
DISSERTATION

Adaptive Multi-Path Routing

for Internet Traffic Engineering

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

eingereicht an der

Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Ivan Gojmerac

Wien, April 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Supervisors

Prof. Dr.-Ing. Dietmar Dietrich

Institute of Computer Technology

Vienna University of Technology

and

Prof. Dr.-Ing. Ralf Lehnert

Chair for Telecommunications

Department of Electrical Engineering and Information Technology

Dresden University of Technology

and

Dr. rer. nat. Peter Reichl

Telecommunications Research Center Vienna (ftw.)

ftw. Dissertation Series

Ivan Gojmerac

Adaptive Multi-Path Routing
for Internet Traffic Engineering

telecommunications research center vienna

This work was carried out with funding from Kplus in the ftw. project N0.

This thesis has been prepared using LATEX.

September 2007
1. Auflage
Alle Rechte vorbehalten
Copyright c© 2007 Ivan Gojmerac
Herausgeber: Forschungszentrum Telekommunikation Wien
Printed in Austria
ISBN 3-902447-14-8

To my parents

Mirko and the memory of Neda Gojmerac

i

Abstract

The present thesis proposes Adaptive Multi-Path routing (AMP) as a novel algo-

rithm for dynamic traffic engineering in the Internet. The main objective of AMP is

to distribute load within a network domain in a continuous manner, trying to offload

congested links and paths by responding to the observed traffic conditions in real-time.

In contrast to similar multi-path routing proposals, the central innovation of AMP lies

in the restriction of the exchange of load information to a local scope, thus achieving

a significant reduction of signaling overhead and memory consumption in the routers.

Most importantly, in spite of its local nature, AMP’s signaling mechanism nevertheless

enables global propagation of congestion information, leading to an efficient handling

of overload events in the network. Apart from providing an extensive overview of the

related theory and approaches, this thesis introduces and discusses AMP in depth, after

which an exhaustive performance evaluation of the algorithm is presented. This evalua-

tion is carried out using two distinct simulation environments, which model IP networks

either at the level of individual packets or individual flows, and for both of which the full

functionality of AMP has been implemented in detail. Furthermore, the investigated

simulation scenarios represent the state-of-the-art concerning the choice of topologies

and traffic models, thus offering a comprehensive insight into the algorithm’s behavior

in real systems. The results of the performance evaluations consistently demonstrate

AMP’s efficiency in terms of load balancing performance, and they also underline the

stable behavior of the algorithm throughout the investigated scenarios. Finally, the the-

sis discusses traffic engineering in the current context of IP networks on a more general

level, before it presents important potential areas of application for AMP in novel and

emerging networking solutions and architectures.

iii

Kurzfassung

Die vorliegende Arbeit stellt das Adaptive Multi-Path Routing (AMP) als einen neuen

Algorithmus für dynamisches Traffic Engineering im Internet vor. Das Hauptziel des

AMP besteht darin, die Last innerhalb einer Netzdomäne dynamisch zu verteilen, um

die überlasteten Verbindungen und Pfade in Realzeit, entsprechend der momentanen

Verkehrssituation und den vorhandenen Ausweichmöglichkeiten, zu entlasten. Im Gegen-

satz zu verwandten Ansätzen, die den Verkehr auf mehrere Pfade aufteilen, führt AMP

als seine wichtigste Innovation die Einschränkung der Lastsignalisierung auf den lokalen

Umkreis einer Verbindung ein und ermöglicht somit sowohl eine Verringerung der Signa-

lisierungslast, als auch des Speicherbedarfs in den Routern. Dabei ist hervorzuheben,

dass AMP trotz seiner lokalen Signalisierungsarchitektur eine globale Ausbreitung der

Lastinformation innerhalb der gesamten Netzdomäne ermöglicht und so zu einer effizien-

ten Behandlung von Überlastsituationen im Netz führt. Darüber hinaus stellt diese

Arbeit sowohl einen ausführlichen Überblick über die relevante Theorie und die daraus

abgeleiteten Ansätze vor, als auch eine tiefgehende Leistungsbewertung des Algorithmus

in zwei unterschiedlichen Simulationsumgebungen, die IP-Netze entweder auf Paket-

oder auf Flussebene abbilden und in denen jeweils die gesamte Funktionalität von AMP

implementiert wurde. Die untersuchten Simulationsszenarien stellen dabei den letzten

Stand der Technik dar, indem ausgeklügelte Topologie- und Verkehrsmodelle verwendet

werden, um eine hohe Übertragbarkeit der Erkenntnisse in die Realität zu ermöglichen.

Die Ergebnisse der durchgeführten Leistungsbewertung demonstrieren in konsistenter

Weise die Effizienz der durch AMP erzielten Lastverteilung, und sie unterstreichen auch

das stabile Verhalten des Algorithmus in allen untersuchten Szenarien. Anschließend

wird in einer etwas allgemeineren Betrachtung die momentane Bedeutung von Traffic

Engineering im aktuellen Kontext der IP-Netze diskutiert, wonach zum Schluss noch

wichtige potentielle Anwendungsgebiete für AMP im Bereich von neuen Netzlösungen

und -architekturen dargestellt werden.

v

Preface

During my time in the MIOC High School in Zagreb, Croatia, in the mid 1990ies, I

was fortunate to witness two crucial developments in the world of telecommunications

at a relatively early age: the emergence of the Internet as a novel medium for free

world-wide data communication and the deployment of second generation digital cellular

networks, both of which rapidly gained momentum in the broad consumer market. Being

a technological enthusiast by nature, I was immediately taken by the seemingly limitless

capabilities offered by these new means of communication, and I very soon decided to

make them the center of my professional interest.

As a natural next step, I went on to study Electrical Engineering at the University of

Zagreb with the focus set upon telecommunications, and after completing my studies in

2001 I was encouraged by my professors to continue my studies towards a Ph.D. degree.

Accordingly, during the same year I enrolled as Ph.D. student at Vienna University of

Technology, and started participating in scientific projects at the Telecommunications

Research Center Vienna (ftw.).

After exploring different potential research topics in the area of communication net-

works, several months into my studies I finally settled down with the topic of Internet

routing and traffic engineering. Among all the various research directions, this topic

exerted the greatest fascination on me, as it dealt most directly with the IP layer which

represents the central building block of the future converged communications backbone.

In other words, while it was obvious that lower layer technologies, and especially the

application layer technologies were about to experience continuous changes during the

course of the next years, I considered myself very lucky to work on a layer which in com-

parison apparently displayed a perspective of perpetual stability. Essentially, the topic

of routing and traffic engineering is to a certain extent independent of the underlying

technologies, as it is mainly based upon a number of seminal results in the areas of graph

theory and optimization algorithms. However, the relative maturity and stability of the

results also implies that it is more difficult to come up with substantial innovations and

scientific advances, making research in this area a very risky undertaking.

Nevertheless, I immediately liked the idea of such a challenge, which of course greatly

contributed to my research enthusiasm. After an extensive survey of the existing litera-

ture and approaches in intra-domain IP routing and traffic engineering, I came up with

an original proposal for a simple and light-weight approach to improving the alloca-

tion of traffic within individual IP domains, and named it Adaptive Multi-Path routing

(AMP). Accordingly, the formulation, the extensive performance evaluation of AMP,

and the identification of the most important application scenarios represent the central

contributions of this Ph.D. thesis.

vii

I owe lots of thanks to many people who supported me during the course of my Ph.D.

I want to thank my first supervisor, Professor Dietmar Dietrich of Vienna University

of Technology, for strongly encouraging my scientific progress, and for providing me

with numerous valuable suggestions during the course of writing my thesis. Beyond

his technical contributions, I am also grateful for his excellent advice concerning style,

which puts great emphasis on European traditions in scientific writing, and which largely

helped increase the overall quality of my thesis.

I would also like to express many thanks to my second supervisor, Professor Ralf

Lehnert of Dresden University of Technology, whose exhaustive experience and exper-

tise in the area of communication networks strongly contributed to the quality of my

work. I am especially grateful for his detailed and precisely pinpointed comments and

suggestions concerning AMP, which greatly helped me in focusing my research upon

several selected aspects of the algorithm.

My special gratitude goes to my mentor at ftw., Dr. Peter Reichl, who always believed

in me and my work, and who pivotally backed me in several crucial moments of my

Ph.D. studies – my continuous and focused work on AMP would not have been possible

without his wholehearted support. He never spared time or effort for in-depth technical

discussions about my research, thereby generously enabling me to benefit from his vast

professional experience.

Furthermore, I would like to cordially thank Professor Markus Rupp, Dean of the

Faculty of Electrical Engineering and Information Technology at Vienna University of

Technology, for his support concerning many practical aspects of my Ph.D. studies.

I also owe special thanks to the Telecommunications Research Center Vienna (ftw.),

and particularly to its CEOs Dr. Markus Kommenda and M.Sc. Horst Rode for providing

me with a great scientific and social environment for my Ph.D. research in the last

years. I would also like to thank all colleagues of ftw.’s projects A0 and N0 for their

kind support, and particularly its project managers Dr. Thomas Ziegler and Dr. Fabio

Ricciato. My special gratitude also goes to my colleague M.Sc. Lasse Jansen for our

excellent collaboration in the area of flow-level network simulation techniques.

Coming back to the beginnings of my Ph.D. studies, I would like to thank Professor

Maja Matijašević of the University of Zagreb, who encouraged me to proceed towards

a doctoral degree in electrical engineering, as well as Dr. Igor Brusić and Dr. Sandford

Bessler for paving the way for my studies at Vienna University of Technology.

Last, but not least, I would like to thank all of my family and friends for their

enormous support and patience during the last years. Without them this Ph.D. would

not have been possible.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions and Results . 4

2 Related Work 7

2.1 Routing Basics . 7

2.1.1 Graph Theoretical Fundamentals 10

2.1.2 Link State and Distance Vector Routing Algorithms and Protocols 16

2.2 State of the Art in IP Traffic Engineering 18

2.2.1 Approaches Based upon Link Weight Optimization 18

2.2.2 IP Traffic Engineering in Path/Circuit Switching

Networks . 22

2.2.3 Traffic Engineering Approaches Based Upon Self-Adaptive Routing 25

2.3 Traffic Engineering Approaches in a Multi-Path Routing Context 28

2.3.1 The Optimized Multi-Path Algorithm 28

2.3.2 Gallager’s Minimum Delay Routing Algorithm 33

2.4 Concluding Remarks . 36

3 Adaptive Multi-Path Routing (AMP) 39

3.1 Basic Idea . 39

3.2 Algorithmic Details of AMP . 41

3.2.1 Calculation of Multiple Paths . 41

3.2.2 Link Load Metrics . 44

3.2.3 Adaptive Multi-Path Routing (AMP) Signaling 45

3.2.4 Packet Forwarding . 47

3.2.5 AMP Load Balancing . 49

3.3 Concluding Remarks . 52

4 AMP Performance Evaluation in a Dedicated Flow-Level Simulator 53

4.1 Principles of Flow-level Simulation . 53

4.2 Setup of Simulation Scenarios for the

Performance Evaluation of Adaptive Multi-Path Routing (AMP) 59

ix

4.3 Simulation Scenarios and Results . 61

4.4 Stability and Convergence Properties . 67

4.5 Concluding Remarks . 74

5 AMP Performance Evaluation in the Packet-Level ns-2 Simulator 75

5.1 From Flow-Level to Packet-Level Simulation of AMP 75

5.2 AMP Implementation Highlights in the ns-2

Simulator . 76

5.3 Performance Evaluation of AMP in the

AT&T-US Backbone Network . 77

5.4 Performance Evaluation of AMP in the German B-WiN Research Network 80

5.5 Concluding Remarks . 83

6 Applications of the Adaptive Multi-Path Routing Algorithm 87

6.1 Traffic Engineering in the Context of Today’s Internet – A Critical Dis-

cussion . 87

6.2 Applicability of Adaptive Multi-Path Routing to IP Overlay Networking 90

6.3 Applicability of Adaptive Multi-Path Routing in Wireless Mesh Networks 91

6.4 Concluding Remarks . 97

7 Conclusions and Future Research Directions 99

Bibliography 105

List of Internet Links 112

Abbreviations 115

x

Chapter 1

Introduction

1.1 Motivation

Since the early days of packet switched networks the routing of traffic has represented

one of the core topics in networking research and development [1]. The most important

problems which had to be dealt with were initially associated to the basic task of finding

routes between pairs of remote nodes in the network. Therefore, different routing ar-

chitectures have been explored, with different types of addressing and path calculation,

ranging e.g. from connection oriented hierarchical approaches similar to circuit switched

telephone networks [2], to connectionless architectures which tolerate non-hierarchical

and highly irregular network structures [3].

As far as the Internet is concerned, the routing architecture within individual ad-

ministrative domains has practically not changed since the advent of the ARPAnet [1]:

a scalar value called the link weight is associated to each link in the network, and the

paths between a pair of nodes are determined such that the sum of their link weights is

minimized. This basically reduces the routing problem in the network to finding shortest

paths in a directed weighted graph, which represents a well known problem from graph

theory, with a number of corresponding algorithmic solutions [4, 5, 6].

Based upon these fundamental algorithms from graph theory, routing protocols have

been developed which have the basic tasks of setting up the network wide routes au-

tomatically (i.e. without any need for manual configuration), and quickly reconfiguring

the routes in the case of topological changes. Accordingly, two large groups of protocols

have emerged: distance vector protocols based upon the theoretical work by Bellman,

Ford, and Fulkerson [4, 5], and link state protocols based upon the algorithm by Dijk-

stra [6]. Due to their better properties concerning routing convergence times, link state

protocols have eventually prevailed, leading to the development of the currently most

widely deployed protocols like Open Shortest Path First (OSPF) [7, 8] and Intermediate

System to Intermediate System (IS-IS) [9].

As the problem of ensuring network wide connectivity has largely been solved, the

focus of research has gradually shifted towards issues related to the distribution of traffic

1

throughout the network. The main reason for this shift lies in the traffic agnostic nature

of routing with the current protocols, which base their routing decisions exclusively upon

the network topology, and thereby completely disregard the actual traffic demands and

link utilizations. In many cases this can represent a major drawback, as certain parts of

the network may become congested due to excessive traffic load, and at the same time

topologically redundant parts of the network may be underloaded, with the total effect

of wasting large portions of the installed network capacity.

In order to counteract this problem, the discipline of traffic engineering has been

introduced, which aims at optimizing the performance of operational networks [10]. In

contrast to network design and network dimensioning, the main working assumption

of traffic engineering is that the network topology and the installed link capacities are

invariantly determined. Accordingly, traffic engineering can only act upon the routing

of traffic in order to improve network performance by trying to prevent the emergence

of individual congestion hotspots.

As traffic engineering is based upon routing, the introduced performance improve-

ments can be observed only at a medium time scale of minutes and hours. In other words,

traffic engineering does not hold the potential of combating short term congestion which

may occur due to a sudden surge of traffic demands. Such phenomena occurring at the

time scale of seconds are rather a case for Quality of Service (QoS) mechanisms like

e.g. different packet scheduling and queueing strategies. At the other extreme, traffic

engineering is also not suited for alleviating long term congestion, which typically results

from a steady growth in traffic demands; at the time scale of multiple days, weeks, and

months performance degradations should be counteracted by carefully planned network

capacity upgrades, and thus they fall into the domain of network planning.

Similarly to the evolution observed in the area of routing algorithms and proto-

cols, many different approaches for traffic engineering in Internet Protocol (IP) based

networks have been proposed in recent years and they have undergone careful evalua-

tion in the scientific community. Interestingly, the work performed in the area of IP

traffic engineering has resulted in a plethora of approaches which significantly differ in

many aspects, sometimes requiring even completely novel types of underlying network-

ing technologies. Whereas some techniques merely aim at performing traffic engineering

by optimizing network configuration, other approaches require new routing and packet

forwarding techniques, like e.g. Multi-Protocol Label Switching (MPLS) [11].

Link weight optimization may serve as a typical example of approaches which act

merely upon routing configuration. Its main principle is to determine the link weights

which will result in a network wide traffic distribution which is optimal with respect to a

well defined performance objective, like e.g. minimizing the maximum link utilization in

the network. Although link weight optimization does not require the introduction of any

new technologies, it does necessitate substantial management overhead as the knowledge

of the traffic matrix (or even better the traffic demand matrix) is a prerequisite for

2

performing the optimization procedure. Additionally, the calculated link weights must

be introduced into the network, which adds further overhead to the procedure. And as

the traffic (demand) matrix typically displays time-of-day effects, the whole process of

traffic measurements, optimization, and the introduction of the newly calculated link

weights must be performed periodically, which practically makes an automated network

management framework mandatory for this approach.

Traffic engineering techniques based upon Multi-Protocol Label Switching (MPLS)

are in many ways analogous to link weight optimization, as they mostly also require

traffic measurements, optimization procedures, and a framework for periodically intro-

ducing the calculated configuration to the network elements. The greatest difference

between MPLS and link weight optimization is that MPLS does not use the plain intra-

domain IP routing architecture, but rather employs a packet forwarding infrastructure

of its own, thus imposing strict technological requirements upon the capabilities of the

network elements.

Unlike link weight optimization and MPLS, which act at the level of network con-

figuration, an alternative approach performs traffic engineering within the framework

of the routing algorithms and protocols. Using this paradigm, traffic engineering does

not any more represent only a configuration add-on. Instead, it is fully integrated into

standard network operation, performing the necessary actions completely autonomously

within the nodes, thus not requiring any additional network management efforts. The

recently proposed Optimized Multi-Path algorithm (OMP) may serve as a good example

of this type of approach [12]. The main idea of OMP is to employ the message flood-

ing framework of link state routing algorithms for disseminating link load information

throughout the network. Based upon the information received from all other nodes in

the network about topology and link load, each node can autonomously determine how

to distribute the traffic for individual destinations among the available next hop nodes.

Therefore, the main prerequisite of OMP is that multiple next hop neighbors for each

destination exist in as many nodes as possible, i.e. the existence of multiple paths is fun-

damental to its operation. While OMP does have favorable properties like completely

autonomous operation, at the same time it imposes substantial requirements upon the

memory consumption in routers, and it also produces indeterministic signaling overhead

by disseminating load information using the message flooding mechanism.

Aiming at combining the most favorable properties of the mentioned approaches,

the main objective of this thesis is to explore, analyze, and evaluate the possibilities for

designing traffic engineering techniques which operate autonomously within the nodes

of the network, and which produce only a minimal overhead in terms of signaling load,

memory consumption in routers, and computational complexity. The envisioned solution

should be easily deployable in networks using the current routing architecture, without

introducing completely novel switching or signaling techniques, and additionally it is

supposed to be easily implementable in state of the art networking hardware.

3

1.2 Main Contributions and Results

Having stated the design and evaluation of an efficient traffic engineering solution as

the main objective of this work, this goal is achieved by proposing a novel routing algo-

rithm for dynamic load balancing called Adaptive Multi-Path routing (AMP). Similarly

to OMP, AMP operates completely autonomously within the network nodes without

requiring any manual interventions, with the main prerequisite for its operation also

being the presence of multiple paths between the communication pairs in the network.

In response to the current traffic conditions in the network (i.e. to the instantaneous

traffic matrix and congestion level) AMP shifts traffic among the multiple paths in order

to alleviate congestion, eventually reaching a fix point in the global (i.e. network-wide)

traffic distribution. However, while OMP employs global signaling of load information,

AMP exclusively relies upon local exchange of load information between neighbor nodes,

thus reducing the view of the network in each node to the local scope, and obsoleting

global message passing procedures. The central innovation of AMP lies in the quasi-

recursive property of the signaling algorithm, which simultaneously enables seemingly

contradictory goals of global propagation of load information throughout the network

domain, while reducing message exchange only to neighbor nodes.

Focusing upon AMP performance and characteristics, this work yields a number of

original contributions, including:

• The introduction and concise algorithmic formulation of Adaptive Multi-Path rout-

ing (AMP) [13, 14, 15, 16],

• Performance evaluation of AMP in a flow-level network simulator which has been

specifically designed for multi-path routing scenarios,

• Performance evaluation of AMP in the standard ns-2 packet-level network simu-

lator [www-1],

• Investigation and discussion of stability issues,

• A survey of possible applications of AMP in current IP networks, with a special

focus on application level overlays and wireless mesh networks.

In order to achieve these results, first an in-depth review of the related work in the ar-

eas of IP routing and traffic engineering has been performed, starting with an overview

of the main principles and results from graph theory, followed by a survey of related

routing algorithms and protocols. Furthermore, the major traffic engineering techniques

already mentioned in this introduction have been thoroughly inspected, especially fo-

cusing on the approaches most closely related to the proposed AMP algorithm, i.e. the

OMP technique and the minimum delay routing algorithm by Gallager [17].

4

Based on these insights, the Adaptive Multi-Path algorithm (AMP) including its

mechanisms like signaling, multi-path criteria, load balancing, and packet forwarding,

has been proposed and evaluated both using flow-level and packet-level simulations.

To this end, a broad variety of simulation scenarios has been provided, with a focus

upon creating a large number of synthetic simulation scenarios, based upon which mean-

ingful performance statistics can be derived. In this context, the problems of generating

artificial topologies and traffic matrices have been subject to a detailed discussion, as

well as the problem of making the appropriate choice of performance metrics. After

providing an analysis of the simulation results, the algorithm’s performance, stability,

and convergence properties have been investigated in detail.

In addition to flow-level simulations, performance evaluations of AMP have also been

carried out using the standard ns-2 packet level simulator, with special focus set upon

the Web traffic model used in the simulations. The main results concerning performance

and stability have been focused on two real ISP topologies of different size.

In order to round up the present work, several prospective areas of application for

the Adaptive Multi-Path algorithm have been evaluated, demonstrating AMP’s poten-

tial beyond performing traffic engineering for core IP networks with high capacity links.

Here, special emphasis has been placed upon IP-based wireless mesh networks as the

technology with the highest application utility for AMP in the current networking con-

text.

5

6

Chapter 2

Related Work

Starting with a summary of related work in the area of graph theory, this chapter

surveys fundamental approaches relevant for the development of routing protocols and

traffic engineering. Additionally, the approaches which are most closely related to the

proposed AMP algorithm are examined in a more detailed manner.

2.1 Routing Basics

In this section, the origin of the most widely used Internet routing protocols will be

examined in detail, beginning with their graph theoretical fundamentals, followed by a

description of their important properties, and examples of practical implementations.

Due to the vastness of the area, this section does not claim completeness, but rather

tries to provide an excerpt of the most important aspects from the perspective of routing

and traffic engineering for communication networks.

The Internet is basically a set of individual networks (i.e. individual administrative

domains), which are today interconnected to the extent that they comprise a global

system which appears completely homogeneous and transparent to its users. Figure

2.1.1 provides a high-level overview of current Internet architecture.

There are two fundamental factors which have enabled the huge growth and the

enormous global success of the Internet:

• An identical set of networking protocols is used in all networks, converging around

the Internet Protocol (IP) which serves as the fundamental vehicle for transport-

ing data between interconnected hosts. IP is based upon the packet switching

paradigm, which completely obsoletes the setup of connections as known from

the circuit switching world of telephone networks. Instead, IP hosts encapsulate

data into packets which are transparently injected into the network, knowing that

they will arrive at their destinations solely based upon the address declared in the

packet header. This simple forwarding paradigm enables enormous simplification

7

of the core networks, as they do not need to keep state information about individ-

ual connections, but rather only need to know the correct routes for reaching the

packets’ destinations.

• The applied addressing scheme is globally co-ordinated, i.e. unique addresses are

assigned to each administrative domain (i.e. IP network) comprising the Inter-

net. Currently, the global address space in the Internet is restricted to 32 bits

(IP version 4), enabling a theoretical total of 232 = 4,294,967,296 entities to be

directly reachable, thus struggling to meet the current global demand, whereas in

the proposed successor protocol (IP version 6) this limit should increase to 128 bits,

yielding an enormous total number of 2128 addresses which should easily meet fu-

ture requirements [18]. The global addressing scheme which has been implemented

from the early days of the Internet has enabled gradual and safe interconnection

of individual domains, without the risk of addressing conflicts hampering connec-

tivity on the global scale.

With the packet switching and addressing schemes in place, the only missing pre-

requisite for enabling global connectivity is the presence of correct routing information

in the networks’ nodes. As configuring routing tables manually is hardly feasible even

for networks of very small size, automatic configuration mechanisms called routing pro-

tocols are needed for disseminating correct routing information throughout a network,

yielding two different groups of protocols which differ with respect to their area of appli-

cation: for disseminating routing information within individual administrative domains

so called intra-domain routing protocols are used, whereas for the global exchange of

routing information so called inter-domain routing protocols are required. Although the

basic functionality of both groups of protocols is to disseminate reachability information,

their practical focus is somewhat different: intra-domain routing protocols primarily fo-

cus upon determining optimal routes for individual destinations within a given topology

and for a particular routing rule, and they pay special attention to protocol robustness

and fast route reconfiguration in the presence of network faults, like e.g. link or router

failures. On the other hand, inter-domain protocols focus upon the exchange of reacha-

bility information between individual administrative domains (i.e. between networks of

different operators), which practically reduces to summarizing the addresses of all hosts

within the domain, and advertising this information to neighboring domains and further

beyond. The addresses used within individual domains are usually mutually adjacent,

meaning that they fall into a particular range of the global addressing space, and thus

they can be summarized with a so-called IP address prefix, which merely represents a

unique combination of a number of initial bits which are the same for all addresses of

the domain. This simple scheme of address summarization is crucial for minimizing the

amount of information which is exchanged between individual IP domains globally, and

thus makes the current inter-domain routing architecture practically feasible.

8

Figure 2.1.1: Current high-level architecture of the Internet.

9

2.1.1 Graph Theoretical Fundamentals

In the modern society, which heavily relies upon communications and transportation,

networks of different kinds represent the fundamental backbone for almost all activities,

like e.g. communication networks (telephone, Internet, etc.), electrical power grids, wa-

ter, oil, and gas supply networks, transportation networks (air, rail, water, and road),

etc. The principal functionality common to all these types of networks is that they are

used for moving a resource (e.g. persons, goods, or information) from one point in the

network to another. Therefore, very similar properties are desired for all of these net-

works: their transport (or transmission) capacity should be used efficiently, they should

be reliable, meaning that they should display some degree of redundancy, and last but

not least, they should be economically viable.

As much as different networks have been used throughout history, their theoretical

investigation has largely lagged behind their practical application. This is rather sur-

prising, as some ancient and most important problems had thus remained unsolved for

decades [19]. A prominent example is routing resources along the shortest path from

origin to destination – amazingly enough, before the label setting and label correcting

algorithms had been developed in the 1950s and 1960s, which will be described in latter

parts of this section, no efficient or much less optimal solutions had been available.

Graphs G = (N, L) are basically simple abstract representations of networks of

any kind, which are comprised of a set of nodes N interconnected by a set of links

L. Depending upon the type of networks and problems investigated, structures can

be represented using many different types of graphs, and types of structure definition.

In this section only a subset of the vast apparatus from graph theory is elaborated,

focusing upon the shortest path problem which is fundamental to all routing and traffic

engineering problems in communication networks.

Figure 2.1.2: Shortest path A → F in a directed weighted graph.

In general, graph theory distinguishes between undirected and directed graphs. In

undirected graphs links can be used in both directions, whereas in directed graphs links

10

can only be traversed in one direction (see Figure 2.1.2 for an example). Directed

graphs are called acyclical if they do not contain any directed loops, whose traversal

eventually leads back to the originating node. Furthermore, based upon the type of

problem elaborated, the links will be associated scalar values with different semantics.

In the case of the shortest path problem these values are called weights (or costs), and

they serve as a basis for calculating the network wide routes. In Figure 2.1.2, an example

for a shortest path between the nodes A and F is sketched, as the sum of link weights

comprising the path is minimal.

Shortest path algorithms are usually classified into two major groups: label setting

and label correcting algorithms [19]. Both approaches are iterative, but they differ with

respect to the character of labels associated to the individual nodes in each step of

the calculation process, which ultimately represent the distance from the source to the

labeled node. In the former approach, in each step one node receives a permanent label,

which represents its optimal (shortest) distance from the source node. In the latter

approach, the labels are assigned only temporarily, and they keep changing at each

iteration. When the algorithm finishes, the currently assigned labels become permanent,

i.e. they represent the optimal (shortest) distance from the source node defined at the

beginning of the calculation. Label setting algorithms are less general in that they apply

only to directed acyclical graphs with nonnegative link weights, while label correcting

algorithms apply to all classes of problems. However, on the other hand, label setting

algorithms are much more efficient, i.e. they have much better worst-case complexity

bounds [19].

The algorithm by Dijkstra certainly represents the most important contribution

among the label setting shortest path algorithms [6]. The purpose of the algorithm

is finding shortest paths from the source node s to all other nodes in a graph with non-

negative link weights. The main idea of the algorithm is to maintain a distance label

d(i) with each node i, which represents an upper bound on the shortest path length to

node i. At the end of each iteration of the algorithm, the nodes are subdivided into

two distinct groups: nodes with permanent labels and nodes with temporary labels,

where permanently assigned labels represent optimal distances from the source node,

and therefore denote nodes which have already been added into the final shortest path

tree. The algorithm starts by defining the source node as the root of the shortest path

tree, and labeling it permanently with a distance of zero. Before transferring a node

to the group of permanently labeled ones during an iteration, the minimal distance of

all temporarily labeled nodes is calculated as follows: each permanently labeled node

scans all of its temporarily labeled neighbor nodes and calculates the sum of its distance

from the source node and the link weight to the neighbor node; if the calculated value is

less than the label temporarily assigned to the neighbor node, the distance label of the

neighbor node is updated with the newly calculated value. This procedure is performed

in all permanently labeled nodes which have temporarily labeled neighbors. In the final

11

Figure 2.1.3: Illustration of Dijkstra’s algorithm (extending Figure 4.7 from [19]).

12

step of each iteration, the temporarily labeled node with the least value is added to

the shortest path tree, and its distance label becomes permanent. The algorithm termi-

nates once all nodes are assigned permanent distance labels, and they are added to the

final complete shortest path tree. Figure 2.1.3 illustrates a simple example of Dijkstra’s

algorithm. The example network consists of 6 nodes, A–F , which are initialized as un-

reachable (∞ label in the corresponding boxes), except for the source node A which is

permanently labeled 0 (grey box). In each step of the algorithm, temporary labels of

the adjacent nodes are adapted according to the weights of the connecting links, after

which the node with the smallest label becomes permanent (grey circle). Eventually,

the procedure terminates when all nodes have become permanently labeled.

The precise statement of the algorithm is presented below, with S being the set of

nodes with permanently assigned labels, S the set of nodes with temporarily assigned

labels, n the total number of nodes, s the source node, N the set of all nodes, d(i)

the label of node i, pred(i) the predecessor of the node i in the shortest path tree, cij

the weight for the link from i to j, and A(i) the set of node i’s neighbor nodes with

temporarily assigned labels [19]:

Dijkstra’s Algorithm()
1 S := {}; S := N ;
2 d(i) := ∞ for each node i ∈ N ;
3 d(s) := 0 and pred(s) := 0;
4 while | S |< n
5 do
6 let i ∈ S be a node for which d(i) = min{ d(j) : j ∈ S }
7 S := S ∪ {i}; S := S \ {i};
8 for each j ∈ A(i)
9 do

10 if d(j) > d(i) + cij

11 then
12 d(j) := d(i) + cij;
13 pred(j) := i;

The complexity of Dijkstra’s algorithm is allocated to two basic operations [19]:

• Selection of nodes. This part of the algorithm is performed n times (where n is

the total number of nodes), and each iteration of the algorithm requires the scan

of all temporarily labeled neighbor nodes. Therefore, the total node selection time

is n + (n - 1) + (n -2) + ... + 1 = O(n2)

• Distance updates. This operation is performed |A(i)| times for node i. Overall,

this operation is performed
∑

i∈N |A(i)| = m times. As each individual distance

update has complexity O(1), the overall distance update algorithm has complexity

O(m).

13

Based upon the analyzed complexities of the node selection and the distance update

algorithms, the conclusion is reached that the overall complexity of Dijkstra’s algorithm

in its original statement is O(n2). In recent years, many versions of Dijkstra’s algorithm

have been suggested which significantly reduce the calculation complexity for non-fully

meshed networks to O(m+n log n), making that version of Dijkstra’s algorithm the prime

choice for practical implementation of shortest path calculations in most communication

networks [19].

From the group of label correcting algorithms, the generic label correcting algorithm

will be considered next. At the core of its operation is also the concept of distance

labels attributed to each node, which are reduced at each iteration of the algorithm

by considering only local information, i.e. the distance labels of neighbor nodes and

the length of the links to those nodes. The generic label correcting algorithm works

as follows: a set of distance labels d() is maintained at each step of the operation. In

each step, the label of node j, d(j) either has the value of ∞, indicating that a path

from the source node to node j has not yet been discovered, or it assumes the value of

the sum of cij and d(i), if d(j) > d(i) + cij . The generic label-correcting algorithm is

a procedure for successively updating the distance labels until they reflect the precise

shortest path values, i.e. until no further changes to the distance labels can be made.

A concrete example of the generic label correcting algorithm is given in Figure 2.1.4,

where in each step the distance towards source node A is updated for another node of the

graph. Furthermore, the generic label correcting algorithm also maintains a predecessor

index for each node j, pred(j), which eventually enables tracing the shortest path back

to the source node.

The formal description of the generic label correcting algorithm is given below:

Generic Label-Correcting Algorithm()
1 d(s) := 0 and pred(s) := 0;
2 d(j) := ∞ for each j ∈ N \ {s}
3 while some link(i, j) satisfies d(j) > d(i) + cij

4 do
5 d(j) := d(i) + cij ;
6 pred(j) := i;

Among the many different versions of label correcting algorithms [5, 20, 21, 22], for

the purpose of routing in communication networks, distributed versions of the algorithm

which find all shortest paths in directed graphs with nonnegative link lengths are of most

interest, and accordingly they will be discussed in the next section. For the purpose

of completeness, in this context it is worth noting that the generic label correcting

algorithm has complexity O(n2C), where C denotes the maximum link weight difference

in the graph.

14

Figure 2.1.4: Illustration of the generic label correcting algorithm.

15

2.1.2 Link State and Distance Vector Routing Algorithms and

Protocols

This section introduces distance vector and links state routing algorithms, which are

fundamental to the current intra-domain routing protocols. Both of these algorithms

represent concrete adaptations of the algorithms from graph theory which have been

introduced in the previous section.

In the current intra-domain routing architecture, routers are interconnected by links

which are assigned non-negative weights. Furthermore, the packetized traffic payload is

routed in a connectionless manner using the hop-by-hop routing strategy, meaning that

each router individually decides where to forward packets such that they reach their

destinations as declared in the packet headers. In order to ensure efficient, loop free

routing in such a distributed architecture, the routers are obliged to follow a simple

common routing rule: packets should always be routed via the shortest paths, where

path length represents the sum of the link weights of all links included.

In order to determine the shortest paths in large network structures, fully automated

routing protocols are required for several reasons: firstly, the task of setting up the

routing tables is manually often hardly feasible in networks whose size exceeds several

nodes, and secondly, due to reconfiguration and outages network topologies may change,

requiring fast adaptation of routing to the new situation. Therefore, the development of

reliable routing protocols represented the top priority in the early Internet, and resulted

in the emergence of two major groups of protocols: link state and distance vector.

The main idea of link state protocols is that all nodes in the network announce the

state of their unidirectional links towards their neighbors to the entire network, and

that each node in the network calculates a shortest path tree with itself as the source,

using Dijkstra’s algorithm based upon the knowledge of the entire global topology as

announced by the other nodes. After having calculated its shortest path tree, each node

is able to match individual destinations in the network to particular next hops, i.e. to

establish a routing table. The mechanism used for announcing link state information is

flooding: each node forwards received (or generated) link state information unchanged

to all of its neighbor nodes. Although this simple mechanism is prone to generating

a substantial amount of signaling overhead (as will be discussed in later parts of this

thesis), it is very efficient in guaranteeing that all signaling messages eventually reach

all nodes in a connected network.

Modern day implementations of link state algorithms, like e.g. Open Shortest Path

First (OSPF) [7, 8, 23] or Intermediate System to Intermediate System (IS–IS) [9] fulfill

the task of offering robust network connectivity and loop-free routing in a very efficient

manner, and thus they are currently the most widespread intra-domain protocols in the

Internet. In order to enable efficient operation of the algorithm in very large network

structures of several thousands of nodes, link state algorithms additionally offer the

16

possibility of subdividing the network hierarchically, which opens the potential of reduc-

ing the number of IP destination address prefixes which have to be announced by the

protocols, and even more importantly the possibility of reducing the signaling overhead

generated by the flooding mechanism, because information from lower hierarchy levels

of the network is normally not announced throughout the entire network domain [3].

Based upon the work of R. E. Bellman, L. R. Ford and D. R. Fulkerson in the area

of label correcting shortest path algorithms, distance vector routing protocols follow a

completely different paradigm for establishing consistent network wide routing tables.

Instead of employing global dissemination of topology information which would sub-

sequently be used for calculating the routes in a distributed manner, distance vector

algorithms rely upon the exchange of reachability information between the neighbor

nodes. In each iteration of the algorithm, the nodes convey so called distance vectors

which contain their current shortest distance labels to all destinations. In the first it-

eration, only the neighbor nodes are marked as reachable, at the cost of the weight

of the directly connecting link. Subsequently, as nodes keep exchanging their distance

vectors (which practically corresponds to exchanging entire routing tables in each iter-

ation) they update their temporary labels for individual destinations if the sum of the

label announced by the neighbor and the weight of the connecting link is lower than

the current local label. Eventually, the network will converge (i.e. the temporary labels

will become permanent) at the moment when all network wide labels remain unchanged

during an iteration. This particular version of label correcting shortest path algorithms

applied in distance vector protocols is often referred to as the Distributed Bellman-Ford

Algorithm (cf. [3]).

At first glance distance vector protocols appear much more simple and straightfor-

ward than link state protocols as route calculation is reduced to a simple exchange of

routing tables, whereas links state protocols necessitate the existence of multiple data

structures for topology information exchange, route calculation, and the routing tables.

Additionally, link state protocols incorporate two independent complex algorithms for

the dissemination of topology information and route calculation. While this initial im-

pression indeed holds as far as implementation and computational complexity of the

algorithm is concerned, the simplicity of the distance vector protocols comes at a price

when the convergence properties of the algorithm are considered: firstly, after a network

running distance vector protocols is initialized, up to d iterations of the algorithm are

needed in order for the network wide routing tables to converge, where d is the network

diameter, thus introducing a considerable penalty for large networks compared to link

state protocols. Moreover, the most significant drawback of distance vector protocols

is their very slow convergence in the presence of topological changes, which can lead

to the formation of transient routing loops. Although many add-ons and improvements

have been introduced to distance vector routing algorithms, due to their unfavorable

convergence properties these protocols are today mostly found only in legacy networks,

17

whereas link state protocols like IS-IS and OSPF represent the mainstream in contem-

porary intra-domain IP routing.

However, a variant of distance vector protocols, the path vector protocol, is used in

the Border Gateway Protocol (BGP-4) for the exchange of global inter-domain routing

information [24]. The main difference between distance vector and path vector protocols

is that instead of announcing only single scalar labels for particular destinations, path

vector protocols announce the entire path towards each destination, which helps to

alleviate certain drawbacks of distance vector protocols, although routing stability issues

in the presence of topological changes still represent a major concern. The main reason

why link state routing protocols are not used for inter-domain routing lies simply in

their limited scalability due to their resource intensive signaling, advancing path vector

protocols to become the only viable choice in this area of application.

2.2 State of the Art in IP Traffic Engineering

2.2.1 Approaches Based upon Link Weight Optimization

The routing of traffic within IP networks on top of the proven architecture which employs

shortest path routing based upon link weights today represents the state of the art as

far as concrete implementations in major Internet Service Provider (ISP) networks are

concerned. Due to the mature link state protocols deployed, these networks display very

high robustness, as the traffic is swiftly and reliably distributed onto alternative routes

in the presence of equipment failures, thus alleviating the main concern of any network

provider [25, 26, 27, 28, 29].

However, apart from these beneficial properties, link state routing algorithms also

hold the problem of appropriate network configuration, which still has not been generally

resolved by network equipment vendors. The main issue concerning the configuration

of link state protocols is the assignment of link weights, as they have exclusive influence

upon the network-wide setup of routes. But unfortunately, deriving a meaningful set of

link weights for a given network proves to be very difficult, as the value imposed upon an

individual link always has the potential of affecting many different paths throughout the

network. In other words, in architectures based upon the concept of weighted directed

links it is generally impossible to have explicit influence upon the paths of individual

connections, and therefore it is hardly possible to find an intuitive approach to the traffic

engineering problem.

Unfortunately, major IP routing equipment manufacturers like Cisco Systems [www-2]

and others have also merely come up with several best practice heuristics for setting the

link weights, like e.g. setting all link weights in the backbone network to the same value,

which assures that traffic is always routed along paths with the minimum number of

hops, and thus leads to a minimization of the average link load in the network. However,

18

this min-hop routing strategy does not hold the potential of distributing the traffic away

from links prone to congestion, but rather treats all links equally, irrespective of their

characteristics like e.g. transmission capacity. In order to take the link characteristics

into consideration and thus statistically try to avoid excessive usage of low bandwidth

links, the most widely applied Cisco heuristic recommends setting link weights inversely

proportionally to the link capacities. Another purposeful heuristic method is to set the

link weights proportionally to the link propagation delay, which in the absence of con-

gestion leads to a minimization of the delays experienced by the flows throughout the

network.

Nevertheless, the mentioned approaches all remain traffic agnostic, i.e. they do not

adapt the routing to the current traffic conditions in the networks. In many cases, this

can lead to congestion in networks which hold the potential of accommodating even a

multiple of the present volume of traffic [30, 31, 32]. Therefore, the current state of the

art in link state routing leaves a lot of room for improvement using traffic engineering

methods, which aim at improving the performance of the network by optimizing the

utilization of its resources.

In this section, traffic engineering methods are presented which do not require the

introduction of any new switching or routing technologies, but which instead focus upon

the configuration of the current IP networks running link state protocols. The funda-

mental idea in this context is to optimize the network wide link weights according to a

particular objective function. In [30, 31, 32], the authors investigate the AT&T backbone

network with traffic demands projected from previously conducted measurements. As

the authors demonstrate that optimizing link weight settings for a set of traffic demands

is NP-hard, they choose to apply an optimization algorithm based upon a local search

heuristic. In order to achieve a meaningful distribution of load, special attention is paid

to choosing an appropriate objective function: if minimizing the maximum link utiliza-

tion is defined as the sole objective, the algorithm may produce results which contain

very long paths for particular connections, thus substantially raising the average link

utilization in the network. On the other hand, if the focus is set too strictly upon the

average link utilization, overloaded links may be disregarded in the optimization, leading

to the formation of congestion hotspots in the network. The main idea of the chosen

objective function is that it is cheap to send a flow over a link with small utilization,

whereas this becomes more expensive if the utilization approaches 100%, and assumes

disproportionally high values if the utilization exceeds 110%. In its concrete realization,

the function is piecewise linear increasing and convex, and thus maximally adapted to

the requirements of optimization procedures (see Figure 2.2.1).

Contrary to the previously widespread beliefs that link state routing algorithms

cannot be configured such that they spread load evenly across the network, Fortz and

Thorup show that in the case of the AT&T backbone network their heuristic generates

weight settings which make link state protocols perform within a few percent from

19

Figure 2.2.1: Link cost φa(l(a)) as a function of load l(a) on link a for link capacity c(a) = 1.
(Source: [30])

optimal general routing which does not impose any limitations upon the path(s) flows

may take between individual pairs of hosts [30, 31, 32].

Additionally, the traffic engineering potential of optimized OSPF weights is investi-

gated on artificial network topologies based upon the results from [33, 34]. The results

of these experiments show that the traffic engineering potential does not quite reach the

excellent results of the AT&T network example, but nevertheless does enable the accom-

modation of 50-110% higher traffic demands than the standard heuristics for setting link

weights either inversely proportionally to the corresponding capacities, or proportionally

to the link propagation delays.

In spite of its impressive efficiency, link weight optimization has not yet seen large

scale deployment due to several limiting factors. Firstly, this approach requires timely

and accurate information about the state of the network, i.e. a list of the operational

routers and links, the link capacities, and last but not least the traffic demand matrix

for the entire network. As far as the configuration of the network is concerned, this can

be obtained either from the routers’ configuration files, or polled via the Simple Network

Management Protocol (SNMP) [35], or it can be obtained from dedicated software for

the monitoring of routing protocols, like e.g. the Python Routeing Toolkit [www-3].

As deriving traffic matrices for operational networks represents a complex challenge

in the current technological environment [36, 37, 38], special attention must be devoted

to this particular task. In [32], four approaches as laid out in [39] are proposed for the

purpose of link weight optimization: (1) obtaining the necessary traffic statistics directly

from the SNMP Management Information Bases (MIBs) [40], (2) computing the traffic

matrices based upon measurements at the edge of the network, (3) inferring the traffic

matrix from measurements on core network links by correlating them with routing data,

20

and (4) by online traffic sampling as with Cisco NetFlow [www-4]. Additionally, current

traffic measurements show that traffic matrices display typical time-of-day behavior

[41], meaning that the optimization should certainly take this fact into account, either

by calculating multiple sets of link weights for different times of day, or by performing

the optimizations such that the introduced link weights are applicable throughout the

24-hour period (see Figure 2.2.2).

Figure 2.2.2: Time of day effects in Sprint Points-of-Presence (POPs) in three example U.S.
cities of different size. (Source: [41])

As a further deployment obstacle, the applicability of link weight optimization is

somewhat reduced in networks with frequent equipment outages or reconfiguration and

upgrade activities. The main reason is not related to keeping topology information up to

date (which is quite easily accomplished with link state routing protocols), but is rather

attributed to the fact that a given set of optimized link weights only applies well to a

given {topology, traffic matrix} pair, and that it does not have to produce satisfying

results in the case of topology changes. This drawback of link weight optimization

becomes even more aggravated by recent measurements and analyzes performed by a tier-

1 ISP, which demonstrate that equipment outages are regularly and frequently occurring

events in large network structures, and that they should rather be regarded as integral

parts of network operations than as exceptional events [25, 26, 27].

In order to improve the performance of link weight optimization in topologies with

frequent outages, [32] proposes the application of an optimization scheme which would

reoptimize the routing in the presence of equipment failures by changing only one or

at most a few link weights in the whole network. In contrast, [28] proposes to perform

link weight optimization such that the network performance is optimized for all cases of

single link failures. The main rationale behind this approach is based upon the findings

21

in [25], which state that more than 80% of failures last less than 10 minutes, such that

performing adjustments to link weights hardly makes sense for shorter periods of time.

The chosen optimization approach yields quite promising results, as overload in the

case of single failures can be reduced up to 40% compared to the standard optimization

approach, with the cost of only a slight 10% performance degradation during regular

network operation.

Last, but not least, in order to perform link weight optimization in a large opera-

tional network, a comprehensive network management framework similar to the one(s)

proposed in [42, 43] is needed, as the tasks of continuous network measurements and

topology monitoring, running of the optimization algorithm, and introducing the calcu-

lated link weights to the routers is hardly manually feasible, or at least very inefficient.

Furthermore, as individual link weight changes may affect an enormous number of paths

(especially if link weights are decreased), the effect of the introduced changes should

ideally be verifiable in advance, which makes a strong case for the integration of the

management framework with a network simulation environment.

2.2.2 IP Traffic Engineering in Path/Circuit Switching

Networks

Apart from the plain IP routing architecture as described in the previous sections, ad-

ditional IP-compatible network architectures have been investigated in recent years.

The most prominent example among such proposals is Multi-Protocol Label Switch-

ing (MPLS) which has been introduced in [11, 44]. The basic idea of MPLS is to

completely separate route control and packet forwarding in the network, while still re-

maining backward compatible with existing IP infrastructures. In order to achieve this,

MPLS introduces an additional header to IP packets, which contains all the information

necessary for making forwarding decisions. Accordingly, in MPLS-enabled IP routers

traffic is not any more necessarily forwarded according to the shortest path rule, based

upon the link weight settings and the destination IP address. Instead, IP packets are

attributed to a so called Forwarding Equivalency Class (FEC) at the moment they enter

the MPLS domain, and based upon this classification they are assigned to a correspond-

ing Label Switched Path (LSP) and forwarded from ingress to egress, such that the

network operator has got full control over packet classification and path establishment

using the label switching paradigm, as described in [11]. Since normal IP routing, which

usually runs in parallel to MPLS, does not have any influence upon MPLS packets, the

LSPs are practically hidden from these mechanisms, and due to this stealth property

they are often referred to as tunnels. Furthermore, as the semantics for establishing

the FECs are completely arbitrary, and not necessarily related to traditional routing

architectures (although this still represents a possibility), FECs are usually referred to

as switched circuits. In the early days of MPLS, the forwarding mechanism which makes

22

routing decisions based upon the short labels instead of the larger IP destination pre-

fix had been hailed as a significant simplification, opening the path to routing for very

high link speeds, and having the potential of significantly reducing the cost of switching

equipment. However, recent significant advances in routing table search have practically

completely alleviated this advantage, and made native IP routing equally applicable for

networking scenarios with very high link capacities [45, 46].

Figure 2.2.3: Arbitrary MPLS tunnel from node A to node F , A → C → E → F which
disregards the shortest path according to the link weights, A → B → D → F .

The flexibility in the choice of paths advances MPLS to become one of the most

popular technologies for implementing traffic engineering solutions. Contrary to the

traditional shortest path architecture described in the previous section, MPLS does offer

very straightforward explicit control over the paths of individual flows (see Figure 2.2.3).

Accordingly, in a network of n nodes, a total of n · (n−1) independent single paths may

be established, allowing for a dedicated switched circuit for each pair of nodes. However,

although this may seem very attractive at first, the abundance of possible combinations

automatically advances the configuration of such networks to a respectable optimization

issue, yielding a wide variety of proposed solutions.

In [47], a set of novel techniques for traffic engineering in Quality of Service (QoS)

supported data network is proposed, which is based upon solving techniques for multi-

commodity flow problems [48, 49]. These techniques address the design of the topology

and the size of LSPs by performing network wide optimization subject to constraints on

routing imposed by end-to-end QoS requirements and other considerations. Although

the proposed MPLS provisioning architecture represents a highly scalable solution capa-

ble of managing hundreds or even thousands of nodes, this approach also incorporates

several inherent drawbacks, which are practically identical to those of link weight opti-

mization techniques: firstly, the knowledge of the network wide traffic matrix is required

as an input to the optimization algorithm, and secondly, due to the time variant nature

of the traffic demand matrix, periodic re-optimization of the network configuration is

required, holding the potential of introducing significant disturbances to the routing of

23

individual flows.

In [50], a software system called Routing and Traffic Engineering Server (RATES) is

proposed for MPLS traffic engineering. The server implementation consists of a policy

and a flow database, an interface for traffic engineering policy definition, and a Common

Open Policy Service (COPS) [51] based implementation for communicating path and

resource information to the routers. The main idea of RATES is to set up bandwidth

guaranteed LSPs between ingress-egress node pairs, employing path selection based upon

the Minimum Interference Routing Algorithm (MIRA) as proposed in [52, 53]. MIRA

aims at reducing the interference of newly arrived routing requests to potential unknown

future requests, with interference defined as the phenomenon of reducing the maximum

available bandwidth between other ingress-egress pairs. From a practical perspective,

the most important difference to the previously described technique from [47] is that

no global traffic matrix is required. Instead, an on-line solution is proposed which

handles arriving traffic requests in a one-by-one manner, largely obsoleting heavy traffic

measurement requirements.

A further online algorithm for the dynamic routing of bandwidth guaranteed LSPs

is proposed in [54]. In the presented model, LSP setup requests denoting the node

pair and the required bandwidth arrive dynamically analogously to the model from

[52, 53]. Although inspired by the before mentioned MIRA algorithm, the proposed

solution claims to circumvent several of its drawbacks by additionally considering the

links’ residual bandwidth and path hop counts.

In [55], a scalable distributed traffic engineering system is presented which is based

upon a regular exchange of link load information between the traffic engineering units.

This reactive system is realized with two load re-allocation strategies, which either em-

ploy the rerouting of individual LSPs, or perform load balancing within a multi-path

structure. The results of the approach show its significant potential compared to shortest

path routing, with only minimal overhead added to the network’s operational complex-

ity.

The practical applicability of the mentioned traffic engineering solutions based upon

MPLS depends primarily upon the robustness to network equipment failures. Although

a multitude of mechanisms has been proposed for the resilience of MPLS networks

[56, 57, 58], the compatibility of the described traffic engineering solutions to these

mechanisms must be carefully checked. Furthermore, even if the chosen combination of

approaches is compatible at the level of protocol correctness, it remains to be verified

whether the traffic engineering algorithms perform well in the presence of failures, or

if additional refinements to the mechanisms or well defined deployment strategies are

required, as e.g. in the case of link weight optimization.

24

2.2.3 Traffic Engineering Approaches Based Upon Self-Adaptive

Routing

In contrast to traffic engineering approaches based upon link weight optimization or

the optimization of MPLS LSPs, self-adaptive routing algorithms try to keep all route

adjustments within the framework of the routing protocols themselves. In this way,

the network can adapt to the current traffic conditions completely autonomously, i.e.

without the need of manual interventions.

The first examples of self-adaptive routing in packet switched networks date back to

the deployment of the ARPANET [1]. The first algorithm deployed in the ARPANET

was based upon the distributed version of the Bellman-Ford shortest path algorithm,

as described in Section 2.1.2 and in [59]. Each node maintained a table of shortest

distances and next hops to each destination, and it exchanged its routing tables with

its neighbors every 2/3 seconds [60]. The only element which assured the adaptation

of the routes was the link weight metric, which was simply set proportionally to the

instantaneous queueing delay, and which therefore dynamically reflected the changes

to the queue length. The main objectives of this routing scheme were to route traffic

along the minimum delay paths in the network, and at the same time to avoid the

formation of congestion hotspots, which would automatically be reflected by a surge in

the experienced delay. However, the chosen metric proved to be a very poor indicator

of the current delay, leading to network wide routing oscillations. Additionally, the

oscillating behavior was further aggravated by the formation of routing loops, which

were a direct consequence of distance vector routing protocols’ inability to converge

efficiently in environments with unstable link weight metrics or topologies [60].

In order to improve the stability and the performance of ARPANET routing, several

years later a novel routing algorithm was introduced [60, 61]. The most important

change compared to the initial algorithm was the switch to link state routing, as well as

the introduction of a more stable link weight metric, which was based upon a measured

10-second average of the link delay. While this scheme proved to perform well under the

conditions of low and medium load, it was also prone to oscillations during periods of

very high load. The main reason for this behavior lies in the too coarse granularity of

load shifting, as the change of a single link weight may affect the paths of many different

flows. In other words, in the case of high load, this scheme often leads to a sharp increase

in the metric of the most affected link, which induces a shift of a large number of flows to

alternative paths. However, it is easily possible that this shift will immediately produce

an overload on the alternative paths, leading to an increase of the corresponding link

metrics. In the next step, this will lead to a shift of traffic away from the alternative

paths, very likely back to the original path, as its link load metric will most likely have

subsided in the meantime, etc. Figure 2.2.4 presents an illustrative example of this

oscillating behavior in the well-known fish topology, in which the allocation of the traffic

25

Figure 2.2.4: Load oscillations observed on two paths connecting nodes R3 and R7.

between the nodes R3 and R7 changes due to variations in the link weights R3 → R4

and R3 → R5, always making use of the available shortest path(s).

Unfortunately, with this routing strategy there are no mechanisms for dampening

the described routing oscillations, but instead they will persist during the entire period

of high traffic load, leading to several highly unfavorable effects throughout the network:

firstly, the persistent updates of the link weights will induce significant overhead in terms

of signaling load in the network and the consumption of processing power in the routers.

Secondly, instead of leading to the desired objective of an even distribution of traffic

throughout the network, oscillations will have the opposite effect by causing flip-flop

like overload in parts of the network, while other parts are hardly loaded at all. In order

to counteract this behavior, exhaustive modifications of the ARPANET routing metric

26

are proposed in [60], which retain the beneficial properties of the previous algorithm

in the case of low or medium load, but enable diverting only a portion of flows from

highly congested links by refining the granularity of changes to the link weights metrics,

allowing the remaining paths to make efficient use of the links.

Although the approach of dynamic link weight changes can be tailored to fit particu-

lar types of network topologies and traffic characteristics, due its very coarse granularity

of load shifting it is hardly recommendable as a generic solution for Internet traffic

engineering. In terms of practical modern day implementations of this scheme it is im-

portant to mention the Interior Gateway Routing Protocol (IGRP) and the Enhanced

Interior Gateway Routing Protocol (EIGRP) by Cisco Systems, which do enable the

inclusion of link load information into the link weight metrics [3, 62]. However, simi-

larly to the phenomena observed in ARPANET routing, [63] demonstrates that IGRP

routing will always oscillate between two worst case traffic distributions, unless the link

weight metric is chosen such that its traffic-insensitive component has a high relative

weight compared to its traffic-sensitive component. In order to assure maximum net-

work stability, dynamic link weight adaptation is turned off in standard Cisco router

configurations, such that it needs to be explicitly enabled by the network operator if it

is to be used [3].

Originating from a somewhat different school of thought, the two traffic engineering

approaches described next base their routing decisions upon local information about link

overload, and upon local reactions to this overload by deflecting traffic upon less loaded

links. Interestingly, although they are in many ways similar, the algorithms are rooted

in two completely distinct networking technologies, i.e. in circuit switched telephony and

in IP networks, and thus they offer a good opportunity for detecting possible analogies

in key traffic engineering principles.

The Dynamic Alternative Routing algorithm (DAR) is a control scheme for fully

meshed circuit switched telephone networks which has been proposed in [64, 65], and

subsequently applied in the British Telecom trunk network [66]. The fundamental idea

of DAR is as follows: as long as there is enough residual capacity, a call is always routed

via the direct link to the other digital switch. However, if the direct link is congested, the

call is routed via a predefined alternative node, i.e. it is routed to the destination via an

intermediate hop. If this works well, the alternative node is kept in memory and serves

as a default alternative node also in the future. If the alternative path is congested as

well, then another alternative path is chosen among the (n − 2) remaining nodes in the

network, and serves as the new default alternative. In order to ensure optimal usage of

the network wide installed capacity, it is important to make sure that the connections are

whenever possible routed along the direct path. More specifically, this translates to the

requirement that a diverted connection should avoid to force another direct connection

to take an alternative path [67, 68]. The concrete implementation of this imperative is

performed by means of trunk reservation, meaning that a minimum number of residual

27

channels should always be reserved for the direct connections [69].

In [70], a similar approach is applied in IP networks, i.e. the deflection routing scheme.

In the case of link overload, which mostly occurs during periods of link failures, the

routers individually make decisions to reroute traffic for particular destination prefixes

to alternative paths. In order to perform this task within the current architecture

of intra-domain IP routing, having at least two viable next hops for each destination

prefix is a strong prerequisite for this approach. However, as multiple paths towards

a destination are only allowed if they have the same minimal distance metric, many

practical topologies will not meet this hard requirement. Therefore, a relaxation of the

shortest path criterion called strictly decreasing cost criterion is proposed, which states

that each neighbor node may be used as a viable next hop in order to reach a particular

destination if it is strictly closer to the destination in terms of the distance metric than

the current node itself. Although this criterion in many practical cases allows for a much

larger number of multiple paths [15], it still reliably prevents the formation of routing

loops, as the distance to the destination is strictly decreasing along each hop of the

packet’s path to the destination.

2.3 Traffic Engineering Approaches in a Multi-Path

Routing Context

In contrast to the approaches described so far, this section will cover adaptive routing

approaches which are more closely related to the proposed Adaptive Multi-Path routing

(AMP).

2.3.1 The Optimized Multi-Path Algorithm

Starting with the state of the art in intra-domain routing, the main goal of the Op-

timized Multi-Path (OMP) approach is to extend the current routing protocols with

traffic engineering capabilities while remaining completely compatible with the current

intra-domain routing architecture [12, 71]. In order to achieve this, OMP builds upon

the favorable properties of link state routing protocols like Open Shortest Path First

(OSPF), and their capability of employing multiple shortest paths between two nodes

if they exist, called Equal Cost Multi-Path routing (ECMP), which enables static and

uniform distribution of traffic upon all available paths towards individual destinations

[8]. OMP mainly introduces changes with respect to OSPF’s traffic agnostic nature of

routing: Avoiding the mistakes of the previous proposals, which attempted to perform

load balancing by acting upon the link weight settings, a novel approach has been chosen

which enables very high granularity of load shifting, thus paving the way towards stable

operation in realistic network environments.

28

Designed as a traffic engineering extension to OSPF, OMP uses global information

about the network wide link loads in order to route traffic such that congestion hotspots

are alleviated by means of traffic redistribution. Whereas the dissemination of link load

information is indeed performed throughout the network using the link state protocols’

flooding mechanism, the load balancing actions are performed strictly locally in indi-

vidual nodes, without resorting to any kind of global coordination. In the rest of this

section, OMP’s main building blocks in terms of multi-path criteria, link load met-

rics, signaling, packet forwarding, and load balancing will be explained, followed by two

simulation studies evaluating the algorithm’s performance.

In order for the ECMP strategy to yield a high number of paths, link weight settings

need to be carefully tuned, which is often not consistently possible in large network

structures. Therefore, OMP employs the strictly decreasing cost criterion which has

already been mentioned in the context of the deflection routing scheme in Section 2.2.3.

Using this criterion, which is denoted as the relaxed best path criterion in the context

of OMP, the number of multiple paths between most {source, destination} pairs in the

network can be significantly increased compared to ECMP, as the next hops do not

necessarily have to be on the shortest path routes [15]. For reacting meaningfully to

network wide link load information, OMP must have a mechanism for determining the

entire paths to the destination with a list of all links contained therein. Only in this

way the algorithm can determine which local load balancing actions to perform in order

to reduce (or increase) the load on a distant link. For this purpose, OMP defines the so

called next hop structure, which is essentially a per destination data structure containing

the list of links comprising the different paths towards a destination. Based upon this

information, OMP’s load balancing algorithm decides on a per destination basis about

the relative traffic share each path from a next hop structure should receive.

OMP packet forwarding is based upon the 16-bit Cyclic Redundancy Check scheme

(CRC-16) known from many ECMP implementations, which has the favorable property

of spreading realistic IP traffic very evenly across the hash space, making this scheme

the prime choice for Internet load balancing for a wide area of applications [72]. The

main difference compared to ECMP is that traffic is generally routed asymmetrically, re-

flecting the computed shares of traffic for the individual paths in the next hop structure.

For this purpose, the shares allocated to the individual paths for a specific destination

are mapped to the corresponding next hop nodes, thus defining the relative sizes of the

hash space attributed to each next hop link. Accordingly, the packet forwarding proce-

dure in OMP nodes works as follows: after a packet is received, its destination address

is checked, after which the viable next hop links for reaching that destination are de-

termined. If there is only one next hop, the packet is immediately forwarded via the

corresponding interface. Otherwise, if multiple next hops are viable, the CRC-16 hash

value is computed based upon the source and destination IP addresses of the packet,

after which the next hop node holding the CRC-16 hash space containing that value is

29

determined. Finally, the packet is forwarded via the corresponding link.

Concerning the link load information, OMP does not only resort to plain link utiliza-

tion, ρ, as a ratio of transmission rate and the link capacity. Instead, information about

packet losses is included in the calculation in order to be able to compare multiple links

which display very high link utilization, a situation which may easily occur in networks

which predominantly carry elastic traffic employing the Transmission Control Protocol

(TCP) [73]. The chosen link load metric is based upon the findings about TCP dynam-

ics from [74], which state that TCP connections on congested links slow down roughly

in proportion to the square root of loss, and that TCP practically does not display any

slowdown at packet loss probabilities below 1%. Accordingly, the metric of equivalent

load, ρ ′, is established using the following formula:

ρ ′ = ρ · K ·
√

P , (2.3.1)

where K is a scaling factor defining the packet loss probability at which the equivalent

load metric starts exceeding simple link utilization, and P the packet loss probability

observed on the link. The recommended default setting for the factor K is 10, thus

defining 1% as the boundary packet loss probability at which TCP starts slowing down.

As far as the dissemination of equivalent load information is concerned, a novel

data structure defined in [75] is used, which enables supplementary information to be

announced via the Link State Advertisement (LSA) flooding mechanism of OSPF. In

order to ensure sufficiently fast updates of link load information, and yet to avoid any

unnecessary flooding of link load LSAs, the decision whether to flood is based upon

three parameters: the absolute load on the link, the relative load change to the last

flooded information for a particular link, and finally the time elapsed since the last load

change was considered. Accordingly, the likelyhood of issuing an LSA update increases

with the difference in load since the last announcement, as well as with the time elapsed

since the last LSA was issued.

Based upon the received link load information, the load adjustment algorithm (which

comprises the core of OMP) identifies the highest (i.e. in OMP terms critically) loaded

link in the next hop structure for each destination, and adjusts the relative load shares of

traffic for the paths in the next hop structure such that the shares of those paths which

do not contain the critically loaded link are increased, while the shares of those paths

containing the critically loaded link are reduced. As already mentioned, these shares are

defined as portions of the CRC-16 hash space, thus allowing for very fine-granular load

shifts, as the traffic for each destination may be split at the granularity of 216 = 65,536.

Once the load shares for each path are adjusted, the individual paths from the next hop

structures are mapped onto the next hop links by building a sum over the hash space

portions of all paths sharing a link.

In order to bridge the seemingly contrary objectives of fast load adjustment and

30

the stability of network wide routing, OMP load balancing defines a very sophisticated

mechanism for controlling the dynamics of load shifting. The algorithm always starts

by shifting load at a predefined minimum rate. If the direction of load shifting persists,

i.e. if the same link remains highest loaded in a next hop structure, the rate of load

shifting (i.e. the load shares of the receiving paths) will increase exponentially. Once

the direction of load shifting changes, those paths which have previously contained the

critically loaded link start receiving traffic again, but only at half the rate they had had

the last time before becoming critical. Overall, this sort of behavior enables reaching the

fix point in traffic distribution very fast with a minimum of overshoots, and it enables

stable routing behavior even in the presence of very variable traffic patterns.

In [76], the performance of the Optimized Multi-Path algorithm is evaluated and com-

pared to the performance of two standard routing strategies, i.e. shortest path routing

(SPR) and equal-cost multi-path routing (ECMP) throughout the investigated simula-

tion scenarios. All experiments have been performed using a 13-node, 16-link network

topology which corresponds to the National Science Foundation’s (NSF) Internet back-

bone in 1989 (Figure 2.3.1) [18], and non-elastic traffic according to the Poisson model

[77]. The link weights in the experiment were all set to 1, meaning that OMP’s relaxed

best path criterion merely reproduced the paths generated by ECMP.

Figure 2.3.1: National Science Foundation (NSF) Internet backbone in 1989. (Source: [18])

In the first experiment, the performance of OSPF-OMP under a wide range of traffic

intensities was compared to shortest path routing and ECMP. For this purpose, a simple

traffic model was used in which all nodes send an equal number of messages to all other

nodes, and different load levels were produced by a linear scaling of the traffic intensities

across all nodes. The results of this experiment show that OMP performs better than

both shortest path routing and ECMP at light, medium, and heavy network loads. The

observed improvements in packet delivery time range from 2% to 7% for shortest path

31

routing, and 1% to 4% for ECMP. The performance of OMP is even more impressive in

terms of packet loss, as with OMP routing no packet losses were observed with light and

medium traffic load, while the other two routing strategies display noteworthy packet

loss rates. In the presence of high traffic load, OMP did loose packets, however only at

a fraction of the rate of shortest path routing and ECMP.

The second experiment examines OMP’s response to changes in network wide traffic

distribution. As shortest path routing and ECMP route traffic statically with respect

to the traffic conditions in the network, OMP’s traffic sensitive character should enable

better network resource utilization for a much wider set of load allocations. The change

in traffic distribution was produced as follows: in the first part of the simulation a

uniform traffic distribution was used as in the first experiment. Subsequently, the load

distribution was changed by introducing client-server like behavior by turning 5 of the

13 nodes into servers sending traffic to the remaining 8 nodes, which in turn did not

send any traffic at all. The packet delivery times for shortest path routing and ECMP

displayed an increase of approximately 19%, and remained at that level for the rest of

the simulation due to their static nature. On the other hand, whereas OMP initially

showed a similar rise in packet delivery times, 3 minutes after the start of the convergence

process the packet delivery times started subsiding, and finally reached the level of only

a slight 10% increase compared to the first phase of the simulation.

In the third experiment, the behavior of OMP in the presence of a sudden 3 seconds

long surge of traffic volume has been investigated. The observed results show that

OMP is able to accommodate such a sudden peak in traffic demand much better, as the

traffic is much better distributed during stable traffic periods across the multiple paths

compared to ECMP, such that the queues in the network have more memory capacity,

thus leading to much smaller overall packet loss.

Simulations of OMP performed within the Internet Engineering Task Force’s (IETF’s)

[www-5] process of algorithm standardization are presented in [www-6]. In these simula-

tions OMP is evaluated using a 12-node, 19-links network, representing an IP backbone

connecting major U.S. metropolitan areas, and the main focus of the investigation is set

upon the allocation of network wide traffic, the convergence properties of the algorithm,

and upon OMP’s stability in the presence of adverse traffic conditions. In the experi-

ment evaluating network wide traffic distribution by using a fix traffic matrix, OMP has

been compared to simple shortest path routing and to ECMP. With ECMP the high-

est loaded link in the network displayed 109% link utilization, whereas this worst link

metric could be reduced to only 89% using OMP. Furthermore, in another experiment,

the convergence properties of the algorithm have been examined, and it has been shown

that under stable traffic conditions OMP achieves link utilizations near the final conver-

gence fix point already after 15 minutes operation, displaying only moderate potential

for further improvements in subsequent time intervals.

Even more importantly, [www-6] evaluates the stability of OMP for two different

32

test cases: firstly, the algorithm’s behavior in the presence of a fast rise in traffic is

investigated, and secondly, OMP’s reaction to high noise in traffic levels is examined.

As far as situations are considered in which a fast rise in traffic can be observed followed

by a plateau, OMP proves to behave very stably, closely following the changing traffic

demands, and displaying only a slight overshoot at the moment when the plateau is

reached, which is however expected, as OMP load balancing is only a lightly dampened

controller. In the presence of noise, i.e. random traffic superimposed upon the otherwise

stable traffic matrix, OMP also displays very stable behavior, without any tendencies

towards falling into oscillations.

Additionally, it is important to note that the formulation of the load balancing

algorithm explicitly yields the optimization goal of OMP: as each next hop structure

(corresponding to an individual destination in the network) is always readjusted such

that the maximally loaded link is offloaded, this traffic engineering scheme ultimately

aims at minimizing the maximum link utilization in the network. In this context it

is important to recall that traffic engineering schemes which exclusively focus upon

minimizing the maximum link utilization are often prone to increasing the average link

utilization in the network, as longer paths are often chosen in order to alleviate overload

on congested links. As the relaxed best path criterion used by OMP proves to be a very

powerful criterion for maximizing the number of multiple paths [15], thereby potentially

increasing the average path length, the potential increase in average link utilization

needs to be carefully evaluated when considering the deployment of OMP.

Last, but not least, it is important to mention that the algorithm’s complexity might

represent a major concern in the context of deployment in operational IP networks. The

most important factors contributing to complexity are the large memory requirements

needed for storing and managing the next hop structures in the individual nodes, as

they contain entire multi-paths towards all destinations in the network. Even more

importantly, the process of load adjustment is very complex, as separate computations

need to be performed for each next hop structure, and as a different set of numerous

variables need to be kept on a per destination basis. As a further aggravating factor, the

signaling of load information using the link state flooding algorithm is an indeterministic

process, which significantly hampers efforts towards estimating the worst case overhead

of the algorithm.

2.3.2 Gallager’s Minimum Delay Routing Algorithm

An alternative routing algorithm implementing minimum delay routing using distributed

computation was presented by R. G. Gallager in [17]. The goal of the algorithm is to

specify routing tables in each node of the network which will determine the distribution

of traffic for each destination onto the available next hop links, such that the average

delay experienced by packets traversing the network is minimized. In the algorithmic

33

formulation following this paragraph, it is shown that this goal is practically achieved

by equalizing the marginal delays (i.e. the derivatives of delay) for all destinations on

each viable output link in every node of the network. As a fully distributed mechanism,

Gallager’s algorithm is independently applied in each node of the network, updating the

node’s routing table based upon information about the marginal delay towards every

destination node in the network which is exchanged with each adjacent node. A stable

network topology is assumed with this scheme, as well as a stationary (or at least

near stationary) traffic matrix. Notably, the routing determined by the algorithm is

guaranteed to be loop free in each iteration leading to the state of convergence. The

algorithm presented by Gallager is in many ways quite similar to the previously described

routing algorithm of the early ARPANET (see Section 2.2.3), with the major difference

that the ARPANET attempts to send each packet over a route that minimizes the

packet’s delay while completely disregarding other packet’s delays, whereas here packets

are sent via routes that minimize the average delay throughout the network.

In the remainder of this section, a compact formulation of Gallager’s criteria is

provided (see [78] for further details):

A computer network G = (N, L) is comprised of N nodes and L links connecting

them. Each link is defined as bidirectional, with possibly different link weights per

direction.

Let ri
j ≥ 0 be the expected input traffic, measured in bits per second, entering the

network at node i and destined for node j. Let tij be the sum of ri
j and the traffic

arriving from neighbors of i for destination j. Furthermore, let routing parameter φi
jk

be the fraction of traffic tij that leaves node i over link (i, k). Assume that the network

does not lose any packets. Then, applying the conservation law follows

tij = ri
j +

∑
k∈N i

tkj φ
k
ji (2.3.2)

where Ni is the set of neighbors of router i.

Let fik be the expected traffic, measured in bits per second, on link (i, k). Because

tijφ
i
jk is the traffic destined for node j on link (i, k), the following equation is used for

finding fik:

fik =
∑
j∈N

tijφ
i
jk (2.3.3)

Note that 0 ≤ fik ≤ Cik, where Cik is the capacity of link (i, k) in bits per second.

Furthermore, for each node i and destination j, the routing parameters φi
jk satisfy

the following conditions:

1. φi
jk = 0 if (i, k) /∈ L or i = j. Clearly if the link does not exist, it cannot carry

any traffic.

34

2. φi
jk ≥ 0. Negative amounts of traffic, of course, cannot be allocated.

3.
∑

k∈N i φi
jk = 1. All traffic must be allocated.

Let Dik be defined as the expected number of packets per second transmitted on

link (i, k) times the expected delay per packet, including the queueing delays at the

link. It is assumed that the packets are delayed only by the links of the network, and

that Dik depends only upon flow fik through link (i, k) and link characteristics such as

propagation delay and link capacity. Dik(fik) is a continuous and convex function. The

total expected delay per message times the total expected number of message arrivals

per second is given by:

DT =
∑

(i,k)∈L

Dik(fik) (2.3.4)

Note that the node traffic flow set t = {tij} and link flow set f = {fik} can be

obtained from r = {ri
j} and φ = {φi

jk}. DT can therefore be expressed as a function

of r and φ using (2.3.2) and (2.3.3). The minimum delay routing problem can now be

stated as follows: for a given fixed topology with link capacities Cik and input traffic

flow set r, and delay function Dik(fik) for each link (i, k), the minimization problem

consists of computing the routing parameter set φ such that the total expected delay

DT is minimized.

To solve this minimization problem, in [17] Gallager derived the necessary and suf-

ficient conditions and described an algorithm to compute routing parameter set φ such

that these conditions are satisfied. To find the conditions, first the partial derivative of

the total delay DT of (2.3.4) with respect to r and φ is obtained, that is,

∂DT

∂ri
j

=
∑
k∈N i

φi
jk[(D

′
ik(fik) +

∂DT

∂rk
j

] (2.3.5)

∂DT

∂φi
jk

= tij[(D
′
ik(fik) +

∂DT

∂rk
j

] (2.3.6)

where D′
ik(fik) = ∂Dik(fik)

∂fik
and is called marginal or incremental delay. ∂DT

ri
j

is the

marginal distance from node i to node j.

Gallager’s main theorem states that the necessary condition for a minimum of DT

with respect to φ for all i
= j and (i, k) ∈ L is

∂DT

∂φi
jk

=

⎧⎨
⎩

= λij φi
jk > 0

≥ λij φi
jk = 0

(2.3.7)

where λij is some positive number, and the sufficient condition to minimize DT with

respect to φ is for all i
= j and (i, k) ∈ L is

35

D′
ik(fik) +

∂DT

∂rk
j

≥ ∂DT

∂ri
j

(2.3.8)

Equation (2.3.5) shows the relation between node’s marginal distance and the marginal

distance of neighbors to a particular destination. Equations (2.3.6), (2.3.7), and (2.3.8)

indicate that under perfect load balancing, i.e. when routing parameter set φ yields the

minimum delay, the marginal distances through neighbors in the successor set are equal,

and the marginal distances through neighbors not in the successor are higher than those

in the successor sets. Let Di
j denote the marginal distance ∂DT

∂ri
j

from i to j. Let lik

denote the marginal delay D′
ik(fik) as the cost of the link from i to j. Let Si

j be the set

of neighbors through which router i forwards traffic towards j. Now the minimum delay

routing problem becomes one of determining routing parameters {φi
jk} at each node i

for each destination j.

In order to achieve an optimal traffic distribution, each node i must incrementally

decrease those routing variables φj
ik for which the marginal delay D′

ik(fik)+ ∂DT

∂rk
j

is large,

and increase those for which it is small. Concerning the exchange of routing information,

in Gallager’s approach each node must send information to all of its neighbor nodes about

its marginal delays towards each destination in the network. The amount of information

sent using this routing strategy exactly corresponds to that of ARPANET routing, with

the essential difference that instead of the delays, Gallager’s algorithm exchanges values

of marginal delay [17]. Following its initial formulation, Gallager’s algorithm has been

further refined in [79, 80] to handle topological changes, based upon the techniques

proposed in [81], thus gaining more significance in the context of practical real-world

implementations.

2.4 Concluding Remarks

Over the last years, measurements performed by different Internet Service Providers

(ISPs) have shown that traffic demands in the networks change dynamically, and that

they exhibit large time-of-day variations [41]. This provides strong motivation for op-

timizing the performance of operational networks by adapting the allocation of traffic

in the network to the current conditions. In order to achieve this, different traffic engi-

neering techniques have been proposed in recent years, yielding several different groups

of possible approaches.

Link weight optimization represents a rather straightforward possibility for optimiz-

ing the network wide allocation of traffic. The main advantage of this method is that it

does not require any changes to the underlying networking technologies, as performance

improvements are provided only by means of configuration. However, this approach also

goes hand in hand with the mandatory requirement of knowing the traffic matrix (or

even more preferably the traffic demand matrix) for the entire network, as well as a well-

36

designed process for conveying the calculated link weights into router configurations. As

networks usually need to be reoptimized periodically, this configuration task requires ei-

ther a large network management overhead paired with detailed understanding of the

technique, or the presence of an automated network management infrastructure, which

may be associated with significant investments.

The situation is also very similar with traffic engineering based upon multi-protocol

label switching (MPLS), which either performs optimization of network wide label

switched paths (LSPs), or applies online algorithms for the setup of LSPs in real time.

In any case, this approach requires the deployment of a completely novel traffic forward-

ing technique, which in many cases may be associated with huge investments into the

network infrastructure.

Although the Optimized Multi-Path algorithm (OMP) combines many favorable

properties, due to its large data structures and load signaling based upon link state

protocols’ flooding algorithm OMP at the same time produces significant (and unpre-

dictable) overhead both in terms of memory requirements and signaling. In contrast,

Gallager’s algorithm produces minimal signaling overhead, as only the marginal delay to

each destination node needs to be communicated to neighbor nodes, but unfortunately

the algorithm can hardly be applied to real networks due to its requirements concerning

traffic dynamics (as only quasi-static traffic matrices are allowed) and the setting of

comprehensive initial load distribution parameters.

Summarizing the main features and properties of the described approaches, the con-

clusion is reached that for each of these mechanisms there is still a lot of room for further

improvements. As the main contribution of this thesis, the following chapter will in-

troduce Adaptive Multi-Path routing (AMP) as a traffic engineering technique which

aims to combine the most favorable properties of the existing approaches in a novel and

original algorithmic solution.

37

38

Chapter 3

Adaptive Multi-Path Routing

(AMP)

The main objectives which led to the development of AMP were to design a mecha-

nism which would provide simple and fully automated traffic engineering by perform-

ing continuous load balancing within individual routing domains (cf. Section 1.1). At

the same time, no management overhead was supposed to be added, and additionally

the algorithm was supposed to run completely autonomously within the routing plane

of the nodes, producing only a minimal overhead in terms of signaling, memory, and

computational complexity. The proposed algorithm was supposed to be deployable in

current intra-domain routing environments, and to be implementable in state-of-the-art

networking hardware.

3.1 Basic Idea

Trying to retain OMP’s advantages in terms of the level of automation and the use

of multi-path structures, and at the same time aiming at alleviating the mentioned

drawbacks of such an approach, primarily regarding the global signaling using message

flooding, AMP chooses to reduce its view of the network to the local scope. Therefore,

with AMP, an arbitrary network node X does not not know about the state of all links

in the network, but in contrast it is only informed about its immediate neighborhood. In

this sense, the propagation of congestion information throughout the network is based

upon a so-called backpressure mechanism. For an intuitive description of this concept,

the IP network can be perceived as a meshed system of unidirectional porous rubber

tubes transporting viscous fluid. As soon as the fluid hits upon resistance, e.g. due to a

very tight section or an obstacle (corresponding to a congestion situation in the network),

this leads to an instantaneous build-up of local pressure with two possible consequences:

the pressure starts propagating opposite to the flow direction (backpressure), tube after

tube with decreasing intensity due to the viscosity of the fluid, eventually leading to the

39

establishment of a new global pressure/loss equilibrium. Secondly, persistent pressure

(congestion) may also cause fluid to leak locally through the rubber, corresponding to

packet loss in the network.

Figure 3.1.1: Basic idea of the backpressure mechanism.

Following this intuitive description, the interplay between local dissemination and

global propagation of load information is described more formally. Consider an arbitrary

node X having a set ΩX of neighbor nodes Yi ∈ ΩX , i ≥ 0, and let XYi denote the generic

directed link from node X to node Yi. The main principle of AMP’s operation is depicted

in Figure 3.1.1: In contrast to OMP, where an increase in utilization on link Y0X causes

nodes all over the network to offload some of their paths containing link Y0X, with AMP

the only node to immediately react is Y0 as end-node of Y0X, trying to shift traffic away

from Y0X onto alternative paths. Additionally, node Y0 periodically sends out so-called

backpressure messages (BMs) to each adjacent node Nj ∈ ΩY0 in order to inform Nj

about its contribution to the congestion situation on link Y0X. All Nj ∈ ΩY0 in turn

pass on this information to their own neighbor nodes, again in proportion to those nodes’

respective contributions to the congestion situation, etc.

Due to its well designed signaling mechanism, AMP manages to combine the favor-

able properties of both OMP and the approach by Gallager. It applies traffic engineering

by operating completely autonomously in the nodes of the network, making use of topo-

logical redundancies (i.e. the presence of multiple paths), and at the same time it keeps

the exchange of load information completely local, thus enabling very low signaling over-

40

head. Furthermore, the algorithm does not impose any limitations upon the character

of input traffic, tolerating traffic matrices with an arbitrary degree of traffic variability.

3.2 Algorithmic Details of AMP

The next sections will describe in detail each part of the Adaptive Multi-Path algorithm,

including the calculation of multiple paths, link load metrics, the signaling mechanism,

packet forwarding, and the load balancing algorithm.

3.2.1 Calculation of Multiple Paths

One of the fundamental prerequisites for any traffic engineering scheme is that the

network topology exhibits a sufficient amount of redundancy which would enable traffic

to be deflected onto alternative paths in the case one or several links in the network

become congested. However, topological redundancy is not sufficient in its own, as the

applied routing architecture must incorporate principles and mechanisms which allow

for its practical use.

As already discussed in the previous chapter, in the current IP intra-domain routing

architecture normally only the shortest paths are used, i.e. paths which minimize the

sum of weights of all comprising links. In addition to using only a single shortest path,

the Equal Cost Multi-Path scheme (ECMP) allows for multiple shortest paths to be

used provided they exist, and splits the traffic uniformly upon all paths available.

As one of the most important objectives when developing AMP was to stay within

the current intra-domain routing architecture, a careful way of increasing the number

of multiple paths compared to ECMP was required. In this context, it is important

to notice that unlike with connection-oriented approaches like Multi-Protocol Label

Switching (MPLS) the current architecture imposes severe limitations with respect to

the number of multi-path options. Whereas with MPLS all possible combinations of

paths within a particular network are feasible, the link weight semantics can hardly be

tweaked.

Therefore, AMP offers the option of using the relaxed best path criterion as proposed

in [12, 70] (see Section 2.3.1). This criterion states that in each node of the network

each neighbor node which is closer to the destination node (in terms of the sum of link

weights) can be used as a viable hop for forwarding traffic towards that destination.

Note that this criterion holds great potential of increasing the number of multiple paths

in the network, as packets do not need to be forwarded solely along the shortest paths.

At the same time routing loops are reliably avoided, as the distance of each packet

towards its destination always decreases along each hop of its path.

In order to illustrate this criterion’s potential for increasing the network wide number

of multiple paths, Figure 3.2.1 provides the same example topology as Figure 3.1.1 with

41

Figure 3.2.1: Additional paths obtained using the relaxed best path criterion.

the shortest path from node Y1 to node Z2 denoted with full line arrows, whereas the

additionally obtained paths are represented by dotted line arrows. Besides the two

shortest paths Y1XY0Z3Z2 and Y1Z1Y0Z3Z2 with a total metric (i.e. sum of link weights)

of 10, in the nodes X and Z1 two additional paths bifurcate according to the mentioned

criterion. In the case of the path Y1XY2Z3Z2 note that in node X the next hop node Y2

is closer to the destination Z2 than node X itself (distance of 5 vs. distance of 7), and

thus node Y2 becomes a viable next hop for forwarding traffic to node Z2 in node X.

Similarly, in the case of the path Y1Z1Z2, node Z1 is allowed to route directly to node

Z2 according to the relaxed best path criterion, as node Z2 is per definition a distance

of 0 away from itself.

The potential of the relaxed best path criterion in increasing the number of multiple

paths was demonstrated in [15], where the number of equal cost multi-paths and relaxed

best paths has been investigated for different topologies. For the purpose of that analysis,

numerous random Waxman topologies were generated using the Georgia Tech Topology

Generator, with the link weights set randomly to integer values in the range from 1 to 5

[82, www-8]. Motivated by the observation that long-distance links are generally more

expensive, Waxman’s model places nodes at random in a two-dimensional space and

adds links probabilistically between individual pairs of nodes, inversely proportional to

their distance. For each random network size from 10 to 100 nodes, the average values

for 5 different random topologies have been considered.

42

N
um

be
r

of
P
at

hs

Number of Nodes

50000

100000

150000

200000

250000

20 40 60 80

RBP [1;5]
ECMP [1;5]

Figure 3.2.2: Comparison of the absolute number of Equal Cost Multi-Paths (ECMP) and
Relaxed Best Paths (RBP) in artificial topologies.

P
at

hs
pe

r
{S

ou
rc

e,
D

es
ti
na

ti
on

}

Number of Nodes

5

10

15

20

25

20 40 60 80

RBP [1;5]
ECMP [1;5]

Figure 3.2.3: Number of multiple paths per {Source, Destination} pair in artificial topologies.

43

The results of the investigations are shown in Figures 3.2.2 and 3.2.3. Figure 3.2.2

compares the number of ECMP paths and relaxed best paths for different sizes of arti-

ficial topologies. Interestingly, the number of total ECMP paths in the network grows

only moderately with increasing network size, whereas the number of relaxed best paths

displays fast growth. Figure 3.2.3 presents the obtained results using a different scale

on the y-axis, providing the number of multi-paths for each source-destination pair in

the network. In this figure, the difference between ECMP and the relaxed best path

criterion is even more impressive, with hardly any growth noticeable with ECMP, while

the number of multi-paths shows steady growth, reaching the value of approximately 10

for networks of 50 nodes, and 26 for networks with 100 nodes.

In order to maximize the practical use of the relaxed best path criterion in real

topologies, a simple condition for link weight settings is derived in [70], which states

that if all the link weights in the network are set within a ratio of 1 + 1/(d− 1) of each

other, where d denotes the network diameter, all minimum hop multi-paths between

any pair of nodes satisfy the relaxed best path criterion. Although this criterion does

not increase the total number of paths compared to using minimum hop multi-paths in

identical topologies, it does represent a valuable contribution in practical cases where the

link weights may have to assume different values for various administrative purposes.

Overall, based upon the topology and link weight settings used, with AMP network

managers can choose whether they wish to apply the relaxed best path criterion, or

simply let AMP operate on the set of existing multiple (strictly-)shortest paths.

3.2.2 Link Load Metrics

A meaningful choice of link load metrics is crucial for making appropriate load balanc-

ing decisions. This is especially true in the case of elastic traffic like TCP, where all

connections tend to make maximum use of the available capacity, meaning that simple

link utilization ρ, defined as

ρ =
Carried Traffic Volume

Link Capacity · Time Period
(3.2.1)

may often approach the 100% limit. However, if two or more links display almost

equal, near 100% link utilizations, this does not necessarily mean that they are equally

loaded, i.e. the levels of load offered by the corresponding traffic sources might differ

dramatically, and the load balancing algorithms should capture this fact correctly. For-

tunately, in the case of TCP traffic which is predominant in today’s Internet, the levels

of offered load can be efficiently estimated by evaluating the packet loss probabilities

on the links, based upon the fact that in the presence of congestion TCP roughly slows

down in proportion to the square root of the packet loss probability observed on the link

[74]. For packet loss levels lower than 1%, [74] makes the assumption that TCP does not

introduce any slowdown, meaning that below this boundary simple link utilization from

44

(3.2.1) is sufficient for estimating the offered link load. Summarizing these observations

of TCP dynamics, the following metric for estimating link load called equivalent load, ρ′,

is derived in [12], and in the same form it is also applied in the context of AMP, where

P describes the packet loss probability on the link:

ρ′ = max{ρ, ρ · K ·
√

P} (3.2.2)

In (3.2.2), the scaling factor K determines the packet loss boundary at which ρ′

exceeds the plain link utilization ρ from (3.2.1), meaning that for K > 1/
√

P the metric

will react sensitively to packet losses. The recommended default value for K is 10, as

the introduced metric is supposed to exceed plain link utilization only for packet loss

values above 1%. Accordingly, the maximum value which the equivalent load metric

may assume is 10, reflecting a link with a hypothetical packet loss level of 100%.

The potential impact of this specific choice of link load metric upon the stability of

the load adjustment algorithms is further discussed in [12]. The load adjustment should

remain stable as long as the first derivative of the equivalent load metric over the offered

load stays positive. If within some region this derivate becomes negative, then the load

adjustment will oscillate within that range. This effect will be most profound with

drop-tail queueing strategies and small buffer settings, as in such cases the plain link

utilization in the presence of high offered load may drop significantly below 100%, while

the packet loss levels increase only moderately. In order to counteract this effect, the

formulation of the metric as given in (3.2.2) introduces a rather aggressive compensation

for loss, making such oscillations very unlikely, and bounding them to a very small range

in case they do occur.

3.2.3 Adaptive Multi-Path Routing (AMP) Signaling

The signaling mechanism represents the essential part of the Adaptive Multi-Path algo-

rithm (AMP), and at the same time one of the central contributions of this work. While

Section 3.1 provides an intuitive description of the main principles of AMP operation,

a concise statement of the signaling mechanism is provided in this section. Consider

link Y0X from Figure 3.2.4 as an example for describing the information required by Y0

for each of its output links. Y0 essentially requires two types of information: firstly, the

equivalent load on the link Y0X, and secondly, information about the extent to which

traffic routed from Y0 via X contributes to congestion on the links XYi, i > 1, as well as

the links in the network further downstream. As Y0 can directly measure and calculate

ρ′ for link Y0X itself, the remaining information required by Y0 has to be obtained from

other nodes by means of signaling. For this purpose, AMP introduces a specific type of

signaling messages sent between adjacent nodes called backpressure messages (BMs).

BM(X, Y0), i.e. the backpressure message sent from node X to node Y0, should

contain both directly measurable information about the explicit load situation on links

45

Figure 3.2.4: Example for a Backpressure Message (BM) from X to Y0 and in/out matrix in
node X.

XYi, i ≥ 1, as well as indirectly obtained information about the situation further down-

stream as reported to node X by nodes Yi, i = 1, 2, 3, ..., n, where n is the number of

output links for node X. In order to keep the backpressure messages small, these 2n

parameters are eventually mapped to a scalar BX→Y0 describing the congestion situation

on the downstream link of node X. For reasons of simplicity, from now on the generic

BM(X, Y0) is identified with its respective scalar content BX→Y0 . Then, BX→Y0 may be

considered as a function f of the mentioned 2n parameters:

BX→Y0 = f(ρ′
XY1

, ..., ρ′
XYn

, BY1→X , ..., BYn→X) (3.2.3)

To describe f , the independence of the output links is used such that the number of

parameters is reduced to one per link, summarizing the situation on each link XYi with

a function g, i.e.,

gi = g(ρ′
XYi

, BYi→X) ∀i = 1, ..., n (3.2.4)

As neither the output link nor the network beyond should be overloaded, the maxi-

mum function is a good candidate for g. This leads to the interpretation of gi as effective

equivalent load ρ′′ for link XYi:

ρ′′
XYi

= max{ρ′
XYi

, BYi→X}, i = 1, ..., n (3.2.5)

46

The calculation of BX→Y0 (3.2.3) is additionally refined by summarizing the n pa-

rameters gi ≡ ρ′′
XYi

according to a function h:

BX→Y0 = f(ρ′
XY1

, BY1→X ; ...; ρ′
XYn

, BYn→X)

= h(g(ρ′
XY1

, BY1→X), ..., g(ρ′
XYn

, BYn→X)) (3.2.6)

= h(ρ′′
XY1

, ..., ρ′′
XYn

)

Finally, h is defined as a weighted sum of the gi, where the weight for the link XYi

corresponds to the ratio between traffic on link XYi that has arrived from node Y0 via X

and the total traffic on link XYi. This sum combines all information which is available

to node X about Y0’s contribution to the congestion situation on the downstream part

of the network:

BX→Y0 =
∑

Yi∈ΩX\Y0

βXYi
(Y0)

βXYi

· ρ′′
XYi

(3.2.7)

Remember from Section 3.1 that ΩX is the set of all neighbor nodes of node X, the

downstream link between nodes X and Yi is called XYi, βXYi
(Y0) is the number of bytes

sent from node Y0 via X to Yi. Finally, βXYi
denotes the total number of bytes sent

from any node ∈ ΩX \ Yi via X to Yi.

Note that calculating βXYi
(Y0) in (3.2.7) requires node X to map precisely traffic on

the input link Y0X to the output links XYi, i = 1, ..., n. This mapping is described in

a so-called in/out matrix stored in node X (see Figure 3.2.4). This matrix contains for

every node pair (P, Q), P, Q ∈ ΩX , P
= Q, the number of bytes carried between these

nodes via X.

As fast propagation of load information throughout the network domain is a strongly

preferred property with AMP due to its local view of the network, it is recommended that

the backpressure messages be exchanged relatively frequently between adjacent nodes.

Therefore, one second is envisioned as the default interval between two consecutive

backpressure messages, i.e. τBM=1s. At the same time, the generated overhead in terms

of link load is very low, as the BMs carry only a single scalar value, resulting in a total

BM packet size which is only slightly larger than the minimal message size of the applied

intra-domain routing protocol.

3.2.4 Packet Forwarding

In the current IP intra-domain routing architecture, the existence of multiple paths in

network topologies is hardly used for the purpose of traffic engineering. As the only

mechanism currently deployed, Equal Cost Multi-Path routing (ECMP) enables the

distribution of traffic among multiple paths only if they all satisfy the shortest path

47

criterion, i.e. if they all have the same minimal path length [8]. Apart from this very

limiting constraint, ECMP additionally distributes traffic only uniformly among multiple

next hops, although the possibility of distributing traffic unevenly is generally preferable

for the purposes of traffic engineering. From a technical point of view, ECMP offers three

principal ways of forwarding packets onto the next hops:

• Per packet round robin,

• Dividing destination prefixes among available next hops in the forwarding entries,

• Dividing traffic according to a hash function applied to the source destination pair.

The first technique of per packet round robin represents by far the most simple

mechanism, but it is applicable only if the delay differences on the paths are very small,

as otherwise TCP connections will experience packet disordering and thus display very

poor performance. The second technique of dividing destination prefixes among multiple

next hops is not recommendable in general, as very short IP destination prefixes will

lead to a very coarse granularity of load shifting.

Many hashing based schemes offer very desirable properties for traffic distribution.

In the case of the most widely applied hash function for load balancing purposes, the

16-bit Cyclic Redundancy Check (CRC-16), realistic IP traffic is very evenly spread

across the hash space, making this scheme the prime choice for Internet load balancing

[72]. The main principle of CRC-16 based load balancing is to perform a hash of the

source and destination IP address for each packet, and for each destination address to

determine boundaries within the solution space. The relative sizes of the hash space

subsets defined in this way for each destination then represent the relative portions of

the volumes of traffic which should be routed via the corresponding viable next hops

for that destination. Additionally, this technique’s 16-bit structure enables very high

granularity of load shifting, as 1/216 = 1/65536 shares of traffic can be manipulated.

Employed in the context of ECMP, this scheme consistently ensures that the traffic will

be uniformly distributed among the available next hops, as the relative hash space shares

are always equally sized with this routing strategy.

In the case of AMP, the CRC-16 strategy is also applied, but with the fundamental

difference that traffic is generally forwarded to the next hops in unequal shares. This is

accomplished by allocating shares of hash space to individual next hops in proportion

to the amount of traffic which should be sent out on the respective links. An example

load distribution in router X from Figure 3.2.1 is displayed in Table 3.2.1: According

to the relaxed best path routing rule, a subset of the three neighbor routers of X are

determined as viable next hops, and a portion of the hash space is allocated to each of

them. In the case that packets are destined to the immediate neighbor routers Y0, Y1,

and Y2, the only viable next hops in this configuration will be these nodes themselves,

resulting in the entire hash space to be allocated to a single next hop (first three lines

48

Next Hop Y0 Next Hop Y1 Next Hop Y2

Destination Y0 [0, 65535] – –
Destination Y1 – [0, 65535] –
Destination Y2 – – [0, 65535]
Destination Z1 [0, 32767] [32768, 65535] –
Destination Z2 [0, 38353] – [38354, 65535]
Destination Z3 [0, 23946] – [23947, 65535]

Table 3.2.1: Routing table in Router X from Figure 3.2.1 displaying per destination CRC-16
hash space ranges allocated to individual next hops.

in Table 3.2.1). In the case of the destinations Z1, Z2, and Z3, the mentioned routing

rule yields two viable next hops, meaning that the hash space must be subdivided in

two separate shares for each of them. In this example, the hash space for destination Z1

is divided uniformly among the next hops Y0 and Y1 – accordingly, all packets destined

for Z1 whose CRC-16 calculations over their {source, destination} address pairs yield a

value less or equal to 32767 will be routed via Y0, whereas packets with hash values in

the range [32768, 65535] will be forwarded via Y1. In the case of the destinations Z2 and

Z3, unequal distributions of traffic are chosen, with the majority of traffic destined for Z2

routed via Y0, whereas the majority of traffic towards Z3 is forwarded to Y2. The exact

way in which AMP determines the mentioned hash space ranges will be described in the

next section, which provides the concise formulation of the load balancing algorithm.

3.2.5 AMP Load Balancing

Whereas AMP’s signaling architecture represents a completely new and original ap-

proach, for the purpose of load balancing a modified version of the algorithm from [12]

is applied, in which the load balancing decisions are based exclusively upon the local

view of the network in the node, as obtained from load measurements and the backpres-

sure messages (BMs) described in Section 3.2.3. The main motivation for resorting to

an existing algorithm lies in its beneficial dynamic properties: the proposed algorithm

achieves both fast convergence towards a fix point in traffic distribution, and it also

operates stably even in the presence of very noisy traffic patterns (see [www-6]).

The load balancing algorithm of AMP performs per destination load shifting, mean-

ing that in each iteration the algorithm will adjust the relative hash space shares of

the individual next hops for each destination prefix separately, with the objective of

equalizing the effective equivalent load value, ρ′′, observed on all of its output links.

Whenever AMP needs to readjust traffic shares for a particular destination, the node

performing the adjustments goes beyond considering only the current traffic distribution

and signaling information. Moreover, the node keeps track of previous actions in order

to ensure a rapid but nevertheless stable convergence towards an equilibrium of load on

49

each output link: as long as the underloaded output links in each node have got room for

accepting traffic from the critically (i.e. highest) loaded link, the percentage of overall

traffic shifted onto the less loaded links within a single control period keeps growing

exponentially. In case one of the receiving links changes status and becomes critical,

the load balancing algorithm will start shifting traffic away from the new critical output

link onto the other links, again in exponentially increasing steps. Finally, when the next

link becomes critical, the direction of load shifting again changes, etc.

As far as the implementation of the algorithm is concerned, it is important to note

that it is based upon storing the current load balancing step size for each output link on

a per destination basis. Beyond enabling the exponential growth of load balancing step

sizes (and thus ensuring agility and fast convergence of the algorithm), the manipulation

of the step size parameter is also crucial for guaranteeing the algorithm’s stability, and

is based upon the following principle: each time a node ceases to be critical, it again

starts accepting load, but only with half of the rate it had had before the last time

it became critical. The main consequence of such design is that the load balancing

step sizes will multiplicatively decrease as the is critical status is being passed around

among the output links in a quasi round robin fashion, which happens whenever pairs

of link utilizations are approximately equal. This behavior quickly leads towards the

stabilization of routes as the step sizes will converge towards minimal values around the

targeted fix point in traffic distribution.

Furthermore, the load balancing interval (i.e. the time period between two consec-

utive steps of the load balancing algorithm) is chosen such that it is at least an order

of magnitude larger than the control period of TCP (which corresponds to the con-

nections’ round trip time). This substantial difference in the time scales of operation

should reliably ensure that the control mechanisms of TCP (as the predominant type of

Internet traffic) and AMP do not interfere. Accordingly, the default setting of AMP’s

load balancing interval, τLB, is set to 5 seconds, i.e. τLB = 5s.

The concise statement of the algorithm executed separately in each node of the net-

work is given below, where D represents the set of all destinations in the network, L

the set of all viable next hop links for a particular destination in the computing node,

and α, β integer values determining the convergence speed of the algorithm, with the

default settings of α = 4 and β = 4:

AMP Load Balancing (D, L, α, β)

1 for each destination d ∈ D

2 do

3

4 % First the status of the viable next hop links is being updated

5 for each link l ∈ D

6 do

50

7 update IsCritical (l) status ; % Check if l is highest loaded

8 update WasCritical (l) status ; % Check if l was prev. highest loaded

9

10 % Next the move increments (i.e. load shift sizes) are being determined

11 for each link l ∈ L(D)

12 do

13 if IsCritical (l) = TRUE

14 then

15 continue;

16 if IsCritical (l) = FALSE

17 then

18 if MoveCount (d, l) > β

19 then

20 Increase (d, l) := MoveIncrement (d, l)/α;

21 else Increase (d, l) := MoveIncrement (d, l)/(2 · α);

22 if Increase (d, l) < 1

23 then

24 Increase (d, l) := 1;

25 MoveIncrement (d, l) := MoveIncrement (d, l) + Increase (d, l);

26 else if MoveIncrement (d, l) > 1

27 then

28 MoveIncrement (d, l) := 1;

29 MoveIncrement (d, l) := MoveIncrement (d, l)/2;

30 MoveCount (d, l) := 0;

31 if MoveIncrement (d, l) < 1

32 then

33 MoveIncrement (d, l) := 1;

34 if MoveIncrement (d, l) > 65535

35 then

36 MoveIncrement (d, l) := 65535;

37

38 % Finally, traffic is being shifted

39 for each link l1 ∈ L(D)

40 do

41 if IsCritical (l1) = FALSE

42 then

43 continue;

44 for each link l2 ∈ L(D)

45 do

46 if IsCritical (l2) = TRUE

51

47 then

48 continue;

49 Move := MoveIncrement (d, l2);

50 if Move < 1

51 then

52 Move := 1;

53 if Move > 65536 − TrafficShare (d, l2))

54 then

55 Move := 65536 − TrafficShare (d, l2);

56 MoveIncrement (d, l2) := Move ;

57 if Move > TrafficShare (d, l1)

58 then

59 Move := TrafficShare (d, l1);

60 TrafficShare (d, l2) := TrafficShare (d, l2) + Move ;

61 TrafficShare (d, l1) := TrafficShare (d, l1) − Move ;

3.3 Concluding Remarks

Starting with the objective of designing a mechanism which would provide fully auto-

mated traffic engineering by performing load balancing continuously within individual

autonomous systems, this chapter has presented Adaptive Multi-Path routing (AMP) as

a simple, efficient, and light-weight solution in the context of the current intra-domain

routing architecture.

The central innovation of AMP consists of the local exchange of load information

based upon the backpressure mechanism, which manages to fulfill seemingly contrary ob-

jectives of efficient signaling in terms of bandwidth consumption and fast propagation of

load information throughout the network domain. After presenting AMP’s extensions

to the current intra-domain routing algorithms in terms of multi-path calculation and

the applied load metrics, the signaling architecture of AMP has been presented in detail.

Subsequently, packet forwarding mechanisms which split traffic in unequal shares with-

out causing packet disordering have been presented, after which the detailed algorithmic

formulation of AMP’s load balancing mechanism has been provided in pseudocode.

Following this introduction into AMP, Chapters 4 and 5 will present the extensive

performance evaluation of the algorithm which has been carried out using two distinct

types of simulation techniques, i.e. flow-level and packet-level simulation.

52

Chapter 4

AMP Performance Evaluation in a

Dedicated Flow-Level Simulator

Starting with a short introduction into the basic principles of flow-level simulation of data

networks, this chapter presents the evaluation of Adaptive Multi-Path Routing (AMP)

with respect to its statistical performance for a broad variety of artificial topologies and

generic traffic patterns, as well as representative investigations into the stability of the

algorithm.

4.1 Principles of Flow-level Simulation

One of the key phases in the research and development process of all technical systems is

the evaluation of their performance and capabilities. Until the advent of fast microcom-

puters, and especially until their broad availability in the 1970s, performance evaluation

in technical sciences was basically limited to two traditional methods:

• Analytical modeling : Many systems are based upon well known principles which

can be captured analytically, and therefore their performance can be estimated

using mathematical methods which have been developed for the corresponding

model. The call model in circuit switched networks based upon the Poisson ar-

rival process, and the Erlang formula for call blocking probability may serve as

typical successful examples for analytical modeling in the area of telecommunica-

tion networks [77].

• Experimental evaluation: As the establishment of analytical models may be very

difficult or even impossible for many technical systems, experimental evaluation

is often the only available method for the estimation of their performance. In the

area of telecommunication networks, the main factors which limit the success of

analytical modeling are system size, protocol diversity and statefulness, complex

input processes based upon different host and user behaviors, etc. Moreover, ex-

53

Figure 4.1.1: (a) Packet-level simulation vs. (b) flow-level simulation.

perimental performance evaluation is usually very difficult for most large systems,

as many performance aspects cannot be captured in small-scale experiments, and

as the setup of large experiments is often associated with substantial efforts and

costs.

Fortunately, with the availability of abundant processing power, in recent decades

computer simulation has emerged as an additional type of scientific investigation method-

ology. The main idea of computer simulation is to model the investigated system in

software, and to perform virtual experiments by observing the model’s behavior using

the simulator. The applicability of results obtained from simulations mostly depends

upon the meaningful abstraction of important system properties, as well as upon the

correctness of the simulator’s implementation, both of which are usually verified by com-

paring the simulation results to small-scale experiments, or to analytical results which

are possibly available for particular components or parts of the system [www-7].

The simulation of communication networks can be performed at different levels of

abstraction. As far as packet-switched networks are concerned, the most common (and

obvious) choice is to simulate them at the level of packets which are being sent between

the communicating nodes (Figure 4.1.1a). This is performed by modeling each packet

arrival and packet departure on a link or queue as a separate event in the simulator. The

Network Simulator (ns-2) [www-1], Opnet Modeler [www-9], and OMNeT++ [www-10]

represent the most widely used simulation environments of this kind.

54

Continuous-time flow-
level simulation: data
rate changes are pos-
sible at any given mo-
ment in time.

Discrete-time flow-
level simulation: data
rate changes are pos-
sible only in regular
clock cycles.

Figure 4.1.2: Difference between continuous-time and discrete-time flow-level simulation.

While packet-level simulation enables highly complex network models yielding very

realistic simulation results, its precision comes at the price of great computational com-

plexity. This is especially true for large networks with high link capacities (e.g. networks

with more than 30 nodes and Gbit/s-scale links), the performance of which cannot be

evaluated in packet-level simulators without making significant abstractions in the simu-

lation scenarios. Although scenarios with lower bandwidths suffice for investigating most

issues in contemporary networking, some classes of problems like routing and peer-to-

peer protocols do indeed require a minimum critical network size and/or link capacities

in order to display all effects which may be of interest in real systems.

In order to address these issues, the concept of simulating networks at the level of

individual flows (i.e. connections) has been developed in a plethora of different variants.

Following [83], this section provides a comprehensive survey on some basic principles of

flow-based simulation techniques, focusing especially upon Internet routing approaches

(see also [84] for further details).

In [85], a continuous-time approach to flow-level simulation is presented, called

continuous-time simulation, in which the events in the simulator are correlated to data

rate changes in individual flows. This approach works especially well when simulating

systems with stable traffic patterns, as only a small number of events is generated even

for long durations of simulated real-system time (i.e. simulation time). In other words,

as long as the traffic conditions in the network do not change, no new simulation events

are generated, such that entire intervals of simulation time can be efficiently bridged

by the simulator. However, for networks carrying more complex traffic patterns with

frequent data rate changes, the efficiency of continuous-time flow-level simulation dis-

plays a significant decline, which is not only linearly attributed to the higher number of

data rate changes, but rather also to the fact that each data rate change on a congested

link potentially also introduces data rate changes to all other flows traversing this link

[86, 87]. Therefore, continuous-time flow-level simulation does not represent a feasible

solution for many classes of important networking problems.

In order to circumvent the mentioned deficiencies of continuous-time simulation,

[88, 89, 90] propose discrete-time simulation, which defines a fix clock-cycle in which the

flows are manipulated (see Figure 4.1.2). More precisely, the flows are not any more

55

modeled only with the notion of a network wide rate, but rather they are represented

by the number of their packets currently present in different sections of the network (i.e.

the links and buffers), such that the flow interactions and networks dynamics are im-

plemented by shifting the mentioned packet quantities through the network (see Figure

4.1.1b).

A more detailed understanding of the main principles of discrete-time flow-level sim-

ulation can be easily achieved by the consecutive introduction of its fundamental tech-

niques: firstly, the modeling of packet streams without the consideration of buffers will

be introduced (i.e. for the case of queueless networks), followed by a formal description

of the buffering model, as well as a concrete graphical example.

All flows traversing a link obtain capacity shares proportional to their data rates,

meaning that if the offered traffic (i.e. the traffic demand) exceeds the link capacity,

packets are being discarded proportionally to their rates. Furthermore, the individual

links in the simulator are logically subdivided into a number of time slots corresponding

to the ratio of their propagation delay and the duration of one clock cycle. For example,

if some link has a propagation delay of 10ms, and if the clock cycle is set to 1ms, this link

will be subdivided into 10 time slots, and the data streams traversing it will shift their

packets one slot per clock cycle until they reach their destination. Accordingly, the data

rates of the individual flows at their sources are also modeled such that they correspond

to the time-slotted nature of the simulation, and thus they are entirely represented by

the number of packets generated during each time slot. Depending upon the arrival

process of the flows, the number of generated packets can vary in each cycle, or it can

remain time invariant, as e.g. in the case of Constant Bit-Rate (CBR) flows.

On a more formal level, the overall offered traffic λl[t] on link l can be described as

the sum of the packet arrival rates λa
l [t] of all traversing flows a ∈ Al:

λl[t] =
∑
a∈Al

λa
l [t] (4.1.1)

If the offered traffic λl[t] exceeds the link capacity cl in the absence of a buffer, the

packet loss probability on link l, pl[t], corresponds to

pl[t] = max{1 − cl

λl[t]
, 0} (4.1.2)

Packets which do not get discarded arrive at the next hop link after dl clock-cycles,

where dl denotes the propagation delay of link l, and nextal denotes the next hop link of

l for flow a:

λa
nextal

[t + dl] = λa
l [t] · (1 − pl[t]) (4.1.3)

Using this system of equations, queueless networks can be simulated very efficiently,

with computational complexity directly proportional to the clock cycle frequency. In

56

this context it is also important to stress that higher clock cycle frequencies automat-

ically result in higher precision of the simulation, thus representing a classical preci-

sion/performance tradeoff.

The queueing model in discrete-time flow-level simulation is also very similar to the

queueless model described above. For each flow and for each link, the number of packets

in the corresponding queue is separately kept track of. In each time step (i.e. clock

cycle) of the simulation, the flows send a number of packets on the link proportional

to their representation in the queue. If the link capacity is higher than the traffic

offered by the queue, the offered traffic of predecessor links is immediately considered

for transmission, as this situation basically corresponds to periods of empty queues

in the modeled network. Similarly, if the queue becomes full, packets are discarded

proportionally to the data rates of the belonging flows.

Starting with the definition of the total offered traffic λl[t] from Equation (4.1.1),

the packet loss probability at queue ql with capacity qmax
l in time-step t corresponds to

pl[t] = max{1 − qmax
l − ql[t] + cl

λl[t]
, 0}, (4.1.4)

where ql[t] denotes the instantaneous queue size on link l in time-step t.

The queue evolution, i.e. its fill-state in the next time-step tl[t + 1], is defined by its

current fill-state, the offered traffic, the packet loss probability, and the link capacity,

yielding,

ql[t + 1] = max{ql[t] + (1 − pl[t]) · λl[t] − cl, 0}. (4.1.5)

Furthermore, the arrival rate of flow a at the next queue along its path after passing

link l is defined by the fill-state of the queue ql and the packets arriving at link l, delayed

by the link’s propagation delay dl:

λa
nextal

[t + dl] =
qa
l [t]

ql[t]
· min{cl, ql[t]} +

λa
l [t]

λl[t]
· min{max{cl − ql[t], 0}, λl[t]}. (4.1.6)

Packets from flow a in queue ql which are not sent via link l during time-slot t, and

the newly arrived packets of flow a which fit into queue ql and cannot be immediately

sent via l are added into the queue ql in time-slot t + 1:

qa
l [t+1] = qa

l [t]−
qa
l [t]

ql[t]
·min{cl, ql[t]}+λa

l [t]·(1−pl[t])−λa
l [t]

λl[t]
·min{max{cl−ql[t], 0}, λl[t]}.

(4.1.7)

Figure 4.1.3 represents a practical example of flow-level simulation with drop-tail

queues, in which the traffic of two different flows coming from a link with higher capacity

(10 packets/s) is routed via a link with lower capacity (4 packets/s). During the first

57

Link with Capacity C = 10 Link with Capacity C = 4

Queue with Buffer Size B = 8

5

5

4

6

5

5

1.6

2.4

2.4

3.6
Step 1

5

5

2.4

3.6

1.6

2.4

2

2

3

3

0.8

1.2

1.6

2.4

1.6

2.4

Step 2

3.8

4.2

1.6

2.4

1.6

2.4

1.9

2.1

1.9

2.1

1.6

2.4

1.6

2.4

Step 3

1.9

2.1

1.9

2.1

1.6

2.4

1.6

2.4

Step 4

Figure 4.1.3: Example queueing behavior in time-discrete flow-level simulation.

58

time-step of the simulation 4 packets of one flow, and 6 packets of the flow are routed to

the bottleneck link. The arrows denote the packet quantities which will be transferred

to individual time-slots during this simulation step – the bottleneck link will be able

to accept 4 packets in total, with the capacity shared in proportion to the individual

flows’ packet quantities in the previous time slot. The rest of the traffic which cannot

be accepted by the link is transferred to the queue (again proportionally to individual

flows’ contributions), resulting in a total unused queue capacity of 2 packets. In the

second step of the simulation, the queue is able to transfer 4 packets to the bottleneck

link, resulting in a total available space of 6 packets for the newly incoming traffic.

However, as the arriving traffic in this time-slot corresponds to a quantity of 10 packets,

it is obvious that the queue will have to discard 4 packets, again in proportion to the

relative contributions of the individual flows. In steps 3 and 4, the queue size will

eventually start to decrease, as there is no newly arriving input traffic at the queue,

resulting in a step-wise evacuation of the individual flows’ traffic from the system. Note

that this example describes only a simplified version of flow-level simulation in which the

queues themselves are not subdivided into multiple time-slots in proportion to their size,

resulting in deviations from the well-known first-in first-out (FIFO) queueing principle.

For a more detailed formal description of the flow-level simulation technique which

adheres to the FIFO property, please refer to [83].

The following sections will provide an introduction into the problems associated

with the performance evaluation of routing algorithms, followed by an overview of AMP

simulations carried out using a dedicated simulator based upon the described simulation

model.

4.2 Setup of Simulation Scenarios for the

Performance Evaluation of Adaptive Multi-Path

Routing (AMP)

Whereas for many types of networking problems there exist well established schemes

for their performance evaluation, the situation is quite different in the area of Internet

routing. The main problem in this context is that the behavior of routing algorithms is

affected by a variety of different factors, including primarily the topology, the traffic ma-

trix, type of traffic involved, robustness and availability of the network, etc. This variety

of parameters naturally yields an inexhaustive space of simulation scenarios, thereby ag-

gravating efforts towards making meaningful statements about the characteristics of the

investigated algorithm. In this section, the problems of finding appropriate simulation

topologies and traffic matrices for the simulation of IP traffic engineering algorithms are

discussed, and the chosen solution for the flow-level simulation of AMP is presented.

When starting to design simulation scenarios for routing algorithms, the issue to

59

be addressed first is typically the choice of topology. The most natural solution in

this context would of course be to simulate the investigated problems on a set of real

topologies. However, apart from a few available examples like in [www-11], information

about real ISP topologies is hardly available to the general scientific audience.

In order to address this problem, the idea of generating artificial topologies which

would closely resemble real networks has emerged relatively early, with the approach

by Waxman as one of the most prominent examples (see Section 3.2.1). Apart from

this approach, other models which explicitly introduce non-random network structures

have been proposed in [34, 91], following an inspection of real networks which showed

that instead of being random, they display obvious hierarchical features. Furthermore,

this approach argued that topology generators should reflect the applied network design

principles, which are usually based on certain connectivity and redundancy requirements

that are not reflected in random topologies (cf. [92]).

Another type of topology generators was proposed in [93, 94], based upon the discov-

ery that both the graphs of Autonomous System (AS) level and router level topologies

in the Internet display power law relationships in their connectivity. Following these ob-

servations, the BRITE topology generator has been chosen for the purpose of flow-level

simulations of the Adaptive Multi-Path algorithm (AMP) [95, www-12]. More specifi-

cally, the power-law model of artificial topologies presented in [96] is applied, which is

based upon the so-called preferential attachment principle saying that the growth of the

network is realized by the sequential addition of new nodes, where each newly added

node connects to some existing node preferentially, such that it is more likely to attach

to a node that already has many connections.

As far as traffic generation is concerned, there hardly exist any concrete directions,

apart from some pioneering attempts like e.g. in [97], where some initial observations

are provided based upon measurements in the Sprint IP backbone network, without in-

troducing a comprehensive and mature methodology for traffic matrix generation. This

fact is especially troublesome in the context of IP traffic engineering research, as a care-

fully designed traffic matrix represents a fundamental prerequisite for the investigated

mechanisms to demonstrate their performance.

In order to circumvent this problem, researchers have reverted to some very simple

traffic generation heuristics for their performance evaluation tasks. The gravity model

represents a widely used heuristic of this kind. The main principle of this approach is

to associate a number of users to each node in a topology, and to generate traffic such

that each node sends traffic at a rate proportional to its user numbers, with the traffic

fan-out (i.e. the distribution towards other destinations in the network) achieved such

that each node distributes its outgoing traffic in proportion to the other nodes’ relative

user numbers (cf. [13]).

Although the gravity model is very straightforward, there are several open issues

associated to its practical application: firstly, in each given topology the relative sizes

60

(i.e. the relative user numbers) of the individual nodes must be determined. As far as

real topologies are concerned, the most logical and most commonly applied solution is to

assign user numbers proportional to the relative sizes of the cities or metropolitan areas

corresponding to the individual nodes. Whereas this solution represents an attractive

option in the case of real topologies, the situation is much more difficult in the case of

artificial topologies, as the user numbers do not necessarily need to be strongly correlated

to physical topology features. Secondly, even if a set of plausible node sizes is chosen,

it is difficult to scale the absolute traffic intensity in an intuitive manner such that a

realistic network wide load pattern is achieved.

For the purpose of AMP performance evaluation in a flow-level simulation environ-

ment, the described gravity model has been used, with random population numbers

from a set of predefined discrete values assigned to each node in the artificial topologies.

As far as traffic generation is concerned, a search algorithm has been developed which

scales the absolute traffic intensity according to a set of user defined parameters. In the

presented simulation scenarios, the user input is determined by two parameters, α and

β, where α represents a percentage of the overall number of links which display link

utilizations of at least β. In a concrete example, the user may define that at least α =

5% of links in the network should display link utilizations of at least β = 120%, where

link utilization represents a simple ratio of offered load and link capacity. The described

search mechanism is implemented as logarithmic search, in which simulations of short

duration are performed consecutively, until the desired level of constant bit-rate (CBR)

traffic intensities at the sources are found.

4.3 Simulation Scenarios and Results

Whenever novel traffic engineering strategies are to be investigated using simulations, a

multitude of individual scenarios featuring different topologies and load levels is required

in order to obtain an insight into their statistical performance. In other words, single

scenarios always bear the risk of displaying atypical behavior of the evaluated scheme,

and thus may lead to wrong conclusions. However, at the same time it is important

to mention that the mere statistical mean performance also does not suffice in its own,

but rather the individual simulation runs also must be microscopically investigated in

order to check the investigated scheme for anomalous behavior, like e.g. oscillations in

the case of IP routing.

In this section, the statistical performance of AMP is investigated by means of a

large number of different simulation scenarios. Accordingly, 5 different topology sizes

are used (10, 15, 20, 25, and 30 nodes), and 20 individual topologies of each size are

generated using the BRITE topology generator [95, www-12], according to the model

by Barabási and Albert presented in [96]. Figure 4.3.1 depicts representative graphical

samples of Barabási and Albert topologies of the different sizes used in the performed

61

(a) 10 nodes (b) 10 nodes (c) 10 nodes (d) 10 nodes

(e) 15 nodes (f) 15 nodes (g) 15 nodes (h) 15 nodes

(i) 20 nodes (j) 20 nodes (k) 20 nodes (l) 20 nodes

(m) 25 nodes (n) 25 nodes (o) 25 nodes (p) 25 nodes

(q) 30 nodes (r) 30 nodes (s) 30 nodes (t) 30 nodes

Figure 4.3.1: Artificial Barabási-Albert topologies with 10 to 30 nodes.

62

experiments.

The resulting total of 100 individual topologies has further been simulated with five

different load levels for each topology, using factors α=5%, and β ∈ {105%, 110%,

115%, 120%, 125%}. The applied Constant Bit-Rate (CBR) traffic has been generated

according to the gravity model described in the previous section, using two distinct

population sizes with a relative ratio of 2, with the smaller size assigned to 70% of the

nodes, and the greater (i.e. double) size assigned to the remaining 30%.

As far as the link capacities and link weights are concerned, two distinct network

configurations have been investigated: in the first strategy, all link weights and all link

capacities were set to the same value, effectively resulting in the minimum hop routing

strategy (min-hop). In the second strategy, two link capacities with a relative ratio of

4 were used, with 20% of the links assigned the higher capacity, and 80% the lower

capacity, with link weights set according to the Cisco heuristic, meaning that they are

inversely proportional to the corresponding links’ capacities. For the purpose of these

simulations, traffic is routed only along the shortest paths without relying upon the

relaxed best path criterion, in order not to overemphasize the possibly extensive path

diversity phenomena in the investigated graphs, and thereby to focus primarily upon

the load balancing performance of AMP.

The described combinations of investigated topologies, load levels, and routing strate-

gies result in a total of 1000 simulations, providing a reasonable number for making initial

observations concerning the statistical performance of AMP. Following the simulations

of OMP involving Constant Bit-Rate (CBR) traffic presented in [76], the relative change

of the packet loss rate is chosen as the main performance metric. In the context of sta-

tistical performance evaluation this metric is particularly beneficial, as it alleviates the

need of presenting absolute performance figures (e.g. in terms of flow bandwidth, etc.),

thus making the performance of the algorithm in different topologies easily comparable.

In all simulations, the snapshots of two different periods of simulation time have

been taken: firstly, the initial phase, in which the traffic is uniformly distributed among

all multiple shortest paths towards each destination in each node, and secondly the final

phase in which the algorithm has converged such that the fix point in network wide

traffic distribution has been reached, corresponding to the time of 100 AMP control

periods after the start of the simulation. Figures 4.3.2, 4.3.3, 4.3.4, 4.3.5, and 4.3.6

show the performance of AMP for α=5%, and for factors β of 105%, 110%, 115%, 120%,

and 125%, respectively. The figures demonstrate significant performance improvements

of AMP, and show that the min-hop strategy consistently outperforms the strategy

applying the Cisco link weight heuristic. Furthermore, the performance improvements

of AMP are larger for lower levels of overload, which is expected as in this case the

network holds greater amounts of residual capacity, reaching impressive packet loss rate

reductions of almost 50% with the min-hop strategy. Accordingly, with growing load

levels (i.e. β), the network gradually becomes consistently congested, reducing the traffic

63

C
h
a
n
g
e

o
f
th

e
T
o
ta

l
P
a
ck

et
L
o
ss

R
a
te

Number of Nodes in the Artificial Topology

-50%

-40%

-30%

-20%

-10%

10 15 20 25 30

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.2: AMP in artificial topologies running CBR traffic with α=5% and β=105%.

C
h
a
n
g
e

o
f
th

e
T
o
ta

l
P
a
ck

et
L
o
ss

R
a
te

Number of Nodes in the Artificial Topology

-40%

-30%

-20%

-10%

0%

10 15 20 25 30

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.3: AMP in artificial topologies running CBR traffic with α=5% and β=110%.

64

C
h
a
n
g
e

o
f
th

e
T
o
ta

l
P
a
ck

et
L
o
ss

R
a
te

Number of Nodes in the Artificial Topology

-40%

-30%

-20%

-10%

0%

10 15 20 25 30

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.4: AMP in artificial topologies running CBR traffic with α=5% and β=115%.

C
h
a
n
g
e

o
f
th

e
T
o
ta

l
P
a
ck

et
L
o
ss

R
a
te

Number of Nodes in the Artificial Topology

-30%

-20%

-10%

0%

10%

10 15 20 25 30

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.5: AMP in artificial topologies running CBR traffic with α=5% and β=120%.

65

C
h
a
n
g
e

o
f
th

e
T
o
ta

l
P
a
ck

et
L
o
ss

R
a
te

Number of Nodes in the Artificial Topology

-30%

-20%

-10%

0%

10%

10 15 20 25 30

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.6: AMP in artificial topologies running CBR traffic with α=5% and β=125%.

C
h
a
n
g
e

o
f
th

e
A

v
er

a
g
e

P
a
ck

et
L
o
ss

R
a
te

Overload Level β for at Least 5% of Links in the Network

-40%

-30%

-20%

-10%

0%

105% 110% 115% 120% 125%

Cisco Link Weight Heuristic

Min-Hop Strategy

Figure 4.3.7: Average AMP performance improvement for artificial topologies with different
load levels.

66

engineering potential of any routing strategy. This trend is particularly well observable

in Figure 4.3.7, in which the average performance improvements for different load levels

are summarized in a single graph.

4.4 Stability and Convergence Properties

While the macroscopic evaluation presented in the previous section is justified when

focusing upon the global performance of an algorithm, it usually fails to deliver hard

statements about its effects upon individual link loads and traffic streams in the network.

This aspect is particularly important when it comes to stability, as the interesting and

possibly most important effects occurring at the level of microflows (i.e. a quadruple of

source and destination IP addresses and their respective ports) may easily be masked

by overall system statistics (like e.g. link utilization).

Therefore, this section presents microscopic investigations into the operation of AMP,

especially focusing upon the load balancing mechanism itself. Two aspects are of partic-

ular interest in this context: firstly, the algorithm’s convergence towards a fix point in

traffic distribution under stable traffic conditions (i.e. in the presence of a time-invariant

traffic matrix) and secondly, AMP’s response to an unstable traffic pattern which is of

utmost importance for overall system stability, which is otherwise notoriously difficult

to prove analytically for mechanisms based upon feedback from the network (cf. [98]).

The investigations have been performed in the form of a series of experiments using

the described flow-level simulation environment. Besides its efficiency in terms of com-

putation time for networks with high bandwidth links, the main advantage of flow-level

simulations in the context of this work lies in the complete absence of synchronization

and other timing effects which may occur in packet-level simulations. The well-known

lock-out effect which may easily occur in packet-level simulations with constant bit-rate

traffic and drop-tail queues is a typical example of such normally misleading effects [99].

For all examples presented in this section, non-elastic constant bit-rate and on-off

traffic has been used in order to avoid any interferences of multiple control mechanisms,

which may theoretically occur in networks simultaneously running adaptive routing algo-

rithms and transporting elastic traffic like TCP. The presented experiments thus isolate

the effects of AMP, and demonstrate the load balancing algorithm’s response to different

traffic patterns.

In the first experiment, AMP’s convergence behavior in a minimalistic scenario is

examined, in which constant bit-rate traffic of 20 packets/s is sent between the pair of

nodes {R1, R4} connected via two paths of bottleneck capacities 5 packets/s (R1R2R4)

and 15 packets/s (R1R3R4) (see Figure 4.4.1). During the initialization phase of the

algorithm, AMP always distributes the traffic uniformly among all next hops available

for a particular destination. Accordingly, 50% of the load (i.e. 10 Packets/s) will initially

be sent both on the upper and the lower path. Initially, this will inevitably result in

67

Figure 4.4.1: Setup of Stability Experiment 1 demonstrating AMP’s convergence towards a
stable traffic distribution.

L
o
a
d

B
a
la

n
ci

n
g

F
ra

ct
io

n

Time [AMP control periods]

0.2

0.4

0.6

0.8

1.0

20 40 60 80

Next hop R3

Next hop R2

Figure 4.4.2: Load distribution in R1 in Experiment 1.

68

congestion and packet loss on the link R2R4, as it only has a capacity of 5 packets/s and

thus can accommodate only 25% of the load. Therefore, node R2 will signal this overload

situation back to node R1, which will then try to achieve equilibrium by redistributing

the load between the two paths. Please note that for the purpose of performing these

experiments, the choice of packet forwarding strategies (as described in Section 3.2.4)

will not have any influence upon the results, as only constant bit-rate traffic is used and

as the focus is set exclusively upon the stability aspects of the algorithm. Therefore, the

abstraction is legitimately made of regarding the constant bit-rate traffic between the

core nodes of the network as an aggregate of a high number of individual microflows,

such that the traffic is distributed at an arbitrary fine granularity in these simulations.

Figure 4.4.2 displays the traffic fractions in node R1 with respect to the two available

paths towards node R4, on which the load moves towards the optimal distribution of

25% and 75%, respectively, in an efficient way, assuring optimal usage of the available

network capacity. Even more importantly, this figure provides a means for the visual

inspection of the dynamics of the load balancing algorithm, which achieves convergence

rapidly (within roughly 60 load balancing steps in this example) and with a minimal

number of overshoots, thus enabling high overall efficiency of load distribution. Each

load balancing step corresponds to one control period of the AMP algorithm, which is

usually chosen in the order of magnitude of seconds (cf. Section 3.2.5). The concrete

value of the control period may be set differently depending upon the predominant type

of traffic in the network: if only non-elastic traffic is carried, the control period may

assume very small values, whereas this would not be advisable in the case of elastic

traffic like TCP, as too small values of the control period might lead to interference

between the congestion control and the load balancing mechanism.

In the second experiment, the algorithm’s response to different time-variant traffic

patterns is tested. A classical approach when testing control systems is to introduce an

on-off input pattern in order to try and provoke oscillations. The precise setup of the

experiment is shown in Figure 4.4.3: a constant bit-rate traffic stream is set up between

R1 and R6, and additionally a periodic on-off traffic stream is established between R7

and R8.

All links in this example have capacities of 15 packets/s, whereas both the CBR and

the on-off traffic streams will have peak rates of 15 packets/s. These two streams will

interfere on link R2R4, whereby the measured load on the link itself will vary at the

frequency of the on-off traffic pattern between the nodes R7 and R8 (see Figure 4.4.4).

The sudden variations in traffic load will provoke ongoing changes in the direction of

load shifting, and taking the mentioned values into account it is obvious that the link

R2R4 becomes a bottleneck, as the peak traffic demand will by far exceed its capacity.

In this context it is interesting to monitor the fractions of traffic between R1 and R6

sent via R2 and R3, respectively (see Figure 4.4.5).

During the on periods of the on-off traffic stream, AMP will react by sending back-

69

Figure 4.4.3: Setup of Stability Experiment 2 involving CBR and on-off traffic.

S
en

d
in

g
R

a
te

[p
a
ck

et
s/

s]

Time [AMP control periods]

5

10

15

200 400 600 800

Figure 4.4.4: On-off traffic from R7 to R8 in Experiment 2.

70

L
o
a
d

B
a
la

n
ci

n
g

F
ra

ct
io

n

Time [AMP control periods]

0.2

0.4

0.6

0.8

1.0

200 400 600 800

Next hop R3

Next hop R2

Figure 4.4.5: Load distribution in R1 in Experiment 2.

pressure messages which will inform the node R1 about the overload on the link R2R4.

Node R1 will then react by increasing the portion of traffic sent via link R1R3, until

the off period of the on-off stream starts. At this moment in time, AMP will reverse

the direction of load shifting, and again try to route more traffic via node R2. Figure

4.4.5 demonstrates that such an instable traffic pattern will have no influence upon the

stability of AMP operation, as the load fractions will remain stable at the time scale

of the AMP control period. Furthermore, it is important to stress in this context that

AMP has proved to operate oscillation free even for very small of very large ratios of

those values.

In the third experiment, AMP’s stability is tested in the presence of two on-off traffic

streams belonging to different multi-path structures which share a common bottleneck

link (R3R5 in Figure 4.4.6). The two streams R1R6 and R7R8 have peak rates of 15

packets/s, summing up to a total peak rate of 30 packets/s, which precisely corresponds

to the min cut – max flow theoretical network capacity as the links R2R4, R3R5, and

R9R10 have capacities of 10 packets/s each. In order to impose additional strain upon

AMP in terms of unstable traffic patterns, different on-off frequencies are chosen for the

two streams, which should generate a periodic, but still relatively uneven pattern of load

shifting direction changes (see Figure 4.4.7).

As demonstrated in Figures 4.4.8 and 4.4.9, which display the dynamics of the load

balancing fractions in the routers R1 and R7, AMP responds quickly to the variable

input traffic, and shifts load efficiently onto the alternative paths. Most importantly,

the frequent changes of load shifting directions do not cause any oscillations of the load

balancing algorithm, which reliably ensures stable operation of the entire network.

71

Figure 4.4.6: Setup of Stability Experiment 3 featuring two interferring on-off traffic streams.

S
en

d
in

g
R

a
te

[p
a
ck

et
s/

s]

Time [AMP control periods]

5

10

15

100 200 300 400

R1 - R6 R7 - R8

Figure 4.4.7: Two on-off traffic sources in Experiment 3.

72

L
o
a
d

B
a
la

n
ci

n
g

F
ra

ct
io

n

Time [AMP control periods]

0.2

0.4

0.6

0.8

1.0

100 200 300 400

Next hop R2

Next hop R3

Figure 4.4.8: Load distribution in R1 in Experiment 3.

L
o
a
d

B
a
la

n
ci

n
g

F
ra

ct
io

n

Time [AMP control periods]

0.2

0.4

0.6

0.8

1.0

100 200 300 400

Next hop R9

Next hop R3

Figure 4.4.9: Load distribution in R7 in Experiment 3.

73

4.5 Concluding Remarks

Following Chapter 3, in which the Adaptive Multi-Path algorithm (AMP) has been

presented in detail, this chapter has introduced the two main methodologies for the

simulation of communication networks, after which it has dealt with the flow-level case in

detail, including a comprehensive description of the corresponding AMP simulations and

the obtained results. The main motivation for performaing those simulations is to get an

insight into the statistical performance of AMP, which represents a significant challenge

in the performance evaluation of all traffic engineering algorithms due to the inexhaustive

number of parameters which can be varied in each iteration of the simulation process.

Accordingly, in this chapter AMP has been compared to standard IP routing for a

large number of combinations of different artificial topologies, link weight settings, traffic

distributions, and absolute traffic intensities, demonstrating the statistical performance

advantage of AMP in situations of network overload, as well as its stability in the context

of instable traffic patterns. The simulations have been performed using a dedicated flow-

level simulation environment, which is particularly well suited for exploring such large

parameter spaces due to its low computational complexity. Furthermore, Constant Bit-

Rate (CBR) traffic has been chosen for the purpose of these simulations in order to avoid

possible interferences between congestion control mechanisms like TCP and AMP load

balancing, enabling exclusive attribution of the observed changes in traffic distribution

and network utilization to the traffic engineering mechanism itself.

However, as the majority of traffic in today’s Internet employs TCP at the transport

layer (like e.g. Web traffic and the majority of peer-to-peer traffic), it is of utmost

importance to investigate AMP behavior and performance also in this context. This

issue will be addressed in the next chapter, in which the more traditional packet-level

simulation approach will be employed as the tool of choice for the performance evaluation

of the investigated scenarios.

74

Chapter 5

AMP Performance Evaluation in

the Packet-Level ns-2 Simulator

5.1 From Flow-Level to Packet-Level Simulation of

AMP

Whereas the flow-level simulations presented in Chapter 4 have represented a meaningful

choice for providing fundamental insights into AMP performance with non-elastic traffic

patterns, they of course cannot safely predict the algorithm’s behavior in the presence

of more complex traffic patterns like e.g. TCP, thus necessitating further performance

evaluation efforts.

Currently, the theoretical fundamentals for modeling elastic traffic like TCP, and

especially its main applications like e.g. Web traffic, are not completely mature for flow-

level simulations environments. The main problem lies in the fact that TCP traffic is

based upon a per host state machine [73] which adapts the sending rate to the observed

network conditions, and as such it is very difficult to model TCP at the level of traffic

aggregates between individual {source, destination} pairs, which on the other hand is a

major prerequisite for the speed advantage of the flow-level approach. However, different

TCP microflows between a single {source, destination} pair can nevertheless be modeled

as a single aggregate, under the assumption that all microflows always experience the

same network conditions, i.e. the same round trip delay and packet loss probability on

the path.

Following this idea, [100] presents a flow-level simulation model which assumes that

all TCP connections are in congestion avoidance mode, and that their duration is infinite,

corresponding to a bulk File Transfer Protocol (FTP) connection. The evolution of the

average TCP congestion window (which divided by the round trip delay yields the

sending rate) is in this model defined by a simple differential equation based upon the

instantaneous round trip delay and the packet loss probability on the path:

75

dW (t)

dt
=

1

RTT (t)
− W (t)

2
· P (t), (5.1.1)

where W is the congestion window, RTT the round trip delay, and P the packet

loss probability on the path. The first part of the equation models the increase of

the congestion window after a single round trip delay, whereas the second part of the

equation models the window’s multiplicative decrease in the presence of packet losses.

The RTT value and the total number of lost packets is being calculated by the simulator

in each time step t, whereas the path loss probability P corresponds to the number of

lost packets of an aggregate divided by the number of active connections within that

aggregate.

A more sophisticated TCP model is introduced in [101], which additionally enables

the simulation of TCP connections in the slow start mode, and TCP connections of finite

length. Both new features of this approach represent a prerequisite for modeling more

complex traffic types than just simple bulk FTP transfers, like e.g. Web traffic, where

most connections have got very short durations, and therefore largely remain in the slow

start mode during their entire lifecycle. However, the computational complexity of this

approach is also by far greater than that of alternative models, as each aggregate is

associated a set of variables which exactly track the distribution of the slow start and

congestion avoidance windows in every step of the simulation. Unfortunately, this added

overhead largely diminishes the speed advantage of the flow-level approach, making it

less attractive for the simulation of large-scale networking scenarios.

Therefore, for the purpose of performance evaluation of AMP in the presence of

realistic traffic models, like e.g. Web traffic, packet-level simulation still represents the

primary choice, especially as simulation results prove to be very close to real values for

a broad spectrum of scenarios, mainly due to the very mature implementation of the

TCP stack in widely used packet-level simulators like e.g. ns-2 (cf. [102]). Accordingly,

the ns-2 framework has been chosen for the simulation of AMP in combination with

Web traffic, and the next sections provide an overview of important implementation

highlights, simulation scenarios, and results.

5.2 AMP Implementation Highlights in the ns-2

Simulator

The IP routing modules available in the ns-2 simulator in general do not support traffic

sensitive routing, meaning that the implementation of a dynamic routing scheme like

AMP requires extensive software design and programming efforts. The implementation

of AMP is based upon the link state routing module, which provides the dissemination of

routing information using the flooding mechanism, and the construction of routing tables

76

in each node using Dijkstra’s shortest path algorithm, at the same time considering the

weights associated to individual links. For the purpose of AMP performance evaluation,

the full functionality of the algorithm has been implemented in the ns-2 simulator,

including the calculation of paths according to the relaxed best path criterion, the

calculation of AMP-specific traffic-sensitive link metrics, AMP signaling based upon

the backpressure mechanism, packet forwarding, and load balancing (cf. Chapter 3).

As far as the 16-bit Cyclic Redundancy Check (CRC-16) scheme for packet forward-

ing is concerned, there is no fast software solution for ns-2. Moreover, ns-2 routing is

not at all based upon IP addresses, but instead simple integer node identifiers are used,

and therefore a different solution had to be used in order to correctly capture AMP’s

behavior within the simulator. Based upon the realistic assumption that CRC-16 is very

effective in spreading microflows evenly in the 16-bit solution space [72], each microflow

in the simulation is assigned a randomly generated integer ID upon its start. Conse-

quently, all packet forwarding decisions in the ns-2 nodes are based upon comparing this

random ID with appropriately set tresholds, thus significantly reducing the computa-

tional complexity, and making the simulation of large backbone networks with realistic

traffic feasible.

5.3 Performance Evaluation of AMP in the

AT&T-US Backbone Network

Using ns-2 packet-level implementation of AMP described in the previous section, the

performance of AMP is compared to standard IP shortest path routing (SPR) and equal-

cost multi-path routing (ECMP) in the AT&T-US backbone topology of 27 nodes and

47 links [103], as sketched in Figure 5.3.1. In this topology, the majority of network

connections are OC-48 links, corresponding to a capacity of 2.4 Gbit/s, whereas the five

bold lines in Figure 5.3.1 represent OC-192 links, corresponding to a capacity of 9.6

Gbit/s. As far as the link costs are concerned, they were set inversely proportional to

the link capacities, resulting in two integer values with a relative ratio of 4.

For traffic generation, the SURGE Web traffic model is used, as described in [104].

In this model, each Web user transmits a flow, stays idle for a user think time, and

then transmits another flow, where both the flow sizes and the think times are Pareto

distributed. In the performed simulations, each node hosts a virtual number of Web users

proportional to the approximate population size of the corresponding US city where the

node is located in reality, and different load levels were produced by linearly scaling

the percentage of active users at the individual nodes. Similarly to [41], the spatial

distribution (i.e. the fan out) of HTTP requests in each node is set proportionally to

the relative population sizes of the other nodes (i.e. cities) in the topology, resulting

in a traffic distribution according to the gravity model, analogous to the one used in

77

Figure 5.3.1: AT&T-US network topology.

flow-level simulations from Chapter 4.

As far as the simulations’ level of realism is concerned, the only relevant deviation

from the real network had to be made concerning the link capacities, as too large link

capacities in the simulation would result in a too high number of events per duration

of simulated time, making the simulation of large networks impossible within a realistic

time frame. Therefore, in the presented simulations the link capacities have been reduced

to 15 Mbit/s and 60 Mbit/s. However, even with such link capacity reductions, the sim-

ulation of large networks like AT&T-US still requires enormous computational resources.

E.g., even the simulation results presented in Figures 5.3.2 to 5.3.4 have required sev-

eral weeks of processor time on ten state of the art PCs, which clearly demonstrates

the limitations of packet-level simulation for large-scale networking problems featuring

realistic traffic patterns.

Figures 5.3.2 to 5.3.4 show the main simulation results, comparing total TCP good-

put, average Web page response time, and the average coefficient of variation (CoV) of

the observed link utilizations for the three investigated routing strategies, i.e. shortest

path routing (SPR), equal-cost multi-path routing (ECMP), and adaptive multi-path

routing (AMP). Note that in each case the initial simulation phase (before reaching

equilibrium) has been dropped, and the remaining results correspond to a simulation

time of 16000 seconds each. The various load situations are characterized by the total

number of users in the system which is displayed at the x-axes.

Figures 5.3.2 and 5.3.3 represent the user perspective. As far as TCP goodput is

concerned, AMP clearly outperforms the other two routing strategies (Figure 5.3.2) by

78

T
o
ta

l
T

C
P

G
o
o
d
p
u
t

[B
y
te

s]

Number of Active Web Users

1 · 1011

2 · 1011

3 · 1011

4 · 1011

5 · 1011

6 · 1011

7 · 1011

8 · 1011

9 · 1011

2000 4000 6000 8000 10000 12000 14000 16000

SPR

ECMP

AMP

Figure 5.3.2: Total TCP goodput in the AT&T-US network.

R
es

p
o
n
se

T
im

e
[s

]

Number of Active Web Users

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2000 4000 6000 8000 10000 12000 14000 16000

SPR

ECMP

AMP

Figure 5.3.3: Average Web page response time in the AT&T-US network.

79

A
v
er

a
g
e

C
o
V

Number of Active Web Users

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2000 4000 6000 8000 10000 12000 14000 16000

SPR

ECMP

AMP

Figure 5.3.4: Average CoVs of link load in the AT&T-US network.

providing improvements of up to 28%. Note that the curve enters a state of saturation

when the number of users approaches 17000, indicating that the system has reached the

state of very high load.

The added benefit of AMP can also be observed in terms of the most important

metric for the Web user, i.e. the average Web page response time, for which AMP

achieves reductions of up to 43% compared to SPR and ECMP, whereas both static

schemes perform more or less identically (Figure 5.3.3).

Finally, Figure 5.3.4 compares the average CoVs of link loads for the three routing

schemes, which turn out to be quite close to each other. As SPR and ECMP by defini-

tion cannot display oscillations caused by adaptive routing, this fact demonstrates the

absence of oscillating behavior for AMP throughout the investigated scenarios.

5.4 Performance Evaluation of AMP in the German

B-WiN Research Network

While the simulations from the previous subsection demonstrate AMP’s significant per-

formance improvements in terms of Web page response times and total TCP goodput

for a large IP backbone network, they do not provide an insight into AMP’s performance

in smaller network topologies with less multi-path diversity. Therefore, in this section

the performance of AMP is investigated for the German B-WiN research network, which

80

Figure 5.4.1: Topology of the German B-WiN research network.

may serve as a representative example of medium-size European ISP networks (Figure

5.4.1). The B-WiN network is comprised of 10 nodes and 14 links with link capacities

ranging from 53.0 to 133.6 Mbit/s [105].

Using the B-WiN network topology, the same type of simulations has been performed

as with the AT&T-US network, meaning that AMP has been compared with shortest

path routing (SPR) and equal-cost multi-path routing (ECMP) for different load levels of

Web traffic according to the SURGE model. The distribution of traffic again corresponds

to the described gravity model, and as far as the link weights are concerned, they have

been set arbitrarily either to 1 or 2 in order to ensure some degree of diversity in the

environment with inconsistent link capacities.

Figures 5.4.2 and 5.4.3 present the simulation results in terms of the total TCP

goodput and the Web page response time for various load conditions, ranging from very

low load to very high load, close to network saturation. In terms of total TCP goodput,

AMP clearly outperforms the other two routing strategies, achieving an increase of up

to 18% (Figure 5.4.2). In terms of average Web page response times the performance

improvements correspond to reductions of up to 35%. Furthermore, it is important

to note that AMP performs consistently better than the other routing strategies for

practically all investigated traffic loads in this topology, and additionally, it can be

observed that for very low loads, all three routing strategies perform similarly well, as

the traffic flows do not experience significant congestion in the network.

81

T
o
ta

l
T

C
P

G
o
o
d
p
u
t

[B
y
te

s]

Number of Active Web Users

0.2 · 1012

0.4 · 1012

0.6 · 1012

0.8 · 1012

1.0 · 1012

1.2 · 1012

1.4 · 1012

1.6 · 1012

1.8 · 1012

2.0 · 1012

1000 2000 3000 4000 5000 6000 7000

SPR

ECMP

AMP

Figure 5.4.2: Total TCP goodput in the German B-WiN research network.

R
es

p
o
n
se

T
im

e
[s

]

Number of Active Web Users

0.5

1.0

1.5

2.0

2.5

1000 2000 3000 4000 5000 6000 7000

SPR

ECMP

AMP

Figure 5.4.3: Average Web page response time in the German B-WiN research network.

82

5.5 Concluding Remarks

Chapters 4 and 5 present the methodologies and results of the performed AMP simu-

lations, focusing upon AMP’s traffic engineering potential in terms of load balancing

efficiency and its stability as the two main indicators of algorithmic performance. For

this purpose, two completely independent implementations of AMP have been realized

for two distinct platforms, i.e. for the ns-2 Network Simulator, and for a dedicated

flow-level simulation framework, which has been developed with special consideration of

applicability to multi-path routing problems.

Each simulation framework is especially well suited for a particular type of perfor-

mance evaluation, with the flow-level and packet-level simulators proving to represent

a combination of quite complementary approaches. Due to its high computational ef-

ficiency, the flow-level approach is very well suited for performing a large number of

simulations with different topologies, traffic distributions, and load levels, thus paving

the way towards investigating statistical performance of the algorithm. However, flow-

level simulation also imposes important limitations with respect to the types of traffic

which can be investigated, as there are no efficient flow-level models for elastic traffic

like TCP which would capture the whole spectrum of associated effects correctly.

Vice versa, packet-level simulation can almost perfectly reproduce the effects ob-

served with all types of traffic, as very mature protocol stacks of different stateful mech-

anisms (especially TCP) are available in standard network simulators. However, the

packet-level approach is also inherently associated with natural limitations concerning

its scalability – large network topologies with realistic traffic models can hardly be sim-

ulated within a reasonable time frame, as the number of simulated events per duration

of simulated time grows linearly with the total transmission capacity of the investi-

gated network. This is particularly troublesome in the context of traffic engineering and

routing in general, as many desirable and undesirable effects of the different algorithms

appear only in large network structures.

In Section 4.3, the statistical performance of AMP is investigated by means of a large

number of simulations with different experiment setups. Specifically, 5 different topology

sizes ranging from 10 to 30 nodes have been used in order to cover a representative spec-

trum of topology sizes, and 20 distinct artificial topologies have been created for each

size. The resulting number of 100 different topologies has further been simulated with

five different load levels of CBR traffic for each topology, always in combination with

two distinct link weight setting strategies. This amounts to a total of 1000 performed

simulations, which represents a reasonable number for making meaningful staristical per-

formance estimates of the algorithm. The results demonstrate significant performance

improvements of AMP, which are larger for lower levels of overload (as may be expected

due to greater amounts of residual capacity), reaching packet loss rate reductions of

almost 50%.

83

In addition to the macroscopic performance evaluation focused upon the global per-

formance of AMP, the flow-level simulation framework has also been used for microscopic

experiments aimed at investigating the stability and convergence properties of the AMP

load balancing mechanism by studying the algorithm’s effects upon individual traffic

flows. For this purpose, Section 4.4 presents several types of experiments which investi-

gate both AMP’s convergence towards a stable traffic distribution for a time-invariant

traffic matrix, and AMP’s response to unstable traffic patterns which is of crucial im-

portance for overall system stability. Apart from reliable and rapid convergence towards

a fix point in traffic distribution, the simulations have also demonstrated oscillation

free performance of AMP in the presence of disruptive input traffic, thereby raising

confidence in stable AMP operation in larger network structures.

In Sections 5.3 and 5.4, AMP is investigated using ns-2 packet-level simulation for

two real ISP topologies of different size, using the SURGE Web traffic model in combi-

nation with realistic traffic distribution according to the gravity model. The algorithm

is compared to shortest path routing and equal-cost multi-path routing as the standard

traffic agnostic routing strategies which are applied in real ISP networks. In terms of

algorithm performance, the focus is set upon two metrics of major practical relevance:

Web page response times are investigated in order to gain insight into the potential

impact of different routing strategies upon individual users, whereas total TCP goodput

in the network reflects the overall efficiency of network resource usage. In both the

large-scale AT&T-US network topology, and the medium-size topology of the German

B-WiN Research Network, AMP has proved to achieve significant performance improve-

ments over the two traditional routing strategies. In the case of the AT&T network

AMP achieves Web page response time reductions of up to 43%, and similarly, in the

case of the B-WiN network response time reductions of up to 35% are achieved. As

far as algorithm stability is concerned, in Section 5.3 the averages of the coefficient of

variation of link load for each of the routing strategies have been compared, with the

result that they are quite close to each other. As the traffic-insensitive routing strategies

cannot display routing induced oscillations by definition, this fact further underlines the

findings about stable AMP behavior from Section 4.4 on a global scale.

Finally, both evaluation approaches used, i.e. flow-level simulation and packet level

simulation, demonstrate the consistent performance improvements achieved by AMP in

situations of network overload. These improvements are most profound in situations

of light to moderate congestion, as then AMP encounters enough inherent traffic en-

gineering potential for load reallocation, whereas any traffic engineering scheme can at

best achieve only slight improvements in conditions of major network-wide overload. As

far as AMP stability is concerned, both approaches again produce consistent results,

while addressing the issue from completely different perspectives – in case of flow-level

simulation the overall network stability in the presence of AMP routing has been in-

vestigated, whereas using flow-level simulation specific microscopic scenarios have been

84

developed in order to examine the behavior of AMP’s load balancing mechanism. Most

importantly, the results of both evaluation approaches yield mutually consistent results,

demonstrating the stability of AMP routing throughout the investigated scenarios.

85

86

Chapter 6

Applications of the Adaptive

Multi-Path Routing Algorithm

6.1 Traffic Engineering in the Context of Today’s

Internet – A Critical Discussion

Before concluding the thesis with a couple of promising examples for the application of

AMP in current and upcoming networking scenarios, this section aims at providing a

somewhat critical but still realistic reflection on the relevance of traffic engineering in

general, especially in the context of current Internet Service Provider (ISP) networks

and networking technologies. For this purpose, a review of contemporary ISP practices

with respect to resilience and quality of service (QoS) issues at the IP layer is provided,

which eventually leads to a more focused view on potential future application scenarios

for AMP. Of course, the remark can be made that resilience engineering could also be

performed at lower layers, however this would assume complete dependence e.g. upon

link-layer mechanisms which themselves are also prone to failures. Moreover, these lower

layer mechanisms cannot address issues related to layer-3 equipment failures, meaning

that e.g. IP router failures still necessitate the enforcement of adequate resilience re-

sponses also on layer-3. Therefore, the subsequent discussion is restricted to the IP

layer only.

The main objective of commercial Internet Service Providers is to meet their cus-

tomers’ expectations concerning the provisioned data transport, which are often formal-

ized as Service Level Agreements (SLAs), specifying the required technical parameters

of the offered service [106]. On the one hand, these parameters describe the required

data transport standards, like e.g. minimum (i.e. guaranteed) bandwidth, packet loss

characteristics, packet delay and delay variation, and on the other hand they also spec-

ify the reliability and availability of the provisioned Internet connectivity. The former

may be summarized under the term QoS in the strict sense, whereas the term QoS in the

wide sense may be used if service availability aspects are additionally considered [107].

87

As service guarantees are very difficult to deliver for connections which traverse mul-

tiple domains, SLAs normally apply only to IP traffic which originates and terminates

within the network of a single ISP. There are many different ways towards achieving the

desired strict-sense QoS, ranging from approaches like DiffServ, IntServ, and MPLS, to

the relatively simple bandwidth overprovisioning paradigm which does not necessitate

the introduction of novel routing or switching technologies into the core network. Fur-

thermore, as the customers are typically not interested in the data transport technology

and infrastructure beyond their own premises, in most cases ISPs can freely choose their

QoS approach.

Apart from their technical objectives and SLA obligations, commercial ISPs also need

to generate revenue which will ensure that their operation is economically viable. There-

fore, a major task of all ISPs is to ensure that they operate their networks efficiently,

making maximum use of the installed network capacity while at the same time fulfilling

the sometimes stringent SLA requirements, and in this way enabling a competitive Inter-

net service offering. For this purpose, ISPs will typically also consider traffic engineering

activities and techniques which would enable the optimization of their efficiency. In this

context it is important to mention that strict-sense QoS and traffic engineering should be

regarded as two independent disciplines: whereas strict-sense QoS focuses upon traffic

characteristics at the time-scale of connection round trip times, traffic engineering activ-

ities aim at optimizing load distribution at the time scale of multiple minutes and hours.

However, as networks with optimized load allocation may also display more favorable

QoS properties due to reduced occurrences of congestion, it is legitimate to consider

strict-sense QoS and traffic engineering as close friends.

As far as service availability is concerned, stringent SLAs require that there are

no significant service interruptions even in the case of equipment outages in the core

network. This directly necessitates hard requirements with respect to residual network

capacity for the anticipated cases of failures (cf. [108]). In other words, as each link

or router failure in the network has the potential of reducing the min cut – max flow

capacity between a pair of nodes in the network, the topology, link capacities, and

routing mechanisms should be designed such that they enable a loss-free diversion of

traffic from the failed path(s) onto the alternative path(s). As a positive side-effect,

during regular network operation (i.e. in the absence of failures) this translates to a

certain percentage of network capacity which cannot be actively used, but which at the

same time improves strict-sense QoS as the average link utilization is reduced, leading

to overall reductions in packet loss rate and delay variation.

In the case of plain IP routing, which is based upon the standard intra-domain routing

architecture using link weights (cf. Chapter 2), residual bandwidth requirements often

correspond to the restriction that link utilization should never exceed 50%, as in the

case of failure another link should be able to take over the entire traffic of the failed

link, provided that single path routing is used and that all links have equal capacities.

88

And indeed, due to a lack of sophisticated planning for resilience, the 50%-mark often

serves a a rule of thumb in many ISP networks. Accordingly, even major U.S. tier-1

ISPs like Sprint recognize bandwidth overprovisioning as a valid engineering practice for

robust provisioning of IP core networks in the absence of fine-grained information about

the traffic dynamics inside the network [41]. Maybe even more astonishingly, opting for

a radical native IP design Sprint relies solely upon link state routing mechanisms for

rerouting traffic. In order to achieve fast reactions to failures, they merely reduce link

state-specific timers for link state advertisement distribution and route recalculation,

which reliably enables sub-second recovery with current IP routing hardware [26].

The most interesting question still left open now is which provisioning scheme makes

most sense both from a technological and an economical point of view. If link and

switching capacities were available in abundance, then the native IP approach by Sprint

would represent the most promising candidate, as all performance issues could reliably

be solved by the simple overprovisioning scheme. In such a scenario, the attractiveness

of traffic engineering techniques would certainly decline, as in practice there would not

be any need to counteract congestion events on a medium time-scale of minutes or hours.

At most, offline traffic engineering approaches like link weight optimization [30, 31, 32]

might still be useful for optimal adaptation of the routes to the peak traffic demand,

however at the cost of dropping any of the heuristic link weight setting paradigms which

are often favored by network administrators for reasons of intuitive routing setup and

transparency. On the other hand, if network capacity represented a scarce resource,

approaches which optimize network utilization with respect to resilience requirements,

like e.g. in [28] or [108], would certainly gain in attractiveness. The same is also true

for strict-sense QoS paradigms like e.g. DiffServ, as presumably a low percentage of

high-priority traffic (like e.g. emergency services) would require guarantees for lossless

and timely delivery even in the presence of severe component outages.

Currently, the majority of ISPs employs the bandwidth overprovisioning scheme, as

the transport capacity is readily available and affordable [109]. Furthermore, as both

link capacity and router switching capacity grow roughly according to Moore’s Law,

doubling every 12 months [110] and 16 months (cf. [111]), respectively, and as only a

fraction of the globally available optical transport capacity has yet been put into use,

there do not seem to be any strong technological or market forces towards abandoning

this scheme. Nevertheless, the overprovisioning approach is still very much disputed,

especially in the Internet Economics research community, where it is either considered

to be a valid engineering approach in the presence of abundant resources, or at most a

suboptimal best practice solution which bears the risk of economic inefficiency due to

the well-known tragedy of the commons [112].

In any case, as long as bandwidth in core networks is not among the cricital network

resources, traffic engineering might remain a discipline of lesser importance. This means

that currently there are no strong incentives for standardization bodies, equipment ven-

89

dors, or network operators to adopt novel routing schemes, even if they provably perform

well for a large variety of realistic scenarios. However, it would be very unwise to think

of traffic engineering mechanisms exclusively in the context of ISP backbone networks,

because many of them are generically suited for all types of fixed IP infrastructures.

A typical example for a field of application in which the available capacity in the IP

backbone network cannot be abundant by definition will be presented towards the end

of this chapter, advancing AMP to become a very attractive potential solution.

6.2 Applicability of Adaptive Multi-Path Routing

to IP Overlay Networking

As a first example, this section discusses whether AMP can provide an attractive routing

solution for IP overlay networks. In recent years, this architecture has become one of

the most prominent topics in Internet research [113, 114, 115, 116, 117], as routing

traffic at the application level holds the potential of increasing network robustness by

circumventing slow inter-domain routing convergence, as well as increasing quality-of-

service (QoS) by choosing the communication paths more freely without having to rely

on standard IP routing mechanisms.

Therefore, in the context of AMP the question naturally arises whether there are

networking scenarios in which the proposed mechanisms could be reused in an over-

lay routing architecture. Intuitively, an application of AMP similar to the well-known

Resilient Overlay Network (RON) concept as proposed in [113] could be envisioned,

where a full mesh overlay of application level routers are used for choosing the best

paths between the overlay nodes. In the RON scheme, the overlay nodes aggressively

probe the paths for their instantaneous performance, and they exchange this information

frequently with all other nodes.

However, there is a fundamental difference between RON and AMP with respect to

their routing actions: RON chooses and uses the best available path in a fashion which is

comparable to Dynamic Alternative Routing (DAR), i.e. either the direct Internet path

towards the other overlay node is chosen, or the indirect path via a single intermediate

RON-node is taken. Alternatively, in order to reduce the perceived packet losses of

individual connections at the receiver, RON also holds the possibility of duplicating

traffic between two overlay nodes by sending it simultaneously via two different paths.

In contrast, AMP does not make routing decisions in a binary fashion. Instead, it is

fundamental to AMP’s principle of operation that traffic is gradually shifted between

the available paths (i.e. next hops) until an equilibrium of load and backpressure is

reached. In other words, the essential property of AMP is that it is a feedback mechanism,

meaning that AMP’s fundamental assumption is that the routing actions it takes have

the potential of significantly influencing network conditions. Therefore, the application

90

of AMP mechanisms in overlay networks is not purposeful in scenarios where the core

network bandwidth greatly exceeds the available access link bandwidth of the overlay

nodes, as the traffic generated by the overlay will not have the potential of significantly

impacting core network conditions. In this scenario, an overlay network like RON with

binary routing decisions could make sense for choosing the best path for metrics like

transmission delay, as e.g. satellite links could reliably be circumvented, however, a

fine-grained feedback mechanism like AMP would not be able to add any comparative

benefit.

6.3 Applicability of Adaptive Multi-Path Routing

in Wireless Mesh Networks

In many fields of application, wireless networks constitute an important element of

the communication infrastructure. In certain areas, like e.g. telephony, the wireless

mobile alternative has experienced rapid growth in recent years, and it has become an

indispensible tool for personal real-time communication. However, in numerous other

areas of application wireless networks either have not yet seen broad deployment among

the general population, or their nature is such that their operation is largely concealed

to the end users.

The most interesting type of such networks are wireless mesh networks, which enable

multi-hop communication across a wireless infrastructure. In general, wireless mesh

networks can be subdivided into three categories according to their architecture [118]:

• Infrastructure/backbone wireless mesh networks. In this type of networks, a mesh

of wireless nodes forms the communication backbone for the clients (Figure 6.3.1).

With gateway functionality, the backbone nodes can also be connected to other

networks, like e.g. the Internet, and in this way provide an access infrastructure for

their clients. This solution of infrastructure meshing is particularly interesting in

case no wired connectivity is at hand, or if an alternative/complementary network

has to be built.

• Client wireless mesh networks. Apart from infrastructure networks, wireless meshes

can also be comprised exclusively of end devices, i.e. clients (Figure 6.3.2). In this

type of networks, the nodes provide both routing functionalities, and serve as an

application platform to their users. As the traffic between a pair of nodes can be

carried via an intermediate relay node, client wireless mesh networks have the po-

tential of increasing the efficiency of bandwidth utilization and the network size,

as well as reducing the transmission power of individual nodes, thus leading to

improved conservation of battery resources.

91

Figure 6.3.1: Example of an infrastructure/backbone wireless mesh network.

• Hybrid wireless mesh networks. If mesh networking capabilities are present both at

infrastructure level (i.e. between the backbone nodes) and the client level, this type

of network is denoted as a hybrid wireless mesh (Figure 6.3.3). Hybrid wireless

mesh networks have the potential of further increasing communication efficiency,

as individual clients can communicate directly in some cases, thereby obsoleting

relay services of backbone nodes.

In recent years, wireless mesh networks have mainly been studied in the context of

ad hoc networking, where it is assumed that a group of nodes distributed over some

geographic area sets up a connected multihop network in a wireless manner without re-

sorting to external configuration efforts. For this purpose, special routing protocols have

been developed which partially reuse the ideas of the existing link-state and distance

vector routing algorithms, but modify their functionalities towards supporting environ-

ments with significant node mobility, and frequently changing topologies [119, 120]. The

main requirements set upon these protocols and system design in general were to ensure

network scalability, efficient bandwidth utilization, low power consumption (which is

of special importance in the context of finite lifetime nodes, i.e. devices with limited

battery capacity), QoS, etc.

In addition to ad hoc networking, wireless mesh networks have lately also gained im-

92

Figure 6.3.2: Example of a client wireless mesh network.

portance in the area of planned fixed network infrastructures. The main driving factor

in this development was the advent of two novel types of wireless technologies, i.e. IEEE

802.11 Wireless Local Area Networks (WLANs) [www-13] and IEEE 802.16 Worldwide

Interoperability for Microwave Access (WiMAX) networks [www-14], in combination

with efforts towards provisioning Internet connectivity without resorting to existing

wireline installations. In other words, the combination of a wireless last mile and a com-

pletely wireless backbone infrastructure holds the potential of enormous cost savings, as

no dedicated lines need to be leased from other providers and no new wireline infras-

tructures need to be deployed. Furthermore, if the envisioned wireless backbone does

not resort to licensed spectrum technologies, which is e.g. the case with IEEE 802.11

WLANs, entirely new network operators can start commercial operation while almost

completely circumventing the relevant regulatory procedures.

From a technical point of view, fixed infrastructure wireless mesh backbone networks

also hold the advantage of dramatically reduced complexity in comparison with their

mobile, ad hoc counterparts. As backbone connections can be built using directional

wireless links, many considerations which are necessary in the specific context of ad hoc

networks are obsolete, as it may be assumed that the directed links are far less prone

to signal interferences [121]. Therefore, with this type of networks the whole suite of

traditional IP protocols can be reused, including standard intra-domain routing protocols

93

Figure 6.3.3: Example of a hybrid wireless mesh network.

like OSPF or IS-IS [122]. A typical example of infrastructure wireless mesh networks,

the Magnets network in Berlin, can be found in [www-15], where a hybrid system of

access point connected into a wireless mesh backbone network is built solely using IEEE

802.11 WLAN technology in combination with directional antennas. Contrary to the

widespread belief that interferences with local WLAN hot-spots will render such a design

inefficient, [121] demonstrates that with careful planning and deployment, the standard

IEEE 802.11a and IEEE 802.11g technologies enable the setup of reliable backbone

networks with very stable throughput characteristics even in dense metropolitan areas.

In [123], AMP has been investigated in concreto for a commercial metropolitan ISP

network which is comprised solely of an IEEE 802.11a IP backbone connecting private

and public Internet hotspots into a wireless mesh backbone. Figure 6.3.4 depicts the

first deployment phase of the corresponding test network which has been set up in a

small-size German city [123]. Note that the grey circles correspond to the coverage

area of local IEEE 802.11 access points, which are interconnected with directional IEEE

802.11 radio links (black lines). During the setup it has turned out that the network

topology mainly depends upon the geographic topology and various legal requirements

(e.g. the consent of real-estate owners, or regulations concerning the protection of his-

toric buildings and monuments). Accordingly, directional links can only be planned

using available locations, which additionally require lines-of-sight (LOS) towards other

94

Figure 6.3.4: Local-Web wireless backbone network. (Source: [123])

95

Figure 6.3.5: Local-Web wireless backbone router. (Source: [123])

available locations. Taking these strict boundary conditions into account, the remaining

degrees of freedom for planning the network topology turn out to be very limited, such

that it is nearly impossible to end up with some sort of a regular network structure

which would allow for a high level of multi-path diversity.

In addition to the description of the network structure, [123] also clearly identifies the

necessity of traffic engineering for wireless mesh backbones, as bandwidth represents an

inherently scarce resource in this type of networking solutions. Accordingly, a number of

traditional traffic engineering schemes is investigated, with the objective that the results

should be well applicable to wireless mesh networks with directional links.

For the investigated scenario, [123] finds that AMP should be similarly well applicable

to infrastructure-type wireless mesh networks with directional links, as in the case of

wireline backbone IP networks, which has been demonstrated in [13] and [14]. The main

reason for the validity of this analogy is that the wireless mesh topologies envisioned for

the final project phases, as well as the corresponding traffic types match the investigated

core network scenarios quite well.

As far as the implementation of AMP in the production network is concerned, the

custom tailored router depicted in Figure 6.3.5 has been foreseen. The router is equipped

with two ethernet interfaces and four wireless network interfaces, with one of them

dedicated for usage as a local access point for the coverage area around the router, such

that normally three directional links are available for interconnection.

However, several open questions still remain in this context, as wireless mesh back-

bones may be assumed to have lower levels of overall network availability, and as wireless

96

backbone links may display a non-negligible level of capacity oscillations. Therefore,

AMPs behavior in the presence of unstable network conditions should be further inves-

tigated in order to optimize the algorithm’s parameters for the envisioned scenario.

3G wireless networks like e.g. UMTS have recently also emerged as an important

area of application for wireless mesh infrastructure networks which connect the 3G

base stations to the 3G core network [124, 125]. The main reason for the growing

importance of wireless mesh solutions in the context of 3G networks lies in the partial

inability of the current wireline infrastructure to carry high capacity data traffic. In other

words, the introduction of novel technologies like the High Speed Downlink Packet Access

(HSDPA), which offers downlink data speeds to end users of up to 14 Mbit/s [126], and

the advent of other technologies which are likely to increase transport capacities by an

order of magnitude as part of the Long Term Evolution (LTE) of 3G networks [127],

necessitate novel solutions for the communication links between the 3G base stations

and the 3G core. While the required speeds can be achieved by the introduction of

more efficient wireline technologies, the IEEE 802.16 WiMAX technology represents an

attractive alternative, especially if there is no legacy infrastructure at hand, which is

often the case in rural areas with suboptimal wireless coverage [124]. In this case, a

combination of high-speed 3G base stations and a multihop wireless mesh IEEE 802.16

backhaul network may prove to be a very efficient option for introducing broadband

Internet access. Depending upon the design and the topology of the wireless mesh

infrastructure in such a scenario, AMP may again play a constructive role in distributing

traffic evenly throughout the deployed access network.

6.4 Concluding Remarks

In this chapter possible applications of the Adaptive Multi-Path algorithm (AMP) have

been investigated in the contemporary networking context. Starting with a critical

discussion about the necessity of traffic engineering activities, a holistic perspective of

issues in current ISP networks is taken, leading to several interesting conclusions. The

issue which is most often disregarded in architectural considerations is that for most cases

of deployed ISP core networks it is highly unrealistic to attempt to effectively squeeze out

the last bit of the available transmission capacity. This is primarily due to stringent SLAs

which impose high resilience requirements, which in turn necessitate a certain degree of

residual capacity being present in the network during regular operation. In the case of

network faults, this spare capacity is then used for accommodating traffic from failed

paths. In other words, network overprovisioning can be regarded as a natural by-product

of practical engineering for resilience, and furthermore, as the overprovisioning approach

inherently minimizes queue build-up and packet losses on the links, the quality-of-service

(QoS) observed by the traffic flows is automatically increased throughout the network

domain. Therefore, overprovisioning is today widely regarded and applied as a valid

97

approach for operating ISP networks, representing a simple and efficient mechanism for

assuring compliance with the growingly demanding SLAs.

In contrast to the current technological context of IP core networks, which display

exponential growth of transmission and switching capacity, there is a variety of emerg-

ing problems and applications in which capacity inherently represents a scarce resource,

advancing traffic engineering to become an important practical discipline in those areas.

A typical example in the context of IP networking are the increasingly relevant wireless

mesh networks. Due to many analogies between the structures of IP core networks and

fixed infrastructure wireless mesh networks with directional links, the existing IP traffic

engineering techniques, including AMP, are particularly attractive for such novel use

cases. Beyond AMP’s theoretical applicability in wireless mesh networks, a concrete

example of a commercial ISP operating a wireless mesh backhaul network has been pre-

sented, where the network operator itself has envisioned AMP as the best available traffic

engineering solution for practical implementation throughout the deployed network.

98

Chapter 7

Conclusions and Future Research

Directions

Throughout the history of telecommunications, the efficiency of network design, and the

optimization of the deployed resources have been in the center of scientific and practical

efforts. Initially, the structures which had to be built were telegraph and telephony

networks, which were planned and deployed in a highly hierarchical manner, dimensioned

according to some practical experiences. Fortunately, theoretical models which allowed

for proper network dimensioning, particularly the model by Erlang, became available

very early [77], subsequently enabling the deployment of highly optimized networks with

respect to the expected traffic demands. Due to the mentioned hierarchical nature of

those networks, and the relatively simple circuit switched call model, their planning did

not necessitate in depth graph theoretical foundations, which at that time largely were

not available anyhow.

However, with the advent of packet switched data networks in the 1960ies [128],

things have radically changed for several reasons: firstly, the old circuit switched call

model with its Poisson process for call arrivals and exponentially distributed call hold-

ing times was very inefficient for novel interactive data applications like e.g. remote

login [129], and secondly, the nature of the first networks of this kind was inherently

non-hierarchical, such that it was not possible to design them in complete analogy to

circuit switched telephony networks. But fortunately, at the same time as the problems

in building packet switched data networks started to become clear, the mathematical

discipline of graph theory has made several seminal advances, the most prominent of

which are certainly the works by Dijkstra, Bellman, Ford, and Fulkerson [4, 5, 6]. All of

them have investigated the shortest path problem, which is fundamental to establishing

any form of communication in network structures which are not completely hierarchical.

As graphs are merely mathematical abstractions of networks, the results could very

well be translated into practical solutions for routing traffic along shortest paths in con-

nectionless data networks. Accordingly, the graph theoretical findings have been trans-

99

lated into concrete network protocols for disseminating topology information throughout

a network domain in a distributed manner, yielding two distinct groups of routing mech-

anisms, i.e. distance vector and link state protocols [3].

Although the developed protocols have proved to work more or less reliably (with link

state protocols in the course of time having turned out to be the more reasonable choice

for most types of problems), they mostly had the inherent drawback of considering solely

the network topology as an input for their route calculation. More specifically, each link

in the topology is statically assigned a scalar value called the link weight, and traffic is

routed along those paths for which the sum of their link weights is minimal. In other

words, these protocols are traffic insensitive, meaning that in such networks traffic may

be routed along an overloaded (i.e. congested) path, even if parallel uncongested paths

exist. This fact has motivated the emergence of the discipline of traffic engineering,

which aims at optimizing the usage of existing resources in operational networks [10].

Unfortunately, initially there were only a few and, from today’s perspective, slightly

naive approaches, which had only limited success in optimizing the load allocation. The

main reason for this lies in the fact that in weighted directed graphs the routes can only

be influenced implicitly by introducing changes to individual link weights. But as each

change to a single link weight can impact a multitude of routes (especially if the link

weight is decreased), the possibilities of this type of intervention have soon proved to

be too coarse for achieving the desired load allocation in an intuitive and purposeful

manner [60, 63].

Accordingly, many different solutions have been proposed, like e.g. optimizing the

network wide link weights using heuristic algorithms which take the network wide traffic

matrix as an input [31]. Similarly, some old ideas from the circuit switching world

have been re-introduced in the form of Multi-Protocol Label Switching (MPLS), which

basically enables the switching of virtual circuits in IP networks [44]. However, both of

these approaches are associated with enormous network management overhead, as they

require the knowledge of the entire network-wide traffic matrix for efficient operation.

In other words, switching circuits in a non-hierarchical network is far away from being

an intuitively solvable task, but instead it rather represents a complex optimization

problem of its own.

Consequently, the idea of dynamic routing protocols has emerged, with the goal

of autonomous load distribution mechanisms being deployed inside the network nodes,

which take their actions based upon information exchanged throughout the network

domain. One of the most prominent early theoretical examples of such an approach

is certainly the algorithm by Gallager, which achieves the minimization of the average

packet delay using only minimal signaling resources by restricting the exchange of in-

formation to neighbor nodes [17]. However, Gallager’s approach can only serve for the

optimization of networks with quasi-static traffic matrices, and therefore its applicabil-

ity in realistic scenarios is limited. More recently, the Optimized Multi-Path (OMP)

100

approach has been introduced for optimizing the network-wide load allocation for indi-

vidual IP network domains [12]. The essential idea of OMP is to reuse the link state

routing’s flooding mechanism for the network-wide dissemination of load information,

and to use the loading values of distant links in each node autonomously for making

fine-grained changes to the distribution of traffic among multiple paths from source to

destination. Unfortunately, at the same time OMP also introduces non-deterministic

signaling overhead, which can become quite excessive whenever link state flooding is

used, and furthermore it requires extensive memory capacities inside the routers.

Aiming at combining the most favorable properties of the existing approaches, this

thesis proposes and evaluates Adaptive Multi-Path routing (AMP) as its central con-

tribution. The essential idea of AMP is to reduce the exchange of signaling messages

to the local scope by restricting the exchange of load information to neighbor nodes

[13, 14]. Although being exchanged only locally, the so-called backpressure signaling

messages include information about the state of the network beyond the next hop in

a quasi-recursive manner, such that they simultaneously enable the seemingly contrary

objectives of local signaling and global propagation of load information throughout the

entire network domain. More precisely, each upstream node which sends traffic, and thus

potentially causes disturbances somewhere downstream in the network, will be informed

about its approximate relative contribution to congestion. In response to the received

backpressure messages, as well as to the load directly measured on its output links,

each node will subsequently try to offload the congested next hop paths (i.e. links) by

reallocating the traffic to less congested areas of the network. For reasons of simplicity

and compatibility with the current IP routing infrastructure, the multi-path structures

required for load distribution are determined solely based upon the statically assigned

link weights. Furthermore, in order to avoid any oscillations of the routing as a reaction

to changing traffic patterns, a fine-grained load balancing mechanism with sophisticated

load shifting dynamics has been applied.

The performance of AMP has been subject to a detailed evaluation, based on using

two distinct simulation techniques, i.e. flow-level simulation and packet-level simulation.

In the flow-level case, an entirely novel simulation framework has been developed which

is especially well suited for the investigation of multi-path routing problems, and the

entire functionality of AMP has been implemented therein. Using this simulation envi-

ronment the statistical performance of AMP has been evaluated in over 1000 scenarios,

which are based on state-of-the-art know-how concerning the construction of artificial

communication network topologies and models for non-elastic traffic. The obtained sim-

ulation results demonstrate significant performance improvements obtained by AMP

compared to the static routing strategies for a wide spectrum of traffic overload in-

tensities. Furthermore, using the flow-level simulation framework, AMP’s stability has

been studied by applying disruptive traffic patterns in example networks, trying to pro-

vokatively drive the algorithm into oscillations. However, in all investigated scenarios

101

AMP has proved to operate oscillation-free, which of course represents the fundamental

prerequisite for the algorithm’s deployment in realistic network scenarios.

As far as packet-level simulation is concerned, the complete functionality of AMP

has also been implemented in the widely used ns-2 Network Simulator. Using this sim-

ulation tool, performance evaluations which are complementary to the ones carried out

in the flow-level environment were made, focusing primarily on AMP performance in

the presence of highly realistic elastic traffic, like e.g. Web traffic which utilizes TCP

on the transport level. In order to achieve an optimal level of realism, two differently

sized real ISP topologies have been investigated, i.e. the AT&T-US network and the

German B-WiN Research Network, with a state-of-the-art Web traffic model and for a

broad spectrum of load situations. In all simulations carried out, AMP has shown to

significantly outperform the traditional static routing strategies in terms of important

metrics like average Web page response time and total TCP goodput in the network.

Furthermore, AMP has proved to operate oscillation free in all investigated scenarios.

Summarizing the performance evaluation efforts of AMP in the two different simulation

environments, it is important to observe that the obtained simulation results are mutu-

ally consistent, demonstrating the high overall traffic engineering potential of AMP, as

well as the algorithm’s stability in the presence of a wide variety of traffic patterns.

Finally, a somewhat critical discussion of the status of traffic engineering in the

current context of IP core networks has shed some light onto the close interplay be-

tween engineering for network resilience, bandwidth overprovisioning, and traffic engi-

neering. The bandwidth overprovisioning approach today represents the most widely

used paradigm in operating IP networks, as it simultaneously provides both loss-free

packet transport (i.e. QoS), and guarantees a large amount of spare capacity for the

case of equipment outages. Therefore, in networks with overprovisioned bandwidth,

traffic engineering efforts make only limited sense, as normally the network should not

experience any congestion by definition. However, as the entire world of networking will

converge to IP as the common protocol in the coming years, other areas of application

apart from core IP networks will become increasingly interesting for the optimization of

load allocation, as bandwidth overprovsioning is not always a feasible approach. This is

especially true for infrastructure-type wireless mesh networks which serve as backhaul

for connecting remote base stations and clients to core IP networks, as their applica-

tion will become important in the context of efforts towards provisioning high capacity

wireless broadband access. Based upon the findings of this thesis, AMP should be very

well applicable in those types of networks, which is further underlined by the real case

of a commercial ISP which has identified AMP as the traffic engineering solution to be

deployed in their operational network.

Of course, research in dynamic traffic engineering is far from coming to an end. As far

as future research directions in the context of AMP are concerned, there are several issues

which offer potential for theoretical modeling and algorithm refinement. An important

102

topic for further work is certainly the investigation of AMP stability. As developing

a theoretical stability model of AMP based on general control engineering principles

(e.g. through a Lyapunov-type approach) has been out of scope for this thesis, the

demonstration of the algorithm’s stability has been restricted to extensive simulations

for a vast plethora of scenarios. However, of course simulations cannot replace the

provision of a firm proof of AMP’s deterministic and oscillation-free convergence towards

a global fix point in traffic distribution in the presence of stable traffic patterns, and

even more importantly, the absence of routing instabilities in the presence of adverse

traffic patterns. Furthermore, as AMP is a heuristic algorithm, the mediation of the

available information which is currently solved by a subtle interplay between averaging

and maximizing relevant congestion information in each node and which determines

the exact semantics of the backpressure mechanisms might bear some more potential

for further fine-tuning for different types of network topologies and traffic patterns.

And last, but not least, the Adaptive Multi-Path algorithm’s performance evaluation,

adaptation, and deployment scenarios for different novel areas of application, like e.g.

wireless mesh networks, represent valuable opportunities for further investigations.

In the larger context of IP networking in the next years, there are several topics which

will be of high importance for the entire research area of traffic engineering. Building a

standardized and comprehensive measurement infrastructure certainly represents one of

them, bearing the potential of enabling the development of traffic sensitive routing pro-

tocols for IP networks. Furthermore, such a standardized network monitoring solution

would also facilitate other traffic engineering activities, like e.g. link weight optimiza-

tion, as one of the most limiting practical obstacles for such offline schemes lies in the

requirement of having a precise network-wide traffic matrix at hand in real-time. As

far as inter-domain traffic engineering activities are concerned, to this end the degrees

of freedom offered by standard BGP-4 routing protocol have been quite limited, so far

resulting only in incremental fine-tuning of the existing mechanisms for a number of

concrete scenarios. But with the enormous growth of BGP routing tables projected

for the next years, which is mostly attributed to the increasingly popular multi-homing

of smaller networks with large address prefixes, the design of a successor protocol is

advancing to become an important research topic of its own, opening the potential of

developing a new global traffic engineering solution. Finally, the requirements imposed

upon future traffic engineering schemes will equally be determined by the emerging novel

types of networking applications, their acceptance by the users, and by the development

of more efficient switching and transport technologies. Together, these factors will de-

cide upon the upcoming network provisioning paradigms, and thus crucially influence

the status of traffic engineering in the mid-term future.

103

Bibliography

[1] J. M. McQuillan and D. C. Walden, The ARPANET Design Decisions, J. Computer Net-
works, Vol. 1, September 1977.

[2] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet,
and the Telephone Network, Addison-Wesley, Reading, Massachusetts, USA, 1997.

[3] J. Doyle, Routing TCP/IP – Volume 1, Macmillan Technical Publishing, Indianapolis, Indiana,
USA, 1998.

[4] R. E. Bellmann, Dynamic Programming, Princeton, New Jersey, USA, 1957.

[5] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton, New Jersey, USA, 1962.

[6] E. W. Dijkstra, A Note on Two Problems in Connexion With Graphs, in Numerische Mathe-
matik, Vol. 1, Mathematisch Centrum, Amsterdam, The Netherlands, 1959, pp. 269–271.

[7] J. Moy, RFC 2328 – OSPF Version 2, IETF, September 1998.

[8] J. Moy, OSPF: Anatomy of an Internet Routing Protocol, Addison-Wesley, 1998.

[9] D. Oran, RFC 1142 – OSI IS-IS Intra-Domain Routing Protocol, IETF, February 1990.

[10] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, RFC 3272 – Overview and
Principles of Internet Traffic Engineering, IETF, May 2002.

[11] E. Rosen, A. Viswanathan, and R. Callon, RFC 3031 – Multiprotocol Label Switching
Architecture, IETF, September 2001.

[12] C. Villamizar, OSPF Optimized Multipath (OSPF–OMP), IETF Internet Draft, 2002.

[13] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl, Adaptive Multipath Routing for
Dynamic Traffic Engineering, in Proc. IEEE GLOBECOM’03, San Francisco, California, USA,
December 2003, pp. 3058–3062.

[14] I. Gojmerac, T. Ziegler, and P. Reichl, Adaptive Multipath Routing Based on Local Dis-
tribution of Link Load Information, in Proc. 4th COST 263 International Workshop on Quality
of Future Internet Services (QoFIS’03), Stockholm, Sweden, October 2003, pp. 122–131.

[15] I. Gojmerac, L. Jansen, T. Ziegler, and P. Reichl, Feasibility Aspects of AMP Perfor-
mance Evaluation in a Fluid Simulation Environment, in Proc. 3rd MMBnet Workshop, Hamburg,
Germany, September 2005.

[16] I. Gojmerac, L. Jansen, P. Reichl, and T. Ziegler, A Simulation Study of Microscopic
AMP Behavior, in Proc. 4th Polish-German Teletraffic Symposium (PGTS’06), Wroclaw, Poland,
September 2006, pp. 95–104.

[17] R. G. Gallager, A Minimum Delay Routing Algorithm Using Distributed Computation, IEEE
Transactions on Communications, Vol. 25, January 1977, pp. 73–85.

105

[18] A. Tanenbaum, Computer Networks, 3rd ed., Prentice-Hall, Englewood Cliffs, New Jersey, USA,
1996.

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1993.

[20] L. R. Ford, Network Flow Theory, Report P-923, Rand Corp., Santa Monica, California, USA,
1956.

[21] R. Bellman, On a Routing Problem, Quarterly of Applied Mathematics, 1958, pp. 87–90.

[22] R. W. Floyd, Algorithm 97: Shortest Path, Communications of ACM, 1962, p. 345.

[23] J. Moy, OSPF – Complete Implementation, Addison-Wesley, 1999.

[24] Y. Rekhter, T. Li, and S. Hares, RFC 4271 – A Border Gateway Protocol 4 (BGP-4), IETF,
January 2006.

[25] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot, Analysis of
Link Failures in an IP Backbone, in 2nd ACM SIGCOMM Workshop on Internet Measurment,
Marseilles, France, November 2002, pp. 237–242.

[26] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, Feasibility of IP Restora-
tion in a Tier 1 Backbone, IEEE Network – Special Issue on Protection, Restoration and Disaster
Recovery, Vol. 18, March/April 2004, pp. 13–19.

[27] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot,
Characterization of Failures in an IP Backbone, in IEEE INFOCOM’04, Hong Kong, China,
March 2004, pp. 2307–2317.

[28] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot, IGP Link Weight As-
signment for Transient Link Failures, in 18th International Teletraffic Congress, Berlin, Germany,
August 2003.

[29] F. Giroire, A. Nucci, N. Taft, and C. Diot, Increasing the Robustness of IP Backbones in
the Absence of Optical Level Protection, in IEEE INFOCOM’03, San Francisco, California, USA,
March 2003, pp. 1–11.

[30] B. Fortz and M. Thorup, Internet Traffic Engineering by Optimizing OSPF Weights, in IEEE
INFOCOM’00, Tel Aviv, Israel, March 2000, pp. 519–528.

[31] B. Fortz and M. Thorup, Optimizing OSPF/IS-IS Weights in a Changing World, IEEE
Journal on Selected Areas in Communications, Vol. 20, May 2002, pp. 756–767.

[32] B. Fortz, J. Rexford, and M. Thorup, Traffic Engineering with Traditional IP Routing
Protocols, IEEE Communications Magazine, Vol. 40, October 2002, pp. 118–124.

[33] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, How to Model an Internetwork, in
IEEE INFOCOM’96, San Francisco, California, USA, March 1996, pp. 594–602.

[34] K. L. Calvert, M. Doar, and E. W. Zegura, Modeling Internet Topology, IEEE Communi-
cations Magazine, Vol. 35, June 1997, pp. 160–163.

[35] D. Harrington, R. Presuhn, and B. Wijnen, RFC 3411 – An Architecture for Describing
Simple Network Management Protocol (SNMP) Management Frameworks, IETF, December 2002.

[36] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, Traffic Matrix
Estimation: Existing Techniques and New Directions, in ACM SIGCOMM’02, Pittsburgh, Penn-
sylvania, USA, August 2002, pp. 161–174.

106

[37] A. Nucci, R. Cruz, N. Taft, and C. Diot, Design of IGP Link Weight Changes for Estima-
tion of Traffic Matrices, in IEEE INFOCOM’04, Hong Kong, China, March 2004, pp. 2341–2351.

[38] A. Feldmann, A. Greenberg, C. Lund, and N. Reingold, Deriving Traffic Demands for
Operational Networks: Methodology and Experience, IEEE/ACM Transactions on Networking,
Vol. 9, June 2001, pp. 265–279.

[39] M. Grossglauser and J. Rexford, Passive Traffic Measurement for IP Operations, in The
Internet as a Large-Scale Complex System, Oxford University Press, 2005, pp. 91–120.

[40] R. Presuhn, J. Case, M. Rose, and S. Waldbusser, RFC 3418 – Management Information
Base (MIB) for the Simple Network Management Protocol (SNMP), IETF, December 2002.

[41] S. Bhattacharyya, C. Diot, J. Jetcheva, and N. Taft, POP-Level and Access-Link-Level
Traffic Dynamics in a Tier-1 POP, in ACM SIGCOMM Internet Measurement Workshop, San
Francisco, California, USA, November 2001, pp. 39–53.

[42] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, NetScope: Traffic
engineering for IP Networks, IEEE Network Magazine, Special Issue on Internet Traffic Engi-
neering, Vol. 14, March/April 2000, pp. 11–19.

[43] W. Haidegger, P. Reichl, S. Bessler, N. Jozefiak, and M. Teufel, Ende-zu-Ende
Performance Management in Heterogenen Hochgeschwindigkeitsnetzen, PIK – Praxis der Infor-
mationsverarbeitung und Kommunikation, 2002.

[44] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, RFC 2702 –
Requirements for Traffic Engineering over MPLS, IETF, September 1999.

[45] J. van Lunteren and T. Engbersen, Fast and Scalable Packet Classification, IEEE Journal
on Selected Areas in Communications, Vol. 21, May 2003, pp. 560–571.

[46] J. van Lunteren, Searching Very Large Routing Tables in Wide Embedded Memory, in Proc.
IEEE GLOBECOM’01, San Antonio, Texas, USA, November 2001, pp. 1615–1619.

[47] D. Mitra and K. G. Ramakrishnan, A Case Study of Multiservice, Multipriority Traffic
Engineering Design for Data Networks, in IEEE GLOBECOM’99, Vol. 3, Rio de Janeiro, Brasil,
December 1999, pp. 1615–1619.

[48] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,
Massachusetts, USA, 1984.

[49] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Prentice-Hall, Englewood Cliffs,
New Jersey, USA, 1992.

[50] P. Aukia, M. Kodialam, P. V. Koppol, T. V. Lakshman, H. Sarin, and B. Suter,
RATES: A Server for MPLS Traffic Engineering, IEEE Network Magazine, Vol. 14, March/April
2000, pp. 34–41.

[51] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, RFC 2748 – The
COPS (Common Open Policy Service) Protocol, IETF, January 2000.

[52] M. Kodialam and T. V. Lakshman, Minimum Interference Routing with Applications to
MPLS Traffic Engineering, in IEEE INFOCOM’00, Tel Aviv, Israel, March 2000, pp. 884–893.

[53] K. Kar, M. Kodialam, and T. V. Lakshman, Minimum Interference Routing of Bandwidth
Guaranteed Tunnels with MPLS Traffic Engineering Applications, IEEE Journal on Selected Areas
in Communications, Vol. 18, December 2000, pp. 2566–2579.

107

[54] B. Wang, X. Su, and C. L. P. Chen, A New Bandwidth Guaranteed Routing Algorithm for
MPLS Traffic Engineering, in IEEE International Conference on Communications (ICC’02), New
York City, New York, USA, April 2002, pp. 1001–1005.

[55] S. Butenweg, Two Distributed Reactive MPLS Traffic Engineering Mechanisms for Throughput
Optimization in Best Effort MPLS Networks, in IEEE International Symposium on Computers
and Communication (ISCC’03), Kemer, Turkey, June 2003, pp. 379–384.

[56] V. Sharma and F. Hellstrand, RFC 3469 – Framework for Multi-Protocol Label Switching
(MPLS)-based Recovery, IETF, February 2003.

[57] C. Huang, V. Sharma, K. Owens, and S. Makam, Building Reliable MPLS Networks Using a
Path Protection Mechanism, IEEE Communications Magazine, Vol. 40, March 2002, pp. 156–162.

[58] M. Menth, R. Martin, and U. Spoerlein, Network Dimensioning for the Self-Protecting Mul-
tipath: A Performance Study, in IEEE International Conference on Communications (ICC’06),
Istanbul, Turkey, June 2006.

[59] J. M. McQuillan, G. Falk, and I. Richer, A Review of the Development and Performance
of the ARPANET Routing Algorithm, IEEE Transactions on Communications, Vol. 26, December
1978, pp. 1802–1811.

[60] A. Khanna and J. Zinky, The Revised ARPANET Routing Metric, ACM SIGCOMM Computer
Communication Review, Vol. 19, September 1989, pp. 45–56.

[61] J. M. McQuillan, G. Falk, and I. Richer, The New Routing Algorithm for the ARPANET,
IEEE Transactions on Communications, Vol. 28, May 1980, pp. 711–719.

[62] C. L. Hedrick, An Introduction to IGRP, Technical Report, Rutgers University, New Jersey,
USA, August 1991.

[63] S. Low and P. Varaiya, Stability of a Class of Dynamic Routing Protocols (IGRP), in IEEE
INFOCOM’93, San Francisco, California, USA, March 1993, pp. 610–616.

[64] R. J. Gibbens, Dynamic Routing in Circuit-Switched Networks: The Dynamic Alternative Rout-
ing Strategy, Ph.D. Thesis, University of Cambridge, United Kingdom, 1988.

[65] R. J. Gibbens, F. P. Kelly, and P. B. Key, Dynamic Alternative Routing – Modeling and
Behavior, in 12th International Teletraffic Congress, Torino, Italy, June 1988.

[66] R. R. Stacey and D. J. Songhurst, Dynamic Alternative Routing in the British Telecom
Trunk Network, in International Switching Symposium (ISS’87), Phoenix, Arizona, USA, March
1987.

[67] F. P. Kelly, Bounds on the Performance of Dynamic Routing Strategies for Highly Connected
Networks, Mathematics of Operations Research, Vol. 19, 1994, pp. 1–20.

[68] R. J. Gibbens and P. Reichl, Performance Bounds Applied to Loss Networks, Complex
Stochastic Systems and Engineering (ed. D. M. Titterington), 1995, pp. 267–279.

[69] P. Key, Optimal Control and Trunk Reservation in Loss Networks, Probability in the Engineering
and Informational Sciences, Vol. 4, 1990, pp. 203–242.

[70] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, An Approach to Alleviate Link Overload
as Observed on an IP Backbone, in IEEE INFOCOM’03, San Francisco, California, USA, March
2003, pp. 406–416.

[71] C. Villamizar and T. Li, IS-IS Optimized Multipath (ISIS–OMP), IETF Internet Draft, 2002.

108

[72] Z. Cao, Z. Wang, and E. Zegura, Performance of Hashing-based Schemes for Internet Load
Balancing, in IEEE INFOCOM’00, Tel Aviv, Israel, March 2000, pp. 332–341.

[73] M. Allman, V. Paxson, and W. Stevens, RFC 2581 – TCP Congestion Control, IETF,
January 1997.

[74] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm, ACM Computer Communications Review, Vol. 27, July 1997,
pp. 67–82.

[75] R. Coltun, RFC 2370 – The OSPF Opaque LSA Option, IETF, July 1998.

[76] G. M. Schneider and T. Nemeth, A Simulation Study of the OSPF-OMP Routing Algorithm,
J. Computer Networks, Vol. 39, July 2002, pp. 457–468.

[77] L. Kleinrock, Queueing Systems, Vol. 1 – Theory, Wiley Interscience, New York, USA, 1975.

[78] J. J. Garcia-Luna-Aceves and S. Vutukury, A Practical Approach to Minimizing Delays
in Internet Routing, in IEEE International Conference on Communications (ICC’99), Vancouver,
Canada, June 1999, pp. 479–483.

[79] A. Segall, The Modeling of Adaptive Routing in Data-Communication Networks, IEEE Trans-
actions on Communications, Vol. 25, January 1977, pp. 85–95.

[80] A. Segall and M. Sidi, A Failsafe Distributed Protocol for Minimum Delay Routing, IEEE
Transactions on Communications, Vol. 29, May 1981, pp. 689–695.

[81] P. M. A. Segall, A Failsafe Distributed Routing Protocol, IEEE Transactions on Communica-
tions, Vol. 27, September 1979, pp. 1280–1287.

[82] B. M. Waxman, Routing of Multipoint Connections, IEEE Journal on Selected Areas in Com-
munications, Vol. 6, December 1988, pp. 1617–1622.

[83] L. Jansen, I. Gojmerac, M. Menth, P. Reichl, and P. Tran-Gia, An Algorithmic Frame-
work for Discrete-Time Flow-Level Simulation of Data Networks, in 20th International Teletraffic
Congress, Ottawa, Canada, June 2007, pp. 865–877.

[84] L. Jansen, Fluid-Simulatoren zur Beschleunigung von Leistungsuntersuchungen in Paketnetzen,
Master Thesis, University of Würzburg, Germany, 2006.

[85] D. Mitra, D. Anick, and M. M. Sondhi, Stochastic Theory of a Data Handling System with
Multiple Sources, Bell Systems Technical Journal, Vol. 61, 1982, pp. 1871–1894.

[86] B. Liu, D. R. Figueiredo, Y. Guo, J. F. Kursoe, and D. F. Towsley, A Study of Networks
Simulation Efficiency: Fluid Simulation vs. Packet-level Simulation, in IEEE INFOCOM’01,
Anchorage, Alaska, USA, April 2001, pp. 1244–1253.

[87] B. Liu, Y. Guo, J. Kursoe, D. Towsley, and W. Gong, Fluid Simulation of Large Scale
Networks: Issues and Tradeoffs, Technical Report UM-CS-1999-038, University of Massachusetts,
MA, USA, 1999.

[88] A. Yan and W.-B. Gong, Time-Driven Fluid Simulation for High-Speed Networks, IEEE Trans-
actions on Information Theory, Vol. 45, July 1999, pp. 1588–1599.

[89] Y. Guo, W. Gong, and D. Towsley, Time-Stepped Hybrid Simulation (TSHS) for Large
Scale Networks, in IEEE INFOCOM’00, Tel Aviv, Israel, March 2000, pp. 441–450.

[90] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu, Fluid Models and Solutions for
Large-Scale IP Networks, in ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, San Diego, California, USA, June 2003, pp. 91–101.

109

[91] M. B. Doar, A Better Model for Generating Test Networks, in IEEE GLOBECOM’96, London,
United Kingdom, November 1996, pp. 86–93.

[92] L. Li, D. Alderson, W. Willinger, and J. Doyle, A First-Principles Approach to Un-
derstanding the Internet’s Router-level Topology, ACM SIGCOMM Computer Communication
Review, Vol. 34, October 2004, pp. 3–14.

[93] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On Power-law Relationships of the Internet
Topology, ACM SIGCOMM Computer Communication Review, Vol. 29, October 1999, pp. 251–
262.

[94] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, Power Laws and the AS-level
Internet Topology, IEEE/ACM Transactions on Networking, Vol. 11, August 2003, pp. 514–524.

[95] A. Medina, A. Lakhina, I. Matta, and J. Byers, BRITE: An Approach to Universal Topol-
ogy Generation, in Proc. IEEE MASCOT’01, Cincinnati, Ohio, USA, August 2001, pp. 346–353.

[96] A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science, Vol. 286,
October 1999, pp. 509–512.

[97] A. Nucci, A. Sridharan, and N. Taft, The Problem of Synthetically Generating IP Traf-
fic Matrices: Initial Recommendations, ACM SIGCOMM Computer Communication Review,
Vol. 35, July 2005, pp. 19–31.

[98] S. Zimmermann, Congestion Pricing as Scalable, Efficient and Stable Congestion Control for
Future IP Networks, VDE Verlag, Berlin, Germany, 2005.

[99] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker,

J. Wroclawski, and L. Zhang, RFC 2309 – Recommendations on Queue Management and
Congestion Avoidance in the Internet, IETF, April 1998.

[100] V. Misra, W.-B. Gong, and D. F. Towsley, Fluid-Based Analysis of a Network of AQM
Routers Supporting TCP Flows with an Application to RED, ACM SIGCOMM Computer Com-
munication Review, Vol. 30, October 2000, pp. 151–160.

[101] M. Ajmone Marsan, M. Garetto, P. Giaconne, E. Leonardi, E. Schiattarella, and

A. Tarello, Using Partial Differential Equations to Model TCP Mice and Elephants in Large
IP Networks, IEEE/ACM Transactions on Networking, Vol. 13, December 2005, pp. 1289–1301.

[102] E. Hasenleithner and T. Ziegler, Comparison of Simulation and Measurement using State of
the Art Web Traffic Models, in IEEE Symposium on Computers and Communications (ISCC’03),
Kemer, Antalya, Turkey, June 2003, pp. 1172–1177.

[103] E. J. Anderson, T. E. Anderson, S. D. Gribble, A. R. Karlin, and D. J. Wetherall,
Towards Efficient and Robust Adaptive Routing, in ACM SIGCOMM’02 (Submission), Pitts-
burgh, Pennsylvania, USA, August 2002.

[104] P. Barford and M. E. Crovella, Generating Representative Web Workloads for Network
and Server Performance Evaluation, in ACM SIGMETRICS’98, Madison, Wisconsin, USA, June
1998, pp. 151–160.

[105] K. Below, C. Schwill, and U. Killat, Erhöhung des Nutzungsgrades eines ATM Netzes
für den Wissenschaftsbereich (ERNANI), Technical Report, Dept. Communication Networks,
Technical University Hamburg-Harburg, September 2001.

110

[106] S. D’Antonio, M. D’Arienzo, M. Esposito, S. P. Romano, and G. Ventre, Managing
Service Level Agreements in Premium IP Networks: A Business-Oriented Approach, J. Computer
Networks, Vol. 46, December 2004, pp. 853–866.

[107] I. Gojmerac, F. Hammer, F. Ricciato, H. T. Tran, and T. Ziegler, Scalable QoS:
State-of-the-Art Architectural Solutions and Developments, Technical Report FTW-TR-2004-003,
FTW, April 2004.

[108] M. Menth, Efficient Admission Control and Routing for Resilient Communication Networks,
Ph.D. Thesis, University of Würzburg, Germany, 2004.

[109] C. Diot, A Tier-1 IP Backbone Network, Architecture, Performance, Tutorial at ICNP’02, Paris,
France, 2002.

[110] K. G. Coffman and A. M. Odlyzko, Internet Growth: Is There a “Moore’s Law” for Data
Traffic?, Technical Report, AT&T Labs, 11 April 2000.

[111] S. Iyer, R. Zhang, and N. McKeown, Routers with a Single Stage of Buffering, in ACM
SIGCOMM’02, Pittsburgh, Pennsylvania, USA, August 2002, pp. 251–264.

[112] C. Courcoubetis and R. Weber, Pricing Communication Networks. Economics, Technology
and Modelling, Wiley Interscience, New York, USA, 2003.

[113] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, Resilient Overlay Net-
works, in ACM SOSP’01, Banff, Canada, October 2001, pp. 131–145.

[114] Z. Li and P. Mohapatra, QRON: QoS-Aware Routing in Overlay Networks, IEEE Journal on
Selected Areas in Communications, Vol. 22, January 2004, pp. 29–40.

[115] A. Nakao, L. Peterson, and A. Bavier, Scalable Routing Overlay Networks, ACM SIGOPS
Operating Systems Review, Vol. 40, January 2006, pp. 49–61.

[116] D. Doval and D. O’Mahony, Overlay Networks – A Scalable Alternative for P2P, IEEE
Internet Computing, Vol. 7, July/August 2003, pp. 79–82.

[117] B. Gusmão Rocha, V. Almeida, and D. Guedes, Increasing QoS in Selfish Overlay Networks,
IEEE Internet Computing, Vol. 10, May/June 2006, pp. 24–31.

[118] I. F. Akyldiz and X. Wang, A Survey on Wireless Mesh Networks, IEEE Radio Communica-
tions, Vol. 43, September 2005, pp. 23–30.

[119] C. Perkins, E. Belding-Royer, and S. Das, RFC 3561 – Ad hoc On-Demand Distance
Vector (AODV) Routing, IETF, July 2003.

[120] D. R. Johnson, D. A. Maltz, and Y.-C. Hu, The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks (DSR), IETF Internet Draft, 19 July 2004.

[121] R. P. Karrer, I. Matyasovszki, A. Botta, and A. Pescapé, Experimental Evaluation
and Characterization of the Magnets Wireless Backbone, in ACM WiNTECH’06, Los Angeles,
California, USA, September 2006, pp. 26–33.

[122] M. Jaseemuddin, A. Esmailpour, A. Alwan, and O. Bazan, Integrated Routing System
for Wireless Mesh Networks, in Canadian Conference on Electrical and Computer Engineering,
Ottawa, Canada, May 2006, pp. 1003 – 1007.

[123] B. Schmidt, Dynamisches Traffic Engineering in einem drahtlosen IP-Backbone, Master Thesis,
Humboldt University of Berlin, Germany, 2005.

111

[124] S. Bhatnagar, S. Ganguly, and R. Izmailov, Design of IEEE 802.16-based Multi-hop Wire-
less Backhaul Networks – Invited Paper, in ACM AccessNets’06, Athens, Greece, September 2006.

[125] H. Viswanathan and S. Mukherjee, Throughput-Range Tradeoff of Wireless Mesh Backhaul
Networks, IEEE Journal on Selected Areas in Communications, Vol. 24, March 2006, pp. 593–602.

[126] M. Harteneck, M. Boloorian, S. Georgoulis, and R. Tanner, Throughput Measurements
of HSDPA 14 Mbit/s Terminal, IEE Electronics Letters, Vol. 41, March 2005, pp. 425–427.

[127] E. Dahlman, H. Ekström, A. Furuskär, Y. Jading, J. Karlsson, M. Lundevall, and

S. Parkvall, The 3G Long-Term Evolution – Radio Interface Concepts and Performance Eval-
uation, in IEEE 63rd Vehicular Technology Conference (VTC 2006), Melbourne, Australia, May
2006, pp. 137 – 141.

[128] J. E. O’Neill, The Role of ARPA in the Development of the ARPANET, 1961-1972, IEEE
Annals of the History of Computing, Vol. 17, 1995, pp. 76–81.

[129] D. D. Clark, The Design Philosophy of the DARPA Internet Protocols, ACM SIGCOMM
Computer Communication Review, Vol. 18, 1988, pp. 106–114.

112

List of Internet Links

[www-1] ns-2, The Network Simulator, http://www.isi.edu/nsnam/ns/, April 2007.

[www-2] Cisco Systems, Configuring OSPF – Cisco IOS IP and IP Routing Configuration Guide,
http://www.cisco.com/, April 2007.

[www-3] R. Mortier, Python Routeing Toolkit (PyRT), http://ipmon.sprint.com/pyrt/, April 2007.

[www-4] Cisco Systems, Cisco IOS NetFlow,
http://www.cisco.com/en/US/products/ps6601/products ios protocol group home.html,
April 2007.

[www-5] Internet Engineering Task Force, IETF, http://www.ietf.org/, April 2007.

[www-6] IETF, OMP Simulations, http://www.faster-light.net/omp/simulations.html, April 2007.

[www-7] H. Perros, Computer Simulation Techniques, Computer Science Depart-
ment, North Carolina State University, Raleigh, North Carolina, USA,
http://www.csc.ncsu.edu/faculty/perros/simulation.pdf, April 2007.

[www-8] Georgia Institute of Technology, Georgia Tech Internetwork Topology Models
GT-ITM, http://www.cc.gatech.edu/projects/gtitm/, April 2007.

[www-9] OPNET Technologies, OPNET Modeler, http://www.opnet.com/, April 2007.

[www-10] OMNeT++ Project, OMNeT++ Simulation Environment, http://www.omnetpp.org/,
April 2007.

[www-11] Martin Dodge, An Atlas of Cyberspaces, http://www.cybergeography.org/atlas/topology.html,
April 2007.

[www-12] Boston University, Computer Science Department, BRITE Topology Generator,
http://www.cs.bu.edu/brite/, April 2007.

[www-13] IEEE, IEEE 802.11 Standard, http://www.ieee802.org/11/, April 2007.

[www-14] IEEE, IEEE 802.16 Standard, http://www.ieee802.org/16/, April 2007.

[www-15] Deutsche Telekom Laboratories, Magnets Backbone Website,
http://www.deutsche-telekom-laboratories.de/∼karrer/magnets.html, April 2007.

113

114

Abbreviations

AMP Adaptive Multi-Path routing

BGP Border Gateway Protocol

COPS Common Open Policy Service

CRC Cyclic Redundancy Check

DAR Dynamic Alternative Routing

ECMP Equal Cost Multi-Path routing

EIGRP Enhanced Interior Gateway Routing Protocol

FEC Forwarding Equivalency Class

IGRP Interior Gateway Routing Protocol

IP Internet Protocol

IS-IS Intermediate System to Intermediate System

ISP Internet Service Provider

LSP Label Switched Path

LTE Long Term Evolution

MIB Management Information Base

MIRA Minimum Interference Routing Algorithm

MPLS Multi-Protocol Label Switching

OMP Optimized Multi-Path routing

OSPF Open Shortest Path First

QoS Quality of Service

RATES Routing and Traffic Engineering Server

RON Resilient Overlay Network

SNMP Simple Network Management Protocol

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 842.031]
>> setpagedevice

