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Abstract 
 
In this thesis, the dynamic behavior of Bell-Tower (BT) like structures excited by 

various internal and external actions are investigated. A BT structure is considered 

as a linear elastic continuous cantilever beam (tower) together with a nonlinear 

single pendulum (bell). The formulation of the equation of motion is presented 

based on direct equilibrium position, as well as Lagrange equations, which is 

applicable to systems in both linear and nonlinear conditions. Parameteric studies 

of the BT are performed for free and force vibrations and dynamic actions by bell 

swinging and earthquake forces. For this purpose, first the BT is introduced in 

discretized form with geometrically nonlinear behaviour corresponding to a simple 

pendulum combined with a linear Single-Degree-of-Freedom (SDOF) system 

(tower). Suitable analytical method is then performed and comparison is made 

between the responses obtained from the analytical method and a numerical 

approach by means of computer simulations. 

In the next stage, the BT is studied as a hybrid system. In this case, the rigid 

pendulum is supported at the top of the linear elastic tower. The corresponding 

equations of motion are derived, considering nonlinear oscillation behavior of the 

pendulum and discretizing the continuous tower as a linear Multi-Degree-of-

Freedom (MDOF) system. Special emphasize is placed on the nonlinear interaction 

between the dynamically excited tower and the movement of the bell that 

mechanically behaves like a rigid pendulum. This particular study gives a completely 

new insight into the complex dynamic behaviour of the BT structure. Comparison 

is also made between the characteristics in coupled and uncoupled systems. 

Dynamic actions caused by ringing the bell are typical characteristic aspects in BTs. 

Thus the effect of the bell ringing on the tower is followed. Both the tower and bell 

system are studied under the effect of forced bell vibrations. In addition, particular 

study is performed for the nonlinear pendulum with special focus on subharmonics 

and superharmonics resonate frequencies. Vibrating forces are applied as an 

external moment, and nonstationary conditions in nonlinear pendulum is discussed.   
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Over the recent decades new vibration control methods are introduced using 

pendulum dynamic absorbers, which are extensively employed to reduce the 

tower’s vibration level. A Pendulum Tuned Mass Damper (PTMD) is a device 

consisting of a suspended mass, and a damper that is attached to the tower in order 

to reduce the dynamic response of the structure. The primary eigenfrequency of the 

damper is tuned to a particular structural frequency so that when that the system is 

excited, the damper will resonate out of phase with the tower motion and mitigates 

vibration. Energy is dissipated by the damping and inertia force acting on the 

structure. An introductory example of PTMD design and a description of the 

implementation of PTMDs in building structures like chimneys and BTs are 

presented. Time history and frequency domain responses for a continuous system 

connected to optimally PTMD and subjected to harmonic and random support 

excitations in linear and nonlinear conditions are studied. An assessment is made 

for the optimal placement of PTMD in the tower. Response against earthquake 

force with respect to seismic design criteria and record of real strong ground 

motion of Bam (Iran, 2003) is also estimated. 

Dynamic analysis of the BT by means of the substructure method is introduced. 

The vibrations induced by the bell (pendulum) movements are treated as externally 

applied excitations and pendulum oscillatory movement is formulated to determine 

the time-variant forces applied to the tower. Subsequently, the responses of BT in 

quasi-static analysis are compared and the internal forces of the tower produced by 

dynamic excitations are evaluated by numerical nonlinear analysis. 

Finally, the motion of the BT is controlled and modified by means of the action of 

control system. The bell works like an Active Pendulum Mass Damper (APMD) 

and dissipates energy by some external sources. Numerical nonlinear and time-step 

analyses are performed and the results are compared. 
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Kurzfassung 
 
In der vorliegenden Arbeit wird das dynamische Verhalten von Glockenturm-

ähnlichen (GT) Tragwerken, die durch verschiedene interne und externe 

Einwirkungen angeregt werden, untersucht. Die GT-Struktur wird als linear 

elastischer kontinuierlicher Kragträger mit einem nichtlinearen Einzelpendel 

(Glocke) modelliert. Die Formulierung der Bewegungsgleichungen, basierend auf 

der dynamischen Gleichgewichtsmethode, als auch die Lagrange’ schen 

Gleichungen sind dabei für lineare und nichtlineare Bedingungen anwendbar. Es 

werden Parameterstudien der GT-Stukturen für freie und erzwungene 

Schwingungen durchgeführt und das dynamische Verhalten, verursacht durch 

Glocken schwingen und Erdbebenanregung, untersucht.  

Zuerst wird die GT-Struktur in diskretisierter Form als ein geometrisch 

nichtlineares Phänomen, entsprechend einem einfachen Pendel kombiniert mit 

einem linearen Einmassenschwinger, vorgestellt. Eine passende analytische 

Methode wird beschrieben und die Ergebnisse mit jenen aus numerischen 

Simulationsrechnungen vergleichen. 

In der Folge wird der GT als hybrides System untersucht. In diesem Fall wird das 

starre Pendel an der Spitze des linear elastischen Turms gelagert. Die 

dazugehörigen Bewegungsgleichungen werden unter Berücksichtigung des 

nichtlinearen Schwingungsverhaltens des Pendels und des kontinuierlichen Turms, 

modelliert als diskretes lineares Mehrfreiheitsgrad-System, hergeleitet. Es wird 

besonders Wert  auf die nichtlineare Interaktion zwischen dem dynamisch 

angeregten Turm und der Bewegung der Glocke, welche sich mechanisch wie ein 

starres Pendel verhält, gelegt. Die Studie gibt einen neuen Einblick in das komplexe 

dynamische Verhalten von GT-Stukturen. Es wird auch ein Vergleich des 

Schwingungsverhaltens von gekoppelten und entkoppelten Systemen angeführt. 

Die dynamischen Reaktionen auf das Glockenläuten sind typische charakteristische 

Erscheinungen von den betrachteten Türmen. Das mechanische Verhalten von 

Turm und Glocke wird unter Berücksichtigung der erzwungenen 
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Glockenschwingung abgeschätzt. Unter der Wirkung eines externen Glocken-

Antriebmomentes wird das nichtlineare Pendel in Bezug auf subharmonische und 

superharmonische Resonanzfrequenzen untersucht. Die nichtstationären 

Bedingungen des nichtlinearen Pendels werden diskutiert. 

In den letzten Jahrzehnten wurde eine neue Methode der Schwingungsdämpfung 

entwickelt, die durch dynamische Pendelabsorber die Schwingungen von GT-

Strukturen deutlich reduziert. Ein „Pendulum Tuned Mass Damper“ (PTMD) ist 

eine Einheit, bestehend aus einer pendelnd aufgehängten Masse und einem 

Dämpfer, der mit der Struktur verbunden ist um die Schwingungsantwort zu 

reduzieren. Die erste Eigenfrequenz des Dämpfers ist gezielt auf eine bestimmte 

Struktureigenfrequenz abgestimmt, so dass bei Anregung dieser Frequenz der 

Dämpfer durch ein phasenverschobenes Verhalten zur Turmbewegung die 

Schwingungen reduziert. Die Energie wird durch die Dämpfung und die 

Trägheitskraft, die auf die Struktur wirkt, dissipiert. Ein einführendes Beispiel eines 

PTMD und dessen Implementierung in Strukturen, wie Schornsteine oder 

Glockentürme, wird gezeigt. Zeitverläufe und Amplitudenfrequenzgänge werden 

für ein kontinuierliches System mit einem optimal abgestimmten PTMD, welches 

einer harmonischen oder stochastischen Fußpunkterregung ausgesetzt ist, unter 

linearen und nichtlinearen Bedingungen untersucht. Ebenso wird die optimale 

Position des Pendels diskutiert. Die Schwingungsantwort zufolge Erdbebenkräfte 

bezüglich seismischer Entwurfskriterien wird entsprechend der starken 

Bodenbewegung des Erdbebenereignisses in Bam (Iran, 2003) simuliert. 

Ein Kapitel behandelt die dynamische Analyse von GT-Strukturen mittels 

Teilssystemtechnik. Die durch die Glocke induzierten Schwingungen werden als 

externe Anregung auf die Hauptkonstruktionen angesetzt um aus der 

Pendelbewegung die zeitvariablen Kräfte auf den Turm zu ermitteln. Diese werden 

mit den Kräften aus einer quasi-statischen Analyse verglichen, die dynamischen 

Schnittgrößen mittels numerischer nichtlinearer Analyse ermittelt. 

Im letzten Abschnitt wird die Wirkungsweise von aktiv geregelten Pendeldämpfern 

in turmartige Baukonstruktionen analysiert. 
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1  

MECHANICAL MODEL OF A BELL-TOWER 
 

1.1 Description of Bell-Tower like structures 
A Bell-Tower (BT) can be considered as a structure consisting of two 

substructures, namely the tower and the bell. Figure (1-1) shows a Bell-Tower 

system, where the bell ringing action is modeled as a simple pendulum. 

The pendulum is suspended near the tower’s upper part by a hinge bearing. The 

mechanical model of a tower is represented by a continuous structure and is 

idealized as a Multi-Degree-Of-Freedom (MDOF) system. Furthermore, the 

pendulum can be modeled as a tuned mass damper to improve the response of the 

entire structure under dynamic loads.  
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Figure 1-1 Mechanical model of a Bell-Tower (BT)  
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1.2 Examples of existing pendulum tuned mass dampers 
Typical examples of pendulum-type dampers can be found in the Crystal-Tower 

located in Osaka of Japan, which is 157m high. A Pendulum Tuned Mass Damper 

(PTMD) was included to decrease the wind induced motion of the building by 

50%. In this tower six, of the nine air cooling and heating ice thermal storage tanks 

are hanged from the top roof girders, which are used as a pendulum masses. Four 

tanks slide in the north-south direction, and the other two tanks slide in the east-

west direction. Oil dampers connected to the pendulum are designed for 

dissipating the pendulum energy. A view of this building is illustrated in Figure    

(1-2).  

 

 
Figure 1-2 Crystal Tower in Osaka of Japan 
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The skyscraper Taipei-101 in Taiwan is one the world tallest buildings with the 

height of 508m and 101 floors above ground, Figure (1-3). Since both earthquake 

and wind are important load cases in Taiwan, the designer of the building has taken 

extra precautions. A 660 ton PTMD is considered to reduce the oscillations of the 

main building and two further TMDs are especially designed for the pinnacle. The 

PTMD has a large spherical shape hanging as a simple pendulum, as shown in 

Figure (1-4), and it is visible to the public on the 88th and 89th stories, where a 

restaurant is situated in this part. When the building begins to sway either due to 

wind or an earthquake, the damper activates a restoring force. The Taipei-101 is 

built to withstand an earthquake of magnitude greater than 7 on the Richter scale. 

 
Figure 1-3 Taipei-101 Tower 
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Figure 1-4 Taipei-101 Building PTMD 

 

The AMP Sydney Tower, the tallest building in Australia, with 250m height and the 

base of the structure anchored to the roof of a 15-storey building. This tower 

stands 305m above the street level. The tower is one of the first buildings with the 

installation of a large-scale PTMD. The doughnut-shaped water tank near the top 

of the turret, which normally serves as the tower’s water and fire protection supply, 

is incorporated into the design of the PTMD to reduce the wind-induced motions. 

The energy associated with relative movements between the tower and the water 

tank is dissipated by 8 shock-absorbers installed tangentially to the tank and 

anchored to the floor of the turret. A secondary PTMD of similar design was later 

installed on the intermediate anchorage ring to further increase the damping level, 

particularly in the second mode. A view of this tower is shown in Figure (1-5).  

The Chifley Tower in Sydney of Australia represents one of the most advanced 

commercial office developments in this country with 209m height and 42 floors. 

The building is an all-steel structure including drywall core construction. A steel 

PTMD of 400 tons at the top of the tower is used to minimize the movement of 

the building, Figure (1-6).  
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Figure 1-5 AMP Tower in Sydney of Australia 

 

Sydney has two towers with PTMD built into their structures; namely AMP Tower 

and Chifley Tower. Both are passive dampers. The damper in Chifley Tower is the 

largest damper of its type in the world. 
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Figure 1-6 Chifley Tower in Sydney of Australia 

 

There are many Bell-Towers in Europe with different systems of bell ringing. The 

dynamic action caused by bell swinging is the characteristic aspect in Bell-Towers 

and the response of the building against wind and earthquake with respect to 

dynamic and seismic loading is a significant importance. In order to preserve the 

architectural heritage, the retrofit of this kind of structures is of vital importance. 

Figure (1-7) shows the view of a real Bell-Tower which is located at Schlossberg in 

Graz of Austria.   
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Figure 1-7 A Bell-Tower in Graz, Austria 

 

In the present research, BT like structures are studied under dynamic loading, and 

in particular against earthquake excitation. Numerical studies for free and forced 

vibrations are performed by means of computer simulations. As a first step, the 

complete structure is modeled by a Two-Degree-Of-Freedom (2DOF) system 

“pendulum and sliding mass”, in order to give insight into its complex nonlinear 

dynamic behavior. 

In the subsequent chapters both linear and nonlinear behavior of the system “Bell 

Structure and Pendulum” are studied. After applying appropriate analytical 

methods, parametric studies for forced and free vibration are performed by means 

of computer simulations. The nonlinear dynamic analysis of the forced vibrations 

are chosen in time domain by using numerical investigation, with  emphasize on the 
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nonlinear interaction between the excited tower and movement of the bell, which 

mechanically behaves like a rigid pendulum. The dynamic actions caused by 

swinging of a bell, as the characteristic aspect in bell towers, are considered. 

Moreover the response of the building against earthquake is estimated with respect 

to seismic design criteria. This particular study gives an important insight into the 

complex dynamic behavior of the BT like structures. By interpreting pendulum as a 

passive absorber in the tower, it is intended to achieve a large decrease of damages 

in the main tower structures. Dynamic analysis by means of substructure method is 

introduced, and finally the active control in the BT is discussed. 

 

1.3 References 
1. Ziegler F., ‘Mechanics of Solids and Fluids’, Second edition, Technical 

University Vienna, Springer-Verlag, New York-Vienna, 1998. 
2. Clough R.W., Penzien J., Department of Civil Engineering, University of 

California, ‘Dynamic of Structures’, McGraw-Hill, 1989. 
3. Chopra A.K., University of California at Berkeley, ’Dynamics of Structures’, 

second edition, Prentice Hall, 2001. 
4. Haskett T., Breukelman B., Robinson J., Kottelenberg J.,’ Tuned mass dampers 

under excessive structural excitation’, Monitoring Inc, Guelph, Ontario, Canada.  
5. EERC, structures with TMDs, http://nisee.berekely.edu/. 
6. Wikipedia, The Free Encyclopedia, http://en.wikipedia.org. 
7. Civil Engineering Database, http://pubs.asce.org. 
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2  

DYNAMIC ANALYSIS OF A TWO-DEGREE-OF-
FREEDOM SYSTEM 

 

2.1 Introduction 
In this chapter, the mechanical model of a 2DOF system “pendulum and sliding 

mass’’ and the formulation of the corresponding equations of motion based on 

direct dynamic equilibrium equations, and the Lagrange equations are presented. 

The fundamentals for structural oscillations of a Single-Degree-Of-Freedom 

(SDOF) system are summarized in Appendix A. 

The geometrically nonlinear phenomenon corresponding to a simple pendulum 

combined with a linear SDOF system is introduced. A suitable analytical method is 

described and comparison is made between the responses obtained from an 

analytical method and a numerical approach. Numerical analysis of nonlinear 

response is evaluated by means of computer simulations using the Matlab7 

software. Furthermore, the response of the BT due to various load cases is found 

and a parameteric study is performed.  

 

2.2 Equations of motion1 
The system of a rigid pendulum with mass , radius of gyration m si  and a sliding  

mass , as it shown in Figure (2-1), has two degrees of freedom. According to the 

Lagrange formulation, described in Appendix A, the equations of motion are 

derived.  

1m

 

                                                 
1 Reference [1] 
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Figure 2-1 Pendulum with moving support 

 

The generalized coordinates are selected as xq =1  and φ=2q . The Cartesian 

coordinates of the centroid of the pendulum are geometrically related to the 

generalized coordinates by  )sin(1 φsxxs += , φcosszs = . 

The square of the total velocity of the pendulum’s centroid is  

    (2-1) =+= 222
sss zxv φφφ cos2)( 1

22
1 xssx ++

 

   1 0( ) ( ) ( )gx t x t L x t= + + ⇒   (2-2) gxxx +=1

 

where ( )gx t  represents a given support motion, and denotes the length of the 

unextended spring. 

0L

 

The total Kinetic energy is expressed as 
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 += 2
112

1 xmT +2

2
1

smv 21
2 sI φ   

     2 2
1

1 1( )
2 2g sm x x mv I 21

2 sφ= + + +  

    )2(
2
1 22

1 gg xxxxm ++=
2
1

+ 2 2[( ) ( ) 2 ( ) cos ]g gm x x s s x xφ φ φ+ + + + 21
2 sI φ+  

      (2-3) 

 

where  2
s sI mi=  stands for the moment of inertia of the rotating pendulum. 

Differentiation of the kinetic energy leads to 

 T
x

∂
∂ 1 1 cosg gm x m x mx mx msφ φ= + + + +  

        (2-4) φφ cos)()( 11 smxmmxmm g ++++=

 

 φφ
φ

cos)()( 22
gs xxmsismT

+++=
∂
∂    (2-5) 

 

 0=
∂
∂

x
T   (2-6) 

  

 φφ
φ

sin)( gxxmsT
+−=

∂
∂   (2-7) 

  

and  further 

 )sincos()()()( 2
11 φφφφ ssmxmmxmm

x
T

dt
d

g −++++=
∂
∂   (2-8) 

 

 )sincos()sincos()()( 22 φφφφφφφ
φ ggs xxmsxxmsismT

dt
d

−+−++=
∂
∂   (2-9) 

 

The potential energy of the entire system is expressed as 

  21cos
2

V mgs kxφ= − +   (2-10) 
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and its derivatives become 

 kx
x
V

=
∂
∂   (2-11) 

  φ
φ

sinmgsV
=

∂
∂    (2-12) 

 

Substituting Equations (2-6), (2-7), (2-8), (2-9), (2-11) and (2-12) in Lagrange 

equations of motion (see Appendix A), one obtains 

  i
i i i

d T T V Q
dt q q q
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
  (2-13) 

 

 and two terms of generalized forces are 

   (2-14) xrQ −=1

    (2-15) 02 =Q

 

leading to two coupled nonlinear equations  

   (2-16) gxmmmsmskxxrxmm )(sincos)( 1
2

1 +−=−++++ φφφφ

  

and 

 2 2( ) cos sin coss gm s i ms x mgs ms xφ φ φ+ + + = − φ   (2-17) 

 

In the subsequent section linear and nonlinear behavior of this 2DOF system “Bell-

Tower and pendulum” will be discussed 
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2.3 Linear analysis 
By means of geometrical linearization about the equilibrium position2 ( 0)φ = , 

φφ sin= , 1cos =φ , and neglecting higher order terms of φ  and its derivative, the 

dynamic equations of motion reduce to the linear system 

   (2-18) gxmmmskxxrxmm )()( 11 +−=++++ φ

     (2-19) gs xsxsgsis −=+++ φφ)( 22

 

By replacing  
2 2

ss i
s
+

= , Equation (2-19) can be expressed as 

 gg x xφ φ+ + = −   (2-20)  

 

In a matrix form, the complete set of relationship may be written as 

  
~~ ~ gm x r x k x m x+ + = −    (2-21) 

  

where 

  , ,   

 

⎥
⎦

⎤
⎢
⎣

⎡ +
=

1
1

~

msmm
m ⎥

⎦

⎤
⎢
⎣

⎡
=

00
0

~

r
r ⎥

⎦

⎤
⎢
⎣

⎡
=

g
k

k
0

0
~

x
x

φ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
0
g

g

x
x ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (2-23) 

 

Considering a time-harmonic support excitation, , after decay of the 

transient effect, the steady-state response is of the following form 

ti
gg eXx ν=

  tiXex ν=

 i te νφ = Φ   (2-23) 

 

where X  and Φ  stand for the unknown amplitude functions. Equation (2-21) is 

transferred to the frequency domain as 

 

                                                 
2 Reference [1] 
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   (2-24) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Φ

++−
0

)(
~

2

~~~

2 gX
m

X
krim ννν

 

 
2 2 2

1
2 2 2

( ) ( )1
g

Xm m i r k ms m m
X

g
ν ν ν ν

ν ν ν
⎡ ⎤ ⎡− + + + − +⎡ ⎤

=⎢ ⎥ ⎢⎢ ⎥Φ− − ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎦

  (2-25)  

 

where the frequency response functions ( )X ν  and ( )νΦ  are the complex solutions 

of the linear system of equations (2-25). These are found in a closed form by using 

the software Matlab7  

 
2 2 2 2

1 1
2 4 2 4 3 2 4

1 1

( )
( )

gX m g m mg m ms
X

m g m mg m i rg i r kg k ms
ν ν ν ν

ν ν ν ν ν ν ν ν
− − + − +

=
− + − − + − + +

   (2-26) 

  

  
2

2 4 2 4 3 2 4
1 1

( )
( )

gX i r k
m g m mg m i rg i r kg k ms

ν ν
ν ν ν ν ν ν ν ν

− +
Φ =

− + − − + − + +
  (2-27) 

  

The two natural frequencies follow approximately from the homogeneous 

undamped system of equations  

   (2-28) 
2 2

1
2 2

0( )
0

Xm m k ms
g

ν ν
ν ν

⎡− + + − ⎡ ⎤ ⎡ ⎤
=⎢ ⎢ ⎥ ⎢ ⎥Φ− − ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎤
⎥

0s

0=

 

Setting the coefficient determinant to zero 

   (2-29) 2 2 4( )( )Tg m k mν ν ν− − + − =

 

and using  leads to the frequency equation   mmmT += 1

   (2-30) 4 2( ) ( )T Tm ms k m g kgν ν− − + +

 

for the unknown eigenfrequencies 1 2,ν ν . 
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2.4 Numerical example for the linear system 
In order to discuss numerical results of the mechanical model, the magnitudes of 

the parameters of the system shown in Figure (2-1) are considered as follows 

  kg , 51 =m 1=m  kg , 10=r N s
m

, 200=k  
m
N , 81.9=g  2s

m ,  1=s m

 
5

1
=si m  and   (2-31) 20.1= m

 

Considering the numerical assumption of Equation (2-31) and substituting in 

Equation (2-30) follows that 

    (2-32) 4 26.20 298.86 1962.00 0ν ν− + =

 

Computing the two roots 

 2
1 7.84 ( )

sec
rad 2ν =   (2-33) 

 2 2
2 40.33 ( )

sec
radν =    (2-34) 

 

leads to the circular eigenfrequencies of the linear 2DOF system as 

 1 2.80
sec
radν =   (2-35) 

  2 6.35
sec
radν =    (2-36) 

 

The coupled system has two modes of oscillation. One may compare the above 

calculated frequency to the pendulum-like mode, 
1/ 2

p
gω ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, and spring-like mode,  

1/ 2

1
T

k
m

ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, as the linear natural frequencies of the subsystems 

 9.81 2.8591
1.20 secp

radω = =   (2-37) 

 200 6.3245
5 sT

radω = =
ec

  (2-38) 
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In the next step, the unit amplitude of excitation is considered  for the 

inhomogeneous coupled system. The system of equations (2-25) is of simplified 

form as 

"1"gX =

 ( ) )()( 1
22

1
2 mmsmXkrimm +=Φ−+++− νννν   (2-39) 

 2 2( )X g 2ν ν− + − Φ =ν   (2-40) 

 

rendering the amplitude functions Φ  and X . 

Figures (2-2) and (2-3) show the variation of X (mass displacement) and Φ  

(pendulum rotation angle),  in frequency domain, respectively.  

 

( )X m  8
rad
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

Figure 2-2 Mass displacem

( )

sec
ν   
ent ( )X  versus frequency (ν ) 
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( )radΦ  10

2.
Co

we

m

  

 

or

 

 

wh

 

    
3 R
rad
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0

1

2

3

4

5

6

7

8

9 Max=140

Figure 2-3 Pendulum deviat

5 Nonlinear vibrations of the
nsidering a simple mathematical pe

ightless rod of length , as shown in

otion3 is obtained as 

  0sin2 =+ φφ gmm

  

 0sin2 =+ φωφ

ere 2 gω = . The nonlinearity in this 

                                             
eference [2] 
( )
sec

ν   
ion angle (Φ ) versus frequency ( )ν  

 

 simple pendulum  
ndulum of a mass  attached to a hinged 

 Figure (2-4), the corresponding equation of 

m

  (2-41) 

model is due to large rotation. 
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 sin
 

Figure 2-4 Simple pendulum 

 

The analytical solution, renders the duration τ  according to Equation (2-42), 

compare Appendix B. This is the standard form of the elliptic integral of the first 

kind and second order. 

 2

2 20

4 ( , )
21 sin

d F s
s

π 4θ πτ
ω θ

= =
−

∫ ω
  (2-42) 

 

Numerical solution is obtained by using Simulink software, where a time step of 

0.20 second is employed.  

Table (2-1) shows that the ratio (
(

N

A

T Numerical
T Analitycal

)
)

 depends on φ  (amplitude of 

rotation), and further discloses the accuracy limit of the numerical procedure.  

Details of the analytical method for simple pendulum oscillation in linear and 

nonlinear conditions are provided in Appendix B.  
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[ ]φ
 0 10 20 30 40 50 60 70 80 90 

N

A

T
T

 1.000 1.000 0.9998 0.9995 0.9989 0.9960 0.9892 0.9820 0.9792 0.9650

 

Table (2-1) Comparison between the analytical and numerical solution 

 

Within the range of 0 0.4 radφ< ≤ it can be assumed that φφ ≈sin , thus a linearized 

analysis of natural frequency can be applied, see Figure (2-4a) for the restoring 

 

force.  

Figure 2-4a Simple pendulum restoring fo

Computing the natural frequency 

 

1/( )gω =

radnonlinear condition with 0.4φ = ) results

 
2 2

2

| |
100 1.50%N

ω ω
ω
−

× =  

 

Figure (2-5) shows the variation of Nω
ω

 vers

 

−π/2 −π 

R
mglφ 

mglsinφ 
 
rce R in linear and nonlinear conditions 

2  (in linear condition) and 2
N

NT
πω =  (in 

 in 

 (2-43) 

us φ  

π0.4radφ =
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ω 

 φ

N
ω 

30

1

20

10

0.0984
 

Figure 2-5 Variation of the ratio of nonlinear frequency versus linear frequency of a simple 

pendulum 

 

2.6  Equations of motion of the coupled nonlinear system4 
Considering the motion of a pendulum suspended of moving support as shown in 

Figure (2-1), the corresponding linear system exhibits two dominant modes of 

oscillation, namely a pendulum-like mode with the linear natural frequency 

1 2( )p
gω =  and a spring-like (breathing) mode with the linear natural frequency 

1 2

1

( )T
k
m

ω = .  

In the following, the nonlinear influence due to the motion of the pendulum is 

discussed. Combining the terms according to the Lagrange equations of motion 

and dividing through the coefficients of the highest order derivatives results in the 

nonlinear set of second-order differential equations, namely Equation (2-44) and 

Equation (2-45). For large motion of the pendulum one can not neglect the 

nonlinear terms. 

 
                                                 
4 Reference [4] 
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   (2-44) gxmmmsmskxxrxmm )(sincos)( 1
2

1 +−=−++++ φφφφ

 sin cos cosgg x xφ φ φ+ + = − φ   (2-45) 

 
2

sis
s

= +    (2-46) 

2.7 Numerical examples for the nonlinear system  
Numerical values for the two degrees of freedom system, shown in Figure (2-1), are 

assumed as follows 

  kg ,51 =m 1=m  kg , 10=r N s
m

, 200=k
m
N , 81.9=g  2s

m ,  1=s m

 
5

1
=si   and     (2-47) m 20.1= m

 

Thus Equation (2-44) and Equation (2-45) become 

   (2-48) gxxxx 6sincos200106 2 −=−+++ φφφφ

 1.20 9.81sin cos cosgx xφ φ φ+ + = − φ   (2-49) 

  

The equations of motion are solved in the time domain by Simulink and Matlab7 

software computing  at each time step φφ ,,, xx t∆ .  

Procedure for the numerical nonlinear analysis, using a step-by-step method, can be 

found in Appendix C. 

Here, the Simulink controller of the nonlinear system is discussed. Considering 

again Figure (2-1), the control parameters of this model are the displacement of 

moving support and the rotation angle of the pendulum. 

Horizontal base acceleration applied to the mass of moving mass and pendulum, 

represents the input of this system. The pendulum is assumed to rotate without 

friction. Equations (2-48) and (2-49) represent motions of this system in each time 

step, where  is the acceleration due to gravity. Examining the equations of 

motion, one can notice that 

g

( )x t  and ( )tφ  appear in each equation. These can be 

interpreted as the output function of Simulink model with an algebraic loop. 
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The model consists of the input functions . Figure (2-6) shows the Simulink 

model of the system. 

φφ ,,, xx

 

 
 

Figure 2-6 Simulink model of the nonlinear system 

 

The equations of motion are computed using the above mentioned model. The 

system parameters are given in Equation (2-47) and excitation is introduced in the 

subsequent sections. 

1 
Out1 

1 
s 

x-dot 
1 
s 
x 

1 
s 

theta-dot 
1 
s 

theta 

Scope MATLAB 
Function 

MATLAB Fcn 

f(u)

Mux Mux

f(u) 

Clock
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2.7.1 Unit displacement base 
As shown in Figure (2-7), the undamped coupled system is excited by initial 

support excitation of Heaviside type5, 0( ) ( )gx t x H t= , 0 0.1x = m , causing oscillation 

at both the pendulum and elastically supported mass around equilibrium position. 

Figures (2-8a) and (2-8c) illustrate the displacement response of the moving mass 

and oscillation response of the pendulum. Figures (2-8b) and (2-8d) show the Fast 

Fourier transformation of both components of the system. Considering the time 

domain response of the 2DOF system, indicates that zero crossing for both 

displacements of the moving mass and oscillation of the pendulum occurs 

simultaneously. 1 2.78 secradω = , 2 6.47 secradω =  are resonance frequencies of the 

system which are very close to the values of the linear oscillation. 

 

2.7.2 Unit rotation Pendulum excitation 
As illustrated in Figure (2-9), the coupled system is excited by initial rotation of the 

pendulum, , 0t ≥ 0( )tφ φ= , .   100 =φ

Figures (2-10a) and (2-10c) indicate displacement of the moving mass and 

oscillation of the pendulum in the time domain. In Figures (2-10b) and (2-10d), the 

Fast Fourier transformations with regards to both the pendulum and the moving 

mass are illustrated. 

Oscillations are in the neighborhood of 0 0x =  and 0=φ  position. Rotation angle of 

the pendulum and displacement of the moving mass decrease first slightly in time 

domain, and then bounded around equilibrium position where amplitude of 

oscillation tends to become zero by time decay. 1 2.78 secradω =  (Resonance 

frequency of the system) shows a remarkable amplification in the response. 

                                                 
5 Reference [1] 
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Figure 2-7 Base excitation 
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Figure 2-8 Time domain and FFT response 
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m
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k

m,is

l

10°  
Figure 2-9 Pendulum excitation 
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Figure 2-10 Time domain and FFT response 
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2.7.3 Unit acceleration base excitation  
In this example, the coupled system is excited by a base excitation of the form 

( ) 1. ( )gx t H= t , as it is shown in Figure (2-11). 

Figures (2-12a) and (2-12c) illustrate the displacement of the moving mass and the 

rotation angle of the pendulum in time domain. 

Likewise in Figures (2-12b) and (2-12d) Fast Fourier transformation in frequency 

domain with regards to both the pendulum and the moving mass are shown.  

According to these figures, the rotation angle of the pendulum and displacement of 

the moving mass are decreased slightly and bounded in time domain. In contrast 

with models shown in Figures (2-7) and (2-8) Oscillations are not around 

equilibrium position and tend to become zero by time decay.  

 

 

m
r

k

m,is

l

x  = ’’ 1 ’’g
..

 
Figure 2-11  Base excitation by Heaviside step function 
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Figure 2-12 Time domain and FFT Response 

 

 

2.7.4 Harmonic base excitation  
The coupled system is excited by a harmonic support excitation 0.5singx tν=  

switched on at , as shown in Figure (2-13). The excitation frequency is chosen 

as 

0t =

1.39ν = , , , . Figure (2-14) through Figure (2-21), indicate 

the response curve of displacement of the moving mass and rotation angle of the 

pendulum, as well as the Fast Fourier transformation response in frequency domain 

in the miscellaneous circumstances. 

2.78 5.56 8.69 / secrad
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m
r

k

m,is

l

x  = 0.5 sin   tg ν

 
Figure 2-13 Harmonic base excitation 
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Figure 2-14 Time domain and FFT response  
ν  (frequency of excitation) =1.39 rad sec  
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Figure 2-15 Time domain and FFT response  
ν  (frequency of excitation) =1.39 rad sec  
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Figure 2-16  Time domain and FFT response 
ν  (frequency of excitation) =2.78 rad sec  
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Figure 2-17 Time domain and FFT response 
ν  (frequency of excitation) =2.78 rad sec  
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Figure 2-18 Time domain and FFT response 
ν  (frequency of excitation) =5.56 rad sec  
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Figure 2-19 Time domain and FFT response 
ν  (frequency of excitation) =5.56 rad sec  
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Figure 2-20  Time domain and FFT response 
ν  (frequency of excitation) =8.69 rad sec  
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Figure 2-21  Time domain and FFT response 
ν  (frequency of excitation) =8.69 rad sec  

 

The response of the coupled nonlinear system is connected to the individual type 

of excitation. The first natural frequency of the system is shifted to 

1 2.89 / secradω =  and the second natural frequency of the system has no influence 

on the response. This is due to the high damping ratio in the main mass, 35%ζ = . 

The influence of low frequency excitation and high frequency excitation are 

rendered in the described phenomenon. Response figures show that frequency of 

the response is a combination of two parts. The first part shows the oscillation at 

the forcing or exciting frequency which is called steady-state response and the 

second part shows the free vibrations of the system. By adjusting the excitation 

frequency around the natural frequencies of the system as it shown in Figures      

(2-16) and (2-17), the amplitude of the mass displacement and pendulum rotation 

grows enormously and decreases after time decay. An additional resonance of the 
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system also may be concluded whose frequency is due to nonlinearity to 1
3pω ν≈  

(ν  is frequency of the excitation) as the subharmonic resonance. Likewise an 

additional resonance of the system may be concluded whose frequency is changed 

by nonlinearity to 3pω ν≈  (ν  is frequency of the excitation) as the superharmonic 

resonance. 

  

2.7.5 Stationary random base excitation 
One can generate artificial sample function6 for excitation of the underlying 

random process ( )gx t  according to Equation (2-50), where ( )S ν  expresses an 

ensemble spectral density function as follows 

  
1

( ) 4 ( ) cos( )
N

g
n

x t S n tν ν ν
=

= ∆ ∆∑ ϕ−   (2-50) 

 

m
r

k

m,is

l

g  (t)x      

 
Figure 2-22 Random base excitation 

 

 

                                                 
6 Reference [6] 
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i iν ν= ∆ , , 1, 2, 3, ...100i = ( )S ν  are determined in this example and ν∆  is equal to 1ν . 

Furthermore, a phase angle within the interval between 0 2ϕ π≤ ≤  is selected in the 

form of random number to advice a uniformly distributed random process. 

Numerical calculations lead to  

 ( )S ν ={1},{1.5},{2}  

     100=T sec

 2 2 0.0628 / sec
100

rad
T
π πν∆ = = =  

 1ν ν= ∆  

  
100

2 3

1
( ) 1.5 / sec ( ) 0.6138 cos(0.0628 )g

n
S m x t ntν ϕ

=

= ⇒ = × −∑ 2/ sec m   (2-51) 

  2.78resω =               sec/rad

  86.2==
g

pω       / secrad

  77.5
1

==
m
k

Tω      / secrad

  15.81%ζ =  

 

The generated sample function ( )gx t  is illustrated in Figure (2-23a). Fast Fourier 

transformation analysis of a sample random vibration is obtained in Figure (2-23b) 

showing a constant energy level in time domain. 

In Figure (2-24) through Figure (2-25), the response curves of the moving mass and 

the pendulum are illustrated, where ( )S ν  is selected as {1}, {1.5} and {2}.  

The response of the system depends on the type of excitation, natural frequency of 

the system, order of nonlinearity, and the type of damping mechanism. 
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Figure 2-23 Time domain and frequency response-generated base acceleration 
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Figure 2-24 Time domain and frequency response 
random excitation ( )S ν =  {1} 
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Figure 2-25 Time domain and frequency response 
random excitation ( )S ν =  {1.5} 
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Figure 2-26 Time domain and frequency response 
random excitation ( )S ν =  {2} 

 

When the amplitude of excitation is smaller than pω , a nonstationary state arises 

from the nonlinear response of the pendulum. Due to the nonstationarity, phase 

angle and amplitude of the response vary by time. In these cases, the frequency 

response curves may develop oscillations and deviate somewhat from the stationary 

case. This study will be discussed for the nonlinear pendulum in Chapter 4. 
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3  
 
ANALYSIS OF THE HYBRID BELL-TOWER 
SYSTEM 

 

3.1 Introduction 
In this chapter the hybrid Bell-Tower (BT) system is studied. The structure is 

considered as a linear elastic continuous cantilever beam (Tower) together with a 

nonlinear single pendulum (Bell). The pendulum is supported at the top of the 

tower, and the corresponding equations of motion are derived. Oscillation of the 

pendulum is nonlinear and the tower has an infinitive number of degrees of 

freedom. Special emphasize is placed on the nonlinear interaction between the 

dynamically excited tower and the movement of the bell that mechanically behaves 

as a rigid pendulum. This particular study gives a completely new insight into the 

complex dynamic behavior of the BT structure. Responses of the BT for free and 

forced vibration are calculated by means of computer simulations. Comparison is 

made between the characteristics in coupled system and uncoupled system. 

 

3.2 Generalized Multi-Degree-Of-Freedom (MDOF) system 
The mechanical system consists of structural components having distributed mass 

and elasticity. Figure (3-1) shows a continuous BT system, where a pendulum is 

supported at the top of the tower. In spite of various possibilities for displacement 

of the tower, only one type of oscillation is possible in the pendulum. The tower is 

discretized as a linear system of a finite number of DOFs, and the pendulum is 

assumed to swing in nonlinear manner. 

The essential properties of the tower consist of its flexural stiffness ( )EI x  and its 

mass per unit length ( )m x , as well as the influence of damping denoted by . ( )c x
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Figure 3-1 Generalized MDOF system 

 

 

The BT is subjected to the ground motion excitation ( )gZ t . In order to 

approximate the motion of the tower, several mode shapes )(xiψ are assumed for 

the deflection. The amplitudes of the motion are represented in the generalized 

coordinates 1)(tZi  thus 

      )()(),(
1

tZxtx ii

n

i
ψν ∑

=

=   (3-1) 

 

The generalized coordinates are selected as the model displacements of some 

convenient point of the tower such as its tip. 

 

                                                 
1 Reference [4] 
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3.2.1 Equilibration using energy principle2 
The kinetic energy of this system can be expressed as 

  2

0

1 [ ( , )]
2 2

L t
p pT m x t dx m 21ν ν= ∫ +                                                                  (3-2) 

  ),(),( txZtx g
t νν +=  

 

where m  is the mass per unit length of the tower and  is the mass of the bell 

idealized as a “mathematical pendulum”.  

pm

 

Moreover, the pendulum velocity pν  renders as  

   ( ) (22
1( , ) cos sinp gt Z s s )2ν ν φ φ φ= + + + − φ                                (3-3) 

  

and the potential energy for the system is given as 

   2

0

1cos [ ( , )]
2

L

pV m gs EI x t dtφ ν ′′= − + ∫                                                      (3-4) 

 

in which EI is flexural stiffness of the tower and  is the length of the pendulum 

bar. By noting the following relationships, we have 

s

 

)()( tZx iii ψν =  

)()( tZx iii ψν =                                                                     (3-5) 

)()( tZx iii ψν =  

)()( tZx iii ψν ′=′                                                 

)()( tZx iii ψν ′′=′′                                                
 

 

                                                 
2 Reference [3] 
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Considering the special case with ( ) .m x const=  and ( ) .EI x const= , the corresponding 

equations of kinetic and potential energy can be written as  

2

0 0
1 1 1

2
1 1 1

1 1 1

1 1
2 2

1 1( ) ( ) ( )
2 2

n n nL L

g i j i j g i
i j i

n n n

p i j i j p g p g i i
i j i

T m Z m Z Z dx mZ Z d

m Z Z m Z m Z Z

ψψ ψ

ψ ψ ψ

= = =

= = =

= + +

+ + +

∑∑ ∑∫ ∫

∑∑ ∑

0

L

i x∫
 

2
1

1

1 ( ) cos ( ) cos
2

n

p p i i p g
i

m s m s Z m sZφ φ φ ψ φ
=

+ + +∑ φ           (3-6) 

 

0
1 1

1cos
2

n n L

p i j
i j

V m gs EI Z Z dxφ
= =

i jψψ′′ ′′= − + ∑∑ ∫  (3-7) 

 

3.2.2 Equations of motion 
The generalized coordinates are selected ( ), ( )iZ t tφ  and  are the modal 

mass, stiffness, and damping coefficients, respectively. By using the expressions for 

the kinetic and potential energies, and employing the following form of Lagrange 

equations of motion

, ,i i im k c

3, see Appendix A  

 

i
i i i

d T T V Q
dt q q q
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
  (3-8) 

 

two sets of equations of motion for the general coordinates iZ  and φ  are in the 

form of  

 

i
i i i

d T T V Q
dt Z Z Z
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 ,   (3-9) 1, 2,...,i = n

                                                

 

                                                                                (3-10) 

 
0d T T V

dt φ φ φ
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 
3 Reference [6] 
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This procedure leads to the following partial differential expressions of kinetic and 

potential energy 

 

0 0
1

1 1
1

( ) ( ) ( )

n L L

j i j g i
ji

n

p i j j p g i
j

T mZ dx mZ dx
Z

m Z m Z

ψψ ψ

ψ ψ ψ

=

=

∂
= +

∂

+ +

∑ ∫ ∫

∑ 1

 

                                                                         (3-11) 1cos ( )p im sφ φψ+

 

2
1

1
cos ( ) cos

n

p p i i p g
i

T m s m s Z m sZφ φ ψ
φ =

∂
= + +

∂ ∑ φ  (3-12) 

 

                     

0 0
1

1 1
1

( )

( ) ( )

n L L

j i j g i
ji

n

p i j j
j

d T mZ dx mZ dx
dt Z

m Z

ψψ ψ

ψ ψ

=

=

∂
= +

∂

+

∑ ∫ ∫

∑
 

2
1 1( ) cos ( ) sin ( )p g i p i p im Z m s m sψ φ φψ φ φψ+ + − 1   (3-13)  

 

 

2
1 1

1 1
( ) cos ( ) sin ( )

n n

p p i i p i
i i

d T m s m s Z m s Z
dt

φ φ ψ φ φ ψ
φ = =

∂
= + −

∂ ∑ ∑
cos sinp g p gm s Z m s Z

i

φ φ φ+ −  (3-14) 

 

0=
∂
∂

iZ
T   (3-15) 

 

1
1

( sin ( ) sin )
n

p i i
i

T m s Z Zφ φ ψ φ
φ =

∂
= − −

∂ ∑ g              (3-16) 
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0
1

n L

j i j
ji

V EI Z dx
Z

ψψ
=

∂ ′′ ′′=
∂ ∑ ∫           (3-17) 

sinp
V m sg φ
φ

∂
=

∂
  (3-18) 

 

Substituting Equations (3-13) through (3-18) in Lagrange equations of motion,  

Equations (3-9) and (3-10), and introducing modal damping terms results in   

0
1

n L

i i j i j
j

Q r Z dψψ
=

= − ∑ ∫ x                             (3-19) 

 

where  is the damping coefficient of the i-th mode.  ir

 

The comprehensive equations for the hybrid system are expressed as  

{ 1 10
1

( ) ( )
n L

j i j p i j
j

mZ dx m Zψψ ψ ψ
=

+∑ ∫ j

=

 

}
0 0

2
1( )( cos sin )

L L

i j i j j i j

p i

rZ dx EIZ dx

m s

ψψ ψψ

ψ φ φ φ φ

′′ ′′+ +

+ −

∫ ∫  

                                                     ( )10
( )

L

g i p iZ m dx mψ ψ− +∫           (3-20)  

  

2
1

1

cos ( ) sin cos
n

p i i p p p
i

m s Z m s m sg m s Zgφ ψ φ φ
=

+ + = −∑ φ   (3-21) 

 

The two mode shapes of the tower  must satisfy orthogonality conditions4 as 

 

   
0

( ) ( ) ( ) 0
L

i jx x m x dxψ ψ =∫             i jω ω≠  

              
0

( ) ( ) ( ) 0
L

i jx x EI x dxψ ψ′′ ′′ =∫ i jω ω≠      (3-22) 

 

 
                                                 
4 Reference [4] 
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Thus the corresponding equations reduce to 

2
1 10

1
( ) ( )

nL

i i p i j
j

mZ dx m Zψ ψ ψ
=

+ ∑∫ j  

2 2 2
10 0

[ ] ( )( cos sin )
L L

i i i i i p irZ dx EI Z dx m sψ ψ ψ φ φ φ′′+ + + −∫ ∫ φ =  

                                                                     ( )10
( )

L

g i p iZ m dx mψ ψ− +∫  (3-23) 

 

1
1

cos ( ) sin cos
n

j j
j

gZ s g Zφ ψ φ φ
=

+ + = −∑ φ  (3-24) 

 

The following relationships are introduced for further formulations 

2

0
( )

L

i im m x dxψ= ∫  

2

0
[ ( )]

L

i ik EI x dψ ′′= ∫ x

ψ= ∫

 

2

0
( )

L

i i ic r x dx   (3-25) 
2

1( )ip p im m ψ=  
*

0
( )

L

i im m x dψ= ∫ x

i

i

  
*

1( )ip p im m ψ=  

 

Considering Rayleigh Damping5 the modal damping coefficient  can be expressed 

as linear combination of the modal mass and stiffness coefficient  and   

ic

im ik

0 1i ic a m a k= +  (3-25a) 

 

where the coefficient  and  have to be determined experimentally.  0a 1a

Substituting 2
i ik mω=  yields  

                                                 
5 Reference [6] 
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2
0 1(i i ic m a a )ω= +     and   2

0 1( )i ir m a aω= +           (3-25b) 

Therefore two general sets of Lagrange equation are expressed as follows 

*
1

1
( ) ( ) ( ) ( ) ( )

n

i i ip j j i i i i
j

m Z t m Z t c Z t k Z tψ
=

+ +∑ +  

            * 2( cos sin )ipm s φ φ φ φ+ −  =                                 (3-26)   * *( )i ip gm m Z t− + ( )

gφ

 

2
1

1
cos ( ) ( ) sin cos ( )

n

p j j p p p
j

m s Z t m s m sg m s Z tψ φ φ
=

+ + = −∑                       (3-27) 

3.3 Modal analysis of the BT 
In order to provide a representative solution of the BT, one should evaluate the 

mode shapes functions first. These functions are shown for the first three modes in 

Figure (3-1). 

 

3.3.1 Eigenfrequencies and mode shapes6 
Consider again the elementary case in which ( )EI x  and ( )m x  have constants values 

EI  and m , respectively. The free vibration equation of motion for the undamped 

slender BT is expressed as 

 

0),(),(
2

2

4

4

=
∂

∂
+

∂
∂

t
txvm

x
txvEI                            (3-28) 

 

After dividing by EI  and adopting the prime and dot notations to indicate partial 

derivatives with respect to  and t , respectively, this equation becomes x

 

0),(),( =+ txv
EI
mtxviv                                  (3-29) 

 

 

                                                 
6 Reference [4] 
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Since 
EI
m  is a constant, one form of solution of this equation can be obtained by 

separation of variables using 

( , ) ( ) ( )v x t x Z tψ=                                         (3-30) 

 

which indicates that the free vibration motion is of a  specific shape )(xψ  having a 

time dependent amplitude ( )Z t . Substituting this equation into Equation (3-29) 

results in 

0)()()()( =+ tZx
EI
mtZxiv ψψ                          (3-31) 

 

Dividing by )()( tZxψ , the variables can be separated as follows 

0
)(
)(

)(
)(

=+
tZ
tZ

EI
m

x
xiv

ψ
ψ                                      (3-32) 

 

Since the first term in this equation is a function of  only, and the second term is 

a function of t  only, the entire equation can be satisfied for arbitrary values of  

and  only if each term is a constant in accordance with 

x

x

t

4

)(
)(

)(
)( a

tZ
tZ

EI
m

x
xiv

=−=
ψ
ψ                                   (3-33) 

 

where the single constant involved is designated in the form  for subsequent 

mathematical convenience. This equation yields two ordinary differential equations 

4a

0)()( 2 =+ tZtZ ω                                                                                          (3-34) 

0)()( 4 =− xaxiv ψψ                                                                                       (3-35) 

 

in which 

EI
maor

m
EIa 2

4
4

2 ωω ==                          (3-36) 
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Equation (3-34) is the familiar expression for the free vibration of an undamped 

SDOF system having the solution as 

 

( ) cos sinZ t A t B tω ω= +                     (3-37) 

 

The equation (3-35) can be solved in the usual way by introducing a solution of the 

form 
sxeCx =)(ψ                                                 (3-38) 

 

leading to 

0)( 44 =− sxeCas                                         (3-39) 

 

from which 

                                              (3-40) ,s a i= ± ± a

 

Incorporating each of these roots into Equation (3-38) separately and adding the 

resulting four terms, one obtains the complete solution as 

 
axaxiaxiax eCeCeCeCx −− +++= 4321)(ψ         (3-41) 

 

in which  and must be treated as complex constants. Expressing the 

exponential functions in terms of their trigonometric and hyperbolic equivalents 

and setting the entire imaginary part of the right hand side of this equation to zero 

leads to 

321 ,, CCC 4C

axAaxAaxAaxxAx sinhcoshsincos)()( 4321 +++=ψ                             (3-42) 

 

These real constants must be evaluated so as to satisfy the known boundary 

conditions (displacement, slope, moment, or shear) 
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3.3.2 BT mode shapes and frequencies 
The free vibration of the BT analysis requires all four terms in Equation (3-42). 

Consider the Bell-Tower shown in Figure (3-1) with four boundary conditions as 

 

(0) 0ψ =                            (0) 0ψ ′ =                                        (3-43) 

( ) ( ) 0M L EI Lψ ′′= =           ( ) ( ) 0V L EI Lψ ′′′= =                       (3-44) 

 

Substituting Equation (3-42) and its derivative expressions into these equations 

leads to 

 

1 2 3 4(0) ( cos 0 sin cosh 0 sinh 0) 0A A o A Aψ = + + + =  

1 2 3 4(0) ( sin 0 cos0 sinh 0 cosh 0) 0a A A A Aψ ′′ = − + + + =  
2

1 2 3 4( ) ( cos sin cosh sinh ) 0L a A aL A aL A aL A aLψ ′′ = − − + + =  
3

1 2 3 4( ) ( sin cos sinh cosh ) 0L a A aL A aL A aL A aLψ ′′′ = − + + =  (3-45) 

 

Making use of cos0 cosh 0 1= =  and sin 0 sinh 0 0= = , the first two of these equations 

yield  and . Substituting these equalities into the latter two 

equations, changing all signs, and placing the resulting expressions in a matrix form 

one obtains 

3A = − 1A 2A

( ) (
( )
cosaL coshaL sinaL sinhaL
sinhaL sinaL cosaL coshaL

+ +⎡ ⎤
⎢ ⎥− +⎣ ⎦

=

4A = −

 

( )
)

⎭
⎬
⎫

⎩
⎨
⎧

2

1

A
A

=                     (3-46) 
⎭
⎬
⎫

⎩
⎨
⎧
0
0

 

For coefficients and  to be nonzero, the determinant of the square matrix in 

this equation must be equated to zero, to obtain the frequency equation as 
1A 2A

2 2 2 2sinh sin cos 2cosh cos cosh 0aL aL aL aL aL aL− − − −  (3-47) 
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which reduces to the form 

1cos
cosh

aL
aL

= −                                                                         (3-48)

   

The solution of this transcendental equation provides the values of  which 

represent the eigenfrequencies of vibration of the BT. Figure (3-2) shows a plot of 

functions  and  

aL

cosaL 1
cosh aL

− , and their crossing points give the values of  

which satisfy Equation (3-48).  

aL

Introducing the values of  given by Equation (3-48) into Equation (3-36), the 

corresponding circular frequencies can be obtained as  

aL

 

2
4( )i i

EIaL
mL

ω =                                                             (3-49) 1, 2,3,...i =

 

Either of Equation (3-46) can now be employed to express coefficient  in terms 

of . The first gives 
2A

1A

 

2
(cos cosh )
(sin sinh )

aL aLA
aL aL

+
= −

+ 1A                                                                      (3-50) 

 

This result along with the previously obtained conditions 13 AA −=  and 24 AA −=  , 

allows the mode shape expression of Equation (3-42) to be written in the form 

 

[ ]1
[(cos( ) cosh( ) ]( ) cos cosh (sin sinh )
[sin( ) sinh( ) ]

i i
i

i i

aL aLx A ax ax ax ax
aL aL

ψ +
= − − −

+
               (3-51) 

 

Substituting the frequency equation roots for  into this expression separately, 

one obtains the corresponding mode shape functions. Plots of these functions for 

the first three modes are shown in Figure (3-3) along with their corresponding 

circular frequencies. 

aL
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Figure 3-2    Roots of frequency equation
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Figure 3-3 Mode shapes of the BT 
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3.3.3 Uncoupled equations of motion7 
The mode shape (normal) coordinate transformation serves to uncouple the 

equations of motion of any linear dynamic system and therefore is applicable to the 

flexural equations of motion of a one dimensional member. Introducing the 

equation of flexural motion, leads to 

 
2 2

0 1( ) ( ) ( ) ( ) ( )n n n n n n n n n nM Z t a M a M Z t M Z t P tω ω+ + + =  (3-53) 

2 ( )( ) 2 ( ) ( ) n
n n n n n n

n

P tZ t Z t Z t
M

ζ ω ω+ + =                                                            (3-54) 

0 1

2 2
n

n
n

a aωζ
ω

= +                                                                                   (3-55) 

2

0
( ) ( )

L

n iM m x x dxψ= ∫                                                           (3-56) 

0
( ) ( , )

L

n i nP x P xψ= ∫ t dx                                                           (3-57) 

  

It is apparent that after the vibration mode shapes have been determined, the 

reduction to the normal coordinate form, involves exactly the same type of 

operations for all structures. 

 

3.4 Vibration analysis of the BT  
Following Equations (3-26) and (3-27) which were employed for the tower and the 

swinging pendulum, the first step in the dynamic response analysis will be the 

evaluation of mode shapes and frequencies of the BT which were discussed 

previously. As an example considering two mode shapes, the equations of motion 

can be written as follows 
* *

1 1 1 1 1 1 1 2 1 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )p pm Z t m Z t m Z t c Z t k Z tψ ψ+ + + +  

      + * 2
1 ( cos sin )pm s φ φ φ φ−  =               (3-58)   * *

1 1( )p gm m Z t− + ( )

                                                

 
 

7 Reference [6] 
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* *

2 2 2 1 1 1 2 2 1 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )p pm Z t m Z t m Z t c Z t k Z tψ ψ+ + + +  

      + * 2
2 ( cos sin )pm s φ φ φ φ−  =   (3-59)   * *

2 2( )p gm m Z t− + ( )

g

 
2

1 1 1 2 1 2cos ( ) ( ) cos ( ) ( ) sin cos ( )p p p p pm s Z t m s Z t m s m sg m s Z tφψ φψ φ φ φ+ + + = −  (3-60) 

 

Normalizing the mode shapes with reference to the pendulum’s operating position 

 results in 1

 

1 1 2 1( ) ( ) 1ψ ψ= =  

ppp mmm == *
11          

ppp mmm == *
22   (3-61) 

 

Therefore the last three equations become 

 

1 1 2 1 1 1 1( ) ( ) ( ) ( )p pm m Z t m Z c Z t k Z t+ + + +  

      + 2( cos sin )pm s φ φ φ φ−  =           (3-62)   *
1( )p gm m Z t− + ( )

 

2 2 1 2 2 2 2( ) ( ) ( ) ( )p pm m Z t m Z c Z t k Z t+ + + +  

      + 2( cos sin )pm s φ φ φ φ−  =              (3-63)   *
2( )p gm m Z t− + ( )

gφ

 
2

1 2cos ( ) cos ( ) sin cos ( )p p p p pm s Z t m s Z t m s m sg m s Z tφ φ φ φ+ + + = −             (3-64) 

 

By providing the time values of , the solution of these three equations leads to the 

displacements of the tower for the first and second modes and the rotation angle of 

the pendulum in each time step. 

t
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3.5 Simulink controller of the BT  
In this section Simulink controller of the hybrid nonlinear system is discussed. 

Consider Figure (3-1) where again the objectives in the control of this model are 

moving the tower and swinging angle of the pendulum. 

The input of this system is a horizontal acceleration applied to the base of the 

tower. The pendulum rotates without friction. The Equations (3-62),(3-63) and    

(3-64) represent motions of this system in each time step, where g is the 

acceleration due to the gravity. Examining these equations, we notice that 1( )Z t , 

2 ( )Z t  and ( )tφ  appear in each equation. The Simulink model using these equations 

contains an algebraic loop. 

The model consists of a system with input  and with output 

 in each time step, as shown in Figure (3-4). 

φφ,,,,, 2,211 ZZZZZ g

φ,, 21 ZZ

0

Display1

 
Figure 3-4 Simulink model of a hybrid system 
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The equations of motion are computed using the above mentioned model and the 

system parameters as well as mode shapes and frequencies are defined by Matlab7 

software. 

 

3.6 Numerical example for the BT 
In order to follow the procedure of analysis of the hybrid system, a concrete tower 

of full circular cross-section is modeled and the mass of the pendulum is assumed 

to be concentrated at the end (mathematical pendulum), where the mass of the 

pendulum is 10% of the tower’s mass shown in Figure (3-5). The numerical 

parameters of the system are assumed as follows: 

10L m= , 22.48 10 NE e
m

= , 1884=m
m
kg ,  40.0491I m= , 1 10m= ,  1884pm k= g

                                   29.81
sec
mg = , 5%ζ = , 1s m=    (3-65) 
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                                Figure 3-5 Bell-Tower specifications 
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Substituting the parameters of the tower in Equation (3-49) results in the linear 

eigenfrequencies of the main structure as 

26.281 =ω    
sec
rad  

14.1772 =ω   
sec
rad  (3-66) 

3 496.00ω =   
sec
rad  

 

3.7 Analysis of the hybrid BT example 
The coupled hybrid model of BT shown in Figure (3-5) is excited by the base 

acceleration, ( )gZ t . In the following section, the response of the BT is discussed 

considering different type of base excitations. 

 

3.7.1 Unit acceleration base excitation  
The hybrid system is excited by a base excitation of the Heaviside type8 

( ) 1. ( )gZ t H= t . Figure (3-6) shows the displacement of the top of the tower in the 

first and second modes as well as the rotation angle of the pendulum. In Figure   

(3-6), the Fast Fourier Transformation (FFT) in frequency domain is illustrated 

with regard to tower and pendulum. Zero crossing in time domain for the all 

records occurs simultaneously. 

The results prove that the value of the first natural frequency of the system 

3.12 / secradω =  is smaller than the circular frequency of the simple pendulum 

p
g
s

ω = =3.132  , and the first natural frequency of the tower sec/rad 1 28.26ω =  

. It can be seen that the oscillation of the pendulum and displacement of 

the tower are decreased and bounded in the time domain, although oscillation is 

not around the  and 

/ secrad

0Z = 0φ =  position.  

 

                                                 
8 Reference [1] 
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Figure 3-6 Constant initial excitation (Heviside step function)  "1"gZ =
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3.7.2 Harmonic support excitation  
The hybrid system is excited by a harmonic support excitation, . 

The excitation frequency 

ttZ g νcos0.1)( =

ν  is chosen as 1, 3, 5, 20, 28 and 177 rad sec . The 

response of the system is connected to type of excitation and natural frequencies of 

the system. The base of the BT is excited by low and high frequencies and Figures 

(3-7) through (3-12) are obtained, indicating the response curve of displacement of 

the tower and oscillation angle of the pendulum, as well as the FFT in these 

miscellaneous circumstances. These figures show that frequency of the response is 

the combination of two parts. The first part shows the oscillation at the forcing or 

exciting frequency which is called steady state response, and second part shows the 

transient part of the system. By adjustment of excitation frequency around the 

natural frequencies of the BT as shown in Figures (3-8), (3-11) and (3-12) the 

amplitude of tower deformation and pendulum rotation grows enormously and it 

decreases by time. An additional resonance of the system also may be concluded 

whose frequency is changed by nonlinearity to 1
3pω ν≈  as the subharmonic 

resonance. Likewise an additional resonance of the system may be concluded 

whose frequency is changed by nonlinearity to 3pω ν≈  as the superharmonic 

resonance.  
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Figure 3-7 Harmonic base excitation  ttZ g 0.1cos0.1)( =
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Figure 3-8 Harmonic base excitation  ttZ g 0.3cos0.1)( =
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Figure 3-9 Harmonic base excitation  ttZ g 0.5cos0.1)( =
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Figure 3-10 Harmonic base excitation  ttZ g 0.20cos0.1)( =
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Figure 3-11 Harmonic base excitation  ttZ g 28cos0.1)( =
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Figure 3-12 Harmonic base excitation  ttZ g 177cos0.1)( =
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3.7.3 Stationary random base excitation9 
The excitation of the random process  as discussed in Chapter 2, Part 2.7.5 is 

rendered as 

)(tZ g

 

        
1

( ) 4 ( ) cos( )
N

g
n

Z t S n tν ν ν
=

= ∆ × ∆∑ ϕ−      (3-67) 

 

where ( )S ν  expresses an ensemble spectral density function. 1 2, , , and ( )n Sν ν ν ν  are 

determined by numerical values, i iν ν= ∆  and ν∆  is equal to 1ν . Moreover the 

phase angle within the interval between 0 2ϕ π≤ ≤  is selected in the form of 

random number. Thus the numerical values are evaluated as 

1.5  m   2 3/ sec                 S( )ν =

                       T        100= sec

                      2 2 0.0628 / sec
100

rad
T
π πν∆ = = =     

                      1 0.0628 / secradν ν= ∆ =  

                     
50

2 3

1

( ) 1.5 / sec ( ) 0.6138 cos(0.0628 )g
n

S m Z t ntν ϕ
=

= ⇒ = × −∑ 2/ secm

                                                

  (3-68) 

 

The Generated sample function is illustrated in Figure (3-13a) and the Fast Fourier 

transformation analysis is obtained in Figure (3-13b), indicating a constant energy 

level in time domain. 

 

 

 

 

 

 

 

 
9 Reference [7] 
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(a)Generated random base excitation 
10 

.  

Figure 3-13 Random base excitation  

 

The response curves of the tower and the pendulum in time domain are illustrated 

in Figure (3-14). The amplitude spectra of the system are illustrated in Figure       

(3-15). The response of the hybrid system depends on the type of excitation, 

natural frequency of system, the order of nonlinearity and the type of damping 

mechanism.  
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Figure 3-14 Random base excitation response in time domain 
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Figure 3-15 Random base excitation FFT response 
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Comparing the circular frequencies of the uncoupled system  

132.3=pω   
sec
rad  

1 28.26Tω =    
sec
rad  

2 177.14Tω =   
sec
rad                                              (3-69) 

 

with the frequencies in the hybrid coupled system, indicates that the second and 

third frequencies are obviously shifted. Deviation of the oscillation frequency of the 

pendulum, pω , is not remarkable. 

Figures (3-16) shows the coupled system frequencies in contrast to the uncoupled 

system. 
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 Figure 3-16 Comparison between the coupled and uncoupled systems 
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4  
 
DYNAMIC BELL SWINGING ACTIONS IN 
THE BELL-TOWER   

 

4.1 Introduction 
Dynamic actions caused by bell ringing are typical characteristic aspects in BTs.  

Here the effect of the bell ringing on the BT is presented. Both the tower and 

bell system is estimated under the effect of forced bell vibrations. The bell acts 

like a pendulum and is supported at the top of the tower. Particular study of 

the nonlinear pendulum with special focus on subharmonics and 

superharmonics resonate frequencies is presented in this chapter. Vibrating 

rces are applied as an external moment, and nonstationary conditions in fo

nonlinear pendulum is also discussed.   

 

4.2 Dynamic reactions by bell ringing 
One of the main external actions on the BT is the forces caused by ringing the 

bell. In the European systems the bells are swinging around the bell axis with 

rotation angles ranging up to 60 degree he (rigid) bell is modeled as a 

mathematical pendulum. If the amplitude of the pendulum is moderately large, 

the restoring moment is proportional to sin

s. T

φ , which can be approximated by 

power series. Considering again the free vibration of simple mathematical 

results in 

pendulum, Equation (2-41) and substitution of the first two terms of the series 



4. DYNAMIC BELL SWINGING ACTIONS IN THE BELL-TOWER 76

 
3g φ( ) 0

6
φ φ+ −

y resonance of the pendulum  
xim

determining the particular solution that can be obtained by using the 

N

=         ( 4-1) 

 

4.2.1 Secondar
An appro ate method for simulating the motion of such a syste sists of 

Lindestedt-Poincare technique1  

m con

 is circular frequency of the nonlinear pendulum, g, Nω ω =  is the tτ ω=

circular frequency of the linear pendulum. Nω  and φ  can be expanded as  

here

3
1 3( ) ( ) ...εφ τ ε φ τ= + +        ( 4-2) 

2
2 ...Nω ω ε ω= + +         ( 4-3) 

 

φ

w  ε  is a small dimensionless parameter characterizing the amplitude of 

motion. Substituting Equations (4-2) and (4-3) in Equation (4-1), and equating 

the coefficients for each power of ε  to zero, leads to 

 2ω φ φ′′+ =         ( 4-4) 1 1( ) 0

 2
3 3 2 1

1( ) 2
6

ω φ φ ωω φ ω′′ ′′+ + − 2 3
1 0φ =       ( 4-5) 

here 

 

w φ′′  is a second order derivative with respect to τ . Then the solution of 

Equation (4-4) is obtained as 

 1 cos( )aφ τ β= +         ( 4-6) 

                                                     

 

 
 
1 Reference [7] 
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where ,a β  are constant values. Substituting in Equation (4-5) and eliminating 

condition of resonance becomes  

 2
2

1
16

aω ω= −          ( 4-7) 

 

Thus the first approximation results in  

 1 cos[ ]Na tφ ω β= +         ( 4-8) 

 2 21(1 )
16N aω ω ε= −  

 

If we limit our calculations to the second approximation, which is sufficient for 

ractip n becomes  cal problems, the corresponding solutio

3
3

1 cos(3 3 )
192 Na tφ ω β= − +        ( 4-9)  

 

and the total solution of  φ  by substituting in Equation (4-2) leads to  

 
3 3

) cos(3 3 )a tεcos(
192N Na tφ ε ω β= +

onsi

ω β− +      ( 4-10) 

 

C sponding initial conditions (for 0tdering the corre = , aφ ε=  and 0φ = ) 

and substituting in Equation (4-2)  

   
30 ...εφ ε φ= + +  
30 ...εφ ε φ= + +          

hese

 3 ...aε εφ ε φ= + +       1 3

        ( 4-11) 1 3

 1 3

 

T st hold for any amplitude of  equations mu ε , thus   

     ( 4-12)  1 1(0) , (0) 0aφ φ= =     

 3 3(0) 0, (0) 0φ φ= =  
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The general solution for 1φ  and 3φ  becomes  

Nt 1 cosaφ ω          ( 4-13) =

 3
3 1 2

1sin cos cos3
192N N Nc t c t a tφ ω ω ω= + −      ( 4-14) 

 

Consequently 

 3 3 3 31 1cos cos cos3
192 192N N Na t a t a tφ ε ω ε ω ε ω= + −    (4-15) 

 

can be considered as a general solution of nonlinear pendulum free vibration by 

second approximation.  Another characteristic

 

 of this equation is its secondary 

onance which indicates that the free oscillations resonate terms are changed 

due to nonlinearity to one-third and three times of its natural frequency. For 

 superharmonic resonance 

   

res

this reason the one-third subharmonic resonance and

of order 3 may be considered in the response. 

4.2.2 F ced introduced by bell ringing 
The time-harmonic external moment is defined as   

0( ) cos

or

M t M tν=          ( 4-16)  

 

where 0M  is the amplitude of the moment and ν  is a constant forcing 

frequency. Figure (4-1) shows the action of oscillation in the simple pendulum 

induced by an external moment. The equation of motion for simple pendulum 

is given as2 
2

0sin cosm mg M tφ φ ν+ =           ( 4-17)  

 
                                                      
 
2 Reference [2] 
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 sin

M(t)

 
Figure  4-1 Simple pendulum, forced oscillation 

 
 

4.3 Description of the BT   
Figure (4-2) shows a BT system where the bell ringing action is considered to 

behave as a simple pendulum with concentrated mass at the end (mathematical 

pendulum). The numerical tower model uses the generalized continuous system 

having MDOF as described in Chapter 3.  
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                                 Figure  4-2 Tower plan and section 

 

The main material used in the building is concrete and the cross-section of the 

tower is circular. Weight of the pendulum is 10% of the tower’s total weight. 

The mechanical properties of the BT are considered as  

210 , 2.48 10 , 1884 , 18840total
N kgL m E e m m kg
m m

= = = = , 1884pm kg=  

29.81
sec
mg = , 5%ζ = , 2 4( , ) (0.785 , 0.0491 )towerA I m m= 1 10m, = ,  ( 4-18)  1s m=

 

4.4 Analysis of the BT 
In this section the approach for simple pendulum is developed for the analysis 

of the forced vibration caused by bell ringing in the BT. The configuration of 

such a vibrating system is determined by using the forced vibration terms of 

the bell ringing in Equation (3-63) and substituting  0gZ =  in Equations (3-62), 

(3-63) and (3-64). Thus the equations of motion are of the form 
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1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +  

         + 2( )pm s cos sinφ φ φ φ 0− =                   ( 4-19) 

 

2 2 1 2 2 2 2( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +  

      + 2( )pm s cos sinφ φ φ φ 0− =             ( 4-20) 

 
2

1 2cos ( ) cos ( ) sinp p p pm s Z t m s Z t m s m gsφ φ φ φ = 0 cos+ + + M tν       ( 4-21) 

 

4.4.1 Numerical modeling  
The numerical modeling is based on details of the geometrical data of the tower 

and the pendulum. Simulink controller for such a vibrating system is used for 

computing in time domain. The excitation forces are originated from the 

swinging of the bell and the impact of forced vibration in the hinged support of 

the pendulum. The pendulum is assumed to rotate without friction. The 

solution of Equations (4-20), (4-21) and (4-22) gives the time domain response 

of the tower in first and second modes as well as rotation of the pendulum. 

By inspecting these equations, we notice that 1 2( ) , ( )Z t Z t  and ( )tφ  appear in 

each equation and thus indicates an inertia coupling. The model consists of a 

system with input 1 1 2 2, , , , , ( )Z Z Z Z and M tφ φ  as well as output 1 2, ,Z Z φ  in each 

time step. Figure (4-3) shows the Simulink model of such a system. This model 

calculates the output response of the pendulum and the BT in each time step. 
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Figure  4-3 Simulink model (consists of the tower first & second mode and the pendulum) 

 

According to the results of Section 3.6 in Chapter 3, the eigenfrequencies of 

the BT are  

 1 28.26
sec
radω = , 1 4.50 [ ]f Hz=  

2 177.14
sec
radω = , 2 28.19[ ]f Hz=        ( 4-22) 

 3 496.00
sec
radω = , 3 78.94[ ]f Hz=   
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and 

3.13
secp

p

g radω = = , 0.50[ ]pf Hz=       ( 4-23) 

4.5 Analysis of the BT example  
co ell is excited by an external dynamic The upled system of the BT and the b

moment ( )M t . The response of the bell and the tower is discussed for variable 

types of moment. 

 

4.5.1 Free oscillation  
by initial perturbation,The BT system is excited  0 0.90 radφ = , where 0φ  is the 

esents the displacement of the top of the BT for the first and 

initial deviation angle of the pendulum which is allowed to oscillate without any 

external forces. 

Figure (4-4) repr

second natural modes, and oscillation angle of the pendulum. In Figure (4-5) 

the amplitude spectras in frequency domain are shown for each mode of the 

tower and the pendulum. It is obvious that both the oscillations of the 

pendulum and the displacement of the tower are bounded by time decay. The 

3 pω -subharmonic term is identified in the first and second modes of the tower. 

ontrast the effect of subharmonic resonance in the pendulum is low and 

negligible.   

 

In c
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Figure  4-4 Time domain response due to initial perturbation 0 0.90 radφ =   

(a) Displacement at the top of the tower in the first natural mode   
(b) Displacement at the top of the tower in the second natural mode  

(c) Rotation angle of the pendulum 
 



4. DYNAMIC BELL SWINGING ACTIONS IN THE BELL-TOWER 85

10-2 100 10210110-1
10-4

10
-3

10-2

10
-1

100

101
(a) FFT Mode 1

Frequency[Hz]
10-2 100 10210110-1

10-5

10-4

10-3

10-2

10-1
(b) FFT Mode 2

Frequency[Hz]
10-2 100 10210110-1

10-1

100

101

102

103
(c) FFT Pendulum

Frequency[Hz]

 

Figure  4-5 FFT spectrum response of BT effected by initial perturbation 0 0.90 radφ =  
(a) The tower first natural frequency  

(b) The tower second natural frequency  
(c) The pendulum 

 

4.5.2 Harmonic external moment excitation  
In this study the BT is excited by a harmonic external moment induced at the 

hinged support of the pendulum at the top of the tower. This excitation form is 

given as  

                                      ( 4-24) 0( ) cosM t M tν= 0 6.47, M kNm=

 

where 0M  represents the amplitude of the moment and in this case it is needed 

to rotate the pendulum by 20 degrees. Figures (4-6), (4-8), (4-10) and (4-12) 

show the response curve of the BT and oscillation angle of the pendulum in 

time domain. Figures (4-7), (4-9), (4-11) and (4-13) illustrate the FFT spectrum 

response of the BT and the pendulum.  
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The hybrid system is excited by a time-harmonic forced moment with forcing 

frequency of 3.13 / secp radν ω= = (linear resonance frequency of pendulum), 

5 / sec pradν ω= > , 1 28.26 / secradν ω= = (first natural frequency of the tower) 

and 1 / sec pradν ω= < , respectively. 
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Figure  4-6 Time domain response due to harmonic moment excitation  

0( ) cosM t M tν= 0 6.47M kNm= , 5 / serad cν =     , 
(a) Displacement at the top of the tower in the first natural mode  

(b) Displacement at the top of the tower in the second natural mode 
(c) Rotation angle of the pendulum 
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Figure  4-7 FFT spectrum response of the BT effected by harmonic moment 

0( ) cosM t M t , 5
sec
radν =     ν= 0 6.47M kNm=, 

(a) The first natural frequency of the tower 
(b) The second natural frequency of the tower  

(c) The pendulum 
 
 



4. DYNAMIC BELL SWINGING ACTIONS IN THE BELL-TOWER 88

0 5 10 15 20 25 30 35 40 45 50
-20

-10

0

10

20
(a) BT First Mode Displ.(mm)

Time(sec)

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5
(b) BT Second Mode Displ.(mm)

Time(sec)

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2

4
(c) Pendulum rotation angle(rad)

Time(sec)

 
 

Figure  4-8 Time domain response due to harmonic moment                   

0( ) cosM t M t , 3.13
sec
radν =   ν= 0 6.47, M kNm=

(a) Displacement at the top of the tower in the first natural mode  
(b) Displacement at the top of the tower in the second natural mode  

(c) Rotation angle of the pendulum 
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Figure  4-9 FFT spectrum response of the BT effected by harmonic moment 

0( ) cosM t M t , 3.13
sec
radν =    ν= 0 6.47, M kNm=

(a) The first natural frequency of the tower 
(b) The second natural frequency of the tower 

(c) The pendulum 
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Figure  4-10 Time domain response due to harmonic moment                 

0( ) cosM t M t 0 6.47 , 28.26
sec
radM kNm ν= =,  ν=

(a) Displacement at the top of the tower in the first natural mode  
(b) Displacement at the top of the tower in the second natural mode  

(c) Rotation angle of the pendulum 
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Figure  4-11 FFT spectrum response of the BT effected by harmonic moment  

0( ) cosM t M t 0 6.47 , 28.26
sec
radM kNm ν= =,   ν=

(a) The first natural frequency of the tower  
(b) The second natural frequency of the tower  

(c) The pendulum 
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Figure  4-12 Time domain response due to harmonic moment                 

0( ) cosM t M t 0 6.47 , 1
sec
radM kNm ν= =  , ν=

(a) Displacement at the top of the tower in the first natural mode  
(b) Displacement at the top of the tower in the second natural mode  

(c) Rotation angle of the pendulum 
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Figure  4-13 FFT spectrum response of the BT effected by harmonic moment 

0( ) cosM t M t 0 6.47 , 1
sec
radM kNm ν= =,   ν=

(a) The first natural frequency of the tower 
(b) The second natural frequency of the tower 

(c) The pendulum 
 

Figure (4-12) shows the nonstationary effects for values 0.4 radφ >  and pν ω< . 

It can be seen that the harmonic excitation with resonance frequency of the 

tower, illustrated in Figure (4-10), causes enormous increase of displacement 

response in the tower. Likewise excitation at resonance frequency of the 

pendulum causes an increase of the total system response and saturation in the 

time domain as shown in Figure (4-8). Maximum oscillation occurs when the 

frequency of excitation is adjusted to the natural frequency of each mode.  
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In the BT system with nonlinear influence of the pendulum ( 0.4radφ > ) in 

addition to the primary resonance, subharmonic resonance 1 3 pωΩ ≈  and the 

superharmonic resonance 2
1
3 pωΩ =  appear in the tower displacement response, 

Figures (4-7) and (4-13). On the contrary these effects vanish in the pendulum 

rotation response. 

 

4.6 Nonstationary vibration in the BT  
In the preceding section of this chapter about nonstationary condition in the 

BT, only harmonic vibration of the coupled nonlinear pendulum is considered. 

According to Equation (4-21) and rearranging the terms  

 2
0 1

1sin cos cos ( ( ) ( ))p a t Z t Z t
s

φ ω φ ν φ+ = − + 2     ( 4-25) 

 0
0 2

p

Ma
m s

= ,  p
g
s

ω =  

 

and substitution of the first two terms of the power series into the above 

equation  

 
3

sin
6
φφ φ= −  

 
2

cos 1
2
φφ = −          ( 4-26) 

 

results in 

 
3 2

2
0 1

1( ) cos (1 )( ( ) (
6 2p a t Z t Z t

s
φ φφ ω φ ν+ − = − − + 2 ))     ( 4-27) 
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This expression is related to the Duffing’s equation3 of vibration.  

As a first approximation we assume  

 cosa tφ ν=          ( 4-28) 

 1 2( ) ( ) cos( )Z t Z t sb tν ε+ = −  

 

where  and b  are constant values. Substituting into the equation (4-27) gives a

 
3 3 2 2

2 2
0

cos coscos ( cos ) cos cos( )(1 )
6 2p

a t aa t a t a t b t tν νν ν ω ν ν ν ε− + − = − − −  

           ( 4-29) 

 1 2cos( ) cos sinb t b t b tν ε ν− = + ν  

 

Using the Ritz averaging method4 we obtain an approximate solution as 

 

3 3
2 2

00

2 2

1 2

cos[ cos ( cos ) cos
6

cos( cos sin )(1 )]cos 0
2

p
a ta t a t a t

a tb t b t t dt

τ νν ν ω ν ν

νν ν ν

− + − −

+ + −

∫

=
  ( 4-30) 

 

Integration and rearrangement of terms results in  

 
2

3 2 1 01
2 2 2

1 3 (1 ) 0
8 8 p p p

b aba a aν
ω ω ω

−
− − + − + =       ( 4-31) 

 

For any given values of the parameters 1 0, , ,p b aω ν  Equation (4-31) represents 

an approximate relationship between the amplitude  and the forcing 

frequency 

a

ν  for the steady state vibration. This system shows a softening in the 

stiffness.  

                                                      
 
3 Reference [8] 
4 Reference [2] 
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Substitution of numerical values of the BT, 3.13 / secp radω = , , 

, and solving a  for given values of 

1 4b m= m

gm3.43 /a N k=
p

ν
ω

 from Equation (4-31) 

results in the nonlinear frequency response curve as illustrated in Figure (4-14). 
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Figure  4-14 Pendulum amplitude ver

 

The amplitude-frequency relations

 and  equal to zero in the Equ0a 1b

 
2

3
2

1 (1 ) 0
8 p

a ν
ω

− + − =a    

 

ν  represents the angular frequenc

spectrum shown in Figure (4-

observed in nonlinear system of p

where the hybrid system is subject
pω
  

 
sus harmonic excitation frequency ν  in nonlinear 

condition 

hip for free vibrations is obtained by setting 

ation (4-31).  

     ( 4-32) 

y of free nonlinear vibrations. The response 

14) represents nonstationary phenomenon 

endulum (bell) in contact with linear tower,  

ed to harmonic forcing function.  
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Increasing the forcing frequency from 0ν =  to crν ν>  will cause a jump in the 

steady state amplitude response, where the phase angle shifts from 0  to 180 . 

On the other hand, decreasing the forcing frequency from 

o o

crν ν>  to zero will 

cause abrupt drop in the response curve, where the phase angle reverses from 

 to 0 . The dashed curve in Figure (4-13) shows free nonlinear vibration 

amplitude. Unstable region is represented by the dash-dot curve and the line 

180o o

crν ν=  divides the left hand branch of the spectrum to unstable part. 

In conclusion, once the numerical model is completed, the effect of the bell on 

the tower structure can be calculated for different bell tuning frequencies and 

different bell sizes. 

In our case the effects of bell ringing on the tower is considerable. It is well 

known that, if the bell becomes small (low weight) in comparison to the weight 

of the tower, the effects of the bell ringing on the tower will be negligible in 

comparison with other excitations like earthquake and wind.  
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5  
 
TOWER WITH PENDULUM TUNED MASS 
DAMPER SYSTEM 

 

5.1 Introduction 
Pendulum dynamic absorbers are extensively used to reduce tower’s vibration 

level. A Pendulum Tuned Mass Damper (PTMD) is a device consisting of a 

suspended mass, and a damper that is attached to the tower in order to reduce 

the dynamic response of the structure. The frequency of the damper is tuned to 

a particular structural frequency so that when the system is excited by that 

frequency, the damper will resonate out of phase with the tower motion. 

Energy is dissipated by the damping inertia force acting on the structure. 

This chapter starts with an introductory example of PTMD design and a 

description of the implementation of PTMDs in building structures like 

chimneys and BTs. Time history and frequency domain responses for a 

continuous system connected to optimally PTMD and subjected to harmonic 

and random support excitations in linear and nonlinear conditions are 

presented. An assessment is made for the optimal placement locations of 

PTMD in the tower.  The tower response against earthquake with respect to 

seismic design criteria and record of real strong ground motion is also 

estimated.  
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5.2 An introductory sample of pendulum absorber  
 In this part, the concept of PTMD is illustrated using a two DOF system 

shown in Figure (5-1). It is assumed that a simple pendulum, suspended from 

the main mass, is connected to it by a rod and a viscous damper. 

 

m
r

k

m

l

p

xxg
..

rp

 s

 
Figure  5-1 SDOF-PTMD system 

 

Introducing the following notation  

2

1

k
m

ω =           ( 5-1) 

12r mζω=                             ( 5-2) 

p
g
s

ω =                             ( 5-3)  

22p p pr s m pζ ω=                     ( 5-4) 
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and defining  µ   as the mass ratio 

  
1

pm
m

µ =                                ( 5-5) 

 

the governing coupled equations of motion are given1 for main mass as 

  2

1

(1 ) (sin ) (1 ) g
rx x x s

m
µ ω µ φ+ + + + = − + xµ                          ( 5-6) 

 

and for pendulum tuned mass as 

  2
2

cossin cosp
p g

r
x x

ms s
φφ φ ω φ φ+ + + = −                ( 5-7) 

 

The purpose of adding the mass damper is to limit the motion of the main 

structure when subjected to a particular excitation. 

A first approximation for the optimal linear frequency parameter of the damper 

is  

pω ω=                          ( 5-8) 

 

which corresponds to tuning the damper to the period of the main structure.  

 

5.3 Generalized MDOF system with PTMD 
A method for reducing or eliminating the risk of oscillations induced by tower 

is to employ tuned mass dampers. There are mainly two types of tuned mass 

dampers, passive and active. An active mass damper requires an automatic 

engineering system to trigger the mass damper to counteract when oscillation 

occurs.  

 
                                                 
1 Reference [7] 
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In this section passive tuned mass dampers are discussed2. Several examples for 

a tuned mass damper are suggested in Figures (5-2), (5-3) and (5-4)   
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Figure  5-2 The tower is damped by using a pendulum ring connected to the tower by 
hydraulic dampers 

 

                                                 
2 Reference [8] 
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compound
Box 

 
Figure  5-3 The tower is damped by using a pendulum mass with a bottom rod in a 

damping material 
  

Tower

Detail C

mass
Friction

Detail C

Friction
mass

 
Figure  5-4 The tower is damped by using a pendulum mass with a bottom rod. The 

damping is achieved by the friction mass that slips on the bottom plate 
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Mechanical SDOF system with PTMD which was discussed in Section 5.2 is 

extended to continuous system consisting of distributed mass and elasticity. 

Figure (5-5) shows a tower system with pendulum which is allocated at the top 

of the tower. In order to follow numerical procedure we assume the tower to 

be made of concrete. Mass of the pendulum is 5% of total mass of the tower 

and it is assumed to be suspended at the top of the tower. The cross-section of 

the tower is circular as shown in Figure (5-5). 

 

 

m
EI
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SECTION A−A
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..
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z  (t)g  
Figure  5-5 Tower plan and section 

 

The mechanical parameters of the system are defined as 

250 , 2.48 10 , 1584 , 79200total
N kgL m E e m m kg
m m

= = = = ,  3960pm k= g

   29.81
sec

mg = , 5%tζ = , 2 4( , ) (0.66 , 0.365 )towerA I m m= 1 50 m,  ( 5-9) =
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The parameters of the pendulum,  and s pζ , are to be optimized. Substituting 

in Equations (3-49) gives the first and second circular frequency of the tower as 

 
1

2

3.36
sec

21.07
sec

rad

rad

ω

ω

=

=
                                                       ( 5-10)  

 

Suppose the first modal response to be controlled, on the contrary when the 

external forcing frequency is close to 1ω  , the first mode response will dominate 

and it is reasonable to assume only first mode effects. 

By considering the first mode shape of the tower and normalizing the mode 

shape with reference to pendulum operating position , the equations of 

motion for the tower and pendulum can be expressed as 

1

1 1 1 1 1 1( ) ( ) ( ) ( )pm m Z t c Z t k Z t+ + +  
      + 2( cos sin )pm s φ φ φ φ−  =                               ( 5-11)   *

1( )p gm m Z t− + ( )

g

 
2

1cos ( ) sin cos ( )p p p pm s Z t m s m s g m s Z tφ φ φ φ+ + = −           ( 5-12) 

 

noting that 

2
1 10

( ) 19799
l

m m x dx kgψ= =∫  

2
1 10

[ ( )] 223792
l Nk EI x dx

m
ψ ′′= =∫  

2
1 1 10

( ) 6652
l Nsc r x dx

m
ψ= =∫          ( 5-13) 

2
1 1 1( ) 3960p pm m kψ= = g

g

 

*
1 10

( ) 31005
l

m m x dx kgψ= =∫   

*
1 1 1( ) 3960p pm m kψ= =        
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Considering a hydraulic damper in pendulum connection as 
22p p pc s m pζ ω=                          ( 5-14)  

 

The Equation (5-12) leads to 

     2 2
1cos ( ) 2p p pm s Z t m s m s p pφ φ ω ζ φ+ +                         

                                  ( 5-15) sin cos ( )p pm s g m s Z tφ φ+ = − g

 

In case of small amplitude of the pendulum the coupled linearized system can 

be analyzed. By means of linearization sin ,cos 1φ φ φ= =  and neglecting the 

higher order terms of  φ  and its derivative, the equations reduce to the form 

1 1 1 1 1 1( ) ( ) ( ) ( )pm m Z t c Z t k Z t+ + +  
+ pm sφ  =      ( 5-16) *

1( )p gm m Z t− + ( )

g

 

                   ( 5-17) 2 2
1( ) 2 ( )p p p p p p pm s Z t m s m s m s g m s Z tφ ω ζ φ φ+ + + = −

 

considering periodic excitation 

( ) i t
g gZ t Z eν=                                                                 ( 5-18) 

 

the response is given in the form                      

                         ( ) i tZ t Ze ν=                                                                        
                       ( ) i tZ t Z i e νν=                                                                  
                      2( ) i tZ t Z e νν= −                                     ( 5-19) 

 

 i te νφ = Φ                                                                                               

i ti e νφ ν= Φ                                                                  

2 i te νφ ν= −Φ                                                      ( 5-20) 
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The Equations (5-16) and (5-17) may be written in the matrix form as 
2 2 *

1 1 1 1
2 2 2 2

( ) ( )
2

p p
g

p p

m m c i k m s Z m m
Z

s s gs s i s
ν ν ν

ν ν ω ζ ν
⎡ ⎤− + + + − ⎡ ⎤− +⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥− − + + Φ −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 

( 5-21) 

 

The critical condition corresponds to the resonance condition.   

Considering the parameters  

1

pm
m

µ =                                                ( 5-22) 

, pωνα β
ω ω

= =                                     ( 5-23) 

 

Treatment for optimal absorber parameters is contained in Den Hartog’s text3.  

Den Hartog has given the optimum frequency ratio as 

 1
1optβ

µ
=

+
                                         ( 5-24) 

 

and the optimal damping ratio as  

3

3
8(1 )opt

µζ
µ

=
+

                                  ( 5-25) 

 

However, due to the inherent damping in the main structure, the analytical 

expressions for the optimal tuning frequency and the optimal damping ratio 

can not be established in terms of the mass ratio.   

In the following, solution corresponding to ground motion is examined and the 

optimal values of the damper properties for this condition are evaluated by 

Matlab7 program.  

                                                 
3 Reference [9] 
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Iteration for computing optimal parameters of pendulum leads to 

.76optβ =                                            ( 5-26) 

0.13pζ =                                              ( 5-27) 

 

Then the pendulum length and frequency are calculated as 

 ( , ) (1.50 , 2.56 )
secp
rads mω =                      ( 5-28) 

 

Two variables of Equation (5-21), Z  and Φ  are calculated in frequency 

domain. Figure (5-6) shows the displacement of the tower at the top. 
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Figure  5-6 Tower displacement spectrum response in linear c
Z (displacement) versus ω (circular frequency)  

                                      (a) Without pendulum  
(b) With pendulum by optimum parameters 
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5.4 The tower by nonlinear PTMD 
The reason of considering absorber’s nonlinear properties is the improvement 

of pendulum efficiency.  The equations of the system vibrations relative to two 

mode shapes of the tower are written as 

   1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +

      + 2( cos sin )pm s φ φ φ φ−  =          ( 5-29)   *
1( )p gm m Z t− + ( )

 

   2 2 1 2 2 2 2( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +

      + 2( cos sin )pm s φ φ φ φ−  =    ( 5-30)   *
2( )p gm m Z t− + ( )

p

 

  2
1 2cos ( ) cos ( )p pm s Z t m s Z t m sφ φ φ+ +        

                        ( 5-31) 22 sin cop p p p p gm s m sg m s Z tω ζ φ φ φ+ = − s ( )

 

The solution is found by numerical time-integration. The objectives are the 

evaluation of displacement of the tower and rotation angle of the pendulum in 

each time step. Computing these equations by algebraic loop of Simulink 

model which is shown in Figure (5-7) gives displacement and velocity of the 

tower as well as rotation angle and circular velocity in time step. The input of 

the system is a horizontal base acceleration which is generated by Matlab7 

software and applied to the base of the tower. 
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Figure  5-7 Simulink model (consisting the first & second modes of the tower and 

pendulum) 

 

 

5.4.1 Time-Harmonic excitation 
When a linear system is time-harmonically excited, the steady state response 

expresses the same frequencies as the input excitation. In the nonlinear case 

additional subharmonic and superharmonic parts can be detected. In Figure  

(5-8) and Figure (5-9) some results of Simulink calculations for external time-

harmonic excitation (set to the first natural frequency of the tower) in linear 

and nonlinear conditions are shown. 
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Figure  5-8 Time domain response by harmonic acceleration excitation 
( ) 1cos , 3.36gZ t tν ν= = rad in linear system  
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Figure  5-9 Time domain response by harmonic acceleration excitation 
( ) 1cos , 3.36gZ t tν ν= = rad  in nonlinear system 
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Figure (5-10) shows a 3-D plot of response function of the tower Z
A

, where Z  

is displacement amplitude of the tower top point and  is the amplitude of the 

harmonic base excitation. The base excitation can be formulated as 

A

 ( ) cosgZ t A tν=         ( 5-32) 

 

and steady-state harmonic response at the top of the tower is estimated as   

( ) cos( )Z t Z tν α= −         ( 5-33) 

 

The geometrical specification of the tower is defined by Equation (5-9) and 

Equation (5-10). Likewise pendulum optimal parameters are evaluated in 

Equation (5-26) and Equation (5-27). 
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Figure  5-10    Z
A

 ( Z : displacement amplitude of the tower top point, A: amplitude of 

base excitation) versus ν ( circular frequency) and  A (amplitude of excitation) 
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Results for linear response of the tower are chosen on the condition of the 

pendulum absorber’s optimum parameters set in front of the plot series. 

Comparison due to increase of amplitude ( ) shows unstable maximum 

frequency of the tower. It also shows that when the amplitude is less than 0.5  

and 

A

m

max 0.4 radφ ≤ , the maximum optimal values of tuning mass is almost 

constant and it obeys the linear theory. Pendulum rotation angle max( )φ  

increases with increasing amplitude . For  and A 1.65A ≥ m max 0.9φ > , the 

pendulum starts to rotate.  

The increase of the rotation angle of the pendulum increases the pendulum 

tuning values because of the system’s nonlinearity.  

Figure (5-10) shows the change of the pendulum optimum parameters 

according to the increase of the excitation amplitude. Note that for larger 

pendulum amplitudes, the absorption efficiency decreases and two peaks finally 

merge and form one peak only. 

5.4.2 Fundamental statistical parameters4  
For a random variable ( )X t , fundamental statistical parameters consist of the 

mean E X , the mean square 2E X , the variance 2σ  and the standard 

deviation σ  as 

1 2

1

...1 n
n

i
i

x xE X x x
N N=

x+ + +
= = =∑  ( 5-34) 

2 2
2 2 1 2

1

...1 n
n

i
i

2x xE X x
N N=

+ + +
= =∑ x  ( 5-35) 

22 2 2

1

1var ( )
n

i
i

X x x E X E
N

σ
=

= = − = − ⎡ ⎤X⎣ ⎦∑  ( 5-36) 

var Xσ =              ( 5-37) 

                                                 
4 Reference [6] 
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The standard deviation σ  is a measure of the spread of the random variable 

about the mean, and variance 2σ  is interpreted by mean square minus the 

square of the mean and it is equals to mean square when 0E X = . 

 

5.4.3 Stationary random excitation5   
Following the lines of Chapter 2, Part 2.7.5 artificial sample function for 

support excitation are generated by Simulink software, where stationary density 

function ( )S ν  and base random excitation ( )gZ t  can again be expressed 

according to 

 
1

( ) 4 ( ) cos( )
N

g
n

Z t S n tν ν ν
=

= ∆ × ∆∑ ϕ−                                                            ( 5-38) 

  

Numerical parameters are chosen as follows 

       
2

3( ) . 4
sec
mS constν = =  ,  100secT = , 2 0.0628

100
πν∆ = =   

       , 100N = 0 ( ) 2randomϕ π≤ ≤

                                                

                                                       ( 5-39) 

 

Due to the excitation in time domain, the response of the tower and the 

pendulum are computed (built by Simulink) and illustrated in Figure (5-11).  

 

 

 

 

 

 

 

 
5 Reference [6] 
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Figure  5-11 Time domain response by random acceleration excitation 
2

3( ) 4
sec
mS ω = , 

excitation amplitude 21
sec
mA =  in nonlinear system 
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By increasing the amplitude of excitation, the nonlinearity effect appears and 

changes the pendulum optimum parameters. Figure (5-12) and Figure     (5-13) 

show the effects of increasing excitation amplitude on the system parameters. 
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Figure  5-12 Dependence of the displacement amplitude of the tower ( Z ) upon excitation 

stationary amplitude ( )(A Zσ : standard deviation of displacement output, Aσ :standard 
deviation of excitation input ) 
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1.

 
Figure  5-13 Maximum deviation angle of the pendulum ( )φ  versus excitation stationary 

amplitude ( A ) ( φσ : standard deviation of rotation angle) 
 

Figure (5-12) shows that for increasing excitation amplitude the corresponding 

response ( Z

A

σ
σ

) will increase contrary to linear condition where the ratio remains 

constant.   

Rotation angle of the pendulum versus the excitation amplitude is illustrated in 

Figure (5-13) and shows that the rotation angle increases as the excitation 

amplitude increases. When the amplitude exceeds 1.5 , the pendulum begins 

to rotate after about 30 second of oscillation.  

m

The value of µ  should be increased in order to set a limit on the pendulum 

rotation angle when excitation amplitude increases. Figure (5-14) shows the 

maximum rotation angle of pendulum with µ  for constant value of amplitude 

( A ). 
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Figure  5-14 Maximum rotation angle of pendulum max(φ  versus pendulum mass 

ratio ( )µ with excitation amplitude  21.5 / secA m=
 
As depicted in Figure (5-14), when pendulum weight increases to 15% of total 

weight of the tower, rotation angle of the pendulum decreases and the system 

yields to behave linearly. While the pendulum weight decreases to 1% of total 

weight of the tower, it begins to rotate.  

5.4.4 Bam strong ground motion 
Iran is one of the most vulnerable countries in the world to earthquake. Bam is 

located 193km southeast of Kerman city on a plane between Jebalbarez and 

Kabudi Mountains, approximately 1100 meters above sea level. In ancient 

times people lived in citadel, which is now known as Arg-e-Bam, one of the 

Persian historical sites and one of the most beautiful buildings of Ashkanian 

era. Structures with clay and straw as the main material components comprised 

the major type of construction in the city. The current city of Bam is located 

southeast of Arg-e-Bam. Bam city is located in a high seismic hazard zone of 

Iran and thus many earthquakes have been recorded around the Bam area. But 
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the city of Bam had no reports of great historical earthquakes before the 26 

December 2003 earthquake. 

The strong ground motions of Bam earthquake were recorded at 18 stations by 

Building and Housing Research center of Iran (BHRC). Larger residual 

displacements and damage in the E-W direction occurred and more than 

26,000 people were killed and 30,000 injured. Although the impact of the 

earthquake was limited to a relatively small area of about 16 km in radius, in 

Bam city more than 85 percent of the buildings were completely destroyed. The 

impact on the surrounding rural areas was also severe. The 2,500 year-old 

historic city of Bam, an internationally renowned heritage site in the centre of 

Bam, was almost completely destroyed.  

Figure (5-15) shows larger peak ground acceleration in E-W direction. Figure    

(5-16) shows acceleration response spectrum with a damping ratio coefficient 

of 0.05 to the critical6. 
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Figure  5-15 Strong ground motion in the E-W direction, Bam-Iran, recorded by Building 

and Housing Research Center (BHRC, 2003) 
 

                                                 
6 Reference [11] 
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Figure  5-16 Acceleration response spectrum of Bam earthquake ( 0.05ζ = ) 

 

 

5.4.5 Earthquake excitation 
The hybrid nonlinear tower with optimally adjusted pendulum shown in Figure 

(5-5) is excited by the strong ground motion of Bam, Iran 2003. It is defined as 

an input support excitation for the Simulink model illustrated in Figure (5-7). 

This calculation is one of the practical treatments of vibrations in the BT like 

structures. Figure (5-17) indicates the response curve of tip-displacement of the 

tower and rotation angle of the pendulum. Figure (5-18) shows the Fast Fourier 

Transformation curve of the output as well. 
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Figure  5-17 Time domain response of the top of the BT effected by Bam earthquake 

excitation   
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Figure  5-18 FFT spectrum response of the BT effected by Bam earthquake excitation   
 

0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Tower with PTMD  
Tower without damper 

 

Displ.(m) 

Figure  5-19 Time domain tip-displacement response of the tower with PTMD and 
without damper effected by Bam earthquake excitation   
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Figure  5-20 FFT response of the top of  the tower with PTMD and without damper 

effected by Bam earthquake excitation 
 
 
Figure (5-17) and Figure (5-18) show that the tower’s first natural frequency is 

strongly excited and consequently PTMD adjusted to the first natural frequency 

of the tower has effectively decreased the deflections caused by earthquake 

excitation. The results indicate 35% reduction in deflection of the tower as 

illustrated in Figure (5-19) and Figure (5-20).    

 

5.4.6 Optimal location of PTMD 
Equations (5-29), (5-30) and (5-31) represent the 3DOF system, two degrees of 

freedom for the tower and one degree of freedom for the pendulum. Since 

PTMD is effective for a narrow frequency range, one has to decide on which 
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modal resonant response must be controlled with a PTMD7. The PTMD 

location should be selected to coincide with the maximum amplitude of mode 

shape to be controlled. In this case, the first mode is the target mode and the 

top of the tower has the maximum amplitude in the first mode shape. The 

second mode shape has a nodal point at 0.78h L= . Therefore locating a tuned 

mass at this point would have no effect on the second modal response, 

compare Figure (5-21). The optimal locations are h L=  and 0.47h L= . The first 

and second mode shapes of the tower are shown in Figure (5-21).  

L

1

L

0.472L

0.784L

φ φ
1max 2max

2max
φ0.72

(a) (b) (c)  
Figure  5-21 The tower  

(a) With pendulum  
(b) The first mode shape  

(c) The second mode shape 
   

 

As a summary, during the analysis of the tower connected to optimally PTMD 

subjected to time-harmonic excitation and stationary random vibrations in 
                                                 
7 Reference [7] 
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linear and nonlinear condition, the results show that when the amplitude of 

excitation is not too high and causes small rotation angle ( 0.4 radφ ≤ ) in the 

pendulum, the maximum optimal values of tuning mass are almost constant 

and system behaves like a linear system. However if the amplitude of excitation 

is strong enough to oscillate pendulum more than 0.4 , the pendulum 

optimal tuning values will change because of system nonlinearity. In order to 

limit the pendulum deviation angle to less than , the value of 

rad

0.9 rad
1

pm
m

µ =  

should be increased.  

The displacement spectrum response of the tower in linear and nonlinear 

oscillation condition of pendulum in comparison to the response of the tower 

without pendulum is illustrated in Figure (5-22). 
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As illustrated in Figure (5-22), the maximum displacement of the tower 

decrease due to the nonlinear behavior of the pendulum, despite the fact that it 

changes the optimal tuning values.  

This study reveals that a pendulum absorber can be computed according to the 

linear theory when 0.4 radφ ≤ , however when 0.4 0.9rad radφ< ≤  it is necessary 

to allow nonlinearity effect, and in no circumstances 0.9 radφ >  is 

recommended.       
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6  
 
DYNAMIC SUBSTRUCTURE METHOD AND 
FORCE CALCULATIONS 

 

6.1 Introduction 
In the former chapters the numerical nonlinear behaviors of the BT have been 

discussed. In this chapter, dynamic analysis of the BT via substructure method is 

introduced, and then vibrations induced by bell (pendulum) movements are treated 

as externally applied excitations. When studying pendulum oscillatory movement, it 

is necessary to determine the time-variant forces applied to the tower. A numerical 

model is presented to compare the response of the BT in quasi-static analysis for 

this force. 

The internal forces of the tower produced by dynamic excitations are evaluated by 

numerical nonlinear analysis.  

  

6.2 Dynamic analysis via substructure method 
The main concept of substructure analysis is to obtain the response of the entire 

system from the response of the individual substructures1. The idea in such an 

approach is presented in the BT by means of modeling the pendulum and the 

tower as two substructures. Figure (6-1) shows the complete system of BT which is 

decomposed into two substructures. The tower substructure is contained in the 

first two mode shapes of vibration expressed as 

  

 

 

                                                 
1  Reference [4] 
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1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +  = *
1( )g p ( )Z m m R t− + +            ( 6-1) 

 

2 2 1 2 2 2 2( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + + = *
2( )g p ( )Z m m R t− + +           ( 6-2) 

 

where ( )R t  stands for the dynamic interaction of the pendulum, 
2( ) ( cos sin )pR t m s φ φ φ φ= − −        ( 6-3) 

 

Definition of the generalized mass, stiffness and damping have been introduced in 

Equation (3-25).  

 

z(t)

z  (t)g

m
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mp

..
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Figure  6-1 Substructure representation of the BT 

 

On the other hand, the governing equation of motion of the pendulum can be 

expressed as   

       ( 6-4) 2
1 2[ ( ) ( ) ]p p pm s m sg sin m scos Z t Z t Zφ φ φ+ = − + + g
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By geometrical linearization of pendulum, sinφ φ= , cos 1φ =  and neglecting higher 

order terms of φ  and its derivatives, which holds for small oscillation about the 

position of equilibrium, Equations (6-3) and (6-4) yields   

( ) pR t m sφ= −           ( 6-5) 

  1 2( ) ( ) gs g Z t Z t Zφ φ+ = − − −        ( 6-6)

  

Considering a time-harmonic support excitation in the complex form of i t
gZ aeν= , 

the steady-state response in terms of the complex frequency response function may 

be written as 

 1 1( ) i tZ t e ν= Ζ     (a) 

 2 2( ) i tZ t e ν= Ζ    (b) 

 i te νφ = Φ    (c)         ( 6-7)  

 

Substituting Equation (6-7) into Equations (6-6) gives 

 
2

1 2
2

( ) a
g s

ν
ν

Ζ + Ζ −
Φ =

−
         ( 6-8) 

 

Moreover, considering ( )R t  in terms of the complex frequency response function, 

from Equation (6-5)  

  ,  2( ) pR m sω ν= Φ ( ) ( ) i tR t R e νω=        ( 6-9) 

 

Substitution of Equations (6-7), (6-8) and (6-9) in Equations (6-1) and (6-2), and 

solving two coupled equations in terms of the complex frequency response 

function leads to 

 

2
* * *
1 2 2 12 2

1 2

1 2 1 22

( ) (

( )

p p

p

a m g m g
m m a S m

g s g s
m g

S S S S
g s

ν
)

ν ν
ν
ν

− − +
− −Ζ =

−
− +

−

             ( 6-10) 
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2
* * *
2 1 1 22 2

2 2

1 2 1 22

( ) (

( )

p p

p

a m g m g
m m a S m

g s g s
m g

S S S S
g s

ν
)

ν ν
ν
ν

− − +
− −Ζ =

−
− +

−

             ( 6-11) 

 

where   and  are defined as  1S 2S

  2
1 1 1S m icν ν= − + + 1k

2k                 ( 6-12) 2
2 2 2S m icν ν= − + +

 

Therefore the responses of the total system can be obtained from the complex 

frequency response function of the substructure. 

 

6.3 Numerical example 
The numerical parameters of the BT as defined in Chapter 4, Part 4.3, are a 

concrete tower of full circular cross-section, 1 meter in diameter and 10 meter in 

length. Two mode shapes are considered. Mass of the pendulum is 10% of the 

tower’s total mass, which is hanged from top of the tower. The first and second 

eigenfrequencies of the tower are evaluated as 

 1 28.26 / secradω =     1 4.5 [ ]f Hz=  

 2 177.14 / secradω =    2 28.19[ ]f Hz=                  ( 6-13) 

 

Thus evaluation of generalized mass, stiffness and damping of the tower for first 

and second mode yields  

2
1 10

( ) 4709.70
l

m m x dx kgψ= =∫  

2 6
1 10

[ ( )] 3.77 10
l Nk EI x dx

m
ψ ′′= =∫ ×  

2
1 1 10

( ) 13310
l Nsc r x dx

m
ψ= =∫                ( 6-14) 

*
1 10

( ) 7375.20
l

m m x dx kgψ= =∫   
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2
2 20

( ) 4726.70
l

m m x dx kgψ= =∫  

2 8
2 20

[ ( )] 1.48 10
l Nk EI x dx

m
ψ ′′= =∫ ×  

2
2 2 20

( ) 83729
l Nsc r x dx

m
ψ= =∫                 ( 6-15) 

*
2 20

( ) 4107.80
l

m m x dx kgψ= = −∫  

 

Mass and length of the pendulum are chosen as follows 

1884pm kg= 1s mtr=,                 ( 6-16) 

 

By means of Matlab7 software, the Equations (6-10) and (6-11) are computed in 

frequency domain for the BT. Figure (6-2) and (6-3) illustrate displacement 

amplitude response by frequency. Two resonance frequency of the tower 

substructure are 4.52 [ ]Hz  and 28.6 [ ]Hz  for first and second dynamic modes, 

respectively. 
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Figure  6-2 Tip-displacement response of the tower in frequency domain, the first mode 

contribution 



6. DYNAMIC SUBSTRUCTURE METHOD AND FORCE CALCULATIONS 133

10-2 10-1 100 101 102
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency [Hz]

Displ. (mm)

28.6 Hz
0.5 Hz

 
Figure  6-3 Tip-displacement response of the tower in frequency domain, the second mode 

contribution 
 

 

Considering pendulum frequency response function as rendered in Equation (6-8), 

the tower interaction on the pendulum in comparison with excitation amplitude is 

small and negligible. Therefore Equation (6-8) yields  

   2

a
g sν
−

Φ =
−

                 ( 6-17) 

 

Consequently Equations (6-10) and (6-11) reduce to 

 
2 * * *

1 2 2 1 2

1 2
1 2 1 2

( ) (

( )

p
p

p

m g
a m m m a S m

g s
m S S S S

ν )
ν

ν

− − +
−Ζ =

− − +
                       ( 6-18) 

  

 
2 * * *

2 1 1 2 2

2 2
1 2 1 2

( ) (

( )

p
p

p

m g
a m m m a S m

g s
m S S S S

ν )
ν

ν

− − +
−Ζ =

− − +
                       ( 6-19) 
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In the numerical BT substructure, for different values of ν ,  calculation of these 

two equations yields to displacement response of the tower tip-point for first and 

second mode, illustrated in Figures (6-4) and (6-5). Resonance frequency as 

depicted in these figures, are 3.80 [ ]Hz  and 24.9 [ ]Hz  for first and second mode 

subsequently.  
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Figure  6-4 Tip-displacement response of the tower in frequency domain, the first mode 

contribution (interaction of tower on Bell ignored)   
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Figure  6-5 Tip-displacement response of the tower in frequency domain, the second mode 

contribution (interaction of tower on Bell ignored) 
 

The results show 13%  decrease of the tower substructure frequency for first mode 

contribution and 16%  decrease of the tower substructure frequency for second 

mode contribution. Noting that in practical problems the fundamental tower 

frequency should be at least beyond  of the excitation frequency20% 2. 

 

6.4 Pendulum dynamic actions  
The forces associated with pendulum are periodic forces which can be considered 

as an external applied force in the tower. 

Introducing the time displacement forces induced by the movement of the 

pendulum is of major relevance in the analysis of the tower. The free rotation of a 

simple pendulum with large oscillations around axis, as represented in Appendix B, 

is formulated as 
2 sin 0p pm s m gsφ + =φ

                                                

                ( 6-20) 
 

2 Reference [6] 
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The mathematical solution of this equation leads to3

( ) 2arcsin[ sn( )]t k tφ ω=                 ( 6-21)  

 

where  is the elliptic Jacobean function,  is a constant depending on the initial 

conditions, and 

sn k

ω  is the linear frequency of the mathematical pendulum g
s

ω = . 

As discussed in Chapter 4, Part 4.2, the general solution of the nonlinear free 

vibration may be formulated by a first approximation as  

( ) cos( )Nt tφ α ω β= +                 ( 6-22) 

 

The second approximation also reads 

 
3

( ) cos( ) cos(3 3 )
192N Nt t tαφ α ω β ω β= + − +               ( 6-23) 

 

where Nω  is the frequency of nonlinear pendulum and  ,α β  are constant values. 

As a consequence of this oscillatory movement, the time-variant horizontal and 

vertical forces of the support are 
2( ) [ sin cos ]pH t m s φ φ φ φ= −               ( 6-24) 

 2( ) [ cos sin ]pV t m s φ φ φ φ= +                                           ( 6-25) 

 

The forces are periodic, where harmonic parts can be determined by means of the 

Fourier analysis4 as follows 

 
1 1

( ) ( ) sinj p j
j j

H t H t cm g tjγ ω
∞ ∞

= =

= =∑ ∑                1,3,5,...j =  ( 6-26) 

 
1 1

( ) ( ) sinj p j
j j

V t V t cm g tjβ ω
∞ ∞

= =

= =∑ ∑                2, 4,6,...j =  ( 6-27) 

 

 
                                                 
3 Reference [1] 
4 Reference [5] 
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 c  is a shape factor expressed (see Chapter 2, Part 2.3) for the physical pendulum as  

 
2

2 2
s

sc
i s

=
+

 ( 6-28)  

 

and for mathematical pendulum  

  ( 6-29)  1c =

 

The corresponding Fourier coefficients ,j jγ β  are represented in Figures (6-6) and 

Figure (6-7). Nω  is the frequency of the nonlinear pendulum evaluated by the 

following equation in the standard form of the elliptic integral of the first kind,  

 4 ( , )
2

F s πτ
ω

=                 1

N

τ
ω

=   and  sin( )
2
as =            ( 6-30) 

 

where a  is the maximum rotation angle of the pendulum, see Appendix B. 

Figure (6-8) shows the variation of frequency versus maximum amplitude of 

excitation  in the nonlinear pendulum. a
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Figure  6-6 Horizontal force amplitudes of the harmonics of the pendulum oscillation  

 ( a : pendulum rotation amplitude) 
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Figure  6-7 Vertical force amplitudes of the harmonics of the pendulum oscillation 

 ( a : pendulum rotation amplitude) 
 

 

For an angle greater than 80 , the amplitude of the third harmonic (subharmonic) 

for horizontal force is larger than the amplitude of fundamental frequency 

excitation, as shown in Figure (6-6). Then  for  free vibration of the tower, 

resonance with the components of the pendulum forces, particularly first and third 

harmonic should be avoided as described for some samples in Chapter 4. 

o
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Due to the geometry of the BT and the material utilized in the construction, most 

towers have significant higher resistance to axial loading than to torsion or bending. 

Therefore the horizontal component of induced forces is most critical and is 

applied to the BT model in the subsequent section. 

 

6.5 Quasi-static analysis of the BT 
A concrete BT of height 10  and of the circular diameter of 1  is considered for 

numerical investigation. Bell swinging is introduced at the top of the tower 

assuming the model of a simple mathematical pendulum, compare to Figure (4-2). 

The numerical geometry data of the BT are given in Equation (4-18). These data 

are introduced to Simulink software for time domain analysis. The forces induced 

by the bell can be evaluated by Equation (6-26) and Equation (6-27).  Considering 

the geometry of the BT, horizontal forces of the bell are more critical than vertical 

forces, evaluated as 

m m

 1 3( ) 18482.04( sin sin 3 )N NH t t tγ ω γ ω= + ]N

)d

  [  ( 6-31) 

 

With the help of Figures (6-6), (6-7) and (6-8) and considering the maximum 

rotation angle of the pendulum ( 0.90a ra=  one can write  

 0.95Nω ω=    2.97 / secrad=

 1 0.73γ = , 2 0.30γ =  ( 6-32) 

 

Substituting in Equation (6-31) results in 

 ( ) 18482.04(0.73sin 2.97 0.30sin 8.91 )H t t= + t  [  ( 6-33)  ]N

 

Thus the equations of motion for the numerical BT-example consist of two mode 

shapes, compare Equations (6-14) and (6-15),  

  ( 6-34) 
6

1 2 1 16593.70 1884.00 13310.00 3.77 10
18482.04(0.73sin 2.97 0.30sin8.91 )

Z Z Z Z
t t

+ + + × =
+
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  ( 6-35) 
8

1 2 2 11884.00 6610.70 83729 1.48 10
18482.04(0.73sin 2.97 0.30sin8.91 )

Z Z Z Z
t t

+ + + × =
+

 

Where the interaction between the tower and the pendulum is neglected, see 

Chapter 6, Part 6.2. 

Those equations can be solved by numerical time step analysis. For this purpose 

Matlab7 and Simulink software are programmed and the response of the BT is 

computed. The force progress induced by bell swinging is shown in Figure (6-9). 

Tip-displacement response of the tower due to dynamic actions of bell in the first 

and second modes is illustrated in Figure (6-10) and Figure (6-11), respectively.  

All figures show acceptable correlation with the results due to analysis of 

mechanical model of the BT (discussed in Chapter 4, Part 4.5), compare Figure   

(4-4). 
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Figure  6-9 Periodic force induced by the swinging of bell 
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Figure (6-9) shows a maximum horizontal force of 

  ( 6-36) max[ ( )] 13514H t N=

 

The expression of static stiffness of the BT with a single degree of freedom and 

without damping leads to  

 6
3

3 3.65 10s
EI NK
L m

= = ×     ( 6-37) 

 

Due to dynamical effects, the stiffness of the tower depends on derivatives of 

modal displacement and is determined for the first mode of the numerical BT as 

 63.77 10 NK
m

= ×  ( 6-38) 

 

The quasi-static maximum deflection at the top of the tower can be evaluated as 

 max[ ( )] 3.58s
H t mm

K
∆ = =  ( 6-39) 
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Figure  6-10 Tip-displacement response of the tower, the first mode contribution 
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Figure  6-11 Tip-displacement response of the tower, the second mode contribution 

 

The maximum amplitudes in the first and second modes marked in Figures (6-10) 

and (6-11) are 

      and       ( 6-40) 1max 3.82mm∆ = 2max 0.093mm∆ =

 

In order to evaluate the dynamic amplification factor introduced by bell swinging, 

the maximum displacements at the top of the tower for dynamic and static analyses 

are compared. 

Results confirm that the maximum tip-displacement response of the tower, induced 

by bell swinging from dynamical analysis of the first vibration mode, is 1.07  times 

as that of the quasi-static analysis. It is defined as Dynamic Amplification Factor 

(DAF)  

 1max 1.07
s

DAF ∆
= =

∆
 ( 6-41) 
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Thus any desired force and moment resultants in the tower section can be obtained 

by standard method of static analysis, multiply by . For instance the base shear 

and moment can be written as 

DAF

  13514 14460V DAF= × = N

 135140 144600M DAF Nm= × =  ( 6-42) 

  

6.6 BT forces induced by dynamic excitation 
Considering only the first mode shape of the BT, the dynamic equilibrium of the 

system involves inertial, damping and elastic forces which are distributed along the 

axis5 and can be expressed as 

  ( 6-43) 0I D sf f f+ + =

 

If  stands for inertial, Df  for damping and sf  for elastic  force which are distributed 

along the tower axis, all force contributions are oriented in horizontal direction.  

The Ritz approximation for a single degree of freedom system leads to  

 ( , ) ( ) ( )v x t x Z tψ=  ( 6-44) 

 

The corresponding generalized forces are the same as for the problem discussed in 

Chapter 3, Part 3.2. Therefore, due to base excitation  

 *
I i i i gf m Z m Z= +           D i if c Z=           

is if k Z=  ( 6-45) 

 

Thus Equation (6-43) results in 

  ( 6-46) *
i i i i i i i gm Z c Z k Z m Z+ + = −

 

Furthermore, the external dynamic force can be formulated as  

 1 3( sin sin 3 )p N NF m g t tγ ω γ ω= +  ( 6-47) 

 

                                                 
5 Reference [2] 
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Then the principal of virtual work, considering both internal and external forces 

according to Equations (6-46) and (6-47), leads to 

  ( 6-48) 1 3( sin sin 3 )i i i i i i p N Nm Z c Z k Z m g t tγ ω γ ω+ + = +

 

The solution of these equations can be obtained by numerical procedure and the 

displacement distribution follows from Equation (6-44). 

The elastic forces depend on derivatives of the displacement shape and can be 

evaluated from the BT displacement acting on the stiffness properties. However, it 

is more effective to express these forces approximately in terms of the equivalent 

inertial forces developed in undamped free vibration6. Thus since the inertial force 

in free vibration is  

 2( , ) ( , ) ( , )If x t mv x t mv x tω= = −  ( 6-49) 

 

where m  denotes mass per unit length.  

For undamped oscillations Equation (6-43) reduces to 

  ( 6-50) 0I sf f+ =

 

and further 

 2( , ) ( , )sf x t mv x tω=  ( 6-51) 

 

Distributed elastic forces in the BT are depicted in Figure (6-12). The shear force at 

the base of the tower is expressed by  

 2

0
( , ) ( ) ( )

L

sV f x t dx mZ t x dxω ψ= =∫ 0

L

∫  ( 6-52) 

 

and the base moment is given by  

 2

0
( , ) ( ) ( )

L

s 0

L
M f x t xdx mZ t x xdxω ψ= =∫ ∫  ( 6-53) 

 

                                                 
6 Reference [2] 
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Figure  6-12 Elastic force of the BT 

 

 

Expressions for moment and shear force at an arbitrary section with , can be 

written as 

x h=

 2( , ) ( ) ( )
L

h sh
V f x t dx mZ t x dxω ψ= =∫

L

h∫  ( 6-54) 

 2( , ) ( ) ( )
L

h sh

L

h
M f x t xdx mZ t x xdxω ψ= =∫ ∫  ( 6-55) 

 

Introducing the selected geometry for the BT given in Equation (4-18), time step 

analysis utilizing Matlab7 and Simulink software gives the time-variant response of 

the moment and shear forces, as illustrated in Figures (6-13) and (6-14). 

 

 



6. DYNAMIC SUBSTRUCTURE METHOD AND FORCE CALCULATIONS 146

0 1 2 3 4 5 6 7 8 9 10
-80

-60

-40

-20

0

20

40

60

80

Time(Sec)

M (kNm)

 
Figure  6-13 Base moment response of the BT, M (induced by pendulum) 
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Figure  6-14 Base shear force response of the BT, V (induced by pendulum) 
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The maximum steady-state response values are  

 (max) 60M kNm=  

  ( 6-56) (max) 22.5V = kN

 

As an additional practical study, the BT system formulated by Equation (3-62),    

(3-63) and (3-64) is excited by real earthquake excitation of Bam, Iran, (2003), 

(presented in Chapter 5, Part 5.4.5). Figures (6-15) through (6-17), as well as (6-20) 

through (6-22) illustrate the displacement responses of the BT in time and 

frequency domain, respectively. 
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Figure  6-15 Tip-displacement of the first mode (BT induced by Bam strong ground motion) 



6. DYNAMIC SUBSTRUCTURE METHOD AND FORCE CALCULATIONS 148

0 10 20 30 40 50 60 70
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

Displ.(mm)

 

Figure  6-16 Tip-displacement of the second mode (BT induced by Bam ground motion) 
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Figure  6-17 Pendulum rotation (BT induced by Bam strong ground motion) 
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Figure  6-18 Base shear force response V (BT first mode) 
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Figure  6-19 Base moment response M (BT first mode) 
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Figure  6-20 First mode tip-displacement FFT response  
(BT induced by Bam strong ground motion) 
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Figure  6-21 Second mode tip-displacement FFT response  
(BT induced by Bam strong ground motion) 
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Figure  6-22 Pendulum mode FFT response (BT induced by Bam strong ground motion)  

 

The maximum values of shear force and moment at the base of the tower for the 

first mode of vibration of the BT, shown in Figures (6-18) and (6-19), respectively 

are 

  (max) 580M kNm=  

  ( 6-57) (max) 215V = kN

                                                

 

For the higher modes of vibration, forces can be obtained by a similar procedure.  

The maximum total response can be evaluated through superposition of modal 

values by the Square Roots of Sum of Squares (SRSS)7 method. However, when the 

frequencies of major contributing terms are very close to each other, the more 

general Complete Quadratic Combination (CQC) 8 method is utilized. For the BT 

model with generalized coordinate system, the effects of higher modes are 

 
7 Reference [3] 
8 Reference [3] 



6. DYNAMIC SUBSTRUCTURE METHOD AND FORCE CALCULATIONS 152

negligible as compared to the first mode. Therefore, for this case only the first 

mode of vibration provides sufficient accuracy for the results.  
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7             
                    
ACTIVE CONTROL IN THE BT 

    

7.1 Introduction 
In comparison with passive energy dissipation, research and development of active 

structural control technology has a more recent origin. In structural engineering, 

active structural control is an area of research in which the motion of structure is 

controlled or modified by means of the action of a control system through some 

external energy dissipation. Active control can be used for example, for motion 

control against wind and earthquake forces. In this chapter dynamic analysis of the 

BT by application of actual control system is investigated. A numerical nonlinear 

model is made and time step analysis is performed to compare the results. 

7.2 Active Pendulum Tuned Mass Damper (APTMD) 
The former studies were focused on the application of passive PTMD, for which 

no external forces needed to be added to the system, and the characteristic of 

stiffness and damping in the bell (pendulum) did not change with time. In contrast, 

the APTMD uses an external source of energy, in the form of an actuator, to 

reduce the level of vibration. A linear actuator placed between the structure and 

tuned mass and is known as a proof mass actuator1. APTMDs have higher 

effectiveness than their passive counterparts and can be manually or automatically 

retuned (readjusted) via their electronic software. Moreover, a single active system 

can simultaneously be tuned to multiple frequencies. Those controllers are also 

smaller in size than their passive counterparts. Figure (7-1) shows a APTMD which 

has been installed on the top floor of a 70-story building with  height, and 296 m

                                                 
1 Reference [1] 
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also on the top of the tower of Akashi Kaikyo Bridge, having 300  height, by 

Matsumoto et al

m

2, 1990.  

 
Figure  7-1 APTMD, Matsumoto et al 1990 

 

7.3 BT with Active Pendulum Mass Damper (APMD)  
 
For practical implementation, some analytical and numerical studies on the 

efficiency of APMD in the BT are made. Figure (7-2) shows the system of BT with 

control device. The tower is contained in the first two mode shapes of vibration. 

The bell (pendulum) and the actuator (shaker) are positioned directly at the top of 

the tower.  

  

                                                 
2 Reference [3] 
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Figure  7-2 The active control loop for BT 

 

The equations of motion are governed by the following   

    1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +

      + 2( cos sin )pm s φ φ φ φ−  =  ( 7-1)   *
1( ) ( ) ( )p gm m Z t U t− + +

 
    2 2 1 2 2 2 2( ) ( ) ( ) ( ) ( )p pm m Z t m Z t c Z t k Z t+ + + +

      + 2( cos sin )pm s φ φ φ φ−  =  ( 7-2)   *
2( )p gm m Z t− + ( )

p

 
   2

1 2cos ( ) cos ( )p pm s Z t m s Z t m sφ φ φ+ +        

sin cos ( )p pm sg m s Z tφ φ+ = − g  ( 7-3) 
 

Definition of the generalized mass, stiffness and damping have been introduced 

through Equation (3-25). Variable U  stands for the reaction of the actuator and 

here it is dedicated to the first vibration mode shape. As discussed previously, the 

contribution of the first mode dominates the BT system, and it seems reasonable to 
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set the actuator to the first natural frequency of the tower. Thus, the systems 

reaction to any perturbation is expressed by a control force as3  

1 1( , , , )U U Z Z φ φ=  ( 7-4) 

 

7.4 The optimal state feedback control 4 
The control force U  intends to keep system at zero state 1 1[ ]TX Z Z φ φ 0= =  and 

returns it back in case of any perturbations due to initial conditions or external 

forces.  The actuator is designed as an optimal Linear Quadratic Regulator (LQR). 

Action force U  based on a linearized model of unforced system. The linearized 

model of unforced system can be obtained from Equations (7-1), (7-2) and (7-3) if 

we ignore the external excitation gZ , and linearize the corresponding equations for 

small values of φ  and φ  in order to achieve a system of linear first order differential 

equations in the state space form 

X AX BU= +  ( 7-5)  

 

Thus, system matrix A  and location matrix B may be formulated as  

1 1

1 1 1

11 1

1 1 1

0 1 0 0

0

0 0 0 1
( )

0

p

p

gmk c
m m m

A

g m mk c
sm sm sm

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ⎢
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥  ( 7-6) 

1

1

0
1

0
1

m
B

sm

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

= ⎢
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

                                                

 ( 7-7) 

 

 
3 Reference [2] 
4 Reference [3] 
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The control law for the optimal linear state feedback controller is 

U D= − X

min

 ( 7-8) 

 

Here, the optimal gain vector  is chosen in order to minimize the performance 

index as a weighted sum of integrated control error and control effort 

D

2( )TJ X QX RU dt= + →∫  ( 7-9) 

 

Q  and R  denote positive definitive weighting factors, that are chosen to reflect the 

value of control power.  

The optimal solution for  can be found in many publications on control theory, 

e.g. in reference [5]. 

D

1 TD R B P−=  ( 7-10)  

 

Matrix  is the solution to the algebraic Riccati’s equation P

1 0T TA P PA R PBB P Q−+ − + =  ( 7-11) 

 

For given values of , , ,A B Q R , the Riccati’s Matrix  can be computed, for instance 

by using the built function in Matlab7. For given values of mass, damping and 

stiffness of the BT, the system matrix 

P

A  and the location matrix B  are computed 

using Equations (7-6) and (7-7). Then Ricatti Matrix solution is obtained by 

Equation   (7-11) with chosen  and Q R  to minimize the overall structural energy5. 

Thus, considering both kinetic and static energy,   

1

1

0 0 0
0 0
0 0 0 0
0 0 0 0

k
m

Q

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

0⎥
⎥

 ( 7-12)  

pR kβ=       p
p

m g
k

s
=   ( 7-13) 

                                                 
5 Reference [4] 
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β  is the weighing parameter, balancing  the relative importance of response 

reduction (control effectiveness) and the control action requirements. Thus, small 

β  minimizes the response and means that the response reduction is more 

important. Consequently,  and the control force U  are calculated for any state of D

X . The controller has the effect of adding positive linear stiffness and damping to 

the uncontrolled system. The control force U  can be used for time step analysis 

and is also applicable for the nonlinear BT.     

7.5 Numerical analysis 
Considering again the numerical example of BT as defined in Chapter 4, Part 4.3, 

the first and second natural frequencies of the tower are as follows 

 1 28.26 / secradω =     1 4.5 [ ]f Hz=  

2 177.14 / secradω =    2 28.19[ ]f Hz=  ( 7-14) 

 

The generalized mass, stiffness and damping of the tower for first and second 

mode were expressed in Equations (6-14) and (6-15). Thus the system matrix A  

and the location matrix B  are calculated numerically by Equations (7-6) and (7-7) 

as 

 

0 1 0
800.48 2.83 3.92 0

0 0 0
800.48 2.83 13.73 0

A

⎡ ⎤
⎢ ⎥− −⎢=
⎢
⎢ ⎥−⎣ ⎦

0

1
⎥
⎥

⎥
⎥

 ( 7-15) 

0
0.0002

0
0.0002

B

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥−⎣ ⎦

 ( 7-16) 
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By considering matrix  and variable Q R  as 

63.77 10 0 0 0
0 4709.70 0 0
0 0 0
0 0 0

Q

⎡ ⎤×
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

0
0

⎥
⎥

 ( 7-17)  

18482.04R β= ×       1 11eβ = −   ( 7-18) 

 

the solution  of the associated Riccati’s matrix, optimal gain matrix  and the 

linear quadratic state feedback control force U  can be evaluated through Equations 

(7-8), (7-10) and (7-11) by using Matlab LQR function as  

P D

2.33 5 2.04 3 4.72 3 1.64 2
2.04 3 7.24 2 6.41 5.35 2
4.72 3 6.41 5.20 3 1.65
1.64 2 5.35 2 1.65 5.31 2

e e e e
e e e

P
e e
e e e

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

⎥
⎥

 ( 7-19) 

[ ]2.03 6 2.04 5 5.15 3 4.23 3D e e e= e  ( 7-20) 

6 5
1 12.03 10 2.04 10 5154 4229U Z Z φ φ= × + × + +  ( 7-21) 

 

Consequently, time step computation of Equations (7-1), (7-2) and (7-3) by means 

of Simulink software gives the time-variant response of the BT. Here, the BT is 

excited by real earthquake excitation of Bam, Iran, 2003 (presented in Chapter 5, 

Part 5.4.5) and the control force U  is calculated for each time step, see Equation 

(7-1). Figures (7-3) illustrate the displacement responses of the controlled and 

uncontrolled BT in time domain. Figure (7-4) and (7-5) show the displacement FFT 

response of the controlled and uncontrolled BT, respectively.  Base acceleration 

under the strong ground motion of Bam and control force U  are depicted in 

Figure (7-6) and (7-7). 
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Figure  7-3 BT tip-point displacement with and without control force 
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Figure  7-4 BT tip-point displacement FFT response without control force 
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Figure  7-5 BT tip-point displacement FFT response, control force contribution 
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Figure  7-6 BT base acceleration, Bam strong ground motion 
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Figure  7-7 BT control force  

 
The control coefficients are large compared to the parameters of the mechanical 

system and extensively decrease the displacement of the BT with respect to any 

perturbations. 
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8 
CONCLUDING REMARKS 
  
In this thesis the behavior of Bell-Tower like structures excited by various internal 

and external vibrations is studied. Governing equations for the dynamic response 

of the tower coupled with pendulum motion are derived based on Lagrange 

equations of motion. A 2DOF, sliding mass and simple pendulum, as a 

representative of pendulum (bell) combined with a tower are used. This system is 

developed for discretized MDOF model of tower coupled with mathematical 

pendulum. The BT is subjected to excitations due to base acceleration and 

pendulum swinging. The corresponding equations of motion are derived, 

considering nonlinear oscillations of the pendulum. Comparison is made between 

the characteristics in linear and nonlinear analyses, as well as coupled and 

uncoupled systems. In order to evaluate the nonlinear system, time-step analysis of 

numerical example by means of computer programming is performed. When the 

rotation angle of pendulum increases, the effects of nonlinearity appear. The 

nonlinear effects due to large motion of pendulum changes linear natural frequency 

of the pendulum and adds subharmonic resonate frequencies to the coupled 

system. It is observed that the tower is more sensitive than the pendulum to 

nonlinear effects. These effects reduce the displacement in the tower and rotation 

angle of the pendulum especially in the resonance circumstances.  

The application of the pendulum as PTMD is studied to reduce the vibration of 

tower displacement. An introductory example of PTMD design and a description 

of the implementation of PTMDs in building structures like chimneys and BTs are 

presented. The optimal design parameters of the PTMD are found based on 

linearized system for small rotation of pendulum. Time history and frequency 

domain responses for a continuous system connected to optimally PTMD and 

subjected to harmonic and random support excitations in linear and nonlinear 
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conditions are compared. An assessment is made for optimal placement locations 

of PTMD in the tower. Results have confirmed that a pendulum absorber can be 

computed according to the linear theory when rotation angle of pendulum is small. 

When the rotation angle of pendulum rises, the effects of tuning parameters vanish. 

Response against earthquake force with respect to seismic design criteria and 

record of real strong ground motion of Bam (Iran, 2003) is also estimated. 

The effect of the pendulum swinging on the tower is followed. Both the tower and 

pendulum are estimated under the effect of forced pendulum vibrations. Vibrating 

forces are applied as an external moment, and nonstationary conditions in 

nonlinear pendulum is discussed. While frequency of excitation is smaller than 

pendulum eigenfrequency, nonstationary happens in the responses of the tower and 

pendulum. Dynamic analysis of the tower by means of the substructure method is 

introduced. The vibrations induced by the pendulum movements treated as 

externally applied excitations and pendulum oscillatory movement formulated to 

determine the time-variant forces applied to the tower. Subsequently, the responses 

of the tower via quasi-static analysis compared and the internal forces of the tower 

produced by dynamic excitations are evaluated by numerical nonlinear analysis. 

The forces associated with pendulum may be considered as an uncoupled external 

applied force in the tower. The oscillatory movement results in the time-variant 

horizontal and vertical forces of the support of the pendulum. Due to the geometry 

of the BT and the material utilized in the construction, the horizontal component 

of induced forces is most critical and is applied to the BT as a dynamic action of 

the pendulum, where the interaction between the tower and the pendulum is 

neglected.  

Finally, the method of vibration control by application of nonlinear APMD in the 

towers is investigated. For this purpose, the mechanical model of the tower is 

represented by a continuous structure and is idealized as a MDOF system. The 

pendulum is modeled as an active mass damper to improve the response of the 

entire structure under dynamic loads. After applying appropriate analytical 

methods, parametric studies for forced vibration are performed by means of 
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computer simulations. The nonlinear dynamic analysis of the forced vibrations is 

chosen in time domain by using numerical investigation. By interpreting pendulum 

as an active absorber or APMD in the tower, it is intended to achieve a large 

decrease of displacement in the main tower structures. The optimal state feedback 

control method is introduced. The control force based on linear coupled system is 

evaluated and it is applied to the nonlinear system for time-step analysis. The 

results showed that control coefficients are large compared to the parameters of the 

mechanical system and extensively decrease the displacement of the tower with 

respect to any perturbations. 



 

Appendix A 

FUNDAMENTALS OF STRUCTURAL 
OSCILLATIONS  

 
A.1 Formulation of the equations of motion 
The primary objective of a deterministic structural dynamic analysis is the 

evaluation if the displacement-time history of a given structure subjected to a time-

varying load. In most cases, an approximate analysis involving only a limited 

number of degrees of freedom will provide sufficient accuracy, and the problem 

thus can be reduced to the determination of the time history of these selected 

displacement components. The mathematical expressions defining the dynamic 

displacements or rotations are called the equations of motion of the structure, and 

the solution of these equations of motion provides the required displacement 

histories. 

 

A.1.1 Direct Equilibration Using d’Alembert’s Principle1 
The equations of motion of any dynamic system represent expressions of Newton’s 

second law of motion, which states that rate of change of momentum of any mass 

 is equal to the force acting on it. This relationship can be expressed 

mathematically as the differential equation. 

m

                        =)(tP ⎟
⎠
⎞

⎜
⎝
⎛

dt
xdm

dt
d                                                                         (A-1)  

 

where )(tP  is the applied force vector and )(tx  is the position vector of the mass 

. For most problems in structural dynamics it may be assumed that the mass does 

not vary in time, and Equation (A-1) becomes  

m

                                                 
1 Reference [1] 
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                        )(tP  =
2

2 (d xm m
dt

≡ x t )                                                                  (A-2) 

 

where a dot represents differentiation with respect to time. Equation (A-2), the 

familiar expression that force is equal to produce of mass and acceleration, may 

also be written 

                         )(tP  –                                                                        (A-3) ( ) 0mx t =

 

The second term ( )mx t  is called inertia force resisting the acceleration of the mass. 

The concept that a mass develops an inertia force proportional to its acceleration is 

known as d’Alembert’s principle. It s a very convenient device in problems of 

structural dynamics because it permits the equations of motion to be expressed as 

equations of dynamic equilibrium. The force )(tP  may be considered to include 

many types of force acting on the mass such as elastic constraints, viscous forces, 

and independently defined external loads. Thus if an inertia force and resistances 

acceleration are introduced, the expression of the equation of motion is merely an 

expression of the equilibration of all of the forces acting on the mass. In many 

simple problems the most direct and convenient way of formulating the equations 

of motion is by means of such direct equilibration.  

 

A.1.2 Principle of Virtual Displacements 
If the structural system is complex and involves a number of interconnected mass 

points or bodies of finite size, the direct equilibration of all the forces acting in the 

system may be difficult. Frequently, the various forces involved may be expressed 

in terms of the displacement degrees of freedom, but their equilibrium relationships 

may be obscure. In this case, the principle of virtual displacements can be used to 

formulate the equations of motion as a substitute for the equilibrium relationships.  

The principle of virtual displacements is expressed as follow. If a system which is in 

equilibrium under the action of a set of forces is subjected to a virtual 

displacement, any displacement compatible with the system constrains and the total 
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work done by the forces will be zero. With this principle, it is clear that the 

vanishing of the work during a virtual displacement is equivalent to a statement of 

equilibrium. Thus the response equations of a dynamic system can be established 

by identifying all the forces acting on the masses of the system, including inertia 

forces defined in accordance with d’Alembert’s principle. Then the equations of 

motion are obtained by introducing virtual displacements corresponding to each 

degree of freedom and equating the mechanical work to zero. A major advantage 

of this approach is that the virtual work contributions are scalar quantities and can 

be added algebraically, whereas the forces acting on the structure are vectors and 

can only be superposed vectorially. 

 

A.1.3 Hamilton’s Principle2 
Another procedure of avoiding the problems of establishing the vectorial equations 

of equilibrium is to make use of scalar energy quantities in a variation form. The 

most generally applicable variation concept is Hamilton’s principle, which may be 

expressed as 

                                                                              (A-5)  ∫ ∫ =+−2

1

2

1

0)(
t

t

t

t ncdtWdtVT δδ

   

where T  is the total kinetic energy of system and V  represents the potential energy, 

including both strain energy and potential of any conservative external forces.                             

ncW denotes the work done by non-conservative forces acting on system,   including 

damping and any arbitrary external loads. 

Hamilton’s principle states that variation of the kinetic and potential energy plus 

the variation of the work done by the non-conservative forces considered during 

any time interval   to   must equal zero. The application of this principle leads 

directly the initial boundary values problem for any given system. The process 

differs from the virtual-work analysis since the inertia and elastic forces are not 

explicitly involved, since variations of the kinetic and potential energy terms are 

1t 2t

                                                 
2 Reference [1] 
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utilized. This formulation has the advantage of dealing only with purely scalar 

energy quantities, whereas the forces and displacements used to represent 

corresponding effects in the virtual-work analysis are all vectorial in character even 

though the work terms themselves are scalar. 

 

A.1.4 Lagrange’s equations of motion 
The equations of motion for a Multi-Degree-of-Freedom (MDOF) system can 

derived directly from the variational statement of dynamics, Hamilton’s principle, 

Equation (A-5). By simply expressing the total kinetic energy T , the total potential 

energy , and the total virtual work V ncWδ  in terms of a set of generalized 

coordinates, . For most mechanical or structural systems, the kinetic 

energy can be expressed in terms of the generalized coordinates and their first time 

derivatives, and the potential energy can be expressed in terms of the generalized 

coordinates only. In addition, the virtual work which is performed by the non-

conservative forces as they act through the virtual displacements caused by an 

arbitrary set of variations in the generalized coordinates can be expressed as a linear 

function of those variations. In mathematical terms the above three statements are 

expressed in the form  

1 2, ,..., Nq q q

                     (A-6) 1 1( ,..., , ,..., )NT T q q q q= n

                                    (A-7) 1 2( , ,..., )NV V q q q=

                    1 1 2 2 ...nc N NW Q Q Qδ δ δ= + + + δ                (A-8) 

 

where the coefficients  are the generalized forcing function 

corresponding to the coordinates  , respectively.    
1 2, ,..., NQ Q Q

1 2, ,..., Nq q q

Introducing Equation (A-6) into Equation (A-5), and completing the variation of 

the first term gives 
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Integrating the velocity dependent terms in Equation (A-9) leads to 
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The first term on the right-hand side of Equation (A-10) is equal to zero for each 

coordinate since 0)()( 21 == tqtq ii δδ  is the basic condition imposed upon the 

variations. Substituting Equation (A-10) into Equation (A-9), after rearranging 

terms 
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Since all variations ),...,2,1( Niqi =δ  are arbitrary, Equation (A-11) can be satisfied in 

general only when the term in brackets vanishes, then 

                      i
i i i

d T T V Q
dt q q q
⎛ ⎞∂ ∂ ∂

− + =⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                              (A-12) 

 

Equation (A-12) is the Lagrange’s equations of motion, which have found 

widespread application in various fields of science and engineering. 

With the Hamilton’s variational principle, the energy and work terms can be 

expressed in terms of the generalized coordinates, and of their time derivatives and 

variations, as indicated in Equations (A-6), (A-7) and (A-8). Thus Lagrange’s 

equations are applicable to all nonlinear and linear systems which satisfy these 

restrictions.  
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A.2 Linear Single Degree of Freedom (SDOF) systems 

A.2.1 Free Vibration3 
Figure (A-1) shows a SDOF system with a linear elastic spring (stiffness ) and 

viscous damper (parameter ). The differential equation of free motion of mass 

(parameter ) for the damped system is 

k

r

m

                                                                                                 (A-13) 0mx rx kx+ + =

 

The form of the solution of this equation depends upon whether the damping 

coefficient is equal to, greater than, or less than the critical damping coefficient  cr

                      2 2 ,c
kr km m
m

ω ω= = =                                                        (A-14) 

 

x

 
Figure A-1 SDOF system with linear elastic spring and viscous damper 

 

The ratio 
c

r
r

ζ =  is defied as the fraction of critical damping. If the damping of the 

system is less than critical 1<ζ , then the solution of  Equation (A-13) is 

                     ( )sin cost
d dx e A t B tζω ω ω−= +  

                       ( )sint
dCe tζω ω φ−= +                                                                 (A-15)    

 

The constants C and φ  follow from the initial conditions, and the damped natural 

frequency is related to the undamped natural frequency 
                                                 
3 Reference [2] 

m

r

k
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                         k
m

ω =                 secrad  

                         21dω ω ζ= −        secrad                                                    (A-16) 

                                                                             

Equation (A-16), relating the damped and undamped natural frequencies, is plotted 

in Figure (A-2). 
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Figure A-2 Damped natural frequency as a 

versus fraction of cr

 

When  (critical damping) there is n

(A-13) becomes 

cr r=

             ( ) tx A Bt e ζω−= +                 

 

When 1>ζ , the solution of Equation (A

                     =x te ζω− ( 1tAe Beω ζ ω ζ− − −+ 1t

 

This is a nonoscillatory motion. Th

equilibrium position, it tends to return g
 ω
 

function of  undamped natural frequency /dω ω  

itical damping / cr rζ =                                                                

o oscillation and the solution of Equation     

                                                         (A-17) 

-13) is 

)                                                       (A-18) 

us, if the system is displaced from its 

radually. 



A. FUNDAMENTALS OF STRUCTURAL OSCILLATIONS  173

A.2.2 Forced vibration  
Dynamic stresses and deflections may be induced in a structure by motions of its 

support points. Important examples of such excitation are the motions of a 

building foundation caused by an earthquake. A simplified model of the 

earthquake-excitation problem is shown in Figure (A-3), in which the horizontal 

ground motion caused by the earthquake is indicated by the displacement of the 

structure’s base relative to the fixed reference axis. 

gx

The horizontal girder in this frame is assumed to be rigid and to include all the 

moving mass of the structure. The vertical columns are assumed to be weightless 

and inextensible in the vertical (axial) direction, and the resistance to girder 

displacement provided by each column is represented by its spring constant 
2
k . The 

mass has a single degree of freedom, ( )x t , which is associated with column flexure, 

the damper c  provides a velocity-proportional resistance of this deformation. 
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Figure A-3 Influence of support excitation on SDOF equilibrium:  (a) motion of system; (b) 

equilibrium forces 
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As shown in Figure (A-3a), the equilibrium of forces for this system may be written  

                                                                                               (A-19) 0=++ SDI fff

 

However, the inertia force in this case is given by  

                                                                                                          (A-20) tI xmf =

 

where  represents the total displacement of the mass from the reference axis. 

Substituting for the inertia, damping and elastic forces in Equation (A-19) yields 

tx

                                                                                               (A-21) 0tmx rx kx+ + =

 

Before solving this equation all forces must be expressed in terms of single variable, 

which can be accomplished by noting that the total motion of the mass can be 

expressed as the sum of the ground motion and the column distortion then 

                                                                                                       (A-22) g
t xxx +=

 

Expressing the inertia force in terms of the two acceleration components obtained 

by differentiation of Equation (A-22) and substituting into Equation (A-21) yields 

                                                                                       (A-23) 0gmx mx rx kx+ + + =

 

or since the ground acceleration represents the specified dynamic input to the 

structure, the equation of motion may be written 

                                                                          (A-24) ( ) ( )g effmx rx kx mx t p t+ + = − ≡

 

tpeff ( ) denotes the effective external loading due to support excitation.  
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Appendix B 

VIBRATION OF A SIMPLE PENDULUM 

 
B.1 Nonlinear vibration of the simple pendulum1 
A simple mathematical pendulum of length  having a lumped mass , as shown 

in Figure (B-1) is considered. The linearized differential equation governing free 

vibration is 

m

                                                                                  (B-1) 02 =+ φφ mgm

 

 

 sin

m

 

Figure B-1 Simple pendulum 

 

                                                 
1 Reference [1] 
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That holds only for small oscillation about the position of equilibrium where the 

assumption φφ ≈sin  holds. The exact nonlinear equation of motion reads  

                                                                         (B-2) 0sin2 =+ φφ mgm

or 

                      , 0sin2 =+ φωφ gω =                                                            (B-3) 

 

Equation (B-2) may be written as 

                                                                                        (B-4) 0)( =+ φφ Fm

 or 

                                                                           (B-5) 0)(2 =+ φωφ f

 

in which the term 2 ( )( ) Ff
m
φω φ =  represents the nonlinear resorting force per unit 

mass as a function of rotation )(φ . The acceleration derivative of the velocity may 

be further expressed  

                      
φ
φφ
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d
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d
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dt
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d 2)(

2
1

====                            (B-6)                        

 

Substituting the last expression into Equation (B-5) leads to 

                      0)()(
2
1 2

2

=+ φω
φ
φ f
d

d                                        (B-7) 

 

where the resorting force  per unit mass is given by the function 

shown in Figure (B-2) and the velocity corresponding to 

φωφω sin)( 22 =f

mφ  in an extreme position 

is zero. Thus the Equation (B-7) may be integrated as  

                      ∫ ∫ ′′=′′−=
φ

φ

φ

φ
φφωφφωφ

m

m dfdf )()(
2
1 222       (B-8)                        

 

For any position of the undamped vibrating system its kinetic energy per unit mass 

is equal to the potential energy represented by the hatched area under the curve in 
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Figure (B-2). The maximum kinetic energy is attained in the equilibrium position, 

0φ = , the total energy remains constant and the maximum kinetic energy must be 

equal to the maximum potential energy.   

                    2 2
max max0

1 ( )
2

m

mT f d
φ

φ ω φ φ′ ′= = =∫ V                  (B-9) 

 

Equation (B-8) yields an expression for the velocity   of the vibrating mass in any 

position as 

φ

                        ∫ ′′±== m df
dt
d φ

φ
φφωφφ )(2              (B-10)                      

 

The time for any portion of cycle may be obtained by second integration. Hence, 

the time for a full cycle becomes 

                       ∫
∫ ′′

= m

m df

dφ

φ

φ
φφ

φ
ω

τ
0

)(2

4              (B-11)  
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 φ

 φ2
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 φ

m

 
Figure B-2 Force in simple pendulum 

 

Therefore, if an analytical expression for the restoring force is given, the natural 

period of the system may be evaluating the integrals in Equation (B-11). 
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Furthermore, the relationship between the velocities  in an extreme position may 

be obtained from Equation (B-9). This expression is useful for finding the 

maximum velocity of a nonlinear system that is initially displaced and allowed to 

vibrate freely. It also may be used to calculate the maximum displacement due to an 

initial velocity. The mass might be affected by an impulse of initial velocity that is 

of short duration in comparison with the period of the system.  

mφ

For the pendulum free vibration according to Equation (B-3), Equation (B-10) 

becomes 

                         )cos1(2 mm φωφ −±=      (B-12)       

and 

 

                ∫ =
−

= m

m

dφ

φφ
φ

ω
τ

0 )cos(cos2
4

0
2 2

2

sin ( ) sin ( )
2 2

m

m

dφ φ
ω φ φ

−
∫                     (B-13) 

 

introducing the notation sin( )
2
ms φ

=  and a new variable θ , 

                        sin( ) sin sin( )sin
2 2

ms φφ θ θ= =                                  (B-14) 

 

It is obtained  

                        
θ

θθφ
22 sin1

cos2

s

dsd
−

=            (B-15)                      

 

substituting expressions (B-14) and (B-15) into Equation (B-13) and observing 

form Equation (B-14) that θ  varies from 0 to 
2
π  while φ  varies from 0 to mφ , 

                      2

2 20

4 ( , )
21 sin

d F s
s

π 4θ πτ
ω ωθ

= =
−

∫                                    (B-16) 
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which is in the standard form of the elliptic integral of the first kind. Thus the 

numerical value of the integral in Equation (B-16) corresponding to any value of  

can be evaluated. 

s

When the maximum rotational displacement mφ of the pendulum is small, the value 

of  is also small and the quantity  in Equation (B-16) can be neglected. 

Then the integral becomes equal to 

s θ22 sins

2
π  and we obtain the natural period 2πτ

ω
=  for 

the pendulum with small rotations.  
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Appendix C 

NUMERICAL ANALYSIS OF NONLINEAR 
RESPONSE 

 
C.1 Incremental formulation of nonlinear system1 
For a SDOF system at any instant of time  the equilibrium of forces acting on the 

mass m  requires 

t

                       )()()()( tptftftf SDI =++                                       (C-1)                    

 

After a short time  the equation reads t∆

                      +∆+ )( ttf I +∆+ )( ttf D =∆+ )( ttf S )( ttp ∆+                            (C-2) 

 

Subtracting Equation (C-1) from Equation (C-2) then yields the incremental from 

of the equation of motion for the time interval  t

                       )(tf I∆ +∆+ )(tf D =∆ )(tf S )(tp∆                               (C-3) 

                        

The incremental forces in this equation may be expressed as follows 

                       )(tf I∆ =−∆+= )()( tfttf II )(txm∆                                          (C-4) 

                       )(tf D∆ )()()()( txtctfttf DD ∆=−∆+=                                             

                       )(tf S∆ =−∆+= )()( tfttf SS )()( txtk ∆  

                       )(tp∆ )()( tpttp −∆+=  

 

It is assumed that the mass remains constant. The terms  and  represent the 

damping and stiffness properties corresponding to the velocity and displacement. 

In practice, the secant slopes could be evaluated only by iteration because the 

velocity and displacement at the end of the time increment depend on these 

)(tc )(tk

                                                 
1 Reference [1] 
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properties. For this reason tangent slopes defined at the beginning of the time 

intervals. 

                       
t

D

xd
dftc ⎟

⎠
⎞

⎜
⎝
⎛=)(           

t

S

dx
df

tk ⎟
⎠
⎞

⎜
⎝
⎛=)(                                           (C-5) 

 

Substituting the force expressions of Equation (C-4) into Equation (C-3) leads to 

the final form of the incremental equilibrium equations for time  t

                      )(txm∆ +∆+ )()( txtc =∆ )()( txtk )(tp∆                             (C-6) 

 

C.2 Step-by-Step integration  
Many procedures are available for the numerical integration of Equation (C-6), e.g. 

Euler-Gauß Method, Newmark Beta Method and Runge-Kuta Method. The basic 

approximate assumption of the computational process is that the acceleration 

varies linearly during each time increment while the properties of the system remain 

constant during this interval. The equation of motion during the time interval for 

linear variation of the acceleration and the corresponding quadratic and cubic 

variations of the velocity and displacement respectively are assumed. Evaluating 

these latter expressions at the end of the interval )( t∆≡τ  leads to the following 

equations of the increments of velocity and displacement 

                        =∆ )(tx +∆ )()( ttx
2

)( ttx ∆
∆                                                   (C-7) 

                        =∆ )(tx +∆ )()( ttx +
∆
2

)(
2ttx

6
)(

2ttx ∆
∆                                   (C-8) 

 

Now it will be convenient to use the incremental displacement as the basic variable 

of the analysis. Hence Equation (C-7) is solved for the incremental acceleration, 

and this expression is substituted into Equation (C-8) to obtain 

                        )(tx∆ )(6
2 tx

t
∆

∆
= )(6 tx

t∆
− )(3 tx−                                          (C-9) 
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                        )(tx∆ −∆
∆

= )(3 tx
t

)(
2

)(3 txttx ∆
−                                      (C-10) 

 

Substituting Equation (C-9) and (C-10) into Equation (C-6) leads to the following 

form of the equation of motion 
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                                                                                      )()()( tptxtk ∆=∆+  

 

Finally transferring all terms associated with the known initial conditions to the 

right-hand side gives  

                                                                                           (C-12) )()()(
~~

tptxtk ∆=∆

 

in which 

                      )(36)()( 2

~
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t
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tktk
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txttxtctxtx
t
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After solving Equation (C-12) for the displacement increment, this value is 

substituted into Equation (C-10) to obtain the incremental velocity. The initial 

conditions for the next time step result from the addition of these incremental 

values to the velocity and displacement at the beginning of the time step. 
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