensor or the set
of light barriers

> Whenever the output of an intersection cannot be mapped onto one of the basic shapes (e.g.
intersection of a circle with a rectangle), simplifications are applied, i.e. the resulting shape is described
by one of the basic shapes.

79



osnPersonEnters: When the system has found that a person leaves one room and enters
another, this snapshot symbol is created. It is closely related to the definition of the office
environment defined in section 6.1.1. Based on the different microsymbols,
snPersonEnters indicates that a person has left one room and entered another one. Room

refers to a real room, not to the cuboids that make up a room.

Properties

roomFrom, roomTo: the room identifiers of the two rooms that are involved.

11.4.4 Representation Symbols

orpPerson: The application service Person Tracking creates this symbol when a new
person is identified. In existing symbols, the Person Tracking application service sets only the
property position. This symbol is based on the snapshot symbol snPerson; while
snapshot symbols are created every time the system perceives something new (which can be
multiple times per second), the representation symbol persists as long as the person is within
the area that is observed by sensors. The task here is to connect single snapshots of persons to
one continuous representation of a person.

Properties

The application service Person Tracking sets only one property in orpPerson:

position: The position as it is calculated by the representation module. It takes the position
of the snapshot symbols snPerson, both present and past positions and finds the most
reasonable position.

11.5 Application Service: Human Activities

The application service Human Activities adds additional information to a person, indicating
which activity this person currently pursues. The activities, which are in the scope of the
application service include: actLie, actSit, actStand, actWalk, actRun,
actTalk as general purpose activities (see section 9.4) and actWork, actMeeting as
higher-level activities that are set by Person Surveillance (section 11.6).

11.5.1 Activities

The different activities are based on various events and objects that need to be present. The
activity actLie is set when the person is still and an object feasible for lying (i.e. a bed) is
next to the person. Similarly, actSit requires a still person and a chair to be present, while
the actStand activity only requires a still person without any additional objects. The
activities actWalk and actRun are determined by a speed boundary between the two
(another speed boundary is between actStand and actWalk). Determining whether a
person talks would require speech recognition abilities or at least deep aural data analysis,
therefore actTalk is simplified by defining that a person has the activity talk, when there is
audible sound in the room detected by the microsymbol omsNoise or omsSoundSource.
A person is considered to be working when a table and a chair are present (basic requirements
for desktop work). The activity actSit is therefore a trigger for the activity actWork (see

80



section 11.6). A meeting is defined as having at least two persons in a room and the activity
actTalk occurs as well.

All the above described activities have a longer time horizon, meaning that, unlike the
snapshot symbols, the time frame for activities is not an instant (or short period of time), but
rather a period of some seconds or minutes.

11.5.2 Representation Symbols

The application service Human Activities does not create new symbols, but rather sets
properties in the representation symbol orpPerson.

Properties

The activities described above are mapped directly onto properties of the representation
symbol oprPerson with a prefix to indicate activities: actLie, actSit, actStand,
actWalk, actRun, actTalk. These activities can partly occur simultaneously, some of
them are required for higher-level activities that are set by Person Surveillance (section 11.6).

Additionally, Human Activities sets the property 1ifeStage, which classifies children,
grown-ups and seniors. Children can be separated from grown-ups by analyzing visual data or
by obtaining height information from an array of light barriers; the presence of a senior has to
be available as a priori knowledge, because they are a group of people, who require special
treatment, but cannot easily be distinguished from regular grown-ups.

11.6 Application: Person Surveillance

Person Surveillance relies on Person Tracking and Human Activities to determine the position
of persons and analyzes the activities of persons based information. It is responsible for
creating the representation symbols for persons and for updating some of their properties (see
below). This application has two tasks: determine the position for person symbols on
representation level and create additional activities (derived from basic activities of Human
Activities).

Aside of the central representation symbol orpPerson the application Person Surveillance
does not create any other symbols.

orpPerson: Like other representation symbols, this symbol is rarely created or destroyed,
but frequently updated. If such a symbol shall be created (e.g. because a new person enters the
environment), then it is done by Person Surveillance. By evaluating snapshot symbols
(osnPerson), the property position is frequently updated; the two higher-level activities

actWork and actMeeting are set.

11.7 Application: Child Safety

Child safety observes persons that are classified as children and detects possibly dangerous
scenarios. Aside of knowing the persons position, the possibly dangerous objects need to be
considered. These objects come from Object Tracking (section 11.2) and are table and stove.
Regarding tables, the system has to observe children that climb on top of it and regarding the
stove, the possibly dangerous situation is an unattended child near a hot stove. Both are
treated as scenarios, therefore the system sets scenario symbols, when it detects one of the
situations.

81



The application Child Safety does not create or modify any symbols on representation level or
below, it only creates scenario symbols and action series symbols.

11.7.1 Scenario Symbols

oscChildInDanger: When a possibly dangerous scenario has been detected, the
application Child Safety creates this symbol.

Properties

As additional information, the symbol oscChildInDanger contains the property
dangerType, which indicates the type of possibly dangerous situation that has been
detected (which can be either the hot stove or the child climbing on a table). Furthermore,
there is a link to the child, which is possibly endangered; this is stored in the property
person. If there are objects involved (which is the case in the two sample scenarios covered
here), a link to these objects is also available in the property objects.

11.7.2 Action Series and Action Symbols

oasInformOperator: A reaction to the detected scenario is the notification of a human
operator. As with all action series symbols, casInformOperator is processed by the
Action Subsystem (section 11.10).

Properties

When triggering the Action Subsystem, the necessary information for the system to react
accordingly needs to be present in the action series symbol. The information that Child Safety
passes on when requesting a notification to the operator, contains the cause (stored in property
cause, which contains the information that a child is in danger) and the persons and objects

involved (stored in the properties person and objects).

11.8 Application: Geriatric Care

Geriatric Care supports supervision of elderly people by three tasks: it detects possibly
dangerous situations, which have been defined as a senior collapsing and a senior staying in a
cold room for long time (section 9.7), it helps to locate seniors who are disoriented and cannot
be found by the supervising personnel, and it helps the senior by locating objects of interest
(e.g. glasses, keys or books — which, for this work, have been substituted by a placeholder
object).

11.8.1 Scenario Symbols

oscSeniorInDanger: When a possibly dangerous scenario has been detected, the
application Geriatric Care creates this symbol.
Properties

The symbol oscSeniorInDanger contains the property dangerType, which indicates
the type of possibly dangerous situations that has been detected. The property person is
used for providing a link to the senior in question.

82



11.8.2 Action Series and Action Symbols

oasInformOperator: A reaction to the detected scenario is the notification of a human
operator. As with all action series symbols, ocasInformOperator is processed by the
Action Subsystem (section 11.10).

Properties

Geriatric Care passes the action series symbol oasInformOperator to the Action
Subsystem when requesting a notification to the operator; this symbol contains the cause of
the notification (stored in property cause) and the persons involved (stored in the property

person).

11.9 Application: Comfort

Climate and lighting control is the goal of the prototypic Comfort application. It has sensors
to gather information about the climate (temperature and humidity) and actuators to control
climate and lighting. Any changes in comfort are redirected to the Action Subsystem, which
processes the action series symbols.

11.9.1 Microsymbols

omsTemperature, omsHumidity, omsBrightness: These microsymbols provide the
information about the climate and lighting level in a room. Each of these symbols can be
created by a single sensor or by a set of sensors. On microsymbol level the information is
provided, but not processed further, this is done in the according snapshot symbols.

11.9.2 Snapshot Symbols

osnRoom: This symbol is used to make the microsymbols omsTemperature,
omsHumidity and omsBrightness available on presentation level. osnRoom has three
properties temperature, humidity and brightness that are used to represent the
distribution of the according physical variables over the room. In a room with only one
sensor, this information is taken directly from the sensor; in rooms with multiple sensors, the
information of the scattered sensors is used to represent the distribution.

11.9.3 Representation Symbols

orpRoom: Taken from the information of osnRoom to provide a representation level symbol
for rooms. The properties temperature, humidity and brightness represent the
distribution of temperature, humidity or brightness, respectively. The room temperature is
used in the Geriatric Care application to detect a possibly dangerous scenario.

11.9.4 Action Series Symbols

oasClimate: Depending on the information available about temperature and humidity, and
supported by information from Person Surveillance, the application will issue an action series
symbol to alter the climate. The information that is associated with this symbol depends on
the implementation of the system actually controlling temperature and humidity.

83



casLighting: Upon presence of persons in a room, the system controls the brightness
level of the according room. On the other hand, energy management purposes cause the light
to be dimmed or turned off. The according scene™ is contained in the action series symbol
oasLighting; the information that is associated with this symbol depends on the
implementation of the actual lighting control system.

11.10 Action Subsystem

The Action Subsystem processes action series symbols and executes the required actions. An
executed action is added to the representation by introducing a new action symbol. Since the
ARS system is mainly observing and not strongly interacting with its users, the main action
series symbol is casInformOperator, which causes the execution of a single action
symbol, cacInformHumanOperator. Additionally, there are action series symbols for
the Comfort application: oasClimate and oasLighting. The execution of both depends
on the lighting and comfort system that cooperates with the ARS system and is not included
into the symbolic description in this work.

11.11 Inner World

The symbols that are part of the inner world are used for maintenance information and status
of the system components. Like in the outer world, there are different levels of symbols:
microsymbols, snapshot symbols and representation symbols are used for creating the world
model; action series and action symbols are used for activities that the system initiates.

The amount of symbols is limited, compared to the outer world and represents only a limited
model of the system and its modules. The focus of this work lies in the perception of the outer
world, therefore the inner world does not contain as many symbols as the outer world
representation. At the current state of technology, it appears sensitive not to push the analogy
between a biological system and a technical system too far. Since the ARS system is not
driven by its needs in a way a living being is, the inner world is reduced to maintenance
purposes and status information.

11.11.1 Microsymbols

imsSensorFailed: A sensor with self-testing ability causes this microsymbol to be

created. It indicates that the sensor is currently not operating and needs maintenance.

imsActuatorFailed: Like imsSensorFailed, this microsymbol indicates a faulty
actuator.

imsConnectionLost: if components are unable to detect failures, it is still possible to
detect that they are not available. Communication requests that remain unanswered by a
component cause the creation of this microsymbol. The cause for a missing reply may be
either a faulty component or an interruption of the communication channel. An

> “Scene” in this context is not related to the symbolic “scenario”. It refers to the setup of light in a
room and its control.

84



imsConnectionLost symbol can therefore also indicate that more than one component is

not reachable.

11.11.2 Representation Symbols

irpSensor: The symbolic representation of a sensor that is part of the system. It has two
properties, position and status. These are used to determine the position of the sensor,
i.e. where it is mounted and its status, indicating whether the sensor is operating correctly.

irpActuator: Similar to irpSensor this symbol represents an actuator and has the

properties position and status.

irpComponent: This symbol represents a general component that executes some part of the
system code (e.g. desktop computer or embedded system) and does not have sensors or
actuators. It has two properties, position and status. These are used to determine the
position of the component and its current status.

irpLink: Describes the communication link between components. It has a property
status that indicates correct operation and a property components that contains all
components, which are connected using this link. status depends on the microsymbol

imsConnectionlLost.

11.11.3 Action Series Symbols

iasInformOperator: If the inner world application has detected a failure or provides a
status update of the system, it creates an iasInformOperator symbol containing the
cause for notification (property cause) and the components that this notification refers to

(property components).

11.12 Symbol Overview

The following tables are a compilation of all symbols that are defined in this work. They give
an overview of the connections between application (and application services) and the
symbols that belong to them. Table 11.1 and Table 11.2 are tables for outer world modules.
Table 11.1 shows, which module creates which symbol. If there are properties that are set
upon creation, they are mentioned in the second column.

Symbol Property created by
omsInterrupted position Person Tracking
omsObstructedLb position Person Tracking

omsObjectPassesByLb2 | position, direction | Person Tracking

omsPersonHeightIrH position, height Person Tracking
omsObjectMovesMd position, height Person Tracking
omsInterrupted position Person Tracking
omsFootprint position Person Tracking
omsNoise soundPosition Person Tracking

85




omsSoundSource soundPosition Person Tracking
omsTemperature Comfort
omsHumidity Comfort
omsBrightness Comfort
osnPerson position, Person Tracking
direction, height
osnPersonEnters roomFrom, roomTo Person Tracking
osnTable position, Object Recognition
dimension, height
osnChair position, Object Recognition
seatHeight,
chairBack
osnOrangeBall position Object Recognition
osnRoom Comfort
orpRoom Environment Model (upon start-
up)
orpTable position, Object Tracking
dimension, height
orpChair position, Object Tracking
seatHeight,
chairBack
orpOrangeBall position Object Tracking
orpPerson position Person Tracking
oscChildInDanger dangerType, person, Child Safety

objects

oscSeniorInDanger

dangerType, person

Geriatric Care

oasInformOperator

cause, person,
objects

Child Safety, Geriatric Care

ocoasClimate

Comfort

oasLighting

Comfort

Table 11.1: Outer world symbols and their properties are created by the module in the

third column

Table 11.2 shows the properties for outer world symbols that are not set upon creation, but

can be modified or updated. An update does not necessarily originate from the application

that created the symbol.

86




Symbol Property modified by
orpPerson actLie,actsSit, Human Activities
actStand, actWalk,
actRun, actTalk
orpPerson actWork, actMeeting Person Surveillance
orpPerson lifeStage Human Activities
orpOrangeBall possessor Person Surveillance
orpRoom temperature, Comfort
humidity, lighting

Table 11.2 The module in the third column modifies properties of a symbol

Table 11.3 gives an overview of the symbols used in the inner world. Since there is only one
application responsible for the inner world, the table is for both creation and updates of
symbols and their properties.

Symbol Property modified by
irpSensor position, status Inner World
irpActuator position, status Inner World
irpComponent position, status Inner World
irpLink status, components Inner World
iasInformOperator cause, components Inner World

Table 11.3: All inner world symbols and properties are modified by the inner world
application

12 Communications Design

The system has a strong need for communication. Modules need to interchange symbols and
property updates, sensor data need to be processed and visualization needs to be informed of
changes in the graphical representation of symbols. Under the assumption that the system
shall be able to process lots of sensor information, an analysis on how to provide a proper
communication system for this data is done in the following sections. Aside of field level
issues, the link between office networks and fieldbus system is also examined.

12.1 Integration between Field Level and WAN

Networks have penetrated both the domain of automation and the office world, a
development, which today provides us with vast possibilities for interconnection of field level
devices and high-level IT logic. The reason for these advances can for once be seen in the
success of the Internet, which is today omnipresent and builds the base for many different
applications. On the other side fieldbusses have sufficiently evolved and been properly
standardized in the last years, so that they have become reliable communication systems for
building automation. LonWorks nodes, for example, can be programmed like compact

87




embedded systems using Neuron C [Ech95] — a derivate of the C programming language.
Today the quest for an integration of both worlds — the fieldbus world and the office world —
has culminated in what is commonly called vertical integration. Systems like the ARS
system, but also a variety of different applications ranging from Enterprise Resource Planning
(ERP) to large-scale energy management require data to be available at a level, which is
outside the domain of fieldbusses. Vertical integration stands for seamless integration of
information over all levels of an enterprise or data processing systems, an inclusion of data
from the field level into management applications; it also considers the other direction,

providing direct access from the management level down to the process control>”,

Horizontal integration, on the other hand, looks at integration on the same hierarchical level.
The communication technology base of horizontal integration is essentially the network
designed for each application. The company or office level is dominated by TCP/IP
[RFC793] based networks running on Local Area Networks (LANs), which and are therefore
the de facto standard at this level. TCP/IP has the additional benefit of providing seamless
connection to Wide Area Networks (WANS).

On the field level, fieldbus systems are established; development today focuses on integration
of alternative systems, like, for example, wireless technologies, mobile nodes or self-
contained, wireless sensors that do not need external power supply. Ethernet is a candidate to
enrich the palette of fieldbus system, Industrial Ethernet is determined to replace existing
systems, but still has to overcome issues like determinism or real-time issues.

A great step towards horizontal integration has been achieved by moving away from defining
only the lower layers of communication, which are responsible for reliable data transmission,
but to introduce profiles, which are located on application layer and above. These allow
interoperability between devices of different vendors not merely on the level of matching
plugs and communication protocols, but in terms of correct semantic interpretation of data
that is exchanged between the devices. Lately this process was extended to use the Extensible
Markup Language (XML) as a common basis for describing devices and their functionality.

Approaches for Linking the two Domains

In order to provide a connection between the field level and the office level applications there
are different architectures available. It has to be decided where to cut one system open and
“glue” it to the other. The main goal that the ARS system looks at in this field, is how to
overcome the differences between the various different fieldbus systems and how to spatially
separate field level installations from higher-level processing of fieldbus data. This results in
the task to connect fieldbusses to IP-based networks, where two general classes of
interlinking are possible: either protocols are tunneled, thus bridging complete segments and
virtually integrating one system into the other; or the cut is made on application level using a
gateway [Pra0l] that provides more or less abstract high level services for fieldbus
interaction. Apparently, it is not possible to join networks of the two different domains into
one global network; therefore, it is always necessary to have a device in the middle that deals
with these connections, which shall be called gateway. The reader shall be aware that the term

> The term vertical integration actually originated from the domain of economics and management.
There means that a company is engaged (in the sense of ownership) in several stages of a given
industry’s value or supply chain [Rud03].

88



gateway is used with many different meanings, depending on the domain one works in, and is
therefore a bit overstressed. Unfortunately other alternatives (e.g. access point) are similarly
overloaded; therefore, the term is used in this work anyway with its exact meaning being
defined in the following.

Tunneling

The tunneling approach shows two alternatives: either the fieldbus protocol is tunneled over
the Internet Protocol or vice versa. In any case, the data packets from one protocol are taken
and wrapped as opaque payload data into packets of the other protocol (with all implications
that this behavior implies). In cases where protocols of the same protocol suite are tunneled
(e.g. an HTTP tunnel to overcome restrictions by firewalls), it is possible to decide about the
layer, where tunneling shall be established — which need not necessarily be the data link
layer’®. However, when connecting networks that are as different as fieldbusses and IP
networks, the most feasible solution is to tunnel complete link layer packets.

A requirement of tunneling is that both communication partners understand the same
protocol. The interconnecting network is merely used for opaque data transport and shall at
best not expose any properties that could affect the connection between the communication
partners (latency, for example, need to be within the constraints of the tunneled protocol). As
soon as a complete tunneled Protocol Data Unit (PDU) reaches its destination, the application
on this side has to be able to understand the syntax and semantics of the protocol being used.

Tunneling a fieldbus protocol over an IP network is used when interconnecting fieldbus
segments over longer distances. The physical media that can be used for a fieldbus are usually
limited in length, which is needed for the design of timeouts and other parameters. Therefore,
if it is necessary to connect a remote fieldbus segment, a tunneling approach can be chosen.
While bandwidth is usually not a concern, the latencies that are introduced by the tunnel may
affect the functionality of the remote fieldbus segment, especially if real-time is a
requirement. Unless a backbone is available, which is able to provide the required quality of
service, the tunneled connection has to be handled in a special way and cannot seamlessly
integrate into the other fieldbus segments.

If real-time is not a requirement and the remote connection is sufficiently fast (meaning low
enough latency times), the IP tunnel allows for a cost effective connection between remote
installations. A feature that greatly simplifies implementation of this kind of interconnection
is the ability of a fieldbus to support bridges between fieldbus segments. This means that the
fieldbus nodes are aware that some nodes are not reachable directly, but have to be handled
specially (e.g. by setting longer timeouts).

The second tunneling solution is to encapsulate protocols from the IP-suite into fieldbus
protocol packets. Today there are devices available that implement a TCP/IP stack together
with a small web server as a single chip solution. An application can therefore directly contact
a node using an HTTP [RFC1945] connection and retrieve information in XML format.
Although an understandable requirement that provides convenient vertical integration, the
implementation of a web server on each node has some downsides. For once, the overhead for

%6 Using the lowest possible layer for tunneling has the advantage of not losing information; on the
other hand, a lot of information is useless and still needs to be transmitted, for example, checksums of
the original protocol, which are also treated as application data.

89



tunneling HTTP using the (usually limited) bandwidth of a fieldbus, is considerable. Second,
the application that wishes to retrieve data has to deal with a considerable amount of web
servers on the field network®’. Seen from this point, a web server should not be located at
each node, but rather be a central instance that provides data from the fieldbus nodes (which
goes in the direction of a gateway as described in the next section).

Another downside of tunneling IP over a fieldbus protocol is addressing of fieldbus nodes.
Aside of the native fieldbus address, every node that shall be connected with the IP network
needs to have its own IP address. Private networks with their own pool of IP addresses are an
option to overcome problems with the limited address space of the currently dominant IPv4.
This would however restrict access to the nodes and requires means for offering server
services (like the above mentioned web server) to hosts on the public Internet.

Finally, two more reasons make this tunneling approach unfeasible: first, fieldbus protocols
are designed for low latencies to provide timely transmission. IP packets can — depending on
the underlying medium — be considerably larger than fieldbus packets. This requires the
packets to be fragmented into rather small pieces. This for once creates a lot of packets on the
fieldbus and secondly introduces even more overhead, since the fragmentation into small
packets is a costly operation (costly in terms of network bandwidth). The second problem
occurs in fieldbusses that do not offer peer-to-peer communication between the nodes, but
rather master-slave type of communication. In IP networks, every participant is able to
communicate with any other node of which it knows the address. It is possible to implement
peer-to-peer communication using master-slave communication, but this introduces
considerable delays, if a slave wishes to send by itself. It has to wait, until it is polled by the
master. Furthermore, some protocols of the IP protocol suite require broadcasts over the
subnet, which is especially hard to implement on a master slave system.

Gateway

The previous section has shown that tunneling of protocols has a number of disadvantages,
therefore this sections looks at a different approach: instead of wrapping protocols into
packets without understanding the contents of the PDUs, the gateway introduced here is
capable of understanding protocols on both sides and acts as a translator between the two
domains. The gateway is for once a node on the fieldbus side, and it can be accessed through
IP-based mechanisms via the Internet. What is different compared to the tunnelling approach
is that a client does no longer directly connect to a server that runs on a fieldbus node.
Instead, the gateway represents the fieldbus and its data to the IP-network. Upon request, it
fetches the data from the fieldbus nodes by native fieldbus communication means®. It has to
be stated that real-time requirements are not considered in this approach; the gateway
terminates protocols on both sides and thus the according quality of service properties are not
available. Since hard real-time is usually not a requirement in building automation (with the

" It appears more reasonable to implement another protocol, for example, the Simple Network
Management Protocol (SNMP) [RFC1157] or the Lightweight Directory Access Protocol (LDAP),
which uses less network bandwidth.

%% Or, as an additional feature, the gateway is able to store a process image of current and consistent
data that it can fall back on.

90



possible exception of safety critical applications) and is definitely not a requirement of the
ARS system, it can safely be dropped here.

The architecture of such a gateway can be done in different ways. The issues of data
availability and fieldbus data representation are covered in section 12.2. Two basic
possibilities arise when designing such a gateway: it can be designed to support a single type
of fieldbus. In this case it should seek to support all features of this fieldbus and find the best
possible way to seamlessly transport the properties and services of the fieldbus over the IP-
based network. Or, as a second approach, the gateway is designed to support a lot of different
fieldbusses. In this case it cannot provide every feature of every possible fieldbus at its
Internet front-end, but should rather seek to find a subset of features that it can provide for all
supported fieldbusses. This topic is tackled in more detail in section 12.2. The goal of the
ARS system is in any case not to be dependent on one specific fieldbus and be able to obtain
data from different fieldbus systems, therefore the gateway, which is able to support multiple
fieldbusses, is the architecture of choice.

[ Client 1 [ Client 2 ][ Client 3 ]

1

[ Internet Protocol Front-End ] Gateway

Notifi- ) Parameter
cations ) Upload
Data \ Loggin
Access ) 99ing

N
Connection || Connection

Module 1 Module 2
J

Figure 12.1 Gateway architecture for abstract gateway services

As for the Internet side of the gateway, a lot of research has been done and published. In
[Lob02] an overview of different Internet front-end protocols is given together with an
analysis of their feasibility. The architecture of the gateway that is described in [Lob05] is
shown in Figure 12.1. Clients connect to the gateway using the Internet Protocol Front-End;
the core of the gateway are the services, which provide data access and logging of data as
well as the possibility to update device parameters and create notifications that depend on the
data. Logging is important for gateway connections that are either costly (e.g. dial-up lines) or
do not provide a reliable communication channel, e.g. power-line communication [Lob03].
Fieldbus access is provided by different connection modules, where each module is able to
connect to one type of fieldbus. Standard protocols like SNMP (Simple Network Management
Protocol) [RFC1157] or web technologies like HTTP are in terms of feasibility beaten by
LDAP [RFC2251] or a proprietarily defined protocol. The gateway in any case provides an

91



abstract interface to the fieldbus systems, independent of both the fieldbus protocol and the
fieldbus-specific coding of the data, which enables it to provide general purpose access.

12.2 Fieldbus Data Representation and Gathering

The previous section identified a gateway capable of supporting multiple fieldbusses as a
possibility for the ARS system to gather data from different fieldbusses. This section
describes the requirements for fieldbus interconnection in more detail. The gateway has to
implement a set of services; it has to provide an Internet front-end using a specific protocol
and it needs to have a representation of fieldbus data that is able to cover the supported
fieldbusses.

The gateway discussed here has an architecture that attempts to find an optimum between
fieldbus dependency, implementational effort, and data abstraction [Saut02]. It supports
different fieldbusses by implementing different fieldbus connection modules, it has a central
processing part which is responsible for routing manipulation requests to the fieldbus,
scheduling and processing events and providing access to data points and it offers an Internet
front-end (see Figure 12.1). The interfaces between these three modules are by themselves all
based on TCP/IP, thus not only providing clean and well-defined communication between the
components, but also allowing to distribute these modules themselves across a network. This
can be useful if not all fieldbusses are directly attached to the gateway, but are only accessible
via an additional IP-connection. Because the fieldbus modules communicate only using a
TCP/IP-based protocol, it does not matter whether they run on a remote machine, as long as it
has a network connection.

A central concept of the gateway is the data point. The fieldbus network is represented as a
set of nodes, each uniquely addressable. Every node has a set of data points, also uniquely
addressable, which represent values that a node is able to provide upon request. Most of the
data points are scalar, but types that are more complex are also possible. An important feature
of data points that originates from fieldbus nodes is the timestamp: a data point carries a
timestamp that is set when the current value is set’’. This timestamp stays attached to the
value of the data point all the way up through the processing application. This way the timing
stays appropriate, even if transmission or processing of the value should be delayed.

The gateway offers the following services: it allows reading data points as well as writing of
data points (which is required for control applications as well as for configuration purposes)
and it is capable of storing historical data that can be conveniently retrieved in a log. This
feature is not relevant for the ARS system, since it stores data in a central database, but is
convenient, when the IP-network is not permanently available, but rather implemented as a
dial-up connection®.

Fieldbus data representation is a complex task that cannot be solved sufficiently for every
existing fieldbus. Depending on how detailed the data representation is modeled (and required

> Timestamps are further discussed in section 12.5.

50 Another feature that is related to this and is also not used is the ability to send notifications. The
gateway can monitor a preconfigured value and raise a notification, if a criterion is met. This
notification can be implemented within a protocol like SNMP or it can be a proprietary implementation
(e.g. sending an email)

92



by an application) the representations can strongly vary. A temperature sensor, for example,
can be modeled as providing a room temperature in degrees Celsius, which would be one
scalar value. However, additional information about this temperature might be relevant, for
example, its accuracy or the time it takes until the sensor can reliably react upon changes in
temperature. Even if these issues are resolved, the question of numerical representation
remains. How many digits of precision are required and in which binary form shall they be
represented? The decision, whether to use integer numbers (which are fast to process), fixed
point numbers or floating point numbers, has to be made. Definitions like “this integer
number represents a temperature where 0 represents 300°C and an increase by one means
increasing the temperature by 0.1°C” are not uncommon and need to be taken into
consideration when finding a generic data representation.

The data point concept therefore describes the representation of values and attempts to find a
tradeoff that suits the requirements. A data point as described here contains not only a value,
but also has the following attributes: type, encoding and access mode. The #ype tells the
system how to handle the value in the data point. Every data point has a certain type, e.g.
integer, double or string. A special data point type is raw, which is an opaque type for data
that does not fit anywhere else. This especially applies to fieldbus data that are available only
in form of a structure and not as a scalar. The encoding is a rule for the representation of a
data point value. Different encodings are available, for instance string, number and time.
Typically, a data point can be represented using more than one encoding, but not every
encoding is valid for every data point. The raw encoding is available for any kind of data
point value. It provides a byte-level view of the value and is therefore somewhat dependent
on implementation details. The string encoding is used almost exclusively for data points of
type string, whereas number and time encoding are numerical encodings. The access mode
describes what a client is allowed to do with a data point, namely whether it may read and
write a data point or only read a data point.

12.3 Communication Framework

The system prototype consists of many different modules that are designed to be easily
distributable over several computers. To achieve this distribution, the communication
framework that connects the modules has to provide the necessary services for
communication. In the course of the ARS project, SymbolNet has been designed as the
framework that shall connect all components of the system, which are related to symbolic
processing of data. It is implemented in Java for reasons of built-in security in the language,
good support for networked debugging and short deployment times; additionally, parts of the
implementation are also available in the programming language C. SymbolNet allows
application level data exchange and synchronization. Its main task is to communicate
creation, destruction and updates of symbols and their properties between the modules.
Updates occur transparently for the modules; this means that an application can modify a
symbol property and the change of this property is communicated by the framework directly
to all modules that have announced interest in the according symbol. Accordingly, an
application receives an update of a property and can process it. Since the system has many
powerful components (microsymbol factory, perception module and representation module as
well as the simulator or the sensor database), it has to be distributed amongst different
machines, thus requiring a network transparent design.

93



Aside of better scalability of modules when using a distributed, network transparent
architecture, SymbolNet also enables debugging and communication load analysis, by
disclosing the communication interfaces between modules. The modules receive symbols,
process them and issue new symbols (or symbol updates). All this communication can be
logged in a time consistent manner to see the input and output of a module and detect
bottlenecks.

The concept of SymbolNet foresees a graph-like communication structure between the
modules as shown in Figure 12.2. Every module can be the originator of symbols, which it
fills into a pipeline. At the end of the pipeline, there may be one or more modules that receive

( R
—> Module 2 ‘P[ Module 5 ]
. J

)

the symbol.

Module 1 > Module 3

S

( R
—> Module 4 ‘P[ Module 6 ]
. J

Figure 12.2 Communication structure of SymbolNet

12.3.1 Message Format

The protocol that is used to communicate changes in the state of symbols (creation,
termination, updates) uses messages that are built in Abstract Syntax Notation number One
(ASN.1) [ASNO2], because this allows for easy extension of the protocol format and contents.
ASN.1 was developed to provide an abstract syntax, which can be used for exchange of data
between communication systems. It is used by standardization organizations in combination
with textual system descriptions as well as by several formal techniques to describe data and
the structure of protocol data units (PDUs). Using ASN.1 it is possible to describe data
structures and interfaces in the upper OSI protocol layers. ASN.1 is associated with coding
schemes, used to create binary representation of the specified PDUs; the encoding scheme
used for SymbolNet is DER (distinguished encoding rules [DER02]). ASN.1 does not define
formal semantics or operations to manipulate data; this has to be done in a separate protocol
definition. There are three core messages: creation of a new symbol, destruction of a symbol
and update of symbol properties. A module that receives a message can decide if it wants to
process it or not. In any case, it may have to propagate the message to any other receivers that
are connected to the module.

12.3.2 Communication Infrastructure

The core communication infrastructure for symbolic modules is shown in Figure 10.1 in
chapter 10. Although exchange of symbols is done hierarchically from microsymbols over
snapshot symbols to representation symbols, the infrastructure allows every module to
communicate with every other module. This is necessary, because higher-level symbols (on
representation level and above) may be used and modified by different modules without

94



having a dedicated hierarchy. SymbolNet is always backed up by a database (section 12.3.3),
which guarantees consistent data access.

At the borders of symbolic processing there are on one side sensor data and on the other side
simulation and visualization. Because of the Fieldbus-Internet gateway described in section
12.1 different fieldbusses can be integrated into the system with only one interface to be
adapted. Additionally, it is possible to circumvent the gateway and use a native connection to
sensors and actuators by directly accessing the sensor database (section 12.4.1).

To visualize both simulated and real data, envSim (section 13.1) is connected to the
communication framework. By using a reduced version of SymbolNet, envSim gets updates
about the currently active symbols and their properties. The graphical representation of the
symbols is preprocessed, so that envSim merely has to overlay graphical representations over
the rendered environment.

12.3.3 Database Access

SymbolNet is the communication framework that provides efficient and convenient
information exchange between the components of the system. It emerged from the need to
have a consistent database between all participants. A first solution envisioned a database to
be the central information sink, where each component would deposit and retrieve
information®'. A purely database-centered infrastructure is however not feasible, because of
two reasons: when a symbol is created by one module and communicated to another module,
the communication path would consist of writing into the database and reading out of it. This
would produce considerable propagation delay between the modules. Second, a requirement
is to use only non-proprietary database access mechanisms in order to avoid dependencies on
one specific database. Thus, a module would have to poll the database permanently for
updates of relevant symbols. This would cause considerable performance issues, assuming
that all modules in the system would have to poll the database.

The solution to circumvent possible bottlenecks is the introduction of SymbolNet. It reacts
event-driven, meaning that messages are issued upon creation or updates of information. Still,
the consistent set of data has to be preserved. Therefore, SymbolNet is the component that
keeps contact to the database and communicates all updates to the database. Whenever a
symbol is created, destroyed or updated, SymbolNet transparently writes the new information
into the database. This way, the historic data is available in the database, which gives an
additional possibility: for simulation and visualization purposes, the acquired data can be
reused later. If real-time processing of data becomes unfeasible (because of complex
calculations), the simulation can be run without visualization; when simulation is done,
visualization can be started and display the already generated information. Since sensor
information is also stored (in the sensor database, section 12.4.1) this information can be used
to do multiple runs over the same data, which is a useful feature for tuning module behavior.

%' The symbol database is responsible for storing all types of symbols from microsymbols to action
series symbols, while the sensor database stores only sensor values. This separation is necessary due to
the different nature of the data and the various means of data access.

95



12.4 Database Storage

The ARS system prototype consists of distributed module that can be run on different
networked machines. Since the whole system operates on the same set of data, it is necessary
to maintain consistent data during operation, which is done by using a database as the central
storage component. As described in section 12.3.3, direct access to a database is not feasible
for performance reasons, therefore SymbolNet has been introduced. The database is a
relational database, which is used to store sensor and symbol data (section 12.4.1 and 12.4.2,
respectively). When referring to two different databases, this actually means one database
installation with two different table spaces. In order to stay independent of a specific
database, the access to the data is done by using SQL (Structured Query Language) [Ach00]
statements and communicating them to the database. The only component accessing the
symbol database from within the system is SymbolNet; the sensor database is accessed by
embedded hardware that is responsible for writing sensor values.

12.4.1 Sensor Database Description

The database scheme for storing sensor data is built around data points. A data point is a
source of information and can have various properties. The data can be separated in two
categories: static information and dynamic data. Static information contains all configuration
information including description of data points, their location, type and quality of data. The
structure of a data point is also described as static data. Dynamic data on the other hand
contains the actual values that sensors create. While static data can be complex (containing,
for example, human readable descriptions of a data point), dynamic data are compact, because
they are frequently updated. Dynamic data is stripped from all redundant information and is
optimized towards size (while still keeping the link to additional, static information). This
way it is possible to store big amounts of data efficiently without redundancy, while at the
same time keeping consistent meta-information about the data points.

12.4.2 Symbol Database Description

Symbols and their properties are stored in the symbol database, a database, which is logically
separated from the sensor database. Similar to the sensor database, static and dynamic
information is both available, but separated. On lower levels of symbolization, symbols have
only a few properties (or none at all); at representation level, symbols generally have a lot of
properties — but the total number of symbols is low. In order to store all different symbols in
the same database scheme, the symbols table is separated from the property table. Symbols
are linked to their properties by reference IDs; this way, a symbol with all its properties can
be conveniently retrieved. Since the symbolic alphabet is manually engineered (and not
created by the system itself), both symbols and properties can only have predefined classes.
Symbols have a certain lifetime, where microsymbols commonly only exist in one instance
(or a short time period), while representation symbols have a long lifetime. During creation,
the creation timestamp is set and the end timestamp is set to infinite. Properties have values
and these values can change, therefore properties also have a begin timestamp. The end of a
property value is given either by a new value (e.g. the position of the person is updated) or by
the termination of the symbol. Therefore, they only have one timestamp.

Symbols and properties have unique identifiers and a referrer to the class they belong to
(which is also unique). Static information for symbols and properties can be retrieved by

96



using the class referrer. Since every symbol belongs to one class, the description of the
structure is stored in the class description. While structure descriptions can be complex, the
values of properties are stored in a compact way, consisting of property identifier, timestamp
and value. This allows storing large amounts of data without redundant data descriptions.

12.5 Time Representation

Modeling of time is an important issue when designing the system. Different issues have to be
considered when planning time distribution, representation and storage. The following briefly
covers the concept of time as needed for sensor values as well as for symbols and describes
how time is stored and how operations on time are done when representing it as a number.
Since the system is distributed over different computers that are connected by a network, the
issue of time synchronization between the modules running on different machines is also
briefly tackled.

Aside of the “physical” definition of time, which deals with representation and calculation of
time, there is another way of dealing with time and other physical variables in terms of
symbolic representation; this sort of high-level symbolic time is described in section 4.2 and
is not strongly related to time as discussed here. Since this part of the thesis describes
implementational issues, symbolic time representation is not covered here, these sections
describe time, as it is needed to build the system.

12.5.1 Instant and Time Period

Symbols have two concepts of time: an instant and a time period. The instant is an abstract
representation; it is used for events that have a duration, which is short compared to the
required system timing constraints. An example is measuring the height of a person as
described in section 11.2. The underlying physical effects and the resulting sensor output are
such that a set of light barriers is interrupted, possibly at slightly different times. If this
happens in a reasonably short period of time, this time period is modeled as a single instant,
meaning that although the process of interruption actually takes a finite time to finish, the
modules, which process information above the level of microsymbols only see it as a single
instant. In the data representation of symbols, the instant is also referred to as the timestamp
of the symbol. If a symbol has a time representation of “instant”, the timestamp for the
beginning and the end of the symbol lifetime are identical.

A time period is defined as the time between the instant when it starts and the instant when it
stops. This is directly reflected in the time information of symbols: symbols that need a time
period (and not an instant), have a beginning timestamp and ending timestamp. While
symbols always need to have a valid beginning timestamp, which is current time or earlier,
the ending timestamp can be infinite. This is the case when a symbol is created without a
defined time of termination.

Time synchronization is an important issue in the system. Sensors create data at a certain
instant and the sequence when this data is created is important for the system. Take, for
example, two light barriers that are used to detect the direction of a moving person. Both light
barriers need to be properly synchronized in order to provide correct information when each
of them has been interrupted. The timestamp for both events has to be created directly at
sensor level (see also section 12.2) and not when written into the database or when received

97



and processed by a module, because otherwise the delay and especially the delay jitter would
spoil the necessary precision.

12.5.2 Time as a Number

Time that manifests in timestamps needs to be stored and processed by the system. The
requirements for time are identified as follows:

e The resolution shall be below one second; a resolution of one tenth of a second is
sufficient, higher resolutions are acceptable

e Handling of time has to be convenient and resource efficient, basic operations like
adding and subtracting shall be fast

e Portability between platforms, programming languages and database manufacturers
e Where possible, storage of time shall follow existing standards or de facto standards

e Linear and monotonous time representation

There exists a standard for time representation, the ISO 8601 standard, the third edition being
available since 2004 [ISO8601]. The standard establishes a moment in time as precisely or
generally as the user or system requires it to be. It does so by using a string of characters,
ordered from the largest representations to the smallest, with the smallest being seconds or
fractions of seconds. Although standardized and fulfilling precision requirements, ISO 8601
has comparably high computational costs. Time is stored as characters, which need to be
parsed, before they can be processed. Compared to storing time as a number, this parsing is a
costly process and does not circumvent the problem of internal storage: after parsing, the time
has again to be stored in a format, which allows performing operations on it.

Since the system stores data that represents symbols or sensor information in a database,
another approach is to examine SQL (Structured Query Language) data types. SQL was
adopted as a standard by the ANSI (American National Standards Institute) in 1986 and ISO
(International Organization for Standardization) in 1987. It defines a date format that may be
used; however, this date format has two disadvantages: for once, the resolution is one second,
which is insufficient for the purposes of the system. Second, although SQL is standardized, it
is possible that commercial implementations do not support basic features of the standard —
such as the DATE data type — and instead use some variant of their own. Oracle, a major
database product provider, offers such a proprietary data type, which is called TIMESTAMP.
It allows a precision of up to nine digits of fractional seconds, which would be sufficient for
the purposes of the system, but would bind future development to Oracle databases.

Linearity is an issue that greatly simplifies code design. A commonly required operation is to
calculate a time period, by subtracting the beginning instant from the ending instant. Although
time itself is always linear and monotonous (at least in the non-relativistic context that is
assumed here), the representation of time is not necessarily so. Daylight saving time, for
example, causes glitches in the progress of time, by either skipping an hour or repeating an
hour. Figure 12.3 shows October 30", 2005, when summer time is changed to winter time by
repeating the hour between 2:00 and 3:00. Although physical time continues (the y-axis
indicating minutes since midnight of that day), the representation of time is ambiguous in the
hour between 2:00 and 3:00 and would therefore have to be augmented by an additional flag
that indicates whether the time is in summer or winter time. Otherwise, the time “2:30” can
either represent 150 minutes after midnight or 210 minutes after midnight, respectively.

98



240 4 /
physical time 180 4

(mingteg, since 450 1
midnight)
60 +

0 L time

midnight 2:00 3:00 rePresentation

Figure 12.3 Glitches in time representation when switching from daylight saving time to
wintertime

Any calculations on time representation that include this specific hour would be incorrect
without any additional measures. Linearity in time representation is therefore a necessary
feature. A time representation that almost fully meets this requirement is UTC, which stands
for Coordinated Universal Time. One day in UTC has 86400 seconds (with a few exceptions
that are explained below), it is a realization of Universal Time (UT), a standard time that
divides the world into time zones; time zones maintain a time that has a constant offset to
Universal Time. UTC is a combination of atomic time, which is used to set the rate of UTC
clocks (i.e. the duration of one second) and the epoch of Universal Time. This
synchronization to the UT epoch is the cause of a small deviance of the previously required
monotonous representation of time: since UT has been introduced, the rotation of Earth has
slowly decelerated, meaning that the average duration of a solar day has slightly increased.
Therefore UTC has to be adjusted by introducing a leap second every once in a while to keep
synchronized with Earth’s rotation. A leap second is always inserted as the last second of a
day. The time around midnight of such a day is represented in UTC as 23:59:58, 23:59:59,
23:59:60, 00:00:00. While this representation does not yet violate monotony, the UNIX
representation, which is shown in the following, will do so.

The UNIX operating system has defined the UNIX epoch (also called POSIX time). It defines
points in time (instants) and uses a reference point, which is January 1st, 1970, 00:00:00
GMT, the start of the UNIX epoch. UNIX time is based on UTC, thus ensuring monotony of
time representation — with the exception of the leap second problem. Time is mapped to a
number in UNIX time, which starts with zero at the beginning of the epoch and is increased
by one every second. According to UTC, most days have 86400 seconds, with a few having
86401 seconds®. Still every day increases the number by exactly 86400. January 1%, 2000,
10957 days after January 1%, 1970 is represented by the number 10957*86400 = 946684800.

Ambiguity starts where leap seconds are necessary. While the UNIX time number on one side
is used to count 86401 seconds of the day with the leap second, it will repeat in the second
after midnight. Therefore, UNIX time is ambiguous for one second whenever a leap second is
introduced, which happens about every second year, depending on the changes in Earth
rotation. This tradeoff appears acceptable with the benefit of having time that remains
synchronized with the changes of day and night we are used to.

The UNIX operating system has defined a type time t for the C programming language.
This type commonly uses a signed 32 bit integer number to represent UTC time. Thus, it

52 Days with one second less than the average day — 86399 seconds — are also possible, but have until
now never been used.

99



allows negative numbers for instants before January 1%, 1970 and it has a resolution of one
second. An interesting side effect of the 32 bit type is that it will reach its highest possible
representation on January 19, 2038, 03:14:08 UTC and will overflow. Problems similar to the
ones on New Year of 2000 are expected, where two digit representation of the year (which
have been common in early days of computing) have overflown. A solution would be to
substitute time t to a 64 bit integer.

Using this type for time representation lacks the required sub-second precision. Aside of that
it meets all of the above introduced requirements. To extend precision towards sub-second
resolution, different solutions exist. There are specifications for two additional types in C:
timeval and timespec. Both of them are structs containing a variable for common
UTC time representation and an additional variable for microseconds (in timeval) or
nanoseconds (in timespec), respectively. These extensions allow to continue using the
common UTC time representation and operate on both variables, when higher precision is
required. However, basic operations like subtraction become more complicated, since it is
necessary to respect the carry between the variable representing the fraction of a second and
the second variable.

Therefore a different storage method for UTC time is used, which can be found in the time in

Java: time in Java is based on UTC and similar to time t in C, only that it uses a long
variable (which is defined as a signed 64 bit integer in Java) and defines the number to be
interpreted as milliseconds since January 1%, 1970, 00:00:00 GMT. This definition provides
sufficient sub-second precision, is almost completely monotonous, it is convenient to operate
on, since it is contained in one variable. It is portable, since Java is portable and other modern
programming languages are able to process 64 bit numbers (it can also be stored in a
database). By using the definition that is used in Java, it also follows a widely adopted
definition.

One addition is required, which is a representation for an undefined point in future; an
analogy in number representations would be infinity. This representation is needed to indicate
that something has started, but not finished yet, for example, a symbol that has been created
and still exists. The timestamp for the end needs to contain a number and this number shall be
interpreted as “infinity”. Therefore this representation is defined to be the highest number that
can be represented with a 64 bit signed integer number, which is (2 — 1), or approximately
9.22%10' (0x 7FFFFFFFFFFFFFFF in hexadecimal representation).

12.5.3 Time Synchronization

The system design foresees the modules to run on different computer, which are connected
over a network. The simulator and visualisator, for example, can be started in multiple
instances, where some may be on the same computer and others run on computers connected
by network. Modules of the system need to interact with other modules or the simulator as
well, for example the modules that create and update symbols (these modules need to inform
the visualization part of the simulator where to display symbols). Therefore, it is necessary to
use proper time synchronization between the different modules and between different
instances of the simulator.

Today’s computers are equipped with reasonably precise real-time clocks that are able to
provide time with the required accuracy over an extended period of time. Still it is necessary
to ensure that the deviation between time bases on different computers does not exceed the

100



limits. Therefore, means for synchronizing the real-time clocks on a regular basis are
necessary. The common way to do so is to use a timeserver and a protocol that allows
adjusting time. In [RFC2030] the Simple Network Time Protocol (SNTP) is defined, a
protocol that is commonly used to synchronize clocks using an IP-based network. The
accuracy that can be achieved using this protocol (and its predecessor, NTP version 3, which
is still in use) is about 1 to 50 milliseconds, depending on the underlying network. This
accuracy is sufficient for the tasks of the system. Therefore, the only measure to be taken is to
have a client running on each computer that synchronizes regularly with one of the available
timeservers.

Another issue is simulation, which uses a different time base. If time is to be slowed down or
simply modified to study the behavior of the system in more detail, the modules still need to
stay synchronized. Therefore, there needs to be a central instance as a time source that
informs all modules about the current time and when to proceed in time. In case of simulation
with a virtual time base this time source substitutes the real-time clock and informs all
modules when to proceed to the next time slot. Measures have to be taken in the framework
for the modules that time can conveniently be switched between real-time and virtual time
without the application having to take care about it.

13 Visualization, Simulation and Real-World Installation

An introduction into the concept of the simulation and visualization components is given in
[Roe04] and [Har05]. Figure 13.1 shows an overview of the communication paths between
the components. The components are described in the following sections. The descriptions
focus on the visualization of a virtual environment and the sensor and symbol information
that is integrated into visualization.

Symbolic

Pr in
Sensor ocessing

Values

- ~ Symbols
Scenario .
Simulator h 4

Generator

\_ v

Iconization
 CE—
Smart Kitchen Sensor
\ J Database Sensor

Values

Visualization

Figure 13.1 Communication paths for simulation and visualization

13.1 Visualization

The visualization component (called envSim) displays a three-dimensional (and optionally
two-dimensional) simulated environment. It renders and animates three-dimensional objects
and creates different views of the environment. Visualization is based on the three-

101



dimensional model of the environment (not shown in Figure 13.1), which is used to display
all parts of the environment that are not subject to sensory perception. The basic rendering of
the environment can be extended in two ways: by showing sensor information or by showing
symbolization information; both ways are configurable in the simulator. When showing
sensor information, the basic view of the environment is overlaid with a visualization of
important sensor reactions to changes in the environment. For example, a person passing a
light barrier causes the light barrier to be triggered. This is visualized, so that a human user
can see the reactions of sensors. Some sensors like the light barrier are only triggered briefly,
which means that they are events; other sensors display their status, which is done
permanently (e.g. a temperature sensor, which displays the temperature it measures).

Similar to the sensor view there is also a symbolization view, where the environment is
overlaid with information that is created by the symbolization modules. For example, a person
that enters a room causes several sensors to be triggered (door contacts, light barriers, tactile
sensors in the floor, motion detectors). Again, there are event-like symbols that pop up only
briefly and there are symbols that have a permanent status, for example, the symbol for a
person: it is permanently displayed and its status (e.g. its position) is updated.

Symbols need to have a graphical representation, which is done by the Iconization component
(Figure 13.1). Using the SymbolNet framework this component receives all symbols (and
updates) that are created by the symbolic modules (shown as one reduced module in Figure
13.1, see also section 10.1%%). Symbols and their properties are converted into graphical
representations; Figure 13.2 shows a selection of icons that are used to display symbols.

I ' .,“.. i ;
Chair Footprint Person Person
standing walking

Figure 13.2 Selected icons for symbol visualization

Both sensor and symbolic information can be filtered, meaning that the user has the
possibility to select the information that shall be displayed. Sensor value display can be
limited so that only a subclass of sensors is displayed (e.g. restricted to an area or restricted to
certain types of sensors). Symbols and the according icons can also be limited, so that, for
example, only symbols on representation level, but not snapshot symbols or microsymbols,
are shown.

Visualization is not only used for the virtual environment described in section 13.2, but also
to show how the symbolization operates on real-world data. This data originates from the
Smart Kitchen installation (section 13.3). A three-dimensional model of the real room is used
for visualization (thus the real room is “virtualized”), this way, the same visualization can be
used to show sensor values and symbols for the real-world installation and the simulated
environment.

8 Three-dimensional visualization is only done for symbols of the outer world; the maintenance status
of the inner world is done in a reduced, textual form.

102



13.2 Simulation

The virtual environment that is visualized is intended to be used as an enhancement of a real-
world installation; it consists of a three-dimensional layout of rooms and halls, in which
virtual sensors are mounted and virtual persons can move. The behavior of the simulation is
controlled by the scenario generator (section 13.5).

The data that result from the simulation are fed into the sensor database. This way it can be
reused later, either for tuning module behavior or for visualization in virtual time (see section
13.3): depending on the physical model and its complexity there may be considerable effort
necessary to derive changes and interactions in the environment. The symbolization module
also may take considerable time to achieve a result. Therefore, a simulation run may take
more time than the real time that passes during the simulation. To circumvent delays in
display, the two parts can be separated: first, simulation is finished, and then it is visualized.

13.3 Smart Kitchen — A Real-World Installation

The Smart Kitchen is a room at the Institute of Computer Technology that has already been
used for earlier works to create a sensor-enabled environment [Rus03]. Since then it has been
extended by different types of sensors. Figure 13.3 shows the installation of floor sensors in
the Smart Kitchen.

Figure 13.3 Floor sensors in Smart Kitchen

The floor sensors deliver information about the position of persons in the room. It is expected
that future technologies like the Thinking Carpet [Vor05] will continue this concept to
increase the number of sensors in buildings. Together with motion detectors and light barriers,
it is possible to obtain diverse and redundant information to obtain a robust information
source of environment variables.

13.4 Virtual Time and Real Time

The visualization component is needed for two different purposes: it shall display a virtual
environment with sensors and persons that need to be simulated, and it shall display sensor
activity and symbolic processing of the Smart Kitchen installation. While it is important for
the real-world installation to react in real-time and display current changes of sensor values
together with the according changes in symbolization, the virtual environment has different

103



requirements to timing. When simulation of sensor reactions becomes too complex, the
simulation run can take considerable time and therefore cannot be visualized in real-time. The
solution is to write the results of simulation into the sensor database and let visualization
display the data afterwards. This yields another possibility for displaying: the speed of time
can be changed for visualization. Important events can be shown at, for example, half the
speed; or a whole day can be compressed into a few minutes. Virtual time is a common
feature in simulation; in this system it can be used for the virtual environment as well as for
the Smart Kitchen: once the sensor data have been created, they can then be replayed from the
sensor database.

13.5 Simulation Run Generator

A simulation run is triggered by the simulation run generator (Figure 13.1): first, there is an
initialization phase, in which the layout of the virtual environment together with the position
for all objects is defined. All sensors and actuators are defined and initialized in this phase as
well. The definition of the initialization is called a setup. When initialization is finished, the
simulation run generator sends updates for different objects in the environment®. The updates
may be new positions, changes in properties or creation of new objects. This mechanism is
used for creating a complete course of events; it is network transparent, meaning that the
simulation run generator can run on a different machine than the simulator.

Using the simulation run generator it is possible to create a formal description that defines the
movements, updates and creation of all objects (e.g. the behavior of people in an office during
a whole day). This description is loaded into the simulation run generator, which then feeds it
step by step into the simulator.

13.6 Physical Model of Simulator

The physical model that drives the simulator contains a basic implementation that covers
necessary physical effect, like light barriers that are triggered, when a person passes by. The
model also considers the physical dimensions of objects and detect collisions between object.

Cameras are sensors that need to be handled specially in the simulator: it is not reasonable to
render a complete camera image that is afterwards analyzed by image recognition, because it
would not yield proper results. Therefore, the preprocessing is already done in the virtual
camera. Instead of providing sensor values, the virtual cameras create symbols. This behavior
bypasses symbolic processing and is fed into the iconization module using SymbolNet.

Aside of sensors the simulator also has to animate the actuators like sliding doors, heating,
light, and so on. Collisions between actuators and objects need to be handled, which might
have impact on the simulation run generator and on the symbolization module.

13.7 Strategic Planning

Another important application of the simulator is to use it for symbolization as a separate
module. When the system has perceived a situation, it can consider starting an action.
However, before this action is executed, it has to know about the outcome of it. One way that

5 In this context, simulated persons are also referred to as objects, because the simulation has to
animate both persons and object.

104



this can be done is to "try it out mentally": the system uses an isolated instance of the
simulator to create the start situation; then it starts the action, looks at the outcome and
judges, if it shall actually execute the action. Only on positive results will this action actually
be fed into the simulator. The best way to try out actions without impact is to use a separate
"mental simulator". This would be a possibility for future extension of the symbolization
modules and the simulator.

14 Conclusion

This thesis describes a symbolic data processing model based on both real-world and
simulated (virtual world) data. The grounded symbolic model that has been designed
demonstrates to be an applicable adaptation of the neuroscientific models that were
introduced. This conclusion reviews the output of this work and leads to the outlook, which
briefly describes how research can continue based on the work that has been done so far.

An important issue of symbolic processing of information is addressed in this work: while it
is state-of-the-art technology to use symbols and apply operations according to a set of rules
on these symbols, the symbol system commonly suffers from a lack of meaning, in the sense
that the system does not have means for connecting symbols to real-world concepts because
the meaning of symbols is not contained in the system. While it can operate on symbols and
produce results that may appear reasonable, it does not have intrinsic understanding of the
concepts it operates on. By connecting the system’s symbols to sensor data, they are grounded
to the real world, thus avoiding a purely symbolic system that lacks the connection to a
meaning of the symbols. Sensor data is a reflection of real-world influences on the system; by
building the symbolic alphabet on sensor data, the bridge between symbolic representation
and the outside world is built. A possibility to connect real-world information with symbolic
concepts is shown in this work by taking the step from sensor data to microsymbols. By
observing the impact of actions to the environment and thus the representation of the outer
world, the system is connected to the real world, although it operates only on symbols.

Being mainly a passive, observing system, the sensor data travel from sensor level over multi-
layer symbolic processing modules to create a representation of the outer world. Additionally
to the representation of the outer world, a representation of the inner world is created to
represent system status and maintenance information. The symbol alphabet is engineered by
directly applying human knowledge from the domain of building automation, allowing the
system to operate on human-understandable concepts and thus creating a transparent model
that can be tweaked and tuned by a human operator.

The selected reference applications have proven to provide a broad basis of different possible
scenarios. Thus, it is prepared for future extension and refinements of scenario recognition.
Due to the modular design of the system which operates transparently over the network, it is
possible to observe the system closely while it operates. This is an intended analogy to
neurobiological sciences, which partly rely on the study of brain activities. Naturally, a
human-crafted technical system is easier to observe; still, the network transparency allows
visualizing data flow between modules and forces modular design with strictly defined
interfaces. As an additional effect, the network transparent modularity of the system allows
for convenient extension of system functionality. This means that a single component is
bound to work on a single computer, while the sum of all components can easily be

105



distributed over a set of networked computers, allowing to connect more resources upon
introduction of new necessary system components.

The condensing of information in a multi-layered process produces a scalable system design
that follows the concepts that were extracted from the neuropsychological domain. By using a
lot of sensor information originating from redundant and diverse sources, it is conceptually
possible to maintain a consistent view of the world. While the lower layers need to process
incoming information efficiently in parallel, higher-level processing can rely on condensed
data, which has been preprocessed and thus represents information that is more expressive.

Symbolic representation of objects and events of the real world are not a novel concept.
However, the symbolization of physical variables like time and motion, which is taken from
human understanding of such variables, is an approach that does not follow the engineering
method of measuring a quantity in numerical values and operating on these. On the highest
level of symbolization (the representation level), this is comparable to an emotion that is, for
example, linked to an object and its speed.

The three-layer symbolic processing model that is introduced in this work has emerged from
different requirements. First, a system design with strictly hierarchical communication
structure allows for clear modularization and avoids error prone cross-linked communication
paths. On the other hand, information exchange in the human brain is complex and — on
higher cognitive levels — not hierarchical at all. Thus, the symbolization model designed here
represents the common denominator of both models: symbols on lower levels are combined
with others to create symbols on higher levels. Each level is a representation of information,
and the combination of symbols creates a new representation of information. Following this
approach, the system creates representations of representations, especially on higher symbolic
levels, where symbols can be combined to create symbols on the same layer. Researchers use
representations of representations as one model to describe the operation of the cortex:
representations from different functional systems are used to create new representations,
which again are used for even other representations.

The technology used in this work has the potential to increase comfort and safety of its users,
but it may also be abused for malicious surveillance activities, which would compromise the
individual's privacy. All the more this work shall be seen as a contribution to prevent
malicious use of surveillance that results from the lack of understanding of underlying
technology. If, for example, cameras are used to observe persons and the cameras provide
visual information, the risk to compromise privacy is much higher than if symbolizing visual
sensor information, which extracts relevant information. By communicating only relevant
information in symbolized format, much of the compromising information (which is in fact
irrelevant for the application of the system) is stripped off and thus not available.
Symbolization is therefore a means for protection of privacy. Nevertheless, the operator of
such a system has to take measures to prevent the leaking of personal information, which can
only be solved by an appropriate infrastructure and not by technology itself.

15 Outlook

The design for a system that behaves similar to the abilities of a human mind raises an
interesting thought: the human mind is intrinsically bound to its body and in particular the
brain tissues that builds the center of all higher cognitive functions. It is today well known

106



that body and mind are tightly interwoven and one influences the development and abilities of
the other. However, when the mind can be engineered as “a piece of software”, the link
between body and mind is not given any more. Software is also bound to hardware (just like
the mind is bound to the body), but if we look at the development of computer hardware over
time, we see that hardware can change without strongly affecting software. Programs were
executed on computers made up of relays, which were then replaced by transistors, followed
by integrated circuits. The properties of the silicon that formed the transistors did not affect
the software. Furthermore, the most important ability of the human body — its ability to
interact with its environment — is only given in a very limited way when looking at
computers. As long as there is only a limited interconnection between a machine and the
environment it operates in, we can think of the mind in the machine as a disembodied mind,
meaning that whatever happens in the program is largely not dependent on the physical
hardware it uses as the platform for execution. Future developments in this field will show
how a mind can evolve without the link to a physical body or, as another possible outcome, it
will show that intelligent behavior always requires interaction with the outer world to be able
to develop in the first place.

An ability that has deliberately been left out in this work is the ability to learn and adapt to
changes in the outer world. The complexity that arises when the system changes its behavior
dynamically, depending on how much data it was able to process and learn, is too much of a
challenge for a new model like the ARS model. The next steps therefore need to focus on
making single modules more flexible by introducing learning abilities. The model can remain
unchanged, but separated parts can be enhanced and improved.

Lurija has stated that human perception requires complex coding of incoming information and
that this coding is closely linked to language [Lur01]. He further states that perception cannot
happen without language. What has been done in this work is to create a crude language that
enables perception in the way Lurija (and others) intended it: far away from the complexity of
human spoken or written language, but close enough to the “inner language” of a building
automation system that it can be used to process information to create a world representation.
What needs to be done now is to increase the complexity of the symbol alphabet, to create a
lot more symbols and let the system operate with it. However, this will in the long run not be
possible by using “hand-crafted” symbols, but will require methods for automatic symbol
generation. Such methods exist and yield hope to finally create a system that is able to use
symbols that are grounded to real-world information on the one hand and have a human-
understandable meaning on the other hand.

107






Bibliography

[Ach00]

[And95]

[ASN02]

[Bab14]

[Bec94]

[Bra04]

[Bro86]

[Dam94]

[Dam99]

[DER02]

[Die02]

[Die04]

[Die04b]

A. Achilles. SQL: standardisierte Datenbanksprache vom PC bis zum
Mainframe. 7th edition, Oldenbourg, Munich/Vienna, 2000

J. Anderson. An introduction to neural networks. MIT Press, Cambridge,
Massachusetts, 1995

International Organization for Standardization. Abstract Syntax Notation One
(ASN.1): Specification of basic notation (ISO/IEC 8824-1:2002), Geneva,
Switzerland, 2002

J. Babinski. Contribution a I’étude des troubles mentaux dan 1’hémiplégie
organique cérébrale (anosognosie). Revue neurologique 27, 1914

A. Bechara, A. R. Damasio, H. Damasio, S. W. Anderson. Insensitivity to
future consequences following damage to human prefrontal cortex. Cognition,
50.p.7-15

E. Brainin, D. Dietrich, P. Palensky, C. Rosener. Neuro-bionic Architecture of
Automation Systems - Obstacles and Challenges. In Proceedings of the 7th
IEEE Africon Conference, Gaborone, Botswana, 2004

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2, April 1986

A. Damasio. Descartes’ Error. Emotion, reason, and the human brain. Penguin
Books Ltd., London, England, 1994

A. Damasio. The Feeling of What Happens. Body and Emotion in the Making
of Consciousness. Harcourt Brace & Company, New York, 1999

International Organization for Standardization. ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER) (ISO/IEC 8825-1:2002),
Geneva, Switzerland, 2002

D. Dietrich, C. Tamarit, G. Russ. Bionische Modellierung. Elektronik Report
12, Vienna, 2002

D. Dietrich, W. Kastner, Th. Maly, Ch. Rosener, G. Russ, H. Schweinzer.
Situation Modeling. In Proceedings of the 5th IEEE International Workshop on
Factory Communication Systems (WFCS 2004), Vienna, Austria, 2004

D. Dietrich, W. Kastner, H. Schweinzer: Wahrnehmungsbewusstsein in der
Automation - ein "bionischer" Denkansatz; at — Automatisierungstechnik 52
(2004) 3, Oldenbourg Verlag

109



[Ech94]

[Ech95]

[Elm02]

[Enc04]

[Fod88]

[Fre74]

[Gol02]

[Hac04]

[Har05]

[Har90]

[Hau95]

[IEEE96]

[IEEE00]

110

Echelon Corporation: LonTalk Protocol Specification. Version 3.0, Document
No. 19550, United States of America, 1994.

Echelon Corporation: Neuron C Programmer’s Guide. Revision 4, Document
No. 29300, United States of America, 1995.

W. Elmenreich. Sensor Fusion in Time-Triggered Systems. Dissertation an der
Fakultit fiir Elektrotechnik der Technischen Universitdt Wien, 2002

Encyclopadia Britannica, from Encyclopadia Britannica Ultimate Reference
Suite 2004 DVD. Copyright © 1994-2003 Encyclopaedia Britannica, Inc. May
30,2003

J. Fodor. Modules, frames, fridgeons, sleeping dogs and the music of the
spheres. In: The robot's dilemma: the frame problem in artificial intelligence. 2.
print, ed. by Z. Pylyshyn. Ablex Publ. Co., Norwood, NJ, 1988

S. Freud. Civilization and Its Discontent, S.E., 21:59, 1930, pp. 71-72 in The
Standard Edition of the Complete Psychological Works of Sigmund Freud (SE)
24 Volumes, ed. by James Strachey et al. The Hogart Press and the Institute of
Psycho-Analysis, London, 1974

E. Goldstein. Wahrnehmungspsychologie - FEine Einfithrung. 2. Auflage,
Spektrum Akademischer Verlag, November 2002

Hacke, A., Sowa, M., Der Weile Neger Wumbaba. Kleines Handbuch des
Verhorens. Verlag Antje Kunstmann GmbH, Miinchen, 2004

H. Hareter, G. Pratl, D. Bruckner. Simulation and Visualization System for
Sensor and Actuator Data Generation. In Proceedings of 6th IFAC International
Conference on Fieldbus Systems and their Applications (FET 2005), Puebla,
Mexico, 2005, p. 56 — 63

S.Harnad. The Symbol Grounding Problem. Proceedings of the ninth annual
international conference of the Center for Nonlinear Studies on Self-organizing,
Collective, and Cooperative Phenomena in Natural and Artificial Computing
Networks on Emergent computation, Los Alamos, New Mexico, United States,
1990, pp. 335 — 346

K.Hauser. A. Bittleston, A.D. Gibson, W.B. Forward. Kaspar Hauser Speaks
for Himself: Kaspar's Own Writings. Camp Hill Press, 1995

IEEE Standard for a High Performance Serial Bus (IEEE1394-1995). ISBN 1-
55937-583-3, IEEE, 1996.

IEEE Computer Society: IEEE Standard for a High Performance Serial Bus -
Amendment 1, 2000



[1SO8601]

[Kap00]

[Lak05]

[Lob02]

[Lob03]

[Lob05]

[Lon02]

[Lur01]

[Mah04]

[McC69]

[Nus04]
[Pal03]

[Pen50]

ISO 8601:2004 Data elements and interchange formats - Information
interchange - Representation of dates and times. Third edition, International
Organization for Standardization, 2004

K. Kaplan-Solms, M. Solms. Clinical Studies in Neuro-Psychoanalysis.
International Universities Press, Inc., Madison, CT, 2000

B. Lakotta. Die Natur der Seele. Hatte Sigmund Freud doch recht? Der Spiegel
16/2005, dated Apr. 18th, 2005

M. Lobashov, G. Pratl, T. Sauter. Applicability of Internet Protocols for
Fieldbus Access. Proceedings of the IEEE International Workshop on Factory
Communication Systems (WFCS 2002), Vésteraas, Sweden, August 2002

M. Lobashov, G. Pratl, T. Sauter. Implications of Power-line Communication
on Distributed Data Acquisition and Control System. In Proceedings of
Emerging Technologies and Factory Automation (ETFA’03), Lisbon, Portugal,
Sept. 2003

M. Lobashov. Applicability of Internet Protocols to Remote Fieldbus Access.
Dissertation an der Fakultit fiir Elektrotechnik der Technischen Universitit
Wien, 2005.

D. Dietrich, K. Kabitzsch, G. Pratl (editors). LonWorks — Gewerke-
tibergreifende Systeme. VDE-Verlag, Germany, 2002

A. Lurija. Das Gehirn in Aktion. Rowohlt Taschenbuch Verlag, Reinbek bei
Hamburg, 2001

S. Mahlknecht. Energy-Self-Sufficient Wireless Sensor Networks for Home
and Building Environment. Ph.D. Thesis, Vienna University of Technology,
2004

J. McCarthy, P. J. Hayes. Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence 4, Edinburgh University Press, pp.
463-502, 1969

C. Niisslein-Volhard. Das Werden des Lebens. C.H. Beck oHG, 2004

P. Palensky, P. Rossler, D. Dietrich. Heim- und Geb&dudeautomatisierung zur
Effizienzsteigerung in Gebéduden. Elektrotechnik und Informationstechnik
(e&i), 4, 2003

W. Penfield, T. Rasmussen. The Cerebral Cortex of Man. A Clinical Study of
Localization of Function. New York, The Macmillan Comp., 1950

111



[Pez05]

[Pfe87]

[Pra01]

[Pra05a]

[Pra05b]

[Rad05]

[Roe04]

[Rud03]

[Rus03]

[Russel03]

[Ryd04]

[Sac87]

[Sal05]

112

L. Pezawas, A. Meyer-Lindenberg, E. M. Drabant, B. A. Verchinski, K. E.
Munoz, B. S. Kolachana, M. F. Egan, V. S. Mattay, A. R. Hariri, D. R.
Weinberger. 5S-HTTLPR polymorphism impacts human cingulate-amygdala
interactions: a genetic susceptibility mechanism for depression, Nature
Neuroscience 8, May 2005, p. 828 — 834

T. Pfeifer, K.-U. Heiler. Ziele und Anwendungen von Feldbussystemen,
Automatisierungstechnische Praxis, Vol. 29, 1987, pp. 549 — 557

G. Pratl, M. Lobashov, T. Sauter. Highly modular Gateway Architecture for
Fieldbus/Internet Connections”, Proceedings of Fieldbus Systems and their
Applications (FeT 2001), Nancy, France, November 2001

G. Pratl, P. Palensky. Project ARS — The next step towards an intelligent
environment. Proceedings of the IEE International Workshop on Intelligent
Environments, 2005, p. 55 — 62.

G. Pratl, W. T. Penzhorn, D. Dietrich, and W. Burgstaller. Perceptive
awareness in building automation. In 3rd International Conference on
Computational Cybernetics (ICCC’05) Conference Proceedings, Mauritius
2005

R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change detection
algorithms: A systematic survey”, IEEE Transactions on Image Processing,
Vol. 14, pp. 294-307, 2005.

Ch. Rosener, H. Hareter, W. Burgstaller, G. Pratl. Environment Simulation for
Scenario Perception Models. In Proceedings of the 5th IEEE Workshop on
Factory Communication Systems (WFCS 2004), Vienna, Austria, 2004

M. Rudberg, J. Olhager, “Manufacturing networks and supply chains: an
operations strategy perspective”, Omega, vol. 31, 2003

G.Russ. Situation-dependent behavior in building automation. Dissertation an
der Fakultit fiir Elektrotechnik der Technischen Universitidt Wien, 2003

S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Englewood
Cliffs, New Jersey: Prentice Hall, 2nd edition, 2003

D. Ryder. SINBAD Neurosemantics: A Theory of Mental Representation.
Mind & Language, Vol 19. Issue 2, p. 211, April 2004

O. Sacks. The Man Who Mistook His Wife For a Hat. Summit Books/Simon &
Schuster, Inc., New York, 1987

B. Sallans, D. Bruckner, G. Russ. Statistical Model-Based Sensor Diagnostics
for Automation Systems. In Proceedings of 6th IFAC International Conference
on Fieldbus Systems and their Applications (FET 2005), Puebla, Mexico, 2005,
p- 239 — 246.



[Saut02]

[Sea80]

[S0l02]

[Tam03]

[Wan92]

[Wol05]

[Yu04]

[Zad65]

T. Sauter, M. Lobashov, G. Pratl. Lessons Learnt From Internet Access to
Fieldbus Gateways. Proceedings of IECON'02, Sevilla, Spain, November 2002

J. Searle. Minds, Brains, and Programs. Behavioral and Brain Sciences 3, p.
417 — 424, 1980

M. Solms and O. Turnbull. The brain and the inner world. Other Press LLC,
New York, 2002.

C. Tamarit Fuertes. Automation system perception. Dissertation an der Fakultit
fir Elektrotechnik der Technischen Universitdt Wien, 2003

Y. Wang, B. Frost. Time to collision is signalled by neurons in the nucleus
rotundus of pigeons. Nature, 1992, 356(6366), p. 236-238

F. Wolf. Symmetry, Multistability, and Long-Range Interactions in Brain
Development. Physical Review Letters 95 Nr. 20, 208701, American Physical
Society, Nov. 7" 2005

C. Yu, D. Ballard. A multimodal learning interface for grounding spoken
language in sensory perceptions. ACM Transactions on Applied Perception,
Volume 1, Issue 1, July 2004, p. 57 — 80

L. A. Zadeh, Fuzzy Sets, Information and Control, 1965

113






Internet Links

[Blue04]

[Max02]

[Neu06]

[Open06]

[Pet97]

[RFC793]

[RFC1157]

[RFC1945]

[RFC2030]

[RFC2251]

[Sha04]

[Vor05]

Blue Brain Project. http://bluebrainproject.epfl.ch, September 14th, 2004,
accessed on March 14th, 2006

Max Planck Institute for Biological Cybernetics. Visual Illusions: What we
see is what we expect to see. May 13th, 2002, http://www.kyb.mpg.de/
bu/demo/index.html, accessed on Jan 21st, 2006

O. Turnbull, Y. Yovell. Neuro-Psychoanalysis. http://www.neuro-psa.org,
accessed on Jan 25th, 2006

OpenCV Library Wiki. http://opencvlibrary.sourceforge.net, accessed on
March 30th, 2006.

I. Peterson. Ivars Peterson's MathLand http://www.maa.org/mathland/
mathland_5 12.html, May 12th 1997, accessed on March 14th, 2006.

J. Postel. Transmission Control Protocol, RFC 793. Sept. 1981,
http://www.rfc-editor.org, accessed on Jan 19th, 2006

J. Case, M. Fedor, M. Schoffstall, J. Davin. A Simple Network Management
Protocol (SNMP), RFC 1157. May 1990, http://www.rfc-editor.org, accessed
on Jan 19th, 2006

T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol —
HTTP/1.0, RFC 1945. May 1996, http://www.rfc-editor.org, accessed on Jan
19th, 2006

D. Mills. Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6
and OSI, RFC 2030. Oct. 1996, http://www.rfc-editor.org, accessed on Jan
19th, 2006

M. Wahl, T. Howes, S. Kille. Lightweight Directory Access Protocol (v3),
RFC 2251. Dec 1997, http://www.rfc-editor.org, accessed on Jan 19th, 2006

M. Shanahan. The Frame Problem. Feb. 23rd, 2004, http://plato.stanford.edu
/entries/frame-problem, accessed on Jan 19th, 2006

Vorwerk &  Co.  Teppichwerke.  Zukunft braucht  Visionen.
http://www.vorwerk-teppich.de/sc/vorwerk/template/
Thinking_Carpet_deu.html, accessed on Sep 2nd, 2005

115






CURRICULUM VITAE

Curriculum Vitae of DI. Gerhard Pratl

Personal Information

Birth 04.11.1972 Eisenstadt, Austria

Nationality Austria

Marital Status Engaged

Language German

Education

May 1990 school leaving examination (Bundesrealgymnasium Eisenstadt)

1991 — 1998 study Electrical Engineering, Vienna University of Technology

June 1998 Master of Science (DI) Vienna University of Technology, passed with
excellence

since 1999 Scientific project assistant at the Vienna University of Technology, Institute of

Computer Technology

Professional Experience

1999

2000

2001-2002

2002

2002-2003

since 2003

since 2003

since 2004

since 2006

Project HTM: design and implementation of SNMP (Simple Network
Management Protocol) remote access to EIB (European Installation Bus) nodes
in cooperation with Siemens PSE

research in EU-funded project InhomNet (IST-1999-10622) working on Java
middleware for Firewire-devices

design and implementation of software agents in a Multi Agent System (MAS)
in EU-funded project PABADIS (IST-1999-60016)

co-editor of the book "LonWorks — Gewerkeiibergreifende Systeme", Kabitzsch,
Dietrich, Pratl; VDE Verlag; ISBN 3-8007-2669-6

concept, design and implementation of fieldbus gateway in cooperation with
Festo Austria

research in EU-funded project REMPLI (NNE5-2001-825) working on a
communication infrastructure based on power-line communication

teaching "Digitale Datenverarbeitung" and "Rechnernarchitekturen" at
Fachhochschule th-campus wien, Vienna

project ARS (Artificial Recognition System), which provides the framework for
this thesis

teaching "Ubung Digitale Systeme" at Vienna University of Technology




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


