

MASTERARBEIT

Multiobjective Decision Support

for Selecting Business Application Portfolios

Ausgeführt am Institut für Softwaretechnik und Interaktive Systeme
der Technischen Universität Wien

unter Anleitung von o.Univ.Prof. Dipl.-Ing. Dr. techn. A Min Tjoa

durch Jan Pichler,
Tamussinostr. 16/2/1, A-2340 Mödling,

Matrikel-Nr. 9800843

Wien am 01.05.2007 .…..……………………………….
 Jan Pichler

.…..……………………………….
 Prof. DI Dr. A Min Tjoa

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

1

Acknowledgements

I would like to thank many people for their unremitting support during
this work and the rest of my studies. All you who have helped me, allow me
to express my appreciation and my deepest thanks for your understanding and
your care. In particular I want to thank my marvellous girlfriend, my wonderful
family and my dear Markus for believing in me (and proof-reading this work).

I also want to thank Prof. DI Dr. A Min Tjoa for allowing me to write about
this interesting and challenging piece of software management theory and DI Mag.
Thomas Neubauer for leading my way with scientific expertise and professional
advice.

2

Zusammenfassung

Der geschäftliche Erfolg vieler Unternehmen wurde in den letzten Jahren
immer mehr von der Funktionalität und Effizienz ihrer IT-Systeme abhängig.
Dennoch erscheint vielen Unternehmen eine strukturierte Auswahl von Software
zur optimalen Unterstützung aller Geschäftsprozesse nach wie vor zu kompliziert,
da bis dato nur wenige geeignete Methoden zur strukturierten Bewertung und
Auswahl von Unternehmenssoftware existieren. Hinzu kommt dass bei der Anal-
yse von Software-Portfolios nicht nur die Charakteristika einzelner Applikationen
sondern auch Abhängigkeiten zwischen den unterschiedlichen Applikationen
berücksichtigt werden müssen, was nur wenige der momentan gebräuchlichen
Methoden erlauben.

Das in dieser Arbeit entwickelte Modell basiert auf dem MODS (Multiobjec-
tive Decision Support) Ansatz und ermöglicht eine automatische Zusammen-
stellung Pareto-effizienter Software-Portfolios die in ihren Charakteristika zu-
vor definierten Gültigkeitsbedingungen genügen. Mit Hilfe eines interaktiven
Analyse-Werkzeuges kann der so entstandene Lösungsraum schrittweise reduziert
werden bis nur noch eine geringe Anzahl optimaler Lösungen verbleibt.

Durch die unkomplizierte und zeitoptimale Evaluierung beliebiger Software-
Portfolios ermöglicht dieses Modell Unternehmen erstmals sowohl eine effiziente
Auswahl von IT-Komponenten als auch eine regelmäßige Analyse und Opti-
mierung bereits bestehender IT-Infrastrukturen.

3

Contents

1 Abstract 6

2 Introduction 8
2.1 Motivation . 8

2.1.1 IT Management Approaches 9
2.1.2 Valuation of IT Resources 9

2.2 Research Goals . 10

3 Related Work / Fundamentals 12
3.1 Related Financial Paradigms . 12

3.1.1 Modern Portfolio Theory 12
3.1.2 Options Theory . 13

3.2 Business-IT Alignment . 14
3.2.1 Business Process Management 18
3.2.2 IT Governance . 19

3.2.2.1 Benchmarking 20
3.2.2.2 Frameworks . 20

3.2.3 Service-Oriented Architecture 21
3.2.4 IT Portfolio Management 23

3.3 Valuation of IT Investments . 25
3.3.1 “Traditional” Cost Benefit Calculations 25
3.3.2 Real Technology Options 27
3.3.3 Traditional Multiobjective Optimisation 27

3.3.3.1 Conventional Weighted-Formula Approach 28
3.3.3.2 Lexicographical Approach 28

3.3.4 Analytical Hierarchical Process 28
3.3.5 Multiobjective Pareto Approach 30
3.3.6 (Meta)Heuristic Methods 33
3.3.7 Comparison of Valuation Methods 33
3.3.8 Definition of Criteria Sets 36

3.3.8.1 Critical Success Factors (CSF) 37
3.3.8.2 Preferences of Stakeholders 37
3.3.8.3 The OTSO Approach - Alignment to Business

Strategy . 37

4 Construction of the Software Selection Model 41
4.1 Model Requirements . 41

4.1.1 Imperative Model Requirements 41
4.1.2 Optional Model Requirements 43

4.2 Concept . 44

Contents 4

4.2.1 Definition of Objectives 45
4.2.2 Consideration of Time Periods 49
4.2.3 Collection of Candidate Data 49
4.2.4 Definition of Restrictions 49
4.2.5 Definition of Dependencies 50
4.2.6 Definition of Business Process Coverage 52

4.3 Formalising the Model . 53
4.3.1 Creation of Portfolios . 53
4.3.2 Time Periods . 54
4.3.3 Benefit/Resource Categories 54
4.3.4 Dependencies . 54

4.3.4.1 Inclusion/Exclusion Constraints 54
4.3.4.2 Value-Modifying Dependencies 55

4.3.5 Benefit/Resource Restrictions 56
4.3.6 Business Process Coverage 56

5 Implementation 57
5.1 Data Model . 57
5.2 Application Design . 58

5.2.1 User Interface . 58
5.2.1.1 Data Input Interface 60
5.2.1.2 Evaluation Component 60

5.2.2 Limitations of Implementation 60
5.3 Stummer’s INNOV Library . 61

5.3.1 Extension of Input Data Format 61
5.3.2 Extension of Output Data Format 62

5.4 Import of ADONIS Models . 63

6 Comparative Case Study 66
6.1 Input Decision Situation . 66

6.1.1 Base Characteristics . 66
6.1.2 Evaluation Criteria . 67

6.1.2.1 Application Requirements 67
6.1.2.2 Design Specification 69
6.1.2.3 Project Requirements 69
6.1.2.4 Organisational Requirements 70
6.1.2.5 Final Criteria Set 70

6.1.3 Software Candidates . 71
6.1.4 Constraints . 72

6.2 Analytic Hierarchic Process . 73
6.2.1 Preconditions . 74
6.2.2 Calculating Objective Weights 74
6.2.3 Ranking Candidates . 75
6.2.4 Composing a Portfolio . 76

6.3 Weighted Scoring Method . 78
6.3.1 Preconditions . 78
6.3.2 Ranking Candidates . 78
6.3.3 Composing a Portfolio . 80

Contents 5

6.4 Multiobjective Portfolio Approach 80
6.4.1 Collection of Candidate Data 81
6.4.2 Modelling Constraints . 81
6.4.3 Evaluation . 82

6.5 Comparison of Results . 85
6.5.1 Significance . 86
6.5.2 Analysis of Results . 86
6.5.3 Method Characteristics and Behaviour 87

7 Conclusions 90

8 Directions for Further Research 91
8.1 Software Selection Model . 91
8.2 Implementation . 92

A Candidate Characteristics 93

B AHP Comparison Matrices 96

C MultiSel Program Masks 103

List of Figures 109

List of Tables 111

Bibliography 113

6

Chapter 1

Abstract

Because in the last decade, a strong coherence between business and IT as well
as a thorough commitment to IT have become an important factor of competi-
tion on all market places and in nearly all industries, companies spent enormous
amounts of money in information technology infrastructure [33]. Because of this,
in the last few years many companies started to question their IT’s real value
and the total of benefits it generates. This usually induces a problem since mod-
ern software exposes many intangible characteristics that cannot be measured
on common scales (such as usability, reliability or security). By that, valua-
tion of software frequently becomes a complex, in some cases intractable task.
Many modern IT management and aligning methodologies (such as IT portfolio
management) emphasise a holistic management of IT landscape, which of course
includes valuation of all employed software.

Today, there are multiple structured software selection approaches that enable
evaluation of software. Though most of these methods - such as the Analytical
Hierarchic Process (AHP) or Weighted Scoring Method (WSM) - permit find-
ing the “best” out of a certain amount of candidates, they suffer from major
disadvantages which render them unusable for repeated and sustained valuation
of corporate software portfolios. Current methods for software evaluation em-
ploy the technique of preference weighting thus requiring an a-priori definition of
objective rankings. This imposes the problem of decision makers having to for-
mulate all restrictions prior to calculating candidate weights, which can result in
the algorithms’ having a low repeatability and their outputs’ being biased to an
uncertain extent. In addition to this, quality of solutions directly depends on the
quality of a-priori data which makes the process of input data collection extremely
sensitive. Another major drawback of current algorithms is that they are limited
to evaluation of one single candidate at a time: Because most companies employ
multiple software packages simultaneously, algorithms are demanded to consider
groups (portfolios) of candidates together with their mutual dependencies.

Utilising the paradigms of portfolio theory and multiobjective optimisation,
this thesis aims at developing a powerful yet straight-forward portfolio-aware
software selection model that permits automatic, software-based evaluation of
all possible candidate combinations under alignment to both corporate-level and
project-level constraints. Multiobjective approaches do not aggregate criteria of
different types into over-all values, nor do they require a-priori induction of pref-
erences (e.g. objective weights). Thus, the new model respects the candidates’

1 Abstract 7

real objective values and permits dynamic definition of preferences a-posteriori.
Because no extensive collection of a-priori data is necessary, the approach yields
high reusability permitting evaluation of whole corporate software portfolios on
a regular basis with little effort and high transparency. This significantly im-
proves manageability of corporate IT, reducing costs and leveraging efficiency of
corporate business.

To test the new model’s functionality, a decision support application is imple-
mented to solve a real-world decision situation. Results are compared to those of
two popular software valuation approaches, AHP and WSM.

8

Chapter 2

Introduction

In the last few years, many companies have not only changed their business scope
and faced new opportunities but also consolidated their infrastructure because of
the many possibilities that result from mature IT strategies [63]. The resulting
increase in demand for professional IT services can even be visualised by the huge
increase of IT service revenues of major IT business solution providers. Figure
2.1 shows how the product portfolio of IBM transformed between the years 1983
and 1997. While in 1983 a share of only 2 percent of IBM’s total revenue was
generated with business services, it grew to 25 percent until 1997 [83].

Figure 2.1: Evolution of IBM Service Revenues [83]

As the introduction of edge-of-technology IT was considered an important ad-
vantage in market competition, many large companies spent huge amounts for IT
infrastructure expecting major benefits in overall business performance from an
extensive integration of IT. Figure 2.2 shows the significantly increasing IT ex-
penditure of Western European banks. From 1999 to 2004, total IT investments
nearly doubled [33].

2.1 Motivation

Because of the enormous investments in information technology, companies
started to question their IT’s real value and the total of benefits it generated.
In a 2002 survey among 400+ top IT executives 60% reported an increase in the
level of pressure to prove ROI on IT investments while 70% believe that their
metrics do not fully capture the value of IT. Nearly half lack confidence in their
ability to accurately calculate ROI on IT investments [82]. In 2004, Tiernan and
Peppard noted that “despite all the investments made in IT, there is still consid-
erable disappointment among executives with the return that has been achieved”.

2 Introduction 9

Figure 2.2: IT Expenditure of Western European Banks 1999-2004 [33]

They also stated evidence suggested that, though acquiring massive quantities of
information technology, most companies did not possess methods to determine
whether they had benefited from their investments at all [80].

Today, a strong coherence between business and IT as well as a thorough
commitment to IT have become an important factor of competition on all market
places and in nearly all industries [33]. Nevertheless, many companies still are
unable to establish pragmatic and conscious management of their IT resources.
In a 2003 study conducted by the Kellogg School of Management, 51 percent of
the 130 questioned large companies reported that they had no process to evaluate
IT investments against business strategy [7].

2.1.1 IT Management Approaches

To help companies catching up with this information deficit and to rendering
both investing in and management of corporate IT more transparent, a lot of
research has been done (cf. [44], [25], [51], [58]) and various IT management
methodologies have been proposed. Whilst some of these approaches (such as IT
governance) qualify as general guides for definition of corporate strategy under
respect of information technological factors, others introduce frameworks that
define concrete methods on how IT can be managed and integrated into corporate
business. The common goal of all of these approaches is leveraging efficiency of
IT and optimising IT spendings by aligning business and IT.

2.1.2 Valuation of IT Resources

Adequate valuation of IT resources (such as hardware, software, services etc.) is
an important measure for evaluating costs, benefits and efficiency of a company’s
IT infrastructure. Though most business-IT alignment approaches recognise this
requirement, none of them suggest concrete methods for determining the value of
IT resources. The IT governance framework COBIT, for example, is limited to
recognising the need of establishing “fair, transparent, repeatable and comparable
evaluation of business cases including financial worth, the risk of not delivering a

2 Introduction 10

capability and the risk of not realising the expected benefits” [46].
As a very important business object, a company’s software is very sensitive to

select as it is an integral component of daily business. Of course, other IT infras-
tructural components such as IT hardware are important too, but because there
usually is a big number of different hardware configurations that can support busi-
ness applications, selection of the “right” (most efficient, most business-aligned,
cost-optimal) software turns out to be a critical success factor.

Though this obviously raises the demand for well-defined and structured soft-
ware valuation approaches, and though a considerable amount of work has been
done on this topic (cf. [72], [38], [40], [57]), there are very few standardised and
commonly accepted approaches for software valuation.

Because modern software exposes many intangible characteristics that cannot
be measured on common scales (such as usability, reliability or security) but are
important for overall software usability, valuation of software frequently becomes
a complex and exhausting task.

This situation is even deteriorated by the fact that modern companies - in anal-
ogy to the paradigm of IT portfolio management - aim at analysing their business
applications as a whole instead of valuing each application separately. By that,
software valuation methods are demanded that consider much more than isolated
characteristics of single software products, but characteristics of whole corporate
software portfolios, inter-application dependencies, strategic requirements etc.

As the currently most promising approach for analysis of multi-application
multi-characteristic decision situations, the multiobjective portfolio approach has
already shown quality results with R&D project portfolio selection problems (cf.
[76]). As pointed out by Neubauer [57], the method of multiobjective decision
support (MODS) bears the capability of breaking down the complex process of
software portfolio analysis to a step-wise, interactive approximation. At the same
time, MODS permits consideration of characteristics of various types without
having to “mix them up” by a-priori scoring or weighting.

2.2 Research Goals

The methodology of multiobjective decision support (MODS) yields several ad-
vantages over conventional objective weighting approaches (see section 3.3.5 for
details). In the context of software selection, the most important of them are:

• No aggregation of candidate characteristics of different types, and by that
no definition of objective weights is required.

• With its capability of analysing not only single candidates but sets of mul-
tiple candidates, MODS enables optimisation of whole portfolios of candi-
dates to be used simultaneously. Mutual dependencies among candidates
are considered as well as hard limits for the portfolios’ characteristics.

• As preferences are not induced a-priori but a-posteriori, results can be ad-
justed dynamically after the process of portfolio composition has been per-
formed.

2 Introduction 11

• The task of finding non-dominated portfolios is performed automatically,
most of collected input data can be reused.

Because the MODS approach appears to deliver outstanding results in drilling
down decision problems with many alternatives, and because the extension of the
MODS method for use as software selection model seems reasonable, the main
research questions of this thesis are formulated as follows:

• Which methods are currently used to evaluate and compare IT applications,
and how effective are they?

• How can a generic MODS model be extended to enable efficient selection
of software portfolios?

In course of this thesis, a fully functional MODS model for selection of software1

portfolios will be developed. To prove the model’s applicability, a proof-of-concept
decision support software-tool will be implemented. After this, functionality of
both model and application will be tested in a case study: A realistic decision
situation will be analysed with the new MODS approach and results will be
compared to those of other commonly accepted software selection methods.

The new MODS software selection model is supposed to significantly improve
the process of software evaluation for organisations of various domains. Because
proper management of IT implies a continuous monitoring of resources, compa-
nies should not only be given a tool to estimate the value of upcoming invest-
ments. They should also be enabled to evaluate their software portfolio in regular
intervals, tracking its ROI by measuring costs and benefits thus optimising IT
spendings and efficiency.

1The term “software” in this context applies to off-the-shelf components such as standard
applications, (web) services etc.

12

Chapter 3

Related Work / Fundamentals

In the field of managing corporate IT, many research has been done. An overview
over both the most common IT management approaches and the most popular
existing software selection methods will be given in the following chapter.

3.1 Related Financial Paradigms

Financial paradigms such as portfolio theory, financial game theories or options
theory have been adapted to other domains frequently. The following section in-
troduces specific financial paradigms that have been adapted earlier for corporate
IT management and IT investment planning.

3.1.1 Modern Portfolio Theory

Modern portfolio theory was established in 1952 when Harry M. Markowitz pub-
lished his article “Portfolio Selection” in the Journal of Finance [48]. According
to Markowitz [49], theory of financial portfolios differs from the classic economic
theory of firm and customer in three major ways:

• The theory is concerned with investors rather than manufacturers and con-
sumers

• Agents within this theory act under uncertainty

• The theory can be used to direct practice

The theory of the producer assumes that competitive firms know the price at
which they can sell goods they produce. In reality, there is a delay between the
decision to produce a good, the time of production and the time of selling it.
Because of this, the final price of a good at selling time cannot be determined
definitely at the time of making the decision to produce it. Due to this uncer-
tainty, the decision whether or not to produce a certain product has to be made
with a significant lack of information [49].

In the analysis of investor behaviour, uncertainty is an important factor. A
fully-informed investor who exactly knew about the future returns of all stocks
would surely choose nothing but the one stock that guarantees an optimal revenue.
If there were multiple stocks with equal future revenues, the investor would be

3 Related Work / Fundamentals 13

indifferent among them, and there would be no reason to diversify the stock
portfolio. So, as the reduction of uncertainty is the sole reason for diversified
investment practices, it is essential in analysing rational investor behaviour [49].

Investment decisions do not only depend on the expectation of the maximum
revenue, but also on the risk that is carried by each possible investment. Ex-
pected future returns can be calculated for each investment using formulas that
incorporate time and possible revenue as well as risks represented by statistical
distributions (e.g. mean and variance for a normal distribution) of final outcomes.
Thus, risk carried by an investment is compensated to a certain extent by it’s
higher potential revenue. An investor seeking to optimise revenues can select an
investment portfolio by choosing a point from the set of Pareto optimal expected
return/variance-of-return combinations known as efficient frontier [49].

Though classic portfolio theory was developed in a financial context, it can be
applied in many other fields such as project selection or IT management. For
example, the set of different software products (e.g. IT applications) simultane-
ously utilised by a company to support and maintain business processes can be
considered the company’s software portfolio [66] (see IT Portfolio Management.

3.1.2 Options Theory

Options are a popular approach for maximising ROI of upcoming investments
while reducing risk. Purchasing an option reduces investment risk, as the decision
whether to invest or not can be postponed to a time when return of investment
can be predicted more accurately.

In 1973, a method for appropriate pricing of financial options was introduced
by Black and Scholes. Because of the uncertain nature of future investments, the
aspect of uncertainty was added to the approach of discounted cash flow (DCF).

Figure 3.1: The BSM equation [73]

Basic component of the Black/Scholes/Merton (BSM) options valuation is the
equation in figure 3.1. It allows calculation of option values from financial as-
pects (stock value, exercise price etc.) and risk parameters (risk-free rate and
uncertainty) [73].

3 Related Work / Fundamentals 14

Real Options
The term of real options came up as management consultants started to adopt the
Black/Scholes/Merton (BSM) principle to deliver results regarding estimation of
“real” options such as R&D project investments or identification of a company’s
strategic directions [73]. Treating investment possibilities as real options yields
multiple advantages, as the decision process is focused on calculating expected
revenues under respect of inherent uncertainties (risks), explicitly accounting for
the value of future flexibility [5]. Many decision processes and business activities
can be cast to real option valuation (ROV) problems and valued using the BSM
concept [73].

In 1997, McKinsey consultants Leslie and Michaels attempted to adapt the
BSM concept to real options. They identified six levers in the BSM equation
and matched them with their real options counterparts [41]. Similarities between
financial and real options are illustrated in figure 3.2.

Figure 3.2: The six levers of financial and real options [41]

Effectivity of quantitative models is always limited by quality and precision
of applied input parameters. Thus, many companies have been reported to face
serious problems with adequately determining input parameters for real options
valuation [5]. Circumventing this problem by creating more advanced and better-
matching models is possible to a certain extent, but effectivity ceases as models
become too complex. Significant behavioural differences between “traditional”
real options and real options in IT (so-called real technology options) can be
observed [53]. Details on real technology options will be given in section 3.3.2.

3.2 Business-IT Alignment

The rate at which new technology is introduced in modern companies is increas-
ing by 20 to 30 percent every year [43]. To withstand competition, organisations
are demanded to apply latest state-of-the-art technology strategically and accel-
erate innovation. But investing in IT blindly (as several companies did in the
last decade) lacks effectivity as investments must be made precisely targeting a
company’s business requirements. Morgan Stanley estimates that between 2000
and 2002, companies spent $ 130 billions for IT they either did not need or could
not use properly [51]. This, as well as the fact that pressure to prove ROI on IT
investments is growing continuously [82], leads to a global demand for tools that
help aligning IT expenditure to business.

3 Related Work / Fundamentals 15

In the last few years, many companies have not only changed their business
scope and faced new opportunities but also consolidated their infrastructure be-
cause of the many possibilities that result from mature IT strategies [63]. A strong
coherence between business and IT and a thorough commitment to IT have be-
come an important factor of competition on all market places and in nearly all
industries. Thus, aligning business processes with corporate strategy has be-
come an important success factor. It enables development and implementation
of cohesive organisational and IT strategies and allows companies to concentrate
IT resources on value-generating and supplementary business processes. By un-
derstanding and patronising the partnership of business and IT, companies can
optimise their IT spendings while leveraging efficiency of supporting and value-
adding processes.

The “traditional” interpretation of business-IT alignment as “prioritising IT
projects to support the priorities outlined by an organisation’s senior manage-
ment” ([9]) experiences a much-expanded view. Today, there are many partly
contrary concepts for business-IT alignment (see below). Luftman, for example,
refers to business-IT alignment as applying IT in an appropriate and timely way,
in harmony with business strategies, goals and needs [45].

Because many companies experience problems with adopting IT to match their
business strategy, harnessing the power of information technology for their own
long-term benefit, Luftman, Papp and Brier conducted a survey to determine
most important enablers and inhibitors for business and IT strategy alignment.
In interviews between 1992 and 1997, both business and IT executives were asked
what they thought were the main enabling and inhibiting factors of business
alignment. Weighting of enabling and inhibiting factors was uniformly distributed
under business and IT executives. Only half of all questioned individuals believed
that their companies’ business and IT strategies were aligned properly. In this
survey under 500 organisations of 15 industries, the following top six enablers
and inhibitors were determined [45].

Top six enablers (see figure 3.3):

• Senior executive support for IT

• IT involved in strategy development

• IT understands the business

• Business - IT partnership

• Well-prioritised IT projects

• IT demonstrates leadership

Top six inhibitors (see figure 3.4):

• IT/business lack close relationships

• IT does not prioritise well

• IT fails to meet its commitments

3 Related Work / Fundamentals 16

Figure 3.3: Enablers of business-IT alignment [45]

Figure 3.4: Inhibitors of business-IT alignment [45]

3 Related Work / Fundamentals 17

• IT does not understand business

• Senior executives do not support IT

• IT management lacks leadership

These results obviously endorse the popular and wide-spread assumption that
the organisational management plays a key role in implementing business-IT
alignment. To improves business-IT communication and leverage IT resources
for building competitive advantages, IT should understand business and be in-
volved in creation of enterprise strategies [45].

Reich and Benbasat [68] have created a model of business-IT alignment which
accepts the social dimension as a central component. They raise the complaint
that, in most of research done, no distinction is being made between the process
of introduction of alignment and the final outcome, the state of business and IT
being aligned. Thus, they differentiate between causal factors (such as the IS
planing process) and the resulting state of alignment. They further divide the
final outcome into two components, the intellectual and the social dimension [55].
The intellectual dimension refers to the alignment of IS plans (or strategies)
with business plans (or strategies) and is defined as the state in which a set
of high-quality interrelated business plans and IS plans exist [67]. The social
dimension of alignment on the other hand refers to the state in which the IS
and business executives understand and are committed to the business and IS
mission, objectives and plans [68], [55].

Henderson and Venkatraman’s strategic alignment model [24] explores the in-
terrelationship between business and IT (see figure 3.5). It is focused on two
distinct linkages, strategic fit and functional integration, and divided into 12 per-
spectives forming four quadrants (business strategy, IT strategy, organisational
infrastructure and processes as well as IT infrastructure and processes). Inter-
relationships between perspectives (such as dependencies, interferences etc.) are
represented by arrows.

Figure 3.5: Strategic Alignment Model of Business and IT [63]

Once an organisation has defined its alignment perspectives, impact on financial
performance must be evaluated. Therefore, measurements for the organisation’s
total performance (such as ROI, pre-tax income, net sales, growth etc.) must be
found.

3 Related Work / Fundamentals 18

3.2.1 Business Process Management

Van Der Aalst defines business process management as “Supporting business pro-
cesses using methods, techniques, and software to design, enact, control, and
analyse operational processes involving humans, organisations, applications, doc-
uments and other sources of information” [2]. Since the late seventies, many
differing methodologies for business process management have been proposed
(see [32], [2], [17]). While in the early days, BPM was often performed with
primary focus on software reengineering (cf. [23]), today’s it is thought of as con-
tinuous process to improve organisations’ business processes [58]. Thereby, BPM
is limited to operational (“visible”) processes. All processes at strategic levels
which cannot be made explicit are excluded.

Business processes are supported by IT resources. In the context of BPM,
these IT resources usually are applications, services etc. that can be either com-
ponents off-the-shelf (COTS) or custom-tailored components. Today’s compa-
nies’ increasing adoption of off-the-shelf component instead of using software
developed in-house represents a major paradigm shift: In the seventies only few,
mostly domain specific off-the-shelf components were offered. Thus, companies
had to develop their own software solutions. Today, lots of general software as
well as domain-specific applications are available as ready-to-use software pack-
ages [2]. Figure 3.6 displays the layers of applications and helps visualising the
trends in information system development. In the sixties, the two inner layers
were missing. Since then, following trends can be isolated:

• From programming to assembling,

• from data orientation to process orientation,

• from design to redesign and organic growth.

Regarding these shifts, Van Der Aalst correctly observes that “the challenge no
longer is the coding of individual modules but orchestrating and gluing together
pieces of software from each of the four layers.”

Figure 3.6: Trends in Information Systems [2]

When managing business processes (and by that, managing underlying com-
ponents), valuation is a substantial task. Valuation should not only adhere to

3 Related Work / Fundamentals 19

explicitly expressed financial values like component’s initial costs and ROI, but
should also consider implicit and partly abstract properties such as extensibility,
usability or performance.

Though a lot of work has been done regarding the paradigm of business pro-
cess management, there is no common and standardised approach for valuing the
processes that companies aim to manage thoroughly. Though several method-
ologies to close the gap between process management and valuation have been
introduced (cf. [17], [8]), managers still tend to skip this partly complicated yet
crucial task - often simply because of a lack of skills [58].

3.2.2 IT Governance

According to the IT Governance Institute, a well-structured and highly integrated
adoption of supporting information technologies is important for optimising a
company’s IT spendings and maximising productivity [29]. Multiple approaches
have been introduced to standardise efforts longing to reach this goal (cf. [84],
[30], [22]). Currently, one of the most popular and wide-spread of these efforts is
the paradigm of IT Governance.

IT Governance comprises a set of basic rules and measures to assure that
within a company, all business processes are supported by suited IT resources,
all resources are used responsibly and all risks are monitored adequately [81].
According to the IT Governance Institute (ITGI), “the overall objectives of IT
governance activities are to understand the issues and the strategic importance
of IT, to ensure that the enterprise can sustain its operations and to ascertain
that it can implement the strategies required to extend its activities into the
future” [29].

Figure 3.7: Aspects of IT Governance [46]

When introducing IT Governance in companies, several mistakes can be made.
Forrester Research defines three elements crucial for the implementation of IT
Governance [77]:

• Structure

3 Related Work / Fundamentals 20

Who makes decisions? Which organisational structures must be estab-
lished?

• Processes
How are decisions made? Which processes are used to evaluate IT invest-
ments?

• Communication
How are decisions and process outcomes monitored, evaluated and commu-
nicated?

Especially the question regarding processes poses the problem of valuing IT
investments and by that, valuing business software and its components.

3.2.2.1 Benchmarking

For determining and benchmarking the IT Governance maturity of organisations,
the IT Governance Maturity Assessment is employed [21]. Just like the very gen-
eral Capability Maturity Model (CMM) [64], the ITGMA contains classifications
for 5 different maturity levels: Initial, repeatable, defined, managed an optimised.
According to different studies, an average company implements IT Governance
on level 2 (repeatable) [81].

3.2.2.2 Frameworks

There are different frameworks that facilitate implementation of IT Governance
into organisations such as ITIL (Information Technology Infrastructure Library)
[30] and COBIT (Control Objectives for Information and related Technology) [46].

ITIL was developed by the CCTA, an agency of the British government, in
1989. It essentially consists of a series of documents to aid with implementation
of a framework for IT Services. ITIL comprises a set of best practices pointing out
on what should be done, not how it should be achieved. The number of companies
applying ITIL for IT service management is growing, companies that decided to
adopt ITIL best practices can be certified (compliance to ISO 20000) [30].

The COBIT framework was developed by revisers of industry and the ISACA
(Information Systems And Control Association) [81]. It relies on information
gathered from business targets and required IT resources and processes and com-
prises 34 critical IT processes that are structured into the following domains: Plan
and organise, acquire and implement, deliver and support as well as monitor and
evaluate [46].

• for audit planning and audit program development,

• to validate current IT controls,

• to evaluate and reduce IT risks and

• as a framework for improving IT.

3 Related Work / Fundamentals 21

The number of organisations using the COBIT framework as well as the or-
ganisations’ level and intensity of COBIT usage is increasing continuously. While
COBIT 2.0 was used by most companies as a general guideline only, COBIT 3.0 is
used by medium- and large-sized companies as a platform for control frameworks
and audit processes [22].

Though both COBIT and ITIL emphasise importance of business-IT align-
ment and valuation of business processes, none of them provides suited tools for
in-depth valuation of IT. COBIT, for example, just recognises the need of estab-
lishing “fair, transparent, repeatable and comparable evaluation of business cases
including financial worth, the risk of not delivering a capability and the risk of
not realising the expected benefits” [46].

3.2.3 Service-Oriented Architecture

Service-oriented architecture (SOA) aims at building independent, loosely cou-
pled applications (services) that are created according to business process re-
quirements. Every service provides a well-defined set of functionality that is
abstracted from its origin and underlying implementation-related issues [36]. All
services can be queried directly or combined with others to build new services,
because they only depend on the definition of a standardised interface.

Figure 3.8: Service-oriented architecture - Find/Bind/Invoke [16]

Many large-scale ERP applications are static, unbudgeable monoliths. Exten-
sion and adaptation to new requirements very often is a tedious, difficult and by
that expensive process. In contrast to this, and because of its modular nature,
SOA yields the big advantages of flexibility and easy adaptation to new require-
ments. SOA can help to respond more quickly and cost-efficiently to changing
market conditions while focusing IT expenses on business processes: As soon as
business processes change, all underlying services are modified accordingly to re-
flect changes. If new services are required, they can be built upon existing ones
(they can be composed) or implemented in any environment that supports the
common service interface definition.

In a SOA, services are [16]:

• loosely coupled,

3 Related Work / Fundamentals 22

• directly usable,

• discoverable,

• accessible via standardised interfaces,

• context independent but

• not necessarily stateless.

To automate access to and interaction between services, a common registry
of all available services is required. This so called Find/Bind/Invoke pattern is
illustrated in figure 3.8. By querying a common registry, requesters obtain a
reference to a service that can fulfil the required operation. After binding to the
service, the requester invokes the desired operation.

The SOA framework outlines the different layers of SOA service interaction
(see figure 3.9).

Figure 3.9: The SOA Framework [16]

As with selection of all components of IT, selection of services is important for
aligning IT to business. Especially in context of loosely coupled and autonomous
services, effective selection and combination of available technologies bears huge
potentials of optimisation.

Currently, only few structured methods targeting automation of service selec-
tion and according decision support can be found. There are several papers coping
with adaptation of services to changing environmental conditions (cf. [70], [27]),
but most of them solely focus on the technical process of adapting services (or
building easily-adaptable services) disregarding the task of refining optimal align-
ment of IT and business.

In analogy to multiobjective approaches coping with selection of R&D projects
[76], Neubauer proposes a method that employs multiobjective analysis to provide
decision support for selection of services in SOA environments [57].

3 Related Work / Fundamentals 23

3.2.4 IT Portfolio Management

In 1981, McFarlan introduced an approach to regard business IT resources similar
to financial portfolios [52].

As initially mentioned, pressure to prove ROI on IT investments is increasing
[82]. Managing an organisation’s IT as a portfolio of services can help in achieving
the necessary focus to deliver business value from IT investments [66]. Using this
approach, decision-makers are forced to not only make their decisions on a short-
term perspective, but to develop an over-all vision of IT investments. Thus, in
1996 the US Congress passed the Clinger-Cohen Act which compels government
decision makers to adopt a portfolio approach to IT investments [33].

In analogy to financial portfolio theory (section 3.1.1), the central task in op-
timising IT portfolios is balancing them adequately. Especially IT portfolios can
be tuned in many ways considering very different (and sometimes oppositional)
objectives. Decision-makers have to assure their portfolios’ balance in terms of
risk, costs (ROI, TCO), technology, distribution, company strategy (alignment)
etc. [33].

IT portfolio management is very often associated with managing portfolios of
IT projects. Nevertheless, these IT projects are just a subset of object types
within an IT environment that can be handled using a portfolio approach. On
the other hand, IT portfolio management itself is one of multiple components that
enable a holistic IT management in modern organisations. According to Kersten
and Verhoef [33], the broad field of quantitative IT Portfolio Management consists
in effect of four partly overlapping fields:

• IT Portfolio Management
works with “Markowitz-like” models for IT, introduces balance to the IT
portfolio, and works with IT portfolio assessment models and payback mod-
els.

• IT Investment Management
takes a more investment-based approach, with the emphasis on return on
investment (ROI), net present value (NPV), contribution to profit, substi-
tution effects, etc.

• IT Performance Management
deals with the assessment of the operational IT. Relevant subjects include
IT dashboards, benchmarks, market conformity, the quantitative aspects of
outsourcing, and service level agreements (SLAs), etc.

• IT Due Diligence
focuses on the concrete quantification and realisation of synergy, reduction
of the “time-to-harvest”, predictability and risk reduction of the integration,
reduction of the “morning-after costs” etc.

Figure 3.10 shows a fictive IT project portfolio analysis. In this example, fea-
sible projects are analysed in two dimensions: Alignment with company strategy
and payback period (time-to-harvest). Projects that are hardly aligned with the
company strategy or incorporate a relatively long payback period are considered

3 Related Work / Fundamentals 24

Figure 3.10: Example of a Simple IT Project Portfolio Analysis [33]

less eligible than those well-aligned to company strategy or with a short payback
period. Starting with the most attractive projects, a project portfolio can be con-
structed until a certain constraint (desired number of project, maximum amount
of initial spendings etc.) is met [33].

Five different kinds of IT portfolios must be distinguished [34]:

• Hardware portfolios contain all the hardware, infrastructure as well as
interconnections among them. When no information about interconnec-
tions available, one can simply talk of an inventory account or investment
account.

• Service portfolios seem reasonably easy to get for IT departments, as they
relate to the operating and management activities of each department. Very
often, Service Level Agreements (SLAs) give sufficient input for constructing
correspondent portfolios. Practice however is intractable, mainly because it
is always a matter of a whole chain of services or components, and shared
functions or resource sharing (infrastructural services) are widely used.

• Project and product portfolios are the simplest portfolios. Techniques
from the financial markets (like Markowitz’ Modern Portfolio Theory) can
be applied here easily with only minor adaptations. When managing such
portfolios, statistical and other assumptions need to be given good atten-
tion.

• Software portfolios for this thesis are of primary interest. They can
be partitioned in two independent sub domains, a) purchase strategies for
ready-to-use software packages (sometimes referred as license portfolio man-
agement) and b) management of “classical” software development projects.
Latter is one of the most challenging fields, since costs for software devel-
opment are extremely high, diversity is huge and investment decisions are
often very complex. Due to this fact software portfolio management bares
an enormous potential of optimisation. Kersten and Verhoef “firmly” be-
lieve that “this is the main area in which successes can be achieved in the
coming years with a good portfolio approach” [33].

3 Related Work / Fundamentals 25

3.3 Valuation of IT Investments

In a 2002 survey among 400+ top IT executives, Verhoef found out that “60%
felt an increase in the level of pressure to prove ROI on IT investments while
70% believed that their metrics do not fully capture the value of IT” [82]. Nearly
half of the questionned persons had no confidence in their ability to accurately
calculate ROI on IT investments: “Most executives consider IT spending as a
black hole: No matter how much resources are thrown at IT, there is no clear
justification of returns - IT is on top of the executives.” [82]

Because of the continuously growing pressure to use IT efficiently, and as exec-
utives have learned that just spending more is not the winning strategy, methods
for measuring total value of IT infrastructure are heavily demanded [72] [40]
[45] [51] [67]. While total cost of ownership (TCO) can be determined relatively
simple by summarising initial costs and subsequent maintenance costs, calculat-
ing the IT’s gain of efficiency as well as relative returns is difficult and highly
approximative. In the following section, multiple popular models and methods
that support quantitative IT measurement will be introduced. At the end of this
section, methods with comparable pre- and postconditions will be juxtaposed
to highlight each method’s specific advantages and drawbacks in the scope of
software selection.

3.3.1 “Traditional” Cost Benefit Calculations

The application of cost benefit calculation for selection IT applications is very
common (cf. [8], [72]). Research on structured cost benefit analysis focusing
information systems has been done since the late eighties. According to Peter G.
Sassone [72], all cost benefit methods share some basic principals, some of which
are

• money time value accounting under use of cash flow models,

• life cycle cost analysis to identify gamut of relevant costs,

• use of incremental (marginal) costs instead of average costs,

• recognition of net present value as the best financial criterion for aggregating
costs and benefits over time.

Conventional methods for performing cost benefit analysis include [72]:

• Decision Analysis
This approach is an application of operation research techniques - namely
Bayesian analysis and game theory - to business decisions. After the pur-
sued objective is specified, a set of possible choices and states as well as
the probability of states occurring and possible outcomes are defined. The
value of an information system is expressed as the improvement of the ob-
jective value caused by the information system. With probabilities and
pay-off represented in matrix form, the value of an information system can
be visualised as the improvement of the expected value of the objective

3 Related Work / Fundamentals 26

subject to analysis caused by the use of the information system. Though
this approach is useful for evaluating information systems that are used for
routine decision making (e.g. credit decisions in a loan office), it is infre-
quently used because a) values of the probability-state matrices are difficult
to determine and b) only few implementations of information systems fit
into the decision analysis framework [35].

• Structural Models
This model analytically represents a company’s business as a line of business
functions. The value of an information system is estimated by monitoring
the information system’s impact on costs and revenues of the functions.
As all of a company’s relevant business operations must be modelled in
mathematical formulas, complexity ranges from a few simple equations to
very complex dynamic simulations. This approach directly links informa-
tion systems’ performance to the organisation’s bottom line and helps with
identifying relationships, parameters and assumptions. In addition to this,
unrealistic expectations regarding the planned system are exposed. Unfor-
tunately, this approach suffers from several drawbacks: It is difficult to use
because very often links between information systems and the company’s
bottom line are hard to define. All models are unique, thus requiring a
time consuming and costly development process. Usually, more data than
available is required and details of the model become too complex to be
communicated to the management. If the model is relative (measuring
changes), there may be no usable audit trail.

• Breakeven Analysis
Breakeven analysis is a parametric assessment of benefits, where the param-
eter values are selected to equal costs and benefits. It is usually used when
costs are quantifiable but key benefits are uncertain. Breakeven analysis
can usually be performed quickly and easily, and is especially useful as long
as benefits are extremely high or low (in comparison to alternate scenarios).
If this is not the case, benefits have to be estimated independently.

• Subjective Analysis. Using this approach, decision makers are asked how
much they would be willing to pay at maximum for the anticipated benefits
of an investment (e.g. an information system). The result is compared to
the costs of achieving the same goal with conventional measures. Because of
its extreme subjectiveness, this approach is highly dependent on the quality
of subjective estimation and by that on the knowledge and experience of
the polled person. It is usually used with extreme caution and employed
only when other (more objective) methods fail.

• Cost Displacement/Avoidance
The probably most common of these approaches compares the costs of a
new information system to the costs of the system it displaces plus future
costs it avoids. This approach assumes that the benefits of the new informa-
tion systems are bigger or equal to those of the current information system,
which cannot considered true without further inquiry. This approach is
conceptional straightforward, auditable, easily conveyable to management,

3 Related Work / Fundamentals 27

and appropriate data usually is simply to collect. Of course, this approach
is of use only when a there is a system to be replaced. As today more
and more newly introduced information systems do not only replace knowl-
edge workers but provide added value, the approach becomes increasingly
inapplicable.

3.3.2 Real Technology Options

Theories of traditional real options (see section 3.1.2) and real technology options
significantly differ in certain aspects as conventional valuation techniques show
their limitations when being applied to investments that require major commit-
ment under conditions of significant uncertainty [53]. Financial options models
calculate an option’s price under several core assumptions. Some of these are

• that an option’s underlying asset must be priced,

• this price must be known,

• assets must be continuously tradeable and

• the value of an option increases with the volatility of its underlying asset.

For technology investments, this model is not fully valid. As an example, tech-
nology assets are not continuously tradeable, and prices of underlying assets are
not always known [53]. Nevertheless, there are many parallels between financial
and real technology options. The price of an option for example can be equalled
to the costs of an initial software development. Further, such an option can be
exercised by additional investments required for the software’s commercialisa-
tion. Finally, as with market launch, another asset is created; the software brings
returns and can be traded (sold, licensed, spun out etc.).

Dixit and Pindyck [14] point out that there are three different types of un-
certainty in the context of real technology options: Input cost uncertainty refers
factors that are external to the company and cannot be influenced. Technical
uncertainty is the uncertainty that arises from general risks of technology devel-
opment projects. Examples are additional costs, unexpected delays or even the
project’s failing completely. Unlike input cost uncertainty, technical uncertainty
can be influenced. The mostly-used way of reducing technical uncertainty is by
investing. The third uncertainty is made up of factors that are located external to
the company but can be influenced though, e.g. by strategic decisions. Depend-
ing on where an option’s uncertainty is located, its value must be determined
regarding the specific boundary conditions and strategic action must be taken
accordingly.

3.3.3 Traditional Multiobjective Optimisation

When ranking candidates, their specific parameters are compared between each
other. This can either be done using only one or using multiple characteristics of
each candidate. The latter case usually poses the problem of having to consider

3 Related Work / Fundamentals 28

more than one criterion per candidate which renders a straight-forward arithmetic
ranking of candidates without further examination impossible.

Multiobjective methodologies explicitly focus on comparing and ranking multi-
ple selection candidates (or even sets of candidates) in respect of multiple objec-
tives [76]. Multiobjective decision-making has been studied extensively over the
past few decades [75] and by now, there are many differrent approaches applying
multiobjective techniques to solve a broad bandwidth of decision problems [18].
While many more traditional approaches cope with multiple objectives using com-
binatoric techniques such as aggregation or weighting, other approaches (such as
the multiobjective Pareto approach, see 3.3.5) use algorithms that treat objec-
tive values of different types on their own which yields many benefits (again, see
3.3.5). The most common traditional multiobjective approaches include [18]:

3.3.3.1 Conventional Weighted-Formula Approach

This - in literature by far mostly used approach (cf. [18]) - is a classical weighted
scoring method (WSM). It aims at transforming multiobjective problems into
“trivial” problems with only one single objective. By weighting each of the ob-
jectives numerically and combining the weighted criteria into a single numerical
weight for each candidate, all candidates can be easily compared. The weighted-
formula approach is one of the conceptually simplest methods that respect multi-
ple objectives. Though it is fast to perform, this method bears significant draw-
backs (see section 3.3.7).

3.3.3.2 Lexicographical Approach

The basic idea of this approach to assign different priorities to all objectives and
compare all candidates under respect of their objectives’ priority. Candidates
are compared to each other starting with the highest priority and descending
until one candidate’s objective value exceeds the other one’s. After comparison,
a clear ranking of all candidates is possible. Drawbacks of this method are the
difficulty of a priori prioritising weights (expressing preferences) for all objectives
and the systemic inaccuracy induced by aggregation of objectives of different
types: When, for example, software products are evaluated, it is very complex to
find a common scale for parameters like costs, usability, scalability, maintainability
etc.1

3.3.4 Analytical Hierarchical Process

The Analytical Hierarchical Process was introduced by T. L. Saaty in 1980 [71].
It is a structured method for comparing quantifiable and intangible criteria of
multiple candidates, and is commonly used to assist with multiobjective decision
problems (cf. [17], [85], [40], [37]). There are also decision support frameworks
that use the AHP as core component for candidate comparison (cf. [37]). The
AHP is usually performed in three stages:

1See section 3.3.8 for more details on comparability of criteria sets.

3 Related Work / Fundamentals 29

• Decomposition
At the beginning of the AHP, a decision network is created. The specific
decision situation is modelled as a hierarchic network with the top repre-
senting overall objectives and lower levels representing criteria, sub criteria
and alternatives (see figure 3.11).

• Comparative judgements
Then, participants set up a comparison matrix that compares pairs of crite-
ria or sub criteria of each hierarchy level. Weights are employed to express
the users’ preferences for one of the two compared criteria numerically:
A rating of 9 means “total preference for criterion A over criterion B”,
1
9

means “total preference for criterion B over criterion A”, and 1 means
“ambivalence between criterion A and criterion B” (see table 3.1).

• Synthesis of priorities
Finally, based on preferences derived from criteria comparison matrix, com-
posite weights of all alternatives are calculated [40].

Figure 3.11: Example: AHP decision network [40]

The strength of the AHP method lies in its ability to structure complex, multi-
person, multi-attribute, and multi-period problems hierarchically [85]. Unfortu-

3 Related Work / Fundamentals 30

Criteria A B C D E F

A. Dev. interface 1 1/3 1/4 1/3 5 7
B. Graphics support 3 1 1/3 1/4 5 6
C. Multi-media support 4 3 1 2 7 8
D. Data file support 3 4 1/2 1 6 8
E. Cost effectiveness 1/5 1/5 1/7 1/6 1 5
F. Vendor support 1/7 1/6 1/8 1/8 1/5 1

Table 3.1: Example: Criteria Comparison Matrix [40]

nately, there are multiple drawbacks when utilising the AHP for software selec-
tion: Weighting criteria against each other often induces major uncertainty as
many different types of criteria cannot be directly compared (see section 3.3.8).
In addition to this, criteria have to be weighted subjectively which can cause a sig-
nificant bias. As the number of candidates (alternatives) and evaluated attributes
increases, the required manual effort becomes very high.

3.3.5 Multiobjective Pareto Approach

The Pareto approach solves multiobjective decision problems using the paradigm
of Pareto efficiency2. All possible Pareto efficient solutions3 within solution space
can be found by comparing all possible solutions and dropping those that are
dominated by at least one other solution.

Figure 3.12: Example for Comparison of Portfolios with Two Parameters

Figure 3.12 shows a simple example for multiobjective comparison of solutions:
Solution B, D and F are Pareto dominant in regard of the two compared param-
eters. All other solutions are dominated because they are superseded by other
solutions in all (two) objectives (Parameter 1 and Parameter 2).

2A solution s1 is said to dominate (in the Pareto sense) a solution s2 if and only if s1 is strictly
better than s2 with respect to at least one of the criteria (objectives) being optimised and
s1 is not worse than s2 with respect to all the criteria being optimised [18].

3A solution s is said to be Pareto efficient if it is not dominated by any other solution.

3 Related Work / Fundamentals 31

Using the Pareto approach yields big advantages: Without any a priori weight-
ing of criteria, solution space is reduced until there a only solutions left that
are “not obviously worse than other ones”. All criteria are compared to equiva-
lent criteria, and there is no need to compare them to criteria of different type.
The Pareto approach aims at significantly reducing solution space while keep-
ing the quality of results constant and not inducing any uncertain or estimated
variables. Because remaining solutions are not ranked in any way, additional
screening methods are required to determine a single solution that fits best overall
objectives. An overview of interactive solution screening methods was published
by [19], Neubauer and Stummer presented an interactive screening method for
COTS selection [59] and extended business process management methodologies
for evaluation of IT-investments [58].

Stummer/Heidenberger MODS Approach
Stummer and Heidenberger introduced a model that adapts the multiobjec-
tive Pareto approach (MODS) to permit selection of R&D portfolios4 [76]. By
that, not only single non-dominated project candidates but whole non-dominated
project portfolios can be sought.

Many companies manage their research and development (R&D) projects as a
portfolio. This method is becoming more and more popular as it allows decision
makers to develop an over-all vision of IT investments. Since 1996, US govern-
ment decision makers are compelled to adopt a portfolio approach for their IT
investments [33]. Because selecting efficient project portfolios is very important
for R&D companies, the S/H MODS approach can significantly improve R&D
performance and optimise ROI [76]. The S/H method aims at finding the most
attractive project portfolio for an organisation. This is accomplished by not only
considering objective values of candidates (projects) within portfolios but also
predefined baselines (such as minimum and maximum value for each objective)
and specific interdependencies among candidates. Moreover, portfolios can be
evaluated over multiple time periods to determine portfolios’ performance un-
der varying conditions within a certain duration [76]. The approach essentially
consists of the following four separate phases:

• Screening procedure
The initial screening procedure identifies projects that worthy further eval-
uation and thus helps keeping the number of projects entering in-depth
analysis within manageable size. Screening is done using a scoring pro-
cedure, a method that has been applied to R&D project selection since
the 1960s [31]. This procedure yields no results of high accuracy, but it
allows narrowing down the number of possible evaluation candidates to a
reasonable number without having to collect much data for each project
and without discouraging participants. This phase should output not more
than about 30 projects as computation increases significantly.

• Definition of benefits and resources for each objective
To provide information for subsequent comparison of projects, all candi-
dates from the first phase are subject to further in-depth analysis under use

4See section 3.1.1 for more information regarding portfolios.

3 Related Work / Fundamentals 32

of a multi-round Delphi process. Each project’s owner provides in-depth
information that serves as input for evaluation. In a multi-stage Delphi
process, participants discuss benefits and resource consumptions for each
project as well as dependencies among them. For all candidates, a common
set of evaluation criteria is derived (see section 3.3.8). General constraints
regarding the composition of portfolios as well as interdependencies (inclu-
sion or exclusion conditions, synergies etc.) among specific projects can be
defined.

• Determination of Pareto efficient portfolios
Out of all possible combinations of all projects from phase two, this phase
aims to isolate all Pareto efficient portfolios under respect to all the projects’
objectives and all restrictions defined in phase two. This is accomplished
by enumerating all possible combinations of candidates (constructing all
possible project portfolios) and checking them both for Pareto efficiency
and against defined restrictions. All portfolios that are dominated or do
not obey predefined restrictions are dropped.

• Restriction of solution space
In the last phase, upper and lower boundaries are defined for each objec-
tive restricting solution space until only few solutions are left. This is ac-
complished using an interactive screening method (“solution space explorer
application”). The application takes all remaining portfolios as input and
visualises distribution of solutions graphically (see figure). Finally, the few
remaining solutions are subject to manual evaluation and discussion. The
most attractive portfolio is chosen.

Figure 3.13: Restriction of solution space [76]

The S/H approach yields two major advantages in comparison to other multi-
objective approaches:

• A posteriori definition of preferences
When stakeholders have to express their preferences at the beginning of
a valuation process (see AHP), output cannot be refined easily without
repeating the whole decision process. The S/H approach lets users define
their preferences at the very end of the process. While reducing solution
space, users can see the consequences of their actions (namely, the impact
on the number of remaining portfolios) in real-time. Preferences can easily
be adjusted until only a few solutions remain.

3 Related Work / Fundamentals 33

• No aggregation of objectives
Many approaches use criteria weights to aggregate all selection candidates’
objectives to a total weight (again, see AHP). This confronts users with the
problem of having to assign priorities to all evaluated objectives. Especially
with software, this is quite pointless as many objectives very often cannot
be weighted in respect to each other. Because of this, most users will make
their choice based on intuition instead of logic, which induces a significant
factor of randomness.

As this methodology yields good results with R&D project portfolios, and
because the process of project portfolio selection shows many similarities to IT
software portfolio selection, the Stummer/Heidenberger method will be used as
basis of this thesis’ model for software portfolio selection. For details on how this
is done and which extensions are implemented, see chapter 4.

3.3.6 (Meta)Heuristic Methods

Very often, formal decision making approaches require notable computation ef-
forts. The multiobjective portfolio selection technique, for example, requires a
complete enumeration of all possible portfolios (namely all possible subsets of
all candidates). While this can be performed within acceptable time for com-
paratively small problems, it becomes increasingly demanding as the number of
projects grows because computation effort increases with 2n [15].

Heuristic paradigms offer significant reduction of computation expenses and
time when applying problem solving algorithms. Their common major drawback
is the loss of certainty that arises from their heuristic (and thus approximative)
nature. Because of this, the challenge in applying heuristic algorithms consists of
selecting and adjusting applied algorithms in a way that not only reduces compu-
tation effort but also preserved quality of results to a feasible extent. Today, there
are many different heuristic approaches for decision and computation problems.
For example, ant colony optimisation [15] or genetic algorithms [28] can be ap-
plied to increase efficiency of solving multiobjective decision problems. Because
this thesis’ primary aim consists of the creation of an appropriate model to per-
form software selection, no fine-tuning is performed and thus no heuristic methods
are applied. Moreover, the number of software candidates will be restricted to a
reasonable maximum. Further information regarding the application of heuristic
methodologies on multiobjective optimisation can be found in [15] and [28].

3.3.7 Comparison of Valuation Methods

Comparing methods and algorithms of different characteristics turns out difficult
as a common set of measurement criteria has to be found. Some of the mentioned
approaches cannot be compared to others because they are either abstract models
that must be used with a concrete method to yield results, or they are strongly
focused on certain single valuation aspects what makes them inefficient to use for
valuation of software (e.g. many traditional cost benefit calculation methods).
All relevant of the remaining approaches are compared using a set of six criteria
(see table 3.2).

3 Related Work / Fundamentals 34

Note: All ratings have been made with substantial focus on the task of soft-
ware selection. In other contexts, approaches might perform considerably better
or worse. For each valuation approach, usually there are multiple differing inter-
pretations and implementations. The models and algorithms compared here have
been taken from their respective literature references. For some algorithms, there
might exist different forms and models that might have been rated differently in
this comparison.

The following criteria have been chosen in regard to their relevancy for the
domain of software selection:

• Multiple objectives
When evaluating software, consideration of multiple objectives is of high
importance, as a software’s adequacy and efficiency for a company is de-
termined by many different parameters [40]. Parameters of different char-
acteristics which cannot be measured on a single common scale must be
compared among software candidates. Therefore, expression of parameters
in monetary values only is no adequate solution as many parameters of
software simply cannot be cast.

• Difficulty
The difficulty of valuation approaches is an important criterion either. The
more difficult an approach, the more unusable the whole model becomes
to the users. An ideal approach should yield good results while keeping
complexity5 (and by that difficulty) at a minimum. Difficulty of an approach
can only be measured approximatively. For example, one could measure
the time it takes the users to “learn” a method, or the degree of knowledge
required for the users to understand an approach.

• Required “manual” interaction
This corresponds to the degree of manual effort an approach requires. The
more manual tasks have to be performed, the less the approach is repeatable
to the users and the more uncertainties are introduced. Required manual
effort could, for example, be measured by the time it takes to perform
evaluation of a previously defined set of reference candidates.

• Applicability to portfolios
When evaluating software, it is important to not only consider each can-
didate separately but combinations of candidates. Similar parameters of
portfolio candidates cannot always be arithmetically summarised to get the
portfolio’s overall performance, and dependencies between candidates must
be considered. Thus, approaches must include suited methods to compare
portfolios.

• Repeatability/reusability
Holistic approaches like business-IT alignment do not only imply one-time
evaluations of software but rather continuous evaluation of the current

5Note that in this context, the term complexity does not imperatively correspond to the
concepts of mathematical or computation complexity rather than the difficulty of performing
the method for the user(s).

3 Related Work / Fundamentals 35

software’s overall performance. When external preconditions or certain
software candidates’ characteristics change, re-evaluation of all candidates
should be possible easily and straight-forward.

Repeatability of an approach in terms of required effort for each subsequent
repetition can be measured by comparison of required initial ei to subse-
quent es effort. The smaller the ratio of subsequent to initial effort, the
more repeatable an approach (see equation 3.1).

Rmax : r =
es

ei

r → 0 (3.1)

• Quality of results
The best approach cannot be useful if quality of its results is poor. Nev-
ertheless, a certain level of weakness in result quality might be acceptable
if overall results of the respective approach are very outstanding and weak-
nesses regarding results (e.g. variance of results) are well-known.

There are multiple methods for determining the quality of results. They
can, for example, be compared to measured real-life values or be validated
by simulations (see [12]). If a method incorporates aspects of uncertainty
(i.e. random variables), a certain indicator for the quality of results can be
derived from the result’s intrinsic variance.

Approach MO C RMI AP R/R QoR

1 Breakeven Analysis No Medium Medium Yes Low Low
2 Decision Analysis Partly High High Yes Low Medium
3 Real Tech Options No Medium Medium Yes Medium Medium
4 Weighted Formula Yes Low High Yes Low Low
5 AHP Yes Medium High No Medium Medium
6 Pareto Approach Yes Medium Medium No High High
7 S/H (MODS) Approach Yes Medium Medium Yes High High

Table 3.2: Comparison of applicable valuation methods [40]

Table 3.2 visualises the comparison of valuation methods. While more “tradi-
tional” approaches aggregate values by plain calculation (e.g. breakeven analysis,
decision analysis), current software valuation methods aim at structuring decision
situations and applying principles known from other domains such as economy
(e.g. options theory, Pareto paradigm). Each of the listed methods has individ-
ual advantages and suffers from specific drawbacks. In general it can be stated
that, the more complex an algorithm, the harder it is to apply and the more
error-prone it is. The more a-priori parameters of different types are aggregated,
the more bias will appear in the final result.

Currently, Pareto approach and MODS approach are the only ones that
are designed for considering combinations of candidates. While all other ap-
proaches combine candidate characteristics, only the MODS approach treats can-
didate characteristics separately and thus yields results without requiring a-priori
weighting. While certain methods, such as the AHP or MODS, provide precise

3 Related Work / Fundamentals 36

though generic decision models that can be used mostly without adaptation to the
specific decision situation, other approaches like decision analysis require putting
up very custom and specific models.

Several models have been proposed to automate, optimise and - above all - sim-
plify the process of software selection. While traditional approaches of cost/ben-
efit calculation can usually be applied to software selection decision problems
under major limitations only (see section 3.3.7), some recent approaches based
on either the AHP or multiobjective optimisation tend to cover software charac-
teristics on a higher level delivering reasonable results (cf. [85], [40], [76], [58]).
Though, as analysis of whole software portfolios yields several additional chal-
lenges and problems, even approaches like the AHP appear to be applicable to a
limited extent only.

3.3.8 Definition of Criteria Sets

Whenever objects are compared, ranked or selected, the final outcome always
strongly depends on the choice of which characteristics to consider and measure.
Optimal results can be obtained only if the right (for the specific decision situation
best-fitting) set of criteria is chosen.

In 1979, Boehm et al. defined a set of software evaluation criteria that was
supposed to enable a quantitative evaluation of software [4]:

• Portability

• Reliability

• Efficiency

• Human engineering

• Testability

• Understandability

• Modifiability

Though this list of criteria seems comprehensible and convincing, today it does
not only lack actuality but also specificity to particular application domains. In
terms of business-IT alignment, software that is aligned with corporate business
can only be found if evaluation criteria that lead to the selection of one or multiple
candidates are aligned to business either. Thus, criteria must be not only aligned
to business processes but to corporate business strategy as a whole in order to
achieve an optimal degree of business-IT alignment [9]. Though specification of
suited criteria sets obviously is a substantial factor for good results, only few
structured, repeatable and efficient approaches for determining software criteria
sets have been proposed.

3 Related Work / Fundamentals 37

3.3.8.1 Critical Success Factors (CSF)

The method of critical success factors was developed by McKinsey & Company
[10] in 1950. CSF is a methodology that systematically identifies those actions
that are necessary to enable an enterprise to achieve its goals [69]. The CSF
method identifies all areas of activity in which good result are absolutely necessary
for sustaining business. From these activities, a) requirements can be derived or
b) they can directly be used as input for approaches like the AHP [17].

3.3.8.2 Preferences of Stakeholders

Multiple approaches for software selection accomplish the necessary task of crite-
ria selection under consideration of the involved stakeholders’ preferences ([58],
[56], [85], [76]). This can be done using several methods:

• Interviews
Decision makers and project stakeholders can be interviewed to gain infor-
mation regarding important criteria [50] [85].

• Delphi processes
The Delphi method6 permits forming of common opinions by discussion
while mitigating influence of dominant individuals [76].

• Workshops
Moderated workshops can be used as structured methods for forming com-
mon opinions among multiple persons (cf. [56], [58], [76]). Within a work-
shop, specialised methods (such as Delphi processes) can be employed.

3.3.8.3 The OTSO Approach - Alignment to Business Strategy

Because the primary goal of software employed in a company is supporting the
company’s business processes (thus helping to pursue business strategy), criteria
for selecting software must be aligned to business strategy as well in order to
optimise the software’s overall business coverage. OTSO aims at accomplishing
business strategy alignment by deriving criteria from a basic set of factors aligned
to business.

With OTSO (Off-The-Shelf Option), a selection framework for reusable soft-
ware components, Kontio describes a way of criteria definition that strongly ad-
heres to the company’s business strategy [37]. Though OTSO lays its focus on
reuse of components, the model bears two general approaches that appear very
useful for selection of many types of software components:

• Incremental criteria development
The OTSO model defines selection criteria in an incremental and evolu-
tionary process. Criteria can be gradually refined to ensure an optimal
matching of influencing factors and software selection criteria.

6See [42] for details on Delphi processes

3 Related Work / Fundamentals 38

• Hierarchical criteria derivation
Figure 3.14 shows the hierarchic dependencies that are used for derivation
of criteria. Starting from the most important influencing factors such as
organisation infrastructure, application architecture or project constraints,
information is collected and requirements are broken down until specific
selection criteria can be deduced.

The OTSO model recognises five main factors (given preconditions and require-
ments) that collection of software selection criteria depends on:

• Application requirements
As the most important of these factors, application requirements can be di-
vided into two categories, functional requirements (e.g. coverage of specific
business processes) and non-functional requirements (such as performance
or maintainability). If available, requirement specification should be used
for interpreting such requirements.

• Application architecture and design
In this context, application architecture and design determine how systems
are built. This not only includes components and design patterns but also
interfaces and communication standards.

• Project objectives, constraints
Selection of components can be influenced by project constraints such as
time or budget. For example, if introduction of a new software depends
on specific budget constraints, this must be regarded when selecting among
possible alternatives.

• Organisation infrastructure
Components must be selected in respect to and under consideration of the
organisation’s infrastructure.

• Availability of libraries
Software libraries are an important factor for reusability of software. On one
hand, an organisation’s existing libraries can be reused which may leverage
costs. On the other hand, new software components that include reusable
libraries can safe resources on future software acquisitions.

This factor is of less importantance for generic software selection models as
the criterion of reusability usually is considered just as important as others.
If required, criteria regarding reusability can also be derived from the factor
of application architecture and design.

Kontio also identifies four classes of evaluation criteria:

• Functional criteria
Criteria that correspond to the components’ functional aspects and capabil-
ities, such as supported graphic formats (e.g. imaging applications), maxi-
mum of session (e.g. database applications) etc.

3 Related Work / Fundamentals 39

Figure 3.14: Factors influencing selection of criteria [39]

3 Related Work / Fundamentals 40

• Quality criteria
Criteria that correspond to software quality aspects, such as performance,
stability, usability etc.

• Domain and architectural criteria
Criteria that correspond to requirements specific to the organisational do-
main and architectural aspects, such as compatibility with present systems
and interfaces etc.

• Strategic criteria
Criteria that correspond to business strategy and strategic project con-
straints, such as initial costs, life-time cycle etc.

The OTSO model appears suitable as a basis for construction of a best possible
set of software evaluation criteria. As the model subject to this thesis does not
primarily focus reusability of libraries but considers reusability a criterion as
many others, certain changes will be induced in the OTSO model that render the
process of criteria set definition more generic and open to evaluation of various
types of software (such as components, services, libraries etc.).

41

Chapter 4

Construction of the Software
Selection Model

None of the currently existing methodologies for software selection (or methods
for software valuation that enable selection of software by comparison to other
candidates) fully satisfy the needs of today’s holistic IT management paradigms
(such as business-IT alignment): While many paradigms lack the ease of use re-
quired for performing business application portfolio evaluation on a regular basis,
others are limited to evaluate of only very few candidates. Several approaches are
not capable of coping with portfolios of applications whilst others do not align
software selection to business processes’ demands. In this chapter, a model will
be developed that bypasses the shortcomings of other popular software selection
models.

4.1 Model Requirements

The following sections list requirements a software selection model needs to cover
in order to permit efficient and versatile evaluation of software portfolios. A
differentiate is made between imperative requirements that are substantial com-
ponents of the model and optional requirements that will be interpreted as general
objectives which should be met.

4.1.1 Imperative Model Requirements

Characteristics of and dependencies among business software components are
various and partly quite complex. Some components, for example, may require
others to function properly (e.g. certain software libraries), while others can
hardly be applied together with certain other products (e.g. Microsoft Inter-
net Information Server (IIS) and the Apache Web Server). When using some
products simultaneously, they perform better or worse than they would alone.

Some applications bear higher initial costs and low maintenance costs, others
can be obtained totally free of charge (e.g. open source software) but cause high
morning-after costs1. Because of this, an adequate model for software evaluation

1In the marketing & acquisition context, morning-after costs denominate unforeseen (hidden)
costs that delay the time-to-harvest [33].

4 Construction of the Software Selection Model 42

must be very flexible to consider many characteristics of software products and
allow for the definition of a multitude of intra-portfolio constraints. The list
of basic requirements partly corresponds to the criteria set that was used for
evaluation of common valuation methods in section 3.3.7.

1. Structured definition of evaluation criteria
The model must incorporate a structured and efficient process for deter-
mining optimal sets of evaluation criteria that can be used to valuate the
selection candidates’ characteristics.

2. Multiple objectives
Evaluation of an arbitrary number of objectives must be possible. This
should be accomplished without a priori weighting of objectives and without
breaking them down to a common scale.

3. Multiple candidates
Depending on the domain that software is evaluated of, number of can-
didates might raise to levels that require inefficiently much computation
efforts. Thus, computation of the model should be designed as efficiently
as possible to allow efficient evaluation of at least 40 candidates. This limit
can be increased later by applying suited heuristic algorithms2.

4. Software portfolios
Comparison should not be performed between single candidates but between
complete portfolios of candidates.

5. Definition of constraints
To allow for a detailed modelling of base requirements and candidates, def-
inition of constraints that do not only affect general limitations (e.g. max-
imum initial costs) but also cover (anti)dependencies between candidates
(e.g. software products A cannot be used together with software products
B) must be possible.

a) Inter-candidate dependencies
Many software products can either not or even only be used together
with other products. For example, Microsoft Office (usually) cannot
be used on Unix operating systems. Thus, possibility of defining de-
pendencies between candidates in a common portfolio is important.

i. Dependency
Candidate A requires candidate B, candidate B might (bidirec-
tional) or might not (unidirectional) require candidate A.
Example (unidirectional): Microsoft Office requires Microsoft
Windows but not vice-versa.

ii. Exclusion
Candidate A cannot be member of the portfolio if candidate B is
and vice-versa.
Example: Microsoft Windows and Unix should not be selected
simultaneously if only one operating system is required.

2Implementation of heuristic methods lies beyond the scope of this thesis. For examples on
how to apply heuristic methods to multiobjective optimisation, see [15] and [28].

4 Construction of the Software Selection Model 43

b) Value restriction constraints
Definition of restrictions for values of specific characteristics (such as
costs) must be possible.

i. Upper boundary
All candidates that, for a certain criterion, have a value higher
than the predefined maximum, are excluded from all portfolios.

ii. Lower boundary
All candidates that, for a certain criterion, have a value lower than
the predefined minimum, are excluded from all portfolios.

c) Business process support constraints
As implied by various IT management approaches, IT used in an or-
ganisation should as precisely as possible cover all business processes.
Because of this, definition of business processes and their coverage by
each software candidate is required. Only portfolios in which all rele-
vant business processes are covered by software candidates are feasible
choices.

6. Low complexity
Obviously, methods with low complexity can be applied easier than those
with higher complexity. Because in many companies the step of software
valuation is skipped due to a lack of knowledge [58], “simpler” methods
are more likely to be employed. Though sometimes complex models are
required to represent reality as good as possible, complex models are (in
general) more error-prone than less complex ones.

7. Little “manual” interaction
The amount of manual interaction required to perform valuation should be
minimised. If it is too high, the valuation process can be repeated less fre-
quently, user acceptance will decrease (or even cease) and errors are more
likely to happen. If an approach comprises too many manual tasks, the
number of candidates and objectives might be limited as manual consider-
ation of too many factors ceases efficiency (e.g. the analytical hierarchical
process, section 3.3.7).

8. Reusability/repeatability
As the method should not only be used once but regularly, valuation process
should be easily repeatable. If there are several similar evaluation processes,
collected a priori data should be reusable as far as requirements overlap.

9. Quality of results
Of course, quality of results should be as good as possible. Results should
be as little as possible blurred and distorted by a priori user preferences.
If heuristic methods are applied in later development periods to speed up
computation, quality of results must be preserved.

4.1.2 Optional Model Requirements

Advanced (“soft”) requirements are supposed to optimise the model regarding its
overall performance and usability. Though these requirements will be followed

4 Construction of the Software Selection Model 44

throughout the phases of model design and implementation, they are not con-
sidered crucial for the success (or failing) of the model creation process which is
subject to this thesis.

1. Usability
The frequency a software is used depends on many factors - one of the most
important of them is its usability [60]. Not only but especially because deci-
sion makers very often have the free choice of using or not using a software,
user experience of the new application should be made as comfortable as
possible to leverage acceptance.

a) Performance
Time users spend waiting for application start-up and calculation of
results should be minimised.

b) Comprehensive interface
To reduce time necessary for becoming familiar with the application,
its GUI3 should be as easy to use and as self-explanatory as possible.

c) Efficiency
Though the GUI should be kept simple, as few steps as possible should
be required to enter a priori data and perform evaluation. A priori data
of previous evaluations should be kept (e.g. saved to a file) for later
reuse.

2. Import of a priori data
Though this approach tempts to minimise necessity of a priori data, cap-
turing a certain amount of information prior to computation process is
inevitable. To minimise manual effort, a priori data should be imported
from other (already present) data sources such as business process mod-
elling frameworks as much as possible.

3. Flexibility
Every domain of business has custom requirements regarding the software
employed to support and maintain business processes. This is very impor-
tant to be keep in mind when developing software that should be applicable
for a wide range of business domains. Because of this, no objectives should
be “hard-coded”, all parameters must be adaptable to reflect specific pre-
conditions and requirements of employing organisations.

4. Extensibility
Software, organisations and their respective business itself are subject to
continuous change. All developed components should be kept as extensible
as possible to permit future adaptation to new concepts and structural
changes of the underlying model.

4.2 Concept

Valuation and comparison of abstract, intangible or non-measurable character-
istics is a problem not only known from software selection. In fact, decision

3Graphical User Interface

4 Construction of the Software Selection Model 45

problems in many other - partly related - domains show analogies to and similar
types of characteristics (meta characteristics). Diversity of characteristics that
software can expose is even increased by the fact that the term “software” not
only comprises what users mostly associate with it, “classical” software pack-
ages (components of-the-shelf). Much more, the term software also applies to
many other types of intangible assets that range from operating systems (OS)
and database management systems (DBMS) to services (see section 3.2.3) and
even custom-tailored software.

In this chapter, a general model will be outlined that combines existing mul-
tiobjective portfolio approaches (such as [76], [58], [57]) with the paradigm of
business process management finally targeting development of an efficient and
good-performance implementation. Formal and logical (mathematical and algo-
rithmic) backgrounds will be described in section 4.3.

4.2.1 Definition of Objectives

As mentioned earlier, software criteria subject to optimisation are central com-
ponent in evaluating software. Therefore, a thorough recognition of requirements
and derivation of useful criteria is essential. When defining objectives (see sec-
tion 3.3.8), care should be taken to cover all relevant characteristics of candidates
while keeping the number of objectives within reasonable dimensions4. Structured
approaches for selection criteria definition show some significant advantages over
“intuitive” approaches:

• Repeatability
Using data from previous approaches, later analysis rounds can be per-
formed with less effort.

• Transparency
Decisions made and preferences expressed in structured approaches are com-
prehensible and verifiable. It is possible to determine what lead to in- or
exclusion of certain criteria.

• Quality of results
When deriving criteria from a specified set of base requirements (such as
business strategy, application requirements etc.), a maximum of the possible
solution space is evaluated.

• Overall performance
Structured (scientific) approaches that are either published or have serious
intercessors are subject to public discussion. Approaches are criticised,
refined or even dropped, and by that continuously optimised. Additionally,
structured approaches are likely to deliver results that are suited for use
with further specific analysis techniques (such as multiobjective decision
making).

4If the number of criteria is too high, the method might yield too few solutions and computa-
tion effort grows inefficient. If it’s too low, not all relevant objectives may be covered and
the method might yield too many candidates.

4 Construction of the Software Selection Model 46

The model developed within this thesis uses an adapted OTSO technique to
determine an optimal set of software evaluation criteria. Criteria selection is
performed by involved managers and other stakeholders, and should be done
in form of a workshop. The selection process is performed iteratively in three
phases. This means that it is always possible to step back to a previous phase
when participants think that it is necessary to refine data collected in this phase.

Figure 4.1: Adapted OTSO Criteria Collection Process

In the first phase (criteria derivation), requirements are derived from the four
main factors. Figure 4.1 visualises the transformation of business strategy to
evaluation criteria. Business strategy is represented by the main factors. Note
that, though these factors show similarities to those employed in the OTSO model
(see section 3.3.8.3), they bear significant differences regarding their meaning and
denotation. The four factors are:

• Application requirements
In this model, the term of application requirements mainly corresponds to
the functional requirements a software should be capable of fulfilling. These

4 Construction of the Software Selection Model 47

requirements are not inductively defined (“what we would like the new soft-
ware to do”) but deductively collected (“what tasks have to be performed by
the software in the company”). By that, the factor of application require-
ments strongly (but not exclusively) coheres with the company’s business
processes. The degree of each software’s business process coverage will be
evaluated using criteria derived from this factor.

• Design specification
Most organisations already employ IT infrastructure that includes various
types of hardware and software. For a flawless and efficient integration into
the the company’s IT landscape, new software must be evaluated under
the aspect of application design, e.g. interfaces and connectivity, software-
architectural constraints, hardware compatibility, availability, extensibility,
life-cycle etc.

• Project requirements
Here, the term project plan does not only refer to the common understand-
ing of business projects5, but also to the “project” of introducing new soft-
ware. Because acquisition of software infrastructure usually requires defini-
tion of constraints such as the time frame that the new system should be up
and running within, a maximum of initial and subsequent costs, involved
stakeholders etc., the term project plan refers to the planning of general
strategic constraints that affect acquisition, adoption and operation of one
or more specific software products.

• Organisational requirements
Organisational requirements are the broadest and least tangible factor of
all. They refer to many aspects of companies’ general business strategies
including long-term targets, external factors, corporate politics etc.

All requirements derived from the main factors are formulated as software
evaluation criteria. Requirements that result from a formal basis or specification
(such as requirement specifications, system design documents etc.) can be col-
lected directly. This is done either by manual transfer or by automatic import
of business processes from BPM tools6. Other requirements (especially organi-
sational requirements) can be collected with brainstorming sessions. The larger
number of results delivered by brain storming sessions imposes no problem, as
number of criteria is reduced in the phase two.

In the second phase (criteria evaluation), all collected criteria are evaluated.
To keep the number of criteria within reasonable dimensions and to maximise
criteria quality, criteria should be reduced by aggregating, combining or dropping
them when reasonable and possible. All criteria should be tested regarding their
relevancy, quality, granularity and redundancy with other criteria. If this phase
unveils that overall criteria quality is too low, or that important requirements
and/or criteria have been omitted, participants can step back to the previous
phase.

5Which is, as undertakings with defined goals, durations and resource consumptions
6The software developed in course of this thesis will allow ADONIS models to be imported.

See chapter 5.

4 Construction of the Software Selection Model 48

In practical tests, an overall number of about 5 to 12 criteria has proven rea-
sonable. For each individual decision situation, the optimal number of criteria of
course strongly depends on the situation’s characteristics and complexity. In any
way it is important to realise that, while smaller numbers of criteria still might
prove useful for simple decision situations, much larger numbers will significantly
slow down computation process.

In the third and final phase (criteria adoption), criteria are adopted for use
as software evaluation input data. Criteria are matched with the software can-
didates’ characteristics. If there are any characteristics that should be optimised
but are not covered by the current criteria set, criteria can be altered by stepping
back to phase two. Then, for reasons of simplicity of further analysis, all criteria
are classified as benefit category or as resource consuming category. While ben-
efit categories are value-generating (e.g. cash returns) or at least positive (e.g.
usability), resource consuming categories are value-consuming (e.g. initial costs)
or negative (e.g. required maintenance effort).

All categories are assigned a unit that is suited to express all candidates values
in the respective category (e.g. “EUR”, “hours” etc.). For abstract and non-
measurable categories such as usability or extensibility, virtual units (like points)
can be used to express an approximate rating7. Therefore, appropriate scales
that cover the whole possible parameter bandwidth have to be introduced. For
example, if usability should be measured, utilisation of a scale that ranges from
0 points (not usable at all) to 10 points (optimal usability) appears reasonable.

Care must be taken not to confuse “total value categories” (e.g. total initial cost
of a portfolio) and “average value categories” (such as usability or performance):
Unlike total values such as costs, software portfolio’s usability values do not
necessarily increase with the number of contained candidates. Thus, in such
cases usability must not be represented by the sum of the contained candidates’
usability values but by their average value. In addition to this, criteria values can
be normalised using quantifiers (such as “1K EUR” for “in units of EUR 1.000”)
to enable more comfortable and intuitive handling. Figure 4.1 shows an example
for a category (criteria) listing.

ID Type Category Unit

1 Benefit Usability Pts.
2 Benefit Extensibility Pts.
3 Benefit Performance Pts.
4 Resource Duration of setup Hours
5 Resource Initial costs 1K EUR
6 Resource Maintenance costs 1K EUR

...

Table 4.1: Example for resource/benefit categories

7Ratings for abstract characteristics can be easily gathered by comparing the relevant char-
acteristic of all evaluation candidates [40]

4 Construction of the Software Selection Model 49

4.2.2 Consideration of Time Periods

The model is capable of considering given input parameters over multiple time
periods. This enables volatile objectives to be considered under variation in time.
Initial costs, for example, usually (but not always, cf. [20]) occur in the first period
only (which means that all other periods have a value of zero) while maintenance
costs usually occur continuously but might be subject to variations (as values
of periods differ). Static input parameters that do not change (e.g. usability)
constantly keep their value over all periods8. See table 4.2.

For time periods, an arbitrary (but constant) duration can be chosen. The
length of single periods should be chosen depending on the total time frame that
is subject to analysis in a way that there are not more than approximately 8
time periods. More time periods would increase evaluation computation expense
and complicate the whole evaluation process without yielding significant gains in
result quality. A period duration of one year is commonly used as 5 to 8 years
of analysis correlate with popular software maintenance and life-cycle intervals
(i.e. [54]). If a breakdown in time periods is not necessary, only one time period
will be processed and all input parameters will be treated as values of this single
period.

4.2.3 Collection of Candidate Data

Evaluation of candidates requires collecting all candidates’ data regarding all
the defined benefit and resource categories (see table 4.2). This data can be
acquired either based on facts or on estimations. While data regarding functional
criteria usually can be taken from software specifications and manuals, other
criteria can only be approximated. Estimation of criteria can be accomplished
with open discussions as well as structured decision-making methods such as
Delphi processes. Furthermore, approximative candidates data can be obtained
using the technique of pairwise comparison and value aggregation as suggested
by the AHP (see section 6.2 for an example).

Candidate data that has already been collected can be reused in subsequent
evaluations as log as candidates characteristics and categories subject to optimi-
sation do not change.

4.2.4 Definition of Restrictions

For each benefit and resource category, restrictions can be defined to limit each
portfolio’s total value in this category. Restrictions can be defined separately for
each time period. This is useful because resource consumption can be shaped to
fit availability while benefits can be required to meet minimum expectations. For
example, maxima for initial costs and maintenance costs as well as a minimum
of performance can be defined (see table 4.3). All portfolios that do not obey
restrictions in one or more time periods are dropped only preserving portfolios
that match all restrictions.

8In the implementation, this detail will be hidden to the user.

4 Construction of the Software Selection Model 50

Category Unit P1 P2 P3 P4

Candidate 1
1 Usability Pts. 8 8 8 8
2 Extensibility Pts. 6 6 6 6
3 Performance Pts. 6 6 6 6
4 Duration of setup Hours 90 0 0 0
5 Initial costs 1K EUR 36 0 0 0
6 Maintenance costs 1K EUR 5 3 2 2

...

Candidate 2
1 Usability Pts. 7 7 7 7
2 Extensibility Pts. 8 8 8 8
3 Performance Pts. 5 5 5 5
4 Duration of setup Hours 78 0 0 0
5 Initial costs 1K EUR 31 0 0 0
6 Maintenance costs 1K EUR 0 2 2 2

...

Table 4.2: Example for category data over four time periods

When limiting benefit categories, limits are treated as minima. This means
that each portfolio’s total value must be equal to or higher than a defined limit.
When limiting resource categories, limits are treated as maxima. This means
that each portfolio’s total value must be lower than or equal to a defined limit.

Category Unit P1 P2 P3 P4 Note
3 Performance Pts. 7 7 7 7 MIN, Static
4 Initial costs 1K EUR 40 0 0 0 MAX, first phase only
5 Maintenance costs 1K EUR 10 5 5 5 MAX, variable

Table 4.3: Example for category data over four time periods (for two candidates)

4.2.5 Definition of Dependencies

Inter-candidate dependencies are used to establish relationships among software
candidates. This is useful because many software products show (inclusion or
exclusion) dependencies to others. For example, nearly all applications need
an operating system (inclusion) while, in most cases, parallel utilisation of two
operating systems or even two office application suites (such as MS Office and
Open Office) is not intended (exclusion).

Dependencies are realised using four basic relationships of two different types,
inclusion dependencies and value-modifying dependencies (see below). This con-
cept has been chosen because it permits realisation of nearly all reasonable de-
pendencies by combining two or more basic relationships.

4 Construction of the Software Selection Model 51

• Inclusion/exclusion constraints define whether or not portfolios are
valid when containing specific combinations of candidates. This is realised
by dropping all portfolios containing combinations of candidates that do
not satisfy inclusion/exclusion constraints (see chapter 4.3).

– Inclusion
At least n candidates of a list have to be included in each portfolio.

– Exclusion
Not more than n candidates of a list can be included in each portfolio

• Value-modifying dependencies define positive or negative synergies be-
tween candidates in the same portfolio. If a portfolio contains certain pre-
defined combinations of candidates, a (positive or negative) sum x is added
to the portfolio’s total value of a specified category.

– AND (synergy)
If at least n candidates of a list are included, benefits or resources are
changed.

– OR (anti-synergy)
If not more than n candidates of a list are included, benefits or re-
sources are changed.

Because dependencies can be combined in various ways, and because an arbi-
trary number of dependencies can be defined, many restrictions can be expressed
using the four basic relations. Examples for application of these relations:

• Include at least n candidates from a list of x ≥ n candidates (inclusion).

• Include not more than n candidates from a list of x ≥ n candidates (exclu-
sion).

• Include exactly n candidates from a list of x ≥ n candidates (inclusion
combined with exclusion).

• Always include candidate A or candidate B or both (inclusion)

• Include candidate A or candidate B or none of them, but not both (exclu-
sion)

• Always include candidate A or candidate B, but not both (inclusion ∩
exclusion)

• If both candidate A and candidate B are included, value d is added to the
overall value of a specified category (AND).

• If at least n candidates from a list of x ≥ n candidates are included, value
d is added to the overall value of a specified category (AND).

• If not more than n candidates from a list of x ≥ n candidates are included,
value d is added to the overall value of a specified category (OR).

4 Construction of the Software Selection Model 52

• If exactly n candidates from a list of x ≥ n candidates are included, value
d is added to the overall value of a specified category (AND ∩ OR).

Another important dependency that is applied to portfolios automatically is the
constraint of all portfolios’ fully covering all business processes (see next section).
Those portfolios that do not cover the whole range of defined business processes
are dropped. This behaviour has been chosen intentionally as most organisations
strive to fully support their business processes with their software9.

4.2.6 Definition of Business Process Coverage

As mentioned previously, an important factor in software selection is each candi-
dates’ business processes coverage (“Which candidate covers which business pro-
cesses?”). This data is represented by straight binary n-to-n relations between
software products and business processes. This means that software products
can either support or not support business processes, but they cannot support a
process only “half” or “by 20 percent”. If a software product supports only part
of a single business process, this process must be split into smaller sub processes
that are either fully supported or not.

The design approach of supporting only full process coverages has been chosen
intentionally, as blurry information like “software A covers 60 percent of business
process X” cannot be seamlessly integrated into a logic model. The point is that,
based on the information that “two different software products each support
a common business by 60 percent”, the extent to which a business process is
effectively covered by both software products cannot be determined. If those two
software products covered supplementary aspects of the business process (which
of course is not possible with a total coverage of 120 percent), the process would
be fully covered. If the products both covered the same aspects of the business
process, exactly 60 percent of the process would just be “double-covered”.

Though this behaviour might, at the first moment, look like a conceptual lim-
itation, the model design permits evaluation of business process coverage with
nearly arbitrary granularity: The software candidates’ coverages can not only be
mapped to whole business processes but also to sub processes and single activi-
ties. Various processing units of different granularity can be mixed to represent
the system’s real requirements. Table 4.4 shows an example of a software-process
mapping (“1” means that a software supports a process, “-” means that it does
not). Unlike resource and benefit categories, software-process mappings cannot
be defined with per-period granularity, a single value per software product and
business process is used for the whole evaluation.

Software-process mappings (as well as software-activity mappings) can be rep-
resented by a binary M×N matrix where M is the number of software candidates
and N is the total of processes and activities that must be supported.

Because definition of software-process mapping data is highly explicit (due to
the binary nature of relationship) and because today many companies use business

9Under certain circumstances, it could appear useful to adapt this behaviour to return port-
folios that cover at least x percent of all business processes, or to return all portfolios and
include the number of covered processes as decision variable (category). This extension can
be implemented easily.

4 Construction of the Software Selection Model 53

Process 1 Activity 2.1 Activity 2.2 Process 3 Process 4

Software 1 1 1 - - -
Software 2 - - 1 1 -
Software 3 - - 1 1 1
Software 4 - - 1 - 1

Table 4.4: Example for a simple software-process mapping (matrix)

Figure 4.2: BPM Containing Software-Process Mappings

process modelling (BPM) software to model their business processes, it appears
efficient to directly import data regarding relations of software and processes from
BPM models. Figure 4.2 shows a BPM model representation of the mapping data
in table 4.4.

As this thesis emphasises the benefits of holistic IT management approaches,
the integration of business process management into decision support for software
selection is demonstrated by implementation of a specific BPM import routine.
This routine permits import of BPM models created with the commercial busi-
ness process modelling tool ADONIS10. For further details on the ADONIS data
import, see chapter 5.4.

4.3 Formalising the Model

In this section, the model will be formalised to permit a straight-forward imple-
mentation. Though the formal approach shows analogies to other multiobjective
portfolio approaches (such as the S/H approach), most model components have
been adapted and domain-specific concepts (such as business process coverage)
have been added to satisfy the requirements of software selection.

4.3.1 Creation of Portfolios

Creation of portfolios is performed automatically based on given input data.
Solution space is filled using complete enumeration: All CC−1 possible portfolios

10Version 3.81 of the ADONIS Geschäftsprozessmanagement Toolkit from BOC GmbH

4 Construction of the Software Selection Model 54

P containing between 1 and C software candidates c ∈ C are enumerated. For
each current portfolio p ∈ P , the indicator αp,c denotes whether the candidate is
included (αp,c = 1) or not (αp,c = 0). The number of candidates contained in a
certain portfolio can be determined by

|Cp| =
C∑

i=1

αp,ci
(i = 1, .., |C|) (4.1)

4.3.2 Time Periods

Because all portfolios must be evaluated in multiple time periods, all calculations
must be broken down and performed for multiple time intervals. A parameter t
is introduced that specifies the current of all T time periods. Every time period
is evaluated and treated separately.

4.3.3 Benefit/Resource Categories

Categories a ∈ A are divided into benefit categories B ⊂ A and resource cate-
gories R ⊂ A (with |B| + |R| = |A|). All candidates have specific values vc,t,a

for all categories and time periods t ∈ T . For every portfolio in a certain time
period, the total value over all included candidates for a specific category a is
called the portfolio’s category value up,t,a ∈ U for that category. Category values
are main objectives for all further evaluations of portfolios.

For a given category and time period, a portfolio’s total category value up,t,a is
calculated as follows:

up,t,a =
|C|∑
i=1

(αp,ci
vci,t,a) (i = 1, .., |C| ; t = 1, .., T) (4.2)

In analogy to this, a portfolio’s average category value up,t,a is calculated by:

up,t,a =

∑|C|
i=1(αp,ci

vci,t,a)

|Cp|
(i = 1, .., |C| ; t = 1, .., T) (4.3)

4.3.4 Dependencies

There are two different types of relationships among candidates:

4.3.4.1 Inclusion/Exclusion Constraints

Inter-candidate constraints k ∈ K are divided into inclusion constraints L ⊂ K
and exclusion constraints E ⊂ K (with |L|+|E| = |K|). Each of these constraints
consist of a list of n ≤ |C| candidates as well as a value that defines the minimum
(for inclusions) or maximum (for exclusions) of candidates on this list that must
be contained in a common portfolio to satisfy the constraint. Function f(p,k)

determines whether a portfolio p satisfies a constraint (f(p,k) = 1) or not (f(p,k) =
0).

4 Construction of the Software Selection Model 55

Portfolios are dropped if they either a) do not satisfy all inclusion constraints
or b) satisfy one or more exclusion constraints. This is determined for inclusion
and exclusion constraints separately:

Inclusion constraints:

f(p,k) = 1 ∀k ∈ L (4.4)

or

|L|∑
i=1

f(p,ki) = |L| (i = 1, .., |L| ; ki ∈ L) (4.5)

Exclusion constraints:

f(p,k) = 0 ∀k ∈ E (4.6)

or

|E|∑
i=1

f(p,ki) = 0 (i = 1, .., |E| ; ki ∈ E) (4.7)

As composition of portfolios does not change over time periods, these inclu-
sion/exclusion constraints are time-independent.

4.3.4.2 Value-Modifying Dependencies

Value-modifying dependencies o ∈ O are divided into AND and OR dependencies.
They are defined in analogy to inclusion/exclusion constraints: Each dependency
consists of a list of n ≤ |C| candidates as well as a value that defines the minimum
(for AND dependencies) or maximum (for OR dependencies) of candidates on
this list that must be in a common portfolio for the dependency to exist in this
portfolio. If a dependency exists within a portfolio, this dependency’s (positive
or negative) category value qt,o is added to the respective category value of this
portfolio for the current time period.

Function g(p,o) determines whether a dependency exists within a portfolio
(g(p,o) = 1) or not (g(p,o) = 0). The sum of dependency values q that are added
to a portfolio’s category value a in time period t can be calculated as

∆up,t,a(O)
=

|O|∑
i=1

g(p,oi)qt,o (i = 1, .., |O|) (4.8)

By that, a portfolio’s category value for a certain time period can be interpreted
as

up,t,a =
|C|∑
i=1

(αp,ci
vci,t,a) +

|O|∑
i=1

g(p,oi)qt,o (t = 1, .., T) (4.9)

4 Construction of the Software Selection Model 56

4.3.5 Benefit/Resource Restrictions

For all categories in all time periods, specific restrictions xt,a ∈ X can be defined
that limit the minimum (benefit category) or maximum (resource category) of
each of the portfolios’ category values in each time period. All Portfolios that do
not satisfy the following inequations are dropped.

Benefit restrictions:

up,t,a ≥ xt,a ∀t ∈ T (a ∈ A) (4.10)

Resource restrictions:

up,t,a ≤ xt,a ∀t ∈ T (a ∈ A) (4.11)

4.3.6 Business Process Coverage

The coverage of business processes by portfolios is realised in analogy to inclusion
constraints. For every business process s ∈ S, the function w(c,s) determines
whether a process is covered by a candidate (w(c,s) = 1) or not (w(c,s) = 0). By
that, a portfolio’s support for a specific process (i.e. the portfolio’s containing at
least one candidate which supports the process) can be determined by

w(p,s) = [OR]
|C(p)|
i=1 (w(ci,s)) (ci ∈ p; w(p,s) ∈ {0, 1}) (4.12)

The number of processes covered by a portfolio can be determined by

~w(p,S) = s ∈ S × [OR]
|C(p)|
i=1 (w(ci,s)) (ci ∈ p; w(p,S) ∈ {{0, 1}, {0, 1}, ...}) (4.13)

Because support of all business processes is a knock-out constraint in this
model, all portfolios are dropped that do not satisfy the following equation:

|S|∑
i=1

[OR]
|C(p)|
j=1 (w(cj ,si)) = |S| (ci ∈ p; si ∈ S) (4.14)

57

Chapter 5

Implementation

To test the software selection model created in the previous chapter, a decision
support system will be implemented that automates the search for efficient port-
folios. Because collection of decision situation data is a major step in solving
decision problems, user interface must be transparent and easy to use. Because
the application should be capable of solving many different (and partly quite
complex) types of software selection scenarios, calculation algorithms must be
designed with focus on efficiency, performance and - of course - coverage of all
the previously stated functional model requirements. To improve readability, the
application will from now on be referred to as “MultiSel”.

To permit system independent and simultaneous access to MultiSel, the concept
of a web application was chosen. All data is entered under use of web forms,
subsequent analysis is performed on the server itself. This design does not only
permit clients with little computation power to use the software efficiently but also
enables usage from remote locations. Thus, provided that the application server
itself bares sufficient computation power, even operation of a central evaluation
internet service appears possible.

Among the many possible development platforms enabling construction of in-
teractive web applications, Microsoft .NET Framework 2.0 has been chosen to
implement MultiSel. It permits a straight-forward implementation and allows
writing consistent, cohesive code that can be subsequently extended and adapted
to many other application scenarios.

ADONIS models have been chosen as source for component and business pro-
cess imports because ADONIS natively permits graphical modelling of workflows
(consisting of single business processes/activities) and - which is of most impor-
tance - mapping activities to available resources (like software components). In
addition to this, the used version of ADONIS allows export of models (diagrams)
as well-formed and valid XML files that can be easily parsed and imported into
the MultiSel database.

5.1 Data Model

Data model of MultiSel (shown in figure 5.1) has been kept as generic as possible
to allow for a later adaptation to changing requirements and reuse for selection
problems of other domains. Data tables used to store a-priori solution data which

5 Implementation 58

is supposed to be analysed are printed in blue, tables containing the output of
the decision situations’ evaluation runs (a-posteriori data) are printed in green.
Table 5.1 contains short descriptions of all data objects.

Figure 5.1: The complete MultiSel data model

5.2 Application Design

Beyond functionality, usability is an important quality factor for most types of
software. To leverage user acceptance and permit efficient and transparent col-
lection of input data, particular attention is paid to the graphical user interface
(GUI).

5.2.1 User Interface

The MultiSel application consists of three major interfaces which are employed
sequentially to perform an evaluation:

• A data input interface serves for entering solution data based on which an
evaluation can be performed.

• An evaluation component is used to perform evaluation of decision situation
input data and determine efficient portfolios.

• A graphical solution explorer application that permits finding optimal port-
folios by dynamical application of category limit restrictions.

5 Implementation 59

Object Description

BusinessProcess Business processes that candidates are mapped
to.

Candidate Canddiates that are to be evaluated within a
decision situation.

CandidateBusinessProcess N to N relation between candidates and their
covered business processes.

CandidateCategory N to N relation between candidates, categories
and period values. This table specifies the pe-
riod values for each candidate in each of the
decision situation’s categories.

Category All categories subject to analysis.
Constraint Inclusion/exclusion constraints among candi-

dates.
ConstraintCandidate N to N relation between constraints and candi-

dates.
DecisionSituation All decision situations.
PeriodValue Category values for all periods.
Relation AND/OR dependencies among candidates.
RelationCandidate N to N mapping between dependencies and can-

didates.
SOL Portfolio Efficient portfolios that have been determined.
SOL PortfolioCandidate N to N relation between portfolios and all con-

tained candidates.
SOL PortfolioCategory N to N relation between portfolios and their re-

spective candidates.

Table 5.1: Objects in the MultiSel Data Model

5 Implementation 60

5.2.1.1 Data Input Interface

Solution data is entered in five steps. In the Sessions mask, a new decision
situation can be created. A name for the decision situation as well as the required
number of periods can be specified (see figure C.1).

In the Categories mask, the objectives that candidates are evaluated by can
be defined. Together with a description, the categories’ types (benefit or resource)
as well as their unit and multiplier can be defined here. Additionally, for each
category a flag can be set that defines whether or not the category should be
optimised (see appendix C, figure C.2).

In the Components mask, candidates that are primary subject to evaluation
can be defined. For all components, a description and their period values for all
categories can be entered. This data is very central because it determines how
much benefits a component yields and how much resources its usage requires.
Components can be either entered manually or imported from an ADONIS busi-
ness process model (see appendix C, figure C.3).

In the Constraints/Relations mask, inclusion/exclusion constraints and
AND/OR dependencies are defined. Upper/lower limits for all resource/bene-
fit categories can be defined for each single period (see appendix C, figure C.4).

In the Business Processes mask, business processes and the mapping of all
candidates to one or more business processes can be defined. Business processes
and the mapping of candidates to business processes can be either defined manu-
ally or imported from an ADONIS business process model (see appendix C, figure
C.5).

5.2.1.2 Evaluation Component

The MultiSel evaluation component, which is built in analogy to [59], is engaged
using the Evaluation mask (see appendix C, figure C.6). It performs the actual
data analysis and writes back all solution data into the MultiSel database.

The connection to the INNOV library is realised using ASCII text files. When
an evaluation is started, decision situation data from database is aggregated and
written to an ASCII text file in a proprietary format1. After this, the INNOV
library is invoked to process the given input file. It generates an output file
containing all found solutions (efficient portfolios of candidates) which is read
back into the database.

5.2.2 Limitations of Implementation

As the current implementation of the MODS software selection model mainly
serves as a proof of concept, certain limitations of functionality have been applied.
Due to restrictions of the INNOV library and the interface between this library
and the MultiSel data environment, MultiSel supports a maximum of 5 periods
and a maximum of 32 candidates. For information on additional functionality
that could be integrated into both the model and the MultiSel application, refer
to section 8 (Directions for Further Research).

1See the INNOV library documentation for more information [3].

5 Implementation 61

5.3 Stummer’s INNOV Library

The INNOV library was developed in course of Stummer’s writings of his dis-
sertation in 1997. Stummer successfully created a multiobjective Pareto model
that permits selection of non-dominated R&D projects. The INNOV library
was created to solve the problem of enumerating and finding all non-dominated
portfolios. Because the problem of finding efficient project investment strategies
strongly adheres to the problem of finding efficient software portfolios, this library
is well-suited for an adaptation to the model of software selection constructed in
this thesis.

Because the library was written in C++, it’s execution performance is consid-
erably better than that of higher-level languages such as Java or .NET: Up to 230

different portfolios can be analysed within feasible time on a standard worksta-
tion, meaning that a total of 30 candidates can be analysed using today’s standard
hardware. The INNOV library uses ASCII files for data input and output. It is
called as a Shell application with command line parameters and does not include
a graphical interface. The INNOV library’s proprietary input data format had to
be extended in order to allow for consideration of business processes and mod-
elling of the mapping of candidates and business processes. For more information
on the INNOV library, see the INNOV library documentation [3].

5.3.1 Extension of Input Data Format

The INNOV input data format had to be extended due to the reasons mentioned
previously. Listing 5.1 shows a snippet of sample input data2 that has been
enriched with additional symbols to store business processes and candidate to
business process mappings. A new data row type was introduced (see table 5.1,
lines 5 and 53) that denotes which business processes are covered by the current
candidate. The line consists of separated binary digits d that have a value of
d(i) = 1 if the current candidate covers the business process on position i (from
a total of I business processes) or d(i) = 0 if the candidate does not.

32 1 Component 1 # Name
33 4 # Lau f z e i t von Prj 1
34 0 1 0 0 1 0 # NEW: COMPONENT MAPPING OF BUSINESS PROCESSES
35 100 200 300 400 0 # Nutzenkat . 1
36 0 0 0 0 0 # minimum N1
37 0 0 0 0 0 # maximum N1
38 1 2 3 4 0 # Nutzenkat . 2
39 0 0 0 0 0 # minimum N2
40 0 0 0 0 0 # maximum N2
41 150 300 400 500 0 # Ressourcenk . 1
42 0 0 0 0 0 # minimum N1
43 0 0 0 0 0 # maximum N1
44 1 1 1 1 0 # Ressourcenk . 2
45 0 0 0 0 0 # minimum N2
46 0 0 0 0 0 # maximum N2
47 2 2 2 2 0 # Ressourcenk . 3
48 0 0 0 0 0 # minimum N3
49 0 0 0 0 0 # maximum N3

2Taken from the INNOV documentation [3].

5 Implementation 62

50 2 Component 2 # Name
51 5 # Lau f z e i t von Prj 2
52 1 0 0 1 1 0 # NEW: COMPONENT MAPPING OF BUSINESS PROCESSES
53 100 200 300 400 500 # Nutzenkat . 1
54 0 0 0 0 0 # minimum N1
55 0 0 0 0 0 # maximum N1
56 1 2 3 4 5 # Nutzenkat . 2
57 0 0 0 0 0 # minimum N2
58 0 0 0 0 0 # maximum N2
59 150 300 400 500 400 # Ressourcenk . 1
60 0 0 0 0 0 # minimum N1
61 0 0 0 0 0 # maximum N1
62 9 8 7 6 5 # Ressourcenk . 2
63 0 0 0 0 0 # minimum N2
64 0 0 0 0 0 # maximum N2
65 2 1 2 1 2 # Ressourcenk . 3
66 0 0 0 0 0 # minimum N3
67 0 0 0 0 0 # maximum N3

Listing 5.1: Extended INNOV Input Data: Business Processes

In addition to this, the input file header has been adapted to contain the total
number of business processes (see listing 5.2, line 2).

1 MULITSEL − Example F i l e
2 4 3 4 5 6 # Number o f : candid . / ben . cat . / r e s . cat . /
3 # per i od s / BPs .

Listing 5.2: Extended INNOV Input Data: Header

For more information regarding the INNOV library input data format, see the
INNOV library documentation [3].

5.3.2 Extension of Output Data Format

INNOV output data has been extended to contain the number of business pro-
cesses involved. An example for extended output data is shown in table 5.3.

1 MULTISEL ASCII−OUT
2 Nb cdi : 4 # number o f cand idate s
3 Nb res : 4 # number or r e s . cat .
4 Nb prof : 3 # number o f ben . cat .
5 Nb per : 5 # number o f pe r i od s
6 Nb bp : 6 # NEW: number o f BPs
7 Nb so l s : 6 # number o f s o l u t i o n s (p o r t f o l i o s)
8 14 # number o f e f f i c i e n t p o r t f o l i o
9 Prof0 310 620 930 850 630 # p o r t f o l i o data . . .

10 Prof1 14 28 42 55 26
11 Prof2 13 25 35 47 7
12 Res0 465 930 1240 1350 1260
13 Res1 47 47 55 52 54
14 Res2 17 14 21 22 26
15 Res3 28 29 30 35 40
16 13 # number o f e f f i c i e n t p o r t f o l i o
17 Prof0 310 620 930 850 130 # p o r t f o l i o data . . .
18 Prof1 3 6 9 12 10
19 Prof2 13 24 35 46 6
20 Res0 465 930 1240 1350 860

5 Implementation 63

21 Res1 24 25 35 36 36
22 Res2 17 16 18 19 19
23 Res3 30 30 30 30 20

Listing 5.3: Extended INNOV Output Data (Partial)

5.4 Import of ADONIS Models

Business process modelling tools such as ADONIS enable companies to model
(and by that standardise) their workflows, business processes and activities. Be-
cause collection of information regarding type and characteristic of a company’s
business processes very often implies the use of BPM tools, an import of this
model data into MultiSel appears both reasonable and efficient.

Figure 5.2: ANDONIS Business Process Model

If such models do not only contain information about processes but also about
related resources such as required software, this information can be used not only
to define processes but also to specify relevant business processes and mappings.

Figure 5.2 shows the business process model presented in the previous section.
Using the ADONIS XML Export function, this model can be exported as XML file
(see listing 5.4). ADONIS XML files can be imported easily because data consists
of only three different entity classes: Activities as well as resources are represented
by INSTANCE elements, references are represented by CONNECTOR elements.

1 <?xml version=” 1 .0 ” encoding=” i so −8859−1”?>
2 < !DOCTYPE ADOXML SYSTEM ”adoxml31 . dtd”>
3 <ADOXML version=” 3 .1 ” adovers ion=”Vers ion 3 .81 ”>
4 <MODELS>
5 <MODEL>
6 <MODELATTRIBUTES>
7 < !−− At t r i b u t e s −−>
8 </MODELATTRIBUTES>
9 <INSTANCE id=”obj . 11 ” c l a s s=” Akt i v i t ä t ” name=”BProcess 1”>

10 < !−− At t r i b u t e s −−>
11 </INSTANCE>
12 <INSTANCE id=”obj . 13 ” c l a s s=”Ressource ” name=”Component A”>
13 < !−− At t r i b u t e s −−>

5 Implementation 64

14 </INSTANCE>
15 <CONNECTOR id=”con .21 ” c l a s s=”verwendet ”>
16 <FROM ins tance=”BProcess 1” c l a s s=” Akt i v i t ä t ”></FROM>
17 <TO ins tance=”Component A” c l a s s=”Ressource ”></TO>
18 < !−− At t r i b u t e s −−>
19 </CONNECTOR>
20 </MODEL>
21 </MODELS>
22 </ADOXML>

Listing 5.4: ADONIS XML File (Partial)

By that, candidates, business processes (activities) as well as the mapping be-
tween them can be imported into the MultiSel model with only a few clicks.
During import, objects (candidates and business processes) that already exist in
the model (using their description as differentiation criteria) are not overwritten.
This allows to update the MultiSel model with newer BPM versions without loss
of any changes that have been made to the model (as long as objects just keep
their original description).

ADONIS does not allow multiple objects with the same name, every object’s
name has to be unique. As extensive models for reasons of understandability
and clarity often require the use of more than one instance of certain objects
(which, in our specific case, are software components), a method had to be found
that allows the use of multiple instances of the same software in business process
models and a subsequent recognition and association of equivalent objects during
the MultiSel import.

Figure 5.3: Naming of Multiple Software Instances in Common BPMs

This is accomplished by permitting a standardised naming suffix to be used
in ADONIS models which is recognised and removed at import time. Figure
5.3 shows a simple business process model which includes two instances of the
software Component A. Both instances are named using the object’s original name
(“Component A”) followed by a unique integer index enclosed in square brackets

5 Implementation 65

(“[1]”, “[2]”). As soon as the model is imported into MultiSel, all instances of
Component A are merged to a single component named Component A and all
relations of the two instances to activities are remapped to this component.

The chosen model of searching for portfolios that cover all business processes
does not permit business processes to not depend on any components (they would
be considered “uncovered” for all portfolios, so no valid portfolios could be found
at all). Thus, business processes that do not require any software support must
be associated to a dummy component. For this dummy component, a new com-
ponent can be added that does not have any category values (always zero) and
is not included in any constraints or dependencies. Note that this component
must have the word “dummy” in its description as it has to be recognised by the
software to be excluded from average calculations. When calculating category
averages, a category value of zero would diminish the calculated average.

66

Chapter 6

Comparative Case Study

Functionality and result quality of new methods must be measured in order to
obtain an idea of how good they really are. For algorithms that predict real-world
results under use of a model, testing can be done by using real or semi-real1 input
data and comparing results to those of other, related algorithms. In this chapter,
capabilities of MultiSel will be compared to those of two other software selection
approaches.

Because the Analytical Hierarchic Process is frequently used in various selec-
tion scenarios, and because it has been applied to the domain of software selection
very often in the past, it was chosen as the first approach to be compared to the
new MODS model. Because even today, many organisations still perform soft-
ware selection using aged cost-benefit calculation techniques, a weighted scoring
method as described in section 3.3.3.1 was chosen as the second approach the
model will be compared with.

6.1 Input Decision Situation

As mentioned in previous chapters, quality of results yielded by decision-
supporting algorithms substantially depends on quality of applied input parame-
ters. As these parameters can be subject to notable variance, decision situations
that aim at testing and/or comparing algorithms should not only provide balanced
overall input parameters but also cover as many special cases as possible [12]. As
fictive input data can be tuned to cover big ranges of possible variations, perfor-
mance of all methods can be tested under optimal evaluation conditions. Thus,
decision situation that algorithms are applied to will be derived from a real de-
cision situation, but input parameters will be adapted to reflect a wider range of
characteristics.

6.1.1 Base Characteristics

A big health insurance company is looking for a way to leverage efficiency of
processing incoming requests for reimbursement of medical costs. Therefore, a
business process model is generated that defines the whole internal workflow from

1Input parameters are taken from a real-world decision situation but adapted manually to
emphasise specific characteristics.

6 Comparative Case Study 67

reception of a request over request approval until informing respective applicants
(see figure 6.1). A list of all activities is depicted in table 6.1.

Nearly all activities involved in request processing require permanent support
of underlying IT infrastructure. Thus, software selection has to be performed
with a main focus on functional activity coverage.

NR Description

1 Register Request
2 Check request for eligibility
3 Return request to applicant
4 Scan request
5 Check for identical request
6 Open request
7 Open document
8 Edit document
9 Mark for approval
10 Open marked request documents
11 Edit request
12 Approve request
13 Check correctness
14 Inform applicant

Table 6.1: Activities Performed in Request Processing

6.1.2 Evaluation Criteria

The criteria set that serves as main measurement objective will be collected using
the adapted OTSO method introduced in section 4.2.1). This implies that the
company’s global and specific business strategies have to be expressed as con-
straints and parameters of the model’s four main selection factors (organisational
requirements, application requirements, project plan and design specification).

In the following section, constraints and preconditions of each sector will be
analysed and used to derive adequate selection criteria. Note that many general
criteria that lead to a sudden exclusion of a candidate (such as “Software must
run under Microsoft Windows”) are not mentioned explicitly as this thesis focuses
on the challenge of combining and comparing non-binary characteristics to find
optimal solutions. For each category, attributes “Scale-Min.” and “Scale-Max.”
define the minimum and maximum value of the applied scale per candidate (not
per portfolio).

6.1.2.1 Application Requirements

A big part of requirements for a software landscape are derived from application
requirements. These requirements not only include coverage of relevant business
processes but also general characteristics such as specific behavioural, functional
and non-functional constraints.

6 Comparative Case Study 68

Figure 6.1: BPM: Processing of Incoming Requests

6 Comparative Case Study 69

While most requirements regarding functionality usually can be expressed by
mapping of activities (or business processes) to candidates, some (such as us-
ability, performance or fault tolerance) cannot. By that, beyond the mapping
of business processes and candidates, an optimisation of candidates’ usability
and fault tolerance is required. Both characteristics will be measured on a scale
analogue to that previously defined for the criterion access control.

Description Unit Scale-Min Scale-Max

BP Coverage No. of BPs 0 -
Usability Pts. 0 10
Fault Tolerance Pts. 0 10

Table 6.2: Criteria Set Derived from Application Requirements

6.1.2.2 Design Specification

Because all server-side applications are virtualised, hardware consumption of ser-
vices can be measured by counting the average number of CPUs a service requires
to function properly. This information can be obtained either through manufac-
turers’ specifications or by performing preliminary system test.

Reusability is an important criterion for establishing an efficient software land-
scape. While, for example, web services usually are highly reusable, reusability
of proprietary client-side applications significantly varies and thus must be deter-
mined on a per-case basis.

While hardware consumption can be measured in a real value (CPUs), a mea-
surement scale for reusability must defined manually.

Description Unit Scale-Min Scale-Max

H/W Consumption CPUs 0 -
Reusability Pts. 0 10

Table 6.3: Criteria Set Derived from Design Requirements

6.1.2.3 Project Requirements

The basic conditions that guide acquisition of new IT infrastructure can be treated
as a project. For the software selection process that leads to establishment of
a new, more efficient request processing workflow, maxima for multiple factors
are defined. Expenses such as initial costs, duration of implementation, human
resources involved or subsequent (maintenance) costs are restricted and their
occurrence should be minimised.

System maintenance is performed in bi-monthly intervals that the new soft-
ware’s maintenance intervals should correspond to as far as possible. Thereby,
maintenance intervals of multiples of two months are feasible as well (because in
this case maintenance can be performed just e.g. every second time). Thus, a
scale is defined that defines the degree of the candidates’ maintenance interval

6 Comparative Case Study 70

lengths’ deviations from a bi-monthly interval, where 0 means “no deviation” and
30 means “30 days deviation”. This criterion, of course, has to be minimised.

In addition to this, criteria of initial costs (in 1.000 EUR), maintenance costs
(in 1.000 EUR p.a.) and setup duration (in working days) are defined.

Description Unit Scale-Min Scale-Max

Initial Costs 1.000 EUR 0 -
Maintenance Costs 1.000 EUR 0 -
Setup Duration Working Days 0 -

Table 6.4: Criteria Set Derived from Project Plan

6.1.2.4 Organisational Requirements

As a big national carrier of health insurance contracts, corporate policy requires
all employed software to enforce specific minimum levels of audit trail and access
control. Capability of software candidates regarding these requirements varies
as certain software candidates have (partly extensive) built-in logging and access
restriction mechanisms while others must be extended before meeting minimum
requirements. To allow for the measurement of each of the candidate’s specific
functionalities in this context, specific scales with a measurement unit of points
are defined for the combined requirement of access control. The scale for this
requirement ranges from 0 points (no audit trail, no ACLs) to 10 (all transactions
are logged and can be rolled back, repeated and traced to all involved human and
infrastructural sources, all accesses are controlled via ACL).

Because processing requests and applications are integral components of core
business, and because delays due to hardware or software malfunctions are consid-
ered unacceptable, reliability (stability) is a main criterion that will be considered
in analogy to requirements of audit trail and access control.

Description Unit Scale-Min Scale-Max

Access Control Pts. 0 10
Reliability Pts. 0 10

Table 6.5: Criteria Set Derived from Organisational Requirements

6.1.2.5 Final Criteria Set

The aggregation of the four main factors’ criteria set leads to definition of an
overall criteria set (see table 6.6). For some categories, hard limits for portfolios’
maximum total value have been defined. Depending on whether the portfolios’
category values should be maximised or minimised, the category type benefit or
resource is assigned. Moreover, all categories must be declared to be analysed per
portfolio regarding total value or average value of all contained components. If
requirements are redefined during further evaluation, criteria set can be adapted
at any time to optimally fit the company’s needs.

6 Comparative Case Study 71

Short Description Unit Limit Type Analysis

AC Access Control Pts. - Benefit Average
BC BP Coverage No. of BPs - Benefit Total
FT Fault Tolerance Pts. - Benefit Average
HW H/W Consumption CPUs - Resource Total
IC Initial Costs 1.000 EUR ≤ 140 Resource Total
MC Maintenance Costs 1.000 EUR ≤ 20 Resource Total
RL Reliability Pts. - Benefit Average
RU Reusability Pts. - Benefit Average
SD Setup Duration Working Days ≤ 135 Resource Total
US Usability Pts. - Benefit Average

Table 6.6: Final Set of Selection Criteria

6.1.3 Software Candidates

Prior to evaluating candidates using structured approaches, an initial set of fea-
sible evaluation candidates must be defined. This is usually done by performing
a rough selection of potential candidates and comparing their main characteris-
tics to the decision situation’s base line parameters (i.e. knock-out criteria) such
as required operating system, approximate available monetary or time-related
resources, application domain etc.

The business process model shown in figure 6.1 requires the following business
software components for all its processes to be covered:

• Document Management System (DMS)

• Paper Digitising/Scanning Application

• Data Access Component

• Accounting

• Archiving

The number of candidates to include in individual evaluation strongly depends
on several factors including application domain and availability of suited software.
Including too many candidates can render evaluation process very complex and
significantly increase calculation time of automatic decision support algorithms
(such as MultiSel). Including too few candidates can lead to a small solution
space resulting in too few, presumably sub-optimal solutions. According to these
preconditions and the requirements of the business process model, feasible com-
ponents have been chosen (see table 6.7).

Depending on the number of applied categories, time periods and business
processes, MultiSel is capable of evaluating up to 30 candidates per decision
situation. Thus, a balance between all determining variables has to be found. The
current decision situation (which includes 9 categories plus business coverage, 3
periods, 14 business processes and 18 software candidates) can be solved on an
average workstation in less than 10 seconds.

6 Comparative Case Study 72

Name Functionality Description

Component A Paper Digitising Existing scan software
Component B Data Access Component WS to existing system
Component C Data Access Component WS to existing system
Component D Paper Digitising COTS for scanning
Component E Paper Digitising Additional module to D
Component G Paper Digitising Individual software
Component H Paper Digitising Individual software
Component I Accounting SAP module for accounting
Component J Accounting Additional module to I
Component K DMS COTS
Component L DMS COTS
Component N DMS Individual software
Component P DMS Additional module to K
Component R DMS COTS
Component S DMS WS to existing module
Component T Accounting External commercial WS
Component Y Archiving Archiving system COTS
Component Z Archiving Archiving system COTS

Table 6.7: Software Components Subject to Evaluation

To visualise both functionality and business process coverage of each candidate,
process model is updated to include component/activity mappings (see figure
A.1 in appendix A). Note that, by design, the MultiSel implementation requires
every single business process and activity to be covered by at least one software
component. Thus, as some activities do not require any software support, a
dummy component is introduced which is mapped to all the business processes
that do not require software support.

Candidates are usually rated based on data taken from specifications, empirical
evaluations or estimations. To allow for a comparison of the results of different
software selection methodologies, equal input data must be used. Therefore, all
candidates will be assigned a-priori ratings for each of their category objectives.
These ratings will serve as data basis for all further rating, weighting and ranking.

Depending on whether category values can be measured in “real units” (e.g.
monetary units, time units or measurable resource consumption) or not, different
methods will be used for value definition. If a category can be measured with
a discrete number that relates to a real unit, candidates will be assigned their
absolute value for this category. Otherwise, if a category is made up of intangible
assets such as usability, an abstract scale of points that ranges from 0 to 10 will
be applied for measuring. See appendix A for the complete set of all candidate
characteristics values.

6.1.4 Constraints

The decision situation requires several constraints to be defined:

• Component A, the existing scan software, cannot be used together with the

6 Comparative Case Study 73

potential new scan software, component D.

• The two DMS applications component K and component L cannot be used
together.

• Component E is an extension module required by component D. While
component E cannot be used without this extension, the extension itself
(component D) can be used without component E.

• Component J is a plug-in for component I and cannot be used without it.

• Component P is an important extension for component K. While using
component P without component K is not possible, using component K
without component P yields a reduction of usability by 45 points.

• Initial costs must be equal or less than 140.000.

• Maintenance costs must be equal or less than 20.000 per year.

• Setup must be completed within a maximum of 135 days.

6.2 Analytic Hierarchic Process

The AHP requires all decision criteria to be ordered in a hierarchy. Figure 6.2
shows a hierarchic representation of the selection criteria collected in section
6.1.2. All objectives have been assigned indices (such as “L2.1” for “Functional
Criteria”) to facilitate legibility and quotability during subsequent processing.

Figure 6.2: AHP Selection Criteria Hierarchy

6 Comparative Case Study 74

6.2.1 Preconditions

When using the AHP, definition of parameters and weighting of objectives is
usually performed by groups of multiple stakeholders. As simple discussion of
objectives and finding arithmetic averages of user ratings is no relevant component
of this thesis, group decision process will be treated as a “black box” delivering
definite, discrete numeric values for all required parametrisations.

The comparison of criteria of different types, as pointed out in previous chap-
ters, introduces the problem of having to express preference to one objective over
another, which in certain cases can be a highly subjective decision. Because the
generic AHP does not include functionality for mapping candidates to require-
ments (in our case, components to business processes), business process coverage
is included as an objective of its own. It reflects the percentage of business pro-
cesses covered by a single component.

The AHP technique currently applied does not support consideration of mul-
tiple periods, though evaluations could be performed for each period separately.
In the following evaluations, this issue will be bypassed by calculation of pe-
riod averages for all categories that have no constant value over all time periods.
Another major drawback of the AHP is the inability of specifying the compo-
nents’ respective functionality. This can be misleading as soon as two candidates
subject to comparison belong to different application classes, because absolute
values such as costs cannot be matched correctly. When, for example, costs of
a “bigger” DMS are compared to a “smaller” web service extension, the latter
candidate appears to be more cost efficient though it only offers a small part of
the first candidate’s functionality. A possible approach of mitigating this fact
consists in adding the number of each candidates’ supported business processes
as an independent decision objective. Furthermore, after all candidates have been
evaluated, a ranking is expected to exist that shows the potential overall value
of all candidates but does not imply software combinations suited for achieving
optimal business process coverage. Thus, a primitive knapsack algorithm will be
conducted manually to find feasible combinations of candidates.

6.2.2 Calculating Objective Weights

In the first step, the AHP requires comparison of all objectives that are on a
common hierarchy level and have a common parent objective. Objectives are
compared to each other by pairwise comparison where preferences are expressed
numerically using a scale from 9 (“much more important”) to 1 (“of equal im-
portance”). Two compared objectives are always assigned reciprocal values, this
means that if objective A is rated with 3, the rating for candidate B is implied as
1
3

(see table 6.8). After this, eigenvalues are calculated and the overall objective
weight (column “Total”) is derived from the average of its row sum (see table
6.9).

This process is repeated for all objectives until each of them is assigned a total
weight. Table 6.10 displays the total objective weights of the third level.

6 Comparative Case Study 75

L2.1 L2.2 L2.3 L2.4

L2.1 1,00 2,00 0,50 2,00
L2.2 0,50 1,00 2,00 3,00
L2.3 2,00 0,50 1,00 2,00
L2.4 0,50 0,33 0,50 1,00
SUM 4,00 3,83 4,00 8,00

Table 6.8: Comparison of Level 2 Objectives

L2.1 L2.2 L2.3 L2.4 Total

L2.1 0,25 0,52 0,13 0,25 0,29
L2.2 0,13 0,26 0,50 0,38 0,32
L2.3 0,50 0,13 0,25 0,25 0,28
L2.4 0,13 0,09 0,13 0,13 0,12

Table 6.9: Eigenvalues of Level 2 Objectives

6.2.3 Ranking Candidates

The next step appears problematic to perform, as the AHP requires all candidates
to be compared to each other in respect to each of the lowest-level (L3) objec-
tives. Thus, a total of 18 components must be juxtaposed and compared to each
other which makes 182−18

2
comparisons. This process must be performed for 10

objectives resulting in a total of 10182−18
2

= 1530 single comparisons. Candidate
ratings for each objective are presented in table 6.11, for details on comparison
data, see appendix B.

To calculate overall ratings for candidates, all of the candidates’ L3 objective
values must be correlated (multiplied) with all of their parent objectives up to
the root node and summed up (see equations 6.1 to 6.3).

Total(c,L3.1) = Rating(c,L3.1)Rating(L3.1)Rating(L2.1)Rating(L1.1) (6.1)

Total(c) =
3;10∑

x=3;y=1

Rating(c,Lx.y)Rating(L(x−1).(y−1))...Rating(L1.1) (6.2)

Total(cA,L3.1) = 0.07 ∗ 0.14 ∗ 0.29 = 0.02842 (6.3)

L3.1 L3.2 L3.3 L3.4 L3.5 L3.6 L3.7 L3.8 L3.9 L3.10

VAL 0,14 0,24 0,62 0,67 0,33 0,23 0,54 0,16 0,25 0,75

Table 6.10: Total Weights of Level 3 Objectives

6 Comparative Case Study 76

L3.1 L3.2 L3.3 L3.4 L3.5 L3.6 L3.7 L3.8 L3.9 L3.10

A 3.00 0.67 1.97 0.38 1.03 3.44 3.52 3.15 2.83 2.93
B 1.51 1.26 0.32 2.07 2.96 1.85 1.28 0.71 3.84 5.33
C 3.00 0.67 0.32 2.33 1.84 1.84 2.44 0.16 3.84 3.85
D 1.51 1.67 1.97 2.07 1.84 2.19 2.44 2.85 4.63 2.93
E 0.72 0.32 0.32 0.18 0.24 3.78 4.44 3.52 1.11 2.49
G 0.72 1.26 3.96 1.21 3.33 3.07 3.52 3.15 2.83 3.85
H 0.30 1.67 0.32 2.33 1.84 1.84 2.44 2.53 2.83 2.93
I 0.30 1.26 3.96 2.33 3.33 1.70 4.44 3.89 6.22 1.71
J 2.41 1.67 1.97 2.33 4.56 3.44 4.67 4.22 0.28 0.31
K 0.72 2.67 3.96 1.21 1.84 0.65 0.96 1.42 3.84 4.93
L 1.51 0.32 3.96 0.71 0.24 2.19 2.44 2.53 1.11 2.93
N 1.51 2.67 5.22 3.22 3.33 1.28 1.28 2.48 5.22 2.93
P 2.41 1.67 1.97 2.33 3.33 3.44 4.67 4.22 1.86 0.31
R 1.51 1.26 5.22 1.21 0.55 2.19 0.55 3.52 0.28 4.93
S 2.41 2.67 1.97 2.33 1.84 3.44 4.67 4.44 0.28 0.31
T 4.67 2.67 1.97 2.33 1.03 3.44 4.67 4.22 1.11 0.31
Y 1.51 1.26 5.22 2.07 1.84 1.28 1.81 1.97 2.83 3.85
Z 2.41 2.67 5.22 2.33 2.96 0.16 0.16 0.71 5.22 5.33

Table 6.11: Ratings of Candidates for Level 3 Objectives

6.2.4 Composing a Portfolio

Final results of AHP evaluation are shown in table 6.12, candidates are ordered by
descending overall value. As mentioned before, this list visualises all candidates’
overall rankings but does not point out reasonable combinations of candidates.
Thus, a primitive knapsack-like algorithm is applied2: Starting on top of the list
in table 6.12, each candidate is tested regarding its business process coverage
and its compatibility to all constraints defined in section 6.1.4. If inclusion of a
component violates any constraints, it is omitted. Otherwise, if the number of
business processes newly covered by the component is higher than the number of
business processes it double-covers3, it is included.

Starting out from the first candidate, component N, we examine the candidate
list. Candidate N has the highest ranking and covers four uncovered business
processes, thus it is included in the portfolio. The next candidate, candidate I,
covers one business process that is already covered and two that are not. It is
included. Two of the four business processes covered by component Z are already
covered by other components. Thus, it is not included in the portfolio. Candi-
date J covers two business processes and can only be included in the portfolio if
candidate I is present too. As candidate I is already included in the portfolio,
candidate J can be included either. Candidate G covers three business processes
and thus is included. Now, only one business process is left to be covered, this
can be done by either using component B or H. Because component B is ranked

2Of course, this algorithm could be optimised in many ways. It was kept simple intentionally
as the AHP itself is primary subject of this evaluation.

3Covering a business process that is already covered by a previously evaluated component

6 Comparative Case Study 77

higher than component H, component B is included in the portfolio.

Rating Relevance for Portfolio

N 0.0760 Included
I 0.0682 Included
Z 0.0662 Omitted (double-coverages)
J 0.0642 Included
G 0.0629 Included
P 0.0622 Omitted (double-coverages)
T 0.0617 Omitted (double-coverages)
S 0.0594 Omitted (double-coverages)
Y 0.0585 Omitted (double-coverages)
D 0.0525 Omitted (double-coverages)
K 0.0522 Omitted (double-coverages)
B 0.0481 Included
H 0.0480 Not tested (portfolio already complete)
R 0.0476 Not tested (portfolio already complete)
L 0.0471 Not tested (portfolio already complete)
C 0.0471 Not tested (portfolio already complete)
A 0.0431 Not tested (portfolio already complete)
E 0.0343 Not tested (portfolio already complete)

Table 6.12: Overall Candidate Ratings, Selected Candidates

Now the portfolio is complete as all business processes are covered. Table 6.13
lists the portfolio’s category values as well as the category limits defined in section
6.1.2.5. As we can see, the portfolio obeys all limits thus being a valid solution. If
one or more of the portfolio’s category values had exceeded the previously defined
limits, the process of portfolio composition would have been repeated selecting
other candidates until a valid solution had been found.

AC FT HW IC MC RL RU SD US

B 7 7 7 28 6 7 6 70 6
G 6 8 5 15 2 7 5 20 5
I 8 8 2 35 1 7 9 10 4
J 8 9 1 5 0 8 2 5 7
N 9 8 4 45 6 9 8 35 6
Total 7.6 8 19 128 15 7.6 6 140 5.6
Limit - - - 140 20 - - 135 -

Table 6.13: Components in the Resulting Portfolio

Of course, there are many more approaches for combining candidates and com-
posing portfolios. While some of them might involve methodological adaptations
(such as circumventing the issue of portfolios not regarding category limits by
checking the portfolio category totals before adding a new component), others
might stress more traditional “trial-and-error” techniques.

6 Comparative Case Study 78

As there is a large number of possible solutions for this problem, finding an
“ideal” portfolio can require significant efforts. As pointed out earlier, searching
for an optimal solution by generation of various portfolios basing on the AHP
output data lies beyond the scope of this thesis, as the result of the AHP it-
self and not the subsequent AHP portfolio composition algorithm is subject to
examination.

6.3 Weighted Scoring Method

Weighted scoring methods essentially attempt to determine total weights for all
candidates subject to evaluation by aggregating all of their objectives in a sin-
gle total candidate weight [18]. This requires an explicit, declarative a-priori
weighting of all the candidates objectives (cf. [38]).

6.3.1 Preconditions

To permit an aggregation of multiple objectives (categories), category values have
to be balanced. This means that, for objective weighting to be effective and for
the final output to be significant, all values must be in a common scope. When, for
example, aggregating initial costs and usability, directly weighting both objectives
is not effective as the range of initial costs usually exceeds the range of usability
(which, in our decision situation, is limited to a maximum of 10) by far. Therefore,
all objective values are normalised to fit in an integer scale ranging from 0 to 10.
This is done using the equation shown in figure 6.4.

BalancedV alue(a) =
ScaleMax = 10

MAXA
i=1(OriginalV alue(i))

OriginalV alue(a) (6.4)

Moreover, as weighted scoring methods - in analogy to the AHP - do not
produce whole software portfolios but only candidate rankings, the knapsack al-
gorithm previously used in section 6.2.4 will be applied for portfolio composition.

6.3.2 Ranking Candidates

Weighted scoring method requires weights to be assigned to all categories (see
table 6.14). By that, candidates’ category values can be aggregated and summed
up to a total weight for each candidate.

After category values have been normalised they can be aggregated. This is
done by multiplying each of the candidates’ category values with the correspond-
ing category weight and summing up all of these weighted category values for
each candidate (see figure 6.5).

TotalWeight(c) =
A∑

i=1

Rating(i)Weight(c,i) (6.5)

The final ranking of all candidates regarding their total weights is shown in
table 6.15. It is notable that 100% of all candidates lie in 20% of the scale

6 Comparative Case Study 79

Short Description Unit Weight

AC Access Control Pts. 8%
BC BP Coverage No. of BPs 13%
FT Fault Tolerance Pts. 11%
HW H/W Consumption CPUs 8%
IC Initial Costs 1.000 EUR 10%
MC Maintenance Costs 1.000 EUR 13%
RL Reliability Pts. 11%
RU Reusability Pts. 11%
SD Setup Duration Working Days 7%
US Usability Pts. 8%
Total 100%

Table 6.14: Category Weights

AC BP FT HW IC MC RL RU SD US Total

P 0.64 0.26 0.88 0.08 0.94 1.30 0.88 0.44 0.66 0.56 6.64
J 0.64 0.26 0.99 0.08 0.94 1.30 0.88 0.22 0.66 0.56 6.53
I 0.64 0.39 0.88 0.16 0.59 1.17 0.77 0.99 0.61 0.32 6.52
T 0.64 0.26 0.55 0.08 0.92 1.30 0.99 0.33 0.66 0.72 6.45
S 0.64 0.26 0.66 0.08 0.95 1.30 0.99 0.22 0.67 0.56 6.33
G 0.48 0.39 0.88 0.40 0.82 1.04 0.77 0.55 0.53 0.40 6.26
D 0.56 0.26 0.66 0.32 0.71 1.13 0.88 0.77 0.48 0.48 6.25
N 0.72 0.52 0.88 0.32 0.47 0.52 0.99 0.88 0.39 0.48 6.17
A 0.32 0.26 0.55 0.32 0.88 1.04 0.66 0.55 0.53 0.64 5.75
H 0.64 0.13 0.66 0.32 0.65 0.78 0.88 0.55 0.44 0.32 5.37
Y 0.56 0.52 0.66 0.40 0.47 0.65 0.77 0.55 0.31 0.48 5.37
C 0.64 0.13 0.66 0.40 0.65 0.78 0.66 0.66 0.00 0.64 5.22
B 0.56 0.13 0.77 0.56 0.67 0.52 0.77 0.66 0.09 0.48 5.21
Z 0.64 0.52 0.77 0.56 0.00 0.13 0.99 0.88 0.09 0.56 5.14
E 0.24 0.13 0.33 0.24 0.98 1.17 0.55 0.33 0.57 0.40 4.94
R 0.48 0.52 0.44 0.48 0.71 0.26 0.77 0.22 0.57 0.48 4.93
K 0.48 0.39 0.66 0.48 0.18 0.39 0.99 0.66 0.18 0.40 4.81
L 0.40 0.39 0.33 0.32 0.71 0.78 0.55 0.33 0.44 0.48 4.73

Table 6.15: Category and Total Weights of All Candidate

6 Comparative Case Study 80

applied, namely between 4.65 and 6.65 on a scale that ranges from 0 to 10. Due
to this, candidate ranking is very narrow and overall result is of low significance.
This might occur because - disregarding category weighting which only has a
certain influence on overall outcome - candidates’ category sums are quite similar.
Obviously, candidates yield too few difference for this approach to return a valid
result.

6.3.3 Composing a Portfolio

Though validity of the obtained result appears doubtful, a software portfolio will
be composed using the knapsack algorithm known from AHP post processing.
Again, we start with the component of highest rank. Component P can only be
included in a portfolio if K is too. As K is one of the lowest ranked components,
P is omitted. Components J and I are included (J depends on I and I can
be included too), T are omitted as its business process coverage is adequate to
that of J. Component S is omitted too because it does not cover any uncovered
processes, component G is included. Component D does not cover any new
business processes and is omitted, component N is included, A is omitted and H
is included. The final solution depicted in table 6.16 contains a valid portfolio.

AC FT HW IC MC RL RU SD US

G 6 8 5 15 2 7 5 20 5
H 8 6 4 30 4 8 5 30 4
I 8 8 2 35 1 7 9 10 4
J 8 9 1 5 0 8 2 5 7
N 9 8 4 45 6 9 8 35 6
Total 7.8 7.8 16 130 13 7.8 5.8 100 5.2
Limit - - - 140 20 - - 135 -

Table 6.16: Components of Resulting Portfolio

6.4 Multiobjective Portfolio Approach

In analogy to the concept outlined in chapter 4, all required decision situation
data is collected and entered into the multiobjective portfolio decision support
application (in our case, the MultiSel implementation). This process is described
in the following sections.

Data collection and input can be performed straight forward. Categories are
entered together with their respective limits as defined in section 6.1.2.5. Compo-
nents and business processes together with their mappings are imported from an
ADONIS model. Thus, only required effort consists of entering candidate cate-
gory values into the respective GUI and and defining constraints. For all phases of
data collection, screen shots of the MultiSel GUI showing the respective decision
situation data can be found in appendix C.

6 Comparative Case Study 81

6.4.1 Collection of Candidate Data

Category values of all candidates are obtained through research where possible.
While hard fact such as costs or setup duration can be collected from manufac-
turer specifications easily, other facts such as the candidate’s usability must be
tested and estimated as outlined in section 4.2.3.

Because MultiSel permits definition of scales with arbitrary precision, and be-
cause all candidates’ characteristics regarding the defined evaluation categories
have been collected in a previous step (see appendix A), candidate data can be di-
rectly adopted and entered into the application. The scale that candidate values
currently are applied to ranges from 0 to 10. To allow for a more precise calcula-
tion, all category values on this scale (values for absolute categories such as costs
will not be changed) will be modified and represented on a scale that ranges from
0 to 100. This is accomplished by simple multiplication of all candidate category
values by 10.

6.4.2 Modelling Constraints

All constraints defined in section 6.1.4 are categorised and modelled using one or
more of the basic dependencies and relations introduced in section 4.2. Our first
constraint, for example, states that candidate A cannot be used together with
candidate D. Therefore, an exclusion constraint must be defined that limits all
portfolios to include either candidate A or candidate D, but not both of them.
Table 6.17 shows how this constraint is formulated.

Type Description Count Components

Exclusion Constraint Components A and D not together 1 A, D

Table 6.17: Constraint Example

As another example, candidate J cannot be included without candidate I as it
strongly depends on it. Though, candidate I can be used without candidate J.
A constraint must be defined that drops all portfolios which contain candidate J
but not candidate I. As, in its current maturity stage, MultiSel does not natively
permit formulation of “x not without y” constraints, this constraint must be
implemented using a workaround: At first, an AND relation is defined which, for
all portfolios that include component J, significantly increases a specific category
value for a certain time period resulting in the respective portfolios’ being dropped
(due to the category value’s exceeding a limit defined for this specific category
and period). Then, another AND relation is defined that becomes active when
a portfolio contains both candidates I and J decreasing the previously increased
category value to normal.

Type Description Count Components Category Mod.

AND Relation I requires J (1) 1 J Initial Cost +100
AND Relation I requires J (2) 2 I,J Initial Cost −100

Table 6.18: Relation Example

6 Comparative Case Study 82

This simple trick results in the following evaluation behaviour: If candidate J
is contained in a portfolio, one of the portfolio’s category values increases over
the category maximum which, at the end of this portfolio’s evaluation, leads to
the portfolio being dropped. Only if this portfolio also contains component I,
both components are present which results in a reduction of the category’s value
to normal thus preventing it from being dropped. Table 6.18 shows how these
relations are implemented. Appendix C shows a screen shot of the application
where all constraints have been defined.

6.4.3 Evaluation

After all data has been entered into MultiSel and automatic evaluation has been
performed, all feasible non-dominated solutions (software portfolios) are stored
in the MultiSel database. In total, evaluation of this decision situation yields 51
efficient candidate combinations that satisfy all constraints. This solution data
is analysed in analogy to [59] with a MODS analysis tool that was originally
implemented for breakdown of R&D project portfolios.

Using this tool, category limits will be refined until just a small number of
portfolios is left that fit the corporate needs best. Figure 6.3 shows the main
screen of the analysis tool. By moving the red upper and lower rulers, category
values can be limited reducing the number of possible solutions. Categories that
keep their value constant over all periods (such as access control) can be limited
by only limiting values of the first period as all portfolios that do not satisfy this
limitations are dropped and there is no point in limiting each of this category’s
time periods. For categories that have values changing over time, limits can
be adjusted for each time period to reflect specific requirements. In our case,
narrowing down of results is performed as follows:

• At first, the limit for hardware consumption is set to a maximum of 20
CPUs which reduces the number of portfolios to 41 (see figure 6.4).

• After this, the minimum requirement for access control is set to 65 points
(see figure 6.5).

• Then, maximum setup duration is set to 120 days (see figure 6.6).

• For usability, a minimum of 60 points is defined (see figure 6.7).

• Finally, portfolios are limited to have a minimal reusability of 45 points (see
figure 6.8).

After the last limit has been defined, only 6 portfolios are left. Note that
now, because the number of remaining portfolios has dropped below 10, each
portfolio is represented by a separate bar. This renders final portfolio selection
more transparent and gives an impression of each single portfolio’s approximate
characteristics. Now, when comparing portfolios regarding reusability (figure 6.8)
as well as all other categories (displayed in figure 6.9), the third portfolio from the
left (portfolio number 3) appears to be a good choice as it yields many benefits
at relatively low costs.

6 Comparative Case Study 83

Figure 6.3: Main Screen of Analysis Tool

Figure 6.4: Restriction of Maximum Hardware Consumption

Figure 6.5: Restriction of Minimum Access Control

6 Comparative Case Study 84

Figure 6.6: m
mRestriction of Maximum Setup Duration

Figure 6.7: Restriction of Minimum Usability

Figure 6.8: Restriction of Minimum Reusability

6 Comparative Case Study 85

Of all remaining portfolios, portfolios number 3 exposes the highest values for
access control, reliability and fault tolerance as well as the lowest initial costs,
setup duration and hardware consumption. Its usability is quite high, and main-
tenance costs are the lowest of all portfolios during the first time period. De-
pending on whether or not this portfolio’s poor reusability appears feasible, it
can either be selected as final choice or evaluation can be continued by picking
other portfolios and/or (re)defining additional category limits.

Because in this situation, the resulting reusability of around 4.6 points still
appears high enough to provide sustainability of investments, portfolio number 3
will be adopted. Table 6.19 shows the portfolio’s exact values.

As the MODS approach only yields solutions that satisfy all of the constraints
and relations defined, it is evident that this portfolio is both efficient within
solution space and valid as solution of this decision situation.

Figure 6.9: Category Values of Remaining Portfolios

AC FT HW IC MC RL RU SD US

G 6 8 5 15 2 7 5 20 5
H 8 6 4 30 4 8 5 30 4
N 9 8 4 45 6 9 8 35 6
S 8 6 0 4 0 9 2 4 7
T 8 5 0 7 0 9 3 5 9
Total 7.8 6.6 15 101 12 8.4 4.6 94 6.2
Limit - - - 140 20 - - 135 -

Table 6.19: Components of Resulting Portfolio

6.5 Comparison of Results

When comparing results of algorithms which employ very different techniques to
come to solutions of types that strongly differ from each other, it can be very
difficult to make assertions regarding relative solution quality.

In this case study, two decision support methods that are commonly used for
selecting single software components (AHP, WSM) have been compared to a
newer approach that focuses on selection of whole sets of software component
portfolios (MODS).

6 Comparative Case Study 86

6.5.1 Significance

Though both AHP and WSM focus on finding one-dimensional ratings of com-
ponents using relative weights (such as their value, quality or performance), an
attempt was made to use these algorithms for composition of portfolios. To
accomplish this, an additional algorithm had to be applied to the algorithms’
outputs.

There is a nearly unlimited range of methods that can be applied to form
portfolios out of ranked candidate lists, and developing an optimal algorithm to
perform this task surely is subject to extensive evaluation and research. Thus, the
portfolio forming algorithm used in this case study was kept simple to put focus
on the respective base algorithms’ output rather than the portfolio forming add-
on algorithm. To preserve transparency and comparability, identical portfolio
forming algorithms were applied to both AHP and WSM.

It is evident that even small behavioural changes in the applied portfolio form-
ing algorithm could have resulted in completely different portfolios. Therefore,
it is important to recall that solutions of AHP and WSM are exemplary for how
portfolios can be derived using these methods, but they give no general indication
on the relative quality of possible results.

6.5.2 Analysis of Results

Table 6.20 shows category totals of resulting portfolios, best values in each cat-
egory are printed in bold. Due to organisations’ individual demands regarding
software portfolio characteristics it cannot be clearly determined which of the
portfolios performs “best”. Nevertheless it is not only evident that the solution
generated with the MODS method appears absolutely feasible, but also that,
if decision makers had aimed for a portfolio with different characteristics, the
MODS method would have enabled them to efficiently explore solution space and
find appropriate portfolios with little effort.

AC FT HW IC MC RL RU SD US

AHP 7.6 8.0 19 128 15 7.6 6.0 140 5.6
WSM 7.8 7.8 16 130 13 7.8 5.8 100 5.2
MODS 7.8 6.6 15 101 12 8.4 4.6 94 6.2
Limit - - - 140 20 - - 135 -

Table 6.20: Results of Tested Software Selection Methods

For selection of single software components, WSM seems least-suited as in our
case its results lack statistic significance. For finding software portfolios, the
MODS approach appears very reasonable because from all solutions theoretically
possible it preserves those that are acceptable within defined parameters and
allows a transparent and straight-forward evaluation.

Because the MultiSel application returns all efficient (non-dominated) port-
folios satisfying all constraints, it can be inductively stated that an arbitrary
portfolio P is efficient if (and only if) it is an element of the MultiSel solution
space. On the other hand, if portfolio P is no element of the MultiSel solution

6 Comparative Case Study 87

space, it can be extrapolated that this portfolio has been dropped because either
a) it is not dominated by at least one other portfolio or b) it does not satisfy all
decision situation constraints.

The portfolio constructed with WSM is contained in the MultiSel solution
space, which implies that the portfolio is Pareto efficient. The AHP portfolio,
however, is not contained in the MultiSel solution space. As this portfolio was
composed out of the AHP ranking manually respecting all constraints and inter-
candidate dependencies, we can conclude that this portfolio has been dropped
by MultiSel because it is not efficient. This does not necessarily mean that the
AHP portfolio is dominated by the MODS solution portfolio. Much more, this
means that the AHP portfolio is dominated by any of the portfolios in the MODS
solution space.

The reason why the WSM returned an efficient solution while the AHP did
not cannot be clearly isolated. But, due to the fact that none of these two
algorithms considers the aspect of Pareto efficiency in any way, it appears to be
sole coincidence driven by the algorithms’ capability of finding adequate candidate
rankings.

6.5.3 Method Characteristics and Behaviour

An important aspect that must be considered when comparing approaches is
the way that solutions are achieved. For example, unlike the MODS approach,
WSM and AHP require a-priori definition of all input parameters not permitting
a-posteriori redefinition of preferences.

It is obvious that many advantages of the MODS approach in this context
result from its portfolio-awareness. AHP and WSM for example cannot handle
constraints and relations because such constructs just are not applicable within
their models: The two methods do not aim at combining candidates and, by that,
experience no need to consider total category sums or inter-candidate dependen-
cies. Table 6.21 contains a summary of relevant aspects of software portfolio
composition and information on how they are taken into account by each of the
three selection approaches.

While AHP and WSM require the formulation of preferences as discrete val-
ues prior to evaluating candidates, the MODS approach permits a dynamic a-
posteriori induction of preferences. Because the effect of changes in preference
are visible in real-time, users can approximate to optimal solutions easily and
in little time. In difference to AHP and WSM, MODS does not need direct
comparison of category values of unequal types. By that, no bias is induced
and evaluation process is kept transparent and simple. MODS rigorously elimi-
nates dominated (non-efficient) solutions. This causes a significant reduction of
the number of possible solutions. Though AHP and WSM natively do neither
support candidate portfolios nor the paradigm of Pareto dominance, candidate
efficiency is implicitly respected: Single candidates that are dominated by others
have a lower over-all value and thus are ranked worse than their (more) efficient
pendants.

Because AHP and WSM do not support candidate portfolios, their models can-
not include inter-candidate dependencies or total value constraints. Thus, these

6 Comparative Case Study 88

Aspect WSM AHP MODS

Definition of
preferences

A-priori only, no a-posteriori definition
of preferences possible.

A-priori definition
of candidate char-
acteristics and op-
tional constraints,
all further refine-
ment is done a-
posteriori.

Treatment of
categories

Linear weighting of
categories.

Hierarchic weight-
ing of all categories.

No weighting of
categories, step-
wise a-posteriori
exploration of
solution space.

Elimination
of dominated
solutions

By ranking By ranking Yes

Consideration
of inter-
candidate
dependencies

N/A N/A Yes

Consideration
of value con-
straints

N/A N/A Yes

Consideration
of BP cover-
age

No No Yes

Construction
of portfolios

No construction of portfolios, evalua-
tion of single candidates only.

Construction of
portfolios only, no
ranking of single
candidates.

Table 6.21: Aspects of Software Portfolio Selection and Coverage

6 Comparative Case Study 89

restrictions must be considered when manually constructing a portfolio based on
the respective algorithm’s candidate ranking. Due to its specialisation on software
evaluation, the MODS model developed in course of this thesis includes software-
specific concepts such as mapping candidates to business processes, which of
course neither AHP nor WSM can offer.

90

Chapter 7

Conclusions

For today’s companies, employing (and prior to this, choosing) appropriate soft-
ware is an important success factor. Though there are many popular IT man-
agement and IT business alignment approaches, hardly any of them emphasises
the use of specific methods to perform selection of software components. Because
IT management is striving to continuously monitor and improve organisational
IT landscape, evaluation of software portfolio performance should be performed
on a regular basis. This appears impossible for many companies as they have
not established standardised, well-defined processes for software evaluation yet.
Currently, several approaches are used for evaluation of business applications.
Though methods such as the AHP permit structured definition of preferences
and analysis of single software candidates, their efficiency ceases as today’s busi-
ness often requires multiple software components that show a high coupling. By
that, methodologies that consider multiple candidates under respect of their mu-
tual dependencies are demanded.

The MODS approach appears well-suited for both pre-investment decision sup-
port and evaluation of present organisational software portfolios as it yields sev-
eral important advantages over conventional decision support techniques. Be-
cause it requires no a-priori weighting of objectives, decision development pro-
cess is highly transparent and result is very low biased as preferences are induced
after portfolios have been constructed. By matching characteristics of whole sets
of candidates with corporate strategy, holistic IT management approaches are
endorsed while efficiency and sustainability of investments are optimised.

The MODS implementation MultiSel developed in course of this thesis has
proven that multiobjective analysis permits a transparent and efficient selection
of software portfolios. Though the MultiSel implementation mainly serves as
proof of concept, the case study conducted proves that it is capable of providing
solutions for small and medium scale business process scenarios.

91

Chapter 8

Directions for Further Research

As application of multiobjective methods to software portfolio decision problems
is a relatively new approach, both model and implementation should be subject
to further research.

8.1 Software Selection Model

Though the model put up in this thesis emphasises the use of an adapted OTSO
method for collection of candidate characteristics, a more structured and more
formal approach could increase transparency and reusability of candidate category
data. For example, techniques such as the AHP’s comparison matrix method that
derives candidate category ratings from n : n comparisons of all candidates appear
suited for improving the quality of a-priori candidate category values.

The current MODS model uses 1 : n relations for mapping business processes
to software candidates which means that of the n candidates that support a
single business process, at least one must be selected for the business process
to be considered covered. This results in the model not natively respecting the
constellation of one business process requiring coverage by e.g. two different
classes of software components and, in the current model, is mitigated by splitting
up business processes until every sub process is coverable with a single software
candidate. Thus, a reasonable extension of the model would consist in integrating
consideration of multiple types of software candidates required to cover a single
business process. In addition to this, portfolios’ degree of business process support
could be included in calculations as a variable. This would allow limiting the
degree of business process coverage to a required minimum (less than the current
100 percent).

For combining candidates’ category values to calculate portfolio totals, cur-
rently the aggregate functions SUM (e.g. portfolio initial costs = sum of all
candidates’ initial costs) and AVERAGE (e.g. portfolio reusability = average of
all candidates’ reusability) are implemented. To consider characteristics such as
setup duration, which could - when setting up components simultaneously - be
measured as the maximum setup duration of a single component within a port-
folio (critical path), the use of further aggregate functions (e.g. MAX for setup
duration) could be integrated.

Finally, the general model of multiobjective-driven decision support for portfo-

8 Directions for Further Research 92

lio selection is capable of analysing decision situations in many further IT-related
domains. The model could, for example, easily be adapted for application to
hardware infrastructure optimisation, ASP service selection or various business
process optimisations.

8.2 Implementation

An important and critical aspect of all portfolio models requiring enumeration
of the whole solution space is performance. Though the current implementation
performs well within the parameters given in the case study’s decision situation,
more complex parameter sets with higher numbers of objects (such as candidates,
categories, periods, business processes etc.) can boost computation effort to an
extent that renders the whole decision situation “unsolvable”. Thus, not only
application of high-performance implementation techniques but also introduction
of heuristic algorithms (such as proposed in [28] or [15]) are major requirements
for construction of larger-scale MODS systems.

To facilitate reuse of collected candidate data and by that permit regular eval-
uations of companies’ software portfolios, implementation of system to save, load
an manage base data of previously analysed candidates appears necessary.

93

Appendix A

Candidate Characteristics

AC FT HW IC MC RL RU SD US

Component A 4 5 4 10 2 6 5 20 8
Component B 7 7 7 28 6 7 6 70 6
Component C 8 6 5 30 4 6 6 80 8
Component D 7 6 4 25 4 8 7 25 6
Component E 3 3 3 2 1 5 3 15 5
Component G 6 8 5 15 2 7 5 20 5
Component H 8 6 4 30 4 8 5 30 4
Component I 8 8 2 35 1 7 9 10 4
Component J 8 9 1 5 0 8 2 5 7
Component K 6 6 6 70 7 9 6 60 5
Component L 5 3 4 25 4 5 3 30 6
Component N 9 8 4 45 6 9 8 35 6
Component P 8 8 1 5 0 8 4 5 7
Component R 6 4 6 25 8 7 2 15 6
Component S 8 6 0 4 0 9 2 4 7
Component T 8 5 1 7 0 9 3 5 9
Component Y 7 6 5 45 5 7 5 45 6
Component Z 8 7 7 85 9 9 8 70 7

Table A.1: Component Characteristics, Period 1

A Candidate Characteristics 94

Figure A.1: BPM Including Candidate-Mappings

A Candidate Characteristics 95

AC FT HW IC MC RL RU SD US

Component A 4 5 4 0 2 6 5 0 8
Component B 7 7 7 0 6 7 6 0 6
Component C 8 6 5 0 4 6 6 0 8
Component D 7 6 4 0 0 8 7 0 6
Component E 3 3 3 0 1 5 3 0 5
Component G 6 8 5 0 2 7 5 0 5
Component H 8 6 4 0 4 8 5 0 4
Component I 8 8 2 0 1 7 9 0 4
Component J 8 9 0 0 0 8 2 0 7
Component K 6 6 6 0 7 9 6 0 5
Component L 5 3 4 0 4 5 3 0 6
Component N 9 8 4 0 6 9 8 0 6
Component P 8 8 1 0 0 8 4 0 7
Component R 6 4 6 0 8 7 2 0 6
Component S 8 6 0 0 0 9 2 0 7
Component T 8 5 1 0 0 9 3 0 9
Component Y 7 6 5 0 5 7 5 0 6
Component Z 8 7 7 0 9 9 8 0 7

Table A.2: Component Characteristics, Period 2

AC FT HW IC MC RL RU SD US

Component A 4 5 4 0 2 6 5 0 8
Component B 7 7 7 0 6 7 6 0 6
Component C 8 6 5 0 4 6 6 0 8
Component D 7 6 4 0 0 8 7 0 6
Component E 3 3 3 0 1 5 3 0 5
Component G 6 8 5 0 2 7 5 0 5
Component H 8 6 4 0 4 8 5 0 4
Component I 8 8 2 0 1 7 9 0 4
Component J 8 9 0 0 0 8 2 0 7
Component K 6 6 6 0 7 9 6 0 5
Component L 5 3 4 0 4 5 3 0 6
Component N 9 8 4 0 6 9 8 0 6
Component P 8 8 1 0 0 8 4 0 7
Component R 6 4 6 0 8 7 2 0 6
Component S 8 6 0 0 0 9 2 0 7
Component T 8 5 1 0 0 9 3 0 9
Component Y 7 6 5 0 5 7 5 0 6
Component Z 8 7 7 0 9 9 8 0 7

Table A.3: Component Characteristics, Period 3

96

Appendix B

AHP Comparison Matrices

L2.1 - L2.4
L2.1 L2.2 L2.3 L2.4

L2.1 1 2 1
2

2
L2.2 1

2
1 2 3

L2.3 2 1
2

1 2
L2.4 1

2
1
3

1
2

1

Table B.1: AHP Comparison Matrix, Level 2.1 - 2.4

L3.1 - L3.3
L3.1 L3.2 L3.3

L3.1 1 1
2

1
4

L3.2 2 1 1
3

L3.3 4 3 1

Table B.2: AHP Comparison Matrix, Level 3.1 - 3.3

L3.4 - L3.5
L3.4 L3.5

L3.4 1 2
L3.5 1

2
1

Table B.3: AHP Comparison Matrix, Level 3.4 - 3.5

B AHP Comparison Matrices 97

L3.6 - L3.8
L3.6 L3.7 L3.8

L3.6 1 1
2

2
L3.7 2 1 3
L3.8 1

2
1
3

1

Table B.4: AHP Comparison Matrix, Level 3.6 - 3.8

L3.9 - L3.10
L3.9 L3.10

L3.9 1 1
3

L3.10 3 1

Table B.5: AHP Comparison Matrix, Level 3.9 - 3.10

L3.1 (Usability)
A B C D E G H I J K L N P R S T Y Z

A 1 3 1 3 5 5 7 7 1 5 3 3 1 3 1 1 3 1
B 1

3
1 1

3
1 3 3 5 5 1

3
3 1 1 1

3
1 1

3
1
5

1 1
3

C 1 3 1 3 5 5 7 7 1 5 3 3 1 3 1 1 3 1
D 1

3
1 1

3
1 3 3 5 5 1

3
3 1 1 1

3
1 1

3
1
5

1 1
3

E 1
5

1
3

1
5

1
3

1 1 3 3 1
3

1 1
3

1
3

1
3

1
3

1
3

1
7

1
3

1
3

G 1
5

1
3

1
5

1
3

1 1 3 3 1
3

1 1
3

1
3

1
3

1
3

1
3

1
7

1
3

1
3

H 1
7

1
5

1
7

1
5

1
3

1
3

1 1 1
5

1
3

1
5

1
5

1
5

1
5

1
5

1
9

1
5

1
5

I 1
7

1
5

1
7

1
5

1
3

1
3

1 1 1
5

1
3

1
5

1
5

1
5

1
5

1
5

1
9

1
5

1
5

J 1 3 1 3 3 3 5 5 1 3 3 3 1 3 1 1
3

3 1
K 1

5
1
3

1
5

1
3

1 1 3 3 1
3

1 1
3

1
3

1
3

1
3

1
3

1
7

1
3

1
3

L 1
3

1 1
3

1 3 3 5 5 1
3

3 1 1 1
3

1 1
3

1
5

1 1
3

N 1
3

1 1
3

1 3 3 5 5 1
3

3 1 1 1
3

1 1
3

1
5

1 1
3

P 1 3 1 3 3 3 5 5 1 3 3 3 1 3 1 1
3

3 1
R 1

3
1 1

3
1 3 3 5 5 1

3
3 1 1 1

3
1 1

3
1
5

1 1
3

S 1 3 1 3 3 3 5 5 1 3 3 3 1 3 1 1
3

3 1
T 1 5 1 5 7 7 9 9 3 7 5 5 3 5 3 1 5 3
Y 1

3
1 1

3
1 3 3 5 5 1

3
3 1 1 1

3
1 1

3
1
5

1 1
3

Z 1 3 1 3 3 3 5 5 1 3 3 3 1 3 1 1
3

3 1

Table B.6: AHP Comparison Matrix, Level 3.1

B AHP Comparison Matrices 98

L3.2 (Reliability)
A B C D E G H I J K L N P R S T Y Z

A 1 1
3

1 1
5

3 1
3

1
5

1
3

1
5

1
7

3 1
7

1
5

1
3

1
7

1
7

1
3

1
7

B 3 1 3 1
3

5 1 1
3

1 1
3

1
3

5 1
3

1
3

1 1
3

1
3

1 1
3

C 1 1
3

1 1
5

3 1
3

1
5

1
3

1
5

1
7

3 1
7

1
5

1
3

1
7

1
7

1
3

1
7

D 5 3 5 1 7 3 1 3 1 1
3

7 1
3

1 3 1
3

1
3

3 1
3

E 1
3

1
5

1
3

1
7

1 1
5

1
7

1
5

1
7

1
9

1 1
9

1
7

1
5

1
9

1
9

1
5

1
9

G 3 1 3 1
3

5 1 1
3

1 1
3

1
3

5 1
3

1
3

1 1
3

1
3

1 1
3

H 5 3 5 1 7 3 1 3 1 1
3

7 1
3

1 3 1
3

1
3

3 1
3

I 3 1 3 1
3

5 1 1
3

1 1
3

1
3

5 1
3

1
3

1 1
3

1
3

1 1
3

J 5 3 5 1 7 3 1 3 1 1
3

7 1
3

1 3 1
3

1
3

3 1
3

K 7 3 7 3 9 3 3 3 3 1 9 1 3 3 1 1 3 1
L 1

3
1
5

1
3

1
7

1 1
5

1
7

1
5

1
7

1
9

1 1
9

1
7

1
5

1
9

1
9

1
5

1
9

N 7 3 7 3 9 3 3 3 3 1 9 1 3 3 1 1 3 1
P 5 3 5 1 7 3 1 3 1 1

3
7 1

3
1 3 1

3
1
3

3 1
3

R 3 1 3 1
3

5 1 1
3

1 1
3

1
3

5 1
3

1
3

1 1
3

1
3

1 1
3

S 7 3 7 3 9 3 3 3 3 1 9 1 3 3 1 1 3 1
T 7 3 7 3 9 3 3 3 3 1 9 1 3 3 1 1 3 1
Y 3 1 3 1

3
5 1 1

3
1 1

3
1
3

5 1
3

1
3

1 1
3

1
3

1 1
3

Z 7 3 7 3 9 3 3 3 3 1 9 1 3 3 1 1 3 1

Table B.7: AHP Comparison Matrix, Level 3.2

L3.3 (BP Coverage)
A B C D E G H I J K L N P R S T Y Z

A 1 3 3 1 3 1
3

3 1
3

1 1
3

1
3

1
3

1 1
3

1 1 1
3

1
3

B 1
3

1 1 1
3

1 1
7

1 1
7

1
3

1
7

1
7

1
9

1
3

1
9

1
3

1
3

1
9

1
9

C 1
3

1 1 1
3

1 1
7

1 1
7

1
3

1
7

1
7

1
9

1
3

1
9

1
3

1
3

1
9

1
9

D 1 3 3 1 3 1
3

3 1
3

1 1
3

1
3

1
3

1 1
3

1 1 1
3

1
3

E 1
3

1 1 1
3

1 1
7

1 1
7

1
3

1
7

1
7

1
9

1
3

1
9

1
3

1
3

1
9

1
9

G 3 7 7 3 7 1 7 1 3 1 1 1 3 1 3 3 1 1
H 1

3
1 1 1

3
1 1

7
1 1

7
1
3

1
7

1
7

1
9

1
3

1
9

1
3

1
3

1
9

1
9

I 3 7 7 3 7 1 7 1 3 1 1 1 3 1 3 3 1 1
J 1 3 3 1 3 1

3
3 1

3
1 1

3
1
3

1
3

1 1
3

1 1 1
3

1
3

K 3 7 7 3 7 1 7 1 3 1 1 1 3 1 3 3 1 1
L 3 7 7 3 7 1 7 1 3 1 1 1 3 1 3 3 1 1
N 3 9 9 3 9 1 9 1 3 1 1 1 3 1 3 3 1 1
P 1 3 3 1 3 1

3
3 1

3
1 1

3
1
3

1
3

1 1
3

1 1 1
3

1
3

R 3 9 9 3 9 1 9 1 3 1 1 1 3 1 3 3 1 1
S 1 3 3 1 3 1

3
3 1

3
1 1

3
1
3

1
3

1 1
3

1 1 1
3

1
3

T 1 3 3 1 3 1
3

3 1
3

1 1
3

1
3

1
3

1 1
3

1 1 1
3

1
3

Y 3 9 9 3 9 1 9 1 3 1 1 1 3 1 3 3 1 1
Z 3 9 9 3 9 1 9 1 3 1 1 1 3 1 3 3 1 1

Table B.8: AHP Comparison Matrix, Level 3.3

B AHP Comparison Matrices 99

L3.4 (Access Control)
A B C D E G H I J K L N P R S T Y Z

A 1 1
5

1
5

1
5

3 1
3

1
5

1
5

1
5

1
3

1
3

1
7

1
5

1
3

1
5

1
5

1
5

1
5

B 5 1 1 1 7 1 1 1 1 1 3 1
3

1 1 1 1 1 1
C 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
D 5 1 1 1 7 1 1 1 1 1 3 1

3
1 1 1 1 1 1

E 1
3

1
7

1
7

1
7

1 1
5

1
7

1
7

1
7

1
5

1
3

1
9

1
7

1
5

1
7

1
7

1
7

1
7

G 3 1 1
3

1 5 1 1
3

1
3

1
3

1 1 1
3

1
3

1 1
3

1
3

1 1
3

H 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
I 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
J 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
K 3 1 1

3
1 5 1 1

3
1
3

1
3

1 1 1
3

1
3

1 1
3

1
3

1 1
3

L 3 1
3

1
3

1
3

3 1 1
3

1
3

1
3

1 1 1
5

1
3

1 1
3

1
3

1
3

1
3

N 7 3 1 3 9 3 1 1 1 3 5 1 1 3 1 1 3 1
P 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
R 3 1 1

3
1 5 1 1

3
1
3

1
3

1 1 1
3

1
3

1 1
3

1
3

1 1
3

S 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
T 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1
Y 5 1 1 1 7 1 1 1 1 1 3 1

3
1 1 1 1 1 1

Z 5 1 1 1 7 3 1 1 1 3 3 1 1 3 1 1 1 1

Table B.9: AHP Comparison Matrix, Level 3.4

L3.5 (Fault Tolerance)
A B C D E G H I J K L N P R S T Y Z

A 1 1
3

1 1 3 1
3

1 1
3

1
5

1 3 1
3

1
3

3 1 1 1 1
3

B 3 1 1 1 7 1 1 1 1
3

1 7 1 1 5 1 3 1 1
C 1 1 1 1 5 1

3
1 1

3
1
3

1 5 1
3

1
3

3 1 1 1 1
D 1 1 1 1 5 1

3
1 1

3
1
3

1 5 1
3

1
3

3 1 1 1 1
E 1

3
1
7

1
5

1
5

1 1
7

1
5

1
7

1
9

1
5

1 1
7

1
7

1
3

1
5

1
3

1
5

1
7

G 3 1 3 3 7 1 3 1 1 3 7 1 1 5 3 3 3 1
H 1 1 1 1 5 1

3
1 1

3
1
3

1 5 1
3

1
3

3 1 1 1 1
I 3 1 3 3 7 1 3 1 1 3 7 1 1 5 3 3 3 1
J 5 3 3 3 9 1 3 1 1 3 9 1 1 7 3 5 3 3
K 1 1 1 1 5 1

3
1 1

3
1
3

1 5 1
3

1
3

3 1 1 1 1
L 1

3
1
7

1
5

1
5

1 1
7

1
5

1
7

1
9

1
5

1 1
7

1
7

1
3

1
5

1
3

1
5

1
7

N 3 1 3 3 7 1 3 1 1 3 7 1 1 5 3 3 3 1
P 3 1 3 3 7 1 3 1 1 3 7 1 1 5 3 3 3 1
R 1

3
1
5

1
3

1
3

3 1
5

1
3

1
5

1
7

1
3

3 1
5

1
5

1 1
3

1
3

1
3

1
5

S 1 1 1 1 5 1
3

1 1
3

1
3

1 5 1
3

1
3

3 1 1 1 1
T 1 1

3
1 1 3 1

3
1 1

3
1
5

1 3 1
3

1
3

3 1 1 1 1
3

Y 1 1 1 1 5 1
3

1 1
3

1
3

1 5 1
3

1
3

3 1 1 1 1
Z 3 1 1 1 7 1 1 1 1

3
1 7 1 1 5 1 3 1 1

Table B.10: AHP Comparison Matrix, Level 3.5

B AHP Comparison Matrices 100

L3.6 (Initial Costs)
A B C D E G H I J K L N P R S T Y Z

A 1 1 3 1 1 1 3 3 1 5 1 3 1 1 1 1 3 7
B 1 1 1 1 1

3
1 1 1 1

3
3 1 3 1

3
1 1

3
1
3

3 5
C 1

3
1 1 1 1

3
1 1 1 1

3
3 1 1 1

3
1 1

3
1
3

1 5
D 1 1 1 1 1

3
1 1 1 1 3 1 3 1 1 1

3
1 3 5

E 1 3 3 3 1 1 3 3 1 5 3 5 1 3 1 1 5 9
G 1 1 1 1 1 1 1 3 1 5 1 3 1 1 1 1 3 7
H 1

3
1 1 1 1

3
1 1 1 1

3
3 1 1 1

3
1 1

3
1
3

1 5
I 1

3
1 1 1 1

3
1
3

1 1 1
3

3 1 1 1
3

1 1
3

1
3

1 3
J 1 3 3 1 1 1 3 3 1 5 1 3 1 1 1 1 3 9
K 1

5
1
3

1
3

1
3

1
5

1
5

1
3

1
3

1
5

1 1
3

1 1
5

1
3

1
5

1
5

1 1
L 1 1 1 1 1

3
1 1 1 1 3 1 3 1 1 1

3
1 3 5

N 1
3

1
3

1 1
3

1
5

1
3

1 1 1
3

1 1
3

1 1
3

1
3

1
5

1
3

1 3
P 1 3 3 1 1 1 3 3 1 5 1 3 1 1 1 1 3 9
R 1 1 1 1 1

3
1 1 1 1 3 1 3 1 1 1

3
1 3 5

S 1 3 3 1 1 1 3 3 1 5 1 5 1 1 1 1 5 9
T 1 3 3 1 1 1 3 3 1 5 1 3 1 1 1 1 3 9
Y 1

3
1
3

1 1
3

1
5

1
3

1 1 1
3

1 1
3

1 1
3

1
3

1
5

1
3

1 3
Z 1

7
1
5

1
5

1
5

1
9

1
7

1
5

1
3

1
9

1 1
5

1
3

1
9

1
5

1
9

1
9

1
3

1

Table B.11: AHP Comparison Matrix, Level 3.6

L3.7 (Maintenance Costs)
A B C D E G H I J K L N P R S T Y Z

A 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 7
B 1 1 1 1 1

3
1 1 1

3
1
3

1 1 1 1
3

1 1
3

1
3

1 3
C 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5
D 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5
E 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
G 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 7
H 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5
I 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
J 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
K 1

3
1 1 1 1

3
1
3

1 1
3

1
3

1 1 1 1
3

1 1
3

1
3

1 3
L 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5
N 1 1 1 1 1

3
1 1 1

3
1
3

1 1 1 1
3

1 1
3

1
3

1 3
P 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
R 1

3
1 1

3
1
3

1
5

1
3

1
3

1
5

1
5

1 1
3

1 1
5

1 1
5

1
5

1
3

1
S 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
T 1 3 1 1 1 1 1 1 1 3 1 3 1 5 1 1 1 9
Y 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 5
Z 1

7
1
3

1
5

1
5

1
9

1
7

1
5

1
9

1
9

1
3

1
5

1
3

1
9

1 1
9

1
9

1
5

1

Table B.12: AHP Comparison Matrix, Level 3.7

B AHP Comparison Matrices 101

L3.8 (Setup Duration)
A B C D E G H I J K L N P R S T Y Z

A 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
B 1

5
1 3 1

3
1
3

1
3

1
3

1
5

1
5

1 1
3

1
3

1
5

1
3

1
5

1
5

1 3
C 1

9
1
3

1 1
7

1
7

1
7

1
5

1
9

1
9

1
3

1
5

1
5

1
9

1
7

1
9

1
9

1
5

1
D 1 3 7 1 1 1 1 1 1 3 1 1 1 1 1 1 1 7
E 1 3 7 1 1 1 1 1 1 3 1 1 1 1 1 1 3 7
G 1 3 7 1 1 1 1 1 1 3 1 1 1 1 1 1 1 7
H 1 3 5 1 1 1 1 1 1 3 1 1 1 1 1 1 1 5
I 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
J 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
K 1

5
1 3 1

3
1
3

1
3

1
3

1
5

1
5

1 1
3

1
3

1
5

1
3

1
5

1
5

1 3
L 1 3 5 1 1 1 1 1 1 3 1 1 1 1 1 1 1 5
N 1 3 5 1 1 1 1 1 1 3 1 1 1 1 1 1 1 5
P 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
R 1 3 7 1 1 1 1 1 1 3 1 1 1 1 1 1 3 7
S 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
T 1 5 9 1 1 1 1 1 1 5 1 1 1 1 1 1 3 9
Y 1

3
1 5 1 1

3
1 1 1

3
1
3

1 1 1 1
3

1
3

1
3

1
3

1 5
Z 1

9
1
3

1 1
7

1
7

1
7

1
5

1
9

1
9

1
3

1
5

1
5

1
9

1
7

1
9

1
9

1
5

1

Table B.13: AHP Comparison Matrix, Level 3.8

L3.9 (Reusability)
A B C D E G H I J K L N P R S T Y Z

A 1 1 1 1 3 1 1 1
3

5 1 3 1
3

1 5 5 3 1 1
3

B 1 1 1 1 3 1 1 1
3

5 1 3 1 3 5 5 3 1 1
C 1 1 1 1 3 1 1 1

3
5 1 3 1 3 5 5 3 1 1

D 1 1 1 1 5 1 1 1 7 1 5 1 3 7 7 5 1 1
E 1

3
1
3

1
3

1
5

1 1
3

1
3

1
5

3 1
3

1 1
5

1 3 3 1 1
3

1
5

G 1 1 1 1 3 1 1 1
3

5 1 3 1
3

1 5 5 3 1 1
3

H 1 1 1 1 3 1 1 1
3

5 1 3 1
3

1 5 5 3 1 1
3

I 3 3 3 1 5 3 3 1 9 3 5 1 3 9 9 5 3 1
J 1

5
1
5

1
5

1
7

1
3

1
5

1
5

1
9

1 1
5

1
3

1
7

1
3

1 1 1
3

1
5

1
7

K 1 1 1 1 3 1 1 1
3

5 1 3 1 3 5 5 3 1 1
L 1

3
1
3

1
3

1
5

1 1
3

1
3

1
5

3 1
3

1 1
5

1 3 3 1 1
3

1
5

N 3 1 1 1 5 3 3 1 7 1 5 1 3 7 7 5 3 1
P 1 1

3
1
3

1
3

1 1 1 1
3

3 1
3

1 1
3

1 3 3 1 1 1
3

R 1
5

1
5

1
5

1
7

1
3

1
5

1
5

1
9

1 1
5

1
3

1
7

1
3

1 1 1
3

1
5

1
7

S 1
5

1
5

1
5

1
7

1
3

1
5

1
5

1
9

1 1
5

1
3

1
7

1
3

1 1 1
3

1
5

1
7

T 1
3

1
3

1
3

1
5

1 1
3

1
3

1
5

3 1
3

1 1
5

1 3 3 1 1
3

1
5

Y 1 1 1 1 3 1 1 1
3

5 1 3 1
3

1 5 5 3 1 1
3

Z 3 1 1 1 5 3 3 1 7 1 5 1 3 7 7 5 3 1

Table B.14: AHP Comparison Matrix, Level 3.9

B AHP Comparison Matrices 102

L3.10 (HW Consumption)
A B C D E G H I J K L N P R S T Y Z

A 1 1
3

1 1 1 1 1 3 5 1 1 1 5 1 5 5 1 1
3

B 3 1 1 3 3 1 3 5 9 1 3 3 9 1 9 9 1 1
C 1 1 1 1 1 1 1 3 7 1 1 1 7 1 7 7 1 1
D 1 1

3
1 1 1 1 1 3 5 1 1 1 5 1 5 5 1 1

3

E 1 1
3

1 1 1 1 1 1 3 1
3

1 1 3 1
3

3 3 1 1
3

G 1 1 1 1 1 1 1 3 7 1 1 1 7 1 7 7 1 1
H 1 1

3
1 1 1 1 1 3 5 1 1 1 5 1 5 5 1 1

3

I 1
3

1
5

1
3

1
3

1 1
3

1
3

1 3 1
3

1
3

1
3

3 1
3

3 3 1
3

1
5

J 1
5

1
9

1
7

1
5

1
3

1
7

1
5

1
3

1 1
7

1
5

1
5

1 1
7

1 1 1
7

1
9

K 1 1 1 1 3 1 1 3 7 1 1 1 7 1 7 7 1 1
L 1 1

3
1 1 1 1 1 3 5 1 1 1 5 1 5 5 1 1

3

N 1 1
3

1 1 1 1 1 3 5 1 1 1 5 1 5 5 1 1
3

P 1
5

1
9

1
7

1
5

1
3

1
7

1
5

1
3

1 1
7

1
5

1
5

1 1
7

1 1 1
7

1
9

R 1 1 1 1 3 1 1 3 7 1 1 1 7 1 7 7 1 1
S 1

5
1
9

1
7

1
5

1
3

1
7

1
5

1
3

1 1
7

1
5

1
5

1 1
7

1 1 1
7

1
9

T 1
5

1
9

1
7

1
5

1
3

1
7

1
5

1
3

1 1
7

1
5

1
5

1 1
7

1 1 1
7

1
9

Y 1 1 1 1 1 1 1 3 7 1 1 1 7 1 7 7 1 1
Z 3 1 1 3 3 1 3 5 9 1 3 3 9 1 9 9 1 1

Table B.15: AHP Comparison Matrix, Level 3.10

103

Appendix C

MultiSel Program Masks

Figure C.1: MultiSel Sessions Mask

Figure C.2: MultiSel Categories Mask

C MultiSel Program Masks 104

Figure C.3: MultiSel Components Mask (Showing Details for Comp. A)

C MultiSel Program Masks 105

Figure C.4: MultiSel Constraints/Relations Mask

C MultiSel Program Masks 106

Figure C.5: MultiSel Business Processes Mask

C MultiSel Program Masks 107

Figure C.6: MultiSel Evaluation Mask

109

List of Figures

2.1 Evolution of IBM Service Revenues [83] 8
2.2 IT Expenditure of Western European Banks 1999-2004 [33] 9

3.1 The BSM equation [73] . 13
3.2 The six levers of financial and real options [41] 14
3.3 Enablers of business-IT alignment [45] 16
3.4 Inhibitors of business-IT alignment [45] 16
3.5 Strategic Alignment Model of Business and IT [63] 17
3.6 Trends in Information Systems [2] 18
3.7 Aspects of IT Governance [46] . 19
3.8 Service-oriented architecture - Find/Bind/Invoke [16] 21
3.9 The SOA Framework [16] . 22
3.10 Example of a Simple IT Project Portfolio Analysis [33] 24
3.11 Example: AHP decision network [40] 29
3.12 Example for Comparison of Portfolios with Two Parameters . . . 30
3.13 Restriction of solution space [76] 32
3.14 Factors influencing selection of criteria [39] 39

4.1 Adapted OTSO Criteria Collection Process 46
4.2 BPM Containing Software-Process Mappings 53

5.1 The complete MultiSel data model 58
5.2 ANDONIS Business Process Model 63
5.3 Naming of Multiple Software Instances in Common BPMs 64

6.1 BPM: Processing of Incoming Requests 68
6.2 AHP Selection Criteria Hierarchy 73
6.3 Main Screen of Analysis Tool . 83
6.4 Restriction of Maximum Hardware Consumption 83
6.5 Restriction of Minimum Access Control 83
6.6 m . 84
6.7 Restriction of Minimum Usability 84
6.8 Restriction of Minimum Reusability 84
6.9 Category Values of Remaining Portfolios 85

A.1 BPM Including Candidate-Mappings 94

C.1 MultiSel Sessions Mask . 103
C.2 MultiSel Categories Mask . 103
C.3 MultiSel Components Mask (Showing Details for Comp. A) . . . 104
C.4 MultiSel Constraints/Relations Mask 105

List of Figures 110

C.5 MultiSel Business Processes Mask 106
C.6 MultiSel Evaluation Mask . 107

111

List of Tables

3.1 Example: Criteria Comparison Matrix [40] 30
3.2 Comparison of applicable valuation methods [40] 35

4.1 Example for resource/benefit categories 48
4.2 Example for category data over four time periods 50
4.3 Example for category data over four time periods (for two candidates) 50
4.4 Example for a simple software-process mapping (matrix) 53

5.1 Objects in the MultiSel Data Model 59

6.1 Activities Performed in Request Processing 67
6.2 Criteria Set Derived from Application Requirements 69
6.3 Criteria Set Derived from Design Requirements 69
6.4 Criteria Set Derived from Project Plan 70
6.5 Criteria Set Derived from Organisational Requirements 70
6.6 Final Set of Selection Criteria . 71
6.7 Software Components Subject to Evaluation 72
6.8 Comparison of Level 2 Objectives 75
6.9 Eigenvalues of Level 2 Objectives 75
6.10 Total Weights of Level 3 Objectives 75
6.11 Ratings of Candidates for Level 3 Objectives 76
6.12 Overall Candidate Ratings, Selected Candidates 77
6.13 Components in the Resulting Portfolio 77
6.14 Category Weights . 79
6.15 Category and Total Weights of All Candidate 79
6.16 Components of Resulting Portfolio 80
6.17 Constraint Example . 81
6.18 Relation Example . 81
6.19 Components of Resulting Portfolio 85
6.20 Results of Tested Software Selection Methods 86
6.21 Aspects of Software Portfolio Selection and Coverage 88

A.1 Component Characteristics, Period 1 93
A.2 Component Characteristics, Period 2 95
A.3 Component Characteristics, Period 3 95

B.1 AHP Comparison Matrix, Level 2.1 - 2.4 96
B.2 AHP Comparison Matrix, Level 3.1 - 3.3 96
B.3 AHP Comparison Matrix, Level 3.4 - 3.5 96
B.4 AHP Comparison Matrix, Level 3.6 - 3.8 97
B.5 AHP Comparison Matrix, Level 3.9 - 3.10 97

List of Tables 112

B.6 AHP Comparison Matrix, Level 3.1 97
B.7 AHP Comparison Matrix, Level 3.2 98
B.8 AHP Comparison Matrix, Level 3.3 98
B.9 AHP Comparison Matrix, Level 3.4 99
B.10 AHP Comparison Matrix, Level 3.5 99
B.11 AHP Comparison Matrix, Level 3.6 100
B.12 AHP Comparison Matrix, Level 3.7 100
B.13 AHP Comparison Matrix, Level 3.8 101
B.14 AHP Comparison Matrix, Level 3.9 101
B.15 AHP Comparison Matrix, Level 3.10 102

113

Bibliography

[1] W. M. P. Van Der Aalst. Making work flow: On the application of petri
nets to business process management. Lecture Notes in Computer Science,
2360, 2002.

[2] W. M. P. Van Der Aalst, Arthur H.M. ter Hofstede, and Mathias Weske.
Business process management: A survey. BPM 2003, 2003.

[3] Markus Andlinger. Modell zur Projektauswahl und Ressourcenallokation, 3
1997.

[4] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of
software quality. Second International Conference On Software
Engineering, 1979.

[5] Edward H. Bowman and Gary T. Moskowitz. Real options analysis and
strategic decision making. Organization Science, 12, 2001.

[6] Xavier Burgués, Illa Xavier Franch, and Joan Antoni Pastor. Formalising
erp selection criteria. Proceedings of the Tenth International Workshop on
Software Specification and Design (IWSSD’00), 2000.

[7] E. Chabrow. It staffs lack financial chops for project analysis. Information
Week, 932:20, 2003.

[8] R. Clarke and K. Steven. Evaluation or justification? the application of
cost/benefit analysis to computer matching schemes. Proceedings of
European Conference on Computer Systems, 1997.

[9] Thomas E. Curtin. Business-it alignment - understanding your position.
1999.

[10] D. D. Daniel. Management information crisis. Harvard Business Review,
39, 1961.

[11] Sasha Dekleva. Justifying investments in it. Journal of Information
Technology Management, 16, 2005.

[12] Jörg Desel. Teaching system modeling, simulation and validation.
Proceedings of the 2000 Winter Simulation Conference, pages 1669–1675,
2000.

[13] Merriam-Webster Online Dictionary. Merriam-webster online dictionary.
Online, 11 2006.

Bibliography 114

[14] A. Dixit and R. Pindyck. Investment under uncertainty. Princeton
University Press, 1994.

[15] Karl Doerner. Ant colony optimization in multiobjective portfolio
selection. 4th MIC, 2001.

[16] Schahram Dustdar. Service-oriented computing and web services.
Presentation, 2005.

[17] D. Jack Elzinga, Tomas Horak, Chung-Yee Lee, and Charles Bruner.
Business process management: Survey and methodology. IEEE
Transactions on Engineering Management, 42, 1995.

[18] Alex A. Freitas. A critical review of multi-objective optimization in data
mining: A position paper. ACM SIGKDD Explorations Newsletter, 6, 2004.

[19] S. B. Graves, J. L. Ringuest, and J. F. Bard. Recent developments in
screening methods for nondominated solutions in multiobjective
optimization. Computer Operations Research, 19, 1992.

[20] D. Greer and G. Ruhe. Software release planning: An evolutionary and
iterative approach. Information & Software Technology, 46, 2004.

[21] Erik Guldentops. Control and governance maturity survey: Establishing a
reference benchmark and a self-assessment tool. Information Systems
Control Journal, 6, 2002.

[22] Erik Guldentops and Steven DeHaes. Cobit 3rd edition usage survey:
Growing acceptance of cobit. Information Systems Control Journal,, 6,
2002.

[23] M. Hammer and J. Champy. Reenginering the corporation: A manifesto for
Business Revolution. HarperBusiness, 1993.

[24] J. Henderson and N. Venkatraman. Strategic alignment: A model for
organizational transformation via information technology. Working Paper
3223-90, Sloan School of Management, MIT, 1990.

[25] J. C. Henderson and N. Venkatrarnan. Strategic alignment: Leveraging
information technology for transforming organizations. Information
Systems Management, 2003.

[26] Petri Hilli, Maarit Kallio, and Markku Kallio. Real option analysis of a
technology portfolio. Review of Financial Economics, 2006.

[27] Robert Hirschfeld and Katsuya Kawamura. Dynamic service adaptation.
Proceedings of the 24th International Conference on Distributed Computing
Systems Workshops ’04, 2004.

[28] Jeffrey Horn. A niched pareto genetic algorithm for multiobjective
optimization. IEEE, 1994.

Bibliography 115

[29] ITGI. It governance institute. Online.

[30] ITIL. The itil definition site. Online, 2006.

[31] M. G. Iyigün. A decision support system for r&d project selection and
resource allocation under uncertainty. Project Management Journal, 24,
1993.

[32] D. Karagiannis. Business process management systems. SIGOIS Bulletin,
1995.

[33] Bert Kersten and Chris Verhoef. It portfolio management: A banker’s
perspective on it. Cutter IT Journal, 16, 2003.

[34] Bert Kersten and Han Verniers. Investing in it portfolio management:
Growth path to value management. Submitted to International Journal for
Project Management, 2006.

[35] Jack P.C. Kleijnen. Bayesian information economics: An evaluation.
Interfaces, 1980.

[36] Christopher Koch. A new blueprint for the enterprise. CIO Magazine,
3/05, 2005.

[37] J. Kontio. Otso: A systematic process for reusable software component
selection. University of Maryland Technical Reports, 1995.

[38] Jyrki Kontio. A case study in applying a systematic method for cots
selection. Proceedings of ICSE-18, 1996.

[39] Jyrki Kontio, Gianluigi Caldiera, and Victor R. Basili. Defining factors,
goals and criteria for reusable component evaluation. CASCON ’96, 1996.

[40] Vincent S. Lai, Robert P. Trueblood, and Bo K. Wong. Software selection:
A case study of the application of the analytical hierarchical process to the
selection of a multimedia authoring system. Information & Management,
36, 1999.

[41] K.J. Leslie and M. P. Michaels. The real power of real options. The
McKinsey Quarterly, 3, 2000.

[42] Harold A. Linstone and Murray Turoff. The Delphi Method - Techniques
and Applications. 2002.

[43] J. N. Luftman, P. R. Lewis, and S. H. Oldach. Transforming the enterprise:
The alignment of business and information technology strategies. IBM
Systems Journal, 32, 1993.

[44] Jerry Luftman. Assessing business/it alignment. Information Systems
Management, 2003.

[45] Jerry N. Luftman, Raymond Papp, and Tom Brier. Enablers and inhibitors
of business-it alignment. Communications of AIS, 1, 1999.

Bibliography 116

[46] Zach Luse. COBIT 4.0: Control Objectives for Information and related
Technology. ISACA, 2006.

[47] Neil A. Maiden and Cornelius Ncube. Acquiring cots software selection
requirements. IEEE Software, 1998.

[48] Harry M. Markowitz. Portfolio selection. Journal of Finance, 1952.

[49] Harry M. Markowitz. Foundations of portfolio theory. Journal of Finance,
46, 1991.

[50] Jurgen Martens, Ferdi Put, and Etienne Kerre. A fuzzy set theoretic
approach to validate simulation models. ACM Transactions on Modeling
and Computer Simulation, 16, 2006.

[51] Andrew McAfee. Do you have too much it? MIT Sloan Management
Review, 45, 2004.

[52] F. W. McFarlan. Portfolio approach to information systems, volume 59.
1981.

[53] Rita G. McGrath. A real options logic for initiating technology positioning
investments. Academy of Management Review, 22, 1997.

[54] Microsoft. Windows life-cycle policy. Online, 4 2007.

[55] Ignitia Motjolopane and Irwin Brown. Strategic business-it alignment, and
factors of influence: A case study in a public tertiary education institution.
Proceedings of SAICSIT 2004, 2004.

[56] T. Neubauer, C. Stummer, and E. Weippl. Workshop-based multiobjective
security safeguard selection. IEEE Proceedings of the First International
Conderence on Availability, Reliability and Security (ARES 2006), 2006.

[57] Thomas Neubauer. Multiobjective decision support for the business process
driven allocation of service oriented architectures. Technical Report,
TR1-11, 2006.

[58] Thomas Neubauer and Christian Stummer. Extending business process
management to determine efficient it investments. SAC ’07, 2007.

[59] Thomas Neubauer and Christian Stummer. Interactive decision support for
multiobjective cots selection. HICSS ’07, 2007.

[60] Jakob Nielsen. Usability Engineering. B&T, 1994.

[61] Mark E. Nissen. Valuing it through virtual process measurement. ICIS ’94,
1994.

[62] R. Nolan and F. W. McFarlan. Information technology and the board of
directors. Harvard Business Review, 2005.

Bibliography 117

[63] Raymond Papp. Business-it alignment: productivity paradox payoff?
Industrial Management & Data Systems, 8, 1999.

[64] Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis.
The capability maturity model: guidelines for improving the software
process. Addison-Wesley Longman Publishing Co., Inc., 1995.

[65] Chris Peltz. Web services orchestration and choreography. IEEE
Computer, 36, 2003.

[66] Joe Peppard. Managing it as a portfolio of services. European Management
Journal, 21, 2003.

[67] Blaize Horner Reich and Izak Benbasat. Measuring the linkage between
business and information technology objectives. MIS Quarterly, 20/1, 1996.

[68] Blaize Horner Reich and Izak Benbasat. Factors that influence the social
dimension of alignment between business and information technology
objectives. MIS Quarterly, 24/1, 2000.

[69] J. F. Rockart. Chief executives define their own data needs. Harvard
Business Review, 57, 1979.

[70] Pablo Rossi and Zahir Tari. Software adaptation for service-oriented
systems. MW4SOC ’06, 2006.

[71] T. L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New York,
1980.

[72] Peter G. Sassone. Cost benefit analysis of information systems: A survey of
methodologies. ACM, 1988.

[73] Roger Smith. Applying options theories to technology management
decisions. CTO Network, 2004.

[74] Charles R. Standridge. Teaching simulation using case studies. Proceedings
of the 2000 Winter Simulation Conference, 2000.

[75] R. E. Steuer, L. R. Gardiner, and J. Gray. A bibliographic survey of the
activities and international nature of multiple criteria decision making.
Journal of Multi-Criteria Decision Analysis, 1996.

[76] Christian Stummer and Kurt Heidenberger. Interactive r&d portfolio
analysis with project interdependencies and time profiles of multiple
objectives. IEEE, 2003.

[77] C. Symons. It governance framework. Forrester Best Practices, 2005.

[78] Bernadette Szajna. Software evaluation and choice: Predictive validation of
the technology acceptance instrument. MIS Quarterly, 18, 1994.

[79] TechnologyEvaluation. Technologyevaluation website. Online, 2006.

Bibliography 118

[80] Chris Tiernan and Joe Peppard. Information technology: Of value or a
vulture? European Management Journal, 22:609–623, 2004.

[81] A Min Tjoa and Dimitris Karagiannis. It governance - definition, standards
& zertifizierung. Praxis und Wissen, 4, 2005.

[82] C. Verhoef. Quantitative it portfolio management. Science of Computer
Programming, 45, 2002.

[83] Eric Viardot. Key features and importance of professional information
technology-based services. European Management Journal, 18:454–461,
2000.

[84] Alain Wegmann, Pavel Balabko, Lam-Son Lê, Gil Regev, and Irina
Rychkova. A method and tool for business-it alignment in enterprise
architecture. Proceedings of the CAiSE’05 Forum, 2005.

[85] Rosnah Mohd Yusuff, Kok PohYee, and M.S.J. Hashmi. A preliminary
study on the potential use of the analytical hierarchical process (ahp) to
predict advanced manufacturing technology (amt) implementation.
Robotics and Computer Integrated Manufacturing, 17, 2001.

	Abstract
	Introduction
	Motivation
	IT Management Approaches
	Valuation of IT Resources

	Research Goals

	Related Work / Fundamentals
	Related Financial Paradigms
	Modern Portfolio Theory
	Options Theory

	Business-IT Alignment
	Business Process Management
	IT Governance
	Benchmarking
	Frameworks

	Service-Oriented Architecture
	IT Portfolio Management

	Valuation of IT Investments
	``Traditional'' Cost Benefit Calculations
	Real Technology Options
	Traditional Multiobjective Optimisation
	Conventional Weighted-Formula Approach
	Lexicographical Approach

	Analytical Hierarchical Process
	Multiobjective Pareto Approach
	(Meta)Heuristic Methods
	Comparison of Valuation Methods
	Definition of Criteria Sets
	Critical Success Factors (CSF)
	Preferences of Stakeholders
	The OTSO Approach - Alignment to Business Strategy

	Construction of the Software Selection Model
	Model Requirements
	Imperative Model Requirements
	Optional Model Requirements

	Concept
	Definition of Objectives
	Consideration of Time Periods
	Collection of Candidate Data
	Definition of Restrictions
	Definition of Dependencies
	Definition of Business Process Coverage

	Formalising the Model
	Creation of Portfolios
	Time Periods
	Benefit/Resource Categories
	Dependencies
	Inclusion/Exclusion Constraints
	Value-Modifying Dependencies

	Benefit/Resource Restrictions
	Business Process Coverage

	Implementation
	Data Model
	Application Design
	User Interface
	Data Input Interface
	Evaluation Component

	Limitations of Implementation

	Stummer's INNOV Library
	Extension of Input Data Format
	Extension of Output Data Format

	Import of ADONIS Models

	Comparative Case Study
	Input Decision Situation
	Base Characteristics
	Evaluation Criteria
	Application Requirements
	Design Specification
	Project Requirements
	Organisational Requirements
	Final Criteria Set

	Software Candidates
	Constraints

	Analytic Hierarchic Process
	Preconditions
	Calculating Objective Weights
	Ranking Candidates
	Composing a Portfolio

	Weighted Scoring Method
	Preconditions
	Ranking Candidates
	Composing a Portfolio

	Multiobjective Portfolio Approach
	Collection of Candidate Data
	Modelling Constraints
	Evaluation

	Comparison of Results
	Significance
	Analysis of Results
	Method Characteristics and Behaviour

	Conclusions
	Directions for Further Research
	Software Selection Model
	Implementation

	Candidate Characteristics
	AHP Comparison Matrices
	MultiSel Program Masks
	List of Figures
	List of Tables
	Bibliography

