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Kurzfassung

Die Zielsetzung dieser Dissertation ist die Entwicklung von Methoden zur
Unterstützung von Anwendern beim Zugriff auf und bei der Entdeckung von
Musik. Der Hauptteil besteht aus zwei Kapiteln.

Kapitel 2 gibt eine Einführung in berechenbare Modelle von Musikähnlich-
keit. Zudem wird die Optimierung der Kombination verschiedener Ansätze
beschrieben und die größte bisher publizierte Evaluierung von Musikähnlich-
keitsmassen präsentiert. Die beste Kombination schneidet in den meisten
Evaluierungskategorien signifikant besser ab als die Ausgangsmethode. Beson-
dere Vorkehrungen wurden getroffen um Overfitting zu vermeiden. Um eine
Gegenprobe zu den Ergebnissen der Genreklassifikation-basierten Evaluierung
zu machen, wurde ein Hörtest durchgeführt. Die Ergebnisse vom Test bestä-
tigen, dass Genre-basierte Evaluierungen angemessen sind um effizient große
Parameterräume zu evaluieren. Kapitel 2 endet mit Empfehlungen bezüglich
der Verwendung von Ähnlichkeitsmaßen.

Kapitel 3 beschreibt drei Anwendungen von solchen Ähnlichkeitsmassen.
Die erste Anwendung demonstriert wie Musiksammlungen organisiert and
visualisiert werden können, so dass die Anwender den Ähnlichkeitsaspekt,
der sie interessiert, kontrollieren können. Die zweite Anwendung demon-
striert, wie auf der Künstlerebene Musiksammlungen hierarchisch in sich
überlappende Gruppen organisiert werden können. Diese Gruppen werden
mittels Wörter von Webseiten zusammengefasst, welche mit den Künstlern
assoziiert sind. Die dritte Anwendung demonstriert, wie mit minimalen An-
wendereingaben Playlisten generiert werden können.





Abstract

This thesis aims at developing techniques which support users in accessing
and discovering music. The main part consists of two chapters.

Chapter 2 gives an introduction to computational models of music simi-
larity. The combination of different approaches is optimized and the largest
evaluation of music similarity measures published to date is presented. The
best combination performs significantly better than the baseline approach
in most of the evaluation categories. A particular effort is made to avoid
overfitting. To cross-check the results from the evaluation based on genre
classification a listening test is conducted. The test confirms that genre-
based evaluations are suitable to efficiently evaluate large parameter spaces.
Chapter 2 ends with recommendations on the use of similarity measures.

Chapter 3 describes three applications of such similarity measures. The
first application demonstrates how music collections can be organized and vi-
sualized so that users can control the aspect of similarity they are interested
in. The second application demonstrates how music collections can be orga-
nized hierarchically into overlapping groups at the artist level. These groups
are summarized using words from web pages associated with the respective
artists. The third application demonstrates how playlists can be generated
which require minimum user input.
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Chapter 1
Introduction

This chapter briefly describes the motivation and context of this thesis. In
Section 1.1 the thesis is outlined (including a summarization of the major
contributions). In Section 1.2 some examples are given which explain the
syntax of Matlab expressions. (In Chapter 2 Matlab syntax is used to define
algorithms.)

Motivation

The value of a large music collection is limited by how efficiently a user can
explore it. Portable audio players can store over 20,000 songs and online
music shops offer more than 1 million tracks. Furthermore, a number of new
services are emerging which give users nearly unlimited access to music (see
e.g. [KL05]).

New tools are necessary to deal with this abundance of music. Of partic-
ular interest are tools which can give recommendations, create playlists, and
organize music collections. One solution is to utilize the power of Internet
communities with techniques such as collaborative filtering. Furthermore,
communities can share playlists as well as lists of their favorite artists.

This thesis deals with tools which do not use input from communities.
The first part of this thesis is on computational models of audio-based music
similarity. The second part demonstrates applications which can be built on
such similarity measures.

Music Information Retrieval (MIR)

Music Information Retrieval is an interdisciplinary research field which deals
with techniques to search and retrieve music related data. A list of rele-
vant topics can be found online.1 The topics include, among many others,
computational models of music similarity and their applications.

The major MIR conference is the annual ISMIR International Conference
on Music Information Retrieval which started in the year 2000.2 Many of
the papers referenced in this thesis have been published at ISMIR confer-
ences. Besides the conferences the primary communication channel within
the community is the MUSIC-IR mailing list.2

1http://ismir2006.ismir.net/callforpapers.html
2http://www.ismir.net
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Related Music Services

The overall goal of this thesis is to support users in accessing and discov-
ering music. There are a number of music services available which already
provide this functionality. Particularly well known are Apple’s iPod and the
associated iTunes Music Store which offers its customers various ways of dis-
covering music. Recently the billionth song was sold over the portal. Apple’s
iTunes, Amazon, and other online stores are changing the distribution chan-
nels for music. Brick and mortar stores cannot compete with unlimited shelf
space, highly efficient recommendations based on customer profiles, and 24/7
opening hours (every day a year).

Furthermore, a number of services offer (nearly or completely free) access
to huge music collections. Such services often have the form of easily person-
alizable Internet radio stations and are powerful tools to discover or simply
enjoy new music. Such services include Yahoo! Launchcast or Musicmatch,
Pandora, and Last.FM.

There are numerous other services which supply metadata (and automat-
ically tag music), organize personal collections, create playlists, or support
searching similar artists. These services, tools, or projects include FreeDB,
MusicMoz, MusicBrainz, MusicMagic Mixer by Predixis, GraceNote’s recom-
mendation engine, Musiclens, Liveplasma, and Gnoosic. Of particular inter-
est are Internet platforms which allow communities to exchange their music
experiences. Such platforms include UpTo11, LiveJournal, Audioscrobbler,
Webjay, and MySpace.

All in all, tools which enhance the experience of listening to music are
rapidly developing. In this context the content-based similarity measures
and the applications described in this thesis are a small building block to
improve these tools.

1.1 Outline of this Thesis

This thesis consists of two major chapters. Chapter 2 deals with audio-
based similarity measures. First, an introduction to similarity measures is
given and state-of-the-art techniques are described. Second, combinations of
these techniques are optimized and evaluated. The presented evaluation is
the largest published to date. Six different collections with a total of over
20’000 pieces from over 60 genres are used. Various precautions are taken
to avoid overfitting. The appropriateness of using genre classification based
evaluations to explore large parameter spaces is confirmed by a listening
test. In particular, the results of the listening test show that the differences
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measured through genre-based evaluations correspond to human listeners’
ratings.

One of the findings of Chapter 2 is that overfitting is a very critical issue.
Overfitting occurs when the performance of a similarity measure is so highly
optimized for a specific music collection that its performance on a differ-
ent collection is poorer than the non-optimized version. The demonstrated
precautions in this thesis are highly recommendable for further work in this
direction. In particular, (when using genre classification based evaluations)
these are:

1. Artist filter
An artist filter should be used to avoid overestimating the per-
formance of the algorithm and measure improvements more ac-
curately. An artist filter ensures that the test and training set
contain different artists. As shown in this thesis, the classifica-
tion accuracies are significantly lower if such a filter is used.

2. Multiple collections
Several collections should be used both for training and for test-
ing. As shown in this thesis, there is a high risk of overestimating
performances when generalizing results based solely on one col-
lection. The collections should be from different sources. (They
should not only have different audio files but also have different
genre taxonomies.)

3. Different methods to measure the same similarity aspect
In Chapter 2 different similarity measures are combined. The
goal is to combine aspects of similarity which complement each
other. Given such a combination one measure can be replaced
by another if it describes the same aspect. The resulting non-
systematic deviations indicate how robust the combination is and
how well the results can be generalized.

A further outcome of Chapter 2 are recommendations on the use of audio-
based similarity measures. For a standard application the combination which
performs best in the experiments described in this thesis is recommended.
Compared to the baseline approach this combination is more robust towards
anomalies in the similarity space (e.g. the triangular inequality is fulfilled
more often), it performs best on all collections (although on the largest col-
lection the improvements are not significant), and it is computationally not
significantly more expensive than the baseline.

Chapter 3 describes three applications of similarity measures. For each
application the necessary techniques (e.g. Aligned Self-Organizing Maps)
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are described, a demonstration is given, and limitations are discussed. The
applications are:

1. Islands of Music
A metaphor of geographic maps is used to visualize the structure
of a music collection. Islands represent groups of similar pieces.
Similar pieces are located close to each other on the map. A
technique which allows the user to gradually shift the focus be-
tween different aspects of similarity is described. When the focus
is shifted the islands are gradually rearranged according to the
changing focus on similarity aspects.

2. Fuzzy Hierarchical Organization Music collections are hierarchi-
cally organized into overlapping groups. This is done at the artist
level. That is, instead of pieces of music (as in the other applica-
tions) the smallest entity are artists. Each group of similar artists
is summarized with words co-occurring on web pages containing
the artists’ names.

3. Dynamic playlist generation
The user interaction necessary to generate a playlist is minimized.
Using the skip button, the users interactively teach the system
their current listening preferences. An evaluation using hypothet-
ical usage scenarios shows that the suggested heuristic drastically
reduces the number of necessary skips.

1.1.1 Contributions of this Doctoral Thesis

The contributions can be divided into two categories. The contributions
described in Chapter 2 deal with (mainly audio-based) music similarity mea-
sures. The contributions in Chapter 3 deal with the application of similarity
measures. Most of the work was carried out in close collaboration with a
number of coauthors.

Similarity Measures

◦ Development of evaluation procedures and evaluation of similar-
ity measures [PDW03b; Pam04; PFW05b] including the proce-
dures and evaluation presented in this thesis, which is the largest
evaluation published to date. Important findings include the ne-
cessity of using an artist filter, and the fact that genre classifi-
cation based evaluations can be used instead of listening tests to
efficiently evaluate large parameter spaces.
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◦ Development of the freely (GNU/GPL) available Matlab MA Tool-
box [Pam04]3 which implements several audio similarity mea-
sures, among them the approach presented by Aucouturier &
Pachet [AP02a] which is described in this thesis (G30). Further-
more, all necessary code to implement G1C, the similarity mea-
sure which performs best in the evaluations presented in Chap-
ter 2, is listed in this thesis.

◦ Development of new features (e.g. Gravity and Focus [PFW05b]),
modification of similarity measures (e.g. the MFCC-based ver-
sion of the Fluctuation Patterns and the G30S approach described
in this thesis and in [Pam05]), and the development of opti-
mized combinations [PFW05b] (including the new combination
presented in this thesis).

Applications

◦ Development of the Aligned Self-Organizing Map algorithm and
demonstration of its ability to organize and visualize music col-
lections [PGW03; PDW03a; Pam03; PDW04]. In addition, this
algorithm has been successfully applied to analyze expressive pi-
ano performances [PGW03; GPW04]

◦ Development and demonstration of an approach to hierarchically
cluster music collections into overlapping groups and summarize
groups of similar artists with words [PFW05a]. This clustering
technique was presented in [PHH04] (it was developed to organize
large drum sample libraries) and is based on insights gained in
work presented in [PWC04].

◦ Development of a simple approach to dynamically generate playlists
using minimal user interaction based on skipping behavior [PPW05a].
(Including an effective evaluation procedure to evaluate the sug-
gested heuristics.)

1.2 Matlab Syntax

In Chapter 2 all code necessary to implement the similarity measure which
performs best in the evaluations is given. Matlab syntax was chosen because

3http://www.ofai.at/˜elias.pampalk/ma
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of its compact form, and because numerous good tutorials are available on-
line. Furthermore, all code in this thesis should be compatible with Octave4

which is freely (GNU/GPL) available.

This section briefly describes the syntax used in the next chapter. Matlab
has a similar expression syntax to standard programming languages. There
are several data types in Matlab. The most important is the standard type
which is a 2-dimensional matrix. In general a matrix is n-dimensional. The
data type of the values is automatically determined and can be, e.g., double
(by default), single, logical, complex, etc. In contrast to most other program-
ming languages the index of the first element in an array in Matlab is always
1 (not 0).

In the following code fragment the first line creates a matrix A with 6
elements. All other lines link the expression on the left hand side of the
equation to the right hand side (all equations are true). The intention is to
explain the left hand side. The following lines of code are examples of how a
matrix can be indexed:

A = [11 12; 21 22; 31 32]; %% 3 rows, 2 columns
size(A) == [3 2] %% size(A,1) == 3, size(A,2) == 2
length(A) == 3 %% length(A) == max(size(A))
A(1,2) == 12 %% 1st row, 2nd column
A(1,:) == [11 12] %% index all columns using ":"
length(A(:)) == 6 %% a 2-dim matrix can be interpreted as vector

%% if only one instead of two indices are used
A(end-3) == 31 %% "end" in this case equals 6

The “%%” is used to mark comments. Sometimes “...” is used to continue
long lines in the next line. The following operators are frequently used:
assignment “=”, equal “==”, and not equal “~=”. Here are some additional
examples for Matlab syntax:

1:2:5 == [1 3 5] %% vector: "start value : step size: end value"
1:10 == 1:1:10
A(1:2:3,1) == [11; 31] %% result is a column vector
[11; 31]’ == [11 31] %% quote transposes matrix/vector
A(1,1:end) == A(1,:) %% in this case: "1:end == 1:3"
A([3 2 1],[2 2]) == [32 32; 22 22; 12 12]
A(A~=31 & A>20)’ == [21 22 32]
(A(:)’ == 31) == [0 0 1 0 0 0]
find(A==31) == 3 %% index of an element
linspace(a,b,n) == a:(b-a)/(n-1):b %% linearly spaced with n steps

4http://www.octave.org
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A frequently used operator is the (matrix) multiplication “*” and the element-
wise multiplication “.*”. The following code demonstrates the use of loops
and a matrix multiplication of A with B.

%% C = A*B;
%% size(A,2) == size(B,1)
C = zeros(size(A,1),size(B,2)); %% allocate memory
for i = 1:size(A,1),

for j = 1:size(A,2),
for k = 1:size(B,2),

C(i,k) = C(i,k) + A(i,j)*B(j,k);
end

end
end

Without memory allocation (creating a matrix of zeros) the code is still
correct, but would run much slower as Matlab would create a new (bigger)
matrix in every loop of the iteration and copy the values of the old matrix.

Finally, here is the code used to load the 2 minutes from the center
of a WAV file into Matlab. The amplitude is normalized for the Decibel
computations (see Algorithm 2.7 on page 21).

function wav = loadwav(filename)
max_dB = 96;
[siz fs] = wavread(filename,’size’); %% use max (center) 2min
if fs~=22050,

error([filename,’: fs~=22050 (’,num2str(fs),’)’])
end
if siz(1) > fs*120,

x0 = ceil(siz(1)/2 - fs*60);
x1 = floor(siz(1)/2 + fs*60);

else
x0 = 1;
x1 = siz(1);

end
%% wavread returns values in the range -1 to 1
wav = wavread(filename,[x0 x1]) * (10^(max_dB/20));

%% end loadwav
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Chapter 2
Audio-based Similarity Measures

Computational models of audio-based music similarity are the core compo-
nent of two of the applications described in Chapter 3. This chapter gives
an introduction to such similarity measures. Different approaches, which
complement each other, are described.

The combination of these is optimized and a large scale evaluation is
conducted (including a listening test). Overall, the chosen optimization
and evaluation procedures, including different approaches to avoid overfit-
ting (such as using an artist filter), can serve as a guideline for future work
in this direction. The best combination outperforms the baseline (which is
the best individual similarity measure) on all of the collections used for the
experiments, and is significantly more robust with respect to anomalies in
the similarity space. However, on the largest test collection the performance
improvements are negligible.

This chapter concludes with a recommendation for the computation of
similarity which considers computation time, robustness, and quality. All
details necessary (i.e. Matlab code) to implement this recommendation are
given in this chapter.

2.1 Introduction

The perception of music similarity is subjective and context dependent. Rele-
vant aspects of similarity include: instrumentation, timbre, melody, harmony,
rhythm, tempo, mood, lyrics, sociocultural background, structure, and com-
plexity. The targeted application defines the type of similarity which is of
interest. For example, is the similarity measure intended to support musi-
cologists analyzing pieces with a similar structure in a large archive? Or is it
used by listeners who love classical music to explore similar interpretations
of their favorite sonatas? Or is it used to replace the random shuffle function
of a mobile audio player? (Such a playlist generation algorithm is one of the
intended applications of the similarity measures described in this chapter.)
Generally, in this thesis any definition of similarity is of interest which can
be used for the applications described in Chapter 3. For example, similarity
can be defined in terms of what pieces in the same playlist have (or should
have) in common.
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Context-dependent Similarity

The context of music similarity depends on the application and the user. In
an ideal case the users could easily define the aspect of similarity they are
currently interested in. However, as the low-level features used in this thesis
are more or less meaningless to the users, one cannot expect them to define
which of these correspond to the concepts they have in mind.

Alternatively, the users could give the system some examples defining
which pieces they consider to be similar and which not, implicitly defining the
context. This could be extended to some form of relevance feedback where
the user could interactively respond to the system. However, a relatively
large number of examples are required to avoid overfitting. Furthermore, the
users might get frustrated, as it is impossible for the system to understand
music the same way the users do.

In particular, based on the low-level features used in this thesis it is not
possible to accurately describe any of the aspects of similarities mentioned
above. Thus, this section solely aims at developing a rough overall similarity
which, for example, can outperform the currently very popular random shuffle
function to generate playlists.

Structure of this Chapter

This chapter is structured as follows. The remainder of this section dis-
cusses which sources can be used to obtain similarity information and gives
some pointers to related work. Section 2.2 describes different techniques to
compute audio-based similarity. The combination of these techniques are
optimized and evaluated in Section 2.3. Section 2.4 discusses limitations and
possible directions for future work. Section 2.5 describes an alternative using
web-based community data. Finally, Section 2.6 concludes this chapter and
gives recommendations on the choice of the similarity measure depending on
the application.

2.1.1 Sources of Information

Obviously, the source is the music itself and the whole sociocultural back-
ground. However, this information cannot be directly interpreted by a ma-
chine which is, e.g., trying to give a user recommendations. A machine can
rely on either judgments by human experts or large communities of music
listeners, or content analysis algorithms.
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Experts

High quality judgments require experts. However, due to relatively high costs
the fraction of music that can be dealt with is very small. The spectrum of
music worth annotating with information which allows similarity computa-
tions is limited to music which is expected to sell. Examples of systems
using expert judgments include the All Music Guide1 and the Music Genome
Project2.

The trained musicians working on the Music Genome Project annotate
about 7000 pieces per month, according to an interview given by Tim West-
ergren.3 Each piece is described using a set of 400 “genes”. The genes used
to describe a piece include, for example, “mild rhythmic syncopation” or
“major key tonality”. It takes an expert about 20-30 minutes to annotate
one piece. Considering that about 40000 new albums are released each year
alone in the US makes it obvious that it will never be possible to annotate
all music this way.

Communities

Large communities can deal with much more music than a few paid experts.
One of the techniques to gain insights from communities is collaborative
filtering. Examples include the Internet radio station Last.fm4 and Ama-
zon5. Last.fm uses user feedback (such as: “I dont like this song”) to create
playlists of similar songs. Amazon uses its customers shopping behaviors to
recommend similar items.
The basic idea is to recommend pieces which other users with a similar profile
enjoy. However, this focus on the popularity also means that it is difficult
for unknown pieces (e.g. from Garage bands) to surface.

Content Analysis Algorithms

Algorithms which directly analyze the music audio content are the essence of
this chapter. The data is given in the form of audio signals, lyrics, and music
videos. Algorithms can deal with much more music and in different ways than
large communities. Their low costs allow the application to commercially not
so interesting music. Such music includes, for example, music released under

1http://allmusic.com
2http://pandora.com/mgp.shtml
3http://thisweekintech.com/itn6 (3 Jan 2006)
4http://last.fm
5http://amazon.com
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a creative commons license6. However, the performance of content analysis
algorithms is limited and surely not comparable to an expert’s rating.

2.1.2 Related Work

A topic closely related to similarity is audio-based genre classification. One
of the first systems was developed by Tzanetakis and Cook [TC02]. More re-
cent approaches include, for example [MB03; LOL03; WC04; ME05; CEK05;
LR05; WC05; MST05; SZ05].

An interesting point to mention about the work on genre classification
is that there has been a lot of optimism concerning the results. Higher ac-
curacies were reported every year. Several publications report classification
accuracies beyond 80%. Some authors suggest that the errors their algo-
rithms make are comparable to the errors humans make when classifying
music.

In contrast to these findings, the genre classification results which are
reported in this thesis are far from the performance one could expect from
human listeners. In fact, on one of the music collections used for evaluation
(DB-30) the classification accuracy is below 15%. One important issue is
how to measure the classification accuracies, and in particular, the use of an
artist filter which is discussed later on.

There are two links between genre classification and similarity measures.
One is that similarity measures can be evaluated using a genre classification
scenario (and is discussed in Section 2.3). The other is that features which
work well for genre classification are likely to also work well for similarity
computations. An overview and evaluation of many popular features used
for classification can be found in [Poh05; PPW05b]. In addition, it has been
suggested that it is possible to automatically extract features [ZP04].

Closely related is also work on self-similarity. Self-similarity is usu-
ally used to analyze the structure (in particular repetitions) of a piece.
Repetitions can be used, for example, to summarize a piece. Techniques
used to compute the similarity between segments are also of interest for
similarity measures which compare whole pieces. Related work includes,
e.g., [Foo99; Got03; OH04; Jeh05]. Directly related to summarization is also
segmentation. Good segmentations could help improve the performance of a
genre classifier or music similarity measure (see e.g. [WC05]).

Work directly related to spectral similarity measures is reviewed within
Subsection 2.2.3. Work directly related to the evaluation of audio-based
similarity measures is reviewed in Subsection 2.3.1.

6http://creativecommons.org
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2.2 Techniques

To compute similarities it is necessary to extract features (also known as
descriptors) from the audio signal. Examples for good features are instru-
mentation (e.g. is a guitar present?) or mood (e.g. is it a depressing song?).
However, current state of the art techniques cannot reliably identify the in-
struments in a piece, and are even less reliable when it comes to determining
the mood of a piece.

The application context defines which features are of interest. For ex-
ample, to generate better than random playlists does not necessarily require
knowledge of the melody or chords but would definitely benefit from knowl-
edge concerning the tempo or instrumentation. Extracting good features
is far from easy and involves techniques and theories from signal process-
ing, psychoacoustics, music perception, and (exploratory) data analysis in
general.

Low-Level Features

Most features discussed in this section are low-level features. This means
that although they are somehow related to a human listener’s perception, in
general it is very difficult to assign high-level terms to them such as “timbre”
or “rhythm”. Developing higher level features is ongoing work in the MIR
research community and is briefly discussed in Subsection 2.4.

Temporal Scope of a Feature

Features can have different temporal scopes. Some features are extracted
on the frame level. That is, the audio signal is chopped into frames with
a fixed length. Typical lengths vary from 12 milliseconds to 12 seconds.
Alternatively, a more meaningful segmentation can be used. For example,
the signal can be segmented with respect to note onsets.

If a feature has a frame or segment level scope, then it can be interpreted
as a multivariate time series. Comparing time series data directly is rather
difficult. In particular, repetitions, slight tempo deviations and so forth need
to be dealt with. Thus, in general some form of summarization of the time se-
ries data is used to describe a whole piece. This is especially difficult because
pieces are often very inhomogeneous (e.g. Bohemian Rhapsody by Queen).
Simply calculating the mean of the extracted features cannot describe, for
example, differences between the chorus and the verse.

Closely related to the summarization is the question of how to compare
the representation of one piece with another. Depending on the chosen rep-
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resentation this might not be trivial. For example, some of the similarity
measures described in this section (which use features with a frame-level
scope) use Monte Carlo sampling or the Kullback-Leibler divergence to com-
pare pieces.

Computational Limits

In general it is not possible to model every nerve cell in the human auditory
system when processing music archives with terabytes of data. Again the
intended application defines the requirements. A similarity measure that
runs on a mobile device will have other constraints than one which can be run
in parallel on a massive server farm. Furthermore, it makes a big difference
if the similarities are computed for a collection of a few hundred pieces, or
for a catalog of a few million pieces. Finding the optimal trade-off between
required resources (including memory and processing time) and quality might
not be trivial.

Structure of this Section

This section is structured as follows. The next subsection gives a simple
introduction to similarity computations using the Zero Crossing Rate as an
example. Subsection 2.2.2 describes how the time domain representation of
the audio signals is transformed to the frequency domain. Subsections 2.2.3–
2.2.5 describe different features and how they are used to compute similarity.
The main focus is on spectral similarity (which is somehow related to timbre)
and Fluctuation Patterns (which are somehow related to rhythmical proper-
ties). Subsection 2.2.6 describes how the different approaches are combined
linearly. Subsection 2.2.7 describes anomalies in the similarity space. In par-
ticular, the triangular inequality does not always hold, and a few pieces are
estimated to be highly similar to a very large number of pieces while others
are highly dissimilar to almost all other pieces.

2.2.1 The Basic Idea (ZCR Illustration)

This subsection illustrates the concept of audio-based music similarity using
the Zero Crossing Rate as example. The ZCR is very simple to compute and
has been applied to speech processing to distinguish voiced sections from
noise. Furthermore, it has been applied to MIR tasks such as classifying
percussive sounds, or genres. For example, the winning entry of the MIREX
2005 genre classification contest used the ZCR among other features.7

7The MIREX contest will be discussed in more detail in Subsection 2.3.1.1
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Figure 2.1: Illustration of the ZCR computation using a 5 milliseconds audio
excerpt. The dotted line marks zero amplitude. The 15 circles mark the zero
crossings.

Dave Brubeck Quartet − Blue Rondo A La Turk ZCR: 1.4/ms

Dave Brubeck Quartet − Kathy’s Waltz ZCR: 1.1/ms

Bon Jovi − Bad Medicine ZCR: 3.7/ms

Evanescene − Bring Me To Life ZCR: 2.7/ms

DJs @ Work − Someday ZCR: 1.3/ms

Maurice Ravel − Bolero ZCR: 1.9/ms

Figure 2.2: Audio excerpts with a length of 10 seconds each and corresponding
ZCR values. The amplitude is plotted on the y-axis, time on the x-axis.
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The ZCR is the average number of times the audio signal crosses the zero
amplitude line per time unit. Figure 2.1 illustrates this. The ZCR is higher if
the signal is noisier. Examples are given in Figure 2.2. The first and second
excerpts (both jazz) are close to each other with values below 1.5/ms, and
the third and fourth (both hard pop) are close to each other with values
above 2.5/ms. Thus the ZCR seems capable of distinguishing jazz from hard
pop (at least on these 4 examples).

The fifth excerpt is electronic dance music with very fast and strong
percussive beats. However, the ZCR value is very low. The sixth excerpt
is a soft, slow, and bright orchestra piece in which wind instruments play a
dominant role. Considering that the ZCR is supposed to measure noisiness
the ZCR value is surprisingly high.

The limitations of the ZCR as a noisiness feature for music are obvious
when considering that with a single sine wave any ZCR value can be gen-
erated (by varying the frequency). In particular, the ZCR does not only
measure noise, but also pitch. The fifth excerpt has relatively low values
because its energy is mainly in the low frequency bands (bass beats). On
the other hand, the sixth excerpt has a lot of energy in the higher frequency
bands.

This leads to the question of how to evaluate features and to ensure that
they perform well in general and not only on the subset used for testing.
Obviously it is necessary to use larger test collections. However, in addition
it is also helpful to understand what the features describe and how this
relates to a human listener’s perception (in terms of similarity). Evaluation
procedures will be discussed in detail in Section 2.3.

Another question this leads to is how to extract additional information
from the audio signal which might solve problems the ZCR cannot. Other
features which can be extracted directly from the audio signal include, for
example, the Root Mean Square (RMS) energy which is correlated with loud-
ness (see Subsection 2.2.5). However, in general it is a standard procedure to
first transform the audio signal from the time domain to the spectral domain
before extracting any further features. This will be discussed in the next
subsection.

2.2.2 Preprocessing (MFCCs)

The basic idea of preprocessing is to transform the raw data so that the
interesting information is more easily accessible. In the case of computational
models of music similarity this means drastically reducing the overall amount
of data. However, this needs to be achieved without losing too much of the
information which is critical to a human listener’s perception of similarity.
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MFCCs

Mel Frequency Cepstral Coefficients (see e.g. [RJ93]) are a standard pre-
processing technique in speech processing. They were originally developed
for automatic speech recognition [Opp69], and have proven to be useful for
music information retrieval (see e.g. [Foo97; Log00]). Most of the features
described in this section are based on MFCCs.

Alternatives include, e.g., the sonograms as used in [Pam01]. Sonograms
are based on psychoacoustic models [ZF99] which are slightly more complex
than those used for MFCCs. However, there are practical limitations for the
complexity of the models. In particular, very accurate models, which simulate
the behavior of individual nerve cells, are too computationally expensive to
be applied to large music collections. Relevant Matlab toolboxes include the
Auditory Toolbox8 (which includes an MFCC implementation) and HUTear9.

Basically, to compute MFCCs some very simple (and computationally
efficient) filters and transformations are applied which roughly model some
of the characteristics of the human auditory system. The important aspects
of the human auditory system which MFCCs model are: (1) the non-linear
frequency resolution using the Mel frequency scale, (2) the non-linear per-
ception of loudness using decibel, and to some extent (3) spectral masking
effects using a Discrete Cosine Transform (a tone is spectrally masked if it
becomes inaudible by a simultaneous and louder tone with a different fre-
quency). These steps, starting with the transformation of the audio signal
to the frequency domain are described in the following paragraphs.

2.2.2.1 Power Spectrum

Transforming the audio signal from the time-domain to the frequency-domain
is important because the human auditory system applies a similar transfor-
mation. In particular, in the cochlea (which is a part of the inner ear) different
nerves respond to different frequencies (see e.g. [Har96] or [ZF99]).

First, the signal is divided into short overlapping segments (e.g. 23ms
and 50% overlap). Second, a window function (e.g. Hann window) is applied
to each segment. This is necessary to reduce spectral leakage. Third, the
power spectrum matrix P is computed using a Fast Fourier Transformation
(FFT, see e.g. [PTVF92]).

The power spectrum can be computed with the following Matlab code.

8http://www.slaney.org/malcolm/pubs.html
9http://www.acoustics.hut.fi/software/HUTear
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First, the variables are initialized and memory is allocated:

01 seg_size = 512; %% 23ms if fs == 22050Hz (2.1)

02 hop_size = 256;

03 num_segments = floor((length(wav)-seg_size)/hop_size)+1;

04 P = zeros(seg_size/2+1,num_segments); %% allocate memory

05 %% hann window function, alternative: w = hann(seg_size)

06 w = 0.5*(1-cos(2*pi*(0:seg_size-1)/(seg_size-1)))’;

Second, in the main loop, for each frame the FFT is computed:

07 for i = 1:num_segments, (2.2)

08 idx = (1:seg_size)+(i-1)*hop_size;

09 x = abs(fft(wav(idx).*w)/sum(w)*2).^2;

10 P(:,i) = x(1:end/2+1);

11 end

Line 9 computes the Fourier transform (resulting in a complex vector with
a length of seg_size). These complex values are normalized and the (real
valued) power is computed. Since the Fourier transform was applied to a
real valued signal, the result is symmetric and only the first half is kept for
further processing in line 12. Further information on the computation of the
power spectrum can be found in any standard signal processing text.

Each column in matrix P represents the power spectrum for a specific
time frame (the number of columns is num_segments). Each row represents
one of the seg_size/2+1 linearly spaced frequency bins in the range of 0Hz to
fs/2Hz (Nyquist frequency). Figure 2.3 illustrates a segment before and after
applying the window function, as well as the corresponding power spectrum.

2.2.2.2 Mel Frequency

The Mel-scale [SVN37] is approximately linear for low frequencies (<500Hz),
and logarithmic for higher frequencies (see Figure 2.4). The reference point
to the linear frequency scale is a 1000Hz tone which is defined as 1000 Mel.
A tone with a pitch perceived twice as high is defined to have 2000 Mel, a
tone perceived half as high is defined to have 500 Mel and so forth. The
Mel-scale is defined as

mMel = 1127.01048 log(1 + fHz/700). (2.3)
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Figure 2.3: Visualization of the variables in Algorithm 2.1. Each is a one-
dimensional vector. The elements of the vectors are plotted along the x-axis.
The dimensions of the segments is time on the x-axis and amplitude on the y-axis.
The power spectrum has the dimension Decibel (dB) on the y-axis and frequency
bins on the x-axis. The first frequency bin corresponds to 0Hz, the last bin (257th
in this case) to the Nyquist frequency (11025Hz).
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Figure 2.5: Triangular filters used to transform the power spectrum to the Mel-
scale using 34 (Mel-spaced) frequency bands. The upper plot shows all uneven
triangles, the lower all even ones.
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The power spectrum is transformed to the Mel-scale using a filter bank
consisting of triangular filters. Each triangular filter defines the response of
one frequency band and is normalized such that the sum of weights for each
triangle is the same. In particular, the height of each triangle is 2/d where
d is the width of the frequency band. The triangles overlap each other such
that the center frequency of one triangle is the starting point for the next
triangle, and the end point of the previous triangle (see Figure 2.5).

The triangular filters can be computed in Matlab as follows.10 First, the
variables are initialized and memory allocated.

01 num_filt = 36; %% number of Mel frequency bands (2.4)

02

03 f = linspace(0,fs/2,seg_size/2+1); %% frequency bins of P

04 mel = log(1+f/700)*1127.01048;

05 mel_idx = linspace(0,mel(end),num_filt+2);

06 mel_filter = zeros(num_filt,seg_size/2+1);

07

08 f_idx = zeros(num_filt+2,1);

09 for i=1:num_filt+2,

10 [tmp f_idx(i)] = min(abs(mel - mel_idx(i)));

11 end

12 freqs = f(f_idx);

13

14 %% height of triangles

15 h = 2./(freqs(3:num_filt+2)-freqs(1:num_filt));

Second, in the main loop for each triangular filter the weights are computed.

16 for i=1:num_filt, (2.5)

17 mel_filter(i,:) = ...

18 (f > freqs(i) & f <= freqs(i+1)).* ...

19 h(i).*(f-freqs(i))/(freqs(i+1)-freqs(i)) + ...

20 (f > freqs(i+1) & f < freqs(i+2)).* ...

21 h(i).*(freqs(i+2)-f)/(freqs(i+2)-freqs(i+1));

22 end

10This code is based on Malcolm Slaney’s Auditory Toolbox.
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Figure 2.6: Mel filter matrix as computed in Algorithm 2.4 (high values are vi-
sualized black), and Mel power spectrum of the audio signal in Figure 2.3. The
dimensions of the filter matrix are Mel frequency bands on the y-axis and FFT
frequency bins (Hz) on the x-axis. The dimensions of the Mel power spectrum are
dB on the y-axis and Mel on the x-axis.

In lines 18–21 the variable freqs(i) is the lower bound of the frequency
band, freqs(i+1) is the center frequency, and freqs(i+2) is the upper bound.
The mel_filter matrix and its effect on the power spectrum is visualized in
Figure 2.6. As can be seen, the spectrum is smoothed. Specifically, details
in the higher frequencies are lost. The mel_filter is applied by adding the
following two lines to Algorithm 2.1 and 2.2.

04b M = zeros(num_filt,num_segments); (2.6)

12b M(:,i) = mel_filter * P(:,i);

2.2.2.3 Decibel

Similarly to the non-linear perception of frequency, the human auditory sys-
tem does not perceive loudness linearly (with respect to the physical prop-
erties of the audio signal). In particular, the just noticeable difference in
loudness for sounds with a low intensity (Watts/m2) is much smaller than
for sounds with a high intensity.

A useful approximation of the loudness perception is to use a logarith-
mic ratio scale known as Decibel (dB). The important part of this scale is
the reference to which the ratio is computed. In the examples used in this
thesis the reference is 1, and the audio signals are rescaled with respect to
this reference as described in Section 1.2. This reference is the threshold of
hearing.

Decibels values are computed as follows. (First, all values smaller than
the reference are set to the reference.)

M(M<1) = 1; (2.7)

M_dB = 10*log10(M);
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Figure 2.7: DCT matrix, MFCCs, and reconstructed Mel power spectrum (dB) for
the audio signal used in Figure 2.3. High values in the DCT matrix are visualized
as black. The dimensions of the DCT matrix are DCT coefficients on the y-axis
and Mel frequency bands on the x-axis.

2.2.2.4 DCT

The Discrete Cosine Transform is applied to compress the Mel power spec-
trum. In particular, the num_filt (e.g. 36) frequency bands are represented
by num_coeffs (e.g. 20) coefficients. Alternatives include, e.g., the Principial
Component Analysis. A side effect of the compression is that the spectrum
is smoothed along the frequency axis which can be interpreted as a simple
approximation of the spectral masking in the human auditory system.

The DCT matrix can be computed as follows.11

01 num_coeffs = 20; (2.8)

02

03 DCT = 1/sqrt(num_filt/2) * ...

04 cos((0:num_coeffs-1)’*(0.5:num_filt)*pi/num_filt);

05 DCT(1,:) = DCT(1,:)*sqrt(2)/2;

Thus the DCT matrix has num_coeffs rows and num_filt columns. Each of
the rows corresponds to an eigenvector, starting with the most important one
(highest eigenvalue) in the first row. The first eigenvector describes the mean
of the spectrum. The second describes a spectral pattern with high energy
in the lower half of the frequencies and low energy in the upper half. The
eigenvectors are orthogonal. The DCT is applied to the Mel power spectrum
(in Decibel) as follows:

mfcc = DCT * M_dB; (2.9)

The effects of the DCT matrix on the Mel power spectrum are shown in
Figure 2.7. The resulting MFCCs are a compressed representation of the

11This code is based on Malcolm Slaney’s Auditory Toolbox.
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num_coeffs = 5 num_coeffs = 10 num_coeffs = 15 num_coeffs = 20 num_coeffs = 36

Figure 2.8: DCT’*DCT, each plot is a 36 by 36 matrix. The dimension of both axes
are Mel frequency bands.

original data. In particular, while the original audio signal has 512 samples
per 23ms segment (22050Hz, mono) the MFCC representation only requires
20 values for 12ms (using 50% overlap for the power spectrum). Depending
on the application the number of coefficients (line 1 in Algorithm 2.8) can
range from 8 to 40. However, the number of coefficients is always lower than
the number of Mel frequency bands used. The number of Mel frequency
bands can be adjusted in Algorithm 2.4 line 1.

To understand the smoothing effects of the DCT it is useful to look at
the reconstructed Mel power spectrum (Figure 2.7) and compare it to the
original Mel power spectrum (Figure 2.6). The reconstructed spectrum is
computed as:

M_dB_rec = DCT’ * mfcc; (2.10)

In addition, to further understand the smoothing it is useful to illustrate
DCT’*DCT for different values of num_coeffs (see Figure 2.8). If the number
of coefficients equals the number of Mel filters then DCT’*DCT is the identity
matrix (thus no smoothing occurs). For lower values, the smoothing between
neighboring frequency bands is clearly visible. However, it is also important
to realize that the smoothing effects are not limited to neighboring frequency
bands.

To conclude the computation of the MFCC coefficients Figure 2.9 illus-
trates the computation steps on the first 10 second sequence shown in Fig-
ure 2.2. Noticeable are (1) the changes in frequency resolution when trans-
forming the power spectrum to the Mel power spectrum, (2) that MFCCs
when viewed directly are difficult to interpret and that most of the variations
occur in the lower coefficients, (3) the effects of the DCT-based smoothing
(when comparing the Mel power spectrum with the reconstructed version).
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Figure 2.9: MFCC computation steps for the first audio excerpt from Figure 2.2.
Time is plotted on the x-axis (the total length is 10 seconds, the temporal resolution
is 256/22050 seconds which is about 12ms). The variables corresponding to each
plot are 10*log10(P), M dB, mfcc, and M dB rec.
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2.2.2.5 Parameters

Unless stated otherwise, for the remaining subsections the following parame-
ters are used to preprocess an audio file. First, the audio file is converted to
22050Hz mono. Second, if the piece is longer than 2 minutes, then only 2
minutes from the center are used for further processing (otherwise the whole
piece is used). See Subsection 2.3.6.2 for a discussion on the effects of using
only a section of the audio signal.

Third, the number of Mel filters is 36, FFT step size is 512 and hop size
is 512 (no overlap, although a Hann window is used). Thus, the only differ-
ence to the parameters in Algorithms 2.1 and 2.4 is the hop size. Increasing
the hop size by a factor of two also reduces computation time significantly,
because the FFT is the most expensive preprocessing step. The number of
DCT coefficients is 19 as recommended in [LS01]. The first coefficient which
describes the average energy of each frame is ignored. In particular, the DCT

matrix is set to DCT=DCT(2:20,:) before executing the code in Algorithm 2.9.
As shown in [AP04a] the exact number of coefficients is not a critical para-
meter for spectral similarity.

2.2.3 Spectral Similarity

Spectral similarity describes aspects related to timbre. However, important
timbre characteristics such as the attack or decay of a sound are not modeled.
Spectral similarity is related to the timbre of a piece of music as much as
color histograms are related to the color composition of a painting.

To compute spectral similarity, the audio signal is chopped into thousands
of very short (e.g. 23ms) frames and their temporal order is ignored. The
spectrum of each frame is described by MFCCs. The large set of frames is
summarized by clustering the frames. The distance between two pieces of
music is computed by comparing their cluster models.

In this subsection three approaches to compute spectral similarity are
described. The main difference (by a factor of magnitudes) is the required
computation time. Otherwise, all three are very similar in terms of the infor-
mation they use and how they use it. However, as shown in Section 2.3 they
do not behave identically and their deviations help estimate the significance
of improvements.

2.2.3.1 Related Work

The first approach was presented by Foote [Foo97] based on a global set of
clusters for all pieces in the collection. This global set was obtained from
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a classifier and is the main weak-point. To be able to describe a broad
range of music a huge amount of clusters is necessary. Furthermore, there
is no guarantee that music not used to train the clusters can be described
meaningfully.

The first localized approach was presented by Logan and Salomon [LS01].
For each piece an individual set of clusters is used. The distances between
these are computed using the Kullback-Leibler Divergence combined with
the Earth Movers Distance [RTG00].

Aucouturier and Pachet suggested using the computationally more ex-
pensive Monte Carlo sampling instead [AP02a; AP04a]. A simplified ap-
proach approach using a fast approximation of the Monte Carlo sampling
was presented in [Pam05]. Mandel and Ellis [ME05] propose an even sim-
pler approach using only one cluster per piece and comparing them using
the Kullback-Leibler Divergence. All three are described in detail in this
subsection.

Alternative techniques to compute spectral similarity include, for exam-
ple, the anchor space similarity [BEL03], the spectrum histograms [PDW03a],
or simply using the mean and standard deviations of the MFCCs (e.g. [TC02]).

2.2.3.2 Thirty Gaussians and Monte Carlo Sampling (G30)

This approach was originally presented in [AP02a]. Extensive evaluation
results were reported in [AP04a]. A Matlab implementation based on these
won the ISMIR 2004 genre classification contest [Pam04].12

The approach consists of two steps. These are clustering the frames and
computing the cluster model similarity. First, the various spectra (frames
represented by MFCCs) which occur in the piece are summarized (i.e., the
distribution is modeled) by using a clustering algorithm to find typical spec-
tra (cluster centers) and describing how typical they are (prior probabilities),
and how the other spectra vary with respect to these few typical spectra
(variances).

Second, to compute the distance between two pieces, the distribution of
their spectra are compared. If two pieces have similar distributions (i.e.,
if their spectra can be described using similar typical spectra, with similar
variances, and priors) they are assumed to be similar.

Frame Clustering

The frames are clustered using a Gaussian Mixture Model (GMM) and Ex-
pectation Maximization (see e.g. [Bis95]). GMMs are a standard technique

12http://ismir2004.ismir.net/genre contest/index.htm
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used for clustering with soft assignments, or modeling probability density
distributions. A reference implementation can be found, e.g., in the Netlab
toolbox [Nab01] for Matlab.

A multivariate Gaussian probability density function is defined as:

N (x|µ, Σ) =

(
1

2π

)p/2

|Σ|−1/2 exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
, (2.11)

where x is the observation (19-dimensional MFCC frame), µ is the mean (19-
dimensional vector describing a typical spectrum), Σ is a 19×19 covariance
matrix (for G30 only a diagonal covariance is used, i.e., only values on the
diagonal are non zero).

A GMM is a mixture of M Gaussians where the contribution of the m-th
component is weighted by a prior Pm with Pm ≥ 0 and

∑
Pm = 1:

p(x|Θ) =
M∑

m=1

PmN (x|µm, Σm), (2.12)

where Θ are the parameters that need to be estimated per GMM (i.e., per
piece of music): Θ = {µm, Σm, Pm|m = 1..M}. Examples of what such a
model looks like for a piece of music are shown in the last paragraph of this
subsection.

The optimal estimate for Θ maximizes the likelihood that the frames
X = {x1, ..., xN} were generated by the GMM, where N is the number of
frames (which is about 5200 for the parameters used in the preprocessing).
The standard measure used is the log-likelihood which is computed as:

L(X|Θ) = log
∏
n

p(xn|Θ) =
∑

n

log p(xn|Θ). (2.13)

To find good estimates for Θ a standard approach is to use the Expec-
tation Maximization (EM) algorithm. The EM algorithm is iterative (based
on an old estimate a better estimate is computed) and converges relatively
fast after few iterations. The initial estimates can be completely random,
or can be computed by using other clustering algorithms such as k-means.
(Alternatively, as suggested in [LS01] k-means can be used alone to cluster
the frames.)

The EM algorithm consists of two steps. First, the expectation is com-
puted. That is, the probability (expectation) that an observation xn was
generated by the m-th component. Second, the expectation (and thus the
likelihood) is maximized. That is, the parameters in Θ are recomputed based
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on the expectations. The expectation step is:

P (m|xn, Θ) =
p(xn|m, Θ)Pm

p(xn)
=

N (xn|µm, Σm)Pm∑M
m′=1N (xn|µm′ , Σm′)Pm′

. (2.14)

The maximization step is:

µ∗m =

∑
n P (m|xn, Θ)xn∑
n′ P (m|xn′ , Θ)

(2.15)

Σ∗
m =

∑
n P (m|xn, Θ)(xn − µm)(xn − µm)T∑

n′ P (m|xn′ , Θ)

P ∗
m =

1

N

∑
n

P (m|xn, Θ).

Cluster Model Similarity

To compute the similarity of pieces A and B a sample from each GMM
is drawn, XA and XB respectively. (It is not feasible to store and use the
original MFCC frames instead, due to memory constraints when dealing with
large collections.) In the remainder of this section a sample size of 2000 is
used. The log-likelihood L(X|Θ) that a sample X was generated by the
model Θ is computed for each piece/sample combination (Equation 2.13).
Aucouturier and Pachet [AP02a] suggest computing the distance as:

dAB = L(XA|ΘA) + L(XB|ΘB)− L(XA|ΘB)− L(XB|ΘA). (2.16)

Note that L(XA|ΘB) and L(XB|ΘA) are generally different values. How-
ever, a symmetric similarity measure (dAB = dBA) is very desirable for most
applications. Thus, both are used for dAB. The self-similarity is added
to normalize the results. In most cases the following statements are true:
L(XA|ΘA) > L(XA|ΘB) and L(XA|ΘA) > L(XB|ΘA).

The distance is (slightly) different every time it is computed due to the
randomness of the sampling. Furthermore, if some randomness is used to
initialize the GMM, different models will be produced every time and will
also lead to different distance values.

ISMIR 2004 Genre Classification Contest

An implementation of G30 using a nearest neighbor classifier with the fol-
lowing parameters won the ISMIR 2004 genre classification contest. Three
minutes from the center of each piece (22kHz, mono) were used for analysis.
The MFCCs were computed using 19 coefficients (the first is ignored). The
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FFT window size was 512 with 50% overlap (hop size 256). To initialize the
GMM k-means was used. The number of samples used to compute the dis-
tance was 2000. The necessary computation time exceeded by far the time
constraints of the ISMIR 2005 (MIREX) competition. The implementation
is available in the MA toolbox for Matlab [Pam04].

Illustrations

Figure 2.10 shows some characteristics of G30. One of the observations is
that the first and last row are very similar. That is, the original frames, and
the 2000 frames sampled from the GMM generate a very similar histogram.
Thus, the GMM appears to be suited to represent the distribution of the
data.

A further observation is that only a few of the original frames and sampled
frames have a high probability. The majority has a very low probability. This
can be seen in rows 4 and 5. Note that both rows would look quite different
if a new GMM is trained (or a new sample is drawn from the same GMM in
the case of row 5).

Row 2 shows that most centers have a rather similar shape. Row 3 shows
that the variances for some pieces are larger than for others. For example,
Someday has less variance than Kathy’s Waltz.

Also noticeable is the typical shape of a spectrum. In higher frequency
bands there is only little energy and in the lower frequency bands there is
usually more variance.

2.2.3.3 Thirty Gaussians Simplified (G30S)

G30S [Pam05] is basically a computational optimization of G30 and is based
on merging ideas from [LS01] and [AP02a]. As suggested in [LS01] k-means
is used to cluster the MFCC frames instead of GMM-EM. In addition, two
clusters are automatically merged if they are very similar. In particular, first
k-means is used to find 30 clusters. If the distance between two of these is
below a (manually) defined threshold they are merged and k-means is used
to find 29 clusters. This is repeated until all clusters have a least a minimum
distance to each other. Empty clusters (i.e. clusters which do not represent
any frames) are deleted.

The maximum number of clusters per piece is 30 and the minimum is 1.
The threshold is set so that most pieces have 30 clusters and only very few
have less than 20. In practice it does not occur that a piece has only 1 cluster
(unless it is mostly silent). This optimization can be very useful since the
distance computation time depends quadratically on the number of clusters.
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Figure 2.10: Illustration of the cluster model for G30. Each column shows different
representations of one piece of music. The pieces are the same as the ones used in
Figure 2.2. Each plot has the dimensions Mel frequency band on the x-axis and
dB on the y-axis. That is, all MFCCs are reconstructed and visualized in the Mel
space. The first row is a 2-dimensional histogram of all spectra (MFCCs). The
second row are the 30 GMM centers. The gray shading corresponds to the prior of
each component (black being the highest prior). The third row shows a flattened
probability density of the GMM. In particular, the variance of the components
are visible. The fourth row shows the probability of the original MFCC frames.
The frame with the highest probability is plotted in black. The fifth row shows
the probabilities of the 2000 sample frames that are drawn from the GMM. Most
of them are not visible because their probability is very small compared to the
highest one. The last row shows the histogram of the sample drawn.
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Unlike G30 no random samples are drawn from the cluster models. In-
stead the cluster centers are used as sample (as suggested in [LS01]). How-
ever, instead of using the Kullback-Leibler Divergence in combination with
the Earth Mover’s Distance, the probability for each point of this sample is
computed by interpreting the cluster model as a GMM with diagonal covari-
ances. Since such a sample does not reflect the probability distribution (due
to the different priors) the log-likelihood of each sample is weighted according
to its prior before summarization:

L(XA|ΘB) =

MA∑
m=1

PA
m log

(
MB∑

m′=1

PB
m′N (µA

m|µB
m′ , ΣB

m′)

)
, (2.17)

where MA is the number of centers in model ΘA. PA
m is the prior probability

of center m of model A. To compute the distances Equation 2.16 is used.
L(XA|ΘA) can be precomputed as no new sample is drawn for each distance
computation (unlike G30).

MIREX 2005 Genre Classification and Artist Identification

A nearest neighbor classifier based on a similarity measure which combined
G30S with additional features was submitted to the MIREX 2005 artist iden-
tification and genre classification competitions [Pam05].13 The main differ-
ence to the approach described here is that a FFT window length and hop
size of 1024 samples was used. G30S was combined with Fluctuation Pat-
terns and two simple descriptors (Focus and Gravitiy) which will be described
later on. In terms of computation time G30S performed very well. However,
in terms of the measured accuracy G30S was clearly outperformed by some
of the other submissions. These results will be discussed in more detail in
Section 2.3.

Illustrations

Figure 2.11 shows the same plots for G30S which were already discussed for
G30 in Figure 2.10. The main observation is that G30 and G30S are highly
similar. The only noticeable deviations are in rows 4 and 5. However, these
rows significantly deviate if a different random sample is drawn or if the
GMM is trained with a different initialization.

13http://www.music-ir.org/mirex2005
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Figure 2.11: Illustration of the cluster model for G30S. The plots are generated as
described in Figure 2.10.
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2.2.3.4 Single Gaussian (G1)

Mandel and Ellis use a single Gaussian with full covariance to model a piece
of music [ME05]. Their implementation which uses a SVM classifier won the
MIREX 2005 artist identification contest and performed very well for genre
classification.

To compare two Gaussians a symmetric version of the Kullback-Leibler
divergence is used based on the recommendations in [MHV03]. Similar ap-
proaches are popular in the speaker identification and verification commu-
nity [BMCM95].

In Matlab, the Gaussian representing a piece of music can be computed
with:

01 m = mean(mfcc,2); %% center (2.18)

02 co = cov(mfcc’); %% covariance

03 ico = inv(co); %% inverse covariance

The inverse covariance is computed to avoid recomputing it for each dis-
tance computation. The symmetric Kullback-Leibler divergence between two
Gaussians can be computed with:

04 d = trace(co1*ico2) + trace(co2*ico1) + ... (2.19)

05 trace((ico1+ico2)*(m1-m2)*(m1-m2)’);

The distance is rescaled to improve results when combining the spectral dis-
tance with other information. In particular the rescaled distance is computed
as:

d = -exp(-1/fact*d). (2.20)

The effect of rescaling is clearly visible in Figure 2.14. Using fact=450 as
rescaling factor gave best results in the combinations described later in this
chapter. However, the results were stable in the range from 100 to 650. Only
below 50 and above 1000 the accuracy clearly decreased.

When analyzing the effect of the rescaling on the distance matrix for a
larger music collection14 the difference can be described in terms of the ratio
between the maximum value and the median value. Without rescaling, the
ratio is in the order of 12 magnitudes. For fact=10 the ratio is about 1. For
fact=5000 the ratio is about 100. For fact=450 the ratio is about 10.

For 3 of the pieces used in the experiments reported in this thesis (i.e.
3 out of more than than 20000) G1 could not be computed. In particular,
there were problems computing the inverse covariance matrix. In general

14The collection used is DB-L and will be described in Section 2.3.
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Figure 2.12: Full covariance matrices for 6 songs (G1). On both axes the dimen-
sions are Mel frequency bands. The dimension of the gray shadings is dB.

the problem pieces had only little variance in their spectra. For example,
one of them was very short (30 second) and calm. Such cases can easily be
identified and excluded (e.g., all pieces can be ignored which have a value
larger than 1010 in the inverse covariance).

Illustrations

Figure 2.12 shows the covariances for the 6 songs used in previous figures. As
can be seen, there is a lot of information besides the diagonal. Noticeable are
that the variances for lower frequencies are higher. Furthermore, for some
of the songs there is a negative covariance between low frequencies and mid
frequencies.

Figure 2.13 shows the same plots for G1 which were already discussed for
G30 and G30S in Figures 2.10 and 2.11. Since G1 uses only one Gaussian,
there is only one line plotted in the second row. Noticeable, is also that there
are more lines visible in rows 4 and 5. This indicates there are fewer frames
(sampled or original) which have much higher probabilities than all others.
Otherwise, in particular the third and last row are very similar to those of
G30 and G30S and indicate that the models are very similar.

2.2.3.5 Computation Times

The CPU times for G30, G30S, and G1 are given in Table 2.1. The frame
clustering (FC) time is less interesting than the time needed to compute the
cluster model similarity (CMS). While FC can be computed offline, either all
possible distances need to be precomputed (and at least partially stored) or
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Figure 2.13: Illustration of the cluster model for G1. The plots are generated as
described in Figure 2.10.



36 2 Audio-based Similarity Measures

G30 G30S G1
FC 25000 700 30.0

CMS 400 2 0.1

Table 2.1: Approximate CPU times in milliseconds on a Intel Pentium M 2GHz
(755) for frame clustering (per piece) and cluster model similarity (per pair of
pieces). The approximate time for loading a 120 second (22kHz, mono) audio
file in WAV format into Matlab is 0.25 seconds. The necessary time to compute
MFCCs is about 1.5 seconds using no overlap between frames and a segment size of
512 (23ms). The number of frames is about 5200 frames (for 2 minutes of audio).

the system needs to compute all distances of interest very fast to minimize
the system’s response time. Note that the FC time for G30 can easily be
reduced to the time of G30S (and is mainly a question of accuracy). However,
there is no way to reduce the computation times of G30 or G30S to those of
G1. G1 is clearly magnitudes faster.

2.2.3.6 Distance Matrices

Figure 2.14 shows the distance matrices for the 6 songs using the three spec-
tral similarity measures described in this section. The matrices computed
for G30 and G30s are very similar. Furthermore, the difference between
the original and the rescaled distance matrix for G1 are clearly noticeable.
Rescaling G1 is very important when combining the distance matrix with
additional information as discussed in the subsequent sections. Furthermore,
a balanced distance matrix is also important for techniques which visualize
whole collections such as the Islands of Music discussed in the next chapter.
However, if only a ranked list of similar pieces is required then the scaling is
not critical.

Compared to the ZCR results it seems that one problem has been solved.
That is, the piece of classical music is now differentiated from the other pieces.
However, the hard pop and electronic dance pieces are not distinguishable.
One solution is to add information related to the beats and rhythm which is
the topic of the next section.

2.2.4 Fluctuation Patterns

Fluctuation Patterns (FPs) describe the amplitude modulation of the loud-
ness per frequency band [Pam01; PRM02a] and are based on ideas developed
in [Frü01; FR01]. They describe characteristics of the audio signal which are
not described by the spectral similarity measure.
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Figure 2.14: Distance matrices for the 6 songs. The songs are in the same order
as in Figure 2.13. That is, the first row (and column) shows all distances to “Blue
Rondo A La Turk”. The last row (and column) shows all distances to “Bolero”.

The loudness modulation has different effects on our sensation depending
on the frequency. The sensation of fluctuation strength [Ter68; Fas82] is most
intense around 4Hz and gradually decreases up to a modulation frequency
of 15Hz (see Figure 2.15). At 15Hz the sensation of roughness starts to
increase, reaches its maximum at about 70Hz, and starts to decrease at
about 150Hz. Above 150Hz the sensation of hearing three separately audible
tones increases [ZF99].

The following computation steps are based on a frequency/loudness/time
representation. This can be a sonogram as used in [Pam01] or a Mel-
frequency dB spectrogram as used in [Pam05]. An evaluation of the impact
of different preprocessing steps on the accuracy for genre classification using
FPs based on sonograms can be found in [LR05]. The advantage of using
FPs based on MFCCs is that (when using FPs in combination with spectral
similarity) the MFCCs are already available.

The 4 computation steps for FPs are: (1) Cut the spectrogram into short
segments, e.g., 6 seconds as used in [Pam01] or 3 seconds as described in this
subsection. (2) For each segment and each frequency band use an FFT to
compute the amplitude modulation frequencies of the loudness in the range
of 0-10Hz. (3) The modulation frequencies are weighted using a model of
perceived fluctuation strength. (4) Some filters are applied to emphasize
certain types of patterns.

The resulting FP is a matrix with rows corresponding to frequency bands
and columns corresponding to modulation frequencies (in the range of 0-
10Hz). The elements of this matrix describe the fluctuation strength. To
summarize all FP patterns representing the different segments of a piece
the median of all FPs is computed. Finally, one FP matrix represents an
entire piece. The distance between pieces is computed by interpreting the
FP matrix as high-dimensional vector and computing the Euclidean distance.

The following paragraphs describe the computation in more detail based
on M_dB computed with the parameters described in Subsection 2.2.2.5. At
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the end of this section there are some paragraphs describing illustrations
which help understand basic characteristics of the FPs.

2.2.4.1 Details

The parameters used are: segment size 128 (about 3 seconds), hop size 64
(50% overlap). Instead of the 36 frequency bands of the Mel spectrum only
12 are used. The grouping of frequency bands is described below. The
resolution of the modulation frequency in the range of 0 to 10Hz is 30. This
results in 360 (12×30) dimensional FPs.

The main reason for reducing the frequency resolution is to reduce the
overall dimensionality of the FPs, and thus the required memory to store
one pattern. Furthermore, a high frequency resolution is not necessary. For
example, in [Pam01] 20 frequency bands were used. Analysis of the eigen-
vectors showed that especially higher frequency bands are very correlated.
In [Pam05] only 12 frequency bands were used. In particular, the following
mapping was used to group the 36 Mel bands into 12 frequency bands:

01 t = zeros(1,36); (2.21)

02 t(1) = 1; t( 7: 8) = 5; t(15:18) = 9;

03 t(2) = 2; t( 9:10) = 6; t(19:23) = 10;

04 t(3:4) = 3; t(11:12) = 7; t(24:29) = 11;

05 t(5:6) = 4; t(13:14) = 8; t(30:36) = 12;

06

07 mel2 = zeros(12,size(M_dB,2));

08 for i=1:12,

09 mel2(i,:) = sum(M_dB(t==i,:),1);

10 end

The actual values are more or less arbitrary. However, they are based on
the observation that interesting details are often in lower frequency bands.
Note that the energy is added up. Thus, the 12th frequency band of mel2

represents the sum of 7 M_db bands while the first and second band only
represent one. This can be seen in Figure 2.16. In particular, the frequency
bands 9-11 have higher values.

The following defines the constants used for computations, in particular
the fluctuation strength weights (flux), the filter which smoothes over the
frequency bands (filt1), and the filter which smoothes over the modulation
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Figure 2.15: The relationship between the modulation frequency and the weighting
factors of the fluctuation strength.

frequencies (filt2):

11 f = linspace(0,22050/512/2,64+1); (2.22)

12 flux = repmat(1./(f(2:32)/4+4./f(2:32)),12,1);

13 w = [0.05, 0.1, 0.25, 0.5, 1, 0.5, 0.25, 0.1, 0.05];

14 filt1 = filter2(w,eye(12)); %% 12x12

15 filt1 = filt1./repmat(sum(filt1,2),1,12);

16 filt2 = filter2(w,eye(30)); %% 30x30

17 filt2 = (filt2./repmat(sum(filt2,2),1,30))’;

The weighting vector flux for the amplitude modulation is based on a model
of perceived fluctuation strength [Fas82] and was primarily designed as a
model for speech. The weights are shown in Figure 2.15. The filter is applied
as shown in line 25 of Algorithm 2.24.

From a practical point of view, the main purpose of the weighting is to
reduce the influence of very low modulation frequencies which generally have
higher energies. Alternatively, a weighting function based on preferred tempo
could be used. For example, the periodicity histograms defined in [PDW03a]
used a resonance model [Moe02] weighting function which has a maximum
response around 120bpm (2Hz).

The two filters (filt1 and filt2) are the same as used in [Pam01]. They
are applied to smooth the patterns. The effect of the fluctuation strength
weighting and the smoothing filters can be seen in Figure 2.16.

In general, very short pieces (e.g. shorter than 15 seconds) should be
excluded from the computations. However, if for some reason there is an
interest in dealing with short pieces (e.g. when computing the similarity
between segments) it is necessary to pad the Mel spectrogram with zeros.
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This can be done, for example, with:

18 if size(mel2,2)<128, %% pad with zeros (2.23)

19 mel2 = [zeros(12,ceil(128-size(mel2,2))),mel2];

20 end

The following algorithm shows the main part of the computation of the
FP. The frequency modulation of the amplitude for each of the 12 frequency
bands is computed with an FFT. Alternatively, a computationally more ex-
pensive comb-filter could be used (e.g. [PDW03a]).

The amplitude modulation is weighted according to the fluctuation strength,
the difference filter is computed to emphasize vertical lines, and finally the
pattern is smoothed with the filters.

21 num_segments = floor((size(mel2,2)-128)/64+1); (2.24)

22 fp_all = zeros(num_segments,12*30);

23 for i=1:num_segments,

24 X = fft(mel2(:,(1:128)+64*(i-1))),128,2);

25 X2 = abs(X(:,2:32)).*flux; %% amplitude spectrum

26 X2 = filt1*abs(diff(X2,1,2))*filt2;

27 fp_all(i,:) = X2(:)’;

28 end

For a 2 minute piece using 50% overlap and a window size of 128 (about 3
seconds) results in 79 FPs. A song can be summarized by simply computing
the median of these patterns:

29 fp = median(fp_all); (2.25)

Finally, to compare two pieces the Euclidean distance is computed:

d = sqrt(sum((fp1-fp2).^2)); %% or: d = norm(fp1-fp2); (2.26)

2.2.4.2 Illustrations

Figure 2.16 shows a segment before and after the four main computation
steps. The difference between mel and mel2 is clearly visible. The amplitude
modulation shows the kind of information that is extracted using an FFT.
For example, a vertical line in the 28th modulation frequency bin (just below
10Hz) is clearly visible. The effect of the weighting is noticeable particularly
for low modulation frequencies (first and second column). One of the main
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Figure 2.16: FP computation steps for one segment.

Figure 2.17: FP of all segments computed for the song Someday. The gray shadings
of the plots are scaled globally. Black represents high values, white represents low
values. The temporal order of the plots is left-right, top-down. The segment used
in Figure 2.16 is number 15 (2nd row, 7th column). The last pattern (80th, last
row, last column) is the median of all.
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Figure 2.18: FP mean and standard deviation (STD) for different genres of the
DB-MS collection.

effects of the difference filter is that the width of the vertical line in the 28th
column is doubled. The effect of the smoothing filters is also clearly visible.

Figure 2.17 shows the FPs for all 79 segments computed for a song. As
can be seen, the median does not reflect the characteristics of the sequence
in the 7th and 8th row. In fact, the patterns of the median are hardly
noticeable compared to the patterns with the highest values in this sequence.
Computing the median is surely not the optimal solution. However, it is one
of the simplest.

Figure 2.18 shows the differences between genres of the DB-MS collection
(see Subsection 2.3.3 for details on this collection). The average patterns for
classical, electronic, and punk are distinguishable. On the other hand, world,
pop/rock, and jazz/blues seem rather similar.

2.2.5 Simple Features

This section describes “simple” features, that is, features which can be ex-
tracted based on the algorithms already mentioned previously with a single
line (or only a few lines) of Matlab code. All of these are one-dimensional,
continuous, and distances are computed as absolute difference.

These features are best characterized as low-level audio statistics. Al-
though some higher level concepts can sometimes be associated with them,
such associations might cause more confusion than help explain their true
meaning. These features are intended to complement the spectral similarity
and Fluctuation Patterns. The combination is described in the next section.

The features presented here are only a tiny selection of all features which
have been published and used in MIR research. A recent overview of different
features (also known as descriptors) can be found in [Poh05]. Slightly older
but nevertheless very insightful overviews can be found in [TC02] and [AP03].
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2.2.5.1 Time Domain

The main advantage of time domain features is that they can be computed
very efficiently. A typical example is the ZCR already mentioned previously.
In Matlab notation the average ZCR per second can be computed as (where
fs is the sampling frequency in Hertz):

zcr = sum(abs(diff(sign(wav))))/2/length(wav)*fs; (2.27)

Other features which can be extracted directly from the audio signal include,
for example, the Root Mean Square (RMS) energy which is correlated with
the perception of loudness:

rms = sqrt(mean(wav.^2)); (2.28)

2.2.5.2 Power Spectrum

Based on the power spectrum a number of features can be extracted. One
example is the noisiness. Several variations exist; one option to implement
it is:

01 P_dB = P; (2.29)

02 P_dB(P_dB<1) = 1;

03 P_dB = 10*log10(P_dB);

04 P_dB_new = zeros(size(P_dB,1)-10,floor(size(P_dB,2)/10));

05 for j=1:floor(size(P_dB,2)/10),

06 P_dB_new(:,j) = ...

07 mean(P_dB(11:end,(1:10)+(j-1)*10),2);

08 end

09 noisiness = sum(sum(abs(diff(P_dB_new))));

In words this computation can be described as follows. First a smoothed
version of the spectrogram (P_db_new) is computed as the mean energy over
10 subsequent frames (about 115ms). Frequencies below 800Hz in the spec-
trogram are ignored. Then for each frame in P_db_new the absolute differ-
ence between adjacent frequency bins is computed (abs(diff(P_dB_new))).
Finally, the noisiness is the sum of all absolute differences. The noisiness differen-
tiates between rather noisy or rather harmonic sounds. A noisy sound will have a
low value, because the spectrum is rather flat.

On the other hand, a not so noisy signal where the sounds change within signif-
icantly less than 115ms will also be effected by this smoothing and the computed
value might not correspond to the perceived noisiness. Furthermore, the noisiness
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as defined here is correlated with the loudness such that a loud sound will gener-
ally be less noisy. This is clearly a major limitation and could be addressed by
normalizing the loudness.

2.2.5.3 Mel Power Spectrum

Several simple features can be extracted based on the reconstructed Mel power
spectrum, or any other form of spectrogram (such as sonograms). Examples in-
clude loudness related features, Percussiveness (which describes the strength of
percussive sounds), and the Spectral Centroid. There are different options to
compute each of these descriptors; one option for each is given below.

The average loudness is an indicator of how energetic a piece is. However, the
average loudness depends very much on production effects such as compression.

avg_loudness = mean(M_dB(:)); (2.30)

Computing the difference of two subsequent frames (also known as spectral differ-
ence) is a standard approach for onset detection and beat tracking (e.g. [BDA+05]).
This information can also be used to compute Percussiveness. Alternatives include
the approach presented in [HSG04].

percussiveness = mean(abs(diff(M_dB,1,2))) (2.31)

The spectral centroid is correlated with the perception of brightness. In particular,
sounds with more energy in higher frequencies are usually perceived as brighter.
However, as a descriptor of the spectral shape the centroid is very limited and can
be misleading. For example, the spectral centroid cannot appropriately describe
the mixture of a very bright (high pitched) sound with a very low pitched sound.

01 spectral_centroid = ... (2.32)
02 sum((1:num_filt).*sum(M_dB,2)’./max(sum(M_dB(:)),eps));

2.2.5.4 Fluctuation Patterns

Based on any higher-level representation of the spectrogram it is usually possible to
extract other features. The features described here have been presented in [Pam01;
PFW05b]. An evaluation of a larger feature set extracted from the Fluctuation
Patterns can be found in [LR05]. In the lines of code given below FP is defined as
FP = reshape(fp,12,30). That is, instead of the vector representation used in
Section 2.2.4 a matrix representation is used.

The maximum fluctuation strength is the highest value in the rhythm pattern.
Pieces of music which are dominated by strong beats have very high values. Typ-
ical examples with high values include electronic and house music. Whereas, for
example, classical music has very low values.

fp_max = max(FP(:)); (2.33)
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Alternatively, the sum can be computed:

fp_sum = sum(FP(:)); (2.34)

The bass is calculated as the sum of the values in the two lowest frequency bands
with a modulation frequency higher than 1Hz.

fp_bass = sum(sum(FP(1:2,3:30))); (2.35)

The aggressiveness is measured as the ratio of the sum of values within the fre-
quency bands 2-12 and modulation frequencies below 1Hz compared to the sum
of all. Less aggressive pieces have higher values.

fp_aggr = sum(sum(FP(2:end,1:4)))/max(max(FP(:)),eps); (2.36)

The domination of low frequencies is calculated as the ratio between the sum of
the values in the 4 highest and 3 lowest frequency bands.

fp_DLF = sum(sum(FP(1:3,:)))/max(sum(sum(FP(9:12,:))),eps); (2.37)

Gravity

The Gravity (FP.G) describes the center of gravity of the FP on the modulation
frequency axis. Given 30 modulation frequency-bins (linearly spaced in the range
from 0-10Hz) the center usually lies between the 10th and the 15th bin, and is
computed as

fpg =

∑
j j
∑

i FPij∑
ij FPij

, (2.38)

where i is the index of the frequency band, and j of the modulation frequency. In
Matlab notation this is computed with:

fpg = sum(sum(FP).*(1:30))/max(sum(FP(:)),eps); (2.39)

Low values indicate that the piece might be perceived as slow. However, FP.G is
not intended to model the perception of tempo. Effects such as vibrato or tremolo
are also reflected in the FP.

Focus

The Focus (FP.F) describes the distribution of energy in the FP. In particular,
FP.F is low if the energy is focused in small regions of the FP, and high if the
energy is spread out over the whole FP. The FP.F is computed as mean value of
all values in the FP matrix, after normalizing the FP such that the maximum
value equals 1. The Focus is computed with:

fpf = mean(FP(:)./max(max(FP(:)),eps)); (2.40)
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2.2.5.5 Illustrations

Figure 2.19 shows the range of values per feature and genre using the DB-MS
collection.15 The overlap between genres is generally quite large. The genres are
clearly distinguishable only in a few cases. For example, the average loudness
feature can distinguish classical music from metal/punk. In addition, correlations
are made visible, e.g., between the spectral centroid and average loudness.

Figures 2.20 and 2.21 show the correlation between distance matrices. The
correlation is measured comparing the values of the upper triangle for each of the
17 distances matrices computed from the 13 features, the Fluctuation Patterns,
and the 3 spectral similarity measures.

Noticeable are the high correlation of the spectral similarity measures (G30,
G30S, G1), although the correlation of G1 is significantly lower. The observation
that the spectral centroid is correlated with the average loudness from Figure 2.19
is confirmed. The reason for this might be that for a piece to be louder in average,
the energy must be spread over many frequency bands including higher ones. As
can be seen in Figure 2.19 classical pieces have a lower spectral centroid than
aggressive metal/punk pieces.

Not particularly surprising is the correlation between FP Max and FP Sum,
or the correlation between average loudness and RMS. However, quite surprising
is the relatively high correlation between the average loudness and the spectral
similarity measures. Specifically because the first coefficient (the average loudness
of each frame) is not used for the spectral similarity. This indicates that not
using the first coefficient does not mean that loudness information is completely
removed.

Another observation is the high correlation between Percussiveness, FP, FP
Max, FP Sum, and FP Bass. The reason is that the Percussiveness is high if there
are strong beats. Usually beats are periodic, thus they will also have an impact
on the FP. Strong beats lead to high FP Max and FP Sum values. Similar FPs
will have a similar FP Sum. Furthermore, a piece that does not have very strong
beats, will also not have very strong bass beats.

Also noticeable is that the correlation between ZCR and noisiness is very low.
On one hand, this is due to the limitations of the noisiness descriptor discussed
previously. On the other hand, the relatively high correlation between the spectral
centroid and the ZCR also explains part of it.

The differences between Figures 2.20 and 2.21 show how reliable the values are.
Depending on the music used, the values will vary. In this case, the deviations are
around 0.1.

15Details of the DB-MS collection are described in Subsection 2.3.3.
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Figure 2.19: The boxes show the range of values for the 13 simple features per
genre computed on the DB-MS collection (see Subsection 2.3.3). Each box has a
line at the lower quartile, median, and upper quartile values. The whiskers extend
from the box out to the most extreme data value within 1.5 times the interquartile
range of the sample. Outliers are data with values beyond the ends of the whiskers
and marked with “+”. The notches represent a robust estimate of the uncertainty
about the medians for box-to-box comparison. Boxes whose notches do not overlap
indicate that the medians of the two groups differ at the 5% significance level (for
details see the Matlab boxplot function documentation).
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Figure 2.20: Correlation matrix for 17 distance matrices computed on the DB-MS
collection (729 pieces). The values are rounded and zeros are not displayed.
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Figure 2.21: Correlation matrix for 17 distance matrices computed on the DB-L
collection (2381 pieces).
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2.2.6 Linear Combination

A straightforward approach to combine the spectral similarity with the Fluctuation
Patterns and the simple features is to compute a weighted sum of the individual
distances. This linear combination is similar to the approach used for the aligned
Self-Organizing Maps (SOMs) in Section 3.2.5. Originally, the idea was that the
user should be able to manually set the weights of the linear combination. However,
as the meaning of the different features is not very intuitive it is necessary to
determine the weights automatically. Before combining the distances, they are
normalized such that the standard deviation of all pairwise distances within a
music collection equals 1. For the experiments reported in Section 2.3 the mean
and standard deviations were computed on the DB-L collection. In general the
combination has the following form:

d =
∑

i

wi(di − µi)/σi, (2.41)

where di is the distance computed according to the i-th similarity measure, the
normalization factor µi is the mean of all the distances, and σi is the standard
deviation. The weights wi define the contribution of each similarity measure. For
example, for the MIREX’05 submission described in [Pam05] the weights were 65%
for G30S, 15% for FP, 5% for FP Focus, and 15% for FP Gravity. For the best
combination found in Section 2.3 (and refered to as G1C later on) the combination
(including the normalization factors) is:

d = 0.7 (− exp(−dG1/450) + 0.7950) /0.1493 + (2.42)
0.1 (dFP − 1688.4) /878.23 +
0.1 (dFPG − 1.2745) /1.1245 +
0.1 (dFPB − 1064.8) /932.79.

There is a conceptual problem with the linear combination: A human listener
does not compute a weighted sum of the similarities with respect to different as-
pects. In contrast, a single aspect which is similar is sufficient to consider pieces
to be similar. Thus, a model which defines the overall distance to be the minimum
distance of its components seems more appropriate. However, it is also necessary
to realize that the aspects which are combined in this thesis are not of a kind that
a human listener would ever consider when judging similarity. Nevertheless, devel-
oping alternative models to combine different similarity measures is an interesting
direction for future work.

2.2.7 Anomalies

Finally, before turning to the evaluation, this subsection describes three anomalies
in the similarity space. These are caused by the spectral similarity and to some
extent contradict a human’s intuition of a similarity space.
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Figure 2.22: Number of times each piece in DB-L is one of the 10 closest neighbors
to the other pieces. The black line is G1, the other is G1C. The pieces are sorted
according to their G1 values. The highest frequency for G1 is 253, the highest for
G1C is 81.

2.2.7.1 Always Similar

Aucouturier and Pachet [AP04a] pointed out that some pieces are very similar to
a large number of other pieces although they are not perceptually similar (false
positives).

This anomaly can be studied (as suggested in [AP04a]) by computing the 10
nearest neighbors to each piece in the collection. The examples given here are
computed from the DB-L collection which has a total of 2381 tracks. There are
2380 top 10 lists a piece can occur in. Without further knowledge one would expect
a piece to be in about 10 of the top 10 lists.

However, for G1 there are 275 songs which do not occur in any of the top 10
lists. For G1C this number is reduced to 174. For G1 there is one song which
occurs in 253 of the top 10 most similar lists to all other pieces. This song is
“Smudo schweift aus” by “Die Fantastischen Vier” (German hip hop group) from
the album “Die 4. Dimension”. The song has a duration of 3’47” of which the
last 50 seconds are an instrumental. However, these 50 seconds are not considered
for the similarity computation (only 2 minutes from the center are used from each
piece). From a perceptual point of view there are no particularities which could
explain the anomaly. The same song is only in 33 of the top 10 lists for G1C.

The most frequent song in the G1C top 10 lists appears 81 times. The song
appears 125 times in the G1 top 10 lists (which is rank 3). The song is from the
same album and has the title “Zu Geil für diese Welt”. In total there are 5 songs
by this group in the top 20 for G1.

Figure 2.22 shows for each piece in DB-L how many times it occurred in the
top 10 lists for G1 and for G1C. As can be seen, the outliers are far less extreme
for G1C. The reason for this is that the “always similar” problem is caused by the
spectral similarity and is “fixed” to some extent by the features (FP etc.) which
define a vector space. As such “always similar” pieces are likely to have a negative
impact on any application based on audio similarity, any approach which reduces
the effects is favorable.
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2.2.7.2 Triangular Inequality

The triangular inequality is one of the properties of a metric space: d(A,C) ≤
d(A,B) + d(A,C). It does not hold for the spectral similarity measures. This
restricts the techniques that can be used to efficiently index large music collections.

The extent to which the triangular inequality does not hold can be measured
by computing the percentage of all triangles in a collection (DB-L in this case)
that do not fulfill the inequality. Instead of computing all possible triangles 150000
triangles were randomly sampled. For G1 the inequality holds in average for 29%
of the cases, and 36% for G1C. Again, this increase is favorable because it makes
the similarity space easier to deal with (e.g. when developing heuristics for playlist
generation).

However, the triangular inequality is not necessarily a concept humans apply
for similarity judgments. For example, let A be a piece of classical music with a
popular melody such as “Für Elise” by Beethoven. Let C be some extreme techno
piece. Let B be an extreme techno piece with the melody of Für Elise. Obviously,
A and B have some similarities, and so do B and C, However, A and C could
hardly be any more dissimilar.

2.2.7.3 Always Dissimilar

Some pieces are totally different to all others, according to G1. This can be seen
in the distance matrix shown in Figure 2.23 as black vertical and horizontal lines.
These pieces originate from three albums. One album is from the genre a cappella:
Golden Gate Quartet, When the Saints Go Marching In. The two other albums are
from the genre jazz guitar: Barney Kessel, Solo; and Herb Ellis & Joe Pass, Two
For The Road. About 1.5% of the songs in DB-L are extremely dissimilar. The
fact that only so few pieces are effected makes it difficult to measure the effect in
terms of the nearest neighbor genre classification evaluation procedure used later
on.

The extremely high dissimilarity means that these pieces would seldomly or
even never occur in automatically created playlists, in contrast to the “always
similar” pieces. Although the combination of G1 with FP and other features
reduces the effect, further work is needed to ensure that the distances are less
extreme. One option might be to optimize the scaling of G1. To evaluate the
effects it is necessary not only to consider the most similar piece to each piece
but rather to evaluate if a similarity measure can retrieve all similar pieces in a
collection.

2.3 Optimization and Evaluation

Different features have different advantages. Thus, it is straightforward to combine
them. This leads to two questions. First, how can the performance of a (combined)
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Figure 2.23: Distance matrix for DB-L computed with G1C.
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similarity measure be measured? Second, how can the search space of all possible
combinations be limited?

Measuring Similarity Measures?

In an ideal case, a listening test is used to assess the performance of a similar-
ity measure. Such a test is presented in Subsection 2.3.6.3 to evaluate the best
combination compared to a baseline. However, it is impracticable to use listening
tests to evaluate thousands of different variations of similarity measures. A simple
approach to evaluate combinations is to use a genre classification based approach.
The assumption is that the most similar pieces to each piece belong to the same
genre. The exact procedure and problems involved in this approach are described
later on.

Limiting the Search Space?

The complete space of interesting combinations according to Equation 2.41 is huge.
Given only 14 features and one spectral similarity measure means that there are
15 weights that can be set. (The weights are non negative and sum up to 1.) If
the weights are set to multiples of 0.1 almost 2 million combinations are possible.
For multiples of 0.05 the number of possible combinations is beyond 109. In this
section the search space is limited by selecting the most interesting features. In
particular, each feature is combined with the spectral similarity and only those
which perform well are considered further.

Structure of this Section

The next subsection gives an overview of related work dealing with different ap-
proaches used to evaluate audio-based music similarity measures. Subsection 2.3.2
describes the procedure, in particular the genre-based evaluation approach. Sub-
section 2.3.3 presents the data used for the optimization and evaluations. In total
there are 6 collections with a total of more than 20000 pieces and more than 60 gen-
res. Subsection 2.3.4 describes the concept of an artist filter which should be used
for the evaluation of audio-based genre classification and music similarity. Subsec-
tion 2.3.5 presents the optimizations of the parameters for the linear combination.
Particular effort is made to avoid overfitting. Subsection 2.3.6 evaluates the best
combination compared to a baseline (which is using only spectral similarity).

2.3.1 Related Work

Several approaches to compute audio-based music similarity have been published.
However, evaluating these approaches is difficult. First, most implementations
have not been made freely available. Second, in most cases it is not possible to
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share the music collections used for evaluation due to copyright restrictions. Third,
results on different music collections (and genre taxonomies) are not comparable.

One solution has been to reimplement approaches by other authors. For exam-
ple, in [PDW03b] five different approaches were implemented. However, there is
no guarantee that these implementations are correct. In fact one approach ([LS01]
and in particular the KL-divergence) was not implemented correctly in [PDW03b].
Another example is [BP03] where the authors reimplement one approach and de-
veloped their own variation.

An alternative is the collaboration of authors (e.g. [BLEW03]) or the use of
creative commons music which is easily available (such as the Magnatune collection
used for the ISMIR’04 contest), or collections especially created for such purposes
such as the RWC music database [GHNO03]. For commercially interesting mu-
sic (and thus not easily accessible music) one solution is a centralized evaluation
system [DFT04] as used for the ISMIR’05 evaluation exchange (MIREX).

Logan & Salomon

Given different algorithms, or variations of the same algorithm, different proce-
dures have been used for evaluation. One of the first was published by Logan &
Salomon [LS01]. They presented three evaluations. First, they evaluated the opti-
mum number of MFCCs. Second, they used a listening test to compare their best
parameter settings against random shuffling. Third, they measured how well the
original version of a song can be retrieved given a clipped version of the original
as query.

They evaluated the optimum number of MFCCs as follows. For each song in
the collection, they computed a list of 20 similar pieces. (The song to which the
similarities are computed is referred to as seed). In these lists they counted the
average number of songs (1) in the same genre as the seed, (2) from the same artist
as the seed, and (3) on the same album as the seed. The correlation of the results
for these 3 criteria is very high.

The listening test Logan & Salomon used was set up as follows. Two indepen-
dent listeners where asked to rate 20 lists of similar songs (each with 20 songs).
The 20 seed songs were randomly selected. For each song the listeners were re-
quested to rate if they consider it similar to the seed or not (yes/no). The concept
of similarity was only defined vaguely. Nevertheless, there was a high agreement.
The listeners only disagreed in 12% of the cases. This consistency between listeners
is confirmed by the results of the listening test presented in this thesis.

Logan & Salomon report the average number of similar songs (in the top 5,
10, 20 ranked positions) compared to random and show that their approach works
significantly better. In particular, random finds in average 0.8 similar songs in the
top 20 while their approach finds 8.2 songs.
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Aucouturier & Pachet

In [AP02a] the authors hand-optimized the parameters such as the number of
clusters and MFCCs. They report the following evaluation statistics. (1) They
report the average number of songs in the same genre (for the closest 1, 5, 10,
20, 100 songs). (2) They measure the “overlap on the same genre”. Given a seed
song let dm be the mean distance between songs from the seed’s genre. Let n1 be
the number of pieces not belonging to pieces from seed’s genre, and let n2 be the
number of pieces not belonging to seed’s genre and having a distance to the seed
which is smaller than dm. The overlap is defined as the ratio: n2/n1. In addition
they report the “overlap on a different genre” which is the proportion of songs in
the seed’s genre which have a distance to the seed which is larger than dm. (3)
They report precision and recall.

Furthermore, in addition to the statistics the authors briefly report a listening
test with 10 listeners which were asked to rate songs by similarity. In particular,
given a seed they were asked to rate the similarity of two songs. One of these was
closer to the seed and the other was further away (according to their similarity
measure). The listeners agreed in 80% with the ordering of the similarity measure.

In [AP04a] the authors report results of an extensive evaluation. In particular,
they analyzed the impact of parameters such as the number of MFCCs, the number
of Gaussians used for the GMM, and the window size for the MFCC computation.
To measure the differences they use the R-precision. (That is, the precision within
the R closest songs to the seed, where R is the number of relevant songs.)

In [AP04b] the authors describe the framework and tools used to obtain the
results published in [AP04a]. The authors identify two types of similarity eval-
uations: (1) rankings and (2) classes. With rankings they refer to the style of
evaluations conducted in, e.g., [BLEW03]. This requires similarity data which is
usually difficult to gather. The second type is the approach they use themselves
and has been used, e.g., in [LS01] and [PDW03b]. The authors suggest using the
TREC16 style evaluation metrics for evaluations of this type. This is done, e.g.,
in [SK05] and [LR05]. The use of precision and recall statistics is also discussed
in [Bau05].

Others

In [PDW03b] an evaluation of 5 different similarity measures was presented using
the following cluster quality criteria. First, the average distance between all pieces
was computed. This average distance was then compared to the average distance
within a group (groups were defined either in terms of artists, genres, albums,
tones, or styles). A ratio of one means that the distance between arbitrary pieces
and members of a group are about the same. On the other hand, if the distances
within the groups are very small compared to the overall average distances then
the groups are better distinguishable from each other.

16http://trec.nist.gov
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One of the outcomes of this evaluation was that spectrum histograms per-
formed very well. However, in [Pam04] where the same 5 measures were evaluated
(using the R-precision) the results were very different. In particular, it seems that
the cluster quality is a suboptimal criteron to evaluate similarity measures.

In [AHH+03] the authors briefly report a listening test where they compare
their algorithm against random shuffling. They selected 20 random seeds and
computed the 5 nearest neighbors to each seed. In addition, for each seed they
randomly selected one piece from the collection, and the piece furthest away from
the seed (according to the similarity measure). They asked 10 subjects to rate the
similarity of these 7 pieces. As a result the authors are able to show that their
approach works better than random.

The measurable difference to a purely random approach depends on the music
collection used. For example, [PE02] evaluated their playlist generation approach
against random shuffling on a collection consisting of only jazz music. The differ-
ences they observed are much smaller than those reported in [AHH+03].

Ultimately, evaluating similarity measures within their application context is
the only way of finding out if they are useful or not and if differences are significant
or not. Application based evaluations have been reported, e.g., in [BH04; VP05;
GG05; PPW05a; PPW05c].

In [LEB03; BLEW03] the authors suggest a solution to the problem of not
being able to share music collections for evaluation purposes. In particular, they
recommend sharing features extracted from the audio instead of the audio data
itself. Furthermore, they use subjective similarity data gathered from surveys,
experts, playlists, and directly from the contents of user collections to evaluate
similarity measures. One major disadvantage of such data is its sparsity. That is,
similarity connections are usually only defined for a tiny fraction of all possible
connections.

In [PFW05b] the criterion to evaluate the measures is the accuracy of a nearest
neighbor classifier in combination with leave-one-out cross-validation. This means
that for each song in the collection the nearest neighbor is computed. The average
number of times that this nearest neighbor is from the same genre as the seed
is the accuracy of the “classifier”. In addition an artist filter is used which will
be discussed later on. One of the advantages of using classification accuracies to
evaluate similarity measures is that it allows comparison to the large number of
publications on genre classification.

2.3.1.1 MIREX

Recently, within the MIR community there has been a strong effort to standardize
evaluations. As part of these efforts, there have been contests to evaluate the
best genre classification and artist identification algorithms at ISMIR’04 and at
ISMIR’05 where the contest was named MIREX. MIREX stands for the Music
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Information Retrieval EXchange.17 Of particular interest is that at MIREX’06
there will be a music similarity task for the first time. The discussion on the
optimum evaluation procedure is ongoing at the time of writing this thesis.

Before describing the 2004 and 2005 contests the following paragraphs discuss
the relationship between genre classification and artist identification, and how
genre classification can be used to evaluate similarity measures.

Genre Classification and Artist Identification

In 2004 and 2005 one of the tasks has been audio-based artist identification. The
task is to identify the artist given a piece. The advantage of artist identification is
that there is an objective ground truth. However, it is not so clear what real world
applications could be. Although rich metadata is rare, tracks usually have an
artist name assigned to them. If a track does not have any metadata associated to
it then an obvious approach would be to use fingerprinting technology to identify
the track and obtain its metadata.

Compared to genre classification there is an obvious technical difference. The
artist identification task has more and smaller categories. This can be a problem
for some classifiers whose complexity depends on the number of categories.

In general, an algorithm that performs well on artist identification might not
perform well on genre classification. In particular, this can be the case if the
algorithm focuses on production effects or a specific instrument (or voice) which
distinguishes an artist (or even a specific album). That is, if the algorithm focuses
on characteristics which a human listener would not consider relevant for defining
a genre.

However, genre classification is often evaluated on music collections where all
pieces from an artist have the same genre label without using an artist filter. An
artist filter ensures that given a piece to classify, no other pieces from the same
artist have been used for training the classifier. An algorithm that can identify an
artist would also perform well on genre classification if no artist filter is used. In
particular, in such a case the genre classification and artist identification tasks are
far more similar than they might appear at first. In 2004 and 2005 no artist filters
were used and all pieces from an artist were assigned to the same genre.

Similarity and Genre Classification

One of the simplest ways to evaluate similarity measures is through genre clas-
sification. The assumption is that very similar pieces belong to the same genre.
A classifier used to evaluate similarity measures should be directly based on the
similarity computations. A straightforward choice is to use a nearest neighbor
classifier.

17http://www.music-ir.org/mirexwiki
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The question which remains is if a classifier should be allowed to fine tune
some similarity parameters based on the training data or not. One approach to
answer this question is to look at specific application scenarios. For example, if
the similarity measure is applied to a collection which has already been classified
(manually) into genres, then such optimizations make sense. In this chapter this
assumption is not made.

ISMIR 2004

The first audio-based genre classification contest was organized by the Music Tech-
nology Group (MTG) at Universitat Pompeu Fabra (Barcelona, Spain) in 2004.
MTG supplied a training set on which participants could train their classifiers.
The participants would then submit a classifier which would run on the test set
located at MTG. The data used was the Magnatune18 collection, which is available
under the creative commons license.

There were a total of 5 groups which participated in the contest. An approach
based on G30 won the contest with 84% classification accuracy, an approach based
on Fluctuation Patterns scored 70%. The results are available online.19

ISMIR 2005 (MIREX)

Based on the experiences gathered in 2004 a Java-based M2K (Music to Knowl-
edge)20 framework was designed based on D2K (Data to Knowledge)21 to stan-
dardize the interface for submissions within the IMIRSEL project [DFT04].

For the genre classification and artist identification contests two collections
were used. Namely, the Magnatune as in 2004, and in addition the USPOP 2002
collection (which has been previously used e.g. in [WL02]). As the USPOP collec-
tion contains copyright protected music, it was not possible to share it among the
participants. Instead, the participants needed to submit algorithms that would
be trained on the computers at IMIRSEL. The Magnatune collection was used by
some groups to optimize their submissions, and some also had access to USPOP.

As in 2004 the main criteria was the classification accuracy. For the Magnatune
collection a hierarchical taxonomy was used to differentiate between different types
of errors (e.g. confusing jazz and blues versus jazz and heavy metal). Of particular
interest are also the reported computation times. The measured differences were
of a factor 20 and more. Participants were given 24 hours for their algorithms to
complete. Memory usage was not reported.

A total of 12 groups participated in the genre classification and 7 in the artist
identification task which is a large increase compared to 2004. Participants were

18http://www.magnatune.com
19http://ismir2004.ismir.net/genre contest/results.htm
20http://www.music-ir.org/evaluation/m2k
21http://alg.ncsa.uiuc.edu/do/tools/d2k
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Norm. Norm. Time CPU
Participant Hierarch. Hierarch. Raw Raw [hh:mm] Type

1 Bergstra et al. (2) 77.75 73.04 75.10 69.49 – –
2 Bergstra et al. (1) 77.25 72.13 74.71 68.73 06:30 B
3 Mandel & Ellis 71.96 69.63 67.65 63.99 02:25 A
9 Pampalk 69.90 70.91 66.47 66.26 00:55 B

Table 2.2: Partial genre classification results for the Magnatune collection. 1005
tracks were used for training, 510 tracks for testing, and about seven genres needed
to be classified. CPU Type A is a system with WinXP, Intel P4 3.0GHz, and 3GB
RAM. CPU Type B is a system with CentOS, Dual AMD Opteron 64 1.6GHz,
and 4GB RAM.

allowed to submit more than one algorithm. The details of the results are online.22

Some of the results are given in Tables 2.2–2.5. Normalized accuracies are
computed by weighting the accuracy with respect to each genre equally (and thus
ignoring the uneven distribution of genres). The difference between hierarchical
and raw is that with the former the hierarchical taxonomy was used to weight
errors differently.

The winning algorithm for the genre classification task was submitted by
Bergstra et al. [BCE05] and is based on a powerful Ada Boost classifier. However,
it is not straightforward to adapt the approach for similarity computations. The
winning algorithm for artist identification submitted by Mandel & Ellis [ME05] is
based on the G1 spectral similarity described earlier. However, instead of using
a nearest neighbor classifier to evaluate the performance in terms of a similarity
measure, a SVM variant is used.

The algorithm submitted by the author of this thesis was based on G30S com-
bined with FP, FP Gravity, and FP Focus (this combination is referred to as M’05
for details see [Pam05]). It was the only algorithm using a nearest neighbor clas-
sifier for the genre classification task and one of two for artist identification task.
As will be shown later in this section (Table 2.11), M’05 performs about the same
as G1 on the Magnatune collection when both use a nearest neighbor classifier.

2.3.2 Procedure

In this section two approaches are used. One is based on genre classification. It
serves to explore large parameter spaces. The other is based on a listening test
and is used to evaluate if the improvements are significant to human listeners.

22http://www.music-ir.org/evaluation/mirex-results
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Norm. Time CPU
Participant Raw Raw [hh:mm] Type

1 Bergstra et al. (2) 86.92 82.91 – –
2 Bergstra et al. (1) 86.29 82.50 06:30 B
3 Mandel & Ellis 85.65 76.91 02:11 A
4 Pampalk 80.38 78.74 00:52 B

Table 2.3: Partial genre classification results for the USPOP’02 collection. 940
tracks were used for training, 474 tracks for testing, and about four genres needed
to be classified.

Norm. Time CPU
Participant Raw Raw [hh:mm] Type

1 Bergstra et al. (1) 77.26 79.64 24:00 B
2 Mandel & Ellis 76.60 76.62 03:05 A
3 Bergstra et al. (2) 74.45 74.51 – –
4 Pampalk 66.36 66.48 01:11 B

Table 2.4: Partial artist identification results for the Magnatune collection. 1158
tracks were used for training and 642 for testing.

Norm. Time CPU
Participant Raw Raw [hh:mm] Type

1 Mandel & Ellis 68.30 67.96 02:51 A
2 Bergstra et al. (1) 59.88 60.90 24:00 B
3 Bergstra et al. (2) 58.96 58.96 – –
4 Pampalk 56.20 56.03 01:12 B

Table 2.5: Partial artist identification results for the USPOP’02 collection. 1158
tracks were used for training and 653 for testing.
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Nearest Neighbor Genre Classifier

To evaluate various parameter settings a genre-based approach is used. In partic-
ular, the classification accuracy of a nearest neighbor classifier is evaluated using
leave-one-out cross-validation (as described in the related work). The accuracies
are not normalized with respect to class probabilities. The basic assumption is
that very similar pieces belong to the same genre.

The main advantage is its simplicity. Genre tags for music are readily available,
the results are easy to interpret, and are comparable to related work published on
genre classification. (Which is particularly interesting as the amount of work pub-
lished on genre classification is much larger than work directly related to similarity
measures.) However, evaluating only the nearest neighbor also has limitations. No
distinction is made if all pieces which are close to the seed are perceptually similar,
and no distinction is made if all pieces perceptually similar to the seed are also
close to the seed.

There are two issues to consider when arguing against using the nearest neigh-
bors only. First, not all songs in a genre are similar to each other. Thus, it is not
possible to assume that all pieces from the same genre are similar to the seed. If
similar songs were defined manually an evaluation which considers more than just
the nearest neighbor would make a lot more sense.

Second, assuming that the application is playlist generation, one might only
need very few similar songs to each song to create an interesting “chain” of songs.
That is, depending on the application, it might not be necessary to find all songs
similar to a single seed.

Nevertheless, the final results in this section indicate that considering more
than only the nearest neighbor leads to more accurate evaluations. However, the
question remains if differences which can only be measured in such a way are
significant.

Genre Taxonomies

Much can be said about the usefulness or uselessness of music genres. The fact
is that genre taxonomies are inconsistent and have a number of other limitations
(which are discussed, e.g., in [PC00]). An obvious issue is that many artists have
a very individual mix of several styles which is often difficult to pigeonhole.

However, genres are widely used to manage large music collections, and genre
labels for artists are readily available. Furthermore, as will be discussed in Sub-
section 2.3.6 the quality of most genre annotations available is significantly better
than the quality which current genre classifiers and similarity measures can achieve.
Thus, there is still a lot to be learned from genre annotations.
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Avoiding Overfitting

Avoiding overfitting is one of the main topics throughout this section. Overfitting
occurs when the parameters of a model are optimized in such a way that they
produce good results on the specific data used to optimize them, but poor results
in general. The following strategies are applied to avoid overfitting:

A. Multiple Collections
To avoid overfitting 6 different music collections which are organized
according to different taxonomies are used. Two collections are used
to optimize the parameters and four collections to evaluate the results
and test how they generalize. The approach chosen in this thesis is
very conservative. Alternatively, one could argue that overfitting is
indeed context specific learning. However, such assumption would
require an appropriate evaluation.

B. Artist Filter
This important topic is discussed in detail in Subsection 2.3.4. The
basic idea is to reduce the opportunities an algorithms has to optimize
the parameters to information that is perceptually not relevant.

C. Cross Checking Spectral Similarity
In Subsection 2.2.3 three different approaches to compute spectral
similarity were described. These are more or less identical in terms
of the similarity aspect they describe. One of these approaches might
be better than the others. However, in general any non-systematic
deviation points towards an insignificant variance. In particular, any
optimizations of G1 are cross checked with G30S and vice versa to see
whether the optimization can be generalized.

Optimization and Evaluation Outline

The procedure chosen in this thesis is as follows. First, features are selected to
reduce the hypothesis space. Second, the parameters of the combination are opti-
mized for the selected features using two music collections. Third, the parameters
are tested on different collections. Finally, a listening test is used to test whether
the differences measured through the genre classification approach are significant.

2.3.3 Data

For the optimization and evaluation a total of six collections are used. Each has
its own genre taxonomy. There are more than 20000 pieces in total which are
assigned to more than 60 different genres. The term genre is used very flexibly,
for example, “genres” include: “others” or “romantic dinner”. Statistics of the
collections are given in Table 2.6. A list of genres with the number of pieces and
artists associated to each is given in Table 2.7.
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Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max

DB-S 16 63 100 2 7 4 8
DB-L 22 101 2381 3 6 42 255
DB-MS 6 128 729 5 40 26 320
DB-ML 10 147 3249 2 40 22 1278
DB-30 29 528 1470 4 48 19 80
DB-XL 17 566 15335 5 113 68 3330

Table 2.6: Statistics of the six collections.

The collections DB-S, DB-L DB-MS, and DB-ML have been previously used
in [PFW05b]. Deviations in the exact number of pieces are caused by the MP3
decoder used and whether all files could be decoded correctly. For the experiments
reported in this thesis the robust MAD23 decoder was used. Furthermore, in some
cases very short (e.g. shorter than 15 seconds) pieces were removed from the
collections.

In-House Small (DB-S)

The smallest collection consists of 100 pieces. The collection also includes one
non-music category, namely speech (German cabaret). This collection has a very
good (i.e low) ratio of tracks per artist. However, due to its size the results need
to be treated with caution. In this section DB-S is mainly used to demonstrate
overfitting effects.

In-House Large (DB-L)

This collection is hierarchically structured according to genre/artist/album. All
pieces from an artist (and album) are assigned to the same genre, which is question-
able but common practice. Two pieces overlap between DB-L and DB-S, namely
Take Five and Blue Rondo by the Dave Brubeck Quartet. The genres are user de-
fined and inconsistent. In particular, there are two different definitions of trance.
Furthermore, there are overlaps, for example, jazz and jazz guitar, heavy metal
and death metal etc. DB-L is on of the two collections used for optimization. In
addition, the normalization parameters (for the variance normalization which is
necessary to combine different similarity measures) are computed based on DB-L.

Magnatune Small (DB-MS)

This collection was used as training set for the ISMIR’04 genre classification con-
test. The music originates from Magnatune24 and is licensed as creative commons.

23http://www.underbit.com/products/mad
24http://www.magnatune.com
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MTG25 compiled the collection. Although it is a subset of DB-ML it is particularly
interesting as it has been made available to the research community. Furthermore,
to some extent it can be used to compare results to those of the ISMIR’04 con-
test. However, while the code which won the contest achieves 79% accuracy on
this training set, the accuracy on the test set was 84%. This is probably related
to the artist filter issue discussed below, as half of the pieces of each album were
split between training and test set and all pieces from an artist belong to the same
genre. The genre labels are given on the Magnatune website. The collection is very
unbalanced. Most pieces belong to the genre classical and a large number of pieces
in world sound like classical music. Some of the original Magnatune classes were
merged by MTG due to ambiguities and the small number of tracks in some of the
genres. DB-MS is one of the two collections used to optimize the parameters.

Magnatune Large (DB-ML)

DB-ML is a superset of DB-MS. The number of artists is not much larger than in
DB-MS and the genres are equally unbalanced. The genres which were merged for
the ISMIR’04 contest are separated. DB-ML is used to see whether the parameters
optimized using DB-MS perform as well on a larger collection with very similar
characteristics.

In-House 30 Seconds (DB-30)

All pieces in this collection have a length of 30 seconds. This length is of interest as
many online music shops offer their customer 30 second previews. The genre tags
for this collection are those shown to the customer of an online music store. Some
of these genres are obviously very difficult if not impossible to distinguish for a
simple audio-based similarity measure. For example, the genre named Christmas
contains Christmas songs which are primarily recognizable by their lyrics. DB-30
is of particular interest as it reflects the taxonomies currently in use by music
distributers and points out the limits.

In-House Extra Large (DB-XL)

This is the largest collection used. The genre labels are assigned on a piece level
according to Gracenote.26 DB-XL is used to test whether the optimizations can
be generalized or not. Due to its size it is by far the most interesting collection.

2.3.4 Artist Filter

A key issue in evaluating music genre classification is the use of an artist fil-
ter [PFW05b]. An artist filter ensures that the training and test set contain

25http://www.iua.upf.es/mtg
26http://www.gracenote.com
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DB-S alternative (6/4), blues (8/2), classic orchestra (6/6),
classic piano (7/2), dance (6/4), eurodance (5/5),
happy sound (6/3), hard pop (5/2), hip hop (7/3), mystera (8/2),
pop (6/5), punk rock (8/7), rock (4/4), rock & roll (6/5),
romantic dinner (6/6), speech (6/3)

DB-L a cappella (112/4), acid jazz (68/4), blues (63/4), bossa nova (72/4),
celtic (132/5), death metal (69/4), DnB (71/5), downtempo (117/4),
electronic (63/4), euro-dance (96/6), folk-rock (233/5),
German hip hop (123/6), hard core rap (122/5),
heavy metal/thrash (241/5), Italian (142/5), jazz (63/4),
jazz guitar (70/5), melodic metal (119/4), punk (255/6),
reggae (44/3), trance (64/5), trance2 (42/4)

DB-MS classical (320/40), electronic (115/30), jazz/blues (26/5),
metal/punk (45/8), pop/rock (101/26), world (122/19)

DB-ML ambient (143/6), classical (1278/40), electronic (459/30), jazz (104/5),
metal (116/6), new age (191/13), pop (22/2), punk (64/2),
rock (383/24), world (489/19)

DB-30 ambient/new age (65/12), blues (42/11), children/others (52/12),
Christmas (39/22), classical (44/20), country (59/18), dance (56/28),
Dutch (19/4), easy listening/oldies (69/33), electronic (66/17),
folk (52/16), German pop (60/23), gospel/Christian music (59/16),
indie/alternative (28/15), instrumental (60/7), jazz (49/16),
latin (52/9), Italian (22/8), pop (80/48), others (58/13),
rap/hip hop (23/12), reggae (30/7), rock (50/36), Schlager (69/21),
soul/R&B/funk (44/28), soundtracks (58/29), speech (75/10),
Variété Française (33/24), world (57/31)

DB-XL alternative & punk (2076/95), blues (254/13), Christmas (68/5),
classical (626/25), country (1968/88), easy listening (119/8),
electronica/dance (1861/93), folk (158/11), hip hop/rap (682/28),
jazz (3331/113), latin (366/18), new age (263/16), pop (551/32),
R&B (1097/50), reggae (131/6), rock (1491/53), world (294/17)

Table 2.7: List of genres for each collection. For each genre the first value in the
brackets is the number of pieces, the second value is the number of artists.
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DB-S DB-MS DB-ML DB-L
AF 1 1 5 10 20 1 5 10 20 1 5 10 20

G30 – 52 79 77 74 70 80 79 78 75 71 68 67 63
+ 29 64 67 67 56 59 60 27 28 30 31

G30S – 53 78 75 71 68 79 77 76 73 71 69 68 65
+ 29 62 65 63 51 55 57 25 28 30 31

G1 – 56 78 76 74 70 81 79 77 74 76 73 72 69
+ 31 63 65 66 54 57 59 28 30 31 31

FP – 47 61 62 64 64 64 64 64 63 45 45 44 43
+ 30 54 56 60 50 53 54 24 23 23 22

Table 2.8: Leave-one-out cross-validation results using a k-NN classifier with k =
1, 5, 10, 20. If in any of the genres less than k items remained after applying the
artist filter, then the k value was not evaluated and left blank.

different artists. In particular, when using spectral information the classification
accuracies are over estimated otherwise. Furthermore, an algorithm optimized
without artist filter might focus on using perceptually not so relevant information
such as production effects. Thus, an artist filter is necessary to measure general-
ization capabilities more accurately.

In addition, one can argue that filtering results from the same artist is impor-
tant in most application scenarios for similarity measures. This is particularly true
for recommendation, where one can expect the user to know the artists from the
piece which the user selected as query. Furthermore, it is also true for automati-
cally created playlists, where in general a good playlist is not one which contains
only pieces from the same artist.

Table 2.8 shows the results of a nearest neighbor classification (measured using
leave-one-out cross-validation) for four of the similarity measures described earlier.
AF+ marks lines where an artist filter was used AF−marks lines evaluated without
artist filter. As can be seen, the difference between AF+ and AF− almost reaches
50 percentage points for G1 and DB-L. This large difference is partly due to the
low number of artists per genre. However, even for DB-XL (results in Table 2.11)
the difference between AF+ and AF− is still 25 percentage points.

In addition to the nearest neighbor also k-NN accuracies are given for k equals
5, 10, and 20 to study the effect of using (or not using) an artist filter more ac-
curately. Particularly interesting is that the AF+ accuracies consistently decrease
with increasing k while the AF− accuracies increase. This confirms that results
measured without artist filter are not reliable performance indicators. Noticeable is
also that FP is not as strongly effected. This suggests that artist-based overfitting
is particularly a problem when using spectral similarity.
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Conclusions

One obvious conclusion is that all results reported in the remainder of this thesis
(unless stated otherwise) use an artist filter. Another conclusion from Table 2.8
is that no further G30 results are computed. The results show a high correlation
with G1 and G30S (Figures 2.20 and 2.21), the performance is similar (Table 2.8),
and G30 is more than a factor 100 slower than G30S and more than a factor 1000
slower than G1 (Table 2.1).

2.3.5 Optimization

The goal of this subsection is to optimize the weights of the linear combination.
First, the size of the parameter space is reduced by selecting the most promising
features for the combination. Second, the results of an exhaustive search in the
remaining space are presented.

2.3.5.1 Combining Two (Feature Selection)

Section 2.2 describes a total of 14 features which can be combined (according to
Equation 2.41) with a spectral similarity measure. Assuming that all weights are
in the range of 0 to 1 with a step size of 0.1 means that nearly 2 million different
combinations need to be explored, which is too computationally expensive. Thus,
it is necessary to select a subset of features for the combination.

To select a subset the 14 features are combined individually with spectral
similarity. Those which perform best are used for further analysis. To avoid
overfitting effects the combinations are measured with G1 and G30S and the results
are averaged. In addition, two collections are used (DB-MS and DB-L).

Figure 2.24 shows all the combination results. In addition to combining the
14 features with spectral similarity, also G1 is combined with G30S and vice versa
(this combination is abbreviated with “Spec. Sim.”). Based on the assumption
that combining these does not introduce new information, this serves as a baseline
for significant improvements.

The last column in Figure 2.24 shows the classification accuracies if the features
are used by themselves. FPs achieve the highest individual accuracy with 54% on
DB-MS and 24% on DB-L. Noticeable are that most combinations can improve
the spectral similarity only marginally. In several cases there is no improvement.
Using the combination of the G1 and G30S as significance baseline, improvements
of up to 1 percentage point can be considered insignificant on DB-MS.

Furthermore, noticeable are the smooth changes of the classification accuracy
between similar weights. That is, changing the weights by 10 percentage points
does generally not have a large impact on the accuracies. The exception is when
the weight of spectral similarity is dropped from 10% to 0%. At this point a large
decrease in accuracy is noticeable for most of the features.
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Figure 2.24: The results of combining two measures for DB-MS and DB-L. All
numbers are given in percent. The numbers below the table show the mixing
coefficients. The first column uses only (100%) spectral similarity, the last column
uses none (0%). For example, in the table in the upper left (DB-MS/G30S) the
fourth column in the second row is the accuracy for combining 30% ZCR with 70%
of G30S.
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DB-MS DB-L G30S G1
Overall

∑
G30S G1

∑
G30S G1

∑ ∑ ∑
FP Gravity 17.5 3.8 4.5 8.4 6.6 2.5 9.1 10.4 7.0
FP 16.1 1.6 2.3 4.0 7.9 4.2 12.1 9.5 6.5
Perc. 8.4 3.3 3.3 4.1 1.0 5.1 7.4 1.0
Noisiness 5.9 4.4 1.6 5.9 4.4 1.6
FP Bass 5.5 1.6 1.1 2.7 2.7 2.7 4.4 1.1
FP DLF 5.4 1.9 1.8 3.7 1.7 1.7 3.6 1.8
Spec. Sim. 5.2 1.5 1.1 2.6 2.6 2.6 4.1 1.1
SC 3.7 3.5 0.2 3.7 3.5 0.2
Avg. Loud. 3.3 0.5 0.5 2.0 0.8 2.8 2.6 0.8
FP Sum 3.2 3.0 0.2 3.2 3.0 0.2
FP Focus 2.7 1.8 1.8 0.9 0.9 0.9 1.8
FP Aggr. 2.1 2.1 2.1 2.1
FP Max 1.7 1.0 0.7 1.7 1.0 0.7
ZCR 1.3 1.3 1.3 1.3
RMS 0.1 0.1 0.1 0.1

Table 2.9: Maximum increase in accuracy (absolute percentage points) per feature
in combination with spectral similarity. Zero values are omitted.

Based on these results the 14 features are ranked in Table 2.9. For each feature
the maximum possible improvement is considered. Particularly interesting is that
the ranking does not correspond to the individual performance of the features.
For example, the individual performance of RMS is higher than the individual
performance of several of the other features. However, RMS is ranked last in
Table 2.9. Every improvement below the improvement of combining G1 with G30S
can be considered insignificant. Particularly noticeable are the poor performances
of RMS, ZCR, and FP Focus.

FP and FP Gravity are ranked top if either the average performance per col-
lection is considered, or the average performance per spectral similarity measure.
Except for those features which completely fail it is not so obvious which of the
other features are useful. Some work well combined with G1 (e.g. FP DLF) others
with G30S (e.g. Percussiveness). Some show significant improvements only on
DB-MS (e.g. FP Focus) others on DB-L (e.g. Noisiness). For simplicity, the top
6 features (all ranked above the G1-G30S combination) are selected for further
optimizations. These features are FP Gravity, FP, Percussiveness, Noisiness, and
FP Bass.

2.3.5.2 Combining Seven

There are 8008 possible combinations to consider given the 6 features selected
above, plus one spectral similarity measure, and using weights with a step size of
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0.1. The outcome of the evaluation of these 8008 combinations is summarized in
Figure 2.25.

The best combination weight for spectral similarity (for all 4 variations) is
around 60-80%. The largest increase occurs for DB-L with G30S where the increase
is more than 10 percentage points (compared to using only G30S). Particularly,
interesting is that for DB-L there are combinations without spectral similarity
which achieve the same or better performance as the spectral similarity by itself.
For DB-MS there are combinations which use only 10% spectral similarity and
outperform spectral similariy. Finding combinations which do not use spectral
similarity can be of interest if a vector space is a requirement of the application
(or if computation time is very critical).

Furthermore, noticeable are the smooth changes in accuracy on the x-axis
except between 10% and 0% spectral similarity. Features which do not have the
maximum value in the first column require a minimum contribution greater than
0 to achieve the best results. For example, for DB-MS with G30S at least 10%
contribution of Gravity and DLF are required to achieve 68% accuracy.

Table 2.10 lists the 10 combinations with the highest score. The score of a com-
bination is computed as mean absolute percentage increase compared to the base-
line (i.e., using only spectral similarity). The highest score is an average increase
of 6.14 percentage points. Considering how much room there is for improvements
this is rather disappointing.

Noticeable are that the best combinations frequently include FP, FP Gravity,
and FP Bass. However, in most cases their contribution is not higher than 10%.
Very interesting is that the differences between the highest possible scores and the
highest average score is not very large. The largest difference is 1.2 percentage
points for G1 and DB-L. These small differences do not justify using specifically
optimized weights for each collection. The best combination with 10% FP + 10%
FP Gravity + 10% FP Bass + 70% G1 will from now on be referred to as G1C
(where the C stands for combined).

A question which remains open is how significant these improvements are. Fig-
ures 2.26–2.28 give an impression of the variance one should expect. Figure 2.26
shows that combinations with 0 contribution of spectral similarity score consis-
tently worst. This is clearly visible by the zero variance for the combinations
from about rank 5000–8008. (The reason for the zero variance is that there is no
difference between G1 or G30S combinations if the contribution of the spectral
similarity is 0.)

The deviations between G1 and G30S are relatively small compared to the
performance increase. At least the top 500 combinations seem significantly better
than the baseline. These combinations have in common that they use at least 20%
spectral similarity.

Figure 2.27 shows even lower variances for DB-L (compared to DB-MS). No-
ticeable is that several 0% spectral similarity combinations score better than the
100% baseline. At least the top 1000 combinations seem significantly better than
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Figure 2.25: Summary of the 4×8008 results for combining 7 similarity measures
computed on DB-MS and DB-L using G30S and G1. All values are given in
percent. The mixing coefficients for the spectral similarity (the first row) are
given above the table, for all other rows below. For each entry in the table of all
possible combinations the highest accuracy is given. For example, the second row,
third column depicts the highest accuracy obtained from all possible combinations
with 20% Noisiness. The not specified 80% can be any valid combination of mixing
coefficients, e.g. 80% spectral similarity, or 70% spectral similarity and 10% FP
Gravity etc.



72 2 Audio-based Similarity Measures
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G1 G30S G1 G30S Score
1 10 10 10 70 67.4 67.4 32.4 35.2 6.14
2 10 10 10 10 60 67.1 66.4 33.0 34.6 5.83
3 10 10 10 70 66.8 66.4 31.8 34.7 5.46
4 10 10 80 67.4 65.7 32.1 34.4 5.44
5 10 10 20 60 66.1 66.9 31.5 34.9 5.42
6 10 20 10 60 65.7 66.4 32.6 34.5 5.36
7 10 10 10 10 60 63.9 66.1 33.6 35.6 5.35
8 10 10 80 66.8 66.1 31.8 34.1 5.26
9 10 20 10 10 50 64.9 66.1 32.7 35.1 5.25

10 10 10 10 10 60 67.2 66.8 30.9 33.9 5.25
11 10 10 80 68.2 66.7 31.0 32.9 5.25
25 10 20 10 60 64.1 65.2 32.7 35.6 4.92

515 30 20 50 66.0 68.4 26.5 29.5 3.15
2666 100 62.8 62.4 27.6 25.0 0.00

Table 2.10: Top 10 combinations. The last line is the baseline using only spectral
similarity. The first column is the rank. All values (other than the ranks) are given
in percent. Values marked with a line below and above are the highest accuracy
achieved for the specific combination of similarity measure and collection.
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Figure 2.26: Accuracies for all 8008 combinations on DB-MS. The first plot shows
the average accuracy for each combination. (That is, the average performance
when using G1 and G30S as spectral similarity.) The combinations are sorted ac-
cording to this average score. The dotted horizontal line marks the accuracy of the
combination which scored best in average on DB-MS and DB-L (see Table 2.10).
The solid horizontal line marks the accuracy of the baseline. The solid vertical
line marks the position of the baseline combination (i.e., the combination which
uses 100% spectral similarity). The last plot shows the contribution of the spectral
similarity.
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Figure 2.27: Accuracies for all 8008 combinations on DB-L. See Figure 2.26 for a
description of the plots.

the baseline. On the other hand, the improvements beyond the dotted line (the
combination which performed best in average) are obviously not significant.

The variances in Figure 2.28 are significantly higher compared to those in
the previous two figures. In fact, except for the G30S/DB-L only the top 100
combinations seem to offer significant improvements compared to the baseline.
This clearly shows the importance of using more than one music collection when
evaluating similarity measures.

2.3.5.3 Overfitting

To demonstrate overfitting the DB-S collection is used. The 8008 combinations
are evaluated for G1. The best combination has an accuracy of 43% (the baseline
is 31%). The combination which performed best in average on DB-L and DB-MS
(G1C) achieves 38%. Figure 2.29 shows that the variance is extremly high. In
fact, the 11-th best combination for DB-S has a score of −0.8 percentage points in
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Figure 2.28: Accuracies for all 8008 combinations sorted by their average scores
on DB-MS and DB-L. For a description of the plots see Figure 2.26.



76 2 Audio-based Similarity Measures

20

30

40
A

cc
ur

ac
y

1000 2000 3000 4000 5000 6000 7000 8008
−10

0

10

S
co

re

Rank

Figure 2.29: Demonstration of overfitting on the DB-S collection. The upper plot
shows the (sorted) accuracies for the 8008 combinations. The lower plot shows
the average score for DB-MS and DB-L. The dotted line is the score of the best
combination in average (G1C). The solid line is the baseline (G1).

average on DB-L and DB-MS. The best combination on DB-S has a average score
of 2.6 on DB-L and DB-MS.

There are a number of combinations in the top ranked positions which have
accuracies lower than the baseline. Thus, the optimization in this case can be
interpreted as classical overfitting. What has happened is that the collection used
for the optimization of the combination was too small. However, DB-MS and DB-
L are also quite small collections which only reflect a tiny fraction of all different
styles of music. The following subsection will evaluate if the improvements are
significant (to human listeners) and if they are observable on larger collections.

2.3.6 Evaluation

This subsection will first analyze the difference between the baseline and the im-
provements. Second, the impact of the length of the analyzed audio is studied.
Finally, a listening test is presented. The measures of interest are:

◦ G1: is much faster than G30S and the combinations perform more or
less identically in terms of quality.

◦ G1C: is the best combination found in Subsection 2.3.5. G1C is the
combination of 70% G1 + 10% FP + 10% FP Gravity + 10% FP Bass.

◦ M’05: is the similarity measure submitted by the author to the
MIREX 2005 genre classification contest [Pam05] and combines 65%
G30S + 15% FP + 15% FP Gravity + 5% FP Focus. M’05 was
optimized using DB-L, DB-MS, DB-S, and DB-ML.
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2.3.6.1 Analyzing the Improvement

Two questions will be dealt with in the following paragraphs. First, what is the
difference between G1 and G1C? Second, is this difference related to overfitting?
To show the difference between G1 and G1C confusion matrices are used for DB-L
(Figures 2.30-2.32) and later for DB-XL (Figures 2.34-2.36).

As can be seen in Figure 2.30 there are a number of confusions which make
sense. For example, death metal is confused with heavy metal, and German hip
hop with hard core rap. However, quite a number of confusions are very surprising
such as heavy metal/trash with a capella. Figure 2.31 shows that this particu-
lar confusion does not occur for G1C. However, other confusions are introduced
which are not much better. Figure 2.32 shows the differences between the two.
Most noticeable improvements are that 30 punk piece are no longer classified as
heavy metal/trash, 28 German hip hop and 19 hard core rap pieces are no longer
estimated to sound like jazz. A capella and punk are better distinguished from
other genres, etc.

However, on the other side, 35 folk rock pieces are classified as punk, the con-
fusion between German hip hop and hard core rap is much larger, jazz is generally
misclassified more often, etc. Overall, one would expect that fewer confusions
should occur between genres which have strong differences in characteristics re-
lated to rhythm, tempo, or beats. On the other hand, genres which exhibit large
variations in these aspects and less variation in instrumentation might tend to be
confused more often. Although there are such tendencies it is rather difficult to
find evidence for this in the confusion matrices.

The next question is: How does G1C perform on data not used for testing?
In particular, is G1C a result of overfitting? That is, is G1 just as good (or even
better) in general? To answer these questions the nearest neighbor accuracies (with
leave-one-out cross-validation) were computed for all six collections. Of interest
are the four not used to optimize the parameters (DB-S, DB-ML, DB-XL, DB-30).
The results are shown in Table 2.11.

As can be seen, G1C performs better than G1 (measured using an artist fil-
ter and nearest neighbor classifier) on DB-S (5% points), DB-ML (3% points),
and DB-30 (2% points). However, on the large DB-XL collection there is no
improvement (when considering only the nearest neighbor). Furthermore, the im-
provement on DB-ML is not a big surprise as DB-MS is a subset of DB-ML. M’05
performs slightly worse than G1C on DB-ML, DB-L, DB-XL, and slightly better
on the other collections. Considering the much larger number of features used
in this thesis (compared to [PFW05b]) the improvements are rather disappoint-
ing. An important question is whether these improvements matter to a listener.
That is, how does the improvement of 3 percentage points on genre classification
accuracies relate to a listener’s experience? This question will be dealt with in
Subsection 2.3.6.3. (As will be shown, in the case of DB-L the 3 percentage points
improvement of genre classification accuracies equals an improvement of over 7
percentage points on listeners’ similarity ratings.)
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Figure 2.30: Confusion matrix for DB-L and G1. Rows are the true genres,
columns are the predicted genres.
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Figure 2.31: Confusion matrix for DB-L and G1C.
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Figure 2.32: Difference between the DB-L confusion matrix between G1C and G1
(G1C minus G1).

DB-S DB-MS DB-ML DB-L
AF 1 1 5 10 20 1 5 10 20 1 5 10 20

G1 – 56 78 76 74 70 81 79 77 74 76 73 72 69
+ 31 63 65 66 54 57 59 28 30 31 31

G1C – 60 80 78 75 74 80 79 78 76 70 70 69 65
+ 36 67 68 68 57 59 60 32 35 34 33

M’05 – 56 82 76 72 70 80 79 77 74 74 72 70 67
+ 38 67 67 64 55 56 60 30 33 34 35

DB-XL DB-30
AF 1 5 10 20 1 5 10

G1 – 59 58 58 57 41 36 34
+ 31 33 35 37 11 11 13

G1C – 55 55 55 54 39 34 32
+ 31 35 36 38 13 13 15

M’05 – 55 55 55 54 41 36 35
+ 30 33 35 36 14 13 14

Table 2.11: Leave-one-out cross-validation results using a k-NN classifier with
k = 1, 5, 10, 20. If in any of the genres less than k items remained after applying
the artist filter, then the k value was not evaluated and left blank.
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Figure 2.33: Detailed differences between G1 and G1C measured on DB-XL with-
out and with artist filter. The plots show the average percentage of pieces at a
given rank position (the ranks are sorted according to the distance to the seed)
which belong to the same genre as the seed. In particular, the closest 200 pieces
to each piece in DB-XL are analyzed.

Figure 2.33 analyzes the difference between G1 and G1C on DB-XL in more
detail. As can be seen, both perform the same for the nearest neighbor. However, if
more neighbors are considered, then G1C consistently outperforms G1. A question
which is not answered in this thesis is whether these improvements are noticeable
by a human listener (within the context of an application).

Interesting in Figure 2.33 is that the artist filter effect is very noticeable. In
particular, if no artist filter is used, the performance for the 20 nearest neighbors
is very high. After these, the performance is very similar to the one of using an
artist filter. In average there are 27 pieces per artist. This indicates that for most
pieces 2/3 of the other pieces by the same artist are spectrally extremely similar.

Figures 2.34-2.36 show the confusion matrices for G1 and G1C on DB-XL.
Both completely fail to classify Christmas songs (which is not a surprise) and easy
listening. G1 frequently and G1C very frequently confuse country, alternative &
punk, and rock. G1C distinguishes electronica/dance from other genres better
than G1. In particular, the confusion with hip hop/rap is reduced. Furthermore,
classical music is better distinguished by G1C. On the other hand, jazz is better
distinguished by G1.

Another question that has arisen from these results is why the performance
of DB-30 is so extremely low. One possible answer might be that the similarity
measures do not work for very short (30 second) excerpts. This is analyzed in the
following paragraph.
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Figure 2.34: Confusion matrix for DB-XL and G1.
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Figure 2.35: Confusion matrix for DB-XL and G1C.
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Figure 2.36: Difference between the DB-XL confusion matrix between G1C and
G1 (G1C minus G1).

2.3.6.2 Impact of the Length of the Analyzed Audio

As mentioned in Subsection 2.2.2.5 two minutes from the center of each piece are
used for analysis. Table 2.12 shows the results when using 3, 2, 1 or 0.5 minutes of
the center of each piece for analysis (using DB-MS). The general tendency is that
the longer the analyzed excerpt, the better the results. However, the difference
between 120 and 240 is only minimal, while the feature extraction time is twice
as long. Thus, the answer to the question raised above is that the performance
on DB-30 is so low due to the type of music and the taxonomy. The classification
accuracies below 15% clearly point out the limits of using audio-based similar-
ity measures to automatically classify music into the taxonomoies used by music
distributors.

2.3.6.3 Listening Test

So far, all improvements have been measured using genre classification accuracies.
However, it remains unclear if these percentage points relate to judgments by
human listeners. To measure the relationship the following listening test was
conducted.

Setup

The listeners were presented a seed song and two similar pieces. One of these
pieces is the nearest neighbor according to G1, the other according to G1C. The
listeners are not informed which of the two alternatives is which. Furthermore,
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G1 G1C
Length AF – AF + AF – AF +
Seconds 1 5 10 20 1 5 10 1 5 10 20 1 5 10

30 74 73 70 68 59 65 62 75 74 73 69 63 65 65
60 79 74 71 69 63 65 64 77 74 73 71 64 66 65
90 80 76 73 69 63 66 66 79 77 75 72 65 68 66

120 78 76 74 70 63 65 66 80 78 75 74 67 68 68
180 81 77 76 70 64 66 67 82 77 77 75 68 68 69
240 81 76 76 72 63 67 68 81 79 77 73 66 69 69

Table 2.12: Impact of the length of the analyzed section of each piece on the
classification accuracies. All accuracies are given in percent and are computed on
DB-MS.

all artist, album, and track names are removed. The listeners were asked to rate:
how much they like the seed, and how similar they consider each of the two songs.
The scale used ranges from 1 to 9. The values are defined as follows: 1 terrible, 5
acceptable, 9 could not be better.

A stratified random sample of 100 seeds was selected from DB-L. Stratified,
such that the ratio of seeds for which G1 and G1C have a nearest neighbor from
the same genre as the seed corresponds to the distribution in the data. Thus
for G1C slightly more seeds were selected which had a nearest neighbor from the
same genre. Ensuring a fair distribution is important if one assumes that there is
a correlation between pieces being from the same genre and pieces being similar.
Furthermore, a total of 11% of all possible seeds were ignored because for those G1
and G1C have the exact same nearest neighbor. That is, in 11% of the cases there
is no difference at all (if only the nearest neighbor is considered). The reported
results only apply to the remaining 89% of the cases. This needs to be considered
when computing the overall difference.

One could argue that 100 seeds is not enough to reflect on one side the variation
of music in the collection, and on the other side the variation of the performance
of each similarity measure. In fact, it would be possible to select 100 seeds where
one measure performs perfect, or even easier to select 100 seeds where one measure
fails. Furthermore, in addition to using as many seeds as possible, it would be very
interesting to analyze more than just the nearest neighbor. Ideally, the listeners
would be asked to rate the closet 20 or more pieces. (As shown in Figure 2.33 some-
times the differences are only measurable beyond the nearest neighbor.) However,
organizing a large scale listening test was beyond the scope of this thesis. To show
significant differences between G1 and G1C on DB-XL a very large scale test would
have been necessary. Instead the listening test reported here uses DB-L where the
difference in classification accuracies is 3 percentage points.

The users were asked not to focus on melody, harmony, cultural context, or
rhythm but focus on overall sound characteristics. In general the listeners who
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Figure 2.37: Histogram of the absolute difference of differences for listeners’ rat-
ings. For example, listener A rates the similarity of the two songs with 5 and 7
respectively, and listener B rates the similarity with 7 and 8. Then the absolute
difference between the differences is 1 point (|(5− 7)− (7− 8)|).

were musically untrained had less problems with this definition of similarity. The
100 seeds were randomly grouped into 10 blocks. Most listeners were only asked
to rate one block and only few rated 2 blocks. The average time to answer one
block was between 15–40 minutes.

The listeners were allowed to listen to each songs as long, and as many times,
and in any sequence as they wanted. They were told that they could use the
position slider of the media player to zap through the piece (e.g. to skip the
introduction). In particular, the listeners were asked to get an impression of the
piece but not listen to the entire piece. The total number of participants was 25
of which 11 had musical training. There were 4 female and 21 male participants.
The 2 neighbors to each seed were rated by 3 listeners resulting in a total of 600
similarity ratings.

Results

The correlation between the listeners’ ratings was surprisingly high. This is shown
in Figure 2.37. As can be seen, in many cases the listeners fully agreed on the
difference between the differences of the two nearest neighbors. In most cases, the
difference was 1 point. Only in a few cases the listeners truly disagreed. This high
correlation between listeners albeit the weak definition of similarity confirms the
observations in [LS01].

The overall mean rating for G1 on DB-L is 5.73, and for G1C it is 6.37. The
absolute difference is 0.64 which is less than the resolution of the scale. This
corresponds to 8% points on the scale from 1 to 9. Considering that in 11% of the
cases the nearest neighbors for G1 and G1C are identical (and have been ignored in
the test) the overall improvement is about 7 percentage points or about 0.57 points
on the scale. This small difference makes it obvious that the even smaller difference
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Figure 2.38: Histogram and box plots of all ratings comparing G1 to G1C.

measured on DB-XL could not be analyzed with such a small scale listening test.
Nevertheless, there are some very significant differences. For example, for

G1C 37 times a match was rated with 9 (i.e. “perfect”), while for G1 only 19
times a match was rated with the highest. A histogram of all ratings is shown in
Figure 2.38.

No nearest neighbor got consistently the lowest rating (i.e. “terrible”) from the
three listeners it was exposed to. However, some pieces got very low scores. The
following four examples demonstrate the weaknesses of the similarity measures (2
examples are from G1C, 2 from G1).

A. The seed song is from DJ Shadow and is titled “What does your
soul look like (Part 1 - Blue Sky Revisit)”. It can be described as
calm electronic music. The nearest neighbor computed with G1C is
“Amazing Discoveries” by Fettes Brot. The users rated this match
with 1.67 in average. This match is actually not music. Instead,
German speakers simulate a television advertisements show. Perhaps
such mistakes could be avoided using metadata. Nevertheless, it is
very difficult to understand why the similarity measure considers the
two tracks similar. The nearest neighbor for G1 is “Quoterman” by
Kinderzimmer Productions and is rated with 5 in average. It is a
German rap song.

B. The seed song is “Run Along for a Long Time” from the Heavenly
Light Quartet, which is an a capella gospel group. The song has a
few rap elements. G1C matches the rap song “Constant Elevation”
by the Gravediggaz to it, which is rated with 1.67 in average. While
this match is understandable from its acoustic aspects it is a complete
failure from a cultural point of view. Again, metadata could perhaps
be used to filter such mistakes. G1 matches a song by the South
African a capella group named Ladysmith Black Mambazo. The song
is titled “Liph’ lquiniso”. This match is far better and is rated with 7
in average.
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C. The seed is FantasMic by Nightwish. The piece can best be described
as gothic, romantic metal ballad. It starts relatively soft, with a calm
female voice, and electrical guitars with drums. The second half is a
lot more energetic and faster (the song is longer than 8 minutes). G1
matches “Pay Attention” by US3 to it which is rated in average with
2. The song features female rappers and very different instruments,
for example, it contains no electrical guitars. On the other hand, G1C
matches Luminous by Stratovarius which is rated with 4 in average.
Luminous is a heavy metal ballad and not only culturally much similar.

D. The seed is “Land of ...” by St. Germain. It can be described as fusion
of jazz and house music. There are no vocals. G1 matches “Michi
Gegen Die Gesellschaft” by Die Fantastischen Vier. This German
hip hop song features a male rapper and has a very different style
compared to seed. It is rated with 2 in average. G1C also matches
a song from Die Fantastischen Vier: “Weiter Als Du denkst” which
is rated with 4.67 in average. It features male and female voices, is
slower and much softer than other match.

In total 32 times a G1 match was considered unacceptable (i.e, the ratings
were in average <5), and 14 times for G1C. There were 9 songs which were consis-
tently (by all three listeners) rated smaller than 5, and 6 songs for G1C. For some
applications even a low number of such failures can be unacceptable.

One of the main purposes of this listening test was to see how the results from
the genre-based evaluation correspond to human listeners’ ratings. For one, this
has already been supported by the fact that G1C performs better than G1 in the
listening test. To further analyze this, Figure 2.39 shows the ratings for pieces
from the same genre as the seed, and the ratings for pieces from different genres
as the seed. One would expect that ratings are significantly higher for pieces from
the same genre. The average rating for songs from the same genre is 6.21, the
average rating for songs from a different genre is 5.89. The difference is smaller
than expected. However, it is necessary to consider that according to the similarity
measure all matches are very similar to the seeds. If additional pieces with large
distances (according to the similarity measure) had been included the numbers
would have been quite different. Although these results confirm the assumption
that genre classification can be used to evaluate similarity measures they also
demonstrate the limits of this approach. In particular, more songs from different
genres are rated as “perfect” matches than songs from the same genre.

Finally, it is interesting to study if there are any correlations between how much
the listeners liked a seed and how the nearest neighbors were rated. For example,
if listeners do not like heavy metal (“it all sounds the same”), they might tend to
not differentiate as much as if they like the music. The correlation between how
much the users like the seeds and the absolute difference in ratings between the
two matches is 0.05. There is a positive tendency, but it is neglectable. A second
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Figure 2.39: Histogram and box plots of ratings for pieces from the same genre as
the seed compared to ratings for pieces from different genres as the seed.
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Figure 2.40: Histogram of the average difference between ratings per seed (G1 -
G1C). The shift to the left is significant according to the Wilcoxon test.

question is if listeners will generally tend to give the similarity measures lower
ratings if they dislike the seed song. The correlation between how much they like
the seed and how high they rated the neighbors is 0.13. Again, this is a positive
tendency, but it seems neglectable.

Statistical Significance

To test the statistical significance of the difference between G1 and G1C on DB-L
the non parametric Wilcoxon test can be used. The only assumption this test
makes is that the values are distributed symmetrically around a common mean.
This is confirmed to some extent in Figure 2.40. The figure shows the histogram
of differences between G1 and G1C for each seed song. In particular, for each
seed song all three differences (between the G1 and G1C match) are computed
and the average thereof is used. Thus, the three ratings for each seed-neighbor
pair are treated as multiple measurements of the same information (which are not
independent). The left-sided P-value for the test is 0.0005. This means that G1C
is in average rated significantly higher than G1 on DB-L.
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2.4 Limitations and Outlook

The similarity ratings of the computation models are far from perfect. For example,
in the listening test, users rated the average performance around 6 on a scale from
1 (terrible) over 5 (acceptable) to 9 (perfect). A interesting question is how much
the similarity measures can be further improved. Aucouturier and Pachet [AP04a]
observed in their experiments that it seems impossible to significantly improve
spectral similarity without higher level analysis of the music. The results in this
chapter confirm this. Using only low-level audio statistics there is a clear limit
and it is unlikely that variations of the features discussed in this chapter will
significantly improve the quality. In fact, since the publication of [AP04a] there
have been only very small improvements in terms of the quality.

While it seems that the limit for low-level audio statistics has been reached
(or at least is very close), there are still many opportunities based on higher level
analysis. In particular, there are two directions which seem promising: harmonic
analysis (including tonality, key, and chord progressions) and rhythmic analy-
sis (including rhythm patterns and tempo). Examples of recent work on har-
mony include [GB05; BP05; MKC05]. Examples of recent work on rhythm in-
clude [DPW03; DGW04; GDPW04; Gou05].

However, despite these opportunities, it is necessary to realize that in the
foreseeable future computational models of audio-based music similarity will not be
able to judge similarity the same way humans do. Although the judgment of music
similarity seems so effortless to a human listener it is a very complex process. On
the other hand, certain applications might not require perfect similarity measures.
For example, a certain degree of “variance” might be acceptable for automatically
generated playlists.

Another important limitation of the audio-based similarity measures is that
they cannot consider the quality of a piece. For example, they cannot distinguish
between a novice playing around on a piano, or a famous pianist playing a Mozart
sonata. Some of the difficulties of developing algorithms which are capable of
rating music were pointed out in [WE04]. Furthermore, in general emotions are not
considered. A few exceptions exist, for example, aggressiveness is often correlated
with loudness, strong beats, and noise.

While only small improvements have been made in the recent years in terms
of quality there has been a large reduction (by several factors) in the necessary
computation time. Further improvements are likely. Directions which have not
been investigated thoroughly include, for example, the application of indexing
methods such as M-Trees [CPZ97], or multi-resolution approaches such as the one
suggested in [RAPB05].

Another option to further improve the performance of audio-based similarity
measures is to combine them with additional information. Such information could
be based on collaborative filtering data, or web-based community data as described
in the next section.
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2.5 Alternative: Web-based Similarity

This section briefly describes how data available on the web can be used to compute
the similarity of artists. In particular, common web pages are used. Of particular
interest are pages containing artist reviews. To find these pages Google is used.
Word occurrence lists are created for the retrieved pages, and artist are compared
based on their word lists. In contrast to audio-based similarity measures such an
approach can describe the sociocultural context of an artist. This approach is used
in Chapter 3 to hierarchically organize and describe music collections at the artist
level.

2.5.1 Related Work

One of the first approaches using web-based data to compute artist similarities
was presented in [PWL01]. Co-occurrences on playlists from radio stations and
compilation CD databases were used to cluster a set of 12 songs and a set of
100 artists hierarchically according to similarity. The approach was demonstrated
using single-linkage agglomerative clustering.

Another source are common web pages [WL02; BH03]. The main idea is to
retrieve top ranked sites from Google queries and apply standard text-processing
techniques. Using the obtained word lists, the artist similarities are computed.
A drastically simplified approach is to use the number of pages found by Google
for a query containing two artist names [ZF04; SKW05b]. As the evaluation of
artist similarity is quite difficult [EWBL02] it is tempting to resort to a genre
classification scenario [KPW04]. Other web-based sources include expert opinions
(such as those available from the All Music Guide27), album reviews [WE04], or
song lyrics [LKM04].

A combination of audio-based and web-based sources is very desirable; however,
that is beyond the scope of this thesis. First approaches demonstrating the advan-
tages of the combination can be found, for example, in [WS02; WE04; BPS04]. A
particularly interesting approach is the work presented in [CRH05] which analyzes
online user profiles, news related to music, and the audio content to give recom-
mendations. A major difficulty is that the evaluation requires music collections
with a significant amount of artists.

2.5.2 Similarity Computations (Technique)

This subsection describes a technique to compute the similarity between artists.
The reason for not computing similarities between tracks or albums is that one can
expect more web pages describing and reviewing an artist than pages reviewing an
individual song (or album). This approach is a simplified version of the approach
originally presented in [WL02] and is based on standard text information retrieval

27http://www.allmusic.com
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techniques. In [KPW04] this approach was successfully applied to classify artists
into genres.

For each artist a query string consisting of the artist’s name as an exact phrase
extended by the keywords +music +review is sent to Google using Google’s SOAP
interface. This service is offered free of charge but is limited to 1000 queries a day
per registered user. Each query returns 10 pages.28 For each artist the 50 top
ranked pages are retrieved. All HTML markup tags are removed, taking only the
plain text content into account. Very frequent and unwanted terms are removed
using a stop word list.29

Let the term frequency tfta be the number of occurrences (frequency) of word
(term) t in the pages retrieved for artist a. Let the document frequency dfta be
the number of web pages (documents) for a in which t occurs at least once, and
let dft =

∑
a dfta.

First, for computational reasons, for each artist all terms for which dfta < 3
are removed. (The highest possible value for dfta is 50). Then all individual term
lists are merged into one global list. From this list all terms for which there is no
dfta ≥ 10 are removed. (That is, for at least one artist the term must occur in at
least 10 pages.)

In an experiment with 224 artists 4139 terms remained [PFW05a]. A list of the
artists is available online.30 The data is inherently extremely high-dimensional as
the first 200 eigenvalues (using an eigenvalue decomposition, also known as PCA)
are needed to describe 95% of the variance.

The frequency lists are combined using the term frequency × inverse document
frequency (tf× idf) function (here the ltc variant [SB88] is used). The term weight
per artist is computed as,

wta =

{
(1 + log2 tfta) log2

N
dft

, if tfta > 0,

0, otherwise,
(2.43)

where N is the total number of pages retrieved.
This results in a vector of term weights for each artist. The weights are normal-

ized such that the length of the vector equals 1 (Cosine normalization) to remove
the influence the document length would otherwise have. Finally, the distance
between two artists is computed as the Euclidean distance of the normalized term
weight vectors.

The evaluation of this approach within a genre classification context can be
found in [KPW04]. For the set of 224 artists (manually assigned to 14 genres) which
are used in the experiments described in Section 3.3 the classification accuracy is
of 85% for leave-one-out evaluation using a nearest neighbor classifier.

28http://www.google.com/apis
29http://www.ofai.at/˜elias.pampalk/wa/stopwords.txt
30http://www.cp.jku.at/people/knees/artistlist224.html
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2.5.3 Limitations

One of the main problems is that this approach relies on artist names. In many
cases this name might have several meanings, making it difficult to retrieve rele-
vant web pages. Whitman and Lawrence [WL02] pointed out some problematic
examples such as “Texas” or “Cure”. Another problem is that many new and not
so well known artist do not appear on web pages. Furthermore, it is unclear how
well this technique performs with artists from other (non-western) cultures.

2.6 Conclusions

In this chapter, an introduction to computational models of audio-based music
similarity was given. A number of different approaches were described. A proce-
dure to select the most promising features for combinations was demonstrated. In
particular, the number of candidates was reduced from 14 down to 6. This reduced
the number of combinations in the parameter space from over 2 million to 8008.

Furthermore, a procedure to optimize the weights for a linear combination of
similarity measures was demonstrated using 2 collections and 2 spectral similarity
measures to avoid overfitting. The importance of using an artist filter was illus-
trated. The optimizations were evaluated using 4 different collections. On 5 of the
6 collections used for the experiments the improvements were significant. On the
largest collection (DB-XL) the optimization showed only minimal improvements
compared to the baseline. Overall, the improvements were in the range of 0–5
percentage points.

An additional argument for the improvements is the reduced occurrence of
anomalies. In particular, mixing features from a vector space with the spectral
similarity reduced the number of pieces in the collection which are either always
similar or dissimilar (to all other pieces), and increased the number of cases where
the triangular inequality holds.

A listening test was presented which shows that human listeners’ similarity
judgments correspond to the genre-based evaluation. This justifies efficient opti-
mizations based solely on genre data. The listening test compared the baseline
(G1) to the best (G1C) combination of similarity measures. The test showed that
a 3 percentage point increase for genre classification accuracies corresponded to
about 7 percentage points higher similarity ratings by human listeners.

The limitations of audio-based similarity measures were discussed. In partic-
ular, it was pointed out that there have been only small improvements in the last
years in terms of quality. (While the necessary computation times have been re-
duced immensely.) Reaching beyond the current limits might be possible through
higher level features based on harmonic or rhythmic information. Recent work in
this direction seems promising. Finally, an alternative to audio-based similarity
computations was presented which is based on analysis of web pages and the use
of Google.
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2.6.1 Optimization and Evaluation Procedures

An important part of this chapter has been the procedures to optimize and evaluate
similarity measures. The three most important points have been:

1. Demonstrating the connection between human listeners’ similarity rat-
ings and the use of genre classification to evaluate similarity measures.

2. The analysis of more than just computation times and classification
accuracies. In particular, anomalies (always similar, triangular in-
equality, and always dissimilar) were studied.

3. The use of three strategies to avoid overfitting: (3a) the use of an
artist filter, (3b) using several collections for optimization and several
different collections for evaluation, (3c) using different implementa-
tions of the same approach (different types of spectral similarity) to
avoid overfitting (when combining spectral similarity with additional
features).

2.6.2 Recommendations

Based on the observations from the experiments reported in this thesis the fol-
lowing recommendations can be made. For small projects where the simplicity of
the code is a main issue (e.g. for a simple prototype demonstrating playlist gen-
eration) the use of G1 is recommendable. For larger projects G1C (G1 combined
according to Equation 2.42) is preferable. The additional features lead to only a
minor increase in computation time. On the collections used for the experiments
in this thesis the quality is at least as good if not significantly better than the
performance of G1. In addition, the effects of the similarity space anomalies are
reduced.

For applications where the anomalies can cause serious trouble, or applications
where a vector space is highly desirable, combinations where the contribution of
G1 is reduced might be of interest. For example, the combination ranked 9th
in Table 2.10) uses only 50% G1. Although not further analyzed in this thesis,
the results presented in Figure 2.25 suggest that combinations without spectral
similarity exist which achieve similar performances.

For real world applications it is necessary to use additional information to
filter results (e.g. Christmas songs). One approach could be to use the technique
described in Section 2.5 or any other source (including lyrics, metadata supplied
by the music distributor or third parties such as Gracenote or All Music Guide,
and collaborative filtering).



Chapter 3
Applications

This chapter describes three applications which are based on similarity measures.
The first application (Section 3.2) is the organization and visualization of music
collections using a metaphor of geographic maps [Pam01; PRM02b; PRM02a;
Pam03; PDW03a; PGW03; PDW04]. The second application (Section 3.3) is
the organization of music collections at the artist level. In contrast to the first
application a fuzzy hierarchy is used to structure the collection and automatic
summaries are created based on words found on web pages containing the artist’s
name [PHH04; PFW05a]. The third application (Section 3.4) is the dynamic
generation of playlists. Feedback given by the users by pushing a skip button is
used to dynamically improve a playlist [PPW05a].

3.1 Introduction

There are various applications for music similarity measures. Applications include
simple retrieval, recommendation based on user profiles, exploration, and music
analysis. Each application assumes specific usage scenarios in which the user plays
the central role.

There are several categories into which applications can be classified. One
is how much interaction they require. Roughly, there are two types. One type
allows active exploration to discover new music or new insights into music. The
other type is intended for more or less passive consumption of music. The first
two applications in this chapter belong to the first category. The third application
belongs to the second category.

Another category into which applications can be classified is the users’ fa-
miliarity with the music. For example, does the application support the users in
discovering something new? Or do they help the users manage their own (and thus
to some extend familiar) collections? In this context an interesting question is also
the size of the collections the applications are designed for. Some applications
might work best for sizes of a few hundred pieces while others can (theoretically)
deal with a few million.

Another difference is the level which the applications work in. In this chapter
there are two levels, namely, the artist level and the track level. Some approaches
can only work at the artist level (e.g. the web-based approach described in the
previous chapter). Other approaches, such as the audio-based similarity can deal
with any level (track, album, artist). In general, the type of similarity used (e.g.
audio or web) also has a strong impact on the application and its usage scenarios.
For example, audio-based similarity cannot be used to rate the quality of music,
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User Size of the User’s Familiarity Type of
Section Interaction Collection with the Music Similarity Level

3.2 active small any audio track
3.3 active very large unfamiliar web artist
3.4 passive large familiar audio track

Table 3.1: Rough categorization of applications in this chapter.

and thus requires additional precautions when using it to discover new music (to
avoid flooding the user with low quality music).

This chapter primarily serves to describe some ideas on how similarity measures
can be applied. The applications in this chapter can roughly be categorized as
described in Table 3.1.

Related Work

There are a large number of applications besides those described in this chapter.
For example, given a similarity measure for melody an application is query-by-
humming and its variations (see e.g. [GLCS95]). An overview of MIR systems
(many of which are applications of similarity measures) can be found in [TWV05].
Work specifically related to visualization of music collections is discussed in Sub-
section 3.2.2. Work related to representation of music collections at the artist
level is discussed in Subsection 3.3.2 and work related to playlist generation in
Subsection 3.4.2.

Structure of this Chapter

This chapter is structured as follows. In Section 3.2 an approach to organize
and visualize music collections using a metaphor of geographic maps is described.
The approach allows the user to interactively shift focus between different aspects
of similarity. In Section 3.3 an approach to organize music collections at the
artist level is described. In particular, artists are organized hierarchically into
overlapping groups. These groups are automatically summarized with words co-
occurring with the artists’ names on web pages. In Section 3.4 an approach to
dynamically generate playlists is described. Different heuristics are evaluated using
hypothetical use cases. In Section 3.5 conclusions are drawn.

3.2 Islands of Music

The goal is to develop visualization tools which allow users to efficiently explore
large music collections. Such visualizations would complement but not substitute
current approaches which are more or less based on lists of items within a category
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Figure 3.1: Islands of Music

(e.g. artists belonging to a genre). This section describes the Islands of Music
visualization approach. In addition, an extension which enables the user to browse
different views is described.

3.2.1 Introduction

The Islands of Music idea is to organize music collections on a map such that
similar pieces are located close to each other. The structure is visualized using a
metaphor of geographic maps. Figure 3.1 shows a 3-dimensional image of a map of
77 pieces of music. The idea is that each island represents a different style of music.
Similar styles are connected by land passages. Mountains and hills on an island
represent styles within styles, separated by valleys. These mountains and hills can
be labeled with abstract terms describing low-level audio signal characteristics to
help the user identify interesting regions. Furthermore, “weather charts” are used
to describe the value of one attribute (e.g. bass energy) across the different regions
of the map [Pam01; PRM02a].

This section describes the techniques used to compute Islands of Music. In ad-
dition, an extension is described which facilitates browsing different views [PGW03;
PDW03a; Pam03; PDW04]. A view is defined by a specific aspect of similarity,
e.g., rhythm or timbre. As the user gradually changes the focus between differ-
ent views the map smoothly adapts itself by reorganizing the pieces and thus the
structure of the islands. In particular, islands might merge, split, sink, or rise.

Limitations

Considering the original Islands of Music approach there are 3 major limitations.

A. Performance of the Similarity Measure
As discussed in the previous chapter, the performance of the audio-
based similarity measures is far from perfect. In several cases the
similarity matches are unacceptable. It is questionable if and how
many such errors the user is willing to accept on a map where every
piece is supposed to be close to all other pieces sounding similar. So
far no user studies have been conducted to answer this question. This
limitation is addressed in Section 3.4 where an application is suggested
which does not rely on a perfect similarity matches.
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B. Fuzziness of Music Similarity
One can argue that there is no single best place to map a piece of music
on the map. In particular, a piece might exhibit different styles and
might thus belong to several islands. Music similarity is inherently
fuzzy. This limitation is addressed in Section 3.3 where the music
collections are structured hierarchically (at the artist level) in such
a way that an artist can be in different categories at the same time.
This makes it easier to find artists which could belong to more than
one category (or island).

C. Various Aspects of Similarity
As already mentioned in the previous chapter, there are various as-
pects of similarity. Thus it is of interest to allow the users to adjust the
aspects they are interested in exploring. This is addressed in this sec-
tion. However, this approach is still limited by the similarity measures
which describe the aspects of similarity.

Structure of this Section

The remainder of this section is structured as follows. The next subsection gives
an overview of related work regarding the organization and visualization of music
collections. Subsection 3.2.3 describes the Self-Organizing Map (SOM) algorithm
which is used to organize and map the music collections onto 2 dimensions. Sub-
section 3.2.4 describes visualizations which can be used in combination with SOMs.
In Subsection 3.2.5 the Aligned-SOMs algorithm is described. This algorithm is
used to align different views, each defined by a different aspect of similarity. In
Subsection 3.2.6 a demonstration of browsing different views is given. Conclusions
are drawn in Subsection 3.2.7.

3.2.2 Related Work

The metaphor of geographic maps can been used to visualize various types of
information (including, e.g., visualization of large document archives [BWD02;
Sku04]). In general the work presented in this section is related to many other
approaches which visualize document collections and especially to those using Self-
Organizing Maps (e.g. [KHLK98; MR00]).

An implementation of the Islands of Music which allows the creation of playlists
by drawing lines on the maps was presented in [NDR05]. Hierarchical extensions
were presented in [RPM02; Sch03].

Mörchen et al. [MUNS05] present an approach similar to Islands of Music. The
authors use a variation of Self-Organizing Maps called Emergent Self-Organizing
Maps. Instead of the Smoothed Data Histograms visualization they use the U-
matrix to visualize clusters, they use a different color mapping where highly pop-
ulated areas on the map are represented by valleys (instead of mountains), and
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they use toroidal maps to avoid border effects.
Lübbers [Lüb05] uses a metaphor of geographic maps in addition to an aural

interface which allows the user to hear from a distance what music can be found in
each direction. Similar work on aural interfaces for sounds was presented in [FB01].

Vignoli et al. [vGVvdW04] present an approach to visualize a music collection
at the artist level. They use a variation of the Spring Embedder algorithm to
optimize the layout of a graph. In [vGV05] the authors use this visualization
to support playlist generation. A different approach using graphs to visualize
music collections at the artist level was presented by Schedl et al. [SKW05a].
Further alternatives to visualize and explore music collections include the work
presented in [CKGB02] which is based on the FastMap algorithm, the MusicSurfer
application presented in [CKW+05], or the work presented in [THA04] which is
based on metadata.

Related work which allows the user to adjust parameters of the similarity mea-
sure include [AP02a; BPS04; vGV05]. In [AP02a] the authors suggest a slider
to control “Aha-effects”. In particular, the slider can be used to control the in-
terestingness of matches. An interesting match is, for example, if a piece sounds
very similar but belongs to a different genre. In [BPS04] the users can control
the weights on a similarity measure. The different similarity aspects that can be
weighted are lyrics, sound, and style. In [vGV05] a system is presented where the
users can move “magnets” to adjust the aspects of similarity they are interested
in.

3.2.3 The Self-Organizing Map

The SOM [Koh82; Koh01] is an unsupervised neural network with applications in
various domains including audio and music analysis (e.g. [CPL94; FG94; SP01;
FR01]). As a clustering algorithm, the SOM is very similar to other partitioning
algorithms such as k-means [Mac67]. In terms of topology preservation for visu-
alization of high-dimensional data, alternatives include, e.g., Multi-Dimensional
Scaling [KW78], Sammon’s mapping [Sam69], and Generative Topographic Map-
ping [BSW98].

The SOM maps high-dimensional data to a 2-dimensional map in such a way
that similar items are placed close to each other. The SOM consists of an ordered
set of units which are arranged on a 2-dimensional grid (visualization space) called
the map. Common choices to arrange the map units are rectangular or hexagonal
grids. Each unit is assigned a model vector in the high-dimensional data space. A
data item is mapped to the best-matching unit, which is the unit with the most
similar model vector. The SOM can be initialized randomly, i.e., random vectors
in the data space are assigned to each model vector. Alternatives include, for
example, initializing the model vectors using the first two principal components of
the data [Koh01].

After initialization, two steps are repeated iteratively until convergence (i.e.,
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until there are no more significant changes in the mapping). The first step is
to find the best-matching unit for each data item. In the second step the best-
matching units and their neighbors are updated to better represent the mapped
data. The neighborhood of each unit is defined through a neighborhood function
and decreases with each iteration.

Details

To formalize the basic SOM algorithm, let D be the data matrix, let Mt be the
model vector matrix, the U be the distance matrix, let Nt be the neighborhood
matrix, let Pt be the partition matrix, and let St be the spread activation matrix.

The data matrix D is of size n × d, where n is the number of data items,
and d is the number of dimensions of the data. In case the data does not lie
in a vector space the distance matrix can be used. This was done, for example,
in [PDW03b]. For larger collections it is possible to reduce the dimensionality
either by analyzing principal components or (in the case of very large collections)
by random projections [Kas98; BM01].

The model vector matrix Mt is of size m× d, where m is the number of map
units. The values of Mt are updated in each iteration t. The matrix U of size
m × m defines the distances between the units on the map. The neighborhood
matrix Nt can be calculated, for example, as

Nt = exp
(
−U2/(2r2

t )
)
, (3.1)

where rt defines the neighborhood radius and monotonically decreases with each
iteration. The matrix Nt is of size m × m, symmetrical, with high values on the
diagonal, and defines the influence of one unit on another. The sparse partition
matrix Pt of size n×m is calculated given D and Mt as

Pt(i, j) =

{
1, if unit j is the best match for item i

0, otherwise.
(3.2)

The spread activation matrix St, with size n×m, defines the responsibility of
each unit for each data item at iteration t and is calculated as

St = PtNt. (3.3)

At the end of each loop, the new model vectors Mt+1 are calculated as

Mt+1 = S∗tDt (3.4)

where S∗t denotes the spread activation matrix, normalized so that the sum of each
column equals one, except for units to which no items are mapped.

There are two main parameters for the SOM algorithm. One is the map size;
the other is the final neighborhood radius. A larger map gives a higher resolution
of the mapping but is computationally more expensive. The final neighborhood
radius defines the smoothness of the mapping and should be adjusted depending
on the noise level in the data.
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a b c d

Figure 3.2: Illustration of the SOM. (a) The probability distribution from which
the sample was drawn. (b) The model vectors of the SOM. (c) The SDH and (d)
the U-matrix visualizations.

Illustrations

Figure 3.2 illustrates some important characteristics of the SOM. Samples are
drawn from a 2-dimensional probability density function. A SOM (8×6) is trained
so that the model vectors adapt to the topological structure of the data. There
are two important characteristics of the non-linear adaptation. First, the number
of data items mapped to each unit is not equal. Especially in sparse areas some
units might represent no data items. Second, the model vectors are not equally
spaced. In particular, in sparse areas the adjacent model vectors are relatively far
apart while they are close together in areas with higher densities.

Both characteristics can be exploited to visualize the cluster structure of the
SOM using smoothed data histograms (SDH) [PRM02b] and the U-matrix [US90],
respectively. The SDH visualizes how many items are mapped to each unit. The
smoothing is controlled by a parameter. The U-matrix visualizes the distance
between the model vectors. The SDH visualization (Figure 3.2(c)) shows the
cluster structure of the SOM. Each of the 5 clusters are identifiable. The U-matrix
mainly reveals that there is a big difference between the clusters in the lower right
and the upper right.

3.2.4 Visualizations

Various methods to visualize clusters based on the SOM have been developed.
This subsection describes the Smoothed Data Histograms and other visualizations
which are used for Islands of Music.

3.2.4.1 Smoothed Data Histograms

To create the Islands of Music metaphor the SDH visualization [PRM02b] can be
used. The basic idea is that each data item votes for the map units which represent
it best based on some function of the distance to the respective model vectors. All
votes are accumulated for each map unit and the resulting distribution is visualized
on the map.

A robust ranking function is used to gather the votes. The unit closest to a
data item gets n points, the second n-1, the third n-2 and so forth, for the n closest
map units. Basically the SDH approximates the probability density of the data on
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Figure 3.3: Weather chart metaphor for the distribution of bass energy on the
map.

the map, which is then visualized using a specific color scale. A Matlab toolbox
for the SDH is available online.1 For details of the impact of the parameter n and
a comparison to other cluster visualization techniques see [PRM02b]. Figure 3.2
demonstrates the SDH visualization using a toy example.

3.2.4.2 Weather Charts and Other Visualizations

Any attribute (such as an automatically extracted feature describing the bass
energy of a piece, or genre metadata) can be used to describe different regions on
the map. For example, landmarks such as mountains and hills can be labeled with
descriptions which indicate what type of music can be found in the respective area.
Details on the labeling of the Islands of Music can be found in [Pam01].

Alternatively a metaphor of weather charts can be used. For example, areas
with a strong bass are visualized as areas with high temperatures, while areas with
low bass correspond to cooler regions. Hence, for example, it becomes apparent
that the pieces are organized so that those with a strong bass are in the west and
those with less bass in the east. Figure 3.3 shows an example for a weather chart
visualization using the same map shown in Figure 3.1. The contours of the islands
are drawn to help the users keep their orientation.

Visualizing genre metadata can be very useful to evaluate the organization of
a map. An example where a map computed for DB-ML (see Subsection 2.3.3 for
a description of this collection) is visualized in terms of the genre distributions is
shown in Figure 3.4. Noticeable are that some genres form very compact clusters
such as punk. Others such as world are spread over the entire map.

1www.ofai.at/˜elias.pampalk/sdh
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AMBIENT CLASSICAL

ELECTRONIC FOLK

JAZZ METAL

NEW AGE POP

PUNK ROCK

WORLD

Figure 3.4: Distribution of genres on the SOM computed for DB-ML.
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Figure 3.5: Aligned-SOM architecture.

3.2.5 Aligned Self-Organizing Maps

The SOM is a useful tool for exploring a data set given a similarity measure. How-
ever, when exploring music, the concept of similarity is not clearly defined, because
there are many aspects to consider. Aligned-SOMs [PGW03; PDW03a; Pam03;
PDW04] are an extension to the basic SOM that enable the user to interactively
shift the focus between different aspects and explore the resulting gradual changes
in the organization of the data.

The Aligned-SOMs architecture consists of several mutually constrained SOMs
stacked on top of each other, as shown in Figure 3.5. Each map has the same
number of units arranged in the same way (e.g. on a rectangular grid), and all
maps represent the same pieces of music but organized with a different focus in
terms of aspects of timbre or rhythm, for example.

The individual SOMs are trained such that each layer maps similar data items
close to each other within the layer, and neighboring layers are further constrained
to map the same items to similar locations. To that end, a distance between indi-
vidual SOM layers is defined. This distance is made to depend on how similar the
respective views are. The information between layers and different views of the
same layer is shared based on the location of the pieces on the map. Thus, organi-
zations from arbitrary sources can be aligned. Figure 3.6 shows the neighborhood
radius which constraints units on the same map and units on neighboring maps.
Each map has its own similarity space.

3.2.5.1 Details

The basic assumption is that the similarity measure is parametrized. For example,
a parameter could control the weighting between rhythm and instrumentation re-
lated features. Given only one similarity parameter to explore p ∈ {pmin . . . pmax}
a SOM is assigned to each of the extreme values. These two SOMs are laid on
top of each other representing extreme views of the same data. Between these a
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Figure 3.6: The Aligned-SOM neighborhood radius and updating a model vector
(o) according to a data item (X) in different similarity spaces.

certain (manually defined, with computational restrictions) number of SOMs is in-
serted resulting in a stack of SOMs. Neighboring SOM layers in the stack represent
slightly different parameter settings. All SOMs have the same map size and are
initialized with the same orientation obtained, for example, by training the SOM
in the middle of the stack and setting all other layers to have the same orientation.
(This can be done by first using the assignment of pieces for the middle layer for all
other layers. Second, all model vectors are initialized based on this assignment.)

To align the SOMs during training it is necessary to define a distance between
layers which controls how smooth the transitions between layers are. Based on
this distance the pairwise distances for all units in the stack are calculated and
used to align the layers the same way the distances between units within a map
are used to preserve the topology.

The (online) training is based on the normal SOM training algorithm. A data
item and a layer are selected randomly. The best-matching unit for the item is
calculated within the layer. The adaptation strength for all units in the stack
depends on their distance to the best-matching unit. The model vectors within
the selected layer are adapted as in the basic SOM algorithm. For adaptations
in all other layers the respective representation of the data is used. The online
training algorithm is outlined in Table 3.2. For the experiments described in this
thesis a batch version of the Aligned-SOMs was used which is based on the batch
training algorithm for individual SOMs and described in the next paragraphs.

The batch version of the Aligned-SOMs training algorithm is very similar to
the batch SOM training algorithm described in Subsection 3.2.3. To train the
SOM layers, the distance matrix U is extended to contain the distances between
all units in all layers; thus the size of U is ml × ml, where m is the number of
units per layer, and l is the total number of layers. The neighborhood matrix is
calculated according to Equation 3.1. For each aspect a of similarity, a sparse
partition matrix Pat of size n × ml is needed. (In the demonstration discussed
in Subsection 3.2.6, there are three different aspects: two are calculated from the
spectrum and periodicity histograms, and one is based on meta-information.) The
partition matrices for the first two aspects are calculated using Equation 3.2 with
the extension that the best-matching unit for a data item is selected for each layer.
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0 Initialize all SOM layers.
1 Randomly select a data item and layer.
2 Calculate best-matching unit c for the item within the layer.
3 For each unit (in all layers),

a – Calculate adaptation strength using a neighbor-
hood function given:
– the distance between the unit and c,
– the radius and learning rate for this iteration.

b – Adapt the respective model vector using the
vector space of the particular layer.

Table 3.2: Online training algorithm for Aligned-SOMs. Steps 1–3 are repeated
iteratively until convergence.

Thus, the sum of each row equals the number of layers. The spread activation
matrix Sat for each aspect a is calculated as in Equation 3.3. For each aspect a
and layer i, mixing coefficients wai are defined with

∑
wai = 1 that specify the

relative strength of each aspect. The spread activation for each layer is calculated
as

Sit =
∑

a

waiSait. (3.5)

Finally, for each layer i and aspect a with data Da, the updated model vectors
Mait+1 are calculated as

Mait+1 = S∗itDa, (3.6)

where S∗it is the normalized version of Sit. In the demonstration in Subsection 3.2.6,
the Aligned SOMs are initialized based on the meta-information organization for
which only the partition matrix is given, which assigns each piece of music to a
map unit. For the two views based on vector spaces, first the partition matrices
are initialized, and then the model vectors are calculated from these.

Computation Time

The necessary resources in terms of CPU time and memory increase rapidly with
the number of layers and depend on the degree of congruence (or incongruence)
of the views. The overall computational load is of a higher order of magnitude
than training a single SOM. For larger datasets, several optimizations are possible;
in particular, applying an extended version of the fast winner search proposed by
Kaski [Kas99] would improve the efficiency drastically, because there is a high
redundancy in the multiple layer structure.

3.2.5.2 Illustration

Figure 3.7 illustrates the characteristics of Aligned-SOMs using a simple animal
dataset [Koh01]. The dataset contains 16 animals with 13 boolean features de-
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scribing appearance and activities such as the number of legs and the ability to
swim. The necessary assumption for an Aligned-SOM application is that there
is a parameter of interest which controls the similarity calculation. A suitable
parameter for this illustration is the weighting between activity and appearance
features.

To visualize the effects of this parameter 31 Aligned-SOMs are trained. The
first layer uses a weighting ratio between appearance and activity features of 1:0.
The 16th layer, i.e., the center layer, weights both equally. The last layer uses
a weighting ratio of 0:1, thus, focuses only on activities. The weighting ratios
of all other layers are linearly interpolated. The size for all maps is 3×4. The
distance between layers was set to 1/10 of the distance between two adjacent units
within a layer. Thus, the alignment between the first and the last layer is enforced
with about the same strength as the topological constraint between the upper
left and lower right unit of each map. All layers were initialized according to the
organization obtained by training the center layer with the basic SOM algorithm.

From the resulting Aligned-SOMs 5 layers are depicted in Figure 3.7. The
cluster structure is visualized using the SDH visualization. For interactive explo-
ration a HTML version with all 31 layers is available online.2 When the focus is
only on appearance all small birds are located together in the lower right corner
of the map. The Eagle is an outlier because it is bigger than the other birds. All
mammals are located in the upper half of the map separating medium sized ones
on the left from large ones on the right.

As the focus is gradually shifted to activity descriptors the organization changes
smoothly. When the focus is solely on activity the predators are located on the left
and others on the right. Although there are several significant changes regarding
individuals, the overall structure has remained the same, enabling the user to easily
identify similarities and differences between two different ways of viewing the same
data.

3.2.6 Browsing Different Views (Demonstration)

To demonstrate the Aligned-SOMs applied to music collections a HTML-based in-
terface was implemented [PDW03a]. Three different aspects are combined. One is
based on periodicity histograms which can be related to rhythmic characteristics.
The second aspect is based on spectrum histograms which relate to timbre. (Pe-
riodicity histograms and spectrum histograms are described in [PDW03a].) The
third aspect is based on metadata. In this specific case the pieces were manually
placed on the map. This aspect is referred to as the “user defined aspect” below.
Any other placement could be used (e.g. using album release date on the x-axis
and beats per minute on the y-axis).

A screenshot is shown in Figure 3.8. An online demonstration is available.2

For this demonstration a small collection of 77 pieces from different genres was

2http://www.ofai.at/˜elias.pampalk/aligned-soms
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Figure 3.7: Aligned-SOMs trained with the animal dataset. From left to right the
figures are (a) the first layer with weighting ratio 1:0 between appearance and ac-
tivity features, (b) 3:1, (c) 1:1, (d) 1:3, (e) 0:1. The shadings represent the density
calculated using SDH (n = 2 with bicubic interpolation). White corresponds to
high densities, gray to low densities.

used. Although real world music collections are significantly larger, in some cases
even small numbers can be of interest as they might occur, for example, in a result
set of a query for the top 100 in the charts. The limitation in size is mainly due
to the simple HTML interface. Larger collections would require an hierarchical
extension to the interface. For example, one approach would be to represent each
island only by the most typical member, and allow the user to zoom in and out of
the map.

The user interface (Figure 3.8) is divided into 4 parts: the navigation unit,
the map, and two codebook visualizations. The navigation unit has the shape of
a triangle, where each corner represents an organization according to a particular
aspect. The user defined view is located at the top, periodicity on the left, and
spectrum on the right. The user can navigate between these views by moving the
mouse over the intermediate nodes. In total there are 73 different nodes the user
can browse.

The current position in the triangle is marked red (the red marker is set to
the top corner in the screenshot). Thus, the current map displays the user defined
organization. For example, all classical pieces in the collection are grouped together
in the upper left. On the other hand, the island in the upper right of the map
represents pieces by Bomfunk MCs. The island in the lower right contains a
mixture of different pieces by Papa Roach, Limp Bizkit, Guano Apes, and others
which are partly very aggressive. The other islands contain more or less arbitrary
mixture of pieces, although the one located closer to the Bomfunk MCs island
contains music with stronger beats.

Below the map are the two codebook visualizations, i.e., the model vectors
for each unit. This allows the user to interpret the map and primarily serves
research purposes. In particular, the codebooks explain why certain pieces are
located in a specific region and what the differences between regions are. The
codebook visualizations reveal that the user defined organization is not completely
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Figure 3.8: Screenshot of the HTML-based user interface. The navigation unit
is located in the upper left, the map to its right, and beneath the map are the
codebook visualizations where each subplot represents a unit of the 10×5 SOM
trained on 77 pieces of music. On the left are the periodicity histogram code-
books. The x-axis of each subplot represents the range from 40 (left) to 240bpm
(right) with a resolution of 5bpm. The y-axis represents the strength level of a
periodic beat at the respective frequency. The color shadings correspond to the
number of frames within a piece that reach or exceed the respective strength level
at the specific periodicity. On the right are the spectrum histogram codebooks.
Each subplot represents a spectrum histogram mirrored on the y-axis. The y-axis
represents 20 frequency bands while the x-axis represents the loudness. The color
shadings correspond to the number of frames within a piece that reach or exceed
the respective loudness in the specific frequency band.
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Figure 3.9: Codebooks of the organization focusing solely on the periodicity his-
tograms. On the left is the codebook of the periodicity histograms, on the right
the codebook of the spectrum histograms. See Figure 3.8 for a description of the
axes.

Figure 3.10: Codebooks of the organization focusing solely on the spectrum his-
tograms. See Figure 3.8 for a description of the axes.
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Figure 3.11: Two extreme views of the data and the resulting Islands of Music.
On the left the focus is solely on the periodicity histograms, on the right the focus
is solely on spectrum histograms.

arbitrary with respect to the features extracted from the audio. For example,
the periodicity histogram has the highest peaks around the Bomfunk MCs island
and the spectrum histogram has a characteristic shape around the classical music
island. This characteristic shape occurs when most of the energy is in the low and
mid frequencies. The shadings are a result of the high variations in the loudness,
while the overall relatively thin shape is due to the fact that the maximum level
of loudness is not constantly reached.

The codebooks of the extreme perspectives are shown in Figures 3.9 and 3.10.
When the focus is solely on periodicity the model vectors of the SOM can better
adapt to variations between histograms and thus represent the histograms with
higher detail. The same applies for the codebook representing the spectrum his-
tograms. Also noticeable is how the organization of the model vectors changes as
the focus is shifted. While there is no obvious global structure in the organiza-
tion of the spectrum histograms when the focus is on periodicity, the organization
becomes apparent if the focus is changed to spectrum information.

An important characteristic of Aligned-SOMs is the global alignment of differ-
ent views. In this demonstration the user defined organization forces the periodic-
ity patterns of music by Bomfunk MCs to be located in the upper right. If trained
individually, these periodicity histograms would be found on the lower right which
is the furthest region from the upper left where pieces such as, e.g., Für Elise by
Beethoven can be found.

Figure 3.11 shows the shapes of the islands for the two extreme views focusing
only on spectrum or periodicity. When the focus is on spectral features the island
of classical music (upper left) is split into two islands where “H” represents piano
pieces and “I” orchestra. Inspecting the codebook reveals that the difference is
that orchestra music uses a broader frequency range. On the other hand, when the
focus is on periodicity a large island is formed which accommodates all classical
pieces on one island “A”. This island is connected to island “G” where also non-
classical music can be found such as the song Little Drummer Boy by Crosby &
Bowie or Yesterday by the Beatles. Although there are several differences between
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the maps the general orientation remains the same. For example, the island in the
upper right always accommodates the pieces by Bomfunk MCs.

3.2.7 Conclusions

This section described the Islands of Music idea and an extension which allows the
users to adjust the aspect of similarity they are interested in. This allows interac-
tive exploration of music collections by browsing different views. The Aligned-SOM
algorithm performs well on the toy example used and also on a different applica-
tion where the task is to analyze expressive piano performances [PGW03; GPW04].
However, the results for the music collections are not very convincing. The main
reason for this is that the performance of the similarity measures used to describe
different aspects of music is very limited.

Nevertheless, Aligned-SOMs can be used to compare two similarity measures
(e.g. [PDW03b]). Furthermore, they are not limited to the use of audio-based
similarity measures. Any form of similarity could be used (e.g. similarity defined
by experts). In addition, future improvements of audio-based similarity will make
the mapping of pieces into 2 dimensions more reliable. Perhaps it will be possible
to reach a level which will make it interesting to conduct user studies.

Alternatively, one approach is to avoid giving the user the impression that the
few pieces located close to each other are all of the similar pieces in the collection.
This will be dealt with in the next section. A second alternative is to develop
applications where, from a user’s perspective, some variance is actually desirable.
This will be dealt with in the Section 3.4.

3.3 Fuzzy Hierarchical Organization

This section describes an approach to hierarchically organize music collections at
the artist level. Artists are organized into overlapping groups according to similar-
ity. The reason for dealing with artists instead of tracks is that the similarities are
computed by analyzing the content of web pages ranked by Google (as described
in Section 2.5) which can only be done at the artist level. However, any similarity
measure can be used, also one which allows computation of the similarities at the
track level.

Furthermore, in this section the advantages and disadvantages of different
strategies to automatically describe these clusters of artists with words are an-
alyzed. A domain specific dictionary is used to improve the results. An HTML-
based demonstration is available.3 This section describes the work presented
in [PFW05a].

3http://www.ofai.at/˜elias.pampalk/wa
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3.3.1 Introduction

Hierarchical structures are necessary when dealing with large collections. The
approach described in this section uses a fuzzy hierarchical organization. This
allows an artist to be located in several branches of the hierarchy.

As mentioned in Subsection 3.2.1 music is inherently fuzzy. A piece of music
can exhibit different styles making it impossible to pigeonhole it. One approach to
deal with this is to use overlapping clusters. For example, if the first level in the
hierarchy gives the user the choice between rock and electronic music, it would be
difficult to find rock pieces with electronic influences (or the other way round). In
particular, it would require the users to search all possible branches to ensure that
they have not missed artists of interest (which is not the purpose of a hierarchical
organization).

In addition to the fuzziness of music, the performance of the similarity measure
is suboptimal. Rock pieces might wrongly be classified into the electronic branch.
However, for such pieces the second choice might have been to place them in
the rock branch. Introducing fuzziness (thus increasing the number of pieces per
branch) allows the system to correct false negatives. Furthermore, this avoids
giving the user a wrong impression about the accuracy of the structure.

A very important issue for hierarchical interfaces is how to summarize the
contents of a branch. That is, how can a group of similar artists be summarized
and described to the user. A good summary should be very short. A user should
be able to quickly read (or listen to) several summaries. Subsection 3.3.4 describes
an approach which uses a domain specific dictionary (i.e. a dictionary with terms
used to described music) to create summaries based on words which occur on web
pages containing the artists’ names.

Structure of this Section

This section is structured as follows. The next subsection gives an overview of the
background. In particular, some currently existing systems are briefly described.
Subsection 3.3.3 describes the fuzzy hierarchical clustering algorithm used to struc-
ture the data. Subsection 3.3.4 describes the techniques used to select words to
describe the clusters of artists. Subsection 3.3.5 describes and discusses the results
obtained for a music collection with 224 artists. Finally, conclusions are drawn in
Subsection 3.3.6.

3.3.2 Background

Approaches to organize music collections at the artist level exist and are in use.
One common approach is to use genres. Although such organizations are very
common they have limitations. As already discussed in Subsection 2.3.2 genre
taxonomies are inconsistent. There are usually no clear boundaries between genres
and many artists create music which fits to more than just one genre. In some cases
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Figure 3.12: Screenshot of Ishkur’s Guide to Electronic Music showing subgenres
for techno music.

an expert is required to correctly classify an artist into one of hundreds of genres
and subgenres. For example, Ishkur’s Guide to Electronic Music distinguishes 180
different genres just for electronic music.4 A screenshot of this guide is shown in
Figure 3.12. In such cases it is questionable how useful the genre labels (without
further information) are for non-experts.

The main advantage of organizing music into genres is that it enables users to
easily find similar music. In particular, if the users know that their favorite artist
belongs to a certain genre, they might want to explore other artists belonging
to the same genre. However, finding similar artists does not require categoriza-
tion into genres. For example, Amazon5 (Figure 3.13) and the All Music Guide6

(Figure 3.14) offer lists of similar artists to explore.
Amazon customers can browse genres (or categories) if they like. However,

once they searched (or selected) a specific artist this option is not displayed on the
artist’s web page. Similarly, All Music Guide categorizes artists into genres and
styles. However, the list of similar artists is placed easily accessible next to the
list of genres and styles on the web page.

4http://www.di.fm/edmguide
5http://amazon.com
6http://allmusic.com
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Figure 3.13: Screenshot of the information Amazon displays for an artist (Ben
Harper in this case). In the lower left of the screen is a list of similar artists.
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Figure 3.14: Screenshot of the information the All Music Guide displays for an
artist (Ben Harper in this case). In the lower center of the screen is a list of similar
artists.
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Figure 3.15: Screenshot of Liveplasma with the query results for “Ben Harper”.
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Another available system which visually organizes music at the artist level is
Liveplasma.7 A screenshot is shown in Figure 3.15. Each artist is represented by
a disc. The size of the disc corresponds to the popularity. Lines connect similar
artists.

In contrast to these commercial systems this section describes an approach
which does not display artist names to the user. The assumption is that the user
does not know the artist names. Furthermore, the users do not need to start with
a familiar artist. Another difference is that the approach described in this section
does not require knowledge of customers’ shopping behavior or experts to annotate
the data. Instead the similarities are computed using common web pages.

The same hierarchical approach used here to organize artists has been previ-
ously applied to organize large collections of drum sample libraries [PHH04]. The
basic idea is similar to the approach used by the search engine vivisimo.8 Other ap-
proaches which organize music collections at the artist level include [vGVvdW04]
and [SKW05a].

3.3.3 Hierarchical Clustering

The user interface defines the requirements for the clustering algorithm. The user
interface is shown in Figure 3.19. Instead of complex graphical visualizations
simple lists of words are used to present the information. The user interface
supplies room for 5 nodes per level of the hierarchy. This number is more or
less arbitrary and can easily be changed. However, the important point is that the
number is fixed and does not vary.

A clustering technique which fulfills these simple requirements is the one-
dimensional Self Organizing Map which can be structured hierarchically [Mii90;
KO90]. More flexible approaches include the Growing Hierarchical SOM [DMR00]
and variations (e.g. [PWC04]). Other alternatives include, for example, Hierarchi-
cal Agglomerative Clustering as used in [PWL01].

The SOM groups similar items into clusters and places similar clusters close
to each other. To create an overlap between clusters the size of each cluster is
increased by 20% after training the SOM. This is done by adding artists closest
to the model vector. This overlap makes it easier to find artists which are on the
border of two or more clusters.

Recursively, for each cluster another one-dimensional SOM is trained (for all
artists assigned to the cluster) until the cluster size falls below a certain limit (e.g.
if less than 7 artists remain). Figure 3.16 shows the basic architecture. In [PHH04]
the same one-dimensional overlapping clustering approach and a similar user in-
terface was used to organize large drum sample libraries. The feedback gathered
from the users was very positive.

7http://liveplasma.com
8http://www.vivisimo.com
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Figure 3.16: Basic architecture of the fuzzy hierarchy.

Evaluation of the Clustering

The easiest way to evaluate the cluster hierarchy is to test whether artists from the
same genre are grouped together. For the evaluation described here a collection
of 224 artists was used. A list of the artists is online.9 Each of the 14 genres is
represented by 16 artists. The genres are listed in Figure 3.17.

Figure 3.17 shows the distribution of the genres within the nodes (i.e. clusters)
in the hierarchical structure. (A screenshot of how the hierarchy is displayed in the
user interface is shown in Figure 3.19.) At the first level classical music (node n1)
is well separated from all other music. The effects of the overlap are immediately
visible as the sum of artists mapped to all units in the first layer is beyond 224.
One example for a direct effect of the overlap is that there is jazz music in node
n1, which would not be there otherwise. The nodes n1 and n5 are the only ones at
the first level containing jazz music. Electronic and rap/hip-hop is only contained
in n2 and n3, and blues only in n4 and n5.

At the second level most nodes have specialized. For example, n5.1 contains
34 artists mainly from jazz and blues and few from rock & roll. Another nice
example is n3.2 which contains mostly punk but also some alternative. An inter-
esting observation is that the one-dimensional ordering of the SOM (i.e. similar
units should be close to each other) is not apparent. One reason for this might be
the extremely high-dimensional data (as mentioned in Subsection 2.5.2, 200 eigen-
vectors are necessary to preserve 95% of the variance in the data). Furthermore,
noticeable is that there are some nodes which seem to contain a bit of almost every
genre.

Figure 3.18 shows what happens at the third level (in the subbranch of node
n2). For example, while node n2.3 contains artists from punk and soul/R&B none
of its children mix the two. Another positive example is that node n2.5.1 captures
most of the electronic music in n2.5. However, as can be seen the clustering is far
from perfect and leaves a lot of room for improvement. These deficiencies can be
traced back to the performance of the similarity measure.

9http://www.cp.jku.at/people/knees/artistlist224.html
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Figure 3.17: Distribution of the 14 genres in the nodes of the first level (L1, first
row) and second level (L2, all columns starting with the second row). For example,
n2.4 (L2 node) is the fourth child of parent n2 (L1 node). Each subplot represents
the distribution of genres in a node (visualized as histogram and displayed in two
lines to save space). Black corresponds to high values. The boxes in the histogram
correspond to the following genres: A alternative/indie, B blues, C classic, D
country, E electronic, F folk, G heavy, H jazz, I pop, J punk, K rap/hip-hop, L
reggae, M R&B/soul, N rock & roll. The numbers in brackets are the number of
artists mapped to the node.

3.3.4 Term Selection for Cluster Description

Term selection is a core component of the user interface. The goal is to select
words which best summarize a group of artists. The approach described here is
based on three assumptions with respect to the user interaction. First, the artists
are mostly unknown to the user (otherwise it would be possible to label the nodes
with the artists’ names). Second, it is unknown which artists the user knows
(otherwise these could be used to describe the nodes). Third, the assumption is
made that space is very limited and thus each node should be described with as few
words as possible. Dropping the second assumption could lead to very interesting
interactive user interfaces. However, this is beyond the scope of this thesis.

In the experiments described here five term selection techniques are compared.
In addition, two different approaches with respect to the set of terms to start with
in the first place are compared. In addition to the straightforward approach to use
the terms which are also used for the similarity computations, an approach based
on a domain-specific dictionary is used.
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Figure 3.18: Distribution of the 14 genres in the nodes of the second (L2) and
third (L3) level in the subbranch of node n2.

3.3.4.1 Techniques

Given are the term frequency tfta, document frequency dfta, and the Cosine nor-
malized tf × idf weight wta for each term t and artist a (see Subsection 2.5.2). A
straightforward approach is to use the tf×idf computations, i.e. wta. For each node
(i.e. cluster c) the average of the assigned artists is computed wtc = 1/|c|

∑
a∈c wta,

and the terms with the highest values are selected.
The second approach is called “LabelSOM” [Rau99] and has successfully been

applied to label large document collections organized by SOMs. LabelSOM is built
on the observation that terms with a very high wtc and a high variance (i.e., they
are very rare in some of the documents in the cluster) are usually poor descriptors.
Thus, instead of wtc the variance of wta in c is used to rank the terms (better
descriptors have lower variances). Since terms which do not occur in c (wtc = 0)
have variance 0, terms with wtc below a manually defined threshold are removed
from the list of possible candidates. This threshold depends on the number of input
dimensions and how the vectors are normalized. In the experiments described here
the input dimension is 4139 (see Subsection 2.5.2) and a threshold of 0.045 is used.
For the approach with the dictionary (see below) where the input dimension is 1269
a threshold of 0.1 is used. In cases where a cluster consists of only on artist the
tf × idf ranking is used instead.

Neither tf × idf ranking nor LabelSOM try to find terms which discriminate
two nodes. However, emphasizing differences between nodes of the same parent
helps reduce redundancies in the descriptions. Furthermore, the assumption can be
made that the user already knows what the children have in common after reading
the description of the parent. A standard technique to select discriminative terms
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is the χ2 (chi-square) test (e.g. [YP97]). The χ2-value measures the independence
of t from group c and is computed as,

χ2
tc =

N(AD −BC)2

(A + B)(A + C)(B + D)(C + D)
(3.7)

where A is the number of documents in c containing t, B the number of docu-
ments not in c containing t, C the number of documents in c without t, D the
number of documents not in c without t, and N is the total number of retrieved
documents. As N is equal for all terms, it can be ignored. The terms with highest
χ2

tc values are selected because they are least independent from c. Note that the
document frequency is very informative because dfta describes the percentage of
times the terms occur in the 50 retrieved documents per artist (as described in
Subsection 2.5.2).

The fourth technique was proposed by Lagus and Kaski (LK) [LK99]. Like La-
belSOM it was developed to label large document collections organized by SOMs.
While χ2 only uses df , LK only use tf . The heuristically motivated ranking formula
(higher values are better) is,

ftc = (tftc/
∑
t′

tft′c) ·
(tftc/

∑
t′ tft′c)∑

c′(tftc′/
∑

t′ tft′c′)
, (3.8)

where tftc is the average term frequency in cluster c. The left side of the product
is the importance of t in c defined through the frequency of t relative to the
frequency of other terms in c. The right side is the importance of t in c relative to
the importance of t in all other clusters.

The fifth approach is a variation of LK. It serves to demonstrate the effects
of extreme discrimination. In particular, in this variation tftc are normalized over
the whole collection such that a word which occurs 100 times in cluster c and
never in any cluster is equally important to a word that occurs once in c and never
otherwise. As shown later this approach can only produce meaningful results when
used in combination with a specialized dictionary. All terms which do not occur
in at least 10% of the documents per cluster are ignored. The ranking function
(higher values are better) is,

ftc = (tftc/
∑
c′

tftc) ·
(tftc/

∑
c′ tftc′)∑

c′′(tftc′′/
∑

c′ tftc′)
. (3.9)

In addition two combinations are implemented. In particular combining LK
with χ2, and the LK variant with χ2. In both cases the values are combined by
multiplication.

3.3.4.2 Domain-Specific Dictionary

One of the main pillars of this section is the use of a dictionary to avoid describing
clusters with artist, album, and other specialized words likely to be unknown to
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the user. This dictionary contains general words used to describe music, such
as genre names. The dictionary contains 1398 entries,10 1269 of these occur in
the retrieved documents. The dictionary was manually compiled by the author
in a sloppy manner by copying lists from various sources such as Wikipedia, the
Yahoo directory, allmusic.com, and other sources which contained music genres
(and subgenres), instruments, or adjectives. The dictionary is far from complete
and contains terms which should be removed (e.g. world, uk, band, and song).
However, to get a better understanding of possible drawbacks the original version
of the dictionary was not modify.

Each retrieved web page is parsed and the term frequencies, document frequen-
cies, and tf × idf are computed. A question that arises is why the dictionary was
not used in the first place to compute the similarities. There are two reasons.

First, the classification performance using k-nearest neighbors with leave-one-
out validation is only about 79% compared to the 85% of the standard approach.
Considering the size of the collection this might not be significant. However, the
explanation for this is that the standard approach captures a lot of the very specific
words such as the artists’ names, names of their albums and many other terms
which co-occur on related artist pages.

Second, while the dictionary is an important pillar of this approach an effort
is made not to rely too much upon it. By manipulating the dictionary it is very
likely that 100% classifcation accuracies can be achieved on the set of 224 artists.
However, such results could not be generalized to other music collections. Further-
more, in the current approach the specialized dictionary can be replaced at any
time without impact on the hierarchical structure.

Limitations

As already mentioned the dictionary has some limitations. For example, it includes
terms that do not help summarize clusters such as song, uk, band, world, and
musical. As can be seen in Tables 3.3 and 3.4 these words occur very frequently.
On the other hand, some terms were completely forgotten such as love and hate.
Another problem are equivalences which are not dealt with. Examples include:
hip-hop and hip hop, rock and roll and rock & roll, rock and pop and pop/rock.
Furthermore, no attempt is made to deal with different languages, the dictionary
contains only English terms.

3.3.5 Results and Discussion

In this subsection first the implemented user interface is described. Second, dif-
ferent term selection techniques are compared. This is done using simple lists of
words (see Tables 3.3 and 3.4). Finally, the approach is discussed.

10http://www.ofai.at/˜elias.pampalk/wa/dict.txt
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Figure 3.19: Screenshot of the HTML user interface.

3.3.5.1 User Interface

To demonstrate the approach a very simple HTML interface was implemented.11

There are two parts of the interface: the hierarchy of clusters visualized as a grid
of boxed texts and, just to the right of it, a display of a list of artists mapped
to the currently selected cluster. The clusters of the first level in the hierarchy
are visualized using the five boxes in the first (top) row. After the user selects a
cluster, a second row appears which displays the children of the selected cluster.
The selected clusters are highlighted in a different color. The hierarchy is displayed
in such a way that the user can always see every previously made decision on a
higher level. The number of artists mapped to a cluster is visualized by a bar
next to the cluster. Inside a text box, the highest ranked terms are displayed.
In general the top 10 are shown, however, if a term’s value is below 10% of the
highest value then it is not displayed.

The value of the ranking function for each term is coded through the color
in which the term is displayed. The best term is always black and as the values
decrease the color fades out. For debugging purposes it is also possible to display
the list of all ranked words for a cluster. Figure 3 shows what the user interface
looks like (using LK labeling) after node n2.5.1 was selected (thus 4 levels are
visible).

11http://www.ofai.at/˜elias.pampalk/wa
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with dictionary without dictionary

tf × idf

n1 classical, piano, orchestra, symphony, musical classical, piano, orchestra, works, composer
n2 song, pop, world, uk, band listen, color, news, pop, size
n3 song, band, pop, world, guitar band, listen, great, pop, live
n4 song, band, guitar, pop, world color, listen, live, pop, size
n5 song, blues, band, guitar, world color, size, family, listen, blues

LabelSOM

n1 world, musical, concert, song, uk two, information, musical, recordings, great
n2 world, musical, classical, song, real content, know, people, listen, sound
n3 musical, world, song, group, pop great, sound, news, listen, live
n4 musical, world, classical, song, pop content, great, information, pop, listen
n5 musical, classical, group, song, world information, great, content, listen, pop

χ2

n1 piano, orchestra, symphony, concert, opera classical, composer, musical, great, piano
n2 dance, rap, hip-hop, beats, group news, pop, sound, track, release
n3 guitar, musical, group, punk, metal band, sound, live, great, pop
n4 musical, guitar, country, group, blues live, band, pop, news, policy
n5 blues, band, country, pop, jazz blues, jazz, country, hits, policy

Lagus & Kaski

n1 piano, symphony, classical, orchestra, opera op, bach, piano, symphony, classical
n2 song, rap, hip-hop, pop, dance hop, hip, rap, listen, pop
n3 band, punk, metal, song, pop band, punk, metal, bands, great
n4 country, song, band, guitar, pop country, alice, elvis, brooks, rate
n5 blues, jazz, country, soul, reggae blues, jazz, color, john, size

χ2· LK

n1 piano, orchestra, symphony, opera, violin classical, piano, composer, orchestra, symphony
n2 rap, dance, hip-hop, beats, uk news, pop, hop, hip, track
n3 punk, guitar, metal, musical, group band, punk, live, sound, great
n4 country, guitar, musical, group, blues country, live, band, pop, hits
n5 blues, jazz, country, band, soul blues, jazz, country, john, hits

Lagus & Kaski variant

n1 rondo, fortepiano, contralto, fugue, mezzo nabucco, leopold, cycles, figaro, sonatas
n2 hardcore techno, latin rap, pies, grandmaster, hash, tricky, pimp

southern rap, east coast rap
n3 pop-metal, melodic metal, detroit rock, roisin, pies, hash, dez, voulez

flamenco guitar, math rock
n4 new traditionalist, british folk-rock, csn, dez, voulez, shapes, daltrey

progressive bluegrass, gabba, slowcore
n5 rockabilly revival, new beat, progressive hodges, precious, shanty, broonzy, dez

country, vocalion, freakbeat

χ2· LK variant

n1 piano, orchestra, symphony, opera, violin classical, symphony, composer, piano, orchestra
n2 rap, hip-hop, beats, dance, cool hop, hip, rap, eminem, dj
n3 punk, metal, guitar, punk rock, hard band, punk, metal, bands, live
n4 country, guitar, country music, folk, group country, brooks, elvis, dylan, hits
n5 blues, jazz, country, soul blues, jazz, willie, otis, john

Table 3.3: List of top ranked terms for nodes on the first level.
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with dictionary without dictionary

Lagus & Kaski

n5.1 blues, jazz, guitar, band, orchestra blues, jazz, john, coltrane, basie
n5.2 soul, blues, song, gospel, pop aretha, soul, redding, king, franklin
n5.3 reggae, ska, song, world, dancehall marley, reggae, tosh, cliff, baez
n5.4 country, country music, song, bluegrass, folk country, hank, elvis, cash, kenny
n5.5 band, song, pop, guitar, blues elvis, roll, rate, band, bo

LK variant (with dictionary)

n5.1 hot jazz, post-bop, vocalion, rondo, soul-jazz, classic jazz, hard bop, superstitious, octet
n5.2 british blues, pornographic, colored, classic soul, sensual, erotic, precious, rap rock, stylish
n5.3 vocal house, soca, british punk, gong, ragga, ska, dancehall, dancehall reggae, hard house
n5.4 new traditionalist, yodelling, middle aged, country boogie, outlaw country, rockabilly revival
n5.5 experimental rock, boogie rock, castanets, psychedelic pop, pagan, dream pop, crunchy

Table 3.4: List of top ranked terms for the children of node n5.

3.3.5.2 Comparison of Term Selection Techniques

Table 3.3 lists all top-ranked words for the different approaches at the first level.
Table 3.4 lists some examples of the second level (for the children of node n5).
Comparing these tables with Figures 3.17 and 3.18 shows how different types of
genres are described. For example, in most cases describing the classical cluster
(node n1) works very well.

In general the following observations were made: First, the results using the
dictionary are better in most cases. The difference is more obvious at the second
level (for the children of node n5). In particular, using the dictionary avoids the
frequent appearance of artist names.

Second, not all words in the domain specific dictionary make sense. Although
not directly noticeable at the first level there are some words which appear fre-
quently in the top-ranked words but do not convey much information: world, uk,
band, song, musical. On the other hand, words such as love and hate are missing
in the dictionary. Having a few meaningless words is not such a big problem. In
an interactive interface the user could just click on the words to remove and the
interface could be updated immediately. However, adding missing words to the
dictionary requires scanning all the retrieved documents for occurrences.

Third, the performance of the non discriminating approaches (tf × idf , Label-
SOM) is very poor. On the other hand, all discriminative approaches (χ2, LK,
and combinations) yield interesting results with the dictionary. However, the LK
variant by itself focuses too much on the differences. Obviously, to truly judge the
quality of the different variations would require user studies. However, it seems
that the approach from Lagus & Kaski performs slightly better than the others.

3.3.5.3 Discussion

One of the main problems is that the similarity measure relies on artist names. In
many cases this name might have several meanings making it difficult to retrieve
relevant web pages. Another problem is that many new and not so well known
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artist do not appear on web pages. Furthermore, the dictionary used contains
terms mainly used in western culture. This limits the implemented approach to
yesterday’s mainstream western culture. However, the dictionary could easily be
replaced. Another issue is the dynamics of web contents (e.g. [LG99]). This was
studied in [KPW04] and [Kne04]. So far significant changes were observed in the
Google ranks, but these did not have a significant impact on the similarity measure.
In an ideal case, the web-based similarity measure would be complemented with
data from other sources such market basket analysis, collaborative filtering, and
audio signal analysis.

3.3.6 Conclusions

This section demonstrated possibilities to hierarchically organize music at the
artist level. In particular, hierarchical overlapping clusters were described using
a domain-specific dictionary. The results are very promising. However, so far no
user based evaluation was conducted.

3.4 Dynamic Playlist Generation

Common approaches to creating playlists are to randomly shuffle a collection (e.g.
iPod shuffle) or manually select songs. In this section heuristics to adapt playlists
automatically given a song to start with (seed song) and immediate user feedback
are presented and evaluated.

Instead of rich metadata audio-based similarity is used. The users give feedback
by pressing a skip button if they dislike the current song. Songs similar to skipped
songs are removed, while songs similar to accepted ones are added to the playlist.
The heuristics are evaluated with hypothetical use cases. For each use case a
specific user behavior (e.g. the user always skips songs by a particular artist) is
assumed. The results show that using audio similarity and simple heuristics the
number of necessary skips can be reduced drastically. This section describes the
work presented in [PPW05a].

3.4.1 Introduction

There are different ways to create playlists. One extreme is to very carefully select
each piece and the order in which the pieces are played. Another extreme is to
randomly shuffle all pieces in a collection. While the first approach is very time
consuming, the second approach produces useless results if the collection is very
diverse.

This section describes an alternative which requires little user interaction even
for very diverse collections. The goal is to minimize user input and maximize
satisfaction. The assumptions are:
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1. First, a seed song is given. The problem of browsing a large collection
to find a song to start with is not addressed. (If more than one song
to start with is given then the task is simplified.)

2. Furthermore, a skip button is available and easily accessible to the
user. For example, this is the case if the user runs Winamp while
browsing the Internet.

3. Finally, the assumption is made that the user is “lazy” and is willing
to sacrifice quality for time. In particular, the assumption is that all
the user is willing to do is press a skip button if the song currently
played is a bad choice.

This section describes simple heuristics to dynamically propose the next song
to be played in a playlist. The approach is based on audio similarity and takes the
user’s skipping behavior into account. The idea is to avoid songs similar to songs
which were skipped and focus on songs similar to accepted ones. The heuristics
are evaluated based on hypothetical use cases. These use cases are: (1) The user
wants to listen to songs from the same genre as the seed song. (2) The user does
not like an artist in this genre. (3) The user gets bored of the genre and wants to
listen to a related genre. (The use cases are described in more detail later on.)

Structure of this Section

The remainder of this section is structured as follows. The next subsection reviews
related work. Subsection 3.4.3 describes the heuristics to generate playlists and
respond to user feedback. Subsection 3.4.4 described the evaluation procedure and
the results. Subsection 3.4.5 describes the implementation used and gives some
examples. Conclusions are drawn in Subsection 3.4.6.

3.4.2 Related Work

Previous work on playlist generation has partly dealt with algorithms to efficiently
find a playlist which fulfills given constraints (e.g. [PRC00; AT01; AP02b; Pvd05]).
These approaches assume the existence of rich metadata. A commercial product
to generate playlists from proprietary metadata is available from Gracenote.12

This “dynamic” playlist generator updates playlists when the music collection is
modified.

A conceptually very similar approach to the approach described this section is
the Internet radio station Last.FM13 which creates a user profile based on imme-
diate user feedback. Last.FM is built on collaborative filtering and uses “Love”,
“Skip”, “Ban” buttons as input.

12http://www.gracenote.com/gn products/playlist.html
13http://last.fm
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Another approach using immediate user feedback and rich metadata was pre-
sented in [PE02]. The main difference to the approach in this section is that in
the evaluations described in this section random shuffling would completely fail.
Furthermore, the heuristics described here have no parameters which need to be
trained and thus require less user feedback.

Unlike these previous approaches the approach in this section does not rely
on metadata or collaborative filtering. Purely audio-based playlist generation was
proposed for example in [Log02] and [PPW05c]. In [Log02] the author showed that
simply using the n nearest songs to a seed song as a playlist performs relatively
well. In [PPW05c] traveling salesman algorithms are used to find a path through
the whole collection.

An interesting approach to playlist generation which partly uses audio-based
similarity measures was presented by Goto & Goto [GG05]. The Musicream system
they developed allows the user to playfully explore streams of music. Various fea-
tures such as finding similar pieces, organizing and sorting playlists, and browsing
experiences from the past are implemented. In contrast to the approach described
here most features of the system assume a slightly more active user. Furthermore,
while the assumption here is made that the playlists are generated on the users
music collection, Musicream was primarily designed for “all-you-can-hear” music
subscription services.

3.4.3 Method

This approach is based on an audio-based music similarity measure. Here a
combination with 65% G30S, 15% FP, 5% FP Focus, and 15% FP Gravity is
used (see Chapter 2). The details of the combination are described in [PFW05b]
and [Pam05].

From a statistical (or machine learning) point of view it is problematic to
use complex models (or learners) with a high number of parameters to learn user
preferences. The main reason for this is that in an ideal case the number of
negative examples is extremely low (e.g. less than 5) and even the number of
positive examples is not very high (e.g. 20 tracks can fill an hour of music).

To generate the playlists the following 4 heuristics are used. Candidate songs
are all songs in the collection which have not been played (or skipped) yet.

A. As suggested in [Log02] the n nearest neighbors to the seed song
are played (n = accepted + skipped). This heuristic creates a sta-
tic playlist and is the baseline.14

B. The candidate song closest to the last song accepted by the user is
played. This is similar to heuristic A with the only difference that the

14A purely random playlist generator is not used as baseline because the generator would
completely fail in the use cases described later on. The reason for this is the large number
of genres in the collection.
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Figure 3.20: Illustration of the differences between the 4 heuristics.

seed song is always the last song accepted.

C. The candidate song closest to any of the accepted songs is played.
Using the minimum distance for recommendations from song sets was
proposed in [Log04].

D. For each candidate song, let da be the distance to the nearest accepted,
and let ds be the distance to the nearest skipped. If da < ds, then add
the candidate to the set S. From S play the song with smallest da. If
S is empty, then play the candidate song which has the best (i.e. the
lowest) da/ds ratio.

Figure 3.20 shows the differences between the heuristics. On the left the first
two songs were accepted by the user. There are two choices for the third song to
be played. Heuristic A would chose the song on the left which is closer to the seed
song, all other heuristics would chose the song closer to the second accepted song.

The case illustrated in the center of Figure 3.20 shows the difference between
heuristics B on one side and C and D on the other side. In particular, the first 4
songs were accepted by the user. Heuristic B would select the song in the upper
right which is closest to the last accepted song. On the other hand C and D would
select the song in the lower left which is closer to song 2.

The third case illustrated on the right side of Figure 3.20 shows the difference
between heuristics C and D. The first 3 songs were accepted by the user. The
fourth song was rejected. Heuristic C ignores this and selects the song on the left
which is very close to the rejected song. Heuristic D selects the song which is
further away from the rejected song.

3.4.4 Evaluation

Evaluation of a playlist generation algorithm ultimately requires a user study.
However, as shown in Chapter 2 the results from user ratings relate to the results
from the much simpler to conduct genre-based evaluation. The approach described
in this subsection is based on simulating user behavior and uses genre metadata.
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3.4.4.1 Procedure (Hypothetical Use Cases)

In the hypothetical use cases the assumption is made that the user wants to listen
to one hour of music which is approximately 20 songs. The number of skips are
counted until these 20 songs are played. The use cases (UC) are the following:

UC-1. The user wants to listen to songs similar to the seed. This is measured
by equating similarity with genre membership. Any song outside of
the seed’s genre is skipped. The evaluation is run using every song in
the collection as seed.

UC-2. The user wants to listen to similar music but dislikes a particular
artist (for not measurable reasons such as personal taste). To measure
this the same approach as for UC-1 is used. An unwanted artist from
the seed’s genre (not the artist of the seed song) is randomly selected.
Every time a song outside the seed’s genre or from the unwanted artist
is played, skip is pressed. The evaluation is run using every song in
the collection as seed.

UC-3. The user’s preferences change over time. This is measured as follows.
Let A be the genre of the seed song and B a related genre which the
user starts to prefer. The first 5 songs are accepted if they are from
genre A. The next 10 are accepted if they are from either A or B.
The last 5 are accepted if they are from B. Pairs of genres have been
selected manually for this use case. The list of pairs can be found in
Table 3.7. The evaluation is run using every song in genre A as seed.
Unlike UC-1 and UC-2 it is possible that in UC-3 a state is reached
where none of the candidate songs would be accepted although the
number of accepted is less than 20. In such cases the remaining songs
in the collection are added to the skip count.

One of the biggest problems for this evaluation is that there are not enough
artists per genre to implement an artist filter. That is, playing several songs from
the same artist right after each other is not avoided.

Another issue is that the assumption is made that only songs the user dislikes
are skipped. However, if a song is skipped because, e.g., the user just heard it on
the radio (but likes it otherwise) the heuristics will be mislead. To evaluate this
some random skips could have been included. To solve this the user could be given
more feedback options. For example, how long or hard the skip button is pressed
could indicate how dissimilar the next song should be.

3.4.4.2 Data

The collection used contains 2522 tracks from 22 genres (see Table 3.5 for further
statistics). It is the same collection described in Subsection 2.3.3 as DB-L. The
difference is that this collection has not been cleaned. That is, there are a number
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Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max

22 103 2522 3 6 45 259

Table 3.5: Statistics of the music collection.

Heuristic Min Median Mean Max
UC-1 A 0 37.0 133.0 2053

B 0 30.0 164.4 2152
C 0 14.0 91.0 1298
D 0 11.0 23.9 425

UC-2 A 0 52.0 174.0 2230
B 0 36.0 241.1 2502
C 0 17.0 116.9 1661
D 0 15.0 32.9 453

Table 3.6: Number of skips for UC-1 and UC-2.

of very short tracks which are not songs. (For example, introductions to an album
etc.) The genres and the number of tracks per genre are listed in Fig. 3.22.

3.4.4.3 Results

For UC-1 using random shuffle to generate the playlist would require more than
300 skips in half of the cases while heuristic A requires less than 37 skips in half of
the cases. Table 3.6 shows the results for UC-1 and UC-2. The main observation
is that the performance increases from heuristic A to D. In general, there are a lot
of outliers which is reflected in the large difference between mean and median. In
a few cases almost all songs from the collection are proposed until 20 songs from
the seed genre are in the playlist. Heuristic D has significantly fewer outliers. Half
of all cases for heuristic D in UC-1 require less than 11 skips which might almost
be acceptable.

Fig. 3.21 shows that for D/UC-1 there is a large number of skips after the
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Figure 3.21: Skips per playlist position for UC-1.
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Figure 3.23: Average skips and genre ratio per playlist position for heuristic D in
UC-3. The genre ratio is 0 if only genre A (the genre of the seed) is played and 1
if only genre B (destination genre) is played. The circle marks the last and first
song which is forced to be from a specific genre.
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first song (seed song). Once the system has a few positive examples the number
of skips decreases. On the other hand, for heuristic A, the number of skips grad-
ually increases with the playlist position. (Note that one must be careful when
interpreting the mean because it is strongly influenced by a few outliers.)

Fig. 3.22 shows that for D/UC-1 some genres work very well (e.g. jazz guitar
or heavy metal - trash), while others fail (e.g. electronic or downtempo). However,
some of the failures make sense. For example, before 20 pieces from electronic are
played, in average almost 18 pieces from downtempo are proposed.

Table 3.7 gives the results for UC-3. As for the other use cases the performance
increases from A to D in most cases. The pair a capella to death metal was included
as an extreme to show the limitations (such a transition it is not considered to be
a likely user scenario). In three of the cases for heuristic D the median seems to
be acceptably low. However, using an artist filter these results would surely be
significantly worse.

The number of skips depends a lot on the direction of the transition. For
example, moving from jazz guitar to bossa nova requires, in half of the cases, less
than 6 skips. Moving in the other direction requires almost 3 times as many skips.
This is also reflected in Fig. 3.22. Specifically, jazz guitar to bossa nova works well
because jazz guitar is mainly confused with bossa nova. On the other hand bossa
nova is confused with many other genres. The same can be observed, e.g., for the
pair trance and euro-dance.

Fig. 3.23 shows where skips occur for UC-3 and heuristic D, and how often
each genre was played per playlist position. In some cases during the transition
phase (where genre A or B are accepted) basically only genre A is played. When
the transition is enforced (after the 15th song in the playlist) the number of skips
drastically increases. In other cases the transition works very nicely. An obvious
direction for further improvement is to include a memory effect to allow the system
to forget previous user choices. However, preliminary experiments conducted in
this direction did not show significant improvements.

3.4.5 Implementation and Examples

To make the results more tangible a Matlab based interface was implemented (see
Figure 3.24). On of the first findings was that some form of artist filter needed to be
implemented to generate interesting playlists. An example is shown in Table 3.8.
The seed song was “When the Saints Go Marchin In”. The next songs in the list
are all from the same artist. Table 3.9 shows the effects of an simple artist filter
using the same seed. In particular, the filter enforces that the next n songs cannot
be from the same artist. Here n was set to 3 (AF=3).

Tables 3.10 and 3.11 show how the user feedback changes the playlists. In case
of Table 3.10 the feedback leads to a clear improvment. In the case of Table 3.11
the system tries mixing a different genre into the playlist every time. First melodic
metal is mixed into the list. After melodic metal is rejected death metal is mixed
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Figure 3.24: Screenshot of the Matlab user interface. The skip button is located
on the center left. The heuristics can be adjusted in the lower center, the artist
filter can be set lower left. A “+” in front of a song marks an accepted song, a
“−” marks a reject. The two main ways to start a playlist are either to randomly
jump around in the collection until an acceptable seed is found, or to manually
select a particular song.

+ A Cappella / Golden Gate Quartet / When the Saints Go Marching In
A Cappella / Golden Gate Quartet / I heard Zion moan
A Cappella / Golden Gate Quartet / Noah
A Cappella / Golden Gate Quartet / Dipsy Doodle
A Cappella / Golden Gate Quartet / Sampson
A Cappella / Golden Gate Quartet / Lead me on and on
...

Table 3.8: Example playlist where no artist filter was used.

+ A Cappella / Golden Gate Quartet / When the Saints Go Marching In
Blues / John Lee Hooker / Sugar Mama
Jazz Guitar / Martin Taylor / Polka Dots And Moonbeams
Jazz Guitar / Kenny Burrell / Well You Needn’t
Jazz / Dave Brubeck / Pennies From Heaven
Blues / John Lee Hooker / Thought I Heard
...

Table 3.9: Example where an artist filter was used (AF=3) with heuristic D.
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+ Acid Jazz / Jazzanova / Introspection
Punk / Rancid / Life Won’t Wait - Life Won’t Wait
Italian / Eros Ramazzotti / Dove c’è Musica - Yo sin Ti
...

+ Acid Jazz / Jazzanova / Introspection
− Punk / Rancid / Life Won’t Wait - Life Won’t Wait

Electronic / Kaito / Scene
...

Table 3.10: Example how user feedback improves the playlist using heuristic D
and AF=3. The “−” marks a rejected song. The “+” marks an accepted song.

into the list. After death metal is rejected heavy metal is mixed into the list. At
least it is obvious that the system is not repeating the same mistakes.

3.4.6 Conclusions

This section described an approach to dynamically create playlists based on the
user’s skipping behavior. The approach was evaluated using hypothetical use cases
for which specific behavior patterns were assumed. Compared to the approach
suggested in [Log02], heuristic D reduces the number of skips drastically. In some
of the cases the necessary number of skips seems low enough for a real world
application. The main limitation of the evaluation is that no artist filter was used
(to avoid having a large number of pieces from the same artist right after each
other in a playlist). A filter was not implemented due to the small number of
artist per genre.

The heuristic depends most of all on the similarity measure. Any improvements
would lead to fewer skips. However, implementing memory effects (to forget past
decisions of the user) or allowing the similarity measure to adapt to the user’s
behavior are also interesting directions. For use cases related to changing user
preferences a key issue might be to track the direction of this change. Incorporating
additional information such as web-based artist similarity or modeling the user’s
context more accurately (based on data from long term usage) are other options.

Although evaluations based on hypothetical use cases seems to be sufficient for
the current development state, experiments with human listeners will be necessary
in the long run. However, this would require implementing a number of additional
functions. For example, it is necessary to allow the users to adjust how much
variance they desire. Basically the question is how many songs should be played
until the same pieces or different pieces from the same artists are repeated. In
addition, different types of skips, tools to manage the user’s feedback history,
and tools to manage different radio stations (similar to interface implemented by
pandora.com) are desirable functionalities.
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+ Punk / Bad Religion / The Empire Strikes First - The Quickening
+ Punk / Green Day / Nimrod - Haushinka

Melodic Metal / Nightwish / Once - Wish I Had an Angel
Melodic Metal / Stratovarious / Elements Part II - Dreamweaver
... (the next 10 include 2 melodic metal, 1 death metal and 7 punk songs)

+ Punk / Bad Religion / The Empire Strikes First - The Quickening
+ Punk / Green Day / Nimrod - Haushinka
− Melodic Metal / Nightwish / Once - Wish I Had an Angel

Death Metal / Borknagar / Epic - Cyclus
Punk / Bad Religion / The Empire Strikes First - All There Is
... (the next 10 include 2 death metal and 8 punk songs)

+ Punk / Bad Religion / The Empire Strikes First - The Quickening
+ Punk / Green Day / Nimrod - Haushinka
− Melodic Metal / Nightwish / Once - Wish I Had an Angel
− Death Metal / Borknagar / Epic - Cyclus

Punk / Bad Religion / The Empire Strikes First - All There Is
Punk / Green Day / Nimrod - Jinx
Punk / Rancid / Life Won’t Wait - 1998
... (the next 10 include 3 heavy metal and 1 Italian and 7 punk songs)

Table 3.11: Example how user feedback effects the playlist using heuristic D and
AF=3.

3.5 Conclusions

In this chapter 3 different applications of music similarity measures were described.
The first application demonstrated how a metaphor of geographic maps can be used
as interface which supports exploration of music collections. The interface allows
the user to browse different views. Each view is defined by a specific aspect of simi-
larity (or combinations of different aspects). The second application demonstrated
how web-based similarity can be used to hierarchically organize a music collection
at the artist level into overlapping groups. In addition, each group was summa-
rized to allow the user to easily identify interesting groups without requiring the
user to know any of the artists’ names. The third application demonstrated how
minimal user interaction can be used to generate playlists. In particular, based on
the user’s skipping behavior the playlist is dynamically updated.

Each of these applications has its limitations. The primary limitation is the
performance of the similarity measure. However, each application deals differently
with this limitation. The Islands of Music application gives the user the respon-
sibility of fine tuning the similarity measure. This would work if the aspects of
similarity the user is asked to mix were more meaningful. The overlap in the hi-
erarchical organization increased the number of pieces considered similar to any
given piece and thus avoids omitting similar pieces at the cost of presenting the
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user more pieces than necessary. However, the main advantage is that the user is
not given a wrong impression about the accuracy of the system. For playlist gener-
ation a certain amount of variance is very desirable. A perfect similarity measure
is not necessary to create interesting results. However, it would be important to
improve the similarity measures to the point that no unacceptable matches are
returned.

Future work includes combining different approaches (for example, audio and
web-based similarity). Furthermore, bringing applications to a level which allows
user studies is highly desirable. Finally, in the long run integrating functionalities
in currently used tools (e.g. developing iTunes or Winamp plugins) would allow
realistic tests of functionalities and seems promising in some cases.



Chapter 4
Conclusions

In this thesis computational models of music similarity and their application were
described. Chapter 2 gave an introduction to similarity measures. A thorough
evaluation of state-of-the-art techniques was presented. Particular precautions
were taken to avoid overfitting. The evaluation procedures, and especially the use
of an artist filter, are highly recommended for future evaluations. Furthermore,
the results of the presented listening test justify the use of genre classification
based evaluations for similarity measures (in particular, to efficiently evaluate large
parameter spaces). One of the outcomes of Chapter 2 is a combined similarity
measure which performs significantly better than the baseline technique on most
collections and exhibits fewer anomalies in the similarity space.

Chapter 3 described three applications of similarity measures. These appli-
cations demonstrated how music collections can be visualized, organized hierar-
chically, summarized with words found on web pages, and how playlists can be
generated with minimum user interaction.

Outlook and Future Work

Some of the techniques described in this thesis are ready for deployment. Audio-
based similarity measures produce acceptable results in most cases. As add-on
functionality they can be integrated in various applications such as media players.
Specifically, the dynamic playlist generation application described in Chapter 3 is
almost at the point where its integration into common media players makes sense.

Nevertheless, a large number of research questions remain open. An obvious
direction for future work is to improve the similarity measure. One option is to
improve the features. For example, the “Noisiness” feature described in Chapter 2
can easily be improved. In addition, there are a large number of features which
could be tried instead of the ones used in this thesis. In the long run replacing the
low-level audio statistics with high-level features is very desirable.

Another option to improve the similarity measure is to improve the combina-
tion. The linear combination used in this thesis is surely not the best solution.
Furthermore, an important direction is the further reduction of computation times
and the development of techniques to deal with music collections containing mil-
lions of pieces.

Interesting directions for future work include alternative approaches to apply
computational models of music similarity. In addition, each of the three applica-
tions described in Chapter 3 offers a lot of room for improvements. A particularly
interesting direction is the combination of information from different sources (e.g.
audio-based analysis combined with information from the web). Finally, user stud-
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ies are needed to verify various assumptions made about user requirements and
behavior.
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