
TU
Technische Universität Wien

DISSERTATION

Making Sense of Images: Parameter-Free Perceptual Grouping

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften unter der Leitung von

A.o.Univ.-Prof.Dipl.-Ing.Dr.techn. Markus Vincze

E376

Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Michael Zillich

E9056241

Webergasse 21/26-28, 1200 Wien

Wien, im Mai 2007

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



ii



Abstract

Perceptual grouping is a well studied area in visual psychophysics and offers a
principled, general way to study vision in sighted animals and humans as well
as machines. Computational approaches in the past however have often been
hampered by complexity issues and brittleness in the presence of clutter and noise.
Especially the reliance on tuning parameters renders many approaches impractical
for real world applications.

This work aims to address complexity and robustness issues by proposing an
incremental processing scheme for the perceptual grouping of edges, where the only
parameter is runtime. This allows interrupting processing at any time, returning
the most significant perceptual groups that could be found up to that point and
leads to graceful degradation with increasing amounts of noise or clutter.

We furthermore propose a probabilistic measure of visual significance based
on the principle of non-accidentalness. This significance measure is used to guide
grouping of convex contours as well as a relative depth ordering of contours. Vary-
ing the significance measure of edges, for example based on regions of interest,
allows to focus attention on specific parts of the scene, which will subsequently be
allocated a larger share of the available processing time.

Experiments were carried out on a wide range of real world images with varying
scene content and complexity. For detection of convex contours we could show that
identifying candidate edges and junctions for grouping can be performed in runtime
linear to the number of edges. More significant contours typically popped out faster
with less significant ones appearing as runtime progresses. We demonstrated how
two attentional mechanisms, based on regions of interest and colour, lead to faster
detection of objects of interest. Relative depth ordering of contours based on
energy minimisation in a Markov Random Field was presented as an initial form
of finding a globally consistent scene interpretation and was shown to work for
scenes of limited complexity.
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Chapter 1

Introduction

Computer vision has fragmented into many specialised sub-fields, each developing
and perfecting methods to solve specific tasks such as optical character recognition
or face recognition, some of which have been successful enough to result in com-
mercial products. Yet many of these methods are not applicable to other domains
and it seems that not much insight into a broader understanding of vision can be
gained from them.

One of the original dreams of AI to solve generic computer vision has not ma-
terialised. Yet it should be evident that without such a generic solution, we can
not claim to have a solution at all. Let us not be fooled into believing that an as-
sortion of (however well developed, excellent) specialised techniques can constitute
a coherent whole, or ever will. A proper theory of vision still seems far away.

How lucky in contrast is for example the field of control theory. After countless
ad-hoc techniques to control various types of machinery (such as steam engines
or chemical processes) a proper theory of control was finally developed (starting
with a dynamics analysis of the centrifugal governor by James Clerk Maxwell in
1868). We now have a theory of control which can describe control problems in a
coherent framework. And we can use this framework to develop implementations.
Obviously nature chose different implementations. But both can be described
using the same theory. Unfortunately a theory of cognitive processes, of which
vision is one example, will not be as easy to obtain. We consider it important
however to keep in the back of ones head, that it is ultimately such a theory that
we should be after, rather than a collection of shortcuts for isolated sub-problems.

This work presents an attempt to look at the problem of computer vision from
the ground up, find what are the questions that need to be answered and propose
some solutions to a small set of these questions. Note that when we say “from the
ground up” we do not mean starting at the level of neurons in biological vision
systems. That might be one method of implementation (chosen by nature) out of
many possible methods. When we say from the ground up we refer to the types of
questions posed. A question might be ”How can we expand a method of tracking
an object in cluttered scenes to tracking several objects?”. But the questions that

1



2 CHAPTER 1. INTRODUCTION

in our view should be asked prior to that are of the sort ”What constitutes an
object?”.

Needless to say, the attempt largely failed, in unison with the tradition of the
field. But we hope nonetheless that we developed some useful techniques on the
way, which alleviate some of the problems that plagued earlier systems and which
might indicate possible routes for further developments.

1.1 Context of Work

We place our work in the broader context of mobile robotics and mobile manipu-
lation (which nowadays might be called embodied cognitive system, but without
even a hint at a proper theory of cognitive processes we rather avoid overstretch-
ing that term). This context defines the types of scenes to be expected and the
nature of visual features in these scenes. Concretely we expect indoor scenes such
as offices or apartment rooms, containing lots of man-made structures. The fact
that these are more structured and controllable than outdoor scenes can (but need
not necessarily) make our task easier, but of course carries the risk of leading us
in a wrong direction. We must be careful to be lured into over-simplified problems
and solutions.

A common characteristic of many structures in the above scenes is that they are
rigid and opaque and thus have well-defined boundaries, sometimes (but not nec-
essarily) definable by simple geometric properties. These boundaries when imaged
using a perspective camera give rise to discontinuities or edges. We are therefore
mainly concerned with processing of edge information, namely the grouping of
edge segments based on principles of perceptual grouping and Gestalt theory.

Note that the situation would be different for e.g. medical imaging, natural
outdoor scenes or aerial imaging. Different characteristics of the depicted scenes
and the imaging process may make other methods, such as region based methods,
better suited in those cases and we do not claim that our proposed edge-based
approach is applicable to those domains.

In the following when we mention vision, we mean computer vision or machine
vision. If we talk about human or animal vision we will indicate that explicitly.
Furthermore vision system will be abbreviated by system. Also the terms percep-
tual organisation, perceptual grouping and Gestalt theory are used synonymously.
When reviewing related work by various authors one will come across these differ-
ent terms, which essentially mean the same. “Gestalt theory” is typically found
in psychological literature while “grouping” tends to be used when it comes to the
algorithmic level.
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1.2 What is Vision?

Quite generally and informally the approach to solving a problem could be divided
into the following steps: What is Your problem, what do You want to solve? How
do You model the problem? How do You implement a solution using that model?

For the above example of control theory the answers to the above questions
would be: What is control? There is a supplier of some resource (e.g. force, torque,
current, voltage) and some user of that resource (e.g. load on motor, some elec-
trical circuit drawing current). Control serves to balance supply and need of that
resource. How do You model control? You can use Laplace transformations and
Bode diagrams to design controllers, You can use phase space diagrams to study
stability of control systems etc.. How do You implement a solution? You can use
mechanical implementations like the centrifugal governor, time-continuous elec-
tronic controllers, digital controllers, fuzzy controllers and so on. The multitude
of seemingly totally different solutions is held together by one coherent theory.

Applied to the problem of computer vision we would pose the following ques-
tions: What is vision? What is our theory of vision? How can we implement
that theory in a technical system? Unfortunately already the first question is
unanswered: What is vision? We can state what it is not: Vision is not edge
detection, vision is not region segmentation, vision is not recognition, vision is not
3D-reconstruction, vision is not tracking, fill in any vision technique You like (or
dislike). All of these do (or seem to) happen somewhere along the way. But here
we are already at the implementation side of things. This multitude of methods
are all different aspects of ... - well and here we lack of course the theory. But sit
back and reconsider the first basic question: What is vision? (Or more generally
what is perception?)

The answer is at the same time obvious and elusive. Well, vision is to see ...
things ... . But what would we call a thing, as opposed to not a thing? How many
things are there? Are things always the same? Are there always things? As a first
working hypothesis we might answer: Vision is making sense of what You see, in
terms of what You need.

Probably we might want to extend that to: Vision is making sense of what
You see in terms of what You know and what You need. There will certainly be
knowledge in the form of what You saw earlier or in the form of a priori knowledge
such as physical properties. But it is important to keep in mind that vision is not
about the application of knowledge (as in comparing stored patterns to current
input). It is about making sense of that knowledge together with current visual
(and possibly proprioceptive and other) input.

Coming back to “things”, we can say that the introduction of the concept of
things probably is a useful abstraction to structure the process of vision. Typically
we can chunk the world into distinct bits that have specific uses (serve specific
needs). So ordering (and therefore seeing) the world in terms of things seems to
be useful and could be an aspect of a possible theory of vision. Seemingly our own
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(human) visual system is structured such that we at least typically speak about
things (objects). So there is some truth in the above first (the obvious) answer.
But vision is not about the things. Rather things are a by-product. A theory
of vision should be able to explain why things are a useful concept rather than
starting from things.

“... in terms of what You need” implies that vision plays a role within a larger
system. In order to clarify the above arguably vague statements, we will next
consider the role of vision in our chosen context of mobile robotics.

1.3 The Role of Vision

We will now look into some aspects of the role of vision in the context of mobile
robotics scenarios. What is the role of vision in that context? And what is clearly
not its role?

Why Object Recognition Doesn’t Make Sense

A good deal of work in computer vision addresses object recognition. Recognition
of already seen objects is certainly important but cannot be the only means of
seeing. Not all objects can be known beforehand. A system must also be able
to see objects it has never seen before. An object recogniser is blind for almost
everything except the limited class of objects it was trained on.

Generally object recognisers make the mistake of attaching meaning to visual
percepts too soon, often in one step (see Figure 1.1). An input percept pattern
is compared to stored patterns, the equivalence compared to a threshold and a
true/false answer is given. The stored patterns are typically labelled as “car”,
“cow”, “mug”, “face” etc. . Attaching those names attaches the meaning that
those stored percept patterns have for us (the designer or user of the system). The
result is that a car detector will always detect cars, a face detector always detect
faces and so on. False positives are pruned by the designer by adjusting thresholds.
A structuring of percepts according to Sinnhaftigkeit (whether they make sense)
is omitted in those systems.

On the contrary we argue that a vision system should not be an object detector
but a “sense detector”. The vision system can not know and therefore must not
decide by itself what is an object. Decisions are always dangerous. If You can’t
make them, don’t make them (And certainly don’t introduce thresholds to force
them!). What is an object is solely defined by its meaning (in the current task,
situation, context). And this meaning is introduced from elsewhere. So as far as
vision is concerned, there are no objects.

Consider a chair. You would probably regard it as an object to sit on. A
carpenter would maybe see it as many objects. A small vacuum-cleaning robot
would perhaps see its four legs as four obstacle objects and so on. We always
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Figure 1.1: From pixels to objects.

decompose the world into objects as we see fit in the current situation. Detecting
objects is therefore an ill-defined task for the vision system alone.

If it were indeed the vision system’s task to decide about objects, then we are
done. Such a vision system is trivial. It is a one-liner. Let us construct one. Upon
being asked “What do You see?” the system will answer “The universe.” and it
will always be correct. That is too coarse an answer? Well, then “A hydrogen
atom.”. Also always correct. No, no that is too fine. You mean something in
between - ah! You mean. There we are again.

So the system only orders its visual percepts such that they make sense (consid-
ering physical properties of the world and the imaging process). This Sinnhaftigkeit
is defined by Gestalt principles. Rather than saying “This is a mug.” the vision
system would say “This is something and grouping it made sense in describing (ex-
plaining) the image.”. It makes sense insofar as image features are grouped which
are likely to belong to the same physical object. This means that the system orders
its visual percepts such that it could form objects, so that it can answer questions
about objects, where objects are defined in terms of the Gestalt principles that the
system knows. But the system does not know anything about objects before being
asked. Objects are introduced into the system by the questioner and no sooner.

Also Pylyshyn [Pyl00, Pyl01] argues that we “... have reason to suspect that
although the visual system does not ’know’ about physical objects, it nevertheless
can track certain visual patterns that are typically associated with physical ob-
jects.”. And furthermore “... Thus, on initial contact, objects are not interpreted
as belonging to a certain type or having certain properties; in other words, objects
are initially detected without being conceptualized.”

Where Does Meaning Come from?

Very well, this all leaves the vision system out of the tricky task of making deci-
sions, as objects and meaning come from elsewhere. But where then does meaning
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come from? Actually this question does not bother the vision system, but we will
consider it nonetheless because it is of relevance to the overall system, namely the
mobile robot in our scenario.

For the robot the need for meaning, and thus the need to talk about “objects”,
only arises when something appears in several sensor modalities. Say the robot can
grasp something in a particular way and it looks like this. Then it has a meaning
in two sensor modalities, namely grasping and seeing. It deserves being an object,
and we call it “mug”. The co-occurrence of that percept in two sensor modalities
lends meaning to the source of those percepts. The meaning actually is the fact
that it does appear in two sensor modalities. Only if it appears in two sensor
modalities does it have a meaning. And this meaning must be given a name to
reference to it over different sensor modalities. Objects are the names for meaning.
Objects carry meaning.

Meaning arises when two sensor modalities mean the same thing. Then that
thing has a meaning and therefore deserves being called an object and be given a
name e.g. “mug”.

But still, after the vision system has given the answer “This can be a mug”,
who decides whether it is actually a mug? Whether it is enough of a mug to be
considered one? The answer is that if it looks like a mug and i can grasp it like
a mug, it is a mug for me. Period. No thresholds. Because the meaning “mug”
is only introduced by the fact that it looks so and I can grasp it so. If it looks so
and I can grasp it so, it means a mug to me.

Now we have moved the responsibility yet another level up and the question
remains: Why is there something like a mug? How did the meaning “mug” arise?
Answer: From the purpose of the overall system. Because the human user wants
the robot to be able to carry mugs. Because to the human user a mug has a mean-
ing. The purpose attaches meaning. This meaning or object “mug” is mapped
into the sensor modalities of the robot and referred to as term “mug”. (The logical
next level of what the mug means to the user is left to Philosophers.)

To relate the above rather abstract statements to real life and hint at biological
systems let me give a small example. (Note that I am well aware that the following
is just an anecdotal example and not a proper experiment.)

My cat loves to throw things off my cluttered desk whenever I sit there. She
places herself on the mouse pad, studies her surroundings and starts pushing what-
ever objects are in reach until they fall of the table, which greatly amuses her.
Recently she did that with the Compact-Flash slot cover of my PDA, a squarish,
flattish grey plastic thingy. She has never seen it or something visibly similar be-
fore. She could not recognise it as an object, because she has never seen it before.
Yet amongst all the clutter her visual system (and only that!) identified it as
something. Namely as something that can catch her attention, without knowing
what it is. To put it another way, she did figure-ground segmentation without
having objects. Note that it has no meaning yet, it is no object yet. As soon as
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she pushes it, as her paw physically interacts with it, it becomes an object. It will
get the meaning “toy”. After playing she will recognise it next time, she will have
learned it and stored it under the category “toy” (she has in the meantime learned
rubber, pencil, paper clip ...).

And what Does that all Mean for Computer Vision?

After this excursion into the deeper meaning of meaning let us come back into the
realm of the technically possible. And as capabilities such as grasping and feeling
are even less technically developed than vision, we have to be realistic and for now
have to accept that meaning will basically be hard coded. I.e. we can not hope for
now to put together a robot manipulator and a vision system, specify a task like
“Grasp the mug” and hope that meaning and everything will magically emerge.
Vision will be the only sensor modality that we deal with. And meaning in the
form of object descriptions will just be handed to us. And from the point of the
vision system that is perfectly alright, as we do not care where meaning comes
from.

So what can we learn from everything said above for the construction of a
vision system? It boils down to: avoid thresholds, defer decisions, structure data.
The vision system should concentrate on the structuring of data for higher level
processes rather than trying to make all decisions by itself. It should structure
input data so that it makes sense by itself without attaching meaning to it.

Why Gestalt Principles?

Vision has to infer from a two-dimensional image something about the three-
dimensional world. This problem is ill-posed, as the perspective projection of a
camera cannot simply be reversed. Therefore heuristics are needed to arrive at an
approximation. What information can these heuristics exploit?

First the physics of the world. Our world consists mostly of solid opaque
things, with smooth surfaces, with different shapes, colours, textures. Different
worlds are conceivable. Maybe one which solely consists of spheres of different
colour. Perceiving form in this world would be irrelevant, because all things have
the same form anyway, form does not help to distinguish between them. One
would only need to perceive colours (and perhaps centre points). In our world
however things have different shapes, surfaces have distinct boundaries etc..

Second the physics of the imaging process. We are using cameras which project
light onto photosensitive surfaces using lenses. Again different imaging processes
are conceivable. For example we might observe things in a cube, where the cubes
walls are covered with photosensitive surfaces (a strange camera indeed). One
would see all sides of things simultaneously etc. . But we happen to use normal
cameras, with a pinhole model, with perspective projection. Occluding edges of
objects project to intensity (and colour) edges on the image plane.
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Third the definition of objects. In our world (or actually our human use of
it) typically that what we call objects is defined by its use, or function. This
function of an object furthermore is typically defined via its form, or structure.
This need not be the case for all objects. For example the function of a traffic light
is defined by its colour rather than shape. Still most objects are defined via their
3D structure (cups, chairs, scissors, cars, human bodies). So perceiving objects
comes down to perceiving 3D structure. We cannot do this directly because the
imaging process projects onto a 2D plane. All we can do is trying to infer 3D
structure from 2D image structure.

Gestalt principles do just that. Given what we know about the physical world,
definition of objects therein and their projection onto images, Gestalt principles
describe the most likely guesses we can make about how the image corresponds
to the physical world. They group parts that exhibit visual structure in the im-
age which is likely to stem from 3D structure in the physical world. Perceptual
grouping can be seen as a reasoning process on a geometrical level. When image
elements are perceptually grouped there is reason to belief that they belong to the
same physical object. Perceptual grouping is therefore not just a means of data
reduction to extract more compact representations (as e.g. dimensionality reduc-
tion with principal component analysis and similar techniques). It is a more active
process leading to Gestalts which are not just more compact than their originating
data but also more than their parts.

Furthermore in order to be effective these Gestalt laws should concentrate on
those parts of an image which carry most information. This data reduction, or
first abstraction is performed by extracting certain image features. So Gestalt
principles operate on abstractions, typically edge and point features, or possibly
higher level abstractions already grouped from lower level features.

A good justification for the emergence of Gestalt principles is given in Albert
[Alb01]. The author explains Gestalt principles as expressions of the generic view
principle (GVP): Vision assumes that qualitative (topological) image structure is
stable with respect to small changes of viewpoint. This is another formulation of
the Helmholtz principle [Hel67] which states that we perceive what is most likely
under normal viewing conditions.

Similarly Lowe [Low87] lists the following two constraints for perceptual group-
ing:

1. The viewpoint invariance condition: Perceptual features must remain stable
over a wide range of viewpoints of some corresponding three-dimensional
structure.

2. The detection condition: Perceptual features must be sufficiently constrained
so that accidental instances are unlikely to arise.

Sarkar and Boyer [SB93, SB94] recognise the following three characteristics of
perceptual organisation:
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1. It is essentially symbolic, with a top-down (attentive) and a bottom-up
(preattentive) component.

2. Organisation proceeds in a hierarchical fashion, with coherent global struc-
tures gradually forming from local features.

3. Organisation produces an information reduction in the encoding of a given
structure due to the hierarchical nature of the abstraction.

On Learning

Learning plays an increasingly important role in computer vision. Be it learning
of object classifiers, colour models or receptive fields. Is not a system which does
not learn, as we are going to propose, a step backwards? Why do we leave out
learning? Actually we don’t.

Looking at nature and the vision (and of course other) systems it developed, we
can basically distinguish between two types of learning: evolutionary learning and
individual (epigenetic) learning. Evolutionary learning took place over millions
of years and produced all those abilities which are innate in newborn individu-
als. Individual learning happens as an individual interacts with its environment.
How much visual capabilities are innate vs. learned is still an open question. We
just want to briefly mention some related work, far from an exhaustive literature
study, only to indicate the wide array of possibilities and sometimes contradictory
findings.

Several studies show that indeed even very basic visual capabilities found in
the primary visual cortex (V1) are to a large degree learned rather than intrinsic or
innate. Rearing kittens in a visual environment consisting of alternating black and
white stripes restricts pattern vision, and seems to shift the orientation preference
of cortical cells towards the experienced orientation [BC70]. Moreover it seems
that self-induced motion, rather than passively experienced motion is necessary
to develop a fully functional vision system [HH63]. However the results could
be explained as disturbed maturation. Much as the muscles in the cats legs will
not develop properly, if it is strapped to the floor during its infancy - a general
efficiency principle of nature (“If You don’t use it, You lose it.”). Yet we would
not say the cat learns to grow muscles for walking (It will however have to learn
how to use these muscles).

Studies by [SAS00, vMPS00, SGR88] show the impressive plasticity of the
brain even for seemingly “hard-wired” abilities. In experiments with new-born
ferrets the authors routed fibres from the retina to the auditory pathway, such
that the primary auditory cortex (A1) now received visual rather than auditory
input. Remarkably, structures and receptive fields very much similar to those in
V1 then developed in A1, namely sharp orientation selectivity of cells (orientation
columns), orientation maps (which were however less orderly than in V1) and long-
range horizontal connections typical for V1. Furthermore, behavioural experiments
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suggest that the ferrets could actually see (rather than hear) with the ‘rewired’
auditory cortex, i.e. behaved as they would normally behave in response to visual
percepts. These results suggest that the function and even sensory modality of
cortical regions is instructed to a significant extent by its extrinsic inputs during
development.

On the other hand [CK99, KC02] show a different picture with regard to ocular
dominance columns. Cortical cells are activated differently by the left and right
eye (ocular dominance). Cells with similar eye preference are grouped together
into columns, and eye dominance shifts periodically across the cortex. The initial
establishment of ocular dominance columns traditionally is believed to be based on
patterns of correlated visual input. However, in experiments with cats, monkeys
and ferrets the authors show that ocular dominance columns can develop even in
the absence of any retinal inputs. This indicates a role of innate mechanisms.

Also without going into neurophysiological details, we can see quite different
mechanisms by generally looking at altricial species (such as cats) and not so
much to precocial species (such as gnus). The former are born rather immature
and helpless and depend on the care of their parents for an extended period of time
(the extreme case being marsupials), while the latter are born more or less fully
developed and can for example walk with the herd only hours after birth. The
visual capabilities of a newborn gnu must be developed far enough for it to be able
to walk on possibly uneven ground fast enough to catch up with the rest of the
herd. It seems unlikely that these capabilities are learned within only a few hours.
Why nature chose pre-configured capabilities in precocial species and individual
learning of basically the same capabilities in altricial species is an interesting (and
open) research question of its own but not our concern here. The bottom line is
that there are examples of highly developed (mammalian) biological vision systems
which are fully developed at birth.

Sighted animals (humans, cats, birds, cows, etc. ) perform so astoundingly
well in navigation and manipulation, that we are forced to believe that they build
up some (limited) form of representation of the environment in which they move
and act. This can not be achieved simply by learning with many repetitions of
every single aspect of that environment. (“I have bumped into that sort of visual
percept so and so many times, so it must signify an obstacle. I have died so and
so often whenever I saw something like this, so it must be a cliff.”). Some more
general perceptual ability must be at play. Note that of course animals do learn
what are dangerous or beneficial situations. But as we would argue, on a more
abstract level of situations rather than directly visual percepts.

So the issue of innate versus learned, or put another way, the relative contri-
butions of intrinsic and extrinsic factors to the functional specification of cortical
areas, is still unresolved.

Another, more theoretical point about learning can also be made. Suppose a
system is in a state where it is has a certain capability. How that capability was
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acquired does not matter. Whether we as the designers created the system in just
such a way that it has said capability or whether we equipped the system with a
learning algorithm and training data and let it learn that capability, the result is
the same. If we know how the system learns (which we do, since we equipped it
with the learning algorithm) and if we know the training data (which we do, since
we provided it) then we will know the systems state after learning. So we might
just as well create the system in that state. From a theoretical point of view there
is no difference.

From a practical point of view of course the learning system seems more ap-
pealing. It can be adjusted more easily to different environments, tasks etc.. We
however choose the simpler approach of directly equipping the system with its
visual capabilities. Why simpler, one might ask. In both cases, what the system is
supposed to do is given. In the direct case we explicitly define how the system does
it, making sure that the system does what it is supposed to do. In the learning
case we have to make sure that the learning algorithm together with the training
data really implements the desired capability, a task which has proved to be not
always that simple . Even if learning is to be incorporated at a later stage, start-
ing by explicitly implementing what the system is to learn, will make the learning
problem a better defined task.

Too often research happens the other way round. Somebody might take some
learning algorithm that seems sort of promising or fashionable, let it learn with
data that seems quite reasonable and then claim that the outcome is some approx-
imation to the desired capability. That however amounts to alchemy rather than
a scientific approach and little or no insight into the problem of vision is gained
(see own work in Chapter 3).

See however e.g. Fidler et al. [FBL06] as an example of how (some) Gestalt
principles can emerge from a statistical learning framework. Or Olshausen and
Field [OF96] who explain receptive fields as learning sparse codes and Bell and
Sejnowski [BS97] who use independent component analysis instead. So we see that
receptive fields as well as Gestalt principles (at least rather local ones) can very
well be learned (or explained as being learned). And this is a well-defined learning
problem, because we know beforehand (from neurophysiological or psychological
findings) exactly what we want to learn and when we have successfully learned it.

So in some sense our system does use learning, namely the Gestalt principles,
which are general purpose visual concepts learned by evolution and discovered by
psychologists and learnable using e.g. the above methods. We however concentrate
of the use of these principles and accept them as given to the system in one way
or another.

Limits, Complexity and Anytimeness

Sometimes the complexity of an algorithm will place a limit on e.g. the number
of features one can process in a given time. “On a xyz computer we can process
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10 items per frame.” is typically followed by “But given that computer speed
doubles every year or so . . . ”, which serves to justify the “slowness” of the proposed
method. But this is in fact the wrong answer. No matter how fast a system may be,
there are always limits on how much information it can process “simultaneously”,
the human visual system being no exception. We can only follow so many moving
objects or perceive so many objects at the same time (e.g. four [SX01]). We can
not expect a computer vision system to see everything at once in all detail. The
achievement of biological vision systems is in fact how to deal with such limitations
by use of attention mechanisms.

We do not expect the system to analyse an image and immediately reply “There
are 457 objects. Object 1 is a pencil, object 2 is a door, . . . object 324 is a cup,
. . . ”. What we do expect is that if there is e.g. a cup covering a large part of the
image, the system should report immediately “There is an upright rotationally
symmetric object and . . . wait . . . a horizontally elongated object to the left and
. . . wait . . . a rectangular object behind, . . . ”. Big, obvious, easy objects should
pop out fast. More detail should only be reported later as time permits. We refer
to this ability as anytimeness. The system should be able to deliver some result
at any time. And this result should be the visually most significant one.

1.4 Requirements

This directly leads to a list of requirements we have for our proposed system.
Having set out our goal in the above sections, what do we feel is necessary to
arrive at a solution?

Explain the image Not in terms of objects (“I see a table with a mug on it”)
but in terms of what makes sense, what is possible. This is our high-level
goal. Though it remains to be seen how high we get in that explanation.

Anytimeness The system should produce results anytime. The more processing
time is granted the finer the results will be. Most prominent results should
pop out very fast.

Graceful degradation We should not have situations where the addition of noise
(however nastily placed) inhibits the creation of a good hypothesis. Delaying,
yes, that is very much acceptable: The more noise, the more difficult (=
slow) is the extraction of good hypotheses (anytimeness). Even more so if
the (nastily placed) noise appears to form good hypotheses (appears to be
locally consistent) at first. Then only a more global consistency check can
decide what is noise and what is actually a good hypothesis. (Noise is that
which does not take part in (is not needed to create a) consistent global
picture. Noise is “left over”). This means that noise can not simply be
thresholded away locally, which leads to our next requirement.
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No thresholds Usually there is only one way to set a threshold, namely wrong.
The system performance shall not depend on correctly tuned settings of
various thresholds, which has been the bane of countless approaches before.

Single/Multiple cues The proposed system must be able to succeed on the most
primitive type of image, namely a single, monocular, grey level image. It
must not require more if it is ever going to be successful at all. Any system
that requires more than a grey level image is flawed be design, because all
the structure the world exhibits is present in a grey level image. A colour
or depth image does not contain more or does not contain a different kind
of structure. If a system can not make use of the structure in a grey level
image it can not make use of any structure at all. And colour or depth
won’t change that. The system should however be able to incorporate more
image cues if available. Such cues are the mentioned colour, depth, motion
or texture. The incorporation of more cues should make the system more
robust or perhaps faster, i.e. should improve performance. Note that I am
well aware that 3D information such as depth images are a richer depiction
of the scene than a grey level image. But first of all 3D sensors are (at the
time of writing) still not widely available, making experiments difficult and
expensive. But the main argument is that just more information will not
save us. We still require the proper methods to process that information.
Now if such a method is powerful enough to even work on the simplest,
poorest type of information (a grey level image) it should of course work the
better on richer information. In that sense the poor information drives us to
perfect the method rather than enhance the available information. (So the
argument “But in so-and-so many years we will have laser range scanners
with 1 mm resolution and then our system will work.” is invalid. Much as
the argument that “in so-and-so many years computers are 1000 times faster
and then our system can work in under 1 second...”).

1.5 Thesis

By now it must seem to the reader that we are claiming to have solved all the
shortcomings of vision systems so far, which is of course not the case. Also the
presented system has many severe limits and only partly works in very limited
scenes. We believe however that we are tackling the right sorts of questions and can
provide some insights into possible solutions. Concretely, the thesis put forward
by this work is as follows.

1. Recognition of known objects is not enough. We need a means of extracting
information at a level of abstraction before objects.

2. Perceptual grouping is such a means, which takes into account the structure
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of the physical world and of the imaging process, without explicitly refer-
ring to objects, by grouping what makes sense. Perceptual grouping is well
studied in psychology and known to underlie (parts of) human vision.

3. Perceptual grouping can be implemented efficiently, dealing with cluttered
real world scenes.

4. Perceptual grouping can be based on clear probabilistic principles.

5. The results of a perceptual grouping process can be used to eventually make
statements about objects, once the notion of object is introduced from out-
side.

The remainder of this work is organised as follows.
Chapter 2 reviews related and inspiring work in the area of perceptual grouping

and extraction of 3D shape (which is ultimately the goal of vision, though not in
this particular work).

To make a clear point about learning and object recognition, the temptation of
easy successes and the inherent limitations of such approaches Chapter 3 presents
an example of an object recognition system based on Support Vector Machine
learning. Although the results will be seen to be promising we will also realise at
the end that we are no wiser with regard to a theory of vision.

Chapter 4 introduces the principle of non-accidentalness and proposes signif-
icance as a quantitative measure, which will be used throughout the remaining
chapters.

Chapter 5 addresses the problem of detecting ellipses in images, where percep-
tual grouping will help to tackle complexity in cluttered, real world images.

Chapter 6 revisits the well studied problem of finding closed convex contours
in an edge segmented image. We look at these issues with a different paradigm in
mind: Incremental processing helps avoiding parameters and leads to anytimeness.

Chapter 7 finally puts contours detected in the previous chapter into a global
context and aims to find a globally consistent ordering of surfaces in depth.

In Chapter 8 we will look back at the presented work and discuss how many if
any at all of the goals and requirements we set out in this introduction we could
actually meet.



Chapter 2

Related Work

We are not going to elaborate on Gestalt principles themselves here. We assume
that the reader is sufficiently familiar with the basic concepts. For an excellent
introduction into the topic see e.g. Rock [Roc97] and Palmer [Pal99]. Instead we
are going to concentrate on computational aspects and implementations.

Also see Boyer and Sarkar [BS99] for a concise overview over the state of the
art in perceptual organisation. It lists approaches along two axes, using the clas-
sificatory structure presented in Sarkar and Boyer [BS93]: dimensionality of the
sensor signal (2D, 3D, with or without motion) and level of abstraction (signal
level, primitive level, structure level and assembly level).

Interpretation of line drawings to extract 3D information has a long history
in computer vision, much of it owing to the seminal work of Marr [Mar82]. But
there were earlier attempts, for example the work by Roberts [Rob65], a system
to detect known wire-frame models of 3D objects in images. Naturally (owing to
the limited computing power of the time) the objects were very simple and images
very “clean”.

An early system for globally consistent interpretation of scenes without the
need for known object models was proposed by Waltz [Wal75]. It aims to in-
fer a 3D interpretation from line drawings of scenes containing trihedral objects
(i.e. polyhedra where no more than three faces meet) with shadows and extends
an earlier line labelling system by Huffman [Huf71]. Huffmans approach posed the
labelability problem of a line drawing as a satisfiability problem for a set of boolean
expressions, which is NP-complete. Waltz overcame those problems by introducing
a filtering scheme (Waltz-filtering) and reduced run time to approximately linear in
the number of lines. The basic idea is to achieve local consistency in the following
way: given a junction, rule out all legal labellings of the junction for which there
is no labelling of the neighbour junctions which is compatible with it. Repeat this
procedure until no further progress can be made. Furthermore Waltz added illu-
mination information to achieve a finer labelling of lines as well as distinguishing
between interior lines and foreground/background lines. The system also deals to
a limited amount with missing edges and unlabelable accidental alignments. In

15
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the latter case virtual eye movements are used to transform unlabelable accidental
alignments of junctions into common cases.

Of course the idealised assumptions built into the system are very strong and
prevent any use in all but the simplest, cleanest scenes. Even if one does not
mind that the system can only correctly interpret (i.e. see) trihedral objects, the
system is sufficiently confused by non-trihedral objects or surface texture that
it subsequently fails to see the trihedral ones. Also the assumption of a single,
directed light source which casts sharp shadows is too unrealistic for real scenes.
There is also a strong notion of background, which is supposed to be a horizontal
table large enough to fill the entire image (i.e. the table itself causes no edges).
But actually every object or surface can be foreground or background for another
surface.

On the implementation side the very elaborate enumeration of possible cases
which have to be considered leads to a proliferation of junction labels (up to
3256!) and becomes increasingly unfeasible as idealising constraints are relaxed.
The main difficulty is certainly that the system aims to reconstruct a full 3D
description directly from lines in one step. Waltz however mentions the use of eye
movement, stereo or depth images to resolve ambiguous labels. It seems that 3D
information should rather come from these sources than solely form line labelling.

A tentative notion of affordance “supports” is introduced which is deduced
from edge labels. Again this is a very local decision based only on line labels and
suffers from the many possibilities of label combinations. The most interesting
aspect of the work is the simple, yet powerful filtering scheme, which transforms
an NP-complete problem into a (mostly) linear one. The scheme is however still
very “crisp” and can not itself deal with ambiguities and uncertainties.

Barrow and Tenenbaum [BT78] introduced the notion of intrinsic images. As-
suming known lighting conditions (ambient light plus a point light source at infin-
ity) and smooth Lambertian surfaces of constant albedo they propose a method
to derive from an intensity image intrinsic images of distance, reflectance, orienta-
tion and illumination. Constraints on local surface orientation at extremal edges
(contour where the smooth surface turns away from the viewer) are propagated
inwards to interpolate intrinsic properties of regions. In [BT81] the authors also
propose a technique to extract polyhedra from line drawings based on assumptions
of regularity. Although the approach is very clean and elegant, the very limiting
assumptions make it interesting more from a theoretical point of view. It might
be interesting however to combine their work with a perceptual grouping step to
produce the very “clean” line drawings their approach requires.

Malik and Maydan [MM89] [Mal87] present a system to recover a three di-
mensional interpretation of a scene composed of piecewise smooth surfaces from
a single edge-segmented image. They combine constraints from a (possibly am-
biguous) line and junction labelling step with shape from shading algorithms. The
approach however depends on unrealistically strong assumptions, namely no sur-
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face markings or texture, a known reflectance map (e.g. Lambertian surfaces with
a known point light source) and perfect edge segmentation.

The theory to use structural representations was advocated by [Bie87]. Objects
are described as being composed of one or several out of 36 qualitative volumetric
primitives called GEONS. See [DBB+97] for an overview of recognition by com-
ponent approaches. Typically these approaches also suffer from the necessity of
a very good line drawing extraction which makes them difficult to apply in real
world images, where perfect segmentation can never be assumed.

The SCERPO system of Lowe [Low85, Low87] used perceptual grouping of
possibly poorly detected lines in real world images to overcome combinatorial ex-
plosion when matching 3D wire-frame models to those lines. Scale independent
measures for the significance of proximity, parallelism and collinearity are based
on geometric and probabilistic considerations. The significance of a grouping is
based on the probability that it is due to actual structure in the scene and not to
an accident of viewpoint. Concretely the significance is the inverse of the prob-
ability that a grouping arises accidentally, where a uniform distribution of lines
in the image is assumed. Furthermore an efficient implementation is proposed
for finding close lines based on line endpoints indexing a 2D grid. Higher level
groupings such as trapezoids and ribbons (joined pairs of parallel lines) are found
by combining the lower level groupings, where the significance of the high level
group is simply the product of part significances. The most significant high level
groupings are matched against the model base and subsequent pose estimation
aligns corresponding image and model lines. According to the author this proce-
dure is successful as long as the complexity of the groupings is sufficiently high to
be discriminative for the model base. Impressive results are obtained in cluttered
real world images with models of significant complexity.

In [SB93] and [SB94, SB95] Sarkar and Boyer describe a framework for per-
ceptual organisation consisting of a preattentive part based on voting and graph-
theoretic methods and an attentive part based on Bayesian belief networks. Their
system detects structures such as ribbons, rectangles and ellipses in real-world
indoor and outdoor images.

We will first describe the preattentive part. The basic concept is to organise
tokens (such as lines) of one hierarchy level into groups and represent such a group
along with its emergent properties by a more complex structure (a pair of parallel
lines), which is then again a token at the next higher level.

At the heart of their method lies a voting scheme. Tokens fulfilling a com-
patibility relation (e.g. lines being parallel) vote for the same bin in a parameter
space. Thus for n tokens all compatible groups of tokens are found in O(n) time
rather than O(n2) as in exhaustive search. Voting always has the problem of find-
ing a good bin size, balancing accuracy (which calls for small bins) with memory
requirements. Especially in higher-parametric voting spaces (e.g. (x, y, θ, κ) for po-
sition, orientation and curvature of an edge segment) memory requirements grow
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prohibitively fast for fine quantisations. Moreover, no matter how fine quantisa-
tion is, there is still a problem with data points near bin boundaries. Two data
points might be very close just on opposite sides of a bin boundary. So although
their distance is smaller than the bin size d, they are not grouped within one bin.
The solution proposed by the authors is offset quantisation. A second voting space
shifted by d

2
ensures that data points being separated less than d

2
are grouped in

at least one of the two voting spaces. This idea is expanded to N dimensions
and multiple order offset quantisation, using more than two interleaved quantis-
ers. This approach allows rather coarse quantisation without missing compatible
tokens. Once candidates of compatible tokens are found, exact fulfilment of the
compatibility relation is checked in a subsequent screening process.

The parameters for the compatibility relations (e.g. when are two lines consid-
ered parallel) are chosen to reflect the least degree of significance allowable. Sig-
nificance is defined as the non-accidentalness of a relation using Lowes formulation
[Low85, Low87]. E. g. average line length is used to compute a distance threshold
of 12 pixels or an orientation histogram to compute an orientation threshold of
15◦.

Tokens and compatibilities then form attributed graphs, where tokens are nodes
and compatibilities define edges. Each type of compatibility reflects a Gestalt prin-
ciple and gives rise to a Gestalt graph (e.g. continuity graph, proximity graph).
Gestalt principles realised are proximity (tokens having points close together with
similar orientation), end point nearness, smooth continuity, similarity (of geomet-
ric or photometric properties) and common region (tokens bordering a common
region). Graph theoretic operations such as finding connected components or cy-
cles are used to create tokens at the next higher level.

So Gestalt principles are implemented in two stages. First, voting is used to
associate pairs of compatible tokens, creating edges between graph nodes. Then
graph theoretic operations are used to create Gestalts, i.e. meaningful wholes.

For the given example of an aerial image the following steps are performed.
Individual edgels are grouped into straight lines using a voting space of x, y
and gradient direction. Line fragments are grouped into continuous lines vot-
ing with proximity, orientation and edge contrast similarity. The continuity graph
is searched for connected components to replace series of continuous lines by a sin-
gle line. Next apars (antiparallel lines, i.e. parallel lines having opposite contrast
polarity) are searched, using proximity, orientation and edge contrast. Apars are
further grouped into continuous apars using again proximity and orientation and
further width and sign (whether the apar is brighter or darker than its surround-
ing). Continuous apars are grouped into papars (parallel apars, think of striped
structures like zebra crossings). Furthermore, intersecting apars define rectangles.
Using these grouping operations structures such as buildings, runways and roads
can be reliably extracted from aerial images. Generalising lines to edges of con-
stant curvature also allows detection of arcs and subsequently ribbons, continuous
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ribbons etc. Further examples show detection of rectangular structures on the
facade of a building and significant structures in an indoor scene.

The strength of the above method is its generality. The same voting scheme
and graph theoretic operations are used on all levels for various kinds of tokens.

Before going to the attentive part of the overall system, we would like to add
three remarks: First, continuations of lines are based on proximity. This is useful
when “repairing” lines, fragmented due to the edge detection process. But when
grouping lines fragmented by occlusion the gap between line endpoints can be
arbitrarily large. Also the definition of apars favours close-by lines. Generally
there is a tendency for local groupings. When manipulating objects on a table
occlusions are inevitable (as opposed to the situation in aerial imaging). This
might require grouping of features which belong to the same object, yet are not
close but separated by an occluding object. Generally, the above approach targets
“flat” scenarios where no occlusions take place. We want to explicitly model within
the grouping process the three-dimensionality of the physical world, which means
concretely that grouping principles make use of the hints provided by occlusion to
infer 3D structure.

Second, the notion of apars is useful only for objects in front of a uniform
background, such as dark roads within a brighter landscape or vice versa. For our
typical indoor scenarios, backgrounds are rarely uniform. Background intensity
can vary arbitrarily and so edge contrast polarity is inadequate for grouping edges.

Third, there are many parameters for grouping. These are selected adaptively,
based on significance considerations and image statistics. But they are still hard
cut-off thresholds. While two lines with an orientation difference of, say, 14.9◦ are
grouped as parallel, lines with a difference of 15.1◦ are not. We advocate avoiding
thresholds and instead keep multiple hypotheses which are ranked according to
their significance. Hypotheses which are weak at a local scale (and would thus be
pruned when thresholding) can still become valuable within a larger context at
later stages.

In [SB93] the authors describe the attentive part of their system. A knowledge
base encodes geometric figures such as circles, ellipses, rectangles and polygons.
While the bottom-up processes of the previous paragraphs group candidates for
such structures, top-down reasoning using the knowledge base enables to infer
undetected features from partially instantiated structures, e.g. to overcome noise
and occlusions. The basic formalism for reasoning is that of Bayesian networks.
This formalism is modified to reflect properties of spatial reasoning.

Each node in the network represents a feature. Parent-child relationships define
a hierarchy, e.g. closed curve, polygon, quadrilateral, trapezoid, parallelogram,
where features become more specific by adding constraints such as parallelity or
symmetry. In order to reduce the complexity of the network, composite nodes
represent not a single feature, but a feature type. This reflects the fact that all
features of a type share the same neighbourhood structure (e.g. a quadrilateral
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has the parent polygon and is itself a parent of trapezoid). Each composite node
internally has a list of instantiated feature hypotheses. Such a modified Bayesian
network is called a perceptual inference network (PIN). The structure of a PIN
is fixed and independent of a image data. Image data just adds instances within
composite nodes.

The conditional probability of a feature given its parents is defined as the
product of two functions: the locational compatibility function and the condi-
tional belief function. The former is a binary valued function which is 1 only if
the constituent features of a given feature are compatible. This compatibility is
checked point-wise in the image and basically constitutes yet another voting pro-
cedure, albeit the authors do not point that out. A threshold of 5 pixels is used,
but the authors show that the system is robust against the exact choice of that
value. The conditional belief function is a sigmoid function which measures the
degree to which the constituent features match the definition of a given feature
(e.g. the degree of parallelity, closedness or symmetry). The authors chose an ex-
ponential 1− e function and again show that the exact choice of the function does
not matter. This is important, because one can never expect to model probabilities
exactly. But the authors could show that any sigmoid function suffices, whether
exponential or part-wise linear. The authors further show that the choice of prior
probabilities for the root nodes of the network does no influence the final result,
which justifies the assumption of equal priors.

The higher level feature hypotheses detected by the PIN system are ellipses,
circles, ribbons, (equilateral) triangles, trapezoids and parallelograms. The au-
thors propose to then apply photometric or other more expensive custom feature
detectors to verify hypothesised features.

We make two remarks: First, the attentive part of the system is meant to
serve as a top-down knowledge base. A PIN describes what are the structures we
are looking for (e.g. parallelograms, ellipses) and how they are formed by their
constituent parts. But so also do the voting and graph-theoretic methods of the
preattentive system. The benefit of switching from voting and Gestalt graphs
to the PIN formalism at a certain level is not entirely clear. It seems that the
structures detected by Bayesian reasoning over PINs might just as well be detected
by yet another voting process.

Second, the authors make no attempt to find a global most likely interpretation.
All feature hypotheses are retained. But certainly some hypotheses have higher
beliefs than others. These could be used to explain away unlikely hypotheses. For
example their indoor experiment shows many intuitively wrong ellipses. While
locally (within the ellipse composite node) there might be evidence suggesting such
ellipses, but attributing the underlying constituent features to other nodes (such
as trapezoids) with higher belief values would be a globally better interpretation.
The authors however leave that step to external custom feature detectors. We feel
that it is one the strengths of Bayesian belief networks to resolve such ambiguities.
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Stricker and Leonardis [SL95] propose Exsel++, a general and expandable
framework for accurate and robust extraction of parametric models of different
types from a set of boundary elements. They make no assumptions about the type
of data, i.e. sparse or dense (though it seems they prefer sparse data) or generally
about the domain of application. Any model type (lines, ellipses, planes, spheres
etc.) and fitting technique can be plugged into the framework. There are four
steps: exploration, selection, fit and a final selection. The interesting parts are
exploration and selection. Exploration can be thought of as a RANSAC [FB81]
with short term memory for masking already explained data. When choosing a
new random sample to produce a hypothesis, only such boundary elements are
allowed which have not been chosen recently and have not been supporting an-
other hypothesis recently (where recency is defined via expiration rates). This
dynamic data driven approach minimises the probability that the same hypothesis
is generated twice while still maintaining the possibility to return to any part of
the data and find a possibly better hypothesis. Selection chooses those hypotheses
which explain the input data in a globally optimal way. Optimality is formalised
as a Minimum Description Length (MDL) principle: that set of hypotheses which
overall explains the data with the shortest possible encoding is optimal. This
essentially means that hypotheses with many supporting elements, high goodness-
of-fit and low number of parameters are selected. The combinatorial explosion (for
n hypotheses where are 2n different subsets) is handled via tabu search [GT93].
Tabu search is a heuristic procedure for a discrete global optimisation and can be
described as an extension to steepest ascent. When exploring the search space,
moves which have been executed recently are marked as illegal. This enables es-
caping local maxima.

One of the strengths of the above method can also be regarded as a weakness,
namely not exploiting the density of the data if available. The selection is global
and does not take into account any local connectivity, when in fact this is often
readily available, at least in images of natural scenes taken by perspective cameras.
Typically edge elements are not isolated but form connected strings of edgels, with
occasional gaps. Note that the authors give only toy examples with four and ten
models present and two types of models for demonstrating the idea of the method.
In natural scenes we can expect thousands of models of dozens or hundreds of
different types. As a weakness of the above method we also mention the necessity
to choose parameters (expiration rates for selection and tabu search, weighting
factors for the MDL objective function).

The work of Ackermann, Schlueter et al. [AMP+97, SWSP00, Sch01] presents
an approach combining perceptual grouping with a more global reasoning based
on Markov Random Fields. The system is based on contour segmentation (edge
detection) and perceptual grouping according to the Gestalt principles of good
continuation, proximity, parallelity, closedness and similarity. Grouping is hierar-
chical and recursive, complex groups can themselves again be grouped in linear
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structures according to good continuation. Contour segmentation is augmented
by colour based region segmentation where regions hint at missing contour frag-
ments. On the other hand grouped contours are used to connect regions separated
by occlusions. This is used to aid a region based object recognition. A Markov
Random Field (MRF) is used to get from local grouping hypotheses to a globally
consistent interpretation of the image. (A MRF is also used to segment contours
in image sequences, but we will not go into detail here.)

Using a clearly defined setting (the Baufix domain - brightly painted wooden
toys, with mostly uniform grey backgrounds) contour and region segmentation are
rather simple, depending on thresholds which seem only suitable for this specific
domain. Grouping of edge segments is limited to neighbours within a certain area
of attention. Probability distributions of e.g. line endpoints w.r.t. a given line are
learned from hand labelled training images and normalised w.r.t. feature sizes.
Thresholding then gives the areas of attention, where the thresholds seem to be
chosen such that the resulting areas look “reasonable”. Later during grouping
some of these areas are further scaled with an “empirically” obtained parameter.
So although the principal idea is good, the implementation actually amounts to
ad-hoc setting of parameters. Correct settings of these parameters are critical as
grouping is strictly limited to the regions of attention, i.e. everything outside is
discarded.

Grouping proceeds in a hierarchical fashion. Contours are grouped into collinear-
ities (generally co-curvilinearities) then into parallel and symmetric groups. Finally
closures are defined from end-point proximities between these groups. Again var-
ious thresholds are employed to discard less significant groups (even though these
hypotheses might become more significant in the later global reasoning step!). At
the highest level the closures themselves can be further grouped into linear and sim-
ilarity groups. The definitions of nearness and similarity between polygons for this
step use several ad-hoc definitions, none of which works satisfactorily. So they are
combined into a feature vector and the relative contributions learned from labelled
training images. This highlights the difficulty of obtaining meaningful measures
of proximity and similarity for features higher than simple contours. Collections
of (however well motivated) ad-hoc measures break down once different types and
levels of perceptual groupings are mixed

To increase robustness the authors propose to merge contour and region in-
formation. However merging of contours and regions only happens after their
respective segmentations. Merging during segmentation would clearly be a bet-
ter choice. Instead the method requires matching of separated information that
was originally unseparated. Again several measures of similarity between contours
and regions are defined, resulting in a feature vector, and a classifier is learned to
distinguish between cases. And yet again many thresholds are needed.

The most interesting part of their work is the use of a Markov Random Field
(MRF) for globally consistent interpretation. Hypotheses at all levels (single con-
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tours to grouped closures) created in the previous steps form the nodes of an MRF.
The labels of these nodes are discretised significance values, which seems an ele-
gant choice. Two types of energies enter the optimisation procedure. Data terms
are defined as the difference between the currently assigned label (= significance)
and the data-driven significance as obtained from geometrical considerations dur-
ing the grouping process. Clique potentials are formed for clique sizes of two and
can either represent agreement or contradiction between two groups. Agreement
exists between a group and its parts (e.g. a parallelity and its lines). If both signif-
icances are high, the resulting clique potential is negative, indicating a desireable
state. If one significance is high and the other low, a positive potential indicates
that one of them must be wrong. Contradiction exists between groups of the same
type which share a part (e.g. two closures). Here high significances of both nodes
result in a positive potential, expressing the contradiction. If one significance is
low and the other high, a negative potential indicates that the contradiction is
resolved. Unfortunately again thresholds are used extensively to determine when
an overlap between groups (e.g. the overlap between closures) defines a supporting
or contradicting relationship. Thresholding significances at a value of 0.8 reduces
the number of grouping hypotheses roughly by half. A truly globally consistent
interpretation of the image can however not be obtained.

It would be nice to see formation of local perceptual groups and their global
consistency check be interleaved. In the above work in order to keep the number
of nodes of the MRF at a manageable size, conservative thresholds throw away
all less significant groups. So only groups which are already significant enter the
global step. However it could well be that groups only ever become significant
within the more global picture. E.g. a large gap between short lines would result
in in a collinearity of very low significance (or even prohibit the formation of a
collinearity in the first place), while the same gap might seem totally insignificant
once theses lines are part of a larger closure.

Despite the shortcomings resulting from the abundance of tuning parameters,
the applications of probabilistic global reasoning in the form of a Markov Random
Field is a very interesting idea.

Desolneux et al. [DMM00] propose a computational method to decide whether
a given Gestalt is meaningful. They define an observed geometric event (such
as the alignment of pixels) as ε-meaningful if the expectation of the number of
occurrences of this event is less than ε under a uniform random assumption. This is
yet another realisation of the Helmholtz principle in an inverse formulation stating
that a grouping is perceptually “meaningful” if its number of occurrences would be
very small in a random situation. Geometric structures are then characterised as
large deviations from randomness. A slightly problematic aspect of their approach
is that it is necessary to assume a maximum number of events (e.g. lines, clusters).
Their choices of maximum numbers are somewhat justified but typically seem
rather ad hoc. Sometimes one choice seems to work better than another one, and
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it is not clear how one is to choose this value correctly without trial and error.
In Desolneux et al. [DMM03] the same authors consider the collaboration of

Gestalt principles. Each Gestalt principle detects partial Gestalts (e.g. alignments,
parallelisms) which can subsequently be combined to form global Gestalts (e.g. a
square). They show the collaboration of 3 Gestalt principles (boundary, region size,
alignment). Other combinations (mean grey level or region orientation instead of
region size) result in the same overall grouping. The problem of how to select
proper combinations however remains unsolved and combinations are chosen ad
hoc. Regarding the combination of Gestalt principles the authors also remark
[DMM02]: “We cannot hope any reliable explanation of any figure by summing up
the results of one or several partial Gestalts. Only a global synthesis, treating all
conflicts of partial Gestalts, can give the correct result.”

Although the work by Granlund and Moe [GM04] is not directly relevant for
our work from a technical point of view, their emphasis on the importance of
perception-action cycles is worth mentioning. Object representation must be link-
able to the actions which resulted in particular percepts. Something is regarded
an object which is separate from other objects or the background if there is an
action that has a separate influence on the particular object. If the system can
perform some action that makes certain parts of the visual field behave differently
to other parts, then this part can be considered as belonging to a separate object.
This is an important mechanism for learning new objects. Depending on what ac-
tions the system can perform on its environment, it will come up with a different
partitioning into objects. E.g. a book shelf might be one object or the individual
books might be objects themselves.

Furthermore an object is characterised by the context when it was learned. The
context is an important part of the object definition. Recognition of an object in
the wrong context is generally a difficult problem (even for humans). So on one
hand a known context will simplify recognition of an object, on the other hand
the identification of a particular object will evoke the context in which the object
was learned, or the state of the system at the time. So context, actions on and
appearance of objects should be treated together when learning and recognising
objects.

Geisler et al. [GPSG01] show how the Gestalt principle of good continuation
can be justified from image statistics of natural scenes. Statistical analysis of the
co-occurrence of edge elements in 20 natural images show a high probability for
edge elements which show good continuation. This serves to explain why this
Gestalt principle evolved in order to detect contours in images. Contour detec-
tion performance by humans in psychophysical experiments is well predicted by a
computational contour detection scheme based on these co-occurrence statistics.



Chapter 3

A Case of Object Recognition

Although we argued against (appearance based) object recognition methods in
Chapter 1, a point can be made in favour of them. Sometimes descriptions of
objects in features and parts, i.e. surfaces and relations between them, is so difficult
that a pictorial representation is more adequate or at least more efficient. Moreover
the prospect of having a system that does not require prior knowledge and is able
to learn any object or even object category seems exciting. So we give it a try
in this chapter and see how far we can get. At the end of this chapter we will
reconsider in detail, using the presented examples, the obvious problems of such
an approach.

We want a system which is able to recognise objects in real-world scenes, which
have typically the following characteristics: (1) the objects to recognise often oc-
cupy a small fraction of the image, (2) the colour appearance of the objects varies
with different illumination situations, (3) object appearance on pixel-level can
change dramatically with varying rotation, translation and scale of the objects,
(4) the objects can be partially occluded.

The presented approach (more details on which can be found in [RZE01]) is
based on Support Vector Machine (SVM) learning in conjunction with a specific
choice of training examples (pedagogical learning). We specifically avoid any pre-
processing step such as feature extraction or dimensionality reduction and present
a pure learning approach to 3D object recognition. The absence of any represen-
tations or other object knowledge implies that the system is completely unbiased
with respect to the objects it can recognise.

3.1 Support Vector Machine Learning

Support Vector Machines are binary maximal margin classifiers. Figure 3.1 illus-
trates the basic principle. Suppose we want to separate a class A (denoted by ’−’
in the figure) and a class B (denoted by ’+’). I.e. we want a classifier that classifies
a point as either belonging to class A or class B. Given that the classes are linearly
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separable, we can find infinitely many lines which separate them. An SVM finds
the line which maximises the margin. The margin is the distance from the line to
the closest data points (called support vectors). In the case of a two-dimensional
parameter space three support vectors are needed to define the separating line.

class B

class A

support vectors

margin

Figure 3.1: SVM principle.

The above example illustrated an SVM for the case of a two-dimensional pa-
rameter space, where the classifier is a line. Generally the parameter spaces are
much higher-dimensional (several thousand in our case) and the classifiers are
hyperplanes accordingly.

More formally, the capacity of a learning algorithm can be described by its
Vapnik-Chervonenkis dimension (VC dimension) h, which is defined as the cardi-
nality of the largest point set that the algorithm can separate, for all assignments
of labels to those points. For our case of a linear classifier (i.e. a hyperplane)
in a d-dimensional parameter space, it is thus given as the maximum number of
points that are guaranteed to be linearly separable, e.g. 3 for a 2D space. Generally
h = d+1 for a d-dimensional space. Vapnik [Vap98] shows that for a given number
of learning examples the VC dimension of the classifier limits the generalisation
of the classifier on future training examples. The risk of mis-classification on fu-
ture test examples (which is a quantification of the generalisation performance) is
bounded by the number of training examples and the VC dimension of the clas-
sifier. Concretely, given a number of training examples, the future risk can be
decreased by reducing the VC dimension of the classifier. A classical approach
to reduce the VC dimension is to reduce the dimensionality of the learning space
(i.e. by compressing the data). However, the VC dimension of a classifier is not
necessarily dependent on the dimensionality of the learning space.

The Support Vector Machine directly decreases the VC dimension (without
requiring to compress the learning space) of a classifier by adding a margin to the
hyperplane. A hyperplane with a margin has a VC dimension bounded by:

h ≤ min

{
d,

(
R

M

)2
}

+ 1 (3.1)

with d the dimensionality of the space, R the radius of the data and M the margin.
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This implies that the larger the margin, the smaller the bound on the VC dimen-
sion. Hence the SVM searches for the hyperplane with the largest margin and thus
for the classifier with the smallest VC dimension to achieve optimal generalisation
performance.

Algorithmically, the standard implementation of the SVM, requires solving
a quadratic optimisation problem [Vap98, BGV92]. Quadratic optimisation is
computationally expensive. In contrast, DirectSVM is a fast and simple iterative
algorithm that implements SVM learning with similar accuracy as the standard
version [SSW+98]. We refer to [Roo00] for a detailed description of the learning
algorithm.

3.2 Pedagogical learning

Pedagogical learning aims to minimise the number of training examples necessary
in order to obtain a classifier with good generalisation capabilities. The basic idea
of pedagogical learning is to provide well chosen training examples which contain
extreme values in irrelevant dimensions and thus “tilt” the separating hyperplane
such that good classification in relevant dimensions is achieved.

Figure 3.2 illustrates this idea. We can see that only the x-dimension is relevant
in classifying A versus B. Both classes occupy large portions of the y-dimension,
which is therefore irrelevant for classification. Suppose that we want to learn a
classifier with only two training examples per class. Figure 3.2(a) shows a bad
choice of training examples. Although the trained classifier successfully separates
the training examples, it mis-classifies some members of A and B, i.e. it generalises
poorly. The training examples of Figure 3.2(b) in contrast are a better choice. Now
all members are classified correctly.
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(b) Good training examples

Figure 3.2: Pedagogical learning.

Concretely Roobaert [Roo99] proposes the Black/White (BW) training method
which learns background invariance by choosing training images once with a black
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and once with a white background. The irrelevant dimensions in this case are the
background pixels.

The problem for learning classifiers then shifts to finding sets and/or methods
for finding high-quality training examples. Hence we propose to search for peda-
gogical learning strategies i.e. finding heuristics to reduce the number of training
examples necessary.

Training Methods

We select training examples to train the following invariances:

• Background invariance: As mentioned above, the BW background training
method is applied.

• Translation and scale invariance: Although the later online recognition stage
will work with image pyramids to cover wide ranges of scale, we also want a
certain local translation and scale invariance. So we present training images
at several scales slightly differing.

• 3D rotation invariance: Every object is presented in a number of different
rotations.

• Illumination invariance: To capture lighting variations each object is pre-
sented in different illumination conditions.

• Sampling density invariance: The sharpness of the images varies with differ-
ent scales and different illumination conditions. To accommodate for these
variations, we provide smoothed images of the training examples as well.

Note that we consider the background as a separate “object”. Given that n objects
and a background have to be recognised, we construct for each pair of different
objects a separate classifier. Hence n(n+1)

2
classifiers are trained. This approach

has a higher accuracy experimentally [RVH99] than training only n classifiers (a
classifier for each object against the background).

Note further that we typically have linearly separable classes, because the num-
ber of training examples (in the hundreds) is much smaller than the number of
dimensions (in the thousands). So a linear separator (hyperplane) is adequate for
our purposes.

3.3 Online recognition

We first build an image pyramid from the input image using scales factors from
one pyramid level to the next between 1.15(= 2

1
5 ) and 1.26(= 2

1
3 ).
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At each pyramid level, the image is scanned and sub-image windows are clas-
sified. In order to speed up the image scan, we used an adaptive scan step. First
we scan the image coarsely using typically a scan step of 4 pixels. If the area is
not classified as background with certainty, the area is explored with a step of 1
pixel. Since, the classifier exhibits some local translation and scale invariance, we
do not miss an object during the coarse search. The finer search provides a more
accurate classification result and localisation.

To classify a sub-image a two-step process is used, we first decide whether
the sub-image is an object or background. Hence in the first step, only the ob-
ject/background classifiers are used. Only if one of these classifiers identifies the
image as non-background all the other object/object classifiers are invoked to clas-

sify more accurately the object. This way we avoid using all n(n+1)
2

classifiers every
time. We use only n classifiers most of the time and only in the rare cases where
we detect non-background, the other classifiers are invoked. Hence the runtime of
the system scales nearly linearly in the number of objects.

Each classification returns a confidence value. The confidence is a measure of
the distance of the classified vector to the hyperplane. If the distance is smaller
than the margin a confidence < 1 is returned, because in this case the classifier
can actually make no justified classification. In the other case, a confidence value
≥ 1 is returned. The final confidence of an object hypothesis is the minimum
confidence of all classifiers used on this sub-image.

As the classifiers are not perfect, we obtain several object hypotheses with
varying confidences. In the experiments, we simply pick the strongest one for each
object over all scales. Hence, in the experiments reported, we assume that each
object is contained in the image exactly once (using a winner-takes-all mechanism),
if the confidence level is above 1.

3.4 Experiments

Training

We used 32x32 pixel raw RGB images (see Figure 3.3). So each image is represented
as a vector in a d = 32×32×3 = 3072-dimensional space. For 3D object recognition
we took about 40 views for each of five objects. The object was placed on a
turntable and rotated around its vertical axis. For each view we used a black and a
white background and two different illuminations (fluorescent light and additional
incandescent light). This results in about 160 images per object. For face and
gesture recognition we took about 25 images of a closed and an open hand, again
in front of a black and a white background and with two illuminations. For face
recognition 25 images of frontal views of faces of two persons were taken, again
with two different backgrounds and two different illuminations. Additionally to
these physical images, virtual images were created. Images shifted by 1 pixel were
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created to train for improved local translation invariance and scaled by a factor of
1.09(= 2

1
8 ) for improved local scale invariance of the classifier. To simulate more

different lighting conditions, we added and respectively subtracted the pixel-values
of the images with a fixed value (15% of white). We added smoothed versions of
the physical images to the training set to compensate for sampling variations.

Figure 3.3: A few of the training images for objects cleaner, fanta, mug, raisins
and rice.

For the “background-object”, four arbitrary pictures (see Figure 3.4) of the
room under normal fluorescent illumination were taken and scanned at different
scales to provide approximately 2000 training examples.

Figure 3.4: The four images used to generate images for the “object” background

Results

The experiments were carried out on a Pentium III 450 MHz PCs. All experiments
took place in normal fluorescent illumination.

3D Objects

Figure 3.6 shows a scene with 5 objects on a table from several views. For each
view two lighting conditions were tested (with and without table lamp). The same
procedure was repeated without a table cloth on the table. Figures 3.6(a) and
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Figure 3.5: A few of the training images for objects open hand, closed hand,
michael and danny.

3.6(b) show successful recognition. Note for example the partial occlusion of the
cleaner and the rice box). Table 3.1 lists the number of correct classifications and
mis-classification for each object. Correct classification means the selection of the
correct location of the object in the scene. An incorrect classification means not
necessarily that the classifier did not detect the object, but that another (false)
location has a stronger response (false positive). Considering the large amount of
classifications performed over a single scene (approx. 43000), one can regard the
numbers in table 3.1 as quite satisfactory since the failure rate per classifier is in
the order of 10−6. Figure 3.6(c) shows a scene where the system breaks down: it
was not trained for such a drastic change in illumination.

(a) Successful recognition (b) ... with different back-
ground

(c) Breakdown due to insuffi-
cient lighting

Figure 3.6: 3D object recognition in different cluttered scenes and with different
illuminations.

Faces and Gestures

In order to test the generality of the approach, we carried out a feasibility ex-
periment on face and gesture recognition. The task is to recognise two persons
(Figure 3.5) and two different gestures (open hand and closed hand (Figure 3.5)).
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cleaner fanta mug raisins rice
correct 23 23 23 22 23

incorrect 1 1 1 2 1

Table 3.1: Correct and incorrect classifications for the 3D object recognition task.

Figure 3.7(a) shows successful recognition of face and the open-hand gesture in
front of a cluttered background. In Figure 3.7(b) the system produces a correct
face hypothesis, but stronger false positives in the background cause the system
to fail (in the winner-takes-all setting used).

The overall performance is lower than in the previous experiment. We assume
that this is due to the lower number of training examples, while also the objects
in this case might be considered more difficult to discriminate. To improve per-
formance, the number of training examples could simply be increased ad hoc, or
alternatively by:

• providing false negatives as extra object training examples.

• providing false positives as extra background training examples (a learning
method introduced by [SP98] as bootstrapping).

After retraining, the system will never make the (exact) same errors again (as
DirectSVM learns error-free on the training set).

(a) Successful face and gesture (open-hand)
recognition

(b) False positives win.

Figure 3.7: Faces and gestures.

In follow-up experiments, we provided additional training examples and per-
formed a few bootstrapping steps. This indeed improved performance, but more
cycles than the additional 5 that we performed up to now would be needed.
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Distractors

The system relies on an implicit combination of shape, texture and colour to
recognise objects. The system does not simply rely on colour only to recognise
the objects. This is amongst others illustrated by the gesture recognition system:
hands have the same colour, but different gestures have different shapes. Another
illustration is shown in the following result. In Figure 3.8(a) an upside-down raisins
box is placed on the table as well as a red teapot, which serves as a distractor of
similar colour. As the raisins have been trained only upright, the system finds the
small upright box of raisins on the shelf (in the background).

(a) Correct box on the shelf is recognised. (b) Rice box and distractor

Figure 3.8: Distractors.

Analysis of the Support Vectors

The support vectors selected by the learning algorithm, are the only training ex-
amples that are used by the learning algorithm. All other training examples are
not used and are hence non-relevant for the system. We obtained the following
results:

• For the background-object classifier, about 200 to 400 background images
are support vectors. If the number of background images is drastically in-
creased e.g. by a factor 10 the amount of background support vectors does
not increase substantially. Note also that different classifiers have several
background support vectors in common. The number of support vectors for
the object class is in the order of 15 to 40 images. We can conclude that only
a small fraction of the training images are relevant for the learning system.

• For the object-object classifiers, the number of support vectors is lower and
in the order of 5 to 15 support vectors per object. Since also the classifiers
margin is wider than for the background-object classifiers, we can conclude
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that it is easier to discriminate different objects from each other, than to
discriminate an object from the background.

• The proportion of smoothed object images that are support vectors, is larger
for the background-object classifiers than for the object-object classifiers.
This is in agreement with intuition: in order to distinguish objects from
the background, larger features (smoothed images) are discriminatory, while
to discriminate between different objects, details (sharp images) have more
importance.

Timing

Training a system varied between 5 minutes and a couple of hours (for the system
with 10 times more background images).

Recognising two objects in an image of size 640 × 460 took the system about
3.5 seconds on a Pentium III 450. This includes building up the image pyramid
for 7 scales. About 43000 classifications were performed, which means that one
classification takes 0.08 ms.

3.5 Discussion

The experimental results of the proposed pedagogically-trained pure learning ob-
ject recognition system seem to indicate that a wide range of 3D objects can suc-
cessfully be detected and recognised in cluttered real-world scenes under varying
illuminations. We found that the system is also robust to smaller partial occlusions
of the objects.

Several severe problems however remain. Sometimes the system is distracted by
other objects in the background, that are similar to the trained object in a certain
view. E.g. in Figure 3.8(b) the system recognises a bright red binder as a rice box.
These false positives can be overcome by retraining the classifiers and applying
bootstrapping. Several iterations of this interactive learning typically train the
system not to make the same error again. It is not clear however whether these
iterations eventually converge, or whether learning to disambiguate one distractor
would in fact unlearn another previously learned. There is no practical measure
which would tell us when we are done.

Another issue is the problem of how to detect that the trained object is actually
not in the scene. Finding a good threshold for the confidence of a hypothesis
seems difficult as the confidence value is affected by e.g. lighting conditions (and
thresholds are to be avoided anyway).

It is furthermore not clear how the approach scales to a larger number of
objects. 30 objects could be achieved in [RVH99, RNE00] with a similar approach,
but only for objects of the COIL-database [NNM96], which is a significantly simpler
task. But even if we could extend the object database to 1000 objects: If I have
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learned 1000 objects, what do they tell me about the 1001st? Note that this plagues
of course all object recognition or categorisation schemes.

Also learning for more invariances (such as in-plane rotation - we might actually
want to recognise the upside-down box as well) is not guaranteed to scale well.
Once the number of training images approaches the number of dimensions, linear
separability is no longer guaranteed.

But there are of course more fundamental problems. First of all, using an
object detector/recogniser it is not possible to make statements other than “object
is there”, “object not there”. Although pose can be inferred if e.g. the object was
learned using a turntable. Then appearance X can be mapped to orientation Y. But
note that the starting angle of the orientation is arbitrary: appearance X might
just as well map to orientation Z, depending on where one started rotating the
table. The point is that nothing inherent in this pictorial representation (a point
cloud in some parameter space) tells anything about orientations, no orientation
is distinct. Compare that to a surface based representation of e.g. a box. Here
there are distinct orientations that are inherent in the representation. One can ask:
“What are the two largest, most parallel and closest surfaces (because these are the
ones I would like to grasp with my two-finger gripper)?” Pictorial representations
are a shortcut from pixels to objects, bypassing structure (see Figure 1.1(a)). As
such they are of limited usefulness if one wants to interact with objects, which
necessarily involves their structure.

Finally, looking at the example images with overlaid recognition results, we
must say the system is blind, except for the few highlighted squares. The rest
of the scene is non-existent as far as the object detector/recogniser is concerned.
This is the most severe limitation. No matter how many objects we can eventually
learn, the system will always be completely ignorant of the rest of the scene. This
can hardly be called vision.

So after a few meters into this dead-end road, we return in the remaining
chapters to a more promising path towards a more general vision system. And
although we might not get far there either, we show that at least it is in the right
direction.
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Chapter 4

Significance

In this chapter we introduce the concept of significance which will be used in later
chapters. Our aim is to find a general way of specifying when an image feature or
a group thereof can be considered important, rather than accidental.

Numerous quality measures for all sorts of features exist, based on fit errors of
some model or on geometric considerations. Typically they are carefully designed
for a specific type of feature. We would however like a measure that is general in
that it is comparable across different types of features or groupings. One possible
common frame of reference is probability theory.

4.1 Probabilities, Non-Accidentalness and

the Helmholtz Principle

Probabilities have been used before as measures for significance (saliency), e.g. the
significance measures for collinearities, parallelism etc. of [Low87], the notion of
maximal meaningful events by [DMM00, DMM03] and the co-occurrence statistics
of edge elements in [GPSG01].

[DMM00] and [GPSG01] however seem to indicate a contradiction. While the
former advocate the desireability of low probabilities (low number of expectation
of events respectively) the latter report on findings that common Gestalt principles
are motivated by high co-occurrence probabilities. So are we looking for low or
high probabilities?

Let us restate what we actually want the vision system to do: We want the
most plausible (i.e. most likely) explanation of the image. Then why are [DMM00]
looking for the least probable groupings? First of all, what do we mean by most
likely explanation? To be precise, we want a high probability that grouped Gestalts
make sense, namely describe image structure which corresponds to structure in the
world, i.e. projections of world structures, i.e. have a cause. So we want a high
probability that groupings have a cause and are therefore not accidental (random).
Now the less likely the null hypothesis H0 that a grouping is purely accidental, the
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more likely the alternative H1 that it has a cause.

The less likely randomness, the more likely an underlying cause.

Once we accepted H1 and thus assume an underlying cause, we want to select
the most likely explanation for it. Which relates to high probability values in the
co-occurrence statistics of [GPSG01].

The above conclusion was first drawn by Hermann von Helmholtz as early as
1867 [Hel67]. The Helmholtz likelihood principle states that

“Die allgemeine Regel, durch welche sich die Gesichtsvorstellungen bes-
timmen, die wir bilden, wenn (...) ein Eindruck auf das Auge gemacht
worden ist, ist die, dass wir stets solche Objecte als im Gesichtsfelde
vorhanden uns vorstellen, wie sie vorhanden sein muessten, um unter
den gewoehnlichen normalen Bedingungen des Gebrauchs unserer Au-
gen denselben Eindruck auf den Nervenapparat hervorzubringen.”

Roughly stated:

“We perceive that which would in our normal life most likely have
produced the effective stimulation we have received.”

That is our visual system chooses the most likely explanation assuming typ-
ical normal viewing conditions. A process which Helmholtz calls unbewusstes
Schliessen - unconscious reasoning, by which our visual system infers from ob-
served effects the underlying cause of effects.

Coming from the opposite side, a grouping is perceptually “meaningful”, or
makes sense, if the probability of its occurrence would be very small as a re-
sult of accidental arrangement (i.e. non-typical viewing conditions). Pre-defined
geometric structures, Gestalts, are then characterised as large deviations from ran-
domness.

In accordance with the terminology of probability theory let us call an image
feature or grouping of features a visual event. (Note that of course an image feature
such as an edge is itself again a grouping, namely of pixels.)

Our general H0 hypothesis is that there is no structure and visual events are
governed by some random process. Whenever an event is highly unlikely under
that assumption, we regard this event as non-random (non-accidental) and accept
the alternative hypothesis H1. We will now explain the types of random processes
we assume.

4.2 Poisson Process

A typical situation which often arises in grouping is to decide whether a cluster of
points in the image or in some parameter space is significant or not. For the time
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being we are not interested in how to form (good) clusters, but just to measure
the non-accidentalness of a given cluster. The null-hypothesis is a random distri-
bution of points in a continuous space, where points are independent and evenly
distributed. This situation can be modelled as a Poisson process.

Definition 1 A Poisson process with parameter λ is a chance experiment with the
following properties:

1. Possible outcomes of a trial are 0 and 1.

2. Trials are independent.

3. The probability of obtaining outcome 1 within an infinitesimally small inter-
val [x, x + dx] is λdx.

Be NA the random variable denoting the number of successful trials in interval
A. Then NA is Pλ|A|-distributed, where |A| is the size of interval A and Pα is the
Poisson distribution with the following probability density function (PDF) and
cumulative distribution function (CDF):

pα(x) = Pr(X = x) = e−α αx

x!
(4.1)

Pα(x) = Pr(X ≤ x) =
x∑

i=0

e−α αi

i!
(4.2)

For our purposes we will need Poisson processes over higher dimensional do-
mains, which are defined analogously with the interval [x, x + dx] replaced by
[x1, x1 + dx1]× . . .× [xn, xn + dxn]

The spaces we consider are e.g. the image plane, the parameter space of line
angles or the 3-dimensional colour space. We use the Poisson distribution when
assessing the likelihood of a certain number of points falling into a given interval
or of distances between points. Figure 4.1 illustrates the idea.

(a) (b) (c)

Figure 4.1: A 2D Poisson process (a) and a rather unlikely configuration of points
(b).
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Let d = N
wh

be the point density in a w× h image containing N points. Figure
4.1(a) shows what a typical distribution of points following a Poisson process might
look like. Figure 4.1(b) shows a distribution of points which would be rather
unlikely for points following a Poisson process. The probability of finding at least
a number of n points in the shaded area A in Figure 4.1(c) is given by 1 minus the
probability of finding at most n− 1 points and thus

Pr(at least n points in area A) = 1− Pd |A|(n− 1) (4.3)

Especially

Pr(at least one point in area A) = 1− Pd |A|(0) (4.4)

= 1− e−p|A| (4.5)

Note that we do not simply use Pr(exactly one point in area A) = pd |A|(1).
Suppose A were really big, maybe actually covering most of the domain. Now
of course the expected number of points within A is also large. The probability
of actually only finding a single point is very small: Pd |A|(1) � 1, making this a
highly significant event. But that is not what we are interested in. We are typically
not interested in the emptiness of space around a point (though that might be of
interest in some other settings), but we are interested whether the closeness of two
points is significant. I.e. what is the probability of finding any point in A. And in
that case 1− Pd |A|(0) ≈ 1, therefore not significant at all, as we would expect.

(a) bike (b) office

Figure 4.2: Distribution of line endpoints in actual images (see figure 5.3 for the
original images)

As an example of our use of Poisson processes Figure 4.2 shows the distribution
of line endpoints in two actual images. Line endpoints will be used for measuring
the significance of e.g. collinearities. We can see that the Poisson assumption
is roughly true in the rather unstructured lower part of the bike image 4.2(a)
containing leaves and grass. Significant structure (such as the bike wheels) pops
out as local violations of this assumption. We also see that the office scene 4.2(b)
is more structured than the outdoor bike scene.
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So the Poisson assumption holds on a rather global scale, and line endpoints far
apart are indeed independent, while local deviations hint at underlying structure.

Remark

The significance measure of Lowe [Low87] uses a scale-invariant line endpoint den-
sity D. D is set to 1, because significance is only used for ranking, so absolute
values are not important. Rather than using an arbitrary scale-invariant endpoint
density we just measure the actual endpoint density d. If the image resolution
is reduced, say by a factor of 2, endpoint density d increases by a factor 4. At
the same time areas A calculated from endpoint distances are reduced by a factor
4. So the product d |A|, which is used in the calculation of non-accidentalness, is
again scale-invariant.

Furthermore our measure of significance is meant to be more general, being
applicable to any distance between points in an n-dimensional parameter space.
Lowes measures are specifically designed for grouping lines of a certain length.

4.3 Markov Chain

The previous section mentioned line endpoints as one example for visual events
that follow a Poisson process. Quite clearly edgels (edge elements) must follow
a different process. The definition of a Poisson process states that events are
independent, i.e. in our case two points are independent. But by the very definition
of an edgel, it can never occur isolated. Edgels always occur as strings of edgels
with varying length, where typically long edges are less likely.

We can view the situation like this. Starting with a string of length one we keep
extending our string of edgels by one as long as we can find a connected neighbour.
Let us call the situation “string is expandable (in any direction)” state s1 and the
situation “string is terminated” state s2. And let S(n) denote the random variable
of being in either s1 or s2 after n steps. We know that strings have a finite length.
So given a string of n edgels, there is a certain probability that we stay in s1 (the
string can be extended to n + 1) edgels and a certain probability that we move
to s2 (string terminates) and stay there. If we assume that the probability of
continuation depends only on state n we have the Markov property that the state
at step i + 1 only depends on the state at step i..

Pr(S(n+1) = s | S(n) = s(n), . . . , S(0) = s(0)) = Pr(S(n+1) = s | S(n) = s(n)) (4.6)

Note that this assumption is reasonable as edgels are computed locally (typi-
cally using a 3×3 convolution mask) and an edgel does not directly affect another
edgel further away. So we can model edges as Markov chains.

Definition 2 A Markov chain is a stochastic process defined over a discrete state
space S = {s1, s2, . . . , sk} where the sequence of random variables S(0), S(1), . . . has
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the Markov property. It is specified by an initial state s(0) and a transition matrix
P, where entry pij gives the probability of moving from state si to state sj, and
S(n+1) = PS(n).

In our case we can never leave state s2 (string is terminated) once we entered
it. Such a state is called absorbing.

Definition 3 A state si of a Markov chain is called absorbing if it is impossible to
leave it (i.e., pii = 1). A Markov chain is absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing state. A state
which is not absorbing is called transient.

The transition matrix of an absorbing Markov chain with t transient and r
absorbing states is of the form

P =

(
Q R
0 I

)
(4.7)

Here I is an r × r identity matrix, 0 is an r × t zero matrix, R is a nonzero
t × r matrix, and Q is a t × t matrix. The expected number of times the system
is in a transient state sj if it is started from a transient state si is given by nij,
where N is called the fundamental matrix and is given as

N = (I−Q)−1 (4.8)

In our simple case we have one transient state s1 and one absorbing state s2.
The transition matrix is given as

P =

(
pee 1− pee

0 1

)
(4.9)

where pee is the (unknown) probability of continuing an edge, i.e. the condi-
tional probability of an edgel, given an edgel. The expected number of times the
system stays in state s1 starting from s1, i.e. the expected length of an edge is
given by equation 4.8 as

l̄ =
1

1− pee

(4.10)

We can estimate the mean edge length l̄ in an actual image and thus calculate
the parameter pee as

pee =
l̄ − 1

l̄
(4.11)

For example an average edge length of 20 edgels, which is a typical value for
many of our indoor scenes, pee turns out to be 0.95. The probability for staying in
state s1 for l steps, i.e. for an edge having length l is then given by
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Pr(S(n+1) = s1 | S(0) = s1) = pl
ee (4.12)

We will use the above conditional edgel probability when assessing the signifi-
cance of a model being supported by a given number of edgels.

4.4 Bernoulli Process

While a Markov chain is useful when regarding the likelihood of getting further
support for an instantiated model, the following process is suited for describing
accidental support for a possibly hallucinated model.

Suppose we assume the existence of say an ellipse being fitted to a minimum of 5
points (see Chapter 5 for more on ellipses). This hypothesised ellipse will probably
get some support from various edges in the image. Some edges will actually belong
to the ellipse (especially if we chose the original points to fit wisely), other edges
will just be intersected by the ellipse, thereby providing accidental support. The
bigger the ellipse, the more support it will pick up accidentally. Given the ellipse
has a circumference of l, how significant is a support of k ≤ l edgels? That is
how likely is it, that the ellipse would accidentally pick up k supporting out of l
possible edgels?

Note the difference to the situation in the previous section, where the events we
were interested in were “there is/is not an edgel so that we can extend the edge in
any direction”. While here we have a hypothesised model (e.g. the above ellipse)
which selects a specific set of pixels from the image and we ask how many of these
pixels are supporting the model (or are correctly predicted by the model).

Although as we have just seen in the last section edgels are not independent,
an arbitrary line drawn across an image containing edges at various angles will
most likely intersect most of the edges, rather than being aligned. Therefore when
looking at the individual pixels along the line and observing whether they are
edgels or not, the event “pixel i is an edgel” can be considered independent of
“pixel i + 1 is an edgel”. This is of course not exactly true, because some edges
will be intersected at acute angles. So the chances of picking up another edgel
if the previous pixel was an edgel are higher than picking up an isolated edgel.
To be precise we would have to model these events as absorbing Markov chains
with very short expected lengths. For the sake of simplicity however allow us this
slight inaccuracy and let us assume that the events“pixel i is an edgel” and “pixel
i + 1 is an edgel” are actually independent. In that case the above situation can
be described using a Bernoulli process.

Definition 4 A Bernoulli process is a discrete stochastic process consisting of a
sequence of independent random variables X1, X2, X3, . . . , such that

1. For each i, the value of Xi is either 0 or 1;
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2. The probability of Xi = 1 is p for all i.

The random variable describing the number of successes (outcome 1) in the
first l trials has a binomial distribution, given by the following probability density
function (PDF) and cumulative distribution function (CDF):

bl,p(k) = Pr(X = k) =

(
l
k

)
pk(1− p)l−k (4.13)

Bl,p(k) = Pr(X ≤ k) =
k∑

i=0

(
l
i

)
pi(1− p)l−i (4.14)

In our case p is the probability of a pixel being an edgel, pe, and can be
estimated as pe = E

N
, where E is the number of edgels and N the total number of

pixels in the image.

(a)

support

no support
 0  40  80  120  160

Supporting edgels along ellipse contour

(b)

Figure 4.3: A hallucinated ellipse (a) and its accidental support (b).

Figure 4.3(a) shows a kitchen scene with extracted edges and an arbitrary
hallucinated ellipse. Figure 4.3(b) shows the “rolled out” contour of the ellipse
with positions of accidental supporting edgels. We see that the occurrences of
accidental supporting edgels are in fact roughly independent.

The probability for picking up at least k supporting edgels is then given as

Pr(X ≥ k) =
l∑

i=k

(
l
i

)
pi(1− p)l−i = 1−Bl,p(k − 1) (4.15)

i.e. the tail of the Binomial distribution, which can be expressed in terms of the
the regularised incomplete beta function Ix(a, b). Generally

Bl,p(k) = I1−p(n− k, k + 1) (4.16)

1−Bl,p(k) = Ip(k + 1, l − k) (4.17)
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where we use the property

Ix(a, b) = 1− I1−x(b, a) (4.18)

So
Pr(X ≥ k) = Ip(k, l − k + 1) (4.19)

4.5 Log-Likelihood

The above sections introduced probabilities of certain visual events. We want these
events to be non-accidental, i.e. have a small probability of happening accidentally.
As these probabilities can sometimes become quite small, it is more convenient to
use the negative logarithm of these probabilities. We call the probability of an
event happening by accident its accidentalness a and define significance as follows

Definition 5 The significance σ of a visual event with probability a is given as

σ = − log a.

A small accidentalness corresponds to a high significance. This definition also
fits the common use of the word significance. The less likely an event under the
uniform assumption, the more surprising and thus significant is its occurrence.

Note the difference to significance levels in statistical test theory, where roughly
stated, one assumes a distribution of a certain type with given parameters and
after drawing samples accepts or rejects this assumption. A typical example from
quality control would be a factory producing screws with a length of e.g. 20 mm.
Due to inaccuracies in the production process the actual lengths of screws will
vary. Now a (common) assumption might be that the random variable describing
screw length follows a normal distribution with µ = 20 and, say, σ = 0.1. During
quality inspection a number of samples is drawn with a mean of e.g. 19.8 mm. A
statistical test will now decide whether this difference is a result of chance (the null
hypothesis H0) or whether there actually is a difference (the alternative hypothesis
H1). In the above example, if H0 is true, we accept the assumption that screw
length is in fact normally distributed with the µ = 20 and σ = 0.1. In this context
the significance level of the statistical test is the probability of making a Type I
error (falsely rejecting the null-hypothesis, i.e. falsely accepting the alternative, or
false positive).

In our case we are perfectly aware that the assumption of a uniform distribution
is wrong. Our aim is not to correctly estimate the parameters of a true distribution.
We can not hope to capture the actual statistics of the image, which is the result
of its structure, in a simple probability distribution. Also we do not draw many
samples to prove/disprove the distribution hypothesis. We know the assumed
distribution is wrong and want a measure of how wrong it is for a given sample.
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By using the above random processes we essentially assume a uniform distribu-
tion of e.g. line endpoints, line angles, colours in colour space and so on. One might
argue that we should model the actual distribution more closely, for example by
building histograms. If we could in fact precisely model the actual distribution of
data in the image (which would be very hard indeed!) then this distribution should
enable us on average to predict the actual image. This would however render the
principle of non-accidentalness useless, because data would behave as expected (as
modelled) and there would be no “surprises”, i.e. no unlikely events. Again, it is
the null hypothesis’ job to be proved wrong, therefore there is no point in trying
to model it correctly.



Chapter 5

Detecting Ellipses

Rotationally symmetric objects are common in many man made environments like
home and office scenarios. Such objects with a circular cross-section give rise to
elliptical features in the image. Elliptical features are highly non-accidental and
their detection in the image is therefore a strong, distinctive cue of the presence
of a circular or elliptical structure in the 3D world. In contrast straight lines
are weaker cues as they are generally more abundant in artificial environments.
Moreover, under the assumption that a detected ellipse is an axis-normal cross-
section of an object of revolution, 3D pose of that object can be partly inferred.
If we have a model of said object, specifying size and position of the 3D circle
relative to an object coordinate-ordinate system, we can determine 6D object pose
up to a rotational degree of freedom.

We will first review related work in the next section. We then give a short
overview of our proposed approach in Section 5.2 and briefly remark on our choice
for an edge-based method in Section 5.3. Section 5.4 explains the setup used for
experiments throughout this chapter. We then present our approach for ellipse
detection which consists of three steps: Fitting circular arcs to edges (Section 5.5),
convex grouping of arcs (Section 5.6) and finally fitting ellipses to convex groups
of arcs (Section 5.7). Section 5.8 concludes with a discussion.

5.1 State of the Art

Ellipse detection has received considerable interest in the machine vision literature
but remains an open problem. The problem of robustly fitting an ellipse into a set
of points can be considered solved [Boo79, NR79, Sam82, Por90, Tau91, EAB92,
Ros93, GGS94, Kan94, FF95, Ros96, Zha97, FPF99]. Of course the problem re-
mains how to get to these points from a general set of image edges.

The ellipse detection problem can be posed very generally as follows:
Given a set of 2D points, find subsets of points that support ellipses and estimate
ellipse parameters from these subsets using some fitness function.

47
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In this formulation the input information available in the image is treated as
a set of points. This situation is suited for parameter space clustering approaches
like the Hough transform (HT) [Hou62], although the high dimensionality of the
parameter space in the case of ellipses poses a significant problem. Some methods
try to reduce the dimension of the parameter space by first estimating ellipse
centres or angles, leaving a lower dimensional parameter space.

Yuen et al. [YIK89] propose a two-step Hough transform, each solving a sub-
problem with a reduced set of parameters. The first HT identifies ellipse centres
using a geometric constraint (see also Section 5.6.4). The second HT step deter-
mines the remaining three parameters. If ellipse parameters are to be determined
with high accuracy, i.e. a fine quantisation of the parameter space, the resulting
high number of bins for a 3-dimensional parameter space still poses a problem.
Therefore an adaptive Hough transform (AHT) of Illingworth and Kittler [IK87]
is used, where the parameter space is iteratively subdivided into finer bins until
the desired accuracy is met. The above method runs into problems if more then
one ellipse is present in the image as peaks in the parameters space get smeared,
especially if ellipses are overlapping or close. Some thresholds regarding expected
size and separation of ellipses are introduced to overcome this problem. Moreover
the O(n2) complexity of finding pairs out of n points for the centre finding stage
limits the method to rather simple and clean images.

McLaughlin [McL98] proposes a combination of the Randomised Hough Trans-
form (RHT) [XOK90, XO93] with the above ellipse centre constraint. Rather than
accumulating parameters for all possible ellipses going through each single point,
RHT chooses 5 random points (i.e. just enough to calculate ellipse parameters),
calculates ellipse parameters from these and places a single vote in parameter
space for this ellipse. As a result the five-dimensional parameter space becomes
only sparsely populated and efficient list structures can be used instead of the
5-D histogram. The approach by [McL98] however, for reasons not entirely clear,
chooses three random points and estimates tangents using points in a small neigh-
bourhood. The above constraint by Yuen et al. is used to define the ellipse centre
from three points and three tangents, then the remaining three parameters are
found by solving a system of three linear equations. The author could just as well
have picked five points and solved a system of five linear equations. The results are
not very impressive. The number of correct ellipses drops below 50% for more than
3 ellipses in the image (with no noise and no other image structure present). Also
adding more that 0.5% speckle noise reduced the number of correctly identified
ellipses to below 50%. As with all HT based methods, the more data points there
are (resulting from more structure or noise) the less reliable solutions become.
Again test images are very clean and simple.

Kanatani and Ohta [KO04] present another approach based on the Hough
transform. Their aim is to detect ellipses at high precision under the assumptions
that only a small number of circular objects are present in the image and circular
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objects are sufficiently large in the image (they specifically do not claim to have a
system of universal merit). They first detect an osculating circle to an elliptic arc
using a two-step Hough transform. The first step votes for the circle centre, the
second step for circle radius. Accordingly parameter spaces are kept small with
two and one dimensions respectively. Several ad-hoc parameters and weighting
factors are chosen to enhance the saliency of peaks in Hough space. They then
iteratively deform the circle into an ellipse. A δ-region around the current ellipse
is formed and the edge segment with the largest number of consecutive edgels
inside that region is used for the next ellipse fit. Outliers during ellipse growth
are removed using LMedS. To search for other supporting edges, they randomly
select edges within a region around the ellipse and add them if it improves the fit
(using again some ad-hoc parameters). The above procedure finds one ellipse at
a time. Removing the corresponding edges from the image enables search for the
next ellipse and so on. As long as their restrictive assumptions hold (to which the
various parameters seem to be tuned) they can show impressive results even for
considerably occluded ellipses.

So much for the Hough transform.

Stricker and Leonardis [SL95] propose an algorithm which is explicitly general
and independent of the domain (optical flow, intensity, 2D, 3D) and type of input
data (sparse, dense) as well as type of model (straight line, ellipse, plane, sphere,
cylinder) and fitting algorithm (least squares, robust) to fit parametric models.
The authors employ a hypothesise and verify method. The first step, exploration,
is based on a random sampling of points lying on boundary elements. In order
to cope with the huge size of the search space exploration is biased by recency
(recently used data are less likely to be selected). The problem of a stopping
condition though remains: When do we have enough random samples? The risk
of missing a hypothesis vs. accepting too many hypotheses (and thus long com-
putation time) becomes apparent when the images contain significant amount of
background clutter.

Treating boundary edgels as single points however neglects the fact that edgels
are actually connected. This leads to an unnecessary increase of search space size
as vital relation information is thrown away. If we are interested in processing
perspective images of natural scenes, ellipses will be detected in the output pro-
duced by an edge detector and thus connectivity information is at hand. Edge
extraction however can never be expected to be perfect, so we rarely get complete
ellipses, but rather short arcs with gaps in between. Moreover part of an ellipse
might be occluded and there will be many distracting edges from background clut-
ter. So given a set of extracted image edges the problem is now to identify those
groups of disconnected edges that together form an ellipse. Although using edge
segments instead of single edge points reduced the number of groupable elements,
the problem still is the huge number of possible combinations of edges.

Rosin and West [RW95] segment lists of connected edgels into straight lines and
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elliptical arcs. Their algorithm also joins adjacent segments to form possibly larger
segments. They do not however group segments possibly belonging to the same
ellipse if the segments are separated by a gap, as happens with partial occlusions
or simply due to locally poor contrast.

Qiang and Haralick [QH99] pick up at just that point and deal with merg-
ing pairs of disconnected elliptical arcs. They introduce scale-invariant statistical
criteria to test whether two arc segments belong to the same ellipse. Further-
more these criteria adapt to the noise characteristics of the image and need not
be hand-tuned. Pairs of arcs are first selected based on geometric criteria and
subsequently validated or rejected based on these statistical criteria. There are
two clustering steps. In-list-clustering connects short arcs lying on the same list
of connected edgels into longer arcs. The second between-list-clustering connects
arcs from different lists. Candidates for merging must first satisfy a proximity cri-
terion, which is trivially fulfilled for arcs on same list. For between-list-clustering
an arbitrary (and certainly not scale-invariant) proximity threshold needs to be
defined. Furthermore the arcs must be geometrically compatible. The criterion for
deciding whether two arc candidates should be merged is based on the statistics
of the residual errors when fitting an ellipse through both arcs. If the residual
error follows a normal distribution, the merge is accepted. A remaining problem
is that the size of the variance of this distribution is not considered in the test.
I.e. merging can occur even if the residuals are large, as long as they are nor-
mally distributed. Furthermore the authors did not mention how the candidates
for between-list-clustering would be selected. Testing all pairs of arcs in the image
leads to combinatorial explosion.

Kawaguchi and Nagata [KN98] use genetic algorithms to deal with this huge
search space. However their selection of arcs from generic edges is rather ad hoc.
Furthermore the search makes no explicit use of the underlying structure of the
problem, namely that arcs belonging to the same ellipse form a convex group and
neighbouring arcs are usually close to each other.

5.2 Overview

In the approach proposed we aim at the very common situation, where connectivity
information is available but is not sufficient to establish reliable ellipse hypotheses.
Typically edges are broken due to poor contrast or occlusions leading to elliptic
edge segments rather than whole ellipses.

Figure 5.1 shows an overview of the approach. The main steps are:

Detecting edges Our approach is based on edges, so the first step is edge detec-
tion. We rely on an off-the-shelf edge detector.

Detecting circular arcs (Section 5.5) We take the output of edge detection
and fit circular arcs to edges. Fitting circles instead of ellipses is more stable
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Figure 5.1: Overview of ellipse detection.

and faster and locally approximates ellipses well.

Finding convex groups of arcs (Section 5.6) In the second stage we form el-
lipse hypotheses from groups of arcs. Here we face the problem of an expo-
nentially large number of groups. Perceptual grouping based on proximity
and good continuation helps to significantly reduce the number of hypothe-
ses.

Fitting ellipses (Section 5.7) In the third stage robust standard techniques are
then used to fit ellipses to convex groups of arcs and ellipses ranked according
to different quality criteria.

5.3 A Remark on Edges

Edges (= discontinuities) carry more information than the homogeneous regions
in between. Interest points carry even more information. The Kadir-Brady in-
terest point operator [KB01, KZB04] for example looks for salient regions which
are defined in an information-theoretic way as regions of high entropy over various
scales. The SIFT [Low04] interest point extractor and descriptor stresses invari-
ance to scale and orientation to extract distinctive image features. In fact interest
point operators extract information in such an efficient manner that the mutual
information between interest points is minimised (i.e. redundancy is minimised and
thus information content is maximised). That is exactly their aim, no two interest
points should be the same. If two similar interest points are detected in two images
they should refer to the same physical object feature. I.e. any similarity between
interest points (in the same image) which might hint that they in fact belong to
the same surface is deliberately eliminated. Thus interest points are inherently not
connected. They can not be (perceptually) grouped. (Except of course according
to consistent motion when they are tracked. But here grouping is not based on
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similarities inherent in the interest points but on their trajectories.)

Edges form an intermediate step. They represent reduced data, i.e. extracted
information, but enough mutual information is retained to enable grouping based
on similarities (e.g. orientation, colour). This allows perceptual grouping of edges
which are likely to belong to the same surface and thus the same physical object.
Only this mutual information, and thus redundancy, allows the vision system to
formulate statements about objects.

Likewise points of high curvature on edges carry more information than the
low curvature parts in between. That is why high curvature points also play an
important role in shape perception by humans. This is our justification to break up
edges at high curvature points and describe them using these points and parametric
descriptions of the smooth curves in between. For a start we use straight lines (in
Chapter 6) and circular arcs. Elliptic arcs or even higher order curves such as
bsplines might also be considered. We restrict ourselves however to curves with
low numbers of parameters as these are generally easier to to fit reliably as we will
demonstrate shortly.

Why do we need parametric models and cannot just use the edges themselves,
as connected strings of edgels? Look at Figures 5.2 (a) and (b). They both show
a single edge as detected by the edge segmentation process.

(a) (b)

Figure 5.2: Meaningless long edges.

We want to regard edges as something separating one surface from another.
Clearly for the highlighted edge in Figure 5.2 (a) this is not the case. This edge
is completely meaningless. Breaking up such an edge at high curvature points
will in most cases break the edge down into meaningful parts. Figure 5.2 (b)
shows another problematic edge. How could we define left/right, inside/outside,
start/end for such an edge? In order to make statements such as “have same
orientation” or “have same colour inside” which are essential for grouping, we
have to be able to define geometric relations and thus need parametric models.



5.4. EXPERIMENTAL SETUP 53

5.4 Experimental setup

We used 280 images of various scenes for the experiments in this chapter. The
scenes fall into five categories: office, bikes, cars, kitchen and traffic signs (four
examples of which are shown in Figure 5.3). The images with overlaid Ground
Truth (GT) ellipses can be seen in appendix A. All images are 640 × 480 pixels,
except where indicated otherwise. We chose the scenes such that they contain
objects which are typically identifiable by their rotational symmetry. As already
indicated by the example images so far, these objects are cups and various kitchen
items as well as wheels of bikes and cars. Ground Truth contains only these objects
and not the other hundreds, thousands or millions of ellipses one might also be
inclined to see, and which would be very tedious to include into Ground Truth.

Note that some GT ellipses are near to impossible to detect (glass in office
scene, glass behind glass in kitchen scene, wheels in many-bikes scene), which
explains the high FN figures in those scenes.

5.5 Detecting Circular Arcs

All subsequent processing is based on edges. So the first step is to detect edges
using a Canny [Can86] edge detector. The implementation we use automatically
sets internal thresholds for hysteresis thresholding and typically extracts reason-
able edges. Often however edges are broken due to poor contrast or occlusion.
Moreover the image is occasionally over-segmented resulting in a vast number of
tiny edges. Subsequent stages of processing must be able to deal with these condi-
tions efficiently. I.e. we do not assume perfect segmentation and make no attempt
to set favourable edge detection parameters for each image. Figure 5.3 shows some
prototypical images from our evaluation database and Figure gives 5.4 the edges
detected in these images Note that depending on the background (e.g. grass and
leaves) quite a lot of edges are generated.

The first step after edge detection is to segment edges into circular arcs. We
tested three different methods. The first, simplest method starts with a minimal
circular arc which is grown until the fit error exceeds a certain threshold. The
second method by Rosin and West [RW95] starts with a maximal arc which is
recursively split to obtain arcs with optimal significance. The third method uses
RANSAC for fitting. Each of these methods uses a different heuristics to find an
optimal segmentation.

In the following we will present the three methods and compare their results on
some prototypical scenes. Please note that we do not seek perfect arc fits, which
are impossible as arcs only approximate ellipses locally. The goal is to approximate
relevant parts of edge segments by arcs such that subsequent grouping of these arcs
will lead to good candidates for actual ellipses.



54 CHAPTER 5. DETECTING ELLIPSES

(a) kitchen (b) office

(c) bike (d) car

Figure 5.3: Four images with elliptical image structures.

5.5.1 Sequential Growing (GROW)

The first method puts emphasis on efficiency rather then accuracy. Therefore we
do not fit a circle through all pixels but only use the minimal set of 3 pixels to
find the circle centre and radius, which is illustrated in Figure 5.5. Given pixels
i to k, find pixel j = (i + k)/2 (Figure 5.5(a)). Then intersect the lines bisecting
lines ij and jk to find the circle centre c and radius (Figure 5.5(b)).

Given an edge with l pixels we want to decompose it into subsets of consecutive
pixels which fit a circular arc reasonably well. We start with i = 0 and k = 2,
i.e. with three points which by definition lie on an arc. Then we increase k,
adjusting the fit until one of the pixels i to k lies outside a fixed distance threshold
dmax of the fitted arc. We then store pixels i to k as an arc, set i = k +1, k = i+2
and repeat. The whole procedure ends when k = l is reached. dmax was set to 1
pixel.

Figure 5.8(a) shows some piece of kitchen equipment with one detected edge
highlighted. The edge follows the top rim of the piece and then picks up part
of an occluding object. Situations like these often arise when the background
is uniformly coloured and object/background edges are strong compared to ob-
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Figure 5.4: Edges detected in the above images.

ject/object edges. Figure 5.8(b) shows the result of method GROW on the edge
highlighted in Figure 5.8(a). Note that arcs a to c approximate the top rim ellipse
reasonably well, while arc d gets distracted by the occluding object and thus points
in the wrong direction.

The above method has the advantage of being truly simple and thus efficient.
However the segmentation result depends on which pixel is labelled as 0, i.e. at
which end the algorithm starts. Moreover a distance threshold is required, which
makes the approach sensitive to scale. The next method alleviates these problems.

5.5.2 Recursive Splitting (SPLIT)

The method by Rosin and West [RW95] is based on recursively splitting a curve,
given as a list of pixels, until a near optimal segmentation into a set of given models
is achieved. A model can be any kind of parametric model. The authors used lines,
circular arcs and elliptical arcs. Also a mixed representation of different models is
possible. We are however at the moment only interested in arcs.

We will first show the idea for the case of lines, illustrated in Figure 5.6. First
the whole list of pixels is approximated by a single line. The list is then split
into two at the point of maximum deviation between the approximation and the
pixel data. This process of approximation and splitting is repeated recursively
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Figure 5.5: Fast arc fitting: Given pixels i to k lie on an arc (a), find center c and
check pixel k + 1 (b).

until lists of size two are obtained. The result of this segmentation process is a
segmentation tree, where each level describes the whole curve by increasingly fine
segmentations and approximations. Now the problem remains to find the best
level of representation. Each node (i.e. fitted line) is assigned a significance value
(the significance measure of Lowe [Low87]). The significance is calculated as the
ratio of the length of the fitted line divided by the maximum deviation of the curve
from the line. The tree is now searched for the best set of lines. Traversing up the
tree from the leaves, a line is retained if it is more significant than all its children,
otherwise it is replaced by its children. After traversing the tree the remaining
lines form the best segmentation of the curve (the circled lines in Figure 5.6(b)).

a

b

c

e

g

fd

(a)

a

b c

d e f g

(b)

Figure 5.6: Recursive fitting of lines and resulting segmentation tree.

Fitting arcs is performed in a two stage process. First the curve is segmented
into lines, as outlined above. Then the sequence of line segments is segmented into
arcs by fitting to line endpoints (see Figure 5.7(a)). Sequences of lines are again
segmented at the line endpoint with maximum deviation and a mixed representa-
tion tree is constructed with arcs (denoted by capital letters) forming nodes and
lines forming the leaves (see Figure 5.7(b)). The tree is again traversed up from
the leaves and features with maximal significance are retained. In Figure 5.7 lines
e and f are more significant than arc C and thus the final segmentation is Bef .
The result of the two stage procedure is a mixed representation of lines and arcs.
Note that for our purposes we only need arcs, therefore all lines are replaced by
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arcs.
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Figure 5.7: Recursive fitting of arcs and resulting segmentation tree.

The above method has a list of desirable properties. First of all it is parameter-
free. Segmentation is purely based on significances, which are calculated automat-
ically. This also makes the method invariant to scale. Moreover the same principle
of approximating and splitting can be applied to any parametric model.

While the segmentation result is invariant with respect to translation, in-plane
rotation and scale, the global shape of the curve does affect the local segmentation
results. For a complicated curve shape the first approximation will be quite mean-
ingless and consequently the first split point. This can lead to a rather sub-optimal
segmentation as can be seen in Figure 5.8(c). Several poor choices of split points
lead to a fragmentation of the edge segment into many very short arcs, which
often point in the wrong direction. Like GROW also SPLIT is distracted by the
occluding object leading arc j to point in the wrong direction.

Remark

Why do we not fit elliptic arcs as the authors propose? After all we eventually
want to detect ellipses, so detecting elliptic arcs seems a natural first step.

The first answer is that the simpler the model the more robust is a local fit.
Note that we often have rather short segments for fitting, which can be too short for
robustly fitting a model with many parameters. Consequently split points (points
of maximum deviation) are chosen arbitrarily and the performance of the method
breaks down. Figure 5.9 (images produced using original software by Rosin and
West [RW95]) shows a detail of the CD player scene of Figure 5.2 with edges
detected by a Canny edge detector (Figure 5.9). Figure 5.9(b) shows shows that
fitted straight lines approximate the physical straight edges reasonably well and (as
is to be expected) split curved edges into many small lines (crosses mark line ends).
Figure 5.9(c) shows how 4 fitted arcs approximate the CD quite well while still
approximating the straight edges with reasonable arc hypotheses. Figure 5.9(d)
shows fitted ellipses. Although the CD actually is an ellipse it is approximated
even worse than in Figure 5.9(c). Moreover very bad approximations are found for
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(a) (b)

(c) (d)

Figure 5.8: Detail of a kitchen scene with one edge segment highlighted (a). Results
of method GROW (b), SPLIT (c) and RANSAC (d).

straight edges. Note also the spurious circle next to the CD, which is the result of
a very poor fit to a short segment.

An obvious solution to the above problem is to segment an edge into straight
lines or arcs, which is also proposed by Rosin and West An edge is initially split up
recursively into straight lines. Then arcs are fitted through endpoints of consecu-
tive lines. Whenever an arc spanning some lines has a higher significance than these
lines, the lines are replaced by the arc. Figure 5.10 (images produced using the
authors original software) shows the problems arising when applying that method
to the kitchen scene of Figure 5.2(b). Some of the edges which make the top rim
of the mugs are approximated satisfactorily by elliptic arcs (Figure 5.10(b)) while
for others the line representation is kept (Figure 5.10(a)). It is not clear when one
or the other representation is chosen. Rosin and West provide a weighting factor
to bias decision in favour of ellipses. Which in turn raises the question of how to
choose this weight. The problem is that significances are not easily comparable
across different geometric models. The main problem however is that this decision
based on local evidence comes too early. For low curvature segments there will
always be ambiguity between straight lines and arcs. Depending on the weight
factor one will tend to make errors in one or the other direction.

This is the reason we restrict fitting to lines and arcs, where the above method
works very well. We then keep both representations. One representing a segment
as a sequence of lines (to be used in Chapter 6 and one representing it as a sequence
of circular arcs. We chose circular arcs as we have seen that elliptic arcs give poor
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(a) (b)

(c) (d)

Figure 5.9: Edge image (a) and fitted straight lines (b), circular arcs (c) and elliptic
arcs (d).

fits for low curvature segments.
The second answer for choosing circular rather than elliptic arcs is that we fit

geometric models to edges in order to make geometric statements, i.e. formulate
geometric relations. Circular arcs allow the same geometric statements as elliptic
arcs (e.g. inside/outside, tangent directions). The (typically, in good situations)
more accurate fit and higher expressiveness of an elliptic arc are outweighed by
the problems with elliptic arcs mentioned above.

5.5.3 RANSAC

Method GROW is affected by the start point, SPLIT by the global shape of the
curve. The last method uses random sampling to avoid such biases. RANSAC
[FB81] is a well known robust estimator and has found many applications in com-
puter vision.

RANSAC proceeds as follows. Repeatedly subsets of the input data are selected
randomly and the model fitting the sample is computed. Then the quality of the



60 CHAPTER 5. DETECTING ELLIPSES

(a) (b)

Figure 5.10: Fitting lines (a) or elliptic arcs (b).

estimation is evaluated on the rest of the input data, typically by counting the
number of inliers, i.e. data points supporting the model. The process is terminated
when the probability of finding a better model becomes lower than a user-defined
probability. RANSAC can deal with any percentage of outliers - it will only require
more samples.

In our case we proceed as follows. Given an edge segment with pixels 0 to l we
repeatedly select 2 random points i and k and calculate a third point j = (i+k)/2.
We then fit a circular arc as in method GROW and calculate the number of inliers,
where we require all inliers to be pairwise connected. Concretely this means that all
points i to k must be inliers and we then extend the range [i, k] in both directions
until an outlier is met, resulting in range [i′, k′]. We draw a fixed number of
n samples and remember the model with the highest number of inliers. As in
method GROW inliers are defined via the distance threshold dmax = 1. We require
a minimum of lmin = 6 inliers, as this is the minimum number of points needed for
ellipse fitting in a later processing step. We then recursively call RANSAC on the
remaining parts [0, i′ − 1] and [k′ + 1, l] of the segment. If no arc could be found
after n trials, we split the edge segment at a random point j′ and recursively call
RANSAC on intervals [0, j′] and [j′ + 1, l].

Note that we use a slightly modified version of RANSAC. In the general case
the number of samples depends on the outlier ratio and the desired probability to
find the optimal solution. We however only draw a small fixed number of samples.
We found that n = 10 is enough. Why is this small number of samples enough? In
the optimal case where the whole edge segment actually is an arc just one sample
is enough. In the general case of a wiggly shaped edge segment as in Figure 5.8(a)
only small parts of the whole segment can be fitted by arcs. In that case if we do
not find a satisfactory model after a few samples, there is no hope anyway that a
single arc will fit the whole edge segment. Therefore we split the problem, knowing
that this will necessarily get us nearer to the solution. I.e. there is no need to try
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image edges GROW SPLIT RANSAC
arcs time [s] arcs time [s] arcs time [s]

kitchen 3614 1772 0.220 1332 0.340 1603 0.260
office 1050 773 0.170 691 0.280 693 0.190
bike 6630 3001 0.280 2311 0.430 2730 0.410
car 2995 1587 0.220 1287 0.320 1453 0.250

avg/img 0.223 0.343 0.278

Table 5.1: Runtimes for fitting circular arcs.

harder to find the optimal solution on the whole set of points.
Figure 5.8(d) shows the result of RANSAC. We see that the top rim ellipse is

approximated very well with only two arcs and is kept separate from the occluding
object. Note that there are small gaps between the arcs: For these short segments
no satisfactory arc could be fitted. This can be considered a drawback of the
method. In our case however later stages of processing are not affected by these
small gaps.

5.5.4 Comparison of Arc Segmentation Methods

Table 5.1 shows the runtimes of the three arc segmentation algorithms for the
images in Figure 5.3. Method GROW is always fastest, followed by RANSAC and
SPLIT. Figure 5.11 shows that all three methods typically produce visually similar
results, especially if segments tend to be short. Difficult cases like Figure 5.8 are
handled better by RANSAC.

(a) edges (b) GROW

(c) SPLIT (d) RANSAC

Figure 5.11: Car details with detected arcs.

It is difficult to properly evaluate segmentation at this low level. Obtaining
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ground truth by labelling all arcs in an image is tedious and moreover what would
we consider a good segmentation? Many small arcs with small fit errors or fewer
but longer arcs with larger fit errors? That ultimately depends on what we want
to do with the segmented arcs. We therefore judge the quality of arc segmentation
by how well it serves the overall goal of ellipse detection. Evaluation of the above
methods on the complete evaluation data set is shown in Figures 5.12 and 5.13,
showing true positive rate (TPR) of detected ellipses and run times for the complete
ellipse detection process respectively. TPRs and run times are median values taken
over all combinations of the other parameters of the complete ellipse detection
process (such as convexity criterion and search method, to be explained later) and
over all images of a scene type (see Section 5.4 for details on the evaluation data
set).
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Figure 5.12: Arc segmentation methods: true positive rate.

We notice that the arc segmentation method plays a minor role in overall
performance and run time. SPLIT typically performs best followed by RANSAC.
GROW is typically fastest again followed by RANSAC. RANSAC therefore is a
good compromise between performance and speed and seems to be the better
choice especially in larger (more detailed) images such as the larger versions of the
office images (“office 1.5” and “office 2.0” in Figure 5.13).
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Figure 5.13: Arc segmentation methods: run times.

5.6 Finding Convex Groups of Arcs

We have now identified strings of edgels which can be approximated by circular
arcs and thus are likely to be part of an ellipse. But circular arcs approximate
ellipses only locally. Moreover edges are sometimes broken due to poor contrast.
Consequently the edge delineating the contour of an elliptical image structure will
be broken up into several circular arcs. The next step thus is to identify groups of
arcs, which form good candidates for ellipses.

5.6.1 Convexity Criteria

A necessary condition for such a group of convex arcs is that they be pairwise
convex (see Figure 5.14). I.e. given two arcs a and b, arc a must lie “inside” arc b
and vice versa.

We test convexity using two simple heuristics. The idea behind the convexity
tests is to define half-planes using the arc tangents at end points and test whether
all points of the other arc lie within these half planes (see Figure 5.15(a)). Let
arc a be defined by start point S, end point E and centre C, where points are
counted counter-clockwise along the arc. Point S and normal vector ~SC define a
half plane. Each point P with ~SC · ~SP > 0 lies “inside”. Likewise with point E
and normal vector ~EC.

Some points might be classified incorrectly, as point R in Figure 5.15(a) and
Figure 5.15(b) shows that this condition becomes increasingly meaningless as the
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Figure 5.14: Convex (a) and non-convex arcs (b).

angular coverage of the arc increases. We therefore add a second test: We require
a point to lie “outside” the angular coverage of the arc. For angular coverage < π
this means ~SC × ~SP > 0 or ~EC × ~EP < 0, where × is the cross product between
2-D vectors, i.e. point P must be left of S or right of E (see Figure 5.15(c)). For

angular coverage ≥ π this means ~SC × ~SP > 0 and ~EC × ~EP < 0, i.e. point P
must be left of S and right of E (see Figure 5.15(d)).

As it is too time consuming to test for every point of arc b whether it lies
“inside” of arc a we just test two points. Testing the end points of b, which might
be a first choice, leads to problems as in Figure 5.16, a detail of Figure 5.3(b),
which shows the arcs detected on the top rim of the dark blue mug. Here two two
good arcs a and b are mis-classified as non-convex because end point P of arc b lies
“outside” of arc a. This typically happens if the object of revolution has rounded
edges, as exemplified by the mug in Figure 5.16. Then due to changing lighting
conditions around the rim several slightly offset arcs are detected. These arcs are
strictly speaking not convex but they nonetheless are part of the same elliptical
structure and should thus be grouped.

One way to overcome this problem is to explicitly allow for a small offset δ by
changing the criterion to ~SC · ~SP > −δ, where δ would e.g. be 2 pixels. Such
a threshold however is problematic. The offset between two arcs in the image
depends on several factors: the local structure of the object of revolution (e.g. the
thickness of the rim), the lighting conditions (highlights and shadows along the
contour) and image resolution. Introducing a further parameter δ and setting it
to an arbitrary value therefore is not a good solution.

The actual problem is of course that the end points are most sensitive to small
offsets. We therefore choose points further away from the ends, namely at one
third and two thirds of arc length. This will allow small overlaps and thus makes
the test more robust.

An even “weaker” test is to use only the half-plane defined by mid point M
(see Figure 5.15(e). This will of course admit very non-convex cases as in Figure
5.15(f) but makes sure that no possibly convex pair of arcs is missed.
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Figure 5.15: Convexity criteria.

Figure 5.16: Problem with offset arcs.

5.6.2 Comparison of Convexity Criteria

Figure 5.17 shows the TPR of ellipse detection using the weak and strong convex-
ity criterion. Again values are medians taken over all combinations of the other
parameters of the complete ellipse detection process (such as arc segmentation
method and search method) and over all images of a scene type. We see that
the weak criterion consistently achieves a higher performance because the risk of
rejecting a “good” set of arcs as non-convex is smaller. This comes with a price
however. Figure 5.18 shows the median and maximum runtimes. Ellipse detection
using the strong convexity criterion is always faster, because fewer convex groups
of arcs are formed (see next section). The difference becomes especially apparent
in the maximum runtime, which can grow substantially using the weak criterion.
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Figure 5.17: Convexity criteria: true positive rate.

Note for example the maximum runtime for the “bikes” scenes, where the rims
and tyres typically form many concentric ellipses. Here the weak criterion allows
creation of a vast number of convex groups. We can see a runtime/TPR trade-off:
better TPR has to be paid for by higher runtimes.

5.6.3 Identifying Convex Arcs - Image Space Indexing

Now that we have a robust convexity criterion the problem remains to identify
those arcs which should be tested for convexity. Testing each arc against each
other arc results in a runtime complexity of O(n2), where n is the number of arcs,
which is prohibitive for large numbers of arcs. We note that most arcs checked
are non-convex anyway. Moreover typically only close arcs are of interest and will
eventually result in useful ellipse hypotheses.

Looking at the examples of convex arcs given so far we notice that for a pair of
arcs a and b which are neighbours on the contour of an ellipse (and it is only those
that we are interested in) at least one of the following situations will occur: Tan-
gents of opposing ends will intersect (Figure 5.19(a)) or (for parallel tangents and
offset arcs) tangents and radial lines will intersect (Figure 5.19(b)). We therefore
construct four search lines for each arc: Tangents ts and te at the start and end
point and radial lines rs and re, where again start and end are counted counter-
clockwise along the arc (see Figure 5.19(c)). To identify pairs of arcs for further
convexity testing we now look at intersections between the search lines of different
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Figure 5.18: Convexity criteria: average and maximum run times.

arcs.
Finding intersections can be realised very efficiently using indexing. Typically

indexing (often the term voting is used synonymously) is performed in the param-
eter space of a model which is to be fitted to a set of data points, as e.g. in the
classical Hough transform. In contrast we perform indexing directly in the image
space, i.e. the bins are the image pixels themselves. For each arc we draw the
search lines ts, te, rs and re into the image, pixel by pixel using the well-known
Bresenham line drawing algorithm. The “colour” of a pixel is the identification
number of the originating arc plus an identifier denoting the type of line (tangen-
tial or radial) and the end (start or end). In that sense each search line casts votes
for intersections. Whenever we colour an already coloured pixel this means that
two arcs vote for the same intersection.

a

b

(a) Two tangents intersect

a

b

(b) Tangent and radial line in-
tersect
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Figure 5.19: Relations between neighbouring arcs.

If we found such an intersection we first perform a fast “daisy chain” convexity
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test, which ensures that the correct ends of two arcs meet: Only an intersection
between a start and an end search line can lead to a pair of convex arcs (see Figure
5.20). This test will reject many intersections which would not pass the convexity
test anyway.

If a pair of arcs passes all tests a link will be created between these arcs and
stored for later stages of processing.
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(a) Possibly convex arcs
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(b) Arcs can not be convex

Figure 5.20: Daisy chain constraint.

Parameters

The only parameter to choose is the length of the search lines. It should be large
enough to capture all promising arcs in the neighbourhood of an arc. By promising
we mean those arcs which are likely to stem from the same ellipse. Setting the
length to infinity would just again test each arc against each other, because the
search lines of any pair of arcs intersect somewhere, making the whole procedure
pointless. Practically of course line length is limited by the image border. Still,
drawing lines of maximal length will waste a lot of effort into testing many small
arcs which lie far apart and have a very low likelihood of eventually forming an
ellipse.

Therefore search lines should be limited to a “useful” length. To be invariant
against scale line lengths for each arc are set to s = min(r, l), where r is the arc
radius and l is the arc length.

Figure 5.21(a) shows a selected arc of Figure 5.3(a) with search lines of length s.
Figure 5.21(b) shows all convex arcs found using the above procedure and search
lines of length s, while Figure 5.21(c) shows all convex arcs found using search
lines of maximal length (drawn to image border). Considering the selected arc we
want to find the top rim ellipse of the glass, we see that maximally extending the
search lines does not give us any new promising arcs and thus makes little sense.
Figure 5.21(d) shows all search lines of length s in the image. Note that showing
all search lines of maximal length just results in a black image as each pixel is
coloured several times.

We will see later in Chapter 6 how to get rid of this parameter as well.
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(a) (b)

(c) (d)

Figure 5.21: Search lines of length s = min(r, l) (a), convex arcs found using search
lines of length s (b) and using search lines of maximal length (c). All search lines
of length s (d).

Runtime Complexity

The complete algorithm for finding convex pairs of arcs is listed in Figure 5.22.
We see that we have to perform in the average 4savgn pixel operations, where n is
the number of arcs and savg the average length of a search line, which can never
exceed the image size and can thus be regarded as a fixed constant. The runtime
complexity is therefore O(n).

Note that this approach does of course not find all pairs of convex arcs, as
opposed to checking all pairs in quadratic runtime. But that is exactly what we
want: a heuristics to efficiently find only promising pairs. (Setting the length of
search lines to infinity we would indeed find all pairs (see Figure 5.21(c)) resulting
again in a quadratic complexity.)

Figures 5.23 and 5.24 show the runtimes for various images with different
numbers of arcs (the example images of Figure 5.3 are indicated). Compare the
quadratic runtime of testing all arc pairs, corresponding to Image Space Indexing
with infinitely long search lines (Figure 5.23) versus the linear runtime of Image
Space Indexing with search lines of length s (Figure 5.24). Note that linearity of
runtime in the latter case is maintained for a wide range of arc numbers.
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FindConvexPairs(n)

for i = 1 to n

DrawSearchLine(i, TANG_START)

DrawSearchLine(i, TANG_END)

DrawSearchLine(i, RAD_START)

DrawSearchLine(i, RAD_END)

DrawSearchLine(id, end)

for each pixel (x,y) on line

if Free(x,y)

SetPixel(x, y, id, end)

else

if End(x,y) != end

if Convex(Id(x,y), id)

CreateJunction(Id(x,y), id)

Figure 5.22: Finding convex pairs of arcs

A Small Remark on Voting The (Randomised) Hough Transforms (RHT) of
[YIK89, McL98] collects evidence for ellipses before actual ellipse fitting. (R)HT
is a voting scheme in parameter space, accumulating evidence globally from the
whole image. The voting points are totally unrelated (hence randomised), except
for the common geometric model (the ellipse). I.e. nothing can be said about those
points without a specific model. Moreover (R)HT has problems with noisy images.
The globality of the accumulation means that distant (in terms of image distance)
noise will affect the solution.

Our method represents a voting in image space, collecting evidence locally.
Voting arcs are related by Gestalt principles expressing physical properties of ob-
jects (e.g. locally smooth surfaces). They are related before applying the specific
geometric model (ellipse). Their relatedness is of a more general form. The per-
ceptual grouping is valid in any case, with or without a specific geometric model.

5.6.4 Growing Convex Groups

The above section presented a robust and efficient way to identify convex pairs
of arcs in images possibly containing large amounts of clutter. Now that we have
identified arc pairs we can grow groups of pairwise convex arcs which will then
serve as candidates for ellipses. Starting from a group which initially consists of
only one arc we extend the group in both directions until the ends meet or no more
arc can be added without violating the convexity of the group.

Every arc typically has several convex neighbours at each end (see Figure
5.21(b)). So starting from an initial arc we can form many convex groups. Finding
the optimal group is a combinatorial search problem. We evaluated two different
search procedures: exhaustive search and greedy search. Moreover for the greedy
search we evaluated three different heuristic functions.
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Figure 5.23: Identifying pairs of arcs for various images with different numbers
of arcs (including example images of Figure 5.3): Quadratic runtime for infinite
search lines (i.e. testing all arc pairs).

Exhaustive Search

Given a group initially consisting of only one arc exhaustive search creates an
extended group for each convex neighbour of both ends of the current group and
recursively again extends each of these groups. A group is finished if either the
ends meet or no more arc can be added without violating the convexity of the
group

This seems like a bad idea. Say each arc has 3 neighbours on each side. Extend-
ing the initial arc m times will result in 3m groups, i.e. a combinatorial explosion.
Luckily the mean number of neighbours per arc end is relatively small. The mean
over the images in Figure 5.3 was 0.66. Most of the very short arcs which make up
the majority find no neighbour at all. Still the maximum number of neighbours per
arc end was 10, which could very well lead to combinatorial explosion. However
the convexity constraint increasingly limits the number of admissible neighbours
as the group grows. Each arc in the group must be convex with each other arc.
So the more a growing group reaches closure the fewer new arcs are admissible.

Figure 5.25(a) shows a detail of Figure 5.3(d) with all arcs detected. Figure
5.25(b) shows all arcs explored during exhaustive search starting form the indicated
arc. We see that actually only a fairly manageable set of arcs was explored (9 in
this case) and 17 groups were formed starting from the indicated initial arc. A
total of 2351 groups were formed for the whole image.

Greedy Search

Greedy search does not explore all neighbours of an arc when extending the group,
but only the best neighbour according to some heuristic function. Given a group
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Figure 5.24: Identifying pairs of arcs for various images with different numbers of
arcs (including example images of Figure 5.3): Linear runtime for search lines of
length s.

(a) (b) (c)

Figure 5.25: Arcs explored by exhaustive search (b) and greedy search (c) starting
at the indicated arc.

initially consisting of only one arc we extend the group with the best convex
neighbour of both ends until either the ends meet or no more arc can be added
without violating the convexity of the group. For defining the best neighbour we
evaluated three different heuristic functions.

1. Co-curvilinearity of arcs.

2. Constraint on ellipse centre.

3. Quality of ellipse fit.

Moreover a group is only extended if its quality improves. We don’t want to spoil
a good group by adding a background arc which happens to be convex with the
current group. For measuring group quality we also use the above heuristics.
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Figure 5.25(c) shows all arcs explored during greedy search (using the co-
curvilinearity heuristics explained below) starting from the indicated arc. In that
case 4 arcs were explored to find the best group (note that the two arcs left of the
indicated arc are so close as to appear as one arc). A total of 1325 groups were
formed for the whole image.

Co-curvilinearity of arcs Given the list of all convex neighbours at both ends
of the current group the first heuristic function selects the neighbour which best
satisfies a co-curvilinearity criterion with the respective end of the group. Proxim-
ity and direction of endpoints as well as angular difference between tangents (see
Figure 5.26) are used to define a significance measure σC for the co-curvilinearity
between an arc and its neighbour (see Section 6.3 for details on the calculation of
significances). The most significant co-curvilinearity is selected.

PrC = 1− e−2nfproxfangle (5.1)

σC = − log PrC (5.2)

ϕ θ

t

tb

a

b r
a

Figure 5.26: Calculating co-curvilinearity of arcs.

Constraint on ellipse centre. Co-curvilinearity only considers the ends of a
group and is thus a rather local criterion. The second heuristic function considers
the whole group. It extends a given group of n arcs with that neighbouring arc
which results in the best extended group of n + 1 arcs. The quality of a group is
defined by how good the arcs in the group agree over the ellipse centre. Concretely,
several sets of arcs are selected from the group and the ellipse centre is estimated
for each set. If the arcs are indeed part of the same ellipse, the estimated centres
should coincide or at least lie close.

The centre of an ellipse can be found using a feature of ellipse geometry noted
by Yuen et al. [YIK89] (see Figure 5.27(a)). Take two points on an ellipse and find
their midpoint M and the intersection of their tangents T . Then the ellipse centre
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must lie on the line TM . Given three points P , Q, R on an ellipse one can thus
estimate the ellipse centre C (see Figure 5.27(b)).

Q

T
P

M

(a)

Q

T
P

M

R

U

N

C

(b)

Figure 5.27: Ellipse centre constraint.

If however the three points cover only a small angle on the ellipse the tangents
will intersect at a very obtuse angle, resulting in an unstable intersection. Moreover
the distance TM in such a case is very small, amplifying the error introduced by
the obtuse intersection. An ellipse centre estimated from such a line TM will be
fairly useless.

To cope with these cases we introduce weighting factors for intersections

wab = |da × db| (5.3)

where × is the cross product between 2-D vectors and da, db are unit direction
vectors of the two lines to intersect.

Moreover we try to choose points from the group of arcs such that they are
far apart, i.e. cover a large angle. For each arc consisting of m pixels we select 2
pixels m/3 and 2m/3 and estimate tangents to the original Canny edge segment
at these points. So for n arcs in a group we will have k = 2n points, each arc
creates 2 centre points. We now estimate k ellipse centres from points i, i + k/3
and i + 2k/3, where i = 1..k, and we wrap around at the end.

Each estimated ellipse centre Ci is weighted with the product

wi = wPQwQRwMN (5.4)

where wPQ is the weighting factor from tangents to P and Q, wQR is the weighting
factor from tangents to Q and R and wMN is the weighting factor from lines
through M and N (see Figure 5.27(b)).

We then calculate the weighted mean of all k ellipse centres.

C̄ =
k∑

i=1

wiCi (5.5)
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De-weighting unstable intersections using the above weighting factors makes the
estimation of the ellipse centre significantly more robust. Figure 5.28(a) shows
the individual estimated ellipse centres and the weighted mean. Figure 5.28(b)
shows how the arithmetic mean (without weights) is strongly affected by outliers
resulting from unstable intersections.

(a) (b)

Figure 5.28: Ellipse centre estimated from a group of arcs using weighted mean
(a) and arithmetic mean (b).

What remains to be done is to get a measure of the compactness of the “point
cloud” around the mean. We could just measure the sum of weighted differences,
using again the above weights. To be consistent with the rest of this work how-
ever we again use the non-accidentalness principle and the assumption that centre
points are distributed following a Poisson process (see Chapter 4).

The parameter λ of the Poisson process is given by the density of ellipse centres
d = K/A, where K is the total number of estimated centres Ci and A the image
area. Note that we can not know K while we are still growing groups so we
approximate K by K ′ = 2N , where N is the total number of arcs. Here we
assume that on the average each arc is part of one group, and each arc creates 2
centre points (see above). This approximation typically comes close to within 5%
of the true K. (Note that of course estimated centres might actually lie outside
the image. This does not affect the above numbers if we consider an infinite image
plane. Within each area A of that infinite image plane K ′ centre points are created
lying anywhere in the image plane. This means that of course on the average within
each area A there are K ′ centre points.)

We now sort points Ci in order of increasing distance ri from C̄ and calculate
the probability Pr(X ≥ i) that at least i points lie within an area of size Ai = πr2

i

around C̄, for i ranging from 1 to k. That is one minus the probability that at most
i− 1 points lie in that area, which is given by the CDF of the Poisson distribution
with parameter α = λAi. As usual the significance is taken to be the negative
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log-likelihood.

Pα(X ≤ i− 1) =
i−1∑
j=0

e−α αj

j!
(5.6)

Pr(X ≥ i) = 1− Pα(X ≤ i− 1) (5.7)

σi = − log Pr(X ≥ i) (5.8)

A high number of points within a small area will result in a high significance.
Outliers (large r and thus large Ai) will result in a low significance. The significance
of a group of convex arcs is the maximum

σ = max
i

σi (5.9)

I.e. we find that set of points around C̄ which is least likely to occur randomly
and is thus most significant. The significance of that set of points defines the
significance of the group of arcs. Figure 5.29 shows two examples of convex arc
groups with shaded circles indicating the size of the area considered significant.

(a) (b)

Figure 5.29: Significant clusters of estimated ellipse centre points.

Quality of ellipse fit. The last heuristic uses the ellipse fit itself. Even before
we have a complete group of convex arcs we can fit ellipses to partially completed
groups. We extend a given group of n arcs with that neighbouring arc which
results in the best ellipse fit through the extended group of n + 1 arcs. Fit quality
is measured by relative support (to be explained in the next section).

5.6.5 Comparison of Growing Methods

Figure 5.30 shows the true positive rates and Figure 5.31 the average and maximum
runtimes of different methods. Again we see the runtime/TPR trade-off.

Figure 5.32 finally shows TPR vs. runtime for all combinations of methods (not
distinguished in the plot) applied to different sizes of the office scene. We can see
that generally TPR increases with image size, as does of course runtime, indicating
again a runtime/TPR trade-off.
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Figure 5.30: Search methods: true positive rate.

5.7 Fitting Ellipses

What we have done so far is to select groups of edgels from the image such that
they are likely to belong to the same elliptical structure. What remains to be done
is estimating the actual ellipse parameters. Because of the grouping of edgels so
far we can consider all edgels to be inliers. Therefore the fitting method need not
be robust with respect to outliers and we can use any least squares fitting method.
We chose the direct least squares B2AC algorithm by [FPF99].

5.7.1 The B2AC Algorithm

Given data points (xi, yi), i = 1..N we want to find the set of ellipse parameters
a = [a b c d e f ]T for the ellipse given by the general conic equation

F (a;x) = a.x = ax2 + bxy + cy2 + dx + ey + f = 0 (5.10)

where x = [x2 xy y2 x y 1]T minimising the sum of squared algebraic distances

DA =
N∑

i=1

F (a;xi)
2 (5.11)

In order to avoid the trivial solution a = 0 and to enforce that the estimated conic
is an ellipse B2AC introduces the constraint

4ac− b2 = 1 (5.12)
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Figure 5.31: Search methods: average and maximum run times.

The system of simultaneous equations to solve becomes

Sa = λCa (5.13)

aT Ca = 1 (5.14)

where S is the scatter matrix DT D and D the design matrix D = [x1 x2 · · · xn]T .
C is the constraint matrix and λ a Lagrange multiplier. The solution is given as

â0 = µ0u0 (5.15)

µ0 =

√
1

uT
0 Su0

(5.16)

where u0 is the single positive generalised eigenvector of 5.15.
B2AC has been shown to be superior to iterative and non ellipse-specific meth-

ods and is robust to Gaussian noise. As noted above we have no non-Gaussian
noise as we eliminated outlier edgels in preceding grouping steps.

5.7.2 Assessing Ellipse Quality

Figure 5.33 shows the ellipses fitted to the edgels of convex arc groups for the
images of Figure 5.3. For this and all subsequent experiments in this section
RANSAC was used for arc segmentation, the strong convexity criterion, and greedy
search with ellipse criterion for convex grouping. Arguably the results look rather
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Figure 5.32: Runtimes vs. true positive rate for various image sizes of office scene.

Figure 5.33: All detected ellipses.

pathetic: Some of the ground truth ellipses are missed while dozens of very poor
ellipses populate the image. What happened?

One problem remains (or actually only becomes more apparent now): How
do we judge the quality of the detected ellipses? Note that we never thresholded
away any result, so we kept dragging along a lot of low quality “junk”: Arcs that
are actually almost straight lines or just tiny segments; convex groups of arcs
distributed over the whole image coincidentally being pairwise convex; ellipses
which happen to get support from some pixels anywhere in the image.

Figure 5.34 shows the results of Figure 5.33 after applying various thresholds
regarding size, quality of fit or support. The results certainly look nicer but of
course the thresholds only work for a particular setting (image size, expected size
and number of ellipses etc.). So by applying cleverly chosen thresholds, derived
from the user’s constraints on what is an acceptable ellipse, one can “clean” the
results. But this is certainly no general solution.

Keep in mind that we avoided thresholds for good reasons: An ellipse with low
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support but a very low fit error might very well be the only un-occluded part of a
wheel. On the other hand the fit error can be rather high if the circular structure
does not project to a perfect ellipse (typically for rounded edges like mug rims or
tyres). Enforcing lower thresholds on any value (support, fit error) will necessarily
throw away some correct ellipses.

Figure 5.34: “Good” ellipses.

Therefore all we do is rank the ellipses according to some quality criterion. We
evaluated four different criteria for assessing the quality of detected ellipses:

1. Weighed absolute support

2. Weighted relative support

3. Mean fit error

4. Significance

Masking Once we have a quality criterion we can employ masking to significantly
reduce the number of ellipse hypotheses. Typically there will be many partly
overlapping ellipse hypotheses around strong elliptical structures such as the wheels
in the bike scene. Each arc however can only belong to one ellipse. Therefore if
two ellipses claim the same arc, one of them must necessarily be wrong. Using
the quality criterion we can decide which hypothesis is more likely to be correct.
I.e. the stronger ellipse hypothesis will mask the weaker one. This is achieved
easily be traversing the list of ranked hypotheses starting with the strongest and
keeping a list of already claimed arcs.

Weighted Absolute Support The absolute support is simply the number of
edgels lying within a distance threshold of the ellipse. Again we choose a distance
threshold dmax = 1. Note that the actual value of dmax is not that important. A
higher or lower value will increase or decrease the support values for all ellipses
alike. And as we are only interested in the relative ranking of ellipses, the actual
values of support are not of interest.

Just counting the number of supporting edgels however would give high support
for any large randomly drawn ellipse which happens to cut through an area of high
edge density. We therefore weight the contribution of each edgel by the relative
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support of its owning arc. I.e. the contribution of each edgel of an arc a is weighted
by a factor sa/na, where sa is the number of supporting edgels on a and na the
total number of edgels on a. This factor de-weights edgels coming from poor arcs.
I.e. if an arc intersects an ellipse more or less accidentally as in Figure 5.35(a),
rather than supports it (Figure 5.35(b)) its contributing edgels will be weighted
low. Whereas the same number of pixels coming from (shorter) supporting arcs
(Figure 5.35(c)) will get weights close to 1.

(a) (b) (c)

Figure 5.35: Accidental (a) and supporting arcs (b, c).

The top row of Figure 5.36 shows the 10 best ellipses in each image according
to absolute support, while in the bottom row the masked ellipses are removed. We
see that this criterion obviously favours large ellipses. While it nicely picks the
two wheels in the bike scene, it is less successful in the other scenes, e.g. the office
and car scene. Any long curved edge can give rise to a “hallucinated” ellipse.

Figure 5.36: 10 best ellipses according to absolute support without (top) and with
masking (bottom).

We note that a major part of these typically very elongated ellipses has no
support at all. This leads to the notion of relative support.

Weighted Relative Support Weighted relative support is defined as weighted
absolute support divided by ellipse circumference. I.e. the more complete an ellipse
the higher its rank.
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Figure 5.37 shows again the 10 best ellipses in each image according to relative
support (note that obviously no masking takes place here). We see that many
small speckles which happen to be circular or elliptic (like the leaves in the bike
image or the texture on the kitchen table) will get a high ranking, as they form
small ellipses with a few pixels but almost 100% support. Large, partly occluded
ellipses or “difficult” fragmented ellipses e.g. on the rims of glasses will only get
weak support. For example the rear wheel of the bike only gets rank 41 of 951
with a relative support of 86%. And the cooking spoon in the kitchen scene ranks
at place 286 of 595 with a rather low relative support of 46% as a result of partial
occlusion.

Figure 5.37: 10 best ellipses according to relative support.

Mean Fit Error Another criterion which does not take into account the absolute
or relative number of supporting edgels is the mean fit error d̄ = 1

N

∑N
i=1 di, where

di is the geometric distance of edgel i to the ellipse.

Figure 5.38: 10 best ellipses according to mean fit error.

Figure 5.38 shows the 10 best ellipses in each image according to mean fit error.
We see that the results are very similar to Figure 5.37. Tiny ellipses fitted to a
small number of edgels typically have a lower fit error than larger “real” ellipses.
For example the rear wheel of the bike is ranked as number 138 of 951 with a mean
fit error of 0.240, where the smallest fit error in the image is 0.085 And the rear
wheel of the car is number 102 of 529 with a mean fit error of 0.269, where the
smallest fit error is of 0.095.

Significance The next criterion aims to combine absolute and relative number
of supporting edgels and is given by the significance σ of ellipse support. We are
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interested in the significance of the event that at least k edgels lie on an ellipse of
circumference l, which is given (see Section 4.4):

Pr(X ≥ k) = 1−Bl,p(k − 1) (5.17)

σ = − log Pr(X ≥ k) (5.18)

where p = E
N

is the probability of a pixel being an edgel, E is the number of edgels
and N the total number of pixels in the image.

Figure 5.39: 10 best ellipses according to significance without (top) and with
masking (bottom).

Figure 5.39 again shows the 10 best ellipses in each image according to signifi-
cance. We see that we do not get bogged down by the small (but well supported)
ellipses (such as relative support and fit error) and successfully pick significantly
large ellipses, while not hallucinating arbitrarily large ellipses (such as absolute
support).

The reason can be seen in table 5.2. Support k = 10 for a circumference
(length) of l = 20 is a better relative (though same absolute) support than for
l = 40; accordingly the former significance is higher. And while k = 10, l = 20
and k = 20, l = 40 correspond to the same relative support, the latter has higher
absolute support (corresponds to a bigger ellipse), and accordingly gets a higher
significance.

5.8 Discussion

It shows that the most important aspect of the ellipse detection approach presented
in this chapter is the perceptual grouping per se, i.e. that arcs are grouped into
convex groups. The exact segmentation of arcs, whether the grouping is done
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k l abs.sup. rel.sup σ
10 20 10 50% 21.343
10 40 10 25% 12.745
20 40 20 50% 38.238

Table 5.2: Different significances σ for k pixels supporting an ellipse of length l.

exhaustively or greedily and the type of heuristics for greedy search do not make
a very big difference. There is always a runtime/TPR trade-off.

The evaluations of convexity criteria, search strategies and image sizes show
basically:

• Look harder and You will see more.

• Look closer and You will see more.

• Look longer and You will see more.

In the next chapter we will see how we can collapse this all into one parameter:
runtime.



Chapter 6

Incremental Grouping of Lines
into Convex Polygons

Many man-made objects or parts of objects can be described by convex contours.
Moreover convexity is preserved under perspective transformation. This makes
detection of convex contours an important issue for computer vision. In simple
cases with uniformly coloured object surfaces and uniform background, an edge
segmenter might already find complete contours of surfaces and we are done. Most
often however contours are incomplete due to locally poor contrast, textured sur-
faces, cluttered background or simply partial occlusions by other objects. More-
over, depending on the local contrast the edge segmenter might “follow” the wrong
edge, as it works on a strictly local level and has no notion of contours or surfaces.
It is therefore common first to break edges into “meaningful” segments at curva-
ture maxima, and represent these segments by some parametric model such as a
line, circular or elliptic arc. Then these segments, which are parts of contours, are
grouped into complete contours. This grouping will follow Gestalt principles such
as proximity and good continuation.

We will start with reviewing related work in Section 6.1 and give an overview of
the proposed method in Section 6.2. Section 6.3 introduces the types of junctions
we are going to use and the calculation of their significances. Section 6.4 intro-
duces Image Space Indexing as an efficient way to identify junctions. Section 6.5
highlights the problems caused by setting fixed thresholds and Section 6.6 shows
how those thresholds can be avoided using incremental, anytime processing. In
Section 6.7 finally closed convex contours are found via closed path search on a
graph defined by lines and junctions. Section 6.8 shows results for amodal com-
pletion and how attentional mechanisms can be incorporated into the proposed
approach. Section 6.9 finally concludes with a discussion.
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6.1 State of the Art

Detection of closed convex contours is a well-studied problem in computer vision
and perceptual organisation. Jacobs [Jac95] recognises perceptual grouping as
an important step for figure-ground segmentation and recognition and presents
a system for robust and efficient detection of convex groups of lines. He also
shows its applicability in an indexing based 3D object recognition system. The
approach can deal with moderate amounts of clutter and occlusion. It depends
however on appropriate settings of various thresholds in order to cope with the
O(n2 log n + mn) runtime complexity, where n is the number of lines and m the
number of groups to detect.

Huttenlocher and Wayner [HW91] present a system for finding convex line
groupings which avoids thresholds in defining neighbourhood relations. Given
n segmented lines they perform a constrained Delaunay triangulation in time
O(n log n), where original image lines are required to be part of the triangula-
tion. Thus it is ensured that two end points which are separated by an image
line cannot be neighbours. The (non-image) lines of the triangulation then define
scale-invariant neighbourhoods between line endpoints, which are used to build a
planar graph, the local neighbourhood graph. Lines form nodes and neighbour-
hoods form graph edges, typically several per node, where edges are divided into
two groups, those linking the start or end point of a line. To capture the notion
of convexity, cost functions over pairs of lines are introduced. They assign an in-
finite value for counter-clockwise turning angles and a value measuring closeness
or straightness for clockwise angles (or the other way round when intending to
find counter-clockwise closures). The local convexity graph (LCG) is then con-
structed from the local neighbourhood graph by taking only the least cost edges.
A valid convex path through the LCG is defined by an alternating sequence of
edges, i.e. when entering a node through a start edge it must leave via an end edge
and vice versa. When such a valid path closes back on itself, it forms a convex
polygon. Choosing a single best locally convex edge for each image end point re-
stricts the number of possible convex polygonal chains and thus runtime to O(n).
However this does come at a cost. Selecting only the best neighbour constitutes an
early, purely local pruning of alternative hypotheses. I.e. clutter can easily “steal”
the neighbourhood from the actual (desired) neighbour. Moreover the triangula-
tion defining the neighbourhoods explicitly disallows neighbourhoods across image
lines, so gaps produced by partial occlusions can not be bridged (amodal comple-
tion). Furthermore a couple of thresholds need to be introduced to cope with
quantisation noise. A further angular threshold is used to define nearly collinear
relations, which satisfy clockwise as well as counter-clockwise cost functions. Over-
all the authors successfully attacked the problem of runtime-complexity and overly
depending on thresholds.

Early work on perceptual grouping by Lowe [Low87] already addressed the
problem of quadratic run-time complexity (in the number of features) using a grid
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overlaid on the image indexed by line endpoints. A typical problem of indexing
is the appropriate choice of bin size. Sarkar and Boyer [SB94] use further curve
parameters to construct index spaces of higher-parametric models and also ad-
dressed the problem of bin size and indices close to bin boundaries. Ackermann
et al. [AMP+97] use areas of perceptual attentiveness in the earlier stages of their
MRF-based grouping approach, which they learn from hand-labelled training sets.
These areas however still serve as hard thresholds, no grouping candidates outside
an attentive area are considered, which still leaves the system brittle. A small
increase in the gap size between two line endpoints will prevent the formation of
a grouping hypothesis. Guy and Medioni [GM96] avoid thresholds and use an in-
finitely large extension field. Edgels and segment endpoints vote with directional
vectors weighted by the length of segments and decreasing with distance. Run-
time complexity however is O(k2), where k is the number of edgels. Casadei and
Mitter [CM98] present an elaborate system for contour estimation and introduce
emission points at curvature maxima and endpoints. Search lines for finding good
contour continuations are “emitted” from these points. Their system however too
has problems with thresholds. Powerful region-based segmentation schemes such
as work by Malik et al. [MBLS01] avoid contour grouping by always finding closed
contours in the first place. Naturally however these systems can not deal with
amodal completion of contours.

Even if runtime complexity is addressed successfully, most systems process the
input image in one pass and limit the number of generated hypotheses by setting
some saliency threshold. An early system by Sha’ashua and Ullman [SU88, US88]
finds image curves that will optimise a cost function based on total curvature and
number and size of gaps in a curve. They use an iterative dynamic programming
approach in a network of kn2 nodes, where k is the number of edge orientations and
n × n the image size. They show impressive results on sometimes very cluttered
natural images. Furthermore their approach has a nice anytime quality: processing
can be stopped after any number N of steps (having performed O(Nkn2) compu-
tations) to find the smoothest curves of length N . Each pixel at each orientation
then is assigned the saliency value of the length N curve starting from it. Even
though N might be much smaller than the number of pixels in a contour, the
saliency measure of length N curves often already picks out good salient contours.
The system does not require parameters apart from the choice of discretisation k
of angles. Although the optimisation is global (for the curve) decisions are rather
local. In order to find e.g. the most salient curve in the image, one starts with the
most salient node and follows along its most salient neighbour and so on. The sys-
tem does not handle multiple hypotheses in cases where it might not be clear which
neighbour to follow, but always (locally) chooses the best. And, depending on the
structures in the scene, it is not always the smoothest edges which corresponds to
an object contour.

Jacot-Descombes and Pun [JDP97] present a system for asynchronous percep-
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tual grouping of edges. They start with Canny-segmented edges on which they
perform smoothing at different scales. Edges are broken up into smooth inter-
vals using a (scale-invariant) threshold. A line or circular arc is then fitted to
each interval. These intervals with their extremities (= end points) form the ba-
sis for subsequent steps. Saliency of intervals is calculated based on smoothness
and length, the relative contributions of which are weighted with an arbitrary
weighting factor (note that Sha’ashua and Ullman use a parameter-free saliency
measure expressed as a cost function). The intervals are then ordered by their
saliencies and the resulting ordered list called a data flow, and traversed in order
of decreasing saliency. This is the asynchronous aspect of their approach. The
current interval is checked whether it is neighbour to a preceding interval. If yes,
it is checked whether it fulfils a set of geometrical relations with the grouping of
its neighbour. If it does, it is added to the group, else it is discarded. If the
current interval does not fall into the neighbourhood of a preceding interval, it
forms a new group. The (very elaborately described) geometrical relationships
are collinearity, curvilinearity and “local” parallelity (claiming that checking for
“global” parallelity would be too costly - where one would actually expect the
asynchronicity to handle just that problem). The neighbourhood as well as the
acceptance of geometrical relations are based on various ad-hoc parameters and
“decision functions”. Accepted geometrical relations form links (between two in-
tervals), one or more links then form junctions (between any number of links).
A further ad-hoc measure (with accompanying threshold) finally captures percep-
tual relevance of junctions. Junctions (as nodes) and intervals (as edges) then
form a rigid graph: edges are ordered according to the orientation when leaving
a mode. The rigid graph thus captures morphology as well as topology, which
allows subsequent search for minimal cycles to be linear in the number of nodes.
This search handles convex and non-convex cycles and also finds the “hull” of a
set of connected minimal cycles. Cycles are then labelled according to an alphabet
of known structures (such as quadrilateral, parallelogram, half-square, cone etc.),
which is indexed by interval curvatures. This last step requires quadratic runtime,
while everything so far was linear. Note that the cycle search only happens after
the asynchronous grouping process, i.e. after the complete graph has been built.
So their system is not actually anytime. Although the rigid graph formulation
and cycle search are elegant, the heavy dependence on thresholds throughout the
system makes the approach very brittle, as shown by the authors themselves when
they set a different neighbourhood threshold for each test image. The authors
claim their system to depend on only two parameters when in fact it depends on
no less than 23, not including Canny parameters and filter widths for smoothing.
Overall, the authors do not make use of the potential power of anytime-ness, the
purpose of which should be foremost to avoid the need for thresholds in the first
place.

Mahamud et al. [MWTX03] present an interesting system for segmenting salient
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smooth closed contours. Contrary to most other approaches their saliency mea-
sure explicitly takes into account the global property of closure of contours. Rather
than using only local geometric properties between a pair of edges their saliency
measure gives the probability that a closed contour joins a pair of edges. Proximity
and good continuation are modelled as a distribution of smooth curves traced by
particles emanating from edge endpoints and moving with constant speed under-
going Brownian motion. The transition probability between edge i and j is the
sum of the probabilities of all paths that a particle can take between the two edges,
and is denoted as Pij. The saliency measure then is based on the largest positive
real eigenvalue of the transition matrix P . The search for closed contours finally
corresponds to finding strongly connected components in the edge graph and is
closely related to this specific formulation of saliency. Contours are segmented
successively in order of decreasing saliency. The more salient a contour and the
smaller the number of edges it contains, the faster it can be segmented. Segmenta-
tion can be stopped after any number of detected contours, so the approach shows
anytime-ness. In the presented experiments segmentation was stopped after a fixed
number of contours has been found. The authors present good results especially
for highly fragmented contours and show that the globality of the saliency measure
is crucial for performance. The elegance of this global property however comes at
a cost, as it requires finding the largest positive real eigenvector of a 2N × 2N
matrix, with N the number of edges. The authors propose a special technique
exploiting the sparseness and symmetry properties of the transition matrix, which
significantly speeds up computation. The whole approach however is still com-
putation intensive and generally does not seem to scale well to bigger problems.
Average time for segmenting a single contour in a 480× 480 image was 10 seconds
on a SGI R10000 workstation. Furthermore the method is specifically designed
for smooth contours (such as fruits, stones, coins) and does not work for contours
containing sharp turns.

6.2 Overview

In Chapter 5 we formed convex groups of circular arcs as a precursor to ellipse
fitting. Using Image Space Indexing we could achieve runtimes linear in the number
of arcs. The length of search lines was however fixed, again introducing problematic
thresholds.

We are now going to look at the more general case of grouping straight lines
into convex polygons. Figure 6.1 shows an overview of our approach consisting of
the following steps:

Detecting edges As with the ellipse case, the first step is edge detection. We
use the same edge detector here.

Detecting lines Edges are then segmented into straight lines using the method
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Figure 6.1: Overview of detection of convex polygons.

by Rosin and West [RW95].

Forming junctions (Sections 6.3 to 6.6) Junctions between lines are identi-
fied efficiently using Incremental Image Space Indexing and a graph G =
(V, E) is formed, with lines as vertices (nodes) V and junctions between
lines as edges E of the graph.

Finding closed convex polygons (Section 6.7) Searching for closed paths on
G while keeping an eye on the bending direction of the path finally yields
closed convex polygons.

6.3 Junctions

We use three basic junction types: Collinearities, L-junctions and T-junctions.
Note that we only consider junctions of two lines as opposed to junction labelling
schemes like [Huf71]. Each higher order junction (Y, X, K etc. ) can always be
constructed as a series of simpler junctions. Moreover we are basically interested
in finding contours of single surfaces. Each line segment of a contour can (at each
end) only meet a single other line segment of that same contour. Junctions with
more than two lines would thus span several contours. The T-junction is of course
an exception, as it is generated by one surface occluding another.

a
g b

α
β

(a) Collinearity Cab

g

b a

(b) L-Junction Lab

b
g

a

(c) T-Junction Tab

Figure 6.2: Junction types.
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6.3.1 Collinearities

Collinearities are formed by lines which are good continuations of each other (see
Figure 6.2(a)). We denote a collinearity between lines a and b, where a is the
longer line, as Cab. Situations like this arise if edge extraction fails locally due
to poor contrast or parts of an edge are occluded. The closer and smoother the
collinearity, the more significant. This corresponds to a small gap g, and small
angles α and β. We are now going to define the significance of a collinearity
based on its non-accidentalness (see Chapter 4) and therefore ask: What is the
probability of finding a collinear configuration of two lines by accident? I.e. what
is the probability of finding at least one endpoint of another line within the wedge-
shaped area defined by opening angle α and gap g and with line orientation within
±β?

Assuming that line endpoints and orientations are independent and evenly
distributed we can model their distribution by a Poisson process. In Section 4.2 we
introduced the Poisson process using an example of a two-dimensional parameter
space and were interested in points lying within an area A. Now we have a higher-
dimensional parameter space and more generally look at points within a Volume
V . Endpoints are represented as points in a position/orientation parameter space
of size w×h×2π, where w and h are image width and height. For n lines there are
2n endpoints. Average point density in this parameter space is therefore d = 2n

wh2π
.

The number of points within V is Pd|V |-distributed, with |V | the size of V . The
probability of finding a collinearity is thus given by the probability of finding at
least one point within V , which is the same as 1 minus the probability of finding
no such point (see Eq. 4.5):

PrC = 1− Pd|V |(0) (6.1)

= 1− e−p|V | (6.2)

V in our case is given as the volume defined by wedge area αg2 and angle interval
2β.

PrC = 1− e−
2n

wh2π
αg22β (6.3)

This can be rewritten using separate factors for proximity and orientation as:

PrC = 1− e−2nfproxfori (6.4)

fprox =
αg2

wh
(6.5)

fori =
β

π
(6.6)

Following the definition in Section 4.5 the significance of a collinearity is then given
as

σC = − log(1− e−2nfproxfori) (6.7)
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We can see that significance increases as the exponent of e decreases. So a collinear-
ity becomes more significant with fewer lines and smaller factors. Note that each
of the above factors f ∈ [0, 1]. So also addition of more factors increases signifi-
cance. This corresponds to the intuitive notion that the more specific we are about
a observed visual event the less likely it will be observed by accident.

6.3.2 L-Junctions

L-junctions are formed by contour discontinuities (see Figure 6.2(b)). We denote
an L-junction between lines a and b, where a is the left line, as Lab. Either the
edge segmentation process split an edge segment into two lines at a point of high
curvature, or the segmentation process was locally broken for some reason, leading
to a gap.

Significance is defined very similarly to collinearities. Again we assume that
line endpoints are independent and evenly distributed in the image. This time
however line orientation plays no role. The parameter space is the w × h image,
point density is d = 2n

wh
and V = πg2. Accordingly

PrL = 1− e−
2n
wh

πg2

(6.8)

= 1− e−2nfprox (6.9)

fprox =
πg2

wh
(6.10)

σL = − log(1− e−2nfprox) (6.11)

We can see that an L-junction is less significant, as there is no orientation factor
and the proximity factor is larger.

6.3.3 T-Junctions

T-junctions typically occur whenever the contour of one surface is occluded by
another nearer surface (see Figure 6.2(c)). We denote a T-junction between lines a
and b, where a is the upright pole and b is the horizontal bar, as Tab. To determine
the significance of a T-junction we have to answer a slightly different question than
in the case of the above junctions: What is the probability of finding at least one
edgel of another line within the area defined by gap g? Again the parameter space
is the w × h image, but now we do not need the density of line endpoints in the
image but the density of edgels. We therefore replace 2n by N , the total number
of edgels in the image. Gap g here defines a half circle as we only look for other
lines“in front of” the pole (others could not form a T-junction).

Note that we do stretch the Poisson-assumption for the distribution of edgels
quite a bit, as edgels are clearly not independent of each other. This dependence
however would only become manifest if we asked for the probability of finding
more than one edgel in a given area, because the actual probability would be
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Figure 6.3: Interactions between junctions.

much higher than the probability predicted by the Poisson process. As long as we
are only asking for the presence of any one edgel of a line, we are on the safe side,
as the lines themselves can be regarded as following a Poisson process (as we did
with their endpoints above). Therefore we have

PrT = 1− e−
N
wh

πg2

2 (6.12)

= 1− e−Nfprox (6.13)

fprox =
πg2

2wh
(6.14)

σT = − log(1− e−Nfprox) (6.15)

We can see that a T-junction is again less significant than an L-junction. This
follows from the fact that edgels are more common then line endpoints (N � n).

6.3.4 Interactions Between Junctions

There are certain dependencies and interactions between junctions of different
types. Look for example at Figure 6.3(b). Obviously we would like to detect the
two faces of the cube. This would require four lines and L-junctions to form each
contour. The edge extractor however chooses to follow the “wrong” edge leading
to line b. Together with a we have a T-junction which would indicate that there is
a surface whose lower edge is b and which occludes contour a. This is of course a
wrong interpretation and is caused by the purely local original decision of the edge
extractor. To resolve such issues we simply break down each T-junction Tab into
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two L-junctions Lab′, Lb′′a and a collinearity Cb′b′′ (see Figure 6.3(c)) and store
these as alternative representations.

Figures 6.3(d) to 6.3(h) show the opposite situation. We would like to segment
the contour of the cup standing at the edge of a table as well as the contour of the
table surface. Figure 6.3(e) shows that again the edge extractor has locally chosen
to follow the “wrong” edges (though remember that of course at the level of the
edge extractor there is no right and wrong, just local contrast, the maximum of
which the edge extractor follows). Figure 6.3(f) shows some of the lines segmented
from the edges and Figure 6.3(g) the L-junctions and collinearities formed between
them. Considering the line formed by collinearity Cbc we can now form a new T-
junction TaCbc, and likewise with lines d, e and f . Whenever two L-junctions
Lac, Lba and a collinearity Cbc meet, we form a new T-junction TaCbc and again
store it as an alternative representation.

Figure 6.3(h) shows yet another type of interaction. Also lines a and f form
a collinearity. The gap however is rather large, making the significance of Caf
quite small. However the fact that we just established T-junctions at the facing
ends of lines a and f actually explains this gap as an occlusion rather than an
accidental gap. We therefore reduce the gap size by the distance between the two
T-junctions resulting in an occlusion-corrected gap and subsequently in a higher
significance. In the above example we could reduce the gap size from 43 pixel to
6 pixel, thereby increasing significance of the collinearity from 4.08 to 8.03.

6.3.5 Adding Colour

Up to now the significance measures of junctions used only geometric relations.
Colour can sometimes be very discriminative. Using the above formulation for sig-
nificances using factors in the exponent, it is now quite convenient to add another
colour factor:

fcol =
dcol

D3
(6.16)

where dcol is the colour distance e.g. between the inside colours of lines forming
an L-junction. We assume again that colours are Poisson-distributed in the RGB
colour space, with values ranging from 0 to D − 1 (e.g. D = 256). Regarding
the choice of an RGB colour space (as opposed to YUV etc.): We do not intend
to mimic human colour perception (as many alternative colour spaces do). The
characteristics of colour cameras are quite different from human colour perception
apart from the fact that 3 colour channels are used. But these channels have dif-
ferent sensitivities and dynamics. E.g. many cameras are more sensitive on green
because the RGGB Bayer pattern has twice as many green colour cells as red or
blue ones. An “optimal” colour space would have to be adapted to a specific cam-
era. For properly dealing with colour, cameras using Bayer filters are inadequate
anyway, and high-quality 3-chip colour cameras would be needed. But as colour
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is a weak cue compared to structure and we are interested in relative similari-
ties rather than absolute colour distances, it is not worth the effort investigating
further into that direction.

6.3.6 Remark on Adding Cures

Note that as a relation becomes less significant, e.g. colour distance or distance
between endpoints of an L-junction increases, the corresponding factor in the ex-
ponent approaches 1, thereby not committing anything to the overall significance.
So it is safe to “throw together” various cues. If a cue is not significant at all, it
just does not contribute. I.e. the fact that colours in a junction do not match at
all does not harm its significance, matching colours can only improve it.

Now that we have defined the junctions we are still left with actual detection
of these junctions in the image. Checking all pairs of n lines for junctions has a
runtime complexity of O(n2). This quadratic runtime complexity quickly becomes
prohibitive for a larger number of lines. A well known technique to overcome such
a combinatorial explosion is indexing.

6.4 Indexing and Voting

A common problem arising in perceptual grouping is to find relationships between
pairs of primitives (or even worse triples or generally m-tuples). Exhaustively
searching all pairs within n primitives has a complexity of O(n2) (O(n3), O(nm)
respectively). One well known method to overcome such combinatorial explosions
is indexing. Indexing serves as a heuristic to find those pairs (triples, m-tuples) of
primitives which are likely to share the relationship of interest.

The indexing space is constructed such that primitives sharing a relationship
index into the same bin. Thus one only has to perform the indexing operation
n times to find all good candidates for pairs. As indexing is only a heuristic, all
primitives of one bin are then further analysed whether they actually fulfil the
given relation. If the indexing space is well constructed the number of incorrect
matches is low and the complexity in all the above cases is reduced to O(n).

Note that often indexing and voting are used synonymously. Authors interested
in parameter estimation seem to prefer the term voting, while authors in the field of
perceptual grouping prefer indexing. Technically there is no difference. In any case
one wants to group a number of primitives (pixels or higher order features) into
a group sharing a specific relationship (geometric parameters of a curve or higher
level Gestalt principles such as proximity or parallelism). However in voting the
emphasis lies in finding the parameters of the group, while one is less interested
in which primitives make up that group. In indexing the point actually is to
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(a) Original image (b) All edges

(c) Single edge segments (d) Segmented lines

Figure 6.4: Office wall scene.

identify which primitives form a group, where the parameters of the group (e.g. the
orientation of parallel lines) are only a by-product.

One well known example for voting is the Hough transform [Hou62], which in
its original implementation uses the (k, d) parameter space to group points (x, y)
belonging to the same line y = kx + d. A better parameter space is obtained
using the Hessian parameters s = x cos θ + y sin θ. Besides choosing appropriate
parameters, discretisation of the parameter space is crucial to find a good trade-off
between storage size (number of bins) and accuracy. While the Hough transform
groups pixels into features (lines, circles, ellipses) other voting (or rather index-
ing according to the above distinction) methods group features into larger groups.
[Low87] uses a grid-like structure, which is indexed by line endpoints. Also line
orientation and length are used to form indices. [SB94] use further curve parame-
ters to construct index spaces of higher-parametric models and also addressed the
problem of bin size and indices close to bin boundaries.
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6.4.1 Image Space Indexing

In Section 5.6.3 we saw how we can speed up the process of finding convex groups
of arcs by the use of Image Space Indexing, which reduces the runtime complexity
of finding “promising” pairs of arcs from O(n2) to O(n), where n is the number
of arcs. We are now going to have a closer, more principled look at Image Space
Indexing in the context of grouping lines.

One last small remark on terminology to avoid confusion. In the following
sections we refer to visible straight lines, fitted to extracted edges in the image
simply as lines, whereas search lines drawn in the process of image space indexing
are denoted explicitly as search lines.

Looking at a the lines extracted from a typical image such as Figure 6.4(d)
it becomes evident that there is of course no need to check all pairs of lines for
possible junctions, but only those being “close” to each other. While [Low87, SB94]
used a grid of bins of appropriate size to capture the closeness of line endpoints,
we choose a slightly different approach. In our case the index space is the image
itself, i.e. single pixels serve as bins. Furthermore each line endpoint indexes a lot
of specific bins, rather than only one.

Each line endpoint defines a set of search lines consisting of one tangential
and two normal search lines. This results in a total of seven search lines: line l
itself, start and end tangent (ts, te), left and right normal, again for start and end
(nls, nrs, nle, nre) (see Figure 6.5(a)). These search lines are drawn into the index
image using the Bresenham line drawing algorithm, with a slight modification to
draw “dense” lines in order not to miss any intersections. This constitutes the
indexing step. Figure 6.5(b) shows the search lines drawn for the office wall scene,
where search line length was chosen to be s = l, i.e. equal to the length of the
originating lines. In this case a total of 68190 pixels were drawn for 686 lines.

Whenever two lines a and b index into the same bin, i.e. their search lines
intersect, we create a new junction between lines a and b. Depending on the types
of search lines intersecting we form an L-junction (Figure 6.5(c)), a collinearity
(Figure 6.5(d)) or a T-junction (Figure 6.5(e)) between the respective originating
lines.

6.4.2 Runtime Complexity

At first sight the above procedure seems rather wasteful and the simple elegance of
indexing lost: Each one of n elements casts one vote, resulting in O(n) complexity.
Now each element casts many votes. Note however that still linear runtime is
maintained. Assuming that search lines have an average length of s, the expected
runtime is of order O(ns). s is a constant limited by the image diagonal. So the
runtime is of order O(n). Moreover the Bresenham algorithm is of course very
efficient, so per-pixel costs are small.

Note also that we are not falling victim to the curse of dimensionality. It is
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Figure 6.5: Search lines and junctions.

well known that high dimensional voting spaces pose a problem as the number of
bins grows exponentially with the number of dimensions. Our voting space is only
two-dimensional, with a rather fine binning. But as we just saw the number of
votes is only growing linearly in the number of lines.

Figure 6.7 shows results for detection of junctions for two different scenes: an
urban scene with rather long, straight lines (Figure 6.6(a)) and a landscape scene
with many very short lines (Figure 6.6(b)). Search line length was chosen to be
s = l, i.e. equal to the length of the originating lines. Detection was run on different
resolutions of these images ranging from 384× 256 to 3072× 2048 pixels on a 2.16
MHz PC. The times shown are runtimes in milliseconds for junction detection only,
i.e. excluding time for edge and line segmentation. The number of lines grows from
a few hundred in the low resolution images up to around 100000 for the highest
resolution. The linearity of runtime versus number of lines is plainly visible (Figure
6.7(a)). It reflects the linear growth of the number of junctions versus number of
lines (Figure 6.7(b)). The latter indicates that each line on average forms a fixed
number of junctions, which depends of course on the length of the search lines
and thus the length of the lines themselves. Therefore fewer junctions are created
for the mountain image, which contains many short lines, and the regression line
has a smaller slope than the urban scene. The main point here is that the time
needed on average to detect a single junction remains constant, irrespective of
image complexity.
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(a) Urban scene (b) Mountain scene

Figure 6.6: Two different types of scene.

We are now still left with the choice of a “useful” length for search lines. In
the above examples we set search line length equal to length l of the respective
originating line. As we will see in the next section however this typically reasonable
choice can lead to problems even in typical, simple viewing conditions. We will
first look at a motivating problem

6.5 The Kanizsa Square Problem

Figure 6.8(a) shows the well known Kanizsa square, an often cited example of
amodal completion. The human observer can easily perceive a white square that
seems to float above four black disks. If we move the disks further apart (Figure
6.8(c)) we can still perceive a white square, albeit slightly less prominent.

In the spirit of Image Space Indexing we can now draw search lines (the dotted
lines in Figure 6.8(b)), and the intersections would create pairwise junctions which
would subsequently enable use to find the closed contour which is a square. We
choose the length of the search lines to be the same as the line length itself, which
seems to be a reasonable “region of interest” for a line.

If we continually increase the spacing of the disks we realise that at some point
suddenly the search lines are too short (see Figure 6.8(d)). Suddenly, because
the increase of one pixel in spacing is enough to let the pairwise grouping and
subsequent search for closures fail. This example shows yet again how brittle
systems become as soon as we employ thresholds.

This also becomes readily visible in Figure 6.9(a), which we can easily perceive
as a closed contour composed of line fragments. Fragmented contours like this
can occur if an object or the background is highly textured, or if shadows or poor
contrast lead to poor edge segmentation. Again the gaps are larger than the line
fragments and thus the search lines would be too short. Figure 6.9(b) shows yet
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(b) Created junctions

Figure 6.7: Creating junctions for two different scenes.

another example of large gaps, this time as a result of occlusion. Certainly we
would like our system to perceive the occluded rectangle as a whole, as human
perceivers do.

The obvious solution is of course to make the search lines, say, twice as long.
But this only postpones the same problem to a slightly later point. There will
again be some spacing of lines, which is just too big to be bridged by the search
lines. Moreover increasing search line length arbitrarily will inevitably collect more
“junk” intersections (think of an actual real edge image with possibly thousands
of lines), loosing the benefit of Image Space Indexing and increasing the computa-
tional costs of later processing stages which would have to reject lots of hypotheses.

So one could argue the proper search line length depends on the context or scene
content. In a cluttered scene the length should be shorter to avoid an explosion of
grouping hypotheses. In a sparse scene the length can be longer in order to also
handle larger gaps. But what exactly would we mean by “shorter” and “longer”?
Moreover also a cluttered scene could contain a contour similar to Figures 6.9(a)
and 6.9(b). The point is that we should not attempt to set the search line length
in the first place and instead let the length be determined automatically.
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(a) Small spacing (b) Search lines

(c) Large spacing (d) Search lines too short

Figure 6.8: Kanizsa square problem.

6.6 Incremental Processing and Anytimeness

The solution proposed is to change the order of processing. Rather than drawing
each search line to its full length (whatever that may be) for each line and then
checking for intersections, we incrementally grow each search line pixel by pixel,
continuously checking for junctions.

Small gaps will be traversed quickly. So the most prominent groupings will pop
out early, even in cluttered scenes. Sparse scenes like the Kanizsa square figure
are handled equally well. As there are not many search lines to grow, the large
gaps here are also traversed quickly. Large gaps in cluttered scenes obviously pose
a bigger challenge. Bridging those is more difficult amongst all the clutter, which
uses up processing time as the system vainly tries to hallucinate groupings into the
clutter. Eventually however even the largest gap (e.g. an occlusion as in Figure
6.9(b)) will be bridged. It may take longer, but it will not be missed.

What we have achieved now is to get rid of the troublesome parameter search
line length. Actually we have replaced it with another parameter: run time. The
longer we let the process of Image Space Indexing operate, the more junctions we
will find. If we let indexing operate indefinitely, i.e. grow search line sup to the
image border, it will eventually find all O(n2) possible junctions (most of them
rather rubbish). If indexing is only given a limited amount of time, e.g. some fixed
frame rate, it will only find the closest junctions.
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(a) Broken contour with large gaps (b) Large gaps due to occlusion

Figure 6.9: Large gaps in typical situations.

(a) Equal growth (b) Length-weighted growth

Figure 6.10: Office wall scene with growing search lines.

Therefore we do not actually avoid combinatorial explosion, but we rather have
it explode in a controlled way, always being able to interrupt the process if things
get too complicated. After interruption we have as a result the best that was
achievable up to now.

Incremental Image Space Indexing gives us the possibility to evaluate the best
possible hypotheses given a limited amount of time. Or to put it the other way
round, allows us to interrupt processing at any time while making sure that the
best hypotheses have been evaluated.

6.6.1 Incremental Growing of Search Lines

Once we have adopted the incremental growing scheme, there are several strategies
for controlling the growth of search lines.
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6.6.2 Equal Growth

The simplest strategy is to grow all search lines equally fast. Loop over all lines
and grow each of its emanating search lines by one pixel. Figure 6.10(a) shows
the search lines thus created for the office wall scene. We chose to draw the same
total number of pixels as in Figure 6.5(b) to enable a direct comparison. We see
that short lines get too much attention and it would take rather many iterations
until for example a larger gap could be bridged.

6.6.3 Length-Weighted Growth

The original, non-incremental version of search line drawing used line length to give
preference to longer, thus more significant lines. We can achieve the same effect in
the incremental scheme be making sure that longer lines are selected more often
for growing. To this end we first rank lines according to length and then randomly
select lines for growth using an exponential distribution over the rank,

Pr(X = x) = λe−λx (6.17)

Pr(X ≤ x) = 1− e−λx (6.18)

where x is the rank of a line ranging from 0 to xmax. Parameter λ is chosen such
that the probability mass under [0, xmax] is 99%, i.e. we almost always select a
line within the valid rank range: λ = − log 0.01/xmax = 4.6/xmax. Once a line
is selected we grow all of its emanating search lines by one pixel. Figure 6.10(b)
shows the result of growing again the same number of pixels as in Figure 6.5(b)
using the length-weighted growing scheme. We can see that clearly longer lines
get a bigger share of the growth.

6.6.4 Boosting/Inhibition

Typically once a line has formed a junction at one end, it is not necessary to grow
search lines further at that end. This is no strict rule however as sometimes the
first encountered junction might not be the “correct” one leading eventually to
a closed contour. As always we must be careful not to make uncorrectable local
decisions. We still want to select “closed” line ends sometimes, but rather spend
more time on “open” ends. So we de-weight ends with junctions.

First for each line we prefer that end with fewer junctions already formed.
Probabilities of selecting the front or back end are inversely proportional to the
number of junctions at the respective end: Pr(front)/Pr(back) = nback/nfront,
where nfront and nback are the total numbers of junctions at the front and back end
respectively. T-junctions play the opposite role of L-Junctions and collinearities.
Whenever there is a T-junction at a line end, there is a good chance that this line
might continue after the occlusion which caused the T-junction. So we want to
favour search at ends with T-junctions. This leads to the following expressions for
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nfront and nback: nfront = 1 + cfront + lfront − 2tfront + tback and nback = 1 + cback +
lback − 2tback + tfront. cX , lX and tX are the numbers of collinearities, L-junctions
and T-junctions respectively. Note that each T-junction is accompanied by two
L-junctions (see Section 6.3.4). These shall not be taken into account, and are
compensated by the terms −2tX . The constant 1 refers to the open line end itself
and avoids divisions by zero.

After randomly selecting an end we decide further if the pixel to be drawn
should be awarded the line itself or, if there are junctions at this end, to one of its
neighbours. Each neighbour and the line itself are chosen with equal probability.
Note that we could base probabilities on junction significances, but for the time
being use the simpler equal probabilities. If the line itself is chosen, one of its
search lines at this end is extended (see above). Otherwise the pixel moves to
the selected neighbouring line and the whole procedure is repeated. I.e. we again
decide randomly whether the pixel should be awarded this new line or move along
further junctions.

If at some point the pixel has travelled full-circle (i.e. we meet the original line
again), we give it to a line randomly selected from all lines, where in this case
we ignore rank or junctions. This selection scheme will lead to rapid closure of
contours, as available partial contours “boost” growth at their end. On the other
hand once closed contours are found, further growth is inhibited and “unused”
pixels spread to other lines.

6.6.5 Tangents over Normals

Thinking about the typical grouping situations of lines we realise that areas in line
direction are more interesting than areas perpendicular to it. Growing long normal
search lines nls, nrs, nle, nre (see Figure 6.5(a)) is therefore slightly wasteful. So we
introduce another random selection step. Once a line has been selected by the
above selection, we now decide whether to grow a tangent or a normal search line.
Probabilities are Pr(tangent)/Pr(normal) = (1 + t)/1, where t is the number of
T-junctions at the respective line end. If we choose to grow a normal search line,
we again randomly select whether LEFT or RIGHT.

Figure 6.11 shows the effect of T-junctions on growth rates. The line high-
lighted in Figure 6.11(a) forms T-junctions with other lines at some point. Figure
6.11(b) shows how the growth rate of the tangential search line at the respective
line end increases after the T-junction was created. The above probabilities ensure
that gaps caused by occlusions are closed faster.

Note that for this rather simple office scene we used as an example here all of
the above efforts might seem slightly disproportionate. Much shorter search lines
of some fixed length would certainly do. But generally we do not know the scene
complexity. There might be partial occlusions requiring to bridge rather large
gaps. Also we might have tens of thousands of lines rather than the few hundred
in the above example (which would have made visualisation of the index image
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Figure 6.11: Effect of T-junction on search lines.

very confusing indeed). And it is in these cases where the benefits of the more
elaborate growing schemes become visible. Note that earlier we remarked that we
would not actually avoid combinatorial explosion, but rather control it. Basically,
the more we can “steer clear” of unnecessary groupings the longer we can hold
off combinatorial explosion. So generally we want to make the most sensible local
decision for most cases, but not rule out less likely cases, as no local decision is ever
guaranteed to be correct. We just “nudge” the grouping process into favourable
regions.

All the above amounts to a sort of degenerate and dynamic version of extension
fields [GM96] or areas of attention [SWSP00]. Our “area” is collapsed into a few
lines, but these are chosen such that they capture the same relationships as would
a real area. Moreover our “area” is not fixed in size but grows with time, where
we (probabilistically) control its shape and growth rate.
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6.7 Closed Path Search

The previous sections dealt with detection of junctions between lines and paved the
way for an efficient method to construct a graph consisting of lines and junctions.
We now turn our attention to this graph and the search for closed paths (cycles).
Concretely we perform the following steps:

1. Connect neighbouring lines to form a graph G = (V, E), with lines as vertices
(nodes) V and junctions between lines as edges E of the graph.

2. Find closed paths on G, while making sure these paths constitute convex
polygons.

6.7.1 Graph Construction
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Figure 6.12: Lines and junctions (a) and the corresponding graph (b).

Figure 6.12(a) shows a simple example of several lines (the arrows indicating
direction and thus start and end point) and junctions and Figure 6.12(b) shows
the corresponding graph constructed from them. Nodes are formed by lines, edges
are formed by L-junctions and collinearities. T-junctions do not take part in this
closure search, because a closure can not have a T-junction with itself. Similar
to Huttenlocher and Wayner [HW91] edges leaving a node are distinguished into
several groups. They can be formed by an L-junction (e.g. Lab) or a collinearity
(Caf). Furthermore L-junctions can bend to the LEFT or RIGHT, as seen from
the end of a line (Lab bends to the LEFT, Lea bends to the RIGHT as seen from
line a). Finally junctions connect the START or END of a line to another line
(Lea and Lab respectively). This results in 2 × 3 = 6 groups of edges per node:
START or END and one of LEFT, COLL, RIGHT.

6.7.2 Graph Search

In order to find a closed path we pick two lines which are joined at one end and
search the shortest path between the two open ends. For shortest path search we
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use Dijkstras algorithm [Dij59].
Remember that the graph is built incrementally. Initially we just have n nodes

and 0 edges. As search lines grow and junctions between lines are created, we grad-
ually add new edges to the graph. Whenever a new L-junction Lst or collinearity
Cst is created, a new edge s− t is added. This new edge could lead to the closure
of a path, so we perform a shortest path search between nodes s and t. To avoid
unnecessary searches, we do not start a search if a junction is isolated, i.e. one
of its lines has an unconnected end. During search we only follow edges which
maintain convexity of the path so far. To this end we maintain the current bend of
the path. The first L-junction encountered on the path sets the bend to LEFT or
RIGHT. Subsequent extensions of the path must be compatible with the current
bend. We also enforce that a path entering via a START edge leaves via an END
edge and vice versa. Finally we check whether a closed path would lead to a self-
intersecting polygon, in which case we reject it. Figure 6.13 shows the complete
adapted Dijkstra algorithm. V and E are the set of nodes and edges, s and t are
start and terminal node. If the new edge is an L-junction, s and t are ordered
such that s is the LEFT arm. Q is a heap implementing a priority queue where
nodes are ordered according to their distance and MakeHeap(Q) is the function
maintaining the heap property. Intersecting(v) checks whether extending the
current path with node v would lead to a self-intersecting path. Cost(u,v) is a
cost function and is given by the accidentalness of the junction between lines u

and v (a small accidentalness corresponds to a high significance).
Note that we do not find strictly convex polygons. A collinearity is never per-

fectly straight. So a collinearity will sometimes actually bend somewhat “inwards”
as seen from the current convex path (such as Cdc in Figure 6.12(a)). This is how-
ever a highly desired behaviour. Many “obviously” convex surfaces, such as book
covers, often appear slightly concave (e.g. a paper-back with a slightly bent cover).
We would not want to rule these out. This tolerance in the notion of convexity is
well suited for real world situations.

6.7.3 Runtime Complexity

Search of one shortest path on a graph with n lines and m junctions using Dijkstras
algorithm has a runtime complexity of O((m + n) log n). This is worse than the
O(n) complexity for finding all minimal cycles in the planar graph of Huttenlocher
and Wayner [HW91] or Jacot-Descombes and Pun [JDP97]. The difference between
their approach and ours is that they perform search once the graph is completed
after defining all nodes and edges, while we build the graph incrementally and
search for closures as we build the graph.

Figures 6.14 and 6.15 show the runtime behaviour of closure search for the
urban scene of Figure 6.7. Figure 6.15(a) shows the number of detected closures
over time. We see that the rate of finding new closures drops as time progresses.
This is a consequence of the increasing average number of nodes visited during a
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V .. set of graph nodes

E .. set of graph edges

s .. start node of path

t .. terminal (goal) node of path

ShortestPath(V, E, s, t)

set dist to INF

set prev to UNDEF

set bend to NONE

dist[s] = 0

prev[s] = UNDEF

if L-junction

bend[s] = LEFT

else

bend[s] = NONE

Q = V

MakeHeap(Q)

while unvisited nodes and path extendable

u = Front(Q)

if dist[u] != INF

if u == t and not Intersecting(t)

NewClosure(s, t)

else

for all collinearities Cuv

if dist[u] + Cost(u,v) < dist[v] and not Intersecting(v)

dist[v] = dist[u] + Cost(u,v)

prev[v] = u

bend[v] = bend[u]

if bend[u] == NONE or bend[u] == LEFT

for all LEFT junctions Luv

if dist[u] + Cost(u,v) < dist[v] and not Intersecting(v)

dist[v] = dist[u] + Cost(u,v)

prev[v] = u

bend[v] = LEFT

if bend == NONE or bend == RIGHT

... analogously

MakeHeap(Q)

else

path not extendable

Figure 6.13: Dijkstra algorithm to find shortest paths in graph (V, E) between
start node s and terminal node t
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(a) Closures after 1 s (b) ... 5 s (c) ... 10 s

Figure 6.14: Runtime behaviour for closure search.

search (Figure 6.15(b)), and therefore the increasing path lengths. These in turn
mean more expensive checks for non-intersecting paths, which are of O(k2), with
k the number of nodes in the path.

6.8 Results

We will now evaluate the effects of different incremental indexing schemes together
with the search for closed contours on a number of test images.

6.8.1 Occlusion, Amodal Completion

Our task is to find closed contours. This is comparatively easy as long as the
contour is completely visible and we only have to bridge small gaps due to local
failures of the edge detection process. However we also want to be able to handle
partially occluded contours. Taking into account T-junctions when growing search
lines was aimed at exactly this issue.

Figure 6.16 shows a pencil with various occlusions: none, small, large, and
multiple occlusions (Note that the additional occlusions in the last case were added
artificially). All images are 600 × 400 pixels. Tests were run on a 2.16 GHz PC.
The top row shows the edge segmentation result. We can see some shadows and
reflections on the table and clutter in the background. The bottom row shows
the pencil contour we want to find. We are interested in the time it takes to find
that contour and abort processing when it is found. Finding this closed contour
requires bridging the occlusion(s) with collinearities.

Table 6.1 shows the runtimes until we find the pencil contour and how many
closed contours were found until then. We evaluated equal growth (EQUAL, see
Section 6.6.2), length-weighed growth (WEIGHTED, see Section 6.6.3) and what
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Figure 6.15: Runtime behaviour for closure search.

we boldly term “smart” growth (SMART, the combination of Section 6.6.4 and
6.6.5). EQUAL fails to find the pencil contour even for the small occlusion in less
than 10 seconds and we abort the run. The search gets completely lost in small
details in the (very moderately cluttered) background. WEIGHTED and SMART
have no problems with small and large occlusions, and the simpler WEIGHTED
scheme actually performs better. This is no surprise as the visible parts of the con-
tour are formed by long lines and are therefore favoured by the length-weighted
selection. To see the effect of a more fragmented contour we added some more
occlusions (Figure 6.16(d)). We can see that runtime for the WEIGHTED scheme
is affected much stronger than SMART, which uses T-junctions at occlusions to
favour tangential search lines and boosting of partially completed boundaries. Ap-
pendix B shows search lines as well as all created closures for all cases to give an
indication where each scheme spends its search time and how much clutter we pick
up, i.e. how much “junk” we have to accept before we get to the contour we are
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(a) None (b) Small (c) Large (d) Multi

(e) (f) (g) (h)

Figure 6.16: Pencil with different amounts of occlusion: Edge image (top row) and
detected pencil contour (bottom row).

Occlusion EQUAL WEIGHTED SMART
time [s] cnt time [s] cnt time [s] cnt

None 0.3 72 < 0.1 10 < 0.1 8
Small > 10 (550) 0.2 61 0.5 106
Large > 10 (560) 0.3 74 0.8 140
Multi > 10 (500) 4.4 201 1.4 181

Table 6.1: Occluded pencil: Runtimes for finding the pencil contour and total
number of contours found until that point.

interested in.

6.8.2 Adding Attention

Up to now we based concentration of processing based on line saliency and some
general considerations. Sometimes however we might have external clues. The user
of our system might provide us with regions of interest (ROIs), perhaps deduced
from other vision modules, e.g. saliency detection. Also higher level knowledge
might be available such as the gaze direction of a human or the position of a
grasping hand. The following images are all 640×480 pixels and experiments were
carried out on a 2.16 GHz PC.

Regions of Interest

It is quite straight-forward to include such regions of interest into the above selec-
tion scheme. Rather than ranking lines according to their length, we rank them
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(a) 15 ms (b) 50 ms (c) 80 ms

(d) 15 ms (e) 50 ms (f) 80 ms

Figure 6.17: Normal grouping (top) and grouping biased towards door as region
of interest (bottom).

according to their nearness to the provided region(s) of interest.

For example we might say “look into the open door”. Provided we can identify
the door (perhaps the camera is mounted on a mobile robot and the robot floor-
plan indicates a door) we can place a region of interest there. We choose a Gaussian
weight function with peak in the centre of the doorway and standard deviation
σ = 150 pixel, so that the one-σ area roughly covers the whole doorway. We then
calculate the weight of a line as the sum of its pixel weights and use these line
weights for ranking.

Figure 6.17 shows in the top row three images with detected closures after 15,
50 and 80 ms, using length-weighed growth. We can see that the large red poster
is quickly picked up and smaller closed contours coming in later. The bottom
row uses ROI-weighted growth. We can see that early on we start picking up the
small boxes on the shelf in the next room, then large contours further away. After
some time both methods will have found the same contours. The ROI allows us
to specify where to look first and more “carefully”. Note that we do not exclude
other regions of the image, as would be the case if we simply cut out the ROI and
then work on the sub-image. If there is some really prominent structure outside
the ROI (such as the big red poster in the above image) we certainly still want
to be able to detect it. And as always, the initial placement of the ROI might
be incorrect or at least imprecise. Cutting out sub-images would mean that this
error is not correctable. In our case it only means that the ROI is less efficient
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in pointing out the interesting part of the image and therefore less successful in
guiding processing.

Colours of Interest

The previous example showed how we can use a region of interest to point out
small details in the background which otherwise would get little attention. We can
also use other available information of interest. In the scene depicted in Figure
6.18 we might be asked to “find the red block”. Performing colour segmentation
would be the equivalent to a cut-out ROI, with similar problems. Getting the
colour model slightly wrong (e.g. due to unknown lighting conditions) will affect
the segmentation and lead to uncorrectable errors. And again it is not necessarily
only the red block which we would like our system to perceive.

Instead we use a very simple colour model: “red” is equivalent to RGB value
(255, 0, 0). We then weight each line with the inverse of its euclidian distance to
this colour and again use these weights for ranking. (Note that there are certainly
more sophisticated colour spaces and distance measures, but that is not our concern
here.) The top row of Figure 6.18 shows the results of detecting closed contours
for consecutive time steps. The bright red block is detected first, followed by the
brownish-red book to the right and then the other blocks, which also constitute
prominent contours. Compare that to the bottom row of Figure 6.18. Here we set
the colour of interest to blue (0, 0, 255). This time the blue block is found first,
followed again by the other prominent structures.

Influencing the ranking of lines, and thus the amount of processing spent on
each line, by various weights is a flexible way to provide the system with a notion
of attention. We see attention not as exclusively limiting processing to a certain
part of the image. We would not want the system to be blind to everything
else. And of course we certainly do not want to provide a hard threshold for
interesting/non-interesting. This inevitably carries the risk of missing something
possibly interesting, especially if the model for attention is itself not very precise.
Instead we only require a distance measure from the point of highest interest (in
image space, colour space). And as we have seen neither this point of highest
interest nor the distance measure need to be very precise.

Further sources of attention are conceivable. Certainly motion is known to
provide attention for many sighted animals, and we could use the magnitude of
an optical flow field as weight (provided of course that motion blur does not ad-
versely affect edge detection too much). And provided with a rough notion of
depth, e.g. from stereo (which by the way would carry the convenient advantage
that stereo is typically good precisely at edges), we could use nearness as weight,
therefore concentrating on the foreground.



114 CHAPTER 6. INCREMENTAL GROUPING

(a) 15 ms (b) 26 ms (c) 70 ms

(d) 19 ms (e) 37 ms (f) 45 ms

Figure 6.18: Looking for red (top) or blue (bottom).

6.9 Discussion

The preceding chapter presented a simple idea to address issues in the detection
of closed convex contours. Typically there are two ways to limit combinatorial
explosion inherent in such grouping tasks: indexing and early thresholding of
hypotheses. We showed how the adoption of an incremental indexing scheme
removes the need for thresholds. We do not rely on any threshold or tuning
parameter in the above method, but just rank grouping primitives according to
saliency or external weights based on attention, and use these ranks to control
incremental processing. Note that we actually do not avoid combinatorial explosion
but rather control it. The more we can “steer clear” of unnecessary groupings the
longer we can hold off combinatorial explosion. We are always able to interrupt
the process any time if things get too complicated. After interruption we have
as a result the best that was achievable up to that point. Note also that we do
not prune less salient hypotheses. The longer processing runs the more awkward
hypotheses will be “hallucinated”, in accordance with a famous quote by Max
Clowes that vision is controlled hallucination.

When to Stop

Having an incremental, any-time procedure for perceptual grouping, an interesting
question now is when to actually stop this process. The longer it runs, the more
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rather odd Gestalts are hallucinated. And obviously humans do not do that.
Optical illusions are the exception, not the norm. The general answer is that
grouping can be stopped as soon as sufficiently meaningful Gestalts are found,
i.e. the image is sufficiently well described in terms of Gestalts. For humans we
can consider this to be the case when we could form a globally consistent picture
of the scene. This is still beyond the capabilities of an artificial system. A possible
shortcut for an artificial system could be to stop when certain more local criteria
are met or when a given specific task is solved, e.g. looking for very specific things
like boxes or cylinders, or simply when time is up.

On L-Junctions and Collinearities

We have to confess that we smuggled a threshold into one of the above procedures.
The decision whether a junction between two lines should be an L-junction or a
collinearity is actually based on an angle threshold of π/6. How dare we? Looking
at Figure 6.5(c) we can imagine that in some cases two tangential search lines
can meet “head on”, which are almost collinear, forming an L-junction where we
would expect a collinearity. Likewise in Figure 6.5(d) we can imagine cases where
we form a collinearity with an angle close to π/2, which should of course be an
L-junction. Note that these cases are rare and in typical situations we get the
junction we should expect. Nevertheless we check for those “pathological” cases.
Note however that this choice has actually very little effect. In subsequent steps we
treat L-junctions and collinearities basically the same. Except when we determine
the bending direction in the closure search, where we disallow right turns for a left
bending path and vice versa.

This leads us to the conclusion that we should abandon the distinction between
L-junction and collinearity altogether and replace them with a single concept of
continuation (of varying smoothness). If we have difficulties with a (early) de-
cision, let us just not take it. What are the implications? T-junctions are no
longer formed from two L-junctions and a collinearity, but from three contin-
uations, where the straightest one constitutes the top bar of the “T”. For the
shortest path search instead of having three lists per line end (left L-junctions,
right L-junctions, collinearities) we now only have one list of continuations, or-
dered according to angle. We can say which is the straightest, which is more left
or right than another. So once we have e.g. a left bend in the path, we continue
search along the straightest continuation and all further left of that. We thus have
essentially the same behaviour as we had previously.

For the time being however we did not spend the effort of changing the program
accordingly. This is left for future work. So the results presented here still have
L-junctions plus collinearities, distinguished by an ad-hoc threshold.
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Chapter 7

Depth Ordering of Surfaces

Chapter 6 showed how to find closed contours robustly without the need for tuning
parameters. The result is a number of closed contours which only depends on
runtime. We regard these closed contours as surface hypotheses. Many of these
hypotheses will be contradicting, i.e. they will share parts of their contours and
thus explain the same image data differently. So what remains left is to find a
globally consistent grouping of edges into surfaces.

There is an abundant amount of literature on this topic, starting with Roberts
[Rob65], and line/junction labelling approaches by Huffman [Huf71] and Waltz
[Wal75]. Malik [MM89] propose a combination of line labelling and shape from
shading. Sarkar and Boyer [SB93, SB94, SB95] propose the Perceptual Infer-
ence Network (PIN), a fixed Bayesian network independent of image data, where
nodes represent known structures such as quadrilaterals and trapezoids. Schlueter
et al. [SWSP00] use an MRF-based scheme, where MRF nodes represent groupings
already found in the image and significances of groupings are adapted according to
support and contradiction relations. But this really is an ill-posed problem. What
should a globally consistent interpretation look like?

Note that we deliberately do not threshold away surface hypotheses which are
too small or exceed a certain gap size vs. circumference ratio. Figure 7.1 shows two
closures from the occluded pencil examples of Section 6.8. Both hypotheses have
a roughly similar support (gap size(s) vs. circumference), but only Figure 7.1(b)
corresponds to an actual scene structure. Locally however, by just looking at the
lines making up the closures (Figures 7.1(a) and 7.1(c)) we can not decide.

Also masking of “weaker” hypotheses by “stronger”, more significant ones
proves to be problematic. It is difficult to capture the significance of a surface
hypothesis in a single number. Moreover what would be regarded as significant is
not obvious.

Figure 7.2 illustrates the problem for the case of a textured CD cover. Figure
7.2(b) shows all edges created (due to texture on the cover as well as the outline)
and Figure 7.2(c) shows the closures found after some time. If we used masking
and based significance on internal colour coherency, the smaller more homogeneous
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(a) Good hypothesis...? (b) ... Yes.

(c) Good hypothesis...? (d) ... No.

Figure 7.1: Closure hypotheses.

texture regions would mask the outline. If we based significance on size, we would
mask the texture. But clearly human observers can see both, a rectangular CD
cover with texture on it.

(a) Original image (b) Edges (c) All closures (d) Contour

Figure 7.2: CD cover and detected closures.

A globally consistent interpretation is only possible once we know what objects
we are interested in, i.e. what image content we want to communicate or act upon.
This could be the CD cover outline of Figure 7.2(d) (e.g. for picking it up) or
the smaller orange (top) and blue (bottom) rectangles inside (e.g. for finding the
“blue-and-orange” CD cover).

So instead of forming one globally consistent interpretation of the scene, we
propose to make a much weaker statement. Again we defer a (dangerous, early)
decision and just order the data acquired so far. Regarding for example Figure 7.2
we would say there is one big surface, which is occluded by several smaller ones,
which are “painted on”, where occlusion is inferred from T-junctions. The result
is a relative depth ordering of surfaces: Objects occluding each other are placed
at different depths and surface markings make up different “layers” of objects.
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The general rationale is that we hope to separate foreground objects from the
background clutter they occlude.

7.1 Markov Random Field for Depth Ordering

Given a number of surfaces we want to find a relative depth ordering. Common
contours between surfaces hint at both surfaces having same depth, T-junctions
hint at one surface occluding the other (see Figure 7.3). Common contours start
at a certain point, typically where two L-junctions co-incide, e.g. surfaces B and
D. Sometimes these hints are contradicting, such as the common contour between
surfaces C and E (starting at the indicated co-inciding L-junctions) and the T-
junction between other parts of the same contours.

E

T−jct

T−jct

A

B

C

D

L−jcts

L−jcts

Figure 7.3: Surfaces at different relative depths.

Note that of course in real images situations are more complicated and relative
depth orderings have to be consistent over the whole image. If we regard relative
depth as discrete labels we can pose the search for a consistent depth labelling as a
combinatorial optimisation problem. We construct a graph consisting of surfaces
as nodes and depth relations (common contours and T-junctions) as edges and
search for a labelling which minimises the contradictions in the depth relations.

Our problem is similar to the labelling problem in Schlueter et al. [SWSP00].
They aim to find a consistent labelling of a graph too. Their nodes are various
groupings, relations are either “part of” (supporting) or “sharing the same prim-
itive” (contradicting), and labels are significances. And they want to find one
optimal interpretation of the scene (maximising significances). Our aim is on one
hand less ambitious: we do not seek one single optimal interpretation of the scene.
We consider this out of reach for now. On the other hand we want to make a
stronger statement, as we infer some notion of depth from the two-dimensional
image, whereas the above authors stay in 2D.

We will use the same framework as the above authors, namely a Markov Ran-
dom Field (MRF) together with the Highest Confidence First (HCF) optimisation
method.
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7.2 Markov Random Fields

First we give a brief introduction into Markov Random Fields. See for example
the book by Li [Li95] for a thorough introduction into the topic. The formalism
adopted in the following sections follows that of Li.

We are given a labelling problem, where each site of a set S = {s1, . . . , sm} is
to be assigned a label from a set L = {l1, . . . , lk}. A labelling f = {f1, . . . , fm} is
a set which assigns each site si a label fi.

The inter-relationship between sites is represented by a neighbourhood system
N = {Ni | ∀ i ∈ S}, where Ni is the set of sites neighbouring i. A clique c for
(S,N ) is a subset of S, where each clique member is a neighbour to all other
clique members. There are size-one cliques (single sites), size-two cliques, size-
three cliques etc.. The set of size-one cliques is termed C1, the set of size-two
cliques C2 etc. and C = C1 ∪ C2 ∪ . . . is the set of all cliques.

In a Markov Random Field labels are treated as random variables. F =
{F1, . . . , Fm} is a family of random variables defined on the set S, where each
random variable Fi takes a value fi in L. The joint event f = {f1, . . . , fm} where
Fi takes on the value fi is called a configuration of F and corresponds to a la-
belling. P (Fi = fi) is the probability that random variable Fi takes on value fi,
and P (F = f) is the probability of the joint event. For a Markov Random Field
on S with respect to neighbourhood system N the following conditions must be
satisfied:

P (f) > 0, ∀f ∈ F (positivity) (7.1)

P (fi | fS−{i}) = P (fi | fNi
) (Markovianity) (7.2)

where fNi
= {Fi′ | i′ ∈ Ni} denotes the set of labels at the sites neighbouring i.

The Markovianity states that only neighbouring labels have direct influence on a
label.

Generally it is difficult to specify the joint probability P (f) or conditional
probabilities P (fi | fNi

), except for a specific class of MRFs: The random variables
F of a Gibbs random field (GRF) on S with respect toN obey a Gibbs distribution:

P (f) =
1

Z
e−

1
T

U(f) (7.3)

Z =
∑
f∈F

e−
1
T

U(f) (7.4)

Z is a normalising constant called the partition function and constant T is called
the temperature (showing the Gibbs distributions origin in Physics problems). U(f)
is called the energy function and is given by the sum of clique potentials:

U(f) =
∑
c∈C

Vc(f) (7.5)
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P (f) measures the probability of a particular configuration f . The more likely
configurations are those with lower energies. By minimising the energy function
we can find the most likely configuration. So as long as we are only interested in
the configuration minimising the energy function and not the specific probability
of this configuration, the particular values of Z and T do not matter and can be
set to 1.

We will only consider cliques up to size two and can write the energy function
as

U(f) =
∑
i∈S

V1(fi) +
∑
i∈S

∑
j∈Ni

V2(fi, fj) (7.6)

7.3 Problem Formulation

We will now describe the MRF formulation of our problem. S is the set of surfaces.
The neighbourhood systemN is defined by common contours and T-junctions. For
the time being we use a fixed number of depths, from lmin = −10 to lmax = 10,
which define the label set L (Note that this ad-hoc setting of a fixed number of
labels of course contradicts our mantra of parameter-free methods and, as is to be
expected, will get us into trouble later on). We have two special labels: a default
depth ld = 0 and the uncommitted label lu (see Section 7.4).

The data energy term is used to place surfaces at the default depth ld as long
as no depth relations indicate otherwise. So this energy term is only used for new,
uncommitted sites.

V1(fi) =

{
|fi − ld| if fi = lu
0 else

(7.7)

Each site si has two (overlapping) sets of neighbours: contour neighbours (NC)
and T-neighbours (NT ). Contour neighbours are surfaces which share part of their
contour with si. Surfaces with contours forming a T-junction with the contour of
si are T-neighbours. Accordingly we define energies for size-2 cliques: common
contour energies (VC) and T-energies (VT ). Then V2(fi, fj) = VC(fi, fj)+VT (fi, fj).

Surfaces which share a common contour should be at the same depth, i.e. have
the same label:

VC(fi, fj) =

{
min(σsi, σsj) + min(σei, σej) if fi 6= fj

0 else
(7.8)

where σxy are the significances of the junctions which start and end the common
contour on si’s and sj’s side respectively. These junctions can be L-junctions or
collinearities (see Figure 7.4(a)). Start and end are defined by si, where junctions
are counted counter-clockwise. So the energy of a common contour is defined by
the minimum significances of the junctions causing it.

If the contours of si and sj form a T-junction they should be at different depths,
because one surface occludes the other. Let us suppose that the contour of si forms
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Csi sjC
s js i

LLei ej

(a) Common contour

js
is

T

T

(b) Outside T

s i

s j

T

TT

T

(c) Inside T

Figure 7.4: Depth relations.

the bar and the contour of sj forms the pole of a T-junction. Now there are two
cases: the contour of sj can intersect the contour of si from outside (see Figure
7.4(b)) or from inside (see Figure 7.4(c)). In the first case we consider si occluding
sj and demand si < sj. In the second case we consider sj to be “painted on” si

and therefore occluding it, and we demand si > sj.

VT (fi, fj) =


σT if fi ≥ fj and sj outside si

or fi ≤ fj and sj inside si

0 else
(7.9)

where σT is the significance of the T-junction. Note that each T-junction cor-
responds to a collinearity and two L-junctions (see Figure 6.3). The common
contours started by such L-junctions are not considered in NC .

Figure 7.5 shows a sample MRF for Figure 7.3. Solid lines represent common
contour relations (i.e. same depth) and a dashed arrow from X to Y means that X
is above Y. We can see several contradicting relations already in this simple exam-
ple. The optimisation method presented in the next section will find the labelling
minimising the global energy and thus find the least contradicting labelling.

A

C

B
E

D

AB

Figure 7.5: Sample MRF for Figure 7.3. Solid lines represent “same depth”, dashed
lines represent “above”.
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7.4 Highest Confidence First Energy Minimisa-

tion

Highest Confidence First (HCF) [CB90, CCS+93] is a serial, local, deterministic
algorithm for combinatorial minimisation with a discrete label set. Sites are se-
lected successively and a label is chosen which minimises the local energy Ei of
that site.

Ei(fi) = V1(fi) +
∑
c:i∈c

Vc(fi) (7.10)

where c : i ∈ c denotes all cliques of which i is part. The algorithm introduces a
special uncommitted label lu /∈ L. Initially all sites are uncommitted. Once a site
is committed, i.e. has a label other than lu, it can not go back to the uncommit-
ted state. The uncommitted label is introduced in order to avoid problems with
dependence on initialisation, which other algorithms such as Iterated Conditional
Modes (ICM) have.

Clique potentials Vc are slightly modified

V ′
c =

{
0 if ∃j ∈ c fj = lu

Vc else
(7.11)

So a site has no effect on its neighbours until it is committed. Commitment and
label changes are based on a stability measure. The stability of i with respect to
f is defined as

Si(f) =

{
−minl∈L,l 6=lmin

[Ei(l)− Ei(lmin)] if fi = lu

minl∈L,l 6=fi
[Ei(l)− Ei(fi)] otherwise

(7.12)

where lmin = argminl∈LEi(l). The stability Si(f) measures the maximum energy
reduction that can be achieved by changing the label of si. For an uncommitted
site, the stability is given by the difference between the lowest and second lowest
energies. For a committed site it is given as the difference between the current
energy and lowest possible energy due to any other label. A negative stability
means that the local energy can still be reduced, a positive value indicates that no
further improvement is possible. A higher positive value of Si(f) means a more
stable configuration, the distance to the next best label is large, whereas a small
positive value means that it does not matter much which label to chose. A negative
value with larger magnitude gives us a higher confidence to reduce the global energy
in changing f to a new configuration. Hence the name Highest Confidence First:
we successively change the site with the highest confidence, i.e. the lowest stability
value.

Figure 7.6 shows the complete HCF algorithm. MakeHeap sorts S values such
that the minimum value is on top, Top retrieves this top value. ChangeState(k)
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HCF()

set f to UNCOMMITTED

MakeHeap

while S(Top) < 0

k = Top

ChangeState(k)

UpdateStability(k)

for each j in neighbourhood of k

UpdateStability(j)

MakeHeap

Figure 7.6: Highest Confidence First (HCF) algorithm.

changes fk to f ′
k

f ′
k =

{
argminl∈LEk(l) iffk = lu

argminl∈L,l 6=fk
[Ek(l)− Ek(fk)] else

(7.13)

If there are no more negative stabilities the MRF is in a (local) minimum, because
no further change of a label can reduce the global energy further.

Junctions and therefore depth relations as well as closures are built incremen-
tally (see previous chapter). So also depth ordering is performed incrementally.
Sites are added to the MRF one by one as new closures are formed and a new en-
ergy minimisation started after each one. As the existing sites are already labelled
consistently and only the new site is uncommitted convergence is typically fast.

7.5 Results

We tested the depth ordering on a number of table-top scenarios with varying
success. All tested images are 640 × 480 and experiments were carried out on a
2.16 GHz PC. Runtimes are total runtimes including edge segmentation, closure
detection and depth ordering. We will show the original images overlaid with
detected closures and a quasi-three-dimensional view showing the ordering of sur-
faces in different depth layers. The “photo corners” indicate the different discrete
depth layers. Darker surfaces are nearer, the lighter the grey value, the further
away. Note that the spacing of depth layers is of course meaningless and is set to
allow discerning the various surfaces. Unfortunately the (static) 3D views some-
times fail to adequately capture the quasi-three-dimensional organisation of the
scene, especially if multiple hypotheses clutter the display. Rotating theses views
interactively obviously gives a much better impression.

Figure 7.7 shows the depth ordering of closures detected for the CD cover of
Figure 7.2 after 0.302 s. In this case we only show the CD cover and hide the rest
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of the scene for clarity. We can see that the outline forms the farthest surface and
the various surface markings are perceived as covering this surface.

(a) Detected closures. (b) Surfaces in depth.

Figure 7.7: CD cover.

Figure 7.8 shows the three coloured blocks already encountered in Figure 6.18
after 0.294 s. We see that the faces of the blocks are perceived as lying in front of
the contour (A). Furthermore the shadow caused by the left (red) block is perceived
behind it and also behind the centre (green) block (B). The roll of sticky tape on
the left (C) does not quite make sense: our depth reasoning does not correctly
perceive holes.

(a) Detected closures after 0.294 s. (b) Surfaces in depth.

Figure 7.8: Three coloured blocks.

Figure 7.9 shows two pencils, one occluding the other. The front pencil (A) is
correctly perceived as occluding the left and right part of the back pencil (B). The
right part of (B) is detected in some more detail (two faces of the pencil which
is a hexagonal prism) and (C) is the coarser outline of that part and accordingly
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perceived below (B). The shadow (D) of the front pencil lies correctly behind both
pencils. Only the reflection (E) of one of the books in the background on the table
is perceived incorrectly, the reason being that while it does form a T-junction on
the left side, it also (accidentally) aligns rather smoothly on the other side.

(a) Detected closures after 0.400 s (b) Surfaces in depth.

Figure 7.9: Two pencils.

Figure 7.10 shows the occluded pencil of Figure 6.16 (before amodal comple-
tion) after 0.831 s. The pencil parts are perceived as behind the block (A). Also
the reflection of one of the books in the background is perceived as behind the
block and pencil (B).

(a) Detected closures after 0.831 s. (b) Surfaces in depth.

Figure 7.10: Occluded pencil.

Figure 7.11 shows again the occluded pencil this time after the contour was
amodally completed. We see that by and large the depth ordering is still correct
(also the completed pencil contour is correctly placed behind the occluding block,
although barely visible in all the clutter). However we needed to wait 21 s for
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the occluded contour to be completed! The reason is that while waiting for the
gap to close we accumulated in the order of 350 surfaces. The depth ordering now
tries in vain to fit these into a consistent labelling with only the 21 (from −10 to
10) depth labels we originally defined. As long as there are few sites, consistent
labelling is easy and found quickly. A new surface will quickly find a suitable label
and only “move”a few neighbouring surfaces. As complexity and neighbourhoods
grow, it is increasingly difficult to find a consistent labelling and surfaces tend
to be “pushed” against the borders of minimum and maximum label, not able to
move further although they still violate depth constraints. Increasing the number
of labels would postpone this problem, but also slow down the HCF algorithm,
which for each site tries all labels in order to find the one resulting in minimal
energy.

(a) Detected closures after 21(!) s. (b) Surfaces in depth.

Figure 7.11: Occluded pencil, amodally completed.

7.6 Discussion

The aim of this chapter was to put the closures detected in the previous chapter into
a more global context. Furthermore to provide a purpose for perceptual grouping.
Perceptual grouping is not meaningful in and on itself. (Local) perceptual grouping
should eventually lead to a global interpretation of the scene, a goal which is
however still elusive.

Although the proposed MRF based method manages to get correct depth or-
dering in simple cases, it does not quite tackle the perceptual confusion of multiple
hypotheses. Lots of loose clutter can be seen “flying around”. More severely, the
method runs out of depth labels with increasing complexity, i.e. when run longer.

A possible solution to that could be to determine the necessary number of
labels automatically. Equations 7.12 and 7.13 iterate over all labels in the label
set L to find the optimum. One could start with a minimal label set L = {ld}
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containing only the default label and in the above equations tentatively extend
the label set to L′ = L ∪ {lmin − 1} ∪ {lmax + 1}. If the optimum label would be
outside the original label set L we permanently extend it to incorporate that label.
It shows however that the number of labels then just tends to grow arbitrarily and
large “gaps” of unused labels form. So we would require a “repacking” of the
label set, removing unused labels and adjusting the bounds accordingly. It is not
entirely clear however how all these ad-hoc modifications would affect the original
minimisation algorithm, and a deeper look into the theory is needed.

Another solution could be to stop incremental processing as soon as the label
set is exhausted. I.e. use the limited capability of the depth ordering as a stopping
criterion: We can stop finding more structure as soon as we can no longer handle
it.

Both of the above proposals are not entirely satisfactory however. All in all
the proposed MRF based method seems not powerful enough to provide the sort
of global reasoning we are after in all but rather simple cases. Moreover we would
actually like a global reasoning system to be able to represent mutually exclu-
sive but internally stable and consistent interpretations (such as Necker cubes),
which an MRF can not do. These would correspond to strong local minima which
are placed far apart, and the local HCF minimisation can not easily move between
these. Other combinatorial optimisation methods such as genetic algorithms might
be better suited. For example a genetic algorithm could represent mutually ex-
clusive interpretations as different populations. Our initial choice for a MRF with
HCF minimisation however was motivated by ease of implementation and the fact
that it is a deterministic algorithm without the need for “black magic”.

Another desireable property of a global reasoning system is dealing with cases
which are actually globally inconsistent, such as a Penrose triangle or Escher pic-
tures. Such pictures contain locally consistent parts (e.g. the corners of the Penrose
triangle), which are perceived as such by human observers, which however do not
fit globally. So we would like our reasoning system to keep the local consistencies
and realise the global inconsistency. For the MRF approach it is not guaranteed
that the configuration into which it would settle in such a case would actually
preserve the local consistencies.

Right now neighbourhoods are only formed between surfaces touching each
other (forming a common contour or a T-junction). Same depth could however
also be inferred from similarity or alignment of surfaces (think of the windows
on a building front). In fact it would be desireable to incorporate many more
Gestalt principles in the global reasoning stage. This would however typically
mean larger cliques. The depth relations we have now are binary relations result-
ing in size-two cliques. Similarity between n surfaces means a size-n clique. Unfor-
tunately however performance of HCF degrades with larger cliques (also Schlueter
et al. [SWSP00] only use size-two cliques). Given that the MRF approach as it
stands now only handles fairly simple cases, it seems too early to think about such
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ambitious extensions.
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Chapter 8

Summary and Discussion

This work started with rather abstract, sometimes philosophical considerations
concerning a possible theory of vision. We felt the need for such explorations
because much work in computer vision seems to address the wrong questions. We
particularly argued against approaches simply based on the recognition of a few
particular image patterns and showed an example why in Chapter 3.

We reviewed past work, sometimes dating back to the early days of the field,
which did address the right questions. Sometimes owing to the limited available
processing power at the times, but typically due to a failure to recognise the im-
portance of tackling complexity, much of this work was based on overly optimistic
assumptions and did therefore not scale to the real world (and sadly was subse-
quently abandoned).

Chapter 4 introduced quantitative measures for non-accidentalness, based on
probabilistic considerations. We aimed for a general formulation of the significance
of a visual event. These significances are used in grouping and reasoning processes
in later chapters.

Chapters 5 and 6 presented a way to tackle complexity, without resorting to
thresholding it away. Tuning parameters and early pruning of hypotheses are the
bane of many (otherwise ingenious) approaches. Incremental processing, from the
identification of junctions, to the formation of closed contours and finally reasoning
about depth provides a means to avoid parameters and also leads to the desireable
property of anytimeness. We could show that scene complexity (represented by the
number of lines/arcs in an image) poses no problem as Incremental Image Space
Indexing allows grouping in linear runtime. With increasing complexity the system
degrades gracefully. Different types of scenes were used for evaluation without
the necessity of tuning any parameters. Finally we indicated how attentional
mechanisms can easily be incorporated into the incremental grouping procedure.

Chapter 7 finally put the local perceptual grouping processes of earlier chapters
into a more global context. Finding a globally consistent interpretation of a scene
is still well beyond reach. We could however show, using a Markov Random Field
based approach that a limited notion of three-dimensionality, namely a relative
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depth ordering of surfaces is feasible, at least for scenes of limited complexity.
What about the sought-after theory of vision? What can be learned from

the presented work? Although some choices along the way were rather ad-hoc
(such as the choice of Canny edge detection, of Dijkstra shortest path search in
a graph or the choice of a Markov Random Field with the Highest Confidence
First algorithm to solve a combinatorial search problem) and mainly guided by
computational considerations, a general lesson learned seems to be the importance
of parameter-free methods and anytimeness.

Dealing with real-world (cluttered, noisy, ambiguous, locally incorrect, ...) data
from the start is a necessary prerequisite for any successful approach. Assuming
clean edge segmentation and “for the time being” concentrating on higher level
aspects will typically lead to unrealistically optimistic systems which can not easily
be adapted later to realistic images. Our own work, starting with rather high level
ideas of vision and meaning of objects, and later forced to concentrate on efficient
grouping methods first, reflects this lesson.

Although we talked a lot about Gestalt principles generally, we only imple-
mented relatively few, namely those leading to surfaces, i.e. good continuation,
similarity (of colour) and closure. We are looking at closures because they typi-
cally correspond to surfaces (or surface patches) of physical objects. And it is these
that we are ultimately interested in. An extension to incorporate more Gestalt
principles is tempting. However we need a more powerful integration scheme than
the Markov Random Field presented in Chapter 7 first.

The hope of finding a general clean probabilistic framework for perceptual
grouping was only partially fulfilled. We managed to use a consistent notion of
significance based on non-accidentalness and probability distributions and used
these probabilities in the clique potentials of a Markov Random Field. It is not
clear however how this choice of significance measure makes a significant (pun
intended) difference versus more ad-hoc saliency measures. Moreover our Markov
Random Field approach does not seem to be powerful enough to provide the sort
of global consistency reasoning we are after and we do not go so far as to claim it
to be a general formulation of perceptual grouping.

Finally, the main open (and challenging) question remains how to establish
a link to the notion of object. As we pointed out in the introduction the vision
system itself should not be concerned with objects and the notion of object only
emerges at the intersection of different modalities, where a specific intention of the
user of these modalities links certain percepts from different modalities to achieve
a certain goal (such as grasping). The different modalities therefore must be able
to link up, and it remains to be seen how perceptual groups represent such a link.



Appendix A

Data Set for Ellipse Detection

Figure A.1: Office scenes with ground truth ellipses, 40 images in 5 sizes: 320×240,
480, 640× 480, 960× 720 and 1280× 960 (only 20 images shown here).
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Figure A.2: Bike scenes with ground truth ellipses. Images taken from GRAZ02
database [OP02], 20 images.
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Figure A.3: Car scenes with ground truth ellipses. Images taken from GRAZ02
database [OP02], 20 images.
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Figure A.4: Kitchen scenes with ground truth ellipses, 20 images.
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Figure A.5: Traffic sign scenes with ground truth ellipses, 20 images.
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Appendix B

Detecting Closures

Figure B.1: Pencil with different amounts of occlusion: EQUAL search lines (top
row) and detected closures (bottom row).

Figure B.2: Pencil with different amounts of occlusion: WEIGHTED search lines
(top row) and detected closures (bottom row).
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Figure B.3: Pencil with different amounts of occlusion: SMART search lines (top
row) and detected closures (bottom row).
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