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Kurzfassung

Replikation wird in verteilten Systemen zur Verbesserung der Verfügbarkeit
und Performanz verwendet. Die Konsistenz der Replikate und die Einhaltung
der Datenintegrität (Konsistenz bezüglich von Integritätsbedingungen) sind
Korrektheitskriterien in datenzentrierten verteilten Systemen. Falls Konsis-
tenz immer eingehalten werden muss, verschlechtert sich die Verfügbarkeit des
Systems in Fehlersituationen (Verbindungsfehler, Rechnerausfälle). Es gibt je-
doch Systeme (z.B. in der Flugsicherung) in denen die Konsistenz temporär
in Fehlersitutationen abgeschwächt werden kann, um die Verfügbarkeit zu
erhöhen. Das heißt, Verfügbarkeit und Konsistenz können gegeneinander bal-
anciert werden. Dies erfordert jedoch Reparaturmaßnahmen, wenn Netzwerk-
partitionen wieder zusammengefügt werden. D.h., mit Hilfe von Reconciliation-
Protokollen muss sowohl die Konsistenz der Replikate als auch die Datenin-
tegrität wiederhergestellt werden.

Der Hauptfokus dieser Dissertation liegt auf Replikationstechniken, welche
die Steuerung des Zusammenspiels zwischen Verfügbarkeit und Konsistenz
ermöglichen. Ein zweiter Fokus liegt auf Replikationstechniken für datenzen-
trierte service-orientierte Systeme. Die Dissertation besteht daher aus drei
Hauptteilen:

Erstens wird ein Replikationsmodell für die Balancierung von Verfügbarkeit
und Konsistenz vorgestellt, das sogenannte Availability/Consistency Balancing
Replication Model (ACBRM).

Zweitens wird Adaptive Voting präsentiert, ein konkretes Replikationspro-
tokoll, welches dem abstrakten Replikationsmodell folgt. Sowohl eine Analyse
der Verfügbarkeit als auch eine Prototyp-Implementierung zeigen die Sinn-
haftigkeit des Ansatzes, inbesonders wenn (i) eine signifikante Anzahl an In-
tegritätsbedingungen aufweichbar ist und (ii) die Zeit zur Wiederherstellung
der Konsistenz kürzer ist als die Zeit, in der Fehler auftraten.

Drittens werden Replikationsmiddleware für verteilte Objektsysteme (z.B.
die auf das ACBRM zugeschnittene DeDiSys Middleware) und Replikations-
middleware für service-orientierte Systeme auf Architekturebene verglichen.
Basierend auf dieser Analyse und Erfahrungen mit unseren Prototypen stammt
die Schlussfolgerung, dass viele etablierte Middleware-Architekturen in service-
orientierten Systemen wiederverwendet werden können.

Zukünftige Arbeiten sollten sich auf Techniken zur Erreichung von Sicher-
heit und Zuverlässigkeit in service-orientierten Systemen fixieren, die durch
Heterogenität, hohe Skalierbarkeitsanforderungen, und Dynamik charakter-
isiert sind.
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Abstract

Replication is used in distributed systems to achieve higher availability and/or
performance. Correctness criteria for data-centric distributed systems are
replica consistency and data integrity (also called constraint consistency). If
consistency needs to be ensured all times, such systems soon become (partially)
unavailable if node and link failures occur. However, there exist applications
(e.g., in air traffic control) in which consistency can be temporarily relaxed
during degraded situations in order to achieve higher availability. Thus, consis-
tency can be balanced against availability. This in turn requires repair actions
after reunification of network partitions. That is, reconciliation is necessary to
re-establish replica consistency and data integrity when the system becomes
healthy again.

The main focus of this thesis is on replication techniques for controlling
this trade-off in distributed object systems; a secondary focus is on replication
techniques for data-centric service oriented systems. Thus, the contribution of
this thesis is three-fold:

First, we introduce an enhanced replication model for trading data in-
tegrity against availability — the Availability/Consistency Balancing Repli-
cation Model (ACBRM).

Second, we present Adaptive Voting — a concrete protocol that realizes
the abstract model. Both an analytical availability analysis and a prototype
implementation show the feasibility of the approach, especially if (i) a signif-
icant portion of data integrity constraints of the system is relaxable and (ii)
reconciliation time is shorter than degradation time.

Third, distributed object replication middleware systems (e.g., the DeDiSys
middleware which is targeted to the ACBRM) and service replication mid-
dleware systems are compared on an architectural level. From this analysis
and experiences with our middleware prototypes we conclude that many well-
established replication middleware architectures can be reapplied in service
oriented systems.

Future work needs to focus on dependability and security techniques for
service oriented systems of the future characterized by cross-organizational
heterogeneity, massive scale, and dynamicity.
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Chapter 1

Introduction and Overview on
Replication Techniques

After introducing the motivation, contributions, and structure of this thesis,
this chapter gives an insight into the groundwork for this thesis — namely
replication techniques. Traditionally, replication has been first applied in file
systems and database systems. Later on, distributed object systems followed
and since recently replication is becoming more and more important for ser-
vice oriented systems due to increased dependability demands. Thus, in this
chapter traditional replication techniques are discussed in section 1.2 before
the application of these techniques in service oriented systems is shown in sec-
tion 1.3.

1.1 Introduction

This section introduces the motivation, highlights the main contributions, and
presents the structure of this thesis.

1.1.1 Motivation

Many of today’s distributed systems including diverse areas such as e-commerce,
health care, military command and control, control engineering, air traffic con-
trol, and transportation need to be highly dependable. Dependability is the
“ability of a system to avoid service failures that are more frequent or more
severe than is acceptable” [ALRL04]. Dependability is an integrating concept
and comprises the following attributes [ALRL04]:

• Availability is the “readiness for correct service”.

• Reliability is the “continuity of correct service”.

1



1.1. INTRODUCTION

• Safety is the “absence of catastrophic consequences on the user(s) and
the environment”.

• Integrity is the “absence of improper system alterations”.

• Maintainability is the “ability to undergo modifications and repairs”.

Dependability can be achieved by the combined utilization of fault preven-
tion, fault removal, fault forecasting, and fault tolerance techniques. Fault
prevention aims at software and hardware development methodologies to pre-
vent the occurrence or introduction of faults. Fault removal techniques (e.g.,
verification, diagnosis, correction) reduce the number and severity of faults
both during system development and system use. Fault forecasting techniques
(e.g., qualitative and quantitative evaluation) estimate the present number,
future incidence, and the likely consequences of faults. Finally, fault tolerance
ensures that a service failure can be avoided when faults are present in the
system [ALRL04]. Redundancy is a prerequisite for fault tolerance. Repli-
cation is one important means to introduce redundancy and thus to enable
fault tolerance — especially in data-centric distributed systems. This thesis
addresses fault tolerance, in particular replication.

Data-centric distributed systems have the main focus on data and the pro-
cessing of data. State of the art in software engineering of data-centric sys-
tems is to use an object-oriented approach for design and implementation of
the functionality. Relational database management systems (or their object-
relational successors) are most often used for persistent storage of the data.
The object-oriented approach in this case uses the notion of an object en-
capsulating data. Examples for data-centric distributed systems are booking
engines, online market places, or social networking platforms. Replication in
a data-centric object-oriented distributed system can thus be either performed
on the data or object level. This thesis focuses on the latter. One correct-
ness criterion for data-centric applications is data integrity constraints, such as
value constraints, relationship constraints (cardinality, XOR), uniqueness con-
straints and other predicates. A system is constraint consistent [Sme04, SG04]
if all data integrity constraints are satisfied.

Traditional replication protocols (partially) block in degraded situations
(node and link failures) in order to guarantee that neither replica nor constraint
consistency are violated. However, some applications exist where consistency
can be temporarily relaxed in order to achieve higher availability. For instance,
in some safety-critical systems (e.g., [Kue07]) or in some control engineering
applications (e.g., [Hab07]) availability is more important than consistency.

The main focus of this thesis is on enhanced replication protocols
and middleware systems that are required to support the run-time
configuration of the trade-off between availability and consistency.

2



1.1. INTRODUCTION

Recently, service oriented architectures have been more and more adopted
by industry in many areas of computing. If the success shall continue and the
service oriented computing approach shall be applied in critical, vital systems
dependability needs to be ensured in these systems as well. That is, among
others, replication will play an important role to achieve dependability. Repli-
cation has been a research topic for more than three decades in traditional
domains such as database systems, file systems, and later in distributed ob-
ject systems. Nevertheless, applying the well-known principles of replication
in service oriented systems is still not trivial, though urgently required to close
the dependability gap [Lap05] we currently face in large-scale, heterogenous
(service oriented) systems and to continue the success of the service oriented
paradigm in critical settings. As pointed out by Ken Birman [Bir06], “only
replication can ensure access to critical data in the event of a fault.”

Thus, the second focus of this thesis is on replication techniques
for data-centric service oriented systems.

1.1.2 Contributions

The contribution of this thesis is three-fold:
First, a replication model called Availability/Consistency Balancing Repli-

cation Model (ACBRM) [1, 2]1 for trading data integrity against availability is
defined.

Second, Adaptive Voting [3, 4], a concrete protocol that realizes the abstract
model is presented. Both an analytical availability analysis and a prototype
implementation show the feasibility of the approach, especially if (i) a sig-
nificant portion of integrity constraints of the system are relaxable and (ii)
reconciliation time is shorter than degradation time.

Third, distributed object replication middleware systems(e.g., the DeDiSys
middleware which is targeted to the ACBRM) and service replication middle-
ware systems are compared on an architectural level [5, 6, 7, 8, 9, 10]. From
this analysis and experiences with our middleware prototypes we conclude that
many well-established replication middleware architectures can be reapplied in
service oriented systems.

The PhD thesis of Lorenz Froihofer [Fro07] is complementary to this thesis and
is focused on middleware support for adaptive dependability through explicit
runtime integrity constraints. In particular, Froihofer’s thesis provides insight
on constraint validation approaches and constraint consistency management

1Publications co-authored by the author of this thesis are denoted with numbers and
mainly summarized in this thesis. In the remainder of this thesis, these publications are
used without being referenced individually.
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1.2. TRADITIONAL REPLICATION TECHNIQUES

concepts.

1.1.3 Structure of this Thesis

The structure of this thesis is as follows: After the introduction, the most com-
mon traditional replication techniques are introduced and analyzed regarding
their suitability for service oriented systems in chapter 1. The first main con-
tribution — the Availability/Consistency Balancing Replication Model — is
presented in chapter 2. The second main contribution — the Adaptive Voting
replication protocol — is presented in chapter 3. The third main contribution
— a comparison of replication middleware for service oriented and distributed
object systems — is presented in chapter 4. Finally, related work, conclusions,
and future work are presented in chapter 5.

1.2 Traditional Replication Techniques

A plethora of replication protocols has been proposed in the past decades —
some of them having only subtle differences. Thus, before introducing the most
important replication techniques, different aspects and classification criteria2

are discussed.

1.2.1 Classification Criteria

Type of the replicated entity: First, the type of replicated entity — e.g.,
object, data item, file, process, service — needs to be distinguished. The repli-
cation techniques for different types of replicas share many similarities but also
subtle differences, as for example discussed by Wiesmann et al. [WPS+00] for
database replication and classical distributed systems (i.e., processes, objects)
replication.

Conceptually, many of the traditional replication techniques such as primary-
backup [BMST93] or active replication [Sch93] are widely applicable for differ-
ent types of replicas as will be shown later.

Full vs. partial replication: Replication can be categorized into full and
partial replication: Full replication means that the whole state is available at
all replicas while partial replication means that each replica contains only a
subset of the state. For example, in a replicated distributed object system, full
replication means that all objects are available on all replicated nodes, while

2Several classification criteria can be found in literature (e.g., [HHB96, WSP+00, SS05]).
The selected criteria are the most suitable ones in the context of this thesis.

4



1.2. TRADITIONAL REPLICATION TECHNIQUES

partial replication means that some replica nodes contain only a subset of the
objects. However, an object replica is still a whole object and not only a part
of an object.

Optimistic vs. pessimistic replication: Pessimistic replication techniques
restrict operations (e.g., in case of degradation or mobility) in a way that up-
date conflicts cannot occur. Optimistic replication techniques on the other
hand aim at enhanced availability by allowing replicas to diverge and updates
to conflict. The drawback of optimistic techniques is that conflicts need to
be resolved eventually, e.g., after degradation or when mobile nodes re-join.
The Availability/Consistency Balancing Replication Model and the Adaptive
Voting replication protocol presented in chapters 2 and 3 of this thesis fall into
this category. Saito and Shapiro [SS05] provide an excellent survey on further
optimistic replication techniques.

Operation transfer vs. state transfer: Updates can be propagated from
one replica to the others (e.g., from a primary to the backup replicas) using op-
eration transfer or state transfer. Although these terms are widely used in the
literature and sometimes informally described (e.g., [SS05]), to our knowledge,
no precise definition of the terms exists.

We consider the content of the update message to precisely define the terms:
If the message contains all necessary information to update the replica uncondi-
tionally, it is called state transfer. On the other hand, if some state information
of the receiving node has to be read by the recipient of the message in order to
perform the update, it is called operation transfer. For instance, assume the
state is represented by a single variable A. An update message Anew = Aold−5
does not contain all state information to perform the update and thus has oper-
ation transfer characteristics. An update message Anew = 3 has state transfer
characteristics since the update can be performed without reading any addi-
tional information not contained in the message. According to our definition,
an update message Anew = 4 − 3 + 1 ∗ 2 has still state transfer characteristics,
although the message contains an operation.

If operation transfer is used, all previous updates must have been success-
fully processed — updates must not be lost. On the other hand, if the full state
(e.g., the whole state of an object) is transferred, lost updates do not matter
— only the last update is important.

Whether operation or state transfer is used has influence on the performance
of update propagation. For instance, processing an operation on only one node
and forwarding only the result might be faster than processing an operation on
all nodes. Another important aspect with respect to the choice of operation or
state transfer is determinism: The content of a state transfer message is deter-

5



1.2. TRADITIONAL REPLICATION TECHNIQUES

ministic while an operation transfer might contain non-deterministic elements
such as random() functions.

Eager vs. lazy update propagation: Another consideration for update
propagation is the timing aspect: An eager (synchronous, blocking) update
propagation policy ensures that the return message to the client (that initi-
ates the update) is returned after all replicas (that need to be updated) are
updated. Lazy (asynchronous, non-blocking) variants update only a subset of
replicas immediately and defer update propagation to the other replicas. Thus,
the eager variant ensures strict consistency of all replicas while the lazy variant
yields better response time for the client at the cost of relaxed consistency. A
special form of lazy update propagation techniques are probabilistic variants
such as epidemic replication [DGH+87].

After these general considerations now the most important replication tech-
niques, namely primary-backup replication, active replication, coordinator-
cohort/update everywhere, and quorum consensus techniques are discussed.

1.2.2 Primary-Backup Replication

In the original primary-backup approach [AD76, BMST93], only one of the
replicas — the primary — processes clients’ requests and forwards the results
via state transfer to the other replicas — the backups. Thus, this technique is
also called passive replication. The advantage of primary-backup replication is
that at least one replica (the primary) exists which has all updates. Moreover,
ordering of operations is easy to achieve since all operations are directed to
the primary. However, the primary replica might become overloaded. While
a crash of backup replica does not require specific actions by the replication
protocol, a crash of the primary replica requires reconfiguration since a new
primary needs to be promoted.

Updates can be propagated either in a synchronous or asynchronous fashion
to the backup replicas. In the first variant, replicas are always kept consistent
and thus read operations can be performed on local copies. In the latter variant,
read operations on backup copies might return stale values.

The first primary-backup variant has been proposed in 1976 by Alsberg and
Day [AD76]. Since then, primary-backup replication has been widely applied
in distributed object systems (e.g., FT-CORBA [OMG04]), file systems (e.g.,
Harp [LGG+91]), and database systems (see [Gor05] for a survey).

6



1.2. TRADITIONAL REPLICATION TECHNIQUES

1.2.3 Coordinator-Cohort/Update Everywhere
Replication

The coordinator-cohort replication model [BJRA85] is similar to the primary-
backup model in the sense that only one replica — the coordinator — pro-
cesses a client’s requests and propagates the updates to the other replicas
— the cohorts. However, the coordinator can change for every invocation.
Coordinator-cohort replication requires distributed concurrency control (e.g.,
distributed locking), deadlock detection, and deadlock removal mechanisms.
While coordinator cohort replication has been introduced in the context of
distributed objects, its counterpart in the database world is often referred as
update everywhere replication (e.g., [KA00]).

1.2.4 Active Replication

In active replication [Sch93], all replicas receive and process the clients’ re-
quests. Thus, replicas need to behave in a deterministic way (state machine).
That is, given the same initial state, replicas need to reach the same final state
if the same operations are processed in the same order at all replicas. Sources
for non-determinism are for example calls to non-deterministic functions (e.g.,
time() or random()) or the scheduling of concurrently executing conflicting
transactions. Thus, non-deterministic sources need to be avoided (e.g., by us-
ing a deterministic scheduler and by removing all non-deterministic function
calls) if this technique shall be applied. Semi-active replication [PCD91] does
not require deterministic behavior of replicas. Deterministic operations are
processed by all replicas but only one of the replicas — the leader — processes
non-deterministic operations and propagates the result to the other replicas —
the followers.

In contrast to primary-backup replication, active replication is a symmetric
solution — the same code runs on all replicas. Failures are transparent to the
client as long as one replica receives the client invocations. The difficulty in
active replication is to ensure that all replicas process the operations in the
same order. Ordering guarantees might be weakened if semantics of operations
such as commutativity of operations are taken into account.

Active replication is widely applicable, including distributed objects (e.g.,
FT-CORBA [OMG04]), file systems (e.g., RNFS [MS88]) and even databases
(e.g., Uni/cluster [Con]).

1.2.5 Quorum Consensus Replication

Majority Voting [Tho79] is the simplest quorum consensus scheme. Both read
and write operations are performed on a majority of replicas. Thus, every read
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operation will contain at least one up-to-date replica.
In Weighted Voting [Gif79], a generalization of Majority Voting, each replica

is assigned some number of votes. Whenever a read or write operation shall be
performed, at least RQ (read quorum) or WQ (write quorum) votes must be
acquired. Let the total number of votes be V . The following conditions must
be met:

RQ + WQ > V (1.1)

WQ >
V

2
(1.2)

WQ, RQ, V ∈ N and WQ, RQ ≤ V are assumed3. Condition (1.1) prevents
read-write conflicts while condition (1.2) prevents write-write conflicts.

Quorum consensus techniques allow to balance the cost of read against write
operations by adjusting the sizes of the read and write quorum appropriately.
Furthermore, in static quorum schemes (as weighted voting), where the quo-
rums are not reconfigured in response to failures, no intervention is necessary
when network failures are repaired or nodes recover; i.e., failures are masked.

As coordinator-cohort replication, quorum schemes require distributed con-
currency control, deadlock detection, and deadlock removal mechanisms.

While quorum consensus techniques have been initially proposed for files
and databases, their application is also feasible for object based systems as it
has been shown in the DeDiSys project (see chapter 3).

1.3 Replication in Service Oriented Systems

In this section, replication in service oriented systems is addressed on a con-
ceptual level and a contribution is made by analyzing replication protocols
regarding their suitability for service oriented systems.

Software and service engineers that need to build fault-tolerant service ori-
ented systems can benefit from this analysis, especially in the design phase of
the system life cycle.

1.3.1 Types of Services

A service is a self-describing computational element that performs some func-
tion [Pap03], e.g., a flight booking service. The capabilities of the service are
defined by a service description language such as the Web Service Description

3In this thesis, N denotes all positive natural numbers, i.e., zero is not included.
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Language (WSDL [W3C]). With respect to state, we distinguish between state-
less and stateful services (Fig. 1.1). With respect to the functionality of the
services, business services and infrastructure services need to be distinguished.

Stateful vs. Stateless Services

A stateless service does not maintain state; thus, the actions performed by
a stateless service only depend on the content of the invocation message. In
contrast, the actions performed by a stateful service depend on the content of
the invocation message and the state maintained by the service. A stateful
service either encapsulates state (e.g., in objects) or keeps it external in a data
store such as a file or database. The latter type of stateful services can be
modeled as a stateless “access” service plus a stateful resource4.

Figure 1.1: Types of services

Examples for stateless services are file compression/decompression services,
temperature conversion services (e.g., Fahrenheit to Centigrade), file compar-
ison services, etc. Many stateful services allow only read access to data: e.g.,
services for retrieving stock quotes, the current weather conditions, zip codes
for a city name, etc. Most e-commerce services are stateful and require both
read and write access to data, for example booking services (flights, hotels,
cars, etc.). Besides accessing persistent data, many stateful services need to
maintain conversational state [FFT+04], which can be either transient or per-
sistent.

Business Services vs. Infrastructure Services

Service oriented systems typically contain both pure business services (as illus-
trated above) and infrastructure services. Business services can be divided into

4Thus, this category is also called “service that acts upon a stateful resource” [FFT+04].
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atomic5 (a.k.a. basic) services and composite services. While atomic services
provide their functionality without interaction with other services, composite
services are an aggregate of several services that — together — deliver a busi-
ness function. A popular example for such a composite service is a booking
engine of a travel agency, which combines several atomic services such as a flight
booking service, a hotel booking service, and a car rental service. The service
that coordinates these individual services to provide enhanced functionality is
typically called an orchestration or composite service.

Examples for infrastructure services in a service oriented environment are
directory services (e.g., UDDI registry [OAS]), messaging intermediaries (e.g.,
based on WS-Reliability [OAS]), and transaction coordinators. Business ser-
vices often require such infrastructure services in order to provide their own
functionality. For example, the above mentioned travel agency service may
benefit from a transaction service.

1.3.2 Model of a Service Oriented System

Figure 1.2 presents a service oriented system with both stateful and state-
less atomic and composite business services. Infrastructure services have been
omitted in order to enhance the comprehensibility of the figure.

Figure 1.2: Service oriented system without replication

Figure 1.3 shows an extension of the system by introducing replication of
both stateful and stateless services.

5Note, that an atomic service is a service which does not require other services. This has
not to be mixed up with atomic transactions between several services.
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Figure 1.3: Service oriented system with replication on the service and data
layer

Multiple instances of stateless services: “Replicating”6 stateless services
is comparatively easy (w.r.t. stateful services), since no state needs to be syn-
chronized. Thus, stateless services are not further considered in this thesis. In
principle, merely several instances of a service need to be deployed on different
hosts in the distributed system. Nevertheless, middleware (see chapter 4) can
be beneficial for keeping several instances of a stateless service, since it typi-
cally provides — besides facilities for the deployment — the abstraction of a
logical service group (comprising several replicas), which reduces complexity
for the application programmer.

Replication on the service and data level: Stateful services with an
external stateful resource — typically a data store — can perform replica-
tion either on the service level or on the data level7. That is, replication
can be performed on different layers in a service oriented system. In the first
case, the state is synchronized by the “access” service while the underlying
stateful resource (data store) takes care of state synchronization in the latter
case. Both commercial database management systems (DBMS) such as Oracle
[Ora], IBM DB2 Universal Database [IBM], or Microsoft SQL Server [Micb]

6The term replication is further avoided in the context of stateless services since — in
the technical sense — it indicates the requirement of synchronizing state.

7In order to avoid a single point of failure on the service level, both the stateless “access
service” and the underlying data store (stateful resource) should be replicated.
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and open-source DBMS such as PostgreSQL [Pos] and MySQL [MyS] provide
replication mechanisms [Gor05]. Distributed file management systems such
as the Network File System (NFS) [SCR+03], Coda [SKK+90], or Microsoft’s
Distributed File System (DFS) [Mica] offer replication as well. Thus, if the
stateful service builds upon a data store capable of replication, state synchro-
nization of replicated services can be achieved on the data level via the data
store.

1.3.3 Replication of Stateful Atomic Services

Now it is shown how the most important replication techniques (see section
1.2) can be applied for atomic services, on the service and data store level, re-
spectively. Most of them can be configured for different consistency guarantees.

Primary-backup replication: In the primary-backup approach [BMST93],
only the primary service receives a client’s request. The backups are either
updated on the service level (Fig. 1.4a) or directly by the underlying data store
(Fig. 1.4b). S1 denotes instance 1 of service S. S1’ is a replica of this instance.
In the original primary backup variant, only the primary replica processes
the requests and forwards the results to the backups. A slight variation is to
forward the invocations instead of the results to the backups. Primary-backup
replication can be performed in an eager or lazy fashion. An example of a
primary-backup replication middleware for Web services is FT-SOAP [LFCL03]
(see chapter 4).

Figure 1.4: Primary-backup replication

Coordinator-cohort/update everywhere: As primary-backup replication,
coordinator-cohort/update everywhere replication can be applied on the ser-
vice or data level in a service oriented environment. To our knowledge, no
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implementation of a coordinator-cohort replication protocol for Web services
currently exists.

Figure 1.5: Coordinator-cohort/Update-everywhere replication

Active replication: In active replication, all invocations need to be issued in
the same order to all replicas (total order) and services need to be deterministic.
Active replication can also be performed on the data layer (Fig. 1.6b). In that
case, the stateless part (“access service”) of a stateful service becomes the client
for the replicated data store.

Figure 1.6: Active replication

WS-Replication [SPPJ06] is an example of an implementation of active repli-
cation for Web services (see chapter 4).

Quorum consensus replication: In principle, quorum consensus protocols
can be used for replication on the data or service level of a service oriented
system.

Epidemic replication: Epidemic replication protocols (e.g., as implemented
in Bayou [TTP+95]) might be used in service oriented systems where a large
number of replicas is needed, update conflicts rarely happen, and consistency
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requirements are mild. To our knowledge, currently no implementation of an
epidemic replication protocol for (Web) services exists.

1.3.4 Replication of Composite Services

Replication becomes more complex if the system is composed of several services
that interact with each other as depicted in Fig. 1.2. In order to discuss
various combinations of the most important (most widely used) replication
methods (primary-backup, active, and coordinator-cohort/update-everywhere
replication), without loss of generality, we consider a chain of two stateful
services as depicted in Fig. 1.7a and thereby introduce the concept of layering
with respect to replication. The client directs its request to the service on the
upper layer which in turn needs to invoke the service on the lower layer in
order to fulfill a task. It is also possible to perform replication on only one of
the service layers or to use no replication at all.

No Replication at All: Figure 1.7 shows three different alternatives as to
how a system without replication can be built. Figure 1.7a is the most obvious
case with only one service instance at each layer. U1 is instance 1 of service U
at the upper layer. U2 is instance 2 of this service. The service instances of the
service L on the lower layer follow the same scheme. Although two instances
of the same service type exist on the upper layer in Fig. 1.7b, this approach
is not replication with respect to state since the state of the services is not
synchronized, i.e., the services are of the same type but independent instances.
Figure 1.7c shows how this concept is applied on both layers. This structure
is only useful for stateless services or as building block in composite services
with replication on only one out of several layers.

No Replication on the Lower Layer: Figure 1.8 shows combinations if
replication is only applied on the upper layer but not on the lower layer. This
situation can occur in service oriented environments if services with different
availability/reliability guarantees (typically of different service providers) are
combined: e.g., if a replicated flight booking service on the upper layer accesses
a non-replicated weather information service on the lower layer.

U1’ denotes the replica of instance 1 of service U on the upper layer.
Coordinator-cohort replication is used on the upper layer in these examples.
Figure 1.8a shows that no special treatment is necessary on the lower layer if
replication is performed by the data store on the upper layer and only one ser-
vice instance exists on the lower layer. In contrast, if invocations are replicated
via service invocation on the upper layer as depicted in Fig. 1.8b, messages to
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a) b) c)

upper layer

lower layer

U1U1 U1

L1 L1 L1

U2 U2

L2

Figure 1.7: No replication at all

the lower layer are duplicated as well and hence need to be detected. This is
called the redundant nested invocation problem [FLCL04].

Finally, Fig. 1.8c depicts what happens when each replicated service on the
upper layer invokes a different, independent service on the lower layer: although
these two service instances on the lower layer are not coordinated within their
layer, consistency of the states can indirectly be established via coordination
on the upper layer. That is, it behaves like active replication. This approach
has been shown for the sake of completeness but is rather unlikely in practice.

a) b) c)

U1U1 U1

L1 L1 L1 L2

U1' U1' U1'

Figure 1.8: No replication on the lower layer
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No Replication on the Upper Layer: Replication on the lower layer is
not influenced, whether only one instance (Fig. 1.9a) or several independent,
un-coordinated instances (Fig. 1.9b) of a service exist on the upper layer.

Figure 1.9: No replication on the upper layer

As in the previous case with no replication on the lower layer, such con-
figurations are quite natural in service oriented systems, e.g., if services with
different availability/reliability guarantees (typically offered by different service
providers) are combined.

Replication on Both Layers: Figure 1.10 gives some examples how the
fundamental replication techniques discussed in Sec. 1.3.3 can be combined: in
Fig. 1.10a, the data stores on both layers perform primary-backup replication.
In Fig. 1.10b, active replication is applied on the upper layer and primary-
backup replication is applied by the data store on the lower layer. Replicated
messages need to be detected if invocations are replicated on the upper layer.
In Fig. 1.10c, update-everywhere replication is applied by the data store on the
upper layer and active replication is used on the lower layer.

Other combinations and replication on additional layers follow the same
principle. The most important subtlety that needs to be considered is redun-
dant nested invocation detection if invocations are replicated.

Again, such combinations are quite natural in service oriented systems if
services (of typically different service providers) are combined: e.g., as depicted
in Fig. 1.10c, a Web service based application of an online bookshop (upper
layer) might use update everywhere replication on the database level while the
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a) b) c)

U1 U1' U1 U1U1'

L1 L1 L1L1' L1' L1'

U1'

Figure 1.10: Replication on both layers

(via a Web service accessible) clearing system (lower layer) of the credit card
company could use active replication.

Figure 1.11: RNI suppression for single threaded services
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Suppression of redundant nested invocations: A suppression mecha-
nism for redundant nested invocations (RNI) needs to (i) automatically detect
RNI, (ii) forward only one of the RNI and suppress the other RNI, and (iii)
suppress redundant invocation replies and return the reply to all replicated
services. For single-threaded services (i.e., one nested invocation is served at a
time), the RNI problem can be solved by simply assigning sequential number
identifiers to invocations. For example, suppose an actively replicated service
U which in turn invokes an actively replicated service L.

Figure 1.11a depicts the situation without a suppression mechanism: the
replicated instances of service L receive invocations twice. This leads to an
incorrect state if the invocations are not idempotent, e.g., new state = old
state + 4, assuming the state is represented by an integer value. Figure 1.11b
depicts the solution: redundant invocations are detected by the RNI suppres-
sion mechanism by comparing the sequence numbers of the invocations. An
invocation is suppressed if the sequence number has already been processed.

This solution also works for multi-threaded services (i.e., nested invocations
are served in parallel) if a deterministic thread scheduler is used. If this is
not the case, more sophisticated invocation identifiers (taking into account the
thread contexts, etc.) need to be created in order to allow detection of identical
invocations. Fang et al. [FLCL04] describe the redundant nested invocation
problem in detail and provide a solution for multi-threaded actively replicated
Web services.
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Chapter 2

Availability/Consistency
Balancing Replication Model

As discussed in chapter 1, enhanced replication techniques are required to
support the run-time balancing of data integrity with availability. This chap-
ter starts with a simple example to illustrate the balancing between these
two requirements. Then, the notions of replica and constraint consistency are
discussed in more detail and the system model is presented. Afterwards, the
Availability/Consistency Balancing Replication Model (ACBRM) — which en-
hances a well-known abstract replication model to support the trading concept
— is presented.

2.1 Trading Data Integrity against

Availability

The most commonly used approach to improve availability in data-centric sys-
tems is to replicate data and services to several locations on the network,
making at least one copy available while failures are present. Smeikal [Sme04]
introduced the concept of temporarily relaxing data integrity to gain even more
availability when link or node failures occur. Smeikal’s solution for balancing
data integrity with availability is targeted to the Distributed Telecommuni-
cation Management System [SG03] of the Vienna-based company Frequentis
and uses a primary-backup replication approach. In contrast to the ACBRM
replication model presented in this chapter and the concrete protocol Adap-
tive Voting presented in chapter 4, Smeikal’s solution restricts write opera-
tions to one partition. However, the ACBRM (and Adaptive Voting) enhances
availability even more by allowing non-critical updates in all partitions which
requires resolving write-write conflicts during reconciliation time.
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2.1.1 Ticket Booking System as Example

Figure 2.1 gives an example of a replicated system where this approach can be
applied, a highly available ticket booking system. For the sake of simplicity
but without loss of generality, it is assumed that the system comprises three
server nodes that host replicas of two different classes of objects and two clients
that perform operations on the replicas. In the example, one class of objects
comprises all instances of a class Person and the other one all instances of a
class Ticket (see Figure 2.2). The primary-backup approach [BMST93] is used
as replication mechanism. Clients initiate write operations at the primary
replica which propagates the update either as state or operation transfer to
the other replicas (backups). Read operations can be performed at any replica
since the replication mechanism ensures that all replicas are consistent during
the absence of failures. Server node 1 hosts the primary copies in the example.

Server node 1

Server node 2 Server node 3

Client 1

Client 2

Represents objects of a 
class Person

Represents objects of a 
class Ticket

Figure 2.1: Ticket booking system

In order to demonstrate the trade-off between data integrity and availability
we assume the cardinality constraint shown in Figure 2.2: A person might buy
up to three tickets for the event and a ticket can only be owned by one person.

Healthy System

We assume a person called Bob has already bought one ticket. He wants to
buy another ticket using client 2; hence, addTicket() is called on the object
representing Bob. The cardinality constraint has to be checked before the new
ticket can be sold to Bob. The operation succeeds since a person is allowed to
own up to three tickets. However, the operation will be rejected if Bob wants
to buy more than three tickets in total.
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Figure 2.2: Class diagram booking system

Degraded System

A link failure occurred between server node 1 and server node 2. We assume,
Bob, who has already bought two tickets before the network split happened,
wants to buy a third one. Traditional systems, which do not allow inconsisten-
cies, would block, because the primary copies are not accessible from client 2
due to the link failure. According to the replicas on server node 2, Bob has al-
ready bought two tickets. However, this information is potentially stale, since
Bob could have bought a third ticket using client 1 in the meantime. The
approach is the following: Bob is allowed to tentatively buy another ticket via
client 2 and thus a consistency violation is risked. We call this situation a
consistency threat [13], since the cardinality constraint might be violated if the
operation is allowed. In order to allow revoking the purchase after repairing
the degradation of the system, Bob is informed that the purchase is only ten-
tative and the tickets will only be sent to him (by mail) if he did not already
buy three tickets. Anyway, Bob ignores the warning and wants to buy a fourth
ticket using client 1. According to the replicas on server node 1, Bob has only
purchased two tickets yet. However, this information is potentially stale due
to the network split and the same consistency threat arises as before. (In fact,
the information is stale but the system cannot know this at this point in time.)
We assume, the threat is accepted by the system and Bob is allowed to (ten-
tatively) buy a fourth ticket. Hence, data integrity is temporarily relaxed to
gain higher availability. However, data integrity will be re-established after the
network split is repaired.

Reunification and Reconciliation

Reunification is the process of merging two or more network partitions on the
network layer, i.e., communication between the partitions is re-established. As
described before, our approach allows updates in different partitions to increase
availability. Hence, reconciliation, the process of detecting and solving incon-
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sistencies and conflicts caused by updates on replicas in different partitions,
is necessary after reunification. In the example, the cardinality constraint is
violated since a person is allowed to buy only three tickets but Bob bought
four. The reconciliation strategy used in the example is to roll-back opera-
tions till the system becomes constraint consistent again: One of Bob’s ticket
bargains is rejected and only three tickets are sent to him. If new partitions
and consistency threats arise during the reconciliation phase, a new trading
process is started asynchronously. Meanwhile, reconciliation will continue as
far as possible.

2.1.2 Replica and Constraint Consistency

Pessimistic replication schemes (partially) restrict operations during degraded
situations in order to prevent update conflicts while optimistic replication tech-
niques risk conflicts and re-solve them at repair time if they have occured
[SS05]. Traditional replication protocols as primary-backup [BMST93], active
replication [Sch93], and weighted voting [Gif79] fall into the first category,
while our approach falls into the latter one. Pessimistic replication enables
strict replica consistency. The notion of replica consistency denotes to what
extent replicas differ from each other. However, strict replica consistency does
not necessarily mean that all replicas need to be mutually consistent: For in-
stance, in quorum consensus (voting) schemes it is sufficient that a consistent
write quorum of replicas exists. Thus, replicas might diverge even in the case
of strict consistency but no actions have to be taken when degradations are
repaired.

Beside the two extremes — strict replica consistency and eventual replica
consistency — numerous intermediate forms (e.g., [YV02]) of replica consis-
tency exist which Saito and Shapiro [SS05] call bounded divergence. Our repli-
cation protocols fall into this category: Some operations — depending on the
data integrity constraints they affect — are allowed in all partitions in order
to enhance availability. Thus, replica consistency is relaxed and conflicts are
risked in degraded situations. However, strict replica consistency is ensured in
the healthy system and during degradation within a partition.

Whether or not replica consistency is relaxed by our replication protocols
depends on the constraints that affect the replicated object. Some constraints
of an application have to be satisfied at any point in time while others might be
relaxed temporarily when failures occur. A system is called constraint consis-
tent [Sme04, SG04] if all data integrity constraints are fulfilled. Non-tradeable
constraints must never be violated while tradeable constraints can be temporar-
ily relaxed during degraded periods.

Moreover, preconditions, postconditions and invariant constraints are dis-
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tinguished. Pre- and postconditions have to be validated before/after a call
to an operation and cannot be simply re-evaluated during repair time. Our
replication protocols re-establish both replica and constraint consistency when
failures are repaired, which requires re-evaluation of constraints. Hence, we
focus on invariant constraints which are solely defined on the state of objects
and can be validated at any time. [13]

We distinguish between critical and non-critical operations: Operations on
objects affected by at least one non-tradeable (i.e., critical) constraint are called
critical and operations on objects affected only by trade-able (i.e., non-critical)
constraints are called non-critical. Only non-critical operations are allowed
during degraded periods.

2.1.3 System Model

We focus on tightly-coupled, data-centric, object-oriented distributed systems
with a small number of server nodes (typically 2-10) and an arbitrary number
of client nodes. Server nodes host objects which are replicated to other server
nodes in order to achieve fault tolerance. We consider both node and link
failures (partitioning), i.e., the crash failure [Cri91] model is assumed for nodes
and links may fail by losing but not duplicating or corrupting messages.

We assume a partially synchronous system, where clocks are not synchro-
nized, but message time is bound. A group membership service is assumed
in our system, which provides a single view of the nodes within a partition,
i.e., it is used to detect node and link failures. Furthermore, we assume the
presence of a group communication service which provides multicast to groups
with configurable delivery and ordering guarantees.

We assume the correctness of the system is expressed in the form of application-
specific data integrity constraints, which are defined upon objects that encapsu-
late application data (e.g., Entity Beans in Enterprise JavaBeans terminology).
These objects do not contain business logic and typically correspond to a row
in a table of a relational database. We assume that read and write opera-
tions on such objects can be distinguished, but we do not further differentiate
invocations.

2.2 Key Concept of the Replication Model

Traditional replication protocols (partially) block in degraded situations, e.g.,
if the primary is not reachable in a primary-backup replication scheme or a
quorum of replicas cannot be acquired in case of quorum consensus protocols.
However, some systems do not require strict data integrity at all times, i.e.,
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replica and constraint consistency can be temporarily relaxed during degraded
situations.

Thus, the key idea is to enhance availability of traditional replication proto-
cols by allowing non-critical operations in degraded situations in all partitions,
even if replica conflicts may arise and data integrity constraints are possibly
violated (threatened [13, 14]). Different reconciliation policies are required to
re-establish replica and constraint consistency after nodes rejoin.

Our enhanced replication protocols distinguish three modes of operation:
normal mode, degraded mode, and reconciliation mode. The current mode of
the replication protocol depends on the system state, as it is locally perceived
by each node (see Fig. 2.3).
Our replication protocols are in the normal mode when all nodes are reachable
and all constraints are satisfied, i.e., no partitions are present and all repair
activities (reconciliation) are finished.

The protocols switch into the degraded mode when not all nodes are reach-
able. Since node and link failures cannot be distinguished at the time the
failure occurs [FLP85], node failures are treated as network partitions until
repair time.

The protocols enter reconciliation mode when two or more partitions rejoin.
The objective of reconciliation is to re-establish replica and constraint consis-
tency of the system. System-wide consistency can only be re-established if all
nodes are reachable. Thus, if partitions rejoin but the merged partition does
not contain all nodes, either constraint consistency is re-established within the
partition or constraint consistency is ignored and only replica consistency is
re-established.

no partitions, no 
reconciliation

(normal mode)

partitions, no 
reconciliation

(degraded mode)

no partitions,
reconciliation
(reconciliation

mode)

partitions,
reconciliation
(reconciliation

mode)

partition

partition

rejoin

rejoin
reconciliation
complete

partition

last rejoin

last rejoin
reconciliation
complete

partition

Figure 2.3: System states and protocol modes
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2.3 The Model in Detail

The replication model is called Availability/Consistency Balancing Replication
Model (ACBRM) and extends the functional model for replication protocols
introduced by Wiesmann et al. [WPS+00] with respect to the trading of con-
straint consistency against availability.

In Wiesmann et al’s model, replication protocols are described as a sequence
of five generic phases. Literally from [WPS+00]:

• Request (RE): The client submits an operation to one (or more) replicas.

• Server coordination (SC): The replicas coordinate with each other
to synchronize the execution of the operation (ordering of concurrent
operations).

• Execution (EX): The operation is executed on the replicas.

• Agreement coordination (AC): The replicas agree on the result of the
execution (e.g., to guarantee atomicity).

• Response (END): The outcome of the operation is transmitted back to
the client.

Some of the replication techniques skip one or more phases, order them in
another way, iterate over some, or merge some of the phases [WPS+00].

We extend the model of Wiesmann et al. by introducing new phases that
enable the balancing of data integrity with availability. The new phases are
only required for non-critical operations except the constraint validation phase
which is also required for critical operations. Beside this phase, critical opera-
tions are treated as in Wiesmann et al’s model.

2.3.1 Normal Mode

In normal mode, replication protocols for trading availability against consis-
tency behave similar as traditional replication protocols, with the only exten-
sion that data integrity constraints are explicitly supported and validation of
the constraints is triggered. Thus a new phase, called constraint validation
(CV), is required.

Constraint Validation

The constraint validation phase starts immediately after the execution (EX)
phase of a write operation. Constraint validation is not performed in case of
read operations.
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Figure 2.4: Protocol phases in normal mode for write operations

The write operation is aborted — independent of the type of the constraint
(tradeable or non-tradeable) — if one of the constraints is not met since our
protocols guarantee data integrity in the healthy system. The CV phase is
identical for all our concrete protocols.

An experimental evaluation of constraint validation approaches is presented
in [15].

2.3.2 Degraded Mode

The key idea of our replication protocols is to allow non-critical operations in
degraded situations in order to enhance availability, even if the consequence
is that replica conflicts might arise and data integrity is threatened. Critical
updates are treated as in normal mode.

Three new phases are introduced for the degraded mode of our protocols:

Configuration Adjustment (CA)

Replication protocols are configured with respect to various system parameters
as the number of nodes, read to write ratio, load, etc. For example, in a quorum
consensus scheme, the read and write quorums need to be configured. In a
primary-backup approach, the roles (primary vs. backup) of the replicas have
to be defined. Some replication protocols require reconfiguration in response to
failures (e.g., of nodes or links) in order to provide fault tolerance on the system
level, e.g., a new primary needs to be elected if the original primary crashes. In
other protocols, as static quorum schemes, no intervention is necessary when
failures occur, i.e., failures are masked.

Our protocols allow non-critical operations in all partitions during degraded
situations. Thus, we adapt the protocols in degraded situations: For instance,
in case of the Primary-per-Partition-Protocol [16], a temporary primary is
elected in each partition for objects that are only affected by tradeable con-
straints. Configuration adjustment is partition-internal and must be based
on partition-specific parameters as the number of replicas or the roles of the
replicas residing in the partition.

26



2.3. THE MODEL IN DETAIL

Constraint Validation (CV)

For critical operations, constraint validation is performed as in normal mode.
However, for non-critical operations, which are allowed in different partitions,
constraint validation has limited significance: A tradeable constraint that is
satisfied based on the objects in the current partition might be violated retro-
spectively if one of the involved objects is changed in another partition. Thus,
it can be configured whether or not constraint consistency within the partition
shall be enforced. In the latter case, tradeable constraints do not have to be
validated in degraded mode but are marked (in the reconciliation preparation
phase) for validation at reconciliation time.

Reconciliation Preparation (RP)

In order to allow maximum flexibility for reconciliation when nodes rejoin, the
replication protocol needs to log information about non-critical updates dur-
ing degraded mode. In principle, either operations or states can be logged.
Furthermore, depending on the reconciliation strategy, it is required to log ei-
ther all, some, or none of the operations and/or states. Logging everything
(full history) offers all options during reconciliation but is the most resource-
consuming approach. Keeping a partial history is a compromise between re-
source consumption and reconciliation flexibility and the third, no history,
approach limits reconciliation to roll-forward or compensation actions that do
not require a history of tentative operations/states.

Read operations do not require this phase: Read-write conflicts can be ig-
nored during reconciliation since the application is aware that non-critical read
operations performed during degraded situations return possibly stale objects.

Figure 2.5 depicts the sequence of the protocol phases in degraded mode for
non-critical write operations. The configuration adjustment is the first phase
and is triggered by the group membership service when the number of replicas
in the current partition changes. However, not all changes require reconfigura-
tion. For instance, CA can be skipped in case of the primary-backup scheme
if the original primary is still in the partition. If constraint consistency shall
be enforced within the partition, constraint validation is performed immedi-
ately after the write operation is executed. Preparation for reconciliation starts
afterwards.

Figure 2.5: Protocol phases in degraded mode for non-critical write operations
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2.3.3 Reconciliation Mode

Reconciliation mode starts after the new group view is established because of
(partial) partition re-unification. The overall goal of reconciliation is to re-
establish constraint consistency and replica consistency. Full consistency (i.e.,
system-wide) can only be re-established if all nodes are available (full constraint
consistency re-establishment). If this is not the case, we consider two options:
Either constraint consistency and replica consistency are re-established within
the partition (partial constraint consistency re-establishment) or only replica
consistency is re-established (partial replica consistency re-establishment). Our
concrete replication protocols that follow the ACBRM allow to plug-in different
reconciliation policies.

Full/Partial Replica Consistency Re-establishment (RCR)

If updates have occurred in only one partition, the updates of this partition are
applied on a certain number of replicas (depending on the concrete protocol)
in the merged partition.

Replica conflict detection: Replica conflicts — caused by updates in
different partitions — can be detected based on syntactic and/or semantic in-
formation. Syntactic approaches use information about when, where, and by
whom operations have been submitted. Examples for syntactic techniques are
version vectors [JPR+83], time-stamps [Mad98], or precedence graphs [Dav84].
Semantic techniques [KRSD01] exploit properties such as commutativity or
idempotency of operations. Our replication protocols use only syntactic in-
formation (version numbers) for detection of replica conflicts since syntactic
approaches provide better scalability than semantic ones. Thus, conflicts are
detected by comparing the version histories of the partitions. How the version
histories are generated depends on the concrete protocol.

Replica conflict resolution: If conflicts have been detected, one of the
conflicting updates is chosen and the other updates are discarded. Selection
criteria are the number of updates, number of nodes in the partition, etc.
Alternatively, a completely new or a default version can be installed to solve
the conflict.

Re-establishment of replica and constraint consistency can be decoupled to
reduce complexity. However, if both phases are combined, another selection
criterion for replica conflicts is whether or not data integrity is satisfied by
choosing one or the other version. If none of the replicas satisfies the con-
straints, one can be chosen according to the previously mentioned policies.
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Full/Partial Constraint Consistency Re-establishment (CCR)

If at least one constraint is violated after re-establishment of replica consis-
tency, the following policies can be distinguished to re-establish constraint
consistency:

Re-schedule and replay: One option is to replay all tentative operations
based on the last (replica and constraint) consistent state in a schedule that
accepts as many operations as possible, under the conditions that both ordering
and data integrity constraints are satisfied. This approach requires logging of
all operations during degradation and suffers from scalability problems.

Stepwise rollback: Another option is to stepwise revert objects affected
by the violated constraint to previous versions till the constraint is satisfied.
In the worst case, all operations are undone. This approach requires logging
of all tentative states in degraded mode (i.e., full history approach).

Compensation actions: In order to avoid time-consuming rollbacks or
replays, application-specific compensation actions can be defined for some ap-
plications. For instance, a simple compensation action is to choose a default
or completely new (agreed) version in case of a conflict. This approach is even
possible if no history is maintained.

The chosen version that satisfies the constraints is applied at a certain number
of objects (depending on the concrete protocol) in the merged partition. If
constraint consistency is re-established system-wide, the version histories are
cleaned and constraint re-evaluation flags are set to false.

Configuration Adjustment (CA)

The configuration of the replication protocols that follow the ACBRM is re-
adjusted depending on the new situation after consistency is (partially) re-
established. For instance, in the primary-backup scheme one of the two (tem-
porary) primaries of the merged partition needs to be demoted to a secondary
replica. In case of the adaptive voting protocol, the quorum sizes are adapted
to the size of the partition.

Figure 2.6 depicts the sequence of the protocol phases in reconciliation mode.
Replica consistency re-establishment is followed by constraint consistency re-
establishment or might even be combined. Finally, the configuration of the
protocol is adjusted (CA phase).

Figure 2.6: Protocol phases in reconciliation mode
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2.3.4 Dependencies between Degraded and Reconcilia-

tion Mode

The number of reconciliation options depends on the reconciliation preparation
phase as depicted in Fig. 2.7. Vice versa, reconciliation mode retrospectively
influences the replication behavior in degraded mode. In case of the “resched-
ule/replay” and the “compensation actions” reconciliation approaches, the pro-
tocol behavior in degraded mode can be literally overwritten. For instance, it is
even possible to retrospectively switch from a primary-backup based scheme to
a voting algorithm. By applying a “stepwise rollback” reconciliation strategy,
the effects of the degraded mode cannot be changed, though (partly) revoked.

Figure 2.7: Dependencies between degraded and reconciliation mode

2.4 Proof of Concept

The proof of concept for this abstract model has been demonstrated by two
concrete protocols adhering to the model. These protocols have been imple-
mented in the DeDiSys middleware [5].

2.4.1 Concrete Protocols

So far, two concrete replication protocols that follow this model have been
designed and implemented: The Primary-Per-Partition-Protocol [16], which is
shortly described in this section, and Adaptive Voting [3]. The latter is de-
scribed in detail in the next chapter since it is one of the main contributions of
this thesis. In principle, other protocols such as coordinator-cohort [BJRA85]
or active replication [Sch93] can be adapted in a similar way.
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The Primary-Per-Partition-Protocol (P4) is defined as follows:

Normal mode: During normal mode, the P4 behaves like a traditional
primary-backup protocol with the only extension that data integrity constraints
are explicitly enforced. That is, clients send their requests to the primary
replica which executes the request, validates the constraints, and propagates
the updates to the backups if the constraints are met. Synchronous (eager)
update propagation is used to ensure strict consistency in the healthy system,
i.e., a response is sent to the client after the replicas are updated. In principle,
however, the P4 could also use asynchronous update propagation.

Degraded mode: The P4 applies a primary-backup scheme per partition
(thus the name primary-per-partition protocol) in case of network partition-
ing. That is, the P4 re-configures (configuration adjustment phase) once fail-
ures are detected and the primary is not in the current partition, i.e., a new
temporary primary is elected for objects that are only affected by tradeable
constraints. Thus, non-critical operations — that would not have been allowed
in a traditional primary-backup scheme if the primary is not reachable — can
proceed in all partitions. Tentative states and/or operations are logged in the
reconciliation preparation phase.

Reconciliation mode: Conflicts between concurrent updates in different
partitions which are merged can be easily detected by comparing the version
histories of the two temporary primaries. The P4 allows to plug-in different
reconciliation protocols (e.g., [AN06a, AN06b, ANBG07]).

2.4.2 DeDiSys

The ACBRM has been developed in the context of the European Union frame-
work programme six research project DeDiSys (Dependable Distributed Sys-
tems, http://www.dedisys.org, contract number 004152). DeDiSys comprises
eight partners from six countries and took place from October 2004 till Novem-
ber 2007. DeDiSys aims at optimizing dependability both in data-centric dis-
tributed object systems and resource-centric service oriented systems. The
ACBRM and the concrete protocols that follow the abstract model are tar-
geted to the first kind of systems.

The platform-independent system architecture of the DeDiSys replication
middleware for data-centric distributed object systems, which is targeted to
these adaptive replication protocols for balancing data integrity with availabil-
ity is presented in chapter 4. The DeDiSys middleware has been implemented
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on three different platforms: EJB [Kue07], CORBA [BMG06], and .NET [6].
The P4 has been implemented on all of these platforms. The Adaptive Voting
(AV) protocol has been implemented for the .NET-based prototype [Chl07].

Two of the four industrial partners involved, namely Frequentis (Austria)
and Cosylab (Slovenia), have been involved in implementation of the DeDiSys
middleware and aim at exploiting DeDiSys results in their products.

Detailed test and validation reports of the DeDiSys middleware and three
different industrial applications (ATS (Alarm Tracking System [Kue07]), ACS
(Advanced Control System [Zag07]), and EPICS (Experimental Physics and
Industrial Control System [Hab07]) Directory Service) that build upon DeDiSys
can be found in [Kue07, Hab07, Zag07]. An experimental evaluation [Chl07]
[4] of the Adaptive Voting protocol is discussed in the next chapter.

2.5 Summary

The Availability/Consistency Balancing Replication Model (ACBRM) — the
first major contribution of this thesis — is an abstract replication model for
balancing data integrity with availability. The ACBRM extends the abstract
replication model proposed by Wiesmann et al. [WPS+00], which defines repli-
cation protocols as a sequence of five generic phases. Wiesmann et al.’s model
is suitable to describe traditional replication protocols such as primary-backup
[BMST93] or active replication [Sch93], but does not cover replication protocols
for balancing data integrity with availability and thus needs to be extended for
our purposes.

The ACBRM distinguishes three modes depending on the status of the
system. Normal mode is reached if all nodes in the system are available and
data integrity is established. Degraded mode is entered if some of the nodes are
not reachable due to node crashes or link failures. During degraded mode, non-
critical updates are allowed in all partitions which can lead to data integrity
violations and replica inconsistency. Thus, a reconciliation mode is required
to re-establish data integrity and replica consistency when network partitions
rejoin.

The ACBRM defines the phases required in each of these modes for balanc-
ing data integrity with availability. The model is abstract in the sense that the
phases are generic and need to be concretized for specific replication protocols.
For instance, the ACBRM defines a configuration adjustment phase during
degraded mode, which is different for primary-backup based protocols as the
Primary-per-Partition-Protocol (P4) [16] and quorum-based protocols such as
the Adaptive Voting (AV) protocol [3]. In the P4, temporary primaries need to
be elected if the original one is not present in a partition. On the other hand,
in the AV protocol, quorum adjustment denotes that the size of the read and
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write quorums need to be changed during degradation in order to adapt to a
changing partition size.

Adaptive Voting, one of the concrete protocols that follows the ACBRM, is
the second major contribution of this thesis and described in the next chapter.
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Chapter 3

Adaptive Voting

Chapter 2 presented an abstract replication model for balancing data integrity
with availability. The model is abstract in the sense that it does not by it-
self define an implementable replication protocol. It does however define the
principal phases required to support the run-time trading between availability
and consistency. Concrete protocols that follow this model need to define the
detailed behavior in each of the phases. In this chapter, one of the concrete
protocols following the abstract model, namely Adaptive Voting, is presented.

Traditional Voting: Weighted Voting is described in section 1.2.5. For the
sake of simplicity we further assume in this chapter that all replicas have equal
votes (i.e., 1) and each node in the system hosts one replica. Thus, the total
number of votes V becomes the total number of nodes in the system, denoted
as N . We denote this simplification of weighted voting as Traditional Voting.

Key Concept of Adaptive Voting: Traditional voting blocks operations
if the quorums cannot be built, hence, our key idea is to enhance availability
of traditional voting by allowing non-critical operations even if no quorums
exist, i.e., operations are allowed that may violate tradeable constraints but
do not affect non-tradeable constraints. Furthermore, the new protocol called
Adaptive Voting (AV) allows to re-adjust the quorums in degraded situations
in order to support the tuning1 of read against write operations. Since update
conflicts and data integrity violations might be introduced, different policies are
required to re-establish replica and constraint consistency after nodes rejoin.
The replica consistency requirement for quorum consensus protocols is that a
write quorum of replicas is consistent.

1The choice of the quorums depends on the read/write ratio and is not influenced by the
data integrity constraints.
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3.1 Protocol Description

In normal mode (healthy system), AV behaves as the traditional voting proto-
col with the enhancement that constraints are checked in case of write opera-
tions. That is, the quorum conditions

WQH + RQH > N (3.1)

WQH >
N

2
(3.2)

are obeyed. We denote the quorum sizes of the healthy system (i.e., all nodes
are reachable) as WQH and RQH .

3.1.1 Degraded Mode

In traditional voting, read operations are allowed if a read quorum can be
acquired and write operations if a write quorum can be acquired.

AV enhances availability by allowing non-critical operations even if no quo-
rum exists. Critical operations are treated as in the normal mode to ensure
that non-tradeable constraints are never violated.

Partition Size

The behavior of AV in degraded mode depends on the size of the partition.
The number of nodes within a partition is denoted as P . Thus the number
of nodes outside the partition is N − P . For the following considerations we
assume that the quorums are not larger than necessary, i.e.,

WQH + RQH = N + 1 (3.3)

which further implies

RQH ≤ WQH (3.4)

because from (3.3) follows WQH + RQH − 1 = N , which can be inserted
into (3.2):

WQH > N/2 =
WQH + RQH − 1

2
2WQH > WQH + RQH − 1

WQH > RQH − 1

WQH ≥ RQH
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Write and read quorum exist: If a write quorum exists in a particular
partition, a read quorum exists as well. Outside this partition, no read or write
quorum can exist. That is,

N > P ≥ WQH ≥ RQH ⇔ N − P < RQH ≤ WQH (3.5)

because

P ≥ WQH

P > WQH − 1

P > N − RQH

−P < RQH − N

N − P < RQH

where WQH = N − RQH + 1 follows from (3.3).

Both critical and non-critical operations are allowed within the partition. For
critical operations, the behavior is as in the normal mode, i.e., those opera-
tions are blocked in other partitions. However, we allow non-critical updates
in other partitions even if no write quorum exists. Thus, the quorum condi-
tions are no longer satisfied system-wide and write-write or read-write conflicts
might arise. However, we avoid partition-internal conflicts by using a quorum
scheme within the partition. The (partition-internal) quorums can be adjusted
according to the size of the partition in order to enhance performance. We
denote the reduced quorums in the partition as WQP and RQP .

Since a read quorum RQH as defined in the healthy system exists, up-to-date
copies of objects affected by non-tradeable constraints only can be retrieved.
For objects affected by tradeable constraints, the read quorum might have
been reduced in the partition. Thus, performance of the read operation can be
improved by reading from RQP . However, since updates on objects affected
by tradeable constraints are allowed in all partitions, the read operation might
return an object that is possibly stale.

Write quorum does not exist but read quorum exists: If a read quorum
but no write quorum exists in the partition, outside the partition no write
quorum can exist but a read quorum may exist:

WQH > P ≥ RQH ⇔ WQH > N − P ≥ RQH (3.6)

because
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P < WQH

P + 1 ≤ WQH

P ≤ N − RQH

N − P ≥ RQH

P ≥ RQH

P > RQH − 1

P > N − WQH

N − P > WQH

where WQH = N − RQH + 1 and RQH = N − WQH + 1 follow from (3.3).

Only non-critical operations are allowed in this situation. As mentioned be-
fore, the quorum sizes can be reduced for non-critical operations since valid
quorums are guaranteed only within the partition anyway.
Thus, the following steps are performed:

1. If one of the constraints affected by the operation is non-tradeable, the
update is not allowed. Otherwise the protocol acquires a write quorum
WQP .

2. Afterwards, the operation can immediately be applied onto the write
quorum, if constraint consistency within the partition is not enforced.
Whether or not this is enforced is configurable in the AV protocol. If it is
enforced, the operation will only be applied if no constraints are violated.
A constraint check during degraded mode (for tradeable constraints) has
limited significance anyway since the constraint might be influenced by
operations in other partitions as well.

3. Thus, constraints affected by the operation need to be marked for re-
evaluation at reconciliation time.

An object (and/or the operation) needs — depending on the reconciliation
policy — to be saved in a version history before it is changed in degraded
mode. This allows detection of update conflicts and provides several options
for reconciliation.

Read operations are treated as in case (3.5).

Write and read quorum do not exist: If no read and write quorum exist
in the partition, both a read and write quorum may exist outside the partition:

RQH > P ≥ 1 ⇔ N − P ≥ WQH ≥ RQH (3.7)

because
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P < RQH

P + 1 ≤ RQH

P ≤ N − WQH

N − P ≥ WQH

Write operations are treated as in case (3.6). Read operations can only be
performed on a reduced read quorum RQP . Thus, all objects returned by a
read operation are possibly stale. However, by applying the quorum conditions
in the partition, it is guaranteed that subsequent read operations within a
partition will return the same version.

Quorum Adjustment

AV allows updates in different partitions during degraded situations. However,
within a partition, read-write and write-write conflicts shall be prevented and
the tuning of read against write operations shall be supported. Thus, a quorum
scheme adapted to the size of the partition is applied:

WQP + RQP > P (3.8)

WQP >
P

2
(3.9)

WQP , RQP , P ∈ N (3.10)

WQP , RQP ≤ P (3.11)

Different quorum adjustment policies can be distinguished:

Adjustment Policy 1: Maintaining read and write quorum: The most
obvious strategy is to maintain the quorum sizes as in the healthy system as
long as possible. If the partition size P falls below WQH (RQH), the write
(read) quorum is set to P :

WQP = min (WQH , P ) =

{
WQH : P ≥ WQH

P : P < WQH
(3.12)

RQP = min (RQH , P ) =

{
RQH : P ≥ RQH

P : P < RQH
(3.13)

38



3.1. PROTOCOL DESCRIPTION

Figure 3.1 graphically shows this adjustment strategy. The horizontal axis
denotes the size P of the partition, decreasing from the left side (P = N) to
the right side (P=1). The vertical axis shows the sizes of the read and write
quorums.

PWQH

WQH

RQH

RQH

WQP

RQP

N 1

1

Figure 3.1: Maintaining write and read quorum

Adjustment Policy 2: Proportional adjustment: Adjustment policy 1
maintains the configuration of the healthy system as long as possible but with
the cost that the quorums become larger than necessary within the partition.
In order to maintain the read/write tuning of the healthy system, the read and
write quorum in the partition can be adjusted proportional to the size of the
partition. Since RQ, WQ ∈ N, exact proportional adjustment is not always
possible. Figure 3.2 graphically depicts the proportional adjustment strategy.

PWQH

WQH

RQH

RQH

WQP

RQP

N 1

1

Figure 3.2: Proportional adjustment
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Adjustment Policy 3: Arbitrary adjustment: In principle, all adjust-
ments are allowed, as long as the above mentioned conditions (3.8), (3.9),
(3.10), and (3.11) are met. Figure 3.3 graphically shows some arbitrary ad-
justment strategy.

PWQH

WQH

RQH

RQH

WQP

RQP

N 1

1

Figure 3.3: Arbitrary adjustment

3.1.2 Reconciliation Mode

In principle, different reconciliation protocols can be used for Adaptive Voting.
General considerations regarding reconciliation in the Availability/Consistency
Balancing Replication Model can be found in section 2.3.3. The default recon-
ciliation strategy for AV is as follows:

The overall goal of reconciliation is to re-establish constraint consistency.
However, full constraint consistency can only be re-established if all nodes
are available. Thus, if this is not the case, AV only re-establishes replica
consistency in the merged partition.

Non-critical operations are not allowed in reconciliation mode, therefore
availability is reduced in this mode. Thus, reconciliation should be as fast as
possible. In order to avoid combinatorial explosion, we use simple (application-
defined) heuristics in the reconciliation phase, e.g., to select a particular version
in case of a write-write conflict.
Reconciliation is performed in the following steps:

1. Re-adjustment of quorum sizes.

2. Re-establishment of replica consistency.

3. Re-establishment of constraint consistency if all nodes are available.
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Re-adjustment of quorum sizes: The quorum size of the merged partition
needs to be adjusted so that the appropriate quorum conditions are obeyed.

Re-establishment of replica consistency: AV allows non-critical updates
in all partitions, even if no write quorum exists. Thus, write-write conflicts
might arise. These conflicts can be detected by comparing the version lists of
the partitions. If updates have occurred in only one partition, the version list
of this partition is applied at a write quorum of the merged partition. In case
of a conflict between the updates in the different partitions (we denote this as
replica conflict), one of the replicas is chosen according to some pre-defined
criterion (e.g., partition with more updates wins or larger partition wins etc.).
The version list of the losing partition is discarded. The version list of the
winning partition is adopted by a write quorum of the merged partition.

Re-establishment of constraint consistency: System-wide constraint con-
sistency can only be re-established if all nodes are available. If this is the
case, all constraints that are marked for re-evaluation are checked again. If
a constraint is violated, the following policies are defined to re-establish data
integrity:

1. Constraint conflict policy 1: Stepwise rollback: Objects affected by the
constraint are stepwise reverted to previous versions till the constraint is
satisfied.

2. Constraint conflict policy 2: Compensation actions: In order to avoid
rollbacks, application-specific compensation actions can be defined. For
instance, a simple compensation action is to choose a default version in
case of a conflict.

The chosen version is applied at a write quorum of the merged partition. All
tentative versions are discarded, i.e., the version lists are cleaned.

3.1.3 Example

Figure 3.4 gives an example of the behaviour of AV in normal mode, degraded
mode, and reconciliation mode.

The system consists of 5 nodes. The quorums are identical for all objects:
WQH = 4, RQH = 2. Two objects, namely object A and object B are repli-
cated. For the sake of simplicity, the state of the object is represented by an
integer value. Furthermore, to enhance readability of the figure, we assume
the integer value is always equal to the version number, i.e., a write operation
can increment A or B by 1. The following tradeable inter-object constraint is
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RQH=2
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Figure 3.4: Example behaviour of AV

defined: A + B < 10. This constraint has to be fulfilled in the healthy system
(normal mode). For instance, A is updated 3 times and B is updated twice in
the healthy system.

The system degrades into 2 partitions; none of the partitions contains a write
quorum. The group membership service detects the failure and AV changes
to degraded mode. Since the constraint is tradeable, operations are allowed
in all partitions during degraded mode. Within a partition, update conflicts
are avoided by applying a quorum scheme adapted to the size of the partition.
Thus, the quorums are changed in both partitions. We denote the reduced
quorums in partition k as WQk and RQk. The size of partition k is denoted as
Pk in Fig. 3.4. For partition 1, both WQ1 and RQ1 are set to 2. In partition
1, A is set to 3 first, afterwards to 4, then to 5. Furthermore, B is set to 4 in
partition 1. In partition 2, B is set to 4 first and then to 5. The states are
logged in order to allow reconciliation at repair time.

Reconciliation starts when two or more partitions rejoin. Again, this is
detected by the group membership service. The quorums are changed to the
initial quorums (i.e., WQH and RQH) since all nodes are available. Afterwards,
the version lists — which can be built by reading from a read quorum — of the
two partitions are compared. A has only been updated in partition 1, thus this
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version is chosen. B has been updated once in partition 1 and twice in partition
2. Version 4 of B is chosen (which has the same value in both partitions) since
version 5 would violate the constraint. Thus, B is set to 4 on a write quorum
WQH of nodes. All tentative versions are discarded. AV returns to normal
mode.

3.2 Availability Analysis

Jiménez-Peris et al. [JPAK03] compare various quorum schemes with the con-
ventional read-one/write-all-available (ROWAA) approach in terms of avail-
ability, scalability, and performance. Regarding availability, they conclude
that ROWAA is the best choice for a wide range of applications if no net-
work partitions occur. However, if partitions are considered as in our target
applications, ROWAA needs to adopt the primary partition approach and thus
exhibits the same availability as majority voting [JPAK03]. Since majority vot-
ing is a special configuration of traditional voting, we compare availability of
Adaptive Voting with availability of traditional voting (TV). For both proto-
cols, availability of read and write operations needs to be distinguished. Total
availability is expressed as

A = qwAw + qrAr (3.14)

Aw is the write availability of TV and Ar the read availability for TV. Avail-
ability of AV follows the same scheme. qw and qr express the weight of write
and read operations. E.g., qw = 0.4 denotes that 40% of all operations are
write operations. Thus, qw + qr = 1 must hold. Equal load on all nodes is
assumed.

3.2.1 Traditional Voting

For TV, write/read availability is the sum of the availabilities in each partition.
Pi is the size of partition i, N is the total number of nodes. One replica per node
is assumed. Write operations can only be performed in at most one partition,
while read operations might be performed in several partitions if no partition
with a write quorum exists. Thus, the values of Aw and Ar in this case are as
follows:

Aw =

{
max

i
Pi

N
: ∃ Pi ≥ WQH

0 : else
(3.15)

Ar =
∑

i

Pi

N
∀Pi ≥ RQ (3.16)
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3.2.2 Adaptive Voting

For AV, non-critical and critical write operations need to be distinguished. The
latter type has the same availability (denoted as Awcritical

) as write operations
of TV. Availability of the first type — denoted as Awnon−critical

— is 100% in
normal mode and in degraded mode while we assume2 such operations are not
allowed in reconciliation mode.

Awcritical
= Aw (3.17)

Awnon−critical
=

{
1 : normal mode, degr. mode
0 : reconciliation mode

(3.18)

Thus, total availability of write operations of AV is expressed as

Aw = qc Awcritical
+ qnc Awnon−critical

(3.19)

where qc + qnc = 1 must hold. qnc is the percentage of non-critical write
operations while qc is the percentage of critical write operations.

Read operations follow a similar scheme: Read operations on objects af-
fected by non-tradeable constraints have the same availability as read opera-
tions in TV. Read operations on objects affected by tradeable constraints have
100% availability in normal mode and degraded mode but are blocked during
reconciliation mode.

3.2.3 Availability over Time

So far, we have analyzed the availability of the system in several system states,
depending on the number and sizes of partitions. The analysis shows that AV
provides higher (or at least equal if all constraints are non-tradeable) availabil-
ity than TV in degraded mode. However, availability of AV declines during
reconciliation. Thus, in order to decide when AV is beneficial, availability needs
to be considered over time. We denote each ti as a point in time where one or
more nodes leave or rejoin. tds is the point in time where degradation starts
and tre where reconciliation ends. Availability is 100% in the healthy system
for both protocols; thus, AV advances TV if

re−1∑
i=ds

A(ti) · (ti+1 − ti)

tre − tds
>

re−1∑
i=ds

A(ti) · (ti+1 − ti)

tre − tds
(3.20)

2Only few reconciliation protocols serve business operations during reconciliation, e.g.,
the protocol described in [AN06b] maintains virtual partitions during reconciliation.
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holds. That is, AV yields better availability over time if reconciliation time is
short compared to degradation time and enough constraints are tradeable.

Figure 2 shows how availability might change over time. The figure is an
example that has been chosen for presentation purposes but does not represent
real measurements. In the beginning (healthy system), both TV and AV have
full availability. Once partitioning happens, Adaptive Voting has only a slight
availability decrease caused by critical operations that are not allowed during
degradation. TV becomes completely unavailable if neither a write nor a read
quorum can be built. On the other hand, availability of AV drops when nodes
rejoin and reconciliation is performed.

t

Availability

Traditional Voting

Adaptive Voting

tds tde

1

tre

tds ... degradation start
tde ... degradation end
tre ... reconciliation end

nodes rejoinpartitioning

Figure 3.5: Availability over time: AV vs. TV

3.2.4 Influence of Reconciliation on Availability

Update conflicts and data integrity violations, which might be introduced in
degraded mode since AV allows non-critical updates in all partitions, need to
be resolved in reconciliation mode. Applying a rollback to a consistent check-
point would revoke two types of operations. The first type would have been
rejected in normal (healthy) mode anyway and thus their revocation would
not retrospectively reduce availability. However, the second type of operations
could have been applied successfully in normal mode either (i) as they are or
(ii) as another operation according to the user’s intention but based on the
healthy context. If we do not want to reduce availability retrospectively at all,
we have to assume that all update conflicts for the latter type of operations
can be resolved by (i) replaying some operations or (ii) application-specific
compensation actions. This is what we assume for our availability analysis.
The first type of operations, however, can simply be revoked/undone. Putting
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it the other way round: availability is only reduced retrospectively, if recon-
ciliation revokes operations that could have been reasonably applied in the
normal (healthy) mode. However, applying heuristics to cope with reconcili-
ation complexity may further reduce availability retrospectively, which has to
be investigated in future work.

3.3 Proof of Concept

AV has been implemented [Chl07] in the .NET version of the DeDiSys [5] repli-
cation middleware. DeDiSys is targeted to partitioned environments and allows
to plug-in replication protocols for balancing data integrity against availability.

The following measurements [Chl07] [4] were conducted on a 100MBit full
duplex switched network with up to ten machines with similar strengths (1-
3GHz, 1-3GB RAM, Windows Server 2003). Spread [ADS00] has been used as
group communication toolkit.

Three (independent) iterations of 1000 runs have been performed for every
experiment and 1000 runs were performed before each iteration in order to
reduce the effects of just-in-time compilation. All figures in this thesis show
the average values over all iterations and runs.

The performance of Adaptive Voting has been evaluated using the following
simple scenario: The state of an object a/b of class A/B is represented by an
integer value x. Three constraints exist:

• C1: a.x < constant1

• C2: b.x < constant1

• C3: a.x + b.x < constant2

C1 and C2 are non-tradeable but C3 is tradeable.

3.3.1 Latency of Operations

Normal mode: Figure 3.6 compares the latency of (i) a write operation with
constraint checking3, (ii) a write operation without constraint checking and (iii)
a read operation in normal mode for different node numbers. Adaptive Voting
is configured with a read-one/write-all (ROWA) strategy in this figure, i.e.,
WQ = number of nodes, RQ = 1. AV applies a write operation locally first
and then propagates the whole object state of around one kilobyte to a write
quorum of replicas. Write operations without constraint checking are slightly

3cc = constraint checking
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faster than write operations with constraint checking since the latter involves
read operations for constraint validation as well. However, in case of ROWA,
the difference is rather small since read operations can be performed locally.
As expected from theory, latency of write operations increases with the number
of nodes in a ROWA schema.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
nodes

m
s

write with cc
write without cc
read

Figure 3.6: ROWA AV in normal mode [Chl07] [4]

Figure 3.7 shows the latency of these operations for Majority Adaptive Vot-
ing, i.e., WQ =

⌊
N
2

⌋
+ 1 and RQ =

⌈
N
2

⌉
. Read and write operations without

constraint checking have similar performance since the quorums are either iden-
tical (for an uneven number of nodes) or differ only by one (for an even number
of nodes). Write operations with constraint checking are much slower since they
involve remote read operations as well due to the inter-object constraint C3.

ROWA and Majority are the two extreme configurations of the Adaptive
Voting protocol. While ROWA performs best for read operations, Majority is
faster for write operations without constraint checking. Whether the one or the
other strategy is better for write operations with constraint checking depends
on whether information from remote nodes is required. In our example, which
involves checking the inter-object constraint C3, ROWA would be the better
strategy in terms of performance.

Besides these two extreme configurations, Adaptive Voting can be config-
ured for other quorum sizes as well. Figure 3.8 compares the latency of oper-
ations for the possible quorum sizes if the number of nodes is ten:

In our example with an inter-object constraint, write operations with con-
straint checking perform best for the ROWA strategy since read operations
required for constraint checking can be performed locally. The performance
of write operations (without constraint checking) becomes slightly better with
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Figure 3.7: Majority AV in normal mode [Chl07] [4]
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Figure 3.8: Quorum strategies for 10 nodes [Chl07] [4]

decreasing WQ. The trend for read operations is similar with decreasing RQ.
That is, the figure shows that the performance of read and write operations
(without constraint checking) can be balanced against each other.

Degraded mode: Read operations and critical write operations have similar
performance in degraded mode and normal mode for a comparable number
of nodes. Non-critical write operations are slower (for a comparable number
of nodes) in degraded mode since logging of the operations and/or states is
required. In our implementation the difference compared to normal mode is
rather small since the logs are stored in memory and not in a database.
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3.3.2 Performance of Reconciliation

The worst and best case for a rollback reconciliation strategy for the previ-
ously used simple scenario have been measured. Our system splits into two
partitions containing three nodes each. The results depicted in Fig. 3.9 are
from a configuration where a ROWA scheme is applied in both partitions and
constraints are enforced within the partitions. Object a is updated in parti-
tion 1, object b is updated in partition 2. The best case for reconciliation is
if the two partitions can simply be merged without violating the inter-object
constraint. However, if the inter-object constraint cannot be fulfilled by simply
merging the partitions, one partition is stepwise rolled back till the constraint
is fulfilled — in the worst case to the initial state before degradation occurred.
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Figure 3.9: Example for reconciliation time [Chl07] [4]

Performance of reconciliation is highly application-specific, i.e., it depends
on the constraints, failure pattern, load during degradation, and reconcilia-
tion policies. For instance, the more constraints need to be (re-)evaluated
during reconciliation, the longer reconciliation will last. Reconciliation time
often also drops if multiple partitioning has occurred or more operations have
been accepted during degradation. Of course, the reconciliation policy per se
(e.g., replay vs. rollback approach vs. compensation actions) has a significant
influence on the performance of reconciliation as well.

3.4 Summary

Adaptive Voting — the second major contribution of this thesis — is a con-
crete replication protocol for balancing data integrity with availability and
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follows the generic Availability/Consistency Balancing Replication Model pre-
sented in the previous chapter. Adaptive Voting is a quorum-based protocol
that enhances availability by temporarily sacrificing data integrity during net-
work partitioning. While traditional quorum based protocols such as weighted
voting [Gif79] preserve consistency all time by blocking if a write quorum can-
not be built, the Adaptive Voting protocol relaxes the quorum conditions for
non-critical operations. That is, the quorums for non-critical operations are
adjusted in each partition. This leads to an immediate increase of availabil-
ity during degraded mode but might cause data integrity violations. Thus,
reconciliation activities are required to re-establish data integrity and replica
consistency when network partitions rejoin.

Both an availability analysis and a prototype implementation show the fea-
sibility of the Adaptive Voting protocol, especially if some data integrity con-
straints are relaxable (and thus some non-critical operations can be allowed
during degradation) and reconciliation time is shorter than degradation time.
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Chapter 4

Replication Middleware
Architectures

According to ObjectWeb [Obj07], “in a distributed system, middleware is de-
fined as the software layer that lies between the operating system and the
applications on each site of the system”. The motivation for middleware is to
re-use infrastructure code and avoid re-invention of the wheel for each appli-
cation. Replication is one of the cross-cutting concerns that can be provided
or supported by middleware for highly dependable systems.

In this chapter, the DeDiSys [5] replication middleware — which is tar-
geted to the Availability/Consistency Balancing Replication model — and
FT-CORBA [OMG04] are compared on an architectural level with replica-
tion middleware for service oriented systems. Finally, lessons learned from
prototype implementations of both distributed object and service replication
middleware are presented.

4.1 Replication Middleware for Distributed

Objects

Research on fault tolerant distributed object systems has mainly focused on
CORBA (Common Object Request Broker Architecture) [OMG04]. Thus, we
have chosen FT-CORBA (Fault Tolerant CORBA) for comparison since it is
a well-known standard. FT-CORBA supports both active and passive repli-
cation while DeDiSys supports the latter replication model. We do not con-
sider fault tolerant CORBA-based systems (e.g., Eternal [NMMS97], AQuA
[RBC+03], Maestro [VB98], FRIENDS [FP98], IRL [MMVB00]), which have
been designed previously to the establishment of the FT-CORBA standard: As
it is argued in [FN04], the FT-CORBA standard has been directly or indirectly
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influenced by many of these systems.
Furthermore, we have chosen the DeDiSys distributed object middleware

since it has been implemented on the three major middleware platforms J2EE
[Kue07], Microsoft .NET [6], and CORBA [BMG06].

4.1.1 DeDiSys Middleware

Figure 4.1 shows the replication architecture of the platform-independent DeDiSys
middleware [5]. DeDiSys builds upon standard middleware like J2EE, Mi-
crosoft .NET, or CORBA. Thus, some of the DeDiSys components are already
provided by the standard middleware, e.g., the Transaction Service. Fur-
thermore, DeDiSys uses off-the-shelf stable storage mechanisms (typically a
database) and existing persistence solutions (e.g., persistence frameworks).

The core components of the DeDiSys replication architecture are the Repli-
cation Manager, the Replication Protocol, the Group Membership Service, and
the Group Communication component. Further components are the Invocation
Service, the Naming Service, the Transaction Manager, the Activation Service,
and the Persistence/Stable Storage component.

Persistence/
Stable Storage

Replication
Manager

Replication
Protocol

Group
Membership

Service

Group
Communication

Activation
ServiceTransaction ServiceNaming Service Invocation Service

Standard Middleware: e.g., EJB, .NET, CORBA

Figure 4.1: DeDiSys replication middleware

The Replication Manager keeps track of object replicas in the system. Thus,
it maintains a mapping between global object IDs and replica IDs with their
location and role (e.g., primary or backup replica). The DeDiSys replication
manager supports the primary-backup replication model.
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A location service for replicas is closely integrated with the replication man-
ager.

The Replication Protocol component provides the specific replication logic
for a given replication protocol. In case of primary-backup replication, client
invocations are initially processed at the primary replica. Afterwards, the
updates are propagated to the backup replicas. Besides the replication logic
during healthy periods, the behavior of the protocol in the presence of (e.g.,
node or link) failures is also encapsulated in this component. Furthermore,
synchronization with other replicas in case of the recovery of a replica needs
to be performed by the replication protocol. In addition, some replication
protocols, like the Adaptive Voting Protocol [3] or the Primary-Per-Partition
Protocol [16] require logging of operations or states.

A Group Membership Service is used to keep track of which nodes are op-
erational, taking into account intentional group changes (join or leave) as well
as node and link failures. Group Communication provides reliable multicast
to groups with configurable delivery and ordering guarantees.

Group membership and group communication services can be treated as
separate components which interact with each other. However, in practice,
both components are usually integrated in one toolkit which is referred as
view-oriented group communication system [CKV01].

4.1.2 Fault-Tolerant CORBA

Originally, CORBA [OMG04], a popular middleware framework for object-
oriented distributed systems, lacked of support for fault tolerance. Thus, FT-
CORBA [OMG04] has been introduced to overcome this short-coming. The
FT-CORBA standard defines an architecture which supports a range of fault
tolerance strategies, including active and passive replication of CORBA ob-
jects. In FT-CORBA, replicated objects constitute an object group, which is
referenced by an Interoperable Object Group Reference (IOGR). Clients invoke
operations on object groups.

Figure 4.2 gives an overview on the FT-CORBA architecture. The architec-
ture has been slightly redrawn and simplified from the FT-CORBA specifica-
tion [OMG04]. The core components of the FT-CORBA infrastructure are the
replication manager, fault notifier and detector, the logging, and the recovery
mechanism. The FT-CORBA specification defines replication manager inter-
faces for operations to (i) set replication properties (e.g., passive vs. active
replication), (ii) manage object groups (e.g., add/remove members), and to
(iii) create and destroy objects. A fault detector monitors replicated objects,
servers, or processes and reports faults to a notification component, which in
turn propagates the information to interested components, e.g., the replication
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Figure 4.2: FT-CORBA architecture [OMG04]

manager. This allows the replication manager to act upon reported failures,
e.g., to choose a new primary if the original fails, to create new replicas, etc.
Logs, containing the state and actions, are maintained per object group by
the logging mechanism. The recovery mechanism processes the log and brings
new, recovering, or backup replicas to the current state.

FT-CORBA does not specify group communication primitives. Thus, in
order to provide for example active replication, FT-CORBA implementations
must use proprietary group communication mechanisms [BDLA04].

4.2 Replication Middleware for Service

Oriented Systems

Few middleware solutions have been proposed for service oriented systems:
The middleware systems presented in [YS05, SPPJ06] offer transparent active
replication based on group communication [CKV01]. Primary-backup repli-
cation of Web services is offered by the FT-SOAP (Fault-Tolerant SOAP1)
middleware [LFCL03]. Thema, a byzantine fault-tolerant middleware for Web
service applications is proposed in [MIM+05]. The J2EE replication framework
ADAPT [BBM+04], which is integrated into the JBoss [JBo] application server,
allows to plug-in replication protocols and supports replication of Enterprise

1SOAP [W3C] is a messaging protocol used in Web service environments.
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JavaBeans as well as Axis Web services. However, the latter might contain
session state but services that invoke other EJBs or call a database are not
supported.

Among these few solutions, we concentrate on FT-SOAP [LFCL03] and the
active replication middleware systems [YS05, SPPJ06] since primary-backup
and active replication are the most commonly used replication techniques in
real-world applications. We compare these middleware systems with the FT-
CORBA specification [OMG04] and the DeDiSys replication middleware [5] for
distributed objects.

4.2.1 Primary-Backup Replication Middleware

Figure 4.3 shows the architecture of the FT-SOAP [LFCL03] replication mid-
dleware, which has many similarities with FT-CORBA [OMG04] and is based
on the Apache Axis SOAP engine [Apab]. The key components in FT-SOAP
are the Replication Manager, the Fault Management unit and the Logging &
Recovery unit. SOAP engine interceptors, which are associated with each ser-
vice, are used to intercept client requests. WSDL (Web Services Description
Language [OAS]) files of replicated services are published in a UDDI (Universal
Description, Discovery & Integration [OAS]) registry.

Figure 4.3: FT-SOAP (derived from [LFCL03])

The FT-SOAP replication manager basically provides interfaces for

• setting the desired replication properties like the replication style, initial
number of replicas, etc. and

• creating and managing service groups.
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Figure 4.4: WS-Replication architecture (derived from [SPPJ06])

FT-SOAP extends WSDL by introducing a 〈WSG/〉 element in order to de-
scribe Web service groups.

The fault management unit, used to monitor replicated services, consists of
a fault detector and a fault notifier. The fault detector actively polls Web ser-
vices (according to a configurable polling frequency) in order to detect crashes
and reports faults to a notification component, which in turn propagates the
information to interested components, e.g., the replication manager.

Invocations and periodical checkpoints of the primary’s state are logged
in a database management system by the logging/recovery unit. Moreover,
checkpoints are periodically transferred to the backups and logged invocations
are replayed during the recovery stage if necessary.

4.2.2 Active Replication Middleware

The middleware presented by Ye and Shen [YS05] offers transparent active
replication based on group communication. The system implements the TOPB-
CAST [HB96] probabilistic multicast protocol using the JGroups toolkit [JGr].
Both synchronous and asynchronous interaction between the client and the
Web service are supported.

WS-Replication [SPPJ06] is a framework for wide area replication of Web
services and offers transparent active replication.

Figure 4.4 shows the architecture of the framework, which consists of two
major components: A Web service replication component and a reliable multi-
cast component. The former component enables active replication of Web ser-
vices while the latter — called WS-Multicast — provides SOAP-based group
communication. The Web service replication component is further structured
into a Web service deployer, a dispatcher, and a proxy generator. Proxies are
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used to intercept client invocations. The deployment facility enables the de-
ployment of Web services (provided in a single archive) at all replicas. The
dispatcher takes care of multicasting invocations using the WS-Multicast com-
ponent. Besides multicast, WS-Multicast performs failure detection (which is
required for group communication) by a SOAP-based ping mechanism. WS-
Multicast can also be used independently from the overall WS-Replication
framework for reliable multicast in a Web service environment. The SOAP
group communication support has been built on the JGroups [JGr] toolkit.

4.3 Architectural Commonalities and

Differences

Based on the representative architectures discussed in the previous sections, six
major architectural units for both object and service replication middleware
can be derived2 as shown in Fig. 4.5: A Multicast Service, a Monitoring Service,
a Replication Manager, a Replication Protocol unit, an Invocation Service and
an optional Transaction Service.

Some of the units such as the replication protocol and the multicast service
are naturally distributed since they realize distributed algorithms. The other
components should also be implemented in a distributed fashion in order to
avoid single points of failure and to provide an adequate level of fault toler-
ance for the infrastructure itself. For instance, a replication manager instance
resides on every node in the system that hosts business services/objects. Even
more so, the state of the replication manager is also subject to replication. Be-
sides these six major components, replication middleware typically comprises
further supportive components such as a naming service (e.g., for resolving
human-readable names to identities) or some kind of persistence service (e.g.,
for object-relational mapping).

The infrastructure components share many conceptual commonalities and
have only subtle differences with respect to their realization in service or object
replication middleware. We discuss them in detail in the next subsections.

4.3.1 Monitoring Service

Monitoring of the replicated entities is required both in distributed object and
service oriented systems since replication middleware needs to take appropriate

2Of course, not every replication middleware physically strictly adheres to this separation
of concerns. However, the functionality associated with the identified logical building blocks
needs to be specified in both service and object replication middleware.
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Figure 4.5: Generalized replication architecture

actions in case of failures of subparts (e.g., crash of a replica) in order to prevent
system failures3.

For instance, in case of primary-backup replication, it has to promote a
backup to a new primary replica if the original primary crashes.

A monitoring service typically distinguishes three entities: monitors (failure
detectors) collect information about failures of monitorable entities and dis-
seminate this information to notifiable entities. In a push-model, monitorable
entities periodically inform monitors about their status by using heartbeat
messages. In a pull-model, monitors actively request liveness messages from
monitorable entities. [FDGO99]

A special kind of monitoring service is a group membership service (GMS),
which keeps track of membership changes of dynamic groups, caused by volun-
tary (join or leave) changes or failures (crashed or unreachable nodes). That
is, a group membership service provides monitoring on the node level. In order
to react to faults in a consistent way, system entities need to agree on which
nodes are operational and which are not. As Birman points out, “in many
ways, agreement on membership is thus at the center of the universe, at least
insofar high assurance computing is concerned” [Bir05b].

A view contains the current members of a group. Group members are
notified about group membership changes by the GMS. A primary component
membership service ensures total order of views, while concurrent views may

3A failure “is an event that occurs when the delivered service deviates from correct ser-
vice.” [ALRL04] Failures per se are hard to observe; however, their occurrence can be
deduced by the detection of errors, which are deviations from correct system state. An
error is caused by a fault. [ALRL04] It is important to note that system boundaries need
to be taken into consideration when applying this taxonomy. For instance, with respect to
replication middleware, a failure of a subsystem is considered a fault on the system level.
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exist in partitionable membership services.
Vogels and Re defined a monitoring and membership service called WS-

Membership [VR03] which is specifically targeted to Web services environ-
ments.

4.3.2 Multicast Service

Reliable multicast primitives are needed both in object and service replication
middleware, e.g., for propagation of updates from the primary to the backup
replicas in case of primary-backup replication.

Since group membership changes have to be taken into account when a
multicast is sent to a group, reliable multicast services are typically combined
with a group membership service and referred as view-oriented group commu-
nication systems [CKV01]. Group communication systems provide multicast
primitives to (object, process, service) groups with configurable delivery and
ordering guarantees.

The following ordering guarantees can be distinguished:
FIFO multicast primitives guarantee that messages are received in FIFO order:
If message m is sent before message m’ by the sender, than every group member
that receives both messages will receive m before m’.

Causal multicast primitives guarantee that messages are received in causal
order: If message m causally precedes4 [Lam78, Lam86] m’, then every group
member that receives both messages will receive m before m’.

Total order multicast primitives guarantee that messages are received in
the same order at all correct group members. Defago et al. [DSU04] provide a
comprehensive taxonomy and survey of total order protocols.

Reliability is defined in the context of view delivery, i.e., “reliability guar-
antees restrict message loss within a view” [CKV01]: Sending view delivery
guarantees that a message is sent and delivered in the same view. Same view
delivery is weaker and guarantees that a message is “delivered at the same view
at every process that delivers it” [CKV01].

Schiper [Sch06] points out that group communication is beneficial for both
active and passive replication. Active replication requires ordering of oper-
ations, which can already be provided by a group communication primitive.
Group communication primitives hide most of the (implementation) complex-
ity of passive replication: For instance, group communication allows to cope
with undesirable situations such as the crash of the primary during a multicast.
Whether the replicated entity is a service or an object does not impose any
conceptual differences in this respect.

4Lamport called “precedes” initially “happened before” or “potentially causally depen-
dent”.
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Indeed, most of the presented middleware architectures rely on group com-
munication. Examples for state-of-the-art group communication toolkits are
JGroups [JGr], Spread [ADS00], or the newly proposed SOAP-based WS-
Multicast toolkit [SPPJ06], which is specifically targeted to service oriented
systems. The only noteworthy difference compared to traditional group com-
munication toolkits is that WS-Multicast exposes its operations via a WSDL
(Web Services Description Language) [OAS] interface. However, this could also
be realized for the other toolkits.

4.3.3 Replication Manager

Both in distributed object and service oriented systems, some component is
necessary which manages replicated services/objects, including tasks such as
storing the location and role of replicas, maintaining service/object groups, gen-
eral configuration of the replication middleware such as the replication style,
etc. Typically, this component is called the replication manager (e.g., in FT-
SOAP [LFCL03], DeDiSys [5], FT-CORBA [OMG04]). The Web service repli-
cation component of the WS-Replication framework [SPPJ06] provides similar
functionality.

For instance5, the interface of a simple primary-backup replication manager
might contain the following methods:

• getPrimary(): returns the location of the primary replica

• getBackups(): returns the locations of the backup replicas

• getReplica(replicaID): returns the location of a replica with the given
identifier

• addReplica(location,role): adds a new replica with its location and
role

• changeRole(replicaID,role): changes the role of a replica

• deleteReplica(replicaID): deletes a replica

A replication manager for quorum consensus protocols does not distinguish
between primary and backup replicas, but requires methods for retrieving read
and write quorums of replicas.

Though the tasks of the replication manager are identical for service and
object replication middleware, minor differences are caused by the different
granularity (typically coarse-grained in case of services and usually fine-grained

5The DeDiSys replication manager has a similar interface, see [Fro05].
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in case of objects) and the number of the replicated services/objects. For
instance, a replication manager in object replication middleware typically needs
to maintain a huge number of objects (e.g., millions) while the number of
services that need to be replicated is comparatively small. This, for example,
can influence the choice of the data structure for the replica location service
which is part of the replication manager.

4.3.4 Replication Protocol

The actual replication logic (i.e., triggering of update propagation, recovery,
etc.) is typically either a separate component (e.g., in the DeDiSys replication
middleware) or embedded in the replication management unit (e.g., in the
CORBA-based Eternal system [MMN98] or in the WS-Replication middleware
[SPPJ06]). The advantage of a separate replication protocol component is that
a change of the protocol (e.g., necessary due to system evolvement) is easier
to achieve. Again, in this respect no differences between service oriented and
distributed object middleware arise.

4.3.5 Invocation Service

An invocation service provides the invocation logic used for invocation of op-
erations and provides specific guarantees with respect to node or link failures.
It further provides the possibility to intercept service/object invocations and
transmits additional data with an invocation, e.g., the identifier of a transac-
tion to associate a specific call with a transaction. Both distributed object
replication middleware and service replication middleware exhibit such inter-
ceptors: For instance, the DeDiSys replication middleware [5] uses the inter-
ception mechanism of the JBOSS application server (in the J2EE version of the
framework), .NET Remoting interceptors (in the .NET variant), and CORBA
portable interceptors (in the CORBA variant). The Web service replication
component of the WS-Replication framework [SPPJ06] comprises a proxy gen-
erator which generates a proxy for each Web service operation. The proxy
intercepts invocations to the replicated Web service and triggers the further
replication logic.

The SOAP engine Axis2 [Apac, PHE+06] allows the definition of customiz-
able message interceptors, so-called “handlers”, which ease the implementation
of an invocation service in a Java-based Web service environment. Microsoft’s
new SOAP-based communication platform Windows Communication Founda-
tion (WCF [Micd]), which is part of the .NET Framework 3.0 [Micc], also
allows the interception of message calls.

61



4.3. ARCHITECTURAL COMMONALITIES AND
DIFFERENCES

Object Replication Middleware Service Replication Middleware
Granularity typic. fine-grained (objects) typic. coarse-grained (services)
Multicast S. GC beneficial GC beneficial
Monitoring S. failure detector, GMS failure detector, GMS
Transaction S. typic. ACID trans. ACID and long running trans.
Replication M. maintains large nr. of objects maintains small nr. of services
Replication P. separate or embedded separate or embedded
Invocation S. interceptors interceptors

Table 4.1: Commonalities and differences of replication middleware systems

4.3.6 Transaction Service

Transactions are a fault tolerance technique by themselves; specifically the
atomicity and durability properties of traditional ACID6 transactions are re-
lated to fault tolerance [Sch06]. Atomicity denotes that either all or none of
the transaction’s operations are performed. Durability requires that the com-
mitted effect of transactions is permanent, such that the data are available
after a failure or system restart. However, since durability has its limitations
(e.g., some failures such as a disk crash are not recoverable), replication needs
to be introduced in critical transactional systems. Thus, transactions need to
be performed on replicated objects or services. While distributed object repli-
cation middleware often supports transactions (e.g., DeDiSys middleware [5]),
support for transactions in replication middleware for service oriented systems
is rather in its infancy. WS-Replication [SPPJ06] has been successfully tested
in combination with long running transactions as defined in the Web Services
Composite Application Framework (WS-CAF) [OAS]. Although the combi-
nation of WS-Replication with transactions yielded promising results, there is
clearly a need for further research in this area, especially with different repli-
cation protocols and other transaction models.

Table 4.3.6 summarizes the commonalities and differences of object and service
replication middleware.

4.3.7 Interactions Between Components

So far only the (logical) static structure of object and service replication middle-
ware has been discussed; however, dynamic behavior needs to be considered as
well. Thus, figure 4.6 exemplary7 shows the interaction of the main components

6atomicity, consistency, isolation, durability
7Of course, this does not mean that every primary-backup replication middleware strictly

follows this call flow. However, this call flow is feasible as has been shown by our proof-of-
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Client Invocation S. Replication Mgr Invocation S. Replication Prot. Service

invoke service

getPrimary()

send invocation

invoke()

propagateUpdates()

Details: next figure

NODE 1 NODE 2 (primary)

Repl. Prot.

replicate()

Figure 4.6: Interactions between key components

of the derived architecture for primary-backup replication: Client invocations
are intercepted by the invocation service in order to trigger the replication
logic. First, the replication protocol requests the location of the primary copy
from the replication manager. If it does not reside on the current node, the
invocation is redirected to the node hosting the primary. The invocation is
processed by the primary and afterwards the update is propagated (either via
state transfer or operation transfer) to the backup replicas.

Update propagation for primary-backup replication is depicted in Figure 4.7.
The replication protocol queries the replication manager to get the location
(or group ID) of the backup replicas and then uses the multicast service to
propagate the updates to the backup replicas, which apply the update.

concept implementations for both service [9] [Weg07] and object replication middleware [5].
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Repl. Prot. Repl. Mgr. Multicast S. Service

getBackups()

multicast updates

update

Figure 4.7: Update propagation

4.4 Proof of Concept Implementations:

Lessons Learned

Besides the DeDiSys replication middleware for distributed objects described
in section 4.1.1, a Web service replication middleware built-upon the Java-
based Axis2 SOAP engine [PHE+06] has been implemented [Weg07], [9]. The
middleware closely follows the architectural pattern presented in the previous
section and provides a variant of primary-backup replication using operation
transfer. The entry point to the replication system is the invocation system
which is based on the Axis2 handler concept. Axis2 handlers are customizable
message interceptors. Incoming SOAP messages are cut out of the Axis IN-
flow, propagated to the other replicas and injected in their IN-flow. Monitoring
and multicast primitives are provided by the Spread [ADS00] group communi-
cation toolkit. Performance evaluations of the middleware show the relatively
low overhead of replication in a local setting if the number of replicas is small.
The overhead is primarily caused by the membership management and mul-
ticast algorithms used by Spread. Therefore, scalability of our middleware is
similar to the scalability of Spread. Of course, the overhead increases in a wide
area setting due to increased network latency. Details about our Axis2-based
replication middleware can be found in [9] and [Weg07].

The main lessons learned from design and implementation of the distributed
object (DeDiSys EJB, .NET, CORBA variants) and Web service replication
middleware prototypes (Axis2-based framework) are summarized in the follow-
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ing sections:

4.4.1 Key Component: Group Communication Toolkit

Of course, the use of group communication toolkits is not mandatory for repli-
cation middleware. However, we strongly recommend their use since they sig-
nificantly reduce the implementation complexity. For instance, active replica-
tion requires ordering of operations, which can already be provided by a group
communication toolkit. Group communication primitives hide most of the (im-
plementation) complexity of primary-backup replication as well: For instance,
group communication allows to cope with undesirable situations such as the
crash of the primary during a multicast. Whether the replicated entity is a
service or an object does not impose any conceptual differences in this respect.

Lesson: Group communication toolkits significantly reduce implementation
complexity for the software engineer.

4.4.2 Invocation Service

.NET: .NET Remoting, which is used in the .NET version of the DeDiSys
replication middleware, allows to inject custom proxies (extensions of Real-
Proxy) for interception of invocations on the client and server side of the in-
vocation chain. Thus, the .NET framework provides sufficient support for
realizing an invocation service as used in our middleware.

CORBA: The CORBA-based DeDiSys replication middleware [BMG06] is
based on JacORB [Jac] and uses CORBA portable interceptors [OMG04] to
trigger the replication logic, without the need for client modifications. CORBA
invocations can be intercepted both on the client and the server side at different
interception points. For instance, client-side interceptors are used in DeDiSys
to re-direct invocations to the primary replica.

J2EE: Our J2EE DeDiSys replication framework builds upon the JBoss ap-
plication server [JBo]. JBoss already includes an invocation service with the
possibility to register interceptors either server-wide or separately for each ap-
plication. We have defined custom interceptors for replication purposes both
in the client and server invocation chain.

Axis2: The SOAP engine Axis2 [Apac, PHE+06] allows the definition of cus-
tomizable message interceptors, so-called “handlers”. The Axis flow is divided
into phases, which are processed in sequential order. A handler is associated
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with each phase, i.e., first the handler of the TransportInPhase is called after-
wards the handler of the DispatchPhase, etc. For replication purposes, we have
defined the “replicationPhase” and an associated “InFlowReplicationHandler”.
Incoming SOAP messages are cut out of the Axis IN-flow by the “InFlowRepli-
cationHandler”, propagated to the other replicas and injected in their IN-flow.
[9] [Weg07]

Lesson: All of the state-of-the-art technologies we have used provide many
options for interception of invocations and allow custom-tailored extensions.
This eases the implementation of the invocation logic of a replication mid-
dleware and helps to integrate replication logic and achieve replication trans-
parency.

4.4.3 Separation of Replication Management and Pro-

tocol

.NET: Both the .NET replication manager and the replication protocol have
been implemented from scratch using the C# programming language, since
distributed object replication in .NET environments is rather a novelty. The
replication manager and protocols should be capable of handling IMessage as
invocation context because .NET Remoting provides the invocation logic. [6]

CORBA: The CORBA-based replication manager internally uses CORBA’s
Portable Object Adapter (POA) for the association of objects with object
references. Replication management and protocol interact with each other but
are encapsulated in separate components in order to ease extensibility. More
details can be found in [BMG06].

J2EE: For the J2EE DeDiSys replication service, we build upon the repli-
cation framework of ADAPT [WKM04]. For replication purposes, ADAPT
provides an abstraction from a specific application server by providing a so
called ComponentMonitor with events, e.g., afterCreate(), afterFind(), call().
The ADAPT J2EE replication architecture consists of two layers: the ADAPT
replication framework and the replication algorithm layer. That is, different
replication protocols can be plugged into the framework and can run on top of
it.

Axis2: The replication manager for our Axis2 replication middleware has
been implemented from scratch. The only subtle difference to distributed ob-
ject replication managers is that the number of entities (services vs. objects)
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it maintains is typically smaller due to the coarse-grained nature of services
compared to rather small-grained objects. The replication manager processes
membership messages8 sent out by Spread and takes appropriate action if re-
quired. The replication protocol component of the Axis2 replication middle-
ware is primarily responsible for update propagation from the primary to the
backups, in combination with the group communication toolkit Spread.

Lesson: While CORBA and J2EE (in combination with ADAPT) provide
some support for replication out of the box, .NET and Axis2 require building
the replication middleware and protocol from scratch. Our primary recommen-
dation is to separate replication management and replication protocol. That
is, the replication management unit should provide the basic mechanisms (e.g.,
location service functionality) that can be used for a variety of replication
protocols while the protocol implements specific policies. In this respect no
differences between service oriented and distributed object middleware arise.

4.4.4 Transaction Support

.NET: Transaction support has not been implemented in the .NET version
of the DeDiSys middleware. Nevertheless, transactional support could for in-
stance be based on the Microsoft Distributed Transaction Coordinator.

CORBA: The CORBA-based DeDiSys transaction manager adheres to the
Java Transaction API (JTA) [Sun] but has been implemented from scratch
since network failures are often not properly treated by off-the-shelf transaction
managers (see [Zag07]).

J2EE: The JBoss application server does not include a transaction system
with support for distributed transactions in its current releases (4.x). There-
fore, we have used the separate JBoss transaction service with support for
distributed transactions that can be manually integrated into the application
server. This transaction service was acquired by JBoss from Arjuna, released
as open source product and will be the standard transaction service in future
(5.x) releases of the application server.

Axis2: The Web services coordination framework (WS–Coordination [OAS])
provides a foundation layer for consensus between Web services, where spe-
cific consensus protocols can be built upon, e.g., distributed transactions.

8Four different membership messages are distinguished: join, leave, disconnected, and
network.
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Two particular specifications for Web service transactions build upon the WS-
Coordination framework: WS-AtomicTransaction [OAS] for short running ACID
transactions and WS-BusinessActivity [OAS] for long running transactions
with weaker guarantees.

Apache Kandula [Apaa] is an open-source implementation of these specifi-
cations and is based on Axis. Unfortunately, Kandula2, which is targeted to
Axis2, is currently in a preliminary stage. Thus, we have not yet tested it in
combination with our replication middleware.

Lesson: Combining replication with transactions is a major challenge for
service replication middleware.

4.5 Summary

Replication protocols like Adaptive Voting (see chapter 3) that follow the Avail-
ability/Consistency Balancing Replication Model (ACBRM, see chapter 2) re-
quire extensions to standard replication middleware (e.g., FT-CORBA [OMG04]).
The DeDiSys replication middleware, which is targeted to distributed object
systems, provides such extensions for CORBA, .NET, and EJB technologies.
In this chapter, the DeDiSys middleware and FT-CORBA — two examples for
distributed object replication middleware architectures — have been compared
with replication middleware for service oriented systems on an architectural
level. The comparison was focused on middleware systems that provide well-
established replication protocols such as primary-backup or active replication
or variants thereof.

The analysis shows the commonalities (and only subtle differences) on an
architectural level: Both service and object replication middleware architec-
tures can be (at least logically) divided into six infrastructure components: an
invocation service, a replication manager, a replication protocol, a monitoring
service, a multicast service, and an optional transaction service. Based on this
analysis and experiences with our own middleware implementations we con-
clude that many well-established replication middleware architectures can be
reapplied in service oriented systems.
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Chapter 5

Related Work, Conclusions, and
Future Work

This chapter provides a insight into related work, provides a summary of the
main contributions, the associated conclusions, and gives an outlook to future
work.

5.1 Related Work

Subsection 5.1.1 covers closely related work in the area of optimistic replication.
Reconciliation strategies are depicted in subsection 5.1.2. The balancing of
quality of service with availability, which has been investigated in the DeDiSys
project as well, is discussed in subsection 5.1.3. Related work on replication
in service oriented systems is discussed in subsection 5.1.4. Related work on
replication middleware architectures has already been covered in chapter 4.
Related work on comparisons of service and object replication middleware is
finally discussed in section 5.1.5.

5.1.1 Optimistic Replication in Data-Centric Systems

A detailed survey on optimistic replication techniques can be found in [SS05]
but not with a focus on the balancing between data integrity and availability.

Trading replica consistency for increased availability has been addressed in
distributed object systems as [FN02, GFGM98, RBC+03]. However, these sys-
tems either guarantee strong replica consistency or no replica consistency at
all. TACT (Tunable Availability and Consistency Trade-offs) [YV02] fills the
space in between by providing a continuous consistency model based on log-
ical consistency units (conits). The consistency level of each conit is defined
using three application-independent metrics — numerical error, order error,
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and staleness. For instance, in a replicated bulletin board service, where users
can post messages to any replica or retrieve messages from any replica, a conit
covers all news messages. Numerical error limits the total number of messages
posted system-wide but not seen locally, order error bounds the number of
out-of-order messages on a given replica, and staleness limits the delay of mes-
sages. The TACT replication system enforces that the specified limits are not
exceeded. TACT provides a fine-grained trade-off between replica consistency
and availability but does not focus on constraint consistency.

In [FM04], the application developer can define replica consistency on Data
Objects using a large set of parameters. Data objects are passive entities that
encapsulate data and provide operations on the data but do not — in contrast
to objects in our target applications — invoke other objects.

While our approach treats disconnected operation as a failure scenario, dis-
connections are inherent in mobile environments. Thus, different solutions
for reconciliation of divergent, conflicting replicas have been proposed for mo-
bile environments: In Bayou [TTP+95], application developers need to define
application-specific conflict detection and reconciliation policies. Replica con-
sistency is re-established by an anti-entropy protocol with eventual consistency
guarantees. Our approach offers the same flexibility as Bayou but offers pre-
defined reconciliation policies in addition. Gray et al. [GHOS96] introduced
the concept of tentative transactions: Transactions are tentatively commit-
ted on replicated data on mobile (disconnected) nodes and later applied at a
master copy when the nodes rejoin. If the commit on the master copy fails,
the originating node is informed why it failed. Application-specific semantics
are used for conflict resolution in the mobile transaction management system
presented in [PBM+00]. Our solution is also applicable in non-transactional
applications.

Beside the already mentioned differences to our approach, all of the above
replication and reconciliation approaches have one commonality: In contrast
to our approach, they either do not address constraint consistency explicitly
or presume strict constraint consistency.

5.1.2 Reconciliation Strategies

Asplund’s work [AN06a, AN06b, ANBG07] is focused on reconciliation proto-
cols for the Primary-Per-Partition-Protocol. In principle, the proposed tech-
niques can also be used for the Adaptive Voting replication protocol presented
in chapter 4 of this thesis. Thus, Asplund’s work complements this thesis since
concrete reconciliation protocols were out of the scope of this thesis.

In [AN06a], Asplund et al. propose three different fully automatic reconcil-
iation algorithms. The authors assume that no failures occur during reconcili-
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ation. Updates are not accepted during reconciliation in these approaches.
The CHOOSE1 algorithm chooses the partition with the highest utility from

a set of constraint consistent partitions. Each operation is assigned a certain
utility value representing the usefulness of the operation for an application.
Thus, the operations applied during degraded mode need not be logged for this
reconciliation algorithm but the utility of each partition needs to be determined
by some means. If all operations have the same utility, the partition with the
most updates during degradation is chosen.

The algorithms MERGE and Greatest Expected Utility (GEU) perform
operation-based reconciliation. The non-deterministic MERGE algorithm re-
plays operations (in an arbitrary order) tentatively applied during degraded
mode. Operations are only applied if they do not violate constraint consis-
tency; otherwise they are rejected. The GEU algorithm advances the MERGE
algorithm by ordering the operations based on the highest expected utility in
order to maximize the expected utility. The expected utility is a measure that
takes the actual utility of an operation and the probability of violation — i.e.,
the probability that the operation will violate data integrity — into account.

In [AN06b, ANBG07], Asplund et al. propose a reconciliation algorithm
that services operations during reconciliation by maintaining virtual partitions.
As MERGE and GEU, this algorithm is also operation-based but — in contrast
to the above ones — takes the ordering of operations invoked by the same client
into account during replay.

5.1.3 Balancing Quality of Service and Availability

In the DeDiSys (Dependable Distributed Systems) project, we have addressed
fault tolerance techniques for both data-centric and resource-centric services.
Replication protocols and middleware for the former kind of systems are the
focus of this thesis.

Resource-centric systems are mainly concerned about usage or management
of resources (e.g., processing power, storage, network bandwidth etc.). Differ-
ent aspects such as time, capacity, protocols, or resource allocation come into
consideration here. For this kind of systems, DeDiSys focused on the trade-off
between availability and quality of service (QoS) and introduced a system for
balancing these attributes.

More specifically, a middleware architecture has been developed that auto-
matically matches provided and requested service capabilities taking the min-
imal requirements of consumers into consideration as well in order to enhance
availability. Details on the key concept of the trading approach and the mid-
dleware architecture are presented in [Kar06, Moc07]. On a very high level,
this approach is similar to the trading concept pursued in this thesis: availabil-
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ity is balanced against consistency. While consistency refers to the satisfaction
of data integrity constraints in the data-centric approach, consistency of re-
quested and provided capabilities is subject to trading in the resource-centric
approach. More details on a comparison between the two approaches can be
found in [Kar07].

5.1.4 Replication in Service Oriented Systems

Literature on replication techniques for service oriented systems has already
been extensively cited in previous chapters. Here, references to other research
on the application of fault tolerance techniques in service oriented systems are
summarized.

Moser et al. [MMZ06] discuss fault tolerance techniques for Web services
including replication, checkpointing and message logging. However, they do
not focus on replication of composite services. Nevertheless, their paper com-
plements our work by discussing which infrastructure components need to be
replicated in a service oriented system to achieve dependability: e.g., the UDDI
registry, the transaction coordinator, etc.

Birman [Bir06] stresses the importance of replication in service oriented
mission-critical systems in order to achieve robustness and trustworthiness.
The same author suggests using the virtual synchrony process group com-
puting model and the state machine model (e.g., exemplified by Lamport’s
Paxos [Lam98] algorithm) to deploy replication in Web services based systems
[Bir05a]. Indeed, some of the replication methods for stateful services that we
have discussed require multicast primitives [GS97] which could be provided by
toolkits (targeted to service oriented systems) that follow the virtual synchrony
model, for example.

Dependability of composite Web services with online upgrades has been
discussed by Gorbenko et al. [GKPR05], but replication is only indirectly
addressed with respect to the parallel execution of several releases of a Web
service. Other dependability mechanisms for composite services (but not repli-
cation) such as backward or forward error recovery are for example addressed
by Tartanoglu et al. [TIRL03].

Besides conceptual considerations regarding replication in the above men-
tioned publications, some literature exists on the implementation of specific
replication techniques in service oriented systems as discussed in the previous
section.

Replication of data stores such as databases or file systems has been exten-
sively discussed in scientific literature. Oliveira et al. give an excellent overview
about state-of-the-art in database replication [Gor05]. Saito and Shapiro [SS05]
provide a survey on optimistic replication techniques (weak consistency guar-
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antees) including both file and database replication techniques. Wiesmann et
al. [WPS+00] compare replication in database systems with replication in dis-
tributed object or process systems. However, combinations of these approaches
with replication on the service layer have not been investigated to our knowl-
edge.

5.1.5 Comparisons of Object and Service Replication

Middleware

Up to our knowledge, no comparison of object and service replication middle-
ware architectures exists in literature. Similarities between these two worlds
with respect to replication are mentioned in [SPPJ06] but not described. Simi-
larities between FT-SOAP [LFCL03] and FT-CORBA [OMG04] are mentioned
in [LFCL03], but they do not cover other middleware solutions. Although ob-
ject replication middleware is well-established, architectural comparisons are
even hard to find within this area. One noteworthy exception [FN04] dis-
cusses both early fault tolerant CORBA implementations and the FT-CORBA
standard; however, with a strong focus on the latter and no relation to service-
oriented systems. Besides this excellent CORBA-specific work, “related work”
sections of replication middleware papers (e.g., [RDH05]) typically contain brief
comparisons, which lack in-depth coverage as our comparison provides. More-
over, most of the scientific papers about replication in the traditional dis-
tributed computing field focus on the algorithms and not on the middleware
providing the replication protocols. Thus, the replication architecture is often
not described at all or rather implicitly. Fortunately, as seen in chapter 4, at
least some of the replication middleware architectures in both the distributed
object and service-oriented field are well described and allow a thorough com-
parison.

5.2 Summary and Conclusions

In this section, the three main contributions of this thesis — the Availabil-
ity/Consistency Balancing Replication Model, the Adaptive Voting Replica-
tion Protocol, and the comparison of replication middleware architectures —
are summarized and the main conclusions highlighted.
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5.2.1 Availability/Consistency Balancing Replication

Model

Chapter 2 presented the Availability/Consistency Balancing Replication Model
(ACBRM), an enhancement of Wiesmann et al’s replication model [WPS+00]
that enables the balancing of data integrity with availability in degraded situ-
ations when node and link failures occur. The key idea is to allow non-critical
operations in degraded situations in all partitions even if replica conflicts arise
and data integrity constraints are possibly violated (threatened). This requires
reconciliation policies to re-establish replica and constraint consistency when
nodes recover and network partitions rejoin.

The Primary-per-Partition-Protocol [16] and Adaptive Voting [3] are two
concrete protocols that follow the ACBRM. The feasibility of our approach
has been shown by several prototype implementations (e.g., [15, 4], [BMG06]).

5.2.2 Adaptive Voting

Chapter 3 introduced Adaptive Voting [3], an enhanced replication protocol
based on traditional voting, that allows to balance data integrity against avail-
ability in degraded situations when node and link failures occur. The key idea
of Adaptive Voting is to allow non-critical operations (that only affect trade-
able data integrity constraints) even if the quorum conditions cannot be met.
Different reconciliation policies can be used to re-establish consistency during
reconciliation.

The availability analysis presented in this thesis shows that Adaptive Voting
provides better availability than traditional voting if (i) a significant portion
of the data integrity constraints can be temporarily relaxed and (ii) reconcil-
iation time is shorter than degradation time. Performance measurements [4]
[Chl07] give an indication for the choice of the quorum strategy in terms of
performance. As in traditional voting, a read-one/write-all strategy is best
for read-intensive applications while a majority strategy is better for write-
intensive applications. However, implicit read operations caused by constraint
checking during a write operation (e.g., in case of inter-object constraints) have
to be taken into account.

5.2.3 Replication Middleware Architectures

In chapter 4, state-of-the-art service replication middleware has been compared
with object replication middleware on an architectural level. The focus was
on the replication middleware for the most common replication techniques,
namely active and primary-backup replication.
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Replication is rather in its infancy in service oriented systems; thus, only a
small number of replication middleware solutions was suitable for our compar-
ison [SPPJ06, LFCL03, YS05].

Among the replication architectures for distributed object systems we have
chosen the well-known FT-CORBA standard [OMG04] and the DeDiSys ar-
chitecture [5] due to its realization on the three major middleware platforms
J2EE, Microsoft .NET, and CORBA.

The result of our comparison is unambiguous: Object and service replica-
tion middleware share many commonalities and only subtle differences. Both
kinds of replication middleware can be divided into six major infrastructure
components:

• A Multicast Service for reliable, ordered dissemination of operations.

• A Monitoring Service for detection of failures in the system (e.g., crash
of a service).

• A Replication Manager, mainly for maintenance of object/service groups
and overall configuration of the replication logic.

• A Replication Protocol unit for providing the actual replication logic (e.g.,
primary-backup protocol).

• An Invocation Service providing the invocation logic (interception of
client invocations, conveyance of the transaction context, etc.)

• An optional Transaction Service for supporting transactions on replicated
entities.

Minor differences between the components are caused by (i) the different
granularity of objects and services, (ii) different transaction models, and (iii)
different technology standards (e.g., CORBA vs. Web services standards) used
in both worlds.

As long as replication techniques (such as primary-backup or active replica-
tion) are needed that allow for (but are not limited to) strict consistency, the
service oriented community will benefit from our comparison since it clearly
shows that the wheel need not be re-invented: We recommend to take a look
at the well-established replication solutions for distributed object systems and
reapply the same architectures in service oriented systems.
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5.3 Future Work

An obvious starting point for future work is to apply the concept of balancing
data integrity with availability on the database layer instead on the object layer.
On the technological side, future work is to enhance the Axis2-based replication
middleware for Web services, e.g., with transactional support. Standardization
of Web service replication techniques is another worthwhile goal and last but
not least additional challenges in service oriented environments such as cross-
organizational heterogeneity, massive scale, dynamics could be addressed in
future projects.

5.3.1 Balancing Data Integrity with Availability on the
Database Layer

The current solution (shown in Fig. 5.1) of the DeDiSys middleware for bal-
ancing data integrity with availability performs replication on the object level
using the EJB, .NET, or CORBA variant of our distributed object replication
middleware. Nevertheless, data objects (e.g., Entity beans in EJB terminology)
are persisted in a (relational) database in this architecture.

object layer

database layer

Figure 5.1: Replication on the object layer

Future work should investigate, if the DeDiSys approach could also be — at
least partly — implemented on the data layer. That is, replication could also
be performed on the data layer instead on the distributed object layer. Figure
5.2 shows the revised layering in this case.

Both commercial and open source state-of-the-art database management
systems such as Oracle, IBM DB2, Microsoft SQL Server 2005, PostgreSQL,
or MySQL support replication. That is, the wheel would not have to be re-
invented from scratch but existing database replication frameworks (primarily
for open source databases) would have to be extended for realizing the DeDiSys
approach on the database layer. One advantage of this architecture could be
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object layer

database layer

Figure 5.2: Replication on the database layer

the inherent support for data integrity constraint checking by database man-
agement systems. Primary keys, unique keys, foreign keys, not null constraints,
and check clauses (e.g., for restricting values of an attribute) can be described in
a declarative way by using SQL (Structured Query Language) and are automat-
ically enforced by the database management system. However, more complex
constraints would require advanced concepts such as triggers. Furthermore, it
is subject to future investigation how the trading can be performed. Static ne-
gotiation, that is the application of predefined rules on which constraints can
be temporarily relaxed during degradation, could probably be implemented
using a database stored procedure language. However, in case of dynamic ne-
gotiation which requires application interaction (and possibly user interaction),
at least parts of the negotiation mechanism would have to be implemented on
the object layer. To summarize, future research should show if the DeDiSys
approach is feasible on the database layer and compare it with the current
distributed object solution.

5.3.2 Enhancements of the Axis2-based Web Service

Replication Middleware

The Web service replication middleware [9] based on the Axis2-SOAP-engine,
does currently not support transactions and does not take security issues into
consideration. Future work on this framework should focus on the combi-
nation of Web service replication mechanisms with Web service transaction
concepts such WS-AtomicTransaction [OAS] and WS-BusinessActivity [OAS].
Moreover, other replication protocols than the currently implemented primary
backup variant such as an update everywhere approach could be implemented
and evaluated. Finally, a security concept for the replication middleware should
be investigated as well if it shall be applied in security critical application areas
such as banking and finance.
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5.3.3 Standardization of Web Service Replication

So far, no standard/specification for Web service replication exists: The exist-
ing Web service replication solutions — including our framework [9] — build
upon basic Web service standards such as SOAP [W3C] and WSDL [W3C] but
do not define a “WS-Replication standard”1. A reason for the lack of a common
standard/specification for Web service replication is that Web service replica-
tion is currently mainly an intra-enterprise concern. That is, replication is not
applied across organizational boundaries and thus a standard would not be
as beneficial as for example for distributed transactions across organizational
boundaries. Thus, replicas of a certain service can reside in a homogenous
environment and replication middleware can be optimized for a certain kind
of Web services technology, e.g., our replication middleware presented in [9] is
targeted to Axis2 Web services.

Therefore, today’s replication frameworks for Web services can reuse many
of the concepts of traditional (homogenous) replication frameworks used in dis-
tributed object systems or database systems as argued in chapter 4. Some dif-
ferences compared to traditional replication systems are caused by the coarse-
grained nature of services, which allows certain optimizations (e.g., internal
data structures) in the service replication middleware. Scalability, another
major challenge addressed by service oriented architectures, can be mastered
by looser forms of replication coupling. For instance, in case of a primary-
backup scheme, loose replication coupling can be achieved by asynchronous
update propagation.

While state-of-the-art Web service replication middleware frameworks (in-
cluding our solution) address today’s requirements for replication in service
oriented settings — which is still not trivial — we believe systems of the future
such as ultra-large-scale systems [FGG+06] will require additional research if
replication in a “true” service oriented manner — especially with respect to
heterogeneity — is required. Additional standardization efforts — similar to
other horizontal protocols such as WS-Coordination [OAS] — for replication
protocols, group membership services, group communication protocols, etc. are
likely to be necessary for such settings.

5.3.4 Challenges for Dependability of Service Oriented

Systems of the Future

While some traditional dependability concepts (such as replication as men-
tioned above) can be adopted and adapted for today’s service oriented sys-

1Salas et al. [SPPJ06] call their replication solution “WS-Replication”. However, it is
only a name for their framework and they do not suggest a standard or specification.
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tems, additional dependability research is required for systems of the future
characterized by cross-organizational heterogeneity, massive scale, and dynam-
ics. A plethora of research questions needs to be answered, for instance: What
does dependability (and security) mean in heterogeneous, massive scale, dy-
namic systems? How can dependability/security properties be balanced against
each other? What are the user needs regarding dependability and security in
these systems? What are the constraints for dependability and security in
such settings? How can dependability and security concepts be integrated?
In addition, existing dependability and security protocols need to be assessed
regarding their suitability for service oriented environments. Based on these
analyses, novel (or extensions of existing) protocols and services for discovery,
group membership, replication, transactions, etc. need to be defined to cover
the requirements not addressed by today’s techniques.
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[PCD91] David Powell, Marc Chéréque, and David Drackley. Fault-tolerance in
delta-4. SIGOPS Oper. Syst. Rev., 25(2):122–125, 1991.

[PHE+06] Srinath Perera, Chathura Herath, Jaliya Ekanayake, Eran Chinthaka,
Ajith Ranabahu, Deepal Jayasinghe, Sanjiva Weerawarana, and Glen
Daniels. Axis2, middleware for next generation web services. In Proc.
Int. Conf. on Web Services (ICWS’06), pages 833–840. IEEE CS, 2006.

[Pos] PostgreSQL Global Development Group. PostgreSQL,.
http://www.postgresql.org.

[RBC+03] Jennifer Ren, David E. Bakken, Tod Courtney, Michel Cukier, David A.
Karr, Paul Rubel, Chetan Sabnis, William H. Sanders, Richard E.
Schantz, and Mouna Seri. Aqua: An adaptive architecture that provides
dependable distributed objects. IEEE Trans. on Computers, 52(1):31–50,
Jan. 2003.

[RDH05] Hans P. Reiser, Michael J. Danel, and Franz J. Hauck. A flexible repli-
cation framework for scalable and reliable .net services. In Proc. of the
IADIS Int. Conf. on Applied Computing, volume 1, pages 161–169, 2005.

[Sch93] Fred B. Schneider. Replication management using the state-machine ap-
proach. In S.J. Mullender, editor, Distributed Systems, chapter 2, pages
17–26. ACM Press, Addison-Wesley, 2nd edition, 1993.
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