
M A S T E R A R B E I T

Simulation and Performance Evaluation

of a Topology Control Algorithm in NS2

Ausgeführt am Institut für

Institut für Technische Informatik
Embedded Computing Systems Group

der Technischen Universität Wien

unter Anleitung von O.Prof. Dr. Ulrich Schmid

Betreuende AssistentIn Univ. Ass. Dr. Bettina Weiss

Christian Walter

Mat. Nr: 0225458 Knz: 938
Sachsenplatz, 7/11 1200 Wien

Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

2

3

Abstract

In an ad hoc wireless network distributed nodes communicate with each other over a
wireless medium. Two important problems in wireless ad hoc networks are topology
control and routing. Topology control can be defined as the problem of maintaining
a spanning communication graph. Routing is the process of moving messages across a
network from a source to a destination.

This works extends the topology management algorithm from Thallner [TM05], briefly
called TMA, which generates a k-regular and k-connected overlay graph. We start by
an in depth explanation of the algorithm and show some enhancements to adapt the
algorithm to a real network where some of the assumptions cannot be held any more.
Then we continue by defining the necessary components needed for a real world imple-
mentation of the Thallner algorithm. Using these components, we show how they can
be implemented in the network simulator NS2 [FV06]. Chapter 4 shows our simulation
results and will comment on them.

The second part of our work, which is presented in Chapter 5 provides an imple-
mentation of the Thallner algorithm in a different network model. While the original
model uses an asynchronous model with reliable links, the second network model as-
sumes bounded delays with lossy links. This allows for more efficient implementations
because algorithms designed for synchronous models can be used. We will present our
proposal for an adapted algorithm and will show how it can be implemented in the
network simulator.

The final part of this work shows how further studies like the evaluation of routing
algorithms can be performed on top of the simulation framework. This includes an
example of a flooding protocol which we developed during our studies, and the DSDV ad
hoc routing protocol. We have also included some basic guidelines on how to implement
other topology control algorithms in NS2.

3

4

4

5

Contents

1 Introduction 9

1.1 Topology Control and Routing . 10

1.2 Network model and basic algorithm . 11

1.3 Topology Management Algorithm TMA 12

1.4 Contribution and Key results . 14

1.5 Related Literature . 14

1.6 Further Research . 15

2 Topology Construction 17

2.1 Basics . 18

2.1.1 Network Model . 20

2.1.2 Topology Construction . 21

2.1.3 Properties . 27

2.2 Examples . 30

2.2.1 Generation of Proposals . 30

2.2.2 Emission of proposals . 33

2.2.3 Periodic Group Checking . 34

2.3 Distributed Construction Algorithm . 36

2.3.1 Data structures . 36

2.3.2 Main loop . 37

2.3.3 Utility functions . 38

2.3.4 Group proposals . 39

2.3.5 Group checking . 40

2.3.6 Atomic Commitment . 41

2.4 Propose Modules . 46

2.4.1 Network Model . 46

2.4.2 Supporting functions . 46

2.4.3 Local Non-Perfect Propose Module 53

Example . 57

3 NS2 63

3.1 Introduction . 64

3.1.1 NS2 . 64

3.2 Design Decisions . 70

3.3 Modifications made to NS2 . 71

3.4 Implementation of the Thallner Algorithm 73

5

6 Contents

3.5 Setup and Configuration . 75
3.5.1 Enabling Topology Management in NS2 75

3.5.2 The TMA/Filter module . 75
Configuration settings . 75
Supported commands . 76

3.5.3 The TMA/None module . 76
3.5.4 The TMA/Thallner module . 76

Configuration settings . 76
Supported commands . 79

3.5.5 Example . 83

3.6 Basic NS2 networking components . 90
3.6.1 Multicast Service . 90

3.6.2 Reliable Multicasting . 92
Frame Formats . 93

3.6.3 Simple Multicasting . 95

Frame Formats . 95
3.6.4 Link-State Service . 96

Example . 98

Frame Format . 101
3.6.5 Weight Estimation . 101

Interface . 103
3.6.6 Non-Blocking Atomic Commitment 105

Basic operation . 105

Frame formats . 106
3.7 Group Checking and Group Construction 109

3.7.1 Datatypes and classes . 109
3.7.2 Group checking . 111

Periodic triggering . 113

3.7.3 Group proposals . 114
3.8 Propose Module . 118

3.8.1 Local non-perfect propose module 118

4 Simulation 121
4.1 Environment . 122

4.2 Simulation script . 123
4.2.1 Result files . 123
4.2.2 Convergence detection . 126

4.3 Results . 129
4.3.1 Example Overlay Graphs . 129
4.3.2 Message complexity . 136

4.3.3 Convergence time . 136
4.3.4 Local-Non Perfect Propose Module 140

4.3.5 Group Checking . 146
Reliable Multicast performance . 149

6

Contents 7

4.3.6 Network properties . 150
4.3.7 Other results . 155

5 The “Extended-”Thallner Algorithm 159
5.1 Introduction . 160
5.2 Network model . 163
5.3 Implementation . 165

5.3.1 Implementation using the Synchronous Reliable Multicast 165
Practical implementation concerns 168
Implementation of the Thallner NBAC 169

5.3.2 Implementation using Agreement 171
Agreement protocol . 175

A Installation 179
A.1 Required components . 179
A.2 Installation of NS2 . 180
A.3 Installation of supporting utilities . 181
A.4 Testing of installation . 181

B Development support 183
B.1 Required components . 183
B.2 File system layout . 183
B.3 Adding new functions . 185
B.4 Creating a patch . 185

B.4.1 Documentation . 187

C Usage 189
C.1 Introduction . 189
C.2 Network Topology Creation . 191
C.3 Simulation Framework and Setup . 192
C.4 Examples . 197

C.4.1 Flooding Example with UDP/CBR Traffic 197
C.4.2 Routing Protocol with UDP/CBR Traffic 205
C.4.3 Example for TMA/Filter with UDP/CBR traffic and DSDV . . . 207

D SSF - Source Sequenced Flooding 211
D.1 Usage . 211
D.2 Implementation overview . 212
D.3 Header format . 213

E Trace File Format 215
E.1 NS2 trace formats . 215

7

8 Contents

8

9

1 Introduction

9

10 1 Introduction

1.1 Topology Control and Routing

Topology control is the problem of computing and maintaining a connected topology
among all nodes [Raj02, p60]. A topology graph T ′ = (V ′, E′) in this sense is simply a
subset of the transmission graph T = (V,E) where V = V ′ is the set of nodes and E ⊆ E′

is the set of connections between them. A transmission graph is an abstraction of the real
world network where two nodes are connected if they can communicate with each other.
Topology management is a low-level service which is typically built directly into or upon
the MAC layer. It therefore provides a different view of the network to higher levels by
restricting point-to-point communication and favoring multi-hop communication. The
reasons for this are manifold and a lot of different metrics exist to judge on this. Typical
metrics are energy efficiency, fault tolerance1, robustness to mobility, connectivity degree,
reduced interference, message/time complexity and a lot more.
Common to almost all algorithms is that they use messages to exchange information with
neighbors and then use this information to select the “best” neighbors to talk to from
the available ones. Such protocols are called Neighbor-Based protocols [San05, p.182].
Other variants are Direction-Based protocols which ensure that at least one neighbor
is in every cone-angle p [San05, p. 182] of a node. Example for such protocols are
CBTC - Cone-Based Topology Control [LHB+01]. Finally there are Location-Based
protocols which typically use GPS receivers to generate their topology. A protocol
using location information is LMST - Local Minimum Spanning Tree [LHSS05]. To
integrate fault tolerance, efforts were made to establish k−node connectivity, for example
kXTC [SKSS04], where there are k node redundant paths between any pair of nodes.
Since nodes cannot handle an arbitrarily large number of connections, algorithms that
provide a k−regular topology, that is, which restricts the number of connection of every
node to k, are of particular interest. The TMA algorithm investigated in this thesis
provides both, k− node redundancy and k−regularity [Tha05].

Topology management by itself is not enough because messages have to be transmit-
ted between nodes. If the nodes are not directly connected the message must pass an
intermediate node. The process of determining a good path for sending a message in
a network is called routing and is one of the classic problems in this research area. It
can be seen as the distributed version of the shortest-path problem although the metric
might be different. To appropriately route messages within a network every node (or
group) must have a unique (and known) address. Whenever a node receives a message
it either accepts the message if it is the destination, drops the message, or forwards it
to another node. This algorithm continues until the message has eventually reached
its destination or it has been dropped. More sophisticated routing protocols support
multiple paths to a single destination. This can be used to provide better through-
put by load balancing or reliability by the means of fault tolerance. Such protocols
are referred to as multipath routing protocols in contrast to single path routing proto-
cols. Routing protocols can be classified into reactive routing protocols which obtain

1Note that restricting communication always implies that the resulting graph has worse or equal prop-
erties with respect to fault tolerance than the transmission graph.

10

1 Introduction 11

their information on demand, or proactive routing protocols which try to keep a current
view of the topology. Classic reactive routing protocols for adhoc networks are DSR
- Dynamic Source Routing [JMH03], [JMB01], AODV - Adhoc On-Demand Distance
Vector [PR99] and TORA - Temporally-Ordered Routing Algorithm [PC97]. Pro-Active
routing protocols are DSDV - Destination-Sequenced Distance-Vector [PB94], WRP -
Wireless Routing Protocol [MGLA96] and OLSR - Optimized Link State Routing Proto-
col [JMC+01]. Flooding of messages, although not directly a routing protocol, is also an
option and is often a simple, fault-tolerant and efficient solution for information dissem-
ination. Examples for these protocols are our own Source-Sequenced-Flooding protocol
presented in Appendix D and OFP - Optimal Flooding Protocol for Routing in Ad-hoc
Networks [PDDJ02]. Although we did not directly examine the performance of routing
protocols on top of the TMA we have presented some examples in the Appendix on how
they can be executed on top of the topology graph. Therefore this serves basically as a
starting point for further work.

1.2 Network model and basic algorithm

Our theoretical studies are based on an asynchronous network model with reliable trans-
mission where n nodes are fully connected. A more complete definition of our network
model is given later in Section 2.1.1. We will now present the basic idea behind our
TMA algorithm. Initially every node has k open connections. If we group k nodes
together and fully connect them internally then every node has exactly one connection
left. Having k nodes this implies that there are still k connections left. This node can
be considered as a “super-node” and treated just like a single node. We will call a node
with one external connection left a terminal node. Note that within a group we have
(k−1) redundant paths. Using this method we can build a hierarchical structure, which
always has (k − 1) redundancy internally. Unfortunately to get k-redundancy by con-
necting the top-level terminal nodes we need a particular number of nodes, which is not
guaranteed in an arbitrary network. To resolve this we require some additional gateway
nodes which are put in the network and only used if no valid grouping can be found
without them. Therefore we have the total number of nodes n which is the sum of the
normal nodes n′ and the gateway nodes n′′. With this addition the TMA can guarantee
to find a topology that is k-connected.

The basic operation principle is a fully distributed algorithm executing locally at
every node immediately after startup. A propose module periodically tries, and if found
proposes, new groups. If the proposed groups are better than the current one, then
the proposal is broadcasted to all terminal nodes of all group members and a consensus
algorithm is executed which decides if nodes accept or refuse the proposal. If the group
is accepted, it is built. Because nodes can crash or may leave groups without notifying
other members a periodic consistency check is executed.

11

12 1 Introduction

1.3 Topology Management Algorithm TMA

This work is based on the results from Thallner [Tha05] and Thallner, Moser [TM05].
The Thallner algorithm, briefly called TMA, builds a k-regular and k-node-connected
topology from a fully connected transmission graph. The resulting topology has a low
overall transmission power using the minimal number of links (approx. k ·n/2 links). It
requires only local information like the set of neighbors and distance/channel loss and
constructs and maintains an topology graph, sometimes also called overlay graph.
Its basic operational principle is very simple. The algorithm builds groups of k members,
where k is a network parameter chosen by the network designer to match its degree of
redundancy. The members of a group are either nodes or again groups, and the members
are fully connected internally. This leaves k terminal nodes with one connection left to
redundantly connect the group to the remainder of the network. For a single node, which
can be treated as a special form a group, these are simply the k available connections
of the node. For a “real” group the connections originate from the terminal nodes
which are also used to uniquely identify a group within a network. Such a identifier
is called a group identifier, briefly gid. A group is defined by its members, its group
id, its group internal-connections and its weight, which is derived from the weight of
its connections and the weight of its members. This information can be written as a
quadruple (group identifier, groupid, connections,weight).
For example in Figure 1.1 and Figure 1.2 we can see that the nodes 0, 1, 4 have formed
the group ({{0}, {1}, {4}}, {0, 1, 4} , {(0, 1, 66) , (0, 4, 59) , (1, 4, 61)} , 186). The weight of
the group in this case is 186 which is simply the sum of its group internal connections.

Figure 1.1: Example topology graph created by the TMA for k = 3, n′ = 10 and n′′ = 4.

12

1 Introduction 13

Figure 1.2: Example topology tree created by the TMA for k = 3, n′ = 10 and n′′ = 4.

We have already mentioned that groups are either built from nodes, like the group
{0, 1, 4}, or members can be groups itself. This can be seen in the group
({{0, 1, 4} , {6}, {7}}, {1, 6, 7} , {(0, 6, 65) , (4, 7, 59) , (6, 7, 62)} , 195). In this case the ter-
minal nodes 0 and 4 of the group {0, 1, 4} are used to build the group internal connections
for the group {1, 6, 7} and the nodes 1, 6 and 7 still have a connection left after group
construction and therefore they become the new terminal nodes. It is also important to
note that we can see two different types of nodes in Figure 1.1. The circles are “normal”
nodes and the algorithm strives to achieve k-connectivity and k-regularity for them.
Since these properties can not be achieved in every network, the algorithm requires ad-
ditional “gateway nodes”, which are shown as boxes, to guarantee these properties in
such cases2.

Now, how are proposals generated? This is the concern of the so-called Propose
Modules. These modules typically use simple search strategies [TM05, p57] to explore
the search space. Different variants where proposed in [TM05, p57-p82] where one of
them is covered in depth in Section 2.4. They differ in their level of distribution, if they
use local and global information and if they are deterministic or probabilistic. Whenever
a propose module releases a proposal an algorithm executes on all terminal nodes of all
members of the proposed group (up to k2) to decide if the members should join the
group or not. To ensure the consistency of groups even in presence of crash failures
or network changes periodic group checking is employed. It adapts the already built
groups to the new connection weights and ensures that all groups are consistent among

2Note that gateway nodes are only used as a least resort. If it is possible to construct a k − regular
topology without them, they are not used.

13

14 1 Introduction

all nodes. Inconsistent groups are destroyed. Combining all these different facilities
the algorithm generates a k-connected and k-regular topology graph which adapts to
changing network weights and nodes.

In his thesis, Thallner has covered all the theoretical aspects in great detail. He also
performed some Matlab simulations to determine average case performance. However,
for a more in-depth evaluation of the algorithm under different network types in con-
junction with routing protocols we need a standard simulation framework. Finally we
have decided to use the industry standard network simulator NS2. This not only al-
lows use to evaluate the topology management algorithm itself, but does enable us to
evaluate different protocols and routing algorithms on top of NS2. We also identified
possible problems in the practical implementation of the algorithm and instrumented the
complete algorithm with debugging and statistical information. We put special focus on
the graphical visualization of the algorithm, because this allows us to perform further
research more easily than by looking at the internal data structures of the algorithm.
Last but not least, we implemented an automated simulation framework to evaluate
the algorithm for different network sizes. Such a semi automatic framework is impor-
tant because any meaningful statistical results need at least a minimum size of different
simulations.

1.4 Contribution and Key results

In this work we proved that the TMA is at least theoretically implementable in a real
world environment although the network performance is not what one would expect
from a practical algorithm. The performance problems arise mainly from the propose
modules which perform a search-space exploration by means of exchanging messages
and the periodic group checking with a message complexity of O(|groupsMax|k

2). The
maximum number of groups is given by ⌈n−1

k−1⌉ [Tha05, p.14]. Being periodic, these
components put a permanent pressure on the network capacity. These results are shown
in Chapter 4. Nevertheless the resulting topology shows excellent characteristics with
respect to power usage, fault-tolerance and its overall quality.

During our work we also gathered a lot of statistical information which allowed us to
determine the components which warrant further investigation. This includes reducing
the complexity of propose modules, and the average message complexity of the periodic
group checking. An outlook for further research is presented in Section 1.6

1.5 Related Literature

A very good introduction to wireless networks is the classic paper by R. Rajaraman
[Raj02]. It covers all basic concepts from modeling wireless networks, routing and topol-
ogy management and contains a lot of useful references. More focused on topology man-
agement is the paper [San05] which contains a survey of state-of-the-art solutions for

14

1 Introduction 15

topology management. The final reference for this work is the work of Thallner [Tha05]
and Thallner, Moser [TM05].

The research interest in the routing protocol area is quite big and a lot of papers have
been published. As an introduction the writer can recommend the paper [RT99] which
covers a lot of basic adhoc routing protocols in some detail and serves as a good starting
point. A very comprehensive survey is given in [Lan03].

The practical part of our work is focused on the network simulator NS2. A good
starting point for working with the simulator is the NS2 manual [FV06] and the NS2
online resources [ud06]. If a more practical approach is preferred, a good paper is [RR04]
which shows the implementation of a new routing protocol.

1.6 Further Research

During our studies we found that there are still a lot of open areas. Some of these areas
are discussed in Chapter 5 where we adapted the network model to a more realistic
one using bounded delays and lossy links. Using our framework we have developed the
required infrastructure to conduct research in the following areas:

• The propose modules are the weakest part of our topology algorithm, because they
account for most of the message complexity. For this purpose, additional propose
modules should be implemented in the network simulator and their performance
should be evaluated. This information can then be used to find the optimal mix be-
tween the quality of the topology and the message/time complexity for generating
proposals.

• More research should be directed into the problem of a fully connected transmis-
sion graph to generate suitable network topologies. We have tried executing the
algorithm in some not fully connected networks and the results where not satisfy-
ing because the final topology graph was partioned, i.e. it contained at least two
components.

• All information from the topology management algorithm is available at the node.
Some of this information could be used for routing protocols to improve their
efficiency when they are used on top of the TMA. This somewhat reduces the
strict separation of layers but could improve performance a lot. For example the
routing protocol should never use its own “hello” protocol to discover its set of
neighbors, because this information is already available.

• Some research should be performed to evaluate the dynamic properties of the TMA
with moving nodes.

As fas as practical work is concerned, the following areas should be covered:

• The current wireless code of the network simulator NS2 is not very flexible. A
recent patch has been proposed in [PH06] and the existing code should be ported
to this new framework.

15

16 1 Introduction

• Improving the performance of the current implementation on NS2. Profiling of the
current implementation revealed that the weakest points are the slow relational
operators for comparing group identifiers and groups.

• Implementing a real consensus algorithm for the NBAC - Non-Blocking Atomic
Commitment problem together with a failure detector to allow for node crashes
during group construction. The author is quite sure that these would further
decrease performance of the algorithm, but having such a component within the
simulator might be interesting and useful for other problems.

16

17

2 Topology Construction

17

18 2 Topology Construction

2.1 Basics

An ad hoc wireless network consists of a set of wireless nodes, which communicate using
a wireless network. Such a network can be modeled as a set of points in the Euclidean
space where the communication between nodes is restricted by radio propagation and
interference. Even if very simple models are used, describing a network becomes quite
complex because the equations are non-linear, and if interference is taken into account,
they contain a lot of variables. A good introduction is given in [Raj02, p.61]; we will
repeat some of the basics here.

Whenever a node transmits a message using the transmission power Pt, the trans-
mission is subject to path loss. A node listening on the wireless medium will receive
the message with the receive power level Pr, which is a function of the distance d and
a modeling parameter α, which abstracts physical parameters like antenna gain1 and
carrier frequency.

Pr = O

(
Pt

dα

)

(2.1)

Note that equation 2.1 is very simplistic because it is a free-space model, i.e., there are no
obstacles present. For a node to successfully receive a message, a given threshold β has
to be reached. If no other nodes are currently transmitting, this is simply a function of
noise N and the receive power level. A node y successfully receives a message from a node
xi transmitting with the power Pi if the threshold β is greater than 0.1−10 [Raj02, p61].
This is shown in equation 2.2.

Pi

d(xi,y)α

N
≥ β (2.2)

Typical values for alpha are 2 − 4 [Raj02, p61]. Intuitively this is clear because if a
message is transmitted with a given power level and the wave propagation is uniform in
every direction the perimeter increases quadratically with the distance. If the power is
distributed uniform the received power level obviously decreases with at least a quadratic
exponent. Now assume that more than one node is transmitting. Let T = {x1, . . . , xj}
be the set of transmitting nodes. Then a node y receives a message from node xi if

Pi

d(xi,y)α

N +
∑j

k=1,k 6=i
Pk

d(xk ,y)α

≥ β (2.3)

holds [Raj02, p61]. So other transmitting nodes simply increase the noise level for the
message transmitted by node xi. Although NS2 contains a realistic wireless model,
this model is not useful for theoretical studies because it is too complicated. Therefore
algorithm designers typically choose high level models like we did and prefer a more graph
theoretic approach2. Examples for such models are shown in [Raj02, p62], [THB+02]
and [CBD02].

1Antenna gain is the relative increase in [dB] to a standard basic antenna.
2For example, Wattenhofer in [WZ04] also modeled his network as a graph G = (V, E).

18

2 Topology Construction 19

An ad hoc network can be modeled as a graph G = (V,E), where V represents the set
of all nodes, and E is the set of all possible transmission links. Formally, such a graph
is referred to as a transmission graph [Raj02, p62].

Definition 1. Let V be the set of all nodes and E be the set of all direct communication
links. For two nodes x, y ∈ V we have (x, y) ∈ E iff x can directly communicate with y.
We call such a graph G = (V,E) the transmission graph for a wireless network.

Such a transmission graph for our example network is shown in Figure 2.1 which
has been generated from within our NS2 simulation framework. It consists of n′ = 10
“normal” wireless nodes and n′′ = 4 gateway nodes. Normal wireless nodes are drawn
using round shapes. Gateway nodes are drawn using rectangular shapes. Gateway nodes
are always fully connected with each other over some dedicated backbone link. These
nodes are required to guarantee that we can find a solution which is both k-connected
and k-regular (See Definition 13). We can also see from this graph that all edges are
associated with a weight, which is used as a metric for the cost of the link3.

Figure 2.1: Transmission graph for a network with n′ = 10 and n′′ = 4

On the transmission graph we execute the Thallner algorithm as described in [Tha05].

3Or link costs are based on the path loss which is a function of the distance, the environment and the
type of networking equipment (frequency, modulation, ...).

19

20 2 Topology Construction

This algorithm constructs a low weight overlay graph or topology graph which is k-regular
and k-connected.

Definition 2. Let d(v), v ∈ V be the node degree for an undirected graph. A graph
G = (V,E) is k-regular if all nodes have degree k, i.e. ∀v ∈ V ⇒ d(v) = k.

Definition 3. Let G = (V,E) be the transmission graph. We say that two nodes x, y
are directly connected, briefly x∼ y, if there exists an edge (x, y) ∈ E. Two nodes x, y
are connected, briefly x∼* y, if there exists a sequence of nodes x0, x1, . . . , xn−1, xn with
x0 = x and xn = y and (xi−1, xi) ∈ E 1 ≤ i ≤ n. Note that ∼* is simply the
transitive closure of ∼. If there is no direct respectively indirect communication we write
≁ respectively ≁*.

Definition 4. A graph is k-node connected if there does not exist a set of k− 1 vertices
whose removal (and incident edges) disconnects the graph. Or more formally. Let V ′ ⊆
V with ′V ′| < k be the set of vertices which should be removed. Then for the graph
G′ = (V ′, E′) == (V \V ′, E \(V ′ × V ′)) we have ∄x, y ∈ V ′

(
x ≁* y

)
in G′.

Definition 5. Let G = (V,E) be the transmission graph of an ad hoc wireless network.
A topology graph T = (V ′, E′) is a graph where V ′ = V and E′ ⊆ E’, such that if two
nodes are connected in G, then they are also connected in T .

An example of a topology graph is shown in Figure 2.2, which has been generated by
executing the algorithm within the NS2 network simulator. The graph was built with
k = 3 and the result shows the network topology after the algorithm has finished.

2.1.1 Network Model

During the first part of our work we will assume the following network model which
will be relaxed in the second part of our work in Chapter 5. This network model is
not very practical except for analytical studies, but some of the algorithms are not
possible without these assumptions. For example is has been shown in [Gra78] that
distributed systems with unreliable communication do not admit solutions to the Non-
Blocking Atomic Commitment (NBAC) problem. Unfortunately the TMA requires mul-
tiple NBAC instances for group checking and group proposals. Nevertheless, some of
these requirements can be simulated, for example by using retransmission algorithms. If
some of these assumptions are violated and this is detected by our simulation framework,
the simulation is aborted.

Asynchronous: We assume an asynchronous system, where no fixed upper bounds for
message delivery are known, and no assumptions are made on the order or the
time between computation events at any node.

Reliable links: Links are assumed to be reliable. A message that has been sent is even-
tually delivered.

Mobility: A node can change its position in the network at any time and to any location
as long as the transmission graph remains connected.

20

2 Topology Construction 21

Figure 2.2: Topology graph for k = 3 and n′ = 10 and n′′ = 4′

Transmission graph: The network is modeled as a transmission graph G = (V,E), where
V is the set of nodes with |V | = n and n = n′ + n′′, where n′ are the normal nodes
and n′′ are the gateway nodes. E is the set of weighted edges (x, y,w) ∈ E with
x, y ∈ V and w ∈ R+.

Fully connected: For every node x, y ∈ V there exists an edge (x, y,w) ∈ E.

2.1.2 Topology Construction

The aim of the algorithm is to build a topology which is k−regular and k−connected.
The basic idea behind the construction algorithm is to build groups of nodes that can
subsequently be treated as a node. Such a group always consists of k members and
always has k external connections left. For example looking at Figure 2.2 we can see
that there exists a group with members {{4}, {5}, {8}}. This group is connected by the
set of edges {(4, 5, 63) , (4, 8, 67) , (5, 8, 70)}. What is worth mentioning is that this group
is a good choice with respect to the weight, because all other group formations for nodes
4, 5 and 8 would be worse. The set of terminal nodes, which are by definition the nodes
with one connection left, are 4, 5 and 8. The set of terminal nodes are used to build the
group id which in this case is {4, 5, 8}. This group can then subsequently be treated as
a single node with k external connections. In our example these external connections
are used to connect to other groups, as can be seen in Figure 2.2 by the link between 4

21

22 2 Topology Construction

and node 0, the link between 5 and 6 and the link between 7 and 8. The resulting group
{0, 6, 8} therefore consists of the members {{0}, {4, 5, 8} , {6}}.

Because the complete group structure is not obvious from the graph, our simulation
framework allows us to export the group membership information for every node. For
node 6 this is shown in Figure 2.3. It is also possible to export a “global” view of the
complete topology. This is shown in Figure 2.4. Note that in reality this is not possible
because nodes do not possess this information, but within our simulation framework we
can query all nodes for their local group information and then combine the topology
trees from every node into a global tree4.

Figure 2.3: Local topology tree for node 6 for the topology shown in Figure 2.2

What we can see from Figure 2.3 is that the weight of the group {0, 6, 8} is 211. A
detailed explanation of the weight calculation will be given in Definition 12, but in this
case it is simply the sum of the group internal connections. We also see that the group
{0, 6, 8} is a member in group {1, 2, 6}, and that in group {1, 2, 6} node 6 is a terminal
node. The reason for this is that the nodes 0 and 8 were used to build the group internal
connections. This can be seen by looking at the group data structure for gid {1, 2, 6}
in Figure 2.3, where we see the internal connections (0, 2, 73), (3, 2, 70) and (8, 7, 74).
Hence only node 6 has a connection left and becomes one of the three terminal nodes.
The weight of the group in this case is 217.
Another interesting thing we can see, is that the gateway nodes 10, 11, 12 and 13 are
treated differently and that their group weight is extremely high. For example the
group {1, 9, 13} has a group weight of 18639, which can never be exceeded by any group

4Note that if the network is currently under construction this is not guaranteed to be consistent.

22

2 Topology Construction 23

Figure 2.4: Topology tree for the topology shown in Figure 2.2

with non gateway nodes. This high weight results from the group internal connec-
tions (2, 13, 9276), (13, 9, 9286) and (6, 9, 77). Group {11, 12, 13} is even more expen-
sive because it contains the connection (11, 12, 165953) which happens to be a connec-
tion between gateway nodes. This group is built from the group internal connections
(1, 12, 9284),(9, 11, 9296) and (11, 12, 165953). A more complete explanation of the dif-
ferent connection weight classes is given in Definition 10.

We will now continue with a more formal description of our algorithm based on
[Tha05]. For our purposes we have adapted the formalism used by Thallner to a simpler
one.

Definition 6 (Nodes). Let G = (V,E) be the transmission graph. We distinguish be-
tween the “normal” nodes V ′ with |V ′| = n′ and the gateway nodes V ′′ with |V ′′| = n′′

with V = V ′∪V ′′. Furthermore let id be an injective mapping id : V 7→ N. This mapping
associates every node with an unique integer id. If it is clear from the context we will
sometimes directly use the integer id to identify the node.

In our implementation the only practical difference is that connection between gateway-
and gateway nodes and gateway-y and “normal” nodes are treated differently in the sense
that connections to gateway nodes are very expensive and therefore they are not chosen
by the algorithm. In any cases gateway nodes are assumed to be fully connected and
these connections are static.

The example Figure 2.1 shows multiple nodes where every node has a unique id. For

23

24 2 Topology Construction

example nodes 1 and 2 are “normal” nodes and the nodes 10, 11, 12 and 13 are gateway
nodes. It is important that n′′ ≥ 2k − 2 [Tha05, p15] to ensure that the final graph is
k − connected.

Definition 7 (Groups). Let G be the set of group identifiers consisting of the k−member
group identifiers G′ = id(V)k and the single-node group identifiers G′′ = id(V). Every
group consists of a group identifier gid ∈ G, 0 or k members, up to k(k − 1)/2 group
internal connections and a group specific weight.
Every non-single node group has exactly k, members where a member is either a single
node group or again is a group. By definition single node groups have no members. We
identify the set of members of a group gid with members(gid). Furthermore every node
or group can only be a member of a single group:

x ∈ members(gi)⇒ (∀gj ∈ G, gi 6= gj ⇒ x 6∈ members(gj))

Valid group identifiers in Figure 2.4 are for example {4, 5, 8} ∈ G′ or {8} ∈ G′′.
The curly braces around the group identifiers should not be confused with the ones
used for sets. They are only used for presentation purposes and if used otherwise
it is specially noted. An example for the members mapping is members({0, 6, 8}) =
{{0}, {4, 5, 7} , {6}} or members({6}) = {}.

Definition 8. The level l members are defined recursively as:

members0(gid) = members(gid)

membersj(gid) =
⋃

r∈membersj−1(gid)∧r∈G′

members(r)

Or in words. the level l members for the group gid are the members of the groups
which are l levels deeper in the topology tree.

For example let us use the group membership information from Figure 2.4.

members0({1, 2, 6}) = {{0, 6, 8} , {1, 3, 7} , {2}}

members1({1, 2, 6}) =
⋃

r∈members0({1,2,6})∧r∈G′

members(r)

= members({1, 3, 7}) ∪members({0, 6, 8})

= {{1}, {3}, {7}} ∪ {{0}, {4, 5, 8} , {6}}

= {{1}, {3}, {7}, {0}, {4, 5, 8} , {6}}

members2 {1, 2, 6} =
⋃

r∈members1({1,2,6})∧r∈G′

members(r)

= members({4, 5, 8})

= {{4}, {5}, {8}}

members3 {1, 2, 6} = ∅

24

2 Topology Construction 25

Definition 9. The set of nodes for a group gid is defined as:

nodes(gid) =

∞⋃

l=0

membersl(gid) ∩ V

By convention we define nodes(v) = {v} for v ∈ V .

Using the previous example this gives us:

nodes(gid) = {{0, 6, 8} , {1, 3, 7} , {2}, {1}, {3}, {7}, {0}, {4, 5, 8} , {6}, {4}, {5}, {8}} ∩ V

= {{2}, {1}, {3}, {7}, {0}, {6}, {4}, {5}, {8}}

Definition 10 (Connection). A connection (x, y, ω) ∈ E is a triple where x, y ∈ V and
ω ∈ R+. It is called a group gid internal connection if x ∈ nodes(g1) and y ∈ nodes(g2)
with g1, g2 ∈ members(gid) and g1 6= g2. We denote these connections by internal(gid).
Furthermore we impose some restrictions on the connection weight for a connection
(x, y, ω) ∈ E. Let K be an arbitrary but existing constant in R+.

x, y ∈ V ′ ⇒ ω ≤ K (connection between normal nodes)

(x ∈ V ′ ∧ y ∈ V ′′)
(x ∈ V ′′ ∧ y ∈ V ′)

∨ ⇒ 2k2K ≤ ω ≤ 4k4K (connection between gateway and normal node)

x, y ∈ V ′′ ⇒ 4k4K ≤ ω (connection between gateways)

The restrictions on the weight are required to ensure that gateway nodes are not pre-
ferred during group constructions. Furthermore, the artificially high weight for gateway
internal connections5 prevents the algorithm from building gateway groups. The defini-
tion by itself is consistent with that from Thallner in [Tha05, p9] with the exception of
our connections between gateways6.

For example in Figure 2.2 the connection (0, 2, 73) is a group internal connection
for {1, 2, 6} because 0 ∈ nodes({0, 6, 8}) and 2 ∈ nodes({2}) and {0, 6, 8} and {2} ∈
members({1, 2, 6}). Other group internal connections are for example (3, 2, 70) and
(8, 7, 74) in {1, 2, 6}. All group internal connections are available from our simulation
framework in NS2. The example above was extracted from Figure 2.3.

Similar to the connectivity between nodes defined in Definition 3, we can define a
connectivity between groups.

Definition 11 (Connectivity). Let g1, g2 ∈ G. We call the groups directly connected if
there exists a connection (x, y,w) with x ∈ nodes(g1) and y ∈ nodes(g2). If two groups
g1, g2 are directly connected we will write g1∼ g2 as an abbreviation. For a connection
on the transitive closure of the relation ∼ we will write g1∼

* g2.

Looking at our example in Figure 2.3 and 2.2 we can see that the groups {4, 5, 8} and
{0, 6, 8} are connected by the edge (5, 6, 69), i.e., {4, 5, 8} ∼{0, 6, 8}. The members of a
group are always fully connected. Furthermore we can see that {1, 3, 7} ∼*{6} because
{1, 3, 7}∼{0, 6, 8} and {0, 6, 8} ∼{6}, but {1, 3, 7}≁{6}

5This results in our implementation from the fact that all nodes are treated equal.
6Thallner did not require this because he used a different implementation for gateway nodes.

25

26 2 Topology Construction

Definition 12 (Group weight). The weight of a group ω(gid) is a triple (A,members(gid),
internal(gid)) where

A = max

∑

(x,y,w)∈internal(gid)

w, max
ω(gi)=(Ai,...),

gi∈members(gid)

(Ai) + ǫ

with some ǫ > 0. By definition the weight of a single node group is alway zero.

So the weight of a group is either the sum of its internal connections or the maximum
weight of any of its members plus an arbitrary small constant. Note that the weight
of a parent group is always greater than the weight of any of its members. To see an
example for these two cases we have provided an additional example in Figure 2.5. We
can see that the group {3, 5, 9} has a group weight of 204.1. The reason for this is that
the sum of the group internal connections is 203, which can be seen in Figure 2.6(a), but
the weight of group {2, 3, 7} is 204. In our case ǫ = 0.1 and therefore the group weight
becomes 204.1. An example where the sum of internal connections is used is the group
{2, 3, 7}, where the weight is simply 68 + 71 + 65 = 204. The associated topology graph
is shown in Figure 2.6(b) to finish this example.

Figure 2.5: Topology tree node n′ = 15 and n′′ = 4.

Definition 13. An topology graph is called admissible if the topology consists of a single
root group where all terminal nodes are gateway nodes.

Looking at our example in Figure 2.4 we see that there exists a single top level group
{11, 12, 133} and all normal nodes are 3−connected. Please note that in contrast to
the original Thallner version, we have chosen to implement the gateway nodes slightly

26

2 Topology Construction 27

(a) Local topology tree for node
2

(b) Topology graph

Figure 2.6: Topology graph and local topology tree for node 2 for the topology shown in
2.5

differently in NS2: Gateway nodes are like normal nodes, but always have connections
between them which are not affected by the execution of the algorithm. Anyway this is
somewhat similar to Thallner who used a dedicated backbone [Tha05, p9]. Note that
it is also possible and allowed using the definition above that not all gateway nodes are
used in the final topology.

Definition 14 (Topology tree). The topology tree is the graph constructed by recursively
adding all group members to the graph, starting with the root group. By definition the
root group is the group which is not a member of any other group g ∈ G and it has
k members7. For two groups g1, g2 there exists a connection in the topology tree when
g1 ∈ members(g2). Because every group has k members this gives us a k−ary tree.

The topology tree for our example in Figure 2.2 is shown in Figure 2.7. We start with
the root group {11, 12, 13}, which has the members {11}, {12} and {1, 9, 13}. Therefore
these members are also added to the graph and a connection is drawn to the parent
group. This process is continued until all groups have been processed.

2.1.3 Properties

We will just repeat the most important properties of the Thallner algorithm and will not
give any of the proofs. The interested reader is referred to [Tha05] and [TM05] where
they are covered in depth.

7The last addition is required because gateway nodes are treated in the same way as normal nodes and
they might be “left over” at the end of execution.

27

28 2 Topology Construction

Figure 2.7: Topology tree for the topology shown in Figure 2.2

Completeness: For every transmission graph G = (V,E) there exists an admissible
overlay graph if n′ ≥ 1 and n′′ ≥ 2k − 2 [Tha05, p13].
This implies that one should take care when starting a simulation that there are
always enough gateway nodes. For example for k = 2 there need to be two gateway
nodes. For k = 3 four gateway nodes are sufficient.

k-regularity: In every admissible overlay graph G, the node degree is bounded by k and
all normal nodes have degree k [Tha05, p14].
Note that connections between gateways do not count in this definition. This
property also implies that although the algorithm has converged, there might still
be gateway nodes left which have a connection “left”.

Number of groups: Every admissible overlay graph with n′ ≥ 1 and n′′ ≥ 2k − 2 has

exactly
⌊

n−1
k−1

⌋

groups [Tha05, p14].

Relation between Topology Tree and Topology/Overlay Graph: Every admissible over-
lay graph corresponds to a unique topology tree for k > 2. This means that if the
groups are fixed, then the overlay graph is fixed, and vice versa [Tha05, p12].
So given the topology tree one can draw the topology graph and vice versa.

Uniqueness of minimal Overlay Graph: There exists exactly one minimal admissible
overlay graph for every graph G with n′ ≥ 1 and n′′ ≥ 2k − 2 [Tha05, p13].

We added some custom (and simple) properties which are used later in our work.

28

2 Topology Construction 29

Theorem 1 (maximum height). The maximum height of a topology tree is
⌈

n−1
k

⌉
.

This metric is important because it can be used to estimate an upper bound on the time
required for checking the complete topology which is used in our convergence detection
algorithms.

Proof. Let n be the number of groups and let k be the “aryness” of the tree. The
Thallner algorithm only build groups of k members. Therefore any non leaf node must
have exactly k-children. Let us start with a root node. We can now add up to k children
to this node. Adding more nodes would require us to again add k children to any of
the previous children. Because we want our result to hold for the deepest tree we will
always choose the child which is deepest in the tree constructed so far.

The proof is by induction on the number of nodes n where our induction step is k and
not 1. The induction basis is given for n = 1 and n = k + 1. For n = 1 it is obvious
by drawing the tree which shows a depth of 0. For n = k + 1 we have a root node with
k children which gives a depth of 1. Again this fits our claim. Now assume our result
holds for n = 1 + ck where c ∈ N. By the hypothesis the deepest node has depth c.
This node has no children and if we add k children we increase the depth by one. Now

n′ = n + k = 1 + ck + k is n′ = 1 + (c + 1)k and therefore
⌈

(1+(c+1)k)−1
k

⌉

= c + 1 giving

us our desired result.

29

30 2 Topology Construction

2.2 Examples

In this chapter we will show some concrete examples of how the TMA is supposed to
work, with a focus on the distributed implementation shown in Chapter 2.3. We will
skip most of the details, which are relayed to the next chapters, but the basic idea should
be obvious after reading this chapter. We start with fully transmission graph as shown
in Figure 2.8.

Figure 2.8: Example transmission graph for a network with ′n = 10 and n′′ = 4

The algorithm consists of two independent modules. The propose modules, which we
will treat in Section 2.2.1, and the group checking, which we cover in Section 2.2.3.

2.2.1 Generation of Proposals

The primary goal of the TMA is to build new groups and to check that already built
groups are still alive and/or are a good choice with respect to some metric defined
upon weights. New groups are suggested by so called propose modules. Such a module
generates a group proposal, which includes at least the members, the group internal
connections, the set of k terminal nodes and a weight. For now we can simply assume that

30

2 Topology Construction 31

there exists such a propose module which must satisfy at least the following properties:

• A propose module generates proposals for groups of k members with k terminal
nodes, group internal connections and the corresponding group weight [Tha05,
p17].

• Every propose module generates infinitely many proposals.

• Every node has access to such a propose module.

Definition 15 (Group Proposal). A group proposal is a quadruple

Prop = (Members, Terminal nodes, Internal connections,Weight)

where Members is a set of k group IDs, i.e. {gid1, . . . , gidk} with gid1, . . . , gid3 ∈
G. The terminal nodes are the nodes with one connection left in the group and at
the same time are used as the group id. Therefore gid(Prop) = terminals(Prop) =
{id(v1), . . . , id(v3)} with v1, . . . , v3 ∈ V . There are exactly k(k − 1)/2 group inter-
nal connections with (vi1 , vi2 , ω) ∈ E with 1 ≤ i ≤ k and vi1, vi2 ∈ terminals(gid1) ∪
terminals(gid2) ∪ terminals(gid3)The group internal weight is defined according to Defi-
nition 12.

We have already defined what a group is in the Definitions 7, 10 and 12. For simplicity
we will adopt the same notation as for the group proposals given in Definition 15. For
algorithm simplicity we allow single node groups to exist at the bottom level. Therefore
for every node we define:

Definition 16 (Group). For every node v ∈ V there exists a group ({id(v)}, {id(v)}, ∅, 0)

Definition 17 (Parent and Ancestor Relation for Groups). We introduce another re-
lation parent : G 7→ G where parent(gidi) = gidj iff the parent group of gidi is gidj .
Furthermore we define ancestor as the transitive closure of the relation parent and write
ancestor(gidℓ)) = gidj if there exists a sequence of groups gidℓ), gidℓ)+1, gidℓ)+2, . . . , gidj

with parent(gidℓ) = gidℓ)+1 for 1 ≤ ℓ) < j.

A valid proposal for our transmission graph in Figure 2.8 would be

Prop1 = ({{3}, {4}, {7}}, {3, 4, 7} , {(3, 7, 64) , (3, 4, 63) , (4, 7, 57)} , 184)

where in this case the set of members are the same as the terminal nodes. We can
also see that there are exactly 3 group internal connections corresponding to k = 3.
Furthermore the group weight is consistent with Definition 12 because the weight of
single nodes is zero. Therefore the largest weight of all its members is zero and the
sum of group internal connections makes up the weight which happens to be 184. The
resulting topology graph is shown in Figure 2.9(a). After this group has been created
the search space is “expanded” and a new possible proposal is for example

31

32 2 Topology Construction

Prop2 = ({{3, 4, 7} , {0}, {5}}, {0, 3, 5} , {(0, 5, 56) , (0, 4, 69) , (5, 7, 68)} , 193) .

The “after”8 implies that the group construction starts at the bottom where groups of
nodes are formed. These groups of nodes are then treated as “super-”nodes which are
again used to build groups. The weight of the group {3, 4, 7} happens to be 193 because
the sum of group internal connections is bigger than the weight of any of its members.
The result of adding this group to the topology is depcted in Figure 2.9(b).

(a) Groups {3, 4, 7} built. (b) Groups {3, 4, 7} and {0, 3, 5} built.

Figure 2.9: Example for proposals and group formations for n′ = 10 and n′′ = 4.

Typically proposals are generated using “simple” search strategies [Tha05, p57]. Such
search strategies are implemented by Propose Modules which are covered in depth in
[Tha05, p57-82]. These modules can be classified with respect to their search space and
to their level of distribution. For the search space exploration there are two classes. The
first class are the perfect propose modules which explore the whole search space.

Definition 18 (Perfect propose module). A propose module is called perfect if it even-
tually generates a proposal in the final minimum admissible topology graph infinitely
often [Tha05, p57].

If every node uses perfect propose modules it is guaranteed that the minimal admissible
topology graph is constructed [Tha05, p57]. The second class are the non-perfect propose
modules.

Definition 19 (Non-perfect propose module). Non-perfect propose modules have a re-
stricted search space [Tha05, p57].

8This is a direct result of the local propose module which always starts with an already existing group.
At the startup these are of course the single node groups.

32

2 Topology Construction 33

These modules cannot guarantee that the minimal topology is found, but only that
an admissible topology graph is found. An example for such a module is the Local-
Non-Perfect Propose Module which always generates proposals containing itself, and
only forwards it to its lowest-weight edge not visited before [Tha05, p67]. We can also
classify propose modules with respect to their distribution.

Definition 20 (Global propose module). A propose module is a global propose module
if it uses some kind of coordinator to serialize group construction [Tha05, p57].

Such propose modules can guarantee that groups are never destroyed by later group
constructions [Tha05, p58].

Definition 21 (Local propose module). A local propose module is fully distributed.

A local propose module might build suboptimal groups because it does not have the
complete information. Therefore some groups might be destroyed later because a group
(in fact the decision is taken by the terminal nodes of these groups) decides to join a
newly proposed group and leaves its current group.

Definition 22 (Locally-agreed propose module). A locally agreed propose module per-
forms the construction as concurrent as possible but ensures that groups built are not
destroyed by later constructions.

It is important that convergence and correctness of the group construction algorithm
does not depend on the propose modules. But of course propose modules are crucial for
liveness and performance of the complete system [Tha05, p57].

2.2.2 Emission of proposals

We have already talked about what proposals are and how proposals are used to build
groups. A remaining question is how nodes in a fully distributed system decide wether
they want to accept a proposal and if yes, how to join such a newly proposed group.
The general idea is as following:

• A node periodically triggers its propose module to generate new proposals and
waits for released proposals. A released proposal is simply a valid proposal found
by a propose module.

• If such a proposal is received by a message the node initiates a special protocol,
which enforces consensus on whether to join the group or not. All terminal nodes
of all members in this proposal take part in this protocol. The reason why all
terminal nodes must take place is that all these nodes have to update their group
information about the possible new parent group (if accepted). For example in the
proposal

Prop2 = ({{3, 4, 7} , {0}, {5}}, {0, 3, 5} , {(0, 5, 56) , (0, 4, 69) , (5, 7, 68)} , 193)

33

34 2 Topology Construction

the nodes 0, 3, 4, 5 and 7 will participate. Note that there are at most k2 partici-
pants because there can only be k-members, and every member is either a group
consisting of k terminal nodes or a single node.

• Using this list of participants the initiator initiates a Non-blocking atomic commit-
ment (NBAC) protocol which guarantees that all nodes either agree on the new
proposal, also called COMMIT, or disagree on the proposal, also called ABORT.

• If a node receives a proposal it decides locally whether to join or not to join the
newly proposed group. A group is joined if it is better, that is, if its weight is
smaller thans its current parent group weight, or if the node has no parent group
at all. The result of the voting process is either COMMIT or ABORT. This
vote is then broadcast to all other participants.

• If all nodes have received all votes or if a node has been suspected, a consensus
protocol is used to ensure that all nodes agree on the decision. Node suspection
is typically implemented by a failure detector. After this step has been taken a
node locally decides and if the decision is COMMIT, it updates its local group
membership information and marks the new group as temporary. This is required
to prevent it from being destroyed by the parallel group checking algorithm because
not all nodes might decide at the same time.

• After all nodes have decided every node finalizes the decision and the groups tem-
porary status is removed. Now the group information is the same at every correct
node and the group will be checked by the group checking algorithm to ensure its
consistency.

The complete code for the group proposal algorithm is shown in Chapter 2.3 in Listing
2.6.

2.2.3 Periodic Group Checking

A wireless adhoc network is not a static structure and therefore the set of vertices
and edges is potentially time variant. In addition groups might decide to leave their
current group and decide to join a new group. This could possibly render an old group
inconsistent. It is therefore necessary to periodically check the groups for consistency.
Again some sort of atomic commitment protocol is used because all nodes should have
the same view of the overlay graph and should reach a common agreement on whether
the group should be destroyed or is still a good (and consistent) one.

The approach is a polling one, which has the drawback of generating a constant
“background” traffic but it guarantees that network changes and nodes crashes can be
detected easily. Looking at our example in Figure 2.9(b) node 3, knows about the groups
{3}, {3, 4, 7} and {0, 3, 5} where they have the following structure:

{3} = ({3}, {3}, ∅, 0)

{3, 4, 7} = ({{3}, {4}, {7}}, {3, 4, 7} , {(0, 5, 56) , (0, 4, 69) , (5, 7, 68)} , 193)

{0, 3, 5} = ({{3, 4, 7} , {0}, {5}}, {0, 3, 5} , {(0, 5, 56) , (0, 4, 69) , (5, 7, 68)} , 193)

34

2 Topology Construction 35

Basically every node v ∈ V periodically checks all groups gid ∈ ancestor(id(v)). The
general algorithm for group checking is as following:

• A node waits for a periodic trigger signal. Then it recursively walks up its local
group hierarchy using the parent relation and checks every group9. Groups which
are locked, i.e. marked as temporary be the group proposal algorithm, are not
checked.

• For every group g it initiates an atomic commitment protocol with all terminal
nodes of members(g). The payload of the message is the current group information.

• Every node participating in the atomic commitment protocol receives this group
information and checks if it is consistent with its local information. It is consistent
if it has the same set of members and connections. Depending on the result it
returns either COMMIT or ABORT. The votes together with the node’s lo-
cal connection information (which might have changed since the construction), is
broadcast to all other nodes.

• After all votes from not suspected nodes are available, an agreement protocol is
executed. After this all correct nodes have the same vote.

• Now a decision procedure is invoked. If the common decision is ABORT, the
group is destroyed. Destroyed means that this group and all its parent groups are
left. If the decision is COMMIT, the weight information is recalculated from
the payload in the votes. In this case the weight of the group, which might have
changed, is checked for consistency according to Definition 12. Note that this
last step might lead to an inconsistent view of the network, but during the next
group checking all nodes would see the change because nodes which left would vote
ABORT.

The complete code for the group checking is shown in Section 2.3.5 in Listing 2.3.5.

9The actual implementation is somewhat different in that it does not check all groups at once, because
this introduces too much load on the network if all instances are done in parallel. It therefore checks
the groups in a round robin fashion.

35

36 2 Topology Construction

2.3 Distributed Construction Algorithm

In this section we will show how the Thallner algorithm can be implemented. This section
is based on the work of Thallner found in [Tha05] with some additional explanations
and modifications for the atomic commitment implementation.

2.3.1 Data structures

We have already introduced a mathematical description for groups in Definition 7 and for
group proposals in Definition 15. These mathematical descriptions are not very suitable
for describing the algorithm and therefore we would like to introduce some additional
notations. The mapping to equivalent C++ classes is straightforward and has been
performed in the file tma-types.h.

Definition 23 (Group Structure). A group data structure is a record like type which
contains the fields shown in Listing 2.1.

Listing 2.1: Group record

Record Group i s {
Members : Set o f k group or node IDs . Members ⊆ G, |Members| = k
Weight : Weight o f t he group . Weight ∈ R+

Connect ions : Set o f connec t ion s . Connection ⊆ E, |Connection| = k or 0
Terminals : The t e rm ina l s nodes . Terminals ∈ G

}

For a group Group we will write Group.Members if we want to refer to the Members
field of this record. It must be noted that storing the weight as an real value is only
sufficient because the other required information enforced by Definition 12 is also avail-
able. This is necessary because if two groups have the same weight the members and
connections are used to enforce a strict ordering on the groups.

Definition 24 (Group Internal Structure). A group internal structure is used to rep-
resent the topology tree at a node. It contains additional fields for locking the groups
during construction and a member Group.ParentID to refer to the parent group. It is
shown in Listing 2.2.

Listing 2.2: Group internal record

Record Group In t e rna l i s {
Members : Set o f k group or node IDs . Members ⊆ G, |Members| = k
Weight : Weight o f t he group . Weight ∈ R+

Connect ions : Set o f connec t ion s . Connection ⊆ E, |Connection| = k or 0
Terminals : The t e rm ina l s nodes . Terminals ∈ G
ParentID : Group ID of t he parent group . ParentID ∈ G
LockedBY : Unique NBAC ID fo r temporary l o c k i n g .

}

36

2 Topology Construction 37

Definition 25 (Connection Structure). A connection is a triple containing a source, a
destination node and an arbitrary weight. It is mapped to the record data type shown in
Listing 2.3.

Listing 2.3: Connection record

Record Connect ion i s {
x : Source node . x ∈ V
y : De s t i n a t i on node . y ∈ V
ω : Weight . ω ∈ R+ .

}

2.3.2 Main loop

The main loop waits for new proposals from the propose module in line 15−18 which are
then released to the network by initiating the atomic commitment protocol. Messages
from the atomic commitment protocol are processed in lines 11− 13. In addition every
node has access to a periodic timer which triggers the generation of new proposals in
lines 21− 22 and the checking of the groups in lines 24− 30.

Listing 2.4: Main loop

1 var Group[]
2
3 // {ID} i s the node l o c a l s id
4
5 Group[{ID}].Members← {}
6 Group[{ID}].Weight← 0
7 Group[{ID}].Connections← {}
8 Group[{ID}].ParentID ← ⊥
9 Group[{ID}].LockedBy ← ⊥

10
11 upon r e c e i v a l o f NBAC message
12 i f r e c e i v ed atomic commitment message
13 execute atomic commitment phase
14
15 upon r e c e i v a l o f new proposa l P from propose module
16 i n i t i a t e atomic commit PROPOSE GROUP
17 participants← te rmina l nodes o f P.Members
18 data← P
19
20 upon s i g n a l
21 i f r e c e i v ed s i g n a l to generate proposa l
22 t r i g g e r propose module
23
24 i f r e c e i v ed s i g n a l to check groups
25 gid← Group[ID].ParentID
26 while gid 6= ⊥ ∧Group[gid].LockedBy 6= ⊥
27 i n i t i a t e atomic commit CHECK GROUP
28 participants← te rmina l nodes o f Group[gid].Members

37

38 2 Topology Construction

29 data← Group[gid]
30 gid← Group[gid].ParentID

2.3.3 Utility functions

These functions are more or less self explanatory but some things should be mentioned for
easier understanding. If one looks at the calculate weight function it should be obvious
that it returns a group weight according to Definition 12. Furthermore we require to
treat the sets in lines 40− 41 as multisets.

Listing 2.5: Utility functions

31 func t i on i s l o c a l l y c o n s i s t e n t (group)
32 var gid← group.T erminals
33 return\
34 (Group[gid] 6= ⊥)∧ // Group e x i s t s l o c a l l y \
35 (Group[gid].Members = group.Members)∧ // Group has the same members \
36 (Group[gid].Connections = group.Connection) // Group has the same connect ions
37
38 func t i on c a l c u l a t e we i gh t (data, group)
39 // c a l c u l a t e weight f o r group from commit data .
40 var GroupWeights = {ωGroup : (ωGroup, ωConns) ∈ data}
41 var ConnWeightSums = {ωConns : (ωGroup, ωConns) ∈ data}
42 return (max (

∑
ConnWeightSums,

∑
GroupWeights + ǫ) , group.Members, group.Connections)

43
44 func t i on jo in g roup (gid, group)
45 var pgid← group.T erminals
46 // group gid l e a v e s current parent group and j o i n s new group .
47 i f Group[gid].ParentID 6= ⊥
48 l eave g roup (gid)
49 // crea t e the new parent group l o c a l l y .
50 Group[pgid]← group
51 // update the current group parent to po in t to the newly jo ined group .
52 Group[gid].ParentID ← pgid
53 // crea t e the connect ion in the t opo logy graph .
54 for c ∈ Group.Connections
55 i f ID i s in c
56 make connection (c)
57
58 func t i on l eave g roup (gid)
59 // group gid r e c u r s i v e l y l e a v e s i t s current parent groups .
60 i f Group[gid].ParentID 6= ⊥
61 var pgid← Group[gid].ParentID
62 // cance l a l l connect ions in the t opo logy graph .
63 for c ∈ Group[pgid].Connections
64 i f ID i s in c
65 canc e l c onne c t i o n (c)
66 // r e c u r s i v e l y l e a v e parent groups o f the current parent .
67 l eave g roup (pgid)

38

2 Topology Construction 39

68 // t h i s group has no parent anymore .
69 Group[gid].ParentID ← ⊥
70
71 func t i on want to jo in (gid, group)
72 // does group gid want to j o in group?
73 i f group[gid] 6= ⊥
74 var pgid← Group[gid].ParentID
75 var new pgid← Group[group].T erminals
76 return

77 // We don ’ t have a parent group or the new group i s b e t t e r
78 // than the current parent .
79 (pgid = ⊥ ∨ group.Weight < Group[pgid].Weight)∧
80 // The new parent group must e i t h e r not e x i s t and i f i t
81 // e x i s t s i t must s a t i s f y our weight c on s t r a in t .
82 (Group[new pgid] = ⊥ ∨Group[gid].Weight < Group[new pgid].Weight)∧
83 // The new group must have a h igher weight than our group .
84 Group[gid].Weight < group.Weight
85 else

86 // the group gid i s no longer a v a i l a b l e . t h i s can happen i f the
87 // group s t r u c t u r e changes between the crea t ion o f the proposa l s
88 // and the c a l l t o t h i s func t ion .
89 return fa l se

2.3.4 Group proposals

The following functions are used for deciding if a new group should be joined and how this
actually happens. The function vote PROPOSE GROUP shown in lines 90−96 decides
locally if a node wants to join a given group or not. These votes are then communicated
to all other nodes and using a consensus algorithm an agreement about whether to join
or not to join the group is made. The result is either COMMIT or ABORT. After
this every node calls decision PROPOSE GROUP shown in lines 98 − 110 using the
result of the consensus and possibly joins the group, and if joined marks the group data
structure as temporary. After all nodes have executed decision PROPOSE GROUP
group building is finalized. This is done by calling the function finalize PROPOSE
shown in lines 112 − 123 with an additional argument which can be used to check if
nodes have crashed after decision. Finalizing makes the group permanent and removes
the temporary flag.

Listing 2.6: Utility functions

90 func t i on vote PROPOSE GROUP(group)
91 // Find the member f o r which t h i s node i s a termina l node .
92 var mygid← gid ∈ group.Members, ID ∈ gid
93 i f want to jo in (mygid, group)
94 return COMMIT

95 else

96 return ABORT

97

39

40 2 Topology Construction

98 func t i on decision PROPOSE GROUP(result, group)
99 // Find the member f o r which t h i s node i s a termina l node .

100 // Find the member f o r which t h i s node i s a termina l node .
101 // For example i f t h i s node has the node address {3} and
102 // the group has the f o l l ow i n g members {{4, 7, 8} , {9}, {3, 9, 10}}
103 // the nex t l i n e re tu rns the group {3, 9, 10} because t h i s node i s
104 // a terminal node in t h i s group .
105 var mygid← {gid : gid ∈ group.Members ∧ ID ∈ gid}
106 var gid← group.T erminals
107 i f result = COMMIT

108 i f want to jo in (gid, group)
109 jo in g roup (gid, group)
110 Group[gid].LockedBy ← nbac id
111
112 func t i on finalize PROPOSE (result, finalizeresult, group)
113 var mygid← {gid : gid ∈ group.Members ∧ ID ∈ gid}
114 var gid← group.T erminals
115 i f i s l o c a l l y c o n s i s t e n t (group) ∧
116 Group[gid].LockedBy = nbacid∧
117 result = COMMIT

118 // Node crashed a f t e r d e c i s i on
119 i f finalize result = ABORT

120 l eave g roup (gid)
121 // Group i s now p e r s i s t e n t on a l l nodes
122 i f finalize result = COMMIT

123 Group[gid].LockedBy = ⊥

2.3.5 Group checking

The functions shown in Listing 2.7 are used by the periodic group checking algorithm.
If a node receives a request to check for groups shown in lines 124 − 131, it first checks
if the group still exists locally, i.e., it checks if the group has the same members and
connections. If yes it returns the connections for which it is responsible as a piggy-back
payload in the response. Responsible in this context means that the node v is an incident
vertex for the connection c = (v1, v2, ω) ∈ E and id(v) = min(id(v1), id(v2)). Therefore
every node will receive all current connection weights and can therefore calculate the new
group weight in line 140. Using this new weight group consistency checks are performed.
This approach has the benefit that connection weights at the nodes are updated and
movement of a node will trigger a reconstruction of the topology. Lines 142− 143 show
the test where it is enforced that the parent group has a larger weight than the group
in which this node is a terminal node. The second test shown in lines 146− 148 tests if
the updated group weight exceeds the weight of the parent group if available.

Listing 2.7: Group checking

124 func t i on vote CHECK GROUP(group)
125 // Find the member f o r which t h i s node i s a termina l node .
126 var mygid← gid ∈ group.Members, ID ∈ gid

40

2 Topology Construction 41

127 i f i s l o c a l l y c o n s i s t e n t (group)
128 return (COMMIT , (Group[mygid].Weight,
129

∑

(a,b,w)∈group.Connections

∧ID=min(id(a),id(b))
ge t connec t i on we ight (c)))

130 else

131 return ABORT

132
133 func t i on decision CHECK GROUP(result, group, commit data)
134 // Find the member f o r which t h i s node i s a termina l node .
135 var mygid← gid ∈ group.Members, ID ∈ gid
136 var gid← group.T erminals
137 i f i s l o c a l l y c o n s i s t e n t (group)
138 i f r e s u l t = COMMIT

139 // Update weight o f the group
140 Group[gid] ← c a l c u l a t e we i gh t (commitdata, group)
141 // Test i f we ight cons i s t ency has been v i o l a t e d
142 i f Group[mygid].Weight ≥ Group[gid].Weight
143 l eave g roup (mygid)
144 // Test i f the current weight exceeds the weight o f the parent
145 // group
146 else i f Group[gid].ParentID 6= ⊥∧
147 Group[gid].Weight ≥ Group[Group[gid].ParentID].Weight
148 l eave g roup (gid)
149 i f r e s u l t = ABORT

150 // Leave a broken group when at l e a s t one node voted ABORT
151 i f Group[mygid] 6= ⊥ ∧Group[mygid].ParentID = gid
152 l eave g roup (gid)

2.3.6 Atomic Commitment

In a distributed system transactions usually involve several participants [Ray96] . A
fundamental issue in these systems is to ensure the consistency of data which is the aim of
the transaction concept. At the end of the transaction participants are required to enter
a commitment protocol in order to COMMIT or ABORT it. This is typically done
in two phases where in the first phase every participant votes COMMIT or ABORT.
In the second phase all participants commit the transaction, i.e., make it permanent or
undo the changes.

Definition 26 (Non-blocking Atomic Commitment (NBAC)). [Ray96, p10] is the prob-
lem of ensuring that all correct participants of a transaction take the same decision which
is either abort or commit. If the decision is COMMIT changes are made permanent
and in case of ABORT no changes are made. A NBAC protocol protocol needs to fullfill
the following properties.

Termination: Every correct participant eventually decides.

Integrity: A participant decides at most once.

Uniform Agreement: No two participants decide differently.

41

42 2 Topology Construction

Validity: If a participant decides COMMIT then all participants have voted COMMIT.

Non-Triviality: If all participants vote COMMIT and there is no failure suspicion then
the outcome of the decision is COMMIT.

Our basic implementation of the NBAC protocol is shown in Listing 2.8 where its
implementation is suited for an asynchronous system with reliable links. It is based
on [Ray96, p14] with some modifications. A node wanting to initiate a NBAC instance
with a set of participants calls the function initiate shown in Lines 1− 5. Whenever a
node receives a NBAC message it executes the function ’nbac’ and decides if it wants to
commit or abort this transaction in Line 8 by calling the function ’vote IMPL’10. The
exact meaning of commit and abort is application dependent; in our case it is either
wheter a group should be joined or wheter a group is consistent. After the decision it
broadcasts its vote to all other participants in Line 9.

Now it waits for all votes to arrive or for a node being suspected in line 10. All currently
available votes are collected in the mapping vote : V 7→ V otes. The same concept is
used for the predicate suspected : V 7→ {true, false} where the actual implementation
is driven by a failure detector. If any node votes ABORT or a node was suspected the
node calls the consensus algorithm with ABORT. In case all nodes voted COMMIT

every node calls the consensus algorithm with COMMIT and the only allowed outcome
of the consensus algorithm is COMMIT. A definition and the properties of a uniform
consensus algorithm is given in Definition 27. Finally the piggy-packed commit data
is extracted from all votes and stored in the variable global commit data in line 23.
This additional data is then passed to the decision function in line 24 where the actual
implementation dependent function ’decision IMPL’ handles it.

Listing 2.8: Non-blocking Atomic Commitment

1 func t i on i n i t i a t e (participants, data)
2 // Generate a unique NBAC id to a l l ow p a r a l l e l i n s t an c e s
3 var nbac id ← un ique id ()
4 // Mu l t i cas t to a l l p a r t i c i p an t s i n c l u d in g the i n i t i a t o r .
5 mul t i ca s t (nbac id, participants, data)
6
7 func t i on nbac (nbac id, participants, data)
8 (vote, commit data) ← vote IMPL (data)
9 mul t i ca s t ((vote, commit data), participants)

10 wait for

11 // e i t h e r i f a l l vo t e s have been r e c e i v ed .
12 ∀v ∈ participants : vote(v) 6= ⊥ ∨
13 // or a pa r t i c i p an t has been su spec t ed
14 ∃v ∈ participants : suspected(v)
15
16 i f ∃v ∈ participants : vote(v) = ABORT

17 result ← un i f i e d c on s en su s (ABORT)
18 i f ∃v ∈ participants : suspected(v)

10IMPL stands for implementation and should indicate that this is application dependent.

42

2 Topology Construction 43

19 result ← un i f i e d c on s en su s (ABORT)
20 i f ∀v ∈ participants : vote(v) = COMMIT

21 result ← un i f i e d c on s en su s (ABORT)
22
23 var global commit data← {commit data : v ∈ participants ∧ (vote, commit data) ∈ vote(v)}
24 decis ion IMPL (nbac id, result, data, global commit data)

The functions vote IMPL and decision IMPL are either instances of the group checking
or group proposal functions described in the previous section. The uniform consensus
algorithm used is the classic one where we will only repeat its definition given in [Ray96,
p6].

Definition 27 (Uniform consensus). A uniform consensus algorithm ensures that all
processes irrevocably decide on a common output value which is one of the input values.
Uniformity adds the requirement that a correct process and a crashed process that decided
just before crashing cannot decide differently. The algorithm has to fullfill the following
properties.

Termination: Every correct process eventually decides on some value.

Integrity: A process decides at most once.

Uniform agreement: No two processes decide differently.

Validity: If a process decides on a value then this value must be one of the input values.

The actual implementation requires an additional step for the group construction11

which has been referred to as finalization by Thallner. The primary reason for Thallner
to implement the finalize step was to postpone the group checking during construction
[Tha05, p32]. For simplicity, Thallner used two NBAC instances where the first decision
unlocked the voting of the second instance to synchronize nodes. This results in a high
message complexity and also imposes implementation problems. Our implementation
differs from that of Thallner in [Tha05] to avoid the usage of an additional NBAC but
tries to match the original properties.

Definition 28. The purpose of the finalization is to inform a node that decision has
been executed on all other nodes [Tha05, p.32]. Finalization has the following properties:

Local finalization: Eventually finalize IMPL will be called on each correct participant.

Finalization agreement: No two participants decide on different finalize results.

Finalization validity: If a participant decides on finalizeresult = result =COMMIT

then decision has terminated on every participant.

Finalization non-triviality: If there is no failure suspicion then finalizeresult =COMMIT.

We will now present our modified algorithm in Listing 2.9.

11The NBAC shown in Listing 2.8 would be sufficient for the group checking.

43

44 2 Topology Construction

Listing 2.9: Non-Blocking Atomic Commitment

1 func t i on i n i t i a t e (participants, data)
2 var nbac id ← un ique id ()
3 // Mu l t i cas t to a l l p a r t i c i p an t s i n c l u d in g the i n i t i a t o r .
4 mul t i ca s t (nbac id, participants, data)
5
6 func t i on nbac (nbac id, participants, data)
7 (vote, commit data) ← vote IMPL (data)
8 mul t i ca s t ((vote, commit data), participants)
9 wait for

10 // e i t h e r i f a l l vo t e s have been r e c e i v ed .
11 ∀v ∈ participants : vote(v) 6= ⊥ ∨
12 // or a pa r t i c i p an t has been su spec t ed .
13 ∃v ∈ participants : suspected(v)
14
15 i f ∃v ∈ participants : vote(v) = ABORT

16 result ← un i f i e d c on s en su s (ABORT)
17 i f ∃v ∈ participants : suspected(v)
18 result ← un i f i e d c on s en su s (ABORT)
19 i f ∀v ∈ participants : vote(v) = COMMIT

20 result ← un i f i e d c on s en su s (ABORT)
21
22 // t h i s i s on ly v a l i d on commit
23 var global commit data← {commit data : v ∈ participants ∧ (vote, commit data) ∈ vote(v)}
24 // l o c a l l y c a l l d e c i s i on . t h i s might happen at d i f f e r e n t t imes
25 // at any node .
26 decis ion IMPL (nbac id, result, data, global commit data)
27
28 // we have c a l l e d de c i s i on . inform a l l o t her nodes about t h i s .
29 mul t i ca s t (FINALIZED, participants)
30
31 // wai t f o r a l l nodes to f i n i s h t h e i r d e c i s i on .
32 wait for

33 ∃v ∈ participants : suspected(v) ∨
34 ∀v ∈ participants : received(FINALIZED)
35
36 i f ∃v ∈ participants : suspected(v)
37 f ina l i z e IMPL (nbac id, result,ABORT, data, global commit data)
38 i f ∀v ∈ participants : received(FINALIZED)
39 f ina l i z e IMPL (nbac id, result,COMMIT, data, global commit data)

This implementation has the same properties as that of Thallner. The initiate func-
tion shown in lines 1−4 is the same as in Listing 2.8. Lines 6−26 also match the original
NBAC.

Proof. The Local finalization property holds because if a node is correct it will multicast
a FINALIZE message in line 29. The network is reliable and therefore if all nodes have
sent the message every node will exit the wait statement in line 34. If a node is suspected
it will eventually be detected and added to the set of suspected nodes. Therefore every

44

2 Topology Construction 45

participant will eventually exit in line 33.

Proof. Finalization validity holds because a node can only receive all FINALIZE mes-
sages if every participant has executed decision. A node will only call finalize IMPL
with COMMIT if it passes the test in line 38.

Proof. Finalization non-triviality holds because if no node is suspected the only way to
exit the wait statement in line 34 is by the reception of all FINALIZE messages. And
therefore the decision is COMMIT because of lines 38 and 39.

Proof. Finalization agreement does only hold if we do not allow node crashes. Otherwise
one node could be suspected and therefore two nodes might decide differently. If all nodes
are correct then this holds for our modification.

We do not see this a limitation at this stage of our implementation because solving
consensus in a completely asynchronous system with even a single node failure is im-
possible [FLP85]. The usage of a consensus protocol with a failure detector was not
practical for an implementation and therefore we require in the first version of our algo-
rithm that no nodes crash during this time. If this assumption is violated, our simulation
environment will report the violation. The second reason for this is that the network is
unreliable and we implemented a reliable protocol on top of the network to allow a solu-
tion of the NBAC problem. Unfortunately, this reliable transmission using retransmits
does not tolerate node failures.

What should also be questioned is why the finalization enforces such strong require-
ments because this is not obvious to the author. In a fully asynchronous system final-
ization is surely required for the correctness proof because if messages can be delayed
arbitrarily long every proposed group can be destroyed by postponing one decision until
the next group checking. A simple implementation could simple enforce that a group
lives a certain amount of time such that we can assure that decision has finished at every
node.

45

46 2 Topology Construction

2.4 Propose Modules

A propose module is an independent and network specific part of the topology construc-
tion algorithm [TM05, p57]. Propose modules can be optimized for fast construction,
low memory consumption, message size, topology convergence time, Because of
their distributed nature, almost all propose modules use search strategies to explore the
network. Different types of propose modules are classified according to the classification
scheme introduced in Definitions 18, 19, 20, 21 and 22 shown in Section 2.2.1.

2.4.1 Network Model

Because the propose modules are triggered infinitely often during execution, it is not
necessary to support any error handling. In case of an error a proposal is simply aborted
and the worst thing which can happen is that some unnecessary messages have been sent
which implies a waste of energy and time. We therefore assume the following network
model for propose modules:

Unreliable links Message transmission is completely asynchronous and messages which
are sent are only delivered with a certain probability p > 0.

Node crashes A node may crash fail-silent at any time during the execution.

Node recovery Late joining of nodes is allowed.

Not fully connected It is not required that the network is fully connected for correct
execution. But of course a (reasonable) propose module will only form groups
which are possible in the underlying transmission graph.

2.4.2 Supporting functions

In this section we will repeat the sub-functions required by our propose module, but
with some modifications to the versions of Thallner shown in [TM05, p59-p63]. These
modifications are required to allow their execution in non-fully connected networks.
Furthermore some bugs have been discovered and the notation has been changed to an
easier one. Important changes are highlighted and explained in more detail if necessary.

The function ’calculate proposal’ shown in Listing 2.10 takes a set of members called
fix, which will be in the final group, and a set of edges, and computes the optimal
group which can be built. In addition it supports an argument called min weight
which enforces that the weight of the calculated group is always bigger or equal to
min weight+ ǫ. Finding the optimal group requires the availability of all edges between
all terminal nodes, which is checked in line 20. If not all edges are available, the argument
allow missing can be used to allow a default weight12. The following modifications have
been made to the original version shown in [TM05, p60]:

12Not all edges are available when the algorithm executes in a non fully connected network or if they
could not be obtained because of various reasons (network problems, transmission errors, ...).

46

2 Topology Construction 47

• The original version misbehaved when called with a single node group. This special
case can happen for example in the local propose module. The reason for the
misbehavior is that the function ’source’ does not work correctly if |fix| = 1
because the test in line 306 in [TM05, p61] will never evaluate to true. Furthermore
it would increment a in line 322 and would access an invalid array index in 326.
The new version shown in Listing 2.10 takes care of this in the lines 10 − 12.

• The original version did not set the members field of the group structure. This is
essential for a correct group to be built. This has been added in line 7 in Listing
2.10.

• The original version supported obtaining missing edges during the calculation.
This has been removed from the function and if required must now be done by the
caller. The reason for this is that the new implementation uses a state machine
based approach and storing the state is always easier at the beginning of the
computation than during it13.

• The function ’calculate proposal’ contains a problem if the calculated weight is
smaller than the minimal group weight. The problem is that during the calcula-
tions the group weight might be passed as an argument to this function (see line
161 in Listing 2.15). If the group found after probing all possible combinations
has exactly the same weight as the argument min weight the original version of
’calculate proposal’ would return this value. The implementation of the group
checking also needs to calculate the current weight of the group which would be
min weight+ǫ. If this happens groups would be built and destroyed rapidly which
happened to the author during simulation and the algorithm did not converge. The
reason for this is that the propose module would release a group which is ǫ better
than the current existing group although it has the same members, terminals and
connections.

Listing 2.10: Proposal calculation

1 // Globa l v a r i a b l e which ho lds the r e s u l t dur ing computation .
2 g l o ba l Pout ← ⊥
3
4 func t i on c a l c u l a t e p r o p o s a l (fix, min weight, edges, allow missing)
5 Pout.Connections← ∅
6 Pout.T erminals← ∅
7 Pout.Members = fix
8
9 // I f c a l l e d wi th |fix| = 1 we can immediate ly c a l c u l a t e the r e s u l t

10 i f |fix| = 1 then

11 Pout.T erminals← {x : x ∈ fix} // fix i s e i t h e r {v} or {v1, . . . vk} .
12 Pout.Weight← 0

13The obvious reason behind this is that the internal state increases in complexity during computations
and is a minimum at the beginning and at the end of it.

47

48 2 Topology Construction

13 // Check f o r miss ing edges and abor t i f no d e f a u l t can be assumed .
14 else i f |fix| > 1 then

15 Pout.Weight←∞
16 terminals← {x : x ∈ x′, x′ ∈ fix}
17 completed edges← edges
18 // Check i f we have a l l connect ions between a l l t e rmina l s
19 for x, y ∈ terminals
20 i f x 6= y ∧ (x, y, ω) 6∈ edges
21 i f allow missing = fa l se

22 // Edges miss ing . S igna l e r ror
23 s i g n a l e r r o r
24 else

25 completed edges← completed edges ∪ {(x, y, ωmin)}
26
27 // Ca l l the r e cu r s i v e a l gor i t hm to f i n d the opt imal edges
28 source (1, 1, ∅, 0.0, f ix, completed edges)
29
30 // Enforce a lower bound on the weight o f t h i s group
31 i f Pout.Weight ≤ min weight
32 Pout.Weight← min weight + ǫ
33
34 return Pout

The function source shown in Listing 2.11 builds the group internal connection by
probing all possible combinations. The combinations are generated in the lines 53− 56
where the sequence starts with < a, b >=< 1, 1 >. For example let us assume that
k = 3. Therefore we would eventually call the function ’calculate proposal’ with three
groups and we would expect it to return the best possible group which can be built from
it. The argument min group would in this case be set to the minimum weight of any the
groups. The function now starts to probe all possible connections between terminals. It
starts by selecting a source terminal which is done by the function ’source’ or if there are
more than one it branches and tries the calculation for all of them. Then the function
’destination’ tries to find a destination terminal. Again if there are more than one it
branches. This algorithm executes recursively until all possible combinations has been
probed.

To start let us assume that |fix| = 3 (for k = 3) and that fix = {{v1}, {v2}, {v3}}.
The first call would add a connection from fix[1] = v1 in line 60 to fix[2] in line 74. The
second part is already part of the function ’destination’ shown in Listing 2.12. This func-
tion again calls ’source’. Now b becomes 3 and a connection is created from fix[1] = v1 to
fix[3] = v3. If source is called the next time a becomes 2 and b becomes 3 after the lines
53− 56 has been executed. This creates a connection between fix[2] and fix[3]. There-
fore we have now the set of connections {(v1, v2, ωv1,v2) , (v1, v3, ωv1,v3) , (v2, v3, ω v2, v3)}.
Because of the test in line 37 the lines 37− 51 are executed. The purpose of this line is
to check if the found group is better than an already found one. Because this is the first
(and only one) in this example it becomes the final result.
Next we have to calculate the set of terminal nodes. This is done in lines 42−51. In case
a member of fix is a single terminal node it must be in the final set because initially

48

2 Topology Construction 49

it had k connections left and now has one left because of the internal connections. It is
therefore added to the set of terminal nodes in line 45. If a member of fix is a group,
it is of the form {v1, . . . , vk}, the situation is somewhat different. Every terminal node
must have a degree of k − 1. If any node is an adjacent vertex in a connection, it will
no longer be available as a terminal node because it will have degree k after construc-
tion. Therefore we simply iterate over all connections and remove nodes and finally one
terminal node will remain which is the terminal node for this group. This is shown in
lines 48− 51.

To see that the probing of all combinations also works correctly where a member of
fix is a group consider the case fix = {{v1}, {v2}, {v31 , v32 , v33}}. A textual description
becomes quite complicated despite this simple example. Therefore Figure 2.10 shows
the generated combinations where the nodes of the graph show the values of a and b and
the currently added connections directly at the function entry point of source. At the
end there are 9 groups to evaluate and the best one these will be chosen. Note that this
algorithm produces quite a large number of combinations. The number of terminal nodes
to consider are up to k2, and we will always choose a subset of k internal connections.

Therefore the algorithm is in O
((

k2

k

))

; this amounts to c · 83 for k = 3 and c · 1820 for

k = 4 where c is a constant. From a practical point of view, these results are not very
satisfying, because for generating a proposal a lot of such calculations have to be done.
Of course, considering complexity on n, this algorithm is in O(1), but this result should
be taken with caution.

49

50 2 Topology Construction

Figure 2.10: All combinations generated for the members fix =
{{v1}, {v2}, {v31 , v32 , v33}}

50

2 Topology Construction 51

Listing 2.11: Proposal supporting function for source terminals

35 func t i on source (a, b, connections, weight, fix, edges)
36
37 i f a = |fix| − 1 ∧ b = |fix|
38 i f Pout.Weight > weight
39 Pout.Weight← weight
40 Pout.Connections← connections
41 Pout.T erminals← ⊥
42 for gid ∈ fix
43 i f gid ∈ V
44 // gid i s a s i n g l e−node group
45 Pout.T erminals← Pout.T erminals∪ gid
46 else

47 // f i n d the node in g id={v1, . . . , vk} with one connect ion l e f t
48 terminal← gid
49 for c = (x, y, ω) ∈ connections
50 terminal← terminal \ {x, y}
51 Pout.T erminals← Pout.T erminals∪ terminal
52 else

53 i f b = |fix|
54 a← a + 1
55 b← a
56 b← b + 1
57
58 i f fix[a] ∈ V
59 // f o r a s i n g l e node there i s no cho ice f o r a connect ion .
60 c.x← fix[a]
61 d e s t i n a t i o n (a, b, connections, weight, fix, edges, c)
62 else

63 available terminals← fix[a]
64 // remove a l l t ermina l nodes which a l r eady have a connect ion .
65 for i ∈ connections
66 available terminals← available terminals \{c.x ∪ c.y}
67 // probe a l l remaining t e rmina l s .
68 for gid ∈ available terminals
69 c.x← gid
70 de s t i n a t i o n (a, b, connections, weight, fix, edges, c)

We already used the function ’destination’ before. It is used to probe the destination
terminals and is shown in Listing 2.12. If the member fix[b], to which a connection
should be built, is a single node group then there is no choice left and a connection is
made in line 74. In the other case multiple choices are possible. We start by calculating
the set of available remaining terminals in lines 79− 82. Initially this set has a size of k,
but during probing its cardinality might decrease because connections are created and
terminal nodes become “normal” nodes. Every possible destination is probed which can
be seen by the branch of calls to ’source in line 87. In any case, a new connection is
added to the set connections and the group weight is adapted. It is important to note
that the weight restrictions from Thallner can be enforced by this implementation by

51

52 2 Topology Construction

using the additional argument min weight of the function source shown in Listing 2.11.

Listing 2.12: Proposal supporting function for destination terminals

71 func t i on de s t i n a t i o n (a, b, connections, weight, fix, edges, c)
72 i f fix[b] ∈ V
73 // crea t e connect ion .
74 c.y ← fix[b]
75 c.weight← ω : (c.x, c.y, ω) ∈ edges
76 source (a, b, connections ∪ c, weight + c.weight, fix, edges)
77 else

78 // probe a l l p o s s i b l e d e s t i n a t i on t e rmina l s .
79 available terminals← fix[b]
80 // remove a l l t ermina l nodes which a l r eady have a connect ion .
81 for c ∈ connections
82 available terminals← available terminals \{c.x ∪ c.y}
83 // probe a l l remaining t e rmina l s
84 for gid ∈ available terminals
85 c.y ← gid
86 c.weight← ω : (c.x, c.y, ω) ∈ edges
87 source (a, b, connections∪ c, weight + c.weight, fix, edges)

Another basic function is the function potential member set shown in Listing 2.13,
which takes an array of members fix, which must be in the final group, and a set of
potential members, and calculates the potential members which can be used to build a
group of |fix|+1 members. Restrictions which cause the final set pms to be smaller than
the set ps are for example the specified bound, that some connections are missing, or
that a group cannot be built because of consistency issues, for example if two members
would share the same terminal node. To give a concrete example let us assume that
fix = {{1, 2, 3} , {5}}, ps = {{4}, {6}}, and the bound is 100. The algorithm would
call calculate proposal for the groups {{1, 2, 3} , {5}, {4}} and {{1, 2, 3} , {5}, {4}} in
lines 101 − 102, and would add them to the set pms in line 106 if the weight bound is
not exceeded. Finally, the set of potential members is checked for consistency in lines
111−114 to ensure that a group of size k can actually be built. In our example all groups
would pass because they are valid. Somewhat unclear to the author of this work is the
usage of the filter argument and the actual implementation in lines 91−95. Furthermore
we had to add additional checks because contrary to Thallner we do not require that
there is a connection between every node, at least not in the propose modules. Therefore
we try to continue building proposals with the check shown in line 103 even if a single
calculation failed.

Listing 2.13: Potential member set calculation

88 func t i on po tent i a l member s e t (fix, ps, edges, bound, filter)
89 pms← ⊥
90
91 i f filter
92 i f fix ∩ V 6= ∅
93 for i ∈ ps

52

2 Topology Construction 53

94 i f (i ∈ V) ∧ (id(i) < min(id(fix) ∩ id(V)))
95 ps← ps \ i
96
97 // remove members in ps which are a l r eady in fix
98 ps← ps \{x : x′ = y′ ∧ x′ ∈ x, x ∈ ps, y′ ∈ y, y ∈ fix}
99

100 // b u i l d groups o f |fix|+ 1 members and check f o r bound
101 for i ∈ ps
102 P ′ ← c a l c u l a t e p r o p o s a l (fix ∪ {i}, ∅, edges, false)
103 i f e r r o r s i g na l e d
104 pms← pms ∪ {i}
105 else i f P ′.Weight ≤ bound
106 pms← pms ∪ {i}
107
108 // remove cand ida t e s which can not be used to b u i l d groups . note t
109 // hat k − |fix| − 1/ groups are requ i r ed to b u i l d a complete
110 // group .
111 i f k − |fix| > 1
112 for i ∈ pms
113 i f |po tent i a l member s e t (fix ∪ {i}, pms \{i}, edges, bound, false) < k − |fix| − 1
114 pms← pms{i}

Finally we present some supporting functions in Listing 2.14 with are very basic and
do not require further explanation.

Listing 2.14: Supporting function used by the propose modules

116 func t i on l e a d e r o f (gid)
117 return min({x : x ∈ gid})
118
119 func t i on i s c o n s i s t e n t (members)
120 // a s e t remove du p l i c a t e s
121 nodes← {x : x ∈ x′, x′ ∈ members}
122 count← 0
123 for gid ∈ members
124 count← count + |gid|
125 // i f one node i s used in d i f f e r e n t groups the s i z e s d i f f e r
126 return count = |nodes|

2.4.3 Local Non-Perfect Propose Module

We will only describe the Local non-perfect propose module, briefly LNP propose module.
We have made some corrections and adjustments to the version of Thallner introduced
in [TM05, p68] to fix some problems and solve some implementation issues. The actual
implementation is shown in Listing 2.15.

• Missing edges are now fetched prior to calling ’calculate proposal’, because it
makes the implementation simpler. The reason for this is that obtaining edges
must be done by exchanging messages, and therefore the edges are not immediately

53

54 2 Topology Construction

available. Because we have to follow a polling based approach, we wanted to reduce
the state to store and therefore moving this to the beginning seemed to be an
obvious and good approach.

• A group is only forwarded to its parent group in line 469 if the new group is
consistent. Inconsistent in this sense means that it can never form a valid group,
i.e., when two members share the same terminal nodes. These modifications can
be found in Listing 2.15 in lines 196− 197.

• We added an additional check in line 156 to check if the group has been destroyed
in the meantime. This happens when a proposal is forwarded and in the time
window between the forwarding and the delivery of the search message the group
gid is destroyed.

• The relevant edges are extended with the connections needed to calculate the
weight of the new group in line 185. Contrary to Thallner in line 463−464 we do not
only add connections which are adjacent to this node but also required connections
for the extended set of fix members. This is only a best effort implementation and
if not available the leader receiving the search must perform the queries anyway.

We will write arr[i], i ∈ N, to access the element i of the array arr where the index
starts at 1. An element in the array is created by assigning it a value using the notation
arr[i]← x. An element is removed from the array by assigning it the undefined value ⊥,
written as arr[i]← ⊥. We write arr.Length to access the number of currently assigned
items in this array.

The algorithm itself follows a DFS approach. A node which is currently in charge
of the SEARCH message tries to calculate a new proposal in line 161 for the members
fix already found during the search and the group identifier for which it is a leader.
To calculate this proposal, we first have to fetch any missing edges in lines 151 − 152.
After the proposal has been calculated, we check if the parent groups of all members
have higher weights than the weight of the calculated group. The parent group for gid
is directly accessible because this node is a leader for this group and it is stored in the
variable pgid. The bound used is then the minimum weight of the parent group pgid
or the minimum weight of any of the group members. This calculation is performed in
lines 163− 166.
Now there are two possibilities. If the bound is not violated, this group looks promising
and we continue in lines 169 − 190. If we already have k members, which is tested in
lines 170, we are done and we send the search back to the originator14. If we have less
than k members, we need to find additional members for the group. We calculate the
set of potential members in line 175, and if there are enough members left to build a
complete group, we continue after line 176. Next we look for our best neighbor in lines
178−180 and if there is a neighbor available we build a new search message with ourself
as member in lines 182 − 187. The addition of the current gid to the excluded set is

14It it unclear to the author why this is required because this node could also initiate the group proposal
because any terminal nodes must participate.

54

2 Topology Construction 55

important because it prevents nodes/groups from being visited twice. The actual for-
warding (of the still incomplete group) is done in line 189.
The other case is when the group weight does not allow us to build a group. That is the
weight of the group is higher than any of its members parent groups. The first case is
when there exists a parent group. This is checked in line 195. If a new group is theoret-
ically possible with pgid as a member instead of gid, which is checked in line 196, then
the SEARCH is forwarded to the leader of the parent group in line 196. Otherwise we
cut this search path by popping the last elements from our DFS search in lines 203−207,
and by adding the group gid to the excluded set. The search is then sent back to the
previous leader which sent us this search message in line 211.
Some small things, are still worth mentioning, which we skipped during the explana-
tion. The variable min weight is used to enforce that groups built have higher group
weights than the current group. Therefore a calculated group weight must be within
the upper bound bound given by the parents of its members and the minimum group
weight enforced by the weight of the members themselves. If a result is received by a
node in line 213, it is released to the group creation algorithm by calling the function
release proposal .

Listing 2.15: local non perfect proposal

128 func t i on l o c a l n o n p e r f e c t p r o p o s a l (gid)
129 send (SEARCH, ∅, {V }, {gid}, {∞}, ∅, gid) to l e a d e r o f (gid)
130
131 func t i on c a l c u l a t e r e q u i r e d e d g e s e t (groups)
132 // c a l c u l a t e the requ i r ed edges to probe a l l group i n t e r n a l
133 // connect ions .
134 terminals = {x|x ∈ x′, x′ ∈ groups}
135 edges = (terminals× terminals) \{(x, x) : x ∈ terminals}
136 return edges
137
138 func t i on comple t e edge s e t (edges, groups)
139 terminals = {x|x ∈ x′, x′ ∈ groups}
140 all edges = (terminals× terminals) \{(x, x) : x ∈ terminals}
141 // E i s the node l o c a l edge s e t
142 return edges ∪ (all edges ∩ E)
143
144 i f r e c e i v ed (SEARCH, f ix, ps, excluded, bound, min weight, edges, gid)
145
146 completed edges← edges
147 // check i f some edges are miss ing in the s e t edges we have
148 // a l r eady r e c e i v ed .
149 missing edges ← \\
150 c a l c u l a t e r e q u i r e d e d g e s e t (fix ∪ {gid}) \ {(x, y) : (x, y, ω) ∈ edges}
151 i f missing edges 6= ∅
152 completed edges = f e t ch m i s s i n g edg e s (missing edges)
153
154 // check i f t h i s group s t i l l e x i s t s . t h i s can happen i f i t
155 // has been des t royed dur ing the search

55

56 2 Topology Construction

156 i f Group[gid] 6= ⊥
157 pgid← Group[gid].ParentID
158 depth← |fix| // depth o f DFS search
159
160 P ′ ← c a l c u l a t e p r o p o s a l (fix[depth] ∪ {gid}, max(min weight, Group[gid].Weight),\\
161 completed edges)
162
163 bound2← bound[depth]
164 i f pgid 6= ⊥
165 bound2← min(bound2, Group[pgid].Weight)
166 bound2← bound[depth]
167
168 finished← false
169 i f P ′.Weight < bound2
170 i f |P ′.Members| = k // send back f i n a l r e s u l t
171 send (RESULT, P ′) t o l e a d e r o f f (fix[depth][1])
172 finished← true
173 else i f |P ′.Members| < k
174 pms ← po tent i a l member s e t (fix[depth] ∪ {gid}, ps[depth] \(excluded ∪ {gid}),\\
175 edges, bound2)
176 i f |fix[depth] + 1 + |pms|| ≥ k
177 // c a l c u l a t e the p o t e n t i a l connect ions , b r i e f l y c a l l e d pc .
178 pc← {(x, y, ω) : (x, y, ω) ∈ E ∧ x = ID ∧ y ∈ {z ∈ z′, z′ ∈ pms}}
179 // take the neares t ne ighbor from the s e t .
180 selected neighbor← {y : (x, y, ω) ∈ pc ∧ ω = minω({ω : (x, y, ω) ∈ pc}}
181 i f selected neighbor 6= ∅
182 fix[depth + 1]← fix[depth] ∪ {gid}
183 ps[depth + 1]← pms
184 excluded← excluded ∪ {gid}
185 edges ← comple t e edge s e t (edges, fix[depth + 1] ∪ {selected neighbor})
186 bound[depth + 1]← bound2
187 min weight[depth + 1]← Group[gid].Weight
188 send (SEARCH, f ix, ps, excluded, bound, edges, {selectedneighbor}) to \\
189 selected neighbor
190 finished← true
191 else

192 // there are no more p o t e n t i a l members . we abor t the search .
193 finished = true
194
195 i f finished = false
196 i f pgid 6= ⊥ ∧ i s c o n s i s t e n t (fix[depth] ∪Group[pgid])
197 send (SEARCH, fix, ps, excluded ∪ {gid}, bound, edges, pgid) to l e a d e r o f (pgid)
198 else

199 i f depth > 1
200 fix2← fix[depth]
201
202 // remove l a s t DFS entry
203 fix[depth]← ⊥
204 ps[depth]← ⊥

56

2 Topology Construction 57

205 excluded← excluded ∪ {gid}
206 bound[depth]← ⊥
207 min weight[depth]← ⊥
208 // send SEARCH back to o r i g i n a t o r wi th ou r s e l f in the
209 // exc luded s e t .
210 send (SEARCH, f ix, ps, excluded, bound, edges, fix2[|fix2|]) \\
211 to l e a d e r o f (fix2[|fix2|])
212
213 i f r e c e i v ed (RESULT, P ′)
214 // r e l e a s e proposa l such t ha t i t can be processed in an NBAC
215 // in s t ance to form a new group .
216 r e l e a s e p r o p o s a l (P ′)

The Thallner algorithm requires that nodes periodically generate proposals [Tha05,
p17]. Looking at the algorithm we see that the local non-perfect propose module always
includes its own group identifier [Tha05, p60]. To explore the full search space a node
must try to find proposals for all groups in which the node is a leader. The pseudo code
for this is shown in Listing 2.16. Every node starts by using its own node identifier shown
in line 219. It then recursively climbs up the group hierarchy in line 223. If a node is a
leader for the group, it initiates a local proposal containing this group shown in lines 221−
222. Note that an actual implementation must use a threshold, and the proposals should
be generated in a round-robin fashion because otherwise multiple proposal searches would
be emitted to the network, which would lead to network congestion.

Listing 2.16: local non perfect proposal

218 func t i on propose groups ()
219 cur gid ← ID
220 while cur gid 6= ⊥
221 i f l e a d e r o f (cur gid) = ID
222 l o c a l n o n p e r f e c t p r o p o s a l (cur gid)
223 cur gid ← Groups[cur gid].ParentID

Example

We will show an example how the implementation of the algorithm works in the network
shown in Figure 2.11. Because of the high parallelism and to keep the example simple,
we allowed only node 3 to start triggering a proposal. The first group which will be built
is {3, 4, 7}.

1. At the start, the function propose groups in Listing 2.16 is called at node 3. The
variable cur gid is set to 3 at the function entry point. We assume that no groups
have been built, and therefore the algorithm only executes local non perfect proposal ({3})
in line 222.

2. The function local non perfect proposal is executed at node 3. We will write
array elements enclosed in brackets and sets as usual in curly braces. Initially the

57

58 2 Topology Construction

Figure 2.11: Example transmission graph for a network with ′n = 10 and n′′ = 4

variables are set to

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

excluded = {{3}}
bound = [∞]

min weight = [0]
edges = {}

3. Now node 3 calculates a proposal in line 161. The calculated proposal ({{3}}, {3}, {}, 0)
is not complete, because it does not contain k = 3 members which is tested in line
170. It is finally forwarded to node 4, the best neighbor for node 3, in line 189.

4. Now node 4 receives the proposal, which has now a depth of 2 because fix now
contains two arrays. The function arguments of received in line 144 now have the

58

2 Topology Construction 59

values show below and gid equals {4}.

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

fix[1] = {{3}} ps[1] =
{{0}, {1}, {2}, {4}, {5}, {6}, {7},
{8}, {9}, {10}, {11}, {12}, {13}}

excluded = {{3}}
bound = [∞,∞]

min weight = [0, 0]
edges = {}

Now node 4 fetches the missing edge, which is (3, 4, 63) and calculates a proposal
in line 161. The calculated proposal is ({{3}, {4}}, {3, 4}, {(3, 4, 63)}, 63) This is
still not sufficient to build a group, and therefore the proposal is forwarded again.
The best neighbor for node 4 is 7.

5. Finally node 7 receives the search from node 4 with gid equaling {7} and variable
values as shown below.

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

fix[1] = {{3}} ps[1] =
{{0}, {1}, {2}, {4}, {5}, {6}, {7},
{8}, {9}, {10}, {11}, {12}, {13}}

fix[2] = {{3}, {4}} ps[2] =
{{0}, {1}, {2}, {5}, {6}, {7}, {8},
{9}, {10}, {11}, {12}, {13}}

excluded = {{3}, {4}}
bound = [∞,∞,∞]

min weight = [0, 0, 0]
edges = {}

Together with node 7, the required number of members for k = 3 has been reached.
The calculated proposal by node 7 is
({{3}, {4}, {7}}, {3, 4, 7} , {(3, 4, 63) , (3, 7, 64) , (4, 7, 57)}, 184).

6. This final proposal is then released to the group construction algorithm as, de-
scribed in Section 2.3.4.

After the main algorithm has finished, and all members of the group have agreed, the
connections are created, and the topology graph looks like the one shown in Figure 2.12.

What happens next is that the proposal search algorithm of node 3 is triggered again
by a periodic timer, and ’propose groups’ is executed again. Again node 3 recursively
walks up the group hierarchy, and now also initiates a search containing the group
{3, 4, 7}. The execution of this search is shown below, although with a bit less detail as
in the previous example.

59

60 2 Topology Construction

Figure 2.12: Overlay graph after first group has been built by the LNP propose module

1. The function local non perfect proposal is executed using {3, 4, 7} as an argument.
Then the function ’received’ is called, where the variables have the following initial
values.

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

excluded = {{3, 4, 7}}
bound = [∞]

min weight = [0]
edges = {}

Now node 0 again starts to calculate a proposal in line 161 but this time with a
bound of 184 because this is the current weight of the group {3, 4, 7}. Because
it is called the first time, teh group is incomplete, and again the set of potential
members is calculated in line 175. The nodes 3, 4 and 7 are already used, and the
next best node is node 5, to whichthe search is forwarded.

60

2 Topology Construction 61

2. Now node 5 receives the search from node 3 with the variables set to

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

fix[1] = {{3, 4, 7}} ps[1] =
{{0}, {1}, {2}, {5}, {6}, {8}, {9},
{10}, {11}, {12}, {13}}

excluded = {{3, 4, 7}}
bound = [∞,∞]

min weight = [0, 184]
edges = {}

There are still not enough members and after calculating a group proposal and the
set of potential members the search is forwarded to node 0.

3. Finally node 0 receives the search from node 5 with gid = {0} and the following
variables.

fix[0] = {} ps[0] =
{{0}, {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}}

fix[1] = {{3, 4, 7}} ps[1] =
{{0}, {1}, {2}, {5}, {6}, {8}, {9},
{10}, {11}, {12}, {13}}

fix[2] = {{3, 4, 7} , {5}} ps[2] =
{{0}, {1}, {2}, {6}, {8}, {9}, {10},
{11}, {12}, {13}}

excluded = {{3, 4, 7} , {5}}
bound = [∞,∞,∞]

min weight = [0, 184, 0]
edges = {}

It calculates a new proposal for the group {0, 3, 5} and releases the group proposal
({{0}, {3, 4, 7} , {5}}, {0, 3, 5} , {(0, 5, 56) , (0, 4, 69) , (5, 7, 68)}, 193).

Again this group proposal is released to the main group construction algorithm and
the final overlay graph is shown in Figure 2.13.

61

62 2 Topology Construction

Figure 2.13: Overlay graph after second group has been built by the LNP propose mod-
ule.

62

63

3 NS2

63

64 3 NS2

3.1 Introduction

3.1.1 NS2

NS2 is a discrete event simulator targeted at network research [FV06]. It provides
support for simulation of different networks protocols like TCP and UDP as well as
routing and multicast protocols over wired and wireless networks. We have chosen to
use the wireless model of NS2 to implement our topology management algorithm, because
it is the most widely used and respected network simulator in the scientific community.

NS2 is written in C++ and TCL, where TCL is used for scripting and C++ is used
for the core implementation. Using a scripting language for the simulator configuration
allows short development cycles, because no recompilation is required. The core was
written in C++ because of performance reasons. The glue between C++ and TCL is
TclCL (Tcl with classes) and OTcl (MIT Object TCL). All of our components are written
in C++, with the exception of the node configuration. In NS2, a typical wireless node
corresponds to Figure 3.1 where each building block corresponds to an object [FV06,
p146].

Figure 3.1: NS2 wireless model

Packets are passed between these objects using so called targets, where a target is
simply a name for a special reference or a pointer to an NS2 object which can receive
and/or send messages. These targets are setup by the node configuration interface, and
if tracing is enabled, a trace object might sit between each target to record data packets
passing between such instances. We will explain the most import objects briefly. The

64

3 NS2 65

interested reader is referred to the excellent NS2 documentation in [FV06]. We start
from the bottom to the top in Figure 3.1.

PHY: The PHY is the physical interface. In our case, this is always set to Phy/WirelessPhy,
which is the shared wireless media. This class is used by the mobile node to access
the channel. It is subject to collisions and the radio propagation model and receives
packets from other wireless nodes. The implementation tags each sent packet with
“metadata” information like transmission power and wavelength. This information
is used by a receiving node to decide if the packet can be received, captured or
detected. For more information on this see [FV06, p.151].

MAC: Provides an implementation of the IEEE 802.11 MAC Protocol. It uses the classic
RTC/CTS/ACK and DATA frames for unicast packets and simple sends out DATA
for all broadcast packets. It is implemented in the class Mac/802 11 [FV06, p.151].
We will always use Mac/802 11 for our simulations.

IFQ: The interface queue in all our simulations is a priority queue implemented in
Queue/DropTail/PriQueue. It is possible to priorize specific packets in this queue
to improve performance. Although we did not implement it, it would make a lot
of sense to priorize ACK packets used by the reliable multicast layer to prevent
ACK explosion. For some hints on implementing this feature, see [FV06, p.151]
and [FV06, p.69-p.83]. This problem is discussed in more detail in Section 3.6.2.

Link Layer: The link layer is used by data link protocols. Such protocols can implement
fragmentation, packet reassembly, and reliable link protocols. Furthermore it has
an associated ARP Module used to convert IP-addresses into MAC addresses and,
if required, vice-versa. Outgoing packets are typically passed down from the Rout-
ing Agent to the link layer. Incoming packets are passed to the node entry point
where they are dispatched.

Address Demux: The basic address classifier is used for unicast forwarding. It uses the
packet address and applies a bitwise mask and shift operation to get a slot number.
If the destination address is registered, it is passed to the local port demultiplexer.
Otherwise it is passed to the default target, which is typically a routing agent to
forward the packet.

Port Demux: The port demultiplexer is used by the agents. Every agent is assigned
a new number on the port demultiplexer, and if two agents are connected, this
information together with the address uniquely determines the flow through the
network. This is explained in more detail later in this chapter.

Agent: Agents represent endpoints where network packets are consumed or created
[FV06, p.95]. There are a lot of different protocol agents, for example Agent/TCP
and Agent/TCPSink. On top of these transport agents, so called Applications can
be used. Example applications are Application/FTP or
Application/Traffic/Exponential. For a complete list, see [FV06, p.328-p.337]. An
example is shown later in this chapter in Figure 3.2.

65

66 3 NS2

Routing Agent: If a packet is received by a node and it can not be handled local it is
forwarded to the routing agent. A very basic routing agent is Agent/DumbAgent
which performs no routing at all and drops non local packets. A more advanced
routing agent is Agent/DSDV.

Radio Propagation Model: The model is used to predict the received signal power level
of each packet [FV06, p.187]. At the physical level, every wireless node has a
receiver threshold. If the signal power level is too low, the packet is marked and
dropped by the MAC layer. Three readio propagation models are available in
NS2. The Free space model assumes ideal propagation assuming line-of-sight. The
default model we use is a Two-ray ground reflection model. This model considers
the direct path and a ground reflection path between nodes [FV06, p187.]. The
most advanced model available is the Shadowing model. It consists of two parts, a
deterministic part for the path loss, and a log-normal random variable. Therefore,
nodes can only probabilistically communicate when they are near the borders of
their communication range [FV06, p.188].

To give a more concrete example, we will now show a very basic wireless setup where
two nodes communicate with each other using a TCP connection with an FTP appli-
cation on top of it. This example is one of the most basic examples in a wireless setup
one can produce, yet it allows us to show the basic operation principles of the simulator.
The setup script for the simulator is shown in Listing 3.1. Lines 18− 75 cover the basic
wireless setup, and they do not need to be changed at all. In lines 80− 88, two wireless
nodes are created and their position in the Euclidean plane is set. Furthermore, node
movement is disabled in this setup. More interesting are lines 95 − 100, where a TCP
connection is established between node 0 and node 1. First a TCP agent is created
in line 95 and attached to the node in line 96. In lines 97 − 98, a FTP application is
instantiated and attached to the agent. The FTP application will start to produce one
packet at time 10.0, as configured in line 100.

Listing 3.1: Example setup script for TCP communication in NS2

1 # −−
2 # Pro j e c t : Simple example for two nodes communicating over a w i r e l e s s
3 # media.
4 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
5 #
6 # $Log: ns2− introduction−example− tcp−2−nodes−adhoc.tc l ,v $

7 # Revis ion 1 .2 2007/10/10 19 :49 : 00 cwa l t e r
8 # − Final upda tes .
9 #

10 # Revis ion 1 .1 2007/07/29 21 :36 : 33 cwa l t e r
11 # − New code examples for ns2 chap t e r .
12 #
13 # Revis ion 1 .1 2007/07/28 08 :03 : 21 cwa l t e r
14 # − Added example script for TCP connect ion between two w i r e l e s s nodes.
15 #
16 # −−
17

66

3 NS2 67

18
19 # −−
20 # set con f i gu ra t i on p r o p e r t i e s
21 # −−
22 set num nodes 2 ;# t o t a l nodes
23 set x s i z e 100
24 set y s i z e 100
25
26 set val (chan) Channel/WirelessChannel ;# Channel Type
27 set val (prop) Propagation /TwoRayGround ;# radio−propagat ion model
28 set val (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e type

29 set val (mac) Mac/802 11
30 set val (i f q) Queue/DropTail /PriQueue ;# in t e r f a c e queue type

31 set val (l l) LL ;# l i n k l a y e r type

32 set val (ant) Antenna/OmniAntenna ;# antenna model
33 set val (i f q l e n) 100 ;# max packe t in i f q
34 set val (rp) DumbAgent
35
36 # −−
37 # Create a s imu la tor ins tance
38 # −−
39 set ns [new Simulator]
40 set t r a c e fd [open adhoc . t r w]
41 $ns use−newtrace
42 $ns t r a c e−a l l $ t r a c e fd
43
44 set topo [new Topography]
45 $topo l o a d f l a t g r i d $x s i z e $y s i z e
46
47 set god [create−god $num nodes]
48
49 set chan 1 [new $val (chan)]
50 $ns node−config \
51 −adhocRouting $val (rp) \
52 −llType $val (l l) \
53 −macType $val (mac) \
54 −phyType $val (n e t i f) \
55 −ifqType $val (i f q) \
56 − ifqLen $val (i f q l e n) \
57 −antType $val (ant) \
58 −propType $val (prop) \
59 −topoInstance $topo \
60 −agentTrace ON \
61 −routerTrace OFF \
62 −macTrace OFF \
63 −movementTrace OFF \
64 −channel $chan 1
65
66 # −−
67 # Common f unc t i on s
68 # −−
69 proc f i n i s h {} {
70 global ns t r a c e fd
71 $ns f lu sh− t race

67

68 3 NS2

72 close $ t r a c e fd
73 exit 0
74 }
75
76
77 # −−
78 # Create nodes
79 # −−
80
81 for { set i 0 } { $ i < $num nodes } { incr i } {
82 set node ($ i) [$ns node] ;
83 $node ($ i) random−motion 0
84 }
85
86 $node (0) set X 10 . 0 ; $node (0) set Y 15 . 0 ; $node (0) set Z 0 . 0 ;
87 $node (1) set X 60 . 0 ; $node (1) set Y 75 . 0 ; $node (1) set Z 0 . 0 ;
88
89
90 # −−
91 # TCP connect ion between node (0) and node (1)
92 # −−
93
94 # Create a TCP agent and a t tach an app l i c a t i o n two i t .
95 set source [new Agent/TCP]
96 $ns attach−agent $node (0) $source
97 set f t p [new App l i cat ion/FTP]
98 $ f tp attach−agent $source
99 # Sta r t t r a n s f e r s at time = 10 . 0 s and produce 1 packe t

100 $ns at 10 . 0 ” $ f tp produce 1” set source [new Agent/TCP]
101
102 # The s ink r e c e i v e s the t r a f f i c
103 set s ink [new Agent/TCPSink]
104 $ns attach−agent $node (1) $s ink
105
106 # Connect the source and the s i n k , i . e . e s t a b l i s h the connec t i on .
107 $ns connect $source $s ink
108
109
110 # −−
111 # Time schedu l e
112 # −−
113
114 $ns at 20 . 0 ” f i n i s h ”
115 $ns run
116

Following our graphical representation of a node object in NS2, this setup will result
in the structure shown in Figure 3.2, where the low level physical details have been
abstracted. An important thing to notice is that a connection is uniquely identified by
the combination of the source address and the source port as well as the destination
address and the destination port. The addressing scheme can also be seen in the trace
file produced by NS2 shown in Listing 3.2. For example, in line 1 we can see that
node 0 (−Ni 0) sends a packet from source address 0 and source port 0 (−Is 0.0) to the

68

3 NS2 69

destination address 1 with destination port 0 (−Id 1.0). In line 2, node 1 receives the
packet and answers with an ACK in line 3. More information on the trace file format
can be found in Appendix E.

Figure 3.2: TCP connection between two wireless nodes in NS2

Listing 3.2: Trace file output for the script in Listing 3.1

1 s s −t 10 .000000000 −Hs 0 −Hd −2 -Ni 0 −Nx 10 .00 −Ny 15 .00 −Nz 0 .00 −
Ne −1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 -Is 0.0 -Id 1.0 −
I t tcp − I l 40 − I f 0 − I i 0 −Iv 32 −Pn tcp −Ps 0 −Pa 0 −Pf 0 −Po 0

2 r −t 10 .004468822 −Hs 1 −Hd −2 −Ni 1 −Nx 60 .00 −Ny 75 .00 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 1 −Ms 0 −Mt 800 −I s 0 . 0 −Id
1 .0 −I t tcp − I l 40 − I f 0 − I i 0 −Iv 32 −Pn tcp −Ps 0 −Pa 0 −Pf 1 −

Po 0
3 s −t 10 .004468822 −Hs 1 −Hd −2 −Ni 1 −Nx 60 .00 −Ny 75 .00 −Nz 0 .00 −Ne

−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 1 . 0 −Id 0 .0
-It ack − I l 40 − I f 0 − I i 1 −Iv 32 −Pn tcp −Ps 0 −Pa 0 −Pf 0 −Po 0

4 r −t 10 .006305603 −Hs 0 −Hd −2 −Ni 0 −Nx 10 .00 −Ny 15 .00 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 0 −Ms 1 −Mt 800 −I s 1 . 0 −Id
0 .0 −I t ack − I l 40 − I f 0 − I i 1 −Iv 32 −Pn tcp −Ps 0 −Pa 0 −Pf 1 −

Po 0
5 s −t 10 .006305603 −Hs 0 −Hd −2 −Ni 0 −Nx 10 .00 −Ny 15 .00 −Nz 0 .00 −Ne

−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 0 . 0 −Id 1 .0
−I t tcp − I l 1040 − I f 0 − I i 2 −Iv 32 −Pn tcp −Ps 1 −Pa 0 −Pf 0 −Po
0

6 r −t 10 .016242384 −Hs 1 −Hd −2 −Ni 1 −Nx 60 .00 −Ny 75 .00 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 1 −Ms 0 −Mt 800 −I s 0 . 0 −Id
1 .0 −I t tcp − I l 1040 − I f 0 − I i 2 −Iv 32 −Pn tcp −Ps 1 −Pa 0 −Pf 1
−Po 0

7 s −t 10 .016242384 −Hs 1 −Hd −2 −Ni 1 −Nx 60 .00 −Ny 75 .00 −Nz 0 .00 −Ne

69

70 3 NS2

−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 1 . 0 −Id 0 .0
−I t ack − I l 40 − I f 0 − I i 3 −Iv 32 −Pn tcp −Ps 1 −Pa 0 −Pf 0 −Po 0

8 r −t 10 .018079165 −Hs 0 −Hd −2 −Ni 0 −Nx 10 .00 −Ny 15 .00 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 0 −Ms 1 −Mt 800 −I s 1 . 0 −Id
0 .0 −I t ack − I l 40 − I f 0 − I i 3 −Iv 32 −Pn tcp −Ps 1 −Pa 0 −Pf 1 −

Po 0

3.2 Design Decisions

Implementing a new component opens up a great number of questions. To which layer
does topology management belong? What is the impact on other layers? Should or do
other layers need to know something about topology management? We came up with
the following design decisions:

• The upper layers should have no knowledge about the TMA. In the author’s opin-
ion, this is a very reasonable restriction, because it provides a clear distinction
between low- and high level services. And topology management clearly belongs
to the lower network levels. As a consequence of this, routing algorithms, which
run on top of this framework, are unaware of the real physical network layout.

• The decision if a packet should be dropped should be done as early as possible to
reduce power usage1 at the node. Therefore we have decided to perform packet
level filtering at the MAC level, which is the first layer where network addresses
are known and nodes can be identified.

• We decided on a very simply interface for the actual implementation of the topology
management algorithm. The framework calls the algorithm implementation of
either TMA::allow up or TMA::allow down, which in turn must return true if
traffic from or to that neighbor is allowed. If false is returned, no traffic is allowed
and the packet is dropped.

For example, consider the network shown in Figure 3.3. Each node is in the vicinity
of each other, which can be seen by looking at the transmission graph in Figure 3.3(a).
The network topology spawned by the TMA is shown by the edges which connect the
nodes in the topology graph in Figure 3.3(b).

If a routing protocol would be executed on top of the topology graph, it would come
to the conclusion that node 1’s only neighbors are 0, 3, and 4. Now assume that node 1
wants to exchange information with node 2. In the case of the TMA, a routing protocol
would route the packet over node 3. If the routing protocol were executed on top of the
transmission graph, almost every routing protocol would choose the direct connection.
In a wired network, the direct connections would certainly make more sense (assuming

1Assuming that a node needs more power when computations are carried out. This is reasonable
because modern power schemes require that the processor draws less power when no work is carried
out.

70

3 NS2 71

(a) Transmission Graph (b) Topology Graph

Figure 3.3: Example network for n = 10 with Transmission- and Topology Graph

no special cases). But this situation is different in the wireless world. Using multihop
communication can save power, because transmission power grows at least quadratic
with the distance. Furthermore, the usage of the TMA can increase the network sta-
bility because only “good” connections are used. “Good” connections in this sense are
connections which are long-living. It is also clear that if node movements are considered,
connections which are of very poor quality will fail first. Changes in connections will
typically trigger updates of routing protocols, at least if they are proactive. Therefore,
the usage of a TMA is also beneficial for routing protocols.

3.3 Modifications made to NS2

NS2 does not provide any support for topology management. Therefore we had to
rework some parts of the wireless model to allow our implementation to be as generic
as possible. These modifications are shown in Figure 3.4. In our modified version, every
packet is given to the topology management component called TMA. In NS2, the TMA
component is defined by its implementation in the files mac/tma.h and mac/tma.cc.
The TMA class itself is abstract, and an actual implementation must subclass it. Two
examples are provided to simplify development of further TMA modules. The TMA
/None, algorithm which does not affect the topology at all and which is defined in
mac/tma.cc. A real implementation can be found in TMA/Filter , which is defined
in mac/tma-filter.cc and declared in mac/tma-filter.h. The implementation of
the concrete Thallner algorithm is quite complex and has been moved into a separate
subdirectory thallner.

The link layer, TMA, IFQ, MAC and PHY components shown in Figure 3.4 are
chained together in the TCL function add−interface in tcl/lib/ns-mobilenode.tcl.

71

72 3 NS2

Figure 3.4: NS2 wireless model with TMA modifications

In addition , some modifications have been made in tcl/ns-node.tcl, tcl/ns-lib.tcl,
and tcl/lib/ns-default.tcl to add the additional initialization functions. These files
do not need to be changed, but the interested reader can take a look at the patches
to see our modifications, although an advanced knowledge of the network simulator is
required for this.

72

3 NS2 73

3.4 Implementation of the Thallner Algorithm

We have discussed the algorithmic implementation of the Thallner algorithm in Section
2.3. Going for a real world implementation is somewhat more difficult, because a lot
of assumptions can not be met anymore. Furthermore, there are no communication
primitives as reliable multicast readily available in NS2. We started by analyzing the
network simulator and came up with the following list of missing components.

Reliable Transmission: Our network model assumes reliable transmission. NS2 uses
a real world wireless network model and delivery of packets is not guaranteed.
Therefore, we have implemented an ACK-Based transmission protocol to support
reliable message delivery.

Multicast Communication: Almost all of our algorithms require multicast communica-
tion primitives. The IEEE 802.11 MAC layer upon which our TMA implementation
works does not provide multicasting support. We therefore implemented two dif-
ferent multicast services, where the first one supports Reliable Multicasting using
an ACK-based approach, and the second one is a very simple Multicast Service
with very low overhead but without any quality of service features.

Neighbor Discovery: Our algorithms assume that the network neighborhood of a node
is known. In our first version, we started with the implementation of two different
neighborhood discovery protocols. During our studies we discovered that these
modules were a strong performance limiting component, and we have moved this
task into the link-state service.

Link State Service: A Link State Service supports the exchange of communication weights
and links. It allows a node to retrieve information about its adjacent neighbors
and about the state of the links of its neighbors. It is used by the propose modules
to calculate new proposals.

NBAC: An NBAC - Non Blocking Atomic Commitment service which is used by the
group checking and proposal algorithms. The NBAC supports our finalizing ex-
tension described in Section 2.3.6.

Serializing Component: Most of our algorithms use different types or records and re-
quire the usage of sets and vectors. These kinds of objects cannot be simply
transmitted over the network. Therefore, these data structures must be serialized
appropriately to wrap them into network messages. Problems here are the actual
data encoding, the limited size of network messages, and endian issues. With the
exception of the later, we have addressed all of them, and our implementation is
flexible enough to allow further modifications.

We will discuss these components in greater detail in Section 3.6. We will start with a
more practical approach and show how our components can be used and will present a
complete working example. More examples are available in Appendix C. Note that the

73

74 3 NS2

next Section requires the reader to have finished our installation instructions shown in
Appendix A. After our example, we will present the networking components, although
we left out some implementation details. The final reference remains the source code and
the doxygen documentation. Finally, we will continue in Section 3.7 with the discussion
of the group checking and group construction modules.

74

3 NS2 75

3.5 Setup and Configuration

The topology management components support a number of configuration properties
and commands. This section describes their usage, but does not focus on application
examples. For examples, the reader is referred to Appendix C.

3.5.1 Enabling Topology Management in NS2

Topology management is enabled by changing the wireless node configuration in the NS2
setup scripts. A typical wireless node setup is shown in Listing 3.3. It is recommended
to use a set of variables to protect against possible errors when the same information is
used twice.

Listing 3.3: Enabling Topology Management in NS2

1 . . .
2 set val (tma) TMA/ F i l t e r
3 . . .
4 $ns node−config \
5 . . .
6 −tmaType $val (tma) \
7 −tmaTrace ON \
8 . . .

-tmaType If this variable is not set or set to the empty string, no topology management
is enabled. Otherwise, the variable should be set to one of the available TMA
modules described below.

-tmaTrace If tracing at the TMA layer is required, one should set the value of−tmaTrace
to ON. The default of −tmaTrace is OFF and no additional trace information is

generated.

3.5.2 The TMA/Filter module

The TMA/Filter module serves as an example for developing new topology management
modules for NS2. It needs a runtime configuration, because it drops all packets by
default. An example is provided in Appendix C.4.3. The TMA/Filter module supports
the following functions and settings.

Configuration settings

These variables should be set before any instances are created, that is, before $ns node
is called. They are then used as default values for the class members.

debug If set to true, this creates additional debug output which is sent to stdout. To
set it, simply add the line TMA/Filter set debug 1 somewhere before the first
nodes are created.

.

75

76 3 NS2

Supported commands

add-neighbor args: This method takes a list of MAC addresses as argument, and every
element in this list is added to the list of allowed nodes. For an example, consider
the TCL code shown in Listing 3.4, which configures node 2 to allow packets
from/to the nodes with MAC addresses 5, 8, and 102.

Listing 3.4: Configure neighbors for TMA/Filter

1 # Get the TMA ins tance for node 2 and i n t e r f a c e 0 .
2 set tma [$n (2) set tma (0)]
3 # $tma i s now an ins tance o f TMA/ F i l t e r
4 $tma add−neighbor 5 8 10

remove-neighbor args: This method takes a list of MAC addresses as argument and
removes every neighbor in this list from the list of allowed neighbors.

clear-neighbors: Clears the list of allowed neighbors. After calling this function, no
more packets will pass the topology management layer until new nodes are added
again.

list-neighbors: Lists all allowed neighbors.

3.5.3 The TMA/None module

This module does not support any additional configuration. It permits all traffic and,
depending upon the setting of TCL variable tmaTrace, it writes all traffic to the trace
file.

3.5.4 The TMA/Thallner module

The TMA/Thallner module works out of the box using the default settings. After
startup, the Thallner algorithm is executed and a new network topology is established.

Configuration settings

These variables should be set before any instances are created, that is, before $ns node
is called. They are then used as default values for the class members. Boolean values
should be set to 1 to turn them on or to 0 to turn them off.

debug If set to true, this creates additional debug output which is sent to stdout.

The following settings can only be changed by recompiling the source code. Since they
do not need to be changed very often, this seemed like a reasonable approach.

EPSILON This values is the same as ǫ in the algorithms. It is defined in tma-thallner.h

and should not be changed without a good reason. The default value is 0.1.

2Note that you can get the MAC address of a node by calling [$node set mac (0)] id.

76

3 NS2 77

THALLNER K The size of the members of a group. This corresponds to the value k
used in the algorithms and is defined in thallner/utils.h. The default value is
3.

CHKGRP NETWORK LOAD AVG The fraction of network resources allocated for
group checking. This value is used by the group checking algorithm to schedule the
checking of the groups. Setting this too high will result in network congestion3. It
is defined in thallner/tma-thallner.cc and its default value is 0.05.

PROPOSE NETWORK LOAD AVG The fraction of network resources allocated for
group proposals. It uses the estimated time required for a proposal and the esti-
mated number of nodes to calculate the time between the triggering of the propose
module. Setting this too high will result in network congestion. It is defined in
thallner/tma-thallner.cc and its default value is 0.1.

RMCAST RETRY TIMEOUT The time the reliable multicast service waits for an ACK
message. Lower values give better performance but result in higher network load
and more retries. If the value is set too high, the performance of algorithms
using this service will suffer. The default value is 1 second. It is defined in
multicast-reliable.cc.

RMCAST MAX RETRIES Maximum number of retries for a reliable multicast trans-
mission. If a multicast initiator does not receive ACKs within the defined timeout
it resends the request. If the number of retries is exceeded simulator execution is
aborted and an assumption violation error is reported. The default value is 10. It
is defined in multicast-reliable.cc.

RMCAST RETRY JITTER A jitter for sending ACK messages and for message re-
tries. It is defined in multicast-reliable.cc. Whenever a node sends a multi-
cast message the actual transmission is scheduled at now + Random::uniform()∗
RMCAST RETRY JITTER. This is specially important for the ACKs because

they will be sent at the same time at all receiving nodes. The default value is 0.1
seconds.

SMCAST SEND JITTER A jitter for sending simple multicast messages. It is defined
in multicast-simple.cc. The default value is 0 seconds.

EDGE MIN WEIGHT The minimum edge weight which is used during calculations.
Set this to match your environment and your neighbor discovery protocol. The
default value is 50.0, which is suitable for the default link-state service, and it
should not be changed. It is defined in tma-proposal.cc

PROPOSAL QUERY TIMEOUT If the local non-perfect propose module needs link-
state information from other nodes, it waits this time for the completion of the

3Too high in this context depends on the amount of other network load. We have not performed a lot
of expirements with this value but < 0.1 is a safe value.

77

78 3 NS2

queries. Settings this too low will not allow the propose modules to find any
proposals, because the search is aborted during runtime. The default value is 0.5
and it is defined in tma-lnp-proposal.cc.

LSB FULLUPDATE INTERVAL The time between full update messages sent by the
link-state service. These update messages are used to inform other nodes about
the state of the links. Setting this too low results in a high and constant network
load. Setting this to high will reduce performance in case of node movements. The
default value is 5 seconds, and it is defined in linkstate-basic.cc.

LSB HELLO INTERVAL The time between hello messages. Hello messages are used
by a node to detect that a neighbor is alive. During this time, only partial updates
are sent, which are shorter in size than full update message. The default value is
1 second, and it is defined in linkstate-basic.cc.

PROPOSAL ATTACH ID Attach an ID to every proposal. This makes it easier to
debug the propose module, but increases message size. It is a boolean and defined
in tma-proposal.h.

PROPOSAL ATTACH CREATION TIME Attach the time when a search was initi-
ated. This can be used to obtain information on the typical time required for a
proposal. If enabled, this information is available from the statistics interface. It
is a boolean and defined in tma-proposal.h.

The following settings can be used to control debug information. A list of log levels is
given in Table 3.1. The values should be or-ed together to enable multiple levels using
the operator | in C++.

THALLNER PROPOSAL TRACE Amount of debug information returned by the group
construction algorithm. Enable this if you want to debug or analyze the construc-
tion of the groups. Note that this debug information only affects already released
proposals, which are passed to the main algorithm for construction. The default
debug level is TRACE LEVEL ERROR and is defined in thallner/tma-thal-

lner.cc.

THALLNER CHECKGROUP TRACE Amount of debug information returned by the
group checking algorithm. Enable this if you want to debug or analyze group
checking. The default value is TRACE LEVEL ERROR and is defined in thal-

lner/tma-thallner.cc.

RMCAST TRACE Can be set to configure the level of information reported by the re-
liable multicasting module. The default is TRACE LEVEL ERROR which only
reports critical errors. Further debug information can be enabled by adding addi-
tional log levels. It is defined in thallner/multicast-reliable.cc.

SMCAST TRACE Can be set to configure the level of information reported by the
simple multicasting module. The default is TRACE LEVEL ERROR which only

78

3 NS2 79

reports critical errors. Further debug information can be enabled by adding addi-
tional log levels. It is defined in thallner/multicast-simple.cc.

LSB TRACE Controls whether information about link-state queries should be logged.
The default is TRACE LEVEL ERROR which does not generate any information.
It is defined in thallner/linkstate-basic.cc.

LSB MSG TRACE Controls whether information about messages sent and received
should be logged. The default is TRACE LEVEL ERROR which does not gener-
ate any information. It is defined in thallner/linkstate-basic.cc.

LSB UPDATE TRACE Controls whether information about new neighbors should be
logged. Anytime a neighbor information is updated some trace information is
produced. The default is TRACE LEVEL ERROR which does not generate any
information. It is defined in thallner/linkstate-basic.cc.

NBAC TRACE Controls whether the non-blocking atomic commitment service should
generate debug output. The default value is TRACE LEVEL ERROR, which
only reports critical errors. Further debug information can be enabled by adding
additional log levels. It is defined in nbac.cc.

PROPOSAL TRACE Controls whether the execution of the propose module should
generate debug information. The default value is TRACE LEVEL ERROR, which
only reports critical errors. It is defined in tma-proposal.h.

PROPOSAL CALCULATE TRACE Controls whether the calculations performed by
the propose module should be traced. Only enable this if you think you have found
a bug in the implementation of the basic functions, or for studying purposes. The
default value is TRACE LEVEL ERRORS, and it is defined in tma-proposal.h.

PROPOSAL PMS TRACE Controls whether the calculation of the potential member
set should be traced. Enable this if you think that a group can be constructed
but it is not. The default value is TRACE LEVEL ERRORS, and it is defined in
tma-proposal.h.

Table 3.1: Configurable log levels for modules

Log level Description
TRACE LEVEL DEBUG L0 Debug information. Disable for simulations.
TRACE LEVEL DEBUG L1 Additional debug information. Disable for simulations.
TRACE LEVEL INFO L0 Informational messages. Disable for simulations.
TRACE LEVEL INFO L1 Informational messages. Disable for simulations.
TRACE LEVEL WARNING Warning messages. Disable to improve performance.
TRACE LEVEL ERROR Error messages. Do not disable.
TRACE LEVEL ALL Enable all loglevels. Use with care.

Supported commands

tmaaddr Returns the TMA address of this node.

79

80 3 NS2

mac Returns the TCL object for the MAC layer. If called with an argument it allows
the setting of the MAC layer. Setting the MAC layer is considered an internal
function and it should not be used by the user.

phy If called with an argument, it allows the setting of the physical layer. This method
is used internally and should not be used.

log-target Attach a trace object to the TMA. This method is used internally and should
not be used.

tracetarget Attach a trace object to the TMA. This method is used internally and
should not be used.

start Starts execution of the TMA at this node. This method should be executed at
every node immediately after startup.

node-degree Returns the node degree, i.e., the number of active connections created by
the TMA.

last-change Returns the time in seconds when the topology has last changed at this
node. This can be used to implement a convergence detection for the Thallner
algorithm.

proposals-pending Returns the number of currently pending proposals known to this
node.

proposals-period Average time between the generation of new group proposals.

groupcheck-period Average time between the checking of groups at a node.

gateway-node BOOLEAN If called without an argument, it returns 1 if this node is a
gateway node, otherwise 0. If called with an argument, the type of this node can
be changed. Changing the type of the node is only supported before execution has
been started.

thallner-k The value of k used within this run.

tmaaddr Returns the TMA address of this node.

stats Prints statistical information about this node. This includes information from the
multicast components, from the link-state service, and from the NBAC component.

stats MODULE PROPERTY ARGS Query the module MODULE for statistical infor-
mation about the property PROPERTY. A list of all properties together with
their description are shown in Table 3.2. This can be used to compute average or
total information from various nodes.

80

3 NS2 81

dump-topology-tree FILENAME Uses global information to generate the complete top-
ology tree and writes it to the file FILENAME. It should be processed by the dot

tool from the GraphViz suite. If this function is called and groups are currently
under construction, the information might not be consistent, because the global
information is obtained by merging all local information.

dump-local-topology-tree FILENAME Dumps the local topology tree at this node into
the filename FILENAME. The output file written should be processed by the dot

tool from the GraphViz suite.

dump-transmission-graph FILENAME Generates a transmission graph which should
be processed by the neato tool from the GraphViz suite.

dump-neighbor-graph FILENAME Generates a graph from the node and all its adja-
cent neighbors. This graph includes the edge weights. It should be processed by
the neato tool from the GraphViz suite.

dump-topology-graph FILENAME Uses global information to dump the complete topol-
ogy graph and writes it to the file FILENAME. The output should be processed by
the neato tool from the GraphViz suite.

dump-local-topology-graph FILENAME Dumps the node local topology graph. In case
the topology is converged or it is not subject to change this graph is a subgraph of
the topology graph. The output should be processed by the neato tool from the
GraphViz suite.

dump-spanner FILENAME Generates a spanning tree for the transmission graph. It
should be processed by the neato tool from the GraphViz suite.

81

82 3 NS2

Table 3.2: Statistical information from modules

Module Property Type Args Description
msg sent int port(1,int) Number of messages sent using application port

’port’.
msg sent dup int port(1,int) Number of messages resent because of missing

ACKs.
rmcast msg received int port(1,int) Number of messages received for application port

’port’.
msg received dup int port(1,int) Number of message duplicates received for applica-

tion port ’port’.
acks sent int port(1,int) Number of ACKs sent.
acks received int port(1,int) Number of ACKs received.

smcast msg sent int port(1,int) Number of messages sent at using application port
’port’.

msg received int port(1,int) Number of messages received for application port
’port’.

initiated int msg type(1,int) Number of NBAC instances of type ’msg type’ ini-
tiated at this node .

participated int msg type(1,int) Number of NBAC instances of type ’msg type’ this
node has participated in.

nbac commited int msg type(1,int) Number of commited NBAC instances of type
’msg type’ initiated by this node.

aborted int msg type(1,int) Number of aborted NBAC instances of type
’msg type’ by this node.

out of order int msg type(1,int) Number of NBAC messages which where received
out of order.

checks done int Number of group checks initiated at this node.
diameter int The diameter of the topology graph. Use this in-

formation only after the network has converged.
proposals done int Number of proposals done at this node.
packets other int Number of normal network packets.
packets tma int Number of packets related to TMA.

tma packets dropped up int Number of packets dropped by the TMA which
should be passed up to the link-layer.

packets passed up int Number of packets passed to the link-layer.
packets dropped down int Number of packets dropped by the TMA which

should have been passed down to the MAC layer.
packets passed down int Number of packets passed to the MAC layer.
average proposal time double Average time required for a proposal.

propose initiated int Number of proposals initiated at this node.
released int Number of proposals released to the TMA at this

node.
lsb full updates sent int Number of full update messages sent by the basic

link-state service.
lsb partial updates sent int Number of partial updates sent by the basic link-

state service.
lsb full updates received int Number of full update messages received.
lsb partial updates received int Number of partial update messages received.
lsb pwr saving tma list Returns the minimum, maximum, and average

transmission power in dBm required for all neigh-
bors in the topology induced by the TMA. It is
returned as a TCL list min max avg.

lsb pwr saving other list Returns the minimum, maximum and average
transmission power in dBm required for all neigh-
bors. It is returned as a TCL list min max avg.

82

3 NS2 83

3.5.5 Example

This example shows the most basic setup using the TMA algorithm. It contains 10
normal nodes and 3 gateway nodes , and the final results are shown in Figures 3.6 and
3.5. The script used to setup the simulator is shown in Listing 3.5. The first part of the
script shown in lines 17−84 sets simulation parameters and configures the simulator. The
second part shown in lines 86− 183 contains utility functions to detect the convergence
of the algorithm and to generate the output files. In the third part, the wireless nodes
are created in lines 185 − 215. Step four initializes the required global variables used
by the utility functions, configures three nodes as gateway nodes, and starts the TMA
at time 0.0 at every node. This happens in lines 217 − 231. The last part sets up the
scheduler and starts the simulation. After execution, the simulation will have generated
the output files topology-tree-t81-dot.dot, topology-graph-t81-neato.dot, and
adhoc.tr, which can be analyzed by the appropriate tools. The simulation can be
started by executing ’make trace’, and png and eps images can be generated by calling
’make images’.

Figure 3.5: Topology tree after execution for n′ = 10 and n′′ = 3

83

84 3 NS2

Figure 3.6: Network topology graph for n′ = 10 and n′′ = 3

Listing 3.5: NS2 simulator setup script

1 # −−
2 # Pro j e c t : Template for NS2 s imu la t i on framework
3 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
4 #
5 # $Log: ns2−setup−adhoc . t c l , v $

6 # Revis ion 1 .3 2007/10/10 19 :49 : 00 cwa l t e r
7 # − Final upda tes .
8 #
9 # Revis ion 1 .2 2007/07/29 21 :36 : 33 cwa l t e r

10 # − New code examples for ns2 chap t e r .
11 #
12 # Revis ion 1 .1 2007/07/29 11 :24 : 05 cwa l t e r
13 # − Basic TMA example .
14 #
15 # −−
16
17
18 # −−
19 # set con f i gu ra t i on p r o p e r t i e s
20 # −−
21 set num nodes 20 ;# t o t a l nodes
22 set x s i z e 100
23 set y s i z e 100
24
25 set val (chan) Channel/WirelessChannel ;# Channel Type

84

3 NS2 85

26 set val (prop) Propagation /TwoRayGround ;# radio−propagat ion
model

27 set val (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e
type

28 set val (mac) Mac/802 11
29 set val (tma) TMA/Thal lner
30 set val (i f q) Queue/DropTail /PriQueue ;# in t e r f a c e queue type

31 set val (l l) LL ;# l i n k l a y e r type

32 set val (ant) Antenna/OmniAntenna ;# antenna model
33 set val (i f q l e n) 100 ;# max packe t in i f q
34 set val (rp) DumbAgent
35 set l a s t s t a t s t im e 0 . 0
36
37 # −−
38 # Conf igure for IEEE802.11b
39 # −−
40 Mac/802 11 set SlotTime 0 .000020 ;# 20us
41 Mac/802 11 set SIFS 0 .000010 ;# 10us
42 Mac/802 11 set PreambleLength 144 ;# 144 b i t
43 Mac/802 11 set PLCPHeaderLength 48 ;# 48 b i t s
44 Mac/802 11 set PLCPDataRate 1 .0e6 ;# 1Mbps
45 Mac/802 11 set dataRate 11 .0e6 ;# 11Mbps
46 Mac/802 11 set bas i cRate 1 .0e6 ;# 1Mbps
47
48 Phy/WirelessPhy set f r e q 2 . 4 e+9 ;# Frequency
49 Phy/WirelessPhy set Pt 3 .3962527e−2 ;# Transmission power
50 Phy/WirelessPhy set RXThresh 6 .309573e−12 ;# Receiver t h r e sho l d
51 Phy/WirelessPhy set CSThresh 6 .309573e−12 ;# Sense th r e sho l d
52
53 # −−
54 # Create a s imu la tor ins tance
55 # −−
56 set ns [new Simulator]
57 set t r a c e fd [open adhoc . t r w]
58 $ns use−newtrace
59 $ns t r a c e−a l l $ t r a c e fd
60
61 set topo [new Topography]
62 $topo l o a d f l a t g r i d $x s i z e $y s i z e
63
64 set god [create−god $num nodes]
65
66 set chan 1 [new $val (chan)]
67 $ns node−config \
68 −adhocRouting $val (rp) \
69 −llType $val (l l) \
70 −macType $val (mac) \
71 −tmaType $val (tma) \
72 −phyType $val (n e t i f) \
73 −ifqType $val (i f q) \
74 − ifqLen $val (i f q l e n) \
75 −antType $val (ant) \
76 −propType $val (prop) \
77 −topoInstance $topo \

85

86 3 NS2

78 −agentTrace ON \
79 −routerTrace OFF \
80 −macTrace OFF \
81 −tmaTrace OFF \
82 −movementTrace OFF \
83 −channel $chan 1
84
85
86
87 # −−
88 # Common f unc t i on s
89 # −−
90 proc f i n i s h {} {
91 global ns t r a c e fd
92 $ns f lu sh− t race
93 close $ t r a c e fd
94 exit 0
95 }
96
97 proc convergence−calcu late− t imes { arrname } {
98 global tma t op o t h a l l n e r k
99 upvar $arrname times

100
101 set num nodes [array size tma]
102 set t o p o t h a l l n e r k [$tma (0) thal lner−k]
103
104 # f loor ((n−1) /(k−1)) = ngroups i s the number o f groups . I f the
105 # tree i s ba lanced the he i gh t i s log (ngroups) / log (k) . Every
106 # node t h e r e f o r e walks up t h i s h i e rarchy and c r ea t e s group proposa l s
107 # where 1 i s added because o f the proposa l for the node i t s e l f .
108 set group t ree depth [expr log (($num nodes − 1) /($ t opo tha l l n e r k −

1)) / log ($ t opo tha l l n e r k) + 1]
109
110 # add an ex tra f a c t o r o f 2 because a generated proposa l must a l s o
111 # be accepted by the t h a l l n e r a l g o r i t hm .
112 set t imes (convergence t ime proposa l s) [expr [$tma (0) proposals−per iod]

∗ $group t ree depth ∗ 2 . 0]
113
114 # ca l c u l a t e the time requ i red to check a l l groups at a node
115 set t imes (convergence t ime group) [expr [$tma (0) groupcheck−period] ∗

$group t ree depth]
116
117 # the convergence time i s the maximum
118 i f { $times (convergence t ime group) < $times (convergence t ime proposa l s)

} {
119 set t imes (convergence t ime) $times (convergence t ime proposa l s)
120 } else {
121 set t imes (convergence t ime) $times (convergence t ime group)
122 }
123 }
124
125 proc convergence− test {} {
126 global ns tma val l a s t s t a t s t i m e t opo p r e f i x
127 set s chedu le r [$ns set s ch edu l e r]

86

3 NS2 87

128 set now [$schedu le r now]
129 set t o p o t h a l l n e r k [$tma (0) thal lner−k]
130
131 convergence−calcu late− t imes t imes
132
133 # we assume tha t the network has converged .
134 set i s s t a b l e 1
135
136 # compute the time when the group s t r u c t u r e s have changed.
137 set last change max 0 . 0
138 for { set i 0 } { $ i < [array size tma] } { incr i } {
139 set l a s t change [$tma($ i) last−change]
140 i f { $ l a s t change > $last change max } {
141 set last change max $ l a s t change
142 }
143 # i f t h i s node i s not a gateway node i t must have a node
144 # degree o f k .
145 i f { 0 == [$tma($ i) gateway−node] } {
146 i f { $ t opo tha l l n e r k != [$tma($ i) node−degree] } {
147 set i s s t a b l e 0
148 }
149 }
150 }
151
152 # i f the group s t r u c t u r e s have not changed during the convergence
153 # time the network i s s t a b l e .
154 i f { $now > $times (convergence t ime) } {
155 i f { $now − $last change max < $times (convergence t ime) } {
156 puts ”group s t ru c tu r e has changed at time $ l a s t change ”
157 set i s s t a b l e 0
158 }
159 } else {
160 set i s s t a b l e 0
161 }
162
163 i f { $ i s s t a b l e == 1 } {
164 dump−topology−graph
165 dump−topology−tree
166 $ns at [expr $now + 0 .01] ” f i n i s h ”
167 } else {
168 $ns at [expr $now + 1] ” convergence− test”
169 }
170 }
171
172 proc dump−topology−graph {} {
173 global tma ns
174 set now [[$ns set s ch edu l e r] now]
175 $tma (0) dump−topology−graph topology−graph−t [expr round ($now)]

−neato.dot
176 }
177
178 proc dump−topology−tree {} {
179 global tma ns
180 set now [[$ns set s ch edu l e r] now]

87

88 3 NS2

181 $tma (0) dump−topology−tree topology−tree−t [expr round ($now)] −dot.dot
182 }
183
184
185
186 # −−
187 # Create network topo l ogy
188 # −−
189 set node (0) [$ns node]
190 $node (0) set X 90; $node (0) set Y 76;
191 set node (1) [$ns node]
192 $node (1) set X 3 ; $node (1) set Y 75;
193 set node (2) [$ns node]
194 $node (2) set X 30; $node (2) set Y 4 ;
195 set node (3) [$ns node]
196 $node (3) set X 79; $node (3) set Y 36;
197 set node (4) [$ns node]
198 $node (4) set X 98; $node (4) set Y 52;
199 set node (5) [$ns node]
200 $node (5) set X 31; $node (5) set Y 75;
201 set node (6) [$ns node]
202 $node (6) set X 71; $node (6) set Y 49;
203 set node (7) [$ns node]
204 $node (7) set X 87; $node (7) set Y 67;
205 set node (8) [$ns node]
206 $node (8) set X 64; $node (8) set Y 42;
207 set node (9) [$ns node]
208 $node (9) set X 7 ; $node (9) set Y 17;
209 set node (10) [$ns node]
210 $node (10) set X 90; $node (10) set Y 89;
211 set node (11) [$ns node]
212 $node (11) set X 20; $node (11) set Y 94;
213 set node (12) [$ns node]
214 $node (12) set X 81; $node (12) set Y 96;
215
216
217
218 # −−
219 # Get an ins tance to the TMA ob j e c t s and ob ta in the MAC address o f each
220 # node.
221 # −−
222 for { set i 0 } { $ i < [array size node] } { incr i } {
223 set tma($ i) [$node ($ i) set tma (0)]
224 set mac($ i) [[$node ($ i) set mac (0)] id]
225 $ns at 0 . 0 ”$tma($ i) s t a r t ”
226 }
227
228 $tma (10) gateway−node 1
229 $tma (11) gateway−node 1
230 $tma (12) gateway−node 1
231
232
233 # −−
234 # Create t r a f f i c pa t t e rn s

88

3 NS2 89

235 # −−
236
237 # −−
238 # Time schedu l e
239 # −−
240 $ns at 5 . 0 ” convergence− test”
241 $ns run

89

90 3 NS2

3.6 Basic NS2 networking components

3.6.1 Multicast Service

We defined a common set of operations which must be supported by every multicasting
component. These basic services include the possibilities for sending and receiving mul-
ticast messages and the retrieval of statistical information. The interface functions are
shown in Figure 3.7 in the class ’Multicast’. Messages can be sent by calling the method
’multicast’ with a set of destination addresses, an application specific port and the mes-
sage payload encapsulated in the abstract data type ’data t’. Every multicast message
is assigned a unique multicast message identifier, briefly UID, which is represented by
the abstract base class ’mcast uid’. The class ’MulticastTarget’ should be implemented
by a component which needs to receive multicast messages. It allows a more generic
implementation, because all receivers of multicast messages can be treated the same if
they implement a common interface.

Figure 3.7: UML class diagram for multicast service

We will now show two basic examples on how to send messages and how information
can be retrieved from the multicast service. In both examples, we assume that there
exists an instance ’mcast ’ of type ’Multicast’. A sender simply constructs a new message
with an appropriate payload and passes it to the multicast service. This is shown in
Listing 3.6. The code is self explanatory.

Listing 3.6: Sending of a multicast message

1 void BasicMult icastSendTest ()
2 {
3 . . .
4 // c r ea t e an output stream and s e r i a l i z e a s imple 8 b i t i n t e g e r .
5 os t r ings t r eam os t r (i o s : : out | i o s : : b inary) ;

90

3 NS2 91

6 msg data u int8 (10) . s e r i a l i z e (o s t r) ;
7
8 // make a data pay load o b j e c t from i t
9 std : : s t r i n g pay l oad s t r = os t r . s t r () ;

10 data t payload (reinterpret cast< const u i n t 8 t ∗>(p ay l oad s t r . c s t r ()
) , p ay l oad s t r . l ength ()) ;

11
12 tma addr se t t p a r t i c i p an t s ;
13 p a r t i c i p an t s . i n s e r t (tma addr t (5)) ;
14 p a r t i c i p an t s . i n s e r t (tma addr t (3)) ;
15 mcast u id t ∗uid = mcast −>mult i cas t (p a r t i c i p an t s , 0 , payload) ;
16 . . .
17 }

Retrieving the messages is a bit more difficult. First of all, we have chosen to imple-
ment a polling approach at the receiver. That is, messages are queued internally in the
multicasting component and the receiver can take them out from the queue whenever it
wants. This approach has a lot of benefits against a callback based approach. First of
all, in a callback based approach the control flow is by the sender, and if messages must
be received in a certain order, the function which would be called would have to perform
the queuing by itself. This would result in duplicate code and possibly more bugs. An-
other benefit is that timeouts can be implemented quite easily, because a receiver would
simply poll its multicast service, and if no messages have been received, it can simply
treat this as an error. A basic usage of the multicasting service is shown in Listing 3.7.
This simply checks if a message is in the queue and takes it out of the queue, handles
it, and finally frees its resources.

Listing 3.7: Receiving a multicast message

1 void Bas i cMu l t i cas tRece iv eTest ()
2 {
3 Mult i cas t ∗mcast = NULL;
4
5 for (; ;)
6 {
7 // Po l l the s t a c k f o r any even ts which need our a t t en t i on .
8 std : : auto ptr< mcast u id t > uid (mcast −>p o l l ()) ;
9 i f (uid . get () != NULL)

10 {
11 // r e t r i e v e the message from the mu l t i c a s t s t a c k .
12 std : : auto ptr< mcast msg t > msg(mcast −>get (∗uid)) ;
13
14 // handle message and do something wi th the pay load
15 data t payload = msg−>get data () ;
16
17 // f r e e the resources
18 mcast −>f r e e (∗uid) ;
19 }
20 else

21 {
22 // no more messages
23 break ;

91

92 3 NS2

24 }
25 }
26 }

3.6.2 Reliable Multicasting

Levine and Aceves made an excellent presentation of current reliable multicast protocols
available in [LGLA98]. Following their work and using their excellent introduction, we
came up with the following requirements: A must for every multicast service is that
packets from a source are delivered to the receivers within a finite amount of time and
free of errors. It is typically also required that packets can be deleted safely at the
source within a finite amount of time, because memory is a limited resource. Additional
requirements are that packets are delivered only once and in order.

There are two popular approaches, called sender-initiated and received-initiated
[LGLA98, p.1]. ACK based protocols belong to the sender-initiated protocols, where
it is in the responsibility of the sender to maintain the state of the receivers. This in-
cludes the set of destinations and the already received ACKs. For every packet received,
the receiver unicasts an ACK back to the sender. This is shown in Figure 3.8(a). If all
ACKs have been received, the sender can release the resources needed for keeping the
state and knows for sure that every receiver has received the message.

NAK based protocols are called receiver-initiated protocols. It is the responsibility of
the receiver to detect missing packets, for example by a gap in the sequence numbers,
and to send a NAK back to the sender to force a retransmit. An example is shown in
Figure 3.8(b), where the messages with ids 3 and 4 are retransmitted.

Both of these protocols have drawbacks. One of the known problems of sender-initiated
protocols is the so called ACK implosion problem. This problem is a result of the
fact, that every node needs to acknowledge a message. Therefore the number of ACKs
increases with the number of multicast participants. A further problem are unreliable
links in which case a lot of retransmits and ACKs are needed. For more information
on this the reader is referred to [LGLA98]. Because of our special environment we have
chosen to use an ACK based approach because the number of participants is limited by
k2 in our case which is reasonably small.

Definition 29 (Reliable Multicast). Our implementation of our Reliable Multicast pro-
tocol follows an ACK based approach and guarantees the following properties:

Reliable: A message sent by a sender is eventually delivered.

No resource leaks: A message sent by a sender is eventually freed at the sender if the
destinations nodes are correct.

Finite delivery: If the destination nodes are in the transmission range of the sender,
then a message sent by the source is eventually delivered at the destination within
a finite amount of time.

FIFO Multicast: Messages sent by a sender are received in order by the receiver.

92

3 NS2 93

(a) ACK based protocol (b) NAK based protocol

Figure 3.8: Sender- and Receiver initiated multicast protocols

Every message is stamped with a unique identifier, briefly called message ID, used
to distinguish between multiple message. These message IDs together with relational
operators are implemented in ’ identifier uid ’ which subclasses ’mcast uid’. The UML
class diagram together with the most important operations is shown in Figure 3.9. Two
important concepts are shown there: First we see the extension of ’mcast uid’ using the
TMA addresses and the sequence counters to build unique IDs. The second addition
are two more methods. The method ’recv’ is used to dispatch NS2 packets into the
multicast service. In case of a receiver, the multicast service will store the message in
its internal queue such that it can be retrieved by a client and will generate an ACK
message for the sender. At the sender site, the packet header is analyzed, and if such
a multicast message is in transmit, the ACK is added to the list of received ACKs. If
all ACKs have been received, the resources are released. In case of missing ACKs, the
sender must periodically retransmit messages. This is implemented in the method ’pool’
which is called by a periodic timer.

Frame Formats

The implementation of the reliable multicast works directly above the MAC layer, and no
additional overhead is generated. The basic structure of an IEEE802.11 frame is shown
in Table 3.3. A very good introduction to this subject is given in [Sch00, p.207-p.239].
It can be seen that there is no place to support multicasting at MAC level, at least not if

93

94 3 NS2

Figure 3.9: UML class diagram for reliable multicast service

no special multicast addresses are introduced. We therefore have decided to include the

Table 3.3: IEEE 802.11 MAC Data Frame Format

FC Duration/ID Addr1 Addr2 Addr3 SC Addr4 Frame Body CRC

FC . . . Frame Control.
SC . . . Sequence Control.
Addr1 . . . Address-1 is always the recipient address, i.e the immediate recipient of the
packet. We will write DA for destination address which is our basic case.
Addr2 . . . Address-2 is always the transmitter address, i.e. the station physically transmit-
ting the packet. We will write SA for source address which is our basic case.

set of recipients within the data payload, and all packets are sent to the MAC broadcast
address. A receiving station must then perform a fast compare on all of the address
fields (up to k2) to decide if the packet should be dropped or if it is for this node. We
map MAC addresses to TMA addresses by simply taking the decimal equivalent of them.
Therefore 43:12:78:43:89:03 becomes 73746606164227. We distinguish between two
different types of packets. The first one are REQUEST packets which are shown in Table
3.4.

Table 3.4: Reliable Multicast REQUEST packet

MAC header Data CRC
. . . DA SA . . . Type Sequence Port Dest[0] . . . Dest[k-1] Payload . . .
. . . DA SA . . . 0 0 − 232 0 − 255 Dest[0] . . . Dest[k-1] Payload . . .

SA . . . OR:OR:OR:OR:OR:OR.
DA . . . FF:FF:FF:FF:FF:FF.
Type . . . RMCAST PKT TYPE REQUEST = 0.
Sequence . . . Sequence number at the sending node as an unsigned 32 bit integer.
Port . . . Application specific port used for message multiplexing.
Dest[i] . . . Up to k destinations where every field contains a MAC address. If less than k recipients are
addressed unused fields are set to FF:FF:FF:FF:FF:FF.
Payload . . . The application payload, i.e. the actual data received by the nodes.

The second type of packets are ACK packets and are shown in Table 3.5. Contrary to
REQUEST packets, ACK packets are sent as unicast packets, and do not include any
data.

94

3 NS2 95

Table 3.5: Reliable Multicast ACK packet

MAC header Data CRC
. . . DA SA . . . Type Sequence Port . . .
. . . DS:DS:DS:DS:DS:DS OR:OR:OR:OR:OR:OR . . . 1 0 − 232 0 − 255 . . .

DA The MAC address of the node which should receive the ACK.
Type . . . RMCAST PKT TYPE ACK = 1.
Sequence . . . Sequence number at the sending node.

3.6.3 Simple Multicasting

The simple multicasting service can be used when no reliable transmission is required,
that is, when there is some sort of error detection or recovery available in the upper layers
of the protocol. The UML class diagram together with the most important operations
are shown in Figure 3.10. Two important concepts are shown there: First we see the
extension of ’mcast uid’. Contrary to the reliable multicasting service, the IDs are used
only locally to identify messages. In addition, we can see the method recv which is used
to dispatch NS2 packets into the multicast service.

Figure 3.10: UML class diagram for simple multicast service

Frame Formats

The simple multicasting service only uses a single type of packet because no ACKs or
other control messages are used. Its structure is shown in Table 3.6.

Table 3.6: Simple Multicast REQUEST packet

MAC header Data CRC
. . . DA SA . . . Port Dest[0] . . . Dest[k-1] Payload . . .
. . . FF:FF:FF:FF:FF:FF SA . . . 0 − 255 Dest[0] . . . Dest[k-1] Payload . . .

SA . . . OR:OR:OR:OR:OR:OR.
Port . . . Application specific port used for message multiplexing.
Dest[i] . . . Up to k destinations where every field contains a MAC address. If less than k recipients
are addressed unused fields are set to FF:FF:FF:FF:FF:FF.
Payload . . . The application payload, i.e. the actual data received by the nodes.

95

96 3 NS2

3.6.4 Link-State Service

The Link-State Service is used by a node to query information about the state of its
adjacent links or the state of the links of one of its neighbors. A link state is a triple
(x, y, state) where state is a record and x and y are the connection endpoints. In our
implementation, the state includes information like the associated weight, whose esti-
mation is explained later in this chapter, the type of the node, the power loss, and the
time when the node was last seen. Note that our Link-State Service is not a fully fledged
Link-State service as for example OSPF [Moy97], because it is a lot simpler and does
not use flooding to disseminate information. It was designed according to the following
requirements:

• If x is a node and y and z are in the vicinity of this node, then it must be possible
for x to get the state of the connection (y, z). This requirement originates from
the propose modules.

• It must be possible for a node x to estimate the number of currently alive neigh-
bors. This is required to limit the number of proposals or messages, because their
complexity can be in O(nk) [TM05, p.82]. Our first implementation did not use
this information, and we found out that there is no suitable constant time for the
triggering of the propose modules in any network. Or in other words if new pro-
posals are searched in a fixed time interval this approach does not scale well and
there exists no constant which matches all networks. Therefore we have chosen a
dynamic approach based on the size of the network.

• The average number of messages should be reasonably low.

• It must not make use of any high level services, because the network topology is
not known to this service and might not have been established at the point when
this service is started. The highest layer it is allowed to use is the MAC layer.

The version presented in this work is the third variant we implemented during our
study. The first variant was a simple neighbor discovery protocol using HELLO messages.
On top of this framework, a link-state service was implemented, which used explicit
messages to query the state of the links from its neighbors. This first version did not
scale very well, and we worked on a second version which used a caching protocol to
improve performance. Despite all our efforts the performance was terrible. The reason
for this is that during the generation of proposals the algorithm needs to know all
possible group internal connections to calculate the best possible group. If a group has k
members and the members themselves are again groups with k members, then there are
k2 terminal nodes to choose from. If we need all possible connections for our calculation,

we need to query
(
k2

2

)
− k ·

(
k
2

)
connections. The last part in our equation is a correction

factor and stems from the fact that we do not need to query the connections internal to
a group because they are not needed to build the new group. In any case the complexity
is in O(k4).

96

3 NS2 97

Therefore our third version follows a completely different approach and tries to reduce
the number of messages exchanged. The first observation we can make is that to know
that a node is alive, it is necessary that every node shows a sign of life. This can be
done in a lot of different ways, but in our framework we limit exchange of information
to information disposal by messages4. Therefore every node must transmit a message
periodically, which implies that any algorithm following this approach must be at least
in O(n). Having this information allows a node to estimate the number of currently
alive neighbors. Note that this is still not enough for our requirement, because a node
must associate a connection with a weight and should also be able to know the connec-
tions between two other neighbors in its vicinity. Therefore we decided to piggy-back
additional information within the messages. Every message contains the power level
used for transmission and additional information, so called flags. Depending on the type
of message used, additional information about neighbors is also included. The reason
why we decided on this is that it does not make much difference if a bigger frame is
sent instead of a small one, because a lot of overhead in IEEE802.11 wireless networks
originates from the carrier sense algorithms and back off times. The different type of
messages are briefly described below:

Full Update: A full update transmits the complete list of neighbors at a node. A node
receiving this information adds it to its own database and marks all entries with
the timestamp when the message was received. If periodic HELLO messages are sent
every x seconds, then the information at this node is a most 2x seconds old5.

Partial Update: A partial update transmits only the modifications between the last
full update. Partial updates have a lower message size and can be enabled if the
network topology changes often. They are used to update the state information
on some nodes. For example a node could be marked as unreachable or its weight
could be updated.

To allow late joining of a node, it is necessary to transmit full updates periodically.
For this purpose the constant LSB FULL UPDATE INTERVAL is set to 5. If the periodic
hello interval LSB HELLO INTERVAL is set to 5 seconds this would imply that every 25
seconds a full update message is broadcasted to all neighbors. During the other times
only partial updates are sent.

Definition 30 (Link-state record). A Link-state record is a triple (x, y, state) where
x, y ∈ V and state is record like type as shown in Listing 3.8:

Listing 3.8: Link-State state

Record s t a t e i s {
Weight : Weight o f t he connec t ion . Weight ∈ R+ .

4This means that there is not other type of communication between nodes (for example visibility, noise,
...).

5Because the neighbor estimate from the other node is also only updated every x seconds and the
information at the receiving node remains valid for up to x seconds.

97

98 3 NS2

Last seen : Time when t h i s in format ion was l a s t updated .
Lastseen ∈ R+

Flags : Add i t i ona l in format ion about t h i s node . The l i s t o f
p o s s i b l e f l a g s i s shown in Table 3.7

}

Table 3.7: Flags for a Link-State state
Flags Value Description
IS GATEWAY 0x01 This node is a Gateway node.
IS DOWN 0x02 This node is down.

Example

An example of the basic operational principle of the algorithm is shown in this section.
We start with three nodes 0, 1 and 2. Furthermore, we assume that no information
is available directly after startup. New nodes start by sending a FULL UPDATE message
initially. This is shown in Figure 3.11. Note that the times when the messages are sent
are not correlated.

Figure 3.11: Sending of FULL UPDATE message immediately after startup.

Now assume that some time has passed and all nodes have received the frame shown
in this example. The details of the MAC frame are explained later in this chapter.
Therefore every node now knows some information about its neighbors. This is shown
in Figure 3.12.

In the next FULL UPDATE message the new information is added as piggy-back data to
the message. Therefore the message from nodes 0 includes two additional link states,
where State[0] includes the address of node 1, its weight 63 and node 1′s flags. The state

98

3 NS2 99

Figure 3.12: Link-state database after reception of the first FULL UPDATE messages.

for node 2 is transmitted in State[1]. This is shown in Figure 3.13.
The final situation is shown in Figure 3.14. Having this information, the local propose

module (and almost all others) has all required information available to calculate their
proposals. It is obvious that this algorithm is in O(n), and for medium sized networks
a single message is sufficient to broadcast all the required information. If only a single
query has to be performed by any proposals, this algorithm already gives better results
than one using explicit messages. Internally, the information is stored within a hash
map to allow fast and efficient lookups.

99

100 3 NS2

Figure 3.13: Second FULL UPDATE message with piggy-back data.

Figure 3.14: Link-state database after reception of the second FULL UPDATE messages.

100

3 NS2 101

Frame Format

There are two different types of messages. The full update message is shown in Table
3.8, where the link state payload is composed of objects from the type shown in Table
3.9. The full update messages allow up to 256 nodes in the data payload, resulting in
a total size of the IEEE 802.11 frame body of 2053B, which is less than the maximum
of 2312B. If more than 256 neighbors are available, the frame numbers can be used to
fragment the message.

Table 3.8: Link-state FULL UPDATE message

MAC header Frame Body CRC
. . . Addr1 Addr2 . . . Type Pwr Flags Fr. #Fr. States State[0] . . . State[k-1] . . .
. . . OR FF . . . 0x00 0xXX 0xXX i #Fr. k

OR . . . OR:OR:OR:OR:OR:OR is the source MAC address.
FF . . . FF:FF:FF:FF:FF:FF is the MAC broadcast address.
Type . . . Unsigned 8Bit quantity set to LSB FULLUPDATE MSGTYPE = 0.
Pwr . . . Transmission power in dBm as signed 8Bit quantity (−128 − +127[dBm]).
Flags . . . Flags for the node which sent this message.
Fr. . . . Frame number i of #Fr as unsigned 8Bit quantity starting at 0. Used when the number of neighbors exceeds
256.
#Fr. . . . Total number of Frames as unsigned 8Bit quantity.
States . . . Unsigned 8Bit quantity set to the number of Link-State entries in this message.
State[k] . . . An entry in the format described in Table 3.9.

Table 3.9: Link-state field within a message.

Neighbor address (6Byte) Weight (4Byte) Flags (1Byte)
XX:XX:XX:XX:XX:XX Weight 0xXX

Weight . . . A IEEE754 floating point number representing the
weight for the connection.
Flags . . . OR-Combination of flags defined in 3.7.

The partial update messages are shown in Table 3.10. Any number of partial update
messages can be sent between full update messages, but their number should be kept
low to reduce network load.

Table 3.10: Link-State Partial Update message

MAC header Frame Body CRC
. . . Addr1 Addr2 . . . Type Pwr Flags States State[0] . . . State[k-1] . . .
. . . OR FF . . . 0x00 0xXX 0xXX k

Type . . . Unsigned 8Bit quantity set to LSB PARTIAL UPDATE MSGTYPE = 1.
See Table 3.8 for a description of the other fields.

3.6.5 Weight Estimation

What we have left out in our discussion up to know is how the weight are estimated. A
very natural approach for wireless networks is to use the path loss as an estimate for the
cost between nodes. We have chosen a very basic model of our real world environment
and assume a free-space model with no interference. Then the following equation can
be used to describe the received power at a node.

Pr = O

(
Pt

dα

)

101

102 3 NS2

Here Pr is the received power in Watts, Pt is the transmission power used by the
transmitting node and α is an abstraction parameter. A more detailed discussion on
these equations has already been given in Section 2.1. Converting the values to dBm6

gives us the following equation

10 log

(
Pr

1mW

)

= 10 log

(

K
(

Pt

dα

)

1mW

)

Pr[dBm] = 10 log K + 10 log

(
Pt

1mW

)

− 10α log d

Pr[dBm] = 10 log K + Pt[dBm] − 10α log d

Now we can deduce the following equation if we ignore constant terms.

log d =
Pr[dBm] − 10 log K − Pt[dBm]

−10α

log d =
Pt[dBm] − Pr[dBm] + 10 log K

10α
ω = log d = O

(
Pt[dBm] − Pr[dBm]

)

For example in the typical NS2 scenario with a transmission power Pt = 0.281W =
24.5dBm and a receive threshold of Rx = 3.652 · 10−10W = −64.4dBm the maximum
weight is ω = 88.9. Higher values would result in a node not being recognized as
reachable. Now that we have a basic weight estimate, we can use this algorithm to
implement our weight definition shown in Definition 10. For connections between normal
nodes, this is already sufficient, but connections between gateway nodes and gateway
and normal nodes must be treated differently.

Definition 31. Let Pt and Pr be power levels in dBm. Then the weight between two
nodes is defined as.

= Pt − Pr iff x, y ∈ V ′

ω = 2k2512 + (Pt − Pr) = 1024k2 + Pt − Pr) iff
(x ∈ V ′ ∧ y ∈ V ′′)
(x ∈ V ′′ ∧ y ∈ V ′)

∨

= 2k2(2k2512) + (Pt − Pr) = 4096k4 + (Pt − Pr) = iff x, y ∈ V ′′

The factors before the path loss are based on the weight condition defined by Thallner
in [TM05, p9]. The 512 is the maximum weight, which can result by the subtraction of
the two 8-bit integer values which are used to hold the transmission and receive power
levels7. For the gateway to gateway connections, the same formula was applied again,
but the weight chosen is the weight from the next lower groups. This weight is approx.
2k2 · 512 which is the maximum weight of any connection between normal and gateway
nodes.

6dBm is a logarithmic measurement for the power level and the dBm value of any power in Watts is
given by PdBm = 10 log10 (PWatts/1mW) .

7Actually 256 would suffice ,because the integers are signed, but the exact number does not matter as
long as it is larger than the maximum weight.

102

3 NS2 103

Interface

The basic operation of the link-state service has already been described. We will now
focus on the important implementation details and will show how the link-state service
can be used. The most important operations for any link-state service are shown in
Figure 3.15. The class LinkState supports the retrieval of connection information using
the methods LinkState:: query all edges and LinkStateService::query edges. The former
one obtains a list of all connections, where as the latter one supports a filter which is
beneficial if a node has a large number of neighbors. Furthermore, it supports methods
for getting a list of neighbors with their connections (LinkState::neighbor connections),
a list of neighbors (LinkState::neighbors, and methods for testing if a given node is a
neighbor.

Figure 3.15: UML class diagram for Link State Service

Because method calls within NS2 must not block and the answer from the remote
node is not immediately available, communication must be broken down into multiple
states. The link-state service associates each query with a unique identifier of type
ls uid t . Such an identifier is returned when a query is executed. Using this identifier a
node can check the state of a query which is either LinkState::COMPLETE, LinkState
::PENDING or LinkState::TIMEDOUT. State transistions are made upon message
receival or an internal timer used to implement timeouts. If a query is in the state
LinkState::COMPLETE, the retrieved set of edges can be obtained by calling LinkState
::get. In any case, a completed or timedout query should be freed by calling LinkState
:: free .

An example which obtains the complete neighbor information for node 3 is shown in
Listing 3.9. The function ’query once’ initiates a query. After a query has been started,
the method ’check’ should be called. If the query has been completed, the results are
returned or errors are signaled. The method recv is used to dispatch network messages

103

104 3 NS2

for the link-state service.

Listing 3.9: Example for using the link-state service

1 class Bas i cL inkStat eServ i c eTes t : public BiConnector
2 {
3 private :
4 LinkState ∗ l s ;
5 l s u i d t my query ;
6
7 protected :
8 void query once (void)
9 {

10 tma addr t i n t e r e s t i n g n e i g h b o r = 3 ;
11 // query neighbor 3 wi th a t imeout o f 10 seconds .
12 my query = l s −>qu e r y a l l e d g e s (i n t e r e s t i n g n e i ghbo r , 10 .0) ;
13 }
14
15 void check (void)
16 {
17 switch (l s −>que ry s t a t e (my query))
18 {
19 case LinkState : :PENDING:
20 break ;
21 case LinkState : :COMPLETE:
22 {
23 tma conne c t i on s e t t connec t ion s = l s −>get (my query) ;
24 // use the connect ions
25 l s −>f r e e (my query) ;
26 }
27 break ;
28 case LinkState : :TIMEDOUT:
29 // Other node did not answer . Report an error and f r e e resources .
30 l s −>f r e e (my query) ;
31 break ;
32 }
33 }
34
35 public :
36 virtual void recv (Packet ∗p , Handler ∗cb)
37 {
38 hdr cmn ∗hdr = hdr cmn : : a c c e s s (p) ;
39
40 // Process any mu l t i c a s t packe t s .
41 i f (hdr−>ptype () == PT LSB)
42 {
43 i f ((l s != NULL) && (typeid (LinkStateBas ic) == typeid (∗ l s))

)
44 {
45 dynamic cast<LinkStateBas ic ∗>(l s)−>recv (p) ;
46 }
47 }
48 } ;
49 } ;

104

3 NS2 105

3.6.6 Non-Blocking Atomic Commitment

The non-blocking atomic commitment (NBAC) service is implemented in the C++ class
NBAC. If a module wants to use the NBAC protocol, it has to subclass the NBAC class
and provide implementations for the NBAC::vote, NBAC::decision, and if required, for
the NBAC::finalize methods. The basic methods of the NBAC class are shown in Figure
3.16.

Figure 3.16: UML class diagram for Non-Blocking Atomic Commitment

The only method required to initiate an NBAC phase is to call NBAC::initiate, where
three arguments have to be provided. The first one, msg type, is used to distinguish
between different application dependent NBAC types8. The second one, participants ,
is a set of participants which participate in the NBAC protocol. The last argument,
data, is the data, which is initially voted upon. An actual implementation is given in
NBACThallner in the file tma-thallner.cc.

Basic operation

In NS2 it is not possible to block on the reception of a message within the code. There-
fore, the NBAC protocol has to be split into multiple states. The transition from states
happens through the use of timeouts and the reception of new multicast messages. The
basic phases are shown in Figure 3.17. If the initiator calls NBAC::initiate, it sends
a message of type NBAC MESSAGE TYPE INITIATE to all participants (including itself).
Then every node votes upon the data by calling NBAC::vote. These votes are then
multicasted as NBAC MESSAGE TYPE VOTE messages to all other participants. It is also
possible for this type of messages to contain so called piggy-back data. Because our re-
liable multicasting service guarantees delivery, every node will receive all other votes. If

8For example, in our case the group checking and the proposal of new groups.

105

106 3 NS2

all votes have been received or a node has been suspected (not implemented) every node
calls the consensus protocol9. The proposed value is nbac vote t :: VOTE COMMIT,
if all received votes are nbac vote t :: VOTE COMMIT. In all other cases, the vote is
nbac vote t :: VOTE ABORT. After the consensus, every node calls NBAC::decision
with the agreed values. If a finalization is needed, another step is executed. For the
finalization step, every node which has called NBAC::decision sends a multicast message
of type NBAC MESSAGE TYPE FINALIZE to all other nodes. If every node has received this
message, they can be sure that every node has executed NBAC::decision. The goal of
finalization is to dissemniate the information that consensus has been completed on all
participants.

Figure 3.17: State diagram for NBAC implementation

For better illustration, we have also shown the basic execution in a set of diagrams
in Figure 3.18. Please note that every diagram contains a large number of individual
computation steps at any node, but it should show the basic operation of the protocol. In
this example node 0 initiates a NBAC with a new group proposal for the group {0, 1, 3}
with members {{0}, {1}, {3, 4, 5}}. In 3.18(a) we can see that node 0 has initiated the
NBAC. In 3.18(b) we see that all nodes receive and exchange votes. After a node has
received all votes, like node number 5, it starts executing the consensus protocol and
finally calls NBAC::decision. The group construction requires a finalize step, where
every node sends a finalized message immediately after calling decision. This is shown
in 3.18(c) for nodes 0, 1 and 5. After a node has received all finalize messages, it executes
NBAC::finalize and the protocol has finished.

Frame formats

The NBAC protocol uses three different kind of messages. Messages of type
NBAC MESSAGE TYPE INITIATE are shown in Table 3.11. They contain the data pay-
load which is initially voted upon. This is the first message sent. The vote responses
are shown in Table 3.12; they can contain a data payload, also called commit data. The
NBAC MESSAGE TYPE FINALIZE are very simple messages and shown in Table 3.13; They
are only used for synchronization.

9Which in our case is very simple, because we do not allow any nodes to fail. Furthermore, a reliable
transport is always required, because there exists an impossibility result for NBAC with unreliable

106

3 NS2 107

(a) Node 0 initiates group pro-
posal for {0, 1, 3}

(b) Nodes voting and deciding on
NBAC outcome

(c) Finalizing NBAC

Figure 3.18: Example execution of NBAC protocol for a group proposal

NBAC UID (10B) Type (1B) App. Type (1B) Payload
OR:OR:OR:OR:OR:OR SEQ NBAC MESSAGE TYPE INITIATE=1 0xXX . . .

OR . . . NBAC initiator
Application Type . . . Used for protocol multiplexing.

Table 3.11: Format of NBAC initiate message

NBAC UID (10B) Type (1B) App. Type (1B) Vote (4B) Payload
OR:OR:OR:OR:OR:OR SEQ NBAC MESSAGE TYPE VOTE=2 0xXX Vote . . .

OR . . . NBAC initiator
Application Type . . . Used for protocol multiplexing.
Payload . . . Commit data.
Vote . . . Either VOTE COMMIT=1 or VOTE ABORT=2.

Table 3.12: Format of NBAC vote message

107

108 3 NS2

NBAC UID (10B) Type (1B) Application Type (1B)
OR:OR:OR:OR:OR:OR SEQ NBAC MESSAGE TYPE FINALIZE=3 0xXX

OR . . . NBAC initiator
Application Type . . . Used for protocol multiplexing.

Table 3.13: Format of NBAC finalize message

links [Gra78].

108

3 NS2 109

3.7 Group Checking and Group Construction

3.7.1 Datatypes and classes

The most important data types are shown in the UML diagram 3.19. These map-
pings correspond exactly to the records defined in Section 2.3.1. In addition the most

Figure 3.19: UML class diagram for basic datatypes used by the TMA

important methods and attributes of the Thallner algorithm are shown in Figure 3.20.
The actual implementation is in the files tma-thallner.cc and tma-thallner.h, where
most of the methods are simply C++ equivalents of the algorithms shown in 2.3. Newly
introduced functions are ’check groups’ and ’ check groups initiate ’. The first method
estimates the suggested time between group checking. This time is subject to network
size, network load, and the value of k. The exact calculation is shown in Section 3.7.2.
Within this time interval, a node randomly initiates a group checking instance by call-
ing ’ check groups initiate ’. This prevents node synchronization and makes sure that
group checking is fair, because every node is at least triggered once within this inter-
val, which also simplifies convergence algorithms. The time windows is cut into slices
of the estimated time between proposals. Within these time slices a random instant
is chosen where the group checking is performed. The functions ’propose groups’ and
’propose groups initiate ’ follow the same concept.

109

110 3 NS2

Figure 3.20: UML class diagram for TMA

110

3 NS2 111

3.7.2 Group checking

As already shown in Listing 2.4 in lines 24−30, the Thallner algorithm performs periodic
group checking. Group checking serves the following purposes [TM05, p.39]:

• It removes broken groups, which can occur when a node leaves a group.

• It detects node crashes.

• The group weight adapts to changed connection weights.

We have already mentioned that the group checking is triggered by a periodic sig-
nal. The basic relationship is shown in Figure 3.21. We can see that the function
’check groups’ is called at constant time intervals. This time is calculated by the func-
tion ’calculate checkgroup period’. Within this fixed time window, group checking is
initiated by calling the function ’ check groups initiate ’. The timers are realized by two

Figure 3.21: Periodic checking of groups

instances of the generic timer class GenericTimer shown in Figure 3.22. Such a timer
instance requires an object, which is parameterized by the template typename ’agent’10,
and a function pointer to a method of this class. If the timer has expired, the function
arg fp. The source code of the method ’check groups’ is shown in Listing 3.10 with the
debugging code removed.

Listing 3.10: C++ group checking code

1 void

2 TMAThallner : : check groups (void)
3 {
4 // c a l c u l a t e ba s i c time s l i c e
5 double per iod = ca l cu l a t e ch e ck g r oup pe r i od () ;
6 // c a l c u l a t e time when the ac tua l check i s schedu l ed
7 double s chedu led t ime = Random : : uniform () ∗ per iod ;
8 // schedu l e the t imers
9 chkgrp tmr rea l . resched (schedu led t ime) ;

10 chkgrp tmr . resched (per iod) ;}
11 }

10An agent is NS2 is an object which sends and receive messages and we have chosen to use this name.
But of course any other class can be used.

111

112 3 NS2

Figure 3.22: UML class diagram for generic timer

The real work is done by the function ’TMAThallner::check groups initiate’ which is
shown in Listing 3.11. Again we have removed some debug code to ease the presentation.
We start by recursively climbing the group hierarchy in the while loop shown in lines
4 − 24. If the groups are locked because they are currently under construction, we
abort our search. This check if performed in line 7. From all available groups in the
hierarchy, the group which has not been checked recently, is chosen in line 14. This
check is implemented by storing the time when the group was checked in the group
internal data structures. This is necessary because if all groups were checked at once,
network congestion would result if the total number of groups (which is O(n)) becomes
bigger. Using this implementation, it is guaranteed that only one group is checked
within a given time interval. Since all groups are checked eventually, the theoretical
results for the resulting topology graph are not affected, although the time complexity
is increased11. The actual check is performed in lines 27− 32. We can see that first the
time is updated in line 29, then a new NBAC instance is created in line 30, and finally
the statistical information is updated in line 31.

Listing 3.11: C++ group checking code

1
2 tma group id t cu r r en t g id = groups [tma group id t (myaddr())] .

p a r en t i d ;
3 tma group id t f i n a l g i d = tma group id t : :NONE;
4 while (tma group id t : :NONE != cu r r en t g id)
5 {
6 // Check t ha t the group data s t r u c t u r e s are not l ocked .
7 i f (nbac u id t : :NONE == groups [cu r r en t g id] . l ocked by)
8 {
9 i f (tma group id t : :NONE == f i n a l g i d)

10 {
11 f i n a l g i d = cu r r en t g id ;

11For very small network sizes it is possible to disable this algorithm but this is not recommended by
the author.

112

3 NS2 113

12 }
13 // Find the group which has not been checked r e c en t l y .
14 i f (groups [cu r r en t g id] . l a s t t im e u s e d i n c h e c k < groups [

f i n a l g i d] . l a s t t im e u s e d i n c h e c k)
15 {
16 f i n a l g i d = cu r r en t g id ;
17 }
18 cu r r en t g id = groups [cu r r en t g id] . p a r en t i d ;
19 }
20 else

21 {
22 break ;
23 }
24 }
25
26 // I f a cand ida te group has been found f o r check ing then do i t .
27 i f (tma group id t : :NONE != f i n a l g i d)
28 {
29 groups [f i n a l g i d] . l a s t t im e u s e d i n c h e c k = Scheduler : : i n s t an c e () .

c l ock () ;
30 nbac −>i n i t i a t e c h e c k g r ou p (groups [f i n a l g i d]) ;
31 s t a t s . nchecks done ++;
32 }

To complete the group checking algorithm we also have to implement the functions
required by the NBAC service defined in Section 3.6.6. Therefore we have subclassed
the NBAC class and created a new class NBACThallner, which is shown in Figure
3.23. The method ’NBACThallner::initiate check group’ takes a group, serializes the
complete group data structure, and initiates a NBAC with all terminal nodes of the
group members. The method ’NBACThallner::decision’ demultiplexes the NBAC in-
stances, and if the NBAC message is of type NBAC TYPE CHECK GROUP, it is dispatched
to ’TMAThallner::decision check groups’. The same holds for the ’NBACThallner::vote
’, which is dispatched to ’TMAThallner::vote’. Group checking needs no finalization
and therefore finalization can be left out. Actual implementations of the functions are
available in tma-thallner.cc and are not repeated here because they are simply C++
equivalents of the algorithms shown in 2.3.

Periodic triggering

The group checking algorithm has a message complexity of O(k4): A node initiates
the NBAC and therefore broadcasts a message. There are up to k2 participants, and
because of the reliable multicast, this gives us 1 + (k2 − 1) messages12. Now every node
broadcasts its vote. For every broadcast, all members must answer with an acknowledge
because of the reliable multicast. Having k2 nodes, this gives us k2 · (k2 − 1) messages.
Therefore the message complexity is in O(k4). The total number of groups in a graph

is given by
⌊

n−1
k−1

⌋

(See Section 2.1.3). Combining these theoretical values we arrived at

the following formula for the period of the group checks.

12The −1 is because the initiator must not acknowledge its message.

113

114 3 NS2

Figure 3.23: UML class diagram for Thaller NBAC

tCheckgroupPeriod = 0.001 × k4 ×
1.0

CHECKGROUP NETWORK LOAD

The factor 0.001 was obtained empirically by using simulation results.

3.7.3 Group proposals

Group proposal are created by triggering the propose module, which then performs a
search. The actual implementation of the propose module does not matter, as long
as it supports or common interface, but if necessary we will refer to our local propose
module from Section 3.8. During our work, we tried to use a periodic trigger for the
generation of new proposals. Obviously, this approach cannot scale very well, because
it does not know anything about the network. It was first set to 5 seconds, which might
seem quite large, but it already had problems with network sizes exceeding 20 nodes.
This is especially problematic because some algorithms are in O(nn). Because of these
problems, we dropped our initial approach and decided to implement an approach which
dynamically adapts to the network size. The basic algorithm is as follows:

1. Every node estimates the number of neighbors by querying the link state service.
The link state service has this information because of the underlying neighbor
discovery protocol.

2. Every node has an estimate on how long it will take to generate a new proposal.
This estimate is obtained from the propose module and can either be a constant
or a dynamic value. See ’TMALNPProposeModule::estimated proposal time’ in
’tma-lnp-proposal.cc’ for a concrete implementation. For example, for the
local non-perfect propose module this value, is computed by tEstimatedT ime =
MESSAGE CONSTANT × n2. The last part of this equation is based on the aver-
age message complexity of [TM05, p. 82] which is in O(n2). The first constant
was obtained using empirical results obtained by simulation.

114

3 NS2 115

3. Every node reschedules one proposal generation within the time frame defined by

tProposePeriod = tEstimatedT ime × n×
1.0

PROPOSE NETWORK LOAD AVG

Here tEstimatedT ime×n is the time it takes to generate proposals on all nodes. The
last term, using the constant PROPOSE NETWORK LOAD AVG, is used to control the
network load. It is important that nodes try to reschedule their proposal generation
randomly within this timeframe. The value of n is important because every node
wants to initiate a search.

Note that the proposal period time can also be used for network convergence detection.
If within a given time frame no proposals changed the network topology, it can be safely
assumed that the network is stable. The time frame is given by c× tProposePeriod, where
c depends on the type of propose module. For a Local-Non-Perfect Propose Module, this

is set to c = 2.0 · tProposePeriod · logk

(

⌊n−1
k−1⌋

)

, which is proportional to the average depth

of a balanced tree for groups of size k if the time tProposePeriod is assumed as constant
within this context.

The basic implementation follows the same principles as the group checking. The
method ’TMAThallner::propose group’ is called with the estimated period. Within this
time a random instant is chosen, where the actual search is initiated. This is shown in
Figure 3.24, and the actual implementation is shown in Listing 3.12.

Figure 3.24: Periodic triggering of propose module

Listing 3.12: Triggering of group proposals in C++

1 void

2 TMAThallner : : propose groups (void)
3 {
4 int number neighbors = l s −>neighbors () . s i z e () ;
5
6 // I t does not make any sense to genera te proposa l s i f there are not
7 // enough ne i ghbors
8 double per iod ;
9 i f (number neighbors > THALLNER K)

10 {
11 per iod = ca l c u l a t e p r op o s a l p e r i o d () ;
12
13 // When to genera te a proposa l w i th in t h i s time window .

115

116 3 NS2

14 double s chedu led t ime = Random : : uniform () ∗ per iod ;
15 propgrp tmr rea l . resched (schedu led t ime) ;
16 }
17 // We can ’ t do anything up to now . Try again in one second .
18 else

19 {
20 per iod = 1 . 0 ;
21 }
22 propgrp tmr . resched (per iod) ;
23 }

The real work is done in the function ’TMAThallner::propose groups initiate’ shown
in Listing 3.13. This method is designed for the local propose module and periodically
initiates new searches. Therefore it is necessary to recursively walk up the group hier-
archy at the node and try to find new proposals containing this group id. The reason
for this is that a local propose module by definition always includes the group id of the
proposer [TM05, p. 60]. This is implemented in lines 8 − 27. A node will only initiate
searches for which it is a leader, which is tested in line 10. From all possible groups,
the group which has not been used for the longest time is selected. Again this is done
by storing additional information, which is simply the time when the proposal was last
used. Finally, the search is started using the group found in line 31. Furthermore, the
statistical information is updated in line 30, and the time when the proposals was last
used is updated in 32.

Listing 3.13: Initiaing a group proposals in C++

1 void

2 TMAThallner : : p r op o s e g r ou p s i n i t i a t e (void)
3 {
4 // Recurs i ve l y walk up the h i erarchy and genera te new proposa l s us ing the
5 // GIDs I am a l eade r in .
6 group map t : : i t e r a t o r cu r r en t g id = groups . f i nd (myaddr()) ;
7 group map t : : i t e r a t o r f i n a l g i d = cu r r en t g id ;
8 while (cu r r en t g id != groups . end ())
9 {

10 i f (cu r r en t g id−> f i r s t . l e ad e r () == myaddr())
11 {
12 i f (cu r r en t g id−>second . l a s t t im e u s e d i n p r op o s a l < f i n a l g i d −>

second . l a s t t im e u s e d i n p r op o s a l)
13 {
14 f i n a l g i d = cu r r en t g id ;
15 }
16 }
17
18 // Check i f t h i s group has a parent . I f yes c l imb the h i erarchy .
19 i f (tma group id t : :NONE != cur ren t g id−>second . p a r en t i d)
20 {
21 cu r r en t g id = groups . f i nd (cu r r en t g id−>second . p a r en t i d) ;
22 }
23 else

24 {
25 break ;

116

3 NS2 117

26 }
27 }
28
29
30 s t a t s . np roposa l s done ++;
31 prop −>l o c a l n on p e r f e c t p r opo sa l (f i n a l g i d −> f i r s t) ;
32 f i n a l g i d −>second . l a s t t im e u s e d i n p r op o s a l = Scheduler : : i n s t an c e () .

c l ock () ;
33 }

If a proposal has been generated by the propose module, the propose module must
call the method ’TMAThallner::release proposal’. This method initiates an atomic
commitment with all members of the new group, and is shown in Listing 3.14.
The NBAC service responsibility is the same as for the group checking, with the
modification that messages of type NBAC MSG TYPE PROPOSE GROUP are dispatched to
the appropriate methods ’NBACThallner::decision propose groups’, ’NBACThallner::
vote propose group’, and ’NBACThallner::finalize’. Actual implementation of the func-
tions are available in
tma-thallner.cc and are not repeated here, because they are simply C++ equivalents
of the algorithms shown in Section 2.3.

Listing 3.14: Releasing of group proposals in C++

1 void

2 TMAThallner : : r e l e a s e p r op o s a l (const tma group t &proposa l)
3 {
4 nbac −>i n i t i a t e p r op o s e g r ou p (proposa l) ;
5 }

117

118 3 NS2

3.8 Propose Module

We have provided a base class called TMAProposeModule which implements all the
supporting functions for the propose modules defined in section 2.4.2. Its UML dia-
gram is shown in Figure 3.25 and every new propose module should subclass from this
abstract base class. Additional methods included in this class are TMAProposeModule
::estimated proposal time which must be provided by the actual implementation and
TMAProposeModule::stats to get statistical data from the propose module. The basic
idea behind this implementation is that the main algorithm periodically triggers the
propose module to generate new proposals as shown in section 3.7.3. Then the propose
module starts its algorithm and tries to find new proposals by any means. After it has
found a (hopefully valid and useful) proposal it releases the proposal to the main algo-
rithm by calling TMAThallner::release proposal. The main algorithm takes this proposal
and initiates the group construction algorithm described in section 3.7.3.

Figure 3.25: UML class diagram for TMA

3.8.1 Local non-perfect propose module

The implementation of the local non-perfect propose module, briefly LNP propose mod-
ule, follows the description shown in section 2.4.3 with the following modifications:

• Every proposal contains a timestamp when the first SEARCH message was created.
This can be used to estimate the average time needed to generate a proposals. Al-
though it is implemented we have decided not to use it because it makes debugging
more difficult if dynamic feedback is introduced into the algorithms. It can be en-
abled by setting the preprocessor flag PROPOSAL ATTACH CREATION TIME
in the file tma-proposal.h to either true or false. It increases the message size by
4 bytes.

• If enabled every proposal is tagged with a unique identifier. This is used to
track proposals and is merely used for debugging purposes. It increases the mes-
sage size by 8 bytes and is implemented by the class proposal trace id . It can

118

3 NS2 119

be enabled by setting the preprocessor flag PROPOSAL ATTACH ID in the file
tma-proposal.h.

The UML class diagram for it is shown in Figure 3.26. Internally it uses the multicast
service to send search messages to other nodes13. The Link-State service is used to query
edges from other nodes because they are needed during the calculation. Furthermore
it also requires a reference to the main instance of the Thallner algorithm to release
proposals.

Figure 3.26: UML class diagram for TMA

A new search message is initiated by calling TMALNPProposeModule::local
non perfect proposal with an appropriate group identifier. This method corresponds

to the function local non perfect proposal shown in Listing 2.15 with the same name
and creates a new TMALNPProposeModule::MSG TYPE SEARCH message which is
sent to the leader of the group.

If a node receives such a search message the first time it creates a new state entry
and the search is in its initial state INIT. The state transitions for a single search
are shown in Figure 3.27. Reception of a message is implemented in the function
TMALNPProposeModule::recv search which is either called directly in case of a node
local message or from TMALNPProposeModule::recv which handles the deserialization
of the message first. In the INIT state all required edges for the proposal calculation
are computed and link-state queries are sent. The query UIDs are added to the internal
state and the state changes to QUERY. In the QUERY state it is checked periodically
if the link-state queries are still pending, complete or have been aborted. If they are
completed or an error has been detected this state is left.

If the queries are complete a transition is made to the state CALCULATE which
matches exactly the function received shown in Listing 2.15 with the exception that the

13Note that our multicast service implementations are smart enough to use an unicast frame if there is
only a single destination.

119

120 3 NS2

Figure 3.27: UML class diagram for TMA

query of the edges has already been performed. After the calculation a search moves to
the states WAIT and COMPLETE where the resources are released. In case of an error
a search immediately goes to the state ERROR.

In case a TMALNPProposeModule::MSG TYPE RESULT message is received it is
released to the main Thallner instance by calling TMAThallner::release proposal. Re-
ception of such a message is implemented in recv result which is either called directly
or again from the TMALNPProposeModule::recv function which handles the deserial-
ization.

120

121

4 Simulation

121

122 4 Simulation

In this section we will show some simulation results to complete the theoretical results
from Thallner shown in [TM05, p82]. If applicable, we will compare our results with
that of Thallner.

4.1 Environment

Our simulation environment is based on NS2 with the components described in Chapter
3. The simulation environment provides the building blocks listed below. All filename
references are relative to the scripts/simulation subdirectory unless otherwise noted.

• New random topologies can be generated by the script adhoc-gen.tcl. For ex-
ample, invoking the command

adhoc−gen . t c l 10 3 a

creates a new topology under the subdirectory topologies for 10 nodes, 3 gateway
nodes and is stored as variant a. The variant argument is used to allow multiple
instances. The final result in the example above would be topo-n10-gw3-a.tcl.

• We use a convergence detection algorithm which monitors the time when a node
has updated its group information. If all nodes have not changed their group
information for a given amount of time, then the network is considered stable.
This is explained in greater detail in the next section.

• Every node has a unique ID (based on its MAC address) and a position in the
simulation area. Nodes can be accessed by the TCL variables node ($i) and their
associated TMA instance tma($i). i is simply an index ranging over all available
nodes.

• Nodes can move within the grid by standard means of NS2. A simple node move-
ment for node 1 could be where node 1 starts moving to the x-coordinate 50.3
and the y-coordinate 70.8 at time 10.0 using a speed of 1.2m/s. This is shown in
Listing 4.1.

Listing 4.1: Node movement in NS2

1 $ns at 10 . 0 1 s e td e s t 50 . 3 70 . 8 1 . 2

• The weight of a node is dynamically calculated by the link-state service. Therefore,
a node movement implies a change in the weights.

• We adapted the NS2 wireless settings to match the IEEE802.11b. This can be
done by adding the settings shown in Listing 4.2 to the setup script1.

1These settings are not very well documented, but seem to be an accepted standard for IEEE802.11b
simulation accoriding to the NS2 users mailling list.

122

4 Simulation 123

Listing 4.2: IEEE802.11b settings for NS2

1 Mac/802 11 set SlotTime 0 .000020 ;# 20us
2 Mac/802 11 set SIFS 0 .000010 ;# 10us
3 Mac/802 11 set PreambleLength 144 ;# 144 b i t
4 Mac/802 11 set PLCPHeaderLength 48 ;# 48 b i t s
5 Mac/802 11 set PLCPDataRate 1 .0e6 ;# 1Mbps
6 Mac/802 11 set dataRate 11 .0e6 ;# 11Mbps
7 Mac/802 11 set bas i cRate 1 .0e6 ;# 1Mbps
8
9 Phy/WirelessPhy set f r e q 2 . 4 e+9 ;# Frequency

10 Phy/WirelessPhy set Pt 3 .3962527e−2 ;# Transmission
power

11 Phy/WirelessPhy set RXThresh 6 .309573e−12 ;# Receiver
t h r e sho l d

12 Phy/WirelessPhy set CSThresh 6 .309573e−12 ;# Sense th r e sho l d

• Our simulation uses NS2 and therefore the computational model is based on the
discrete event scheduler. To implement the periodic group checking and the group
proposals, every node has multiple timers which trigger the computation steps.
The period of the timers for the group checking module is calculated as described
in Section 3.7.2. The calculation of the timer periods for the propose modules are
shown in Section 3.7.3.

4.2 Simulation script

The simulation script is rather large and complicatem therefore we have decided to only
discuss the most relevant parts in this section. All simulation scripts are available in
the subdirectory script/simulation. The file adhoc.tcl is the main simulation script.
The subfolder topologies holds all simulated network topologies, and the results are
stored in the directories nXX-gwY-[a-z]where XX is the number of nodes, Y is the number
of gateway nodes, and [a-z] is the topology variant. The toplogy variant is used to allow
different network topologies for the same number of nodes. The simulation can be started
by executing batch.sh K (XX)* where K is the value of k and XX is the number of nodes.
For example calling batch.sh 3 5 10 15 would evaluate all network topologies for node
sizes 5, 10, and 15 for k = 3 by using NS2 and the main simulation script adhoc.tcl.
The results would be stored in the subdirectories n5-gw4-[a-z], n10-gw4-[a-z] and
n15-gw4-[a-z]. The number of required gateway nodes is calculated automatically by
the script. If a topology does not exist for a specific configuration, a new topology is
created automatically by the script adhoc-gen.tcl. The generated topology is stored
in topologies/topo-nXX-gwY-[a-z] using the same naming convention as above. The
typical results for a single simulated topology are explained below.

4.2.1 Result files

Our simulation framework supports a lot of different outputs. All of them can be gen-
erated by calling the appropriate methods on the TMA objects, which are shown in

123

124 4 Simulation

Section 3.5.2. The typical output for a simulation is shown in Listing 4.3, where the
simulation was performed for 5 nodes with k = 2 and 2 gateway nodes.

Listing 4.3: Typical output files for a simulated topology

$ l s n5−gw2−a/
n0−l o c a l−topology−graph−t23−neato . dot . gz
n0−l o c a l−topology−tr ee−t23−dot . dot . gz
n1−l o c a l−topology−graph−t23−neato . dot . gz
n1−l o c a l−topology−tr ee−t23−dot . dot . gz
n2−l o c a l−topology−graph−t23−neato . dot . gz
n2−l o c a l−topology−tr ee−t23−dot . dot . gz
n3−l o c a l−topology−graph−t23−neato . dot . gz
n3−l o c a l−topology−tr ee−t23−dot . dot . gz
n4−l o c a l−topology−graph−t23−neato . dot . gz
n4−l o c a l−topology−tr ee−t23−dot . dot . gz
n5−gw2−a−k2−adhoc . l o g . gz
n5−gw2−a−k2−adhoc . t r
n5−gw2−a−k2−ex c e l . l o g
n5−gw2−a−k2−s t a t s . l o g
n5−l o c a l−topology−graph−t23−neato . dot . gz
n5−l o c a l−topology−tr ee−t23−dot . dot . gz
n6−l o c a l−topology−graph−t23−neato . dot . gz
n6−l o c a l−topology−tr ee−t23−dot . dot . gz
topology−graph−t23−neato . dot . gz
topology−tr ee−t23−dot . dot . gz
transmis s ion−graph−t23−neato . dot . gz

The files prefixed by nX-local are node local output files and do not require any
global information for their creation, i.e. they are generated only from node local data
structures. Files which contain the substring neato should be processed by the neato

tool from the GraphViz suite. The dot files should be processed by the dot tool. For
example, converting node 0s local topology tree into a png output file is done by the
following command

neato −T png n0−l o c a l−topology−graph−t23−neato . dot −o n0−l o c a l−
topology−graph−t23−neato . png

assuming the files have been uncompressed before. The topology tree is processed by
the command

dot −T png n0−l o c a l−topology−tr ee−t23−neato . dot −o n0−l o c a l−topology−
tr ee−t23−dot . png

Of course, we are more interested in the result seen by an omniscient observer. The
complete topology tree and topology graph are available in the files topology-graph-

-t23-neato.dot and topology-tree-t23-dot.dot. Furthermore, we also export the
transmission graph in the file transmission-graph-t23-neato.dot. The files should
be processed in the same way as the previous examples.

Of special interest are the text files n5-gw2-a-k2-excel.log and n5-gw2-a-k2-

-stats.log. These files contain the complete statistical information from the simu-

124

4 Simulation 125

lation, and we used them to generate all of the following diagrams. An example output
is shown in Table 4.1, where the CSV file for Excel has been presented in a tabular
format for better illustration purposes.

Table 4.1: Example CVS output from a simulation
Parameter Value

proposals sent 707
nbac sent 313

nbac sent retries 1
nbac acks sent 527

avg. proposal time min. 0.041104
avg. proposal time max. 0.074021

avg. proposal time 0.063804
proposals initiated 180
proposals released 27
full updates sent 21

partial updates sent 0
pwr saving min 3.000000
pwr saving max 14.000000
pwr saving avg 7.368529
pwr saving total 2.827025

pwr required total 3.706364
nbac proposals initiated 27

nbac proposals committed 21
nbac proposals aborted 6

nbac group checks initiated 41
nbac group checks committed 28
nbac group checks aborted 10

convergence time 15.668999
diameter 3
converged 1

We will explain some of the parameters because their meaning is not obvious.

full updates sent: Number of full update messages sent by the link-state service. This
is used for neighbor discovery and the exchange of link-state information.

partial updates sent: Always zero in our simulations, because we did not use this fea-
ture.

proposals initiated: Proposal searches initiated at a node. In the example above, we
have tried 180 times to find a new proposal for a network, but only 27 proposals
have been found. The reason for this is that if the topology is nearly complete, it
becomes more difficult to find new proposals. If the topology has converged, no
new proposals can be found.

proposals released: Proposals released to the TMA. A released proposal creates a
NBAC instance and tries to build the new group. As we can see from the data
collected for NBAC proposals, 21 of the proposals were built and 6 were aborted.

pwr required total: This is the transmission power required (in dBm) if no TMA is
used and every node wants to transmit a single message to its farest neighbor.
Any practical analysis will propably want to divide this number by the number of

125

126 4 Simulation

nodes used. It is estimated by using the information from the link state service
which knowns to all its neighbors and the minimum receiver power level. Further
information on the calculation of these values is given in Section 4.3.6.

pwr saving total: The total power in dBm which can be saved by using the TMA. Any
practical analysis will propably want to divide this number by the number of nodes
used.

pwr saving min, pwr saving avg, pwr saving max: Minimum, average and maxmimum
possible power saving at all nodes in dB.

convergence time: This is the time when the group structure has changed last at a
node.

diameter: The maximum network diameter after the Thallner algorithm has been exe-
cuted after the algorithm has converged.

converged: Is set to 1 if the network has converged. Is set to 0 if the simulation has
been aborted. This is used as an additional check to ensure that no invalid or
aborted simulations are used in further analysis.

4.2.2 Convergence detection

Convergence detection was one of the more challenging problems we experienced during
our work. The problem is that the algorithm does in fact not stop working after the
topology has converged, i.e., it has no built-in convergence detection. Our convergence
detection algorithm makes the following assumptions, and we have found that it provides
good results in practice and is still easy enough to understand and implement.

• The topology tree is a k−ary tree (allowing some exception at the gateway nodes).

• The average depth of the topology tree is given by the number of groups, that

is
⌊

n−1
k−1

⌋

, and the fact that it is a k − ary tree. Therefore we get avg depth =

logk

(⌊
n−1
k−1

⌋)

.

• To check wheter a group is consistent a group check must be executed. If a node
wants to check all its groups it needs the time required for one group check multi-
plied by the average tree depth. After this time and if no updates have been made
to the topology the node can assume that all groups are consistent2.

• To generate a new proposal, and by assuming a local non-perfect propose module
is used, a node must initiate a new search for every group it is a leader in. This
proposal must also be accepted by the main algorithm using a NBAC phase and
therefore an additional factor has to be added which was simply chosen as 2.

2Note that this is not guaranteed because nodes could crash, But it is sufficient as a basic
convergence criterion, especially if we can assure that no nodes crash within this time window.

126

4 Simulation 127

• All normal nodes must have a degree of k.

Using all these observations from above we came up with the function presented in Listing
4.4, which calculates the time the network must not have changed to be considered stable.
For the impatient reader the calculation is repeated below.

group tree depth = logk

(⌊
n− 1

k − 1

⌋)

convergence time prop = 2 · proposals period · group tree depth

convergence time group = group check period · group tree depth

convergence time = max(convergence time prop, convergence time group)

Listing 4.4: Calculation of convergence time

1 proc convergence−calcu late− t imes { arrname } {
2 global tma t op o t h a l l n e r k
3 upvar $arrname times
4
5 set num nodes [array size tma]
6
7 # f loor ((n−1) /(k−1)) = ngroups i s the number o f groups . I f the
8 # tree i s ba lanced the he i gh t i s log (ngroups) / log (k) . Every
9 # node t h e r e f o r e walks up t h i s h i e rarchy and c r ea t e s group proposa l s

10 # where 1 i s added because o f the proposa l for the node i t s e l f .
11 set group t ree depth [expr log (($num nodes − 1) /($ t opo tha l l n e r k −

1)) / log ($ t opo tha l l n e r k) + 1]
12
13 # add an ex tra f a c t o r o f 2 because a generated proposa l must a l s o
14 # be accepted by the t h a l l n e r a l g o r i t hm .
15 set t imes (convergence t ime proposa l s) [expr [$tma (0) proposals−per iod]

∗ $group t ree depth ∗ 2 . 0]
16
17 # ca l c u l a t e the time requ i red to check a l l groups at a node
18 set t imes (convergence t ime group) [expr [$tma (0) groupcheck−period] ∗

$group t ree depth]
19
20 # the convergence time i s the maximum
21 i f { $times (convergence t ime group) < $times (convergence t ime proposa l s)

} {
22 set t imes (convergence t ime) $times (convergence t ime proposa l s)
23 } else {
24 set t imes (convergence t ime) $times (convergence t ime group)
25 }
26 }

Having such a time available, we simply check that every node did not change its group
structure within this time. If this is the case and all normal nodes have a degree of k,
then the network is assumed to be stable and the simulation stops. This is implemented
in the function ’convergence−test’ where the variable is stable is initially set to 1. If

127

128 4 Simulation

either a normal node has not degree k or the group structure has changed recently, it is
set to 0. The source code is shown in Listing 4.5.

Listing 4.5: Convergence detection in NS2

1 proc convergence− test {} {
2 global ns tma val l a s t s t a t s t i m e t opo p r e f i x t op o t h a l l n e r k time max
3 set s chedu le r [$ns set s ch edu l e r]
4 set now [$schedu le r now]
5
6 convergence−calcu late− t imes t imes
7 stats−convergence−pr int stdout
8
9 # we assume tha t the network has converged .

10 set i s s t a b l e 1
11
12 # compute the time when the group s t r u c t u r e s have changed.
13 set last change max 0 . 0
14 for { set i 0 } { $ i < [array size tma] } { incr i } {
15 set l a s t change [$tma($ i) last−change]
16 i f { $ l a s t change > $last change max } {
17 set last change max $ l a s t change
18 }
19 # i f t h i s node i s not a gateway node i t must have a node
20 # degree o f k .
21 i f { 0 == [$tma($ i) gateway−node] } {
22 i f { $ t opo tha l l n e r k != [$tma($ i) node−degree] } {
23 puts ”node [$tma($ i) tmaaddr] not gateway node and has node

degree [$tma($ i) node−degree] . not converged ! ”
24 set i s s t a b l e 0
25 }
26 }
27 }
28
29 # i f the group s t r u c t u r e s have not changed during the convergence
30 # time the network i s s t a b l e .
31 i f { $now > $times (convergence t ime) } {
32 i f { $now − $last change max < $times (convergence t ime) } {
33 puts ”group s t ru c tu r e has changed at time $ l a s t c h an g e . not converged

! ”
34 set i s s t a b l e 0
35 }
36 } else {
37 set i s s t a b l e 0
38 }
39 . . .

If the network is stable or a safety time has been exceeded, we are finished and the
results are painted as described in Section 4.3. The safety time has been added to
detect bugs in our implementation or to skip very long simulations because of limited
computational resources.

128

4 Simulation 129

4.3 Results

4.3.1 Example Overlay Graphs

In this section we show some network topology graphs and trees for different network
sizes and different values of k. All network topology graphs were created using the local
non-perfect propose module with the wireless settings described above. No other traffic
was present. Rectangular nodes are gateway nodes and circular nodes are normal nodes.
Figures 4.1 and 4.2 show some overlay graphs for k = 2. Figures 4.3 and 4.4 show overlay
graphs for k = 3, and Figures 4.5 and 4.6 for k = 4.

129

130 4 Simulation

(a) Topology Graph for n′ = 10, n′′ = 4 (b) Topology Tree for n′ = 10, n′′ = 4

(c) Topology Graph for n′ = 20, n′′ = 4 (d) Topology Tree for n′ = 20, n′′ = 4

Figure 4.1: Different topology graphs and topology trees for k = 2 (part 1/2)

130

4 Simulation 131

(a) Topology Graph for n′ = 30, n′′ = 4 (b) Topology Tree for n′ = 30, n′′ = 4

(c) Topology Graph for n′ = 40, n′′ = 4 (d) Topology Tree for n′ = 40, n′′ = 4

Figure 4.2: Different topology graphs and topology trees for k = 2 (part 2/2)

131

132 4 Simulation

(a) Topology Graph for n′ = 10, n′′ = 4 (b) Topology Tree for n′ = 10, n′′ = 4

(c) Topology Graph for n′ = 20, n′′ = 4 (d) Topology Tree for n′ = 20, n′′ = 4

Figure 4.3: Different topology graphs and topology trees for k = 3 (part 1/2)

132

4 Simulation 133

(a) Topology Graph for n′ = 30, n′′ = 4 (b) Topology Tree for n′ = 30, n′′ = 4

(c) Topology Graph for n′ = 40, n′′ = 4 (d) Topology Tree for n′ = 40, n′′ = 4

Figure 4.4: Different topology graphs and topology trees for k = 3 (part 2/2)

133

134 4 Simulation

(a) Topology Graph for n′ = 10, n′′ = 6 (b) Topology Tree for n′ = 10, n′′ = 6

(c) Topology Graph for n′ = 20, n′′ = 6 (d) Topology Tree for n′ = 20, n′′ = 6

Figure 4.5: Different topology graphs and topology trees for k = 4 (part 1/2)

134

4 Simulation 135

(a) Topology Graph for n′ = 30, n′′ = 6 (b) Topology Tree for n′ = 30, n′′ = 6

(c) Topology Graph for n′ = 40, n′′ = 6 (d) Topology Tree for n′ = 40, n′′ = 6

Figure 4.6: Different topology graphs and topology trees for k = 4 (part 2/2)

135

136 4 Simulation

The next sections will show some results where we focused on message complexity,
convergence time and network properties. All results have been generated for 24 variants
in increments of 5 number of nodes. That is for k = 2 and k = 3, we have simulated
nearly 500 different network topologies. Because of the computation complexity, we have
simulated only 240 topologies for k = 4.

4.3.2 Message complexity

Figures 4.7, 4.8 and 4.9 show the relation between the average number of messages sent
at a node and the number of nodes in the network for different values of k. The number of
nodes in the network n is defined as the sum of n′ and n′′, where n are the normal nodes
and n′′ are gateway nodes. The complexity of the link-state service has been excluded and
is presented in Section 4.3.7. We can see that the average complexity of O(n2.5) [Tha05,
p.90] matches with the simulation results of Thallner presented in [Tha05, p.88]. The
constants do not match though, but this is caused by the simulation frameworks.

Figure 4.7: Total message complexity for k = 2

4.3.3 Convergence time

Figures 4.10, 4.11 and 4.12 show the convergence time for different values of k with
respect to the number of nodes. It is important to note that convergence time can
be traded for network load. That is, if we decide to increase the load on the network
caused by the topology management algorithm, the times scales linearly in a first order
approach. So if the network load caused by the TMA is doubled, the time required
for convergence will halved. If the load is increased further, one can expect network
congestion, and the reliable multicasting service will suffer and ACK explosion would be
the consequence. This would actually result in a decreased performance because more
messages than necessary would be transmitted because of the retransmission.
We have extrapolated the times with an exponential function where the optimal fit was

136

4 Simulation 137

Figure 4.8: Total message complexity for k = 3

Figure 4.9: Total message complexity for k = 4

137

138 4 Simulation

derived using a least mean square error approach3. The simulated average complexity of
θ(n2.7) is a bit better than the worst case of O(n3) for building a topology with a local
non-perfect propose module [Tha05, p.82]. It also matches the results from Thallner
shown in [Tha05, p.90]. It is interesting to note that the complexity matches because
Thallner counted the number of asynchronous rounds where in a round every node
receives and sends messages. In our implementation such a round is basically the time
window between the generation of proposals.

Figure 4.10: Convergence time for different network sizes and k = 2

Figure 4.11: Convergence time for different network sizes and k = 3

3All computations were done using Microsoft Excel.

138

4 Simulation 139

Figure 4.12: Convergence time for different network sizes and k = 4

139

140 4 Simulation

4.3.4 Local-Non Perfect Propose Module

We will now evaluate different performance aspects of the local non-perfect propose mod-
ule. Figures 4.13, 4.14 and 4.15 show the total number of messages sent in relation to
the number of nodes for different values of k. Thallner has shown that the worst case
complexity is O(n2n) in [Tha05, p69.]. It is interesting to see that the average complexity
is much better and only shows a linear increase with the number of nodes. Simulation
and statistical inaccuracies asides we can observe that the number of messages sent by
the local propose module is in θ(n).

Figure 4.13: Total number of message sent by the LNP propose module for k = 2

Figure 4.14: Total number of messages sent by the LNP propose module for k = 3

Another very interesting metric is the number of messages required for a single search.
The local non-perfect propose module generates proposals by performing a DFS-search in

140

4 Simulation 141

Figure 4.15: Total number of messages sent by the LNP propose module for k = 4

the topology tree. Every node is only asked once during the search, and on each node at

most
⌊

n−1
k−1

⌋

groups are queried once [Tha05, p68]. This gives us a worst case complexity

of O(n2) for the number of messages. This is shown in Figures 4.16, 4.17 and 4.18. It is
interesting to see that the average complexity seems to be θ(log(n)). Clearly all results
show better performance than the worst case performance of O(n2) [Tha05, p69.].

Figure 4.16: Average number of messages for a single proposal for the LNP propose
module and k = 2

Please note that a single search does not imply that at the end of the search a new
proposal is released. This can be seen by looking at the algorithm shown in Section
2.4.3. If the set of potential members, briefly called pms, is too small, then the search is
not forwarded in line 189. The number of initiated proposal searches and the number of
proposals released (=found) are shown in Figures 4.19, 4.20 and 4.21 for different values

141

142 4 Simulation

Figure 4.17: Average number of messages for a single proposal for the LNP propose
module and k = 3

Figure 4.18: Average number of messages for a single proposal for the LNP propose
module and k = 4

142

4 Simulation 143

of k.

Figure 4.19: Number of proposal searches initiated and actual number of proposals re-
leased(=found) for k = 2

Figure 4.20: Number of proposal searches initiated and actual number of proposals re-
leased(=found) for k = 3

The release of a proposal to the Thallner algorithm does not imply that this group is
eventually built. In Figures 4.22, 4.23 and 4.24 we have plotted the number of released
proposals to the NBAC and the number of committed(=built) and aborted(=not built)
instances. The reason why some released proposals are aborted is that there is a time
difference between the generation of the proposals and the voting on the proposed group.
If the topology has changed in the mean time, some nodes might refuse the proposal.
Please note that the number of aborted proposals is reasonably low. The reason for this
is that the network load was not very high. The longer it takes to find a proposal and
to actually build the group, the more likely it is that the group construction is aborted.

We have also evaluated the performance of the local non-perfect propose module with

143

144 4 Simulation

Figure 4.21: Number of proposal searches initiated and actual number of proposals re-
leased(=found) for k = 4

Figure 4.22: Number of NBAC instances for new proposals initiated, committed and
aborted for k = 2

144

4 Simulation 145

Figure 4.23: Number of NBAC instances for new proposals initiated, committed and
aborted for k = 3.

Figure 4.24: Number of NBAC instances for new proposals initiated, committed and
aborted for k = 4.

145

146 4 Simulation

respect to the time needed to generate a proposal. This is shown in Figures 4.25, 4.26
and 4.27. It is interesting to see that there is no linear relationship between the average
values and the worst case values.

Figure 4.25: Maximum, minimum and average time in seconds required for generating a
proposal for k = 2

Figure 4.26: Maximum, minimum and average time in seconds required for generating a
proposal for k = 3.

4.3.5 Group Checking

Group checking is an essential component in the Thallner algorithm and therefore its
performance is critical. Again, the group checking components make use of the NBAC
service. We have recorded the number of group checks initiated, the number of successful
group checks, and the number of aborted groups. Successful in our terminology means
that the group was still valid when the check was done. The results are shown in Figures
4.28, 4.29 and 4.30. We can make some interesting observations. First of all it seems

146

4 Simulation 147

Figure 4.27: Maximum, minimum and average time in seconds required for generating a
proposal for k = 4.

that the number of group checks required has an average complexity of θ(n3). Note that
the actual real number strongly depends on the time chosen by our algorithm (of course
the complexity remains the same). A very important factor is the time between the
generation of proposals and the periodic checking of groups, because a newly generated
proposal might invalidate groups. Therefore we have always chosen to do more group
checks than we generate proposals.

Figure 4.28: Number of group checks initiated, committed, and aborted for k = 2

147

148 4 Simulation

Figure 4.29: Number of group checks initiated, committed, and aborted for k = 3

Figure 4.30: Number of group checks initiated, committed, and aborted for k = 4

148

4 Simulation 149

Reliable Multicast performance

The Non-Blocking Atomic Commitment service requires a reliable network transmission.
The performance of the reliable multicasting service is therefore critical for the network
and we included some statistics from it in our simulation results. Figure 4.31 shows
the total number of reliable multicasts sent. Figure 4.32 shows the number of ACKs
received. Remember that if a message is sent by the multicast service to a set of nodes,
every node must acknowledge this message by an ACK4. Therefore the factor of sent
multicasts to received ACKs can be used as an estimate for the number of multicast
participants5. Note that if the network size increases this value will eventually become
bigger because top level groups will always have k2 participants resulting from k members
and k terminal nodes for every member. First we assumed that with increasing network
size the number would reach k2 but this is wrong because with a growing network size
the number of smaller groups also increases, i.e., groups that have k members but some
of these members are single node groups. This is shown in Figure 4.33.

Figure 4.31: Number of reliable multicast messages sent for k = 3

Figure 4.32: Number of ACKs for k = 3

4Assuming that our ACK based implementation has been used.
5Actually we have to calculate the ratio between the number of multicase messages sent and the number

of ACKs. Because the originator does not have to send an ACK we finally add 1 to this value.

149

150 4 Simulation

Figure 4.33: Average number of participants for k = 3

The following interesting things can be observed. First the message complexity of the
reliable multicasting service shows the same order of O(n3) as the total number of group
checks and group proposals initiated by the NBAC service. The reason for this is that
an NBAC instance has at most k2 participants and this value does not depend on the
size of the network. Therefore, it is simply a constant factor which does not count in the
Landau-Bachmann complexity. The second thing which is quite obvious from the plots
is that a reliable multicasting service has a very high performance penalty.

To conclude these simulation results we also present the same figures for k = 2 in
Figures 4.34(a), 4.34(b) and 4.34(c). The results for k = 4 are shown in Figures 4.35(a),
4.35(b) and 4.35(c).

4.3.6 Network properties

Our algorithm requires a fully connected network for the correct execution of the algo-
rithm and the generation of a topology satisfying our properties. Requiring that every
node can talk to each other node requires a large amount of transmission power at every
node. We therefore studied if the topology built by the TMA can be used to reduce
the transmission power of the network. Our link-state service allows us to calculate
the minimum required transmission power at a node, because the link-state messages
contain the transmission power, and the physical interface at a node allows us to get
the received power level. If we assume that there exists a common lower bound for
the correct reception of a message, then we can get the minimum required transmission
power by:

tx pwr min[dBm] = (tx pwr sent[dBm]− rx pwr received[dBm])
︸ ︷︷ ︸

pathloss

+rx pwr min

A typical value taken from NS2 for rx pwr min is 3.652E-10W which equals
−64.4[dBm]. This information is stored for every node in the network. The default trans-
mission power is 0.282W , which equals 24.5[dBm]. After the network has converged, let

150

4 Simulation 151

(a) Number of reliable multicast messages. (b) Number of ACKs.

(c) Average number of participants.

Figure 4.34: NBAC simulation results for k = 2

151

152 4 Simulation

(a) Number of reliable multicast messages. (b) Number of ACKs.

(c) Average number of participants.

Figure 4.35: NBAC simulation results for k = 4

152

4 Simulation 153

T = (V,E) be the final network topology. We can get the minimum transmission power
required at a node i by iterating over its adjacent links.

tx pwr min(i) = min ({ω : (i, y, ω) ∈ E}) + rx pwr min

The minimum transmission power required when not using the topology management
algorithm can be computed by the transmission graph T ′ = (V ′, E′). In this case we
need to talk to every possible neighbor.

tx pwr min′(i) = min
(
{ω : (i, y, ω) ∈ E′}

)
+ rx pwr min

We have evaluated these properties for different numbers of nodes and different settings
of k. Figures 4.36, 4.37 and 4.38 show the minimum, maximum and average power. The
values are calculated as following:

pwr saving min = min
∀i∈V

(
tx pwr min′(i)− tx pwr min(i)

)

pwr saving max = max
∀i∈V

(
tx pwr min′(i) − tx pwr min(i)

)

pwr saving avg =
1

|V |

∑

∀i∈V

(
tx pwr min′(i)− tx pwr min(i)

)

Note that we have excluded gateway nodes from this calculation, because they are
fully connected and their connections are not touched by the TMA. We can see that the
power saving increases with the number of nodes. The reason is quite simple: Because
the grid used to place the nodes remains the same, a decently performing propose module
will always build groups with a low average weight. This implies that nodes are nearby,
and therefore they do not require great amounts of transmission power.

Figure 4.36: Minimum, maximum and average power saving for k = 2

153

154 4 Simulation

Figure 4.37: Minimum, maximum and average power saving for k = 3

Figure 4.38: Minimum, maximum and average power saving for k = 4

154

4 Simulation 155

4.3.7 Other results

Another component in our simulation network is the link-state service. This service
is used extensively by the propose modules, because they need to obtain connectivity
information. Our basic link-state service is an efficient implementation in a broadcast
network and has a message complexity of O(n ·t), where t is the simulation time and n is
the number of nodes. The message complexity is shown in Figure 4.39. In the author’s
opinion this is the best one can achieve. The reason for this is that the aliveness of a
node can only be assured by receiving a message from that node. Therefore , every node
needs to send periodic messages, which implies a factor of n because there are n nodes.
Furthermore , we need periodic information, and therefore we have an additional factor
of t. Our claim is supported by plotting the factor of the number of messages divided
by the product of nt, which is shown in Figure 4.40. Note that the exponential graph
in Figure 4.39 comes from the exponential time required for network convergence. Or
in other words: Because the link state service produces a constant number of messages
within a time window, but the convergence time increases exponentially with the number
of nodes, the number of messages for the link state service also increase exponentially
with the number of nodes.

Figure 4.39: Number of linkstate messages

Figure 4.40: Number of linkstate messages normalized to n · t product

155

156 4 Simulation

Another interesting property of a (connected) graph is its diameter. Various diameters
for converged topologies are shown in Figures 4.41, 4.42, and 4.43 for different values
of k. Note that for k = 2, the diameter is always n/2 because the TMA establishes a
2-connected graph, which is essentially a Hamiltonian cycle.

Figure 4.41: Network diameter for k = 2

Figure 4.42: Network diameter for k = 3

156

4 Simulation 157

Figure 4.43: Network diameter for k = 4

157

158 4 Simulation

158

159

5 The “Extended-”Thallner Algorithm

159

160 5 The “Extended-”Thallner Algorithm

5.1 Introduction

During our studies, we noticed that the complexity of the group checking and group pro-
posals, which require the use of a non-blocking atomic commitment protocol, is very high.
The complexity is about n+2 ·n2 for an unreliable network with no node failures when a
reliable multicast service using an ACK based protocol is used. The first term is for the
initial message together with the required ACKs and the last term is for the votes and
the finalization. In a network where node failures can happen the message complexity
increases even more because a consensus algorithm is needed. The actual performance of
these algorithms can be improved, if some of the networking assumptions are weakened.
Therefore we decided to think about some possible alternate implementations of these
components, and we would like to show our results in this chapter.

We started with the classic paper from M. Raynal [Ray96] which presents approaches
for solving the non-blocking atomic commitment problem in synchronous and asyn-
chronous networks. Because our primary application target are wireless ad hoc net-
works, we looked at typical properties of wireless ad hoc networks and came up with the
following list.

• If a wireless frame is transmitted over a wireless medium and there are no inter-
mediate nodes, i.e., no additional routing or forwarding of messages is performed,
then the transmission time can be easily bounded if some additional assumptions
are taken. Basically, one has to ensure that these packets are not queued at ei-
ther the sender- or receiver interface and are processed as fast as possible. Using
appropriate scheduling techniques real-time processing within a bounded time is
possible.

• If such a bounded time for transmission can be established, wireless messages
are either received within a given time frame δ or not at all, i.e., they are lost.
Furthermore, the fact that a message has been lost can be detected by the receiver,
assuming that the receiver knows that a message was sent.

• A wireless medium is a broadcast channel and therefore all algorithms should make
use of this fact to reduce message complexity. This is particularily important for
tasks like consensus, the exchange of votes, ... where we have a set of nodes and
all nodes need to know the same information from a single node.

These properties are mentioned here only as an introduction, and a more formal list
is provided later in this chapter. However, looking at these properties we can see that
this allows the implementation of a synchronous system model with unreliable links.
Therefore we have chosen a basic NBAC protocol for a synchronous network, which is
similar to the one proposed by Raynal in [Ray96, p.12]. The differences are that the
Thallner algorithm requires the use of an NBAC protocol with the modifications that we
can piggy-back additional information with the votes, run multiple instances in parallel,
and we have finalization phase1. The algorithm is shown in Listing 5.1.

1Finalization deals with the problem of knowing that all nodes have executed their decision.

160

5 The “Extended-”Thallner Algorithm 161

Some of the data types used are not obvious and therefore require an additional
explanation: The mapping vote is used to collect the votes from all participants for a
given NBAC UID (=unique identifier). A NBAC UID is a unique global id which is
implemented by a local sequence counter and the unique MAC address of a node. The
functions ’vote IMPL’ and ’decision IMPL’ are instances of an application dependent
decision and voting function2.

Listing 5.1: A NBAC protocol for synchronous systems

1 func t i on i n i t i a t e (participants , data)
2 begin

3 // used to run mu l t i p l e i n s t an c e s o f the NBAC pro t o co l at once .
4 var nbac uid ← g l o ba l un i qu e i d ()
5 // send mu l t i c a s t wi th the data to vo t e upon .
6 mul t i ca s t s end (participants , (nbac uid, data))
7 end

8
9 func t i on mu l t i c a s t d e l i v e r (source , participants , data)

10 begin

11 // e x t r a c t the data from the mu l t i c a s t message payload
12 var (nbac uid, nbac data) ← data
13 nbac (nbac uid , participants , nbac data)
14 end

15
16 func t i on s r e l m u l t i c a s t d e l i v e r (source , participants , data)
17 begin

18 // e x t r a c t the data from the mu l t i c a s t message payload
19 var (nbac uid, vote, commit data) ← data
20 vote(nbac uid, source) ← (vote, commit data)
21 end

22
23 func t i on nbac (nbac uid , participants , data)
24 begin

25 // l e t node vo t e on the data us ing the a p p l i c a t i o n dependent
26 // func t ion vote IMPL .
27 var (vote, commit data) ← vote IMPL (nbac uid, data)
28 // synchronous r e l i a b l e mu l t i c a s t r e qu i r e s time δ′

29 s r e l mu l t i c a s t s e nd (participants , (nbac uid, vote, commit data))
30 s e t timer = cr ea t e t ime r (δ + δ′)
31 wait for

32 // a l l vo t e s have been r e c e i v ed
33 ∀v ∈ participants : vote(nbac uid, v) = COMMIT

34 // one pa r t i c i p an t wants to abor t
35 ∨ ∃v ∈ participants : vote(nbac uid, v) = ABORT

36 // t imer has exp i r ed
37 ∨ expired(timer)
38
39 i f ∃v ∈ participants : vote(nbac uid, v) = ABORT then

2In the Thallner algorithm these are the appropriate functions for group checking and group proposals.

161

162 5 The “Extended-”Thallner Algorithm

40 var result ←ABORT

41 i f expired(timer) then

42 var result ←ABORT

43 i f ∀v ∈ participants : vote(nbac uid, v) = COMMIT then

44 var result ←COMMIT

45
46 var global commit data ←

{commit data : ∀v ∈ participants(∃(vote, commit data) ∈ vote(nbac uid, v))}
47 decis ion IMPL (nbac uid , result , data , global commit data)
48 end

It has been shown by Raynal in [Ray96, p.11-p.13] that the algorithm in Listing 5.1
solves the NBAC problem if all networking primitives used are available. The properties
and the definition of the NBAC problem, as well as the basic networking primitives, are
repeated below for presentation purposes and are based on [Ray96].

A NBAC protocol assures that all participants take the same decision, which is either
COMMIT or ABORT. The exact meaning is application dependent, but committing
typically means making changes permanent and abort cancels all work. Whether the out-
come is COMMIT or ABORT depends on the votes from the individual participants
and on network or node failures.

Definition 32 (Non-blocking atomic commitment - NBAC). A protocol solving the
NBAC problem satisfies the following properties:

Termination: Every correct participant eventually decides.

Integrity: A participant decides at most once.

Uniform agreement: No two participants decide differently.

Validity: If a participant decides COMMIT, then all participants have voted
COMMIT.

Non-Triviality: If all participants vote COMMIT and there is no failure the outcome
decision is COMMIT.

Let P = {p1, . . . , pn} be a set of participants. The most basic primitive is
‘multicast send’, which sends a message containing some information to a set of partic-
ipants. If multicast addresses are available for every possible group, an implementation
would simply send the message to this address. In a broadcast network an efficient
implementation is to send the message to the broadcast address and include the set of
participants in the data payload. This data payload is then inspected by the receiving
nodes and if the message is targeted for that node it is delivered at that node. An obvious
drawback of this primitive is that it is not fault-tolerant because it cannot be guaranteed
that all nodes of P will actually deliver the message. A very powerful primitive is the
‘ s rel multicast send ’ which reliably sends a message m to a set of process. It has been
defined by Raynal in [Ray96, p.9] as:

162

5 The “Extended-”Thallner Algorithm 163

Definition 33 (Reliable multicast in synchronous systems). The aim of the primitive
s rel multicast send (P,m) is to reliably send a message m to all participants P with

an “all-or-none atomicity” property.

Termination: If a correct process p multicasts a message m to the set of participants P ,
then some correct process delivers m (or all processes are faulty).

Validity: If a process p delivers a message m, then m has been multicast to a set of
participants P and p belongs to this set.

Integrity: A process p delivers a message m at most once.

Uniform agreement: If any process of P delivers m, then all correct processes deliver
m.

Timeliness: There is a time constant δ′ such that if the multicast is initiated at time t,
no process delivers a message m after t + δ′.

The big problem is that it is impossible to implement the synchronous reliable multi-
cast primitive in a network with unreliable links.

Theorem 2. Let T = (V,E) be a transmission graph which is assumed to be fully con-
nected initially and let P = {p1, . . . , pn} be a set of participants for a synchronous
reliable multicast and let n > 2. Then it is impossible to implement the primitive
‘ s rel multicast send ’ in a synchronous network with an unbounded number of link
failures.

Proof. Let pi be any node in P which is not the initiator of the multicast. If all links in
E fail where pi is an incident node for that edge, then pi is isolated. Still the process is
correct and therefore the uniform agreement is violated.

Knowing this fact we have chosen to weaken the network model. This is presented
in the next section, where we also provide some justification why we think that this
network model actually matches the real world environment.

5.2 Network model

We would like to present our time-bounded unreliable transmission network model, briefly
TBUT network model, which is given in Definition 34.

Definition 34 (TBUT network model). The time-bounded unreliable transmission
(TBUT) network model makes the following assumptions:

1. We assume a synchronous system where all correct transmission and computation
times are bounded. If a message m is sent by a node and is received correctly, and
the receiving node is correct, the message is processed within a known, finite and
constant time δ. A message is considered as processed when it has been passed to
the application layer where it can be evaluated by an algorithm.

163

164 5 The “Extended-”Thallner Algorithm

2. Unicast message transmission is unreliable. That is, if a message m is transmitted
at time t by a node pi to a node pj, it is either processed by pj at the time t′ with
t < t′ ≤ t + δ or not at all. If a message is not received by a node it is counted as
a link failure.

3. Broadcast message transmission is unreliable. If a message m is transmitted at
time t by a node p to the broadcast address with receiver set V , then each node
p′ ∈ V either receives m at the time t′ with t < t′ ≤ t + δ or not at all. If a
message is not received by a node it is counted as a link failure.

4. We assume that within a given (and hopefully short) time frame ∆ at most f ≤ n−2
nodes and links fail in total. In our case, this time frame ∆ encloses the complete
modified NBAC transaction. It is therefore important to keep this time as short as
possible, because limiting the number of faults within a given time does reduce the
mobility3.

5. Messages cannot be corrupted.

6. Is a message is receives by a process p. it has been sent by some process.

7. Nodes are fail-silent4. Late joining or rejoining of nodes is allowed, but not within
an open transaction. That is, if a transaction spanning a time ∆ is in progress and
node x has failed and participated in this transaction, it is not allowed to rejoin
before the time window ∆ has expired.

8. The network does not need to be fully connected. That is, for a transmission graph
T = (V,E), there can exist nodes x, y ∈ V where there exists no edge (x, y) ∈ E.
Note that for participants in a modified NBAC, a missing link is counted as a
failure.

9. We assume that every node has access to a local clock for the implementation of a
timer. Clocks need to satisfy a global drift condition, but we do not require them
to be synchronized. Let C1(t) be the value of the local clock of node p1 at time t,
and C2(t) be the value of p2’s local clock at time t. Let t′ = t + δ. Then we require
that ||C1(t

′)− C1(t)| − |C2(t
′)− C2(t)|| < J with J ∈ R+.

The assumptions (1), (2) and (3) are reasonable in a wireless network. If a message is
transmitted, the propagation time is only limited by the wave propagation time of the
wireless media (=speed of light). Therefore, if a message is sent by a transmitter, it is
either received within a given time frame or not. Please note that this must include any
local and remote queuing delays. Assuming that a node has sufficient computational
power, it can process the message within a finite time. Adding these two times defines
our time δ. For (3), it is important to note that there can exist nodes which receive

3This comes from the fact that a node might move out of the transmission range, which is treated as
a transmission error, or that the communication becomes unreliable.

4For example if their energy is exhausted.

164

5 The “Extended-”Thallner Algorithm 165

the message and nodes which do not. Therefore message transmission can simply be
implemented by sending to the MAC broadcast address. Requirement (4) is covered
in more detail later, and is a result of our modified algorithm. It simply limits the
number of tolerable failures within a given time frame. (5) is implemented by using
CRC checksums for the frames. Problem number (6) is dealt with by adding a startup
timeout. Assumption number (8) might seem difficult but it should be noted that the
clocks need not be synchronized, which is the difficult part. In fact the implementation
is quite easy if a high speed timer is available and the timer ticks are used to implement
so called macro ticks. For presentation purposes we assume initially that J = 0 and will
only take it into account in our final algorithm.

In the following section, we will present the implementation of the algorithm in our
system model.

5.3 Implementation

We will start by showing how the reliable multicast primitive can be implemented in our
modified network model and will then analyze the complexity of the complete algorithm,
which was the primary reason for seeking an alternate approach. In the second part of
this section, we will present an alternate solution which solves the same problem using
a different approach but with a better message complexity.

5.3.1 Implementation using the Synchronous Reliable Multicast

We have already proved in Theorem 2 that in general it is not possible to implement a
reliable multicast if the links are unreliable and an unbounded number of links can fail.
But this situation is different in our modified network model. We start by claiming the
following Lemma.

Lemma 1. Let P = {p1, . . . , pn} be a set of participants which are fully connected and
assume our system model from Definition 34. W.l.o.g assume that process p1 wants to
multicast a message to all participants. If every node broadcasts the message again before
locally delivering it we can guarantee for f ≤ n − 2 link and node failures in total, that
either all correct nodes deliver the multicast message m within two rounds (equaling 2δ),
or it is not delivered at all.

Proof. The first case is that no participants delivers the message. Let us assume that
p1 crashes before multicasting the message to all participants. Then no participant,
including p1, delivers the message. The reason for this is that p1 by itself does only
deliver the message locally after it has multicasted it to all participants. Furthermore
the message has never been sent over the multicast channel and therefore no other node
can receive it.

Now assume that p1 manages to broadcast its value. In that case, the receiver set gets
parted into two sets, P1 respectively P2 of nodes that did, respectively did not receive
the message from p1. Clearly |P2| = f ′ ≤ f , and |P1| ≥ n− 1− f ′. In the second round,

165

166 5 The “Extended-”Thallner Algorithm

all correct processes in P1 attempt to forward the message from p1. As there are only
e ≤ f − f ′ errors left, with f ≤ n− 2, at least n− 1− f ′ − e ≥ n− 1− f ≥ 1 processes
in P1 will not be hit by faults in the second round and thus forward p1’s message to all
processes in P2.

Listing 5.2 shows an algorithm which solves this problem in our modified network
model and we claim the following properties:

Theorem 3. The algorithm shown in Listing 5.2 implements the reliable mul-
ticast primitive defined in Definition 33. A message can be sent by invoking
‘ s rel multicast send ’ and any message delivered is passed to the application by the
invocation of ‘ s rel multicast deliver ’

Proof. Let P = {p1, . . . , pn} be a set of multicast participants and let us assume w.l.o.g
that p1 is the process which has initiated the reliable multicast by invoking the primitive
‘ s rel multicast send ’. We will first deal with the special case when p1 crashes before
executing line 23. Then no process receives the message and all properties hold trivially.
Now let us assume that p1 executes line 23. The algorithm is essentially an imple-
mentation of the algorithm described in Lemma 1 and therefore we have the Uniform
Agreement property. Validity is obvious from the algorithm because the set of partici-
pants is included in the message and it is checked in Line 48 and only values sent from
participants belonging to this set are taken into account. Termination is also simple. If
the process is correct it can send the message in line 23. If there exists another correct
process it receives m (see the beginning of this proof). Because it has not received the
message before, the test in line 54 will pass and it will deliver the message giving us
the desired result. Integrity is also implemented by the check in Line 54. If a mes-
sage has been received its sequence number is added to this set. Sequence numbers are
only removed after 2δ which is essentially the time required for our broadcasting algo-
rithm as shown in Lemma 1. Therefore it is safe to remove the old sequence numbers
afterwards5.

Theorem 4. In our network model, the message complexity of the algorithm shown in
Listing 5.2 is in Θ(n).

Proof. There are n participants. At the beginning the initiator sends the message, which
accounts for 1 message. At most n − 1 participants can receive the message. Every
participant only forwards the message once, and therefore we have n messages in total.
Therefore the message complexity is constant giving us the desired result.

Theorem 5. There exists a time constant δ′ = 2δ for the algorithm shown in Listing
5.2 such that if the multicast is initiated at time t, then no process delivers the multicast
after the time t + δ′.

5Note that this is not required for the correctness, but any practical algorithm requires this because
otherwise the memory would grow unbounded.

166

5 The “Extended-”Thallner Algorithm 167

Proof. If the initiator of the multicast sends a message at time t, then all processes receive
this message at most at t + δ by our network model assumption. If the local processing
takes no time, which we assume here, then every correct process which has received
the message broadcasts it again. Again these messages take at most δ. Furthermore, a
process only forwards a message once, which gives our desired result.

Listing 5.2: Simple- and reliable multicast networking primitives

1 var ID // network wide node unique ID .
2 var local seq counter← 0
3 var remote counters[v]← ∅ ∀v ∈ V
4
5 func t i on mul t i ca s t s end (participants , data)
6 begin

7 // invoke low l e v e l p r im i t i v e to broadcas t message on network .
8 l ow l e v e l mu l t i c a s t (MSG TYPE SMCAST, participants , data)
9 end

10
11 func t i on mu l t i c a s t d e l i v e r (source , participants , data)
12 begin

13 // app l i c a t i o n dependent d e l i v e r y func t ion f o r ba s i c
14 // mu l t i c a s t .
15 . . .
16 end

17
18 func t i on s r e l mu l t i c a s t s e nd (participants , data)
19 begin

20 local seq counter← local seq counter + 1
21 var mcast uid← (ID, local seq counter)
22 // invoke low l e v e l p r im i t i v e to broadcas t message on network .
23 l ow l e v e l mu l t i c a s t (MSG TYPE RMCAST, participants , (mcast uid, data))
24 end

25
26 func t i on s r e l m u l t i c a s t d e l i v e r (source , participants , data)
27 begin

28 // app l i c a t i o n dependent d e l i v e r y func t ion f o r r e l i a b l e
29 // mu l t i c a s t .
30 . . .
31 end

32
33 // low l e v e l mu l t i c a s t p r im i t i v e .
34 func t i on l ow l e v e l mu l t i c a s t (msg type , participants , data)
35 begin

36 // implement mu l t i c a s t by sending to the broadcas t channel and
37 // by in c l u d in g the ac t u a l p a r t i c i p an t s in the payload .
38 broadcast (msg type , (participants, data))
39 end

40
41 // any message

167

168 5 The “Extended-”Thallner Algorithm

42 func t i on l o w l e v e l r e c e i v e (source , msg type , payload)
43 begin

44 // r e l i a b l e mu l t i c a s t message .
45 i f msg type = MSG TYPE RMCAST
46 var (participants, data)← payload
47 // check i f t h i s message i s f o r us .
48 i f ID ∈ participants
49 // unwrap the i n t e r n a l data payload .
50 (mcast uid, data2)← data
51 (remote ID, remote seq counter)← mcast uid
52 // t e s t i f we have a l r eady r e c e i v ed t h i s message
53 sequence numbers = {seq : (seq, timestamp) ∈ remote counters[remote ID]}
54 i f remote seq counter 6∈ sequence numbers
55 // mu l t i c a s t i t again b e f o r e d e l i v e r i n g i t l o c a l l y .
56 l ow l e v e l mu l t i c a s t (MSG TYPE RMCAST, participants , data)
57 s r e l m u l t i c a s t d e l i v e r (remote ID , participants , data2)
58 remote counters[remote ID]← remote counters[remote ID] ∪ {(remote seq counter, current time

59
60 // s imple mu l t i c a s t message .
61 else i f msg type = MSG TYPE SMCAST
62 var (participants, data)← payload
63 mu l t i c a s t d e l i v e r (source , participants , data)
64
65 // d e f a u l t handler f o r messages .
66 else

67 d e f a u l t r e c e i v e (source , msg type , payload)
68 end

69
70 // p a r a l l e l p roces s . t h i s i s c a l l e d p e r i o d i c a l l y by a t imer
71 // to c l e a r o ld sequence numbers .
72 func t i on cleanup ()
73 begin

74 for v ∈ V
75 sequence numbers← remote counters[v]
76 for (seq, timestamp) ∈ sequence numbers
77 i f timestamp < current time− 2δ
78 sequence numbers← sequence numbers \{(seq, timestamp)}
79 remote counters[v]← sequence numbers
80 end

81 end

Practical implementation concerns

If one wants to implement the algorithms shown in Listing 5.2 the following things should
be considered.

• The variable ID is simply the MAC address of the first network interface of this

168

5 The “Extended-”Thallner Algorithm 169

node. This provides a unique global address assuming that the network configura-
tion is correct.

• Assuming a wireless network with an IEEE802.11 network layer the function
‘ lowlevel multicast ’ should be implemented by using the msg type as the Eth-
ernet frame type and by sending to the MAC broadcast address.

• The function ‘ lowlevel receive ’ should take all messages received by the
MAC layer. If the message is either of the type ‘MSG TYPE SMCAST’ or
‘MSG TYPE RMCAST’ is should be processed by the appropriate functions. Oth-
erwise, the default handler should be used.

• If node recovery is required the local sequence counter must be updated in a safe
manner, for example, by using a local transaction spanning the entire multicast.
Furthermore the remote sequence counters have to be restored on startup.

Implementation of the Thallner NBAC

Having proved that such a reliable multicast primitive can be implemented we can use
the synchronous NBAC algorithm from Raynal to implement the Thallner algorithm.
This is shown in Listing 5.3. The correctness of the NBAC is shown in [Ray96, p.11-
p.13]. The finalization concept is easy in a synchronous system because it simple has to
ensure that every participant has executed the decision.

Definition 35 (Finalization). A protocol solving NBAC finalization in the Thallner
sense has the following properties:

Local Finalization: Eventually ‘finalize IMPL’ will be called on each correct participant
after ‘decision IMPL’ has terminated on this participant.

Finalization Agreement: No two participants decide on different finalize results.

Finalization Validity: If a participant decides on the finalize result COMMIT, then
decision has terminated on every participant.

Finalization Non-Triviality: If there is no failure suspicion, then the finalize result is
COMMIT.

Theorem 6. The algorithm shown in Listing 5.3 solves the finalization problem.

Proof. Finalization agreement is simple because we use the same result value as for the
NBAC. Since the NBAC guarantees uniform agreement we get the finalization agreement
for free. The finalization validity property is easy to achieve in a synchronous system
because the execution of statements can differ by at most the time δ at any node if we
can neglect computation times. The reason for this is that the only time which depends
on the network is the reception of the initial multicast message. Therefore the property
can easily be implemented by waiting the time δ in line 49. Finalization non-triviality is
also simple. If all nodes have sent their votes and their votes are COMMIT, then the

169

170 5 The “Extended-”Thallner Algorithm

result is COMMIT and so is the finalize result. Local finalization is simple because the
code is sequential and the execution of ‘finalization IMPL’ is after ‘decision IMPL’.

Listing 5.3: NBAC protocol for the TBUT network model

1 func t i on i n i t i a t e (participants , data)
2 begin

3 // used to run mu l t i p l e i n s t an c e s o f the NBAC pro t o co l at once .
4 var nbac uid ← g l o ba l un i qu e i d ()
5 // send mu l t i c a s t wi th the data to vo t e upon .
6 mul t i ca s t s end (participants , (nbac uid, data))
7 end

8
9 func t i on mu l t i c a s t d e l i v e r (source , participants , data)

10 // e x t r a c t the data from the mu l t i c a s t message payload
11 var (nbac uid, nbac data) ← data
12 nbac (nbac uid , participants , nbac data)
13 end

14
15 func t i on s r e l m u l t i c a s t d e l i v e r (source , participants , data)
16 // e x t r a c t the data from the mu l t i c a s t message payload
17 var (nbac uid, vote, commit data) ← data
18 vote(nbac uid, source) ← (vote, commit data)
19 end

20
21 func t i on nbac (nbac uid , participants , data)
22 begin

23 // l e t node vo t e on the data us ing the a p p l i c a t i o n dependent
24 // func t ion vote IMPL .
25 var (vote, commit data) ← vote IMPL (nbac uid, data)
26 // synchronous r e l i a b l e mu l t i c a s t r e qu i r e s time δ′

27 s r e l mu l t i c a s t s e nd (participants , (nbac uid, vote, commit data))
28 s e t timer = cr ea t e t ime r (δ + δ′)
29 wait for

30 // a l l vo t e s have been r e c e i v ed
31 ∀v ∈ participants : vote(nbac uid, v) = COMMIT

32 // one pa r t i c i p an t wants to abor t
33 ∨ ∃v ∈ participants : vote(nbac uid, v) = ABORT

34 // t imer has exp i r ed
35 ∨ expired(timer)
36
37 i f ∃v ∈ participants : vote(nbac uid, v) = ABORT then

38 var result ←ABORT

39 i f expired(timer) then

40 var result ←ABORT

41 i f ∀v ∈ participants : vote(nbac uid, v) = COMMIT then

42 var result ←COMMIT

43
44 var global commit data ←

{commit data : ∀v ∈ participants(∃(vote, commit data) ∈ vote(nbac uid, v))}

170

5 The “Extended-”Thallner Algorithm 171

45 decis ion IMPL (nbac uid , result , data , global commit data)
46
47 // wai t u n t i l every co r r e c t node has execu ted decision IMPL
48 s e t timer = cr ea t e t ime r (δ)
49 wait for expired(timer)
50 f ina l i z e IMPL (nbac uid , result , data , global commit data)
51 end

Theorem 7. The total message complexity of the Thallner NBAC for n participants is
in O(n2).

Proof. Initially the initiator initiates the NBAC by sending a simple multicast message to
all participants. Using our multicast implementation this accounts for 1 message. Every
node which participates in the multicast must multicast its vote to all other nodes using
a reliable multicast. One reliable multicast requires n messages and therefore n reliable
multicasts require n2 message. In total we have n2 + 1 messages which is O(n2).

5.3.2 Implementation using Agreement

Our second algorithm only uses a simple multicast and uses an additional agreement
phase. Using our network model it allows a very efficient implementation which has a
message complexity of O(n). We start by replacing the ‘ s rel multicast send ’ primitive
with the normal multicast primitive. The resulting algorithm is shown in Listing 5.4.
Warning - The algorithm below should NOT be used for anything because it violates
the uniform agreement property and is only shown here for explanation purposes.

Listing 5.4: Bad NBAC protocol for the TBUT network model

1 func t i on i n i t i a t e (participants , data)
2 begin

3 // used to run mu l t i p l e i n s t an c e s o f the NBAC pro t o co l at once .
4 var nbac uid = g l oba l un i qu e i d ()
5 // send mu l t i c a s t wi th the data to vo t e upon .
6 mul t i ca s t s end (participants , (MSG TYPE INITIATE, nbac uid, data))
7 end

8
9 func t i on mu l t i c a s t d e l i v e r (source , participants , data)

10 // e x t r a c t the msg type from the mu l t i c a s t message payload
11 var (msg type, . . .) ← data
12 i f msg type = MSG TYPE INITIATE
13 // now we know the type and can e x t r a c t a l l in format ion .
14 var (msg type, nbac uid, nbac data) ← data
15 nbac (nbac uid , participants , nbac data)
16 else i f msg type = MSG TYPE VOTE
17 // now we know the type and can e x t r a c t a l l in format ion .
18 var (msg type, nbac uid, vote, commit data) ← data
19 vote(nbac uid, source) ← (vote, commit data)
20 end

21

171

172 5 The “Extended-”Thallner Algorithm

22 func t i on nbac (nbac uid , participants , data)
23 begin

24 // l e t node vo t e on the data us ing the a p p l i c a t i o n dependent
25 // func t ion vote IMPL .
26 var (vote, commit data) ← vote IMPL (nbac uid, data)
27 mul t i ca s t s end (participants , (MSG TYPE VOTE, nbac uid, vote, commit data))
28 s e t timer = cr ea t e t ime r (2δ)
29 wait for

30 // a l l vo t e s have been r e c e i v ed
31 ∀v ∈ participants : vote(nbac uid, v) = COMMIT

32 // one pa r t i c i p an t wants to abor t
33 ∨ ∃v ∈ participants : vote(nbac uid, v) = ABORT

34 // t imer has exp i r ed
35 ∨ expired(timer)
36
37 i f ∃v ∈ participants : vote(nbac uid, v) = ABORT then

38 var result ←ABORT

39 i f expired(timer) then

40 var result ←ABORT

41 i f ∀v ∈ participants : vote(nbac uid, v) = COMMIT then

42 var result ←COMMIT

43
44 // synchronize wi th o t her nodes . t h i s l i n e i s execu ted at
45 // d i f f e r e n t nodes at most δ apar t .
46 wait for expired(timer)
47
48 var global commit data ←

{commit data : ∀v ∈ participants(∃(vote, commit data) ∈ vote(nbac uid, v))}
49 decis ion IMPL (nbac uid , result , data , global commit data)
50
51 // wai t u n t i l every co r r e c t node has execu ted decision IMPL
52 s e t timer = cr ea t e t ime r (δ)
53 wait for expired(timer)
54 f ina l i z e IMPL (nbac uid , result , data , global commit data)
55 end

An example which violates the uniform agreement is easily given. Assume that there
are 4 nodes, where Figure 5.1 shows the transmission graph of the network.

1. Node 1 initiates the NBAC protocol and sends a message to the participants 1, 2, 3
and 4.

2. Node 1 receives the message and votes COMMIT and broadcasts its vote.

3. Node 2, 3, and 4 also receive the message and vote COMMIT.

4. Node 1 would receive all votes and therefore would vote COMMIT. The same
holds for node 3.

5. Node 2 would miss the vote from node 4 and node 4 the vote from node 2. There-
fore, these votes would be ABORT.

172

5 The “Extended-”Thallner Algorithm 173

6. We now have nodes 1 and 3 voting COMMIT and nodes 2 and 4 voting ABORT.
This violates the uniform agreement property.

Figure 5.1: Counterexample for modified NBAC.

Therefore, we have chosen to add an additional and optimized agreement protocol
which assures that the variable result is consistent among all nodes. The basic structure
is shown in Listing 5.5. The algorithm chosen for our agreement, which is shown in
Listing 5.6, can tolerate f failures, where f ≤ n− 2, and requires 2 synchronous rounds.
In each round, every node broadcasts its current set of votes to all nodes. After 2 rounds,
the nodes choose the minimum value from their current set, which is taken as the input
to the decision. We will show the complete algorithm in the following section together
with its correctness proof.

Listing 5.5: NBAC protocol with agreement for the TBUT network model

1 func t i on i n i t i a t e (participants , data)
2 begin

3 // used to run mu l t i p l e i n s t an c e s o f the NBAC pro t o co l at once .
4 var nbac uid = g l oba l un i qu e i d ()
5 // send mu l t i c a s t i n c l u d in g the p a r t i c i p an t s and the data to
6 // vo t e upon .
7 mul t i ca s t s end (participants , (MSG TYPE INITIATE, nbac uid, data))
8 end

9
10 func t i on mu l t i c a s t d e l i v e r (source , participants , data)
11 // e x t r a c t the msg type from the mu l t i c a s t message payload
12 var (msg type, . . .) ← data
13 i f msg type = MSG TYPE INITIATE
14 // now we know the type and can e x t r a c t a l l in format ion .
15 var (msg type, nbac uid, nbac data) ← data
16 nbac (nbac uid , participants , nbac data)
17 else i f msg type = MSG TYPE VOTE
18 // now we know the type and can e x t r a c t a l l in format ion .
19 var (msg type, nbac uid, vote, commit data) ← data
20 vote(nbac uid, source) ← (vote, commit data)

173

174 5 The “Extended-”Thallner Algorithm

21 else

22 // pass to o t her hand l e r s
23 end

24
25 func t i on nbac (nbac uid , participants , data)
26 begin

27 // i n i t func t ion f o r agreement a l gor i t hm . de s c r i b ed l a t e r .
28 p r e i n i t (nbac uid)
29 // l e t node vo t e on the data us ing the a p p l i c a t i o n dependent
30 // func t ion vote IMPL .
31 var (vote, commit data) ← vote IMPL (nbac uid, data)
32 mul t i ca s t s end (participants , (MSG TYPE VOTE, nbac uid, vote, commit data))
33 // dur ing two δ the c l o c k s o f the nodes can d r i f t a t most
34 // 2J apar t .
35 s e t timer = cr ea t e t ime r (2δ + 2J)
36 wait for

37 // a l l vo t e s have been r e c e i v ed
38 ∀v ∈ participants : vote(nbac uid, v) = COMMIT

39 // one pa r t i c i p an t wants to abor t
40 ∨ ∃v ∈ participants : vote(nbac uid, v) = ABORT

41 // t imer has exp i r ed
42 ∨ expired(timer)
43
44 i f ∃v ∈ participants : vote(nbac uid, v) = ABORT then

45 var local result ←ABORT

46 i f expired(timer) then

47 var local result ←ABORT

48 i f ∀v ∈ participants : vote(nbac uid, v) = COMMIT then

49 var local result ←COMMIT

50
51 // synchronize wi th o t her nodes .
52 wait for expired(timer)
53
54 // again the UID i s used to a l l ow mu l t i p l e i n s t an c e s .
55 var agreed result = agreement (nbac uid , participants , result)
56
57 // agreement f i n i s h e d . now execu t e the de c i s i on .
58 var global commit data ←

{commit data : ∀v ∈ participants(∃(vote, commit data) ∈ vote(nbac uid, v))}
59 decis ion IMPL (nbac uid , agreed result , data , global commit data)
60
61 // wai t u n t i l every co r r e c t node has execu ted decision IMPL .
62 // c l o c k s have a l r eady d r i f t e d up to 6J and we wai t f o r another
63 // t i c k δ .
64 s e t timer = cr ea t e t ime r (δ + 7J)
65 wait for expired(timer)
66 f ina l i z e IMPL (nbac uid , agreed result , data , global commit data)
67 end

174

5 The “Extended-”Thallner Algorithm 175

Lemma 2. If all nodes are correct and no link has failed, then all nodes have the same
value for local result after line 49. Let local resultpi

denote the result for participant
pi ∈ P , then ∀pi, pj ∈ P : (local resultpi

= local resultpj
).

Proof. If no node and no link has failed, every node will execute the function in line 25
at time t ≤ δ because of our network assumptions and the fact that no message was lost.
Every node will send its vote, and all votes will be received by every node in line 10 and
will be added to the set of votes in line 20. At most at time t ≤ 3δ all nodes have passed
line 49 and have chosen their local result. Because all nodes have the same messages,
the result is the same.

Theorem 8. If at most f ≤ n − 2 nodes have failed and a node has crashed before
sending its vote in line 32 then this fact is detected by at least one correct node.

Proof. Assume a node has crashed before sending its vote. Since f ≤ n − 2 there are
always two correct nodes and these nodes will detect the missing vote and will set their
local result to ABORT in line 46.

Please note that up to now we have not enforced a consistent view for the network,
which will be taken care of in the second part of our algorithm.

Agreement protocol

We will now show how this can be achieved by using our agreement protocol. The
variable V holds the exchanged votes. The variable queue is a global variable and holds
the round k messages for a given NBAC instance. The variable round holds the current
active round for a given NBAC.

Listing 5.6: Agreement protocol in the TBUT network model

1 var queue
2 var round
3
4 procedure p r e i n i t (agreement uid)
5 begin

6 round(agreement uid) = 1
7 end

8
9 procedure mu l t i c a s t d e l i v e r (source , participants , data)

10 begin

11 // e x t r a c t the msg type from the mu l t i c a s t message payload
12 var (msg type, . . .) ← data
13 i f msg type = MSG TYPEAGREEMENT
14 // e x t r a c t the complete message a f t e r type i s known
15 (msg type, agreement uid, V) ← data
16 queue(source, agreement uid, round(agreement uid)) ← V
17 end

18
19 procedure agreement (agreement uid , participants , local result)

175

176 5 The “Extended-”Thallner Algorithm

20 begin

21 var V ← {local result}
22 for k, 1 ≤ k ≤ 2
23 mul t i ca s t s end (participants , (MSG TYPE AGREEMENT, agreement uid, V))
24 // c l o c k s have a l r eady d r i f t e d up to 2J . In every round
25 // the can d r i f t another 2J r e l a t i v e l y .
26 s e t timer = cr ea t e t ime r (2δ + 2J + 2Jk))
27 wait for expired(timer)
28 for v ∈ participants
29 i f queue(v, agreement uid, round(agreement uid)) 6= ⊥
30 V = V ∪ queue(v, agreement uid, round(agreement uid))
31 round(agreement uid) = k
32
33 var result ←COMMIT

34 i f ABORT ∈ V
35 result ←ABORT

36 return result
37 end

First we note that all nodes will start at most δ apart if ’agreement’ algorithm is
executed from within Listing 5.5. The reason is that the only time which depends
on the network is the initial reception of the multicast message from the originator.
Therefore, the execution is aligned on grids, which is shown in Figure 5.2. Note that
there are always overlapping areas for every round. The carefully reader will notice that
enforcing this grid actually requires our network model assumption shown in Definition
34, that the local clocks are not allowed to drift unbounded to each other within a given
time frame δ. This fact has been taken into account by the maximum clock jitter J .
The time required to wait increases with every new round because of this jitter.

Figure 5.2: Execution schedule for agreement algorithm

An agreement protocol is defined by having the properties shown in Definition 36
based on [AW04, p.95].

Definition 36 (Agreement protocol). Let V = {v1, . . . , vn} be a set of votes and let vi

be the vote of node pi. The values vi are either ABORT or COMMIT in our case. At

176

5 The “Extended-”Thallner Algorithm 177

the end of the algorithm every node chooses a value yi from the proposed ones.

Termination: Every correct node pi eventually assigns a value to yi.

Uniform Agreement: No two processes (correct or not) decide on different values.

Validity: If vi = v for all votes vi ∈ V then yi = v for any non-faulty process pi after
execution.

Theorem 9. The algorithm in Listing 5.6 solves consensus in our modified TBUT
network model and tolerates up to f ≤ n− 2 link or node failures.

Proof. Termination: The termination property is simple because the system is syn-
chronous and it does not wait for external events. Therefore, every non-crashed
process which started the algorithm at time t returns from the function at the time
t + 2 · δ.

Validity: Validity is trivial because a process adds its own local result to the set V at
the beginning in line 21. Because it sends only values from this set and receives
only values from processes participating in this instance, the only possible values
to choose from are the initially proposed ones.

Uniform Agreement: Again we can invoke Lemma 1 because of the similarity of the
algorithms. The broadcasting of the message is implemented by queuing the re-
ceived message locally in line 16 and forwarding it again at the beginning of the
next round. The delivery is adding the received votes to the set. At the beginning
every node has its own vote in its local set V . This set is forwarded and received
by other nodes in round 1. At least some correct nodes will receive this set and
will forward it again. Therefore by Lemma 1 all processes end up with the same
set V and will decide on the same value. Crashed processes do not decide at all
and therefore Uniform Agreement holds.

Combining the agreement protocol and modified NBAC protocol allows us to provide
an implementation for the NBAC service which is required by the TMA.

Theorem 10. Combining the algorithm shown in Listing 5.5 together with the uniform
agreement algorithm in Listing 5.6 solves the NBAC problem.

We have already shown in Theorem 2 that our basic Algorithm in Listing 5.5 fulfills
the non-triviality property. Termination is simple because the algorithm does not wait
infinitely long. Integrity is obvious by the algorithm itself. Validity follows from the fact
that a node will only set its local result to COMMIT if all nodes have sent their votes
and these votes are COMMIT. Because the uniform agreement algorithm only returns
a result which has been an input value, this desired property follows easily. Uniform
agreement is a direct result of the uniform agreement algorithm.

177

178 5 The “Extended-”Thallner Algorithm

Theorem 11. The combined algorithm sends 1 + n + 2 · n messages in total and has
therefore a complexity of O(n).

Proof. Initially the initiator sends a single message. Then every node must send its vote
which requires n messages in total. The modified agreement algorithm requires 2 · n
messages. This accounts for a total of 1 + n + 2 · n messages.

178

179

A Installation

Installation of NS2 is a difficult process because it requires a lot of different modules.
The easiest way to get started is to use the NS2 all-in-one package in version 2.29,
available on the NS2 website http://www.isi.edu/nsnam/ns/. We will only cover the
installation on Windows XP using a Cygwin environment, but most of this information
directly applies to any UNIX variant unless otherwise noted.

A.1 Required components

This list shows all required components regardless if a development or simulation envi-
ronment is built.

• A recent Cygwin (> 1.5.xx) with a recent GCC compiler (> 3.4.4). The complete
Cygwin distribution is available on http://www.cygwin.com.

• The C++ boost library (> 1.33). It is available on http://www.boost.org.

• The NS2 all-in-one release ns-allinone-2.29.tar.gz with the MD5 hash 4cf7-

f984253634c16ad7dc50b2342db9.

• The NS2 thallner patch ns2-thallner-1.8.patch with the MD5 hash 1370daa2-

0beac7c1e250de1fee4284de available from the author of this thesis.

• The NS2 SSF patch ssf-1.7.patch with the MD5 hash 8505b5406fd8dd514ef6-

bcc1ea79cc25 for the source-sequenced flooding protocol available from the author
of this thesis. This is optional and is only required if this protocol should be used.

• The NS2 SSF-thallner combo patch ns2-thallner-1.8-ssf-1.7-combo.patch

with the MD5 hash 75866988093e38ca8584d3cd5cd5fab1. This patch combines
the two previous patches and is easier to apply.

The next list contains additional components which should be installed if debugging
support is needed. Debugging is almost always needed when modifications to the TMA
are made.

• The TCL debugging component tcl-debug-2.0-pmsrve.tar.gz with the MD5
hash 38d4ff649a4b990cbcd49e7d47ae5d57 from Pedro Vale Estrela. The modi-
fied version supports the ‘c’ command to continue up to the following breakpoint
and the ‘C’ command for run to completion. Furthermore, it adds history support
using the up/down keys.

179

180 A Installation

• The patch for the TCL debugging component to fix a problem with memory al-
location. The patch is available as tcl-debug-2.0-pmsrve-ckalloc.patch with
the MD5 hash ddd01c7bf3922a9c17d42952bd41fae1. It is available on request
from the author of this thesis.

• If debugging of memory leaks is required, the dmalloc library from
http://dmalloc.com. The author used version 4.8.2.

A.2 Installation of NS2

We start by extracting the NS2 all-in-one package and by applying the required patches
to the core distribution. First you should start a Cygwin shell and switch to an ap-
propriate directory where you want to install all NS2 components. In our example, we
assume that this directory is /opt/thallner. If you use a different one, make sure that
you change all references to this directory accordingly. Furthermore we assume that all
required components are available in the subdirectory files of /opt/thallner.

If you only want to apply the Thallner patches, use the patch
ns2-thallner-1.8.patch. If you only want to use the SSF patch, use the patch
ns2-ssf-1.7.patch.

$ gz ip −dc f i l e s /ns−a l l i n one −2.29 . ta r . gz | ta r −xf −
. . .
$ # move unpacked f i l e s up one d i r e c t o r y h ie rarchy
$ mv ns−a l l i n one −2.29/∗ . && rmdir ns−a l l i n one −2.29
$ cd ns−2.29
$ patch −p1 < . . / f i l e s /ns2−tha l l n e r −1.8− s s f −1.7−combo . patch
patching f i l e Make f i l e . in
patching f i l e common/packet . h
. . .
patching f i l e t r a c e /cmu−t r a c e . cc
patching f i l e t r a c e /cmu−t r a c e . h
. . .
$ cd . .

Now the build should be started by executing the install script. Depending upon your
system’s computing power, this will take about 1hour.

$. / i n s t a l l
==
∗ Test ing for Cygwin environment
==
Cygwin detected
. . .
$

After this step, you should have a working installation of NS2 with the required patches
applied.

180

A Installation 181

A.3 Installation of supporting utilities

The following tools should be installed to make full use of our framework.

• GraphViz is a graph drawing software available from http://www.graphviz.org/.
We recommend using a version greater than 2.12. This software is required to
process the topology graphs and topology trees.

• If you need to generate EPS output, the author recommends the tool sam2p avail-
able from www.inf.bme.hu/~pts/sam2p/. It can be used to convert PNG output
files from GraphViz into EPS images by calling

sam2p input . png −2 output . eps

A.4 Testing of installation

The functionality of NS2 can be tested by the validation suite. This is the first step
and validates if there are any problems with NS2. Please note that NS2 2.29 has some
known problems under Cygwin and not all tests will pass. It can be executed by the
following commands

$ cd /opt / t h a l l n e r /ns−2.29
$. / va l i d a t e
. . .
$

The next thing to test is the SSF protocol (if used). For this purpose, a small test
NS2 script should be executed.

$ cd /opt / t h a l l n e r /ns−2.29
$ cd t c l / test

$. . / . . / ns test−su i t e−s s f . t c l
num nodes i s set 8
c r e a t i ng node 0 in group = 0
. . .
Sequence number s t a t i s t i c s for node 7 :
source | seq num | sent | r e c e i v ed | droped | forwarded | l a s t

0 | 6 | 0 | 0 | 12 | 6 | 11.00748
7 | 2 | 1 | 0 | 3 | 1 | 13.00874

Sequence number s t a t i s t i c s for node 2 :
source | seq num | sent | r e c e i v ed | droped | forwarded | l a s t

0 | 6 | 0 | 0 | 12 | 6 | 11.00748
2 | 1 | 0 | 0 | 0 | 0 | 0 .00000
7 | 1 | 0 | 0 | 0 | 1 | 13.00334

Sequence number s t a t i s t i c s for node 0 :
source | seq num | sent | r e c e i v ed | droped | forwarded | l a s t

0 | 7 | 6 | 0 | 11 | 6 | 11.00529
7 | 1 | 0 | 0 | 0 | 1 | 13.00487

$

181

182 A Installation

Finally, the Thallner protocol should be tested by executing the commands shown
below. After execution, the simulated topology is available in
test-suite-thallner-topology-graph-t92-neato.dot and
test-suite-thallner-topology-tree-t92-dot.dot. These files can then be pro-
cessed by GraphViz.

$ cd /opt / t h a l l n e r /ns−2.29
$ cd t c l / test

$. . / . . / ns test−su i t e−t h a l l n e r . t c l
num nodes i s set 20
INITIALIZE THE LIST xListHead
channel . cc : sendUp − Calc highestAntennaZ and distCST
highestAntennaZ = 1 . 5 , distCST = 406 .3
SORTING LISTS . . .DONE!
. . .
node 0 has changed i t s group s t r u c tu r e at 12 .086313
node 1 has changed i t s group s t r u c tu r e at 15 .555068
node 2 has changed i t s group s t r u c tu r e at 0 .667502
node 3 has changed i t s group s t r u c tu r e at 0 .000000
. . .
$

182

183

B Development support

Adding new software components to NS2 requires additional setup steps to the ones
described in Appendix A.

B.1 Required components

• A C/C++ compiler. The setup was tested with versions > 3.4.4.

• The Insight GDB Debugger frontend available from
http://sourceware.org/insight/.

• Diff and patch utilities for the Cygwin environment to create patches.

• Doxygen available from http://www.doxygen.org to create source code documen-
tation.

• AStyle - Artistic Style to reformat the source code. It is available from
http://astyle.sourceforge.net/.

B.2 File system layout

This section refers to the complete development tree available as a separate tar-ball
ns2-sourcetree-xxx.tar.gz from the author of this thesis. It contains additional
scripts to support development.

files/ Contains all required source files. These files have not been modified and can
always be replaced by original ones obtained from the appropriate vendor.

ns-2.29.orig/ A copy of the directory ns-2.29 from the ns-allinone-2.29.tar.gz

tar-ball. This is used to generate patches for NS2.

ns2-ssf/ SSF - Source-Sequenced-Flooding protocol implementation.

ssf/ Contains most of the implementation of the SSF protocol. The packet for-
mat is described in hdr ssf.h and the main implementation of the routing
protocol can be found in ssf.cc and ssf.h.

update-thallner-rep.sh This shell script can be used to update an original source
directory with the required files for the SSF protocol. It should be executed
as

\ s h e l l {ns2−s s f /update−tha l l n e r−rep . sh ns2−s s f ns−2.29}

183

184 B Development support

which copies all required files from the ns2-ssf directory into the ns-2.29

directory. The updated repository can then be used to generate a patch as
described in B.4.

ssf-x.x.patch Patches to NS2 created by the genpatch.sh utility.

others The other files are C++ and TCL source files are modifications of existing
NS2 files and are based on version 2.29.

ns2-thallner/ Implementation of the Thallner algorithm.

mac/ The core interface of the Thallner algorithm. The files tma.h and tma.cc

provide an abstract base class for all TMA implementations. An example and
very simple implementation of a topology management algorithm is shown in
tma-filter.cc and tma-filter.h.

thallner/ Implementation of the Thallner algorithm together with all required
components.

update-thallner-rep.sh This shell script can be used to update an original source
directory with the required files for the Thallner algorithm. It should be
executed as

ns2−t h a l l n e r /update−tha l l n e r−rep . sh ns2−t h a l l n e r ns−2.29

which copies all required files form the ns2-thallner directory into the
ns-2.29 directory. The updated repository can then be used to generate
a patch as described in B.4

ns2-thallner-x.x-ssf-x.x-combo.patch Combo patches for SSF and Thallner be-
cause of patch conflicts.

ns2-thallner-x.x.patch Patches to NS2 created by the genpatch.sh utility.

statistics/ Contains a program to combine multiple Excel output files into a single out-
put file. See the scripts merge.sh and merge-all.sh on how to use this program.

scripts/ Simple utilities

build-ns2.sh This script should be executed from within the NS2 source directory.
It calls configure with the appropriate arguments and builds a working NS2
version.

fixup-tree.sh This script strips TCL and C++ files of Windows CR/LF line feeds.
This script should always be executed before committing CVS changes.

genpatch.sh This script generates patches. It is called as genpatch.sh ORIG

MODIFIED and outputs the diff on stdout.

reformat.sh Calls the astyle utility to reformat the source code. Should be called
on any source file NOT from the ns2 distribution1

1If called on NS2 source files the diffs are large because NS2 does not follow any coding conventions.

184

B Development support 185

B.3 Adding new functions

In this example, we assume that a new function should be added to the Thallner al-
gorithm. We first start by copying an original NS2 source tree and by applying the
Thallner patches to this directory.

$ cd /opt / t h a l l n e r
$ rm −r f ns−2.29
$ cp −Rpf ns −2.29 . o r i g ns−2.29
$. / ns2−t h a l l n e r /update−tha l l n e r−rep . sh ns2−t h a l l n e r ns−2.29
copying ns2−t h a l l n e r /common/packet . h to ns−2.29/common/packet . h . . .
copying ns2−t h a l l n e r /mac/tma− f i l t e r . cc to ns−2.29/mac/tma− f i l t e r . cc

. . .
copying ns2−t h a l l n e r /mac/tma− f i l t e r . h to ns−2.29/mac/tma− f i l t e r . h . . .
copying ns2−t h a l l n e r /mac/tma . cc to ns−2.29/mac/tma . cc . . .
. . .
$

We can now start a build of the source tree by executing the following commands:

$ cd ns−2.29
$. . / s c r i p t s / bui ld−ns2 . sh
No . c on f i g u r e f i l e found in cur r ent d i r e c t o r y
Continuing with de f au l t opt i ons . . .
check ing bu i ld system type . . . i686−pc−cygwin
. . .
$ make
/ cygdr ive /c/ P r o j e c t s /adhoc/ns2 /bin/ t c l s h8 . 4 bin/ tc l−expand . t c l t c l /

l i b /ns−l i b . tc
l t c l / l i b /ns−d i f f u s i o n . t c l | . . / t c l c l −1.17/ t c l 2 c++ e t n s l i b > gen/

n s t c l . cc
. . .
$ f i l e ns
ns : MS−DOS executab l e PE for MS Windows (conso l e) I n t e l 80386 32−b i t
$

You can now make changes to any files. If a new source file is added make sure that
you have added it to the makefile Makefile.in in the root directory of NS2 to include
it in the build. After this you should run a build using the following commands.

$ make depend
. . .
$ make
. . .
$

B.4 Creating a patch

Creating a patch suitable for distribution is not an easy task. The following things
should be considered every time when creating a new patch.

185

186 B Development support

• Always create the patch against an original version of NS2. By convention, we
assume that in our setup an original source tree is available in ns-2.29.

• We recommend having a separate directory tree, which contains all files, for every
module. For example see ns2-ssf and ns2-thallner.

• We also recommend having a script like update-thallner-rep.sh in every direc-
tory, which can be used to copy the files.

Let us assume that we have a modified version of the Thallner algorithm in the direc-
tory ns-2.29, the original source tree in ns-2.29.orig, and a directory for the Thallner
source files in ns2-thallner. The first directory, ns-2.29, is our temporary working
directory used during development. The ns2-thallner directory contains all files for
this module (it includes new files and modified NS2 source files). First, we start by
merging the updated source files back with our master directory.

$ cd /opt / t h a l l n e r
$. / ns2−t h a l l n e r /update−tha l l n e r−rep . sh ns−2.29 ns2−t h a l l n e r
copying ns−2.29/common/packet . h to ns2−t h a l l n e r /common/packet . h . . .
copying ns−2.29/mac/tma− f i l t e r . cc to ns2−t h a l l n e r /mac/tma− f i l t e r . cc

. . .
copying ns−2.29/mac/tma− f i l t e r . h to ns2−t h a l l n e r /mac/tma− f i l t e r . h . . .
copying ns−2.29/mac/tma . cc to ns2−t h a l l n e r /mac/tma . cc . . .
. . .
$

Now we can remove the ns-2.29 directory and create a clean copy of it by merging
in the modifications again. This step is required because the working directory contains
a lot more files created during the build which should not be in the final patch.

$ cd /opt / t h a l l n e r
$ rm −r f ns−2.29
. . .
$ cp −Rpf ns −2.29 . o r i g ns−2.29
$. / ns2−t h a l l n e r /update−tha l l n e r−rep . sh ns2−t h a l l n e r ns−2.29
copying ns−2.29/common/packet . h to ns2−t h a l l n e r /common/packet . h . . .
copying ns−2.29/mac/tma− f i l t e r . cc to ns2−t h a l l n e r /mac/tma− f i l t e r . cc

. . .
copying ns−2.29/mac/tma− f i l t e r . h to ns2−t h a l l n e r /mac/tma− f i l t e r . h . . .
. . .

Next we generate the patch by calling

$. / s c r i p t s / genpatch . sh ns−2.29 . o r i g ns−2.29 > ns2−t h a l l n e r /ns2−
tha l l n e r −1.x . pa

tch

The next step is optional, but it is recommended by the author of this thesis to test
the patch.

$ cd /opt / t h a l l n e r
$ cp −Rpf ns −2.29 . o r i g ns −2.29 . t e s t i n g

186

B Development support 187

$ cd ns −2.29 . t e s t i n g
$ patch −p1 < . . / ns2−t h a l l n e r /ns2−tha l l n e r −1.x . patch
patching f i l e Make f i l e . in
patching f i l e common/packet . h
patching f i l e conf / c on f i g u r e . in . head
patching f i l e c on f i g u r e
patching f i l e html/dox . c s s
patching f i l e html/ dox html foo te r
. . .
$. . / s c r i p t s / bui ld−ns2 . sh
No . c on f i g u r e f i l e found in cur r ent d i r e c t o r y
Continuing with de f au l t opt i ons . . .
check ing bu i ld system type . . . i686−pc−cygwin
check ing host system type . . . i686−pc−cygwin
. . .
$ make
. . .

B.4.1 Documentation

Source code documentation is generated by Doxygen. Doxygen is a source code docu-
mentation generator tool and is freely available. The main configuration can be found
in html/doxygen.conf within the ns2-thallner directory. Assuming an appropriatly
patched NS2 source directory, the documentation can be generated by:

$ cd /opt / t h a l l n e r /ns−2.29
$ cd html
$ doxygen doxygen . conf
Search ing for i n c lude f i l e s . . .
Search ing for example f i l e s . . .
Search ing for images . . .
. . .

The output is generated in the subdirectory html.

187

188 B Development support

188

189

C Usage

We will not cover all details of using the NS2 simulator. Instead, we will focus on the
parts which are important for our simulation. For more information, the interested
reader is referred to the excellent documentation in [FV06].

C.1 Introduction

We have provided a template suitable for our studies. It is available from the contact
author and is located in the directory scripts/template. It consists of three compo-
nents. A TCL script for generating network topologies described in Section C.2, a NS2
simulator setup script shown in Section C.3, and a Makefile. We start by describing the
Makefile, which is shown in Listing C.1. The Makefile is used to start the simulation,
generate a new network topology, and to convert the GraphViz neato and dot files into
PNG and EPS images. Other (non-essential) options are the ability to invoke the Insight
debugger from the command line or to remove any temporary files generated during the
simulation.

Listing C.1: Makefile for simulation framework

−−
Author : Walter Chr i s t i an
#
$Id : usage−makef i l e , v 1 .2 2007/08/22 19 :37 : 46 cwa l t e r Exp $

#
−−

−−
path to binary e xe cu ta b l e
−−
NS2 DIR = . . / . . / ns2/ns −2.29
NS2 = $ (NS2 DIR) /ns
INSIGHT = /opt/ in s i gh t−x86/bin / i n s i g h t
NEATO = neato
DOT = dot
SAM2P = sam2p

−−
pro j e c t dependent s c r i p t s
−−
NS2 SCRIPT = adhoc . t c l
NS2 GEN SCRIPT = adhoc−gen . t c l
NS2 TRACE = adhoc . t r

189

190 C Usage

NUM NODES = 10
GWNODES = 3
THALLNER K = 3
VARIANT = a
PREFIX = n$ (NUMNODES)−gw$ (GWNODES)−$ (VARIANT)
−−
ta r g e t s
−−

a l l : t r a c e

network :
$ (NS2) $ (NS2 GEN SCRIPT) $ (NUM NODES) $ (GWNODES) $ (VARIANT)

t r a c e :
$ (NS2) $ (NS2 SCRIPT) $ (NUM NODES) $ (GWNODES) $ (THALLNERK) $ (VARIANT)

trace−dbg :
$ (INSIGHT) −−args $ (NS2) $ (NS2 SCRIPT) $ (NUMNODES) $ (GWNODES) $ (

THALLNER K) $ (VARIANT) 2>&1

images :
@for f in ‘ f i nd . −maxdepth 1 −name ”∗neato ∗ . dot” ‘ ; do \

$ (NEATO) −Tpng −o $${ f%dot}png $$f ; \
done
@for f in ‘ f i nd . −maxdepth 1 −name ”∗dot ∗ . dot ” ‘ ; do \

$ (DOT) −Tpng −o $${ f%dot}png $$f ; \
done
@for f in ‘ f i nd . −maxdepth 1 −name ”∗png” ‘ ; do \

$ (SAM2P) $$f −2 $${ f%png} eps ; \
done

c l ean :
$ (RM) −f ∗neato ∗ . dot ∗neato ∗ . png ∗neato ∗ . eps
$ (RM) −f ∗dot ∗ . dot ∗dot ∗ . png ∗dot ∗ . eps
$ (RM) −f $ (NS2 TRACE)

The Makefile supports the following targets described below.

network: Generates a new network transmission graph. This is described in depth in
Section C.2. The resulting topology is stored in n$(NUM NODES)-gw$(GW NODES)-

-$(VARIANT)-topo.tcl.

trace: Executes the NS2 simulator using the generated topology.

trace-dbg: The same as the trace target but executes the simulator within the debugger.

images: Converts the GraphViz output files into PNG files. All files having the letters
neato in their name are processed with the neato tool from the GraphViz suite.
The files having dot in their name are processed with the dot tool.

clean: Removes output files created during simulation and by the images target.

190

C Usage 191

C.2 Network Topology Creation

The topology generation script adhoc-gen.tcl generates up to num nodes normal nodes
and up to num gw nodes gateway nodes. It can either be started from the Makefile by
executing the network target or by executing the following command line

$ ns adhoc−gen . t c l ${NUM NODES} ${GWNODES} ${VARIANT}

The generated script contains TCL commands used to create and position the nodes in
the 100m× 100m grid. This script is then sourced by the main one. The script is shown
in Listing C.2.

Listing C.2: TCL script for topology creation

1 # −−
2 # Pro j e c t : Toplogy Generation Template for NS2 s imu la t i on framework
3 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
4 #
5 # −−
6
7 # −−
8 # check for i npu t arguments
9 # −−

10 i f { $argc != 3 } {
11 puts ” e r r o r : adhoc−gen .tc l r e q u i r e s th ree arguments ! ”
12 puts ” usage : ns2 adhoc . t c l N NODES NGWNODES N VARIANT”
13 exit 1
14 } else {
15 set t o p o l o g y f i l e ” t op o l o g i e s /topo−n [l i nd ex $argv 0]−gw[l i nd ex $argv 1]−[

l i n d ex $argv 2] . t c l ”
16 }
17
18 # −−
19 # set con f i gu ra t i on p r o p e r t i e s
20 # −−
21 set num nodes [lindex $argv 0] ;# t o t a l nodes
22 set num gw nodes [lindex $argv 1] ;# t o t a l nodes
23
24 # −−
25 # Create network topo l ogy
26 # −−
27
28 set topo logy fd [open $ t o p o l o g y f i l e w]
29 set seed [clock c l i c k s]
30 expr srand ($seed)
31
32 for { set i 0 } { $ i < $num nodes } { incr i } {
33 puts $topo logy fd ” s e t node ($ i) \ [\$ns node \] ”
34 puts $topo logy fd ”\$node ($ i) s e t X [expr rand () ∗ 100] ”
35 puts $topo logy fd ”\$node ($ i) s e t Y [expr rand () ∗ 100] ”
36 puts $topo logy fd ””
37 }
38

191

192 C Usage

39 for { set i $num nodes } { $ i < ($num nodes + $num gw nodes) } { incr i }
{

40 puts $topo logy fd ” s e t node ($ i) \ [\$ns node \] ”
41 puts $topo logy fd ”\$node ($ i) s e t X [expr rand () ∗ 100] ”
42 puts $topo logy fd ”\$node ($ i) s e t Y [expr rand () ∗ 100] ”
43 puts $topo logy fd ” s e t tma ($ i) \ [\ $node ($ i) s e t tma (0) \] ”
44 puts $topo logy fd ”\$tma ($ i) gateway−node 1”
45 puts $topo logy fd ””
46 }
47
48 close $topo logy fd

An example output is shown in Listing C.3 where two normal nodes 0 and 1 (top) and
one gateway node 12 (end) are shown. It is important to use the same topology when
comparing results, and therefore this script should be executed only once and a backup
of the topology should be made.

Listing C.3: Example topology created by adhoc-gen.tcl

1 set node (0) [$ns node]
2 $node (0) set X 90 .615616035934352
3 $node (0) set Y 76 .658715948769228
4
5 set node (1) [$ns node]
6 $node (1) set X 3 .0389509643609407
7 $node (1) set Y 75 .648858014330671
8
9 . . .

10
11 set node (12) [$ns node]
12 $node (12) set X 81 .204052260706234
13 $node (12) set Y 96 .506345689532509
14 set tma (12) [$node (12) set tma (0)]
15 $tma (12) gateway−node 1

C.3 Simulation Framework and Setup

Performing a simulation in NS2 requires the setup of the simulator. This includes at
least setting the configuration properties in the script, the setup of the simulator objects,
the creation of the traffic patterns, and a schedule defining the execution. If the end
time of the simulation is not known a-priori, a convergence criterion has to be defined
to end the simulation. All of these components with the exception of the traffic patterns
are already available in the template adhoc.tcl shown in Listing C.4.

In lines 81−97, the wireless node is configured. This is basically the same as the setup
shown in the NS2 manual in [FV06, p144]. An important exception is the additional
parameter tmaType for the node configuration which enables the TMA algorithm in line
85 from val(tma).
The configuration items in lines 30 − 46 must match the settings in the topology cre-
ation script and the required simulation settings. The number of nodes should equal the

192

C Usage 193

number of normal nodes plus the number of gateway nodes. The external topology file
is sourced in line 198.
In lines 69 − 79, a simulator instance and the supporting objects are created. In most
cases, these items should be left as they are, because they do not need to be configured.
To end the simulation, three functions are provided, which are shown in lines 102− 181.
The function ‘ finish ’ flushes the trace file output, closes all output files, and quits the
simulator. The function ‘convergence−test’ tests if the network has already converged.
The function ‘convergence−calculate−times’ is a private function and should not be
changed or modified. If no node has changed its group information, the current topol-
ogy information is dumped and the simulation is ended. Otherwise, the test reschedules
itself. Topology information can be dumped by the functions ‘dump−topology−graph’,
which uses the node local information from all nodes to create a view of the topology,
and the function ‘dump−topology−tree’, which outputs the topology tree. These func-
tions are shown in lines 183 − 193.
The traffic patterns required for the simulation should be added after line 218. Addi-
tionally the simulation schedule shown in lines 223 − 224 should be modified to match
the requirements of simulation. Finally, the traffic generators should be started. The
TMA algorithm is started automatically at the nodes.

Listing C.4: Simulation Framework

1 # −−
2 # Pro j e c t : Template for NS2 s imu la t i on framework
3 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
4 #
5 # −−
6
7 # −−
8 # check for i npu t arguments
9 # −−

10 i f { $argc != 4 } {
11 puts ” e r r o r : adhoc . t c l r e q u i r e s fou r arguments ! ”
12 puts ” usage : ns2 adhoc . t c l N NODES NGWNODES THALLNER K N VARIANT”
13 exit 1
14 } else {
15 set topo num nodes [lindex $argv 0]
16 set topo num gw nodes [lindex $argv 1]
17 set t o p o t h a l l n e r k [lindex $argv 2]
18 set topo var ian t [lindex $argv 3]
19 set t opo p r e f i x ”n${ topo num nodes}−gw${ topo num gw nodes}−${ topo var ian t

}”
20 set t o p o l o g y f i l e ”topo−${ t opo p r e f i x } . t c l ”
21 i f { ! [f i l e exists $ t o p o l o g y f i l e] } {
22 puts s t d e r r ” e r r o r : the network topology $ t o p o l o g y f i l e was not c r eat ed

”
23 exit 1
24 }
25 }
26
27 # −−
28 # set con f i gu ra t i on p r o p e r t i e s

193

194 C Usage

29 # −−
30 set num nodes 100 ;# t o t a l nodes
31 set x s i z e 100
32 set y s i z e 100
33
34 set val (chan) Channel/WirelessChannel ;# Channel Type
35 set val (prop) Propagation /TwoRayGround ;# radio−propagat ion

model
36 set val (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e

type

37 set val (mac) Mac/802 11
38 set val (tma) TMA/Thal lner
39 set val (i f q) Queue/DropTail /PriQueue ;# in t e r f a c e queue type

40 set val (l l) LL ;# l i n k l a y e r type

41 set val (ant) Antenna/OmniAntenna ;# antenna model
42 set val (i f q l e n) 100 ;# max packe t in i f q
43 set val (rp) DumbAgent
44
45 set l a s t s t a t s t im e 0 . 0
46
47
48 # −−
49 # Conf igure for IEEE802.11b
50 # −−
51 Mac/802 11 set SlotTime 0 .000020 ;# 20us
52 Mac/802 11 set SIFS 0 .000010 ;# 10us
53 Mac/802 11 set PreambleLength 144 ;# 144 b i t
54 Mac/802 11 set PLCPHeaderLength 48 ;# 48 b i t s
55 Mac/802 11 set PLCPDataRate 1 .0e6 ;# 1Mbps
56 Mac/802 11 set dataRate 11 .0e6 ;# 11Mbps
57 Mac/802 11 set bas i cRate 1 .0e6 ;# 1Mbps
58
59 Phy/WirelessPhy set f r e q 2 . 4 e+9 ;# Frequency
60 Phy/WirelessPhy set Pt 3 .3962527e−2 ;# Transmission power
61 Phy/WirelessPhy set RXThresh 6 .309573e−12 ;# Receiver t h r e sho l d
62 Phy/WirelessPhy set CSThresh 6 .309573e−12 ;# Sense th r e sho l d
63
64 TMA/ Thal lner set debug t rue
65
66 # −−
67 # Create a s imu la tor ins tance
68 # −−
69
70 set ns [new Simulator]
71 set t r a c e fd [open $topo pre f ix−k$ { t o p o t h a l l n e r k }−adhoc.tr w]
72 $ns use−newtrace
73 $ns t r a c e−a l l $ t r a c e fd
74
75 set topo [new Topography]
76 $topo l o a d f l a t g r i d $x s i z e $y s i z e
77
78 set god [create−god $num nodes]
79 set chan 1 [new $val (chan)]
80

194

C Usage 195

81 $ns node−config \
82 −adhocRouting $val (rp) \
83 −llType $val (l l) \
84 −macType $val (mac) \
85 −tmaType $val (tma) \
86 −phyType $val (n e t i f) \
87 −ifqType $val (i f q) \
88 − ifqLen $val (i f q l e n) \
89 −antType $val (ant) \
90 −propType $val (prop) \
91 −topoInstance $topo \
92 −agentTrace ON \
93 −routerTrace OFF \
94 −macTrace OFF \
95 −tmaTrace OFF \
96 −movementTrace OFF \
97 −channel $chan 1
98
99 # −−

100 # Common f unc t i on s
101 # −−
102 proc f i n i s h {} {
103 global ns t r a c e fd
104 $ns f lu sh− t race
105 close $ t r a c e fd
106 exit 0
107 }
108
109 proc convergence−calcu late− t imes { arrname } {
110 global tma t op o t h a l l n e r k
111 upvar $arrname times
112
113 set num nodes [array size tma]
114
115 # f loor ((n−1) /(k−1)) = ngroups i s the number o f groups . I f the
116 # tree i s ba lanced the he i gh t i s log (ngroups) / log (k) . Every
117 # node t h e r e f o r e walks up t h i s h i e rarchy and c r ea t e s group proposa l s
118 # where 1 i s added because o f the proposa l for the node i t s e l f .
119 set group t ree depth [expr log (($num nodes − 1) /($ t opo tha l l n e r k −

1)) / log ($ t opo tha l l n e r k) + 1]
120
121 # add an ex tra f a c t o r o f 2 because a generated proposa l must a l s o
122 # be accepted by the t h a l l n e r a l g o r i t hm .
123 set t imes (convergence t ime proposa l s) [expr [$tma (0) proposals−per iod]

∗ $group t ree depth ∗ 2 . 0]
124
125 # ca l c u l a t e the time requ i red to check a l l groups at a node
126 set t imes (convergence t ime group) [expr [$tma (0) groupcheck−period] ∗

$group t ree depth]
127
128 # the convergence time i s the maximum
129 i f { $times (convergence t ime group) < $times (convergence t ime proposa l s)

} {
130 set t imes (convergence t ime) $times (convergence t ime proposa l s)

195

196 C Usage

131 } else {
132 set t imes (convergence t ime) $times (convergence t ime group)
133 }
134 }
135
136 proc convergence− test {} {
137 global ns tma val l a s t s t a t s t i m e t opo p r e f i x t op o t h a l l n e r k
138 set s chedu le r [$ns set s ch edu l e r]
139 set now [$schedu le r now]
140
141 convergence−calcu late− t imes t imes
142 stats−convergence−pr int stdout
143
144 # we assume tha t the network has converged .
145 set i s s t a b l e 1
146
147 # compute the time when the group s t r u c t u r e s have changed.
148 set last change max 0 . 0
149 for { set i 0 } { $ i < [array size tma] } { incr i } {
150 set l a s t change [$tma($ i) last−change]
151 i f { $ l a s t change > $last change max } {
152 set last change max $ l a s t change
153 }
154 # i f t h i s node i s not a gateway node i t must have a node
155 # degree o f k .
156 i f { 0 == [$tma($ i) gateway−node] } {
157 i f { $ t opo tha l l n e r k != [$tma($ i) node−degree] } {
158 set i s s t a b l e 0
159 }
160 }
161 }
162
163 # i f the group s t r u c t u r e s have not changed during the convergence
164 # time the network i s s t a b l e .
165 i f { $now > $times (convergence t ime) } {
166 i f { $now − $last change max < $times (convergence t ime) } {
167 puts ”group s t ru c tu r e has changed at time $ l a s t change ”
168 set i s s t a b l e 0
169 }
170 } else {
171 set i s s t a b l e 0
172 }
173
174 i f { $ i s s t a b l e == 1 } {
175 dump−topology−graph
176 dump−topology−tree
177 $ns at [expr $now + 0 .01] ” f i n i s h ”
178 } else {
179 $ns at [expr $now + 1] ” convergence− test ”
180 }
181 }
182
183 proc dump−topology−graph {} {
184 global tma ns

196

C Usage 197

185 set now [[$ns set s ch edu l e r] now]
186 $tma (0) dump−topology−graph topology−graph−t [expr round ($now)]

−neato.dot
187 }
188
189 proc dump−topology−tree {} {
190 global tma ns
191 set now [[$ns set s ch edu l e r] now]
192 $tma (0) dump−topology−tree topology−tree−t [expr round ($now)] −dot.dot
193 }
194
195 # −−
196 # Create network topo l ogy
197 # −−
198 source $ t o p o l o g y f i l e
199
200 # −−
201 # Get an ins tance to the TMA ob j e c t s and ob ta in the MAC address o f each
202 # node.
203 # −−
204 for { set i 0 } { $ i < [array size node] } { incr i } {
205 set tma($ i) [$node ($ i) set tma (0)]
206 set mac($ i) [[$node ($ i) set mac (0)] id]
207 $ns at 0 . 0 ”$tma($ i) s t a r t ”
208 }
209
210 i f { $ t opo tha l l n e r k != [$tma (0) thal lner−k] } {
211 puts s t d e r r ” e r r o r : t h a l l n e r k i s d i f f e r e n t ($ t opo tha l l n e r k != [$tma

(0) thal lner−k]) ! ”
212 exit 1
213 }
214
215 # −−
216 # Create t r a f f i c pa t t e rn s
217 # −−
218
219
220 # −−
221 # Time schedu l e
222 # −−
223 $ns at 5 . 0 ” convergence− test ”
224 $ns run

C.4 Examples

C.4.1 Flooding Example with UDP/CBR Traffic

This example assumes a network with 5 nodes and 4 gateway nodes. The transmission
graph is shown in Figure C.1(a) and the final network topology is shown in Figure C.1(b).
In this example the network topology has converged after 10 seconds. Immediately after
startup the UDP traffic between node 2 and node 1 is started using a packet size of 50

197

198 C Usage

Bytes and an interval of 200ms.

(a) Transmission Graph (b) Topology Graph

Figure C.1: Transmission and topology graph

What we can see from the final topology graph is that traffic from node 2 to node 1
can not be transmitted directly. Instead, alternate paths must be used, where possible
ones are for example 2 − 0 − 1, 2 − 3 − 0 − 1, 2 − 3 − 4 − 8 − 1, 2 − 3 − 4 − 8 − 1,
2− 6− 5− 8− 7− 1, 2− 6− 5− 8− 4− 1. 0− 3− 2− 1 or 0− 3− 2− 4− 1. Sending
a packet over all possible paths is not very efficient and therefore the SSF protocol does
not explore all paths. It forwards a packet only once and therefore reduces (or cuts)
all possible paths during execution. An example output from the trace file is shown in
Listing C.5.

In lines 1 − 3 node 2 (-Ni 2) sends the UDP packet which is transmitted by
the SSF protocol using the sequence number 196 (-Ps in line listing:example:udp-
cbr:flooding:tracefile-n2-send-stop). In line 4, node 0 receives the packet and forwards it
again in 5. The same holds for node 3, which receives it in line 6 and forwards it in 7.
Node 6 receives the message in line 8 and forwards it in 9.
Now node 0 (-Ni 0) receives the previously forwarded packet from node 3 (-Ms 3) in
line 10, but drops it because it has already forwarded it1. The same holds for node 2
shown in line 12. Node 4 first receives the packet it in line 14, and because it has not
previously forwarded it, it does so in line 16. Lines 17− 20 show packets dropped which
were forwarded by node 0. Finally, in line 21, node 1 receives the packet and passes it to
the agent in line 22. The rest of the trace file has been stripped, because it only shows
more forwarded and dropped packets.

1This is one of the most important features of our SSF protocol.

198

C Usage 199

Listing C.5: Example output from tracefile for flooding protocol

1 s −t 39.100000000 −Hs 2 −Hd −2 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 50 − I f 0 − I i 195 −Iv 32 −Pn cbr −Pi 195 −Pf 0 −Po 0

2 r −t 39.100000000 −Hs 2 −Hd −2 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 50 − I f 0 − I i 195 −Iv 32 −Pn cbr −Pi 195 −Pf 0 −Po 0

3 s −t 39.100000000 −Hs 2 −Hd −1 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 74 − I f 0 − I i 195 −Iv 31 −P SSF −Ps 196 −Pn cbr −Pi 195 −Pf 0 −
Po 0

4 r −t 39.101128078 −Hs 0 −Hd −1 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 31 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

5 f −t 39.101128078 −Hs 0 −Hd −1 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

6 r −t 39.101128092 −Hs 3 −Hd −1 −Ni 3 −Nx 66.75 −Ny 32.32 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 31 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

7 f −t 39.101128092 −Hs 3 −Hd −1 −Ni 3 −Nx 66.75 −Ny 32.32 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

8 r −t 39.101128115 −Hs 6 −Hd −1 −Ni 6 −Nx 77.79 −Ny 22.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 31 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

9 f −t 39.101128115 −Hs 6 −Hd −1 −Ni 6 −Nx 77.79 −Ny 22.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 2 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 1 −Po 0

10 r −t 39.102376113 −Hs 0 −Hd −1 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

11 d −t 39.102376113 −Hs 0 −Hd −1 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw LOOP −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

12 r −t 39.102376184 −Hs 2 −Hd −1 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 − I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

13 d −t 39.102376184 −Hs 2 −Hd −1 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw LOOP −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

14 r −t 39.102376239 −Hs 4 −Hd −1 −Ni 4 −Nx 63.10 −Ny 76.18 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id

199

200 C Usage

1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

15 f −t 39.102376239 −Hs 4 −Hd −1 −Ni 4 −Nx 63.10 −Ny 76.18 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 3 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

16
17 r −t 39.103534133 −Hs 3 −Hd −1 −Ni 3 −Nx 66.75 −Ny 32.32 −Nz 0 .00 −Ne

−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

18 d −t 39.103534133 −Hs 3 −Hd −1 −Ni 3 −Nx 66.75 −Ny 32.32 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw LOOP −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

19 r −t 39.103534191 −Hs 2 −Hd −1 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

20 d −t 39.103534191 −Hs 2 −Hd −1 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw LOOP −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

21 r −t 39.103534357 −Hs 1 −Hd −1 −Ni 1 −Nx 22.31 −Ny 85.76 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 74 −I f 0 − I i 195 −Iv 30 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

22 r −t 39.103534357 −Hs 1 −Hd −1 −Ni 1 −Nx 22.31 −Ny 85.76 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md f f f f f f f f −Ms 0 −Mt 800 −I s 2 .0 −Id
1 .0 −I t cbr − I l 50 −I f 0 − I i 195 −Iv 29 −P SSF −Ps 196 −Pn cbr −Pi 195
−Pf 2 −Po 0

23 . . .

The script used for this simulation is shown in Listing C.6. The topology used is
shown in C.7.

Listing C.6: NS2 simulator setup script for SSF/UDP-CBR example

1 # −−
2 # Pro j e c t : Template for NS2 s imu la t i on framework
3 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
4 #
5 # $Log: usage− f l ood ing−cbr−adhoc . t c l , v $

6 # Revis ion 1 .3 2007/10/10 19 :49 : 00 cwa l t e r
7 # − Final upda tes .
8 #
9 # Revis ion 1 .2 2007/08/22 19 :37 : 46 cwa l t e r

10 # − Fi r s t correc ted and updated v e r s i o n .
11 #
12 # −−
13
14 # −−
15 # set con f i gu ra t i on p r o p e r t i e s
16 # −−
17 set t o p o t h a l l n e r k 3

200

C Usage 201

18 set num nodes 100 ;# t o t a l nodes
19 set x s i z e 100
20 set y s i z e 100
21
22 set val (chan) Channel/WirelessChannel ;# Channel Type
23 set val (prop) Propagation /TwoRayGround ;# radio−propagat ion

model
24 set val (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e

type

25 set val (mac) Mac/802 11
26 set val (tma) TMA/Thal lner
27 set val (i f q) Queue/DropTail /PriQueue ;# in t e r f a c e queue type

28 set val (l l) LL ;# l i n k l a y e r type

29 set val (ant) Antenna/OmniAntenna ;# antenna model
30 set val (i f q l e n) 100 ;# max packe t in i f q
31 set val (rp) SSF
32
33 # −−
34 # Conf igure for IEEE802.11b
35 # −−
36 Mac/802 11 set SlotTime 0 .000020 ;# 20us
37 Mac/802 11 set SIFS 0 .000010 ;# 10us
38 Mac/802 11 set PreambleLength 144 ;# 144 b i t
39 Mac/802 11 set PLCPHeaderLength 48 ;# 48 b i t s
40 Mac/802 11 set PLCPDataRate 1 .0e6 ;# 1Mbps
41 Mac/802 11 set dataRate 11 .0e6 ;# 11Mbps
42 Mac/802 11 set bas i cRate 1 .0e6 ;# 1Mbps
43
44 Phy/WirelessPhy set f r e q 2 . 4 e+9 ;# Frequency
45 Phy/WirelessPhy set Pt 3 .3962527e−2 ;# Transmission power
46 Phy/WirelessPhy set RXThresh 6 .309573e−12 ;# Receiver t h r e sho l d
47 Phy/WirelessPhy set CSThresh 6 .309573e−12 ;# Sense th r e sho l d
48
49 TMA/ Thal lner set debug f a l s e
50
51 # −−
52 # Create a s imu la tor ins tance
53 # −−
54 set ns [new Simulator]
55 set t r a c e fd [open adhoc . t r w]
56 $ns use−newtrace
57 $ns t r a c e−a l l $ t r a c e fd
58
59 set topo [new Topography]
60 $topo l o a d f l a t g r i d $x s i z e $y s i z e
61
62 set god [create−god $num nodes]
63
64 set chan 1 [new $val (chan)]
65 $ns node−config \
66 −adhocRouting $val (rp) \
67 −llType $val (l l) \
68 −macType $val (mac) \
69 −tmaType $val (tma) \

201

202 C Usage

70 −phyType $val (n e t i f) \
71 −ifqType $val (i f q) \
72 − ifqLen $val (i f q l e n) \
73 −antType $val (ant) \
74 −propType $val (prop) \
75 −topoInstance $topo \
76 −agentTrace ON \
77 −routerTrace ON \
78 −macTrace OFF \
79 −tmaTrace OFF \
80 −movementTrace OFF \
81 −channel $chan 1
82
83 # −−
84 # Common f unc t i on s
85 # −−
86 proc f i n i s h {} {
87 global ns t r a c e fd
88 $ns f lu sh− t race
89 close $ t r a c e fd
90 exit 0
91 }
92
93 proc convergence−calcu late− t imes { arrname } {
94 global tma t op o t h a l l n e r k
95 upvar $arrname times
96
97 set num nodes [array size tma]
98
99 # f loor ((n−1) /(k−1)) = ngroups i s the number o f groups . I f the

100 # tree i s ba lanced the he i gh t i s log (ngroups) / log (k) . Every
101 # node t h e r e f o r e walks up t h i s h i e rarchy and c r ea t e s group proposa l s
102 # where 1 i s added because o f the proposa l for the node i t s e l f .
103 set group t ree depth [expr log (($num nodes − 1) /($ t opo tha l l n e r k −

1)) / log ($ t opo tha l l n e r k) + 1]
104
105 # add an ex tra f a c t o r o f 2 because a generated proposa l must a l s o
106 # be accepted by the t h a l l n e r a l g o r i t hm .
107 set t imes (convergence t ime proposa l s) [expr [$tma (0) proposals−per iod]

∗ $group t ree depth ∗ 2 . 0]
108
109 # ca l c u l a t e the time requ i red to check a l l groups at a node
110 set t imes (convergence t ime group) [expr [$tma (0) groupcheck−period] ∗

$group t ree depth]
111
112 # the convergence time i s the maximum
113 i f { $times (convergence t ime group) < $times (convergence t ime proposa l s)

} {
114 set t imes (convergence t ime) $times (convergence t ime proposa l s)
115 } else {
116 set t imes (convergence t ime) $times (convergence t ime group)
117 }
118 }
119

202

C Usage 203

120 proc convergence− test {} {
121 global ns tma val l a s t s t a t s t i m e t opo p r e f i x t op o t h a l l n e r k
122 set s chedu le r [$ns set s ch edu l e r]
123 set now [$schedu le r now]
124
125 convergence−calcu late− t imes t imes
126
127 # we assume tha t the network has converged .
128 set i s s t a b l e 1
129
130 # compute the time when the group s t r u c t u r e s have changed.
131 set last change max 0 . 0
132 for { set i 0 } { $ i < [array size tma] } { incr i } {
133 set l a s t change [$tma($ i) last−change]
134 i f { $ l a s t change > $last change max } {
135 set last change max $ l a s t change
136 }
137 # i f t h i s node i s not a gateway node i t must have a node
138 # degree o f k .
139 i f { 0 == [$tma($ i) gateway−node] } {
140 i f { $ t opo tha l l n e r k != [$tma($ i) node−degree] } {
141 set i s s t a b l e 0
142 }
143 }
144 }
145
146 # i f the group s t r u c t u r e s have not changed during the convergence
147 # time the network i s s t a b l e .
148 i f { $now > $times (convergence t ime) } {
149 i f { $now − $last change max < $times (convergence t ime) } {
150 puts ”group s t ru c tu r e has changed at time $ l a s t change ”
151 set i s s t a b l e 0
152 }
153 } else {
154 set i s s t a b l e 0
155 }
156
157 i f { $ i s s t a b l e == 1 } {
158 dump−topology−graph
159 dump−topology−tree
160 dump−transmission−graph
161 dump−ssf−stats
162 $ns at [expr $now + 0 .01] ” f i n i s h ”
163 } else {
164 $ns at [expr $now + 1] ” convergence− test”
165 }
166 }
167
168 proc dump−transmission−graph {} {
169 global tma ns
170 set now [[$ns set s ch edu l e r] now]
171 $tma (0) dump−transmission−graph transmission−graph−neato.dot
172 }
173

203

204 C Usage

174 proc dump−topology−graph {} {
175 global tma ns
176 set now [[$ns set s ch edu l e r] now]
177 $tma (0) dump−topology−graph topology−graph−t [expr round ($now)]

−neato.dot
178 }
179
180 proc dump−topology−tree {} {
181 global tma ns
182 set now [[$ns set s ch edu l e r] now]
183 $tma (0) dump−topology−tree topology−tree−t [expr round ($now)] −dot.dot
184 }
185
186 proc dump−ssf−stats {} {
187 foreach agent [Agent/SSF info i n s t an c e s] {
188 $agent s t a t i s t i c s
189 }
190 }
191
192 # −−
193 # Create network topo l ogy
194 # −−
195 source adhoc− topology . tc l
196
197 # −−
198 # Get an ins tance to the TMA ob j e c t s and ob ta in the MAC address o f each
199 # node.
200 # −−
201 for { set i 0 } { $ i < [array size node] } { incr i } {
202 set tma($ i) [$node ($ i) set tma (0)]
203 set mac($ i) [[$node ($ i) set mac (0)] id]
204 $ns at 0 . 0 ”$tma($ i) s t a r t ”
205 }
206
207 # −−
208 # Create t r a f f i c pa t t e rn s
209 # −−
210 # UDP t r a f f i c from node 2 to node 1 (50 b y t e s , 200ms i n t e r v a l)
211 set udp0 [new Agent/UDP]
212 $ns attach−agent $node (2) $udp0
213 set cbr0 [new App l i cat ion/ T r a f f i c /CBR]
214 $cbr0 set pack e tS i z e 50B
215 $cbr0 set i n t e r v a l 200ms
216 $cbr0 attach−agent $udp0
217 set l o s s 0 [new Agent/LossMonitor]
218 $ns attach−agent $node (1) $ l o s s 0
219 $ns connect $udp0 $ l o s s 0
220
221 # −−
222 # Time schedu l e
223 # −−
224 $ns at 0 . 1 ” convergence− test”
225 $ns at 0 . 1 ” $cbr0 s t a r t ”
226 $ns run

204

C Usage 205

Listing C.7: NS2 network topology script for SSF/UDP-CBR example

1 set node (0) [$ns node]
2 $node (0) set X 65 .325537680334207
3 $node (0) set Y 26 .311793376836828
4
5 set node (1) [$ns node]
6 $node (1) set X 22 .311284496593885
7 $node (1) set Y 85 .758534253462471
8
9 set node (2) [$ns node]

10 $node (2) set X 43 .685197943674957
11 $node (2) set Y 17 .121839345023893
12
13 set node (3) [$ns node]
14 $node (3) set X 66 .753871816561499
15 $node (3) set Y 32 .323620949091215
16
17 set node (4) [$ns node]
18 $node (4) set X 63 .09729137602136
19 $node (4) set Y 76 .176156791009092
20
21 set node (5) [$ns node]
22 $node (5) set X 92 .667186489639434
23 $node (5) set Y 57 .403331369815078
24 set tma (5) [$node (5) set tma (0)]
25 $tma (5) gateway−node 1
26
27 set node (6) [$ns node]
28 $node (6) set X 77 .790332482098762
29 $node (6) set Y 22 .118026633801882
30 set tma (6) [$node (6) set tma (0)]
31 $tma (6) gateway−node 1
32
33 set node (7) [$ns node]
34 $node (7) set X 37 .673634308238348
35 $node (7) set Y 80 .771818561838856
36 set tma (7) [$node (7) set tma (0)]
37 $tma (7) gateway−node 1
38
39 set node (8) [$ns node]
40 $node (8) set X 31 .954568825640983
41 $node (8) set Y 60 .438252547959912
42 set tma (8) [$node (8) set tma (0)]
43 $tma (8) gateway−node 1

C.4.2 Routing Protocol with UDP/CBR Traffic

We assume the same network as shown in Figure C.1(a), with the final network topol-
ogy shown in Figure C.1(b). Instead of a flooding protocol, we have decided to use
the Destination-Sequenced Distance-Vector routing protocol. A complete description of
DSDV is given in [PB94]. DSDV includes extensions to the classic Bellmann-Ford al-
gorithm [Bel58] to improve the poor loop performance. The basic operation is like the

205

206 C Usage

classic algorithm , but each route to a destination is tagged with a sequence number
used to avoid the occurrence of routing loops. All sequence numbers originate at the
destination, are by convention even numbers [PB94, 4], and are incremented prior to
sending the routing updates [PB94, p.3]. Like in the classic Bellmann-Ford algorithm,
each station periodically transmits updates. The simulation settings are the same as in
the example shown in Section C.4.1.

What we can see in Figure C.1(b) is that a packet cannot be transmitted directly
from node 2 to node 1. This becomes obvious if we look at the NS2 trace file, where
the routing protocol forwards packets over multiple nodes. An example output is shown
in the trace file in Listing C.8. In line 1, node 2 starts the transmission by passing
the message to the routing agent, which receives it in line 2. The routing agent then
forwards the packet to node 0 in line 3. Node 0 receives the packet in line 4, and because
it is not the destination node, it forwards the packet to node 1 in line 5. Finally, node
1 accepts the packet in line 6.

Listing C.8: Example output from tracefile for DSDV routing protocol

1 s −t 100.000000000 −Hs 2 −Hd −2 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 50 − I f 0 − I i 128 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

2 r −t 100.000000000 −Hs 2 −Hd −2 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 50 − I f 0 − I i 128 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

3 s −t 100.000000000 −Hs 2 −Hd 0 −Ni 2 −Nx 43.69 −Ny 17.12 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 2 .0 −Id 1 .0 −I t
cbr − I l 70 − I f 0 − I i 128 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

4 r −t 100.003607549 −Hs 0 −Hd 0 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 13a −Md 0 −Ms 2 −Mt 800 −I s 2 .0 −Id 1 .0 −
I t cbr − I l 70 − I f 0 − I i 128 −Iv 32 −Pn cbr −Pi 0 −Pf 1 −Po 0

5 f −t 100.003607549 −Hs 0 −Hd 1 −Ni 0 −Nx 65.33 −Ny 26.31 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 13a −Md 0 −Ms 2 −Mt 800 −I s 2 .0 −Id 1 .0 −
I t cbr − I l 70 − I f 0 − I i 128 −Iv 31 −Pn cbr −Pi 0 −Pf 1 −Po 0

6 r −t 100.007300261 −Hs 1 −Hd 1 −Ni 1 −Nx 22.31 −Ny 85.76 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 1 −Ms 0 −Mt 800 −I s 2 .0 −Id 1 .0 −
I t cbr − I l 70 − I f 0 − I i 128 −Iv 31 −Pn cbr −Pi 0 −Pf 2 −Po 0

The script used for this simulation is the same as in Listing C.6, with the exception
that the routing protocol has been changed to DSDV. The modifications are shown in
Listing C.9.

Listing C.9: Modifications for NS2 setup script for DSDV/UDP-CBR example

1 . . .
2 # −−
3 # set con f i gu ra t i on p r o p e r t i e s
4 # −−
5 set num nodes 100 ;# t o t a l nodes
6
7 . . .
8 set val (i f q l e n) 100 ;# max packe t in i f q
9 set val (rp) DSDV

10

206

C Usage 207

11 set val (tma cotime) 20 ;# convergence time

12 . . .

C.4.3 Example for TMA/Filter with UDP/CBR traffic and DSDV

This example shows the usage of the TMA/Filter module. In the setup script shown
in Listing C.10, we create three wireless nodes 0, 1, and 2, and limit node 0’s commu-
nication to node 1 and node 2’s communication to node 1. Node 1s communication is
not restricted at all. Furthermore, we create a UDP traffic instance between node 0 and
node 2. The DSDV routing protocol will be used to establish routing paths between the
nodes.
After the routing protocol has converged, node 0 will send packets to node 1 directly,
and to node 2 using the gateway node 1 because the direct communication has been
restricted by the TMA. This can be seen by looking at the trace file output, which is
shown in Listing C.11, where a packet is sent from node 0 to node 2. Note the forwarding
of the packet in line 6 by node 1.

Listing C.10: NS2 network topology script for TMA/Filter and DSDV

1 # −−
2 # Pro j e c t : Example for the TMA/ F i l t e r module.
3 # Author: Chr i s t i an Walter <e0225458@studen t . tuw i en .ac .a t>
4 #
5 # $Log: usage− tma− f i l ter−cbr−dsdv−adhoc. tc l , v $

6 # Revis ion 1 .2 2007/10/10 19 :49 : 00 cwa l t e r
7 # − Final upda tes .
8 #
9 # Revis ion 1 .1 2007/07/29 21 :36 : 33 cwa l t e r

10 # − New code examples for ns2 chap t e r .
11 #
12 # Revis ion 1 .2 2007/07/28 14 :13 : 20 cwa l t e r
13 # − Added debug f l a g .
14 #
15 # Revis ion 1 .1 2007/07/28 14 :04 : 15 cwa l t e r
16 # − Added example script for TMA/ F i l t e r module.
17 #
18 #
19 # −−
20
21 # −−
22 # set con f i gu ra t i on p r o p e r t i e s
23 # −−
24 set num nodes 3 ;# t o t a l nodes
25 set x s i z e 100
26 set y s i z e 100
27
28 set val (chan) Channel/WirelessChannel ;# Channel Type
29 set val (prop) Propagation /TwoRayGround ;# radio−propagat ion

model
30 set val (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e

type

207

208 C Usage

31 set val (mac) Mac/802 11
32 set val (tma) TMA/ F i l t e r
33 set val (i f q) Queue/DropTail /PriQueue ;# in t e r f a c e queue type

34 set val (l l) LL ;# l i n k l a y e r type

35 set val (ant) Antenna/OmniAntenna ;# antenna model
36 set val (i f q l e n) 100 ;# max packe t in i f q
37 set val (rp) DSDV
38
39 #TMA/ F i l t e r set debug true
40
41 # −−
42 # Create a s imu la tor ins tance
43 # −−
44 set ns [new Simulator]
45 set t r a c e fd [open adhoc . t r w]
46 $ns use−newtrace
47 $ns t r a c e−a l l $ t r a c e fd
48
49 set topo [new Topography]
50 $topo l o a d f l a t g r i d $x s i z e $y s i z e
51
52 set god [create−god $num nodes]
53
54 set chan 1 [new $val (chan)]
55 $ns node−config \
56 −adhocRouting $val (rp) \
57 −llType $val (l l) \
58 −macType $val (mac) \
59 −tmaType $val (tma) \
60 −phyType $val (n e t i f) \
61 −ifqType $val (i f q) \
62 − ifqLen $val (i f q l e n) \
63 −antType $val (ant) \
64 −propType $val (prop) \
65 −topoInstance $topo \
66 −agentTrace ON \
67 −routerTrace ON \
68 −macTrace OFF \
69 −tmaTrace OFF \
70 −movementTrace OFF \
71 −channel $chan 1
72
73 # −−
74 # Common f unc t i on s
75 # −−
76 proc f i n i s h {} {
77 global ns t r a c e fd
78 $ns f lu sh− t race
79 close $ t r a c e fd
80 exit 0
81 }
82
83 # −−
84 # Create nodes

208

C Usage 209

85 # −−
86 for { set i 0 } { $ i < $num nodes } { incr i } {
87 set node ($ i) [$ns node] ;
88 $node ($ i) random−motion 0
89 set tma($ i) [$node ($ i) set tma (0)]
90 set mac($ i) [[$node ($ i) set mac (0)] id] ;
91 }
92
93 $node (0) set X 10 . 0 ; $node (0) set Y 15 . 0 ; $node (0) set Z 0 . 0 ;
94 $node (1) set X 60 . 0 ; $node (1) set Y 75 . 0 ; $node (1) set Z 0 . 0 ;
95 $node (2) set X 30 . 0 ; $node (2) set Y 40 . 0 ; $node (2) set Z 0 . 0 ;
96
97 # −−
98 # al l ow g i ven nodes to t a l k to each o t h e r .
99 # −−

100 $tma (0) add−neighbor $mac (1)
101 $tma (1) add−neighbor $mac (0) $mac (2)
102 $tma (2) add−neighbor $mac (1)
103
104 # −−
105 # Create t r a f f i c pa t t e rn s
106 # −−
107
108 # UDP t r a f f i c from node 0 to node 2
109 set udp0 [new Agent/UDP]
110 $ns attach−agent $node (0) $udp0
111 set cbr0 [new App l i cat ion/ T r a f f i c /CBR]
112 $cbr0 set pack e tS i z e 50B
113 $cbr0 set i n t e r v a l 200ms
114 $cbr0 attach−agent $udp0
115 set l o s s 0 [new Agent/LossMonitor]
116 $ns attach−agent $node (2) $ l o s s 0
117 $ns connect $udp0 $ l o s s 0
118
119 # −−
120 # Time schedu l e
121 # −−
122 $ns at 100 . 0 ” $cbr0 s t a r t ”
123 $ns at 101 . 0 ” $cbr0 stop ”
124 $ns at 300 . 0 ” f i n i s h ”
125 $ns run

Listing C.11: Example output from tracefile for DSDV and TMA/Filter module

1 . . .
2 s −t 100.000000000 −Hs 0 −Hd −2 −Ni 0 −Nx 10.00 −Ny 15.00 −Nz 0 .00 −Ne

−1.000000 −Nl AGT −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 0 .0 −Id 2 .0 −I t
cbr − I l 50 − I f 0 − I i 30 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

3 r −t 100.000000000 −Hs 0 −Hd −2 −Ni 0 −Nx 10.00 −Ny 15.00 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 0 .0 −Id 2 .0 −I t
cbr − I l 50 − I f 0 − I i 30 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

4 s −t 100.000000000 −Hs 0 −Hd 1 −Ni 0 −Nx 10.00 −Ny 15.00 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 0 −Md 0 −Ms 0 −Mt 0 −I s 0 .0 −Id 2 .0 −I t
cbr − I l 70 − I f 0 − I i 30 −Iv 32 −Pn cbr −Pi 0 −Pf 0 −Po 0

209

210 C Usage

5 r −t 100.004468822 −Hs 1 −Hd 1 −Ni 1 −Nx 60.00 −Ny 75.00 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 13a −Md 1 −Ms 0 −Mt 800 −I s 0 .0 −Id 2 .0 −
I t cbr − I l 70 − I f 0 − I i 30 −Iv 32 −Pn cbr −Pi 0 −Pf 1 −Po 0

6 f −t 100.004468822 −Hs 1 −Hd 2 −Ni 1 −Nx 60.00 −Ny 75.00 −Nz 0 .00 −Ne
−1.000000 −Nl RTR −Nw −−− −Ma 13a −Md 1 −Ms 0 −Mt 800 −I s 0 .0 −Id 2 .0 −
I t cbr − I l 70 − I f 0 − I i 30 −Iv 31 −Pn cbr −Pi 0 −Pf 1 −Po 0

7 r −t 100.009800898 −Hs 2 −Hd 2 −Ni 2 −Nx 30.00 −Ny 40.00 −Nz 0 .00 −Ne
−1.000000 −Nl AGT −Nw −−− −Ma 13a −Md 2 −Ms 1 −Mt 800 −I s 0 .0 −Id 2 .0 −
I t cbr − I l 70 − I f 0 − I i 30 −Iv 31 −Pn cbr −Pi 0 −Pf 2 −Po 0

8 . . .

210

211

D SSF - Source Sequenced Flooding

The SSF protocol is an implementation of a flooding algorithm for the NS2 wireless
model. Every packet sent in the network is extended by an additional header of 4 bytes.
This header includes a sequence number, which is generated by the source whenever a
packet is sent. The sequence number is a strictly monotonic increasing sequence, where
the first valid sequence number is 11.
Every time a node receives a packet, it checks if the sequence number within the packet
header is smaller than its last known sequence number from that source. If this is the
case, the packet is dropped because the node has already processed it once. Otherwise,
it updates its own sequence counter for that node, and either delivers the packet locally
if the destination matches the node address, or forwards the packet by performing a
MAC broadcast.

D.1 Usage

The SSF protocol can be enabled by the standard node configuration interface in NS2.
To enable SSF at a specific node, the code in Listing D.1 is sufficient:

Listing D.1: Enable SSF routing at a wireless node

1 set val (rp) SSF
2 . . .
3 $ns node−config \
4 −adHocRouting $val (rp) \
5 −agentTrace OFF
6 . . .

To enable the recording of additional trace information, the value of −agentTrace
should be set to ON during node configuration. In addition, the SSF routing module
supports some runtime statistics. The amount of information available depends on
the compile time directive SSF EXTENDED STATS defined in ssf/ssf.h. The
information from the routing agents can be obtained by the TCL Listing D.2:

Listing D.2: Getting Agent/SSF status information

1 proc s t a t s {} {
2 foreach agent [Agent/SSF info i n s t an c e s] {
3 $agent s t a t i s t i c s
4 }
5 }

1Additional precautions must be taken because integer numbers are finite. Because we were only
interested in a very simple test of flooding protocols we have not implemented this which limits the
number of packets which can be sent by a node to 232.

211

212 D SSF - Source Sequenced Flooding

To enable debugging of the SSF protocol, the class variable debug in Agent/SSF
should be set to true with Agent/SSF set debug true.

D.2 Implementation overview

In this section, the general structure of a routing agent is explained. Most of the infor-
mation has been obtained from the NS2 manual [FV06, p143-146] and the NS2 source.
The basic picture of a wireless node is shown in Figure D.1. An incoming packet is

Figure D.1: Basic structure of a wireless node in NS2

passed from the MAC layer, which is defined in mac/mac-802 11.{cc,h}2, to the link
layer defined in mac/ll.{cc,h}. The link layer then passes the packet to the node entry
point, which is by default the destination address classifier3.
If the IP destination address matches the current node’s address, the packet is passed
to the port classifier, where the “normal” agents are attached. A normal agent is for
example the Agent/LossMonitor. If the destination address does not match, the address
classifier uses its defaulttarget and passes the packet to the routing agent. The routing
agent then checks its routing table and decides whether to forward or drop the packet.
The case left is when a node sends a packet. In this case, the Agent creates a packet
and again sends the packet to the node entry point. Normally, the packet will have a
destination different from the source and the packet is passed to the routing agent to
get forwarded.

2Assuming that Mac/802 11 is used.
3See the entry method defined in tcl/lib/ns-node.tcl.

212

D SSF - Source Sequenced Flooding 213

The SSF routing agent4 in NS2 works a bit differently. The reason is that a packet
should always be passed to the SSF agent regardless of whether it is for the local host
or another host. In Figure D.1, a packet received by a node for which it is designated
would not be seen by the routing agent, because the destination address classifier would
immediately handle it to the port demultiplexer. For this reason, SSF has a structure
as shown in Figure D.2. Now every packet is first passed to the SSF Agent, which

Figure D.2: Structure of a SSF wireless node in NS2

makes it possible to check the sequence number. If the Agent receives a packet for the
local host, it checks its sequence number, and if it has not already seen it, it passes
it to the local port demultiplexer. A packet is forwarded if its sequence number has
not been seen. Because the structure of the node is different, it required some modifi-
cations in the node creation methods in tcl/lib/ns-mobilenode.tcl where the TCL
class Node/MobileNode/Entry has been added. In addition, the node creation method
create−wireless−node in tcl/lib/ns-lib.tcl has been modified to add the new rout-
ing agent.

D.3 Header format

The SSF protocol simply adds a sequence number to a normal Ethernet frame. The
frame is shown in Table D.1. This implementation is somewhat theoretical, and a real
world implementation would want to change the protocol type in the Ethernet frame
and store the old one in the SSF header. This would allow compatibility with already
existing protocols. For this work, however, our solution suffices.

4Similarly to the DSR routing agent.

213

214 D SSF - Source Sequenced Flooding

Table D.1: SSF frame

MAC header Frame Body CRC
. . . Addr1 Addr2 . . . Sequence Original data . . .
. . . OR FF . . . 1 − 4294967296

OR . . . OR:OR:OR:OR:OR:OR is the source MAC address.
FF . . . FF:FF:FF:FF:FF:FF is the MAC broadcast address.
Sequence . . . The SSF sequence number.
Original data . . . The original payload for the ethernet frame.

214

215

E Trace File Format

E.1 NS2 trace formats

The information collected here is based on the online documentation found in [ud06] and
the NS2 manual [FV06]. The main element of a wireless trace file is shown in Table E.1.
The value for the destination node (-Hd) may also be -1 or -2. In case of -1 the packet

Table E.1: NS2New wireless trace format

Event Abbreviation Flag Type Value

-t double Time
-Ni int Node ID
-Nx double Node X Coordinate
-Ny double Node Y Coordinate
-Ne double Node Energy Level

s: Send -Ni string Network trace level (AGT, RTR, MAC, · · ·)
r: Receive -Nw string Drop reason

Wireless Event d: Drop -Hs int Hop source node ID
f: Forward -Hd int Hop destination ID, -1, -2

-Ma hexadecimal Duration
-Ms hexadecimal Source Ethernet Address
-Md hexadecimal Destination Ethernet Address
-Mt hexadecimal Ethernet type
-P hexadecimal Packet type (arp, dsr, imep, tora, · · ·)
-Pn string Packet type (cbr, tcp)

is a broadcast packet. -2 means that the destination node has not been set. Depending
on the packet type, the following additional flags shown in Table E.2 are available and
written to the trace file output.

Table E.2: Packet type dependent options
Event Flag Type Value

-Po string Request or reply
-Pms int Source MAC address

ARP Trace -Ps int Source address
-Pmd int Destination MAC address

215

216 E Trace File Format

Event Flag Type Value

-Pd int Destination address

-Is int.int Source address and port
-Id int.int Destination address and Port

IP Trace -It string Packet type
-Il int Packet size
-If int Flow ID
-Ii int Unique ID
-Iv int TTL

-Pi int Sequence number
CBR Trace -Pf int Number of times packet was forwarded

-Po int Optimal number of forwards

SSF Trace -Ps int Packet sequence number

216

217

List of Figures

1.1 Example topology graph created by the TMA 12
1.2 Example topology tree created by the TMA 13

2.1 Transmission graph for a network with n′ = 10 and n′′ = 4 19
2.2 Topology graph for k = 3 and n′ = 10 and n′′ = 4′ 21
2.3 Local topology tree for node 6 . 22
2.4 Topology tree for the topology shown in Figure 2.2 23
2.5 Topology tree node n′ = 15 and n′′ = 4. 26
2.6 Topology graph and local topology tree for node 2 27

(a) Local topology tree for node 2 . 27
(b) Topology graph . 27

2.7 Topology tree for the topology shown in Figure 2.2 28
2.8 Example transmission graph for a network with ′n = 10 and n′′ = 4 30
2.9 Example for proposals and group formations for n′ = 10 and n′′ = 4. . . . 32

(a) Groups {3, 4, 7} built. 32
(b) Groups {3, 4, 7} and {0, 3, 5} built. 32

2.10 All combinations generated for the members fix 50
2.11 Example transmission graph for a network with ′n = 10 and n′′ = 4 58
2.12 Overlay graph after first group has been built 60
2.13 Overlay graph after second group has been built 62

3.1 NS2 wireless model . 64
3.2 TCP connection between two wireless nodes in NS2 69
3.3 Example network for n = 10 with Transmission- and Topology Graph . . 71

(a) Transmission Graph . 71
(b) Topology Graph . 71

3.4 NS2 wireless model with TMA modifications 72
3.5 Topology tree after execution for n′ = 10 and n′′ = 3 83
3.6 Network topology graph for n′ = 10 and n′′ = 3 84
3.7 UML class diagram for multicast service 90
3.8 Sender- and Receiver initiated multicast protocols 93

(a) ACK based protocol . 93
(b) NAK based protocol . 93

3.9 UML class diagram for reliable multicast service 94
3.10 UML class diagram for simple multicast service 95
3.11 Sending of FULL UPDATE message immediately after startup. 98
3.12 Link-state database after reception of the first FULL UPDATE messages. . . 99

217

218 List of Figures

3.13 Second FULL UPDATE message with piggy-back data. 100

3.14 Link-state database after reception of the second FULL UPDATE messages. . 100
3.15 UML class diagram for Link State Service 103

3.16 UML class diagram for Non-Blocking Atomic Commitment 105
3.17 State diagram for NBAC implementation 106

3.18 Example execution of NBAC protocol for a group proposal 107

(a) Node 0 initiates group proposal for {0, 1, 3} 107
(b) Nodes voting and deciding on NBAC outcome 107

(c) Finalizing NBAC . 107
3.19 UML class diagram for basic datatypes used by the TMA 109

3.20 UML class diagram for TMA . 110

3.21 Periodic checking of groups . 111
3.22 UML class diagram for generic timer . 112

3.23 UML class diagram for Thaller NBAC . 114

3.24 Periodic triggering of propose module . 115
3.25 UML class diagram for TMA . 118

3.26 UML class diagram for TMA . 119
3.27 UML class diagram for TMA . 120

4.1 Different topology graphs and topology trees for k = 2 (part 1/2) 130

(a) Topology Graph for n′ = 10, n′′ = 4 130
(b) Topology Tree for n′ = 10, n′′ = 4 . 130

(c) Topology Graph for n′ = 20, n′′ = 4 130

(d) Topology Tree for n′ = 20, n′′ = 4 . 130
4.2 Different topology graphs and topology trees for k = 2 (part 2/2) 131

(a) Topology Graph for n′ = 30, n′′ = 4 131
(b) Topology Tree for n′ = 30, n′′ = 4 . 131

(c) Topology Graph for n′ = 40, n′′ = 4 131

(d) Topology Tree for n′ = 40, n′′ = 4 . 131
4.3 Different topology graphs and topology trees for k = 3 (part 1/2) 132

(a) Topology Graph for n′ = 10, n′′ = 4 132

(b) Topology Tree for n′ = 10, n′′ = 4 . 132
(c) Topology Graph for n′ = 20, n′′ = 4 132

(d) Topology Tree for n′ = 20, n′′ = 4 . 132
4.4 Different topology graphs and topology trees for k = 3 (part 2/2) 133

(a) Topology Graph for n′ = 30, n′′ = 4 133

(b) Topology Tree for n′ = 30, n′′ = 4 . 133
(c) Topology Graph for n′ = 40, n′′ = 4 133

(d) Topology Tree for n′ = 40, n′′ = 4 . 133

4.5 Different topology graphs and topology trees for k = 4 (part 1/2) 134
(a) Topology Graph for n′ = 10, n′′ = 6 134

(b) Topology Tree for n′ = 10, n′′ = 6 . 134
(c) Topology Graph for n′ = 20, n′′ = 6 134

(d) Topology Tree for n′ = 20, n′′ = 6 . 134

218

List of Figures 219

4.6 Different topology graphs and topology trees for k = 4 (part 2/2) 135
(a) Topology Graph for n′ = 30, n′′ = 6 135
(b) Topology Tree for n′ = 30, n′′ = 6 . 135
(c) Topology Graph for n′ = 40, n′′ = 6 135
(d) Topology Tree for n′ = 40, n′′ = 6 . 135

4.7 Total message complexity for k = 2 . 136
4.8 Total message complexity for k = 3 . 137
4.9 Total message complexity for k = 4 . 137
4.10 Convergence time for different network sizes and k = 2 138
4.11 Convergence time for different network sizes and k = 3 138
4.12 Convergence time for different network sizes and k = 4 139
4.13 Total number of message sent by the LNP propose module for k = 2 . . . 140
4.14 Total number of messages sent by the LNP propose module for k = 3 . . . 140
4.15 Total number of messages sent by the LNP propose module for k = 4 . . . 141
4.16 Number of message for the LNP propose module and k = 2 141
4.17 Number of message for the LNP propose module and k = 3 142
4.18 Number of message for the LNP propose module and k = 4 142
4.19 Number of proposals searched and released for k = 2 143
4.20 Number of proposals searched and released for k = 3 143
4.21 Number of proposals searched and released for k = 4 144
4.22 Number of NBAC instances for k = 2 . 144
4.23 Number of NBAC instances for k = 3 . 145
4.24 Number of NBAC instances for k = 4 . 145
4.25 Time required for generating a proposal for k = 2 146
4.26 Time required for generating a proposal for k = 3 146
4.27 Time required for generating a proposal for k = 4 147
4.28 Number of group checks initiated, committed, and aborted for k = 2 . . . 147
4.29 Number of group checks initiated, committed, and aborted for k = 3 . . . 148
4.30 Number of group checks initiated, committed, and aborted for k = 4 . . . 148
4.31 Number of reliable multicast messages sent for k = 3 149
4.32 Number of ACKs for k = 3 . 149
4.33 Average number of participants for k = 3 150
4.34 NBAC simulation results for k = 2 . 151

(a) Number of reliable multicast messages. 151
(b) Number of ACKs. 151
(c) Average number of participants. 151

4.35 NBAC simulation results for k = 4 . 152
(a) Number of reliable multicast messages. 152
(b) Number of ACKs. 152
(c) Average number of participants. 152

4.36 Minimum, maximum and average power saving for k = 2 153
4.37 Minimum, maximum and average power saving for k = 3 154
4.38 Minimum, maximum and average power saving for k = 4 154
4.39 Number of linkstate messages . 155

219

220 List of Figures

4.40 Number of linkstate messages normalized to n · t product 155
4.41 Network diameter for k = 2 . 156
4.42 Network diameter for k = 3 . 156
4.43 Network diameter for k = 4 . 157

5.1 Counterexample for modified NBAC. 173
5.2 Execution schedule for agreement algorithm 176

C.1 Transmission and topology graph . 198
(a) Transmission Graph . 198
(b) Topology Graph . 198

D.1 Basic structure of a wireless node in NS2 212
D.2 Structure of a SSF wireless node in NS2 213

220

221

List of Tables

3.1 Configurable log levels for modules . 79
3.2 Statistical information from modules . 82
3.3 IEEE 802.11 MAC Data Frame Format 94
3.4 Reliable Multicast REQUEST packet . 94
3.5 Reliable Multicast ACK packet . 95
3.6 Simple Multicast REQUEST packet . 95
3.7 Flags for a Link-State state . 98
3.8 Link-state FULL UPDATE message . 101
3.9 Link-state field within a message. 101
3.10 Link-State Partial Update message . 101
3.11 Format of NBAC initiate message . 107
3.12 Format of NBAC vote message . 107
3.13 Format of NBAC finalize message . 108

4.1 Example CVS output from a simulation 125

D.1 SSF frame . 214

E.1 NS2New wireless trace format . 215
E.2 Packet type dependent options . 215

221

222 List of Tables

222

223

Listings

2.1 Group record . 36
2.2 Group internal record . 36

2.3 Connection record . 37
2.4 Main loop . 37
2.8 Non-blocking Atomic Commitment . 42
2.9 Non-Blocking Atomic Commitment . 44
2.10 Proposal calculation . 47

3.1 Example setup script for TCP communication in NS2 66
3.2 Trace file output for the script in Listing 3.1 69
3.3 Enabling Topology Management in NS2 75
3.4 Configure neighbors for TMA/Filter . 76

3.5 NS2 simulator setup script . 83
3.6 Sending of a multicast message . 90
3.7 Receiving a multicast message . 91
3.8 Link-State state . 97
3.9 Example for using the link-state service 104

3.10 C++ group checking code . 111
3.11 C++ group checking code . 112
3.12 Triggering of group proposals in C++ . 115
3.13 Initiaing a group proposals in C++ . 116

3.14 Releasing of group proposals in C++ . 117
4.1 Node movement in NS2 . 122
4.2 IEEE802.11b settings for NS2 . 123
4.3 Typical output files for a simulated topology 124
4.4 Calculation of convergence time . 127

4.5 Convergence detection in NS2 . 128
5.1 A NBAC protocol for synchronous systems 161
5.2 Simple- and reliable multicast networking primitives 167
5.3 NBAC protocol for the TBUT network model 170
5.4 Bad NBAC protocol for the TBUT network model 171

5.5 NBAC protocol with agreement for the TBUT network model 173
5.6 Agreement protocol in the TBUT network model 175
C.1 Makefile for simulation framework . 189
C.2 TCL script for topology creation . 191

C.3 Example topology created by adhoc-gen.tcl 192
C.4 Simulation Framework . 193
C.5 Example output from tracefile for flooding protocol 198

223

224 Listings

C.6 NS2 simulator setup script for SSF/UDP-CBR example 200
C.7 NS2 network topology script for SSF/UDP-CBR example 205
C.8 Example output from tracefile for DSDV routing protocol 206
C.9 Modifications for NS2 setup script for DSDV/UDP-CBR example 206
C.10 NS2 network topology script for TMA/Filter and DSDV 207
C.11 Example output from tracefile for DSDV and TMA/Filter module 209
D.1 Enable SSF routing at a wireless node . 211
D.2 Getting Agent/SSF status information . 211

224

225

Bibliography

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals,
Simulations and Advanced Topics (2nd edition). John Wiley Interscience,
March 2004.

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied
Mathematics, 16(1):87–90, 1958.

[CBD02] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc
network research. Wireless Communications & Mobile Computing
(WCMC): Special Issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483–502, 2002.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[FV06] K. Fall and K. Varadhan. The ns Manual,
http:// www. isi. edu/nsnam/ns/ ns-documentation.html . ONLINE,
2006.

[Gra78] Jim Gray. Notes on data base operating systems. In Operating Systems,
An Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[JMB01] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing
Protocol for Multihop Wireless Ad Hoc Networks, chapter 5, pages 139–172.
Addison-Wesley, 2001.

[JMC+01] Philippe Jacquet, Paul Mhlethaler, Thomas Clausen, Anis Laouiti, Amir
Qayyum, and Laurent Viennot. Optimized link state routing protocol. In
IEEE INMIC’01, 28-30 December 2001, Lahore, Pakistan, pages 62–68.
IEEE, December 2001.

[JMH03] D. Johnson, D. Maltz, and Y Hu. The dynamic source routing protocol for
mobile ad hoc networks (dsr),
http://www.cs.cmu.edu/~dmaltz/internet-drafts/draft-ietf-

manet-dsr-09.txt, 2003.

[Lan03] Daniel Lang. A comprehensive overview about selected ad hoc networking
routing protocols. Technical report, Technische Universität München,
Department of Computer Science, March 2003.

225

226 Bibliography

[LGLA98] Brian Neil Levine and J. J. Garcia-Luna-Aceves. A comparison of reliable
multicast protocols. Multimedia Systems, 6(5):334–348, 1998.

[LHB+01] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and Roger
Wattenhofer. Analysis of a cone-based distributed topology control
algorithm for wireless multi-hop networks. In PODC ’01: Proceedings of
the twentieth annual ACM symposium on Principles of distributed
computing, pages 264–273, New York, NY, USA, 2001. ACM Press.

[LHSS05] N. Li, J. C. Hou, C. Sha, and L. Sha. Design and analysis of an mst-based
topology control algorithm. IEEE Transaction on Wireless Communicaons,
4(3), 2005.

[MGLA96] Shree Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol
for wireless networks. ACM/Baltzer Journal on Mobile Networks and
Applications, Special Issue on Routing in Mobile Communication Networks,
1(2):183–197, October 1996.

[Moy97] John T. Moy. OSPF: Anatomy of an Internet Routing Protocol.
Addison-Wesley, 1997.

[PB94] Charles E. Perkins and Pravin Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (dsdv) for mobile computers.
In SIGCOMM ’94: Proceedings of the Conference on Communications
Architectures, Protocols and Applications, pages 234–244, New York, NY,
USA, 1994. ACM Press.

[PC97] Vincent D. Park and M. Scott Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In IEEE Conference on
Computer Communications, INFOCOM’97, April 7-11, 1997, Kobe, Japan,
volume 3, pages 1405–1413. IEEE, April 1997.

[PDDJ02] V. Paruchuri, A. Durresi, D. Dash, and R. Jain. Optimal flooding protocol
for routing in ad-hoc networks, 2002.

[PH06] Laurent Paquereau and Bjarne E. Helvik. A module-based wireless node
for ns-2. In WNS2 ’06: Proceeding from the 2006 Workshop on ns-2: The
IP network simulator, page 4, New York, NY, USA, 2006. ACM Press.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. WMCSA - Workshop on Mobile Computing Systems and
Applications, 1999.

[Raj02] R. Rajaraman. Topology control and routing in ad hoc networks: a survey,
2002. R. Rajaraman. Topology control and routing in ad hoc networks: a
survey. SIGACT News, 2002.

226

Bibliography 227

[Ray96] Michel Raynal. Fault-tolerant distributed systems: a modular approach to
the non-blocking atomic commitment problem. Technical Report RR-2973,
IRISA, Campus de Beaulieu, 1996.

[RR04] Francisco J. Ros and Pedro M. Ruiz. Implementing a new manet unicast
routing protocol in ns2, 2004.
http://masimum.dif.um.es/nsrt-howto/html/.

[RT99] E. Royer and C. Toh. A review of current routing protocols for ad-hoc
mobile wireless networks, 1999. E.M. Royer and C-K Toh. A Review of
Current Routing Protocols for Ad-Hoc Mobile Wireless Networks. IEEE
Personal Communications, Apr. 1999.

[San05] Paolo Santi. Topology control in wireless ad hoc and sensor networks.
ACM Computing Survey, 37(2):164–194, 2005.

[Sch00] Jochen Schiller. Mobile communications. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[SKSS04] Ghosh Sukumar, Lillis Kevin, Pandit Saurav, and Pemmaraju Sriram.
Robust topology control algorithms, 2004. PG. Sukumar, L. Kevin, P.
Saurav, P. Sriram. Robust topology control protocols. In OPODIS -
International Conference on Principles of Distributed Systems. December
2004.

[Tha05] Bernd Thallner. Topology control for fault-tolerant communication in
wireless ad hoc networks, PhD Thesis, 2005.

[THB+02] Jing Tian, Joerg Haehner, Christian Becker, Illya Stepanov, and Kurt
Rothermel. Graph-based mobility model for mobile ad hoc network
simulation. ss, 2002.

[TM05] Bernd Thallner and Heinrich Moser. Topology control for fault-tolerant
communication in highly dynamic wireless networks, Dissertation. The
Third International Workshop on Intelligent Solutions in Embedded
Systems (WISES 2005), May 2005.

[ud06] NS2 users and developers. The ns manual - online wiki,
http://nsnam.isi.edu/nsnam/index.php/Main_Page, 2006.

[WZ04] Roger Wattenhofer and Aaron Zollinger. XTC: A Practical Topology
Control Algorithm for Ad-Hoc Networks. In 4th International Workshop
on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks
(WMAN), Santa Fe, New Mexico, April 2004.

227

