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Chapter 1

Introduction

– “ Si parmi ces erreurs il s’en trouve que l’on juge trop grandes pour être ad-
mises, alors on rejettera les équations qui ont produit ces erreurs, comme venant
d’expériences trop défectueuses, et on déterminera les inconnues par le moyen
des équations restantes, qui alors donneront des erreurs beaucoup moindres. ”

in A. M. Legendre, Nouvelles méthodes pour la détermination des orbites des
comètes (p. 74), 1806

Translation of the above:
– “If among these errors there are some which we consider too large to be ad-
missible, then we will reject the equations which produced them as coming from
too faulty experiments, and we will determine the unknowns with the remaining
equations, which will then give much smaller errors.”

This report deals with various methods to remove outliers from time series
and their application to the measurement of heart rate variability in diabetes.
Four algorithms will be presented successively: (1) the repeated median filter,
(2) the biweight filter, (3) the biweight filter cleaner and (4) the repeated median
cleaner. The purpose of this introduction is to give an idea of the motivations
behind the development of such algorithms. In fact, only the last two algorithms
are of practical interest but they are derived from the first two which is why we
devoted two chapters to their analysis.

There are three main conceptual problems that we faced when dealing with
outliers: (1) the actual definition of an outlier, (2) what one should do with
outliers and (3) when an outlier should lead to a change in the model.

1. The definition of an outlier. Every statistician can give his explanation of
the concept, but not only does this explanation vary from one person to
another but there is also no commonly accepted rigorous definition. The
Wikipedia encyclopedia defines an outlier to be “a single observation far
away from the rest of the data.” The problem is, what does “far away”
mean? This definition suggests that the rest of the data complies to a

11



Introduction

certain pattern - a model. It is therefore meaningless to speak of outliers
without having defined a model (at least a rough one) first. For example, if
we are given a random variable X ∼ N (µ, σ2), then an observation of this
variable can be said to be an α-outlier if it lies outside the 1 − α-quantile
of N (µ, σ2). However, such a definition supposes that one knows how the
variable is distributed, which is quite rare in the study of time series.

2. What one should do with these outliers: should we simply remove the out-
liers or try to replace them with more pertinent values? This report presents
two types of algorithms: data filters and data cleaners. The data filter just
replaces the time series by a robust estimation of that time series. However,
it might be that most values in the time series are all right and do not need
changing. This motivates the implementation of the data cleaner : it uses
a data filter to detect possible outliers and then replaces them with a more
likely value, leaving most of the time series unchanged. A näıve question
could be: “Why bother? Why not just remove the problematic value from
the data set?”. The first consequence of removing an outlier is to reduce the
size of the data set and affects the estimation of the distribution parame-
ters. For example, variances will be underestimated. Apart from reducing
the size of the the data set, this method has the major drawback of being
equivalent to augmenting the model with a 0/1 variable where a 1 is used
to denote the time point and 0’s elsewhere. This obviously privileges one
particular time point which does not make any sense in general. However,
if a significant event occurs at this time point, then the addition of this 0/1
variable is justified, which leads me to the third problem we encountered.

3. Should the model be changed? An outlier might be precisely the interesting
value of a data set: for example, if one records seismic vibrations to detect
an earthquake, a sudden jerk in the curve is exactly what one is looking
for. This is why we spoke earlier of “pertinent value” or “likely value”: an
outlier is a value which is not pertinent for the model under consideration,
but not necessarily wrong. This is another justification for using a data
cleaner instead of a data filter: we leave those values which comply to the
model and change the others.

12
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Notation

General Symbols

Concept Symbol Example

”Defined as” := a := b
Binomial coefficients

(
n
p

)

Closed interval [] [a, b]
Semi-open intervals ]] , [[ ]a, b] , [a, b[
Open intervals ][ ]a, b[
Infinity −∞,+∞ ∀x ∈ R,−∞ < x < +∞
Pair of numbers (, ) (a, b)

Sets

Concept Symbol Example

Set capital, roman A

Indicator function 1 1A :

{
E → {0, 1}
x 7→ 1, x ∈ A, 0 otherwise

Cardinal |.| |{1, 2, 3}| = 3
Set of integers N N := {0, 1, 2, · · · }
Set of signed integers Z Z := N ∪−N

Set without 0 A∗ N∗ := {1, 2, · · · }
Set of rational numbers Q Q := {p/q : p ∈ Z ∧ q ∈ N∗}
Set of real numbers R R := Q

Set of complex numbers C C := R +
√
−1R

Probability space (Ω,A, P )
σ-algebra A

Real Borel σ-algebra B

Linear Algebra

Concept Symbol Example

Vector Bold-face, lower-case v = (v1, · · · , vn)
Matrix Bold-face, capital M
Trace of a matrix tr () tr (M)
Determinant of a matrix det () det (A)
Transpose of a vector or matrix T AT

Scalar product 〈, 〉 〈x,y〉
Norm ‖‖ ‖x‖
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Introduction

Numbers and Functions

Concept Symbol Example

Real numbers Letters between t and y t, x, γ
as well as Greek letters

Integers Letters between i and p, i, j, k
except o

Complex numbers z z
Imaginary number i Lower-case letter, courier i :=

√
−1

Real part of a complex Re Re z
Imaginary part of a complex Im Im z
Sequence (an)n∈N (an)n∈N :=

(0, 1, 2, · · · )
Integer intervals [[a, b]] [[0, n]] :=

{0, 1, · · · , n}

Random Variables

Concept Symbol Example

Random variable courier, except i X, t
Realisation of a random variable not courier x
Expectation of a random variable E EX
Variance of a random variable V VY
Covariance matrix cov cov(X,Y)
Bernoulli distribution B(p) x ∼ B(p)⇒

P (x = 0) = 1− P (x = 1)
= 1− p

Normal distribution N (µ, σ2) X ∼ N (µ, σ2)
⇒ EX = µ,VX = σ2

Distribution of a random variable L ( ) L (x) = N (0, 1)

Note that the formatting can be combined: for example, z would denote a
vector of complex random numbers.
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Chapter 2

Mathematical Context

In this chapter, we present two complementary models used to represent data
sets: the autoregressive model, which is meant to produce a time series ressem-
bling a real data set, and the additive outlier model, which adds outliers to a
previously defined time series.

2.1 The Additive Outlier Model

In the introduction we said an outlier was a value not pertinent for the model
under consideration. This implies that there exists such a model. One model
commonly used to describe a time series, and the one which we will use throughout
this text, is the additive outlier model. We now need to define what a time series
is, but as it is a particular stochastic process, we will define what a stochastic
process is first.

Definition 1 (Stochastic process)

• (Ω,A, P ) is a probability space

• I is a non-empty ordered set called index set

• (γ,G) is a measure space called state space

• (R,B) is the set of real numbers with its Borel σ-algebra

• X :

{
Ω× I → γ
(ω, t) 7→ Xt(ω)

If
∀t ∈ I,Xt : (Ω,A) → (γ,G) is a random variable, then (Ω,A, P, (Xt)t∈I) is

called stochastic process.
♦
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2.1 The Additive Outlier Model Mathematical Context

Example: The simplest example of a stochastic process is that of the one-
dimensional random walk. At each time-point, one either stays put, goes right
one unit or left one unit. In this example, we suppose we have a probability
space (Ω,A, P ). Let (p, q) ∈ ([0, 1])2 such that p + q ≤ 1. Then, in the previous
definition, we take:

1. I = N,

2. (γ,B) = (Z,B(Z)),

3. X such that P (X = 1) = p, P (X = −1) = q and P (X = 0) = 1− (p+ q)

We can now define the basic object used in all of this report:

Definition 2 (Time series)

If I ⊆ Z in the definition of a stochastic process, then (Xt)t∈I is called time series.

♦

The random variables we consider will usually be normally distributed, which
motivates the following definition:

Definition 3 (Gaussian process)

• (Ω,A, P ) is a probability space

• I ⊆ R is non-empty

• (R,B) is the set of real numbers with its Borel σ-algebra

• X :

{
Ω× I → γ
(ω, t) 7→ Xt(ω)

is a stochastic process

If ∀n ∈ N∗, (t1, · · · , tn) ∈ In, t1 < · · · < tn,Xt1 ⊗ · · · ⊗ Xtn is joint normal, then
(Ω,A, P, (Xt)t∈I) is called Gaussian process.

♦

In the special case of time series, Gaussian processes take on the following
form:

Definition 4 (Gaussian time series)

If I ⊆ Z in the definition of a Gaussian process, then (Xt)t∈I is called Gaussian
time series.

♦

16



Mathematical Context 2.1 The Additive Outlier Model

A case which often arises in practice is the case where the distribution is
“constant” with time, i.e. the process is stationary.

Definition 5 (Stationary process)

Let (Ω,A, P, (Xt)t∈I) be a stochastic process. If, ∀n ∈ N∗, ∀(t1, · · · , tn) ∈ In such
that t1 < · · · < tn and ∀s ∈ I, the distribution of Xt1+s⊗· · ·⊗Xtn+s is the same as
the distribution of Xt1 ⊗· · ·⊗Xtn , then (Ω,A, P, (Xt)t∈I) is said to be a stationary
process.

♦

Example: A process with trend can be defined by: εt ∼ iid N (0, σ2), δ > 0
and Xt = δt+ εt. As EXt = δt which depends on t, it is not a stationary process.

Definition 6 (Trajectory)
Given a stochastic process X and using the notation of the definition, ∀ω ∈ Ω, t 7→
Xt(ω) is called trajectory.

♦

We will seldom use the somewhat cumbersome notation of the definition of a
stochastic process and will often refer to (Xt)t∈N as a time series without specifying
the underlying σ-algebras. Unless otherwise specified, the state space will always
be R and G = B. This point being clarified, we will now expose the model used
throughout these pages.

Definition 7 (Additive outlier model)

All stochastic processes in this definition have same index set (Ω,A, P ) and state
space (Γ,G). Let σb ∈ R+.

• (at)t∈N is a stochastic process such that ∀t ∈ N,at ∼ B(γ) where γ ∈ [0, 1]
is called degree of contamination and the at are independent

• (bt)t∈N is a stochastic process such that ∀t ∈ N,bt ∼ N (0, σ2
b ) and the bt

are independent

• (xt)t∈N is a stationary time series called core process

• (vt)t∈N is a time series such that ∀t ∈ N,vt = atbt called contaminating
process.

The time series (yt)t∈N defined by ∀t ∈ N,yt := xt + vt, is said to follow an
additive outlier model with degree of contamination γ.

♦

The additive outlier model is a stationary core process to which occasional
outliers have been added. γ represents the amount of noise that has been added
to the core process, γ = 0 corresponding to no contamination and γ = 1 to a

17



2.1 The Additive Outlier Model Mathematical Context

contamination at every observation. This model will be used to test the behavior
of the various algorithms presented here.

Another aspect of the additive outlier model is that it allows us to test an
algorithm: indeed, we can generate what we will call a core process, i.e. a process
with contamination γ = 0, and add contamination to this process. The aim of
all the algorithms presented in this report is, given the contaminated process, to
recover the underlying core process. Therefore, we can test the efficiency of an
algorithm by presenting it with a contaminated process and comparing its output
with the original core process.

Example: On Figure 2.1 page 19, we generated a core process xt by means
which will be explained in the next section.

Then we created the contaminating process vt with γ = 0.1 (Figure 2.2 page
19).

Putting everything together, we get a contaminated process which is the sum
of the two previous processes. To get a better idea of the influence of the con-
taminating process, we plotted on Figure 2.3 page 20 the core process in black
and the occasional outliers in red.

Having now solved the problem of how to model outliers, we will now address
the question of how to model the core process.

18
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Figure 2.1: Plot of the core process
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Figure 2.2: Plot of the contaminating process
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Figure 2.3: Plot of the contaminated process
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2.2 Auto-regressive Models

Finding a model for the core process is difficult because the processes under
consideration can be of very different nature. Indeed, the problem of removing
outliers can arise in very different contexts: medical science, physics, economy,
etc. Time series can be modeled in various ways. A model often used is the
auto-regressive model. The time series at a given position only depends on a
weighted sum of its previous values and a “white noise” error term.

Definition 8 (Auto-regressive model)
Given

• p ∈ N∗, σ ∈ R+, (λ1, · · · , λp−1) ∈ Rp−1, λp ∈ R∗, µ ∈ R

• x0, · · · ,xp−1 are constants

• (εt)t∈N is a time series such that ∀t ∈ N, εt ∼ N (0, σ2), the εt being inde-
pendent

• (xt)t∈N is a time series such that ∀t ∈ N,xt − µ =
∑p

i=1 λi(xt−i − µ) + εt

(xt)t∈N follows an auto-regressive model of order p with mean µ.
♦

An auto-regressive model of order p is often denoted by AR(p).
Example: Figure 2.4 page 23 is that of an AR(2) process with λ1 = 0.1 and

λ2 = −0.2.
We only generated samples from AR(2) processes. For such processes, there

exists an explicit formulation of the time series if we suppose that ∀t ∈ N, εt = 0.
Indeed, consider for (a, b) ∈ R∗×R the set E of all sequences of real numbers

(un)n∈N such as:
un+2 = aun+1 + bun

E is a 2-dimensional vector space. To describe it, we need a basis. Lets try
with (un)n∈N := (rn)n∈N with r 6= 0. This leads to solving the equation

rn+2 = arn+1 + brn

Dividing by rn 6= 0 yields
r2 = ar + b

Let ∆ := a2 + 4b.

• For ∆ > 0, r1 := a−
√
a2+4b
2

and r2 := a+
√
a2+4b
2

un =
1√

a2 + 4b
[(r2u0 − u1)r

n
1 + (u1 − r1u0)r

n
2 ]

with (u0, u1) ∈ R2.

21



2.2 Auto-regressive Models Mathematical Context

• For ∆ = 0, let us first notice that if (rn)n∈N is a solution, so is (nrn)n∈N.

un = (1− n)
(a

2

)n
u0 + n

(a
2

)n−1

u1

with (u0, u1) ∈ R2.

• For ∆ < 0, let θ := arctan

√
−(a2+4b)

a
.

un =
√
−bn

(

u0 cos (nθ) +

(√
1 + θ2

θ
√
−b

u1 −
u0

θ

)

sin (nθ)

)

with (u0, u1) ∈ R2.

Therefore, the choice of the coefficients of the AR(2) model is of some impor-
tance. One usually wants the model to oscillate to some degree and not diverge
exponentially so one usually chooses the coefficients so that a2 + 4b ≤ 0.

To test the algorithms, we will often use a Gaussian AR(2) process. To
generate it, we will simulate two random values x1 and x2 by a random number
generation algorithm (see appendix C) and a vector of “noise”ε, also by a random
number generator. Then we build the time series recursively by:

xt = axt−1 + bxt−2 + εt

We now have enough background to review the first algorithm: the repeated
median algorithm.
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Figure 2.4: Plot of the process xt = 0.1xt−1 − 0.2xt−2 + εt
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Chapter 3

Repeated Median

The first algorithm that we will expose is the repeated median algorithm. We
will first motivate and explain the fitting of a sinusoid through a time-series and
then generalize this approach to build a robust Fourier transformation.

3.1 Motivation

We previously said that the simulations used to qualify the algorithms would
be based on an autoregressive model xp+2 = αxp+1 + βxp with (α, β) ∈ R2 such
as α2 + 4β ≤ 0 and p ∈ I ⊆ N, index set. The general solution for an AR(2)
model with α2 + 4β < 0 and ∀p ∈ I, εp = 0 being

∃θ ∈ R∗
+, ∀p ∈ I, : xp =

√
−βp

[
x0 cos (pθ) +

(√
1 + θ2

θ
√−β x1 −

x0

θ

)
sin (pθ)

]

it makes sense to investigate a procedure which will give an exact fit for a time
series (xp)p∈I such as xp = a cos (ωp) + b sin (ωp). If β = −1 and −2 < α < 2, we
will expect to find

a = x0,b =

(√
1 + θ2

θ
x1 −

x0

θ

)
, ω = θ = arctan

(√
4− a2

a

)

We now suppose the observed process (yp)p∈I follows an additive outlier model
∀p ∈ I,yp = xp + vp with P (vp = 0) = 1 − γ. If ω 6= 0 is known, then the
coefficients a and b can be found using two different observations yi and yj:

[
yi
yj

]
=

[
cos (ωi) sin (ωi)
cos (ωj) sin (ωj)

] [
aij
bij

]

If γ = 0, we will have ∀(i, j) ∈ I2, aij = a, bij = b. Otherwise, let

M :=

[
cos (ωi) sin (ωi)
cos (ωj) sin (ωj)

]
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3.1 Motivation Repeated Median

det (M) = cos (ωi) sin (ωj) − sin (ωi) cos (ωj) = sin [ω(i− j)]. The system
therefore has a solution if, and only if, i and j are such as i − j 6= kπ

ω
, k ∈ Z. If

this condition holds, then i and j will be said to be in normal position.
We now have two sets of coefficients aij and bij , (i, j) ∈ I2. To get an estimate

of a and b out of them, we will build the repeated median:

â := MEDj∈IMEDi∈I(aij)

b̂ := MEDj∈IMEDi∈I(bij)

The robust estimate of the signal (xp)p∈I will therefore be:

∀p ∈ I, x̂p := â cos (ωp) + b̂ sin (ωp)

Although this method works extremely well if ∀p ∈ I, xp = a cos (ωp) +
b sin (ωp) (for γ = 0, the signal is recovered without error), it needs to be gener-
alized to a wider class of time series.

In order to apply the same kind of method as above, we will write a time
series as a sum of trigonometric functions. From now on, we will be dealing with
time series indexed by a finite, non-empty set I with n := |I| ≥ 1. Without loss
of generality we will suppose that I = [[0, n− 1]]. All functions will be defined on
I and F(I,R) will denote the set of all functions f : I → R. First we will define
a scalar product

〈, 〉 :
{

(F(I,R))2 → R

((xp)p∈I , (yp)p∈I) 7→ ∑n−1
p=0 xpyp

Let ‖.‖ be the norm induced by 〈., .〉. E := F(I,R) is an n-dimensional R-
vector-space. We will therefore need n independent functions to get a basis for
E. ∀k ∈ [[0, n− 1]], ωk := 2kπ

n
.

We want to build a basis of E out of (cos (ωkp))p∈I and (sin (ωkp))p∈I . Let
(k, k′) ∈ I2 and SP (k, k′) := 〈(cos (ωkp))p∈I , (cos (ωk′p))p∈I〉.

SP (k, k′) =
n−1∑

p=0

cos (ωkp) cos (ωk′p)

=
1

2

n−1∑

p=0

[cos ((ωk + ωk′)p) + cos ((ωk − ωk′)p)]

Let

r1 := e
2i(k+k′)π

n , S1 :=

n−1∑

p=0

rp1
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and

r2 := e
2i(k−k′)π

n , S2 :=

n−1∑

p=0

rp2

SP (k, k′) = ℜ(S1 + S2)

To calculate S1 and S2, we first need to investigate when r1 and r2 (respec-
tively) are equal to 1.

(r1 = 1)⇔
(
k + k′

n
= ℓ ∈ Z

)

As k, k′ ≥ 0, this reduces to:

(r1 = 1)⇔
(
k + k′

n
= ℓ ∈ N∗

)

In other words, k+ k′ must not be a multiple of n. A necessary and sufficient
condition to have r1 6= 1 is therefore 0 < k, k′ < n

2
. This condition is also sufficient

to prevent r2 = 1.
We find that

SP =

{
n
2
, k = k′

0, k 6= k′

Hence the set of vectors ek :=
√

n
2
(cos (ωkp))p∈I , for 0 < k < n

2
is a set of

orthonormal vectors: they are therefore independent. We can also add the vector
e0 :=

√
n
2

because it is orthogonal to all the others and its norm is 1. If n is even,
we can add an extra vector corresponding to k = n

2
: its en

2
:=
√
n(cos (ωn

2
p))p∈I =

(cos (πp))p∈I = ((−1)p)p∈I .
For (sin (ωkp))p∈I , by a similar calculation we find the set of vectors: fk :=√
n
2
(sin (ωkp))p∈I for 0 < k < n

2
.

Moreover, ∀(k, k′) ∈ I2, 〈(cos (ωkp))p∈I , (sin (ω′
kp))p∈I〉 = 0.

All in all, we have:

• If n is even:

e0, · · · , en
2
⇒ n

2
+ 1 vectors

f1, · · · , fn
2
−1 ⇒ n

2
− 1vectors

}
⇒ n vectors.

• If n is odd:

e0, · · · , en−1
2
⇒ n+1

2
vectors

f1, · · · , fn−1
2
⇒ n−1

2
vectors

}

⇒ n vectors.
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We can now write any time series in E on the orthonormal basis we have just
built. The result is called Fourier representation of a finite time series.

∀(xp)p∈I ∈ E, ∀p ∈ I, xp = a0 +
∑

0<k<n
2

(ak cos (ωkp) + bk sin (ωkp)) + (−1)pan
2

where the last term is included only if n is even, and for 0 < k < n
2
,

ak :=
2

n

n−1∑

p=0

xp cos (ωkp)

bk :=
2

n

n−1∑

p=0

xp sin (ωkp)

a0 :=
1

n

n−1∑

p=0

xp

an
2

:=
1

n

n−1∑

p=0

xp(−1)p

3.2 Repeated Median Algorithm

This algorithm is presented by Tatum and Hurvich in [19]. The Fourier repre-
sentation of a function is just another way of writing the same function. Hence if
we calculate the Fourier coefficients by the method explained above and we build
the sum of the trigonometric functions weighted with the Fourier coefficients, we
will end up with exactly the same time series as we started with. If we want to
remove outliers from a time series, the Fourier representation is useless as we will
just be writing the same time series in a different form (and thus getting all the
outliers back). Fortunately, we do not need to throw away everything we just did:
instead of calculating the Fourier coefficients directly, we will use a “robustified”
version of these coefficients with the repeated median. We will do this exactly
the same way as we did it for one frequency: we will successively fit a sinusoid
at each frequency and then substract that frequency from the rest of the data to
get a more precise result.

At each frequency ωk with 0 < k < n/2, we will build as before the sets of
coefficients

akij :=
xi sin (ωkj)− xj sin (ωki)

sin (ωk(j − i))
, (i, j) ∈ I2, i 6= j

and

bkij :=
xj cos (ωki)− xi cos (ωkj)

sin (ωk(j − i))
, (i, j) ∈ I2, i 6= j
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The estimate for a0 will be the median of the time series. In order to have
one coefficient less to calculate and get all observations in normal position, we
will take a time series of prime length. This can always be done by extracting
two overlapping sequences of prime length (the greatest prime n′ < n) from the
original time series. The first sequence consists of the first n′ observations and
the second sequence of the last n′ observations. We will apply the algorithm
separately to each subsequence, then recombine them by averaging.

The following theorem can be found in the article by Tatum and Hurvich
([19]).

Theorem 1 (Breakdown bound of the repeated median filter)
The repeated median filter has a breakdown point of

(n′ − 1)/2− 1

n

where n is the length of the time-series to filter and n′ is the greatest prime less
than or equal to n.

�

To get a more precise evaluation of the coefficients, we will sweep each fre-
quency out after having calculated the corresponding coefficient and the whole
algorithm will be run M times (of course, we will not reinitialize the time-series
between each run). Intuitively, we can guess that the bigger the coefficient, the
more likely it is to contaminate the other coefficients and the less likely it is to
be contaminated by the other coefficients. We therefore need to know what co-
efficients are the biggest in order to treat them first. To do this, we do not need
a very precise estimate of the spectrum as we just want to know in what order
we will calculate the coefficients. We take the natural estimator as defined in
appendix B (page 129) and we smooth it to reduce its variance, the amount of
smoothing being determined by AICC (as presented page 149).

The first few steps of the algorithm will be:

Separate the time-series into two overlapping subsequences of prime length
for each subsequence do

Build natural periodogram
Smooth the periodogram
Order the frequencies from the strongest to the weakest
yt ← yt −MED(yt)

end for

For each frequency, we will then calculate the two sets of coefficients akij and
bkij :
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for i = 0 to n′ − 1 do
for j = 0 to n′ − 1, j 6= i do
akij =

xi sin (ωkj)−xj sin (ωki)

sin (ωk(j−i))

bkij =
xj cos (ωki)−xi cos (ωkj)

sin (ωk(j−i))
end for

end for
a′k ←MEDjMEDiaijk
b′k ← MEDjMEDibijk

yt = yt − (a′k cos(ωkt) + b′k sin(ωkt))
aRMk ← aRMk + a′k
bRMk ← bRMk + b′k

In the sweeping phase, we remove the residuals from the previous step and
update the robust estimate of the coefficients aRMk and bRMk (“update” because
unless M = 1, we already have an estimate from the previous run):

The complete algorithm is presented page 31.
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Algorithm 1 Repeated median algorithm
Separate the time-series into two overlapping subsequences of prime length
for each subsequence do

Build natural periodogram
Smooth the periodogram
Order the frequencies from the strongest to the weakest
for m = 1 to M do

for k from strongest to weekest frequency do
yt ← yt −MED(yt)
for i = 0 to n′ − 1 do

for j = 0 to n′ − 1, j 6= i do
akij =

xi sin (ωkj)−xj sin (ωki)

sin (ωk(j−i))

bkij =
xj cos (ωki)−xi cos (ωkj)

sin (ωk(j−i))
end for

end for
a′k ←MEDjMEDiaijk
b′k ←MEDjMEDibijk

end for
yt = yt − (a′k cos(ωkt) + b′k sin(ωkt))
aRMk ← aRMk + a′k
bRMk ← bRMk + b′k

end for
end for
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3.3 Results

In this section, we will see the repeated median filter in action. The canvas
used for the presentation of the results of all the algorithms will be the same as
this one. In each subsection we will detail how the results were obtained and
how to interpret them. Four types of results will be analyzed successively: (1)
a filtering example, (2) the response of the filter to various contamination levels,
(3) a sensitivity curve and (4) the speed of the algorithms.

3.3.1 Filtering Example

Overview

This example is simply the filtering of a contaminated autoregressive time-
series. In other words, we generated an AR(2) process and contaminated it with
another process. The aim is, given the contaminated process, compare the output
of the filter to the core process. A perfect filter would recover the core process
exactly. We have to bear in mind that this is just a qualitative way of judging
the filter.

Data Set Used

In our C++ implementation of the algorithms, we specify the parameter values
of the algorithms in a text file. We will give an example of such a file and comment
its various sections.

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 4
NbTermes 25
gamma 0.1
variance 20
param_biweight_location 4
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -40
Sensitivity_max 40
Sensitivity_nb_points 100
Sensitivity_pos 15
Cleaner_lower_bound 2

32



Repeated Median 3.3 Results

Cleaner_upper_bound 6

1. phi_1 0.75
phi_2 -0.5

These are the parameters of the AR(2) process used. In the example file,
they correspond to the process defined by: xt = 0.75xt−1 − 0.5xt−2 + εt
where εt is N (0, 1).

2. NbTermes 25

This is just the length of the time series.

3. gamma 0.1

Controls the contamination level (as explained in the definition of the ad-
ditive outlier model, page 17).

4. variance 20

This is the variance σb of the contaminating process (see the definition of
the additive outlier model page 17).

5. param_biweight_location 4
param_biweight_regression 6

These are the parameters of the biweight filter algorithm.

6. Max_Nb_Iteration 60

Sets the maximum number of iterations for the recursive procedures.

7. M 2

This is the number of times the algorithm will be performed (corresponds
to the M in the algorithm page 31, for example).

8. Scale_param_cleaner 4

Scale parameter used for the flagging procedure in the biweight filter cleaner
and repeated median cleaner algorithms.

9. Sensitivity_min -40
Sensitivity_max 40
Sensitivity_nb_points 100
Sensitivity_pos 15

Parameters for the sensitivity curves.

10. Cleaner_lower_bound 2
Cleaner_upper_bound 6

The a and b constants, as defined page 63.
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The parameter values we used for this particular result are reproduced on
page 35.

Results

The results Figure 3.1 page 35 show us that although the filter is not perfect,
it yields reasonably good results. It certainly cannot be used to try and recover
a complex core process, but we can use it as reference for future algorithms.
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Figure 3.1: Output of the repeated median filter

Model parameters

phi_1 0.2
phi_2 -0.2
Seed 2
NbTermes 50
gamma 0.05
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -100
Sensitivity_max 100
Sensitivity_nb_points 100
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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3.3.2 Response to Various Contamination Levels

Overview

Here we will plot a series of boxplots for various contamination levels. At each
contamination level, we ran the filter a few times and calculated the logarithm of
the residuals. By “residuals” we mean

‖y− yF‖2
‖v‖2

where y is the core process, yF is the filtered process and v is the contaminating
process. The norm used is the euclidean one. In the case of an ideal filter, the
quotient is equal to one. Therefore, the closer the residuals are to one, the better
the filter. Of course, the residuals will always be greater than one because the
contaminating process is null everywhere except at the contaminated time points,
which is not the case of the observed residuals y−yF . We ran the repeated median
filter fifty times, taking a different seed each time (seeds from 0 to 49), the other
parameters being left unchanged.

Data Set Used

Apart from the random number generator seed, we used the parameters on
page 37 each time.

Results

The first thing we notice in the results (Figure 3.2 page 37) is that the residuals
grow exponentially with the contamination rate. The second is that the variances
of these residuals also grow. This is because the variance of v is proportional to
γ. However, it seems that up until γ#0.44, the residuals do not grow too much,
which would tend to confirm that the breakdown bound is indeed (47−1)/2−1

50
as

predicted by the theorem on the breakdown point of the repeated median filter
Theorem 3.2 page 29. In order to get a better view of the response for γ ≤ 0.44,
we will do another plot.

In Figure 3.3 page 38, the growth of the residuals does not seem to be expo-
nential, at least. However, from γ#0.293 on, the residuals seem a bit large: the
filter does not seem to perform quite as well as expected.
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Figure 3.2: Residuals for γ from 0 to 1

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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Figure 3.3: Residuals for γ from 0 to 0.44

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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3.3.3 Sensitivity Curve

Overview

A sensitivity curve is constructed as follows: we choose a particular point
of the time series, we shift it and then record the output of the filter at this
particular time-point. We then plot the output of the filter against the values
of the shift. A robust filter will not be too sensitive to extreme values. For a
non-robust algorithm, on the contrary, the output will become worse and worse
as the shift increases.

Data Set Used

The parameter values for this sensitivity curve can be found on page 40.

Results

Figure 3.4 page 40 shows that although the output of the filter is bounded,
the curve is fairly irregular and even if it is vaguely linear in its center, an outlier
will continue to exert an influence, no matter how large it is. This is, of course,
a major drawback of this algorithm.
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Figure 3.4: Sensitivity curve repeated median filter

Model parameters

phi_1 1
phi_2 -0.5
Seed 3141
NbTermes 50
gamma 0
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -100
Sensitivity_max 100
Sensitivity_nb_points 100
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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3.3.4 Speed

How fast is our algorithm running? This subsection presents the tests we
performed to assess the speed of the repeated median algorithm.

Overview

As for the residuals, we used the same data set each time, changing only the
length of the time series. Using the Linux command “time”, we got the user time
needed for the execution of our C++ implementation of this algorithm. We then
tried to fit a model to the data so as to predict how long the algorithm would
run on a given data set. This will be particularly useful when deciding which
algorithm to use on a big data set.

Data Set

Apart from the length, the parameters were held constant through the simu-
lation. The parameter file can be found page 42.

Results

The graph we obtained is reproduced page 42. We managed to fit the following
model (t is the execution time and n the length of the time series):

log(t) = −9.87 + 0.007n+ 2.014 log(n)
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Figure 3.5: Evolution of the execution time of the repeated median algorithm

Model parameters

phi_1 0.1
phi_2 -0.2
Seed 4
NbTermes 50
gamma 0.10
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -20
Sensitivity_max 20
Sensitivity_nb_points 50
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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3.3.5 Conclusions

The repeated median filter has advantages and disadvantages which we will
summarize here.

Advantages

1. It is fast.

2. It is robust.

Disadvantages

1. The residuals always exert some influence on the results, no matter how
extreme they are.

2. The output of the filter is perfectible.

A decisive advantage of the repeated median algorithm is its exact fit property,
as explained by Rousseeuw and Leroy in [17] page 60.

Improvements

We would like to reduce the influence of the observations with the highest
residuals (downweigh them). Perhaps if we changed the regression procedure used
in the algorithm we would be able to improve the results. These improvements
will lead us to the biweight filter algorithm which is discussed in the next section.
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Chapter 4

Biweight Filter

The biweight filter is the second algorithm we will present in this thesis. It
arises as an answer to the limitations of the repeated median algorithm.

4.1 Motivation

The repeated median algorithm has one major drawback: an outlier can have
an influence on the result, no matter how large it is. Although the algorithm is
robust because its response is bounded, if we have a very large outlier, it will
still distort the output, whereas we would like it to be ignored completely, i.e.
we would like to give weight 0 to extreme observations. To do this, we have to
generalize the repeated median algorithm.

In the repeated median algorithm, we performed a robust regression on a set
of trigonometric functions to get a robust estimate of the Fourier coefficients of
the time series. The regression we did was not even a weighted regression, which
means that we gave the same importance to all the values, even the most ex-
treme ones. In Appendix A, we show that if we have more confidence in certain
observations than in others, it is better to use a weighted regression than an or-
dinary least-squares one. We also present a regression method which calculates
the weights “automagically” for us: the recursively reweighted least-squares re-
gression. A theorem of appendix A gives a good justification for using a Huber
function. Tatum and Hurvich chose Tukey’s biweight function: not only do we
get a breakdown point of 0.5 but we know that given regularity assumptions, the
estimator sequence converges. The starting estimate of the coefficients is very
important, lest we land in a local minimum. We will use the repeated median as
a first estimate.

The algorithm is therefore the same as the repeated median algorithm, the
only difference being the type of regression.
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4.2 Biweight Filter Algorithm

The algorithm is presented by Tatum and Hurvich in [18]. We will review it
in detail.

After the following step:

a′k ←MEDjMEDiaijk
b′k ← MEDjMEDibijk

we will add:

a′′k ← biweight regression with a′k as starting value
b′′k ← biweight regression with b′k as starting value

Moreover, we will not use the median as an estimate for the frequency zero:
instead, we will perform a biweight regression on the constant function x 7→ 1.
Indeed, in non-robust regression, this would correspond to finding the mean. The
robust equivalent is called biweight location estimate.

The only difference between my implementation and that of Tatum and Hur-
vich is that we added a convergence acceleration algorithm to increase the preci-
sion of the biweight regression, as explained in Appendix C.

In summary, the biweight filter algorithm is:
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Algorithm 2 Biweight filter algorithm

Separate the time-series into two overlapping subsequences of prime length
for each subsequence do

Build natural periodogram
Smooth the periodogram
Order the frequencies from the strongest to the weakest
for m = 1 to M do

for k from strongest to weekest frequency do
yt ← yt− biweight location estimate(yt)
for i = 0 to n′ − 1 do

for j = 0 to n′ − 1, j 6= i do
akij =

xi sin (ωkj)−xj sin (ωki)

sin (ωk(j−i))

bkij =
xj cos (ωki)−xi cos (ωkj)

sin (ωk(j−i))
end for

end for
a′k ←MEDjMEDiaijk
b′k ←MEDjMEDibijk
a′′k ← biweight regression with a′k as starting value
b′′k ← biweight regression with b′k as starting value

end for
yt = yt − (a′′k cos(ωkt) + b′′k sin(ωkt))
aBFk ← aBFk + a′′k
bBFk ← bBFk + b′′k

end for
end for
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4.3 Results

As in the corresponding section in the previous chapter, we will examine the
output of the biweight filter.

4.3.1 Filtering Example

Data Set Used

The data set used is reproduced on page 49.

Results

The results of the filter can be seen on Figure 4.1 page 49.
The fit is better than the one achieved for the repeated median.
The core process, in black, is an AR(2) process with

xt = 0.1xt−1 − 0.5xt−2 + εt

The contaminated values appear in red, which means the contaminated pro-
cess is exactly the same as the core process except for the contaminated values
for which it coincides with the red curve instead of the black one.

The filtered process is drawn in green. We can see that it lies very close to
the core process, which means the filter is working well.
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Figure 4.1: Filtering with the biweight filter

Model parameters

phi_1 0.2
phi_2 -0.2
Seed 2
NbTermes 50
gamma 0.05
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -100
Sensitivity_max 100
Sensitivity_nb_points 100
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5

49



4.3 Results Biweight Filter

4.3.2 Distribution of the Residuals

Once again, we plot the values of log
(

‖y−yF ‖2

‖v‖2

)
.

Data Set Used

Apart from the random number generator seed, we used the parameter file on
page 54 (the same as the one used for the repeated median so we can compare
both outputs).

Results

Figure 4.2 page 51 shows us a first set of boxplots for γ from 0 to 1. The
biweight filter seems less robust than its predecessor as the boxplots rise quicker.
We will now zoom in to the first part of the plot (Figure 4.3 page 52), like we did
for the repeated median filter.

In the closer view, things are not as bad as expected: the residuals do not
vary much up till γ#0.233 so in that range the biweight filter actually seems to
perform better than its simpler counterpart. Of course, such a comparison is very
incomplete and we would need to perform more tests, but our purpose in this
report is not to compare the algorithms - just to present them. Therefore we
are only interested in seeing whether we addressed the problems of the repeated
median algorithm correctly.
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Figure 4.2: Residuals for γ from 0 to 1

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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Figure 4.3: Residuals for γ from 0 to 0.35

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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4.3.3 Sensitivity Curve

As before, we will plot a sensitivity curve. We hope it will at least be more
regular than that of the repeated median.

Data Set Used

The data set used can be found page 54.

Results

The resulting Figure 4.4 page 54 is much smoother than the previous one.
More importantly, big shifts are not taken into consideration and this is exactly
what we wanted. All is not perfect, however: the curve is not symmetrical which
means that positive shifts are not equivalent to negative ones, and although the
weights are in a neighborhood of zero for extreme deviations, they are not exactly
zero. The curve has no reason to be centered in zero: indeed, the asymptotic
value of the sensitivity curve is just the value of the filtered process at this time
point without taking the observation at this time point into account.
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Figure 4.4: Sensitivity curve of the biweight filter

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 4
NbTermes 50
gamma 0
variance 20
param_biweight_location 4
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -40
Sensitivity_max 40
Sensitivity_nb_points 100
Sensitivity_pos 15
Cleaner_lower_bound 2
Cleaner_upper_bound 6
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4.3.4 Speed

Figure 4.5 page 56 is the graph of the execution time of the biweight filter as
a function of the length of the time series. We used the parameter set page 56.
The red line is the fitted model. We found the following coefficients:

log(Time) = −8.8 + 4.2× 10−3Length + 2.1 log(Length)

The biweight filter is therefore approximately twice as slow as the repeated
median.
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Figure 4.5: Evolution of execution time

Model parameters

phi_1 0.1
phi_2 -0.2
Seed 4
NbTermes 50
gamma 0.10
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -20
Sensitivity_max 20
Sensitivity_nb_points 50
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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4.3.5 Conclusions

As before, our new filter has advantages and bad disadvantages.

Advantages

1. More regular for small contamination

2. Large outliers are not taken into consideration

Disadvantages

1. Weights for large outliers are not exactly zero

2. Even with no contamination, we cannot recover the original process (we
have lost the exact fit property)

Improvements

What we would like to do next is to use the output of the biweight filter as a
first estimate for a more powerful algorithm. This drives us to the biweight filter
cleaner, explained in the next chapter.
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Chapter 5

Biweight Filter Cleaner

5.1 Motivation

One disadvantage of the biweight filter is that no matter how small a contam-
ination we have, the output of the process will reflect this contamination. Indeed,
the biweight filter has lost the exact fit property of the repeated median filter.
What we would like is an algorithm that leaves most of the process unchanged,
modifying only the “problematic” values.

The idea is to use the biweight filter to get a “likely” version of the time series
we then use to flag the values which lie too far from the original process. If there
is a sudden jolt in the time series, the value of the filtered process will be quite
different at this time point from the original value and therefore it will be flagged.

Then, we build the“cleaned”process: we first build a compromise between the
filtered version of the time series and the original data without considering the
flagged values. We call this compromise interpolated time series. Then we leave
all the values of the original time series unchanged, except the extreme ones.
These values are then replaced by a compromise between the original values
and the interpolated ones which lie closer to the rest of the process. We could
simply use the filtered version instead of going through the process of building
an interpolated time series, but Tatum and Hurvich have found this to be less
efficient in simulations.

5.2 Biweight Filter Cleaner Algorithm

The first step in the biweight filter cleaner algorithm is to flag possible outliers.
This step is called, quite unsurprisingly, flagging. We then build an interpolated
time series, i.e. a compromise between the original contaminated series and the
filtered one. The last step is putting everything together and computing the
cleaned sequence.
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5.2.1 Flagging

We first compute the filtered version of the time-series using the biweight
filter. We then look at the discrepancy between the original contaminated process
and the filtered one to decide whether a time-point should be considered as an
outlier. To decide which observation should be flagged, we need to estimate
a “typical” deviation between the filtered data and the original observations (a
standardization procedure very similar to that of the biweight regression). We
use the median absolute deviation (MAD, see Appendix A) as a robust scale
estimate of the residuals. Let n ∈ N∗ and (yi)1≤i≤n be the original observations.
(yFi )1≤i≤n will denote the filtered process.

ri := yi − yFi , 1 ≤ i ≤ n

s := MEDi |ri −MEDi(ri)|
The scaled residuals are then defined by:

ui :=
ri
Ks

, 1 ≤ i ≤ n

where K is a tuning constant (similar to that of the biweight regression). Tatum
and Hurvich used K = 4 in their paper. If |ut| > 1, then yt is flagged.

5.2.2 Linear Interpolator

The interpolated time-series is simply the best approximation of the original
time-series, not taking flagged values into account. This means that we will
build a weighted version of the original time-series, i.e. at each time-point i the
interpolated value ŷi will be a weighted average of all the other values of the time-
series with weight 0 for flagged observations. More precisely, at each time-point
i, we will define a vector of weights w(i) and the interpolated value ŷi will be

ŷi :=

n∑

j=1

w
(i)
j (yj − yF ) + yF

where yF is the average of the filtered time-series and w
(i)
jF = 0 if jF is a flagged

time-point. How are we going to compute the weights? First, we center the time
series by subtracting the mean of the filtered version of the time-series. We then
get a process

∀i ∈ [[1, n]], zi := yt − yF
Then we build the best approximation of the time-series (zi)1≤i≤n using all the
values except the flagged ones. Thus, we are looking for n vectors of weights
minimizing (for all i ∈ [[1, n]]):

(
n∑

j=1

(w
(i)
j zj)− zi

)2
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with the condition w
(i)
jF = 0 if jF is a flagged time-point.

To solve this optimization problem, let us consider the general case of a zero-
mean, stationary process (zt)1≤t≤n. The expression to be minimized can be writ-
ten:

E




(

n∑

j=1

(w
(i)
j zj)− zi

)2




If zT := (z1, · · · ,zn) and C := E(zzT), this is equivalent to minimizing:

E

[
w(i)TzzTw(i)

]
= w(i)TCw(i)

C is the variance-covariance matrix, i.e. if γ is the autocovariance function,

C =





γ(0) γ(1) · · · γ(n)
. . .

. . .
...

Sym
. . . γ(1)

γ(0)





We therefore need an estimate γ̂ of the autocovariance function. Tatum and
Hurvich propose:

γ̂(r) =
1

n

n−r∑

i=1

(yFi − yF )(yFi+r − yF )

The problem of this estimator is that we do not use the same number of
observations for each value of r: we will need to smooth it using the method
described in Appendix B. Choosing the Bartlett-Priestley window guarantees
that C is positive definite. We will denote this smoothed version by γ̃. We
determine the amount of smoothing with the AICC criterion (also explained in
Appendix B).

For the constraints, we do the following reasoning. Let m be the number of
flagged values. For each time-point i, we will define a matrix M(i) and a vector
b(i) the following way.

If the time-point i has been flagged, then M(i) will be an m × n matrix and
b(i) will have dimension m.

If i has not been flagged, then M(i) will be an (m+1)×n matrix and b(i) will
have dimension m+ 1.

In both cases, each row of M(i) corresponds to a flagged value. The matrix
M has zeros everywhere except at the flagged time-points: for example, if the
i-th flagged value is value number j in the time-series, then we will put a 1 in
the (i, j)-entry. If i is flagged, then the vector b(i) will contain zeros everywhere
except at the index corresponding to i (i.e. the position of the flagged value i
in the list of all flagged values) where it will hold −1. If i is not flagged, then
b(i) will have zeros everywhere except on its last entry which will be −1 and the
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matrix M(i) will be defined as above but the last line (m + 1) will have a 1 in
position i.

For example, if n = 6 and the flagged values are (1, 3, 4), then m = 3 and the
matrix M(1) looks like:

M(1) =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0





Vector b(1) will be:
b(1)T = (−1, 0, 0)

For i = 2,

M(2) =





1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0





Vector b(2) will be:
b(2)T = (0, 0, 0,−1)

Thus, ∀i ∈ [[1, n]], the constraints can be written:

M(i)wi = b(i)

Putting everything together, at each time-point i, we have to solve the following
minimization problem for w(i):

Minimize w(i)TCw(i),
subject to M(i)w(i) = b(i).

Using Appendix C, we apply the Lagrange multiplicator theorem to the special
case of a quadratic form (Theorem 11.1.4 page 156), which yields to:

∀i ∈ [[1, n]],w(i) = C−1M(i)T(M(i)C−1M(i)T)−1b(i)

Once we have computed these weights, we can calculate the interpolated values:

∀i ∈ [[1, n]], ŷi :=
n∑

j=1

w
(i)
j (yj − yF ) + yF

To decide whether an observation is “far enough” to be replaced by the interpo-
lated value, we use the studentized residuals di with:

∀i ∈ [[1, n]], di :=
yi − ŷi
σ̂i
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where σ̂i is derived from the estimated interpolation variance:

σ̂i
2 :=

n∑

j=1

n∑

k=1

w
(i)
j w

(i)
k γ̃(j − k)

The cleaned data set is constructed as follows:

∀i ∈ [[1, n]], yCi :=






yi, if |di| ≤ a
αiyi + (1− αi)ŷi, if a < |di| ≤ b
ŷi, if |di| > b

where a and b are two constants chosen empirically to permit most flagged values
to be readmitted when the core process is Gaussian autoregressive and non-
contaminated. Tatum and Hurvich chose a = 3 and b = 5. ∀i ∈ [[1, n]], αi := b−di

b−a .

5.2.3 Complete Algorithm

The complete biweight filter cleaner algorithm, as presentend by Tatum and
Hurvich in [18], is detailed on page 64.
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Algorithm 3 Biweight filter cleaner algorithm

Compute filtered version of the series yF

for i = 1 to n do
ri ← yi − yFi

end for
Compute scale estimate s←MEDi |ri −MEDj(rj)|
Set a value for K, a and b (for example, K ← 4, a← 2 and b← 3)
Initialize an empty vector for the flagged values
for i = 1 to n do
ui ← ri

Ks

if |ui| > 1 then
append i to the vector of flagged values

end if
end for
Compute estimate for the periodogram
Determine the amount of smoothing with AICC
Smooth periodogram
Inverse Fourier-transform the periodogram
Compute the covariance matrix C
for i = 1 to n do

Compute matrix M(i) and vector b(i)

w(i) ← C−1M(i)T(MC−1MT)−1b(i)

end for
for i = 1 to n do

Compute interpolated value: ŷi ←
∑n

j=1 w
(i)
j (yj − yF ) + yF

Compute estimated interpolation variance: σ̂i
2 ←∑n

j=1

∑n
k=1 w

(i)
j w

(i)
k γ̃(j −

k)
Calculate the studentized residuals: ∀i ∈ [[1, n]], di ← yi−ŷi

σ̂i

Calculate αi ← b−di

b−a
Construct the cleaned data set:

∀i ∈ [[1, n]], yCi ←






yi, if |di| ≤ a
αiyi + (1− αi)ŷi, if a ≤ |di| ≤ b
ŷi, if |di| ≥ b

end for
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5.3 Results

5.3.1 Filtering Example

We will use the same parameters as in the two previous algorithms. They can
be read on page 66. We obtained Figure 5.1 page 66. The graph is not perfect,
but not far from it: apart from four time points, we recover the core process
exactly. This is an encouraging first result!
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Figure 5.1: Output of the biweight filter cleaner

Model parameters

phi_1 0.2
phi_2 -0.2
Seed 2
NbTermes 50
gamma 0.05
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -100
Sensitivity_max 100
Sensitivity_nb_points 100
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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5.3.2 Distribution of the Residuals

As before, we use the parameters on page 68. The breakdown point seems
to be even lower than for the biweight filter. To investigate this, let us look at
a close-up (Figure 5.3 page 69). From γ = 0.23 on, the residuals grow almost
exponentially. This presumably means that the performance of the cleaner comes
with a price: a relatively low breakdown point.
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Figure 5.2: Residuals for γ from 0 to 1

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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Figure 5.3: Residuals for γ from 0 to 0.3

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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5.3.3 Sensitivity Curve

We used the parameter file page 71. In Figure 5.4 page 71, we can see that
this curve is far more regular than the two previous ones. Of course, this is
mainly caused by the interpolation at the end of the algorithm and not so much
by Tukey’s biweight function. Still, it is quite an attractive result.

The robustness of an algorithm is independent from it taking extreme obser-
vations into account: indeed, an algorithm can very well have a bounded output
and always take outliers into account. The obvious example of this property is the
repeated median filter. Conversely, an algorithm which weighs down extreme val-
ues might be not very robust, for example, the biweight filter cleaner. Therefore,
we always have to find a tradeoff between performance and robustness.
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Figure 5.4: Sensitivity Curve for the biweight filter cleaner

Model parameters

phi_1 1
phi_2 -0.5
Seed 333
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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5.3.4 Speed

The biweight filter cleaner is by far the slowest of the three algorithms.
We used the parameters page 73. The curve we obtained is page 73.
The red curve is the linear model we fitted:

log(t) = −9.16 + 0.0074n+ 2.22 log(n)

This is the same kind of model as for the biweight filter.
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Figure 5.5: Execution time of the cleaner

Model parameters

phi_1 0.1
phi_2 -0.2
Seed 4
NbTermes 50
gamma 0.10
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -20
Sensitivity_max 20
Sensitivity_nb_points 50
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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5.3.5 Conclusions

The main advantage of this algorithm is that it gives extremely good results.
The main drawback is that it takes ages to do so. The algorithm we will present
in the next chapter is meant to combine “the best of both worlds”: it is called
”repeated median cleaner”.
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Chapter 6

Repeated Median Cleaner

This algorithm is an attempt to solve the problems of the biweight filter
cleaner. The only difference with the previous algorithm is that instead of starting
with the biweight-filtered process, we use the repeated median filter. Otherwise,
the algorithm is exactly the same as the biweight filter cleaner. As this chapter is
almost identical to the previous one, we will only present very briefly the results
we obtained.

6.1 Filtering Example

A filtering example is reproduced on Figure 6.1 page 76. The output seems
comparable to that of the biweight filter cleaner.
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Figure 6.1: Output of the repeated median cleaner

Model parameters

phi_1 0.2
phi_2 -0.2
Seed 2
NbTermes 50
gamma 0.05
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -100
Sensitivity_max 100
Sensitivity_nb_points 100
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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Repeated Median Cleaner 6.2 Reponse to Various Contamination Levels

6.2 Reponse to Various Contamination Levels

The repeated median cleaner seems much more robust than the other algo-
rithms. Although its breakdown bound is about 0.3, it is much more regular than
the biweight filter or the biweight filter cleaner for γ ≤ 0.3.
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Figure 6.2: Residuals for γ from 0 to 1

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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Figure 6.3: Residuals for γ from 0 to 0.3

Model parameters

phi_1 0.75
phi_2 -0.5
Seed 33
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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6.3 Sensitivity Curve Repeated Median Cleaner

6.3 Sensitivity Curve

Figure 6.4 page 81 is extremely regular, although the curve is quite different
from Tukey’s biweight function.
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Figure 6.4: Sensitivity curve for the repeated median cleaner

Model parameters

phi_1 1
phi_2 -0.5
Seed 333
NbTermes 50
gamma 0.15
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 2
Scale_param_cleaner 4
Sensitivity_min -15
Sensitivity_max 15
Sensitivity_nb_points 200
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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6.4 Speed Repeated Median Cleaner

6.4 Speed

In Figure 6.5 page 83, we can see the model we fitted:

log(t) = −10.8 + 9.10−3n+ 2.3 log(n)
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Figure 6.5: Execution time of the repeated median cleaner

Model parameters

phi_1 0.1
phi_2 -0.2
Seed 4
NbTermes 50
gamma 0.10
variance 20
param_biweight_location 6
param_biweight_regression 6
Max_Nb_Iteration 60
M 1
Scale_param_cleaner 4
Sensitivity_min -20
Sensitivity_max 20
Sensitivity_nb_points 50
Sensitivity_pos 25
Cleaner_lower_bound 3
Cleaner_upper_bound 5
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6.5 Conclusions

This algorithm seems to be the most promising of the four. Indeed, it has the
robustness of the repeated median without lagging too much behind the biweight
filter cleaner in performance.
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Chapter 7

Heart Rate Variability in
Diabetes

The aim of this work was to filter a time-series in order to remove outliers.
This technique was to be applied to the special case of diabetes diagnosis. In this
last chapter we will see the biweight filter cleaner in action on a real data set.
First, we will present the heart-rate variability diagnosis technique. Then we will
review a few facts about diabetes and how heart-rate variability diagnosis is used
for this illness. Last, we will present the results we obtained.

7.1 Heart Rate Variability (HRV)

Heart rate variability is the analysis of the fluctuations in heart rate as an
early and sensitive indicator of bad health. It is based on the fact that the heart
does not beat at the same rate all of the time – it quickens as you run up stairs, for
instance, and slows as you nap. As the body experiences these constant changes
in rhythm throughout the day, the nervous system must continually function
to preserve a smooth, cohesive, overall pattern. Simple analysis of heart rate
variability has been used in clinical practice since the 1960s in fetal hypoxia. In
this section, we shall first give an overview of how the heart works, then in the
second part we will explain what electro-cardiograms are. In the last part, we
will give a few indications of how to use heart rate variability in diagnosis.

7.1.1 The Heart

From Wikipedia Encyclopedia, http://www.wikipedia.org.

Structure

A diagram of the heart can be seen on Figure 7.1 page 88. In the human body
the heart is normally situated slightly to the left of the middle of the thorax, be-
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hind the sternum (breastbone). It is enclosed by a sac known as the pericardium
and is surrounded by the lungs. In adults, it weighs about 300-350 g. It con-
sists of four chambers, the two upper atria (singular: atrium) and the two lower
ventricles.

A thick muscular wall, the septum, divides the right atrium and ventricle from
the left atrium and ventricle, keeping blood from passing between them. Valves
between the atria and ventricles (atrioventricular valves) maintain coordinated
unidirectional flow of blood from the upper atria to the lower ventricles.

The ventricles are the parts of the heart that pump blood around the body
or to the lungs. They are thicker walled than the atria, and the contraction of
the ventricle wall is much more important to move blood around.

Oxygen-depleted or deoxygenated blood from the body enters the right atrium
through two great veins, the superior vena cava which drains the upper part of
the body and the inferior vena cava that drains the lower part. The blood then
passes through the tricuspid valve to the right ventricle. The right ventricle
pumps the deoxygenated blood to the lungs, through the pulmonary artery. In
the lungs gaseous exchange takes places and the blood releases carbon dioxide into
the lung cavity and picks up oxygen. The oxygenated blood then flows through
pulmonary veins to the left atrium. From the left atrium this newly oxygenated
blood passes through the mitral valve to enter the left ventricle. The left ventricle
then pumps the blood through the aorta to the entire body except the lungs.

The left ventricle is much more muscular than the right as it has to pump
blood around the entire body, which involves exerting a considerable force to
overcome the vascular pressure. As the right ventricle needs to pump blood only
to the lungs, it requires less muscle.

Even though the ventricles lie below the atria, the two vessels through which
the blood exits the heart (the pulmonary artery and the aorta) leave the heart
at its top side.

The contractile nature of the heart is due to the presence of cardiac muscle
in its wall which can work continuously without fatigue. The heart wall is made
of three distinct layers. The first is the outer epicardium which is composed of
a layer of flattened epithelial cells and connective tissue. Beneath this is a much
thicker myocardium made up of cardiac muscle. The endocardium is a further
layer of flattened epithelial cells and connective tissue which lines the chambers
of the heart.

The blood supply to the heart itself is supplied by the left and right coronary
arteries, which branch off from the aorta.

The Cardiac Cycle

The function of the heart is to pump blood around the body, in cycles. The
cycle is explained below.

Every single beat of the heart involves a sequence of events known as the
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cardiac cycle consisting of three major stages; atrial systole, ventricular systole
and complete cardiac diastole. The atrial systole consists of the contraction of the
atria and the corresponding influx of blood in to the ventricles. Once the blood
has fully left the atria, the atrioventricular valves, which are situated between the
atria and ventricular chambers, close. This prevents any backflow into the atria.
It is the sound of the valves closing which produces the familiar beating sounds
of the heart.

The ventricular systole consists of the contraction of the ventricles and flow
of blood into the circulatory system. Again, once all the blood has left, the
pulmonary and aortic semilunar valves close. Finally complete cardiac diastole
involves the relaxation of the atria and ventricles in preparation for new blood to
enter the heart.
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Figure 7.1: Anterior (frontal) view of the opened heart. White arrows indicate
normal blood flow.
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7.1.2 The Electrocardiogram

An electrocardiogram (ECG or EKG, abbreviated from the German Elek-
trokardiogramm) is a graphic produced by an electrocardiograph, which records
the electrical voltage in the heart in the form of a continuous strip graph. It is the
prime tool in cardiac electrophysiology, and has a prime function in screening and
diagnosis of cardiovascular diseases. An example of electrocardiogram is given on
Figure 7.2 page 91.

Uses

The ECG has a wide array of uses:

* Determine whether the heart is performing normally or suffering from ab-
normalities (e.g. extra or skipped heartbeats - cardiac arrhythmia).

* May indicate acute or previous damage to heart muscle (heart attack) or
ischaemia of heart muscle (angina).

* Can be used for detecting potassium, calcium, magnesium and other elec-
trolyte disturbances.

* Allows the detection of conduction abnormalities (heart blocks and bundle
branch blocks).

* As a screening tool for ischaemic heart disease during an exercise tolerance
test.

* Can provide information on the physical condition of the heart (eg: left
ventricular hypertrophy, mitral stenosis).

* Can suggest non-cardiac disease (e.g. pulmonary embolism, hypothermia)

Intervals

A typical ECG tracing of a normal heartbeat consists of a P wave, a QRS
complex and a T wave. A small U wave is not normally visible (see Figure 7.2
page 91).

Axis The axis is the general direction of the electrical impulse through the heart.
It is usually directed to the bottom left, although it can deviate to the right
in very tall people and to the left in obesity. Extreme deviation is abnormal
and indicates a bundle branch block, ventricular hypertrophy or (if to the
right) pulmonary embolism. It also can diagnose dextrocardia or a reversal
of the direction in which the heart faces, but this condition is very rare and
often has already been diagnosed by something else(such as a chest x-ray).
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P wave The P wave is the electrical signature of the current that causes atrial con-
traction. Both the left and right atria contract simultaneously. Irregular or
absent P waves may indicate arrhythmia. Its relationship to QRS complexes
determines the presence of a heart block.

QRS The QRS complex corresponds to the current that causes contraction of the
left and right ventricles, which is much more forceful than that of the atria
and involves more muscle mass, thus resulting in a greater ECG deflection.

The Q wave, when present, represents the small horizontal (left to right)
current as the action potential travels through the interventricular septum.
Very wide and deep Q waves do not have a septal origin, but indicate
myocardial infarction.

The R and S waves indicate contraction of the myocardium. Abnormalities
in the QRS complex may indicate bundle branch block (when wide), ven-
tricular origin of tachycardia, ventricular hypertrophy or other ventricular
abnormalities. The complexes are often small in pericarditis.

T wave The T wave represents the repolarization of the ventricles. The QRS com-
plex usually obscures the atrial repolarization wave so that it is not usually
seen. Electrically, the cardiac muscle cells are like loaded springs. A small
impulse sets them off, they depolarize and contract. Setting the spring up
again is repolarization (more at action potential).

In most leads, the T wave is positive. Negative T waves can be signs of
disease, although an inverted T wave is normal in V1 (and V2-3 in black
people).

The ST segment connects the QRS complex and the T wave. It can be
depressed in ischemia and elevated in myocardial infarction, and downslopes in
digoxin use.

T wave abnormalities may indicate electrolyte disturbance, such as hyper-
kalemia.
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Figure 7.2: Intervals in the ECG
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7.1.3 Use of HRV in Diagnosis

Jiri Pumprla et al. present in [14] the latest developments in the use of HRV
in diagnosis. Here, we will only give a very brief review.

How to Measure HRV

Early techniques for analysis of autonomic activity were based on a set of
physiological tests proposed by Ewing et al., quoted by Jiri Pumprla et al. in
[14]. These tests included the measurement in heart rate induced by a certain
stimulus, such as deep breathing, hand-grip or the Valsa-manoeuvre. All of these
tests suffer the same drawback: it is difficult to standardize the stimulus which
means that the variability of the results will be very high.

What HRV Can Detect

A high variability in heart rate is a sign of good adaptability, implying a
healthy individual with good autonomic control mechanisms. A low variability
is often the sign that the autonomic nervous system is not sufficiently adaptable
and further investigation is required to give a more precise diagnosis.

More than half of all patients with end stage renal disease have detectable au-
tonomic neuropathy and measurement HRV is superior to classical reflex testing
for its detection. Metabolic derangements in chronic liver disease and/or hypoxia
in chronic respiratory disease may also induce autonomic abnormalities leading
to reduced HRV. Usually, an improvement in metabolic or neurological functions
is associated with a return to a normal HRV pattern.

7.2 Diabetes

In this section, we will give background information on diabetes. First, what
it is, then how to treat it and afterwards how we can use HRV to treat it.

7.2.1 What is Diabetes?

There are currently more than 194 million people with diabetes worldwide and
if nothing is done to slow the epidemic, the number will exceed 333 million by
2025. We will first give a definition of diabetes, then list the symptoms associated
with this condition and last review the main causes of this disease.

Definition

Diabetes mellitus is a condition in which the amount of glucose (sugar) in
the blood is too high because the body cannot use it properly. Glucose comes
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from the digestion of starchy foods such as bread, rice, potatoes, chapatis, yams
and plantain, from sugar and other sweet foods, and from the liver which makes
glucose.

When sugar and starchy foods have been digested, they turn into glucose.
If somebody has diabetes, the glucose in their body is not turned into energy,
either because there is not enough insulin in their body, or because the insulin
that the body produces is not working properly. This causes the liver to make
more glucose than usual but the body still cannot turn the glucose into energy.
The body then breaks down its stores of fat and protein to try to release more
glucose but still this glucose cannot be turned into energy. This is why people
with untreated diabetes often feel tired and lose weight. The unused glucose
passes into the urine, which is why people with untreated diabetes pass large
amounts of urine and are extremely thirsty.

There are four types of diabetes in all, two of which account for 90% of all
diagnosed cases of diabetes.

1. Type 1 diabetes is most commonly diagnosed in children and adolescents,
but can occur in adults as well. It is an autoimmune disorder, in which the
body’s own immune system attacks the beta cells in the Islets of Langerhans
of the pancreas, destroying them or damaging them sufficiently to reduce
insulin production. The autoimmune attack may be triggered by reaction to
an infection, for example by one of the viruses of the Coxsackie virus family.
A subtype of Type 1 (identifiable by the presence of antibodies against beta
cells) develops slowly and so is often confused with Type 2. In addition, a
small proportion of Type 1 cases has the hereditary condition maturity onset
diabetes of the young (MODY). Some poisons (e.g. certain rat poisons)
work by selectively destroying certain types of cells, including pancreatic
beta cells, thus producing “artificial” Type 1 diabetes. Other pancreatic
problems including trauma, pancreatitis or tumors (either malignant or
benign) can also lead to loss of insulin production.

2. Type 2 diabetes is characterized by ”insulin resistance” as body cells do
not respond appropriately when insulin is present. This is a more complex
problem than Type 1, but is sometimes easier to treat, since insulin is still
produced, especially in the initial years. Type 2 may go unnoticed for years
in a patient before diagnosis, since the symptoms are typically milder (no
ketoacidosis) and can be sporadic. However, severe complications can result
from unnoticed Type 2 diabetes, including renal failure, and coronary artery
disease.

3. All other specific forms of diabetes, accounting for up to 5% of all diagnosed
cases of diabetes, are termed Type 3:

• Type 3A: genetic defect in beta cells.
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• Type 3B: genetically related insulin resistance.

• Type 3C: diseases of the pancreas.

• Type 3D: caused by hormonal defects.

• Type 3E: caused by chemicals or drugs.

4. Type 4 or gestational diabetes mellitus appears in about 2-5% of all preg-
nancies. It is temporary and fully treatable, but if untreated it may cause
problems with the pregnancy, including macrosomia (high birth weight) of
the child. It requires careful medical supervision during the pregnancy. In
addition, about 20-50% of these women go on to develop Type 2 diabetes.

This section used the following web sites as a primary source of information.

http://www.idf.org/home/index.cfm?node=37
http://www.diabetes.org.uk/diabetes/under.htm

What are the Symptoms of Diabetes?

The main symptoms of diabetes are:

• increased thirst

• urinating frequently, especially at night

• extreme tiredness

• weight loss

• genital itching or regular episodes of thrush

• blurred vision.

Type 2 diabetes develops slowly and the symptoms are usually less severe.
Some people may not notice any symptoms at all and their diabetes is only
picked up in a routine medical check up. Some people may put the symptoms
down to ’getting older’ or ’overwork’.

Type 1 diabetes develops much more quickly, usually over a few weeks, and
symptoms are normally very obvious.

In both types of diabetes, the symptoms are quickly relieved once the diabetes
is treated. Early treatment will also reduce the chances of developing serious
health problems. In 2003, the five countries with the highest diabetes prevalence
in the adult population were Nauru (30.2 %), The United Arab Emirates (20.1 %),
Qatar (16%), Bahrain(14.9%), and Kuwait (12.8%). At least 50% of all people
with diabetes are unaware of their condition and in some countries this figure may
rise to 80%, which makes diagnostic very important. In addition, diabetes is the
fourth main cause of death in most developed countries and is the leading cause
of blindness and visual impairment in adults in developed countries. Diabetes is
the most common cause of amputation which is not the result of an accident.

94



Heart Rate Variability in Diabetes 7.2 Diabetes

How Does One Get Diabetes?

Although the condition can occur at any age, it is rare in infants and becomes
more common as people get older.

Type 1 diabetes develops when the insulin-producing cells in the pancreas
have been destroyed. Nobody knows for sure why these cells have been damaged
but the most likely cause is an abnormal reaction of the body to the cells. This
may be triggered by a viral or other infection. This type of diabetes generally
affects younger people. Both sexes are affected equally.

Type 2 diabetes used to be called “maturity onset” diabetes because it usually
appears in middle-aged or elderly people, although it does occasionally appear in
younger people. The main causes are that the body no longer responds normally
to its own insulin, and/or that the body does not produce enough insulin.

Both type 1 and type 2 diabetes are at least partly inherited. Type 1 dia-
betes appears to be triggered by infection, stress, or environmental factors (e.g.
exposure to a causative agent). There is a genetic element in the susceptibility
of individuals to some of these triggers which has been traced to particular HLA
genotypes (i.e. genetic “self” identifiers used by the immune system). However,
even in those who have inherited the susceptibility, type 1 diabetes mellitus seems
to require an environmental trigger. A small proportion of type 1 diabetics carry
a mutation that causes maturity onset diabetes of the young (MODY).

There is an even stronger inheritance pattern for Type 2 diabetes; those with
type 2 ancestors or relatives have very much higher chances of developing Type
2. It is also often connected to obesity, which is found in approximately 85% of
(North American) patients diagnosed with that form of the disease, so inheriting
a tendency toward obesity seems also to contribute. Age is also thought to be
a contributing factor, as most type 2 patients in the past were older. The exact
reasons for these connections are unknown.

7.2.2 How is Diabetes Treated?

Although diabetes cannot be cured, it can be treated very successfully.

Type 1 diabetes is treated by injections of insulin and a healthy diet. Type 2
diabetes is treated by a healthy diet or by a combination of a healthy diet, sport
and tablets. Sometimes people with Type 2 diabetes also have insulin injections,
although they are not totally ’dependent’ on the insulin.

Treatments for Type 1 diabetes

People with Type 1 diabetes need injections of insulin for the rest of their
lives and also need to eat a healthy diet that contains the right balance of foods.
Insulin cannot be taken by mouth because it is destroyed by the digestive juices
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in the stomach. People with this type of diabetes commonly take either two or
four injections of insulin each day.

Treatments for Type 2 diabetes

People with Type 2 diabetes need to eat a healthy diet that contains the right
balance of foods and may also need to take tablets. Sometimes the combination
of a healthy diet and exercise is sufficient and the tablets are not necessary.

There are several kinds of tablets for people with Type 2 diabetes. Some kinds
help the pancreas to produce more insulin. Other kinds help the body to make
better use of the insulin that the pancreas does produce. Another type of tablet
slows down the speed at which the body absorbs glucose from the intestine.

7.2.3 How Can We Use HRV to Treat Diabetes?

Cardiovascular complications are the main cause of death in people with di-
abetes. Early, asymptomatic changes are due to autonomic nervous system dys-
function, which if identified can lead to improved health. Indeed, diabetes can
cause severe autonomic dysfunction that can be responsible for several disabling
symptoms, including sudden cardiac death. Although traditional measures of
autonomic function are able to document the presence of neuropathy, in gen-
eral they are only abnormal when there is severe symptomatology, i.e. when the
pathology is already obvious. Thus by the time changes in function are evident,
the natural course of autonomic neuropathy is well established. HRV and sudden
cardiac death Ventricular tachyarrhythmias represent a leading cause of sudden
cardiac death(SCD) in the community.

The pathophysiology of SCD is probably an interaction between an abnormal
anatomical substrate such as coronary artery disease with associated myocar-
dial scarring, left ventricular hypertrophy or cardiomyopathy, and transient func-
tional disturbances which trigger the terminal dysrhythmia. This may include
factors such as ischaemia, premature beats, electrolyte disturbance and fluctua-
tions in autonomic balance. A recent study reported that decreased HRV was
more predictive of subsequent arrhythmic events than the presence of late po-
tentials (recorded from areas of conduction delay in the ventricles which provide
one of the substrates for re-entrant arrhythmias), Holter-derived arrhythmias,
treadmill exercise test results or left ventricular ejection fraction. In multivari-
ate analysis of combinations of risk factors, the combination of late potentials
recorded by the signal averaged ECG and reduced HRV was more predictive
than any other combination.

The application of heart rate variability to the diagnosis of diabetes is still
fairly new to the public: according to the results of a survey in the United States
released on April 20th 2005, 83% of the estimated 16 million Americans with
diabetes have never heard of heart rate variability testing.
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7.3 Results

In this section we will present the filtering and cleaning of a real data set given
by the Michael Beuern Allgemeines Krankenhaus (general hospital) in Vienna,
Austria.

7.3.1 Data

The data set under consideration is the tachogram of a patient with diabetes
who was asked to sit down and stand up at certain time points. The data set also
contains a manually cleaned version of the tachogram, i.e. a tachogram that a
doctor has looked at and corrected based on his experience. Until now, this is the
way the filtering has been done, which is why the new filtering algorithms may
come as something of a relief to the doctors’ strained eyes. The data set itself
is quite big (more than 2,000 values): filtering the whole data set would take
literally hours (even days) and it is very difficult to see anything on the graph
on such a huge scale. Therefore we have only filtered the first 200 values. In
practical cases, we conjecture that filtering the whole time series at once is not
necessary and that cutting it in big enough chunks and plate the filtered chunks
together might be sufficient: a research with medical doctors would be necessary
to validate or not this conjecture.

7.3.2 Filtering and Cleaning

Manually Cleaned Data Set

Figure 7.3 page 99 shows the original data set and the manually cleaned one.
The big jolts of the original process, which are due to a change in the patient
position (from sitting down to standing up or converse) are removed.

Repeated Median Filter

This filter, the output of which can be seen on Figure 7.4 page 99, performs
surprisingly well in that its output is not too far from the manually cleaned
tachogram.

Biweight Filter

The biweight filter (see Figure 7.5 page 100) seems to have a bit more trouble
than the repeated median: it has jolts and lies far from the manually cleaned
process.
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Biweight Filter Cleaner

As the output of the biweight filter is bad, it is not surprising that the biweight
filter cleaner also gives poor results (on Figure 7.6 page 100), which is a bit
unfortunate as it is the most time-consuming algorithm.

Repeated Median Cleaner

This algorithm performs better than the biweight filter cleaner because the
output of the filter is better. See Figure 7.7 page 101.
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7.3.3 Conclusion

The main problem with these algorithms are their speed: doctors would want
to have a result in a few seconds whereas the version of the biweight filter cleaner
we implemented in C++ took several hours to produce the cleaned version of the
complete time series! Tatum and Hurvich propose the use of the least-squares
regression as starting values for the biweight regression so as to reduce the com-
putational cost. We did not investigate this, nor did we try to implement other
ideas we had. One of them is to divide the times series into several chunks. In-
deed, what is really costly is the repeated matrix inversions we perform. As we
know that it takes o(n2) steps to calculate this inverse, if we divide the time series
into two chunks of length n1 and n2 such that n = n1 + n2, we would need o(n2)
steps to invert each matrix of the full data set, but only o(n2

1) and o(n2
2) opera-

tions to invert each of the submatrices. We therefore have a difference in time of
2n1n2. Of course, this gain comes at a price, as we lose a lot of information by
cutting the time series in two (all the “cross terms” are lost, which means we do
not take into account the interaction between the beginning and the end of the
time series).

More generally, if we cut the series into p chunks such that

n =

p∑

i=1

ni,

the difference in computation time is

o

(
p∑

i=1

∑

j<i

ninj

)

If we suppose that the chunks are of equal length, this reduces to (n/p)2.
Already, several questions arise:

1. How much information is lost during the process?

2. How should we divide the time series? Empirically or with a certain measure
(such as AICC or a measure of the “variability” of the time series over a
certain period of time if it is not homoscedastic) and if so, which measure
should we use? How many chunks should we make?

3. How do we put the information of the different chunks back together? Do
we run the full algorithm on each chunk separately and then recombine by
averaging or do we put the chunks together at some point in the algorithm?
If we use averaging, should we do a weighted average by downweighting the
high variability chunks?
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This idea is not the only one to increase speed. Tatum and Hurvich conjecture
that instead of using the repeated median as starting values for the biweight re-
gression, we could use the ordinary least squares and still have a (strictly) positive
breakdown bound and this would reduce the computational burden dramatically.
Moreover, our implementation of the algorithm is probably not optimal.
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Chapter 8

Conclusion

In this report, we presented successively four algorithms to remove outliers
from a time series and we applied the last one to the practical problem of the
use of heart rate variability for the diagnosis of diabetes. Of course, such an
algorithm can be used in a variety of different contexts other than the medical
one: for example, Tatum and Hurvich use the biweight filter cleaner to clean the
weekly Dutch auction divided rates for Citibank.

The first algorithm was the simple, yet efficient, repeated median algorithm.
The second, the biweight filter algorithm, was an attempt to “robustify” it, the
third one, the biweight filter cleaner, arose as an attempt to improve the quality
of the output and the last one, the repeated median cleaner, tried to reconcile the
“best of both worlds” in that it had the exact fit property of the repeated median
and the goodness-of-fit of the biweight filter cleaner. The repeated median is
rough but fairly fast, whereas the biweight filter cleaner is very slow but yields
extremely good results. The repeated median cleaner is a compromise between
the two.

The practical implementation of these algorithms was done in two program-
ming languages: C++ and the statistical programming language R. We tried
to use a convergence accelerator in our implementation because the algorithms
are still extremely slow (when it is confronted to a real data set, they can take
hours to compute the result). The convergence accelerator we chose (ε-aglorithm)
unfortunately failed to converge to the values of the parameter in the biweight
regression. This means that the type of sequences in the biweight regression al-
gorithm are not in the kernel of the ε-algorithm. This does not necessarily mean
that we have to reject convergence acceleration alltogether, but we need to design
an algorithm more carefully if we choose to use this method. As we removed the
ε-algorithm from our implementation, we presented a few ideas to speed up the
program in the last chapter of this report.

This report is far from being exhaustive on the study of these algorithms.
First, we did not try to optimize the values of the parameters of the various
algorithms because we failed to find an answer to the simple yet embarrassing
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question “optimal for what?”. By this, we mean that we suspect that the optimal
values of the parameters depend strongly on the model coefficients. We also
conjecture that the variance of the contaminating process plays a decisive role in
the quality of the output of the various filters and cleaners. Moreover, we did not
implement any of the suggestions we made in the last chapter and doing so would
probably require a substantial amount of work, at least from the theoretical point
of view. In the following appendices, we give the theoretical background which
we (implicitly or not) referred to constantly in the text.
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Chapter 9

Appendix A: Robustness
Concepts

In this appendix, we will present notions such as M-estimators, robust regres-
sion and influence functions. They are implicitly referred to in this thesis.

9.1 M-estimators

The name ”M-estimators” comes from ”generalized Maximum likelihood esti-
mators”. Indeed, a motivation behind M-estimators can be to generalize max-
imum likelihood estimators. When using a maximum likelihood estimator, the
aim is to maximize

∏n
i=1 f(xi) or, equivalently, minimize

∑n
i=1− log f(xi). In

1964, Huber proposed generalising this to the minimization of
∑n

i=1 ρ(xi), where
ρ is some function. Maximum likelihood estimators are therefore a special case
of M-estimators

9.1.1 Estimators

Mathematical Context

In this section, we will assume the following:

• (Ω,A, P ) is a probability space,

• (X ,Σ) is a measure space called state space,

• ∆x is the Dirac mass with mass 1 in x and 0 elsewhere,

• (Θ, S) is a measure space called parameter space,

• F := {x : (Ω,A)→ (X ,Σ)} is the set of all random variables on X ,

• F(X ) is the set of all probability distibutions on X .
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Definitions

An estimator is just a statistic.

Definition 9 (Estimator)
For n ∈ N∗, an estimator is any measurable function

Tn :

{
F n → Θ

(x1, · · · ,xn) 7→ Tn(x1, · · · ,xn)

♦

Definition 10 (Estimating sequence)

If ∀n ∈ N∗, Tn is an estimator, then (Tn)n∈N∗ is called an estimating sequence.

♦

Definition 11 (Functional)
For n ∈ N∗, an estimator Tn is a functional if:

∃T :

{
F(X ) → Θ
G 7→ T (G)

, ∀(x1, · · · ,xn) ∈ F n, Tn(x1, · · · ,xn) = T (Gn)

with

Gn :=
1

n

n∑

i=1

∆xi

♦

Definition 12 (Asymptotic value)

Let n ∈ N∗ and (x1, · · · ,xn) ∈ F n be independant and identically distributed
according to G ∈ F(X ). Furthermore, let (Tn)n∈N∗ be an estimating sequence.

If ∃T : F(X )→ Θ such that Tn(x1, · · · ,xn) −−→
n∞ T (G), then T is called asymp-

totic value of the estimating sequence (Tn)n∈N∗ and we say Tn can be asymptoti-
cally replaced by the functional T at distribution G.

♦

108



Appendix A: Robustness Concepts 9.1 M-estimators

Desirable Properties

In the whole of this report, we consider estimators which are functionals or
can asymptotically be replaced by functionals. We will also assume the following
property to be fullfiled:

Definition 13 (Asymptotic normality)

Let (Tn)n∈N∗ be an estimating sequence which can be asymptotically replaced by
a functional T at distribution G. (Tn)n∈N∗ is said to be asymptotically normal if:

L
(√

n[Tn − T (G)]
)

−−→
n∞ N (0, V (T,G)) weakly

V (T,G) is called asymptotic variance

♦

Definition 14 (Fisher Consistency)

A functional T : F(X )→ Θ is said to be Fisher consistent if, for any distribution
Fθ ∈ F(X ) depending on a parameter θ ∈ Θ,

T (Fθ) = θ

♦

9.1.2 Types of M-estimators

Minimizing
∑n

i=1 ρ(xi) can often be done by solving
∑n

i=1 ρ
′(xi) = 0, but

not always. We will therefore distinguish these two problems, although in most
practical cases, we will only try to solve

∑n
i=1 ρ

′(xi) = 0.

Definition 15 (M-estimators of ρ-type)

An M-estimator of ρ-type is a functional T : F ∈ F(Σ) 7→ T (F ) ∈ Θ defined
through a measurable function ρ : (Θ, S) × (X ,Σ) → (Θ, S) (usually Θ = R)
which maps a probability distribution to the value of θ̂ (if it exists) that minimizes∫
X ρ(θ, x)dF (x).

♦

ρ is not always differentiable, which can complicate the calculation of the
estimator. For most practical cases, we use the following type of estimators:

Definition 16 (M-estimators of ψ-type)

An M-estimator of ψ-type is a functional T : F ∈ F(Σ) 7→ T (F ) ∈ Θ defined
through a measurable function ψ : (Θ, S) × (X ,Σ) → (Θ, S) which maps a
probability distribution to the solution θ̂ (if it exists) of the vector equation∫
X ψ(θ, x)dF (x) = 0.
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♦

Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a
continuous first derivative with respect to θ, then a necessary condition for the
corresponding M-estimator of ψ-type to be an M-estimator of ρ-type is ψ(θ, x) =
∇θρ(θ, x). The previous definitions can easily be extended to finite samples:

Definition 17 (Finite-sample M-estimators)

For n ∈ N∗, an estimator Tn is said to be an M-estimator of ρ-type (or of ψ-type)
if there exists an M-estimator of ρ-type (or of ψ-type) such that ∀(x1, · · · ,xn) ∈
F n, Tn(x1, · · · ,xn) = T (Gn), with Gn := 1

n

∑n
i=1 ∆xi

.
♦
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9.2 Robustness Concepts

9.2.1 Breakdown Point

General Definition

This definition is built using probability distributions. It describes what hap-
pens to an estimator when we move away from the distribution for which it was
designed. We therefore need a metric. There are several variants of the break-
down point, depending on the metric used.

Definition 18 (Kolmogorov distance)

• P,Q : R→ [0, 1] are two distribution functions

dko(P,Q) := sup
x∈R

|P (]−∞, x])−Q(]−∞, x])|

♦

Example: Figure 9.1 page 113 is an illustration of the Kolmogorov distance.
We have plotted the distribution functions of N (0, 0.3) and N (0, 3). The red
line corresponds to the maximum distance between the two distributions and by
definition its length is the Kolmogorov distance between the two distributions.

Definition 19 (Prohorov metric)

Let (S, d) be a separable metric space and P,Q any two laws (probability measures
on the Borel σ-algebra B(S)) on S. Then the Prokhorov metric is defined by

d0(P,Q) := inf
ε∈R∗

+

{ε : ∀A ∈ B(S), P (A) ≤ Q(Aε) + ε}

with
∀ε ∈ R∗

+, A
ε := {y ∈ S : ∃x ∈ A, d(x, y) < ε}

♦

Definition 20 (Lipschitz function)

Let (S, d) be a separable metric space and f : S → R. f is Lipschitz if:

‖f‖L := sup
x 6=y,(x,y)∈S2

{ |f(x)− f(y)|
d(x, y)

}
< +∞

♦
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Definition 21 (Dual-bounded Lipschitz metric)

Let (S, d) be a separable metric space and f : S → R. Using

‖f‖∞ := sup
x∈S
{|f(x)|}

the dual-bounded Lipschitz metric is defined as:

‖f‖BL := ‖f‖L + ‖f‖∞

♦

Both the Prohorov metric and the dual-bounded Lipschitz metric define met-
rics, for the same topology, on the set of all laws on S and metricize weak con-
vergence.

Definition 22 (Breakdown point)

The breakdown point ε∗ of the sequence of estimators (Tn)n∈N∗ at F is defined by:

ε∗ := sup {ε ≤ 1 : there is a compact set Kε ⊂ Θ such that

(e(F,G) < ε)⇒ G({Tn ∈ Kε}) −−→
n∞ 1}

where e = d0, dBL or dko.
♦

Example: The mean has a breakdown point of 0. Indeed, given a set of
values, the mean can be made as large as desired by changing only one point, as
illustrated on Figure 9.2 page 113.

Finite Sample Version

Definition 23 (Finite-sample breakdown point)

The finite-sample breakdown point ε∗n of the functional Tn at the sample (x1, · · · ,xn)
is given by:

ε∗n(x1, · · · ,xn) :=
1

n
max

{
m : max

i1,··· ,in
sup

y1,··· ,yn

|Tn(z1, · · · , zn)| < +∞
}

where (z1, · · · , zn) is obtained by replacing the m data points xi1 , · · · ,xim by
arbitrary values y1, · · · , yn.

♦

In many cases, ε∗n
−−→
n∞ ε∗.
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Maximum Breadown Point

A breakdown point is usually lower than 1/2, intuitively because if we replace
more than half of the xi’s by arbitrary values, we will have no way of knowing
which values are authentic. More precisely, we have the following theorem:

Theorem 2 (Maximum breakdown point)

Let Θ ⊆ R be a parameter space. Let P ′ be a closed set under affine transfor-
mations of probability measures of B(R) and e be a metric on P ′. ∀n ∈ N, Tn :
P ′ → Θ is a sequence of equivariant real-valued statistics and dP0 : Θ → [0, 1]
is a law on R. ∀θ ∈ Θ, we define dPθ : x 7→ dP0(x − θ). Let e be d0 or d1.
Then if (Tn)n∈N has a breakdown point > 1/2 at Pθ for all θ ∈ Θ, it cannot be a
consistent sequence of estimators of θ for any θ ∈ Θ.

�

This means that all consistent estimators have a breakdown point lower than
1/2.

9.2.2 Influence Function

Derivation

The influence function represents the behavior of a functional T at a distribu-
tion F , contaminated infinitesimally by a distribution ∆x with all its weight in a
point x. We would like to see what happens to an estimator when we move from
F towards ∆x, therefore the influence function will be the directional derivative
of T at F , in the direction of ∆x.

First, we recall that the directional derivative of T at p in the direction v is
given by:

dTp(v) :=

[
dT (c(t))

dt

]

t=0

with c(t) such that c(0) = p and c′(0) = v.
Then, we replace p by F and v by ∆x − F .

Definition 24 (Influence function)

(Ω,A, P ) is a probability space, (X ,Σ) is a measure space, F(X ) is the set of all
probability distributions on X and T : F(X )→ X is a functional.

∀x ∈ X , IF (x;T, F ) := dTF (G− F ) = lim
t→0+

F + t(∆x − F )

t

♦
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Often we cannot compute the influence function algebrically but we can com-
pute successive values of a functional Tn. We can then use an empirical influence
function.

Definition 25 (Empirical influence function)
Given a functional Tn, the empirical influence function is defined by:

x 7→ Tn(x1, · · · ,xn − 1, x)

♦

The following theorem is of crucial importance, as it states that the influence
function of an M-estimator of ψ type is proportional to its defining ψ function.
This explains why the function ψ is somtimes (abusively) called ”influence func-
tion”.

Theorem 3 (Influence function of an M-estimator)
Let T be an M-estimator of ψ type. Let G be a probability distribution for which
T (G) is defined and let x ∈ X .

IF (x;T,G) = − ψ(x, T (G))
∫ [∂ψ(y,θ)

∂θ

]

y=T (F )
dF (y)

�

Proof:
By definition, ∀G ∈ dom(T ),

∫
ψ(x, T (G))dG(x) = 0. Let c(0) = G and c′(0) =

∆x −G, for example c(t) := G+ t(∆x −G).Then

∀t ∈ X ,
∫
ψ(y, T (c(t)))d(c(t)(y)) = 0

Differentiating yields

∀t ∈ X , ∂
∂t

∫
ψ(y, T (c(t)))d(c(t)(y)) = 0

We know that dc(t) = td(∆x −G) + dF . Therefore,

∀t ∈ X , ∂
∂t

∫
ψ(y, T (c(t)))td(∆x −G)(y) +

∂

∂t

∫
ψ(x, T (c(t)))dG(y) = 0

Supposing differentiation and integration can be interchanged,

115



9.3 Robust Regression Appendix A: Robustness Concepts

∀t ∈ X , t
∫
∂ψ(y, T (c(t)))

∂t
d(∆x −G)(y) +

∫
ψ(y, T (c(t)))d(∆x −G)(y)

+

∫
∂ψ(x, T (c(t)))

∂t
dG(x) = 0

As ∫
ψ(y, T (c(t)))d(∆x −G)(y)

=

∫
ψ(y, T (c(t)))d(∆x)(y)−

∫
ψ(y, T (c(t)))dG(y) = ψ(x, T (c(t)))− 0

∀t ∈ X , ψ(x, c(t))+t

∫
∂ψ(y, T (c(t)))

∂t
d(∆x−G)(y)+

∫
∂ψ(x, T (c(t)))

∂t
dG(x) = 0

Now, ∂ψ(y,T (c(t)))
∂t

=
[
∂ψ(x,θ)
∂θ

]

T (c(t))

∂T (c(t))
∂t

.

Therefore,

∀t ∈ X , ψ(x, c(t)) + t

∫
∂ψ(y, T (c(t)))

∂t
d(∆x −G)(y)+

∫ [
∂ψ(x, θ)

∂θ

]

T (c(t))

dG(x)
∂T (c(t))

∂t
= 0

As this equation is valid for all t in X , we can take t = 0:

ψ(x, T (G)) +

∫ [
∂ψ(x, θ)

∂θ

]

T (G)

dG(x)

[
∂T (c(t))

∂t

]

t=0

= 0

By definition,
[
∂T (c(t))

∂t

]

t=0
= dGT (∆x −G) = IF (x;T,G), hence

IF (x;T,G) = − ψ(x, T (G))
∫ [∂ψ(y,θ)

∂θ

]

y=T (G)
dG(y)

�

9.3 Robust Regression

9.3.1 Regression Analysis

Let p ∈ N∗. (Ω,A, P ) will denote a probability space and, ∀j ∈ [[1, p]], (Γj , Sj)
will be a measure space. Θ ⊆ Rp is a set of coefficients. The response variable is
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a random variable y : (Ω,A) → (R,B). This variable will be ”explained” using
other random variables called factors, i.e. we will write y as a function of factors.
∀j ∈ {1, · · · , p},xj : (Ω,A)→ (Γj, Sj), is called a factor .

Let η :

{
Γ1 × · · · × Γp ×Θ → R

(x1, · · · ,xp; θ) 7→ η(x1, · · · ,xp, θ)

We then define ε := y− η(x1, · · · ,xp; θ), which means that

y = η(x; θ) + ε

where x = (x1, · · · ,xp)
We suppose that there exists a vector of (unknown) parameters θ ∈ Θ called

true parameters, such that:

E[y|x] = η(x, θ)

The general form of the function η is known. In fact, the only unknown in the
equation is θ. The aim of regression is, given a set of data, to find an estimate θ̂

of θ optimizing some criterion.

9.3.2 Least Squares and its Limitations

Linear Regression

Linear regression is the most common case in practice because it is the easiest
to compute and gives good results. Indeed, by restraining the variations of the
factors to a ”small enough” domain, the response variable can be approximated
locally by a linear function of θ. When we do a linear regression, we are implicitly
supposing that given a set of factors x1, · · · ,xp, the best approximation of the
response variable y we can find is a linear combination of theses factors x1, · · · ,xp.
We are therefore also supposing that ∀j ∈ [[1, p]], (Γj , Sj) = (R,B(R)). The aim
of linear regression is to find a good estimator of the right coefficients θ of this
linear combination.

We choose η the following way:

η(x, θ) =

p∑

j=1

θjxj

Geometrical Interpretation

Let F be the L2-space of all real-valued random variables whose square has
a finite Lebesgue integral. We suppose that y ∈ F and that ∀j ∈ [[1, p]],xj ∈ F .
Let G be the subspace generated by (x1, · · · ,xp). We can build a scalar product
in F with 〈u,v〉2 := E[uv] (it is indeed a scalar product because if ‖u‖22 = 0,
then u = 0 almost surely).
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It is easy to show that ε is orthogonal to any xj and hence to the whole of
the subspace G, which means that η is the projection of y on G, orthogonal with
respect to the scalar product we have just defined. We have therefore shown:

‖y− η(x; θ)‖22 = min
f∈G
‖y− f‖22

An illustration of this can be seen on Figure 9.3 page 120.

Estimating the Projection

We now suppose that, for each factor xj , j ∈ [[1, p]], we have a sample of size
n ∈ N∗, n > p : Xj := (X1

j , · · · ,Xnj ) and that we have the corresponding sample
of y: y = (y1, · · · ,yn). Then we can build a matrix X where each line represents
an experiment:

X =




x1

1 · · · x1
p

...
...

xn1 · · · xnp





This is a matrix of random variables often called design matrix (for experimental
designs). Each column represents a factor. As we have n trials and p factors, it
is a n× p matrix. We also have a corresponding error vector (of size n):

ε = y− η(X; θ)

Based on the observations y = (y1, · · · ,yn) and on the design matrix X, we
would like to estimate the unkown parameters θ = (θ1, · · · , θn) (one per factor).

Under assumptions which are met relatively often, there exists an optimal
solution to the linear regression problem. These assumptions are called Gauß-
Markov assumptions.

Gauss-Markov Assumptions

We suppose that Eε = 0 and that Vε = σ2In (uncorrelated, but not neces-
sarily independent) where σ2 < +∞ and In is the n× n identity matrix.

Least-squares Estimator

We can build an estimation of the coefficients of the orthogonal projection.
To do this, we can use an estimation of the scalar product defined earlier.

For all couples of samples of size n, u,v ∈ F n of random variables u and v, we
define 〈u,v〉 := 1

n
uTv, and the corresponding norm is: ‖ · ‖ :=

√
〈·, ·〉. Note that

the scalar product 〈·, ·〉 is defined in F n and no longer in F . 〈·, ·〉 is an unbiased
estimator of the scalar product 〈·, ·〉2.

We want to find the value θ̂LSn ∈ Θ, if it exists, which minimizes ‖y−η(X, θ)‖2.
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Computation of the Estimator θ̂LSn

We are using an orthogonal projection to estimate θ, therefore:

∀j ∈ [[1, p]], 〈Xj, ε〉 = 0,

hence XT(η(X; θ̂LSn ) − y) = 0. As η(X; θ̂LSn ) = Xθ̂LSn , this equation yields

XTXθ̂LSn = XTy. If X is of full rank, then so is XTX. In that case:

θ̂LSn = (XTX)−1XTy

9.3.3 Quality and Limitations of the Least-squares Esti-
mator

Apart from being very easy to compute, the least-squares estimator is, under
the Gauß-Markov assumptions, the most efficient estimator for θ, as shown by
the following theorem.

Theorem 4 (Gauss-Markov)

Under the Gauß-Markov hypothesis, of all unbiased estimators θ̂ of θ which
depend linearly on y, the least-squares estimators are the most efficient ones.

�

Unfortunately, the Gauß-Markov hypothesis is fairly stringent and is often not
fulfilled in practice: if the xj are correlated, which is often the case in the study
of time series, the results can be quite significantly corrupted. What is more,
the least-squares estimator is very sensitive to outliers: a rather näıve example
of this is given in Figure 9.4 page 120: all points lie on the same line, except
one, and this is sufficient to completely ruin the least-squares estimation of the
coefficients.

Lack of Robustness of the Least-squares Estimators

To compute the influence function of the least-squares estimator, we must
first notice that it is an M-estimator. Indeed, given the choice of η, the regression
problem can be written:

∀i ∈ [[1, n]],yi = Xiθ
T

+ εi

where

yi is the i-th observation

Xi is the i-th row of the design matrix X

θ is the p-vector of true parameters
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Figure 9.3: Least-squares is a projection
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Figure 9.4: Least-squares is not robust
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εi is the i-th error

If we define ρLS :

{
R → R+

r 7→ r2

2

,

θ̂LSn = arg min
θ∈Θ

n∑

i=1

ρLS(yi − XiθT)

The division by 2, which obviously has no impact on minimization, is an

artefact to ensure that ψLS(r) := ∂ρLS(r)
∂r

= r.
Let Kn be the empirical distribution of the residuals ri(θ) := yi − XiθT:

Kn := 1
n

∑n
i=1 ∆ri, where ∆ri is the Dirac mass in ri. Then, if, for all probability

distributions F ,

θ̂LS(F ) := arg min
θ∈Θ

∫
ρLS(r)dF,

we have θ̂LSn = θ̂LS(Kn).

θ̂LS is an M-estimator of ρ-type for the function ρLS we have just defined.
We will now see that the main reason the Gauß-Markov least-squares estimate

is not robust is because its influence function is unbound.

Theorem 5 (Influence function of the least-squares estimator)
Under the Gauß-Markov hypothesis, the influence function of the least-squares
estimator is:

IF (x,xTθ̂LS + r; θ̂LS, F ) = rE[(xxT)−1]x

where:

x = (x1, · · · ,xp) ∈ F p,

r ∈ R,

F is the joint distribution of the residuals r(θ) := y− xTθ and of x.

�

Proof:
The definition of an influence function is (see [4] page 230):

IF (x, y;T, F ) := M(ψ, F )−1ψ(x, y;T (F ))

with

x ∈ F p, y ∈ R, r ∈ R,
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T = θ̂LS,

ψ(x, r) = ψLS(r)x = rx,

M(ψ, F ) := −
∫ [∂ψ(x,θ)

∂θ

]

θ̂LS(F )
dF (x, r)

We find:

∂ψ

∂θ
=

∂ψ(x, r)

∂r

∂r(θ)

∂θ
= x(−xT)

M = E[xxT]

hence
IF (x,xTθ̂LS + r; θ̂LS, F ) = rE[(xxT)]−1x

�

The influence function being proportional to the identity function, it is clear
that the bigger an outlier, the bigger its influence on the Gauß-Markov estimator.

9.3.4 Biweight Regression

As before,

y = η(x; θ) + ε

and

r(θ) := y− xTθ

We are computing an estimator θ̂ satisfying the p-vector equation:

∫
ψ(r(θ̂))dF = 0

where F is the distribution of the residuals.
We choose:

η :

{
Γ1 × · · · × Γp ×Θ → R

(x1, · · · ,xp; θ) 7→ η(x1, · · · ,xp, θ)

As the influence function of an M-estimator of ψ-type is proportional to its
ψ function, we will choose ψ carefully so as to avoid the drawbacks of the least-
squares estimator.
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A possible solution is to choose Tukey’s biweight function defined as follows:

ψbi(x) := x(c2 − x2)21[−c,c](x), c > 0

A plot of this function can be seen in Figure 9.5 page 126. The advantage
of this function is that it will give the estimator a small gross-error sensitivity, a
small local-shift sensitivity and a finite rejection point.

Practical Computation

One of the prices to pay for a robust estimator is a higher computation cost
and a more complex algorithm.

The idea behind this algorithm is to see biweight regression as a special
case of iteratively reweighted least-squares. Weighted least-squares regression
is just a generalization of ordinary least squares: instead of projecting using
the scalar product ∀(u,v) ∈ (F n)2, 〈u,v〉 = uTv, we use a metric matrix W
(i.e. positive, symmetric, definite), which is usually just a diagonal matrix:
W = diag(w1, · · · , wn) and we calculate uTWv. Hence instead of minimizing

n∑

i=1

(yi − Xi
T

θ)2

we choose θ̂WLS
n so that

θ̂WLS
n = arg min

θ∈Θ

n∑

i=1

wi(y
i − XiTθ)2

Using the same reasoning as for the least-squares estimator, we find:

θ̂WLS
n = (XTWX)−1XTWy

Recursively reweighted least squares is an iterative algorithm where the weight
matrix at step k, W(k), is defined using the residuals from the previous step.

We define the weight function:

w(r) :=
ψ(r)

r

θ̂bin is then a solution of the p-vector equation:

n∑

i=1

w
(
ri(θ̂bin )

)
ri(θ̂bin )

∂ri

∂θ
(θ̂bin ) = 0

which is the same as solving

n∑

i=1

w
(
ri(θ̂bin )

)
ri(θ)

∂ri

∂θ
(θ) = 0
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This is the gradient, with respect to θ, of

n∑

i=1

w(ri(θ̂bin ))ri(θ)2 = 0

which is a weighted least-squares problem. As we do not know w(ri(θ̂bin )), we
solve this equation iteratively: we start with weights at 1 and compute θ̂. Based
on the residuals, we compute new weights, and so on.

We would like to give weight 0 to the observations which, given the model
assumptions, have a probability of α ∈ [0, 1] or less of occuring. We know that
the residuals are normally distributed:

r := y− η(X; θ) ∼ N
(
0, σ2In

)

∀i ∈ [[1, n]], P
(∣∣∣ri

σ2

∣∣∣ > q(p)
)

= 2(1 − p), where q is the quantile function of

N (0, 1). Therefore, ∀i ∈ [[1, n]], P
(∣∣∣ ri

σ2q(1−α
2
)

∣∣∣ > 1
)

= α and the algorithm then

runs as follows:
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Algorithm 4 Biweight regression algorithm

1. Choose a value c = q(1− α
2
) by which the residuals will be divided (to select

the cut-off point after which the residuals will be considered large enough
to identify the corresponding observation as an outlier).

2. Choose a value ε > 0 for the precision and a maximum number of iterations.

3. Set k = 1 and initialize the weights by W(1) = In.

4. Compute θ
(k)
n = (XTW(k)X)−1XTW(k)y.

5. Calculate the residuals:
r(k) := y −Xθ(k)

n

6. If the maximum number of iterations has been reached or ‖r‖ ≤ ε, stop
(returning ”fail” if ‖r‖ > ε and ”success” otherwise).

7. Calculate Sk := median {
∣∣∣r(k)

1

∣∣∣ , · · · ,
∣∣∣r(k)
n

∣∣∣} for i ∈ [[1, n]].

8. Compute the new weights: W := diag(w( r1

cSk
), · · · , w( rn

cSk
)), where

w(r) :=
ψbi(r)

r

9. Increase k by 1 and start again from step 4.
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Figure 9.5: Tukey’s biweight
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Chapter 10

Appendix B: Window Smoothing

10.1 Window Smoothing of Time Series

To evaluate the importance of each frequency in the repeated median filter,
we need to get an estimation of the spectrum. We will cover some of the ways
to do this in this section. We will first give two estimators of the spectrum and
motivate the use of smoothing by examining the variance of these estimators.
A more complete coverage can be found in the book by Donald B. Percival and
Andrew T. Walden ([11]), and in that of M. B. Priestley ([12]).

10.1.1 Motivation

Graphical Illustration of Smoothing

To have a better idea of what we will be doing, we will give an example of
smoothing.

Suppose we have a time series which looks like Figure 10.1 page 128.
We can then build its spectrum. On Figure 10.2 page 128, we have plotted

the spectrum itself and the smoothed version.
In the following we will give a more rigorous motivation for smoothing time

series.
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Figure 10.2: Spectrum and Smoothed Spectrum
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A Classical Estimator

First, let us review a definition of the power spectrum.

Definition 26 (Power spectrum)

Let (xt)t∈N be a time series. The power spectrum Φ of (xt)t∈N can be defined by:

Φ :

{
[−π, π] → R+

ω 7→ Φ(ω)

with

Φ(ω) := lim
n→+∞

E



1

n

∣∣∣∣∣

n∑

k=1

xke
−iωk

∣∣∣∣∣

2




♦

In all practical cases, we only have access to a few realizations of the time
series at certain times. From this incomplete information, we would like to get
an estimate of the power spectrum. This can be done the following way:

Definition 27 (Natural estimation of the power spectrum)

Let (xt)t∈N be a time series, n ∈ N∗ and (x1, · · · , xn) a realization of the ran-
dom variables (x1, · · · ,xn). We call natural estimate of the power spectrum the
function

Φ̂ :

{
[−π, π] → R+

ω 7→ Φ̂(ω)

with

Φ̂(ω) :=
1

n

∣∣∣∣∣

n∑

k=1

xke
−iωk

∣∣∣∣∣

2

♦
Another formulation is equivalent to that one and uses the auto-covariance

function.

Definition 28 (Autocovariance function)

Let I ⊆ R and (Xt)t∈I be a stationary Gaussian process. Then the function

Γ :

{
I × I → R

(s, t) 7→ E [(Xs − EXs)(Xt − EXt)]

is shift-invariant, i.e. ∀(s, t) ∈ I2, if (0, t− s) ∈ I2, Γ(s, t) = Γ(0, t− s). We call
the function

γ :

{
R → R

u 7→ γ(u) := Γ(0, u)

autocovariance function of the process (Xt)t∈I .
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♦

Definition 29 (Estimate of power spectrum with autocovariance function)

Let (xt)t∈N be a time series, n ∈ N∗ and (x1, · · · , xn) a realization of the ran-
dom variables (x1, · · · ,xn). Let γ be the auto-covariance function of the process
(xt)t∈N. Another estimate of the power spectrum is the function

ŝ :

{
[−π, π] → R+

ω 7→ ŝ(ω)

with

ŝ(ω) :=
1

2π

n−1∑

j=−n+1

γ(j)e−iωj

♦

Drawback of the Classical Estimator

Let (xi)n∈N be a stationary Gaussian process and ∀n ∈ N∗, ∀ω ∈ R,Xn(ω) :=
1√
n

∑n
k=1 xke

−iωk. Let Φ̂ be the natural spectrum estimator of the process. If

∀k ∈ [[0, n]],xk ∼ N (µ, σ2(ωk)), then Re Xn(ω) ∼ N (0, σ2(ω)) and Im Xn(ω) ∼
N (0, σ2(ω)) with σ2(ω) := 1

n

∑n
k=1 σ

2
k cos2(ωk). Therefore, Re Xn(ω)

σ(ω)
∼ N (0, 1)

and Im Xn(ω)
σ(ω)

∼ N (0, 1). Hence, Φ̂(ω)
σ2(ω)

∼ χ2
2. But we also have: EΦ(ω) = 2σ2(ω),

therefore
2Φ̂(ω)

Φ(ω)
∼ χ2

2

This means two things: first, that the natural estimator is asymptotically unbi-
ased, and second, that its variance does not depend on n. As the quartiles of a
χ2

2 are quite large , the variance of the estimator is big, no matter how large n is,
which means that the estimator is not consistent. Günther (in [3]) shows similar
results for the second estimator we reviewed.

The question is: do we have to resign to an inconsistent estimator of the
spectrum? The answer is no: if we obtain the periodogram at a given frequency
by averaging the neighboring frequencies, we may reduce the variance. What
we do, is that we calculate an estimation of the spectrum and give ourselves a
set of weights. Then at each frequency, we build the weighted averaged of the
neighboring points to end up with a smoothed version of the spectrum.

10.1.2 Smoothing Methods

Smoothing can be done two equivalent ways: either one smoothes in the
frequency domain (as suggested in the previous paragraph) or one smooths in
the time domain.
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Smoothing in the Frequency Domain

Let (xt)t∈N be a time series, n ∈ N∗ and (x1, · · · , xn) a realization of the
random variables (x1, · · · ,xn). Let Φ̂ be the natural spectrum estimator.

∀k ∈ [[1, n]], ωk :=
2kπ

n
− π

The following function aims at rendering the spectrum “circular”:

∀(j, k) ∈ ([[1, n]])2, σ(j − k) :=

{
j − k if 1 ≤ j − k ≤ n
n− (j − k) otherwise

Let M ∈ N such as M ≤ n (called truncation point) and (Wn(k))−M≤k≤M a
set of weights satisfying:

1. For −M ≤ k ≤M,Wn(k) = Wn(−k),

2.
∑M

k=−MWn(k) = 1

The smoothed version of the estimator is:

∀j ∈ [[1, n]], Φ̂S(ωj) :=

M∑

k=−M
Wn(k)Φ̂(ωσ(j−k) − π)

Smoothing in the Time Domain

Another approach is to smooth the time series in the time domain. As the
Fourier transform is bijective, we know that this will be exactly equivalent to the
smoothing in the frequency domain.

Let (xt)t∈N be a time series, n ∈ N∗ and (x1, · · · , xn) a realization of the
random variables (x1, · · · ,xn). Let γ be the autocovariance function of the time
series.

Let M ∈ N such as M ≤ n and (λn(k))−M≤k≤M be a lag window satisfying:

1. For −M ≤ k ≤M,λn(k) = λn(−k),

2. λn(0) = 1,

3. For −M ≤ k ≤M, |λn(k)| ≤ 1

The smoothed version of the estimator is:

∀ω ∈ [−π, π] , f̂L(ω) :=
1

2π

M∑

k=−M
λn(k)γ(k)e

−ikω
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Link Between Time and Frequency Domain

While they appear to be quite different, the two approaches are in fact related.
If we define a spectral window with a continuous weight function W (ω) as the
Fourier transform of the lag window λ(k), it is easy to show that

W (θ) =
1

2π

M∑

n=−M
λ
( n
M

)
e−inθ and

−π
M
≤ θ ≤ π

M

and

λ

(
k

M

)
=

∫ π

−π
W (θ)eikθdθ

10.1.3 Various Windows

Here is a non-exhaustive review of the most important window shapes

θk :=
kπ

M2
and xk := k/M, with −M ≤ k ≤MM

Rectangular Window

• Definition in the frequency domain

W (θk) =
1

2π

(
M∑

n=−M
cos(nθk)

)

= DM(θk)

• Definition in the time domain

λ(x) =

{
1, |xk| ≤ 1
0, |xk| > 1

• Plot on page 135.

Bartlett Window

• Definition in the frequency domain

W (θk) =
1

2Mπ

(
sin
(
Mθk

2

)

sin
(
θk

2

)
)2

= FM(θk)

• Definition in the time domain

λ(xk) =

{
1− |xk| , |xk| ≤ 1
0, |xk| > 1

• Plot on page 136.
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Parzen Window

• Definition in the frequency domain

W (θk) =
6π

M

(
FM/2(θk)

)2
[
1− 2

3
sin2

(
θk
2

)]

• Definition in the time domain

λ(xk) =






1− 6x2
k + 6 |xk|3 , |xk| ≤ 1/2

2(1− |xk|)3, 1/2 < |xk| ≤ 1
0, |xk| > 1

• Plot on page 137.

Tukey-Hamming Window

• Definition in the frequency domain

W (θk) = 0.23DM

(
θk −

π

M

)
+ 0.54DM(θk) + 0.23DM

(
θk +

π

M

)

• Definition in the time domain

λ(xk) =

{
1− 0.46 + 0.46 cos(πxk), |xk| ≤ 1
0, |xk| > 1

• Plot on page 138.

Tukey Hanning Window

• Definition in the frequency domain

W (θk) = W (θk) = 0.25DM

(
θk −

π

M

)
+ 0.5DM(θk) + 0.25DM

(
θk +

π

M

)

• Definition in the time domain

λ(xk) =

{
1− 0.5 + 0.5 cos(πxk), |xk| ≤ 1
0, |xk| > 1

• Plot on page 139.
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Daniell Window

• Definition in the frequency domain

W (θk) =
1

2M + 1

• Definition in the time domain

λ(xk) =
sin(πxk)

πxk

• Plot on page 140.

Bartlett-Priestley Window

• Definition in the frequency domain

W (θk) =
3M

4π

[
1−

(
Mθk
π

)2
]

• Definition in the time domain

λ(xk) =
3

(πxk)2

(
sin(πxk)

πxk
− cos(πxk)

)

• Plot on page 141.

This last window is the one used by Tatum and Hurvich in their paper.
Figure 10.17 page 142 features all the windows scaled so that the sum of the

weights is equal to one.
We have not found that the type of window chosen has a measurable influence

on the output of the filter. As the spectrum is only use to determine the order in
which to treat the frequencies, the main thing is to smooth it, but how has little
or no importance. For the biweight filter cleaner however, the use of the Bartlett-
Priestley window is necessary to have a positive-definite matrix C. Therefore, it
makes sense to use the same window for all the algorithms.

After having chosen a window shape, we have to evaluate the window length.
To do this, we will need a measure of the goodness of a smoother. Tatum and
Hurvich propose one way to do this and call it “AICC”: it is the object of the
next paragraph.
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Figure 10.4: Rectangular Window (Time Domain)
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Figure 10.5: Bartlett Window (Frequency Domain)
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Figure 10.6: Bartlett Window (Time Domain)
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Figure 10.7: Parzen Window (Frequency Domain)
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Figure 10.8: Parzen Window (Time Domain)
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Figure 10.9: Tukey-Hamming Window (Frequency Domain)
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Figure 10.10: Tukey-Hamming Window (Time Domain)
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Figure 10.11: Tukey-Hanning Window (Frequency Domain)
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Figure 10.12: Tukey-Hanning Window (Time Domain)
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Figure 10.13: Daniell Window (Frequency Domain)

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Daniell (Time Domain)

x

L
a

g
 w

in
d

o
w

Figure 10.14: Daniell Window (Time Domain)
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Figure 10.15: Bartlett-Priestley Window (Frequency Domain)
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Figure 10.16: Bartlett-Priestley Window (Time Domain)
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Figure 10.17: Comparing All Windows (Frequency Domain)
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Figure 10.18: Comparing All Windows (Time Domain)
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10.2 Akaike’s ‘An Information Criterion’

We would like to have a criterion to chose the window length objectively. The
criterion used by Tatum and Hurvich is called modified AIC (AICC). Akaike’s
“An Information Criterion” (AIC) is an asymptotically unbiased estimator of the
Kullback-Leibler information (relative entropy) which, in turn, is a measure of
the information lost when a model is used to approximate full reality. As this AIC
criterion derives from the Kullback-Leibler information, which itself is motivated
by the Shanon entropy, we shall present these two concepts first. This section
owes a lot to the report by Xenia Beate Rendtel ([16]).

10.2.1 Shanon Entropy

The Shanon entropy is a measure of how much “information” is contained in
a “message”, i.e. the number of bits needed to transmit it. A more complete
treatment can be found in the paper by Rendtel ([16]).

Motivating Example

Let A be some finite or countable set. We use the notation A◦ to denote the
set of finite “strings”, i.e. vectors of finite length whose elements are in A. For
example,

{0, 1}◦ = {‘′, 0, 1, 00, 01, 10, 11, 000, · · ·}

with ‘′ denoting the empty word, i.e. a vector of length 0. We can identify N

with {0, 1}◦ according to the following correspondence:

0 7→ ‘′

1 7→ 0

2 7→ 1

3 7→ 00

The length l(x) of a word x in {0, 1}◦ is the number of bits in it. For example,
l(010) = 3 and l(‘′) = 0. We have:

l(x) = floor [log2[(1x)d]]

where floor x is the largest integer smaller than x, log2 is the logarithm base 2,
that is, log2 x = ln(x)/ln(2), and (1x)d is the number you get by concatenating
the string 1 and the string x and converting the result to decimal base.

143



10.2 Akaike’s ‘An Information Criterion’ Appendix B: Window Smoothing

Coding Interpretation

Definition 30 (Encoding)
Let A be a countable set. An encoding is any function

D :

{
{0, 1}◦ → A
x 7→ D(x)

♦
It may well be that the encoding is not bijective and that a same word has

several possible encodings. What we are interested in is saving as much energy
as possible in the coding, i.e. using the shortest code possible.

Definition 31 (Shortest encoding)
Let A be a countable set and D an encoding on A. The shortest encoding is a
function defined by:

LD :

{
A → N

x 7→ miny∈A {l(y) : D(y) = x}

♦
In general, we cannot recover x and y from D−1(xy). Indeed, if D is the

identity mapping, we have D−1(0000) = 0000 = D−1(00)D−1(00). This problem
yields to the definition of prefixes, which make this ambiguity impossible.

Definition 32 (Proper-prefix)

Let E ⊆ {0, 1}◦, (a, b) ∈ E2. a is proper-prefix of b if ∃c ∈ E, c 6= ‘′ : b = ac.
♦

Definition 33 (Prefix-free)

Let E ⊆ {0, 1}◦. E is prefix-free if ∀(a, b) ∈ E2, a is not proper-prefix of b and b
is not proper prefix of a.

♦

Definition 34 (Prefix-code)
An encoding D is a prefix-code if its domain is prefix-free.

♦

Theorem 6 (Kraft’s inequality)
Let A be a countable set and D be a prefix-code. Then we have the following
inequality: ∑

x∈A

1

2LD(x)
≤ 1
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�

Proof:
We draw a binary tree where each layer represents a word length (the point on
the top being the empty word) and each line represents either a 0 or a 1.

‘’

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 10.19: Binary tree

For example, in the second layer from the top, the left point is the word 0 and
the right point the word 1. In the third layer, we have the words 00, 01, 10 and
11 in that order. Let L be the length of the biggest word. At the k-th layer, each
point is above 2k−lD(x) words, which means that if k = L, then

∑
x∈A 2L−lD(x) < 2L

because 2L is the total number of words of length L. Dividing by 2L gives the
inequality.

�

This means that a prefix-code cannot have too many short words. We now
have the following theorem:

Theorem 7 (Noiseless coding)

Let A be a countable set, D a prefix-code on A and (Ω,A, P ) a probability space.
Let X be a random variable on Ω with values in A. ∀x ∈ A, nx := LD(x) and
px := P (X = x). Then,

ELD(X) =
∑

x∈A
nxpx ≥ H(X)

with

H(X) :=
∑

x∈A
px log2

(
1

px

)

called entropy of X.

�
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Proof:
We need to show that H(X)− ELD(X) ≤ 0.

H(X)− ELD(X) =
∑

x∈A
px

(
log2

(
1

px

)
− LD(x)

)

=
∑

x∈A
px log2

(
1

px

)
+ log2 2−LD(x)

=
∑

x∈A
px log2

(
2−LD(x)

px

)

as log2 is concave, we can apply Jensen’s inequality:

H(X)− ELD(X) ≤ log2

(
∑

x∈A
2−LD(x)

)

Kraft’s inequality yields to:

∑

x∈A

1

2LD(x)
≤ 1

Therefore,

H(X)− ELD(X) ≤ log2(1) = 0

�

This means that for any prefix-code, the average number of bits we send is
at least the entropy of A. The entropy of a message is therefore the minimum
average number of bits needed to code it. This is an empirical way to derive the
entropy. A more axiomatic approach follows.

Axiomatic approach

This is an outline of the approach for finite samples from which the more
general case is motivated, but as in this thesis we are only dealing with finite-
length time series, we will only expose the finite sample case.

The idea is to build a function for every random variable that will give us
how much “information” that the observation of a specific outcome gives us. For
example, if we know that x = a with probability 1, then observing x = a will not
give us any information so we will set I(a) = 0.
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Definition 35 (Information of a random variable)

Let (Ω,A, P ) be a probability space and X a real valued random variable on Ω.
A function

IP :

{
R → R

x 7→ IP (x)

will be called information function of X with respect to P if there exists a function

SX :

{
[0, 1] → R

x 7→ SX(x)

that satisfies the following properties:

1. ∀x ∈ R, IP (x) = SX(P (X = x)),

2. SX(1) = 0,

3. SX is continuous,

4. SX is strictly decreasing,

5. ∀(p, q) ∈ [0, 1]2 , SX(pq) = SX(p) + SX(q)
♦

Theorem 8 (Expression of an information function)

Let (Ω,A, P ) be a probability space, and X a real-valued random variable on Ω.
If IP is an information function of X with respect to P and SX is defined as above,
then ∃c > 0, ∀x ∈ R, SX(x) = −c log2(x) and therefore

∀x ∈ R, IP (x) = −c log2(P (X = x))

�

Proof:
In all this proof, (p, q) ∈ [0, 1] and (m,n) ∈ N2. First, SX(0) = 2SX(0) so
SX(0) = 0. Then, SX(p

2) = 2SX(p). We can show easily by induction that
SX(p

n) = nSX(p). Now if n 6= 0, SX
((
p

m
n

)n)
= nSX

(
p

m
n

)
= mSX (p), therefore,

SX
((
p

m
n

)n)
= m

n
SX(p). As Q is dense in R, ∀u ∈ R, ∃(un)n∈N, ∀n ∈ N, un ∈ Q

and un −−→
n∞ u. By continuity of SX we have:

SX(p
u) = lim

n→∞
SX(p

un)

which means that
∀u ∈ R, SX(p

u) = uSX(p)

Let c ∈ R and define SX(2) := −c. ∀x ∈ R∗
+, x = 2log2 x. We then have

SX(x) = −c log2(x)

c > 0 because SX has to be strictly decreasing.
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�

The constant c corresponds to the basis in which the logarithm is defined. We
choose that basis according to the number of elements we write our code with (in
the case of binary coding, 2).

Definition 36 (Shanon entropy)

Let (Ω,A, P ) be a probability space, and X a real-valued random variable on Ω.
IP is the information function of X with respect to P , with c = 1. Then the
Shanon entropy of X is defined as:

H(X) := EP IP (X) :=
∑

x∈R

P (X = x)IP (x) =
∑

x∈R

P (X = x) log2

(
1

P (X = x)

)

♦

We can see Shanon’s entropy as the average amount of information (expressing
that information in a number of bits) that one receives when learning the value
of a random variable: if P (X = x0) = 1 and we learn that X = x0, we have not
really gained any information because the event {ω ∈ Ω : X(ω) = x0} was certain.
On the other hand, the smaller the probability, the more unlikely the event and
therefore the more information we gain by learning it occurred.

10.2.2 Kullback-Leibler Discrepancy

If a random variable X has a distribution PX that we approximate by another
law QX, the Kullback-Leibler discrepancy is the average information lost when
approximating PX by QX, i.e. the average number of bits lost when performing
this approximation. More formally,

Definition 37 (Kullback-Leibler relative entropy)

Let (Ω,A, P ) be a probability space, Q a probability measure on A and X a
real-valued random variable on Ω with distribution PX. IP is the information
function of X with respect to P , with c = 1 and IQ with respect to Q. Then the
Kullback-Leibler relative entropy of P and Q is defined by:

KL(P,Q) := EP (IP (X)− IQ(X)) =
∑

x∈R

P (X = x) log2

(
Q(X = x)

P (X = x)

)

♦
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10.2.3 AIC and AICC

If we want to use the Kullback-Leibler relative entropy, we need to estimate
it. Suppose we have two distributions P and Q, X being distributed according to
P unknown, Q being known. We have:

KL(P,Q) = EP (IP (X))− EP (IQ(X))

P does not vary, as it is the theoretical distribution we are trying to approxi-
mate, so minimizing KL(P,Q) is the same as maximizing EP (IQ(X)).

If we have a set of realizations of X say (x1, · · · , xn), we can try to estimate
EP (IQ(X)) =

∑
x∈R

P (X = x) log2 (Q(X = x)).
Akaike showed in 1973 that the maximized likelihood can be used as a biased

estimator of EP (IQ(X)) and that the bias, under some important but technical
regularity assumptions, is:

bias =
n∞ dimΘ + o(1)

where dimΘ is the dimension of the parameter space (i.e. the number of param-
eters in the model).

We then define Akaike’s AIC by

Definition 38 (AIC)
Let K be the dimension of the parameter space and logL the log-likelihood.
Then:

AIC = −2 logL+ 2K

♦

AIC is therefore a first-order approximation of the Kullback-Leibler rela-
tive entropy and minimizing AIC is approximately equivalent to minimizing the
Kullback-Leibler entropy. If the ratio sample size/number of parameters is small
(usually n/K < 40) then the use of a second-order AIC is recommended (see
Hurvich and Beltráo in [7]). This second-order AIC is the AICC .

Definition 39 (AICC)

AICC = −2 logL+ 2K +
2K(K + 1)

n−K − 1

♦
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Chapter 11

Appendix C: Numerical
Algorithms

11.1 Lagrangian Multipliers

Suppose we have the following problem. Let n ∈ N∗, f : Rn → R, U ⊆ Rn:
we are looking for x0 ∈ U, ∀x ∈ U, f(x0) ≤ f(x). We will call this problem a
constrained minimization problem and any point solving the constraint will be
called a feasible point. f is sometimes called cost function. If U = ker g for some
linear application g : Rn → Rm, (m,n) ∈ (N∗)2, then the problem will be called
linear constrained minimization problem. The aim of this section is to solve these
linear constrained minimization problems.

11.1.1 Context

Definition 40 (Level sets)

Let n ∈ N∗ and suppose f : Rn → R is a differentiable function. Let k ∈ f(Rn).
Then f−1(k) is called k-level set.

♦

Definition 41 (Critical point)
Let n ∈ N∗ and suppose f : Rn → R is a differentiable function. x0 ∈ Rn is said
to be a critical point for f if (∇f)(x0) = 0.

♦

Definition 42 (Regular value)
Let n ∈ N∗ and suppose f : Rn → R is a differentiable function. A constant
k ∈ f(Rn) is a regular value of f if the k-level set has no critical points in it.

♦
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Definition 43 (Topological manifold, regular surface)

Let n ∈ N∗ and suppose (M, T ) is a Hausdorff topological space, En being a
Euclidean space of dimension n. M is said to be a topological manifold of En

if every point of M has an open neighborhood homeomorphic to either an open
subset of En or an open subset of the closed half of En. If E = R, we call M an
n-dimensional regular surface.

♦

Lemma 1
Let U be an open subset of Rn. If f : U → R is a differentiable function and
k ∈ f(U) is a regular value, then the k-level set is an (n− 1)-dimensional regular
surface.

�

The following theorem, which we will not prove (see Serge Lang in [8]), states
that we can locally parametrize level sets.

Theorem 9 (Inverse function)
Let n ∈ N∗. If f : U ⊆ Rn → Rn has a nonzero jacobian and if f is continuously
differentiable on a neighborhood of p ∈ U , then there exists an open neighborhood
V of p such as f : V → f(V ) is a diffeomorphism.

�

Therefore, if k is a regular value, we can give a coordinate system to a neigh-
borhood of all points of the k-level set.

11.1.2 Preliminary results

Lemma 2
Let n ∈ N∗, U be an open set of Rn, denote by f : U → R a differentiable cost
function and let k ∈ R be a regular value of f . Then:

∀x ∈ f−1(k),∇f(x) ⊥ f−1(k)

where ⊥ denotes orthogonality in the sense of the euclidean scalar product.
�

Proof:
Let x ∈ f−1(k). In the previous section, we stated that f−1(k) is a (n − 1)-
dimensional regular surface. Therefore, via the inverse function theorem, there
exists a parametrization g : Rn−1 → Rn of a neighborhood of f−1(k) at x. We
can choose this parametrization g to fulfill g(0) = x.
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For any unit vector d ∈ Rn−1, the directional derivative of f(g(x)) in the
direction d at 0 is given by:

∂f(g(κd))

∂κ
|κ=0 = 〈(∇f)(x), Dg(0)d〉

Since f is constant on the image of g, this last quantity is 0 and therefore
∇f(x) is orthogonal to the tangent to the surface in the direction d. Since d was
arbitrary, ∇f(x) must be perpendicular to the entire surface.

�

This lemma simply means that the gradient of the cost function is orthogonal
to the constraint manifold.

Theorem 10 (Lagrange multiplier with one constraint)
Let n ∈ N∗ and U be an open set of Rn. Suppose that f : U → R and g : U → R

are differentiable functions having a minimum in x0. Then

∃λ ∈ R, (∇f)(x0) = λ(∇g)(x0)

and λ is called Lagrange multiplier.
�

Proof:
We only need to show that both ∇f and ∇g must be orthogonal to ker g at x0.
The case has already been argued for ∇h.

Now, suppose that (∇f)(x0) is not orthogonal to ker g at x0. It follows that
〈(∇f)(x0),d〉 < 0 in at least one direction d tangent to ker g.

But this means that if one moved along the surface ker g a little in that
direction, one would obtain a smaller value of f , i.e. for κ ∈ R∗

+ small,

f(x0 + κd) < f(x0)

This contradicts that x0 is a minimum cost. Therefore, both (∇f)(x0) and
(∇g)(x0) must be orthogonal to ker g. Since ker g is a hyperplane in Rn, the
two gradients must point in the same direction and are therefore multiples of one
another:

(∇f)(x0) = λ(∇h)(x0)

�

The Lagrange multiplier therefore represents how much a small change in the
constraint will change the minimum.
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11.1.3 Lagrange Multiplier Theorem

In the previous subsection, we solved the Lagrange multiplier problem with
one constraint, i.e. the constraint manifold was reduced to one point. More
generally, we might consider higher dimensional regular surfaces.

Theorem 11 (Lagrange multiplier)
Under the hypothesis:

• (m,n) ∈ (N∗)2,

• U is an open, non-empty set of Rn,

• f : U → R is a differentiable cost function,

• ∀i ∈ [[1, m]], gi : U → R are differentiable functions and define g :=
(g1, · · · , gm),

• x0 ∈ ker g is a minimal cost of f ,

• the vectors ((∇g1)(x0), · · · , (∇gm)(x0)) are independent,

the following result holds:

∃λ = (λ1, · · · , λm) ∈ Rm, (λf)(x0) +

m∑

i=1

λi(∇gi)(x0) = 0

The constants (λ1, · · · , λm) are called Lagrange multipliers.
�

Proof:
By hypothesis, the Jacobi matrix Dg(x0) = ((∇g1)(x0), · · · , (∇gm)(x0))

T has
rank m. As ∀i ∈ [[1, m]], (∇gj)(x0) ∈ Rn, m ≤ n. If m = n, the system has a
unique solution λ ∈ Rn. We will therefore suppose that m < n. We can also
suppose that the last m columns of the matrix Dg(x0) are independent (if not,
rename the gi’s).

We now decompose all vectors of Rn in two:

x = (x′,x′′)

with

x′ := (x1, · · · , xn−m)

and

x′′ := (xn−m+1, · · · , xn)

154



Appendix C: Numerical Algorithms 11.1 Lagrangian Multipliers

The Jacobi matrix can now be written:

∀x ∈ Rn, Dg(x) = (Dx′g(x), Dx′′g(x))

By hypothesis, Dx′′g(x0) is non-singular. The implicit function theorem then
assures us that:

(i) ∃ε > 0, ∃δ > 0, ∀v ∈ V := Bo(x′
0, ε), ∃!w ∈W := Bo(x′′

0, ε) : g(v,w) = 0.

(ii) We can define a function h :

{
V → W
u 7→ g(u) = v

, h is continuously differ-

entiable and x′′
0 = h(x′

0). If we define Jx′ = Dx′g(x0) and Jx′′ = Dx′′g(x0),
we have:

Dh(x′
0) = −(Jx′′)−1Jx′

The cost function f now verifies:

∀x = (v,w) ∈ (V ×W ) ∩ ker g, f(v, w) = f(v, h(v))

As x0 is a local minimum of f , ∃r > 0, ∀x ∈ Bo(x0, r), f(x0) ≤ f(x). As all
norms in Rn are equivalent, we can suppose that Bo(x0, r) is defined with the
maximum norm ‖x‖∞ := max1≤i≤n |xi|. We then have Bo(x0, r) = Bo(x′

0, r) ×
Bo(x′′

0, r). We can choose r so that Bo(x0, r) ⊂ V ×W . We then have

∀x ∈ Bo(x0, r) ∩ ker g, f(x′
0, h(x

′
0)) = f(x′

0,x
′′
0) ≤ f(x) = f(x′, g(x′))

We can now transform the constrained minimization problem into an uncon-
strained one by defining the function

φ :

{
Rn−m → R

v 7→ f(v, h(v))

and ∀v ∈ Bo(x′
0, r), φ(x′

0) ≤ φ(v). Therefore,

(∇φ)(x′
0) = 0,

but this last equality can also be written

(∇φ)(x′
0)

T
= (∇x′

0
f)(x0)

T + (∇x′′

0
f)(x0)

TDh(x′
0) = 0

hence

(∇φ)(x′
0)

T
= (∇x′

0
f)(x0)

T − (∇x′′

0
f)(x0)

TJx′′

0
)−1Jx′

0
)

Let λ := −(∇x′′

0
f)(x0)

TJx′′

0
)−1

which gives us, by right-multiplying by Jx′′

0
,
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(∇x′

0
f)(x0)

T + λTJx′

0
= 0

and by replacing the value of λ in a previous equation,

(∇x′′

0
f)(x0)

T + λTJx′′

0
= 0

which completes the proof.
�

We can now define what a “Lagrangian” is.

Definition 44 (Lagrangian)

• (m,n) ∈ (N∗)2,

• U is an open, non-empty set of Rn,

• f : U → R,

• ∀i ∈ [[1, m]], gi : U → R,

then the Lagrangian of this system of equations is:

∀x ∈ U, ∀λ ∈ Rm, L(x, λ) = f(x) +
m∑

i=1

λigi(x)

♦

The Lagrange multiplier conditions become:

(∇xL)(x0, λ
∗) = 0

(∇λL)(x0, λ
∗) = 0

11.1.4 Minimization of a Quadratic Form

This very general formulation of a linear constraint minimization problem can
easily be adapted to the minimization of a quadratic form.

Theorem 12 (Minimization of a quadratic form)
Under the following assumptions:

• (m,n) ∈ N∗,

• A is a symmetric, positive and definite n× n matrix,
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• f :

{
Rn → R

c 7→ xTAx
,

• B is an m× n matrix of rank m,

• c ∈ Rm,

the minimum value x0 of f verifying the constraint Bx0 = c is given by:

x0 = A−1BT(BA−1BT)−1c

�

Proof:
If we define

∀x ∈ Rn, g(x) = Bx− c

the Lagrangian can be written:

∀x ∈ Rn, ∀λ ∈ Rm, L(x, λ) = f(x) + λTg(x)

The first Lagrange multiplier condition is:

(∇xL)(x0, λ
∗) = 0

which yields
2Ax0 + BTλ∗ = 0

and

x0 = −1

2
A−1BTλ∗

The second Lagrange multiplier condition is:

(∇λL)(x0, λ
∗) = 0

This gives:
Bx0 = c

Replacing x0 by the expression in the previous equation gives:

−1

2
BA−1BTλ∗ = c

Replacing λ∗ by this expression in the first Lagrange multiplier condition gives
the result.

�
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11.2 Convergence Acceleration Algorithms

When using recursive methods, we often face the problem that the algorithm
used converges too slowly to a solution and acquiring a single extra digit can
prove to be ridiculously long. For example, to calculate ln 2, we can use the series∑ (−1)n+1

n
but as it is an alternate series, one has to calculate one million terms

to get a correct result to the 6th decimal place! It can therefore be necessary
to accelerate the convergence, i.e. transform the initial sequence (Sn)n∈N which
converges to S, in a sequence (tn)n∈N such as tn − S =

n∞ o(Sn − S). A more
complete treatment can be found in the books by André Hautot ([5]) and Claude
Brezinski ([1]).

11.2.1 Richardson Algorithm

This is an extrapolation method, which means that we interpolate the se-
quence to accelerate with a polynomial and extrapolate the limit with a value of
that polynomial.

Motivation

When graphing sequences, one often plots a point at each integer value on
the x-axis. This means that one cannot possibly see all the terms of the sequence
because as n grows larger and larger, so does the graph. Richardson solved this
problem by plotting the sequence against another sequence tending to 0. For
example, the sequence of the partial sums of the series

∑
1
n2 can be plotted

against the sequence
(

1
n

)
n∈N∗

producing the result featured on Figure 11.1 page
161.

If we could pass a polynomial through these points, its value in zero might
give us a reasonable estimation of the limit of the series, π2

6
here. This is the

basic idea of Richardson’s algorithm.

Neville Extrapolation

As we only want to know the value of the polynomial in zero, there is no
need to calculate all its coefficients. Indeed, we can use Neville’s method: it is
recursive and has the major advantage of not requiring the whole calculation to
be done again if we add an extra point.

Let Mi(xi, yi), 0 ≤ i ≤ n ∈ N be the points to interpolate. Let A and B be
two distinct points amongst the Mi’s. Let P be the polynomial of degree n which
interpolates the n + 1 Mi’s, PA interpolating all the points except A and PB all
the points except B. We would like to calculate P from PA and PB. We are
therefore looking for two first-degree polynomials U and V such as:

P (X) = U(X)PA(X) + V (X)PB(X)
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in particular {
P (A) = U(A)PA(A) + V (A)PB(A)
P (B) = U(B)PA(B) + V (B)PB(B)

therefore {
U(A) = 0
V (A) = 1

and {
U(B) = 1
V (B) = 0

hence

P (X) =
(X −XB)PB − (X −XA)PA

XA −XB

Richardson Algorithm

Let (Sn)n∈N be a converging sequence of real numbers. Let (xn)n∈N be a de-
creasing sequence of real numbers converging to 0, for example, xn = 1

n
. Let

(n0, p) ∈ N2. If we consider the p + 1 points (xn, Sn), · · · , (xn+p, Sn+p), the ex-
trapolated limit we wish to obtain is the value in 0 of the polynomial of degree
p passing through these p + 1 points and we will denote it by S

(p)
n , identifying

(S
(0)
n )n∈N with the original sequence. From the above extrapolation method we

find that:
∀n ∈ N, S(0)

n := Sn

∀n ∈ N, ∀p ∈ N∗, S(p)
n =

xnS
(p−1)
n+1 − xn+pS

(p−1)
n

xn − xn+p

This motivates the following definition:

Definition 45 (Sequence transformation)
Let E be a vector space of real sequences. We define a sequence transformation
e on E by

∀p ∈ N, ep :

{
E → E

(Sn)n∈N 7→ (e
(n)
p (Sn))n∈N

♦

Now a sequence transformation is only of any interest if it accelerates the
convergence of a given sequence. For this to happen, it first needs to converge to
the same limit.

Definition 46 (Regular sequence transformation)
Let E be a vector space of real sequences and e a sequence transformation. Let
I ⊆ N and (Sn)n∈N be a real sequence converging to S ∈ R. e is said to be regular

on I for (Sn)n∈N if ∀p ∈ I, (e(n)
p (Sn))n∈N

−−→
n∞ S. If I = N, it is said to be regular.
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♦

Which sequences can be accelerated by a convergence acceleration algorithm?
The set of all such sequences will be called kernel.

Definition 47 (Kernel)
Let E be the vector space of all real converging sequences. Let e be a sequence
transformation. The kernel of e is denoted by ker e and defined as:

ker e := {(Sn)n∈N ∈ E : ∃p ∈ N, ∃S ∈ R, ∀n ∈ N, e(n)
p (Sn) = S}

♦

The kernel is therefore the set of sequences transformed at some point in the
algorithm into constant sequences. The kernel is of particular interest for reg-
ular transformations (or at least regular on a big enough subset of N), because
in that case the acceleration algorithm outputs the limit of the accelerated se-
quence, which means it works perfectly. We will hence be looking for regular
transformations with a kernel as big as possible.

The kernel of the Richardson transformation depends on the auxiliary se-
quence used. The problem is now to chose the “right” auxiliary sequence (xn)n∈N.
A special choice of the auxiliary sequence leads to Aitken’s ∆2-algorithm.
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Figure 11.1: Illustration of Richardson’s Algorithm
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11.2.2 Aitken’s ∆2-algorithm

Construction

Intuitively, if we space out the points according to the difference between
two terms of the sequence, we might expect to have a more “linear looking”
polynomial. Therefore, Aitken proposed in 1926 the special choice xn = ∆nSn :=
Sn+1 − Sn. Let ∆2

nSn := (∆n ◦∆n)(Sn) = Sn+2 − 2Sn+1 + Sn. Reporting in the
definition of Richardson’s algorithm, we get (for p = 1, n ∈ N):

Tn = e(1)n =
(∆nSn)Sn+1 − (∆nSn+1)Sn

∆nSn −∆nSn+1

=
(Sn+1 − Sn)Sn+1 − (Sn+2 − Sn+1)Sn

−∆2
nSn

=
Sn+1 − SnSn+2

−∆2
nSn

=
Sn(Sn+2 − 2Sn+1 + Sn) + 2SnSn+1 − S2

n − S2
n+1

∆2
nSn

=
Sn∆

2
nSn − (∆nSn)

2

∆2
nSn

Tn = Sn −
(∆nSn)

2

∆2
nSn

Hence the name “∆2-algorithm”. using the notations of the previous para-
graph, we can see that we stopped at p = 1. p = 2 corresponds to Steffenson’s
algorithm and the more general case of p ∈ N∗ is called Overholt’s algorithm..

Kernel of the ∆2-transformation

As p = 1, we interpolate only two consecutive terms of the original sequence
(Sn)n∈N by a straight line (polynomial of degree p = 1) to get an approximation
of the limit S of (Sn)n∈N. The algorithm interpolates two points (∆nSn, Sn) and
(∆nSn+1, Sn+1) by an affine function y = ax + b where b is the value of interest

as it is the value of the polynomial in 0. Tn = e
(1)
n is therefore solution of the

system: {
a∆nSn + Tn = Sn
a∆nSn+1 + Tn = Sn+1

Cramer’s formula leads to:

Tn =

∣∣∣∣
∆nSn Sn

∆nSn+1 Sn+1

∣∣∣∣
∣∣∣∣

∆nSn 1
∆nSn+1 1

∣∣∣∣
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As p = 1, the kernel will just be the set of all sequences such that,

(Sn −−→
n∞ S)⇒ (e1n(Sn) = S)

Therefore, if (Sn)n∈N ∈ ker e,

∣∣∣∣
∆nSn Sn

∆nSn+1 Sn+1

∣∣∣∣
∣∣∣∣

∆nSn 1
∆nSn+1 1

∣∣∣∣
= S

∣∣∣∣
∆nSn Sn − S

∆nSn+1 Sn+1 − S

∣∣∣∣ = 0

∣∣∣∣
Sn+1 − Sn Sn − S
Sn+2 − Sn+1 Sn+1 − S

∣∣∣∣ = 0

∣∣∣∣
Sn+1 − S Sn − S
Sn+2 − S Sn+1 − S

∣∣∣∣ = 0

This leads to: ∃(a0, a1) ∈ R2, a0(Sn − S) + a1(Sn+1 − S) = 0, a0 + a1 6= 0.
The kernel is therefore:

ker e = {(Sn)n∈N : ∃(λ, µ) ∈ R2, Sn = S + λµn}
The ∆2-algorithm is therefore the same as extrapolating the sequence by an

exponential one.

11.2.3 ε-algorithm

Generalization of the ∆2-algorithm

The kernel of the ∆2-algorithm is fairly small: one may wonder if it is possible
to construct a sequence transformation with a kernel such as:

ker e =

{

(Sn)n∈N : ∃(an)n∈N ∈ R,

+∞∑

p=0

ap(Sn+p − S) = 0

}

This transformation is known as “Shanks’ transformation”.

Shanks’ Transformation

Let E be the R-vector space of all convergent sequences of real numbers.
∀p ∈ N∗, Fp := {(Sn)n∈N : ∃(an)n∈N ∈ R,

∑p
k=0 ak 6= 0,

∑p
k=0 ak(Sn+k − S) = 0}.

F := F∞ :=
⋃
p∈N

Fp.

163



11.2 Convergence Acceleration Algorithms Appendix C: Numerical Algorithms

Definition 48 (Shanks’ transformation)
The transformation e defined for all p ∈ N by

e(2p) :






E → E

(Sn)n∈N 7→ e
(2p)
n (Sn) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

Sn Sn+1 · · · Sn+p

∆nSn ∆nSn+1 · · · ∆nSn+p
...

...
...

∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1 1 · · · 1
∆nSn ∆nSn+1 · · · ∆nSn+p

...
...

...
∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

is called Shanks’ transformation. ♦

Theorem 13 (Kernel of Shanks’ transformation)
ker e = F

�

Proof:

• Lets show that ker e ⊆ F
Let (Sn)n∈N ∈ ker e with Sn −−→

n∞ S. By definition,

∃p ∈ N∗, ∀n ∈ Ne2pn (Sn) = S

Therefore,

∀n ∈ N, S =

∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+p

∆nSn ∆nSn+1 · · · ∆nSn+p
...

...
...

∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
∆nSn ∆nSn+1 · · · ∆nSn+p

...
...

...
∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

∣∣∣∣∣∣∣∣∣

which means that

∀n ∈ N,

∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+p

∆nSn ∆nSn+1 · · · ∆nSn+p
...

...
...

∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣

S S · · · S
∆nSn ∆nSn+1 · · · ∆nSn+p

...
...

...
∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

∣∣∣∣∣∣∣∣∣

hence

∀n ∈ N,

∣∣∣∣∣∣∣∣∣

Sn − S Sn+1 − S · · · Sn+p − S
∆nSn ∆nSn+1 · · · ∆nSn+p

...
...

...
∆nSn+p−1 ∆nSn+p · · · ∆nSn+2p−1

∣∣∣∣∣∣∣∣∣

= 0

∀n ∈ N,

∣∣∣∣∣∣∣∣∣

Sn − S Sn+1 − S · · · Sn+p − S
Sn+1 − S Sn − S · · · Sn+p+1 − S

...
...

...
Sn+p − S Sn+p+1 − S · · · Sn+2p − S

∣∣∣∣∣∣∣∣∣

= 0

which is equivalent to

∃(a0, · · · , ap) ∈ Rp+1,

p∑

k=0

ak(Sn+k − S) = 0,

p∑

k=0

ak 6= 0

We have shown that ∃p ∈ N, (Sn)n∈N ∈ Fp, so (Sn)n∈N ∈ F .

• Now lets show that F ⊆ ker e
Let (Sn)n∈N ∈ F . By definition, ∃p ∈ N, (Sn)n∈N ∈ Fp. For such a p,

∃(a0, · · · , ap) ∈ Rp+1,

p∑

k=0

ak(Sn+k − S) = 0,

p∑

k=0

ak 6= 0

The rest of the demonstration is exactly as above in reverse order.

�

Although Shanks’ transformation is appealing, it is impractical because it
requires the evaluation of determinants. Indeed, not only is this evaluation costly
in terms of computation time, but this evaluation can be subject to roundoff
errors, which is a major problem if the aim is to reach a high precision. For these
reasons, P. Wynn (quoted by C. Brézinski in [1]) developed an algorithm called
“ε-algorithm” which avoids the evaluation of these determinants.
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ε-algorithm

Let (Sn)n∈N be a converging sequence of real numbers.

∀n ∈ N, ε(−1)
n (Sn) := 0, ε(−1)

n (Sn) := Sn

and

∀p ∈ N∗, ε(p+1)
n (Sn) := ε

(p−1)
n+1 (Sn) +

1

ε
(p)
n+1(Sn)− ε(p)

n (Sn)

We have the following result, proven by Wynn but the demonstration of which
we will not reproduce here:

Theorem 14 (ε-algorithm and Shanks’ transformation)
Let E denote the set of all converging sequences of real numbers and e be Shanks’
transformation.

∀(Sn)n∈N ∈ E, ∀p ∈ N∗, ∀n ∈ N, ε(2p)
n (Sn) = e(2p)n (Sn)

�

11.2.4 θ-algorithm

Limitations of the ε-algorithm

The kernel of the ε-algorithm may seem quite large at first, but it only contains
exponentials and polynomials. It has been shown that, although alternating series
are accelerated quite spectacularly by the ε-algorithm, it performs quite poorly on
monotonous series. We are therefore looking for a transformation with a bigger
kernel.

Generalisation of the ε-algorithm

In the ε-algorithm, only the sequences of even order (i.e. p even) are of interest,
the others serving as intermediaries. The first idea is therefore to separate even
terms from odd ones:

∀n ∈ N, ε(−1)
n (Sn) := 0, ε(−1)

n (Sn) := Sn

and

∀p ∈ N∗, ε(2p+1)
n (Sn) := ε

(2p−1)
n+1 (Sn) +

1

ε
(2p)
n+1(Sn)− ε(2p)

n (Sn)

∀p ∈ N∗, ε(2p+2)
n (Sn) := ε

(2p)
n+1(Sn) +

1

ε
(2p+1)
n+1 (Sn)− ε(2p+1)

n (Sn)

We then introduce a parameter ωp:
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∀p ∈ N∗, ε(2p+2)
n (Sn) := ε

(2p)
n+1(Sn) +

ωp

ε
(2p+1)
n+1 (Sn)− ε(2p+1)

n (Sn)

Now we would like ε
(2p+2)
n (Sn) to converge quicker than ε

(2p)
n (Sn).

We have

∆nε
(2p+2)
n (Sn)

∆nε
(2p)
n (Sn)

−−→
n∞ 0

Let

D(2p+1)
n :=

1

ε
(2p+1)
n+1 (Sn)− ε(2p+1)

n (Sn)

The condition can be written as:

∆nε
(2p+2)
n (Sn)

∆nε
(2p)
n (Sn)

= 1 + ωp
∆nD

(2p+1)
n (Sn)

∆ne
(2p)
n+1(Sn)

−−→
n∞ 0

This condition expresses the fact that the algorithm actually accelerates the con-
vergence of Sn and it is always satisfied if we choose:

ωp := − ∆ne
(2p)
n+1

∆nD
(2p+1)
n

hence the expression of the θ-algorithm:

θ(−1)
n (Sn) := 0

θ(0)
n (Sn) := Sn

θ(2p+1)
n = θ

(2p−1)
n+1 +

1

∆nθ
(2p)
n

θ(2p+2)
n =

∆n(θ
(2p)
n+1∆nθ

(2p+1)
n )

∆2
nθ

(2p+1)
n

as before, only the sequences of even indices are of interest.

Remarks

Brezinski discovered this algorithm by intuition: there is therefore no known
justification today for this algorithm, except a posteriori considering the results
it yields. Although it is very easy to implement, very few theoretical results exist:
it is indeed very difficult to study. For example, its kernel is not known except
for the first step (p = 1).
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11.2.5 A New Approach

The problem with the θ-algorithm is that there is no justification for it except
the experimental fact that it works well. Here, we will give a method to construct
a sequence transformation which accelerates sequences from a given kernel.

Formulation of the problem

Suppose that the sequence of real numbers (Sn)n∈N converges to S. Instead of
trying to accelerate Sn directly, we will accelerate the remainder, i.e Sn− S. Let
(Dn)n∈N be a known sequence called remainder estimate and (an)n∈N an unknown
sequence called correction term and such as:

∀n ∈ N, Sn − S = anDn

Let K := {(Sn)n∈N : Sn −−→
n∞ S, Sn = S + anDn}. We will now assume that there

exists a linear mapping of the set of sequences into itself L (called annihilation
operator such as ∀n ∈ N, L(an) = 0. We then have:

L

(
Sn
Dn

)
− SL

(
1

Dn

)
= L(an) = 0

therefore

S =
L(Sn/Dn)

L(1/Dn)

This motivates the following sequence transformation:

Definition 49 (Versatile transformation)

Let (Sn)n∈N be a sequence converging to S, and (Dn)n∈N, (an)n∈N two other se-
quences. The versatile transformation is defined by:

∀n ∈ N, e(0)n := Sn,

and

∀p ∈ N∗, e(p) :

{
E → E

(Sn)n∈N 7→ e
(p)
n (Sn) := L(e(p−1)(Sn)/Dn)

L(1/Dn)

♦

Theorem 15 (Kernel of the versatile transformation)

The kernel of the versatile transformation (using the notations of the definition)
is

ker (e) = {(Sn)n∈N : Sn −−→
n∞ S, Sn = S + anDn}

�

Proof:
See above.

�
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Example

Simple yet powerful algorithms can be obtained by assuming that the annihi-
lation operator is based on the finite difference operator ∆.

Lemma 3
∀n ∈ N, ∀p ∈ N,∆p+1

n np = 0

�

Proof:

∆p+1
n np =

p+1∑

k=0

(−1)p+k
(
p

k

)
un+k

=

p∑

i=0

(
n

i

)
ni

p+1∑

k=0

(−1]p+k
(
p+ 1

k

)
kp−i

By induction on i, we will show that ∀i ∈ N,
∑p+1

k=0(−1)p+k
(
p+1
k

)
ki = 0. For i = 1,

p+1∑

k=0

(−1)p+k
(
p + 1

k

)
= (1− 1)p+1 = 0

Suppose the formula is true up until i− 1.

p+1∑

k=0

(−1)k
(
p

k

)
ki =

p∑

k=1

(−1)k
p!ki

(p− k)!k!

=

p+1∑

k=1

(−1)k
(
p

k

)
ki−1

=

p∑

k=0

(−1)k
p!ki

(p− k)!(k − 1)!

= p

p∑

k=0

(−1)k
(
p

k

)
ki−1

= 0

which completes the proof.

�
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A consequence of this lemma is the following theorem.

Theorem 16 (Annihilation of a polynomial)
Let n ∈ N. For all polynomials P of degree n− 1 in p,

∆n
pP (p) = 0

�

Proof:
From the previous lemma we have:

∀i < n,∆n
pp

i = 0

As ∆n
p is linear, we can apply this formula at each power of the polynom.

�

If we can find a sequence (wn)n∈N such that ∀n ∈ N, wnan is a polynomial in
n of degree p − 1, ∆pwnan = 0 and therefore, the weighted difference operator
L := an 7→ ∆pwnan annihilates (an)n∈N.

For example, if

an :=

p−1∑

i=0

αi
ni
,

choosing wn := np−1 will give us a kernel of sequences such as Sn = S + anDn.
The choice wn := (n + β)p−1 gives an algorithm known as the Durbin-Levinson
transformation.

All the algorithms presented above (except the θ-algorithm) can be seen as
special cases of the versatile transformation.

11.3 Random Variable Generation

- “Anyone who considers arithmetical methods of producing random digits is,
of course, in a state of sin.” in John von Neumann, Various techniques used
in connection with random digits, 1951.

11.3.1 Introduction

To test the filtering algorithms presented in this report, we need to be able
to generate random variables, i.e. a sequence of numbers that appear to have
been drawn from a specific distribution. As a random variable is, by definition,
an (unknown) measurable function, we cannot really generate such variable: we
can only generate sequences of numbers which have certain statistical properties.
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These numbers are often called pseudo random numbers. The writing of this
section was greatly helped by the symposium by G. Marsaglia in [9].

We only need to generate numbers which appear to come from uniform distri-
bution as the other distributions can almost always be obtained by transformation
of the uniform distribution. We will call these numbers uniform deviates.

Why not simply use a physical process (such as a clock) to generate these
uniform deviates? For two reasons: the first is that we are not assured that the
physical process used yields to a uniform distribution. Indeed, as we will see
in the last part of this section, pseudo random number generators need to pass
several statistical tests to be validated. There is no certainty that a sequence
of random numbers generated by a physical process will pass these tests or at
least not everytime. The second reason is that physically generated sequences
will, by definition, not be reproducible. Although this may seem paradoxical,
reproducibility is important in pseudo random number generation, especially in
Monte-Carlo simulations. Indeed, one would like to be able to reproduce exactly
the same results if necessary, e.g. to compare two versions of an algorithm, even
though the sequence generated looks random.

As said before, the numbers generated are not really random. It is in fact
impossible to generate an infinite sequence of random numbers: indeed, the gen-
erator program is stored in a computer’s memory which has a finite length, which
means that the generator can only be in a finite number of states, after which
it will keep reproducing the same loop. The only way to change this is by al-
lowing the memory allocated to the program to grow, but this cannot be done
indefinitely. This unpleasant situation is not too much of a worry as it is quite
simple to create a generator whose period is so big that the fastest computer in
the world cannot complete it in less than the expected duration of the universe.

This section is divided into three parts: the first two parts explain various
pseudo random number generation algorithms and the last part gives a couple of
tests for random number generators.

11.3.2 Simple Generators

Three classes of generators will be presented here: the congruential generators,
the shift-register generators and the lagged-Fibonacci generators.

Congruential Generators

The simplest class of generators is the class of congruential generators. They
use linear transformations on the ring of reduced residues of some modulus m ∈
N∗ to produce a sequence of integers:

(a, b) ∈ R2, m ∈ N∗, (pn)n∈N, ∀n ∈ N∗, xn = axn−1 + b mod m
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m is called modulus, a is called multiplier and b is called increment. The recur-
rence will eventually repeat itself with a period which can be no greater than the
modulus. When choosing the coefficients, one wishes to maximize the period, i.e
have a period of length m. The linear congruential method has the advantage
of working remarkably well for some purposes, being very simple to implement
and very fast, hence its extensive use. Nevertheless, it has the major disadvan-
tage of not being free of sequential correlation on successive calls: if one draws k
numbers at a time and uses them to plot points in a k-dimensional space (with
each coordinate between 0 and 1), the points will tend to lie on “parallel planes”
of dimension k − 1 instead of filling up the hypercube. There will be at most
m1/k such planes and if the increment, multiplier and modulus are not carefully
chosen, there will be much less than that. For example, in one infamous routine
called RANDU, used extensively for twenty years, a = 65, 539, m = 231, there are
eleven planes.

Shift-Register Generators (SRG)

In these generators, one generates a sequence of binary vectors starting from
an initial vector i (called seed vector) and by multiplying with a binary matrix P.
This yields to the sequence i, iP, . . . , iPn where i is 1× n and P is n×n. In the
matrix - vector multiplication, all arithmetic is done modulo 2 and the addition is
replaced with the exclusive-or operation (denoted by ⊕). The maximum possible
period for a shift-register generator is 2n − 1.

Theorem 17 (Maximum period condition for SRG)

Let P be a non-singular (in the group of binary matrices) n × n matrix. A
necessary and sufficient condition for the sequence i, iP, . . . , iPn to have period
2n − 1 is for the matrix P to have order 2n − 1.

�

Lagged-Fibonacci Generators (LFG)

These generators use two lags (p1, p2) ∈ N∗ such as p1 < p2. Given an initial
sequence i1, . . . , ip2, the following elements are generated by ∀n ∈ N, n > p2, in =
in−p1 ◦ in−p2 where ◦ is a binary operation such as +,−, ∗ or ⊕ (exclusive ’OR’).
If we denote by F (p1, p2, ◦) a Fibonacci generator, examples of generators having
maximal period are F (17, 5,+) or F (17, 5,−) on integers mod 2k. We have the
following result, resembling the one for shift-register generators:

Theorem 18 (Maximum period condition for LFG)

Let (n, p) ∈ N∗ and P be an n × n matrix of integers with odd determinant. A
necessary and sufficient condition for the sequence

i, iP, . . . , iPnmod 2p
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to have period (2r − 1)2n−1 for every initial vector of integers i = (m1, . . . , mr)
not all even and every n ≥ 1, is for the matrix P to have order j := 2r − 1 in
the group of non-singular matrices for mod 2, order 2j for mod 4 and order 4j
for mod 8.

�

11.3.3 Combination Generators

Having briefly reviewed three kinds of random number generators, one may
wonder what happens if one tries to combine two or more generators with an
algebraic operation such as +,−, ∗ or ⊕: do we get a better sequence? Is there
even anything known about such combinations? The answer is given by the
following theorem:

Theorem 19 (Combination generators)

Let n ∈ N∗ and ‖.‖ be any Lp-norm on Rn with 1 ≤ p ≤ +∞. Let P be a
probability measure on P(Nn) and

δ :

{
F(P(Nn),N

∗
n) → R+

x 7→ ‖(P (x = 1), . . . , P (x = n))− (1/n, . . . , 1/n)‖

Let ◦ be a binary operation such as +,−, ∗ or ⊕. Finally, let x and y be to
independent random variables with values in N∗

n. Then:

δ(x ◦ y) ≤ δ(x) and δ(x ◦ y) ≤ δ(y)

�

Proof:
The operation ◦ can be defined in a table. We will denote its elements by σ(i, j).

◦ 1 2 . . . n
1 σ(1, 1) σ(1, 2) . . . σ(1, n)
2 σ(2, 1) σ(2, 2) . . . σ(2, n)
...

...
...

. . .
...

n σ(n, 1) σ(n, 2) . . . σ(n, n)

Moreover, as ◦ is an algebraic operation, the above matrix is a permutation
matrix. We can therefore define ∀(i, j) ∈ N∗

n, τ(i, j) := k, σ(j, k) = i.
Let u := (P (x = 1), . . . , P (x = n))

and v := P (x ◦ y = 1), . . . , P (x ◦ y = n)).
We can write
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∀i ∈ N∗
n, P (x ◦ y = i) =

n∑

j=1

P ((x = i) ∧ (y = τ(i, j)))

As x and y are independent, we have:

∀i ∈ N∗
n, P (x ◦ y = i) =

n∑

j=1

P (x = i)P (y = τ(i, j))

If we denote by M the matrix ((P (y = τ(i, j))))1≤i,j≤n, we have:

v = Mu

We now notice that ∀i ∈ N∗
n, {τ(i, j) : j ∈ N∗

n} = N∗
n, therefore

∀i ∈ N∗
n,

n∑

j=1

P (y = τ(i, j)) =

n∑

j=1

P (y = j) = 1

Hence, with matrix-vector multiplications,

M(1/n, . . . , 1/n) = 1/nM(1, . . . , 1) = 1/n(1, . . . , 1)

Moreover,

∀p ∈ N∗ ∪ {+∞}, ∀x ∈ (N∗
n)
n, ‖x‖p ≤ 1⇒ ‖Mx‖p ≤ ‖x‖p

Indeed,

∀1 ≤ p < +∞, ‖M‖pp =

n∑

i=1

n∑

j=1

|mijxj |p ≤
n∑

i=1

n∑

j=1

|xj|p = ‖x‖pp

For p = +∞,

‖M‖∞ = max
1≤i≤n

∣∣∣∣∣

n∑

j=1

mijxj

∣∣∣∣∣

but all the mij and xj are positive, therefore:

‖M‖∞ = max
1≤i≤n

n∑

j=1

|mijxj | ≤ max
1≤i≤n

n∑

j=1

|xj | = ‖x‖∞

We have therefore proven that: ∀p ∈ N∗ ∪ {+∞}, ∀x ∈ (N∗
n)
n, ‖x‖p ≤ 1 ⇒

‖Mx‖p ≤ ‖x‖p. This means exactly that ‖M‖p ≤ 1, ∀p ∈ N∗ ∪ {+∞}. We can
now write:

δ(x ◦ y) = ‖Mu−M(1/n, . . . , 1/n)‖
= ‖M(u− (1/n, . . . , 1/n))‖
= ≤ ‖u− (1/n, . . . , 1/n)‖
= δ(x)
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The other inequality is derived in a similar fashion.
�

This means we may use any binary operation ◦ to form a new (pseudo-)random
variable from two existing ones and the resulting variable will actually be “closer”
to the uniform distribution than either of the starting variables.

This concludes the random generation part. Having generated a sequence,
how can we assess its quality?

11.3.4 Tests for Random Number Generators

There exists no absolute method to determine the quality of a generator. The
best we can do is to see if a generator passes a series of tests which usually boils
down to asking “does the sequence look uniform?” in a more or less sophisticated
manner. We will shortly review three of these tests. A näıve question would be:
why not use the Pearson χ2-test? The answer is, that such a test, although having
a perfectly valid statistical justification, is easily passed. One can easily design
tests for random number generation. The difficulty is creating a test “difficult to
pass”.

Overlapping m-tuple Tests

Suppose we wish to test the sequence i1, i2, . . . , in. We can build the following
overlapping sequence of triples:

(i1, i2, i3), (i2, i3, i4), . . . , (in−3, in−2, in−1), (in−2, in−1, in)

if n is a multiple of three. If not, we can add the first element or the first
two elements of the sequence at the end and the result will (asymptotically) be
unchanged.

For ∀(i, j, k) ∈ N3, let ωijk be the number of times that the triple (i, j, k)
appears in the triple sequence. If the i’s all take b different values, there are
b3 different possible triples. If the variables are independent and uniformly dis-
tributed, the ωijk should be joint normal with means µijk = n

b3
. We can now build

the quantities:

Q3 :=

b∑

i=1

b∑

j=1

b∑

k=1

(ωijk − µijk)2

µijk

Q2 :=
b∑

i=1

b∑

j=1

(ωij − µij)2

µij

where ωij and µij are defined in a similar fashion to ωijk and µijk.
Q3 − Q2 ∼ χ2

b3−b2 . More generally, if each number 1, . . . , b has a probability
(p1, . . . , pb),
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Q3 :=

b∑

i=1

b∑

j=1

b∑

k=1

(ωijk − npipjpk)2

npipjpk

Q2 :=

b∑

i=1

b∑

j=1

(ωij − npipj)2

npipj

The test is therefore to calculate Q3−Q2 and use the χ2
b3−b2 table to assess if

the variable is uniform.

Overlapping Permutation Tests

As before, we build the overlapping sequence of triples

(i1, i2, i3), (i2, i3, i4), . . . , (in−3, in−2, in−1), (in−2, in−1, in)

Each triple (ik−1, ik, ik+1) can be in one of the following states:

1. ik−1 < ik < ik+1

2. ik+1 < ik−1 < ik

3. ik < ik+1 < ik−1

4. ik < ik−1 < ik+1

5. ik+1 < ik−1 < ik

6. ik−1 < ik+1 < ik

If we associate each triple with its state, we get a sequence of numbers between
1 and 6 that we call a state sequence. As before, let ωijk be the number of times
that the triple (i, j, k) appears in the state sequence. We then find the means
and covariance matrix C and any weak inverse C− of C. We can then build the
quantity

6∑

i=1

6∑

j=1

6∑

k=1

6∑

r=1

6∑

s=1

6∑

t=1

(ωijk − µijk)cijk,rst(ωrst − µrst)

which will asymptotically have a χ2 distribution. This test is not very stringent
and except for the lagged-Fibonacci generators, most generators seem to pass it.
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Monkey Tests

“We’ve all heard that a million monkeys banging on a million typewriters
will eventually reproduce the entire works of Shakespeare. Now, thanks to the
Internet, we know this is not true.”
— Robert Wilensky, University of California

Based on this profound statement, George Marsaglia, professor of statistics at
the University of Ohio developed a series of statistical tests known as the“Diehard
tests”. In his article Random numbers fall mainly in the planes he was the first
to show that if you plot the output of a pseudo-random number generatora in
several dimensions, then the points often tend to lie on a lattice rather than being
uniformly distributed.

For example, the Figure 11.2 page 179 is that of a “good” congruential gener-
ator, namely xi = 133xi−1 + 5 mod 216, and the Figure 11.3 page 179 is a “bad”
generator (xi = 109xi−1 + 5 mod 216).

The first step of this test is to convert the random number generated into
letters. We can then compare the output of the generator to what a monkey
would type on a typewriter. The first test is quite inefficient but many generators
fail it. It consists in counting the number of letters “typed” before a certain word
appears (for example, “CAT”). There are 263 three-letter words and the number
of letters needed for the first cat to appear is hypergeometrically distributed so
the expected number of strokes is 263. Indeed, if we consider the sequence of the
first k letters, we can draw three consecutive letters (there are 263 different ways
to do this). The probability that a drawn sequence spells out “CAT” is 1

263 . In
order to have exactly one cat in the first k letters, there has to be one subsequence
with “CAT”, the others being different. The probability of this event is:

P (T = k) =
1

263

(
1− 1

263

)k−1

Therefore, the expected number of letters needed to get the first cat is:

ET =
+∞∑

n=1

nP (T = n)

Let

r := 1− 1

263
, fn(r) :=

n∑

k=1

rk

and

S :=
+∞∑

n=1

nrn−1

We know that

S = lim
n→+∞

f ′
n(r) =

(
lim

n→+∞
fn(r)

)′
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Therefore

ET =
1

1− r = 263

This means that if a random generator produces a cat after a lot more or a lot
less than 263 letters, the sequence is not uniform. This test might seem a bit silly,
but some generators fail it, for example, the shift-generator that produces 31-bits
integers by XOR’s, left-shift 28 and right-shift 3, suggested to replace congruential
generators after the discovery of their lattice structure. It never spells ’CAT’, no
matter how long it runs. In fact, there are certain words, such as DOG, GOD or
SEX which it will never produce. This does not mean that some letters appear
more frequently than others: in fact, this generator is quite satisfactory in this
respect. This shows that one cannot content oneself with just one statistical test
for a random number generator. It also shows that the tests do not need to be
very elaborate to show flaws in random number generators. Passing the monkey
test does not mean that a generator is good. Failing it however, does mean a
generator is bad.

A less näıve approach is, if the total number of letters is a multiple of 6, say,
to count the number of occurrences of all possible two-letter words and of all
possible three-letter words, denoting these frequencies by ωi and µi respectively.
We can then build two quantities (asymptotically) χ2-distributed:

Q2 :=
262∑

i=1

(ωi −N/262)2

N/262

Q3 :=
263∑

i=1

(ωi −N/263)2

N/263

The difference between Q3 and Q2 is also (asymptotically) χ2 distributed.
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Figure 11.2: Good Distribution
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Figure 11.3: Bad Distribution
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Chapter 12

GNU Free Documentation
License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.
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12.1 Applicability and Definitions

This License applies to any manual or other work, in any medium, that con-
tains a notice placed by the copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
”Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as ”you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The ”Cover Texts”are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not ”Transparent” is
called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a

182



GNU Free Documentation License 12.2 Verbatim Copying

publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as ”Acknowledgements”, ”Dedications”, ”Endorse-
ments”, or ”History”.) To ”Preserve the Title” of such a section when you
modify the Document means that it remains a section ”Entitled XYZ” according
to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

12.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.
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12.3 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download us-
ing public-standard network protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

12.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.
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B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
”History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the ”History” section. You may omit a network location
for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.
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M. Delete any section Entitled ”Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

12.5 Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
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number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise com-
bine any sections Entitled ”Acknowledgements”, and any sections Entitled ”Ded-
ications”. You must delete all sections Entitled ”Endorsements”.

12.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of
the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

12.7 Aggregation with Independant Works

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

12.8 Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
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the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

12.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

12.10 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

12.11 Addendum: How to use this License for

your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

188



GNU Free Documentation License12.11 Addendum: How to use this License for your documents

Copyright c©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled ”GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free soft-
ware.
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