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1 Introduction

The new requirements of the Basel Comittee on Banking Supervision -Basel II- force
banks to incorporate operational risk into their risk management. Therefore operational
risk became a popular and booming part of a bank‘s risk management. A few years ago
only market risk and credit risk were seen as the main risk drivers, but nowadays, not
only due to the new Basel Capital Accord, an increasing awareness of operational risks
as substantial part of a bank‘s risk management appeals.

Additionally, Basel II requirements expect from an internationally acitive bank to use
an Advanced Measurement Approach - AMA, the most sophisticated approach for mod-
elling operational risks. This requires new analysis toward data consistency and com-
pleteness. The Basel II standards does not restrict the wide range of possibilities to
model operational risk. Many different approaches and models, for implementing an
AMA, have been developed recently. For example models based on extreme value the-
ory - EVT, scenarios - sb-AMA or loss distributions. The model introduced in this work
will be based on the Loss Distribution Approach - LDA, which on its part will be mainly
driven by scenarios.

Scenarios as addendum to internal or external data sources are not backward-looking
and provide a more risk sensitive way of managing and measuring operational risk. Sce-
narios will be generated by using various data sources, such as internal and/or external
data and key risk indicators - KRIs.

The link between LDA and scenarios will be the following: Scenario analysis will be
used to generate parameters for the loss severity distribution, which is one part of the
compound loss distribution (the other part is the loss frequency distribution).

The next chapter gives an introduction to operational risks with a definition, proposed
by Basel II. Some famous cases of operational risk, which are typical, are presented, too.

Chapter three describes the Basel II requirements concerning operational risk. The three
approaches, Basic Indicator Approach - BIA, the Standardised Approach - TSA and the
Advanced Measurement Approaches - AMA, for measuring and modelling operational
risk are presented.

Chapter four gives the statistical framework of the Loss Distribution Approach LDA,
which is the foundation of the model, which will be developed in the following chapters
five and six, whereas a description of the different data sources with focus to scenarios
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will be given in chapter five and the final model will be developed in chapter six.

Finally, chapter seven presents future challenges and issues of operational risk, which
are not taken under consideration so far.

3



2 Operational Risk

Globalization and the development of financial technologies forced international banking
groups and the Banking Supervision to realize the importance of managing operational
risk. Former market risk1 and credit risk2, which are still substantial, were seen as the
main risk drivers, but nowadays the awareness raises, that operational risk plays an
essential role in a bank‘s risk management. It is well known that market and credit risk
tend to be isolated in specific areas of the business. On the other hand operational risks
are inherent in all business processes [16].

Definition: Operational risk is defined as the risk of loss resulting from inadequate or
failed internal processes, people and systems or from external events. This definition
includes legal risk3, but excludes strategic and reputational risk.[25]

This definition is given by the Basel Committee on Banking Supervision also known as
Basel II, which attempts to make the New Basel Capital Accord more risk sensitive.
Developing banking practices such as securitisation, outsourcing, specialised processing
operations and reliance on rapidly evolving technology and complex financial products
and strategies suggest that these other (remark different from credit and market risk)
risks are increasingly important factors to be reflected in credible capital assessments by
both supervisors and banks.[23]

1Market risk is the risk that the value of an investment will decrease due to moves in market factors.
2Credit risk is risk due to uncertainty in a counterparty’s (also called an obligor’s or credit’s) ability to

meet its obligations. Because there are many types of counterparties - from individuals to sovereign
governments - and many different types of obligations - from auto loans to derivative transactions -
credit risk takes many forms .

3Legal risk includes, but is not limited to, exposure to fines, penalties, or punitive damages resulting
from supervisory actions, as well as private settlements.
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The four main operational risk categories are further clarified as follows:

People: Losses associated with intentional violation of internal policies by current
or past employees and the risk extends to people who are working for the bank.

Process: These losses are unintentional. They occur because of deficient existing pro-
cedures or the absence of a procedure.

Systems: Losses caused by failures in the existing system such as breakdowns or a
computer virus. This losses are unintentional, otherwise they rather should be cate-
gorised into External or People.

External: Losses caused by nature or man, or a direct result of a counterparty‘s action.

Fig. 2.1 presents an arrangement of this four categories by mean severity and frequency.
As you can see the two risk categories External and Process have a high frequency, which
means that many events are classified into these two categories, but show low severity.
On the other hand the category People contains a lot of high severity events but with a
much lower frequency. Just a few events are classified into the category Systems. These
events have a rather low frequency, too.
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Fig. 2.1 Typical arrangement of events per risk category

2.1 Examples of operational risk

This chapter gives a range of famous operational risk cases, that vary from the classical
bank robbery to a flood disaster.4 These cases are illustrating the wide range and
diversity of operational risk events.

• Nick Leeson and Barings Bank - THE operational risk case

Nicholas Leeson is a former derivatives trader whose unsupervised speculative trad-
ing caused the collapse of Barings Bank, the United Kingdom’s oldest investment
bank.
He started working at Barings in the early 1990s; in a matter of a few years, he
was appointed manager of a new operation in futures markets on the Singapore
International Monetary Exchange (SIMEX).
From 1992, Leeson made unauthorized speculative trades that at first made large
profits for his employer, accounting for 10% of Barings’ annual income. His luck
quickly went sour, and he used a secret account to hide his losses. Leeson claims
that this account was initially opened to hide a 20,000 trade of one of his sub-
ordinates that had been recorded incorrectly; however, Leeson used this account
to cover future bad trades. He insists that he never used the account for his own
gain, but in 1996 the New York Times quoted ”British press reports” as claiming

4For detailed case studies see [5] and [21].
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that investigators had located approximately 35 million dollars in various bank
accounts tied to him. Management at Barings Bank also allowed Leeson to remain
Chief Trader while being responsible for settling his trades, jobs that are usually
done by two different people. This made it much simpler for him to hide his losses
from the Bank. For detailed information see [14].

• Internal Fraud

Subsequent case studies follow [5]:

Peter Young, a fund manager at Morgan Grenfell, used money invested in the
company’s three largest European funds to purchase highly speculative stocks.
These included a $ 30 million stake in Solv-Ex, a company with ”a rather check-
ered past and nothing more tangible than ambitious plans for exploiting Canada’s
Athabasca tar sands for oil and minerals” (Barron’s, 4 November 1996), whose
stock Young bought not at a discount, but at a premium. In addition, Young
established paired holding companies in order to circumvent Securities and Invest-
ment Board Regulation 5.14, which forbids a fund from owning more than 10%
of any company, allowing him to increase the size of his risky stakes even further.
After Morgan Grenfell became suspicious of the large quantity of unlisted shares
in Young’s portfolios, it shut down trading on the three funds and replaced the
questionable investments with cash provided by parent company Deutsche Bank,
an unusual move designed to maintain investors’ confidence in the funds. When
trading resumed, however, 30% of investors withdrew their money. The fiasco cost
Morgan Grenfell an estimated 400 million pounds sterling, including compensation
to some 80,000 investors for money lost due to trading irregularities. The damage
to Morgan Grenfell’s reputation was no doubt even more costly.

On July 13, 1995, Daiwa Banks Toshihide Iguchi confessed, in a 30-page letter
to the president of his bank in Japan, that he had lost around $1.1 billion while
dealing in US Treasury bonds. The executive vice president of Daiwas New York
branch had traded away the banks money over 11 years, an extraordinarily long
period for such a fraud to run while using his position as head of the branchs
securities custody department to cover up the loss by selling off securities owned
by Daiwa and its customers.
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• External Fraud

According to a press release on 16.3.2001 in [21]: Abbas Gokal was head of the
Gulf Group, a large shipping business based in Geneva with offices in more than
forty countries. From the mid-1980’s Gokal and his Gulf Group secretly received
many millions of dollars from the Bank of Credit and Commerce International
in London even though he knew, as did senior BCCI management, that his Gulf
Group were insolvent. To cover up the fact that massive unsecured loans of more
than $ 830 million were being made, Gokal and his fellow conspirators falsified
documents on a vast scale and engineered an intricate money laundering opera-
tion. The relationship between Gokal’s business and BCCI meant that fortunes
were inextricably linked. BCCI’s massive un-repaid loans to Gokal’s Gulf Group
inevitably played a significant part in the collapse of the bank in July 1991.

• Bank robberies

Although Austria is blessed with a rather low quote of bank robberies, this cause
of operational risk must not be neglected. There are some severe and sometimes
also strange cases of bank robberies with losses above ten millions. One example
is a bank robbery in Brasil.
In 2005 a gang of burglars tunneled into the Banco Central in Fortaleza. They
removed five containers of 50-real notes, with an estimated value of 164,755,150
realis (EUR 61.6 million) and weighting about 3,5 tons. The stolen money was
uninsured. A bank spokeswoman stated that the risks were too small to justify
the insurance premiums. The burglars managed to evade or disable the bank’s
internal alarms and sensors.
Three months earlier, the gang of burglars had rented an empty property in the
centre of the city and then tunneled 78 meters beneath two city blocks to a position
beneath the bank. The gang had renovated a house and put up a sign indicating
it was a landscaping company selling both natural and artificial grass as well as
plants. Neighbours, who estimated that the gang consisted of between six and
ten men, described how they had seen van-loads of soil being removed daily, but
understood this to be a normal activity of the business.

• Settlements

Swiss banks have agreed to pay $ 1.25 billion in restitution to survivors of the
Holocaust. The deal settles a class-action lawsuit claiming banks failed to return
funds to survivors and relatives after the second world war.

The next chapter describes the standards and qualifying criteria, which are required by
Basel II for an operational risk management. Additionally, the three different approaches
for measuring operational risk are introduced and explained.
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3 Operational Risk and Basel II

One of the Basel II1 requirements is to install an operational risk management. A bank
must collect data about loss events, that fall into the category operational risk. This
data must be monitored and controlled in a formalized and comprehensive way. This
work will only consider the following statistical analysis of the operational risk data and
the consequences for the mindest capital requirements2.
There are three methodologies to measure operational risk:

1. the Basic Indicator Approach (BIA)

2. the Standardised Approach (TSA)

3. Advanced Measurement Approaches (AMA)

Each of these approaches should reflect the individual risk profile of each banking group.
International Banking groups are expected to implement as soon as possible an AMA.
Therefore the focus will be on this third approach.

1The Basel Committe on Banking Supervision provides a forum for regular cooperation on banking
supervisory matters. Its objective is to enhance understanding of key supervisory issues and improve
the quality of banking supervision worldwide. The Basel Committee of Banking Supervision (Basel
II) members come from:

• Belgium • Netherlands
• Cananda • Spain
• France • Sweden
• Germany • Switzerland
• Italy • Great Britain
• Japan • USA
• Luxembourg

The countries are represented by their central bank. The present Chairman of the Committee
is Mr. Nout Wellink, President of the Netherlands Bank. For more information about the Basel
Committee see [22].

2For more information about creating an operational risk database or setting up an efficient risk
management system see [29].
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The following sections describe the three methodologies to measure operational risk.
Definitions and different approaches are cited from ”Basel II: International Convergence
of Capital Measurement and Capital Standards: A Revised Framework - Comprehensive
Version” by the Basel Committee on Banking Supervision [25].

3.1 The Basic Indicator Approach - BIA

Banks are compelled to hold capital for operational risk to the average of the previous
three years of a fixed percentage (denoted alpha) of positive annual gross income3.

KBIA = [
∑

(GI1,...,n ∗ α)]/n

Where:
KBIA...the capital charge under the Basic Indicator Approach
GI...annual gross income, where positive, over the previous three years
n...number of the previous three years for which gross income is positive
α...15%, which is set by the Commitee, relating the industry wide level of required
capital to the industry wide level of the indicator.

3.2 The Standardised Approach - TSA

To measure operational risk banks business activities are divided into eight categories,
so called business lines: corporate finance, trading & sales, retail banking, commercial
banking, payment & settlement, agency services, asset management and retail broker-
age. For definitions in detail see Annex 1.

Within each business line, gross income is an indicator that serves as a proxy for the
scale of business operations. Gross income is measured for each business line separately,
instead of the whole institution. The capital charge for each business line is calculated
by multiplying gross income by a factor (denoted beta) assigned to that business line.
This factor is a proxy for the industry-wide relationship between the operational risk
experience and the aggregate level of gross income.

3Gross income is defined as net interest income plus non-interest income.(Defined by national super-
visors and/or national accounting standards.[25])
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The capital charge is calculated as the three year average of the summation of the
regulatory capital charges across each business line in each year.

KTSA = {
∑

years 1−3 max[
∑

(GI1−8 ∗ β1−8), 0]}/3

Where:

KTSA...the capital charge under the Standardised Approach
GI1−8...annual gross income in a given year for each business line
β1−8...a fixed percentage, set by the Basel Committee for Banking Supervision, relating
the level of required capital to the level of the gross income for each of the eight business
lines. Fig. 3.1 shows the different beta factors for each business line.

Fig. 3.1 beta factor for each business line

Business Line Beta
Corporate finance (β1) 18 %
Trading & sales (β2) 18 %
Retail banking (β3) 12 %
Commercial banking (β4) 15 %
Payment and settlement (β5) 18 %
Agency services (β6) 15 %
Asset management (β7) 12 %
Retail brokerage (β8) 12 %

Qualifying criteria for the use of the TSA:

A bank must satisfy its supervisor that:

• Its board of directors and senior management, as appropriate, are actively involved
in the oversight of the operational risk management framework;

• It has an operational risk management system that is conceptually sound and is
implemented with integrity;

• It has sufficient resources in the use of this approach in the major business lines
as well as the control and audit areas.

An internationally active bank using the Standardised Approach must meet some addi-
tional criteria. For detail see [25] p.141-142.
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3.3 Advanced Measurement Approaches - AMA

Under the AMA, the regulatory capital requirement will equal the risk measure gener-
ated by the bank‘s internal operational risk measurement system using the quantitative
and qualitative criteria for the AMA explained in the following sections. Use of the
Advanced Measurement Approaches is subject to supervisory approval.

A further possibility will be to use the AMA for some parts of its operations and the
Basic Indicator Approach or the Standardised Approach for the balance. This is called
partial use. Here a bank must meet some criteria as well. For detail see [25] page 149.

3.3.1 Qualifying criteria

1. General standards

The general standards are already mentioned in the section 3.2. The Standardised
Approach.

2. Qualitative Standards4

A bank using an advanced measurement approach must have an independent oper-
ational risk management function, that is responsible for design and implementa-
tion of the banks operational risk management framework, besides for the design
and implementation of a risk-reporting system for operational risk, developing
strategies to identify, measure, monitor and control/mitigate operational risk.

The operational risk management system must be integrated into the day-to-day
risk management processes of the bank. Further on there must be techniques to
allocate operational risk capital to major business lines. Operational risk expo-
sures and loss experience must be regularly reported to the senior management
and to the board of directors. The management system must be well documented.

The management processes and the measurement system must be regularly re-
viewed by external and internal auditors. Data flows must be transparent and
accessible, whenever auditors want to judge it.

4For detailed listing of criteria see [25] page 142-148.
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3. Quantitative Standards

The Committee is not specifiying the approach or distributional assumptions used
to generate the operational risk measure for regulatory capital purposes. However,
a bank must be able to demonstrate that its approach captures potentially severe
tail loss events.

Any operational risk measurement system must include some certain key features:
internal data, external data, scenario analysis and factors reflecting the business
enviroment and internal control system. These features must be weighted in a
credible, transparent, well-documented and verifiable way. Double counting of risk
mitigants should be avoided.

• Internal Data

Internal loss data can be used in different ways for the risk measurement
system. One possibility is the use of internal data as foundation of empirical
risk estimates, as a link between loss experience and risk manangement or it
is used to validate the input and output of the risk measurement system.

Internal data should be categorised into business lines and/or event types. For
detailed information see Annex 1 and Annex 2. The bank should collect at
least information about the date of the event, descriptive information about
the cause and drivers and any recoveries of gross loss amount.

Besides a five-year historical time series must be available except the bank
for the first time moves to the AMA, then a three-year one is adequate.

A further requirement is a de minimis gross threshold, i.e. EUR 1.000. This
threshold may vary from business line to business line.

• External Data

The operational risk measurement system must contain external data, either
public data and/or pooled industry data. This data should complete the
time series where internal data is rare. In particular there is often a lack of
so called high severity - low frequency data (see fig. 3.2).
External data should contain information about the date of the event, cause
and drivers, of course, just like the internal database does.

13



Fig. 3.2 Database

The practice how external data is used must be documented and reviewed.
Maybe it is necessary to scale or to make qualitative adjustments. This
methodologies must be documented,too.

• Scenario Analysis

A bank must use scenario analysis of expert opinion in conjunction with exter-
nal data to evaluate its exposure to high-severity events. Experts assessments
could be expressed as parameters of an assumed statistical loss distribution.
Such analysis must be validated and re-assessed through comparison to actual
loss experience.

• Business enviroment and internal control factors

Business enviroment and internal control factors should make a bank‘s risk as-
sessment more forward-looking. Such factors reflect the quality of the bank‘s
control and operating enviroments more directly and recognise both improve-
ments and deterioration in operational risk profile.

4. Risk mitigation

Under the AMA it will be allowed to take the risk mitigating impact of insur-
ances under consideration for the measures, used for regulatory minimum capital
requirements.
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The following chapter 4 gives the theoretically statistical framework for measuring op-
erational risk and presents the statistical approach for computing aggregate loss distri-
butions, the so-called Loss Distribution Approach - LDA.
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4 Loss Distribution Approach - LDA

As already mentioned the Basel Committee on Banking Supervision does not make
any concret requirements about statistical distributions or procedures to implement an
AMA. The Loss distribution Approach (LDA) is a common and popular framework for
computing the capital charge of a bank, using an AMA, for operational risk. It is a
statistical approach for computing aggregate loss distributions. LDA can be considered
as a framework for bottom-up economic capital allocation [11].

Under the Loss Distribution Approach, the bank estimates, for each business line/risk
type (event type: see Annex II) cell, the probability distribution functions of the single
event impact and the event frequency for the next (one) year using its internal data, and
computes the probability distribution function of the cumulative operational loss. See
Annex 6 of [23].

Definition: A loss distribution is the probability distribution of either the loss or
the amount paid from a loss event or of the amount paid from a payment event. The
distribution may or may not exclude payments of zero and may or may not include al-
located loss adjustment expense, which is the amount of expense incurred directly as the
result of a loss event[17].

The modelling of the aggregate loss distribution is done in two steps.1 First the single
distributions of loss frequency and loss severity are computed and then these two distri-
butions are compounded to the loss distribution.

S = X1 + X2 + ... + XN

where:
Xi...single loss event
S...whole loss for one period (random variable)

• The distribution of the Xi i = {1, ..., N} is independent of n, given N=n.
• Given N=n, the Xi i = {1, ..., N} are independently and identically distributed.
• The distribution of N is independent of X1, ..., Xn.

The random sum S has a distribution function
1Statistical concepts follow [17].
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FS(x) = Pr(S ≤ x)
=

∑∞
n=0 pnPr(S ≤ x|N = n)

=
∑∞

n=0 pnF
∗n
X (x)

where FX(x) = Pr(X ≤ x) is the common distribution function of the Xis and
pn = Pr(N = n). F ∗n

X (x) is the ”n-fold convolution” of the cummulative distribution
function (cdf) of X. It can be obtained by

F ∗0
X (x) =

{

0, x < 0
1, x ≥ 0

and

F ∗k
x (x) =

∫ ∞
−∞ F

∗(k−1)
X (x − y)dFX(y).2

The density of the compound distribution can be written as

fS(x) =
∑∞

n=0 pnf
∗n
X (x).

Because of the independency of the distribution of N and the distribution of X1, ..., XN

expectation and variance are defined as follows:

ES = ENEX
V arS = ENV arX + V arN(EX)2

Computing the loss distribution often requires numerical methods, because in general
there is no analytical expression of the compound distribution. One of these numerical
methods is Monte Carlo simulation.

The Monte Carlo simulation approach can be explained in three steps:

1. You have to build a statistical model for S, which is dependent on certain random
variables (here X and N). The distributions of the random variables and their
dependencies are known.

2. Then pseudorandom variables xi and ni are generated for X and N. The next step
is to compute si by using the model from above. This is done for i=1,...,k. Note
that k should be large (i.e 106 or 107).

3. The distribution of S may be approximated by FŜ(s)the empirical distribution of
the pseudorandom sample s1, ..., sk.

Other methods are the Panjer‘s recursive approach or Fast Fourier transform. For de-
tails see [17].

After computing the compound loss distribution, one possibilty to calculate the capital
charge is using the Value-at-Risk (VaR) method.

2For more information see [17].
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4.1 Value-at-Risk - VaR

It is suggested by Basel II that the capital charge is based on the simple sum of the
operational risk VaR for each business line/risk type cell.[23]

The VaR is defined for a business line i and a risk type cell (event type) j as follows:

The expected loss EL(i, j) corresponds to the expected value of the random variable Si,j.
The expected loss can be computed for instance as the mean of Monte Carlo simulation
results. The EL(i, j) is expressed by:

EL(i, j) = E[Si,j] =
∫ ∞

0
s dFi,j(s)

where:
Fi,j...specific distribution of S
Si,j...random variable (loss for one BL/EV cell)

The unexpected loss UL(i,j) is determined by subtracting the EL(i,j) from the loss
amount at a desired confidence level α. Using Monte Carlo simulation for aggregating
the loss severity and the loss frequency distribution, this loss amount is the empirical
α-quantile of the empirical distribution function FŜ(s) of the pseudorandom sample
s1, ..., sk (see previous page).

UL(i, j, α) = F−1
i,j (α) − EL(i, j) = inf{z|Fi,j(z) ≥ α} −

∫ ∞
0

z dFi,j(z)

The so defined unexpected loss is also called Value-at-Risk at confidence level α. For
implementing an AMA a confidence level of α = 0.999 (99.9%) is required3.

The capital charge for one business line/event type cell:

Capital charge (i,j,α)=UL(i,j,α)

3In economic capital project, α is related to the rating target of a bank [11].

Rating target BBB A AA AAA
α 99.75% 99.9% 99.95% 99.97%
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The capital charge for the whole institution is the sum of the capital charges across each
of the business lines and event types:

Capital charge (α) =
∑I

i=1

∑J

j=1 capital charge (i,j,α)

So far, it has not been reflected how to find the right distribution for the loss severity
and the loss frequency. The next three sections try to answer this question. First of
all some common distributions for the loss frequency are presented, then loss severity
distributions are introduced and last but not least the procedure of goodness-of-fit tests
is shown.
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4.2 Frequency Distribution

To model the loss frequency, so called counting distributions are used. These distribu-
tions are discrete with support only on the non-negative integers (only defined on the
points 0,1,2,...). Such distributions are for instance the Poisson, the binomial or the
negative binomial distribution.

Definition: The frequency is the number of losses or number of payments random vari-
able. Its expected value is called the mean frequency. Unless indicated otherwise the
frequency is for one exposure unit.[17]

The probability function pk denotes the probability that exactly k events occur.

pk =Pr(N=k), k=1,2,...,

where N is a random variable representing the number of events.

One important concept in probability theory is the probability generating function,
which can be used to generate moments of a distribution.

Definition: The probability generating function4 of a discrete random variable N
with probabilty function pk is

P(z)=E(zN)=
∑∞

k=0 pkz
k.

The probabilty generating function has some nice properties:5

1. If X and Y are two independent random variables with probability generating
funtion F and G, the probability generating function H of Z=X+Y is H=FG.

2. If E(Xk) < ∞ and F is the probabilty generating function of X, then

F (k)=E(X(X − 1)...(X − k + 1)).

3. Let X1, ..., Xn be independently and identically distributed with probability gen-
erating function F. Y be independent of the sequence (Xn) with probability gen-
erating function G. The probability generating function of Z be H. Z is defined as
follows:

Z=
∑Y

i=0 Xi

Then H can be written as H(z) = G(F (z)).

4In general: A(z) =
∑

∞

n=0
anzn is called generating function of the sequence {an}, where {an} is

a sequence of real numbers. Only defined, if the series converges.
5For proof see [7].
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4.2.1 Poisson Distribution

Generally the number of events N occuring in one period is assumed to be Poisson dis-
tributed, i.e. N ∼ Pλ. The advantage of this distribution is that the mean and the
variance of a Poisson random variable is the parameter λ. Therefore it is very easy to
estimate this parameter. This property follows directly from the probabilty generating
funtion. Fig. 4.1 shows the density function of a Poisson distribution with different
parameters λ. Because λ is both mean and variance the density function is the flatter
the bigger λ.

The probabilty function of the Poisson distribution is pk = e−λλk

k!
, k=0,1,2,... . The

probability generating function follows as

P (z) = eλ(z−1), λ > 0 .

E(N) = P
′

(1) = λ

E[N(N − 1)] = P
′′

(1) = λ2

V ar(N) = E[N(N − 1)] + E(N) − [E(N)]2

= λ2 + λ − λ2 = λ

As already mentioned banks activities are divided into business lines or/and event types.
The capital charge is the sum of the VaR of each business line and/or event type. The
next two properties are very useful for aggregating the loss distribution.

Theorem 4.1: Let N1, ..., Nn be independent Poisson variables with parameters λ1, ..., λn.
Then N = N1 + ... + Nn has a Poisson distribution with parameter λ = λ1, ..., λn.6

Theorem 4.2: Suppose that the number of events N is a Poisson random variable
with mean λ. Further suppose that each event can be classified into one of m types
with probability p1, ..., pm independent of all other events. Then the number of events
N1, ..., Nm corresponding to event types 1, ...,m respectively, are mutually independent
Poisson random variables with means λp1, ..., λpm respectively.7

6For proof see [17].
7For proof see [17].

21



Fig. 4.1 Poisson Distribution with different λ
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Estimation

The parameter λ of the Poisson distribution can be estimated by the method of the
moments and the method of maximum likelihood.

1. Method of the moments

The empirical estimate of the mean is defined by8

x = 1
n

∑n

i=1 xi

Empirical estimates of other moments:

Definition: The kth raw moment is

µ
′

k = E(Xk).

The kth central moment is

µk = E[(X − µ)k].

The variance is σ2 = µ2 = µ
′

2 − µ2.

2. Maximum-Likelihood estimation

The likelihood function for a set of n independent observations is

L(θ; x) =
∏n

j=1 Lj(θ; xj) =
∏n

j=1 f(xj; θ),

where: Lj(θ; x)...contribution of the jth observation to the likelihood;

Definition: The Maximum-Likelihood estimator is a measurable function
θ̂(X), with

L(θ̂(X), X) = supΘ L(θ,X).

This estimator may not be unique. To calculate the estimator it is easier to com-
pute the log-likelihood. By setting the derivative of the log-likelihood (with respect
to θ) zero the maximum likelihood estimator can be achieved.

8Definition by [31].
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The log-likelihood:

l(θ; x) = log L(θ; x) =
∑n

j=1 log Lj(θ; x)

The results for the Poisson distribution:
The expected frequency (sample mean) is

λ̂ =
P

∞

k=0 knkP
∞

k=0 nk

where:
nk...number of years in which a frequency of exactly k loss events occurs, nk represents
the number of observed values at frequency k.

The Maximum-Likelihood estimation results in following:

pk = e−λλk

k!

log pk = −λ + k log λ − logk!

The log-likelihood is

l = −λn +
∑∞

k=0 knk log λ − ∑∞
k=0 nk log k!.

By setting the derivative of the log-likelihood zero, the maximum likelihood estimator
is:

λ̂ =
P

∞

k=0 knk

n
.

For the Poisson distribution the maximum likelihood estimator and the method of mo-
ments estimator are identical. The estimator has mean λ and variance λ/n.

4.2.2 Negative Binomial Distribution

The negative binomial distribution has positive probabilties on the non-negative integers
just like the Poisson distribution. One big difference to the Poisson distribution is the
fact, that the negative binomial distribution has two parameters, which provides more
flexibility in shape. You say N ∼ NegBinr,β if:

Pr(N = k) = pk =
(

k+r−1
k

)

(

1
1+β

)r (

β

1+β

)k

, k = 0, 1, ..., r > 0, β > 0.

The probability generating funciton is:

P (z) = [1 − β(z − 1)]−r
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Therefore mean and variance of the negative binomial distribution are:

E(N) = rβ and V ar(N) = rβ(1 + β).

Because β > 0 the variance exceeds the mean. This is contrary to the Poisson distribu-
tion, where the mean is equal to the variance. If the observed variance is larger than the
observed mean, the negative binomial distribution will be a better choice for the loss fre-
quency distribution than the Poisson distribution. This case is also called overdispersion.

The probability function of the negative binomial distribution can also be written as:

Pr(N = k) = Γ(k+r)
Γ(r)k!

pr(1 − p)k,

where:
p...1/(1 + β), 0 < p ≤ 1.

The method of moments estimators for the two parameters of the negativie binomial
distribution are:

rβ =
P

∞

k=0 knk

n
and

rβ(1 + β) =
P

∞

k=0 k2nk

n
−

(P
∞

k=0 knk

n

)2

.

The following two figures 4.2 and 4.3 show the influence of different values for p and r
to the shape of the density function of the negative binomial distribution. The smaller p
the flatter is the density distribution. For the parameter r this behaviour is vice versa.
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Fig 4.2 Negative Binomial Distribution with different p
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Fig 4.3 Negative Binomial Distribution with different r
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4.2.3 Binomial Distribution

The binomial distribution is a counting distribution, too. Unlike the negative binomial
distribution the variance of the binomial distribution is smaller than the mean. There-
fore this distribution should be used for data samples with smaller empirical variance
than empirical mean. This is called underdispersion.

The probability function represent the probability that exactly k claims occur.

pk = Pr(N = k) =
(

m

k

)

qk(1 − q)m−k, k = 0, 1, ...,m and 0 < q < 1

The probabilty generating function is given by:

P (z) = [1 + q(z − 1)]m, 0 < q < 1.

Mean and the variance of the binomial distribution are defined as follows:

E(N) = mq and V ar(N) = mq(1 − q).

In general the parameter m is known and fixed. Then the parameter q is estimated as

q̂ = Number of observed events
Maximum number of possible events

This is the method of moments estimator when m is known.
The log likelihood is

l =
∑∞

k=0 nk log pk.

Setting the derivative of the log likelihood zero leads to

q̂ = 1
m

P
∞

k=0 knkP
∞

k=0 nk
.

For fixed m the maximum likelihood estimator is equal to the method of moments esti-
mator.

Fig. 4.4 illustrates the influence of different parameters q and fig. 4.5 shows the density
functions of the binomial distribution for different m. Growing q results in a shifted
density function to the right and a steeper density function follows by a decreasing m .
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Fig 4.4 Binomial distribution with different q
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Fig 4.5 Binomial distribution with different m
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4.3 Severity Distribution

The severity distribution should fulfill some characteristics:

1. It should be smooth

2. and place probability on all non-negative real numbers.

Distributions, that meet these criteria, are the log-normal distribution, the Generalized
Pareto distribution or the Weibull distribution. The methods used to estimate the para-
meters of these distributions are the method of moments and the method of maximum
likelihood.

Definition: The severity can be either the loss or amount paid random variable. Its
expected value is called the mean severity.[17]

4.3.1 Log-normal distribution

A positive random number X is called to be log-normal distributed i.e. X ∼ LN(µ, σ2),
if

log(X) ∼ N(µ, σ2).

This means, that the logarithm of X follows a normal distribution with same parameters
µ and σ2. Fig. 4.6 and fig. 4.7 give a survey of the shape of the density function with
different values for the parameters. Growing µ with constant σ causes a flatter density
function and growing σ with constant µ a steeper one.
The density function of the log-normal distribution is given by

f(x) =

{

1
σx

√
2π

exp[− (lnx−µ)2

2σ2 ] for x ≥ 0 µ ∈ R, σ ∈ R
+.

0 else

Where µ = E(lnX) and σ2 = V ar(lnX). Therefore it is simple to estimate the pa-
rameters by the method of the moments, where the parameters µ and σ2 are just the
empirical mean and the empirical variance.
Note, that the empirical mean is the maximum likelihood estimator of µ, too.

µ̂ = 1
n

∑n

i=1 lnXi

σ̂2 = 1
n−1

∑n

i=1(lnXi − µ̂)2
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Fig 4.6 Log-Normal distribution with different variances
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Fig 4.7 Log-Normal distribution with different means
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4.3.2 Generalized Pareto distribution

The distribution function of the Generalized Pareto distribution has three parameters
and is given by

F (z) = 1 − [1 + ξ(z−µ)
σ

]−
1
ξ , for z > µ, σ > 0 and 1 + ξ(z−µ)

σ
> 0

where:
µ...location parameter
σ... scale parameter
ξ... shape parameter

Fig.4.8 to fig.4.10 illustrate the changing of the density function by varying the parameter
values.
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Fig 4.8 Generalized Pareto distribution with different location parameters
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Fig 4.9 Generalized Pareto distribution with different scale parameters
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Fig 4.10 Generalized Pareto distribution with different shape parameters
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4.3.3 Weibull distribution

The Weibull distribution has two parameters a and b, where a represents the scale and
b represents the shape of the distribution. X ∼ We(a, b) if

f(x) =

{

a
b
(x

b
)a−1 exp[−(x

b
)c] for x ≥ a a, b ∈ R

+

0 else

E(X) = bΓ(1 + 1
a
) and V ar(X) = b2(Γ(1 + 2

a
) − Γ(1 + 1

a
)2)

The maximum likelihood estimators for a and b are the solutions of

â = [ 1
n

∑n

i=1(X
b̂
i )]

1

b̂ and

b̂ = n

1
a

b̂P
(Xi)b̂ln(Xi)−

P
ln(Xi)

Fig. 4.11 and fig. 4.12 show the density functions of the Weibull distribution with
different parameter values for a and b. The parameter b influences the slope and a the
height of the density function.
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Fig 4.11 Weibull distribution with different a
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Fig 4.12 Weibull distribution with different b
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4.4 Piecewise-defined loss severity distribution

The loss severity distribution may be divided into m parts, here m = 2. Losses, smaller
than a certain threshold (= t1)

9 are modelled by their empirical distribution function.
For losses above this threshold a loss severity distribution is fitted (The choice for the
model, which will be developed in chapter 6, is the log-normal distribution.). An illus-
tration of this concept is presented in fig. 6.7 and fig. 6.8 of chapter 6.

The combined loss severity distribution F (x) is given by

F (x) =

{

F 1(x) for x < t1
F 2(x) · F 1(t1) for x ≥ t1 ,

where F (x) denotes 1−F (x) [2]. F1(x) is the empirical distribution function and F2(x)
is the distribution function of the loss severity distribution.

To estimate parameters of F2(x) some theory about truncated data and distribution
must be introduced.

Definition: Data are said to be truncated when observations that fall in a given set
are excluded. Data are said to be truncated from below when the set is all numbers
less than a specific value. Data are said to be truncated from above when the set is
all numbers greater than a specific value.[17]

In the case of operational risk data the second form occurs. Operational risk data are
not collected from EUR 0. The treshold for collecting operational risk data can be vari-
able (EUR 1.000, EUR 10.000 etc.). This truncation is called truncation from above
and negliable.

A truncation, which cannot be neglected, occurs when it comes to the fitting of the sec-
ond part of the distribution. If X represents the loss, then the loss severity distribution
is fitted for the variable Y defined by:

Y =

{

undefined for X ≤ t1
X − t1 for X > t1

The distribution function of Y is given by:

FY (y) =

{

0 for y = 0
FX(y+t1)−FX(t1)

1−FX(t1)
for y > 0

9For instance this threshold can be EUR 100.000 or EUR 1 million.
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4.5 Goodness-of-fit Tests

Two non-parametric10 statistical methods for checking the goodness-of-fit of a loss fre-
quency or a loss severity distribution choice are the Kolmogoroff-Smirnoff-Test and the
Chi-Squared-Test.

To explain the test procedure of the KS-test some characteristics of the empirical dis-
tribution function are presented.

Definition: The empirical distribution function F̂n(x) is defined by:

F̂n(x) = 1
n

∑n

i=1 I(−∞,x](xi),

where Ii(xi) denotes the Indicator function.

Theorem 3.3: The Glivenko - Cantelli Theorem11

For the empirical distribution function F̂n(x) of the random sample X1, ..., Xn with
Xi ∼ F (·) the distance

Dn := supx∈R
|F̂n(x) − F (x)| → 0 almost surely.

I.e. Pr(limn→∞ Dn = 0) = 1. Dn is called the Kolmogoroff-Smirnoff statistic.

If F (·) is continuous, the distribution of Dn is independent of F (·). √
nDn → D in

distribution, the distribution of D is called Kolmogoroff-Smirnoff distribution.

4.5.1 Kolmogoroff-Smirnoff Test

This test can only be used for continuous distributions. Therefore it is only applicable to
the loss severity distributions, because each of the presented loss frequency distributions
is discrete.

The hypothesis H0 : F = F0 is tested by calculating the maximum distance of the empir-
ical distribution function F̂n and F. This maximum distance is the Kolmogoroff-Smirnoff
statistic Dn, mentioned above.

The test rule is the following:
The hypothesis H0 : F = F0 is rejected, if Dn > d1−α, where d1−α denotes the (1 − α)-
quantile of the Kolmogoroff-Smirnoff distribution D. α is the confidence level, in general
α = 0.05 or α = 0.01.

10A model is called to be non-parametric, if the range of the parameter is not finite. It does not
contain numbers, but functions like density or distribution functions.

11For proof see [15] p.190.
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4.5.2 Chi-Squared-Test

This test can be used for all kind of datasets12, but for continuous data a discretisation
is made. The data is divided into k disjount classes.

The teststatistic is

χ2 =
∑k

i=1
ni−npi

npi
,

where:
ni...number of data points in class i
pi...probability, that one data point falls in class i

Under the H0 : F = F0 the teststatistic χ2 is asymptotically χ2
k−1 distributed.

The H0 is rejected, if χ2 > χ2
k−1;1−α, where χ2

k−1;1−α denotes the (1 − α)-quantile of the
χ2

k−1 distribution.

4.5.3 Q-Q Plot

In order to examine if the log normal distribution is an appropriate loss severity distri-
bution, a Q-Q Plot, which stands for Quantile-Quantile Plot, can be used.

If the distribution of X, X ∼ F , is identical to a distribution G, then the empirical
α-quantiles xα should be identical with the theoretical α-quantiles gα of the distribution
G, too. If the empirical α-quantiles of F̂n are plotted on the abscissae and the theoretical
α-quantiles of the distribution G are plotted on the ordinate, then the points (xα, gα)
should lie on the straigth line x = g.

The Q-Q Plot is often used for testing, wether a sample is normally distributed or not.
Fig. 4.13 shows a Q-Q Plot of a normally distributed random sample. As you can see
the points lie almost on a straight line just as expected.

12A rule of thumb for applicability of this test is that n ∗ pi should be greater than 5.
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Fig. 4.13 Q-Q Plot of a normally distributed random sample
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Subsequent chapter five describes the four components, internal, external and scenario
data and business enviroment and control factors, of an AMA in detail and highlights
the differences and peculiarities of each data source. Focus will be on scenarios, which
will be the main data source for the model (especially for the loss severity distribution).

44



5 Internal, External and Scenario Data

As already mentioned in chapter 3 the Basel Committee on Banking Supervision de-
mands from a bank, using an AMA, to implement internal, external and scenario data.
The question arises how to pool this data properly. Internal and external data have to
be treated differently. External data, both public data and consortium data, tend to be
skewed towards large losses, which leads to unacceptable high capital charges. But why
is external data used? The reason is simple. Internal data is rather rare, especially in
the range of high severity/low frequency data, and calibration only based on internal
data may not suffice for computing an accurate capital charge. It is well known that
high severity/low frequency (see fig. 3.2) events are those events which contribute the
most to the operational risk capital charge.[4]

The next sections describe the differences and characteristics of the different data sources.

5.1 Internal data

Internal data is the most important data source for measuring operational risk, because
its reliability is well known and this data reflects the specific loss profile of a bank most
accurately. Internal data is the foundation of the capital charge computation. At least
a five-year time series1 of internal data is required.

Internal data is categorized into eight business lines and seven event types (see Annex
1 and Annex2), and herewith a data matrix with 56 cells can be developed. Each cell
of the matrix contains the number of losses nij, which are categorized by business line i
and event type j. This matrix is illustrated in fig. 5.1.

1For a bank, using an AMA the first time, a three-years time series is adequate.
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Fig. 5.1 Business Line/Event Type matrix
Event Types
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Management

Retail
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Fig. 5.2 shows a mosaic plot of the number of entries per business lines/event types.
Abbreviation for event type is EV, for business line BL. Most events fall into BL6, or if
you classify into event types, into EV5.

The basic idea of the Advanced Measurement Approaches is that the LDA (see previous
chapter) is implemented for every cell. Unfortunately not every cell has entries. Some
nij are zero or are very small and therefore not suitable for modelling operational risk.
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Fig. 5.2: Mosaic-plot of business lines/event types
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For that reason some cells are grouped together. However one should have in mind that
these cells should be homogeneous, and one has to decide which kind of clustering will
be appropriate. For this purpose some cluster analysis (hierachical analysis technique:
agglomerative technique)2 was made by F. Piacenza et al., who came to the conclusion
that the choice of event types as risk classes is preferable above that of business lines3

[27]. Event types as risk classes are also used by [2] and [30].

Fig. 5.3 and fig. 5.4 show density plots of internal data of a specific bank first divided
into business lines then into event types4. As you can see density plots of data divided
into event types are more homogenous than those of data divided into business lines.

2Each class belongs to another, larger class. For more information see Annex 4.
3The exercise is based on UniCredit‘s data losses with accounting date between 01/01/2002 and

31/05/2006 and a loss exceeding EUR 5.000.
4Note that internal data is scaled, so confidential principles are not violated.
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Fig. 5.3 Density plots of internal data divided into business lines
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Fig. 5.4 Density plots of internal data divided into event types
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Most banks concentrate on the categorization with event types. The advantage is that
one specific event type gathers all losses with the same origin of cause, which is certainly
a more consistent way of gathering data into consistent cells than the division into busi-
ness lines.

That applies that seven LDA models are built and aggregated for the capital charge.

50



Nevertheless this categorization is not mandatory and some similar event types such as
Employment Practices and Workplace Safety and Clients, Products & Business Practices
for example can be pooled together for meaningful modelling purposes.

5.2 External data

Extremely high losses in every bank are so rare that no credible distribution in the tail
can be obtained exclusively from internal data.
In general, usage of external data is a well accepted methodology in order to fill the gaps
of an internal data base. Additionally this process enlarges understanding of operational
risk exposure by benchmarking.

There are two different types of external data.

1. The first type of database records public losses, which are far too large and im-
portant, that they could be hidden from public eyes.

2. The second type is a consortium database with a systematical collection of losses
over certain thresholds. The losses are made anonymous, so confidential principles
are not violated. One important example of a consortium based database is ORX-
Operational Riskdata eXchange.

The main difference between these two databases is the way losses are supposed to
be truncated5. It is generally known that in the first case, as only publicly-released
losses are recorded, the truncation threshold is expected to be much higher than in the
consortium-based data.[3] (ORX records all losses above EUR 20.000.) Nevertheless
also external data from a consortium of banks are pushed towards high losses, whereas
internal data is biased towards small losses.

5.2.1 ORX - Operational Riskdata eXchange

Referending to the official webside of ORX, this consortium of banks is the world‘s lead-
ing operational risk loss data consortium for the financial services industry. ORX was
founded in 2002 with the primary objective of creating a platform for the secure and
anonymised exchange of high-quality risk loss data. [6]

5A defintion of truncation is given in section 4.4.
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ORX is incorporated in Zurich, Switzerland and is owned by its members. ORX has
currently 36 members (originally 12 member banks) all over the world:

• ABN Amro • Euroclear Bank
• Banco Bilbao Vizcaya Argentaria • Erste Bank
• Banc Sabadell • Fortis
• Bank Austria - Creditanstalt • Grupo Banesto
• Bank of America • Grupo Banco Popular
• Barclays Bank • Grupo Santander
• Bank of Nova Scotia • HBOS plc
• Banco Portugues de Negocios • ING
• BMO Financial Group • Intesa SanPaolo
• BNP Paribas • JPMorganChase
• Cajamar • Lloyds TSB
• Caja Laboral • RBC Financial Group
• Caixa Catalunya • Skandinaviska Enskilda Banken AB
• Commerzbank AG • TD Bank Financial Group
• Credit Agricole • US Bancorp
• Danske Bank A/S • Wachovia Corporation
• Deutsche Bank AG • Washingtion Mutual
• Dresdner Bank AG • West LB

Data provided by ORX are also divided into business lines and event types. The clas-
sification is not exactly the same as the one of Basel II. A Mapping of event types is
necessary. See Annex 3.

To analyse external data density plots are made, just like for internal data. Here it is
even more evident, that a classification by event types is much more satisfying. This is
illustrated in fig. 5.5 and fig. 5.66.

6Note that ORX data is scaled, so confidential principles are not violated.
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Fig. 5.5 Density plots of ORX data divided into business lines
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Fig. 5.6 Density plots of ORX data divided into event types
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5.3 Scenario data

Internal and external loss data are ”backward-looking”, which imply they do not imme-
diatly capture changes to the risk and control environment.[2]

This fact led banks to develop scenario analysis as addendum to internal and external
data sources in order to model operational risk more accurately. Scenario data provides
more accurate and future oriented estimations for a bank and its business units.

Defintion: Although there is no standardized and mandatory definiton of scenario,
scenario can be defined as sequence of possible events including description of possible
developments leading to those events.[9]

A scenario is something tangible that might happen in the future (i.e. a potential event).
It can fill in the gaps in the internal data base by analysing other data sources or it might
describe hazard incidents (very infrequent but severe) designed in discussions with ex-
perts. It is however clear that a set of representative scenarios should represent all risk
factors for all risk types.

Generally, in order to answer the question what-if one has to focus on the future. Fo-
cusing on future events, scenario analysis is an important addendum to loss data bases
which are solely based on past events and do not regard future events.[9]

According to the European Union Directives, [20] p. L177-178, a credit institution shall
use scenario analysis of expert opinion in conjunction with external data to evaluate
its exposure to high severity events. Over time such assessments need to be validated
and reassessed through comparison to actual loss experience to ensure their reasonability.

Scenario analysis allows to understand the types and magnitudes of operational risk
losses that have crucial impact on loss distributions and finally on capital charge re-
quirement. It is necessary to develop clear procedures which determine a representative
set of scenarios which takes into account all relevant risk drivers.

Developed scenarios are clearly determined by event type classes for easy implementa-
tion into a model, because internal and external data are categorized in event types, too.
In order to answer the questions if certain events are going to happen or not, structured
interviews take into account diverse information such as historic internal data, expert
experience, external data and results of self assessments.
One of the objectives in structured scenario discussions is to analyze business environ-
ment and control factors, which are a natural sequence of risk assessment results, in
order to determine an overall risk profile.

This approach in scenario analysis should ensure that modelling output is going to
be stable over time. It must be assured that changes in the capital requirement are
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dependant on risk profile changes and that they are not driven by variations in the
model.

5.3.1 Value of scenario analysis

Scenario analysis:

• promotes current understanding of OpRisk control

• uses all available data as input in structured scenario discussions with high-level
experts

• is sensitive to internal and external changes of environment and collected data

• uses established statistical methodology for implementation of acquired estima-
tions in the model

• is inherently forward looking

• generates potential losses that have not occurred in the past

This sensitivity of the scenario analysis is well suited to respond to any changes in busi-
ness environment and internal control factors and actively supports risk management.

Scenario analysis and generation can be very valuable for the management of a bank.
The results and outcomes can be used to reduce risk by improving and evaluating the
quality of specific risk factors or controls. [28]

Any growth of a Bank can be reflected in increased frequency and severity of the esti-
mates. On the other hand all improvement of controls or procedures in the bank can
result in reduction of the frequency or severity estimates.

To increase transparency of the process and to raise awareness, a close involvement of
experts from different organisational parts is necessary. So the flexibility of the whole
process to adjust to the paricular needs of the bank is guaranteed. [28]

Being embedded in this way; scenario analysis contributes to meet Basel II test require-
ments.

5.3.2 Purpose of scenario analysis

Developed scenarios should capture all material sources of operational risk in a compre-
hensive way and they should cover all bank business activities and differences due to
geographical locations.
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Knowledge and experience of business managers and risk management experts have to
be used to full capacity in order to derive reasoned assessments of plausible severe losses
on one hand and on the other hand business managers should exchange their experience
in structured discussions and maybe become even more aware of operational risk.

Applied procedures to generate scenarios have to be consistent across the bank and they
have to be independently reviewed and validated.

Purpose of scenarios can be outlined as follows:

• scenarios should determine future potential losses not yet experienced in internal
environment

• considering comparison with external losses what would be internal loss

• synthetic losses- fill in the gaps

• generate severity functions which relay on high-level expert opinions and structured
discussions

• structured scenario discussions might have an additional role of bringing up experts
together and consequently improving business environment and internal control
systems

• discussions should include analysis of all possible sources of data and their possible
outcome → listing of major risks

5.3.3 Scenario methodology

Scenario developing process includes a few steps which will be explained as following:

1. The first step is to analyse existing data and define input for creating certain
scenarios. The challenge is to determine scenario methodology that can be applied
across all organisational parts of the bank. Therefore, all scenario classes are
categorized by event type. This approach allows a manageable amount of possible
scenarios.

2. The next step is to review data quality and identify gaps in order to design sce-
narios. This try of identifying scenarios is done by operational risk experts who
analyse all data sources and make suggestions for structured scenario discussions.
This is achieved using blend of information such as: internal historical losses, rel-
evant external banking industry experience, relevant risk factors and the control
environment reported during risk assessments.

It is well known that historic data can be successfully used for determining fre-
quency of events [28]. In order to determine the scope of the scenario it is very
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important to answer ”what - if” questions which is soon after going to lead us to
the severity and frequency of potential events.

3. Quantitative operational risk experts analyse and prepare severity and frequency
estimations after having analysed all data sources.

4. All data and parameters are presented in the structured scenario discussions with
high - level experts and give output for modelling.
In those structured and guided discussions high level experts are asked to give their
knowledge and experience and estimate the potential loss frequency and severity
for a specific scenario. In principle, they are asked to adjust estimated numbers
prepared and analysed by operational risk experts.
This comprehensive and consistent process assures quality of obtained scenarios
and subsequently quality of the risk profile required for modelling risk capital
requirements.

5. Output of scenario discussions are incorporated into model .
If it is assured that data resulting from scenario discussions have a good quality,
determined parameters can be fed into model.

5.3.4 Bow-Tie Diagramm

A graphical analysis of scenarios is the so-called ”Bow-Tie diagramm”[18]:

• pre-events (also called causes): potential events leading to an undesirable incident

• proactive or preventive controls: actions taken to reduce the likelihood of an un-
desirable incident occurring

• incident: an event which might cause an undesirable outcome

• reactive (mitigating) controls: actions taken to reduce the impact of an undesirable
incident

• outcomes: potential result of an undesirable Incident

Fig. 5.7 illustrates the components of a Bow-Tie diagramm.
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Fig. 5.7 Components of a Bow-Tie diagramm (source [18])

According to [18] the bow-tie diagram is a helpful tool for making risk management
assumptions, analysis and conclusions explicit.
The main objective of the diagram is to analyse not only severity and frequency of po-
tential losses that can be suffered, but also business environment and control factors
that are reflected in the proactive and reactive controls, as well as causes that lead to
the event itself.

The left hand part of the diagram is called fault tree and describes the events or faults
which might give rise to an undesirable incident. The right hand side is called an event
tree which analyses consequences of undesirable incidents. [18]

5.3.5 Validation of scenarios

The validation process should assure that the scenario template is reviewed on annual
basis and that all changes in the business environment are considered. These changes
might be reflected in frequency of certain scenarios, i.e. if some improvements of proac-
tive control or similar changes took place or if there have been some less advantageous
events that might increase frequency of some scenarios.

Procedures for validating scenarios:

• Comparison of severe losses internal vs. scenario
It is of great importance to validate if the scenario frequency projections match
the internal annualized loss experience particularly in the tail.
According to [30] it is expected that scenarios over a certain amount limit (i.e.
EUR 10 mio.) are greater than actual loss experience.

• Distribution curve
The next step in validating scenarios is to analyse the distributions of losses and
to look if they match actual loss experience.
The expectation by [30] is that distribution curves of actual losses have a more
volatile profile.
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• Maximum loss
The validation contains analysis of the influence of maximum loss data, either
internal or external, on scenario models.
It is important that those data should influence, but not dictate scenario input
models. [30]

• Geographical, demographical, economical and other regional specialities
It is generally known by experts that the coverage of all local specialities must be
fulfilled.[1]

5.4 Business enviroment and control factors

LDA models mainly rely on loss data and are inherently backward looking. It is there-
fore very important to incorporate components that reflect changes in the business and
control environment in a timely manner.

There have been intensive discussions in the banking industry regarding different strate-
gies that might fulfill this demand, however it came out that key risk indicators (KRI)
and risk self-assessments would be the common method to accomplish them.

These qualitative adjustments do not occur directly in the model, but through adjust-
ments of the parameters of the loss severity distribution.7 Direct application would be
difficult to justify with statistical means.

The following chapter provides one possibility to mix the different data sources for the
Advanced Measurement Approach mentioned above. This mixing is the main challenge
when it comes to operational risk measuring.

7For detail see section 6.3.
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6 Mixing Internal, External and

Scenario Data

The AMA is the most sophisticated option to quantify the capital charge for operational
risk. The model explained in this section is mainly driven by scenario analysis. Data
used in scenario analysis are blended of internal and external data and risk assessment.

6.1 Model principles

The underlying model:

• reflects the operational risk profile of the specific bank

• is able to evaluate the risk at any given confidence level

• calculates expected and unexpected loss

• is responsive to the changes in the business environment

• is sensitive to the large losses

• is stable to statistical outliers

• is understandable for the management

• is able to allocate the risk to subentities

The following sections describe the process of implementing an AMA step by step from
mixing different data sources to generating the parameters for the loss distribution and
the subsequent computation of the capital charge.
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6.2 Mixing of data

Fig. 6.1 Components of the operational risk capital charge calculation

In order to mix all different data sources, shown in fig. 6.1, some statistical analysis has
been made to compare internal and external data and in which way these sources can
be implemented in scenario analysis.
Such statistical analysis contains of the comparison of density functions of several event
types EV and business lines from both external and internal data, see previous chapter.
Here regard must be paid to different thresholds of each data source.
To achieve significant outcomes all data must be on the same scale and above the same
certain threshold. If ORX data is used, this threshold will be EUR 20.000, because in
general banks collect data above a smaller threshold.

The analysis comes to the conclusion, that external data and internal data cannot be
treated the same way. External data, mainly based on ORX data, consists of data from
some very large banks. The loss profile of an average bank will completely differ from
the loss profile of one of these large banking groups. And as already mentioned external
data is strongly biased toward high-severity events.

According to [12], frequency and severity data must be treated differently as they raise
rather different issues.
A mixture of internal and external data is only used for the loss severity distribution
above a certain threshold t1. Therefore the following computations are only made with
data above this threshold. First of all the scaling method and the scenario generation
will be introduced.
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6.3 Scaling of internal and external data

One possiblity to mix internal and external data is scaling. One scaling factor, which
turned out to be appropriate, is gross income GI1. Gross income is an indicator of a
bank‘s risk exposure. Large banks with a large gross income tend to be more exposed
to risks than smaller banks with less banking activities.

As already mentioned only data above a certain threshold t1 is used for the mixing,
which will be the input for the parameter generation of the loss severity distribution.

Method of scaling with gross income as indicator:

1. Gross income of ORX is computed per business line. The same is made for the
specific bank for which the capital charge should be calculated. Unfortunately
there is no information about the gross income per event type, which would be
more appropriate, because the capital charge computation and aggregation is made
by event type.

2. The next step is to calculate the number of losses per business line and event type
for ORX data and internal data. (See matrix defined in chapter 5 p.46.) So two
matrices are developed. Note that, to compare these two data sources, a mapping
of event types and business lines is necessary. See Annex 3.

3. The actual scaling process for each event type is the following:

# of losses of ORX per business line i
GIi of ORX

= Xi

GIi of the bank

The table in fig 6.2 tries to illustrate this concept:

Fig. 6.2 Table of scaling for one event type

# losses ORX GI ORX # losses bank GI bank # scaled by ORX
BL 1 X1

BL 2 X2

BL 3 X3

BL 4 X4

BL 5 X5

BL 6 X6

BL 7 X7

BL 8 X8

Sum
∑8

i=1 Xi

1Defined in chapter 3 p.10.
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4. The
∑8

i=1 Xi is the new number of losses in this event type above the certain
threshold t1. This number is splitted into k loss amount buckets. The splitting
factors pl , l = 1, ..., k, are given by ORX data. The splitting factor for the first
bucket is the percentage of ORX data, whose loss amount falls into this first bucket
and so on. A table of the splitting factors is presented in fig. 6.3.

Bucket boundaries may be t1, 1 million, 5 millions and 10 millions (here k =
4).Granularity of buckets is also possible on the higher level. The bucket bound-
aries depend on the specific internal data and risk profile of each bank.
This splitting is done for each event type j , j = 1, ..., 7.2 This concept is illustrated
in fig. 6.4.

Fig. 6.3 Table of percentage of ORX data in each bucket

t1 - 1 mio. 1 - 5 mio. 5 - 10 mio. >10 mio. Sum
EV 1 p11 .. .. p14

EV 2 . .

EV 3 . .
∑4

i=1 pjl =
EV 4 . . 100%
EV 5 . . for j = 1, ..., 7
EV 6 . .
EV 7 p71 .. .. p74

Fig. 6.4 Splitting into buckets for one event type j

t1 - 1 mio. 1 - 5 mio. 5 - 10 mio. >10 mio. Sum

# scaled by ORX [
∑8

i=1 Xi] · pjl

∑8
i=1 Xi

# bank [
∑

of # losses bank] ·pjl Sum of # losses bank

where pjl , l = 1, ..., 4, is the percentage of ORX data in each bucket for one event
type j.

5. This table, given by fig. 6.4, is the basis for a discussion with experts and man-
agement, who decide wether scaled ORX data, internal data or a mixture of both
describes reliably the current risk situation. As support for making this decision
some special cases of loss events (severe losses, which illustrate the potential prob-
lem) with detailed descpription and cause, results and outcomes of risk assessments
and KRIs are presented to experts and management.

2Several EVs may be merged. Number of risk cells depends on data availability.
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After validation and correction through experts of operational risk, the number
of losses in these buckets njl , j = 1, ..., 7 and, l = 1, ..., k (here k=4), are the
foundation for parameter estimation of the loss severity distribution. The detailed
technique is presented in section 6.4.

6.4 Generating parameters for the loss severity

distribution

After validation through experts and senior management following numbers
njl , j = 1, ..., 7 and, l = 1, ..., k (here k=4), are used for generating scenario data para-
meters for the loss severity distribution, respectively see fig. 6.5. As already mentioned
in general the loss severity distribution is not fitted from zero to infinity (t1 > 0 alterna-
tively t1 > collecting threshold). A piece-wise defined loss severity distribution is fitted.
See section 4.4. For the range from zero (from the collecting threshold respectively) to
t1 the empirical distribution of loss severity is used.
This fitting is made by event type. This means, that the empirical distribution function
is only estimated by the specific data for the corresponding event type. The same holds
for the log normal distribution. Parameter estimation is made for each event type. For
illustration of this concept see fig. 6.7 and fig. 6.8.

Fig. 6.5 Table of number of losses per bucket and event type

t1 - 1 mio. 1 - 5 mio. 5 - 10 mio. >10 mio. Sum
EV 1 n11 .. .. n14

EV 2 . .

EV 3 . . nj =
∑k

l=1 nlj

EV 4 . . for j = 1, ..., 7
EV 5 . .
EV 6 . .
EV 7 n71 .. .. n74

The main idea of the parameter estimation is to fit a distribution that fulfills the splitting
best. This means that (nlj/nj)% of the area beneath the density of the loss severity
distribution of one event type j should lie in the bucket l, here l = 1, ..., 4. In other
words the probability that a loss event causes an loss amount of y, where for instance
t1 ≤ y < 1mio., should be nj1/nj for one event type j, because y falls into the first
bucket. Fig. 6.6 illustrates this concept.
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Fig. 6.6 Density function with four buckets for one event type

This fitting is made by optimization. The method of choice is BFGS, which stands for
Broyden-Fletcher-Goldfarb-Shanno, a quasi-Newton method. This method is used to
solve an unconstrained nonlinear optimization problem.3

For the loss severity distribution the log-normal distribution was chosen. This choice is
a result of the Kolmogoroff-Smirnoff tests. Computations were made for the Generalized
Pareto distribution, too, but for this distribution unreasonable high capital charges were
calculated. (A bank cannot loose more money than the worth of the whole institution.)

Therefore the parameters, which are to be estimated are mean and variance of each
event type j , j = 1, ..., 7, of the log-normal distribution. The method for measuring the
”difference” of (njl/nj) and the theoretical probabilty of a bucket (intervall), according

3For information about optimization see [8] or [19].
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to the fitted log-normal distribution, is a least-squares estimator. Following function has
to be minimized:

(µ∗, σ2∗) = arg min{∑k

l=1[(F (Xl+1) − F (Xl)) − njl

nj
]2},

where F (·) denotes the distribution function of the log-normal distribution with para-
meters µ and σ2 and, Xl , l = 1, ..., k, are the bucket boundaries mentioned above.4

Starting points for µ and σ2 for the optimization are the empirical mean and the empirical
variance of all internal loss data on a logarithmic scale.

4Optimization is made with the free statistical program R [10].
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Fig. 6.7 Piece-wise defined loss severity distribution for two pooled event types
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Fig. 6.8 Piece-wise defined loss severity distribution for two pooled event types
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This graphical analyse is a very helpful tool for finding the right value of t1, too. As one
can see here t1 = 100.0005. However another range between empirical and log-normal
loss distribution function would be more appropriate. Here for example t1 = 120.000
or t1 = 150.000. One possibility is to fit the log-normal distribution function from
t1 = 100.000 all the time, but to achieve a smoother transition the empirical distribution

5Data is divided by 1000.
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function is used for calculation till t1 + x6 and the log-normal distribution function is
used from (t1 + x) − ∞7.

6.5 Loss Frequency distribution

For the loss frequency distribution internal data is the only data source, because this
data reflects the number of loss events occuring during one year for a specific bank most
accurately. It is well known that considering one specific bank, its internal frequency
data likely convey information on its specific riskiness and the soundness of its risk man-
agement practices.[12]

After some analysis, with focus on the right choice of the loss frequency distribution, the
Poisson distribution was chosen. For this analysis the number of events were categorized
into years and months, which leads to a sample of numbers, that denotes the number of
events per month and/or year.
Note that december data should be excluded, because in december more events usually
occur than in other months. This peculiarity of operational risk data became evident
during the analysis. This happens not by reason of more fraudulent people in december,
but of the way information is monitored. In december many events are reported, but
actually these events happened earlier that year (late reporting).

With this sample of numbers a χ2-test is made to test the hypothesis if this sample is
Poisson or negative binomial distributed. The binomial distribution is excluded, because
the mean of numbers per month always exceeds the variances of numbers per month.

The conclusion of these tests was, that the hypothesis that the poisson distribution
would be a good choice, cannot be rejected. Besides it turned out that it is almoust
irrelevant for the computation of the capital charge if poisson or negative binomial dis-
tribution is used [2].

The choice of severity distributions for modelling operational risk data by using LDA
usually has a much more severe impact on the capital charge than the choice of the
frequency distribution. [2]

Now the Poisson distribution is fitted separately for each event type. The parameters
λj , j = 1, ..., 7, of the Poisson distributions correspond with the number of events cate-
gorized into the corresponding event type divided by the time horizon.

6x maybe 20.000 or 50.000.
7Empirical tests have shown that it does not make any difference for the capital charge computation

wether t1 or t1 + x is used as boundary between empirical and log-normal distribution function.
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λj =
number of events in event type j

horizon
,

where the horizon is the length of the time-series (at least 3 years).

Because of the piece-wise defined loss severity distribution, the loss frequency distribu-
tion must be fitted (for subsequent Monte-Carlo simulations) piece-wise, too. This fact
requires two lambdas, one estimated for ”small” losses (loss amount from 0 or collecting
threshold - t1) - λ1j - and the other one estimated for ”large” losses (loss amount from
t1 −∞) - λ2j.
The adaption of the above formula for λj is quite easy. The number of events per event
type j must be divided into ”small” and ”large” losses and then the calculation can be
done as described before.

6.6 Compound loss distribution

The actual loss distribution is achieved by Monte-Carlo simulation, introduced in chap-
ter 4.

Practical implementation of Monte-Carlo simulation:8

1. After generating all parameters for the log normal and the Poisson distribution a
random number r1 of the Poisson distribution with parameter λ1j is drawn.

2. Then r1 losses of the empirical loss severity distribution are taken. This r1 losses
are the first part of the loss sample r.

3. r2 is generated from the Poisson distribution with parameter λ2j.

4. r2 losses are generated from the log normal distribution with parameters (µ∗, σ2∗).
This is the second part of the loss sample r.

5. These four steps are repeated k = 106 or k = 107 times and sample mean and
α-quantiles of all simulations rk are calculated. This sample mean is the expected
loss. To get the unexpected loss of a certain level α the sample mean is subtracted
from the certain α-quantile.

6. For computing the deviation of expected and unexpected loss the method of boot-
strapping is used. The generated samples rk are merged together and resampled m
times (at least 10.000 times).9 At all times mean and α-quantiles are calculated.
So m means and m α-quantiles are computed. The deviation of the m means is the
deviation of the expected loss and the deviation of the α-quantile is the deviation
of the unexpected loss.

8Simulations are made with the free statistical software R.[10]
9Computation time may rise very fast with increasing m.
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This simulation is made for each event type j. The capital charges of each event type
are accumulated. This sum is the capital charge for the specific bank institute.

Further challenges and issues of operational risk, which are not already covered in the
model presented and developed above, will be introduced in the next chapter.
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7 Future challenges

Since operational risk is a rather new field in the bank‘s risk management, developments
and challenges are growing constantly in this sector.

7.1 Correlation Problem

One of these challenges is to model diversification effects in operational risk, which is a
very crucial task to do. Generally, operational risk events might be, at least partially,
decorrelated. According to [13], perfect correlation across risk types or business lines,
which means, that capital charges by risk types or business lines are summed, may lead
to a much higher capital charge than in the Standardised Approach proposed by Basel II.

Basel II statement:

Risk measures for different operational risk estimates must be added for purposes of cal-
culating the regulatory minimum capital requirement. However, the bank may be permit-
ted to use internally determined correlations in operational risk losses across individual
operational risk estimates, provided it can demonstrate to a high degree of confidence
and to the satisfaction of the national supervisor that its systems for determining cor-
relations are sound, implemented with integrity, and take into account the uncertainty
surrounding any such correlation estimates (particularly in periods of stress). The bank
must validate its correlation assumptions. [24] p.126

Let L1 and L2 be two aggregated losses and L the global aggregate loss:

L = L1 + L2

=
∑N1

i=1 Xi +
∑N2

j=1 Yj

There are two types of correlation:

1. Frequency correlation: Two annual frequencies N1 and N2 are said to be cor-
related, if those two variables are not independent. For instance when the number
of internal fraud events is high, then the number of external fraud events is high,
too.

2. Severity correlation: Loss Xi, randomly drawn from the first class of events,
and loss Yj, randomly drawn from the second class of events, are not independent
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with one another. This could occur if internal fraud loss amounts are high when
external fraud loss amounts are high. This could be empirically shown: If the mean
loss amounts are correlated over time, this is an indicator for severity correlation.
The difficult matter of severity correlation is the assumption of simultaneously
severity independence within each risk type and severity correlation between two
risk types.

The next step is to implicate those two types of correlation into the extisting model.
Adding frequency correlation to the LDA-model is an easy task and does not destroy
the derived model. In fact it does not change the capital charge computation. Mod-
elling severity correlation needs a whole new family of models. Such an extension is not
reasonably feasible, but developments concerning the correlation problem must be kept
in view.1

7.2 Insurances

A further challenge would be to take insurances and their risk mitigating impact for the
capital charge under consideration.
Given a typical operational risk model (such as the one developed in the previous chap-
ter), which samples loss frequency and loss severity (via a LDA) independently, the main
difficulty in incorporating existing insurance policies into the model is to determine the
amount of losses that are actually covered under the insurance premium.
From this point on, Monte Carlo simulation and aggregation of operational VaR becomes
fairly straightforward.
A typically used approach is to assume a fixed percentage of incurred losses to be insur-
ance claims. The critical part, of course, is estimating the correct percentage.

Relying on expert opinion may not be practical in this case as precisely unforeseeable
events have to be handled estimating the probability that such an unforeseen event not
only occurs but is also covered by any broad-coverage insurance policy is close to im-
possible. Relying on historical data only might also not be functional as it is unlikely
that very large losses have already occurred and assuming that the breadth of coverage
by the insurance transfers over perfectly from small losses to very big ones may be false.

A more sophisticated premium-based approach would be the following cited from [26]:
The basis for this approach is the assumption that the negotiated insurance premium is
a price for a commodity traded on a more or less free market and thus must roughly
represent a fair price.
Of course there are only a limited number of players in the insurance market. Nonethe-
less it is fair to assume that there is enough competition to guarantee that premiums

1For concept in detail see [13].
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negotiated by as large a player as the EB AG are not inflated above market average.

This approach has several advantages:

• Calculations do not rely solely on historical data.

• Calculations can be performed for all past, active or future insurance contracts.

• Results can be verified with expert opinion and historical data.

As stated above, the starting point for a premium-based calculation of insurance cover-
age is the assumption that the negotiated insurance premium represents a fair market
price. In other words: The negotiated insurance premium will cover the insurers ex-
pected loss, as well as the proportionate amount of administration and overhead costs.

Given the distribution of loss severity (in the developed model, this would be the log-
normal distribution),the insurers expected loss is calculated as follows:

EL =
∫ ∞

0
v(x)λdisbdF (x) ,

Where λdisb denotes the number of disbursed claims the insurer expects, v(x) is the
amount paid by the insurer in each of these cases and F (x) is the assumed distribution
of loss severity (log-normal).

The premium covers not only the expected loss but also overhead and administration
costs.

The typical ratio of expected loss to received premiums in non-life insurance is roughly
2/3 and is fairly constant over time. Competition ensures that the ratio of expected loss
to the so-called administration ratio - AR remains stable.2

Using this relationship the following implicit relationship between the insurance premium
and the number of disbursed claims that the insurer may expect can be derived by:

EL =
∫ ∞
0

v(x)λdisbdF (x)

EL = p ∗ (1 − AR)

p = 1
1−AR

∫ ∞
0

v(x)λdisbdF (x)

While this approach may not be perfect, it is clear to see that it provides more accurate
results than the aforementioned other estimates, since it relies not on the information
the insured has access to but on the implicit expertise of the insurers model, which it
is safe to assume contains all possible information about the insurance contract.
In other words, the insurance premium contains implicit information about the frequency
of insurance claims, which is exactly the information needed to incorporate insurance

2This was estimated with data from Statistical Office of the European Communities.
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coverage into a LDA model.

These results from above are incorporated into a Monte Carlo simulation as follows:
Insured and uninsured losses are generated separately, according to their respective
frequencies. After a simulation of the loss severity, the net loss for insured losses is
adjusted according to the insurance policies deductible and limit (information provided
by v(x)), if applicable. Afterwards net losses are pooled together and aggregation of the
global loss distribution as well as calculation of operational VaR may be performed as
described in chapter 6.
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8 Conclusion

This work attempts to provide the statistical framework for modelling operational risk
using an AMA. Additionally, it developed a model for computing the capital charge of
a specific bank step by step from the pure database to the calculation of the operational
risk capital charge. The main question of this LDA-based approach was how to mix all
different data sources, internal and external data, scenarios and KRIs, properly and how
to ensure stability of the outcome.

A further question was which kind of splitting of data would be appropriate. Data cells
should be homogenous to receive stable, robust and reasonable results, but on the other
hand cells must contain a certain amount of events, because otherwise generated para-
meters and results may vary enormously. This would be contrary to the assumption of
robustness and stability. The conclusion raises, that splitting into event types would
be the most appropriate solution. Almost each event type has enough data entries to
perform statistical analysis. Those event types with less events are pooled together with
respect to a certain consistency of data. For example it is suggested, that the event type
Employment Practices and Workplace Safety could be pooled with Client, Products &
Business Practices, because all events have cause in legal issues.

The choice of the right loss severity distribution and loss frequency distribution was also
a mentioned task. Whereas this question was easy to answer when it comes to the loss
frequency distribution (Poisson distribution was chosen, according to empirical analysis
and literature.[2])1, the choice of the loss severity distribution is a more complex chal-
lenge. With respect to the trade-off between parsimony in the parameterization of the
loss severity distribution of operational losses, and the accuracy of the resulting fit, the
log-normal distribution was chosen. Distributions, like the Generalized Pareto or the
Weibull distribution, whose fitting would need a lot of additional work, are not worth-
while.

The main problem, this work attended to, was the generating of scenarios. The model
presented in the previous sections and chapters is mainly driven by scenarios. Scenarios
were developed by a mixture of internal and external data, risk assessments and KRIs.
Because of a lack of internal data in the tail of the loss severity distribution, external
data was taken into account to complete and round off internal data. This mixing was
made by scaling, with the gross income of the specific bank and the consortium of banks

1The loss frequency distribution does not influece the capital charge as much as the loss severity
distribution. The impact is almost negliable.
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(ORX) as scaling factor. At last results of risk assessments and KRIs fulfill the whole
picture, which is the foundation for the parameter generation of the loss severity distri-
bution.

After generating the parameters by optimization, the log normal distribution was fitted.
The loss severity distribution is defined piece-wise, because it is significant that internal
data fits the range beneath a certain threshold2 (t1) best. Internal data reflects the spe-
cific risk profile of a bank the most accurate way and in general enough data is available
beneath this threshold. Therefore the empirical loss severity distribution is used from
zero to t1.(A collection threshold of EUR 1.000 etc. must eventually be taken under
consideration.)

The aggregation of the loss severity and the loss frequency distribution was made by
Monte-Carlo simulation, because there is no analytical expression of the compound loss
distribution.

The final conclusion may be that an AMA is the most sophisticated approach to model
operational risk. An AMA provides a lot of possibilities to fit the model perfectly to
the specific risk profile of a bank. Theoretical and practical risk sensitivity or exposure
will match in a better way than using BIA or TSA. Although the presented model
complies with all required components of Basel II, further developments and research is
still necessary, especially correlations and insurances.

2For instance t1 = 100.000.
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Annex 1

Business Lines

Level 1 Level 2 Activity Groups

Corporate Finance Mergers and acquisitions, underwriting,
Corporate Municipal/Government Finance privatisations, securitisation, research, debt
Finance Merchant Banking (government, high yield), equity, syndications,

Advisory Services IPO, secondary private placements

Sales Fixed income, equity, foreign exchanges,
Trading & Market Making commodities, credit, funding, own

Sales Proprietary Positions position securities, lending and repos,
Treasury brokerage, debt, prime brokerage

Retail Banking Retail lending and deposits, banking services,
trust and estates

Private Banking Private lending and deposits, banking services,
Retail Banking trust and estates, investment advice

Card Services Merchant/commercial/corporate cards
private labels and retail

Commercial Project finance, real estate, export finance,
Banking Commercial Banking trade finance, factoring, leasing, lending,

guarantees,bills of exchange

Payment and External Payments and collections, funds transfer,
Settlement Clients clearing and settlement

Custody Escrow, depository receipts, securities
Agency lending(customers) corporate actions
Services Corporate Agency Issuer and paying agents

Corporate Trust

Discretionary Fund Pooled, segregated, retail, institutional,
Asset Management closed, open, private equity

Management Non-Discretionary Pooled, segregated, retail, institutional,
Fund Management closed, open

Retail Retail Execution and full
Brokerage Brokerage services
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Annex 2

Event Type Classification

Level 1 Level 2

Internal Unauthorised Activity
Fraud Theft and Fraud

External Theft and Fraud
Fraud Systems Security

Employment Practices Employee Relations
and Safe Enviroment

Workplase Safety Diversity & Discrimination

Suitability, Disclosure & Fiduciary
Clients, Products Improper Business or Market Practices

& Product Flaws
Business Practices Selection, Sponsorship & Exposure

Advisory Activities

Damage to Physical Assets Disasters and other events

Business disruption
and Systems

system failures

Transaction Capture, Execution & Maintenance
Monitoring and Reporting

Execution, Delivery & Customer Intake and Documentation
Process Management Customer/Client Account Management

Trade Counterparties
Vendors & Suppliers
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Annex 3

Mapping of Event Types ORX - Basel II

Event Type - Level 1 ORX Event Type - Level 1 Basel II

Internal Fraud Internal Fraud

External Fraud External
Malicious Damage Fraud

Employment Practices and Employment Practices and
Workplace Safety Workplace Safety

Clients, Products and Clients, Products and
Business Practices Business Practices

Disasters and Public Safety Damage to Physical Assets

Technology and Infrastructure Business Disruption and
Failures System Failures

Execution, Delivery and Execution, Delivery and
Process Management Process Management
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Annex 4

Hierachical Clustering - Agglomerative Technique

The following technique is based on the cluster analysis introduced in [27].

Starting point: every unit is a single cluster. After n − 1 subsequent agglomerations, a
unique cluster, which contains all units, is achieved.

Measure for the distance (differences) between two units:

d(i, j) = 1 − pv(i, j),

where pv(i, j) represents the p-value of the Kolmogoroff-Smirnoff test (see chapter 3)
applied to the clusters i and j.

In each of the n−1 iterations the distances d(i, j) between all clusters are calculated and
those two clusters, which present the minimum value of d(i, j) are merged together.
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