
Dissertation

Model Driven Service Architecture for the Shop Floor

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

technischen Wissenschaften unter der Leitung von

Ao.Univ.Prof.Dipl.-Ing.Dr.techn. Burkhard Kittl

E 311

Institut für Fertigungstechnik

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Dipl.-Ing. Konrad Pfadenhauer

95 25 467

Lorenz Weiß Gasse 10/3, 1140 Wien

Wien, im Juni 2006 __________________________________

eigenhändige Unterschrift

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



Kurzfassung

Die Steuerung von Informations- und Kontrollflüssen in der diskreten Fertigung ist 

nach wie vor eine große Herausforderung. Dafür verantwortlich ist die Heterogenität 

der Datenstrukturen und der Informationssysteme einschließlich der 

Automatisierungskomponenten. Dies führte in der Vergangenheit zu einer statischen 

Codierung der Ablauflogik in monolithischen Applikationen unter Realisierung 

aufwändiger Schnittstellen. Diese Vorgehensweise wird den heutigen Anforderungen 

an eine dynamische Produktionslandschaft nicht mehr gerecht.

Internetbasiertes Produktionsmanagement versucht, durch den Einsatz von 

standardisierten Technologien verteilte Informationssysteme zu schaffen, die nicht 

nur eine statische, datenzentrierte Integration der Produktion in die gesamte 

Unternehmensarchitektur ermöglichen, sondern auch eine flexible, prozessorientierte 

Einbettung der Fertigungssteuerungsebene und somit auch der Feldebene in Form 

von serviceorientierten Architekturen. 

Das Ziel dieser Arbeit ist es, das Potential von serviceorientierten Architekturen für 

Informations- und Steuerungsprozesse in diskreten Fertigungslandschaften zu 

untersuchen, wobei sowohl Informationssysteme und Automatisierungskomponenten

als auch die beteiligten Mitarbeiter als lose gekoppelte Serviceanbieter integriert 

werden sollen.

Darauf aufbauend wird eine Modellierungsmethodik entwickelt, welche sowohl 

Systemmodellierung auf unterschiedlichen Abstraktionsebenen als auch 

Prozessdetaillierung und -implementierung auf der Ausführungsebene miteinander 

vereint. Somit wird mit Hilfe von bestehenden Standards sowohl die Modellierung 

(ANSI/ISA 95, UML) als auch die Implementierung (Web Services, UDDI) betreffend 

die Integration von Geschäftsprozessmodellen in die IT-Welt erreicht. Dazu bedarf es 

eines klar definierten Rahmens, der durch den Einsatz vorkonfigurierter 

Modellierungswerkzeuge (UML Profile und Vorlagen) möglichst einfach und 

anwenderfreundlich gestaltet sein muss.

Das Ergebnis dieser Arbeit ist eine ANSI/ISA 95 konforme Modellierungsmethodik 

für die Produktionssteuerung. Diese Methodik wurde an Hand der Realisierung einer 

serviceorientierten Demoarchitektur für die Auftragsabwicklung in der Produktion

geprüft. Es konnte gezeigt werden, dass die Vorgehensweise konsistent genug ist, um 

die Systemarchitektur über den gesamten Lebenszyklus hinweg regeln zu können. 

Andererseits ist sie aber auch flexibel genug, um mit Hilfe vordefinierter Bausteine 

gegebene Szenarien und Komponenten einfach und mit genügender Genauigkeit in 

die Methodik einbetten zu können.



Abstract

Discrete manufacturing shop floor information and control flow management is still a 

challenging task due to the heterogeneity of data structures and information systems

inclusively automation components. This led in the past to static process logic coding 

within monolithic applications utilizing elaborate interfaces for rudimentary 

integration. This proceeding is not sufficient regarding the requirements of today’s 

dynamic production environments.

Internet based manufacturing, leveraging the latest technologies to achieve

distributed information systems, provides new possibilities not only for static, data 

centric integration of the shop floor into an overall enterprise architecture, but also for 

full process integration of control and thus field level by means of service oriented 

architectures (SOA).

The aim of this project is to investigate the potential of SOA for information and 

control flows in the shop floor domain, integrating applications as well as human 

workers as loosely coupled service providers. 

Consequently a modeling methodology was developed, which brings together system 

modeling at different levels of abstraction as well as process detailing and 

implementation at the execution level. Thus by means of existing standards 

concerning modeling (ANSI/ISA 95, UML) as well as implementation technologies 

(Web Services, UDDI) Business and IT alignment is established. Therefore, a well 

defined framework is necessary, which gains simplicity and usability through the 

utilization of preconfigured modeling tools (UML profiles and templates).

The result of this work is an ANSI/ISA 95 compliant model-driven methodology for 

manufacturing operations management. This methodology was evaluated by means 

of the realization of a SOA demo scenario for production operations management. It 

was possible to show that the proceeding is consistent enough to provide 

management capabilities throughout the whole system life-cycle. Moreover, the 

methodology is flexible enough to embed given shop floor scenarios and components 

smoothly into the framework with the help of predefined modeling constructs.



____________________________________________________________________________

I

Preface

Motto

“ Sie müssen auf alles selber draufkommen. Sie habe ja keine Aufgabe oder 

irgendwas. Aufgaben können nur Schüler haben und lehrerhörige Menschen. “

“ You have to find out about everything by yourself. It is not like you have to 

complete an exercise or something. Only school-children and people who are 

submissively dependent on their teachers have exercises to complete. ”

Thomas Bernhard

List of Content

The structure of the thesis itself follows a top-down system engineering approach 

with different levels of abstraction. 

We first discuss in Section 1 the motivation for this work emphasizing the growing 

importance of Service Science as an interdisciplinary research approach for complex 

and highly modular systems. 

In Section 2 manufacturing enterprise systems and shop floor systems for discrete 

manufacturing are examined regarding system characteristics, integration approaches

and modeling. 

After that the research objectives are defined in Section 3. 

Section 4 is dedicated to the three guiding principles and their specific occurrence in 

the context of this project, namely modularization (SOA), standardization (Web 

Service SOA and ANSI/ISA 95) and modeling (Model Driven Architecture, MDA). 

In Section 5 the proposed model driven service architecture framework is presented, 

followed by the corresponding methodology description in Section 6 which includes 

the implementation environment outline for a demo scenario. 

Section 7 then demonstrates the application of our MDSA methodology and 

framework by means of the production operations management demo scenario.

With a conclusion and an outlook at the work to come we will finish the thesis with 

Section 8.



____________________________________________________________________________

II

Acknowledgement (to whom it may concern)

“ Dear Amigo ... Dear Partner--

Listen--I just wanted to say thanks. So ... thanks.

Thanks for all the presents.

Thanks for introducing me to the Chief.

Thanks for putting on the feedbag. Thanks for going all out--

Thanks for showing me your Swiss Army knife.

Oh and uh ... thanks for letting me autograph your cast. “

Laurie Anderson, Big Science, Let X=X

“ As you've been moving surely toward me

My soul has comforted and assured me

That in time my heart it will reward me

And that all will be revealed

So I've sat and I've watched an ice-age thaw

Are you the one that I've been waiting for? ”

Nick Cave, (Are You) The One That I've Been Waiting For? 



____________________________________________________________________________

III

Content

1. Introduction ...................................................................................................................... 1

1.1. Motivation and Research Methodology ................................................................ 2

2. System Approach ............................................................................................................. 5

2.1. System Manufacturing Enterprise .......................................................................... 8

2.1.1. System Characteristics......................................................................................... 8

2.1.2. System Integration............................................................................................... 9

2.1.3. System Modeling ............................................................................................... 10

2.2. Subsystem Shop Floor ............................................................................................ 14

2.2.1. System Characteristics....................................................................................... 14

2.2.2. System Integration............................................................................................. 21

2.2.3. System Modeling ............................................................................................... 25

3. Research Objectives....................................................................................................... 30

4. Guiding Principles and Techniques for a Modern Shop Floor Architecture..... 34

4.1. Modularization - SOA ............................................................................................ 35

4.1.1. SOA Concept ..................................................................................................... 35

4.1.2. SOA and Data Distribution .............................................................................. 38

4.1.3. SOA and System Management ......................................................................... 38

4.2. Standardization - Web-Service Architecture and ANSI/ISA 95 ...................... 43

4.2.1. Common Base Language.................................................................................... 47

4.2.2. Interfaces ............................................................................................................ 48

4.2.3. Business protocols .............................................................................................. 48

4.2.4. Properties and Semantics................................................................................... 49

4.2.5. Vertical standards (Manufacturing Domain) ................................................... 49

4.2.6. Directories.......................................................................................................... 50

4.3. Modeling .................................................................................................................. 51

4.3.1. Modeling Related Problem Spaces ..................................................................... 51

4.3.2. Model Driven Architecture ............................................................................... 53

5. Model Driven Service Architecture for the Shop Floor Domain.......................... 57

5.1. Related Work ........................................................................................................... 57

5.2. Methodology Derivation........................................................................................ 61

5.3. Model Driven WS-SOA Service Composition .................................................... 63

5.3.1. Top-Down Model Driven WS Composition...................................................... 64

5.3.2. Bottom-Up Model Driven WS Composition ..................................................... 67

5.3.3. Comparison and Evaluation .............................................................................. 68

5.4. Lessons Learned for the Proposed Methodology............................................... 70

5.4.1. Computation and Platform Independent Modeling .......................................... 71

5.4.2. Integration of Modeling Techniques.................................................................. 71

5.4.3. System Modeling ............................................................................................... 72

5.4.4. Platform Specific Model Completeness.............................................................. 73

5.4.5. IBM and Microsoft Next Generation Tools....................................................... 73



____________________________________________________________________________

IV

6. MDSA Methodology Description .............................................................................. 74

6.1. MDSA – Development and Implementation ...................................................... 75

6.2. MDSA - Analysis and Design................................................................................ 77

6.2.1. Shop-Floor Tool Box .......................................................................................... 78

6.3. MDSA – Assumptions, Technologies and Tools ................................................ 80

7. MDSA Implementation and Evaluation by Means of a Demo Scenario ............ 85

7.1. The ANSI/ISA S95 Meta-Model ........................................................................... 85

7.2. Shop Floor Tool-Box Implementation.................................................................. 89

7.2.1. SFTB Generic Entities beyond ANSI/ISA 95 ................................................... 90

7.3. Production Operations Management Demo Scenario Activities ..................... 91

7.3.1. From SFTB Entities to Particular Shop Floor Models ...................................... 94

7.3.2. From Particular to Executable Shop Floor Models.......................................... 100

7.4. Production Operations Management Demo Scenario Service Providers ..... 113

7.4.1. Infrastructure Services .................................................................................... 113

7.4.2. Detailed Production Scheduling Services........................................................ 127

7.4.3. Product Definition Management Services ...................................................... 132

7.4.4. Production Dispatching Services .................................................................... 134

7.4.5. Production Execution Management Services.................................................. 135

7.4.6. Production Data Collection Service................................................................. 137

7.5. HMI Application SchedulINA ............................................................................ 138

7.5.1. Introduction ..................................................................................................... 138

7.5.2. Implemented SchedulINA Functionality......................................................... 139

8. Conclusion..................................................................................................................... 143

9. Appendix ....................................................................................................................... 144

9.1. Abbreviations ........................................................................................................ 144

9.2. References............................................................................................................... 148

9.3. List of Figures ........................................................................................................ 159

9.4. List of Tables .......................................................................................................... 162

9.5. Curriculum Vitae .................................................................................................. 163



Introduction

__________________________________________________________________________________________________________________

____________________________________________________________________________

1

1. Introduction

The work undertaken can be seen as an example for interdisciplinary research with 

the service concept as the embracing concept. The aim of a new service discipline is 

… to create a service field to develop and carry out technical application so that help 

business, government and other organizations to improve current service and enter into 

new promising field. This field requires an understanding of how to create and deliver 

reusable assets so as to re-execute service more easily and deliver service more efficiently. 

This is the foundation of Service Science. This new discipline will combine the efforts in 

the computer science, operational research, industry engineering, business strategy, 

management science, social and cognitive science and legal science to foster the skills 

required by service-dominated economy.

IBM Research (2006)

This concept is the logical result of a paradox, which has become obvious in the last 

years after the collapse of the New Economy bubble. On the one hand there are 

technological innovations that are being advertised at an incredible pace, on the other 

hand there are risk adverse companies as well as humans who are increasingly 

reluctant to “cutting edge” promises. Thus the gap between not only business, but 

every day life dominated by all kind of services and IT broadens. In this environment 

service science proponents also can see the role for universities as providers of a 

combined Services Science, Management and Engineering education coming:

The method of business and technology combination requires high professional 

technologies. Obviously, it is impossible there is a researcher with doctor degree for every 

opportunity. Promotion closer integration of technologies and business requires new 

skills and combination of skills and new method of using these skills in the balanced way. 

These skills and application methods should be taught from university.

IBM Research (2006)

At the Institute for Production Engineering we realized this problem from a 

manufacturing domain perspective very early, although we did not call it Services 

Science. Our researchers at the Industrial Informatics Working Group always tried to 

invent business driven concepts and applications for the manufacturing domain and 

therefore required combined domain, IT- and system theory - knowledge. The work 

presented in this thesis must therefore also be seen in the context of this successful 

and industry- approved tradition.

A service is the representation of functionality, and functionality is a constituting 

characteristic of every system. Hence a system approach is needed. Within the system 

service provider and consumer must have a similar understanding of mutual 

expectations and responsibilities at all stages of the system life-cycle. In a dynamic, 

competitive environment, to close the gap between business requirements and 

operational execution of tasks, the following skills are essential:



Introduction

__________________________________________________________________________________________________________________

____________________________________________________________________________

2

Ø Sound knowledge of generic system engineering principles

Ø Knowledge of dominating influences (system processes customers) and key 

trends related to the system environment

Ø System (a.k.a. Domain) structure and behavioural knowledge

Ø Understanding of implementation technology

It seemed to be easier for our discipline to come to this conclusion regarding 

information affected systems, because we are aware of the obvious similarities 

between the quest for a business oriented software life-cycle approach and the 

concurrent or simultaneous engineering approach for manufacturing products. Here 

we see the concurrent development of market driven product specifications (business 

demand) and production facilities (assets). This approach is nowadays state of the art 

in manufacturing companies, and the curriculum of Industrial Engineering education 

can be seen as direct reaction of educational institutions to this development. An 

Industrial Engineer represents the link between management and workers, between 

visionary products for demanding markets and capable, reliable production facilities. 

We strongly believe the time has come to think about which role Service Engineering 

should play in the greater scheme.

Thus the Service Science approach seems to adopt the example of the materialized 

world for the world of information flows. Although the academic discussion is 

somewhat indifferent regarding scope and aims at the present (service industry Gross 

Domestic Product figures are mixed with SOA and Grid Computing), the discussion 

evolving addresses a core problem: What measures are needed to make the increasing 

fusion of business and IT successful, no matter in which domain? In this research 

project manufacturing is the business, and service orientation is the basic architectural 

principle. What is needed to fill the vacuum in between business requirements and 

implementation will be explained by means of a model based system approach. The 

methodology presented will proof our assumptions regarding knowledge and skills 

mentioned above. Call it Service Science or something else, but the IT solutions of 

tomorrow have to be highly interdisciplinary.

1.1. Motivation and Research Methodology

The aim of the work undertaken is to introduce the service concept in the context of 

information management to the shop floor environment. For the manufacturing 

domain with its heterogeneous information flows, heterogeneous information system 

landscape and complex control tasks, a number of methodologies and architectures 

evolved in the past. Most of them failed at the implementation level. There has always 

been a gap between theoretical architectural concepts and the technologies available 

for implementation. This does not mean that the concepts were inapt (see for instance 

the CIMOSA approach discussed in the following anticipated a lot of ideas which are 

now known as SOA and MDA), it means that technological restraints hampered the 



Introduction

__________________________________________________________________________________________________________________

____________________________________________________________________________

3

actual application. A lack of standardization not only at a technical level (e.g. the 

variety of modeling techniques!) was one major obstacle, some kind of 'over-

engineering' the other. The latter resulted in a weak acceptance rate of existing 

frameworks in the past. Hence one might think the actual implementation challenge is 

just about some enterprise application integration program work, resulting in some 

information flows across different application borders. Of course, at the 

implementation level with some new technologies like XML and Web Services as the 

unifying clue, this is a service approach as well. 

In the author’s understanding service orientation has to emerge out of a broader 

scope, it is not 'just a new bunch of techniques' for distributed systems. There has to be 

a framework, which tangles all abstraction levels of the enterprise's architecture. 

Hence a methodology has to guide all efforts toward service orientation. This 

methodology must be structured and presented in a way so that multiple people can 

work with it. Moreover, it has to have the clear aim to bring these stakeholders 

together and to give them a toolset which minimizes communicational frictions and 

efforts regarding business process management. Business analysts shall define the 

actual enterprise situation, its goals and its core processes. IT architects shall take this 

as their workspace and consider what kind of IT architecture can best support the 

enterprise in the given situation to achieve the goals. Or vice versa, business analysts 

are able to incorporate existing assets into the new architecture. And programmers 

should use the same blueprints to map the processes into the execution environments 

and adopt or code service providers according to these specifications. 

The author sets the goals for this project as following:

• To develop a methodology which is feasible to guide business process 

implementation in a service oriented environment from high-level business 

models down to executable code and vice versa.

• To find a language which best serves the alignment of abstraction levels within 

the methodology.

• To examine the service concept for a shop floor application. Which activities in 

production management demand for what kind of service providers? How can 

legacy systems be integrated in service oriented architectures? What 

middleware techniques can be used? 

• To answer the questions: What does service orientation mean for human beings 

in the shop floor? How can a loosely coupled architecture support the single 

worker in executing his tasks?

• During the writing of this thesis a lot of new questions arose, but the author 

tried to stay focused on the main topics mentioned above. Basically, the 

research work undertaken was following the scheme in Figure 1 (see below). Of 

course this thesis can not cover all aspects of the research project. Especially the 

literature review phase will not be completely incorporated in this text, only 

the central aspects which strongly influenced the project will be mentioned.



Introduction

__________________________________________________________________________________________________________________

____________________________________________________________________________

4

Figure 1. Motivation and research methodology

The system approach is the starting point. Without system engineering a task like the 

one outlined above can never be handled successfully. This conclusion becomes 

obvious when one realizes that there are many communities talking about similar 

issues. Enterprise Architecture, Business Process Management, Workflow 

Management, Enterprise Application Integration, Middleware etc. are all groups 

dealing with structures and processes IT has to enable. One of the big challenges of 

today is to bring together these concepts so that real world systems can be effectively 

supported. 

It was thus necessary to examine the reasons why approaches to achieve this 

unification did not succeed. Some of the reasons for failure have been mentioned 

above but all of them were used in the end to develop a methodology that was more 

likely to succeed. Let us call these lessons learned the guiding principles for this 

project. A whole clause will outline what they are and how they are used. The system 

approach was not only essential for the methodology developed, but also to 

decompose the enterprise system so that the shop floor environment and its 

characteristics could be understood better. This analysis of today’s shop floors in 

discrete manufacturing will make the motivation for the research more clear. The next 

step was to invent the methodology, which made some first decisions concerning 

techniques and tools necessary. Soon after that the creation of a first draft for the 

demo scenario started, and for the rest of the project the simultaneous engineering of 

methodology and case study proved to be very fruitful. In principle it was a 

permanent, iterative process of demo scenario design by means of the methodology

and methodology improvement. What remained unchanged were the guiding 

principles, thus it can be said that these assumptions turned out to be correct.



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

5

2. System Approach

An open system can be best described as a collection of elements, which possess 

attributes that again are interconnected with each other and the environment and 

fulfil a specific purpose towards a common goal. Thus, systems are all around us; it 

just depends on the border setting, which again is determined by the objectives of the 

actor. Once the border is fixed, the activities of the system’s elements together 

constitute the system functionality, which is defined for an open system as the ability 

to transform an input into an output. 

Although historically developed during the 1940s to 1960s as a means to coordinate 

and control the development of complex systems, it is surprising how rarely 

architectural decisions are being made in a system engineering context today. In this 

respect Johnson (2003) outlines rightly that while it is possible to succeed with some 

programs some of the time without the social controls of systems management, it is 

impossible to consistently maintain high rates of success. Walford (1999) states that 

process automation requirements comprise process orientation and modeling and 

defines three supporting concepts for Business Process Management: 

• systems engineering 

• automation assets

• modeling

Explaining the importance of systems engineering, he states that 

The most important message … is that a systems engineering approach to enterprise 

automation is the key to success. Without the discipline and unifying framework 

obtained with this approach, the maximum effectiveness of automation cannot come close 

to being achieved. That is especially true under the current conditions of rapid 

technology and business environment change.

 Walford (1999)

Automation assets are the building blocks available to be integrated in a system. The 

traditional approach of system engineering does not emphasize the importance of 

reusable system assets and focuses more on a top-down approach. This has changed, 

and nowadays systems integration as a member of systems engineering gains 

importance. As mentioned in the introduction, the knowledge gained in respect to 

mechanical systems is highly adoptable for the information system domain. Prencipe 

(2003) gives a good manufacturing industry example for what he calls 'synchronic 

systems integration': 

Systems engineering is a capability per se since it involves the identification of design 

compromise among subsystems, analysis of subsystems, and supervision of system 

testing (Sapolsky 1972). As found in the aircraft engine industry, after decomposing the 

product, engine manufacturers synchronize their work with that of suppliers and 

customers in order to assure the overall consistency of the system performance and to 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

6

comply with the rules of the certification authorities. Synchronic systems integration 

should be seen as a two-way process. … Systems integration is a top-down process where 

engine makers model the engine, define the total system requirements, and break it down 

into components. Systems integration is also a bottom-up process where engine makers 

must be able to recompose what they have decomposed. Engine makers must be 

competent in both legs. Within a new engine development programme, engine 

manufacturers rely on state of the art component technologies and defined engine

architecture. 

Prencipe (2003)

It is easy to agree with Prencipe here and it will be shown that this two-way process is 

also a promising approach for distributed information system architectures. But what 

exactly are the requirements a two-way methodology for systems integration has to 

take into account? The standards for engineering management the US Department of 

Defence (DoD) define system element integration and verification like this:

The system elements shall be progressively integrated (bottom-up) into items that 

provide an end-use function. At each level, the resulting design requirements, physical 

configuration and physical interfaces shall be verified to ensure that the functional 

requirements are satisfied. The correlation of interfunctionally related elements shall be 

established and controlled. The techniques and procedural data for development, 

production, test/verification, deployment/installation, operation, support, training and 

disposal shall be determined, documented and implemented, as applicable. To provide a 

satisfactory solution set, each configuration item shall be evaluated to verify that it meets 

performance, functional and design requirements as well as user needs/requirements.

DoD, cited from Johnson (2003)

From the very beginning of systems engineering it was identified that many complex 

systemic problems are related to problems of communication, either 

miscommunication or a lack of communication. Therefore means to formalize and 

exchange conceptualizations were developed. The formal languages such as 

mathematics, symbol logic or drawings can be summarized with the term model.  The

concept of modeling for a better understanding of the enterprise system was 

introduced mainly by means of graphical notations, many of them at a rather poor 

formalization level. But while the demand for modeling is in theory accepted for 

system change or improvement, the reality is different, as the survey of Whitman and 

Huff (2001) shows: there is poor operational use of models and as a consequence 

existing business system models are rarely updated. A reason for this is that modeling 

is often seen as a unique task, which supports the process design once, not in a 

permanent process of change and improvement. Another identified problem is that 

different modeling techniques are applied to describe one and the same system. 

Walford’s opinion regarding modeling techniques variety is that 

Obtaining a good understanding of the structure and the operation of any enterprise, 

except for very small organisations, depends on the use of many types of modelling 

techniques. Unfortunately, the use of models in most enterprises is relatively infrequent. 

The models that are used tend to be somewhat informal and depend on the inherent 

knowledge of each individual involved for interpretation and utilization. Some recent 

attempts to introduce formal models such as the Unified Modeling Language (UML), 

which is used to model object classes, have tended to be very low level and specific to 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

7

given topic areas. The lack of general formalisms worked reasonably well in highly 

structured, top-down organizations but presents problems when applied to the flat, more 

loosely structured organizations that are currently evolving. The management and 

automation needs of enterprises adapting these new organizational structures require 

that the business operations be defined and analysed in greater detail than before. 

Through the proper definition and application of models, the complexities and 

interactions of these new organizations can be better understood and managed. It is, 

therefore, necessary to define and utilize models in a structured and relatively rigorous 

sense. Without modeling, solutions to the complex problems inherent in the specification 

of enterprise automation can only be guessed.

Walford (1999)

What does the outlined system approach, incurred as the main principle for the work 

undertaken, really mean? Nothing more than the knowledge of the system as a whole, 

of the elements and the functionality each offers at the proper level of abstraction 

(together with the supporting infrastructure they constitute the architecture), no 

matter in what process they actually are involved in, because this is likely to change 

many times in the system life cycle. Fredrik gives a concise description of the 

importance of systems engineering in the context of future oriented system innovation 

when he states that

Innovation in systems technologies requires an understanding of specific component 

technologies, the functioning of the system as a whole, as well as the various components 

in the system design that need to be connected. These are the crucial aspects of systems 

integration …

Fredrik (2003)

The system theory is concerned with synthesis, analysis and methodology. It is the 

opinion of the author (see also Pfadenhauer and Kittl (2004b)) that system theory 

provides a wide range of proven and accepted concepts which are very useful in the 

context of domain architecture design, not at last in a Service Oriented Architecture 

(SOA). To accept the existence of general valid system theories makes it much easier 

to discover parallels between ostensibly different problem spaces and to transfer 

proven methodologies and rules into the own domain. Shi and Daniels (2003) provide 

an excellent example, how principles of manufacturing flexibility can be used in the 

context of eBusiness flexibility. They succeed because, in fact, they talk about system 

flexibility. In the following we want to demonstrate how results of the system theory 

fit into the world of Model Driven Architecture (MDA) and SOA. Modeling is the 

accepted key for this task. A model has to be an appropriate simplification of reality, 

and that was and still is the mightiest challenge: To define the level of abstraction and 

the granularity. With the concept of SOA it now seems possible to realize a MDA, a bi-

directional and vital conjunction between the model of a system and the system 

architecture (Pfadenhauer and Kittl (2004c, 2005a, 2005b)).



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

8

2.1. System Manufacturing Enterprise

2.1.1. System Characteristics

Today’s manufacturing companies are under the constant pressure of competitive and 

global markets as well as a highly dynamic system environment (Figure 2). Next to 

quality and costs the factor time is increasingly important. Time-to-market and time-

to-delivery express the need for efficient and fast product engineering as well as order 

completion. Product development and order processes are just two examples for 

network enabled tasks, initiated by means of selling market events but involving all 

mentioned types of markets. 

Resources are distributed between different locations, be it human knowledge or 

production capacity. The borders between internal processes and external processes 

blur due to close networking along the physical supply and virtual information 

networks. Like depicted below in Figure 2, the enterprise consists of a number of 

subsystems, which are highly interlinked, but not necessarily located at one site or 

acting with the same applications in similar organisational structures. And a 

subsystem like the production system can be decomposed further into production 

facilities scattered around the globe, one with a high automation level and the other 

relying on human workforce. But all the bits and pieces have to work together, 

putting increasing emphasis on system integration and therefore interface design 

(short lines in the figure). The business information applications like ERP (Enterprise 

Resource Planning) have realized the increasing demand for enterprise system 

integration not into a single, monolithic application but as a distributed system 

leveraging a flexible integration layer. 

Hence, more and more information flows between all kind of markets and the 

enterprise system arise, revaluating the public interface layer. On top of this layer, 

which defines the interfaces and communication channels, the technological 

environment is placed, dictating the technology to be used. Technical issues like 

protocols or data exchange formats are embedded in the economical environment 

where business - needs are articulated and negotiated. This has to take place under the 

premises of the social, political and legal environment. An area which imposes 

increasing restrictions if one thinks of topics like corporate responsibility, Sarbanes-

Oxley Act in US or Basel II in Europe. The ecological environment is surrounding 

everything, influencing the thinking and acting in the complete enterprise system as 

well as all markets. Sustainability can be a strategically means valued by the 

customers, a legal matter (e.g. Kyoto protocol) or a cost reduction factor (e.g. 

recycling). 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

9

Figure 2. Manufacturing enterprise system view (adapted from Corsten (1996))

2.1.2. System Integration

System integration at the enterprise level is strongly driven by external needs. 

Business concepts like SCM (Supply Chain Management), Outsourcing, 

eMarketplaces, B2B or B2C etc. lead toward a horizontal integration (Figure 3) of 

companies as part of value networks. The figure is taken from the high level view of 

SCOR Version 6.1 (Supply-Chain Operation Reference model, issued by Supply Chain 

Council (2004)). This proposal is a good example for high level, inter-organizational 

frameworks which try to react to the increased connectivity between companies. But 

as in SCOR, the “Make” and “Enable Make” activities remain at an abstract level. The 

integration with the production environment remains unclear and thus is treated as a 

black box system. The process implementation level, be it physical or IT supported, is 

out of scope of SCOR. This increasing external interoperability also leads to the need 

for internal integration, especially at a data level. Data Warehouses or Business 

Intelligence are examples for concepts which shall assure a homogeneous data base 

with single points of access. A comprehensive state-of-the-art review regarding 

interoperability can be found in INTEROP D6.1 (2005), where good practices and 

solutions as well as principles/patterns for interoperability are provided. Especially 

the described UML based MACCIS architecture description framework implemented 

for the Norwegian Army has some relevance for this work regarding standard based 

modeling. 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

10

Figure 3. High-level horizontal enterprise integration (SCOR 6.1)

Beginning with EDI (Electronic Data Interchange), a number of languages evolved to 

enable inter-organizational data exchange, often enough with industry specific 

protocols and data formats. For a detailed discussion about those see ATHENA D.A1 

(2004).

As substitute for many other standards and as an example for the technological 

environment in Figure 2 (s. pg 9) we shortly discuss RosettaNet, because it is one of 

the few concepts which tries to combine (rudimentary) process definitions with 

protocol layer definitions. RosettaNet combines the document or payload concept 

with short, choreographed point-to-point interactions called PIP (Partner Interface 

Process). This broader scope also incorporates time requirements. The RosettaNet 

Implementation Framework (RNIF 2.0) includes enabling specifications, mostly 

messaging, related to guide PIP execution (Kraemer and Yendluri 2002). This 

messaging approach supporting HTTP(S) over TCP/IP makes single PIP message 

exchange in theory adoptable for Web Services (RosettaNet 2003), but in practice the 

two concepts are too different (transactions, separation of payload and process) and 

hard to combine. Although RosettaNet Cluster 7: Manufacturing defines PIP 

specifications to manage manufacturing work orders or work in process (e.g. 

RosettaNet 2005), it definitely has to be seen as a B2B supply chain management 

standard.  

2.1.3. System Modeling

2.1.3.1. Enterprise Architecture Modeling

An enterprise model is a computational representation of the structure, activities, 

processes, information, resources, people, behavior, goals, and constraints of a 

business, government, or other enterprises. Enterprise Architecture (EA) research 

resulted in a number of elaborated architecture proposals with a more general scope 

(Zachman Framework, PERA (Purdue Enterprise Reference Architecture), GERAM 

(Generalized Enterprise Reference Architecture and Methodology)) as well as a 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

11

manufacturing scope (CIMOSA (Computer Integrated Manufacturing Open System 

Architecture), GRAI Integrated Method). In our opinion these concepts introduce 

important ideas regarding modeling, modularization and abstraction levels. For 

instance the basic principles of MDA or SOA can all be found in CIMOSA, which is 

the EA approach that is most formally described and strongly committed to complete 

computer executability. What is interesting about this approach is that a complete 

system view including the integrating infrastructure is the goal. Computer Integrated 

Manufacturing Open System Architecture (CIMOSA) objective is the use of enterprise 

models for the monitoring and control of daily enterprise operations. To achieve this 

objective, CIMOSA developed two major parts: An executable enterprise model 

together with a two-dimensional derivation process (Figure 4) and an integrating 

infrastructure. CIMOSA enterprise model defines three model abstraction levels for 

the derivation of models (Requirements Definition to Implementation Description), as 

well as three abstraction levels for the customization of building blocks (from generic 

level to particular level building blocks, whereas the first two constitute the Reference 

Architecture). The four different views can be found in similar occurrences in many 

other proposals as well, for example in ARIS (Architektur integrierter 

Informationssysteme). The integration infrastructure uses the principles defined in 

DOAM (ISO/IEC DIS 10031-1 Distributed Office Application Model) for its IIS service 

definitions. DOAM can be seen as a SOA predecessor regarding service definition, 

encapsulation or request-response interaction patterns. At the time CIMOSA was 

developed, the integration infrastructures and technologies were not sophisticated 

enough to fully implement the approach. In this respect CIMOSA was years ahead, 

but it will be shown in this thesis that the time has come for a new “CIMOSA-light” 

approach which utilizes the available tools, standards and technologies. Regarding 

applied modeling techniques as well as assumptions made at the implementation 

level, the lack of standardization is the major problem of these architectures. 

Figure 4. CIMOSA Reference Architecture



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

12

PERA — Purdue 

Enterprise 

Reference 

Architecture

GRAI - GIM

CIMOSA – Open 

System 

Architecture 

for CIM

GERAM - Generalized 

Enterprise Reference 

Architecture and 

Methodology

1990 – 1999 (V 1.6.3 1999)

1970 - ?1989 - 1991 1985 - 1996

ISO 15704 (2000) - Industrial automation systems —

Requirements for enterprise-reference architectures 

and methodologies

ISO 14258 (1998) - Industrial automation systems —

Concepts and rules for enterprise models

is consistent

is Appendix of

ISO 19439 (2003) – Framework for Enterprise Modelling

ISO 19440 (2003) – Constructs for Enterprise 

Modelling

ANSI/ISA S95 –

Enterprise-

Control System 

Integration

2000 – ongoing

Figure 5. Major Enterprise Architecture Initiatives resulting in ANSI/ISA 95

The author is convinced that a feasible approach has to take the given techniques and 

technologies at the execution level into account and embed them into a broader 

architecture which supports Business and IT alignment. A joined initiative for 

manufacturing domain object and control flow standardization is ANSI/ISA 95 

(ANSI/ISA 2000, 2001 and 2005), a proposal derived from PERA (Figure 5). The 

limited scope, the use of UML (Unified Modeling Language) and the focus on the 

higher abstraction levels as with the corresponding information flows makes this a 

promising approach which the author utilizes and extends towards implementation 

level modeling. Proprietary EAI, workflow or, more recently, process markup 

techniques (BPEL, BPML, XPDL) are powerful when it comes to BPM at the 

implementation level, but concepts are missing how the integration into an overall 

platform independent enterprise architecture can be established. For a detailed 

discussion of state-of-the-art techniques and technologies concerning EA it can be 

referred to two EU initiatives that delivered excellent publications. The first 

publication is the D.A1 of the ATHENA (2004) project, the second is a publication that 

summarizes the outcomes of the INTEROP project (INTEROP D4.1 (2004) especially

for GRAI).



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

13

Generally it is interesting to see that government organisations, notably in the US, are 

heavily involved in the enterprise architecture and modeling research community. US

military and government institutions defined the United States' Department of 

Defense's Architecture Framework (DoDAF). The framework is at the heart of the 

C4ISR (command, control, communications, computers, intelligence, surveillance and 

reconnaissance), which itself is used by the US military to support the planning, 

decision making, and execution of integrated battle scenarios. Moreover, the States of 

the United States, in response to the Clinger-Cohen Act, must demonstrate 

architectural planning for the budgeting process. The States have organized 

architectural bodies that govern and control IT architecture in compliance with the 

Clinger-Cohen Act. Much of their work utilizes the Zachman Framework. The 

Zachman Framework is a matrix of 36 cells covering the Who, What, Where, When, 

Why, and How questions of an enterprise. The enterprise is then split into six 

perspectives, starting at the highest level of business abstraction going all the way 

down to implementation. Such objects or descriptions of architectural representations 

are usually referred to as artefacts. The framework can contain global plans as well as 

technical details, lists and charts. Any appropriate approach, standard, role, method 

or technique may be placed in it. Although frequently looked at as a framework for 

building computer systems, the Zachman Framework is actually a classification 

scheme for descriptive representations of the enterprise as a whole, irrespective of its 

use of computers. The Zachman Framework has gained wide acceptance in the 

industry. Often used as part of a systems architecture or enterprise level technology 

review exercise it is popular within IT architecture departments but has little hold of 

either the developer or user communities.

2.1.3.2. Business Process Modeling 

Modeling of processes is a widespread accepted instrument for organisation (e.g. 

Business Process Reengineering (BPR)) or application (e.g. ERP system customization 

and implementation) design. In the latter case processes in a monolithic application 

are modeled, often enough with a tight coupling between the application and the 

modeling tool. The ERP software SAP and the ARIS toolset from IDS Scheer are a 

good but also rare example for that. How difficult it was and still is to merge the 

organisational process view with the application process view is being demonstrated 

by Hammer and Champy (1996) in their approved publication about BPR. Many of 

the success stories they cite (IBM Credit, Ford, Kodak) are based on increased IT 

coverage (EAI/portal solution for credit-check-process through generalists; central 

database for procurement process; simultaneous engineering and CAD/CAM). What 

they demand correctly is to avoid the trap of automating an inefficient process but to 

redesign it beforehand. In the 1990ies the productivity gains due to IT utilization were 

seen as a kind of miracle by business men, thus not only Hammer and Champy did 

not question what really happened at the execution level. At that time the process 

redesign together with first time IT adoption offered enough potential for 

improvement so that some inefficiency along the proceeding from good practice 

business processes down to the implementation level did not matter. Although it was 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

14

tried to cover all business processes in one ERP application, this carelessness resulted 

in the EAI problem as soon as it was realized that there will never be a single 

application or at least homogeneous platform solution for all business requirements.              

Next to the obvious Business – IT gap, with system functionality increasing process 

durability became a problem. From a system theory perspective processes are partial 

behavior views within current system architectures. At a business level, processes are 

often decoupled from the overall system context and presented as the complete 

system behavior never to be changed. Thus, until recently, existing modeling 

approaches had a major disadvantage. For most of the applications a permanent 

semantic actualisation of the models was not necessary. Either these models were per 

se used only once (BPR), or they were stored for documentation purpose only (ERP 

reference models, ISO certification). Hammer and Champy introduced the so called 

Triangle, meaning that three alternative flows for every process should exist. 

Depending on the input parameters the most appropriate flow will be chosen. This 

selection mechanism is also known as business rule. Still, the processes per se are 

unchangeable.  Due to the not foreseen or at least rather inflexible process redesign 

possibilities the demand for every-day operational usability could not be fulfilled. But 

with loosely coupled and distributed implementation architectures a direct and 

frictionless link between high level business process models and operational usability 

gains momentum. Nevertheless, at the enterprise level these limitations were already 

recognized and business process life-cycle management starts to influence modeling 

behaviour (Becker et al. 2003).

2.2. Subsystem Shop Floor

2.2.1. System Characteristics

The manufacturing type of interest for this project is discrete manufacturing. Discrete, 

continuous and batch manufacturing processes follow a classification generally used

on specification of industry software products. This allows classifying manufacturing 

processes according to resource types and their relationship with time. For instance, 

the author examined the differences between batch and discrete manufacturing 

processes in terms of finite capacity scheduling (Pfadenhauer and Kittl (2003)). In the 

case of discrete manufacturing we operate with discrete time and finite/discrete 

resources. Product identification takes place on an item base, quantities are expressed 

by means of number of items and the base entity for product structures in production 

planning is the Bill of Material (BoM).

To manage the shop floor processes, one has to consider three flows, namely material, 

data and control flow (Leymann and Roller 2002). While process orientation leads to 

rather frictionless horizontal material flows, this is less true for control flows and least 

the case for information flows. Figure 6 (s. pg 15) tries to outline this situation. 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

15

CAD 

PDM

PPS

MIS QM

CRM

Shop Floor Control Level

Shop Floor Field Level

Drawing

Order

BoM

Routing

Resource Meta Data

Personnel Data

ATP Request

Inspection Schedule

Test Report

Work 

Completed 

Data

Resource 

Requirement

Personnel Meta Data

Demand

Route Card Material Requisition 

Card

Work Instruction

Job Confirmation

NC Program

Reports

KPI

Figure 6. The shop floor system in discrete manufacturing

In this picture the material flows crossing the Shop Floor Field Level horizontally have 

been ignored. Waterfalls, taps and water wheels represent control devices. Control 

flows are most prominent between the hierarchy levels, of which at the highest mostly 

department specific applications reside. CAD (Computer Aided Design) is such a 

typical software, supporting R&D in product design. It is a matter of control 

structures if and when drawings are made available for the Shop Floor Control Level. 

Nevertheless, control relationships are present within the hierarchy levels as well. 

Enterprise-specific mechanisms exist, which define the control flows. Orders for 

example are released from the PPS (Production Planning System) if the material listed 

in the BoM is either completely in the storage or just for first operations. Or a foreman 

has to decide when to release work instructions at the Shop Floor Control Level

depending on the actual resource utilization figures. Both, waterfall and tap stand for 

one-way flows, which means that it is always a more or less adequate information 

“shower” through well-defined channels which are controlled by sometimes simple, 

“water on/off” rules that sometimes depend on human experience. On the other hand 

the information flow back into the next higher level has to be controlled as well. Shop 

Floor Control and Field Level are both huge reservoirs of data, thus filter mechanisms 

are needed which extract portions the water wheel bins are able to handle. These 

reservoirs get filled from many different sources outside (waterfalls) and inside (mills) 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

16

the system. What makes the Shop Floor a tricky environment compared to, let us say, 

financial services is not the bare amount of data, because that is the same in e.g. 

clearing institutions. Two factors demand attention. First the data heterogeneity: the 

wooden barrel and the pool are full of different data formats with different life-spans. 

There are complex NC-Programs to handle, short route cards or unstructured data. 

Some of the data is relevant just for a small subsystem (e.g. transport data within a 

FMS (Flexible Manufacturing System)); other has to be provided to a number of 

different receivers (e.g. machine state data). One can find persistent as well as 

transient, real-time as well as batch run and XML (Extensible Markup Language) as 

well as hand written data. Taking into account this “Information Babylon”, it is rather 

obvious that the information systems of the shop floor are heterogeneous too. Not 

only because of the data handled, but also because of system dynamics. A shop floor 

is a system of permanent change, be it NC Machines, personnel or other control 

systems. Thus the often changing hardware (although in Figure 6 all the mills look the 

same) demands for complex information flow solutions, which often enough can only 

be achieved by very specialized and customized systems.   

This is true despite the fact that in the last decades more and more the IT became the 

driving force for efficiency improvement in the manufacturing enterprise. 

Figure 7. Evolution of IT-driven manufacturing concepts (Tian et al. 2002)

The most successful innovations were unambiguously concerned with autonomous 

solutions for partial problem spaces. CAD/CAM in combination with DNC and NC 

technologies solved the problem how to generate NC programs out of digital product 

data. But due to the collapse of CIM and the ghostlike “deserted fabric” the overall 

system focus was replaced by sub-system optimisation aims. Poor integration was the 

result, although certain approaches like the one presented by Kittl (1993) tried to keep 

an eye on the core (IDEF modeled) processes of the shop floor and not on arbitrary 

application borders. Only recently the discussion about overall information system 

integration was started again, unfortunately on two contrary abstraction levels. 

1) First on a conceptual level, where “digital fabric” (Wagner and Blumenau 2003), 

“smart factory” (Westkämper and Jendoubi 2003), and “agile manufacturing” are 

examples for terms which shall give the changing manufacturing landscape a guiding 

framework. The major driving force behind the search for a new system integration 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

17

approach is the fact that the dynamism of the production system grows in terms of 

decreased life-cycles for both, products and production facilities. Shorter life-cycles of 

products on the markets demand shorter ramp-up phases, which again can only be 

achieved by means of simultaneous engineering of product and production. Shorter 

life-cycles of production facilities lead to faster changing functionality providers, but 

not necessarily to changing information and control flows. A modular approach with 

well-defined and standardized interfaces enables adoptability of the production 

system. In either case, system life-cycle management is crucial. An integrated, 

architecture model would also inhibit the growing functionality-overlaps through 

uncoordinated functionality extensions (e.g. an application was implemented 

although only 30% of the functionality are new; the 70% have to be supported 

redundantly) as well as data redundancy due to an inconsistent data management. 

To give an example: with the data in ERP today no accurate accounting is possible. 

Cost objects get accounted only with indirect costs for machine-hours, tools, etc. 

Instead, if one thinks of the rapid growth of tooling costs in conjunction with the lack 

of cost transparency (Mumm 1997), direct cost information, which only the shop floor 

can deliver, is needed. Hence the demand for an architecture which allows to get the 

necessary information exactly from the objects which add the value (e.g. the tool-

management, the single NC-machine, etc.), linking them to the accounting module via 

appropriate services. In Pfadenhauer and Kittl (2004a) a detailed description of this 

scenario based on UML models can be found. If we claim that not enough accurate 

data is available in the ERP system, exactly the opposite is true, too. One has to ask the 

question whether it is reasonable to centralize all the information in the ERP via EAI, 

fully aware of the fact that much of the shop floor data at the ERP level lacks the data 

quality and data completeness to provide a comprehensive picture of production 

performance. The new architecture should support information/data production and 

storage near the artefacts which create them; other constructs which need the data can 

call the appropriate services. Hence an Information Management System can be 

established very flexibly in this architecture. Such an IMS can be established at 

different levels of abstraction, either considering low level shop floor services with 

finer granularity or coarse grained services in a multi site scheduling scenario with the 

package shop floor as a whole, offering public services like order scheduling in an 

ATP (available to promise) process and hiding the nested low level flows.

2) These changes at a conceptual level described above are closely related to internet 

based, software driven, distributed environments at a technical level. Thus the 

discussion about system integration can also be found on the ground of network 

protocols and data objects. The reason therefore is the availability of internet based 

Field Area Networks (FAN), which promise a single network standard (TCP/IP) 

between the office application world and the automation devices. Although the 

potential of Ethernet is still under heavy discussion, it seems as if in the future 

FieldBus networks will prevail in critical real-time systems. Nevertheless, the future of 

distributed systems higher than the traditional sensor/actor networks will very likely 

be Ethernet dominated (Blecker 2003). Not alone the communication protocols within 

the manufacturing enterprise grow together, but also the processor hardware. 

Compared to the well-engineered, but insular DCS (Distributed Control Systems), PC 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

18

based systems offer more modularity and flexibility. They also increased their stability 

due to better OS. Hence PC based systems gain market shares on both levels, at 

operator terminal level close to the machine as well as SCADA (Supervisory Control 

And Data Acquisition) visualization level. One maturing technology will soon boost 

the demand for intelligent, bottom-up system integration: RFID (Radio Frequency 

Identification). Figure 8 presents an architecture proposal Siemens propagates for 

RFID and MES (Manufacturing Execution System) integration. RFID is the successor 

of barcodes for object identification. It depends on a wireless hardware infrastructure, 

which already demands for sensitive control tasks concerning access point installation 

bearing in mind net coverage or frequency overlapping. For an automated location 

detection and read/write activities on the tags in the context of process execution one 

has to have a model of the device architecture. Where are the reader/writer physically 

located, which interfaces exist with backend systems? Which services do they offer 

assumed active tags get used which request for information or want to transfer stored 

processing data? Siemens announced in October 2005 at the SPS/IPC/Drives in 

Nürnberg, Germany the integration of the new mobile UHF-reader Simatic RF610M 

with the MES component Simatic IT Production Modeler, now the central hub for 

RFID data transport into other applications (e.g. RFID read data transformation into a 

ERP receiving transaction).

Figure 8. Siemens framework for RFID and MES integration (Siemens 2006)

The resulting standardization level regarding the technical infrastructure opens 

completely new possibilities for architectures which were missing in the past. Blecker 

(2003) underlines the importance of internet technologies and undertakes a 

comparison between approaches towards Internet-based production concepts (Figure 

9). He correctly identifies the need for a strategic and methodical concept for modern 

production environments due to the increase of distributed services in production 

processes. In his opinion the depicted approaches do not establish a framework 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

19

sufficient in width and depth. In addition, he criticises the primary concentration on 

technical aspects. Nevertheless, Blecker agrees that a shift from hierarchical structures 

towards Intelligent Manufacturing Systems is noticeable and most prominent in agent 

based distributed systems. Intelligent service providers and service requestors behave 

like agents in a Multi Agent System (MAS), with own functionality and decision 

making capabilities. It is not hard to imagine that e.g. a tool with a RFID tag is 

integrated as a mobile agent into an existing MAS environment like PABADIS (plant 

automation based on distributed systems) (Pabadis.org 2004). Although the PABADIS 

framework claims to replace the centralized MES control structures by means of 

agents, it is obvious that the project members are part of the automation community 

and therefore the focus lies clearly on decentralized control at PLC and SCADA level. 

It is postulated that three out of eleven MES functionalities are commonly performed 

by SCADA systems, namely data collection and acquisition, process management and 

performance analysis. This may be true for the process industry, but even then the 

scope of the project is still limited. The title of deliverable 6.3, “Revolutionising Plant 

Automation” makes this more than clear (PABADIS 2001). 

For Iung (2003) intelligent field components evolve toward MAS based e-Maintenance 

concepts embedded in a framework of CMM (integrated control, maintenance and 

technical management system). The formal maintenance platform modeling 

framework is based on the GERAM reference architecture, but in contrast to the work 

presented here it remains at the field component level for the process industry with 

focus on maintenance. Furthermore, it does not consider different modeling levels of 

abstraction. 

Figure 9. Comparison between production concepts based on internet technologies (Blecker 2003)



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

20

Blecker then introduces his own concept, Web-based Manufacturing and defines it as 

an 

Internet Technology based Production Concept that is a (in theory) well-founded 

guiding-idea, based on empirical knowledge where appropriate, on the organization, 

planning, control and evolution of production systems. It aims at easily reconfigurable, 

high flexible production systems based on the comprehensive application of Internet 

Technologies on the shop floor.

Blecker (2003)

After emphasising the potential regarding interoperability and connectivity (“plug-

and-produce”) from individual sensors to office applications, he focuses on the 

consequences for as well as the coordination between management and operation 

subsystems. Although we are agreeable to his assumptions concerning the 

implications of internet technologies (Figure 10), the Web-based Manufacturing 

concept remains unexplained. Nevertheless, for the development of the methodology 

presented in this work, the potential of internet technologies not only highlighted by 

Blecker is essential.     

Figure 10. Potential Modifications of subsystems derived from Internet Technology (Blecker 2003)

This increased internet technology focus is visible in the Machines & Facilities sector, 

where the Ethernet makes its way down to the machine level, interfacing PLC and 

control devices. The International Electrotechnical Commission (IEC) reacts to this 

development and proposes an extension to the IEC 61131 standard for PLCs 

(Programmable Logic Control) in centralized architectures through the IEC 61499 

standard for distributed control systems. Event interfaces and compliance profiles for 

the network and data exchange layer extend the basic paradigm of function-blocks.

One of the major aims of this effort is to ease the modeling of automation processes 

(Favre-Bulle 2004).



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

21

High information availability for Employees & Work Places is a very promising field for 

internet based, distributed Information Systems. The high information transparency 

will result in changes in operating interfaces. The author strongly believes that with 

distributed system architectures the information retrieval process will become more 

pull-oriented, which means that the employees can design their own information 

cockpits flexibly and highly customized. Moreover, the employee should be 

empowered to easily include the information blocks actually needed. Again the ERP 

level with the new portal/portlets GUI generation provides a good example of what is

possible, although most of these applications still reside on homogeneous platforms.

2.2.2. System Integration

Often enough the production sub-systems work stand-alone or the high integration 

effort allows only for minimal, vertical interfacing. Either the vertical integration gets 

achieved by means of direct ERP and sub-system interfacing, which increases the ERP 

complexity and results in huge amounts of row data at a level where proper 

interpreted one would be needed. Some sort of improvised data filter and 

transformation is therefore unavoidable. Moreover, crucial information is missing in 

this scenario. We discussed the lack of cost data quality (indirect costs-domination 

instead of direct ones is responsible for the well known cross-subsidisation between 

products with high and low profitability), which is a direct result of insufficient 

information integration. This enlarged ERP architecture stresses the functionality and 

scalability of the ERP system. 

Or the integration effort of shop floor functionality results in a monolithic control 

centralization at the top of the shop floor hierarchy, which establishes the interface for 

higher systems like PPS or MM (Material Management). Typical examples are MES 

(Manufacturing Execution System, Figure 11). 

Figure 11. Centralized and monolithic MES integration architecture



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

22

In principle, MES objectives are to provide mission critical information about 

production activities across the enterprise and supply chain via bi-directional 

communications. Therefore, they aim to improve the return on operational assets as 

well as on-time delivery, inventory turns, gross margin, and cash flow performance. 

More and more regulatory compliance or quality programs become the main force 

behind increased MES interest. Figure 12 depicts the scope of a typical MES system. 

Although many existing MES solutions offer the functionality in a modularized form, 

we still call them monolithic, because the integration of third party products is not 

easy to manage once the modules are implemented. Siemens, for instance, with its 

Simatic IT product suite claims flexible process definition by means of a graphical 

modeler tool, but this is true only for Microsoft platform specific components and 

COM bindings (Di Salvo et al. 2003).

Figure 12. MES functionality defined by the MESA consortium

Bauer claims that MES suffer from static structures and high costs (Bauer 1995). In 

PABADIS (2001) the limitations of MES systems are seen mainly from a scheduling 

perspective, claiming that the growing product variety and complexity leads to an 

increased complexity for resource allocation and therefore scheduling algorithms. 

Second, the flexibility of MES is not sufficient when it comes to changes in the product 

mix. And last the problem of robustness and failure risk is mentioned. So far, data 

centric integration efforts prevailed, resulting in an extensive data-push into the ERP 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

23

systems. ERP systems typically offer API (Application Programming Interface) for 

these purposes. If this is not the case, often enough “innovative” solutions can be 

found enabling a direct ERP database table access. But MES systems mostly offer 

standardized adapters for the most important ERP packages. Nevertheless, almost 

every integration project is unique, because in this area no standardization was 

enforced and proprietary interfaces and data formats prevailed. And the number of 

proprietary MES products is unmanageable, as the yearly MES market survey of 

Frauenhofer Institute for Production Engineering and Automation and Trovarit AG 

(Wiendahl et al. 2004) proves. The products not only differ enormously regarding the 

functionality, but also the technology they implement. Many of them still do not 

provide Web Clients or Web Service interfaces, even XML support can not be taken 

for sure.

Figure 13. Open Applications Group manufacturing scenario (Connelly 2005)



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

24

Recently some institutions evolved which try to tackle the issue of standardization, 

like MESA (Manufacturing Enterprise Solutions Association) or ISA (Instrumentation, 

Systems and Automation Society, see clause 2.1.3) in the field of manufacturing 

operation functionality. The different standardization groups also try to merge their 

efforts toward a harmonized set of information standards in the industrial field. The 

Open O&M, occupied with operation and maintenance information exchange, is a 

joint initiative of Open Applications Group (OAGIS standard), ISA (S 95 standard), 

World Batch Forum, MIMOSA (Machinery Information Management Open System 

Alliance) (MIMOSA standard) and Open Process Foundation (OPC standard). 

Because there are many overlaps, the goal is to harmonize the key standards of the 

participating organisations. 

Connelly (2005) describes in his work some scenarios (Figure 14) and processes 

(Figure 13) which demonstrate the scope of the joined standardization efforts and the 

areas to which each organization can contribute, but so far nothing else except such 

high level models has been published. Hence no complete framework including 

standardized modeling methodologies or patterns is available. Nevertheless, the 

interfaces and complex interactions depicted in those two figures underline the 

importance of modeling as a means of system management.

Figure 14. Open Applications Group “Production to MES” scenario (Connelly 2005)



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

25

So far the importance of systems integration between the shop floor and external 

systems regarding information exchange was limited. Most of the integration was 

achieved at an enterprise level (Figure 11). This “business application intermediary 

approach” is valid for most of the IT supported integration efforts. 

2.2.3. System Modeling

The distinction between Business Process Modeling (BPM) and Information System 

Modeling (ISM) is especially present in the shop floor. On the one hand automated 

sub-systems like Manufacturing Cells are modelled with ISM in the context of control 

system development, on the other hand BPM seldom gets in touch with Tool 

Management and magazine handling of Manufacturing Cells, i.e. the abstraction level 

is rather high. Hence an alignment of both design domains is necessary. The CIMOSA 

approach (ESPRIT Consortium AMICE 1993) is in our opinion a good orientation 

point for this objective. 

More physical oriented modeling takes place in the context of production facilities 

and logistic systems design in terms of product/process engineering. The so called 

“digital” or “virtual factories” consist of a complete digitised physical model of the 

factory, CAD/geometry/simulation data of systems like machines or transport 

facilities merge with product data, thus through data and process integration a shift 

from simultaneous to cooperative engineering is recognized (Sihn and Graupner 

2003). Due to increased production environment changes the next step is towards the 

“smart factory” (Westkämper and Jendoubi 2003), which supports optimisation 

throughout the life cycle of the manufacturing systems and the depending processes 

(Wagner and Blumenau 2003). Again only for the system build-time in the design 

phase modeling methodologies for rather encapsulated shop floor sub domains, like 

FMS (Flexible Manufacturing System) were developed. But due to platform 

homogeneity of such islands of automation the demand for integration support by 

means of models was weak (e.g. ProduCASE tool from ABB described in Fröhlich et 

al. 2002). 

The same is true for model based monitoring and control tools for automated systems 

(SCADA) in the field level, which allow system design within the vendor’s platform 

and within homogeneous networks (technology or vendor spanning approaches 

rarely exist). New SCADA versions are now being designed to handle devices and 

even entire systems as full entities (classes) that encapsulate all their specific attributes 

and functionality and use TCP(UDP)/IP as protocol.

To sum it up, system life-cycle modeling becomes more and more important,

especially in the shop floor domain, to cope with increased system-variety and 

connectivity resulting in high flexibility expectations for both, material and 

information processes. 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

26

2.2.3.1. OO Shop Floor Modeling

The Unified Modeling Language UML is an ISM technique (Giaglis 2001), but well 

suited (Dumas & ter Hofstede 2001; Fröhlich et al. 2002) for ISM/BPM alignment 

(through variable extensions like profiles). Aguilar-Savén (2003) introduces in her 

business process modeling review a classification framework which displays UML on 

the top concerning variance of model purpose and model change permissiveness 

compared with other techniques. Only workflow techniques and GRAI-GIM perform 

better in her comparison. The problem with workflow techniques is, that a number of 

proprietary proposals exist which lack a certain degree of standardization to gain 

widespread acceptance. The GRAI-GIM approach strongly influenced the GERAM 

approach (Figure 5), but although it was an interesting approach invented for 

manufacturing processes, it did not succeed due to a low formalization level. 

Furthermore, it lacked vendor support. Proven UML engineering methodologies are 

available, all of them (e.g. in Ng 2002; Dietzsch 2002; Hitz and Kappel 2003; Mielke 

2002) relate to more or less three views: the functional, the structural, and the 

behavioral. In Mielke (2002) the problem domain for a single application development 

project is well known and the use of cases (functional view) is therefore less 

important. Instead, an organization model is introduced as an extension. In Dietzsch 

(2002) the reasons why the UML Business Modeling Profile gets combined with parts 

of the PROMET BPR tool are mainly the lack of concepts for goals, critical success 

factors and index values of processes. Dietzsch describes that this method integration 

leads to various problems in practice, which is why we choose pure UML with the 

foreseen extensions in the Meta-Model. 

Also much research has been undertaken concerning UML usability in the 

Industrial/Manufacturing Environment. Bruccoleri et al. (2003) give an example of 

how UML can be used as a system design methodology for Flexible Manufacturing 

Control Systems. While the methodology used by them is interesting within the scope 

of our considerations, there are still problems with this approach: clearly, a given

static structure of a Manufacturing Cell gets modelled and the flexibility mentioned 

affects only changing attribute values and not changing operation distribution 

between the objects, which would be very important for the shop floor, where single 

operations/services can be offered by changing objects/components. How to handle 

the problem of changing service distribution, and thus the independence of services 

and components in the analysis phase, is demonstrated in the demo-scenario. 

The point is that these papers show that UML together with its extension mechanisms 

offers sufficient freedom to cope with the shop floor system complexity. 

2.2.3.2. ANSI/ISA 95 framework 

The work for ISA S95 (widespread abbreviation for the bunch of standard parts 

mentioned below) was inspired by the Purdue Reference Model (see Figure 5), which 

defines distinctive levels in manufacturing enterprises and functions. Furthermore, it 

includes details of functions in the control domain. 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

27

Figure 15. Multi-level hierarchy of activities (ANSI/ISA 2000)

ISA S95 aims at the standardization of interfaces between the levels of manufacturing 

environments (vertical integration, Figure 15 and between the manufacturing 

operation management activities within level 3 (Figure 16).

Still the interface Level 3/Level 4 is dominant in the specifications published so far 

(ANSI/ISA-95.00.01-2000 Models and Terminology; ANSI/ISA-95.00.02-2001 Object 

Model Attributes and ANSI/ISA-95.00.03-2005 Activity Models of Manufacturing 

Operations Management), but first considerations for internal integration of functional 

subsystems are undertaken in Part 3, which is therefore the standard with the greatest 

significance for our work: boundaries and behavioral description of functional 

entities, information flow identification, rudimentary data object definition. ISA 

95.00.04 Object Models and Attributes for Manufacturing Operations Management

and ISA 95.00.05 Business to Manufacturing Transactions still have draft status at the 

time of writing. Regarding Part 4 it will be interesting to see whether it is possible to 

find a common ground for object models not only for Level 3, but especially for field 

level automation interfaces, where a number of standards already exists (e.g. OPC 

XML Data Access). Part 5 will tangle the issue of transactions and hence message 

definitions, a field strongly occupied by the OAGIS 9.0 standard.

ANSI/ISA 95 is generic and at a high level of abstraction, thus it is representing a 

unifying framework which is highly adoptable for domain modeling. Nevertheless, it 

can cover the different engineering dimensions, but in a more user-friendly way 

compared to the preceding enterprise architecture approaches like GERAM or 

CIMOSA. This is partly the case because ISA S95 is considering the implementation 

restrictions, at least when it comes to the issue of modeling techniques. In that respect 

the IS modeling standard UML is used. It is the opinion of the author that a unified 



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

28

modeling language is one of the key aspects towards mutual understanding.  In this

project it will be demonstrated that UML is extensible to support domain specific 

modeling, as well as to accompany modeling at different levels of abstraction.

ANSI/ISA 95 Part 1 defines hierarchy models, a high-level functional data flow model 

and an object model for the enterprise level and manufacturing level interface. This 

proposal incorporates a major weakness. The ProductionSchedule object assumes that 

all necessary information for every single ProductionRequest is cascaded into a single 

XML document. This may be convenient for monolithic and encapsulated systems in 

Level 4 (e.g. ERP system) and Level 3 (single MES system), but contradicts the idea of 

distributed functionality. To include the MaterialConsumedRequirement into the 

ProductionSchedule means to replicate static data (Bill of Material) within dynamic data 

(orders with time and resource constraints). Thus the proposed architecture just 

considers dynamic data and collects static data from defined service providers.

B2MML (Business to Manufacturing Markup Language) V2.0, 2003 is a W3C XML 

Schema Implementation for the ANSI/ISA standard, based upon the ANSI/ISA-

95.00.02-2001 Enterprise-Control System Integration Part 2: Object Model Attributes 

Standard. The defined data object types are those specified for the manufacturing 

control functions and other enterprise functions interface contents (Level 3/Level 4 

IF). That means B2MML helps to standardize the information exchange between 

business and manufacturing, but not between manufacturing functionalities. 

Unfortunately the element names in the XML type definitions do not always mach the 

corresponding ANSI/ISA 95 definitions, e.g. SegmentResponse in 

ProductionSchedule/ProductionRequest instead of RequestedSegmentResponse. In addition, 

for many objects the expression ID was included in the object names. Why these 

changes were made is not clear to the author and they eventually hamper the 

implementation due to the lack of compliance. Moreover, every object includes an Any

element of the unbounded type AnyType, which allows for individual customization. 

This increases flexibility, and must be seen as a necessity for real world scenarios.

ANSI/ISA 95 Part 3 is a framework for integration projects. The focus lies on 

functions, not systems, organizations or individuals within manufacturing (Figure 16). 

The general problem regarding such a functional framework are the different IT and 

automation cultures and knowledge bases. In the past this resulted in a lack of 

consensus and of models to follow for integration. The increased need for such a 

consensus stems from demands like 

• Supply chain optimization

• Asset efficiency improvement

• Agile manufacturing

• ATP (available to profit)



System Approach

__________________________________________________________________________________________________________________

____________________________________________________________________________

29

Figure 16. ANSI/ISA 95 Part 1 Functional enterprise-control model (ANSI/ISA 2000)

ANSI/ISA Part 3 tries to establish a consensus regarding activities of manufacturing 

operation management. As Figure 16 shows, at the highest functional abstraction level 

the connectivity between the key Level 3 and Level 4 activities is modelled in Part 1. 

Within this Functional enterprise-control model the border of the Part 3 Manufacturing 

operation management model is highlighted (dotted line). This line is the equivalent to 

the Level 3/Level 4 interface defined in ANSI/ISA Part 1, which is also the source for 

the complete set of activities depicted in the figure above. Four categories constitute 

the manufacturing operations management model:  production, inventory, quality, 

and maintenance operations management. The Production operations management model

for instance includes the Production Control and part of the Production Scheduling

function of Figure 16. Figure 40 depicts this relationship as part of the UML meta-

model of the proposed methodology. The fact that there could also be other activities 

in a manufacturing facility is considered in Part 3 as well as in the proposed modeling 

framework. Within this project production operations management is the category 

which is used to implement the methodology as well as the use case. 



Research Objectives

__________________________________________________________________________________________________________________

____________________________________________________________________________

30

3. Research Objectives

Discrete manufacturing shop floor information and control flow management is still a 

challenging task due to the heterogeneity of data structures and information systems 

(automation components inclusively). The objective of vertical integration from high-

level Enterprise Resource Planning (ERP) to the machine level is still unrivalled. 

Existing solutions led to static process logic coding within monolithic Manufacturing 

Execution System (MES) utilizing elaborate interfaces for rudimentary integration, 

lacking the needed flexibility and scalability. Single processes which seem feasible for 

the given situation are defined once during design-time according to the functionality 

the monolithic application provides. The system overview gets lost due to the 

restrictions of the application or interfaces. No matter whether an MES layer is 

introduced or there is direct interfacing between ERP and selected systems like tool 

management or scheduler, the problem stays the same: what is achieved is just 

process adjustment towards the functionality of the applications in a static framework 

and not vice versa (IT architecture follows process). This proceeding is not sufficient 

regarding the requirements of today’s dynamic production environments. 

But now more and more ERP vendors open up their monolithic products or develop 

new, service oriented solutions and offer coarse grained services via standardized 

interfaces. This creates new possibilities not only for static, data centric vertical 

integration, but also for full process integration of field and control level devices into 

service oriented architectures. Process logic could be designed to be that flexible so it 

renders time- and money-consuming, one by one interface coding obsolete. Present 

MES solutions suffer from this “interfacing-hell”. At the end huge data integration 

efforts distract the focus from process integration. It can be assumed that sub-system 

vendors will follow the trend towards service orientation already visible at the ERP 

level, thus within the shop floor the distributed and standardized service availability 

will increase permanently. Although the three levels are still used, from a technical 

and functionality oriented perspective, hierarchies are avoided in favour of equal 

service providers and consumers. Service providers are at the enterprise level the ERP 

functionality blocks like material management (MM), production planning (PP) or 

finance (FI) as well as other business applications like MIS (Management Information 

System). At the field level PC-Terminals, SCADA or PLC can be mentioned, the future 

influence of RFID technologies was discussed above. Control logic at the automation 

level is distributed between intelligent automation devices. Interaction takes place via 

interfaces (lollipops and arrows in Figure 17) in a loosely coupled way. Thus process 

logic is not coded in one single application but can be flexibly designed and executed 

in an appropriate middleware layer. This vertical, internal integration of the shop 

floor is just one aspect, public services into and out of the shop floor the other. 

Machine vendors realize that it’s not enough any more to ship the product without 

offering services like online maintenance (Wollschlaeger and Bangemann 2004), (Iung 

2003), education support, planning and optimisation of production and logistics 



Research Objectives

__________________________________________________________________________________________________________________

____________________________________________________________________________

31

systems or other e-Industrial/tele-services (Sihn & Graupner 2003). With material 

suppliers the integration is mostly established at ERP level and is mainly focused on 

procurement data exchange, although some procurement process activities could be 

delegated to the shop floor. For instance tool procurement: Today the demand 

triggered in the shop floor has to be entered into the ERP system. Then the purchaser 

processes the request and interacts with the supplier. Thus all the processing takes 

place at ERP level. A blanket order at the ERP level could be part of an efficient 

alternative arrangement which allows the worker in the shop floor to trigger 

automatically the process at the supplier side through supplier services whenever he 

enters the demand. Taking into account the growing flexibility for information process 

design, the shop floor architects have to have the preparation and equipment to 

integrate functionalities provided by their suppliers and also by their customers, who 

actually ask for available to promise functionalities of scheduling applications. Hence 

this kind of external connectivity at the shop floor control level is an issue at the 

customer side too. For instance track & trace requirements need actual product 

processing status data, thus not the ERP but the control level is able to deliver the 

proper data quality. In the opinion of the author the public, horizontal connectivity is

in the short run not as promising as the vertical service integration due to higher 

coordination demands and security reasons. An architecture which supports regular 

process change and improvement is necessary. This would imply the implementation 

of a distributed architecture in the Shop Floor, with building blocks realizing the 

control and information flow in a loosely coupled way. Such an architecture, where 

functionality is not centralized in a monolithic application but is provided by 

decentralized entities through standardized interfaces would offer new possibilities,

not only for static, data centric vertical integration, but also for full process integration 

of the machine level into service oriented architectures. If you take a look at Figure 17

you can imagine why facing this complexity without modeling based process life-

cycle management is impossible. 

Figure 17. Internal and external service providers in the shop floor control level



Research Objectives

__________________________________________________________________________________________________________________

____________________________________________________________________________

32

Recent developments in and around the shop floor system strengthen the call for an

intuitive, model based overview about service distribution and communication 

networks within the complete architecture. On the one hand more control tasks get 

transferred as close to the machine level as possible, because there the knowledge is 

concentrated and reaction times are shortest. On the other hand technologies will get 

influence which increase service distribution even more and thus the demand for 

consistent modeling. 

In the model-based systems engineering context, the research objective is 

a platform-independent UML shop floor domain model which contains 

a hierarchically ordered collection of services which are necessary to 

achieve typical, nested process functionality within different shop floor 

environments. A flow engine together with an appropriate middleware 

then executes this flow model. Therefore the modeling methodology has 

to support high-level system models as well as detailed, executable 

process models development. Business and IT alignment by means of 

modeling is a major aim, as well as the use of standards and best 

practices to keep the framework simple and make it user-friendly.

From a systems engineering point of view it is not surprising to see that the software 

engineering domain and the manufacturing domain are introducing similar concepts 

to cope with similar requirements their architectures have to fulfil. The markets 

(stakeholders) they serve demand:

• Functionality and Performance

• Flexibility (plug-and-play/produce)

• Reusability

• Reconfigurability, Customization

• Interoperability

• Portability

Their system elements (components) have to

• be distributed

• be loosely coupled

• offer easy, accessible and well-defined interfaces

• hide the implementation

• be context independent

• be self-contained

• be coarse grained

• be combinable 



Research Objectives

__________________________________________________________________________________________________________________

____________________________________________________________________________

33

A manufacturing business and IT view alignment is a must for future manufacturing 

system life cycle management because:

Ø IT is one of the enabling future technologies for manufacturing (e-

manufacturing, internet based manufacturing)

Ø Both worlds (Software Engineering and Industrial Engineering) can learn from 

each other regarding concepts and methodologies



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

34

4. Guiding Principles and Techniques for a Modern 

Shop Floor Architecture

Systems engineering for complex, socio-technical systems is only possible by means 

of:

Ø Modularization

Ø Standardization

Ø Modeling

Modularization is the capsulation of sub-systems and the provision of module 

functionality by means of well-defined interfaces. This approach is known for all kind 

of complex systems, thus also for information systems. The evolution of component-

and object-orientated techniques finally resulted in the SOA concept, which strongly 

emphasizes the second point mentioned here: standardization. On the one hand SOA 

can be seen as an implementation-independent concept for modularized, distributed 

socio-technical systems. But on the other hand SOA also propagates a new 

programming approach strongly focused on standardized technologies, most 

prominently the Web Service stack. This is the major transformation step a feasible 

modeling methodology has to enable, the mapping of arbitrary functionality 

providers, be it software building blocks or humans, to the implementation platforms 

available. The latter can have an equal variation, from sophisticated complex Web 

Service interactions to paper flows. In the literature the two layers are also known as 

Business Services and Software Services. 

In INTEROP D9.1 (2004) SOA, MDA and BPM are discussed in a holistic 

interoperability context, a fact which highlights the dependency of these approaches. 

Standardization not only at the technical level, but also regarding the semantics is 

closely related to the shift towards holistic approaches. Alonso (2004) speaks of 

domain dependent vertical standards, which glue together the business and IT level 

by means of shared terminologies and frameworks. For the Shop Floor domain one of 

the most interesting proposals in this respect are the ANSI/ISA 95 standards for 

enterprise-control system integration, which define hierarchy, activity and object 

models. Thus, a new information framework and architecture for the shop floor have

to adopt these paradigms. In the following the system engineering principles used in 

this thesis are introduced. 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

35

4.1. Modularization - SOA

4.1.1. SOA Concept

Service Oriented Architecture (SOA) 

… is a form of distributed systems architecture that is typically characterized by the 

following properties:

Logical view: The service is an abstracted, logical view of actual programs, databases, 

business processes, etc., defined in terms of what it does, typically carrying out a 

business-level operation. 

Message orientation: The service is formally defined in terms of the messages exchanged 

between provider agents and requester agents, and not the properties of the agents 

themselves. The internal structure of an agent, including features such as its 

implementation language, process structure and even database structure, are deliberately 

abstracted away in the SOA: using the SOA discipline one does not and should not need 

to know how an agent implementing a service is constructed. A key benefit of this 

concerns so-called legacy systems. By avoiding any knowledge of the internal structure 

of an agent, one can incorporate any software component or application that can be 

"wrapped" in message handling code that allows it to adhere to the formal service 

definition. 

Description orientation: A service is described by machine-processable meta data. The 

description supports the public nature of the SOA: only those details that are exposed to 

the public and important for the use of the service should be included in the description. 

The semantics of a service should be documented, either directly or indirectly, by its 

description.

Granularity: Services tend to use a small number of operations with relatively large and 

complex messages.

Network orientation: Services tend to be oriented toward use over a network, though this 

is not an absolute requirement.

Platform neutral: Messages are sent in a platform-neutral, standardized format delivered 

through the interfaces. XML is the most obvious format that meets this constraint.

W3C (2004)

Below you will find a definition by Erl which emphasises the separation of SOA 

principles and the implementation by means of Web Services:

A SOA is a design model with a deeply rooted concept of encapsulating application logic 

with services that interact via a common communication protocol. When Web services 

are used to establish this communication framework, they basically represent a Web-

based implementation of an SOA.

Erl (2004)



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

36

In this context Colan (2004a) defines a service in SOA as „… an application function 

packaged as a reusable component for use in a business process. It either provides 

information or facilitates a change to business data from one valid and consistent state 

to another. The process used to implement a particular service does not matter, as 

long as it responds to your commands and offers the quality of service you require.” 

Berry (2003) states that “A service is a function that is well-defined, self-contained, 

and does not depend on the context or state of other services.” The last part of the 

statement is valid just for simple and not complex services which are choreographies 

of other services, that again are either simple or complex. 

A SOA can be best described as a distributed, loosely coupled, standards-based and 

process-centred architecture, where the modules offer services, which can be accessed 

via messaging. Services in that context are discoverable (service broker publish and 

find interactions, Figure 18), stateless software entities that expose coarse-grained 

functionality by means of a well-defined interface. How this functionality is achieved, 

i.e. what happens behind the service interface, in which programming language the 

service is coded and on which platform the service is actually running, is hidden from 

the service requestor (loosely coupling). It seems that with this definition in mind it 

makes no difference whether the service is realized by a single method or a long-

running process with user interaction. But the first case represents not the original aim 

of a SOA, which demands for coarse-grained services, in contrast to the fine-grained 

interactions of the OO world. Although the distinction between internal and external 

services will become less apparent, at the present stage external business services are 

often more coarse-grained than the fine-grained, internal services within a secure 

domain. To achieve enriched functionality, fine-grained services can be bundled 

through choreography (distributed process execution logic) or composition 

(centralized process execution logic). Beside reusability, this process centricity in 

terms of nested process designs is the key advantage of SOA. It enables real business 

process life-cycle management, that is to say fast process definition, process 

monitoring and continuous process improvement. In a SOA, the process logic is made 

explicit in flow models and not distributed between the service providers

(Channabasavaiah et al. 2004).

Figure 18. The basic SOA publish-find-bind mechanism



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

37

There is an ongoing discussion about whether SOA is a natural evolution of DOO 

(Distributed Object Orientation) architectures or a brand new paradigm. For us, when 

we assume an n-tier architecture, SOA is establishing the interface layer and can be 

seen in the application layer just as middleware providing transparent connectivity to 

the distributed pieces of application logic, which themselves apply to the OO 

paradigm. Hence there is a close relationship between the OO concept and the SOA 

concept. The OO concepts are already state of the art for single systems development, 

pushing forward the ISM techniques which are more and more necessary for 

analysing and design, and will become even more important in the context of MDA. 

At the shop floor level research with OO approaches was especially done for highly 

automated sub-domains like FMCS (Flexible Manufacturing Control System) or 

Manufacturing Cells, thus the work concerned a single and rather homogeneous 

platform system (Bruccoleri et al. 2003; Zhang et al. 1999; Booth 1998). For the design 

of MES applications OOA approaches still exist. Bauer (1995) presents the object-

event-action model which is part of the ProduCASE tool from ABB. The problem is 

the usage within a unique and proprietary platform. The software building blocks 

offer homogeneous interfaces and interoperability is therefore not a real issue. In 

addition, the configuration of the processes takes place only once during the 

implementation. 

As early as in 2000, when the SOA concept gained momentum, researchers warned 

that the lessons learned within nearly 20 years of OO should not be neglected when 

creating service oriented architectures. Burbeck (2000) states that “…how services are 

described and organized in a way that supports the dynamic discovery of appropriate 

services at runtime…” will define the success of B2B business. Architectures which 

focus on that issue he calls genuinely service-oriented, whereas such with a focus on 

message protocols and server communication details within a single corporate system 

he calls service-based. The author agrees on the statement about the importance of 

service categorization, taxonomy and discovery for the use during run-time and 

design-time, but the demo scenario in this work will demonstrate that the SOA 

application within a single domain does not make the service registry less important. 

On the contrary, today exactly the opposite comes true. In B2B scenarios the static 

point to point connection still prevails, whereas registries are successfully used 

internally. 

The SOA again approves the concept of distributed computing, the platform 

independent modularisation of systems. Basis of this modularisation is the creation of 

encapsulated, reusable components which offer services through well-defined 

interfaces (not only IT-components can be seen in this way, but also the foreman, 

whose services include scheduling, exception handling, etc.). Self-similarity of the 

service providers regarding form and function is the basis and enable enriched 

usability. New systems make use of these reusable building blocks, which are also 

called “assets” in the context of software engineering (Colan 2004b) and will in many 

cases wrap legacy system functionality. 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

38

4.1.2. SOA and Data Distribution

The concept of encapsulation per se does say nothing about data distribution, i.e. 

which architecture is chosen for the data layer in a SOA. Generally speaking, two 

different approaches can be used:

Ø Distributed approach: Persistent data is stored physically close to the source 

services or services which establish the highest access rate during the life time. 

Every service is offering data update operations and is responsible for updates 

in data dependent services.

Ø Centric approach: Persistent data is stored in form of master data. A message 

router is responsible for the population of redundant copies in the services. 

Data changes are only allowed in the master copy.

The architecture described in clause two has the advantage of easier data quality 

control; also fewer components have to be highly available. The drawback is that 

routing related delays for data update have to be accepted, also the question, which 

data has to be updated in the services is not always easy to answer. Data updates in an 

architecture following the distributed approach trigger update processes invoking 

update operations of many services. One can find the opinion that a service 

encapsulating some database-resident data constitutes a business service. The only 

way to get to the data is via messaging.

4.1.3. SOA and System Management

The concept of SOA is not so much technology-focused, although the establishment of 

standards (e.g. WS at the interface level) is closely related to the further acceptance. It 

places much more emphasis on the importance of service life-cycle management, 

embedded in an overall system management. Similar to the technological record the 

SOA management concept is no innovation but derives from Business Process 

Management approaches. Out of the broad literature we will focus on the framework 

presented by Walford (1999), because he very much had IT supported processes in 

mind. The term “automation asset” that he uses for potential process elements can 

easily be equated with the term “service” used in the context of SOA. The formulated 

requirements toward corresponding management systems describe the SOA 

management requirements perfectly:

• Life cycle management

• Financial management (Accounting systems need to consider automation 

assets as “real” enterprise assets from a financial perspective.)

• Business rules (procurement, maintenance, utilization)

• Repository (information storage (metadata) and access mechanism)



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

39

4.1.3.1. Life cycle management

The following are the requirements which SOA management systems have to fulfil in 

the different stages of the service life-cycle: 

1) Creation stage management

This life-cycle phase can be further decomposed:

a) Need recognition (identified by means of insufficient operational performance in 

the service model or to-be scenario analysis requirements in the domain model)

b) Requirement determination

c) Rule based procurement:

• reuse assets the enterprise already has

• modify the assets the enterprise already has

• buy a COTS (commercial off-the-shelf) product

• modify a COTS product

• develop a custom asset in-house

d) Deployment (make available to potential user and register in repository)

2) Use stage management

Use stage management can be split into: 

a) Configuration management

• versioning (evaluation of proposed changes to the product and version mix)

• updates 

• interoperability

• aggregation/decomposition (service can be part of many processes, change in 

service requires effect examination in every process)

• multiple users (change management, update, keeping user information)

b) Operations management

The purpose of operation management is to maintain an environment that can 

effectively support the assets utilized by the enterprise.

• online management (monitoring, problem detection)

• offline management (activities which do not have to occur while the 

operational activities are taking place or that require a different time period in 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

40

which to accomplish the function e.g. preventative maintenance, help, repair, 

facility expansion)

• environment management (define a set of enterprise assets that must be 

managed as a unit)

3) Retirement stage management

Asset retirement has to be seen as a gradual process, and appropriate rules have to be 

enforced for decision making.

To achieve the outlined life cycle management approach, Walford (1999) differs 

between class models (system models in the context of SOA) on the one hand and unit 

models (service models in the context of SOA) on the other. Conformity between both 

models has to be ensured. Every service specification produced by the unit model 

needs to be checked for conformity to the system model and placed in its proper 

position in the model. The most useful location needs to be explicitly determined 

through business rules and experienced staff.

The CBDI, a SOA practice portal, postulates that 

The Service Architecture provides the framework for managing the life cycle of services 

defining the policies and practices, infrastructure and common services for use in specific 

situations. … It helps answer questions such as:

What services are required by the enterprise ecosystem?

What services are available to the enterprise ecosystem?

What services will operate together?

What common semantics and business rules should apply to specific sets of services?

What service usage should be standardized/mandated in particular circumstances? 

(security, management, CRM, product etc.)

What substitute services are available?

What are the dependencies between services and versions of services?

Sprott (2004a)

How this “crystal ball” has to look like remains unclear, because the suggested 

Business Service Bus, a “… logical view of the available and used services for a 

particular business domain, such as Human Resources or Logistics.” (Sprott 2004b), 

depicted in Figure 19 is rather trivial. 

Figure 19.The Business Service Bus by CBDI



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

41

Figure 20. The extended basic SOA mechanism used in IBM’s ESB (Schmidt 2005)

The idea of a Service Bus is widespread and not always as simple as the one by CBDI. 

IBM adopted this concept and calls it Enterprise Service Bus (IBM developerWorks Live 

2004; Schmidt 2005); SAP extends the idea towards an Enterprise Service Architecture. 

In (Schmidt 2005) the importance of the registry as a means of metadata (interface 

description, policy) storage is singled out within the ESB integration model, which is 

explained by means of high-level conceptual UML models (Domain Models in Figure 

20). But the actual integration of a domain model in a SOA is not further detailed. 

One of the aims of this thesis is to give an elaborate example how model driven 

service architectures can be realized and managed. The goal of such an approach is 

still the same as defined above, that is to say support for critical decision making

processes (around standardization of scope, usage and acquisition or how existing 

applications support the new service architectures).

4.1.3.2. Financial Management

Except in the Software Engineering business, where the software components are the 

core assets, this point is still underrepresented in companies with high IT penetration. 

Even more stunning is the fact that in the WS-SOA discussion this aspect is rarely 

considered, although, as already mentioned above, the original unique selling position 

for this concept was seen in the B2B and B2C context. 

Due to the operational focus of this work financial considerations concerning service 

assets are not included. Nevertheless, the pricing of services and therefore accounting 

for SOA will become an important issue not only for inter-organizational scenarios, 

but also for cost transparency in an intra-organisational business context. 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

42

4.1.3.3. Business Rules

Business rules like trigger conditions help to make many policies and procedures 

explicit and promise to 

• enable non-technical personnel to define the operating principles (e.g., control, 

algorithms, policies, procedures) utilized in business automation functionality 

(applications)

• enable the operating principles to be changed quickly without the need for 

programming or reprogramming applications

• enable the analysis of the operating principles from a global perspective to 

determine if they are complete, consistent and non-conflicting

• ensure that different applications utilize the same operating principles that are 

needed for the functionality involved

• ensure that the operating principles are in conformity with the desired way for 

the enterprise to operate

Business rules are statements that articulate an operating principle by defining or 

constraining some aspect of the business. According to Walford (1999) they must 

• be able to be followed

• be consistent

• be able to be articulated

• be able to have their compliance measured

• have constraints

He also suggests a classification into three strength classes (requirements, standards 

and guidelines). Rosenberg and Dustdar (2005) use integrity, derivation and reaction 

rules and present a loosely coupled approach to the way of implementing these rules 

in BPEL processes. They contrast this approach with a tight coupled approach, 

characterized by a direct interfacing between BPEL engine and business rule engine 

via a proprietary API. They are absolutely right when they complain about the lack of 

reusability of the latter approach, because the rules should be applicable for all kinds 

of applications as a service. Still, also the proprietary API should be seen as a service, 

which can be reused at least by different processes running at the communicating 

process engines. As will be shown in our demo scenario, the lack of service orientation 

can be minimized by means of wrapping the proprietary rule call into a parameterised 

service (in our case a BizTalk orchestration which can be deployed as a Web Service). 

Rosenberg and Dustdar have extended this wrapping mechanism and call it a 

Business Rule Broker, allowing a unified access to different BRE through a Web 

service interface. Moreover, not all kind of rules demand for reusability and those for 

loosely coupling, e.g. business rules for flexible process configuration are tailor-made 

and hardly reusable. 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

43

4.1.3.4. Repository

Repositories have to support publish and discovery mechanisms in the basic SOA 

paradigm. Beneath that meta-data for service specification should be provided to ease 

service organisation. Generally speaking different occurrences of repositories are 

feasible, centralized, decentralized or hybrid. This comparison will be continued when 

we talk about directories and UDDI (Section 4.2.6).

4.2. Standardization - Web-Service Architecture and 

ANSI/ISA 95

We have to mention the Web Service Technology, because it is one of the main forces 

behind SOA. Its main advantage is the standardized connection mechanism with XML 

and SOAP. The existence of technical interface standards for systems integration is 

crucial regarding interchange ability and reusability. In the context of SOA loosely 

coupling indicates this demanded flexibility. Greenstein and David (1990) define 

technical interface standards as “… the collection of explicit rules that permit 

components and subsystems to be assembled in larger systems and hence are also 

called technical compatibility standards.” (cited from Steinmueller 2003).

But the WS-Architecture is just one example for a SOA. DCOM, CORBA (Sprott 2004a)

or proprietary connection and messaging capabilities must be seen as direct 

predecessors and equal technologies in service oriented enterprise architectures. Of 

course one has to have in mind the possible implementation techniques, but more 

important for us is the question whether the SOA and the MDA concept together can 

help to overcome the weaknesses of the actual shop floor structures or not. 

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in a 

manner prescribed by its description using SOAP- messages, typically conveyed using 

HTTP with an XML serialization in conjunction with other Web-related standards.

W3C (2003)

Web Services are:

• Loosely-coupled (because in general they are defined, developed and managed 

by different companies)

• Autonomous and independent (decoupling of applications makes them more 

modular and enables reuse and aggregation not known at design time)

• Software applications with published and stable programming interfaces

• Exposing the functionality performed by internal systems and making it 

discoverable and accessible through the Web in a controlled manner



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

44

• Homogeneous wrappers (a wrapper is a program which acts as an interface 

between the caller and the so called wrapped code. Wrapping is an OO 

engineering pattern as well), in that they interoperate through Web standards 

(e.g. HTTP, XML)

• Establishing an additional integration layer and therefore overhead mainly 

through message conversion, which demands more coarse-grained operations 

Web Services are not:

• an integration solution by themselves

• replacing the need for middleware and many traditional integration 

technologies, at least concerning the internal architecture (conventional 

middleware for multi tier architectures hidden behind the WS wrapper and WS 

middleware for message transport and processing (e.g. HTTP and SOAP 

server))

• the best choice if performance really counts, especially in tightly coupled, high-

volume internal applications due to the XML parsing and serialization 

overhead (Brown 2003)

Loose coupling usually involves some degree of penalty in terms of ‘performance’, 

although it is important to distinguish between engineering and economic 

performance. Engineering performance relates to the technical performance of the 

system, for instance point-to-point message delivery times. Ng et al. (2005) tested the 

latency and throughput performance of some current commercial SOAP 

implementations and compared it with Microsoft .NET Remoting. Concerning latency, 

the non-SOAP .NET Remoting using binary encoding and direct TCP/IP transport 

performed better than the fastest SOAP implementation (Document/Literal encoding 

style), although the difference between small (appr. 0,9 kb messages result in a 1:4 

relation) and complex (appr. 20 kb message perform nearly equal) messages has to be 

considered. Due to the fact that in the shop floor control level opposed to the field 

level complex messages prevail, SOAP may still meet the performance requirements 

of this application. Regarding throughput (message/seconds) .NET Remoting 

performed up to 20 times better. This indicator can be completely ignored because the 

interactions between the shop floor control level services are far from this throughput 

levels. 

Now that it is clear that the WS/SOAP interface standard will do well for the domain 

under discussion, the question is how to get familiar with the WS technology stack as 

described further down. Barry (2003) mentions three distinctive steps to depict the 

impact of WS regarding EAI:

Ø Improving Web site connectivity (e.g. gadgets that can be added to Web Sites 

delivering sophisticated content from different sources (e.g. Stock Quotes, 

News, etc.). This approach was further improved in the portal development.)

Ø Improving internal connectivity 

Ø Improving Business-to-Business connectivity



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

45

Through the strong industry support and the high standardization level Web services 

are promising wrapper technologies in the context of EAI. Whereas the ultimate goal 

of WS remain inter-company interaction, most applications today are deployed within 

a single company LAN (point 2), often similar to a client server model.  WS are used 

as platform independent integration technology for heterogeneous (legacy) systems. 

In using SOA, one can expand the use of Web Services from simple client-server 

models to systems of arbitrary complexity (Colan 2004b). The point 3 perspective was 

strongly misused in the beginning of the WS hype, which led to a number of “very 

ambitious” forecasts. Let us take a look at one of the well known GARTNER 

statements, postulating that

No later than year-end 2006, 90 percent of application development staffs in the Global 

2000 will be developing secure, marketable services for external use (0.8 probability). 

Andrews (2003)

The reality shows that there are a number of mature external, public WS available (e.g. 

Amazon, Google), but the promise of externalized functionality offered at a service 

market as a business model has yet to be held. Moreover, the vision was prevailing

that dynamic partner selection for WS interaction will succeed once a WS market is 

established. Public registries like UDDI could become the hub for partner assembling 

at run-time. In fact the public UDDIs of Microsoft or IBM soon were useless because of 

the high number of low-quality services registered, and if WS are used for B2B 

interaction today, the partners are selected at design-time and well known. The 

enhancement of the WS stack regarding security or policies is aimed to overcome the 

insufficiencies for B2B scenarios, the implementation of these second generations WS 

is still at the beginning and a final judgment on this matter is not possible at this point.

A detailed picture of the WS-SOA stack offers Figure 21 found in ebpml.org (2003), 

but an exhaustive discussion of all technologies involved is out of the scope of this 

work.



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

46

Figure 21. Extensive WS-SOA technology stack (ebpml.org 2003)

For the introduction into the related technologies for WS-SOA realization we follow 

the proposal found in (Alonso 2004). The service description and discovery stack 

introduced there is depicted in Figure 22, enriched with the technologies actually used 

in this project. The messaging layer technologies regarding transport (SOAP over 

HTTP) are not further discussed. Reliable messaging and routing is not essential for us 

due to the proposed architecture where a central broker (BizTalk Server) is 

responsible for message routing. 

Hence, the mainly centralized control architecture with point-to-point connections 

reduces the requirements at the protocol level. In addition, the intra-organizational 

focus spares much of the security issues so critical in inter-organizational service flow 

scenarios.



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

47

Figure 22. Technology stack for service description and discovery (adopted from Alonso (2004))

4.2.1. Common Base Language

XML is used for both, as a common meta-language for specifying many other service 

description languages related to SOA (e.g. XML Schema (XSD) in Figure 23) and as the 

preferred data storage and message payload format within the SOA. All specifications 

depicted in the picture are under W3C (World Wide Web Consortium) custody. The 

widespread industry support and its flexible syntax are the strongholds for this 

language. Most relational databases provide some form of XML syntax import and 

export functionality today. With XML the syntax of the message payload is given, but 

the semantic remains open. Hence there are many, mostly industry related proposals 

under discussion. OAGIS (Open Applications Group Integration Specification) 

provides the definition of business messages in the form of Business Object 

Documents (BODs) and example business scenarios that provide example usages of 

the BODs. OAGIS BODs can be included as SOAP message body parts. IBM has 

adopted the OAGIS 8.0 specification to develop an enterprise messaging architecture 

and standardized message vocabulary that can be used across the corporation for 

application integration, called EIMS (Enterprise Integration Messaging Specification). 

The aim is to standardize the message payload within the SOA by means of generic 

business object documents. 

In the demo-scenario all data exchange will take place in XML format. Central stored 

XSD (version 1.0) files are used to describe the data types. Persistent data is stored as 

XML files (mainly message archive functionality), as Excel files (e.g. Product 

Definition Data) or in ASCII file format (Production Requests in the Scheduling 

application). XQuery (actual version 1.0) is a specification for XML documents

searching. This is used heavily in the BizTalk Orchestration Designer Expression 

shapes which provide direct message browsing functionality. XQuery uses XPath 

(version 1.0), a specification which introduces a method to describe XML document 

syntax through path expressions. XSLT (Extensible Stylesheet Language 

Transformation, version 1.0) transforms XML documents, again utilized in BizTalk for 

data type mapping. The complexity of a transformation is hidden by means of a 

graphical tool.



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

48

XML documents

XSD

XSLTXQuery XPath

DTD
describes

supersedes

usesuses

uses

uses

transformssearches

describes

searches

Figure 23. Relationship between XML specifications (Erl 2004)

4.2.2. Interfaces

WSDL is an XML format for describing network services as a set of endpoints operating 

on messages containing either document-oriented or procedure-oriented information. The 

operations and messages are described abstractly, and then bound to a concrete network 

protocol and message format to define an endpoint. Related concrete endpoints are 

combined into abstract endpoints (services).

W3C (2001)

As with the XML specifications, it is assumed that the reader is familiar with the basic 

Web Service technologies. WSDL (Web Service Description Language) in the latest 

version 1.1 is a core element of the WS stack, allowing service specification 

description.

4.2.3. Business protocols

There are a number of XML based standards for process markup languages available, 

most prominently BPEL4WS, which has its roots in Microsoft’s XLANG and IBM’s 

WSFL (Web Service Flow Language) specification. Competing standards are BPML 

(Business Process Markup Language), defined by BPMI (Business Process 

Management Initiative), or XPDL 2.0, released October 2005 and hosted by WfMC 

(Workflow Management Coalition). The first has had little support from the very 

beginning; the latter still lacks the support of the big players in the execution engines 

market, although smaller vendors do have compliant workflow engines. Others 

support at least XPDL import/export functionality.    



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

49

The Business Process Execution Language for Web Services (BPEL4WS) provides a 

standard way of describing business processes that are based on Web services. Existing 

standards, such as WSDL, do not provide facilities that are required in complex business 

protocols, such as the description of behaviour dependent on data sent between services, 

exception management and recovery, and coordination between business partner 

participants for long running and complex processes. BPEL4WS aims to meet these 

requirements.

Endrei et al. (2004) 

BPEL4WS was first specified in July 2002 by BEA, IBM, Microsoft, SAP, and Siebel. 

The specification was constructed to combine the approaches previously described by 

Microsoft (XLANG, for the BizTalk server) and IBM (WSFL, for the WebSphere 

server). The latest release of the specification at the time of writing, version 1.1, was 

submitted to the OASIS standards group in May 2003.

4.2.4. Properties and Semantics

Semantic issues must be differentiated in design time and run time requirements. 

With the repository both domains can be tackled. Classification and tModels in 

general are suited to support design time decisions as well as run time service 

selection. tModels are used in UDDI to point to the endpoint of an arbitrary selectable 

document and saves this reference under a unique key. Service descriptions contain 

mostly a tModel pointing to the corresponding WSDL document. For instance, in the 

proposed demo scenario tModels describing the service state (test, production …) are 

introduced. Such a specification of properties and semantics at a service level is not 

sufficient, because it can only provide limited information about the service and its 

overall functionality in the architecture as well as in interaction with collaborating 

services. Nevertheless, at run time the UDDI service information is the only one 

available in a centralized architecture concept. The approach presented here is to 

provide system context semantic by means of models and a modeling framework. The 

final aim is to use the models to establish mutual understanding about the 

functionality in the system during design time. 

4.2.5. Vertical standards (Manufacturing Domain)

Robert Mick of ARC Advisary Group, which call themselves “Though Leaders in 

Manufacturing and Supply Management”, states that

… integrated, flexible IT systems that eliminate the boundaries between enterprise and 

manufacturing applications are vital for manufacturers that are striving to synchronize 

their operations and supply chains. But developing such systems can be challenging 

given the high degree of system diversity between these two domains and the traditional 

independence of corporate and manufacturing IT planning. Interest in enterprise 

architecture and standards-based interoperability that can bridge these gaps is therefore 

quite high.

Mick (2005)



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

50

Figure 24. Proposal for a Manufacturing Service-Based Infrastructure (Mick 2005)

Figure 24 depicts his proposal for a Manufacturing Service-Based Infrastructure to 

realize standard based vertical integration following ANSI/ISA 95. Although 

containing some very true assumptions, it is unfortunately typical for existing 

proposals in the sense that it remains at a high level of abstraction and therefore 

unsubstantial. Such proposals are neither formalized, nor do they consider 

implementation environments. In his opinion an enterprise architecture combined 

with strategic system management is needed to achieve integration at an application 

and physical network level, and mentions Service Based Architecture (SBA) as an 

example. But only a SBA “… combined with standards-based interoperability and an 

environment that is conducive to rapid change.” will leverage the architecture’s 

potential regarding flexibility and adjustability. All the more, Grid computing is 

relying on service orientation as well. WS-SBA offers standards just at the interface 

level, but more standards regarding “… documents, actions, transactions, scenarios or 

business processes.” have to supplement WS standards. The noted OPC Unified 

Architecture is depicted as a service-based proposal trying to provide “…

manufacturing operations with a unified data-model … ”. In the following he argues 

in favour of a role-based, human-centric approach which makes extensive use of 

libraries of re-usable services. He concludes with the recommendation of a 

collaborative approach regarding corporate and IT planning as well as interoperability 

standards and architecture.

So far the potential of ANSI/ISA 95 as a vertical standard was recognized, but a 

concise approach how this standard can be integrated in a model driven SOA concept 

is missing.

4.2.6. Directories

Dustdar and Treiber (2005) undertook a view based analysis of Web Service registries. 

They compare centralized, decentralized and hybrid architectures for registries and 

discuss the pros and cons of UDDI (Universal Description, Discovery and Integration) 

as a centralized approach. They also separate the human view from the WS view, a 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

51

proceeding which is in line with the different roles a registry has to fulfil either at 

design time or at run time. While the author totally agrees with most of their 

statements (regarding fault tolerance, management), the criticism of the narrow scope 

of the UDDI data model (attribute extensibility of data model) is hard to follow, 

because like in ebXML in UDDI registries arbitrary data can be referenced via tModels 

and thus assumes no limitations about the content being stored just as well. Also the 

absence of semantic metadata was in principle correctly identified, but the 

categorization mechanism is a proper tool for incorporating metadata into the 

registry. We will demonstrate how this was achieved for the shop floor semantics. The 

correctly described cumbersome query mechanism of the UDDI API could be 

improved by means of an UDDIHelper class, which hides the complexity of queries 

from the requestor.

Due to infrastructural restrictions and the need for a ready to use solution, UDDI was 

chosen for the proposed scenario. Replication is not considered in this scenario, not at 

least due to the restrictions of UDDI 1.0. UDDI 2.0 offers enhanced replication 

mechanism between multiple registries, but could not be considered at the time the 

implementation took place. Further work would definitely have to consider this issue.

Even if a detailed discussion of UDDI is beyond the scope of this work, some hands-

on papers shall be introduced which provided valuable insights in how to work with 

UDDI. Januszewski (2002a) highlights the importance of meta-data and demonstrates 

how to create custom categorization schemes. Brittenham et al. (2001) examine the 

different methods of using WSDL with UDDI registries. A key concept regarding 

WSDL files as tModels in UDDI is to delete the service tag from the description, 

because the end point is stored as an UDDI Binding Template. These were examples 

for design time considerations. How UDDI can be leveraged at run time is described 

by Januszewski (2002b). 

4.3. Modeling

4.3.1. Modeling Related Problem Spaces

Modeling of processes is a widespread accepted instrument for organisation (e.g. 

Business Process Reengineering (BPR)) or application (e.g. ERP system 

implementation) design. Until recently existing modeling approaches in the context of 

(IT supported) business processes had major disadvantages. 

Model usage intensity

As already mentioned, the concept of modeling for a better understanding of the 

structures and processes in the enterprise is not new. But while the demand for 

modeling is in theory accepted for system change or improvement, the reality is 

different, as the survey of Whitman and Huff (2001) shows. They observed in their 

survey poor use and therefore updating of existing models. A reason for this is that 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

52

modeling is often seen as a unique task, which supports the process design once, not 

in a permanent process of change and improvement. 

Organizational framework

An additional handicap for model driven decision making can be found in the 

widespread, strongly hierarchical structure for both, organisation and system 

architecture in the enterprise. The horizontal organisation, despite all process thinking 

efforts, is still determined by the departments and their functionality, like Porter 

designed it 20 years ago. In the vertical dimension a layered architecture is postulated, 

with the shop floor often as a black box layer due to complexity and variety.

While in the horizontal dimension of the management layer the single ERP system 

dominance led to a more or less similar process understanding and a rather high 

degree of (potential) workflow automation, the shop floor layer with its 

heterogeneous environment of men and machine controls demonstrated that the IT 

support for business processes is not unlimited. In the ambitious BPM visions the 

shop floor can be found as one entity in a multi-enterprise supply process, but in the 

IT-reality time consuming and expensive interfaces have to be programmed. So not 

only the gap between business desire and IT reality is obvious, but also the different 

levels of abstraction, where BPM tended to remain at a high level compared to the 

ISM issues. 

Modeling Techniques Variety

This given organization has always been a rigid framework for process design, which 

was in the early days a pure management issue, but due to increased technological 

feasibilities soon IT became the enabler for process automation. So historically two 

more or less separated paradigms have evolved, the business and the information 

system view, resulting in two groups of modeling techniques, one for BPM (Business 

Process Modeling) containing IDEF0, Petri Nets, ARIS, Flowcharting, etc., the other 

for ISM (Information System Modeling) containing Data flow diagramming, ER 

diagramming or UML. Integrated design strategies rarely have been the case in 

practice (Giaglis 2001). The difference in modeling techniques has not only widened 

the gap between the business analysts and the IT-specialists in the way they build up 

their architectures and design processes. Haeckel (2003) goes one step further and 

postulates that most existing models are created by IT-architects, thus not 

representing executive intent. He claims that the business architect counterpart is 

missing because business people do not think like system designers at all. They have 

just learned how to design processes. Walford (1999) states that 

One failing of many process reengineering and management-by-process efforts is that the 

entire focus is on process definition and very little attention is paid to the process 

implementation needs and the associated life cycle management requirements. 

He continues that 

In many, if not most, businesses, the definition [of processes] is informal and has grown 

and changed throughout the life of the enterprise with little or no attentions. ... Most 

business have been quit successful over a long period of time without a define approach. 

This was possible because of the inherent constraints imposed by the hierarchical 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

53

organization and function-based automation support. Those conditions, to a great extent, 

mitigated the lack of formalized models. With the change to a relative flat, process-based 

organization and client/server distributed automation support, the lack of a planning 

model puts any enterprise at a considerable disadvantage. The disadvantage is external 

with respect to competitors who are able to model and understand their business. The 

disadvantage is also internal, in that the efficiency of operation will be far less than it 

could or should be with a well-thought-out model.

Walford (1999)

In the opinion of the author the external disadvantage is somewhat overstated, 

because the success of the companies without models proves that they understand 

their business. But there is no doubt that the increasing connectivity in an increased 

global network organisation can be better handled by means of a business model. 

Furthermore, and this is driven through the increasing demand for external interfaces, 

a consistent mapping between the business model and the implementation model is 

crucial.

Limited scope 

As we will try to make clear in the following, to fulfil actual requirements concerning 

operational model use enlarged methodologies are needed. For most of these 

scenarios a permanent semantic actualisation of the models was not necessary up to 

now. Either these models have been per se used only once (BPR), or they have been 

stored for documentation purpose only (ERP reference models, ISO certification). 

Thus they remain process models instead of architecture models, which in contrast 

would visualize not only a single, but the sum of all possible processes. Nevertheless 

at the enterprise level these limitations were already recognized and business process 

life-cycle management starts to influence modeling behavior (Becker et al. 2003). 

4.3.2. Model Driven Architecture

Modeling in the context of information systems lifecycle management has one major 

driving force today: knowledge alignment. If one’s aim is real process flexibility, then 

the model has to support the process user in choosing between alternative flows or 

changing control and information flows. The users should interact with the system at 

the same level of abstraction as the domain analysts, who initially set the static and 

dynamic structure. Both roles demand simplicity (Haeckel 2003). The models should 

also absorb the system and IT knowledge about platforms, and finally the 

programmer knowledge about development practices. Concerning dynamic system 

behaviour, which is the focus of this work, the stakeholders’ diverse backgrounds 

reflect a major challenge. For one group, process modeling is an essential part of 

overall system modeling, for the next it is just a graphical vehicle within the IDE and 

for the third it is a pure visualization of their business logic without any IS context. 

The strong focus is on architecture dynamic and adjustability, together with an ever 

growing analogy between business- and IS-processes, that is to say the IS has 

frictionless control over the process, making a common view necessary. To achieve 

this, generally speaking, two main model driven process design and execution 



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

54

approaches exist. The first one postulates the concept of model enrichment through 

extensions combined with elaborate transformation and mapping mechanisms, most 

prominently represented by means of OMG’s MDA (Model Driven Architecture) 

(Miller and Mukerji 2003). 

MDA provides a set of guidelines for structuring specifications expressed as models and 

the mappings between those models. The MDA initiative and the standards that support 

it allow the same model specifying business system or application functionality and 

behavior to be realized on multiple platforms. MDA enables different applications to be 

integrated by explicitly relating their models; this facilitates integration and 

interoperability and supports system evolution (deployment choices) as platform 

technologies change. The three primary goals of MDA are portability, interoperability 

and reusability.Portability of any subsystem is relative to the subsystems on which it 

depends. The collection of subsystems that a given subsystem depends upon is often

loosely called the platform, which supports that subsystem. Portability – and reusability -

of such a subsystem is enabled if all the subsystems that it depends upon use 

standardized interfaces (APIs) and usage patterns. MDA provides a pattern comprising 

a portable subsystem that is able to use any one of multiple specific implementations of a 

platform. This pattern is repeatedly usable in the specification of systems. The five 

important concepts related to this pattern are:

1. Model - A model is a representation of a part of the function, structure and/or behavior 

of an application or system. A representation is said to be formal when it is based on a 

language that has a well-defined form (“syntax”), meaning (“semantics”), and possibly 

rules of analysis, inference, or proof for its constructs. The syntax may be graphical or 

textual. The semantics might be defined, more or less formally, in terms of things 

observed in the world being described (e.g. message sends and replies, object states and 

state changes, etc.), or by translating higher-level language constructs into other

constructs that have a well-defined meaning. The optional rules of inference define what 

unstated properties you can deduce from the explicit statements in the model. In MDA, a 

representation that is not formal in this sense is not a model. Thus, a diagram with boxes 

and lines and arrows that is not supported by a definition of the meaning of a box, and 

the meaning of a line and of an arrow is not a model—it is just an informal diagram.

2. Platform – A set of subsystems/technologies that provide a coherent set of 

functionality through interfaces and specified usage patterns that any subsystem that 

depends on the platform can use without concern for the details of how the functionality 

provided by the platform is implemented.

3. Platform Independent Model (PIM) – A model of a subsystem that contains no 

information specific to the platform, or the technology that is used to realize it.

4. Platform Specific Model (PSM) – A model of a subsystem that includes information 

about the specific technology that is used in the realization of that subsystem on a specific 

platform, and hence possibly contains elements that are specific to the platform.

5. Mapping – Specification of a mechanism for transforming the elements of a model 

conforming to a particular metamodel into elements of another model that conforms to 

another (possibly the same) metamodel. A mapping may be expressed as associations, 

constraints, rules, templates with parameters that must be assigned during the mapping, 

or other forms yet to be determined.” 

OMG (2003)



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

55

Process Automation can be seen as a layer stack containing 

• system model layer

• process layer

• communication layer

• IT-layer

In the past more than once only the latter two were considered. Communication 

demands lead to IT decisions; integration efforts are strongly driven by IT issues and 

are not business-model-based. In a SOA context, the first two layers could also be seen 

as part of the business layer, then the service layer and least the component layer 

(Zimmermann et al. 2004). 

The MDA postulates a tight coupling between model and code allowing as far as 

possible automated creation and synchronization in both directions, from model to 

code (forward engineering) and from code to model (reverse engineering). This aim 

calls for a common modeling technique for both, business analysts and IT-architects. 

Within the MDA this unifying language is UML, the standard modeling technique for 

software engineering. The concept is originally based on a three tier architecture, with 

a Platform Independent Model (PIM) at the top, the Platform Specific Model (PSM) in 

the middle and the applications at the bottom. Due to the real-world demand for 

models which make no assumption about the implementation environment, a fourth 

layer was introduced, namely the Computation Independent Model (CIM). Figure 25

depicts the principle proceeding.

Figure 25.Model Driven Architecture abstraction levels (OMG)



Guiding Principles and Techniques for a Modern Shop Floor Architecture

__________________________________________________________________________________________________________________

____________________________________________________________________________

56

What has to be criticised here is the usage of a waterfall approach, where no feedback 

loops are foreseen. Reverse engineering, the reverse mapping between code and PSM 

is an example which works at least for static information (e.g. class definitions) very 

well. To succeed in a dynamic environment of system life-cycle management, bi-

directional mapping between all MDA levels is an imperative as well as a challenge. 

The methodology presented in this work will consider control loops not in the form of 

formal mappings as defined above, but for the operational management of executed 

processes. 

CIM and PIM are consistent with appropriate core models which represent 

specialized environments. PIM and PSM are modelled with UML. The benefit is a 

stringent process from abstract domain models down to executable code. Therefore, it 

is called a “top-down” approach. 

The second model driven process design and execution approach is best described as 

“bottom-up”, because not the portable architecture model is the starting point, but the 

existing process development and execution possibilities within a certain vendor 

environment. The vendor independent visualization is just an extension of graphical 

drag & drop interactions offered by the IDE. In this group we classify MS Biz Talk 

2004/Visual Studio 2003, IBM WebSphere Studio (Kloppmann et al. 2004) or the SAP 

NetWaever Platform (Woods & Word 2004). In addition to platform specific (PSM), 

the IDE models have to be called vendor specific (VSM). Only very recently within 

this group portability is not only achieved through the mapping to process mark-up 

languages like BPEL4WS, but also at model level through e.g. UML-XMI mapping 

(Beck et al. 2005). Both paradigms have the above mentioned knowledge alignment in 

mind, but the difference in the realization shall be described by means of two 

examples for model driven Web Service Orchestration.

It is important to understand that process life cycles are separate and distinct from SW 

life cycles, but they interact closely. First, processes could be implemented completely 

by human effort. Second, in a process that requires SW support because of advancing 

technology, several generations of SW, each with its own life cycle, could be employed 

without changing the process. The MDA approach includes this fundamental 

principle in so far as this approach separates computer independent, platform 

independent and platform specific models.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

57

5. Model Driven Service Architecture for the Shop 

Floor Domain

The management of control and information flows in the shop floor is a demanding 

task. The reasons for that have been outlined in Section 2. Due to the weaknesses of 

existing solutions, the aim was to build up a SOA for the shop floor, optimising the 

trade-off between flexible interconnectivity and network infrastructure complexity. To 

overcome a situation of vertical, interrupted processes and partly unavailable, partly 

static accessible functionalities we introduce the concept of a MDSA (Model Driven 

Service Architecture) for the shop floor. It is a combined top-down/bottom-up

methodology realized in a tool for user friendly model creation. On a conceptual base, 

the abstract MDA and SOA concepts are adopted for and enriched with concrete 

technologies and tools to implement a real-world framework for the shop floor 

domain.

5.1. Related Work

As said before, the EA proposals provided some useful information about modeling 

frameworks, but performed poor at the implementation level. In the MDA context, 

our research objective is a platform-independent UML shop floor domain model 

which contains a hierarchically ordered collection of services which are necessary to 

achieve typical, nested process functionality within different shop floor environments.

This model has to be mapped on the actual, platform specific service assets available, 

creating flexible service flows. Leymann and Roller (2002) present a similar approach 

called flow composition tool, consisting of a palette of functions which then are selected 

and dragged into the composition editor. A flow engine together with an appropriate 

middleware then executes this flow model. 

During this work an EU initiative was launched, the available outlines showed that 

research should be undertaken towards Interoperability Development for Enterprise 

Applications and Software. The aim of INTEROP-NoE (Interoperability Research for 

Networked Enterprise Applications and Software launched 2004) is the conceptual as 

well as the technical integration of business by means of reference models. In Figure 

26 one can see that the inter-enterprise system integration focus is dominant. 

Nevertheless, the chosen approach of MDA and SOA alignment (Figure 27), together 

with semantic annotations, shows some similarities to the approach presented in the 

following. But the INTEROP deliverables remain at a conceptual level, whereas in this 

work a domain specific real-world implementation allows a certain level of 

evaluation. 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

58

… The interoperability framework integrates principles of model-driven, service-oriented 

and adaptive architectures … 

INTEROP-ESA (2005, Industry 

Track Session)

Figure 26. Reference Model of Conceptual Integration (INTEROP D9.1)

Figure 27. Conceptual, applicative and technical view of an enterprise architecture (INTEROP D9.1)



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

59

The second initiative is ATHENA-IP (Advanced Technologies for interoperability of 

Heterogeneous Enterprise Networks and their Applications, launched 2004). The 

deliverables at the time of writing were assiduously examined and the following 

conclusions were drawn. 

INTEROP identifies three main research areas: Enterprise Modelling, Ontology and 

Architectures & Platforms. After one year a revised work programme enhanced these 

Domains (plus Interoperability Domain) by means of Task Groups (INTEROP D4.2, 

2004). The Domains cover the scientific knowledge base, hence a lot of emphasis was 

placed on the state-of-the-art knowledge. The available major deliverables (INTEROP 

D4.1 2004, D6.1 2005, D8.1 2004, D9.1 2004) give a comprehensive overview of the 

three Domains and the result of this joined research is an Interoperability Glossary 

(INTEROP D10.1, 2005). But they include no new concepts related to the postulated 

aims. Unfortunately the future oriented Task Groups, which hold such promising 

titles like Business/IT alignment, IS integration and ontology, did not make any of 

their results public on their homepage at the time of writing this thesis (March 2006). 

There was nothing published except for some thoughts concerning interoperability for 

SME, a proposal so superficial that nothing relevant can be said about the two 

versions (INTEROP D12.1, 2004 and 2005). Thus, no comparison to the proposal 

presented in this work is possible, only the recommendation of the excellent research 

review. 

Whereas INTEROP is the nucleus mainly of the university research community, 

ATHENA sums together some of the big players of the IT industry. Although the 

useful Reference Models were available from the very beginning, very little relevant 

information was added to how they could be implemented. Lippe et al. (2005) 

demand for a 3-level modelling approach (Business, Technical and Executable 

Processes) and claim that a process abstraction concept is missing. Their survey on 

modelling languages is worth to be discussed, especially when they claim that UML 

does not support business context. In such a comparison the UML extension 

mechanism should be considered. All the more, as UML profiles are claimed to exist 

(Berre 2005: UML Profile for PIM4SOA; Pondrelli 2005a: UML Profiles for Services, 

Business Objects and Ontologies) for model driven SOA development. In Pondrelli 

(2005b) it becomes clear that no new profiles are delivered, but existing proposals (e.g. 

IBM UML Profile for Software Services) are incorporated in a rudimentary 

methodology. Berre (2005) presents the results of the ATHENA project after 18 month, 

the ATHENA Interoperability Framework. It would have been interesting to get more 

information about ATHENA Service Oriented Interoperability Framework (including 

Platform Independent Model for SOA (PIM4SOA) & Model Transformations) beyond 

the description in INTEROP D6.1 (2005) or MPCE Architecture, but the published 

content is not sufficient for a final conclusion. In addition, the focus on CBP (Cross-

organizational Business Processes) with a strong emphasis on MOF (OMG’s Meta 

Object Facility) related model mapping increases the scope which is therefore much 

broader then the objectives of the single modeling language, intra-organisational 

approach presented here. 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

60

Recently a greater emphasis on Service Oriented Analysis and Design (SOAD) could 

be observed in the software engineering community. Arsanjani (2004) rediscovers the 

three model abstraction dimension of reference architecture proposals like CIMOSA 

when he states that the process of service oriented modeling consists of three phases:

identification, specification and realization. But he correctly postulates that it can no 

longer be an exclusive and thus unsuccessful top-down approach of domain 

decomposition, but a combination of top-down, bottom-up (existing asset analysis) 

and middle-out (goal-service modeling). For our methodology we adopted the hybrid 

SOAD modeling approach of Zimmermann et al. (2004), who suggest a combination 

of OOAD, BPM and EA techniques. It is the aim of this work to enrich and unify these 

fragments towards a comprehensive SOAD approach with domain specific semantic 

annotations. Moreover, the methodology has to be validated by means of real-world 

standards, techniques and applications.

Figure 28. Generic Model Driven Service Architecture approach (adopted from Zimmermann et al.)



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

61

5.2. Methodology Derivation

The methodological derivation started with the domain dimensions Business, 

Architecture and Application, each with its own modeling concept. Figure 28 depicts the 

starting point for the methodological considerations, derived from the guiding 

principles outlined above. The y-axis represents the domain dimensions Business, 

Architecture and Application, each with its own Modeling concepts. SOAD has to 

bring those three together in the life cycle phase Analysis and Design. The end result 

should be a platform independent model (we do not differ between platform and 

computation independent), which has to be mapped to the actual and potential

system assets. Hence it becomes a Platform Specific Model, which will loose some 

readability for business analysts as implementation details are added. This is the 

Development phase. The Run-Time Execution is the logical end point, tied to the 

Architecture and Application domain. This does not mean that run-time data does not 

generate business relevant key performance indicators. It means that control loops are 

needed which feed the knowledge gained at the implementation level back to the 

higher levels of abstraction. Hence such a process is highly dynamic, with interwoven

models which translate system behaviour to the kind of notation each system worker 

can understand. Before we discuss the means which have the potential to glue these 

phases together, we introduce in more detail our final methodology which is able to 

support this generic approach.

In Figure 29 we see the resulting methodology specifically for the shop floor domain. 

To demonstrate the scope of the research undertaken the author has changed the y-

axis, which now is in line with the classical hierarchy levels for the shop floor, namely 

Enterprise Level, Shop Floor Control Level and Shop Floor Field Level (see Figures 2 

and 3). In the past the modeling concepts (Business Process Management, Enterprise 

Architecture and Solution Architectures, OO Analysis and Design) where utilized 

separately with the emphasis at the corresponding levels as shown in the figure.

First, fast and easy initial modeling of a given shop floor system has to be supported, 

focusing on functionality and connectivity of the system as a whole. We achieve this 

by a generic model collection called Shop Floor Tool-Box (SFTB). The SFTB is an 

ANSI/ISA 95 compliant tool box which enables fast and standardized modeling of 

particular shop floor scenarios. The tool consists of an abstract service repository of 

basic and complex services ('what' dimension), concrete service providers ('who'

dimension), binding mechanisms and data entities ('with' dimension). The PSFM 

(Particular Shop Floor Model) at the end of the Design phase can exist on two 

abstraction levels, platform/computer independent and platform specific. Hence

platform specific content can be found in the SFTB as well, for instance in the case of 

highly standardized industry data exchange protocols like OPC. The complete 

platform specific information covers the ESFM (Executable Shop Floor Model). Whereas 

the PSFM will consider the actual system specification only roughly (coarse grain 

functionality distribution), the ESFM must be fully aligned with the assets either 

already existing or under construction.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

62

Figure 29. Model Driven Service Architecture for the Shop Floor

The PSFM has to support long term platform, infrastructure and service provider 

decisions through as-is and to-be comparisons. This high level model has to interact 

with the ESFM concerning process definition. The latter serves at a tactical level for 

the (re)design of service flow definitions which are semantically rich enough for the 

executable code generation. Knowledge gained from the PSFM and ESFM should be

fed back into the Shop Floor Tool-Box, which more and more becomes a valuable 

knowledge base. The consequences of such an approach regarding BPM explained for 

business analysts are described in Pfadenhauer and Kittl (2006a).

Crucial for the development of a universal methodology from system models to 

executable process definitions is the state of the art of the underlying technologies and 

tools. Thus before the methodology and framework are introduced, the next clause 

will discuss preparative examinations regarding model driven WS composition. These 

findings were published and presented at two IEEE conferences (Pfadenhauer 2005c, 

2005d).



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

63

5.3. Model Driven WS-SOA Service Composition

Figure 30 illustrates the three main areas which have to be combined for model driven 

service composition. Alonso et al. (2004) mention three main elements for WS 

composition middleware: the Modeling Environment, the Development Environment

(IDE) and the Run-Time Environment. The latter one has to execute the coded 

composition specification. How this specification is achieved, i.e. how and within 

which environment the necessary specifications and tasks from high level system 

model down to code execution are fulfilled, is a matter of ongoing discussion. Tasks

like syntactical and semantic verifications have to be considered, just as service 

discovery and binding. Which type of Composition Specification, the Composition Model, 

the Model Representation Language or the Executable Composition Language, is best suited 

for which kind of task, can not be answered definitely yet. The dependencies between 

these composition specifications on the one hand and their integration within the 

three environments on the other determine the demand for mapping and testing 

functionality. The challenging factors depicted in Figure 30 establish our collection of 

criteria for evaluation of existing approaches.

Tasks

Executable Composition 

Language

Composition 

Model

RunTime 

Environment 

Development 

Environment (IDE)

Model Representation 

Language

Modeling 

Environment

System Model

Composition 

Specification

Specification and 

Representation

Testing

Discovery/Binding

Mapping

Syntax/Semantic 

Verification

Environments

SOA MDA

Deployment

Monitoring

Figure 30. Composition challenges regarding model driven WS architectures



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

64

The number of enclosing real-world approaches especially for top-down model driven 

WS composition with an appropriate tool support is limited.

The reasons, therefore, are amongst others: 

• Still a number of process mark-up languages, the “missing link” between 

model and execution, like BPEL4WS or WSCI/BPML exist. None of them can 

be called a widespread implemented standard yet. 

• Model and code have to equally support certain control patterns, the 

evaluation of this is still in progress (see Dumas & ter Hofstede 2001, van der 

Aalst 2000). It is likely that these patterns have to be further expanded by 

means of the emergence of second generation WS technologies in conjunction 

with the service oriented architecture (Dustdar 2004, Erl 2004).

• Model mapping and transformation is still limited to static entities like classes 

and components, the complex task of dynamic information transcription is just 

at the beginning. 

• The transformations have to be completely bi-directional, a requirement which 

is hard to achieve.

• Intelligent validation and testing mechanisms between the mapping steps 

hardly exist yet.  

To sum it up, the proceeding from WS Composition graphs to executable service 

flows is in the state of lively theoretical discussion, although first implementations 

already exist. At this time two rather distinctive approaches can be observed, one with 

model environment focus, the other with IDE focus. They also stand for completely 

different ways how the model driven concept can be interpreted. Due to the need for 

publicly available tools we focused on an IBM and a Microsoft scenario.

5.3.1. Top-Down Model Driven WS Composition

Generally speaking, the first approach illustrated in Figure 31 postulates the concept 

of model enrichment through extensions combined with elaborate transformation and 

mapping mechanisms, most prominently represented by means of OMG’s MDA 

(Model Driven Architecture) (see above). This ambitious concept demands a strict 

separation of concerns, expressed through a layer stack consisting of different levels of 

abstraction. To achieve this, the models have to cover a broad set of requirements. 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

65

Figure 31.Top-down model driven WS composition

As an example for such sophisticated requirements, the complex task of PIM 

(Platform Independent Model) to PSM (Platform Specific Model) mapping shall be 

mentioned. This transformation step can be extended by an additional executable 

UML layer, introducing mark-ups and languages like ASL (Action Specific Language). 

This intermediate step makes the model executable, especially valuable for testing 

before mapping. 

Skogan, Grønmo and Solheim (2004, Grønmo and Solheim 2004) present a very 

interesting approach. They introduce not only a technique how to import WSDL 

service descriptions into UML, but also how to use UML activity graphs enriched by 

means of certain UML extensions to define WS compositions. In addition they use 

XMI in combination with corresponding XSLTs to achieve a transformation in several 

execution languages, at the moment BPEL4WS and WorkSCo are supported. 

The use of templates and patterns can be applied, either for activity graph design 

(Förster 2002), or for consistency analysis. 

Voigt (2003) has implemented the latter by means of UML-CSP (Communicating 

Sequential Processing) language mapping. The benefit of this high level top-down

approach is a stringent process from abstract domain models down to executable 

code. 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

66

Figure 32.IBM UML-BPEL-BPWS4J proposal

The IBM approach (see also Mantell 2003) depicted in Figure 32 begins with an UML 

model, which is specific for the BPEL4WS platform through extensions following the

“UML 1.4 Profile for Automated Business Processes with a mapping to BPEL 1.0” 

(Amsden et al. 2003). Modeling according to the profile makes the WS descriptions 

(port types, operations, messages) of the involved services necessary, but no WSDL 

import support is available. Hence, this information has to be extracted and included 

into the class diagrams (static view of data types/messages, protocols and roles) and 

activity diagram (dynamic view) by hand. 

After finishing the model gets exported into XMI format, which then is imported into 

an Eclipse 2.1.3 IDE java project. There an add-in performs the mapping to BPEL4WS

1.0 or 1.1, generating the WSDL, XSD and BEPL files. Bindings, location paths and 

service links are added by means of a WSDL modify tool. 

Deployment is separated from the IDE, afterwards the BPEL process can be executed 

via the BPWS4J 2.0 runtime engine.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

67

5.3.2. Bottom-Up Model Driven WS Composition

The second approach (Figure 33) is best described as bottom-up, because not the 

portable architecture model is the starting point, but the existing process development 

and execution possibilities within a certain vendor environment. The vendor 

independent visualization is just an extension of the central graphical drag & drop 

interactions offered by the IDE. In addition to platform specific (PSM), the IDE models 

have to be called vendor specific (VSM).

Figure 33. Bottom-up model driven WS composition

The Microsoft proposal (Figure 34) can be described as follows. In the Visio 

Orchestration Designer a proprietary modeling semantic is used to design the basic 

flow pattern, allowing fork, join, group, decide and loop constructions. An add-in 

exports this activity graph into a BizTalk Orchestration XLANG/s .odx format, which 

can be imported into the BizTalk Orchestration Designer, which again runs within the 

Visual Studio IDE. The rudimentary flow is now supplemented with ports and 

messages, which are created by means of wizards utilizing the port types and message 

types retrieved from the added web references. All WSDL, XSD and the .odx files are 

generated and updated with strong graphical support. The process can be deployed 

within the IDE using an administration console.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

68

Figure 34. MS Visio-XLANG/s-BizTalk Server proposal

5.3.3. Comparison and Evaluation

As we mentioned above, both approaches are model driven Web Service orchestration 

implementations, but with very diverse emphases. In chapter two we emphasized 

current challenges on WS composition. This discussion led to a collection of criteria 

which in the following shall be used for comparison purposes (Table 2). The test 

environment was the following: 

Table 1. Top-down and bottom-up comparison test environment

IBM – Top-Down Approach Microsoft –Bottom-Up Approach

Modeling Environment Rational Rose Modeler Edition 2003 

+ Rose XML Tools 1.3 plug-in

Microsoft Visio 2003 + 

Orchestration Designer for Business 

Analysts

Development 

Environment

Eclipse 2.1 + BPEL4WS Editor 2.1 

plug-in

BizTalk Server 2004/Visual Studio 

2003

Run-Time 

Environment/OS

BPWS4J 2.1 + WebSphere 

Application Server-Express 5.1 / 

Windows XP pro SP2

BizTalk Server 2004 / Windows 

Server 2003

Generally speaking, IBM tries to design the WS composition at a higher level of 

abstraction, using an UML profile for nearly complete process definition. Therefore, 

the mapping effort is rather high; unfortunately no syntax validation takes place 

before XMI export, which makes the failure risk during the subsequent BPEL4WS 

mapping very high. The IBM approach offers at no level WS discovery or reference 

mechanisms. 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

69

Table 2. Evaluation results

IB M  " to p -d o w n " M S  " b o tto m -u p "

E n v iro n m e n t

M o d e lin g s u b s ta n tia l ru d im e n ta ry

D e v e lo p m e n t c o d e  o r ie n te d g ra p h ic a l/w iz a rd s

R u n -tim e B P W S 4 J B iz T a lk  S e rv e r

S p e c if ic a t io n

S y s te m  m o d e l n o n o

C o m p o s it io n  m o d e l e n r ic h e d  U M L p o o r +  p ro p r ie ta ry

M o d e l re p re s e n ta tio n  

la n g u a g e

s ta n d a rd iz e d  X M I p ro p r ie ta ry

E xe c u ta b le  c o m p o s it io n  

la n g u a g e

s ta n d a rd iz e d  

B P E L 4 W S  v 1 .0 /v 1 .1

p ro p r ie ta ry  X L A N G /s

T a s k s

T e s tin g  W S  l in k s n o w ith in  ID E

T e s tin g  o rc h e s tra tio n ru n - tim e ru n - tim e

M o n ito r in g p o o r s tro n g

S y n ta x  V e r if ic a tio n l im ite d s tro n g

S e m a n tic  V e r if ic a tio n n o n o

D is c o v e ry n o t s u p p o rte d s e a rc h  fu n c tio n a li ty

B in d in g s ta tic s ta tic

D e p lo y m e n t is o la te d in te g ra te d

M a p p in g is o la te d in te g ra te d

The manual WS description import, i.e. the WSDL file transformation into different 

types of stereotyped classes within UML is tedious. On the other hand the XMI format 

containing the whole business logic and platform specific information offers 

theoretically a certain flexibility concerning model reuse and transformation. In 

practice the re-import of created XMI files into Rational Rose, our UML tool, was not 

complete, manual adjustments were required. The necessary support within the IDE is 

reduced to WSDL modifications. The XMI mapping to BPEL4WS itself takes place 

automatically, but again without XMI validation. If an error occurs, the mapping stops 

without error handling. A BPWS4J Editor plug-in for the Eclipse 2.1.3 IDE offers 

enhanced verification functionality and more important rudimentary graphical 

support for process editing. Nevertheless, the hierarchical visualization is much less 

expressive and functional than the one within the MS Orchestration Designer. Also 

concerning deployment, monitoring and testing the MS approach is superior, but that 

is what we expected. It should be mentioned here the pointlessness of a 

comprehensive IDE comparison. In that case IBM WebSphere Studio rather than 

Eclipse would have to be the challenger, resulting in a comparison between two IDE 

centric approaches. 

The second proposal places the Web Service orchestration at a lower level of 

abstraction, within the IDE and, therefore, establishing a tight coupling between 

visualization and coding. The initial Visio modeling in the MS proposal offers very 

limited additional value, since beside the control flow no additional information can 

be included. Moreover, for control flow modeling the IDE functionality is as easy to 

use. The diagram is not integrated within other stencils. Therefore, the integration in 

an architecture model is missing. After the import into the IDE the model is platform 

specific twofold (WS/XML and .NET). Once the basic service flow is set up, the 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

70

service binding is very comfortable by means of drag & drop and wizard 

functionality. At this level code and graph are updated real time, a benefit which is 

only possible by means of a tight integration into the IDE. Although the underlying 

XLANG/s language is proprietary, restricted BPEL4WS 1.1 import and export 

functionality is offered, which allows for a certain degree of portability.

Both approaches are concerned with single process definition and do not take into 

account a system model from which the process may be derived. That is to say, the 

UML allows for further extensions referring to this issue, whereas the Visio model

does not offer this flexibility. As one can see in Figure 30, the dependencies between a 

single composition specification and an overall architectural model are in our opinion 

a vital part of a methodology which supports life cycle oriented service composition. 

Process lifecycle management without a complete model covering all relevant 

interaction aspects is not possible. Reactive semantic verification mechanisms should 

be implemented twofold, firstly concerning the control logic (e.g. the detection of 

deadlocks) and secondly concerning inconsistencies regarding the semantic at 

different levels of abstraction after manual intervention. Both ignore the first 

requirement, and only the MS approach inhibits inconsistencies between code and 

graphical representation due to the tight integration within the IDE (but not between 

the Visio model and the IDE graph). After our discussion it should be evident that for 

single process definition one can choose between a top-down and a bottom-up 

approach, but for service oriented architectures the top-down approach is crucial.

5.4. Lessons Learned for the Proposed Methodology

Above two general approaches of process design and execution have been compared, 

one with strong focus on the abstract, platform and vendor independent model, which 

is semantically rich enough so that an IDE is exclusively needed for (complex) 

mapping tasks. The other with the focus on “applied” modeling within the IDE, 

supported by a rudimentary and abstract graph describing the control flow. The latter 

bottom-up approach, represented by MS BitzTalk Server, has its main advantage 

concerning easy integration of existing Web Service definitions, which is not possible 

within the top-down approach. On the other hand the integration of the Visio or the 

Biz Talk Orchestration models in an overall, syntactical homogeneous architecture 

model is not possible, thus these directed graphs have to be built from the scratch. 

Here the UML-BPEL4WS approach offers much more possibilities of integration in an 

enclosing MDA concept.

In the following, challenges for future model driven process engineering proposals 

must be discussed. We demand for a computation independent system model as the 

starting point, which supports not only isolated process design, but architecture 

modeling. The behavioral views within these models have to be the basis for initial 

Web Service composition design.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

71

It is then necessary to investigate, whether the presented approach is suited for shop

floor domain usage. Therefore, some core processes of production operation 

management are implemented in a use case scenario, allowing for tests regarding 

applicable mechanisms for process model and process specification synchronization. 

Still another open question is how the process models have to be embedded in the 

overall architecture model, i.e. how operational patterns, which synchronize between 

static architecture structure (the sum of all possible processes) and single process lifecycle 

management, can be established.

5.4.1. Computation and Platform Independent Modeling

Following the MDA notation, IBM’s UML-BPEL proposal starts with a UML 1.4 

compliant definition of a PSM (the platform is WS/XML) and transforms (via 

separated mapping rules) it into a model specification language by means of XMI, a 

standardized XML language. The core MDA concepts, different levels of abstraction, 

separation of concerns and the model transformation paradigm are, therefore, 

fulfilled. This is not true for the MS proposal, where both the initial and the BizTalk 

Orchestration model are proprietary and not transformable into a standardized format 

like XMI. Both approaches do not take into account the mappings from computation 

or even platform independent process descriptions, which is in our opinion their main 

weakness regarding MDA principles. Enterprises will not make the same mistake 

twice like it happened in connection with proprietary ERP (Enterprise Resource 

Planning) systems in the past. Often the business logic was modelled and defined 

tightly coupled to a certain platform. The WS/XML platform will be one integration 

technology among others in service oriented architectures, thus platform independent 

modeling is crucial. 

5.4.2. Integration of Modeling Techniques

It is also a fact that concerning process modeling the use of a unique syntax is last but 

not least within the area of WS orchestration far from becoming true. Historically, two 

more or less separated paradigms have evolved, the business and the information 

system view, resulting in two groups of modeling techniques, one for BPM (Business 

Process Modeling) containing IDEF0, Petri Nets, EPC (Event-Driven Process Chain), 

Flowcharting etc., the other for ISM (Information System Modeling) containing Data 

flow diagramming, ER diagramming or UML. Integrated design strategies rarely have 

been put into practice (Giaglis 2001). With the emergence of Web Service-based 

process design and execution an alignment of these two views is vital for successful 

BPM (Business Process Management) more than ever. Therefore, and because of the 

reuse of process repositories already existing within the organizations, the integration 

possibilities of proprietary business process models within the above mentioned 

techniques should play a more important role. In the context of a top-down approach, 

mappings from XML representations of widespread used and well-defined modeling 



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

72

techniques (EPC Markup Language in the case of EPC, or PNML Petri Net Markup 

Language in the case of Petri Nets) to platform independent MDA-UML models seem 

promising. OMG’s Business Process Definition Metamodel (OMG 2003), a UML 2.0 

profile, aims at this goal. This proposal supports the mapping to a common 

metamodel and thus facilitates the communication among a variety of process models. 

We mention in this context ArcStyler, which is in the first place a classic MDA tool 

vendor for software engineering purposes, but with the MDA-Business Transformer 

for ARIS (Interactive Objects Software 2002), an eEPC (extended Event-Driven Process 

Chain) to UML mapper, they offer an interesting approach of business and IT view 

alignment. Unfortunately they do no support UML to BPEL4WS mapping. Van der 

Aalst (1999) has successfully undertaken a similar task, that is to say a mapping 

between EPC and Petri Nets. Modeling techniques alignment can also be achieved at a 

lower level of abstraction, neglecting platform independent representation through 

direct composition language mappings. This would be a similar, platform specific 

solution like the UML-BPEL4WS example from IBM described above. For a bottom-up

approach, mappings to proprietary modeling syntaxes, embodied e.g. in MS BizTalk 

Orchestration Designer or IBM WebSphere Business Integration Modeler, would be 

needed. 

5.4.3. System Modeling

It was already emphasized that the dependencies between a single process model and 

an overall architectural model are not considered within the two approaches. To see 

the process isolated from its environment has many disadvantages: 

• Inter process dependencies like synchronization or process hierarchies (nested 

sub-processes) are missing. Hence, appropriate business rules and constraints 

have to be coded. Monitoring by model is no longer possible. 

• Service repositories are missing at initial modeling level. The design of the 

activities takes place without knowledge about their availability according to 

necessary QoSs (Quality of Service).  

• Within architectures different paths exist and new evolve to achieve a certain 

process aim. Without an architecture model and the knowledge about the given 

connectivity, one has to design a single process model for every control flow, 

not knowing whether the needed interoperability exists or not. 

• The consequences of a change in the architecture or the introduction of new 

service providers for the process designs can not be monitored accordingly.  

Ragarding the MDA approach, OMG’s Business Process Definition Metamodel (OMG 

2003) again seems noteworthy, because the final specification is expected to achieve a 

metamodel that complements existing UML metamodels so that business processes

specifications can be part of complete system specifications to assure consistency and 

completeness.



Model Driven Service Architecture for the Shop Floor Domain

__________________________________________________________________________________________________________________

____________________________________________________________________________

73

5.4.4. Platform Specific Model Completeness

Recent second generation Web Service Technologies like WS-Reliable Messaging or 

WS-Policy (Erl 2004) are not embodied within the platform specific modeling 

environments, although they are fundamental for transaction and context 

implementation regarding service-oriented inter-organizational integration (Dustdar 

2004). Their absence in both modeling approaches means these concepts have to be 

included belatedly, an advancement that jeopardizes model and implementation 

congruency. In our opinion a process lifecycle management without a complete model 

covering all relevant interaction aspects is not possible. 

5.4.5. IBM and Microsoft Next Generation Tools

IBM’s next generation of integrated modeling tools focuses on the Rational Software 

Modeler/Architect product suite which will integrate business modeling with UML 

modeling. It will then be possible to import and export WebSphere Business 

Integration Modeler projects as UML 2.0 models to and from Rational Software 

Modeler. It seems as if this leads toward an integrated approach, where top-down and 

bottom-up strategies can be chosen scenario dependant. Microsoft seems to stick to 

the bottom-up approach, with emphasis on code/design synchronization and 

validation. In addition, the Visual Studio 2005 Whitehorse project, a group of 

graphical designers that support the design and deployment of Web Service-based 

systems, will foster the reliance on WS platforms.



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

74

6. MDSA Methodology Description

This methodology backs the core project objective concerning enterprise architecture. 

It is the opinion of the author that the present vertical and horizontal enterprise 

organisation will soon be obsolete. In the context of SOA the repository of services 

(with a description of semantics) is at the core, answering the questions how the 

connection to the services can be established and what message structure is needed for 

communication. Some major developments which strengthen this believe were 

already mentioned when the motivation for this project was discussed. For a highly 

distributed system like SOA a model based methodology has to exist which supports 

design time as well as run time decision making. With the Model Driven Service 

Architecture (MDSA) we propose an approach which fulfils major goals:

• System functionality focus: According to the basic SOA paradigm a service 

repository is crucial. The MDSA suggests a service/process repository as the 

core modeling concept incorporating the physical, deployed repository. At all 

abstraction levels it must be clear what functionality is available and how 

connectivity (data objects and interaction channels) can be achieved. 

• Abstraction level focus: Much discussion takes place about flat hierarchies, and 

the SOA is seen as an enabler to overcome any hierarchy at all. We believe that 

due to the need for different levels of abstraction another kind of hierarchy has 

to be established. Not a hierarchy of enterprise organisation or IS, but a 

hierarchy of different levels of abstraction of services. The MDSA supports the 

organisation and alignment of different abstraction levels.

• Life-cycle focus: The MDSA approach is not just a guideline for single SOAD 

projects, but aims especially at the support of the system architect during the 

whole system life-cycle. Therefore dynamic system behavior under uncertainty 

is an important issue, resulting in the concept of closed control loops for long 

term as well as short term decision making.

• State-of-the-art technology focus: MDSA at the highest abstraction level is a 

methodology for distributed systems design by means of long term and short 

term control loops. To proof the assumptions an implementation is necessary. 

First the implementation of the MDSA methodology in a modeling 

environment, resulting in a UML based approach. Second the implementation 

of a demo scenario to demonstrate the application of the MDSA during the 

complete system life-cycle. For this the Web Service architecture shall prevail. 

In the following we do not start with the analysis and design phase of Figure 29, but 

with the development and implementation phase. This makes sense because it will 

outline the basic requirements concerning abstraction levels and service/process 

repository in the analysis and design phase. 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

75

After the introduction of the Shop Floor Tool-Box concept for the latter, we have to 

turn to the question what techniques and technologies are best suited for information 

system engineering following the MDSA methodology.

6.1. MDSA – Development and Implementation

The platform independent Particular Shop Floor Model (PSFM, Figure 29) has to 

support long term platform, infrastructure and service provider decisions through as-

is and to-be comparisons. This high level model has to interact with the platform 

specific Executable Shop Floor Model (ESFM) concerning model refinement. The 

latter serves at a tactical level for the (re)design of service flow definitions which are 

semantically rich enough for executable code generation. The dynamic views of both 

levels together constitute the basic service/process repository. This model views have 

to be kept consistent with the deployed SOA repository. It provides patterns 

specifying the particular system processes, each on the one hand in a more generic 

(computation independent) model for the use within the PIM and on the other hand 

particular process models for the interaction within the PSM. Alternative service 

flows, different versions or diverse technological specifications of one and the same 

process are, therefore, separated from the actual valid models and enlarge the service 

repository. Templates allow for fast process creation.

This proceeding takes into consideration the necessity of business- and IT-view 

alignment, allowing e.g. architectural views or process definitions at distinct levels of 

abstraction. The purpose of MDA is a bi-directional, consistent procedure from system 

modeling (domain modeling) to application building and connecting. To handle this 

goal in the daily enterprise business, a clear methodology has to exist to control and 

adjust system behavior. In system theory therefore the model of control loops was 

elaborated for detection of abnormality between to-be and as-is behavior. In many 

domains this concept of system control was introduced. In the context of MDA and 

SOA the implementation as Management Control Loop for enterprise control is

especially interesting, because there the level of decision making (strategic – tactical –

operational) is considered through a control loop cascade. A transformation of this 

concept leads toward a Model Driven Service Architecture Control Loop as can be seen in 

Figure 35.

The PIM at the strategic level consists in our approach of the infrastructure in general, 

which again consists of services provided by distributed entities and the 

communication infrastructure containing hardware and data entities. In this part of 

the model various process definitions can be found, it represents the sum of all possible 

processes.



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

76

Strategic Level

goals

Tactical Level

PSM

Service Invocation, 

Messaging

Operational Level

Process Master 

flow execution

Monitoring

process redesign

INPUT

OUTPUT

Information Flow

(Material Flow)

process update

SYSTEM BORDER

CONTROL 

INPUT

public service 

requirements

CONTROL 

OUTPUT

public service 

information

Control Flow

Internal Service Provider 

External Service 

Provider

key 

figures

service/

process

repository

PIM

Figure 35. Model Driven Service Architecture Control Loop

Thus we want to provide a service/process repository which contains standard 

processes within the system, in our case the shop floor. This process repository can be 

used for PIM as-is evaluation and therefore PIM to-be creation. Far more important it is 

in the tactical level, where the executable process definition takes place and where 

process storage is absolutely needed. Process update and redesign at the tactical level 

utilizes the process repository. This means that according to the actual information 

flow or the monitoring results process definitions can be switched between actual 

valid PSM and repository. 

The figure shows that all structural model changes (e.g. new service providers), 

whether initiated through feed forward/feed back control flow or through system 

environment control flow, have first to take place in the strategic level PIM and than 

are mapped to the tactical level PSM due to consistency. Explaining the difference 

between PIM and PSM in this context we refer to the work of Leymann et al. (2002), 

who introduce the so-called W³ space to describe the execution of a flow instance in a 

flow model. A control flow consists of a chain of points in a three-dimensional space 

with the dimensions what (activity), who (responsible role) and with (tool for activity 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

77

processing). In a PIM what and who dimensions are fixed, but the with dimension 

remains at a high level of abstraction, not considering detailed specification for instant 

execution. The latter one is added through the PSM mapping, when platform specifics 

are included in the flow definition. Hence in the PIM it is sufficient to model the data 

flow coarse grained with focus on the semantic rather then the syntax. When we talk 

about platforms we have a broader understanding of this term compared to the 

original MDA definition, not just IT-infrastructure like middleware solutions, but also 

shop floor specific communication standards and non-IT tools like writing down 

information. The PSM with the platform specific description of the connectivity and 

distributed functionality within the system, which represents the sum of all executable 

processes, is the basis for the tactical level where the final process definition takes place, 

interacting with the process/service repository. 

As was mentioned in the SOA introduction, a system seldom stands alone but is part 

of a parent-system and therefore service hierarchy. The external service requestors are 

not interested in detailed information about internal model changes as far as they do 

not influence existing public service behavior. On the other side public service 

requirements, in addition to system goals are the input parameters of the external 

control flow. Key figures for the management of the system, like lead times, process 

execution errors etc. have to be defined to control overall system performance.

6.2. MDSA - Analysis and Design

A methodology from generic constructs and templates to the PSFM has to be 

delivered.

Fast and easy initial, computation independent modeling of a given shop floor system 

has to be supported, focusing on functionality and connectivity of the system as a 

whole. We achieve this by a generic high level model construct collection called Shop 

Floor Tool-Box. By means of scenario specific selection of generic artefacts from the 

toolbox, a sophisticated PSFM evolves. Residing at a strategic level this model does 

not include detailed information enabling automated flow execution, but takes into 

account the socio-technical structure of the domain. Exceptions are self-contained 

SFTB packages which describe highly standardized technologies or complete 

applications with a given implementation. Thus, after the analysis and design phase, 

certain processes and therefore services can exist in a platform specific occurrence as 

well. 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

78

M
o

d
e

l
i
n

g
D

o
m

a
i
n

G
e

n
e

r
i
c

L
e

v
e

l

P
a

r
t
i
a

l
L

e
v
e

l
-

s
h

o
p

f
l
o

o
r

g
r
o

u
p

i
n

g

P
a

r
t
i
c
u

l
a

r
L

e
v
e

l

P
r
e

l
i
m

i
n

a
r
y

M
o

d
e

l

(
U

M
L

)

D
e

t
a

i
l
e

d
M

o
d

e
l
l
i
n

g
-
P

I
M

(
U

M
L

)

Abstraction Level 1 Abstraction Level 2 Abstraction Level n

...

Shop Floor

Shop Floor Tool-Box

...

* Services

* Processes

* Service Provider

* Data Objects

particular shop 

floor to model
MDSA control loop

Figure 36.The concept of a Model Driven Service Architecture for the Shop Floor (structural view).

6.2.1. Shop-Floor Tool Box

Above we described a methodology that helps to manage the system control in the 

enterprise with the PIM and the service/process repository for this particular system 

as the main input. The PIM differs of course for every given system. This is especially 

true for the shop floor, where a wide range of system architectures can be found. In 

contrast the process repository is rather steady, because the necessary services and 

their logical invocation order to achieve the process goal (what dimension) are similar 

within different shop floor environments. What strongly varies are the who (either the 

worker or the NC-machine is responsible for tool setting data request) and the with

(either the request gets transmitted by hand or Ethernet) dimension. Thus the project 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

79

aims at the methodology and tool creation which eases the modeling of platform 

independent models for service oriented architectures in the shop floor on the one 

hand and a standard service/process repository on the other. 

Therefore, a high level model of the shop floor is needed which contains a 

hierarchically ordered collection of services, necessary to achieve typical, nested 

process functionality within different shop floor environments. We call this high level 

model Shop Floor Tool-Box, because it is a tool which allows the fast visualization of 

processes and services in a PIM within a given shop floor architecture. The tool 

consists of an activity model (what dimension), service provider (who dimension) and 

data entities (together with the service provider functionality constituting the with

dimension). The activity model of the tool represents the control and information flow 

descriptions (behavioral view). 

The Shop Floor Tool-Box allows for structural and behavioral modeling with 

standardized and encapsulated objects and packages of the shop floor, which offer 

services at different levels of abstraction. Additionally, the tool box considers standard 

processes and their varieties within the shop floor (order fulfilling, tool management, 

etc.) without fixing the responsibilities of the control objects for specific activities (this 

will be done during the analysis and design of packages in the partial level and 

refined in the particular level PIM creation of a given system). Thus the first phase of 

the project was occupied with the collection of services, control objects and entity 

objects likely to be found in the shop floor, hierarchically ordered using packages and 

composition. The services needed in the shop floor are separated and not allocated to 

the control objects, but are linked to rudimental standard processes in the process 

repository. During the work for the SFTB it soon became clear that such a tool needs a 

stringent and logical framework for model organization. The usability within the 

modeling tool turned out to be critical as well. After some not really satisfactory 

proposals the ANSI/ISA organization published part 3 of the ANSI/ISA 95 standard 

which turned out to fulfill most of the requirements defined for the SFTB framework. 

Hence the author decided to organize the SFTB framework according to this standard. 

Because selected groups of shop floors and their particular resources, e.g. Flexible 

Manufacturing System versus workbench production, show typical constellations of 

service – control object – data object conjunction, we introduce a partial level between 

the generic level (toolbox) and the particular level (particular PIM/process 

repository), according to the CIMOSA Modeling Framework. In contrast to the latter, 

we do not create complete reference models, thus the partial level contains only 

groups of process implementation (sequence and/or activity) diagrams. 

At the particular level a specific initial PIM/process repository is the aim, taking a 

proper partial level shop floor group model according to the given shop floor 

environment and adjusting it until it is accurate enough as a starting point for creation 

of a MDSA control loop. 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

80

6.2.1.1. Modeling Tool-Box purpose

The Shop Floor Tool-Box serves two purposes. First it has to be flexible enough to 

support fast and precise modeling of any given shop floor architecture in the context 

of service availability and distribution, which is important for system analysis, 

reengineering and requirement definition for system extension. These models allow 

us on the one hand to get an overview about the current configuration and to show 

the improvement potential, independent from the planned architecture. 

On the other hand the aim is a SOA, thus the model syntax and semantics supports 

the required constructions. This has to be considered when the SFTB is filled with the 

structural and behavioral building blocks. Compared to similar approaches like that 

of Jin et al. (1998), who present a Short Period Modeling Method in the preliminary

modeling phase for the user’s requirements capture and analysis, we do not want to 

use different modeling techniques for different process phases. Still, we follow the 

above approach with regards to the principle aim, providing the tools for fast and 

accurate requirements gathering, analysis and further, more detailed modeling. The 

use of UML, the state-of-the-art modeling technique for software engineering, will 

avoid a gap between the preliminary modeling phase and the detailed modeling 

phase, which will be strongly influenced by IT concerns in the context of process 

automation. This SOA oriented methodology is possible because there are standard 

activities in the shop floor. With a given functionality the outputs and inputs of the 

sub-systems realizing the activities stay the same. The only difference is the behavior 

regarding the operation allocation between the constructs, not the operations 

themselves. 

6.3. MDSA – Assumptions, Technologies and Tools

Although our methodology is SOA implementation independent, for the demo 

scenario we had to consider the given restrictions just like in any other real-world 

project. First, we wanted to include some Web Service based HMI applications for 

NC-machine control, called Cell Integrator. Secondly, we have discussed the increasing 

importance of Internet Based Manufacturing, thus applications and devices enabled for 

internet technologies should be preferred. In line with the fact that WS-SOA is the 

most standardized and elaborated SOA technology stack we decided to make it the 

main implementation platform. Human interaction is the second focus. The aim was 

to put human interaction tasks on an equal footing with fully automated processes.

This is on the one hand a functional necessity, because a lot of control tasks proofed to 

be unsuited for full automation (e.g. detailed production scheduling). Hence human 

knowledge is indispensable. In modern production management this fact is strongly 

emphasized in terms of high-skilled workers for high-tech equipment like NC-

machines or when it comes to continuous process improvement projects. Thus the 

scope for decision-making increased for shop floor personnel, but the basic 

information push mechanism did not change. A SOA gives the worker the freedom to 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

81

pull the information actually needed and not the one which was thought to be 

essential at process design time. Therefore, SOA applications which support 

messaging and broadcasting subscription in UDDI have been designed. On the other 

hand such a scenario leads to much broader architectural requirements, asynchronous 

communication patterns for example are a must for personnel notification. Or time 

constraints in request-response interactions are different if one of the parties involved 

is dependant on human activities.

We already mentioned the different approaches regarding SOAD. The author strongly 

believes that only a combined approach can be successful, matching the given asset 

structure measured against high-level requirement business models. Thus a 

comparison of top-down and bottom-up approaches for model driven WS-

composition was conducted, which led to the result that satisfying technologies 

enabling stringent methodologies from business oriented system models down to 

executable service flow definitions hardly exist. Nevertheless, the approaches 

evolving around UML seemed most promising. 

Therefore a combined Specification and Representation approach depicted in Figure 37

was implemented, with an UML 2.0 based methodology for high-level use-case and 

business scenario modeling (system model) resulting in platform independent service 

collaboration views which utilize a modified IBM UML 2.0 Profile for Software 

Services (Johnston 2005)). Johnston’s paper is not free of contradictions. The 

stereotype Service Partition has a constraint which states that any owned part shall be a 

class stereotyped Service Provider. This is the opinion of the author as well, but the 

semantic description restricts Services or other Service Partitions as nested parts. 

Secondly, the Service Collaboration stereotype participants are restricted to Service 

Providers in the text, but the class diagram shows that the constraint regards Services. 

To make matters worse, the Rational Software Modeler profile plug-in example uses 

Service Specifications to represent the collaboration of other services. The latter case is 

the one adopted in the modified profile.  

The System Model, which at a low level defines the composition specification, derives 

its syntax and semantic from a combined meta-model of an ANSI/ISA 95 Profile

(leveraging the Equipment/Functional Hierarchy Model of Part 1 and the Activity Models

of Part 3) and the IBM Profile for Business Modeling (Johnston 2004, Ng 2002, 

Rational 2001). Corresponding templates ease the model management. 

Other proposals for UML 2.0 business modeling profiles (Sinogas (2001) or the related 

one by List and Korherr (2005)) partly adopt and as far as the author could evaluate

can not outperform the latest release of the Rational approach. Although the latest 

one, based on UML 2.0 claims to do so. 

List and Korherr (2005) present two perspectives, a Business Perspective (static view) 

and a Sequence Perspective (behavior view). The general stereotype Business Process

extends the Class classifier in the UML 2.0 meta-model. But this makes the model 

organization more difficult during process decomposition than using the Collaboration

classifier. While the differentiation between Core-, Support- and Management Processes

and their relation to Internal- and External Customers in the Business Perspective is in 

reality hard to implement, it is also questionable that the meta-model for the Sequence 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

82

Perspective can be chosen completely situation dependant. Thus, unfortunately, the 

important link between the two perspectives remains unclear, although it is stated 

that one of the contributions of this proposal is that “The UML 2 profile for BPM can 

be easily extended and mapped to Business Process Execution Languages (BPEL).” 

The Detailed Process Diagram defined for the business perspective, mentioned as a “… 

link to the sequence perspective.” is not explained any further. So we do not know 

how the software developer, for whom the profile represents the business context and 

business requirements, will integrate the new abstraction level into his framework of 

detailed models suitable for process execution. This example fits into the collection of 

approaches which on the one hand mention the objective of “… bridging the gap 

between business process engineering and software engineering.”, but on the other 

hand do not explain how this can really be achieved. In addition, the examples 

presented are “free flying” single processes, with no nested processes or other 

demanding system structures (see Kloppmann et. al. (2005) for more details 

concerning the yet unresolved question of how to integrate sub-processes in the WS-

BPEL 2.0 specification). And, as already mentioned, they do not practically 

demonstrate the integration of different levels of abstraction into a stringent 

methodology.

The repository of assets (service providers, realizing components) as well as other 

relevant information (data or binding types) is available in the low-level system views

and is incorporated in the fine grained flow models (bottom-up). These flow models 

are the blueprint for the Composition Model, in our case BizTalk Orchestration Designer 

orchestrations. At this stage automated mapping between Model Representation 

Language (UML 2.0 Activity Diagram) and Executable Composition Language

(XLANG/s) is not included. The choice for UML 2.0 Activity Diagrams was made 

especially because a unifying technique suitable for all abstraction levels was defined 

as a core requirement for the methodology. Other Model Representation Languages

(BPMN, XPDL) consider only single process models.

BPMN 1.0 submitted by BPMI in May 2004 was initially thought as the “natural visual 

form” for BPML, although the development of the two ran as independent efforts in 

separate workgroups. In BPMI (2004), the original charter for the BPMN initiative, it is 

stated that 

The purpose of BPMN is to be an intuitive notation for the development of BPML 

processes at the business level. Where BPML is used to carry process semantics among 

computers, BPMN carries it among business users.

BPMI (2004)

This narrow view has been given up due to the unsuccessful BPML, and now BPMN 

is promoted as a general process notation which can be mapped to BPEL 1.1 (the 

specification includes mapping suggestions of certain shapes and patterns to specific 

BPEL code) as well as XPDL 2.0 specification. 



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

83

XPDL 2.0 is intended to be used as a file format for BPMN. The original purpose of 

XPDL is maintained and enhanced by this second version of the specification.  The 

XPDL and the BPMN specifications address the same modeling problem from different 

perspectives. XPDL provides an XML file format that can be used to interchange process 

models between tools. BPMN provides a graphical notation to facilitate human 

communication between business users and technical users, of complex business 

processes. There are a number of elements that are present in BPMN version 1.0 but 

were not present in XPDL version 1.0. Those had been incorporated into this version of 

XPDL.

WfMC (2005) 

Hence it can be seen as a competing standard to UML 2.0 or other graphical notations 

capable of process definition. Although the initial intention was to present business 

analysts with a more user-friendly tool compared to the technical and complex UML, 

the comparison of White (2004) between BPMN Business Process Diagram and UML 

2.0 Activity Diagram shows that there is not much difference between the two, 

regarding the technical ability to represent the 21 workflow pattern defined by van 

der Aalst et al. (2000) as well as their readability. It is not unlikely that the OMG will 

take the BPMN standard, which could eventually result in a consolidation of BPMN 

Business Process Diagrams and UML Activity Diagrams.

Other mapping requirements, which would gain importance if different modeling 

notations and concepts should be integrated, are in our case not relevant due to the 

limitation of modeling environments (Rational Software Modeler 6.0.1 with profile 

plug-ins and BizTalk Orchestration Designer 2004). 

Out of the lists of tasks in Figure 37 we focused on discovery and binding, typically 

supported by a service broker, which is next to service provider and service requestor 

the third major role in the basic SOA paradigm. In the demo scenario this role is 

performed by the UDDI 1.0 compliant Windows Server 2003 UDDI. The MS platform 

also prevails regarding the Run-Time Environment (.NET 1.1 and BizTalk Server 2004) 

as well as the Development Environment (Visual Studio .NET 2003).



MDSA Methodology Description

__________________________________________________________________________________________________________________

____________________________________________________________________________

84

Figure 37. MDSA demo scenario



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

85

7. MDSA Implementation and Evaluation by Means 

of a Demo Scenario

In the chapters below the demo-scenario will be described, following the MDSA 

methodology. It has already been discussed why UML was chosen to implement the 

methodology. Because a detailed discussion of UML 2.0 is out of the scope for this 

work, it is assumed that the reader is familiar with UML basics as well as the major 

changes in Version 2.0. Throughout the text some short language related explanations 

are given, but in general the figures included, together with the description, should be 

sufficient in order to understand the models, even with limited UML knowledge. 

A good overview of Version 2.0 improvements in the context of model driven 

development support is given by Selic (2005).

Italic text marks UML stereotypes derived from the profiles, ANSI/ISA 95 and 

modeling methodology specific phrases.

7.1. The ANSI/ISA S95 Meta-Model

Within the modeling framework the complete ANSI/ISA 95 standard can be 

visualized and used as the guideline for high-level analysis modeling, hence the 

methodology implementation follows ANSI/ISA 95 Part 1 concerning the general 

assumptions about hierarchies and functions as shown in Figure 39 and Figure 40. The 

object model defined in Part 1, and enriched with attributes in Part 2, is not 

extensively used in the demo-scenario and is therefore not completely covered in the 

first version of the Shop Floor Tool-Box and the corresponding profile. Hence the 

functions and related information flows of interest are applied in the ANSI/ISA 95 

meta-model, but not the complete data type definitions for Level 3/Level 4 

information exchange (object models). Nevertheless, the terminology used to name 

the objects is always consistent with the standard. According to that, the Production 

Schedule object released from Level 4 does not comply with the standard regarding the 

data type definition. Other Categories of Information Exchange (Figure 38) do not take 

place at this interface level in the demo scenario.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

86

Figure 38. ANSI/ISA 95 Categories of Information Exchange

The generic Functional Hierarchy Model (included in Figure 40) and the Equipment 

Hierarchy Model is the base for functionality allocation and categorization.

The implemented functionality in the demo scenario is part of the Production 

Operations Management grouping within the Manufacturing Operations Management 

Model, depicted in Figure 40.

Figure 39. ANSI/ISA 95 Analysis Model Overview



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

87

Figure 40. Manufacturing Operations Management model

This use case view shows a high level grouping of activities related to four main 

operations management areas by means of “include” and “extend” relationships. 

According to the standard, some activities can be uniquely assigned to the 

subsystems, derived from a multi-level hierarchy of activities (due to a better visibility 

the activities of subsystem Business Planning and Logistics and their associations with 

subsystem Manufacturing Operations Management are hidden). Others, like Production 

Scheduling, could be assigned to both subsystems depending on the particular 

scenario. Moreover, the standard supposes supporting activities, like:

• Management of security within manufacturing operations.

• Management of information within manufacturing operations.

• Management of configurations within manufacturing operations.

• Management of documents within manufacturing operations.

• Management of regulatory compliance within manufacturing operations.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

88

• Management of incidents and deviations.

In the model this extension possibility is foreseen similar to XML schema definitions 

by means of a use case stereotyped with Any. 

Figure 41 depicts the activity model of Production Operations Management, derived 

from a generic activity model for all four types of operations management (Figure 40).

An UML activity diagram was chosen to visualize this model. An UML Activity 

consists of a number of Actions, which can be of general, of call behavior or call 

operation type. The Call Behavior Actions provide a behavior property which points 

to a diagram describing the expected behavior of this action. The ANSI/ISA 95 meta-

model does not contain any authoritative behavior models, but in the SFTB and 

therefore in the demo scenario the Call Behavior Actions point directly to the basic 

flow diagrams or activity diagrams of the ANSI/ISA 95 activities. Thus each action 

becomes an activity and therefore nested levels of functionality can be created.   

Figure 41. Activity model of Production Operations Management

Keep in mind that at the highest level the UML Call Behavior Actions are ANSI/ISA 

95 activities and that the complete Production Operations Management model is covered 

by means of a single UML Activity. All the squares and lines represent the basic object 

flow as defined in the standard. For external interaction the Activity Node Parameter 

notation is used. On the left side the Level 4 interfaces are visible. Hence the 

parameter names used here are members of the Categories of Information Exchange in 

Figure 38. Interfaces to the Level 2 or Level 1 functions are indicated at the top of the 

activity frame. No strict interface definition for this level is incorporated in the 

standards, just some typical interactions are mentioned for corresponding ANSI/ISA 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

89

95 activities. For instance an object flow from Level 2 to the Production Data Collection

activity can be found in some form in every shop floor domain to gather information 

about resource usage and deployment of staff. Again for the meta-model this 

information has not been included, but for the SFTB this information will be covered. 

It must be said that object flows between the UML Call Behavior Actions via Input 

und Output Pins are not consistent with the detailed ANSI/ISA 95 activity models 

discussed in the following, because the standard does not restrict the creation of object 

flows where appropriate.

The reason lies in a recommendation like formulation, thus the standard continuous 

with an informal discussion of the functionality of the ANSI/ISA 95 activities 

depicted in Figure 41 and names data objects exchanged at some possible interfaces. 

This information is fully covered in the meta-model and is completely available in the 

Shop Floor Tool-Box. But the real aim of this thesis is to close the gap between Business 

and (Software) System Engineering, to define and detail the tasks (services provided) 

of the single activities above, map the roles to service providers, which again are 

physically bound to personnel or applications/systems. To give an example: The 

Detailed Production Scheduling activity has an associated role Scheduler, which has to 

fulfill parts of the service flow scheduleNewOrders. This role is assigned to the 

scheduling software Preactor as well as to personnel. 

The MDSA approach introduced earlier helps to handle the process from high-level 

system models to executable service flows by means of modeling, therefore the 

corresponding views from the modeling environment are included in the scenario 

description where appropriate. The demo scenario helps to visualize the introduced 

methodology, starting with the initial, particular shop floor model creation by means 

of the SFTB, and ending with a run-time execution environment ready to step into the 

MDSA control loop. 

7.2. Shop Floor Tool-Box Implementation

ANSI/ISA 95 is on the one hand the high-level framework for the SFTB, a collection of 

models and artefacts ready to be used for modeling projects. Thus the first task was to 

build an ANSI/ISA 95 UML meta-model in the modeling environment. The models 

derived directly from the standards and were introduced above. On the other hand 

this meta-model constitutes the UML Profile for ANSI/ISA 95, which is used 

throughout the modeling efforts. Mainly, the purpose of this profile is to keep the 

relationships to the ANSI/ISA 95 models and terminologies especially in low-level 

diagrams and models alive. Nevertheless, it is important to state that the SFTB is more 

than an ANSI/ISA 95 standard representation. It contains more information at 

different levels of abstraction and shall grow with every real-world modeling project, 

which means entities like service providers, data objects etc. are continuously played 

back in the SFTB. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

90

For the framework organization, the Rational Analysis Model template is used. 

Functional area packages are introduced at the top level of the model.  Each functional 

area package contains analysis-level use-case realizations for a particular functional 

area plus the analysis classes that play roles in those realizations.  Each use-case 

realization is represented through an UML Collaboration. Use cases and actors are 

packed in a separate use-case package. This separation of use case model and analysis 

model can also be found in the IBM (former Rational) UML Profile for Business 

Modeling (Johnston 2004, Ng 2002, Rational 2001). The semantic necessary in the 

business context is introduced by means of this profile. The before mentioned Analysis 

Model template provides the basic framework for fast business modeling because it is 

following the structure of the profile. Due to the integration of the Business Modeling

profile into the template the analysis classes Entity and Control derived from the 

RUPAnalysis profile referenced in the template model get the additional stereotypes 

Business Entity and Business Worker respectively. For the graphical representation in 

the diagrams the latter notations are used. The Boundary class has no equivalent in the 

Business Modeling profile and thus remains unchanged.  

7.2.1. SFTB Generic Entities beyond ANSI/ISA 95

The SFTB is a knowledge repository, growing with every particular domain modeling 

project undertaken. The ANSI/ISA 95 meta-model represents the generic level 

framework which will be extended by means of generic as well as particular entities. 

Some of the already designed information groups will be introduced in the following. 

Next to the corresponding UML types and diagrams, icons are used as often as 

possible to express the semantic of each entity as clear as possible. Each group is held 

in an UML Package at the proper level of abstraction.

• Connection Types

• A broad range of connection types are needed for the shop floor domain, 

starting with paper or floppy disk exchange and ending with sophisticated 

communication standards like OPC Data Access. The latter is available as a

class diagram showing the interfaces entities like OPC Server or OPC Client 

request and provide.

• Data Types

• Some data types are already incorporated as ANSI/ISA 95 suggestions for data 

exchange between Level 3 activities. Much more were added in the SFTB as 

UML classes, partly arranged in a class diagram to show the dependencies and 

relationships between them. Attributes are included, but are likely to change in 

a particular scenario. Nevertheless, it proved useful to have a suggestion as a 

starting point. First, some data fields are almost always necessary and at most 

the name changes (e.g. an order ID field in a work order data type). Secondly, 

knowing different types of e.g. work orders in particular scenarios make best 

practice comparisons possible. Next to general shop floor data types for basic

operation management, additional entities for selected information domains 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

91

were included in the form of UML Packages. For instance, there is a tool 

package consisting of class diagram and tool information related classes. 

Vendor application specific data formats as well as standards organization 

body proposals (e.g. OAGIS 9.0 Business Object Documents, MIMOSA, or 

B2MML) could be added as well.

• Business Goals

• Goal hierarchies and their relationship with core processes are valuable and 

reusable information incorporated in the SFTB

• Process Definitions

• In the SFTB complete business processes can be stored, either platform 

independently or platform specifically.

• Service Providers

• Service Providers are the last piece of information missing to build and 

maintain platform independent high level information architecture packages in 

the SFTB, for instance the aforementioned tool package or a DNC package.  If a 

particular model is demanded, it can be customized according to the given 

situation. 

7.3. Production Operations Management Demo Scenario 

Activities

In Figure 41 the generic activity model defined in the ANSI/ISA 95 standard can be 

found, whereas in the model presented in Figure 42 only those activities actually 

implemented are included (particular model). As one can see, this enables a direct 

high-level as-is/to-be comparison regarding ANSI/ISA 95 compliance.

The activity diagram gives a complete high-level overview of the functionality and the 

basic object flow available in the system. The further decomposition down to 

executable code is fully supported by means of the MDSA for the Shop Floor

methodology which is described in the following. Let us first take a closer look what is 

happening in the demo-scenario. First of all it must be stated that at this level the 

control flow is completely hidden, thus it can not be said in which order the 

interactions will take place. For that matter flow diagrams have to be added in a 

subsequent step. The information flow is restricted to the major contributions of each 

activity and lack the detailing of interaction patterns or the like. Third, this level is a 

kind of black box architecture, thus it remains unclear how much functionality is 

available in each UML Action (ANSI/ISA 95 activity). Moreover, all functionality 

outside the scope of the manufacturing information standard is missing as well, for 

instance infrastructure functionality like that provided by a repository.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

92

Figure 42. Implemented Production Operations Management activities/object flow

An executive summary using this model could look like this: 

To manage the production operations between our ERP system and the machinery, as 

well as the workers at the assembly line in plant 1, a Production Schedule has to be 

released from the ERP system rough planning module. The schedule will contain only 

the order data, but not the product structure. The Detailed Production Scheduling

activity needs the Product Definition (mainly Bill of Material information) of the 

requested products, thus this data has to be provided by the Product Definition 

Management activity. To schedule the operations according to the order and BoM 

structure, target resources have to be defined. This resource related medium-term 

information is retrieved from the Production Resource Management activity. After the 

Detailed Production Scheduling activity has performed the scheduling task, a Detailed 

Production Schedule will be the result. This object represents the input into the 

Production Dispatching activity which will release resource specific dispatching lists 

according to the short-term resource availability. Production Execution Management will 

provide the operations contained in the Dispatching List to the resource and waits for 

operation processing details in return. Certain details will be passed to the Production 

Data Collection activity as Time Slice objects. As NC machines are one type of resources, 

NC Programs have to be provided by the Product Definition Management activity as 

well.

So this is the as-is system. Of course we do not know the system in detail, but if one 

compares the generic activity model in Figure 41 and the particular in Figure 42, it will 

be obvious where improvement is possible. With the help of the generic model 

enriched through control and information flows deposit in the SFTB a to-be scenario 

evolves. It could look like the one in Figure 43. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

93

Figure 43.  TO-BE production operation management scenario

The improved information system tackles the weak point of the given system 

regarding the information flow upwards. In the present situation the Production Data 

Collection activity deals with fine-grain data objects which are not suitable for upward 

processing. But the Detailed Production Scheduling activity needs a closed control loop if 

reactive scheduling is a new goal (goal setting is discussed in the following). Therefore 

the actual operation status is necessary, provided by the Production Tracking activity. 

There the operation confirmations, which are consolidated time slices, are 

transformed twofold: First as Operation States suitable for the scheduling activity and 

second as Production Performance data suitable for the Level 4 functions.  Different data 

types and different cycle times will probably be the main distinctions between the 

two. 

Figure 44 continues the detailing of the above functional model for Production 

Operation Management for our demo scenario SOA. It could be argued that the use of 

the ANSI/ISA 95 activities to perform the decomposition is exaggerated for the given 

system and that the basic flow would very likely fit into a single flow diagram as well. 

This may be correct for primitive information architectures, but for complex systems 

next to the vertical organization through abstraction levels, some kind of horizontal 

organization is needed as well. The agreement on this horizontal organization 

framework by means of ANSI/ISA 95 activities, is the major achievement of this 

standard. Of course in the end the reassembled activity models must show a 

consistent picture of the whole architecture.

The Business Analysis Model establishes the organizational framework to decompose 

the ANSI/ISA 95 activities. Six Business Analysis Models (one for each activity) import 

the corresponding parts of the Production Operations Management use case view, which 

is consisting of a single diagram. The use case view contains the use case models like 

the one depicted in Figure 45, so it represents a single point of information for all 

Business Use Cases as well as Business Actors and Business Goals for the activities. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

94

Figure 44. Business Use Case and Business Analysis Model main diagram

The decision to separate the use case models from the rest of the content of the 

Business Analysis Models was made due to possible dependencies respectively 

intersections between use cases, actors and goals. It could be argued that this network 

should be represented in a single diagram. But the use case realizations will reference 

the use cases to make the relationships between use cases and realization visible in the 

Business Analysis Model again (Figure 46).

For the remainder the Detailed Production Scheduling model shall be used to 

demonstrate the easy and highly integrated modeling methodology down to 

executable process specifications. All other activity models are described textually and 

figures are only included were they conveniently enhance the understanding of the 

subject matter.

7.3.1. From SFTB Entities to Particular Shop Floor Models

Detailed production scheduling shall be defined as the collection of activities that take the 

production schedule and determine the optimal use of local resources to meet the 

production schedule requirements.  This may include ordering the requests for minimal 

equipment setup or cleaning, merging requests for optimal use of equipment, and 

splitting requests when required because of batch sizes or limited production rates. 

Detailed production scheduling takes into account local situations and resource 

availability.

ANSI/ISA (2005)

The concept of modularization has been important in the SFTB from the very 

beginning. That is why the use cases are separated from each other (Figure 45). This 

gives the modeler the flexibility to chose the entities he needs first and then integrate 

them, in the case of use case models through include and extend relationships or 

through the replacement of external actors and use cases.  



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

95

Figure 45. Detailed Production Scheduling Use Case Model

The figure above represents the highest activity level of the MDSA methodology. The 

whole Detailed Production Scheduling activity is represented as a Business Use Case, 

interacting with a Business Actor, the Production Schedule Provider. Typically, this role is 

realized by Level 4 activities, often an ERP system releasing the MRP II scheduled 

Production Schedule (Kedir Biadgligne et al. 2004). There can be more than one 

schedule provider (e.g. the ERP system releases a complete Production Schedule, 

whereas an ATP system just finished product demands) and more than one Detailed 

Production Scheduling use case (e.g. in a multi-site scheduling scenario, multiple 

Scheduling systems of distributed factories have to interact to fulfill a single 

Production Schedule released for the production network). This use case supports two 

Business Goals, WIP Minimisation and increased Adherence to Delivery Dates. The 

definition of goals is a key principle of process orientation, because the achievement of 

these objectives, refined by means of KPI (Key Performance Indicator), determines the 

effectiveness of the overall process. A control loop like the one presented in this work, 

has to translate the monitoring results of the operational level into figures 

representing the business goals. Business Goals are not included in the ANSI/ISA 95 

standard and therefore give an example for entities derived from the SFTB.

In Figure 46 the main diagram of each of the Business Analysis Models of Figure 44 can 

be seen, showing which Business Use Case Realizations (UML Collaborations) actually

realize the use cases. From here the link to the overview diagram allows us start 

explaining the single business level realizations of the use case. In our case a single 

collaboration is sufficient. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

96

Figure 46. Detailed Production Scheduling analysis use case realization

Following the link leads to the Detailed Production Scheduling Realization Overview, a 

diagram consisting of four diagrams according to the Rational Analysis Model template:

• Detailed Production Scheduling Analysis Classes (UML class diagram)

• Detailed Production Scheduling Participants (UML class diagram)

• Detailed Production Scheduling Basic Flow (UML sequence diagram)

• Detailed Production Scheduling Alternative Flow (UML sequence diagram)

But alternative flow diagrams are optional and of course their number is unlimited. 

The template suggests using sequence diagrams, but the use of activity diagrams or 

even non-UML diagrams is possible. This overview diagram shall be the central hub 

for all information regarding the use case and therefore ANSI/ISA 95 activity 

realization at the business level.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

97

Figure 47. Detailed Production Scheduling Analysis Classes

The first diagram is a class diagram depicting all Business Workers and Business Entities

for this particular realization. In the modeling environment they are collected in a 

UML Package stereotyped Business System. Within the complete set of six Business 

Analysis Models, Business Workers are unique. This means, every Business Worker

belongs to a single Business Use Case Realization. All additional occurrences in other 

Business Analysis Models of ANSI/ISA 95 activities are only references. The purpose of 

this decision is to make the consequences of one missing Business Worker immediately 

visible in the static and dynamic views in every single Analysis Model. Explained by 

means of our example, this means that the Detailed Production Scheduling Business

Worker (N.B.: the definition of this stereotype says that it marks a role) is definitely a 

part of the Detailed Production Scheduling Analysis Model, but not the other three 

Business Workers. To make this even clearer, the operations defined are only visible for 

the classes in their unique view. So if the Production Tracking activity is not 

implemented and thus is missing as a Business Analysis Model, the Business Worker

would be missing in Figure 48 and in every other high-level realization model. 

The lower part of Figure 47 groups the Business Entities which are used in the scenario. 

Figure 48 gives a high-level, static view of the role itself, its interactions with other 

roles and the data objects passed between them. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

98

Figure 48. Detailed Production Scheduling participants

It is the second compulsory diagram in every Business Analysis Model. At least one 

dynamic behavior view completes the basic overview. Following the template a 

sequence diagram was chosen (Figure 49). The basic flow diagrams are directly linked 

to the Call Action Behavior (double click) constructions in Figure 42. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

99

Figure 49. Detailed Production Scheduling basic flow



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

100

So far the high-level business modeling capabilities by means of the ANSI/ISA 95 

based Shop Floor Tool-Box were presented. The result of the process described up 

until here is a PIM for our demo scenario, derived from entities of the SFTB. If we 

continue the top-down approach, the point would be reached go on with the 

integration of the low-level service layer environment following the IBM Profile for 

Software Services. But before that we must analyze and model the given functionality 

in the system in a bottom-up proceeding. After that, the mapping between business 

layer and service layer can take place.

7.3.2. From Particular to Executable Shop Floor Models

In an iterative process two modeling perspectives evolve, first the top-down derived 

PIM and secondly the bottom-up originating PSM. Thus the modeling project for a 

particular scenario can be seen as a central market place, were supply (the actual 

system configuration plus potential functionality providers of the repository, part of 

the entities of the SFTB) meets demand (the to-be system with its processes and goals 

defined by the business analysts). So far we determined what Production Operations

Management activities we want to implement and modeled the high-level static and 

dynamic requirements. Now it is time to have a look at the available Service Providers

are and what role they can play to realize the postulated system configuration. The 

service provider models can have two sources, either they are available as low-level 

constructions in the SFTB, or they are added to the project from scratch. In either case, 

the IBM Profile for Software Services will be used. Rational Software Modeler offers a 

Service Design template for this profile, which is used in an extended version for all 

modeling efforts at the software service level and represents the transition from PIM 

to PSM.    

The Service Providers are grouped in a Service View perspective (Figure 50). We have 

already placed an emphasis on the fact that the Service Provider construction is 

implementation independent. That is to say, the Service Providers depicted in Figure 50

together with the interfaces respectively operations they realize, can be personnel as 

well as applications. To give an example: The Detailed Production Scheduling activity 

has an associated service provider role SchedulingIFProvider, which participates in the 

Service Collaboration scheduleNewOrders. This role is assigned to the scheduling 

software Preactor 9.2 interface extension. Another service provider is 

SchedulingProvider, a role assigned to the Preactor 9.2 software user. The 

implementation details will be added in the subsequent step of Component View

creation. Note that this picture does not include all service providers within the demo 

scenario, but only the ones involved in the Detailed Production Scheduling activity.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

101

Figure 50. Service View perspective including the service providers for the Detailed Production 

Scheduling activity



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

102

The Service View, a component diagram, considers use dependencies as well as 

realization relationships. A class diagram and a composite structure diagram (Figure 

51) refine each single service provider component. For a detailed discussion of all 

service providers within this demo-scenario we refer to chapter 0. Although some 

readers may prefer to get an introduction to the system functionality at this point, it is 

the opinion of the author that the discussion of this extensive issue would distract 

from the methodology explanation too much. Hence the 

ProductionScheduleCheckProvider Service Provider shall demonstrate the creation of 

Service Collaborations and finally the composition models.

The ProductionScheduleCheckProvider Service Provider consists of two Interfaces, 

stereotyped as Service Specification. Which operations they provide can be explored in 

the class diagram or in the general Service View. Each interface can be accessed 

through two ports (Services). Figure 51 depicts this circumstance. 

Figure 51. The implementation of the ProductionScheduleCheckProvider

The little squares represent ports, with their names right next to them. Each port is 

connected to a Service Specification. As one can see, at a time two ports have the same 

Service Specification. All in all three port types are used in the whole scenario, namely a 

SOAP port, a FSO (File System Object) port and a BT port. BT port is a “BizTalk” port, 

which means that the port only exists as an internal BizTalk interaction channel. This 

is used to represent internal orchestration calls. The general type is always included in 

the port name (e.g. scheduleNewOrdersSOAP and scheduleNewOrdersFSO Services).

The detailed type specification (e.g. SOAPRpc, SOAPDoc) is included in the 

documentation and has to be the same as the Service Channel binding attribute defined 

in the Collaboration View. This perspective provides a Composition Overview and a 

Collaboration Overview diagram. The first, depicted in Figure 52, shows the 

relationships between the Service Partitions, a collection of Service Providers. It is also

shown what roles the Service Providers fulfill in the partition (e.g. role Scheduler of type 

SchedulingProvider). In our case the partition is compliant with the activities in Figure 

42, thus we find a Detailed Production Scheduling Partition, which realizes the role of a 

DetailedProductionScheduleProvider for other partitions. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

103

Figure 52. Composition Overview of the Collaboration Overview perspective



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

104

The careful reader will soon detect that the Production Resource Management and the 

Production Data Collection activities are not represented as partitions. The reason 

therefore is that resource management is completely incorporated in the scheduling 

software functionality by means of a resource database and thus it is part of the 

Detailed Production Scheduling partition SchedulingProvider implementation. The data 

collection functionality is restricted to a simple receive message port so far, thus it was 

decided to exclude it as long as more functionality is available. 

Partition and UDDI are closely related. It was decided to map each Service Partition to 

a UDDI service provider and every Service operation to a UDDI service due to the 

small number of operations in addition to the demand for single operation visibility in 

the UDDI. The UDDI categorization is ANSI/ISA 95 compliant as well, therefore the 

UDDI provider Plant1:Scheduling has the following categorizations assigned to it and 

provides all interfaces included in the partition: Detailed Production Scheduling (from 

ANSI/ISA 95 Activity Model categorization schema) and Site (from ANSI/ISA 95 

Equipment Hierarchy categorization schema). 

So far we only detailed the system functionality by means of Service Providers and 

linked them to the high-level ANSI/ISA 95 activities by means of stereotypes and 

logical grouping (structure mapping). What is missing so far is the service oriented 

realization of the operations and flows defined earlier for each activity (Figure 49).

Figure 53. Particular to executable shop floor model mapping



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

105

This behavioral mapping between Particular Shop Floor Model activity and 

Executable Shop Floor Model Service operations is depicted in Figure 53. It is obvious 

that the former addNewOrder operation is now realized by the scheduleNewOrders

Service Collaboration, which again is an operation provided by the 

ProductionScheduleCheckProvider Service Provider (Figure 50). All other operations 

invoked in the basic flow are now realized by the IScheduling Service of the 

SchedulingProvider Service Provider. Later we will see that these operations are 

performed by personnel, whereas scheduleNewOrders is deployed as a BizTalk 

orchestration. 

In the basic flow the implementation of operations was completely ignored, but at the 

service level it must be elaborated which is a complex service composed of a number 

of different services (which can again be basic or complex). Therefore the next 

selection of diagrams depicts the actual Service Collaborations, which again are 

assigned to ANSI/ISA 95 activities by means of stereotypes. Each collaboration 

contains a composite structure diagram and at least one diagram for the behavioral

view.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

106

Figure 54. scheduleNewOrders collaboration composite structure



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

107

Figure 54 depicts the static composite structure of the scheduleNewOrders collaboration. 

Here we see the participating roles and the interfaces (Service Specifications) they 

realize. The Service Channel stereotype contains the binding information. For this 

collaboration we define two binding types, namely SOAPDoc and BTDirect. 

SOAPDoc specifies WS interactions, and BTDirect interactions within or between 

BizTalk assemblies. What we also see is that this collaboration depends on another 

Service Collaboration, namely createPreactorImportBoM. The nested collaboration gets 

bound by an internal BizTalk call, but offers a WS port (Service) as well. For three roles 

additional information (URL comment) is added. For ProductDefinition and 

SchedulingIF the URL points directly to the UDDI window, where detailed 

information about the actual implementation, e.g. the endpoint and the actual status 

categorization, is displayed. Those interfaces are statically bound, but 

SchedulingNotification can have a multiplicity greater zero, which means that within 

the collaboration a lookup for notification subscription in the UDDI takes place 

(IInquiry interface). The DataDefinition participant represents the XML scheme 

definitions used in this collaboration, which are in this case deployed as .NET DLL at 

the BizTalk Server. The Configuration role provides access to the collaboration 

configuration, which has to be called as a separate BizTalk orchestration (including a 

business rule call for rules deployed at the BizTalk Business Rule Composer). The 

wrapping of the business rule call as an independent orchestration makes the rule 

platform become independent, because the “configuration helper orchestration” can 

be published as a WS, if necessary.

Due to the limitations of space it is only possible to present the upper part of the 

activity diagram for scheduleNewOrders. 

Figure 55 depicts the control- and object-flow, which is the blueprint for the BizTalk 

orchestration, although it remains platform independent in the sense that proprietary 

actions (e.g. transform shape) are not included. Nevertheless, it represents the lowest 

level of abstraction, which means that certain implementation decisions are already 

included (e.g. the decision to store messages persistently in FSO and not in databases. 

This is reasonable because the number of flow executions for this collaboration is 

restricted). Next to the control and object flow comments and business rule constraints 

can be found. Two types of comments can be identified. First, there are comments

which point to the physical location of ports, in this case only to file system objects. 

Ports can be UML Activity Parameter Nodes, Data Store Nodes and Central Buffer

Nodes. While the first represents a public port of the process, the second is a private 

port which persistently stores messages. The latter is a protected port, which means 

only entities defined in the particular collaboration can access the port. Remember the 

collaboration composite structure depicted in Figure 54, where we defined that the 

scheduleNewOrders Service Collaboration is dependent on the createPreactorImportBoM 

Service Collaboration.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

108

Figure 55. scheduleNewOrders activity diagram (upper part)



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

109

In Figure 55 you can see the corresponding UML Call Operation Action with the 

Return_Mes object as output. The control flow can not continue until this object is 

dropped in the protected port. The same message enters as 

createPreactorImportBoMReturn_Mes message the listening instance

receiveCheckResponse of scheduleNewOrders. If this object is delayed (timeout), then the 

initial ProductionSchedule_Mes message gets saved in a persistent data store and the 

flow execution will terminate. 

The second appearance of comments is related to message interspections, which 

mostly result in some form of variable setting. Take a look at the getNodeValue UML 

Call Operation Action. This action sets the variables ProductionScheduleID and 

CallBackURI. The first is a unique identifier for this schedule instance, which will be 

needed for the identification of the correct return message of the collaboration call 

(correlation). The second is necessary to realize a request-response interaction pattern 

by means of a call back at the end of the flow execution. Due to the use of an explicit 

return URL within the initiation message it is possible to send the response wherever 

appropriate. 

Both comments have a link to a business rule constraint. Because different types of 

business rules can exist, a further classification is necessary. In this collaboration you 

see the BR classification, which means that the name of the node where the unique 

identifier can be found in the XML node tree shall be defined in an externalized 

business rule which allows to flexible set the IDNodeName_Var variable. This makes 

sense, because it is therefore possible to use the same collaboration for e.g. different 

language types of a structural identical ProductionSchedule_Mes. The XML 

distinguished node classification means that the business node name is not 

externalized but the node name is statically bound to the flow definition. 

In addition, message types are referenced by name for each object flow. In the model 

organization those and the assigned data types are collected in a Message View

perspective. To sum it up, this activity model can be reused for different SOA 

implementation platforms.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

110

Figure 56.  scheduleNewOrders implementation diagram of the Component View perspective



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

111

We also have to discuss shortly the Component View perspective, where the 

realizations of Service Specifications by means of components and classes are modeled. 

Figure 56 depicts the implementation respective realization of the scheduleNewOrders 

Service Specification. 

This is the well known OO modeling world, thus it is expected that the reader 

understands this diagram without further explanation. What should be said is that 

this is the physical implementation of the interface and not the description of the 

collaborations in which it participates. 

So if you compare Figure 54 with Figure 56 it should be obvious that in the latter the 

participating interfaces with SOAPDoc Service Channel bindings are missing, whereas 

the BTDirect bindings appear. For instance, included is the 

createPreactorImportBoM.dll assembly which realizes the participating Service 

Collaboration. Or the MDSASchema.dll component which owns the schema definitions 

for the data types referenced in this interface realization (DataDefinition role). The 

third BTDirect binding to the Configuration role can not be seen, because the 

IProductionScheduleCheckConfiguration Service Specification (see Figure 50 and read 

clause 7.4.2.2 for a further discussion of that issue) is not realized by means of a own

component but it is implemented as an orchestration part of the 

scheduleNewOrders.dll component. 

Although it can easily be done, a further decomposition of the internal structure of 

this component does not take place in the modeling environment because this is not 

the focus of the thesis. In addition, information redundancy would be the result. For 

OO decomposition we can switch to the development environment, which holds all 

the information from that point on. It was already said that the development 

environment is Visual Studio .NET 2003. With the installation of BizTalk Server 2004 

the BizTalk Orchestration Designer and other tools are added. 

The upper part of the scheduleNewOrders Service Collaboration was again chosen to 

present a short introduction into this final step of platform specific process modeling. 

Please compare Figure 57 with the platform independent process model in Figure 55

which utilizes UML as the Model Representation Language. In Figure 57 you see the 

platform specific Composition Model, and XLANG/s will be the Executable Composition 

Language, just as it was outlined in Figure 37. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

112

Figure 57. BizTalk 2004 Orchestration Designer view of the scheduleNewOrders collaboration



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

113

7.4. Production Operations Management Demo Scenario 

Service Providers

The Service Providers shall be described in greater detail, although they become 

obvious when we look at the Detailed Production Scheduling activity in Figure 50. Most

of them were coded by the author, others were already available. We should 

remember that all Service Providers are logically grouped in Service Partitions, which 

represent the ANSI/ISA 95 activities.

Some general information about the service level shall be given here, although a 

detailed discussion about those matters will occur during the Service Provider

discussion in the following. 

There are three means to model usage dependencies at the service level. The first two 

representations are interchangeable, whereas the latter one is compulsory for 

collaboration definition.

Service Provider ßà Service Specification: The required interface compartment of the 

Service Provider (UML Component) gets populated by means of Service Specifications

(UML Interfaces) (e.g. Figure 66) 

Service Provider ßà Service Provider: In Figure 50 the Service View overview diagram 

was presented, a means to model usage dependencies between Service Providers.

Service Specification ßà Service Specification: The Collaboration composite structure 

diagram (Figure 54) defines dependencies at the interface level.

For the implementation of service compositions patterns were defined. Some of them 

are BizTalk specific, whereas others are means to standardize certain interaction 

patterns. Theses patterns will be discussed in subchapter 7.4.2.1.

7.4.1. Infrastructure Services

Figure 58. Infrastructure Service Partition

The infrastructure Service Partition is depicted in the figure above. Those service 

providers belong to this partition, which offer generic functionality within the 

architecture. The providers can be divided into three groups: 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

114

• Mandatory service providers (DataDefinitionProvider, RepositoryProvider, 

RuleEngineProvider): Their services are absolutely necessary for overall system 

operability. Without them the required system behavior can not be realized. 

• Redundant service providers (AnalysisLibraryProvider, UDDIHelperProvider): 

Those services are not critical, but they provide functionality which positively 

influences system performance or flexibility. 

• Optional service providers (LoggingProvider): For the basic system behavior 

the availability of those plays no role, but they are useful for requirements 

beyond process execution.

7.4.1.1. Data Definition Provider

Service: DataDefinitionNET

Figure 59. Service Specification of DataDefinitionProvider

Description: This provider encapsulates all public data type definitions. Because the 

demo scenario is XML based, only schema definition files (.xsd) are affected. In a 

distributed system the at least virtual centralization of data definitions resulting in a 

single point of access can be the aim. This prevents different versions of the same type 

and increases maintainability. Although not implemented at the present stage, this 

concept would allow dynamic data binding too, which means that during run time 

each instance which handles the data object requests the actual data format before 

execution starts. A hybrid approach of caching combined with periodical definition 

update or update subscription would decrease network traffic. In our scenario those 

service providers which interact with the data definition provider are all deployed as 

BizTalk assemblies, thus this provider is compiled as a BizTalk project and a resulting 

.NET assembly (MDSASchema.dll). There are two situations in a BizTalk orchestration 

which require scheme referencing. 

First the use in a message type property (e.g. Message Type = 

MDSASchema.ProductionSchedule) or second as a source or destination scheme in a 

BizTalk map (e.g. the dispatchDetailedProductionSchedule.forRelease_to_CIOrders 

map references MDSASchema.DetailedProductionSchedule as source scheme and 

MDSASchema.TMDXOrder as destination scheme.) The following schemes were

defined as follows:



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

115

ProductionSchedule.xsd

Description: This is the order relevant information which is passed on from Level 4 

(typically an ERP or some kind of PPS system) to Level 3.

Structure: As mentioned already, this scheme is not compliant with ANSI/ISA 95 

Production Schedule definition. Nevertheless, the basic structure with Production 

Requests and finally Production Request is the same. The fields defined for the demo 

scenario is shown in Figure 60. It is assumed that the data source 

(ProductionScheduleProvider) has some rough production planning capabilities, 

setting start time- and due time-values for each order. Due to sequential planning of 

time slots and resources the quality of these values is insufficient, hence the use of a 

subsequent detailed scheduling system.    

Beside those standard nodes two special nodes were added, the CallBackURI node 

and the ID node. The first allows for asynchronous interaction patterns with call-back 

functionality and the latter for unique identification of each released 

ProductionSchedule. Both nodes were promoted. CallBackURI is a distinguished field, 

which means that the value can be directly read in a BizTalk orchestration expression 

shape. The property field ID makes it possible to hold the node value in a property 

scheme node. This is necessary for correlation, a mechanism to identify the correct 

response message in asynchronous interactions by means of unique identifiers.  

Referenced by Service Specification: IscheduleNewOrders (see Figure 56)

Figure 60. ProductionSchedule.xsd



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

116

scheduleNewOrdersProperties.xsd

Description and Structure: This schema has just one node, namely Property1. This is the 

node where the ProductionSchedule ID value gets stored during orchestration 

instance execution.

Referenced by Service Specification: IScheduleNewOrders (see Figure 56)

PreactorOrder.xsd

Description: This scheme represents the data type used to interface the Preactor 

scheduling software.

Structure: Figure 61 depicts the tree view of the scheme. The ERPWorkOrders node 

has an unbound “group maximum occurs” property, which means that the 

ERPWorkOrder node can occur more than once. As with the ProductionSchedule 

scheme, each operation constitutes an ERPWorkOrder. 

Figure 61. PreactorOrder.xsd

Referenced by Service Specification: IScheduleNewOrders (see Figure 56) 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

117

checkPreactorImportBoMReturn.xsd

Description: This scheme defines the payload of the return message of a 

createPreactorImportBoM service call. 

Structure: The scheme comprises one Return node and two child field elements, 

ReturnMessage and PackageID. ReturnMessage is a distinguished field and holds a string 

value identifying the invocation result (value “1” for success). PackageID is a property 

field. Again, this property definition is necessary for correlation type definition. The 

scheduleNewOrders orchestration and the createPreactorImportBoM orchestration 

correlate on this property.

Referenced by Service Specification: IScheduleNewOrders (see Figure 56), 

IcreatePreactorImportBoM

NewPartNumbers.xsd

Description: This is the scheme used to build the return message from the 

IBoM.checkBoMEntryXML service operation.

Structure: When the ProductDefinitionProvider checks the Production Schedule and 

detects missing BoM entries for occurring MaterialIDs, than each missing part number 

is included as a MissingPartNumber field value. Figure 62 depicts the tree view of the 

scheme. The root child field Missing is a boolean value, indicating whether a BoM 

entry is missing at all. FileType returns the name of the data source which holds the 

BoM data.

Figure 62. NewPartNumbers.xsd

Referenced by Service Specification: IcreatePreactorImportBoM, IBoM

DetailedProductionSchedule.xsd

Description: This scheme contains the basic information (time and primary resource) 

necessary for operation execution after detailed scheduling took place. In this version 

of the demo scenario secondary resource data is not passed from the scheduler to the 

dispatcher. 

Structure: Like the other operation related schemes it is a two level structure, with 

DetailedProductionRequests as root element and one to many DetailedProductionRequest

nodes. The SchedulingProvider sets the Setup_Start, Start_Time and End_Time values 

as well as the Resource value (the initial ERPWorkOrder only specified the 

ResourceGroup) What is more, information about partly finished operations 

(QtyAcceptSum, QtyRejectSum) is included, together with the Operation_Progress state.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

118

Figure 63. DetailedProductionSchedule.xsd

Referenced by Service Specification: IProductionDispatch, IPreactorIF (for Excel XML to 

DetailedProductionSchedule transformation)

TMDXOrder.xsd

Description: As we will describe in Section 7.4.5.1, one of the Service Providers

responsible for Production Execution Management is the Cell Integrator Manager. It is 

capable of integrating NC-machines into a SOA, the CI_Manager component expects

the TMDXOrder format. 

Structure: If you compare a DetailedProductionScheduleRequest with a TMDXOrder, it 

should be obvious that, again, the abstraction level was lowered. At the machining 

level information about additional resources, in our case ClampData and NCData is 

needed, along with more information about the actual operation progress. This data 

has to be provided by subsequent activities, but these steps are not implemented in 

the demo scenario yet. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

119

Figure 64. TMDXOrder.xsd

Referenced by Service Specification: IProductionDispatch, IOrders (the reference is hard 

coded in the application).

7.4.1.2. Repository Provider

Service: RepositorySOAP

Figure 65. Service Specification of RepositoryProvider



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

120

Operation: All methods provided by the UDDI.API.InquireMessages class and the 

UDDI.API.PublishMessages class compiled in the uddi.api.dll assembly 

Description: The Microsoft Windows Server 2003 inbuild UDDI Services (Version: 

5.2.3790.0) realize the RepositoryProvider functionality. A detailed description of the 

offered functionality is beyond the scope of the theses, so at this point we will take a 

look at the fundamental features regarding this project.

• Access: UDDI Services can be accessed through a Web-based user interface or 

programmatically through a SOAP interface (Web Service). The UDDI API for 

.Net (Microsoft.Uddi.dll Version 2.0) eases the interaction coding. During 

design time of the scenario the user interface was the main window to insert all 

the relevant information. Programmatically the SOAP interface was used in 

conjunction with the UDDIHelper façade introduced below.

• Providers: It was decided to map each Service Partition to a UDDI service 

provider and every Service Specification operation to a UDDI service due to the 

small number of operations in addition to the demand for single operation 

visibility in the UDDI. This means that MDSA Service Providers and Services are 

not present in the UDDI. One of the main reasons for this was the fact that 

dynamic binding port (access point retrieval during run time) incorporation is 

more easily feasible if the UDDI binding search request directly returns the 

right operation call URL. In addition, each published BizTalk orchestration is 

deployed as a Web Service with a single operation.

• Instance Infos: The so called tModels are the means for detailed specification of 

UDDI entities, especially for bindings. Thus it is possible to publish technical 

information for an interface, such as parameters or a WSDL file. But in general 

tModels can point to every kind of overview document, not just WSDL files. 

Moreover, tModels can be further described by categorizations. Every SOAP 

binding in the UDDI has a added tModel (e.g. wsdl:IF:BoM) pointing to the 

corresponding WSDL file. Notice that the deployment information (the service 

and port tags) was removed from the WSDL files to create a pure Web Service 

interface description. Runtime search for access points is therefore enabled. 

Moreover, each binding instance info tModel is marked with the key value 

wsdlSpec of the uddi-org:types categorization schema. The latter extension 

allows for programmatically UDDI search of WS specifications, a service 

provided by Visual Studio when adding a Web reference. The second type of 

tModels is related to QoS issues. STATUS:production (:temporary, :test, 

:unavailable) is an example for a first, rough classification of bindings. The 

third type gets used for categorization.

• Categorization: Categorization schemes can be imported into UDDI Services. A 

Microsoft Tool called UDDI Categorization Scheme Editor (Version 5.2) allows

for XML scheme creation with automatic tModel key and value management. 

The following categorizations are actually deployed as tModels:

Ø CAT:ISA S95 Activity Model (a group of subcategories representing the 

ANSI/ISA 95 activities for Production Operations Management)



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

121

Ø CAT:ISA S95 Equipment Hierarchy (a tree structure representing the 

ANSI/ISA 95 Hierarchy Model)

For a detailed discussion about the hands on experiences with the UDDI Services 

application as well as the integration into the MDSA for the Shop Floor take a look at 

the corresponding Service Provider description. The following figure depicts a 

screenshot of the UDDI publish frame, illustrating the providers, a service 

(=operation) of Cell_1 and the binding including the linked WSDL tModel which is 

further specified (Overview Document) in the main window.

Referenced by Service Specification: IUDDIHelper

7.4.1.3. UDDIHelperProvider

Service: UDDIHelper

Figure 66. Service Specification of UDDIHelperProvider

Description: The Service Specification and the operations carried out by this provider are 

shown in Figure 66. Above a required interface compartment added to the provided 

interface compartment. This is a way to express usage dependencies between this 

service provider and the SOA interfaces (Service Specification). The purpose of the 

service provided is to encapsulate some of the Repository Provider service operations 

and offer coarse grained granularity. Thus a number of repository interactions in 

order to add a binding (not knowing whether the service still exists) can be combined 

in one single request response pattern. What makes this concept attractive is the

possibility to incorporate control logic as well as failure handling in the code. Due to 

the limited number of service consumers this service was realized as a .NET assembly 

and not as a Web Service. The full potential of this approach was leveraged in the 

BizTalk orchestrations, where the service calls were included in expression shapes, 

avoiding failure handling within the service flow and increasing performance. An 

important consideration is to make the implementation class (UDDIMethods) 

serializable, otherwise a BizTalk reference is not allowed.

Next to the dependent Service Specifications mentioned below this Service is also 

referenced by the SchedulINA application.

Referenced by Service Specification: IscheduleNewOrders, IcreatePreactorImportBoM



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

122

Figure 67.UDDI Services user web interface (administrator role)



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

123

7.4.1.4. AnalysisLibraryProvider

Service: AnalysisLibrary

Figure 68. Service Specification of AnalysisLibraryProvider

Description: The Service Specification and the operations of this provider are shown in 

the figure above. The purpose of the service provided is to perform some XML file 

analysis and return either boolean values, node text or transformed XML files. These 

Services are referenced in the BizTalk assemblies, where service calls are included in 

orchestration expression shapes. The return values of the type boolean are used to 

determine the orchestration control flow by means of decision points. The author is 

aware of the fact that the examination of XML files could be realized by xpath 

expressions as well, avoiding the external dependency. And instead of the methods 

for XML file manipulation BizTalk transform shapes could have been used. But 

transform shapes are proprietary MS constructions, hampering the mapping of the 

flow definition to other execution languages like BPEL4WS. More generally, the aim 

was to make as much flow logic external as possible, thus leveraging functionality 

reusability. In addition, in some cases it is easier and faster to rather code the methods 

than to define the xpath expressions, especially when you want to include variables 

which are populated during runtime by means of business rule calls. Due to the 

limited number of service consumers this service was also realized as a .NET assembly 

and not as a Web Service. It is important to make the implementation classes 

(XMLFieldExtractor, MissingDataAnalysis) serializable, otherwise a BizTalk reference 

is not allowed.

Referenced by Service Specification: IcreatePreactorImportBoM, IscheduleNewOrders 

(IAnalysisLibrary only), IdispatchDetailedProductionSchedule (IXMLFieldExtractor 

only)



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

124

7.4.1.5. LoggingProvider

Service: BLogServer

Figure 69. Service Specification of LoggingProvider

Description: This service represents the central hub for log messages in the whole 

architecture, thus the operation CreateBLOGEntry offers a broad set of optional 

parameters. So far, only the ProductionResourceProvider uses this service by means of 

CTStamp (time stamp of the message) and BMessage (message text) parameters. The 

LoggingProvider is deployed as a stand-alone web component.

Referenced by Service Specification: IOrders

7.4.1.6. RuleEngineProvider

Service: RuleEngine

Figure 70. Service Specification of RuleEngineProvider

Description: The purpose of business rules regarding BPM was described in subchapter 

4.1.3.3. Microsoft Business Rule Composer 3.0 is the rule engine in this architecture. 

Thus, there is a tight coupling between CallRules shapes in the BizTalk orchestrations 

and the rule execution. Nevertheless, it is necessary to make this interaction externally 

visible. Rules are logically grouped in policies. Each rule is dependent on data 

sources, which are in our case XML schemas (databases and .NET classes are 

alternative data sources). The MS tool allows the definition of so called vocabularies, 

an abstraction layer between data source and rule definition. Vocabularies contain 

reusable mappings between user-friendly text and the underlying data sources used 

in a rule definition. When a rule is executed, the scheme nodes are populated 

dependent on the rule logic and an instance of the schema is returned to the caller. 

Therefore for an operation call the name of the policy and an instance of the scheme

are the input parameters. Figure 71 depicts a screenshot of the Business Rule

Composer. The condition for the rule configuration, which follows an IF – THEN –

ELSE pattern, was set “1 is equal to 1”, resulting in a rule execution every time the 

rule gets invoked. The values defined in the actions and described by means of the 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

125

vocabulary (Facts Explorer window) are the same as in a typical config file, e.g. the 

UDDI inquire URL or some node names of messages which are extracted in the 

orchestration. This allows for flexible changes of message formats without changing 

the service flow definition. Hence versioning has to be supported. The Facts Explorer 

also contains the data source references. Some of the binding information like 

document type and physical scheme location can be seen in the Properties window in 

Figure 71.

Referenced by Service Specification: IcreatePreactorImportBoM, IscheduleNewOrders, 

IdispatchDetailedProductionSchedule



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

126

Figure 71. Microsoft Business Rule Composer screenshot



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

127

7.4.2. Detailed Production Scheduling Services

Figure 72. Plant1:Scheduling Partition (Detailed Production Scheduling)

7.4.2.1. ProductionScheduleCheckProvider

Service: 

• scheduleNewOrdersFSO (this is the file system object activation port)

• scheduleNewOrdersSOAP (this is the WS activation port)

• createPreactorImportBoMBT (this is the port which can only be accessed by 

internal BizTalk Orchestration Calls)

• createPreactorImportBoMWS (this is the WS activation port)

Figure 73. Service Specification of ProductionScheduleCheckProvider

Description: Both interfaces are complex services implemented as BizTalk 

orchestrations. Both expect the ProductionSchedule as an import parameter. Due to 

the BizTalk Web Services Publishing Wizard it is rather easy to map FSO ports to WS 

ports running under MS IIS. createPreactorImportBoM is initially an orchestration 

without a Receive shape whose activation property is set to true. This is necessary for 

internal BizTalk calls, but makes it impossible to instantiate the orchestration 

externally. To achieve this, a “mini” orchestration has to be deployed, consisting of a 

port (FSO port which becomes a WS port after publishing), a receive action (activation 

property set to true) and an asynchronous Orchestration Start shape which initializes 

the main control flow. 

Hence this construction shall be called a proprietary BizTalk Activation Pattern.

Because all external orchestration calls are asynchronous, the incoming messages 

include an optional call back URI field. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

128

This leads to a common CallBack Pattern realized in createPreactorImportBoM, 

namely the extraction of a call back address at the beginning of the control flow. The 

forwarding of the return message at the end of the control flow (decision either to a 

standard FSO port or a dynamic binding WS port binding to the extracted address) 

depends on whether an address was found in the call back URI field. Whereas internal 

activations are either asynchronous or synchronous, both are possible. 

The design process for the scheduleNewOrders service was described in detail in the 

previous sections. As a full coverage of the whole flow was not possible, a short 

functionality description shall be given. After the flow is initialized by means of an 

arriving Production Schedule, a synchronous orchestration call takes place to activate a 

separated orchestration whose purpose is to perform a business rule call. 

This Configuration Pattern was realized for all BizTalk orchestrations and makes the 

rule call reusable. Moreover, the configuration orchestration itself can be provided as 

a template. The getscheduleNewOrdersConfiguration orchestration has an outgoing 

Config_Mes message which returns the business rule values to the calling 

orchestration. After the configurable variables are set, CallBackURI_Var (extinguished 

field) and PackageID_Var (AnalysisLibrary Service call) get extracted from the 

message. Messages are periodically sent to FSO ports which serve as persistent 

storages for messages, because in the BizTalk database they are transient. Then an 

asynchronous orchestration call to the createPreactorImportBoM operation takes 

place, the result message is polled from a FSO port. 

This Service Call Pattern uses a delay shape to set a timeout and terminates if no 

return message arrives at the polling port. The execution only continuous if the called 

orchestration returned an OK value. The ProductionSchedule gets transformed to a 

PreactorOrder and is send to the SchedulingIFProvider. For this request-response 

interaction the above pattern is applied too, terminating the flow after a certain 

timeout. If the response message contains a certain value (set in the Configuration 

Business Rule), the flow calls the BoMSOAP service of the ProductDefinitionProvider 

to provoke the creation of a suitable BoM file for import into the scheduling 

application Preactor. If this was successful, all customers subscribed in the UDDI 

receive a message via MSMQ saying that new orders are waiting for import. The new 

orders are included in the message body. 

This Notification Pattern was rather complex to implement, because it is not known 

whether and how many bindings are registered. For that reason the UDDIHelper 

service providing index based UDDI address search capability is used. Guaranteed 

message delivery is not achieved due to a one way “fire and forget” broadcasting 

mechanism. Otherwise some recovery concept would be needed if one receiver does 

not respond. The use of a timeout raises the question of locking the UDDI for the 

whole transaction to keep the actual state consistent. 

The createPreactorImportBoM service calls the ProductionDefinitionProvider to check 

whether all parts in the ProductionSchedule have a BoM entry available. This check 

has to be performed twofold: for possibly included sales orders and for the rest of the 

ProductionRequests. This is necessary because the sales order BoMs and part BoMs 

are hold in different data tables. The incorporation of sales orders in detailed 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

129

scheduling tasks is unusual, but with a sales order BoM it is possible to keep the 

information which Production Requests belong to one and the same sales order. Both 

checks are provided by a single IBoM operation. If sales order entries or part entries 

are missing in the tables, a message including the missing numbers is sent to the 

ProductDefinitionProvider. The check result is indicated to the service consumer by 

means of a return value of 1 if no entry was missing. 

Referenced by Service Specification: IReleasedProductionSchedule

7.4.2.2. ProductionScheduleCheckConfigurationProvider

Service: 

• ProductionScheduleCheckConfigurationBT (this is a port which can only be 

accessed by internal BizTalk Orchestration Calls)

Figure 74. Service Specification of ProductionScheduleCheckConfigurationProvider

Description: A Configuration Pattern was realized for all BizTalk orchestrations and 

makes the rule call reusable. This means that each rule call is wrapped in an 

orchestration, which contains a message construction activity and an internal 

IRuleEngine call packed in a scope. Moreover, this configuration orchestration itself 

can be provided as a template. The getscheduleNewOrdersConfiguration 

orchestration has an outgoing Config_Mes message of type 

schedulNewOrdersConfigurationXML which returns the business rule values to the 

calling orchestration. Although we model the two configuration operations for the 

ProductionScheduleCheckProvider as part of a single Service Provider, the 

implementation of each configuration operation as a BizTalk orchestration was 

deployed together with the ProductionScheduleCheckProvider orchestrations. This 

matter of fact can be modelled in the Component View. Hence in the implementation 

diagram for scheduleNewOrders.dll (Figure 56) all configuration interactions are 

hidden as internal activities within the assembly and a direct dependency relationship 

with the Microsoft.RuleEngine.dll is shown. This deployment decision was made 

because in this demo scenario caller, configuration provider and execution engine 

operate in the same environment. If that would not have been the case, the methodical 

separation between main orchestration, configuration orchestration and execution 

process through distinctive providers would have been necessary.

Referenced by Service Specification: IscheduleNewOrders, IcreatePreactorImportBoM



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

130

7.4.2.3. SchedulingIFProvider

Service: 

• PreactorIFSOAP (WS port)

Figure 75. Service Specification of SchedulingIFProvider

Description: This Service Provider is a wrapper program for the scheduling software 

Preactor 9.2. Preactor is an APS (Advanced Planning and Scheduling) system for 

detailed production scheduling. Beside the standard functions such as APS scheduling 

rules combined with a huge number of planning board facilities (drag and drop, 

capacity graphs, gantt chart, etc.)  Preactor can be integrated into a Client-Server 

architecture via ActiveX (Microsoft COM technology). This means that all Preactor 

objects are accessible through ActiveX objects. As a server it offers full access to the 

database and the scheduler functionality via the Open Planning Board object and its 

methods library.  So the user written Client/Server code is used to interact with the 

software or react to human planner activities offering additional functionality. 

Unfortunately, the present release does not allow using ActiveX objects within the 

ASP.NET environment, although this would be necessary to wrap Preactor method 

calls as web methods and provide them as Web Services running under APS.NET. 

Thus the decision was made to use the basic import/export functionality for data via 

comma separated files and provide services which do the .xml - .csv transformation. 

This is basically what the IPreactorIF operations do. To achieve this, the Excel library 

is used for the mapping. 

sendNewOrderXML is the main operation to send the XML orders in a free format, 

although the use of PreactorOrder.xsd (see above) is expected for the import into 

Preactor via the proper script. This script transforms the NewOrdersTest[…].csv (e.g. 

NewOrdersTest for ID 111 at 03.05.2006_14_14_18; ID is the ID input parameter) file 

and maps the columns to the internal database table fields. The script also merges the 

order and the ImportBoM[…].csv (e.g. ImportBoM for ID 111 at 03.05.2006_14_14_20) 

file to create the complete product structure. The script is predefined for the 

PreactorOrder format. But this architecture is very flexible insofar as the manual script 

import plus the prepared .csv file allows for different sources with different formats. 

The flexibility of this approach has been increased further by the implementation of a 

web.config configuration file, where the settings for file name and location can be 

made. 

createReleasedScheduleXML transforms a file format (location specification via 

parameter or ExcelFile=”default”/SavePath=”default” for web.config values) 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

131

accepted by Excel into a XML file. Although a generic functionality, it is used to map 

the Preactor output .csv files to .xml files.

getReleasedScheduleXML returns the specified or web.config default (value 

“default” for the File string parameter) XML file to the caller.

deleteNewOrder deletes a file (location specification via parameter or 

SavePath=”default” for web.config values)

Referenced by Service Specification: IscheduleNewOrders, HMI Application SchedulINA

7.4.2.4. SchedulingNotificationProvider

Service: 

• SchedulingNotificationSOAP (WS port)

Figure 76. Service Specification of ScheduleNotificationProvider

Description: This very simple service wraps the Microsoft Message Queuing 

application and allows the submission of new messages. MSMQ is a standard 

application of every Windows operating system and has to be activated at the host 

computer. The sendMessage operation is a one way SOAP interaction, thus there is no 

return value. If the label parameter equals the ProductionScheduleLabel config value 

then the message is routed in the queue which is defined by the 

ProductionScheduleQueuePath config value. Otherwise the GeneralQueue config value 

sets the target queue which has to be made available in MSMQ.

Referenced by Service Specification: IscheduleNewOrders

7.4.2.5. SchedulingProvider

Service: 

• SchedulingNotificationSOAP (WS port)

Figure 77. Service Specification of SchedulingProvider



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

132

Description: The SchedulingProvider is a role carried out by an application (Preactor 

9.2) and a human. The aim is to support the scheduling worker as much as possible 

and provide all information necessary while leveraging the human knowledge as 

good as possible. This is feasible because fully automated scheduling systems without 

human interaction proved to result in sub-optimal schedules, especially when it 

comes to the issue of rescheduling which demands for reactive systems. A human 

worker/application/supporting functionality approach seems to be very promising. 

The supporting functionality concerning data import is related to the fact that all files 

necessary for import are ready in the defined folder due to the SOA concept 

(SchedulingIFProvider, ProductDefinitionProvider support). Supporting functionality 

is also gained through the use of the HMI application SchedulINA (Section 7.5).

Production Resource Management for primary resource master data is part of the 

scheduling software and yet not accessible through public services. Hence it is not 

included in the model.

7.4.3. Product Definition Management Services

Product definition management shall be defined as the collection of activities that manage 

all of the Level 3 information about the product required for manufacturing, including 

the product production rules. 

Product definition information is shared between product production rules, bill of 

material and bill of resources.  The product production rules contain the information 

used to instruct a manufacturing operation how to produce a product.

ANSI/ISA (2005)

In the given scenario two roles are assigned to the Product Definition Management

activity, ProductDefinition and NC_Comm. Remember Figure 52, which introduced 

the concept of partitions and their relations to roles and Service Providers as role types.

These roles are implemented by two Service Providers, ProductDefinitionProvider and 

NC_CommProvider. Both Service Providers are implemented as Web Services and use 

SOAP over HTTP as transport mechanism. 

7.4.3.1. ProductDefinitionProvider

Service: 

• BoMSOAP (WS port)

Figure 78. Service Specification of ProductDefinitionProvider



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

133

Description: This is the interface to the product definition, more precisely to the BoM 

(Bill of Material) structure of the products. In the demo scenario only the BoM has 

relevance for Production Schedule examination. Only products for which a BoM 

definition exists are allowed. In the present situation the BoM data is distributed 

between Excel files (one for sales orders and BoMGeneralMatrix for products), a 

solution sufficient for our requirements. Keep in mind that in SOA the 

implementation of services is hidden from the requestor, thus from an external point 

of view it makes no difference whether Excel files or database tables constitute the 

data layer. Because Web Service engineering is not a core research objective, the 

coding was kept as simple as possible (e.g. no three-tire-architecture was 

implemented). 

checkBoMEntryXML does the comparison between the XMLFile input 

XMLDocument and the Excel files in terms of Field value existence in both of them. 

The XML return document contains the ID, the FileType, a Missing field indicating if 

something is missing at all and, if yes, it also contains the missing part numbers. The 

FileType parameter has to be of type string and value BoMGeneralMatrix, SalesOrder or 

ImportBoM and indicates the data source which shall be used for comparison. The Field

parameter is used to determine which node of the input XML file contains the search 

values. The default value derived from the present ProductionSchedule.xsd is 

MaterialID.

createImportBoM is the function which creates a comma separated file which features 

the BoM structure of every ProductionRequest identified by means of a unique ID. 

This means that the anonymous BoM structure in the BoMGeneralMatrix or the 

SalesOrder Excel file which contain only part IDs but no order IDs have to be 

extended by means of OrderID values derived from the new order Excel file created 

by the SchedulingIFProvider. 

sendMessage is similar to the SchedulingNotification service in that it pushes 

messages into a MSMQ queue but follows the request-response interaction pattern.  

Referenced by Service Specification: IscheduleNewOrders, IcreatePreactorImportBoM, 

HMI application SchedulINA

7.4.3.2. NC_CommProvider

Service: 

• NC_CommSOAP (WS port)

Figure 79. Service Specification of NC_CommProvider



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

134

Description: NC_Comm is the module which dispatches NC programs at the plant 

level and interacts with the appropriate ProductionResourceProviders. It is 

responsible for NC program transfer to and from the machines as well as the NC 

program management. 

• Transfer from NC_Comm to the caller (SendNCP)

• Transfer from the caller to NC_Comm (ReceiveNCP)

• Deletion within NC_Comm (DeleteNCP).

• The GetNCPDir operation returns a machine specific list of available NC 

programs. NCPID is the NC program ID and MID the machine ID. 

Referenced by Service Specification: There are NC_Comm modules which communicate 

directly with the machine control units, CAD/CAM applications or further NC 

Program sources. 

7.4.4. Production Dispatching Services

Production dispatching shall be defined as the collection of activities that manage the 

flow of production by dispatching production to equipment and personnel. This may 

involve:

a) Scheduling batches to start in a batch control system.

b) Scheduling production runs to start in production lines.

c) Specifying standard operating condition targets in production units.

d) Sending work orders to work centers.

e) Issuing work orders for manual operations.

ANSI/ISA (2005)

7.4.4.1. ProductionDispatchProvider

Service: 

• ProductionDispatchFSO (File port)

Figure 80. Service Specification of ProductionDispatchProvider

Description: The dispatchDetailedProductionSchedule operation is a BizTalk 

orchestration which performs a registry lookup for the resource IOrders interface end 

points and dispatches the single TMDXOrder documents to the correct resource by 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

135

means of an IOrders.addOrder operation call. The BizTalk Configuration Pattern 

described in Section 7.4.2.1 was again used to implement the configuration rule 

setting.

Referenced by Service Specification: IScheduling

7.4.4.2. ProductionDispatchConfigurationProvider

Service: 

• ProductionDispatchConfigurationBT (this is a port which can only be accessed 

by internal BizTalk Orchestration Calls)

Figure 81. Service Specification of ProductionDispatchConfigurationProvider

Description: A Configuration Pattern was realized for all BizTalk orchestrations and 

makes the rule call reusable. See Section 7.4.2.1 for a description of this pattern.

Referenced by Service Specification: IProductionDispatch

7.4.5. Production Execution Management Services

Production execution management shall be defined as the collection of activities that 

direct the performance of work, as specified by the contents of the production dispatch list 

elements. The production execution management activity includes selecting, starting and 

moving those units of work (for example lots, sublots, or batches) through the appropriate 

sequence of operations to physically produce the product. The actual work (manual or 

automatic) is part of the Level 2 functions.

NOTE — The definition of a sequence may take the form of a detailed production route 

specific for a particular produced item. Production execution transacts the individual 

units of work from one operation or step to the next, collecting and accounting for such 

things as actual materials consumed, labor hours used, yields and scrap at each step or 

operation. This provides visibility into the status and location of each lot or unit of work 

or production order at any moment in the plant, and offers a way to provide external 

customers with visibility into the status of an order in the plant.

Production execution management may use information from previous production runs, 

captured in production tracking, in order to perform local optimizations and increase 

efficiencies.

ANSI/ISA (2005)



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

136

7.4.5.1. ProductionResourceProvider

Service: 

• OrdersSOAP (WS port)

Figure 82. Service Specification of ProductionResourceProvider

Description: This Service Provider was realized as a module of a stand alone Web 

Server by Ritter (2003) called Cell Integrator Manager. This application was developed 

as an interface to NC machines with machine order and NC program management as 

the two main tasks. For our demo scenario only the order, time slices and logging 

functionalities are relevant so far. The time slices that are dispatched by the 

application to reflect the order status changes are used to start the information flow 

back by means of the Production Data Collection activity. Thus the Cell Integrator 

without the INCPrograms Service Specification as it is displayed here can be used as a 

generic resource wrapper, for instance for hand operated equipment. 

We simulated this by means of a .NET wrapper service which realizes just the IOrders 

interface. Another reason for this wrapping was the fact that the important 

changeOrderState operation returns originally a string-array type which is not 

allowed in .NET.   

Referenced by Service Specification: IProductionDispatch, Cell Integrator GUI

7.4.5.2. CellGUIProvider

This provider is mentioned here because it marks the low-level endpoint for order 

information management in our scenario. This user interface displays the resource 

specific orders and the user can enter confirmation data which leads to an 

IOrders.changeOrderState operation call. These events will create time slices which 

start the information flow upwards. For a detailed discussion of this application see 

Ritter (2003).



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

137

7.4.6. Production Data Collection Service

Production data collection shall be defined as the collection of activities that gather, 

compile and manage production data for specific work processes or specific production 

requests. Manufacturing control systems generally deal with process information such as 

quantities (weight, units, etc.) and associated properties (rates, temperatures, etc.) and 

with equipment information such as controller, sensor, and actuator statuses. The 

managed data may include sensor readings, equipment states, event data, operator-

entered data, transaction data, operator actions, messages, calculation results from 

models, and other data of importance in the making of a product. The data collection is 

inherently time or event based, with time or event data added to give context to the 

collected information.

ANSI/ISA (2005)

7.4.6.1. TS_AnalyzerProvider

Service: 

• TS_ReceiverSOAP (WS port)

Figure 83. Service Specification of TS_AnalyzerProvider

Description: This is the service which receives the time slices from the production 

resources, for instance the Cell Integrator Manager. A single operation putTS is 

sufficient, which accepts parameters like TimeStart, TimEnd, QuantityAccept or 

OrderID. A detailed parameter discussion can be found in Ritter (2003), who defined 

the requirements for the TS_Analyzer provider when he developed the time slice 

export functionality of the Cell Integration application. Nevertheless, the provider was 

implemented for the first time by the author of this work.  

Referenced by Service Specification: Cell Integration Manager



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

138

7.5. HMI Application SchedulINA

7.5.1. Introduction

In the previous section the Cell Integrator GUI was briefly described. As it was 

emphasized in the MDSA methodology discussion, this approach fully integrates 

human actions and out of it resulting demands. The example introduced there was the 

human scheduler role, which utilizes the Preactor 9.2 software with its SOA interface 

for service providing (e.g. updateDetailedProducitonSchedule) within the 

architecture. So far the integration into the SOA was restricted to import file 

preparation and message sending into a MSMQ queue. Rudimentary script import is 

possible in Preactor.

The given file import support functionality is not enough for the human scheduler to 

provide her or his services. Additional requirements are:

• Messaging: The user must have the possibility to check the received messages 

in the MSMQ queues. An extended version should include message sending to 

receivers listed in the registry.

• Registry Subscription: The GUI has to provide registry subscription 

functionality.

• Preactor Import/Export: Import/export script modification and activation shall 

be provided. To achieve this, the Preactor ActiveX functionality must be used.

• Additional SOA functionality: It must be possible to include WS service clients 

when necessary. In the first version a client for the BoM checking functionality 

shall be provided.

• File Explorer: Because the user has to work with import and export files, a FSO 

explorer is necessary. 

The application in mind shall be highly modular in such a way as to enable 

customization according to the user requirements and rights. For instance the 

messaging functionality is crucial for every human participant in the SOA, whereas 

the Preactor modul is only interesting for the scheduler. It is important to understand 

that every user has to publish his or her message end points in the registry, the central 

hub for every system element. In addition, further subscriptions with dynamic end 

points must be possible. 

In principle this could be done by means of the web GUI for the registry as well. This 

solution is more complex for the user, because he has to correctly enter the personal 

data such as service provider, service or binding details. Otherwise the entry would 

be useless. Secondly, the UDDI requires a windows authentication login. After user 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

139

account login the explorer shows only the entries published by this specific user. That 

is to say, after the first login the user sees an empty registry, thus all tModels and 

therefore classifications are missing. If he has at least coordinator rights he can switch 

the account, but then user rights management is nearly impossible. 

Even if the user has all the information for consistent registry publications by hand it 

remains doubtful whether every user can handle this process. The GUI application 

presented in the following shall demonstrate how to hide this complexity from the 

user.

7.5.2. Implemented SchedulINA Functionality

The application fulfilling these requirements is named SchedulINA (Scheduling 

Interface and Notification Application) because it is a GUI for the scheduler role in the 

demo scenario. SchedulINA is a Windows application, written in Visual Basic in the 

Visual Studio .NET 2003 environment. It contains the typical Windows menu 

structure as well as windows cascade and tile functionality.

One major functionality block is related to messaging, providing a user interface to the 

MSMQ application as well as to the UDDI registry. Figure 84 depicts the user interface 

with the three main messaging windows open. 

The Domain Messaging 1 window shows the existing messaging queues at the local 

MSMQ instance, other instances are not available in the domain at the moment. The 

user has chosen to monitor the production schedule message related queue. If a new 

message arrives, a notification window will pop up, either in the SchedulINA or in the 

Preactor environment. The last option is useful if the user is not monitoring the 

SchedulINA application permanently but is focusing more on the Preactor software. 

Next to receiving and analyzing message bodies it is possible to send messages as 

well. The user can create local queues, a functionality which allows her or him to 

setup the application according to the specific role very quickly.



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

140

Figure 84. SchedulINA application messaging related windows



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

141

The Time Clock window is for personnel availability monitoring. Hence in the system 

it is always visible if a worker is logged on and ready as a service provider. In the 

present configuration this information is only stored in a central queue, but a real time 

update of the UDDI would be feasible in the following step. A classification tag could 

then be used to indicate whether all the occurrences of a given endpoint were 

available in the system or not. 

The specific endpoint available for this machine and thus for the user working on it 

can be seen in the Broadcasting Subscription window. Here, the user has the room to 

subscribe for certain messaging events directly in the UDDI. The example given here 

is the messaging traffic related to the Plant1:Scheduling partition. A subscription 

would mean that the user receives all messages broadcasted from the scheduling 

activities, e.g. the messages sent by the scheduleNewOrders BizTalk orchestration 

concerning files waiting for import.

The main window of the Preactor import and export functionality block shows Figure 

85.  On the left hand side the Preactor Import window contains the parameter setting 

options for file import to Preactor. This application communicates directly with the 

original Preactor database files by means of read/write operations. Compared to the 

standard import configuration capabilities in Preactor this GUI provides a faster mean 

to change the file names or the event scripts. Script definition itself has to be done in 

Preactor.  

The same is true for the Preactor Export application. It has already been described that 

the import files are of comma separated file format, checked and prepared through 

preliminary process steps. The export file, the Detailed Production Schedule, is originally 

in the .csv format as well. 

Thus the application provides the option to automatically create a XML duplicate, 

which can be sent by email too. Because this transformation is done within the Excel 

library, the resulting XML file still holds the Excel annotations. This is per se very 

useful, because the user can open both files with Excel and they will look identical. 

But for further SOA processing, the Excel representation tags have to be erased. This 

file cleaning process step can be done by applying the Export File Transformation

functionality. The output XML file is compliant to the 

DetailedProductionScheduling.xsd format and is ready for subsequent process steps. 

In the demo scenario, the Production Execution Management activity will route the 

released work operations to the correct resources. 



MDSA Implementation and Evaluation by Means of a Demo Scenario

__________________________________________________________________________________________________________________

____________________________________________________________________________

142

Figure 85. SchedulINA import and export related windows



Conclusion

__________________________________________________________________________________________________________________

____________________________________________________________________________

143

8. Conclusion

The aim of this project was to investigate the potential of SOA in the shop floor 

domain and we proofed that this concept fulfills the requirements of state of the art 

intelligent manufacturing information systems. 

A SOA is flexible enough to realize decentralized control structures where appropriate 

and to integrate a broad range of service providers in a loosely coupled way. With the 

proposed MDSA methodology two gaps could be closed, resulting in business and IT 

alignment. First the gap to the implementation layer, which can be a very 

heterogeneous one in discrete manufacturing involving sophisticated web 

applications as well as manual processing tasks. The second gap is the one to the 

business layer, where business analysts define processes including goal and 

performance indicator setting. The outcome of this work is an ANSI/ISA 95 compliant 

model-driven methodology for manufacturing operations management. This 

methodology was evaluated by means of the realization of a SOA demo scenario for 

production operations management comprising of two dozens service providers, a 

central repository and user friendly terminal applications. It was possible to show that 

the proceeding is consistent enough to provide management capabilities throughout 

the whole system life-cycle. Moreover, the methodology is flexible enough to embed 

given shop floor scenarios and components smoothly into the framework with the 

help of predefined modeling constructs.

The successful participation of IT and domain specialists in the evaluation phase as 

well as the reviewer comments for the publications (the latest was Pfadenhauer et al. 

2006b) proved the feasibility and user-friendliness of the proposed methodology. At 

the implementation level it was interesting to see what restrictions a platform like MS 

BizTalk dictates in terms of system and not just single flow modeling. Especially the 

issue of nested flows made some proprietary patterns necessary. 

Next steps to come are some investigations regarding system dynamics. It would be 

interesting to know how the proposed approach performs in terms of control loops 

including flexible system adoption based on monitoring results. Such a control loop 

concept must work at different levels of abstraction, providing every level with the 

right amount and granularity of information. The concept of control loops was 

considered from the very beginning, the implementation probably within an enlarged 

demo scenario remains open for further research. 

Another future focal point should be the interface between platform independent 

UML 2.0 activity models and the flow models of platform specific implementation 

environments. At the present stage this requires manual mapping. 

To sum it up, it was proved that business and IT alignment for well defined domains 

like the shop floor in discrete manufacturing by means of system orientation, service 

orientation and modeling is successful as soon as a stringent framework like MDSA 

exists.



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

144

9. Appendix

9.1. Abbreviations

ANSI American National Standards Institute

API Application Programming Interface

Appr. Approximately

ARIS Architektur integrierter Informationssysteme

ATP Available to Promise

B2B Business-to-Business

B2C Business-to-Consumer

B2MML Business to Manufacturing Markup Language

BoM Bill of Material

BPEL Business Process Execution Language

BPM Business Process Management

BPML Business Process Modeling Language

BPMN Business Process Modeling Notation

BPR Business Process Reengineering

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CIM Computer Integrated Manufacturing; Computation Independent Model

CIMOSA Computer Integrated Manufacturing Open System Architecture

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf

DCOM Distributed Component Object Model

DCS Distributed Control System



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

145

DLL Dynamic Link Library

DNC Distributed Numeric Control

DoD US Department of Defence

e.g. example given

EA Enterprise Architecture

EAI Enterprise Application Integration

EDI Electronic Data Interchange

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

FAN Field Area Network

FMS Flexible Manufacturing System

FSO File System Object

GERAM Generalized Enterprise Reference Architecture and Methodology

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IF Interface

IIS Internet Information Server

IMS Information Management System

IS Information System

ISA Instrumentation, Systems and Automation Society

ISM Information System Modeling

IT Information Technology

KPI Key Performance Indicator

MAS Multi Agent System



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

146

MDA Model Driven Architecture

MDSA Model Driven Service Architecture

MES Manufacturing Execution System

MIS Management Information System

MOF Meta Object Facility

MRP Material Requirement Planning

MS Microsoft

MSMQ Microsoft Message Queuing

NC Numeric Control

OLE Object Linking and Embedding

OMG Object Management Group

OO Object Orientation

OOA Object Oriented Analysis

OPC OLE for Process Control

OS Operating System

PC Personal Computer

PERA Purdue Enterprise Reference Architecture

PIM Platform Independent Model

PLC Programmable Logic Control

PPS Production Planning System

PSM Platform Specific Model

R&D Research and Development

RFID Radio Frequency Identification

SCADA Supervisory Control And Data Acquisition

SCM Supply Chain Management

SCOR Supply-Chain Operation Reference model



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

147

SFTB Shop Floor Tool Box

SOA Service Oriented Architecture

SOAD Service Oriented Analysis and Design

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WfMC Workflow Management Coalition

WS Web Service

WSDL Web Services Description Languages

WS-SOA Web Service – Service Oriented Architecture

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema

XSLT Extensible Stylesheet Language Transformation



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

148

9.2. References

Aalst W.M.P van der, Barros A.P., ter Hofstede A.H.M. and Kiepuszewski B.: 

Advanced Workow Patterns. In O. Etzion and P. Scheuermann, editors, Fifth IFCIS 

International Conference on Cooperative Information Systems (CoopIS'2000), volume 

1901 of Lecture Notes in Computer Science, pages 18-29, Eilat, Israel, September 2000. 

Springer-Verlag.

Aalst W.M.P. van der: Formalization and Verification of Event-driven Process Chains. 

Information and Software Technology, 41(10), 639-650, 1999

Aguilar-Savén R.S.: Business process modelling: Review and framework, International 

Journal of Production Economics, April, 2003

Alonso G., Casati F., Kuno H., Machiraju V.: Web Services – Concepts, Architectures 

and Applications, Springer, Berlin Heidelberg, 2004

Amsden J., Gardner T. et al.: Draft UML 1.4 Profile for Automated Business Processes 

with a mapping to BPEL 1.0, Version 1.1,  IBM, June 9th 2003

Andrews W.: The Business of Web Services: Models and Opportunities; Gartner 

Teleconference, November 26th, 2003, GARTNER 

ANSI/ISA-95.00.01-2000 Enterprise-Control System Integration Part 1: Models and 

Terminology, ISA Organization, 2000

ANSI/ISA-95.00.02-2001 Enterprise-Control System Integration Part 2: Object Model 

Attributes, ISA Organization, 2001

ANSI/ISA-95.00.03-2005 Enterprise-Control System Integration Part 3: Activity 

Models of Manufacturing Operations Management, ISA Organization, 2005

Arsanjani A.: Service-oriented modeling and architecture, IBM developerworks, Nov 

11
th

, 2004; accessed at: http://www-

128.ibm.com/developerworks/webservices/library/ws-soa-design1/ on December 

12
th

, 2004 

ATHENA D.A1, Diez A.B.G.(Document Owner): First Version of State of the Art in 

Enterprise Modelling Techniques and Technologies to Support Enterprise 

Interoperability, Deliverable D.A1.1.1, Version 1.0, July 2004

Barry D. K.: Web Services and Service-Oriented Architecture; The Savvy Manager’s 

guide; San Francisco, Calif. : Morgan Kaufmann ; Oxford : Elsevier Science, 2003.



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

149

Bauer A.: Flexible control, Manufacturing Engineer, Volume 74, Issue 6, December, 

Pages 287 – 289, 1995

Beck K., Joseph J., Goldszmidt G.: Learn business process modeling basics for the 

analyst, IBM developerworks, Februar 22nd 2005, accessed at http://www-

128.ibm.com/developerworks/ webservices/library/ ws-bpm4analyst/index.html on 

March 12
th

, 2005

Becker J., Kugeler M. and Rosemann M. (Editors): Prozessmanagement, Springer, 

Berlin Heidelberg New York, 2003

Berre A.-J.: Model Driven Interoperability – a standards based approach – and the 

ATHENA Interaoperability Framework, SINTEF, Presentation at eChallenges e-2005, 

Session Workshop 8°, October 20th, 2005

Blecker T.: Changes in Operations Management due to Internet based Production 

Concepts – An Institution Economical Perspective, Discussion paper of the College of 

Business Administration, University of Klagenfurt, No. 2003/02, Austria, June 2003

Booth A. W.: Object-Oriented Modeling for Flexible Manufacturing System, 

International Journal of Flexible Manufacturing Systems, Volume 10, Issue 3, 1998, Pages 

301 – 314

Brittenham P., Cubera F., Ehnebuske D., Graham S.: Understanding WSDL in a UDDI 

registry, Part 1, IBM developerworks, September 2001, accessed at: http://www-

128.ibm.com/developerworks/webservices/library/ws-wsdl/ on May 13th, 2004

Brown K., Reinitz R.: Web Services Architectures and Best Practices; IBM WebSphere 

Developer Technical Journal; IBM developerworks October 14th, 2003; accessed at 

http://www-

128.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html on 

June 12
th

, 2004

Bruccoleri M., Noto La Diega S., Perrone G.: An Object-Oriented Approach for 

Flexible Manufacturing Control Systems Analysis and Design Using the Unified 

Modeling Language, International Journal of Flexible Manufacturing Systems, Volume 15, 

Issue 3, July 2003, Pages 195 – 216

Burbeck S.: The Tao of e-Business services; IBM developerworks October 1st, 2000; 

accessed at http://www-128.ibm.com/developerworks/webservices/library/ws-

tao/ on March 23rd, 2002

Business Process Management Initiative (BPMI); BPMN Charter, Author: Notation 

Working Group Membership, BPMI Document Number NWG-2001-09-01R4, 

November 1st, 2001



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

150

Channabasavaiah, Kishore et al.: Migrating to a service-oriented architecture, Part 2; 

IBM developerworks December 16th, 2003; accessed at http://www-

128.ibm.com/developerworks/webservices/library/ws-migratesoa2/ on June 12th, 

2004

Colan M. (2004a): Service-Oriented Architecture expands the vision of Web services, 

Part I; IBM developerworks April 21st 2004; accessed at http://www-

128.ibm.com/developerworks/library/ws-soaintro.html on February 27th,  2005

Colan M. (2004b): Service-Oriented Architecture expands the vision of Web services, 

Part II; IBM developerworks June 28th 2004; accessed at http://www-

128.ibm.com/developerworks/library/ws-soaintro2.html on February 27th,  2005

Connelly D.: Open Applications Group Briefing, OAGIS Webcast on 18
th

 April, 2005

Corsten H.: Produktionswirtschaft, 6. Auflage, Oldenbourg, München/Wien 1996

Dietzsch A.: Adapting the UML to Business Modeling’s Needs – Experiences in 

Situational Method Engineering, In: J.M. Jézéquel, H. Hussmann and S. Cook, editors, 

UML 2002 – The Unified Modeling Language, Proc. Of the Int. Conference in Dresden, 

Germany, September/October, Springer Verlag Berlin Heidelberg, 2002, Pages 73-83

Di Salvo G., Johnsson C., Pazzini M.: A&D AS MES SIMATIC IT Production Suite V5, 

Release 1, February 28th, 2003, Siemens AG 2003

Dumas M., ter Hofstede A.H.M.: UML Activity Diagrams as a Workflow Specification 

Language, In: M. Gogolla, C. Kobryn, editors, UML 2001 – The Unified Modeling 

Language, Proc. Of the Int. Conference in Toronto, Canada, October, Springer Verlag, 

Berlin Heidelberg, 2001, pp76-90.

Dustdar S., Treiber M.: A View Based Analysis on Web service Registries. Distributed 

and Parallel Databases, Springer, 18, 147-171

Dustdar S.: Web Services Workflows - Composition, Coordination, and Transactions 

in Service-Oriented Computing, Concurrent Engineering: Research and Applications, 

Sage Publications, September 2004, p. 237-246

Endrei M. et al.: Patterns: Service-Oriented Architecture and Web Services; Redbooks, 

IBM International Technical Support Organization, April 2004

Erl T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web 

Services; 2004 Pearson Education, Publishing as Prentice Hall PTR, New Jersey

ESPRIT consortium AMICE (Eds.): CIMOSA: Open System Architecture for CIM, 

ESPRIT Research Reports, Springer Verlag, Berlin Heidelberg, 1993

Favre-Bulle B., Zoitl A.: Zentralismus ist “out”!; a3 volt, 1-2, 2004; 25.Jahrgang



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

151

Förster A.: Pattern-basierte Modellierung von Geschäftsprozessen, Thesis at the 

Institute for Database- and Informationsystems, University of Paderborn, November 

2002

Fredrik T.: Integrating Electrical Power Systems, From Individual to Organizational 

Capabilities, In: The Business of Systems Interation Ed.: Prencipe, Andrea; Davies, 

Andrew; and Hobday, Mike Oxford University Press, Uxford, New York, 2003, S56ff

Fröhlich P., Hu Z., and Schoelzke M.: Using UML for Information Modeling in 

Industrial Systems with Multiple Hierarchies, In: J.M. Jézéquel, H. Hussmann and S. 

Cook, editors, UML 2002 – The Unified Modeling Language, Proc. Of the Int. 

Conference in Dresden, Germany, September/October, Springer Verlag Berlin 

Heidelberg, 2002

Giaglis G.M.: A Taxonomy of Business Process Modeling and Information Systems 

Modeling Techniques, International Journal of Flexible Manufacturing Systems, 

Volume 13, Issue 2, April 2001, 209 – 228

Grønmo R., Solheim I.: Towards Modeling Web Service Composition in UML, 

presented at The 2nd International Workshop on Web Services: Modeling, 

Architecture and Infrastructure (WSMAI-2004), Porto, Portugal, 2004

Haeckel S.H.: Leading on demand business-Executives as architects, IBM Systems 

Journal, Volume 42, Issue 3, 2003, pp405-413.

Hammer M., Champy J.: Business Reengineering, Die Radikalkur für das 

Unternehmen, 7.Aufl., Campus Fachbuch, 1996

Hitz M., Kappel, G.: UML@Work, dpunkt.verlag Heidelberg, 2nd edition 2003

IBM developerWorks Live; Streamline Business Processes with WebSphere Business 

Integration, Handout at the IBM Forum Vienna, June 24th, 2004 

IBM Research: Cover Story: Are we Ready for “SERVICE”?, Think Tank October 10
th

, 

2005, Translated from Consultation magazine – ThinkTank Media group, accessed 

from http://researchweb.watson.ibm.com/ssme/20051010_services.shtml at March 

15th, 2006

Interactive Objects Software GmbH: ArcStyler MDA-Business Transformer Modeling 

Style Guide For ARIS, For ArcStyler Version 3.x, November 2002

INTEROP D10.1: INTEROPERABILITY GLOSSARY, IST-508 011, D10.1 Final v1B, 

April 15
th

, 2005

INTEROP D12.1: The Methodology to implement services and develop take up actions 

towards SMEs, IST-508 011, D12.1 v5, November 25
th

, 2004

INTEROP D12.1: The Methodology to implement services and develop take up actions 

towards SMEs, IST-508 011, D12.1 Final v7, May 17
th

, 2005



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

152

INTEROP D4.1: Scientific Integration Conceptual Model and its application in 

INTEROP, IST-508 011, Version 5.4, November 19
th

, 2004

INTEROP D4.2: INTEROP 2
nd

 Workplan, IST-508 011, D4.2 v1.4, December 2
nd

, 2004

INTEROP D6.1: Practices, principles and patterns for interoperability, Ed. David 

Chen, IST-508 011, Final Version 1.0, May 20
th

, 2005

INTEROP D8.1: State of the art and state of the practice including initial possible 

research orientations, IST-508 011, D8.1 v1.2, November 18
th

, 2004

INTEROP D9.1: State-of-the art for Interoperability architecture approaches, Model 

driven and dynamic, federated enterprise interoperability architectures and 

interoperability for non-functional aspects, IST-508 011, D9.1 v1.0, November 19
th

, 

2004

Iung B.: From remote maintenance to MAS-based e-maintenance of industrial process, 

Journal of Intelligent Manufacturing, 14, pp 59-82, 2003

Januszewsji, K. (2002a): The Importance of Metadata: Reification, Categorization, and 

UDDI, Microsoft MSDN, September 2002, accessed at: 

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnuddi/html/runtimeuddi1.asp on June 9th, 2004

Januszewski K. (2002b): Using UDDI at Run Time, Part II, Microsoft MSDN, May 

2002, accessed at: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnuddi/html/runtimeuddi1.asp on August 11th, 2005

Jin J.Q., Loftus M., Franks I.T.: A method for the acquisition of users requirements in 

discrete manufacturing cell systems, Computer Integrated Manufacturing Systems, 

Volume 11, Issue 3, 1998, Pages 229 – 242

Johnson S. B.: Systems Integration and the Social Solution of Technical Problems in 

Complex Systems, In: The Business of Systems Interation Ed.: Prencipe, Andrea; 

Davies, Andrew; and Hobday, Mike Oxford University Press, Uxford, New York, 

2003, S35ff

Johnston S.: Rational UML Profile for business modeling, IBM developerworks June 

30
th

, 2004; accessed at http://www-

128.ibm.com/developerworks/rational/library/5167.html on May 31st, 2005

Johnston S.: UML 2.0 Profile for Software Services, IBM developerworks, April 13
th

, 

2005; accessed at http://www-

128.ibm.com/developerworks/rational/library/05/419_soa/ on May 31st, 2005

Kalogeras A.P. et al.: Vertical Integration of Enterprise Industrial Systems Utilizing 

Web Services, in Sauter, T., Vasques, F.: Proceedings of the 2004 IEEE International 

Workshop on Factory Communication Systems, Vienna, September 2004



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

153

Kedir Biadgligne A., Matyas K., Pfadenhauer K. (2004): Integrated MRP Heuristics for 

determining raw material purchasing lot in manufacturing enterprises, Annals of 

DAAAM for 2004 & Proceedings of the 15th International DAAAM Symposium, ISBN 

3-901509-42-9, ISSN 1726-9679, Editor B. Katalinic, Published by DAAAM 

International, Vienna, Austria 2004

Kittl B.: CAM: Computer Aided Manufacturing im betrieblichen Umfeld, WUV-Univ.-

Verlag, Wien, 1993

Kloppmann et al.: WS-BPEL Extension for Sub-processes – BPEL-SPE, A Joint White 

Paper by IBM and SAP, September 2005, accessed at http://www-

128.ibm.com/developerworks/webservices/library/specification/ws-bpelsubproc/

on March 9
th

, 2006

Kloppmann M., König D. et al.: Business process choreography in Websphere: 

combining the power of BPEL and J2EE, IBM Systems Journal, Volume 43, Issue 2, 

2004, pp. 270 - 296

Kraemer D., Yendluri, P.: Realizing the Benefits of Implementing RosettaNet 

Implementation Framework (RNIF) Version 2.0, Technical White Paper 2002, accessed 

at 

http://www.rosettanet.org/Rosettanet/Doc/0/F9RGU5AMQBM4J66Q0BT84NQ247

/RNIF2finalv3.pdf on September 14th, 2005

Leymann F., Roller D.: Using flows in information integration, IBM Systems Journal, 

Volume 41, Issue 4, 2002, pp 732 – 742

Leymann F., Roller D., Schmidt M.-T.: Web services and business process 

management, IBM Systems Journal, Volume 41, Issue 2, 2002, pp198 – 211

Lippe S., Greiner, U. and Barros, A.: A Survey on State of the Art to Facilitate 

Modelling of Cross-Organisational Business Processes, SAP Research, 2005, accessed 

at http://www.athena-ip.org on March 24
th

, 2006

List B., Korherr B.: A UML 2 Profile for Business Process Modelling, Proceedings of 

the 1st International Workshop on Best Practices of UML (BP-UML 2005) at the 24th 

International Conference on Conceptual Modeling (ER 2005), Klagenfurt, Austria, 

2005, Springer Verlag, Lecture Notes in Computer Science.

List B., Korherr B.: An Evaluation of Conceptual Business Process Modelling 

Languages, Proceedings of the 21st ACM Symposium on Applied Computing 

(SAC'06), April 2006, Dijon, France, ACM Press, 2006.

Mantell K.: From UML to BPEL, IBM developerworks, Sept 9th 2003, http://www-

106.ibm.com/developerworks/webservices/library/ws-uml2bpel/

Mick R.: The Alignment of Enterprise Architecture and Interoperability, ARC Insights, 

June 16
th

, 2005



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

154

Mielke C.: Geschäftsprozesse: UML-Modellierung und Anwendungsgenerierung, 

Spektrum Akademischer Verlag, Heidelberg Berlin, 2002

Miller J., Mukerji J. (Editors): MDA Guide Version 1.0.1, OMG, June 12th 2003

Mumm A.: Gestaltung der Prozesse zur Werkzeugversorgung in der spanenden 

Fertigung, Fachgespräch "Bohren und Fräsen im modernen Produktionsprozeß", 

Universität Dortmund, Tagung 21. / 22.5.97, Tagungsband, 1997, Pages 147 – 163

Ng A., Chen S. and Greenfield P.: An Evaluation of Contemporary Commercial SOAP 

Implementations, 5th Australasian Workshop on Software and System Architectures 

(AWSA2004), Pages 64-71, Melbourne, Australia (ISBN 0-85590-803-3), April 2004

Ng P.-W.: Effective Business Modeling with UML: Describing Business Use Cases and 

Realizations, the Rational edge, November 2002

OMG UML for SE draft 2003

OMG: Business Process Definition Metamodel, Request for Proposal, OMG document, 

2003-01-06, http://www.omg.org/docs/bei/03-01-06.pdf

PABADIS, Plant Automation Based on Distributed Systems, Deliverable 6.3, IST-1999-

60016, Work Package 6: Assessment and Evaluation, Task 6.3 Revolutionising Plant 

Automation, 2001

Pabadis.org: www.pabadis.org, accessed: 27.9.2004

Pfadenhauer K., Dustdar S., Kittl B. (2005c): Challenges and Solutions for Model 

Driven Web Service Composition, Proceedings of the 14
th

 IEEE International 

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 

3rd International Workshop on Distributed and Mobile collaboration (DMC), ISBN 0-

7695-2362-5, pp 126-131, 13 - 15 June 2005, Linköping, Sweden, IEEE Computer 

Society Press.

Pfadenhauer K., Dustdar S., Kittl B. (2005d): Comparison of Two Distinctive Model 

Driven Web Service Orchestration Proposals, Proceedings of the 7th IEEE 

International Conference on E-Commerce Technology, http://cec05.in.tum.de/1
st

 IEEE 

International Workshop on Service-oriented Solutions for Cooperative Organizations 

(SoS4CO’05), co-located with the, 19 July 2005, Munich, Germany.

Pfadenhauer K., Kittl B. (2003): Reactive scheduling for batch processors, Annals of 

DAAAM for 2003 & Proceedings of the 14th International DAAAM Symposium, ISBN 

3-901509-34-8, ISSN 1726-9679, pp 357-358, Editor B. Katalinic, Published by DAAAM 

International, Vienna, Austria 2003

Pfadenhauer K., Kittl B. (2004a): Modeling the shop floor for a SOA with UML, 

Proceedings of the 1st International Conference on Enterprise Systems and 

Accounting, Thessaloniki, Greece, 2004



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

155

Pfadenhauer K., Kittl B. (2004b): With a system approach towards a model driven 

service architecture for the shop floor, The 2004 Research Conference on Innovations 

in Information Technology, Dubai, UAE, 2004

Pfadenhauer K., Kittl B. (2004c): Flexibility in the shop floor by means of a model 

driven service architecture: a case study, Annals of DAAAM for 2004 & Proceedings 

of the 15th International DAAAM Symposium, ISBN 3-901509-42-9, ISSN 1726-9679, 

Editor B. Katalinic, Published by DAAAM International, Vienna, Austria 2004

Pfadenhauer K., Kittl B. (2006a): Prozessmanagement in serviceorientierten 

Architekturen, ERP Management Issue 2, pp 40-42,  2006, GITO-Verlag

Pfadenhauer K., Kittl B., Dustdar S., Levy D. (2006b): Shop Floor Information 

Management and SOA, Accepted for publication at the 4
th

 International Conference 

on Business Process Modelling, 2
nd

 International Workhop on Enterprise and 

Networked Enterprises Interoperability (ENEI’06), Vienna, Austria, 4
th

 September 

2006

Pfadenhauer K., Kittl, B. (2005a). Why modeling tools and methodologies for a service 

oriented shop floor architecture are needed, CIM Issue 6, 7
th

 International Conference 

on Computer Integrated Manufacturing, Intelligent Manufacturing Systems, ISBN 83-

915011-3-2, pp 183-187, Gliwice, Poland

Pfadenhauer K., Kittl, B. (2005b). Why model driven service orientation is the future of 

shop floor integration, Proceedings of the COMMENT 2005 Worldwide Congress on 

Materials and Manufacturing Engineering and Technology, ISBN 83-89728-13-3, 

Editor L.A. Dobrzanski, Gliwice, Poland

Pondrelli L. (2005a): A MDD Approach to the Development of Interoperable Service 

Oriented Architectures, Gruppo Formula, Presentation at eChallenges e-2005, Session 

Workshop 8a, 20
th

 October 2005

Pondrelli L. (2005b): An MDD annotation methodology for Semantic Enhanced 

Service Oriented Architectures, accessed at http://ftp.informatik.rwth-

aachen.de/Publications/CEUR-WS/Vol-160/paper27.pdf on March 27th, 2006

Prencipe A.: Corporate Strategy and Systems Integration Capabilities, Managing 

Networks in Complex Systems Industries, In: The Business of Systems Interation Ed.: 

Prencipe, Andrea; Davies, Andrew; and Hobday, Mike Oxford University Press, 

Uxford, New York, 2003, S114ff

Rational: Business Modeling with the UML and Rational Suite AnalystStudio, A 

Rational Software White Paper, 2001, accessed at www.rational.com on February 12
th

, 

2004

Ritter G.: Cell Integrator, master thesis at the Institute of Production Engineering, 

Vienna University of Technology, May 2003



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

156

Rosenberg F., Dustdar S.: Business Rules Integration in BPEL – A Service-Oriented 

Approach. 7th International IEEE Conference on E-Commerce Technology (CEC 

2005), 19 - 22 July 2005, Munich, Germany

RosettaNet: PIP Specification, Cluster 7: Maufacturing, Segment B: Manage 

Manufacturing WO & WIP, 7B1: Distribute Work in Process, Release 01.00.00A, 

September 14
th

, 2005

RosettaNet: RosettaNet and WebServices, An Executive-Level View of RosettaNet and 

an Emerging Model for Application-Based B2B Commerce, Technical White Paper 

2003, accessed at 

http://www.rosettanet.org/Rosettanet/Doc/0/IP0QL046K55KFBSJ60M9TQCPB3/R

osettaNet%20Web%20ServicesFINAL%20.pdf on September 14
th

, 2005

Schmidt M.-T. et al.: The Enterprise Service Bus: Making service-oriented architecture 

real; IBM Systems Journal, Volume 44, Number 4, 2005

Selic B.: Unified Modeling Language version 2.0, In support of model-driven 

development, IBM developerworks, March 2005, accessed at http://www-

128.ibm.com/developerworks/rational/library/05/321_uml/ on August 23
rd

, 2005

Shi D., Daniels R.L.: A survey of manufacturing flexibility: Implications for e-business 

flexibility, IBM Systems Journal, Volume 42, Issue 3, 2003, pp 414 – 427

Siemens: Simatic – Integration von MES-Funktionen in PCS7 mit Simatic IT, 

Handbuch, Siemens AG Automation & Drives, Ausgabe 10/2005, A5E00732179-01

Siemens: Simatic RF600, RFID system in the UHF range for logistics and distribution, 

Brochure – Preliminary Information, 2006, accessed at 

http://www.automation.siemens.com/rfid/html_76/download_broschueren.htm on 

March 17th, 2006

Sihn W., Graupner T.-D.: e-Industrial Services for Manufacturing Systems: 

Differentiation Through Internet Services, Proceedings of the 36
th

 CIRP International 

Seminar on Manufacturing Systems, Saarbrücken, Germany, 2003

Sinogas P., Vasconcelos A., Caetano A., Neves J., Mendes R., Tribolet J.: Business 

Processes Extensions to UML Profile for Business Modeling. Proceedings of the 

International Conference on Enterprise Information Systems, 2001.

Skogan D., Grønmo R., Solheim I.: Web Service Composition in UML, The 8th 

International IEEE Enterprise Distributed Object Computing Conference (EDOC), 

Monterey, California, 2004

Sprott D. (2004a); Service Oriented Architecture: An Introduction for Managers; CBDI 

Report, CBDI Forum Limited 2004



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

157

Sprott D. (2004b); Wilkes, L.: Understanding Service-Oriented Architecture; CBDI 

Forum, January 2004, accessed at 

http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/en-

us/dnmaj/html/aj1soa.asp on April 24th, 2005

Steinmueller W. E.: The Role of Technical Standards in Coordinating the Division of 

Labour in Complex System Industries, In: The Business of Systems Interation Ed.: 

Prencipe, Andrea; Davies, Andrew; and Hobday, Mike Oxford University Press, 

Uxford, New York, 2003, S133ff

Supply Chain Council: Supply-Chain Operations Reference-model, SCOR Version 6.1 

Overview, accessed at: www.supply-chain.org on March 2
nd

, 2005

Tian G.Y., Yin G., Taylor D.: Internet-based manufacturing: A review and a new 

infrastructure for distributed intelligent manufacturing, Journal of Intelligent 

Manufacturing, 13, pp 323-338, 2002

Voigt H.: Modell-basierte Analyse von ausführbaren Geschäftsprozessen für Web 

Services, Thesis at the Institute for Database- and Informationsystems, University of 

Paderborn, September 2003

Wagner T., Blumenau J.-C.: The Digital Factory, more than a Planning Environment, 

Proceedings of the 36
th

 CIRP International Seminar on Manufacturing Systems, 

Saarbrücken, Germany, 2003

Walford R.: Business Process Impementation for IT Professionals and Managers, 

Artech House, Boston, London, 1999

Westkämper E., Jendoubi L.: Smart Factories – Manufacturing Environments and 

Systems of the Future, Proceedings of the 36
th

 CIRP International Seminar on 

Manufacturing Systems, Saarbrücken, Germany, 2003

White S. A.: Process Modeling Notations and Workflow Patterns; IBM, January 2004, 

accessed at 

http://www.bpmn.org/Documents/Notations%20and%20Workflow%20Patterns.pdf

on November 22nd, 2005

Whitman L., Huff B.: On the Use of Enterprise Models, International Journal of 

Flexible Manufacturing Systems, Volume 13, Issue 2, April, pp195 – 208, 2001.

Wiendahl H.-H., Mussbach-Winter U., Kipp R.: Marktspiegel Business Software MES 

– Fertigungssteuerung 2004/2005, Ed.: Frauenhofer Institute for Production 

Engineering and Automation IPA, Stuttgart, and Trovarit AG, Aachen, 2004

Wollschlaeger M., Bangemann T.: Maintenance Portals in Automation Networks –

RequirementsStructures and Model for Web-based Solutions, In: Sauter T., Vasques F.: 

Proceedings of the 2004 IEEE International Workshop on Factory Communication 

Systems, September 2004



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

158

Woods D. and Word J.: SAP NetWeaver for dummies, Wiley Publishing, Indianapolis, 

Indiana, USA, 2004 

Workflow Management Coalition (WfMC); Documents and Interfaces 2005, accessed 

at http://www.wfmc.org/standards/docs.htm on February 15th, 2006

World Wide Web Consortium (W3C): Web Services Architecture – W3C Working 

Group Note, February 11th, 2004; accessed at http://www.w3.org/TR/ws-arch/ on 

February 14th, 2006

World Wide Web Consortium (W3C): Web Services Description Languages (WSDL) 

1.1, W3C Note 15 March 2001; accessed at http://www.w3.org/TR/wsdl on January 

14th, 2003

World Wide Web Consortium (W3C): Web Services Glossary – W3C Working Draft, 

August 8th, 2003; accessed at http://www.w3.org/TR/2003/WD-ws-gloss-20030808/

on September 14th, 2003

Zhang J., Gu J., Li P. and Duan Z.: Object-oriented modeling of control system for 

agile manufacturing cells, International Journal of Production Economics, Volume 62, 

Issues 1-2, May, Pages 145 – 153

Zimmermann O., Krogdahl P. and Gee C.: Elements of Service-Oriented Analysis and 

Design, IBM developerworks, June 2nd, 2004; accessed at: http://www-

128.ibm.com/developerworks/webservices/library/ws-soad1/ on March 7
th

, 2005



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

159

9.3. List of Figures

Figure 1. Motivation and research methodology ................................................................. 4

Figure 2. Manufacturing enterprise system view (adapted from Corsten (1996)) .......... 9

Figure 3. High-level horizontal enterprise integration (SCOR 6.1) ................................. 10

Figure 4. CIMOSA Reference Architecture ......................................................................... 11

Figure 5. Major Enterprise Architecture Initiatives resulting in ANSI/ISA 95 ............. 12

Figure 6. The shop floor system in discrete manufacturing ............................................. 15

Figure 7. Evolution of IT-driven manufacturing concepts (Tian et al. 2002) ................. 16

Figure 8. Siemens framework for RFID and MES integration (Siemens 2006) .............. 18

Figure 9. Comparison between production concepts based on internet technologies 

(Blecker 2003) ........................................................................................................................... 19

Figure 10. Potential Modifications of subsystems derived from Internet Technology 

(Blecker 2003) ........................................................................................................................... 20

Figure 11. Centralized and monolithic MES integration architecture............................. 21

Figure 12. MES functionality defined by the MESA consortium ..................................... 22

Figure 13. Open Applications Group manufacturing scenario (Connelly 2005) ........... 23

Figure 14. Open Applications Group “Production to MES” scenario (Connelly 2005) 24

Figure 15. Multi-level hierarchy of activities (ANSI/ISA 2000)....................................... 27

Figure 16. ANSI/ISA 95 Part 1 Functional enterprise-control model (ANSI/ISA 2000)

.................................................................................................................................................... 29

Figure 17. Internal and external service providers in the shop floor control level ....... 31

Figure 18. The basic SOA publish-find-bind mechanism ................................................. 36

Figure 19. The Business Service Bus by CBDI..................................................................... 40

Figure 20. The extended basic SOA mechanism used in IBM’s ESB (Schmidt 2005) .... 41

Figure 21. Extensive WS-SOA technology stack (ebpml.org 2003).................................. 46

Figure 22. Technology stack for service description and discovery (adopted from 

Alonso (2004)) .......................................................................................................................... 47

Figure 23. Relationship between XML specifications (Erl 2004) ...................................... 48

Figure 24. Proposal for a Manufacturing Service-Based Infrastructure (Mick 2005) .... 50



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

160

Figure 25. Model Driven Architecture abstraction levels (OMG).................................... 55

Figure 26. Reference Model of Conceptual Integration (INTEROP D9.1) ...................... 58

Figure 27. Conceptual, applicative and technical view of an enterprise architecture 

(INTEROP D9.1) ...................................................................................................................... 58

Figure 28. Generic Model Driven Service Architecture approach (adopted from 

Zimmermann et al.) ................................................................................................................ 60

Figure 29. Model Driven Service Architecture for the Shop Floor .................................. 62

Figure 30. Composition challenges regarding model driven WS architectures ............ 63

Figure 31. Top-down model driven WS composition ....................................................... 65

Figure 32. IBM UML-BPEL-BPWS4J proposal.................................................................... 66

Figure 33. Bottom-up model driven WS composition ....................................................... 67

Figure 34. MS Visio-XLANG/s-BizTalk Server proposal ................................................. 68

Figure 35. Model Driven Service Architecture Control Loop........................................... 76

Figure 36. The concept of a Model Driven Service Architecture for the Shop Floor 

(structural view). ..................................................................................................................... 78

Figure 37. MDSA demo scenario .......................................................................................... 84

Figure 38. ANSI/ISA 95 Categories of Information Exchange ........................................ 86

Figure 39. ANSI/ISA 95 Analysis Model Overview.......................................................... 86

Figure 40. Manufacturing Operations Management model ............................................. 87

Figure 41. Activity model of Production Operations Management ................................ 88

Figure 42. Implemented Production Operations Management activities/object flow . 92

Figure 43. TO-BE production operation management scenario....................................... 93

Figure 44. Business Use Case and Business Analysis Model main diagram.................. 94

Figure 45. Detailed Production Scheduling Use Case Model........................................... 95

Figure 46. Detailed Production Scheduling analysis use case realization ...................... 96

Figure 47. Detailed Production Scheduling Analysis Classes .......................................... 97

Figure 48. Detailed Production Scheduling participants .................................................. 98

Figure 49. Detailed Production Scheduling basic flow...................................................... 99

Figure 50. Service View perspective including the service providers for the Detailed 

Production Scheduling activity........................................................................................... 101

Figure 51. The implementation of the ProductionScheduleCheckProvider................. 102



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

161

Figure 52. Composition Overview of the Collaboration Overview perspective ......... 103

Figure 53. Particular to executable shop floor model mapping ..................................... 104

Figure 54. scheduleNewOrders collaboration composite structure .................................. 106

Figure 55. scheduleNewOrders activity diagram (upper part)...................................... 108

Figure 56. scheduleNewOrders implementation diagram of the Component View 

perspective ............................................................................................................................. 110

Figure 57. BizTalk 2004 Orchestration Designer view of the scheduleNewOrders 

collaboration .......................................................................................................................... 112

Figure 58. Infrastructure Service Partition ........................................................................ 113

Figure 59. Service Specification of DataDefinitionProvider ........................................... 114

Figure 60. ProductionSchedule.xsd .................................................................................... 115

Figure 61. PreactorOrder.xsd .............................................................................................. 116

Figure 62. NewPartNumbers.xsd ....................................................................................... 117

Figure 63. DetailedProductionSchedule.xsd ..................................................................... 118

Figure 64. TMDXOrder.xsd ................................................................................................. 119

Figure 65. Service Specification of RepositoryProvider .................................................. 119

Figure 66. Service Specification of UDDIHelperProvider............................................... 121

Figure 67. UDDI Services user web interface (administrator role)................................ 122

Figure 68. Service Specification of AnalysisLibraryProvider ......................................... 123

Figure 69. Service Specification of LoggingProvider ....................................................... 124

Figure 70. Service Specification of RuleEngineProvider ................................................. 124

Figure 71. Microsoft Business Rule Composer screenshot ............................................. 126

Figure 72. Plant1:Scheduling Partition (Detailed Production Scheduling) .................. 127

Figure 73. Service Specification of ProductionScheduleCheckProvider ....................... 127

Figure 74. Service Specification of ProductionScheduleCheckConfigurationProvider

.................................................................................................................................................. 129

Figure 75. Service Specification of SchedulingIFProvider .............................................. 130

Figure 76. Service Specification of ScheduleNotificationProvider ................................ 131

Figure 77. Service Specification of SchedulingProvider .................................................. 131

Figure 78. Service Specification of ProductDefinitionProvider...................................... 132

Figure 79. Service Specification of NC_CommProvider ................................................. 133



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

162

Figure 80. Service Specification of ProductionDispatchProvider .................................. 134

Figure 81. Service Specification of ProductionDispatchConfigurationProvider ......... 135

Figure 82. Service Specification of ProductionResourceProvider .................................. 136

Figure 83. Service Specification of TS_AnalyzerProvider............................................... 137

Figure 84. SchedulINA application messaging related windows.................................. 140

Figure 85. SchedulINA import and export related windows ......................................... 142

9.4. List of Tables

Table 1. Top-down and bottom-up comparison test environment ............................ 68

Table 2. Evaluation results................................................................................................ 69



Appendix

__________________________________________________________________________________________________________________

____________________________________________________________________________

163

9.5. Curriculum Vitae

Name: Dipl.-Ing. Konrad Pfadenhauer

Date of birth: April 24
th

, 1977

Nationality: Austria

Adress (office): Karlsplatz 13, 1040 Vienna, Austria

Email: Pfadenhauer@mail.ift.tuwien.ac.at

10.1995 – 06.2002      Vienna University of Technology, Austria, Study „Industrial 

Engineering” Thesis: “Logistics optimization in batch 

processes: a case study”

10.1999 – 06.2000     University of St. Gallen, Switzerland, Visiting Student

(investment, finance, operations research)

09.2002 – 08.2006 Research Assistant, Vienna University of Technology, Austria, 

Institute for Production Engineering

Ph.D. project topic: Modeling the shop floor for a service 

oriented architecture

07.2005 – 12.2005 Visiting Academic at the School of Electrical and Information 

Engineering, University of Sydney (Australia)

09.2004 – 06.2006 Scientific head of education for the “Pre-Production 

Management” university diploma program  

Courses Taught Production Engineering (basics and advanced)

Curriculum Developed Designed and developed university diploma programs titled 

“Pre-Production Management”, ”Production Engineering”, 

“Industrial Engineering” and “Design Engineering”. These 

courses are offered as two year in-service programs to

industry professionals.


