
Master’s Thesis

Analyzing the Interrelationship

of Evolution Activities such as

Refactoring to Estimate the

Influence on Software Defect

Prediction

carried out at the

Information Systems Institute
Distributed Systems Group

Vienna University of Technology

under the guidance of
Univ.Prof. Dipl.-Ing. Dr.techn. Harald Gall

and
Dipl.-Ing. Jacek Ratzinger

as the contributing advisor responsible

by

Thomas Sigmund
Wallensteinstrasse 13/11, 1200 Wien

Matr.Nr. 9107059

Vienna, 31. July 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Acknowledgements

It is a pleasure to thank Prof. Harald Gall for giving me the opportunity to
work under his guidance on a so interesting and important topic in the field
of software engineering.

I am deeply grateful to Jacek Ratzinger for encouragement, sound advice,
and lots of good ideas.

I am indebted to my many student colleagues for providing a supporting and
stimulating environment.

Lastly, and most importantly, I wish to thank my parents Anna and Josef
Sigmund and my sister Birgit for constant support over the years of my
studies. To them I dedicate this thesis.

ii

Abstract

This thesis analyzes the influence of evolution activities such as refactoring to
predict the occurrence of software defects in the near future. Improvement of
software quality is the key to reduce error-proneness of software. In this rela-
tion non-functional requirements, like understandability and maintainability
are of major importance. But how can these requirements be realized? One
possibility is to apply refactorings, which affect the design of existing source
code, without influencing the external behavior.
In a case study of five open source projects we use attributes of software evo-
lution to predict medium-term defects. We use versioning and issue tracking
systems to extract 110 data mining features. These features are separated in
refactoring and non-refactoring related features to predict software defects
in time periods of six months. Our approach covers software characteristics
such as size and complexity measures, relational aspects, time constraints,
or team related aspects. This information is used as input into classification
algorithms that create prediction models for software defects.
We found out that refactoring related features, as well as non-refactoring
related features lead to high quality prediction models. Furthermore, we
revealed that refactoring should be associated with other software activities
in a certain way to reduce software defect appearance. Additionally, we show
that certain subsets of refactoring features are of major importance for the
prediction models of each project. Concluding, author related aspects showed
variable results, nevertheless we could make several interesting findings.

iii

Zusammenfassung

Die vorliegende Diplomarbeit analysiert den Einfluss von evolutionären Ak-
tivitäten, wie Refactoring, um das Auftreten von Softwarefehlern in na-
her Zukunft vorherzusagen. Die Verbesserung der Softwarequalität ist der
Schlüssel, um die Fehlerdisposition von Software zu reduzieren. In diesem
Zusammenhang sind nicht-funktionale Anforderungen, wie Verständlichkeit
und Wartbarkeit, von größter Wichtigkeit. Aber wie können diese Erforder-
nisse realisiert werden? Eine Möglichkeit besteht darin Refactorings anzuwen-
den, welche das Design von vorhandenem Sourcecode betreffen, ohne das
Verhalten nach Außen zu beeinflussen.
Im Rahmen einer Fallstudie mittels fünf Open-Source Projekten verwenden
wir Eigenschaften der Softwareevolution, um mittelfristige Fehler vorherzu-
sagen. Wir verwenden Versionierungs- und Bugtracking-Systeme, um 110
Datamining Features zu extrahieren. Diese Features lassen sich in solche,
mit und ohne Bezug zu Refactoring einteilen, um Softwarefehler in Zeitab-
schnitten von sechs Monaten vorherzusagen. Unser Ansatz umfasst Software-
charakteristika, wie Größen- und Komplexitätsmaße, relationale Aspekte,
Zeitbedingungen, oder teambezogene Aspekte. Diese Informationen dienen
als Input für Klassifikationsalgorithmen, die Vorhersagemodelle für Soft-
warefehler erzeugen.
Wir haben herausgefunden, dass Features mit und ohne Refactoring-Bezug zu
Vorhersagemodellen von hoher Qualität führen. Weiters haben wir entdeckt,
dass Refactoring auf eine bestimmte Art mit anderen Softwareaktivitäten
assoziiert sein sollte, um das Auftreten von Softwarefehlern zu reduzieren.
Zusätzlich zeigen wir, dass gewisse Teilmengen von Refactoring Features von
größter Wichtigkeit für die Vorhersagemodelle jedes einzelnen Projekts sind.
Abschließend zeigten autorenbezogene Aspekte variable Ergebnisse, dennoch
konnten wir mehrere interessante Erkenntnisse gewinnen.

iv

Contents

1 Problem Description 1

1.1 Introduction . 1
1.2 Motivation . 2
1.3 Problem Definition . 2

1.3.1 Hypotheses . 3
1.4 Organization of this thesis . 4

2 Related Work 6

2.1 Review of the State of the Art 6
2.1.1 Software Evolution . 6
2.1.2 Software Quality . 8
2.1.3 Software Metrics . 9
2.1.4 Prediction . 10
2.1.5 Refactoring . 13
2.1.6 Tools . 14

2.2 Promising Techniques to study further 15

3 Prediction Foundation 17

3.1 Versioning System . 17
3.2 Bugtracking System . 17
3.3 Evolution Data . 18

3.3.1 Reconstructing Transactions of Versioning Systems . . 18
3.4 Time Periods for Analysis . 18
3.5 Data Mining Features . 19

3.5.1 Non-Refactoring Features 19
3.5.2 Refactoring Features 23

3.6 Classifiers — Data Mining Algorithms 25

4 Methodology 27

4.1 Data Extraction into Database 27
4.1.1 Import Versioning Data and Computation of Commit

Transactions . 27
4.1.2 Identifying Refactoring 27
4.1.3 Import Issue Data . 29
4.1.4 Connect Issues and Revisions 29
4.1.5 Relate Accounts of Issues and Versioning 31

v

4.1.6 Calculate Features . 31
4.2 Data Processing with Weka 32

4.2.1 Data Import into Weka 32
4.2.2 Discretize Target Attribute 33
4.2.3 Conditioning Data Sets 33
4.2.4 Prediction Model Generation and Result File Processing 38

4.3 Data Analysis . 40
4.3.1 Quality of Prediction 40
4.3.2 Association of Refactoring and other Software Activities 40
4.3.3 Subsets of important Refactoring Features 43
4.3.4 Influence of Author related Activities 43

5 Evaluation 44

5.1 Evaluation of Prediction Models 44
5.2 Open Source Projects . 45
5.3 Results . 46

5.3.1 Do refactoring related features and non-refactoring re-
lated features lead to high quality prediction models? . 49

5.3.2 Is the quality of prediction models improved by com-
bining features of both groups? 56

5.3.3 Should refactoring be associated with other software
activities in a certain way to reduce software defect
appearance? . 58

5.3.4 Are certain subsets of refactoring features of major im-
portance for the prediction models of each project? . . 72

5.3.5 Is a common subset of refactoring features important
for all investigated projects? 78

5.3.6 Is it essential that the number of authors and author
switches, and the number of people switches remains
low to reduce error-proneness? 79

5.3.7 Is it essential that the number of bug fix authors and
bug fix author switches remains low to reduce error-
proneness? . 83

5.3.8 Is it essential that the number of refactoring authors
and refactoring author switches remains low to reduce
error-proneness? . 84

5.3.9 Is it essential that the same author, who made the last
revision refactors the code to reduce error-proneness? . 86

vi

6 Summary and Conclusion 88

vii

List of Figures

1 Software Quality Model . 1
2 Data Extraction into MySQL Database 27
3 ArgoUML - Issue Query . 30
4 ArgoUML - Issue Result . 30
5 Liferay Portal - Issue Query and Issue Result 31
6 Data Processing with Weka 32
7 Weka - SQL-Viewer - Import Data From a Database 33
8 Weka - Filter - Choose the appropriate Filter 34
9 Weka - Imported Data with Nominal Target Attribute ”tar-

getBugs” . 35
10 Distribution of Classes with or without Bug fixes for Projects

ArgoUML, JBoss Cache, and Liferay Portal 36
11 Distribution of Classes with or without Bug fixes for Projects

Spring Framework and XDoclet 37
12 Weka - The same Number of Instances for Bin ”No bugs” and

Bin ”One or more bugs” . 38
13 Weka - Classify - Output for Classifier J48 39
14 Model Tree based on Classification Algorithm C4.5 for Project

Liferay Portal - June 2005 - Section Model 1 — Before condi-
tioning . 41

15 Model Tree based on Classification Algorithm C4.5 for Project
Liferay Portal - June 2005 - Section Model 1 — After condi-
tioning . 42

16 Data Analysis . 42
17 Tree Sequences including Feature refactoringChanges based

on Classification Algorithm C4.5 — PART 1 60
18 Tree Sequences including Feature refactoringChanges based

on Classification Algorithm C4.5 — PART 2 61

1

Figure 1: Software Quality Model

1 Problem Description

1.1 Introduction

Software engineering is a complex process that consists of a number of steps
to produce reliable software. The development process is separated in certain
phases, which are restricted with respect to time and content. Key processes
are planning, analysis, concept, programming, validation and verification.
Supporting processes are project management, quality management, config-
uration management, and documentation.
Software development is a continuous process, hence it is not sufficient to
produce software without any further input. In the course of time non-
functional requirements, like maintainability and understandability, amongst
others, are watered down, because of continuous software development to ful-
fill new tasks. Additionally, several bug fixes have to be made to solve certain
problems with already existing software parts no longer working correctly.
Software quality is specified with the aid of quality models that are visualized
as trees made up of quality factors, and quality metrics, as leafs (Figure 1).

1.2 Motivation 2

IEEE Standard 1061 defines a quality metric as a function that maps a
quality factor to a measured value [3]. Quality metrics stretch across several
areas, e.g. process, product, costs, time, complexity, and business. Bug fixes
are attached to the field of process metrics.
Software quality is strongly influenced by necessary bug fixes. So it is the soft-
ware engineer’s intent to reduce those bug fixes for the future. Refactoring,
a widely spread technique in software engineering, improves non-functional
requirements, like maintainability and understandability and therefore helps
to positively influence software quality. Refactorings are structural changes
that do not influence the functionality of a software system.
This thesis investigates the influence of evolution activities such as refactoring
on bug fixes required in the future, an important measure of software quality.

1.2 Motivation

Each software project is subjected to restrictions that ultimately pertain
monetary facts. Any changes required to extend or improve existing software
generate costs. As a result of limited funds, refactoring should only be applied
where useful. That is why, an estimation of costs to apply refactoring has to
be related to the possible improvement of software quality. If this proportion
is acceptable, refactoring generates short-term additional expenses, but in
the long run these inputs pay off.
Prediction models can help us to find out characteristics of classes, with or
without bug fixes, in relation to refactoring. Those properties of classes re-
garding refactoring affect several areas of software development, represented
as size measures, team aspects, complexity measures, relational aspects, and
time constraints. Information gained from that models can support soft-
ware developers to apply refactoring in a way that reduces error-proneness
of software together with optimal usage of funds.

1.3 Problem Definition

In line with this thesis, the relationship between evolution activities such as
refactoring and the prediction of software defects is analyzed. Moreover, we
are interested in information that allows us to decide where and when to
apply refactoring. A number of research questions are discussed to deal with
that problem.

1.3 Problem Definition 3

How should refactoring be associated with other software activities? Is an
increase in refactoring activities accompanied by a decrease in software defect
appearance? Are certain refactoring attributes of major importance to pre-
dict bug fixes in the future? Are team related aspects, especially in relation
to refactoring, relevant to predict bug fixes?
The main question is to what extent regularly applied refactorings influence
the appearance of software defects in the source code. In other words, does
refactoring measurably improve software quality?

1.3.1 Hypotheses

In line with the thesis we are investigating a number of hypotheses:

1. Both, refactoring related features and non-refactoring related features
lead to high quality prediction models.

2. The quality of prediction models is improved by combining features of
both groups.

3. Refactoring should be associated with other software activities in a
certain way to reduce software defect appearance.

4. Certain subsets of refactoring features, are of major importance for the
prediction models of each project.

5. There is a common subset of refactoring features important for all in-
vestigated projects.

6. It is essential that the number of authors and author switches, and the
number of people switches remains low to reduce error-proneness.

7. It is essential that the number of bug fix authors and bug fix author
switches remains low to reduce error-proneness.

8. It is essential that the number of refactoring authors and refactoring
author switches remains low to reduce error-proneness.

9. It is essential that the same author, who made the last revision refactors
the code to reduce error-proneness.

1.4 Organization of this thesis 4

1.4 Organization of this thesis

After the problem description chapter two depicts the state of the art in sev-
eral relevant information areas.
Papers concerning Software Evolution analyze software development and the
evolution of object-oriented source code, investigate the design of a software
system, analyze change coupling groups and the significance level of changes,
and describe fine-grained analysis of CVS data.
Papers related to Software Quality investigate coupling and cohesion mea-
sures for object-oriented systems and fault-prone classes to rate the quality
of software, and try to identify characteristics of files that can predict fault-
proneness based on information from previous releases.
Research work in the field of Software Metrics investigates object-oriented
design metrics for predicting fault-prone classes, describes metrics of Chi-
damber and Kemerer, and uses metrics to understand and control the soft-
ware evolution process.
Research papers in the area of Prediction show that well selected models can
predict software fault-proneness across different applications, examine soft-
ware decay by using change history data, use certain sets of predictors, and
try to quantify the probability of change in future releases.
Papers regarding Refactoring analyze software systems, to find out, whether
refactoring occurred, validate heuristics for identifying refactoring, try to
measure the maintainability enhancement effect of program refactorings based
on coupling metrics, and describe the process of refactoring.

Promising techniques to study further describes research work that exhibits
methodology valuable to follow up.

In chapter three we describe two fundamental techniques to track software
evolution. On the one hand, the versioning system (e.g. CVS) to keep all
changes at the source code level, and on the other hand the bugtracking
system (e.g. JIRA) to systematically capture every issue.
After that, the reconstruction of transactions and the time periods—feature
period and target period—used for our analysis are described. Our datamin-
ing features are subdivided in refactoring features and non-refactoring fea-
tures and their meaning is explained in detail. Concluding, we enumerate
the classifiers, respectively data mining algorithms used for our predictions.

1.4 Organization of this thesis 5

Next, chapter four covers our methodology to extract versioning and bug-
tracking data into a relational database, to process that data with Weka [26],
a datamining tool, and to analyze the generated prediction models.
Thereby, the data extraction is subdivided in a number of process steps:
import versioning data, compute commit transactions, identify refactoring,
import issue data, connect issues and revisions, relate accounts of issues and
revisions, and calculate features. Data processing is made up of the following
working steps: import edited files, discretize target attribute, condition data
sets, generate prediction model, and process result file. Finally, data anal-
ysis is made up of several building blocs: quality of prediction, association
of refactoring and other software activities, subsets of important refactoring
features, and influence of author related activities.

Chapter five outlines the evaluation of the prediction models. Due to the
fact that a nominal target attribute is used for our predictions, appropriate
measures have to be used. Recall, precision, and f-measure help to quantify
the quality of the prediction models. Next, the open source projects under
investigation are described, together with information on project start and
project size.
In section results, we discuss nine hypotheses to answer numerous questions.
At the beginning, we show that the generated models predict our target
attribute—bug fixes in the target period—sufficiently well. Based on that
fact, we try to answer further research questions. We try to find out, whether
refactoring is related to other software activities in a certain way and more
specific, if refactoring helps to decrease software defect appearance in the fu-
ture. Moreover, we try to find out subsets of refactoring features important
to each single open source project, or more generic to all projects. Con-
cluding, we investigate the influence of author related attributes on software
defect occurrence.

Finally, chapter six summarizes our research results and lists possible topics
for future work.

6

2 Related Work

2.1 Review of the State of the Art

The related work can be assigned to certain research areas.

2.1.1 Software Evolution

Antoniol et al. [2] analyze the evolution of object-oriented source code at the
class level. Thereby, class evolution discontinuities are identified that reveal
refactoring activities. A case study of an Java open source domain name
server identified nearly all applied refactorings.
In contrast to Antoniol et al., we consider refactorings in general and deter-
mine refactoring based on the commit messages that are part of the versioning
system.

Capiluppi et al. [7] focus on the investigation of the structure of source code
and thereby, consider structure as a proxy for the conceptual architecture of
an application. A Goal-Questions-Metrics approach is used to analyze decay
and refactoring of several open source projects. The authors found out that
understandability was increased by refactoring in several projects.
In dependence on this work, we found out that refactoring activities help to
decrease software defect appearance.

Fischer et al. [17] introduce an approach for populating a release history
database. Thereby, versioning data and bugtracking data are combined, and
additionally missing data—such as merge points—is added. The authors in-
vestigated the design of the open source project Mozilla based on evolution
data, extracted from source code management systems.
Our work is based on the techniques outlined in this research work to extract
data from versioning and bugtracking systems.

Fluri et al. [19] use an approach that adds structural change information
to existing release history data. In a case study applied to a medium-sized
open source project more than 50% of all transactions turned out, not to be
triggered by structural changes.
Ying et al. [55] extend existing static and dynamic analysis to better reveal

2.1 Review of the State of the Art 7

dependencies between existing source code parts. The authors developed an
approach to detect change patterns by using data mining techniques that
are applied to the change history of projects Eclipse and Mozilla. Together,
with the evaluation of the predictability of the recommendations for actual
modification tasks, valuable dependencies were gained.
Common to [19] and [55], we trace change couplings back to commonly com-
mited modified files that correspond to a transaction. In contrast to [19], we
do not filter out change coupling groups that were not structurally changed,
e.g. changes to Javadoc or insertion of whitespace.

Fluri and Gall [18] present a taxonomy of source code changes that defines
source code change types with tree edit operations on the abstract syntax
tree. The aim is to analyze, if change couplings between source code entities
are significant or only minor textual adaptions. A case study using open
source project ArgoUML showed, that lines added and/or deleted do not
suffice to identify the significance level of source code changes.
In addition to our work, this approach allows to relate change couplings to
the significance of identified change types, and based on this information
more relevant change couplings can be extracted.

Lehman and Ramil [34] state that most of the software regularly used in
business can not be specified and implemented in its entirety. Implementa-
tion and maintenance activities depend on the knowledge gained from every
day usage, and are influenced by internal and external changes that affect
the usability of software. After discussing technology, software process, and
related domains in relation to software evolution, facets of the evolution phe-
nomenon are outlined, together with a discussion of their influence on the
evolution process.

Mockus and Votta [36] try to answer several hypotheses, e.g. that a tex-
tual description of a change is the basis to understand the reasons for that
change. The authors developed a program to automatically classify mainte-
nance activities based on textual description of changes.
In the style of this research work, we use the commit message of a revision
to determine, if that revision is a bug fix or a refactoring. Hereby, we base
our decision on extensive queries that contain several keywords representing
a certain change type.

2.1 Review of the State of the Art 8

Nierstrasz [42] analyzes software development and criticizes only technology-
centric views, which consider software rather as a static object, than as a
living and evolving entity. The author presents some assertions to think
about, enumerates the key difficulties of software development from his view
and completes with recommendations for research of software practices that
include software evolution.

Zimmermann et al. [57] try to give guidelines that support programmers who
apply changes to a software system. The authors developed a ROSE tool that
suggests and predicts likely changes, after a certain change has been made.
The appliance of the tool on several open source projects showed attractive
rates of correct predictions for further files to be changed.
In contrast to this work, we do not try to predict further changes after an
initial change, but try to predict future bug fixes. Although, we also use
coupling metrics to support our predictions.

Zimmermann and Weißgerber [56] present four essential preprocessing tasks
important for fine-grained analysis of CVS data. The authors address data
extraction, restoring of transactions, mapping of changes to fine-grained en-
tities, and data cleaning.
In our work, we also use the basic techniques to import CVS data and calcu-
late commit transactions. In contrast to this work, we do not map changes
to fine-grained entities, but analyze the influence of changes on future bug
fixes. Furthermore, we use information on large transactions condensed in a
calculated feature to support our predictions.

2.1.2 Software Quality

Briand et al. [5] investigate coupling and cohesion measures for object-orient-
ed systems and fault-prone classes to rate the quality of software. The au-
thors applied their approach on an industrial case study and revealed that
especially method invocation and import coupling are strong indicators for
error-proneness. Brito e Abreu and Melo [6] use a suite of object-oriented
design metrics to estimate software quality of eight small-sized information
management systems. The authors analyzed attribute and method inher-
itance, polymorphism, and coupling to reveal that software design has a
strong influence on defect appearance.

2.1 Review of the State of the Art 9

In our work, we also use coupling metrics as input for the generated predic-
tion models. Additionally, we investigate coupling measures with respect to
refactoring to refine our analysis.

D́ambros and Lanza [10] use a visual approach to show the relationship be-
tween software evolution and software bugs. The authors could show the
impact of diverse change patterns on software evolution at any level of gran-
ularity, based on a case study of three large open source projects. Ratzinger
et al. [47] developed and tested a visualization tool based on temporal lens
views to explore evolution data across multiple dimensions. The focus is on
revealing change couplings, architectural shortcomings, and detection of in-
ternal and external dependencies. The authors applied their tool on a large
industrial case study implemented in Java.
In our work, we also use versioning data to extract several features to assess
the evolution of a certain software system over the course of time. In contrast,
we present no graphical support, but try to predict the influence of software
attributes on the occurrence of software defects in the future.

2.1.3 Software Metrics

Chidamber and Kemerer’s metrics are described in [8] and [9]. Several design
metrics were developed and later on analytically evaluated against a set of
measurement principles. An automated tool collected an empirical sample
of these metrics to approve their usefulness.
Basili et al. [4] present the results of a case study, which investigates object-
oriented design metrics. On the basis of empirical and quantitative analysis,
the authors discuss advantages and disadvantages of these metrics and reveal
their usefulness during early phases of development for predicting fault-prone
classes.
Demeyer and Mens [13] classify a number of approaches that use metrics
to understand, predict, plan, and control the software evolution process.
The authors subdivide their classification in predictive analysis—before the
evolution, and retrospective analysis—after the evolution occurred. For each
category, concrete examples and references to the literature are given.
On the basis of Chidamber and Kemerer’s metrics and in line with the other
research works we use a large set of evolution metrics to predict the occur-
rence of software defects. Additionally, we extended our metrics suite with
metrics especially adapted for analysis of refactoring activities.

2.1 Review of the State of the Art 10

2.1.4 Prediction

Denaro and Pezzè [14] show that well selected models can predict soft-
ware fault-proneness across different applications. The prediction models are
based on data of Apache 1.3, whereby the most accurate models are applied
on data of Apache 2.0. The authors could achieve reliable results to predict
error-proneness. In line with this work, we can also achieve significant pre-
diction results based on data of each investigated open source project within
our case study. We take these results as a basis to receive an impression of
interrelationships in the area of software evolution.

Graves et al. [23] examine software decay by using change history data of
a long-lived software system. Measurements are investigated with respect
to their ability to predict the distribution of faults over certain modules.
The authors revealed that process measures based on the change history are
better measures than product metrics of code. We also base our evolution
metrics on change history and regard relative measures as better indicators
of software quality than absolute measures, like lines of code added.

Khoshgoftaar et al. [28] use a set of predictors to build software quality
models based on classification-tree modeling. The authors investigated four
releases of a very large telecommunications system to discover fault-prone
modules. Thereby, they discovered that additionally to product metrics,
process metrics and execution metrics can efficiently predict fault-proneness.
These results show similarities to the research work of Graves et al. [23].
Khoshgoftaar et al. [29] extend their previous work [28] with statistical tech-
niques to discover uncertain predictions of the classification trees. The au-
thors assessed based on the telecommunications system to what extent mod-
ules are wrongly assigned to the group of error-prone modules.
In line with both research works, we use a set of metrics that attach great
importance to process metrics amongst others. In contrast to these works,
we investigate the error-proneness of software entities at the class level.

Mockus and Weiss [37] use predictors based on lines of code measures, change
couplings, change types, and measures of developer experience. In a case
study, the authors use their prediction models developed as a web-based tool
and found out that change couplings and developer experience are essential
to predict error-proneness.

2.1 Review of the State of the Art 11

In our work we use similar measures extended with refactoring related infor-
mation.

Nagappan et al. [39] use an approach to early predict the actual pre-release
defect density for Windows Server 2003 based on the defects detected with
static analysis tools. The authors revealed a strong positive correlation be-
tween the defect density determined by static analysis and the pre-release
defect density gained from testing. Additionally, the actual pre-release de-
fect density and the predicted pre-release defect density strongly correlate.
Nagappan et al. [41] investigated the post-release defect history of five Mi-
crosoft software systems. The authors revealed for each project a set of
complexity metrics that statistically correlates with post-release defects. Ad-
ditionally, they found out that predictors gained from principal component
analysis are useful to build appropriate regression models and that predictors
of a given project are only applicable to the same project or related projects.
Schröter et al. [51] build models to predict failure-prone components based
on software design and past failure history. In a case study of 52 Eclipse
plugins the authors revealed that prediction on the package level works best.
Additionally, the classification yields the best results for components that
are ranked as most failure-prone. Furthermore, models trained in a previous
version are good predictors of failure-prone components in later versions.
Ostrand and Weyuker [44] try to identify characteristics of files that can
predict fault-proneness on the basis of a large industrial inventory tracking
system. The authors try to discover the distribution of faults over different
files and are interested in the influence of the size of modules on their fault
density. Furthermore, the propagation of faults from one release to another
and the behavior of newly introduced files with regard to fault-proneness is
analyzed.
Ostrand et al. [45] use the same inventory system as for [44], extended with
several releases to predict those files that will most likely exhibit the largest
number of faults in the next release. The authors used a negative binomial
regression model based on information from previous releases and achieved
extremely accurate and correct predictions of classes with high rates of faults.
In our work, we do not distinguish between pre-release and post-release de-
fects as in [39], [41], [44], and [45], but generally analyze selected time frames
as temporal snapshots of the projects under investigation. In contrast to [41],
who chose modules as the entities to investigate and [51], who compare pack-
ages to files with respect to prediction quality, we operate at the class level.

2.1 Review of the State of the Art 12

Tsantalis et al. [53] use a probabilistic approach to evaluate the change prone-
ness of an object-oriented software system in future releases. The authors
applied their approach to two open source projects and determined a sig-
nificant correlation between the predicted probabilities for change and the
actual changes in the investigated classes.

Kim et al. [30] analyze bug-introducing changes to identify important prop-
erties of software bugs. The authors use algorithms to automatically and
accurately detect those changes that are unlike bug-fixes, hard to obtain.
After a series of accurate pre-processing steps to refine the data basis, exam-
ples of bug-introducing changes verify the usefulness of this approach.
Kim et al. [31] screened the versioning history of several open source projects
to predict entities and files most fault-prone. In their approach fault-prone
locations are cached to later on support developers that just fixed a fault, in
finding those hot spots. The major advantage of the proposed cache model
is the adaptability to new fault distributions.
In contrast to [30] and [31] we do not detect bug-introducing changes, but
use the number of bug fixes, detected in the respective target period for our
predictions. In line with [30] and [31] we identify bug fix revisions by ana-
lyzing log files from versioning history.

Ratzinger et al. [49] use a mining approach to predict short-term defects
based on evolution measures extracted from versioning and bugtracking sys-
tems. The authors compare the predictability of different classes of software
defects by using an exact numerical prediction of defects on the basis of
regression models. Additionally, certain components are classified as defect-
prone based on the C4.5 decision tree.
The evolution measures used in this research work correspond to our non-
refactoring features. In contrast to this work, we do not distinguish between
different kinds of software defects and do not differentiate between pre-release
and post-release defects.

Ratzinger et al. [50] analyze the versioning history of ArgoUML and the
Spring framework to predict refactoring activities in the future. The au-
thors use evolution measures extracted from versioning systems as input into
classification algorithms to generate their prediction models. The models
make it possible to predict refactoring with a high accuracy. Additionally,

2.1 Review of the State of the Art 13

refactoring-prone and non-refactoring-prone classes can be identified very
accurately.
Our research work is based on the approach we used for [50] in many re-
spects. We use the same open source projects extended with JBoss Cache,
Liferay Portal, and XDoclet. Additionally, the non-refactoring features, the
classification algorithms, and the identification of refactorings are the same.
In contrast to [50] we are now interested in predicting software defects, and
thereby enhanced our evolution measures with refactoring related features.
Additionally, we import data from bugtracking systems of each investigated
project into our relational database to support our predictions.

2.1.5 Refactoring

Fowler [20] describes the process of refactoring and explains how to do the
various refactorings. Our research work is based upon the fundamentals out-
lined in this crucial work in the field of software engineering.

Opdyke [43] defines a number of refactorings that help to support software
design, software evolution and reuse of object-oriented application frame-
works. The thesis aims to automate refactorings in a way that preserves the
behavior of software.

Mens and Tourwé [35] present an extensive overview of current research work
in the field of software refactoring. The authors discuss refactoring activi-
ties, techniques and formalisms that support these activities and the types
of software entities that are being refactored. Additionally, important issues
related to the generation of refactoring tool support, and the influence of
refactoring on the software process are discussed.

Advani et al. [1] investigate a range of open source projects in multiple ver-
sions to find out locations where refactoring took place and which were the
most common types of refactoring. The authors used an automated tool to
detect fifteen different refactorings from the pool of 72 refactorings proposed
by Fowler [20]. In the majority of cases less complex refactorings occurred
and the most common refactorings empirically revealed, were central to larger
refactorings.
Demeyer et al. [12] evaluate locations where the implementation has changed
and thereby, apply object-oriented metrics to successive versions of software

2.1 Review of the State of the Art 14

systems to find out refactorings. The authors use a tool to extract classes,
methods, and attributes from three case studies. The advantages of the used
heuristics are a good focus on small software parts with reliable identification
of refactorings.
Kataoka et al. [27] quantitatively determine the maintainability enhancement
effect of program refactoring. Thereby, the authors estimate the enhancement
effect based on the comparison of the coupling before and after applying a
certain refactoring. The proposed method shows good results in evaluating
the refactoring effect and assists in choosing adequate refactorings.
Ratzinger et al. [48] use an approach to detect change smells. Refactoring of
those software parts supports the evolvability of software. The authors an-
alyzed a large software system and detected locations for refactorings based
on change coupling. The application of these refactorings showed that com-
bining change coupling analysis with refactoring works fine.
In contrast to [1], [12], [27], we use evolution measures based on refactoring
as a input for our predictions to determine software defect appearance in the
future, in common with these research works refactorings are detected that
are used for our predictions. In contrast to [1], we do not focus on a set of
selected refactorings.

2.1.6 Tools

Witten and Frank [54] describe machine learning tools and techniques used
by Weka—a datamining tool. The authors explain how datamining algo-
rithms work and help to select appropriate approaches to certain problems.
In addition, techniques to improve performance and the usage of the Weka
machine learning workbench are explained.

2.2 Promising Techniques to study further 15

2.2 Promising Techniques to study further

Antoniol et al. [2] use an automatic approach, inspired on vector space in-
formation retrieval, to identify cases of possible refactoring. Thereby, classes
are mapped into elements of vector spaces, namely vectors that contain the
information about identifiers extracted from each class. The similarity of two
classes is calculated based on the cosine of the angle between the vectors that
represent each of the investigated classes. A value of 1 means that the classes
are identical. Now, several variants of refactoring are analyzed, whereby a
defined threshold value for the cosine determines, whether a certain type of
refactoring happened. The threshold values vary, depending on the system
size and consequently on the search space, or depending on the desired recall,
even so the effort rises to check the results. The authors use different tools
to support their approach, e.g. to extract identifiers from Java source code,
and the implementation of the applied search algorithm.

Fluri et al. [19] use several plugins of the Eclipse IDE to access CVS repos-
itories and compare source code files. First of all, the information gained
from modification reports of the CVS repository is stored in a release his-
tory database. Afterwards, the change coupling relationships between source
code files are calculated, and the corresponding change coupling clusters are
determined. A change coupling group is made up of a set of files that were
commited together more than once in the evolution of a software system.
Each change coupling group can be expressed as a revision vector that con-
tains the revision number of each involved file. A change coupling cluster is
consequently represented as a matrix with revision vectors as columns. In a
further process step source code files of successive revisions—extracted from
CVS—, are structurally compared. The authors developed an Eclipse plugin
to automatically extract structural changes: All revision numbers of a certain
source file are determined by parsing the CVS log information. After this,
every revision and its subsequent revision of that file is structurally com-
pared, and the comparison results are stored in the release history database.
This plugin can be applied to a single file or even a whole project. Finally, a
change coupling filter combines the information of these process steps. The
information of structural differences and change coupling clusters is used to
evaluate those change couplings that underwent structural changes. To get
a better overview, the authors developed a change coupling cluster browser
that allows to easily search for change coupling groups, change coupling clus-

2.2 Promising Techniques to study further 16

ters, and their structural changes.

Fluri and Gall [18] divide a class within an object-oriented programming
language (OOPL) in body- and declaration-parts: class body and method
body as well as class declaration, attribute declaration, and method decla-
ration. The described taxonomy is based on the abstract syntax tree (AST)
with statements as the smallest entities. A source code entity can be every
language construct provided by an OOPL, and is represented as an sub-AST
or a leaf within the given AST. ASTs are made up of entity nodes with
labels—representing the kind of source code entities, and values—the tex-
tual representation depending on the kind of entity. Source code changes are
based on elementary tree edit operations, since source code changes trans-
form an AST, which is a rooted tree. The authors use as elementary tree
edit operations insert, delete, and substitute of a tree node. The significance
level of a change is defined as the impact of that change on other source code
entities. Additionally, it is relevant for the significance level whether that
change is functionality-preserving or functionality-modifying. The authors
use the significance levels low, medium, high, and crucial. A detailed list-
ing of a multitude of source code changes that concern body-part changes
as well as declaration-part changes is presented. The authors developed an
Eclipse plugin that implements the source code change extraction algorithm
of Chawathe et al. to extract source code changes into a relational database.
Later on these changes are classified by the criteria used for the presented
taxonomy.

17

3 Prediction Foundation

3.1 Versioning System

Raw data is gained from versioning systems such as CVS (Concurrent Ver-
sions System), which allows to handle different versions of files in cooper-
ating software development teams. Certain classes of the software system
are checked out by each developer. Now these files can be edited and the
changes are afterwards commited to the versioning system, which merges all
modifications from different developers. CVS makes it possible to get each
version of all versionized files based on the date or version number. CVS
logs every action to keep the history of a certain file, which provides the nec-
essary information about the history of a software system. All information
for our datamining approach—pure textual, human readable information—
is retrieved via standard command line tools. These tools create log-files
about all modifications in the past and are parsed and stored in a relational
database [17].

3.2 Bugtracking System

The issue tracking system JIRA is used to manage data about project issues,
like bug reports, patches, improvements, or feature requests. It allows the
search for distinct requirements and their implementation, if already done,
on project level. We extract the issue data from that tracking system by
using the export functionality into an excel file. Hereby, all bug reports, con-
cerning already fixed bugs are the matter of our interest. The information
of these files is imported into our release history database. After that, we
connect issues to revisions by using the CVS log information. Thereby the
commit messages entered by developers are searched for issue numbers. Ad-
ditionally, we try to relate versioning authors to issue reporters to distinguish
between issues created by developers and issues created by customers. If a
certain issue reporter can be linked to a CVS author the issue is assigned to
a developer, otherwise it is assigned to customer related staff such as service
personnel. Finally, we conclude our data-processing steps by applying com-
prehensive regular expressions on the commit messages of all versionized files
to find out bug fixes not revealed by now.

3.3 Evolution Data 18

3.3 Evolution Data

The data model of the evolution database is composed of information ex-
tracted from versioning systems in the following way. Versioning systems
like CVS strongly relate revisions of files to modification reports. They con-
tain past data about files, e. g. change dates, authors of changes, commit
messages, and lines of code changed. Each new revision replaces the code
of the former one, which is maintained in modification reports. Collections
of certain revisions of all files managed by the particular versioning system,
are called releases. If a developer commits changes to several files at once,
only the time stamp of the these new revisions is stored. Hence, we have to
reconstruct the transaction information in a post-processing step.

3.3.1 Reconstructing Transactions of Versioning Systems

Transactions T
n

are sets of files that were checked-in into the versioning
system by a single author with equal commit message within a short time-
frame, typically a few minutes. We use a dynamic time adaption approach
to capture the entire transaction. Each transaction can take several minutes,
so we initially set each transaction to last 60 seconds. Every revision with
same author and commit message within the transaction window is added
to that transaction. Now the transaction window is expanded to last further
60 seconds, based on the time stamp of last detected change event within
that transaction. Transactions are necessary to evaluate change couplings
between software entities. Change couplings are defined as follows [50]:

Two entities (e.g. files) are coupled, if a modification to the
implementation affected both entities. The intensity of coupling
between two entities a, b can be determined easily by counting all
log groups where a and b are members of the same transaction,
i.e., C = {〈a, b〉|a, b ∈ T

n
} is the set of change coupling and |C|

is the intensity of coupling.

3.4 Time Periods for Analysis

We use two different time periods to obtain relevant attributes for our ex-
periments:

• Feature Period is a time frame where certain properties of software
evolution are accumulated into a lot of features (attributes) to serve

3.5 Data Mining Features 19

as a input to our prediction. All modifications to source code within
this time period are used to compute a condensed history of each file.
All datamining features are created for object-oriented classes, due to
the fact that files are (roughly) equal to classes in the Java program-
ming language. Most of the time, one java file contains only one class.
For example all lines added, changed, or deleted are counted together
to measure the changes of a certain class (instance). Classes that are
modified together are treated in a similar way, based on commit trans-
actions described in section 3.3.1

• Target Period is the time frame immediately after the feature period,
where we count the number of bug fixes. This number defines the
datamining target attribute for our case study. Naturally, a number of
other target attributes can be calculated, depending on demand.

3.5 Data Mining Features

From evolution data stored in our release history database we compute 110
features that are used for data mining. We separate these features in two
groups, namely non-refactoring and refactoring features. These evolution
measures are gathered on file basis, whereas data from all revisions within a
predefined time period is summarized. For the purpose of creating a balanced
prediction model the features represent several important information areas
such as team and relational aspects, process orientation, and complexity of
implemented solution, etc. [16]. Since previous studies showed that relative
features outmatch absolute features with regard to prediction performance,
we use only relative features [32, 40].

3.5.1 Non-Refactoring Features

Size.

We group size measures such as lines of code from an evolution point of
view. Attributes linesAdded, linesModified, or linesDeleted are related to the
total LOC (lines of code) of a file. These features reflect a certain aspect of
clean-up mentality, since developers delete source code parts no longer neces-
sary for the current implementation. Feature linesType relates linesAdded to
linesModified, and consequently shows whether more lines were added than
changed. Feature largeChanges describes those changes that are double of

3.5 Data Mining Features 20

the LOC of the average change size and feature smallChanges describes those
changes that are half of the LOC of the average change size. This two fea-
tures are interesting indicators for us that can give us deeper insight in the
evolution of a software. Several studies discovered that small modules are
more defect-prone than large ones [24, 38].

Team.

The number of authors and author switches influences several facets of soft-
ware development. Our expectations are that the more authors work on a
software and the more author switches occur, the higher the probability of
errors and required bug fixes. Feature authorCount relates the number of
authors to the number of overall changes. Feature authorSwitches relates
the number of author switches to the number of authors. Two more special-
ized features bugfixAuthorCount and bugfixAuthorSwitches help to analyze
the influence of team aspects regarding bug fixes. Feature peopleSwitches
relates the number of people assigned to an certain issue and the authors
contributing to the implementation of that issue.

Process Orientation.

This category comprehends features that describe how disciplined people
follow software development processes and how this affects their development
work. Developers have to include the issue number in the commit message,
if they commit source code changes to the versioning system. The feature
issueChanges relates issue modifications to the number of changes. Since
developers are requested to provide some rationale in the commit message, we
use withNoMessage—measuring changes without any commit message—for
our prediction. Additionally, feature commitMessage relates the number of
commits without any commit message to the number of issue modifications.
The feature issueAttachements relates the number of attachements to the
number of issues.
The distribution between different priorities of issues in each software project
should be balanced. A high number of issues with high priority may indicate
problems that affect quality and re-work amount. We investigate blockerIs-
sues, criticalIssues, majorIssues, and resolvedIssues in relation to the total
number of issues. To estimate the work habits of the developers we inspect
the number of addingChanges, modifyingChanges, and deletingChanges per
file. The changesType analyzes if there were more adding changes or modi-
fying changes. This information supports the defect prediction of files.

3.5 Data Mining Features 21

Complexity of existing Solution.

In accordance with the laws of software evolution [33], software constantly
becomes more complex in the course of time. Changes are harder to apply,
since software comprehension is increasingly complicated. Consequently, we
use feature relNumberChanges to relate the number of changes in the in-
spection period to the number of changes during the entire evolution of each
file. The changeActivityRate relates the number of changes during the whole
lifetime of a file to the months of the lifetime. Furthermore, the change-
FrequencyBefore investigates the number of changes before the inspection
period relative to the months the file existed before. The linesActivityRate
specifies the number of lines of code in relation to the age of the file in
months. Moreover, the linesActivityRateTotal relates the total lines of code
to the age of the file. The average lines of code for changes are expressed by
linesAddPerChange, linesModifiedPerChange, and linesDeletedPerChange.
We use fixrateBefore—which relates the number of bug fixes before the in-
spection period to the corresponding number of overall changes—to estimate
the quality of the existing solution. In this context, we expect a causal rela-
tionship between bug fixes that occurred in the past and software quality in
the future. The bugfixChanges relates the number of bug fix changes to the
number of general changes. Lines of code measures bugfixLinesAdded, bugfix-
LinesModified, and bugfixLinesDeleted are related to LOC added, modified,
and deleted. In this context, we assume that bug fixes do not introduce much
new code, in that new requirements basically need most code additions. The
average lines of code for bug fixes are expressed by linesAddPerBugfix, lines-
ModifiedPerBugfix, and linesDeletedPerBugfix.

Difficulty of Problem.

New requirements within object-oriented software systems require the ad-
dition of new classes. Therefore, fileNew, which contains the information
whether a file was newly introduced, is used as input to our prediction. We
use coChangedNew to show how often a certain file was changed together
with the introduction of other new files. Identification of co-changed files is
accurately explained in [22].

Relational Aspects.

The interrelationship between classes in object-oriented software systems is
a basic input for our prediction. We use couplings to relate the number of

3.5 Data Mining Features 22

couplings to the number of overall changes. Thereby, it is possible to judge
the interconnection between files. The feature coChangedFiles relates the
number of co-changed files to the number of entire changes. The features
largeTransactions and smallTransactions calculate the LOC within the con-
sidered transaction in relation to the average change size of a transaction.
Besides, quantifying co-changed couplings with size measures for single files,
we similarly generate features based on commit transactions. Therefore, we
use TLinesAdded, TLinesModified, and TLinesDeleted in relation to lines of
code added, modified, and deleted. The TLinesType analyzes whether the
transactions contained more lines added or lines modified. The TChangesType
is a coarser grained feature that analyzes whether this file was involved in
transactions with more adding revisions or more modifying revisions.
The features TLinesAddedPerChange and TLinesChangedPerChange relate
the number of LOC added or changed per transaction to the number of
overall changes. Additionally, TLinesAddedPerBugfix and TLinesChanged-
PerBugfix relate the number of LOC added or changed per transaction to the
number of bug fixes. Further, we use TBugfixLinesAdded, TBugfixLinesMod-
ified, and TBugfixLinesDeleted in relation to the linesAdded, linesModified,
and linesDeleted.

Time Constraints.

We are of the opinion that time constraints provide valuable input to our
predictions, since the demand for maintenance activities and new features
increases in the course of time. The avgDaysBetweenChanges represents the
average number of days between successive revisions and the avgDaysPerLine
expresses the number of days per line of code added or changed.
Several events in software projects caused by peaks and outliers have shown
interesting results [22]. The lastChangeMonth describes the month a file was
lastly edited. The features peakmonth and relativePeakMonth calculate the
location of the peak month—the month a file experienced most revisions
within the prediction period—with respect to the number of months the in-
spection period lasts. The number of changes occurring during the peak
month related to the number of overall changes is covered by the feature
peakMonthChanges. The bugfixVersusChangePeakMonth feature relates the
bug fix peak month to the peak month, based on overall changes.

Testing.

Testing metrics allow to estimate the remaining number of bugs. The feature

3.5 Data Mining Features 23

bugfixesDiscoveredByDeveloper measures the number of bug fixes found by
developers themselves and provides insight in the quality attentiveness of the
software team.

3.5.2 Refactoring Features

Size.

This category groups size measures such as refactoring lines of code: refactor-
ingLinesAdded, refactoringLinesModified, or refactoringLinesDeleted relative
to the appropriate adversary linesAdded, linesModified, and linesDeleted of a
file. The features linesAddPerRefactoring, linesModifiedPerRefactoring, and
linesDeletedPerRefactoring are interesting indicators, which measure the av-
erage lines of code for refactorings. Other features of this category relate bug
fix lines added, changed and deleted to refactoring lines added, changed and
deleted to compare the effort in both areas of software maintenance. refac-
toringLinesType defines, if there were more refactoringLinesAdded or refac-
toringLinesModified. We investigate the number of addingChanges, modify-
ingChanges, and deletingChanges related to refactoring per file to estimate
the work habits of the refactoring authors. Additionally, the feature refactor-
ingChangesType decides, if there were more adding or modifying refactoring
changes. This information helps to understand the influence of refactoring ac-
tivities on software defects. Furthermore, we regard refactoringLargeChanges
as double of the LOC of the average refactoring change size and refactoringS-
mallChanges as half of the average refactoring LOC. We expect that these
features are useful for datamining with respect to refactoring, too.

Team.

We estimate that the more refactoring authors are working on the various
refactoring changes the higher is the possibility that these changes produce
errors. We define two features refactoringAuthorCount—relates refactoring
authors to the number of refactorings—and refactoringAuthorSwitches, which
analyzes the work rotation within the group of refactoring authors. The fea-
ture refactoringVSrevisionAuthorSwitches investigates, whether the refactor-
ing author and the author, who made the last changes before that refactoring,
are the same.

Complexity of existing Solution.

As described in [33], software continuously becomes more complex. Refactor-

3.5 Data Mining Features 24

ings are more difficult to add as the software is more difficult to understand
and existing software parts have to support the same functionality on the
same level of quality. This applies especially to refactorings concerning the
inheritance hierarchy. To give consideration to that fact we inspect the num-
berRefactorings in the inspection period relative to the number of refactorings
during the whole life cycle of the file. The Feature refactoringsBefore relates
the number of refactorings before the inspection period to the total num-
ber of changes before the inspection period and refactoringFrequencyBefore
describes the number of refactorings occurred before the inspection period
related to the months the file already existed before. Both features give in-
sight in the development behavior, concerning refactoring. We expect that a
high refactoring rate improves software quality. The refactoringActivityRate
is defined as the number of refactorings in relation to the inspection period
in months and refactoringLinesActivityRate describes the number of lines of
code added and changed relative to the inspection period in months. Ad-
ditionally, linesActivityRateRefactorings describes the number of refactoring
lines relative to the age of the investigated file in months. The feature refac-
toringChanges relates the number of refactorings to the number of overall
changes in the inspection period and the feature bugfixRefactorings relates
the number of bug fixes to the number of refactorings. Both features are
valuable parameters to estimate the influence of refactoring on software de-
fects in the future.

Relational Aspects.

We also use the co-change coupling between files that are involved in refac-
toring to estimate their interrelationship. A feature of this category is refac-
toringCouplings, which measures the number of refactorings whereat other
files have been committed, too. We use the number of co-changed files dur-
ing refactoring relative to the number of refactorings as feature refactoring-
CoChangedFiles. To differentiate between refactorings with many, or only
few co-changed files the features LargeTransactions and SmallTransactions
contribute to the prediction. Refactoring features based on commit transac-
tions are related to size measures the same way as for single files: refactor-
ingTLinesAdded, refactoringTLinesModified, and refactoringTLinesDeleted
relative to transaction lines of code added, modified, and deleted. The
refactoringTLinesType describes if the transactions contained more refac-
toring lines added or lines modified. refactoringTChangesType is a coarser
grained feature that describes if this file was part of transactions with more

3.6 Classifiers — Data Mining Algorithms 25

adding refactorings or more modifying refactorings. The features refactor-
ingTLinesAdded, refactoringTLinesModified, and refactoringTLinesDeleted
are related to the number of refactorings. Additionally, the bug fix lines
added/changed/deleted and the refactoring lines added/changed/deleted are
related on transactional basis to get further input to our prediction.

Time Constraints.

We believe that time constraints are essential to estimate refactoring activi-
ties. Feature avgDaysBetweenRefactorings is defined as the average number
of days between refactorings. The number of days per refactoring line of
code added or changed is captured as avgDaysPerRefactoringLine. Peaks
and outliers have been shown to give interesting events in software projects
[22], which also applies to refactoring. For feature refactoringPeakMonth we
measure the location of the month, which contains most refactorings, within
the prediction period. Feature peakMonthRefactorings measures the num-
ber of refactorings happening during the refactoring peak month normalized
by the overall number of refactorings. Feature refactoringVersusChange-
PeakMonth relates the month during which most refactorings occurred to
the peak month, based on overall changes. Feature bugfixVersusRefactoring-
PeakMonth relates the peak months of bug fixes and refactorings to analyze,
whether most refactorings happen before or after most bug fixes.

3.6 Classifiers — Data Mining Algorithms

A number of data mining algorithms that make up certain classifiers are used
to generate prediction models [50]. These classifiers separate object-oriented
entities like classes into particular groups such as classes with or without bug
fixes.

• C4.5 One broadly accepted classification algorithm is C4.5. This algo-
rithm induces decision trees and is based on a series of improvements of
another classifier called ID3. This classifier compares one of the input
attributes against a threshold value and partitions the input space with
axis parallel splits. It includes improvements for dealing with numeric
attributes, missing values, and noisy data.

• LMT This is a data mining algorithm for building logistic model trees,
which are classification trees with logistic regression functions at the

3.6 Classifiers — Data Mining Algorithms 26

leaves. It uses validation to determine how many iterations to run,
when fitting the logistic regression function at a node of the decision
tree.

• Rip Repeated Incremental Pruning is a propositional rule learner. It
generates rules instead of decision trees like the other data mining tech-
niques. However, rules and trees are two very similar methods for repre-
senting machine knowledge. It uses a growth phase, where antecedents
are greedily added until the rule reaches 100% accuracy. Then in the
pruning phase, metrics are used to prune rules until the defined length
is reached.

• NNge In this case a nearest-neighbor algorithm is used to build rules
using non-nested generalized exemplars.

27

Figure 2: Data Extraction into MySQL Database

4 Methodology

4.1 Data Extraction into Database

Figure 2 depicts the workflow of data extraction of a given project into the
MySQL database:

4.1.1 Import Versioning Data and Computation of Commit Trans-

actions

After the versioning data (CVS) is read in from a before generated log file,
the CVS commit transactions have to be computed, since this information
got lost within the version management system.

4.1.2 Identifying Refactoring

The number of refactorings is determined with the help of information con-
tained in the modification reports of the versioning system. Thereby, we iden-

4.1 Data Extraction into Database 28

Project Modifications Refacs Other Changes FP FN
ArgoUML 100 12 88 0 2
JBoss Cache 100 22 78 1 3
Liferay Portal 100 10 90 0 1
Spring Framework 100 14 86 2 1
XDoclet 100 21 79 1 3

Table 1: Evaluation to classify Modifications as Refactorings

tify modifications to the source code that are refactorings. For generation of
refactoring features—many times based on number of refactorings—we do not
distinguish different types of refactorings (e.g. extract class/interface/method,
move class/field/method, pull up/push down field/method, etc.). These fea-
tures cover the fact that developers try to improve the quality of code. For
all analyzed projects, the commit messages provided by developers as part
of the modification reports are the basis to identify refactoring. We start our
identification by search for part of a word called ”refactor”. We analyzed the
results and discovered that the code is not a refactoring, when ”needs refac-
toring” is included in the commit message [50]. With several refinements we
used for each project 10-20 SQL queries to mark modifications as refactorings.
We used a statistical evaluation to estimate the number of refactorings, we
identified correctly with our method. Therefore, we took a random sample of
100 modifications for each project and checked, whether it was a refactoring
or not. Now we labeled this subset of revisions with our SQL queries and
proofed if the labels were correct. Table 1 shows high rates of correct labels
for each investigated project. For ArgoUML [52] and Liferay Portal [46] all
revisions (instances) labeled as refactoring actually were refactorings. This
applies to projects JBoss Cache [25] and XDoclet [15] with only one excep-
tion and to the spring framework [21] with two exceptions (false positive,
FP). For the Liferay Portal and the spring framework only one refactoring
was missed (false negative, FN), for ArgoUML two refactorings were missed,
and three refactorings were missed for the remaining projects in each case.
Hence, all projects show high identification rates, with a remarkable low false
positive rate.

4.1 Data Extraction into Database 29

4.1.3 Import Issue Data

The next step concerns the import of bugtracking data, which demands a
number of processing steps, in that we have no single log file at hand that
allows us to easily import that information. That is, why we use the export
functionality that is offered by the bugtracking system on the correspond-
ing homepages of each analyzed open source project. JBoss Cache, Liferay
Portal, Spring Framework, and XDoclet use JIRA as a bugtracking system.
ArgoUML uses an own bugtracking system to cover its issues. We are inter-
ested in issues that concern defects (bugs) with resolution fixed. After the
selection of that criteria and clicking on the submit button for that query,
a list of affected issues is generated. Figures 3–5 exemplarily illustrate that
process for projects ArgoUML and Liferay Portal.
All projects offer output files in different formats that represent the current
state of the bugtracking system. We decided to choose an excel output file
for the issues that matched our query. For each investigated project a lot of
project related information per issue is presented in several columns, there-
fore we have to focus on information important to us. This is done by a
further processing step that eliminates unnecessary information. Addition-
ally, we produce two tab-separated files from the data included in each excel
file and reorganize the sequence of columns to match our data schema. The
bugtracking data included in these files is imported into the corresponding
database tables of our MySQL database by appropriate SQL statements.

4.1.4 Connect Issues and Revisions

After executing these working steps we connect issues of the bugtracking
system—in our case already fixed bugs—and revisions of the versioning sys-
tem. We analyze the commit message of each revision to find out those
revisions that are related to a distinct issue. This is done by pattern match-
ing on the issue number. For project ArgoUML, this process was a bit tricky,
since no recurrent sequence of characters is used in combination with a given
issue number. So we searched for words like issue, number, bug, or task. For
the other projects the approach was straightforward, since a certain keyword
notifies that a revision is related to a certain issue: JBoss Cache (JBCACHE),
Liferay Portal (LEP), Spring Framework (SPR), and XDoclet (XDT). The
result of this step is stored in the appropriate database table.

4.1 Data Extraction into Database 30

Figure 3: ArgoUML - Issue Query

Figure 4: ArgoUML - Issue Result

4.1 Data Extraction into Database 31

Figure 5: Liferay Portal - Issue Query and Issue Result

4.1.5 Relate Accounts of Issues and Versioning

To cover interconnections between the bugtracking and versioning system
with respect to author related aspects, we relate accounts of versioning and
bugtracking systems. This is useful, because several times authors work on
the versioning system, as well as the bugtracking system.

4.1.6 Calculate Features

Finally, we generate refactoring and non-refactoring features on the basis of
this information to cover several aspects of the software development process.
These features are outlined in more detail under section Prediction Founda-
tion. Naturally, the target attribute—targetBugs—is also computed by that
working step. There are two possibilities to determine, whether a revision is
a bug fix, or not. On the one hand we search for issues related to that revi-
sion that are bug fixes, on the other hand we investigate the commit message
provided by developers as part of the modification reports. For the analysis
of the commit message we start our identification by search for part of a
word called ”fix”. We analyzed the results and discovered that the revision

4.2 Data Processing with Weka 32

Figure 6: Data Processing with Weka

is not a bug fix, when ”will fix” is included in the commit message. With
several refinements we used for each project 6-10 queries to automatically
detect bug fixes. Now the MySQL database holds the extracted information
in only one database table for each project under investigation.

4.2 Data Processing with Weka

Weka is a collection of machine learning algorithms for data mining tasks
and is used to generate prediction models for provided input data. The
algorithms can either be applied directly to a data set or called from your
own Java code. Weka contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It is also well-
suited for developing new machine learning schemes.
Figure 6 depicts the workflow of data processing of a given project with
Weka:

4.2.1 Data Import into Weka

First of all, Weka connects to our MySQL [11] database and retrieves the
necessary instances (files) by using appropriate SQL statements. In our case

4.2 Data Processing with Weka 33

Figure 7: Weka - SQL-Viewer - Import Data From a Database

we are interested in files with the ending ”.java”—our focus is on source
code files—and with at least one, out of the set of attributes lines added,
lines changed, and lines deleted, above zero—that are edited files (Figure 7).

4.2.2 Discretize Target Attribute

In the next step the filter ”weka.filters.unsupervised.attribute.Discretize” is
used to convert our target attribute targetBugs—number of bugs in the tar-
get period—from numeric into nominal data. This means that an distinct
instance is assigned to a group of instances, called bin that holds values of the
target attribute within the same range. We use two bins, one bin contains
files with no bugs and the other bin contains files with one or even more bugs
in the target period (Figure 8 and Figure 9). The bin ”No bugs” corresponds
to ’(-inf-0.5]’ and the bin ”One or more bugs” corresponds to ’(0.5-inf)’.

4.2.3 Conditioning Data Sets

Since, the number of instances in both bins is different, independent from
the investigated project and analyzed time frame (Figure 10 and Figure 11)

4.2 Data Processing with Weka 34

Figure 8: Weka - Filter - Choose the appropriate Filter

a further step of pre-processing is required. This affects mostly the bin for
buggy files, since, with only one exception—JBoss Cache October 2005—files
with no bug fixes in the target period form the majority of instances. The
bin, holding more instances is subdivided into sections that consist of the
same number of instances as in the smaller bin. Each time a different set
of files—a different section—of the total data set of the larger bin is used
together with the total number of files of the smaller bin. An example helps
to clarify our approach:
Project Liferay Portal with time frame June 2005 – April 2006 is made up
of 1816 classes that have been changed during the feature period. 1338
classes show no bug fixes and 478 classes show one or more bug fixes, in the
corresponding target period. The data at hand is processed to form three
different data sets, each holding 956 instances, whereby classes with bug fixes

4.2 Data Processing with Weka 35

Figure 9: Weka - Imported Data with Nominal Target Attribute ”target-
Bugs”

always remain the same. The first data set uses the topmost 478 classes of
bin ”No bugs”, the second data set uses the next 478 classes, and the third
data set uses the bottommost 478 classes. As one can see, 96 classes are
used two times, for data set two and data set three. This approach has to be
used, since the number of classes contained in the smaller bin is no integral
multiple of the number of classes contained in the larger bin. Figure 12 shows
the accordant result after conditioning for project Liferay Portal June 2005.
Sometimes the difference in size between bin ”No bugs” and bin ”One or
more bugs” exceeds the factor ten, which accordingly leads to more than ten
prediction models for that case to use all available information. The set of
instances in each processed data set is naturally smaller, than the total set
of instances, but the prediction qualitity of models based on that data rises.
Hence, a balanced data set that holds instances to the same extent of both

4.2 Data Processing with Weka 36

Figure 10: Distribution of Classes with or without Bug fixes for Projects
ArgoUML, JBoss Cache, and Liferay Portal

4.2 Data Processing with Weka 37

Figure 11: Distribution of Classes with or without Bug fixes for Projects
Spring Framework and XDoclet

4.2 Data Processing with Weka 38

Figure 12: Weka - The same Number of Instances for Bin ”No bugs” and
Bin ”One or more bugs”

categories, supports the prediction.
To return to our example, now three different models can be generated based
on those three data sets. A model made up of the same number of non-
error-prone classes (bin ”Bug fixes=0”) and error-prone classes (bin ”Bug
fixes>=1”) is called section model.

4.2.4 Prediction Model Generation and Result File Processing

After appliance of certain classifiers on the data a model is generated and
the output that provides statistical information about the quality of the

4.2 Data Processing with Weka 39

Figure 13: Weka - Classify - Output for Classifier J48

model, is stored in a result file. In the case of tree-generating classifiers—e.g.
J48, which uses classification algorithm C4.5—, the result file additionally
includes the appropriate model tree. Figure 13 shows the necessary settings
for classifier J48 to gain the corresponding result file for project Liferay Portal
June 2005 – section model 1, using the total set of features.
Now, let us focus on the assembly of the model tree for project Liferay Portal
June 2005 – section model 1, using refactoring features only (Figure 14).
Exemplarily, we show the upper part of the respective model tree. Generally,
each model tree consists of a certain sequence of rules, whereby the number
of rules correlates to the size of the tree. Next to each rule the number of
instances, which follows that rule, is listed in brackets. If a certain number
of instances has been misclassified that number is given after a slash.
Most of the time, the tree models are very nested, since they try to predict
the target attribute as good as possible. That is the reason, why many rules

4.3 Data Analysis 40

only affect a small subset of all investigated instances. Hence, we decided
only to consider rules, which apply to more than 5% of the total quantity of
instances. By conditioning the result file, rules concerning less instances are
cut out of the model trees. Figure 15 shows the situation after conditioning
for project Liferay Portal June 2005.
Based on certain threshold values for each decision rule the model trees de-
cide, whether the instances are assigned to the group of instances (classes)
with no bugs (bin ”No bugs”), or with one or more bugs (bin ”One or more
bugs”). For an appointed feature (attribute) a threshold value of 10% indi-
cates that e.g. 1 refactoring is related to 10 changes, or 2 refactorings are
related to 20 changes, and so on—in this case for feature refactoringChanges.
Sometimes an investigated attribute is ranked high in the tree hierarchy—for
example tree level 1 to 3—and sometimes it is applied after a series of other
attributes have been applied—for example tree level 8.

4.3 Data Analysis

Figure 16 shows the fundamental composition of our analysis. Each of the
four displayed blocs covers different approaches to analyze certain hypothe-
ses. Thereby, the three upper blocs are based on the quality of prediction.
This means that hypotheses related to these topics are founded on two hy-
potheses that address the quality of the generated prediction models.

4.3.1 Quality of Prediction

The prediction models are generated based on refactoring features (47), non-
refactoring features (62), and the total set of features (109) and different
classifiers, respectively classification algorithms, namely C4.5, LMT, JRip,
and NNge. We summarize the results for each investigated project in the
respective tables. The prediction quality is evaluated using three relevant
measures, namely Precision (Pre.), Recall (Rec.), and F-measure (F-m).

4.3.2 Association of Refactoring and other Software Activities

Each section model consists of an often large number of decision rules and
a certain feature is possibly used several times for different decisions. It is
necessary to state that a decision rule consists of at least one and at most of
two decisions. A decision rule with two decisions splits up the data set in two

4.3 Data Analysis 41

Decision tree C4.5
−−−−−−−−−−−−−−−−−−

Liferay Portal
 jun05_section1
 −−−−−−−−−−−−−−

=== Run information ===

Scheme: weka.classifiers.trees.J48 −C 0.25 −M 2
Instances: 956
Attributes: 48
Test mode: 10−fold cross−validation

=== Classifier model (full training set) ===

relRefactorings <= 0
| linesActivityRateRefactorings <= 0.03125: ’(−inf−0.5]’ (63.0/2.0)
| linesActivityRateRefactorings > 0.03125
| | bugfixVersusRefactoringLinesDel <= 4
| | | refactoringChanges <= 0.333333
| | | | refactoringLinesChange <= 0.125
| | | | | linesActivityRateRefactorings <= 0.2
| | | | | | bugfixRefactorings <= 0: ’(−inf−0.5]’ (7.0)
| | | | | | bugfixRefactorings > 0
| | | | | | | refactoringFrequencyBefore <= 0.045455: ’(−inf−0.5]’ (9.0/1.0)
| | | | | | | refactoringFrequencyBefore > 0.045455: ’(0.5−inf)’ (5.0)
| | | | | linesActivityRateRefactorings > 0.2
| | | | | | linesActivityRateRefactorings <= 0.4: ’(0.5−inf)’ (55.0/20.0)
| | | | | | linesActivityRateRefactorings > 0.4: ’(−inf−0.5]’ (6.0/1.0)
| | | | refactoringLinesChange > 0.125
| | | | | refactoringVersusChangePeakMonth <= 0.166667: ’(0.5−inf)’ (4.0/1.0)
| | | | | refactoringVersusChangePeakMonth > 0.166667
| | | | | | TBugfixVersusTRefactoringLinesDel <= 106: ’(−inf−0.5]’ (51.0/4.0)
| | | | | | TBugfixVersusTRefactoringLinesDel > 106
| | | | | | | refactoringTLinesAdd <= 0.000382
| | | | | | | | refactoringTLinesDel <= 0.001862: ’(−inf−0.5]’ (4.0)
| | | | | | | | refactoringTLinesDel > 0.001862: ’(0.5−inf)’ (2.0)
| | | | | | | refactoringTLinesAdd > 0.000382: ’(0.5−inf)’ (2.0)
| | | refactoringChanges > 0.333333
| | | | ...

Number of Leaves : 55
Size of the tree : 109

Figure 14: Model Tree based on Classification Algorithm C4.5 for Project
Liferay Portal - June 2005 - Section Model 1 — Before conditioning

4.3 Data Analysis 42

Figure 15: Model Tree based on Classification Algorithm C4.5 for Project
Liferay Portal - June 2005 - Section Model 1 — After conditioning

Figure 16: Data Analysis

4.3 Data Analysis 43

subsets mostly not of the same size. A decision rule with only one decision
also further restricts the number of instances, but does not offer an option
for that chain of rules at hand—with the actual feature as last element of the
chain. A chain of decision rules that assigns a set of instances to a distinct
bin (”No bugs”, or ”One or more bugs”) is called model sequence.
We analyze refactoring features, which relate refactoring properties to other
software properties, or more generic to overall change properties. Thereby, we
investigate the number of occurrences of refactoring features of interest in de-
cision rules of the generated section models. Additionally, we proof, whether
classes that are assigned to bin ”No bugs” or bin ”One or more bugs” hold
values for the considered feature equal or below, or above a calculated thresh-
old value. Based on these results we discover coherences between refactoring
and other software characteristics that affect software defect appearance.

4.3.3 Subsets of important Refactoring Features

We analyze the frequency of occurrence of refactoring features in decision
rules of the generated models to find out those, most significant for predict-
ing future bug fixes. Decision rules of features that occur on the first three
tree levels are rated higher, since their influence on the prediction is stronger.
Therefore, we evaluated the appearance of refactoring features within deci-
sion rules on the first three tree levels. Those features most important to
the prediction models of each singular project, or to the prediction models
of several different projects, are discovered.

4.3.4 Influence of Author related Activities

We analyze the number of decisions in section models based on author related
features only. Tables summarize for each author related feature the number
of decisions that use threshold values within a certain range. Again, classes
are attached to the bin ”No bugs”, or the bin ”One or more bugs”, if the
respective feature holds a value equal or below, or above a certain threshold
value. Some of the presented tables include fields with no actual data. An
table entry ”— (—)” means that there are no decision rules that fulfill that
kind of relational interrelationship.

44

5 Evaluation

5.1 Evaluation of Prediction Models

In our analysis of prediction models for bug fixes we use precision, recall,
and f−measure—three essential markers characterizing model performance.
These evaluation measures are defined based on formulas regarding different
rates such as true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). True positives describe the predictions that are
correctly classified. False positives are the ones that are classified to be in
a particular group (e.g. number bug fixes = 0), but the classification is
wrong. The number of elements that are correctly classified not to belong to
the given group form the true negatives. False negatives are elements that
belong to the group of interest, but are erroneously classified to be outside
of the group [50]. (see Table 2)

• Precision describes the percentage of correctly classified entities.

precision =
TP

TP + FP
· 100% =

predicted correct

total predicted

The higher the precision the more predictions are correct.

• Recall describes the percentage of entities classified from the group of
positive entities.

recall =
TP

TP + FN
· 100% =

predicted correct

total positive

The higher the recall the more elements can be found.

• F-measure is a dimensionless measure combining precision and recall
through the given formula.

F − measure =
2 · TP

2 · TP + FP + FN
= · · ·

Predicted
yes no

Actual yes true positive false negative
no false positive true negative

Table 2: Outcome of prediction of two groups

5.2 Open Source Projects 45

· · · =
2 × recall × precision

recall + precision

We use the F-measure to compare the performance of our prediction
models. However, a high value for a certain group (e.g. classes with bug
fixes) is not a strict indicator for a good model. Instead, the measures
of all possible groups have to be regarded.

What happens if the prediction model mismatches the groups? Do false
positives outweigh false negatives? We are of the opinion that false negatives
are worse, because essential bug fixes are not predicted correctly, whereas
false positives anticipate bug fixes, which will never take place.

5.2 Open Source Projects

In line with the thesis the following list of open source projects is investigated:

• ArgoUML is an UML modeling tool, which includes support for all
standard UML 1.4 diagrams and runs on any Java platform.

Project Start: January 1998

Project Size1 (classes): 1555

Team Members: > 32

• JBoss Cache allows to cache frequently accessed Java objects in order
to improve the performance of applications. This is done by elimination
of unnecessary database access, which decreases network traffic and
increases scalability.

Project Start: November 2003

Project Size (classes): 222

Team Members: > 59

1The project size of all projects is determined on the basis of the project status at the

beginning of December 2006.

5.3 Results 46

• Liferay Portal is a framework, which offers integrated Web publishing
and content management, service-oriented architecture, and compati-
bility with many IT infrastructures.

Project Start: March 2002

Project Size (classes): 3124

Team Members: 76

• Spring Framework is a layered application framework, which eases the
use of J2EE, supports the use of interfaces and object-oriented design,
and enhances testability.

Project Start: February 2003

Project Size (classes): 4492

Team Members: 35

• XDoclet is a code generation engine, which enables attribute-oriented
programming for java by adding meta data (JavaDoc tags) to the source
code. These information is used to generate artifacts such as XML
descriptors or source code.

Project Start: July 2001

Project Size (classes): 690

Team Members: 33

5.3 Results

We analyze three different time frames for each project under investigation
to underline our findings (Table 3). Every time frame consists of a feature
period and a target period and extends over one year. For example the first
listed time frame of project ArgoUML uses a feature period from june 2002
till november 2002 and a target period from december 2002 till may 2003.
Additionally, the number of classes for each time frame is given. Our example

5.3 Results 47

Project Feature Period Target Period Classes

ArgoUML Jun.02 - Nov.02 Dec.02 - May.03 847
Jun.03 - Nov.03 Dec.03 - May.04 1370
Jun.04 - Nov.04 Dec.04 - May.05 1356

Cache Jul.05 - Dec.05 Jan.06 - Jun.06 431
Oct.05 - Mar.06 Apr.06 - Sep.06 330
Jan.06 - Jun.06 Jul.06 - Dec.06 571

Liferay Feb.05 - Jul.05 Aug.05 - Jan.06 2782
Apr.05 - Sep.05 Oct.05 - Mar.06 3453
Jun.05 - Nov.05 Dec.05 - May.06 1816

Spring Dec.03 - May.04 Jun.04 - Nov.04 1460
Dec.04 - May.05 Jun.05 - Nov.05 2259
Dec.05 - May.06 Jun.06 - Nov.06 2201

XDoclet Oct.01 - Mar.02 Apr.02 - Sep.02 283
Apr.02 - Sep.02 Oct.02 - Mar.03 555
Aug.02 - Jan.03 Feb.03 - Jul.03 366

Table 3: Total Number of Classes for analyzed Periods by Project

time frame of project ArgoUML affects 847 classes that have been altered in
the feature period. This set of classes shows bug fixes, or not in the target
period, whereby classes with no bug fixes outweigh classes with one or more
bug fixes, most of the time. There is only one exception, namely time frame
JBoss Cache with feature period starting from october 2005.
Table 4 is built-on very similar to Table 3, but however there are some im-
portant differences. The open source projects together with the appropriate
time frames remain the same. This time the number of section models for
each analyzed time frame, together with the number of classes that are used
to generate each section model of that category, is shown. Let us take a look
at the same example as before—ArgoUML with feature period starting from
june 2002. In this case we can generate two section models out of the total
set of classes. Thereby, each section model is based on a subset of classes
(664) from the total set of classes (847). Each subset consists of the same
number of classes with and without bug fixes. In our example 332 classes
without bug fixes and 332 classes with bug fixes in the target period are the
instances our prediction models are based on.

5.3 Results 48

Number Classes
Project Feature Period Target Period of Section per Section

Models Model
ArgoUML Jun.02 - Nov.02 Dec.02 - May.03 2 664

Jun.03 - Nov.03 Dec.03 - May.04 10 244
Jun.04 - Nov.04 Dec.04 - May.05 5 496

Cache Jul.05 - Dec.05 Jan.06 - Jun.06 3 256
Oct.05 - Mar.06 Apr.06 - Sep.06 2 250
Jan.06 - Jun.06 Jul.06 - Dec.06 2 502

Liferay Feb.05 - Jul.05 Aug.05 - Jan.06 8 628
Apr.05 - Sep.05 Oct.05 - Mar.06 7 896
Jun.05 - Nov.05 Dec.05 - May.06 3 956

Spring Dec.03 - May.04 Jun.04 - Nov.04 11 242
Dec.04 - May.05 Jun.05 - Nov.05 17 252
Dec.05 - May.06 Jun.06 - Nov.06 8 516

XDoclet Oct.01 - Mar.02 Apr.02 - Sep.02 4 110
Apr.02 - Sep.02 Oct.02 - Mar.03 5 206
Aug.02 - Jan.03 Feb.03 - Jul.03 3 198

Table 4: Number of Section Models for analyzed Periods and Subset of
Classes for each Section Model by Project (each subset consists of the same
number of classes with and without bug fixes)

Models generated from refactoring features (47), non-refactoring features
(62), and the set union of both feature groups (109) are used to discuss
the first two hypotheses. Both hypotheses use classifier, respectively classifi-
cation algorithm C4.5, LMT, JRip, and NNge.
For hypotheses 3–9 the analyzed models are solely based on classifier J48,
which uses classification algorithm C4.5. On the basis of models generated
from refactoring features only, we investigate hypotheses 3–5. This set of 47
refactoring features can give us a lot of information to reveal coherences
within the generated models. The feature refactoringChanges and other
selected features are discussed by hypothesis 3. For the analysis of hypotheses
4 and 5 two tables outline later on the used refactoring features together with
information concerning the occurrence in decision rules of section models for
the projects under investigation.
Models generated from author related features—chosen from the set of refac-

5.3 Results 49

toring features, as well as non-refactoring features—are used to analyze hy-
potheses 6–9. This set of 8 author related features suffices to build models
with good values for recall and precision. Therefore, the models can be con-
sidered as a good basis to investigate the interconnection between author
related information and future bug fixes.
Table 5 enumerates the author related features we use, together with infor-
mation concerning the occurrence in decision rules of section models for each
analyzed project. The top three author related features of each open source
project are marked bold to find out those that are of major importance. For
projects Liferay Portal and XDoclet four values are bolded, since two features
are third-placed. To tackle shortage of space within the table we abbreviate
the project names: ArgoUML (A.), JBoss Cache (C.), Liferay Portal (L.),
Spring Framework (S.), and XDoclet (X.).

Author related Feature A. C. L. S. X.

authorCount 9 16 56 67 19

authorSwitches 3 19 15 31 9

peopleSwitches 6 23 6 29 18

bugfixAuthorCount 2 6 26 5 3
bugfixAuthorSwitches 8 13 11 19 8
refactoringAuthorCount 3 8 15 10 9

refactoringAuthorSwitches 3 12 13 18 7
refactoringVSrevisionAuthorSwitches 3 7 — 4 1

Table 5: Number of Decision Rules for Features in Models based on Author
related Features (investigated projects abbreviated)

5.3.1 Do refactoring related features and non-refactoring related

features lead to high quality prediction models?

We decided to exemplarily display the results for section model 1 of two dif-
ferent time periods per investigated project, whereby four different classifiers
are used to generate the section models for each project (Tables 6– 15). Even
though, this is only a small sample of the available prediction models, the
results of the chosen models are representative for all generated models with
respect to model quality.

5.3 Results 50

Project Classifier Bug fix = 0 Bug fix >= 1
ArgoUML (Algo- Prec. Rec. F-m Prec. Rec. F-m

Jun.02 rithm)
C4.5 0.716 0.720 0.718 0.718 0.714 0.716

Refac- LMT 0.711 0.756 0.733 0.740 0.693 0.715
features Rip 0.716 0.729 0.722 0.724 0.711 0.717

NNge 0.735 0.726 0.730 0.729 0.738 0.734
C4.5 0.716 0.735 0.725 0.728 0.708 0.718

Non-Refac- LMT 0.717 0.777 0.746 0.757 0.693 0.723
features Rip 0.736 0.747 0.741 0.743 0.732 0.737

NNge 0.763 0.687 0.723 0.715 0.786 0.749
C4.5 0.713 0.780 0.745 0.757 0.687 0.720

Total- LMT 0.705 0.798 0.749 0.767 0.666 0.713
features Rip 0.734 0.732 0.733 0.733 0.735 0.734

NNge 0.760 0.705 0.731 0.725 0.777 0.750

Table 6: Predicting non Bug fix prone vs Bug fix prone Classes for Project
ArgoUML using Time Frame June 2002 – May 2003

Project Classifier Bug fix = 0 Bug fix >= 1
ArgoUML (Algo- Prec. Rec. F-m Prec. Rec. F-m

Jun.03 rithm)
C4.5 0.794 0.852 0.822 0.841 0.779 0.809

Refac- LMT 0.777 0.828 0.802 0.816 0.762 0.788
features Rip 0.731 0.779 0.754 0.763 0.713 0.737

NNge 0.794 0.820 0.806 0.814 0.787 0.800
C4.5 0.758 0.795 0.776 0.784 0.746 0.765

Non-Refac- LMT 0.778 0.861 0.817 0.844 0.754 0.797
features Rip 0.777 0.828 0.802 0.816 0.762 0.788

NNge 0.762 0.762 0.762 0.762 0.762 0.762
C4.5 0.766 0.779 0.772 0.775 0.762 0.769

Total- LMT 0.743 0.828 0.783 0.806 0.713 0.757
features Rip 0.764 0.795 0.779 0.786 0.754 0.770

NNge 0.765 0.852 0.806 0.833 0.738 0.783

Table 7: Predicting non Bug fix prone vs Bug fix prone Classes for Project
ArgoUML using Time Frame June 2003 – May 2004

5.3 Results 51

Project Classifier Bug fix = 0 Bug fix >= 1
Cache (Algo- Prec. Rec. F-m Prec. Rec. F-m
Jul.05 rithm)

C4.5 0.744 0.750 0.747 0.748 0.742 0.745
Refac- LMT 0.681 0.734 0.707 0.712 0.656 0.683
features Rip 0.672 0.719 0.694 0.697 0.648 0.672

NNge 0.701 0.586 0.638 0.644 0.750 0.693
C4.5 0.735 0.781 0.758 0.767 0.719 0.742

Non-Refac- LMT 0.767 0.773 0.770 0.772 0.766 0.769
features Rip 0.708 0.797 0.750 0.768 0.672 0.717

NNge 0.741 0.672 0.705 0.700 0.766 0.731
C4.5 0.700 0.711 0.705 0.706 0.695 0.701

Total- LMT 0.746 0.758 0.752 0.754 0.742 0.748
features Rip 0.693 0.688 0.690 0.690 0.695 0.693

NNge 0.695 0.711 0.703 0.704 0.688 0.696

Table 8: Predicting non Bug fix prone vs Bug fix prone Classes for Project
JBoss Cache using Time Frame July 2005 – June 2006

Project Classifier Bug fix = 0 Bug fix >= 1
Cache (Algo- Prec. Rec. F-m Prec. Rec. F-m
Oct.05 rithm)

C4.5 0.754 0.688 0.720 0.713 0.776 0.743
Refac- LMT 0.758 0.728 0.743 0.738 0.768 0.753
features Rip 0.651 0.672 0.661 0.661 0.640 0.650

NNge 0.766 0.656 0.707 0.699 0.800 0.746
C4.5 0.620 0.640 0.630 0.628 0.608 0.618

Non-Refac- LMT 0.690 0.712 0.701 0.702 0.680 0.691
features Rip 0.641 0.672 0.656 0.655 0.624 0.639

NNge 0.702 0.584 0.638 0.644 0.752 0.694
C4.5 0.710 0.744 0.727 0.731 0.696 0.713

Total- LMT 0.689 0.672 0.680 0.680 0.696 0.688
features Rip 0.640 0.696 0.667 0.667 0.608 0.636

NNge 0.711 0.648 0.678 0.676 0.736 0.705

Table 9: Predicting non Bug fix prone vs Bug fix prone Classes for Project
JBoss Cache using Time Frame October 2005 – September 2006

5.3 Results 52

Project Classifier Bug fix = 0 Bug fix >= 1
Liferay (Algo- Prec. Rec. F-m Prec. Rec. F-m
Feb.05 rithm)

C4.5 0.927 0.924 0.925 0.924 0.927 0.925
Refac- LMT 0.915 0.895 0.905 0.897 0.917 0.907
features Rip 0.923 0.911 0.917 0.912 0.924 0.918

NNge 0.949 0.882 0.914 0.890 0.952 0.920
C4.5 0.925 0.908 0.916 0.909 0.927 0.918

Non-Refac- LMT 0.905 0.879 0.892 0.882 0.908 0.895
features Rip 0.968 0.879 0.922 0.889 0.971 0.928

NNge 0.919 0.863 0.890 0.871 0.924 0.896
C4.5 0.941 0.920 0.931 0.922 0.943 0.932

Total- LMT 0.908 0.911 0.909 0.911 0.908 0.909
features Rip 0.956 0.901 0.928 0.907 0.959 0.932

NNge 0.941 0.863 0.900 0.874 0.946 0.908

Table 10: Predicting non Bug fix prone vs Bug fix prone Classes for Project
Liferay Portal using Time Frame February 2005 – January 2006

Project Classifier Bug fix = 0 Bug fix >= 1
Liferay (Algo- Prec. Rec. F-m Prec. Rec. F-m
Apr.05 rithm)

C4.5 0.932 0.951 0.941 0.950 0.931 0.940
Refac- LMT 0.923 0.942 0.933 0.941 0.922 0.931
features Rip 0.931 0.902 0.916 0.905 0.933 0.919

NNge 0.944 0.908 0.926 0.912 0.946 0.929
C4.5 0.931 0.940 0.936 0.939 0.931 0.935

Non-Refac- LMT 0.930 0.922 0.926 0.923 0.931 0.927
features Rip 0.939 0.895 0.917 0.900 0.942 0.920

NNge 0.922 0.902 0.912 0.904 0.924 0.914
C4.5 0.948 0.929 0.938 0.930 0.949 0.939

Total- LMT 0.942 0.951 0.947 0.950 0.942 0.946
features Rip 0.951 0.913 0.932 0.916 0.953 0.934

NNge 0.948 0.893 0.920 0.899 0.951 0.924

Table 11: Predicting non Bug fix prone vs Bug fix prone Classes for Project
Liferay Portal using Time Frame April 2005 – March 2006

5.3 Results 53

Project Classifier Bug fix = 0 Bug fix >= 1
Spring (Algo- Prec. Rec. F-m Prec. Rec. F-m
Dec.03 rithm)

C4.5 0.836 0.884 0.859 0.877 0.826 0.851
Refac- LMT 0.857 0.793 0.824 0.808 0.868 0.837
features Rip 0.809 0.909 0.856 0.896 0.785 0.837

NNge 0.849 0.835 0.842 0.837 0.851 0.844
C4.5 0.898 0.876 0.887 0.879 0.901 0.890

Non-Refac- LMT 0.854 0.967 0.907 0.962 0.835 0.894
features Rip 0.868 0.975 0.918 0.972 0.851 0.907

NNge 0.884 0.884 0.884 0.884 0.884 0.884
C4.5 0.918 0.926 0.922 0.925 0.917 0.921

Total- LMT 0.893 0.967 0.929 0.964 0.884 0.922
features Rip 0.864 0.942 0.901 0.936 0.851 0.892

NNge 0.899 0.884 0.892 0.886 0.901 0.893

Table 12: Predicting non Bug fix prone vs Bug fix prone Classes for Project
Spring Framework using Time Frame December 2003 – November 2004

Project Classifier Bug fix = 0 Bug fix >= 1
Spring (Algo- Prec. Rec. F-m Prec. Rec. F-m
Dec.04 rithm)

C4.5 0.872 0.921 0.896 0.916 0.865 0.890
Refac- LMT 0.891 0.905 0.898 0.903 0.889 0.896
features Rip 0.880 0.929 0.903 0.924 0.873 0.898

NNge 0.869 0.841 0.855 0.846 0.873 0.859
C4.5 0.937 0.937 0.937 0.937 0.937 0.937

Non-Refac- LMT 0.917 0.968 0.942 0.966 0.913 0.939
features Rip 0.886 0.929 0.907 0.925 0.881 0.902

NNge 0.919 0.905 0.912 0.906 0.921 0.913
C4.5 0.937 0.944 0.941 0.944 0.937 0.940

Total- LMT 0.904 0.976 0.939 0.974 0.897 0.934
features Rip 0.889 0.952 0.920 0.949 0.881 0.914

NNge 0.911 0.897 0.904 0.898 0.913 0.906

Table 13: Predicting non Bug fix prone vs Bug fix prone Classes for Project
Spring Framework using Time Frame December 2004 – November 2005

5.3 Results 54

Project Classifier Bug fix = 0 Bug fix >= 1
XDoclet (Algo- Prec. Rec. F-m Prec. Rec. F-m
Apr.02 rithm)

C4.5 0.790 0.806 0.798 0.802 0.786 0.794
Refac- LMT 0.768 0.835 0.800 0.819 0.748 0.782
features Rip 0.812 0.796 0.804 0.800 0.816 0.808

NNge 0.847 0.806 0.826 0.815 0.854 0.834
C4.5 0.817 0.913 0.862 0.901 0.796 0.845

Non-Refac- LMT 0.891 0.874 0.882 0.876 0.893 0.885
features Rip 0.863 0.854 0.859 0.856 0.864 0.860

NNge 0.920 0.777 0.842 0.807 0.932 0.865
C4.5 0.893 0.893 0.893 0.893 0.893 0.893

Total- LMT 0.904 0.913 0.908 0.912 0.903 0.907
features Rip 0.819 0.835 0.827 0.832 0.816 0.824

NNge 0.892 0.806 0.847 0.823 0.903 0.861

Table 14: Predicting non Bug fix prone vs Bug fix prone Classes for Project
XDoclet using Time Frame April 2002 – March 2003

Project Classifier Bug fix = 0 Bug fix >= 1
XDoclet (Algo- Prec. Rec. F-m Prec. Rec. F-m
Aug.02 rithm)

C4.5 0.796 0.828 0.812 0.821 0.788 0.804
Refac- LMT 0.765 0.788 0.776 0.781 0.758 0.769
features Rip 0.742 0.727 0.735 0.733 0.747 0.740

NNge 0.745 0.737 0.741 0.740 0.747 0.744
C4.5 0.750 0.818 0.783 0.800 0.727 0.762

Non-Refac- LMT 0.794 0.818 0.806 0.813 0.788 0.800
features Rip 0.723 0.737 0.730 0.732 0.717 0.724

NNge 0.842 0.646 0.731 0.713 0.879 0.787
C4.5 0.778 0.778 0.778 0.778 0.778 0.778

Total- LMT 0.808 0.808 0.808 0.808 0.808 0.808
features Rip 0.793 0.737 0.764 0.755 0.808 0.780

NNge 0.805 0.707 0.753 0.739 0.828 0.781

Table 15: Predicting non Bug fix prone vs Bug fix prone Classes for Project
XDoclet using Time Frame August 2002 – July 2003

5.3 Results 55

Let us take a closer look at Table 6 to discuss the presented information.
The results for each set of features are presented using four lines, one line for
each classification algorithm. In other words, the first four lines are based
on the same set of classes, but lead to four unique section models, since
different classifiers are used. Each line provides statistical information about
model quality to estimate, to what extent the considered classes are assigned
correctly. The first line has to be interpreted in the following way:
Section model 1 for project ArgoUML using time frame June 2002 – May 2003
is generated by the usage of refactoring features and classification algorithm
C4.5. Thereby, classes with or without bug fixes are assigned correctly with
certain values of precision, recall, and f-measure. Classes with no bugs in
the target period are assigned correctly to bin ”No bugs” with a precision of
0.716, a recall of 0.720, and a f-measure of 0.718. Classes with one or more
bugs in the target period are assigned correctly to bin ”One or more bugs”
with a precision of 0.718, a recall of 0.714, and a f-measure of 0.716.

• ArgoUML

Table 6 and Table 7 show a F-measure, which ranges from 0.718-0.822
(non-error prone) and 0.715-0.809 (error prone) for refactoring features
and 0.723-0.817 (non-error prone) and 0.718-0.797 (error prone) for
non-refactoring features.

• JBoss Cache

Table 8 and Table 9 show a F-measure, which ranges from 0.638-0.747
(non-error prone) and 0.650-0.753 (error prone) for refactoring features
and 0.630-0.770 (non-error prone) and 0.618-0.769 (error prone) for
non-refactoring features.

• Liferay Portal

Table 10 and Table 11 show a F-measure, which ranges from 0.905-0.941
(non-error prone) and 0.907-0.940 (error prone) for refactoring features
and 0.890-0.936 (non-error prone) and 0.895-0.935 (error prone) for
non-refactoring features.

• Spring Framework

Table 12 and Table 13 show a F-measure, which ranges from 0.824-0.903
(non-error prone) and 0.837-0.898 (error prone) for refactoring features

5.3 Results 56

and 0.884-0.942 (non-error prone) and 0.890-0.939 (error prone) for
non-refactoring features.

• XDoclet

Table 14 and Table 15 show a F-measure, which ranges from 0.735-0.826
(non-error prone) and 0.740-0.834 (error prone) for refactoring features
and 0.730-0.882 (non-error prone) and 0.724-0.885 (error prone) for
non-refactoring features.

We are of the opinion that all models of our investigated projects show suf-
ficient good prediction results to form a basis for the further analysis. Es-
pecially, the distribution between both bins (classes with and without bug
fixes) is satisfying. Liferay Portal and Spring Framework exhibit extraordi-
nary good prediction results. The maximum value of F-measure is 0.941 for
Liferay and 0.942 for Spring.
These results represent a good basis to interpret the composition of the model
trees, since concrete sequences of the decision rules lead to promising predic-
tion results.

Thus, we conclude:

Both, refactoring related features and non-refactoring related features lead
to high quality prediction models.

5.3.2 Is the quality of prediction models improved by combining

features of both groups?

This is another question of great importance to find out interrelations be-
tween both feature groups. We expect no great differences, since the predic-
tion quality is already on a high level, although small improvements seem to
be reachable.

• ArgoUML

Table 6 and Table 7 show a F-measure, which ranges from 0.731-0.806
(non-error prone) and 0.713-0.783 (error prone) for the total set of
refactoring and non-refactoring features.

5.3 Results 57

• JBoss Cache

Table 8 and Table 9 show a F-measure, which ranges from 0.667-0.752
(non-error prone) and 0.636-0.748 (error prone) for the total set of
refactoring and non-refactoring features.

• Liferay Portal

Table 10 and Table 11 show a F-measure, which ranges from 0.900-
0.947 (non-error prone) and 0.908-0.946 (error prone) for the total set
of refactoring and non-refactoring features.

• Spring Framework

Table 12 and Table 13 show a F-measure, which ranges from 0.892-
0.941 (non-error prone) and 0.892-0.940 (error prone) for the total set
of refactoring and non-refactoring features.

• XDoclet

Table 14 and Table 15 show a F-measure, which ranges from 0.753-
0.908 (non-error prone) and 0.778-0.907 (error prone) for the total set
of refactoring and non-refactoring features.

The prediction models of all projects generated from the total set of features,
display very similar results in relation to the models based on features of each
group, separately. Some prediction models based on all features present a
slight improvement, in comparison to models, consisting only of, either refac-
toring, or non-refactoring features. For example Liferay Portal shows values
for f-measure based on the total set of features often above the values for
f-measure for models based on refactoring, or non-refactoring features only.

Thus, we conclude:

The quality of prediction models is generally kept constant and sometimes
slightly improved by combining refactoring and non-refactoring features.

5.3 Results 58

5.3.3 Should refactoring be associated with other software activ-

ities in a certain way to reduce software defect appearance?

We investigate section models of all projects under investigation that contain
the refactoring feature of interest. Tables for the selected features show the
tree level where that feature is used, the particular threshold value, and the
percentage of classes assigned to a certain bin by that rule, if a value below
or above the threshold value is used.
To examine this hypothesis in detail, it is necessary to analyze refactoring
features, which relate refactoring properties to other software properties, or
more generic to overall change properties—overall changes can be different
kinds of software events, naturally including refactorings and bug fixes. A
set of 16 refactoring features out of the total quantity of refactoring features
(47) fulfills that condition and can give us valuable information to reveal
coherences:

• refactoringLinesAdd

• refactoringLinesChange

• refactoringLinesDel

• refactoringTLinesAdd

• refactoringTLinesChange

• refactoringTLinesDel

• bugfixVersusRefactoringLinesAdd

• bugfixVersusRefactoringLinesChange

• bugfixVersusRefactoringLinesDel

• TBugfixVersusTRefactoringLinesAdd

• TBugfixVersusTRefactoringLinesChange

• TBugfixVersusTRefactoringLinesDel

• bugfixVersusRefactoringPeakMonth

• refactoringVersusChangePeakMonth

5.3 Results 59

• bugfixRefactorings

• refactoringChanges

We concentrate on the analysis of six out of the total quantity of rele-
vant refactoring features (16), namely refactoringChanges, bugfixRefactor-
ings, bugfixVersusRefactoringLinesChange, TBugfixVersusTRefactoringLines-
Change, bugfixVersusRefactoringPeakMonth, and refactoringVersusChange-
PeakMonth. These features are interesting indicators for the occurrence of
future bug fixes.
Some of the tree sequences—including the feature refactoringChanges—for
all investigated open source projects are outlined as examples (Figure 17– 18).
Let us take a closer look at Figure 17 to better understand the coherences.
The first example shows data of section model 2 for project ArgoUML using
time frame June 2002 — May 2003. Feature refactoringChanges appears
three times in the presented model sequences. Hereby, the first model sequence
consists of only one decision. The decision rule at the first tree level includes
two decisions (Lines 1 and 2) and the decision rule at the sixth tree level is
made up of only one decision (Line 7). The first line means that 61 instances
(classes) of 664 instances (see Table 4, first line, column ”Classes per section
model”) are assigned to bin ”One or more bugs”, whereby only one class
is not correctly assigned. The result of the division of 60 by 664 (9.0%) is
recorded in Table 16 at the third line in column ”<=” of ”Bug fix>=1” and
has the following meaning: 9.0% of classes show bug fixes in the target period,
if they hold values equal or below 13% for feature refactoringChanges in the
corresponding feature period. As a second example we discuss the second
decision rule at tree level six that is part of a larger model sequence. This
time 72 classes are assigned to bin ”No bugs”, with 11 classes misclassified.
Now, 9.2% of classes show no bug fixes in the target period, if a threshold
value of 25% for feature refactoringChanges is overrun. The corresponding
entry is made in Table 16 at the fourth line in column ”>” of ”Bug fix=0”.

refactoringChanges Tables 16-18 list the models for each analyzed project,
where the feature refactoringChanges appears. A threshold value of 1 means
that every change in the feature period has been a refactoring, since refac-
toring is also a certain change type.
Classes that are assigned to bin ”No bugs” hold values for refactoringChanges
equal or below a given threshold value 15 times, and 54 times above a certain

5.3 Results 60

Decision tree C4.5
−−−−−−−−−−−−−−−−−−

ArgoUML
 jun02_section2
 −−−−−−−−−−−−−−
refactoringChanges <= 0.125: ’(0.5−inf)’ (61.0/1.0)
refactoringChanges > 0.125
|refactoringLinesChangePerRefactoring <= 3
| | bugfixVersusRefactoringLinesAdd <= 3
| | | TBugfixVersusTRefactoringLinesAdd <= 8
| | | | TBugfixVersusTRefactoringLinesChange <= 4
| | | | | refactoringChanges > 0.25
| | | | | | refactoringFrequencyBefore <= 0.058824
| | | | | | | refactoringChangesType <= 0
| | | | | | | | refactoringTLinesType > −97
| | | | | | | | | refactoringVersusChangePeakMonth > 0.2
| | | | | | | | | | refactoringFrequencyBefore <= 0
| | | | | | | | | | | TBugfixVersusTRefactoringLinesAdd <= 0.018868
| | | | | | | | | | | | refactoringLinesChange <= 0.75: ’(−inf−0.5]’ (72.0/11.0)

JBoss Cache
 jan06_section1
 −−−−−−−−−−−−−−
refactoringPeakMonth > 0.833333
| refactoringChanges > 0.4
| | TBugfixVersusTRefactoringLinesAdd > 0.002488: ’(−inf−0.5]’ (40.0/1.0)

Liferay Portal
 jun05_section1
 −−−−−−−−−−−−−−
relRefactorings <= 0
| linesActivityRateRefactorings <= 0.03125: ’(−inf−0.5]’ (63.0/2.0)
| linesActivityRateRefactorings > 0.03125
| | bugfixVersusRefactoringLinesDel <= 4
| | | refactoringChanges <= 0.333333
| | | | refactoringLinesChange > 0.125
| | | | | refactoringVersusChangePeakMonth > 0.166667
| | | | | | TBugfixVersusTRefactoringLinesDel <= 106: ’(−inf−0.5]’ (51.0/4.0)
| | | refactoringChanges > 0.333333

Figure 17: Tree Sequences including Feature refactoringChanges based on
Classification Algorithm C4.5 — PART 1

5.3 Results 61

Decision tree C4.5
−−−−−−−−−−−−−−−−−−

Spring Framework
 dec05_section7
 −−−−−−−−−−−−−−
refactoringChanges <= 0.181818
| refactoringChanges <= 0.125: ’(0.5−inf)’ (44.0)
refactoringChanges > 0.181818
| refactoringCoChangedFiles <= 38.5
| | bugfixVersusRefactoringLinesAdd <= 0.037037
| | | refactoringCoChangedFiles <= 16.5
| | | | refactoringChangesType <= 0
| | | | | refactoringsBefore <= 0.194444
| | | | | | refactoringsBefore <= 0
| | | | | | | refactoringChanges > 0.285714
| | | | | | | | refactoringLargeTransactions <= 0.5
| | | | | | | | | bugfixRefactorings <= 0.5
| | | | | | | | | | refactoringTLinesChange <= 0.030303: ’(−inf−0.5]’ (45.0/11.0)
| | | | | refactoringsBefore > 0.194444
| | | | | | linesActivityRateRefactorings <= 0.142857: ’(−inf−0.5]’ (83.0/17.0)
| | bugfixVersusRefactoringLinesAdd > 0.037037
| | | refactoringsBefore <= 0.157895: ’(0.5−inf)’ (76.0/14.0)
| refactoringCoChangedFiles > 38.5: ’(−inf−0.5]’ (30.0/1.0)

XDoclet
 oct01_section4
 −−−−−−−−−−−−−−
refactoringChanges <= 0.235294
| refactoringVersusChangePeakMonth <= 1.25
| | avgDaysBetweenRefactorings <= 31.2: ’(0.5−inf)’ (27.0)
| | avgDaysBetweenRefactorings > 31.2
| | | refactoringVersusChangePeakMonth <= 0.6
| | | | bugfixVersusRefactoringPeakMonth <= 2: ’(0.5−inf)’ (6.0)
refactoringChanges > 0.235294
| linesActivityRateRefactorings <= 34.8
| | refactoringLinesChange > 0.02439
| | | refactoringLinesAdd <= 0.041667: ’(−inf−0.5]’ (33.0/1.0)
| | | refactoringLinesAdd > 0.041667
| | | | refactoringChangingChanges <= 0.666667
| | | | | refactoringPeakMonth <= 0.5
| | | | | | refactoringChanges <= 0.333333
| | | | | | | avgDaysPerRefactoringLine <= 1.068493: ’(−inf−0.5]’ (9.0/1.0)
| | | | refactoringChangingChanges > 0.666667: ’(−inf−0.5]’ (6.0)
| linesActivityRateRefactorings > 34.8: ’(0.5−inf)’ (7.0)

Figure 18: Tree Sequences including Feature refactoringChanges based on
Classification Algorithm C4.5 — PART 2

5.3 Results 62

limit. Classes that are assigned to bin ”One or more bugs” hold values for
refactoringChanges equal or below a given threshold value 38 times, and 18
times above a given limit.
Thus, the majority of model sequences, using the feature refactoringChanges
shows that instances holding a value equal or below a distinct threshold
value are assigned to bin ”One or more bugs” (71.7%), and instances above
are assigned to bin ”No bugs” (75.0%). In other words, the number of bug
fixes in the target period decreases, if the number of refactorings increases
and the number of overall changes decreases. The same rationale applies to
the contrary situation where the number of bug fixes in the target period
increases.
This is an very important result, since refactoring can positively influence
the software quality, by decreasing the occurrence of bug fixes. Additionally,
it seems to be generally good, when the number of total changes remains low
with respect to bug fix reduction. Recapitulatory, we can say that a well-
balanced proportion between refactoring and total changes makes the source
code clearer, as well as allows to introduce new features and improvements.

bugfixRefactorings Table 19 lists the models for each analyzed project,
where the feature bugfixRefactorings appears. A threshold value of 1 means
that a certain number of bug fixes is related to the same number of refactor-
ings in the feature period.
Classes that are assigned to bin ”No bugs” hold values for bugfixRefactorings
equal or below a given threshold value 18 times, and 2 times above a certain
limit. Classes that are assigned to bin ”One or more bugs” hold values for
bugfixRefactorings equal or below a given threshold value 8 times, and 7
times above a given limit.
Hence, most of the model sequences, using feature bugfixRefactorings show
that classes, which hold a value equal or below a distinct threshold value are
assigned to bin ”No bugs” (69.2%), and classes above are assigned to bin
”One or more bugs” (77.8%). Thus in general, the number of bug fixes in
the target period decreases, if the number of refactorings increases and the
number of bug fixes decreases. The same rationale applies to the contrary
situation where the number of bug fixes in the target period increases.
The influence of refactoring remains the same as by feature refactoringChang-
es ; refactoring helps to decrease bug fixes in the target period. Secondly, the

5.3 Results 63

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

ArgoUML-jun02 1 1 0.12 — — 8.0 —
8 0.18 — 20.0 — —

2 1 0.13 — 9.2 9.0 —
6 0.25 — 9.2 — —

ArgoUML-jun03 1 3 0.17 — 34.8 — —
6 4 0.44 25.0 9.8 — —
7 5 0.18 5.3 27.0 — —

ArgoUML-jun04 1 6 0.29 — 11.1 — —
2 3 0.18 — — 6.7 —
4 2 0.38 — — 12.3 —

Cache-jul05 1 6 0.22 — 30.5 — —
Cache-oct05 1 7 0.40 — — 7.5 —
Cache-jan06 1 2 0.40 — 18.1 — —
Liferay-feb05 2 6 0.17 — 5.9 — —

4 4 0.17 — 6.8 — —
5 3 0.40 — — 17.7 11.9
7 5 0.17 — 7.5 — —

Liferay-apr05 1 3 0.50 — 7.3 11.8 —
7 3 0.50 — — 19.4 —

Liferay-jun05 1 4 0.33 — — 5.6 —
2 6 0.50 14.7 — — —
3 8 0.33 — — 13.4 —

7 0.20 — 6.8 — —
XDoclet-oct01 2 3 0.22 — 45.5 — —

4 1 0.24 — 41.8 30.0 6.4
7 0.33 — — — 7.3

XDoclet-apr02 1 3 0.35 — 34.0 14.1 6.3
3 2 0.56 11.7 21.4 9.7 —
5 3 0.29 — 9.7 — —

XDoclet-aug02 1 4 0.22 — — 9.1 7.6
3 0.40 — 7.1 — —

2 6 0.40 — 12.1 — —
3 3 0.25 — — — 7.1

Table 16: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature refactoringChanges — PART 1

5.3 Results 64

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

Spring-dec03 1 2 0.50 — 6.2 36.4 —
2 8 0.29 — — 7.4 —
4 3 0.22 — 11.2 — —

5 0.67 8.7 5.4 6.2 —
5 1 0.50 19.4 15.3 25.2 —

14 0.29 — 5.4 — —
6 4 0.50 — — 7.9 —
8 8 0.29 — 15.7 — —
9 2 0.22 — 34.3 11.2 6.2

8 0.40 — 15.7 — —
10 8 0.21 — 19.4 5.8 —

Spring-dec04 2 1 0.67 17.9 21.0 29.8 —
3 7 0.04 — — — 7.5
4 1 0.17 — 37.7 17.9 23.0
5 1 0.29 — 32.1 15.9 5.6

5 0.40 10.7 5.2 — —
8 0.67 5.6 5.2 — —

6 2 0.17 — 38.9 — 5.6
7 1 0.22 — 40.9 23.4 10.3
8 1 0.20 — 33.7 22.2 15.1
9 1 0.22 — 35.7 22.6 7.1

4 0.67 16.7 19.0 — —
10 1 0.15 — 39.3 15.5 19.8
11 2 0.26 — 39.7 16.3 —

4 0.22 — — 16.3 —
12 9 0.22 — 5.6 — —

10 0.33 — — 5.6 —
13 2 0.50 — — 30.6 —

10 0.40 10.3 — — —
14 3 0.36 38.1 — — —

4 0.40 — 7.1 — —
15 2 0.17 — 38.9 — —

6 0.22 — 15.5 — —

Table 17: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature refactoringChanges — PART 2

5.3 Results 65

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

Spring-dec04 16 2 0.15 — 42.9 9.5 —
6 0.29 — 30.1 — —

17 4 0.22 — 18.7 — —
5 0.40 12.3 6.3 — —
7 0.67 — 6.3 — —

Spring-dec05 1 2 0.157895 — — 7.6 —
3 0.75 10.1 — — —
11 0.285714 — — — 13.8

2 7 0.285714 — — — 5.2
3 4 0.666667 — — 10.7 —
5 6 0.285714 9.1 5.6 — —
7 1 0.181818 — 31.4 8.5 12.0

2 0.125 — — 8.5 —
8 0.285714 — 6.6 — —

8 2 0.4 — — 20.2 —

Table 18: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature refactoringChanges — PART 3

5.3 Results 66

number of bug fixes in the feature period directly correlates to the number
of bug fixes in the target period. This is an result, well known to the scien-
tific community, since error-prone classes tend to produce more errors in the
course of time. A balanced fraction of refactoring and bug fixes is necessary
to support understandability and maintainability of source code, as well as
to solve actual or upcoming problems.

bugfixVersusRefactoringLinesChange Table 20 lists the models for each
analyzed project, where the feature bugfixVersusRefactoringLinesChange ap-
pears. A threshold value of 1 means that a certain number of bug fix lines
changed is related to the same number of refactoring lines changed in the
feature period.
Classes that are assigned to bin ”No bugs” hold values for bugfixVersus-
RefactoringLinesChange equal or below a given threshold value 5 times, and
2 times above a certain limit. Classes that are assigned to bin ”One or more
bugs” hold values for bugfixVersusRefactoringLinesChange equal or below a
given threshold value 2 times, and 1 time above a given limit.
The majority of model sequences, using feature bugfixVersusRefactoringLi-
nesChange shows that instances holding a value below a distinct threshold
value are assigned to bin ”No bugs” (71.4%). For instances holding values
above a given threshold value no clear statement can be made, since only
3 cases are available. Two times the regarded instances are assigned to bin
”No bugs”, and one time to bin ”One or more bugs”.
In other words, most of the time the number of bug fixes in the target period
decreases, if the number of bug fix lines changed decreases, and the number
of refactoring lines changed increases. The complementary coherence can
not be proved for lack of decision rules that assign classes above a certain
threshold value.

TBugfixVersusTRefactoringLinesChange Tables 21 lists the models
for each analyzed project, where the feature TBugfixVersusTRefactoringLi-
nesChange appears. A threshold value of 1 means that a certain number
of bug fix lines changed per transaction is related to the same number of
refactoring lines changed per transaction in the feature period.
Classes that are assigned to bin ”No bugs” hold values for TBugfixVersus-

5.3 Results 67

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

ArgoUML-jun03 3 2 0.25 24.6 — — —
ArgoUML-jun04 1 2 1.25 28.8 — 5.4 —

4 6 0.5 — — 9.9 —
Cache-jul05 1 4 0.33 — — — 5.5
Cache-oct05 1 2 2 18.4 — 16.8 6.8

2 1 1 26.8 — 10.4 24.4
Cache-jan06 1 8 0.75 7.8 — — —
Liferay-feb05 1 2 0 — — — 37.3

2 5 0.5 20.4 15.0 — —
4 5 0.5 6.8 — — —
7 6 0.5 7.5 — — —

Liferay-apr05 5 6 0.5 9.7 — — —
6 5 0.5 — 5.9 — —
7 4 1 — — 5.2 —

Liferay-jun05 2 3 1 5.4 — — —
Spring-dec03 5 13 0.5 5.8 — — —

6 3 1 8.7 — — —
Spring-dec05 1 1 1 17.6 — 19.0 7.6

2 2 1 10.3 — 20.3 7.4
3 1 1 26.4 — 15.7 13.8
6 1 1 19.4 — — —
7 10 0.5 6.6 — — —

XDoclet-aug02 2 4 1 34.3 — — —

Table 19: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature bugfixRefactorings

5.3 Results 68

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

Cache-jul05 2 6 0.02 — 10.2 — —
Cache-oct05 1 7 0.5 10.8 — — —
Liferay-feb05 3 3 0.78 — 29.1 — —
Liferay-apr05 1 5 1.5 7.3 — — —

2 4 3.33 8.3 — — —
Liferay-jun05 3 2 0.5 — — 10.3 —
Spring-dec03 9 7 0.5 15.7 — — —

11 4 0 — — — 12.8
Spring-dec04 8 3 0.04 33.7 — — —
Spring-dec05 2 8 4.07 — — 15.1 —

Table 20: Percentage of Classes with or without Bug fixes based on Thresh-
old Values of Decision Rules concerning Feature bugfixVersusRefactoringLi-
nesChange

TRefactoringLinesChange equal or below a given threshold value 13 times,
and 1 time above a certain limit. Classes that are assigned to bin ”One or
more bugs” hold values for TBugfixVersusTRefactoringLinesChange equal or
below a given threshold value 5 times, and 5 times above a given limit.
The majority of model sequences, using the feature TBugfixVersusTRefac-
toringLinesChange shows that instances holding a value below a distinct
threshold value are assigned to bin ”No bugs” (72.2%), and instances above
are assigned to bin ”One or more bugs” (83.3%).
In other words, most of the time the number of bug fixes in the target period
decreases, if the number of bug fix lines changed per transaction decreases,
and the number of refactoring lines changed per transaction increases. The
same rationale applies to the contrary situation where the number of bug
fixes in the target period increases.

bugfixVersusRefactoringPeakMonth Table 22 lists the models for each
analyzed project, where the feature bugfixVersusRefactoringPeakMonth ap-
pears. A threshold value of 1 means that the bug fix peak month and the
refactoring peak month are the same within the feature period.

5.3 Results 69

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

ArgoUML-jun02 2 5 4 18.7 — — —
Cache-jul05 2 4 642 5.5 — 18.8 —
Cache-oct05 1 3 28 18.4 — 16.8 —
Cache-jan06 1 3 26 13.5 — 14.5 8.2

6 13 7.8 — — —
7 13 — — 14.5 —

Liferay-feb05 2 5 0.001 5.9 — — —
5 184 — — 7.0 —

3 5 0.06 — — — 10.4
Liferay-apr05 2 6 1.22 8.3 — — —

3 7 0.001 8.0 — — —
Spring-dec03 3 8 0.008 5.8 — — —

9 5 0.009 — — — 5.4
Spring-dec05 13 8 11 10.3 — — —
Spring-dec05 3 4 72 26.4 — — —

4 3 110 37.2 — — 5.4
5 8 127 5.6 — — —

XDoclet-apr02 1 3 0.001 — — — 14.1
5 4 0.06 — 9.7 — —

Table 21: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature TBugfixVersusTRefactoringLi-
nesChange

5.3 Results 70

Classes that are assigned to bin ”No bugs” hold values for bugfixVersus-
RefactoringPeakMonth equal or below a given threshold value 21 times, and
2 times above a certain limit. Classes that are assigned to bin ”One or more
bugs” hold values for bugfixVersusRefactoringPeakMonth equal or below a
given threshold value 16 times, and 18 times above a given limit.
The majority of model sequences, using feature bugfixVersusRefactoringPeak-
Month shows that instances holding a value below a distinct threshold value
are assigned to bin ”No bugs” (56.8%), and instances above are assigned to
bin ”One or more bugs” (90.0%).
In other words, the number of bug fixes in the target period decreases, if the
bug fix peak month is before the refactoring peak month (threshold value
<1), or if there is a small distance between both peak months, when the
refactoring peak month precedes the bug fix peak month. The same rationale
applies to the contrary situation where the number of bug fixes in the target
period increases.

refactoringVersusChangePeakMonth Tables 23–24 list the models for
each analyzed project, where the feature refactoringVersusChangePeakMonth
appears. A threshold value of 1 means that the refactoring peak month
and the peak month of overall changes—that include e.g. bug fixes, or
refactorings—are the same within the feature period.
Classes that are assigned to bin ”No bugs” hold values for refactoringVer-
susChangePeakMonth equal or below a given threshold value 23 times, and
32 times above a certain limit. Classes that are assigned to bin ”One or more
bugs” hold values for refactoringVersusChangePeakMonth equal or below a
given threshold value 18 times, and 25 times above a given limit.
All model sequences, using feature refactoringVersusChangePeakMonth show
a balanced proportion. Instances holding a value below or above a certain
threshold value are assigned to bin ”No bugs” (56.1%), and bin ”One or
more bugs” (43.9%) with similar probability. This means that the relation
between the refactoring peak month and the peak month of overall changes
seems to have no obvious influence on the occurrence of bug fixes.

Thus, we conclude:

5.3 Results 71

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

ArgoUML-jun02 1 2 2 20.0 — — —
ArgoUML-jun04 1 7 0 — — 5.4 —

Cache-jul05 1 1 1 — — — 21.9
Cache-jan06 1 7 3 7.8 — — —
Liferay-feb05 2 3 1 26.3 — — 7.0

3 2 1 29.1 — — 10.4
5 2 0 — — — 29.6

7 0.25 — — — 11.9
6 2 1.25 6.8 — 11.8 7.5

3 1.33 7.5 — — —
Liferay-apr05 3 2 2 31.7 — 5.7 8.8
Liferay-jun05 1 4 0.5 — — — 6.8

2 4 0.17 14.7 — — —
3 7 3 — — 13.4 —

Spring-dec03 3 1 0.33 31.4 — 7.9 19.4
5 9 0.6 11.2 — — —
6 6 1.5 — — 7.9 —
7 3 1 — — 7.0 —

6 2 5.8 — — —
8 2 1.67 28.1 — 8.7 —

6 0.67 — — 8.7 —
Spring-dec04 4 3 0.2 32.9 — 7.9 15.1

6 1 0.17 38.9 — 5.6 23.4
3 0.25 — — 6.0 —

10 4 3 39.3 — — —
12 2 1 35.3 — 12.3 7.5
14 2 0.5 38.1 — — 5.6
15 1 0.17 38.9 — — 24.2
17 1 0 32.5 — — 27.0

Spring-dec05 2 6 3 5.0 — — —
7 3 — — 15.1 —

8 7 0.17 — — — 6.0
XDoclet-oct01 4 5 2 — — 5.5 —
XDoclet-apr02 1 2 1.25 40.0 — 20.4 14.1

5 3 0 — 5.8 — 10.2
12 0.2 — 5.8 — —

Table 22: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature bugfixVersusRefactoringPeak-
Month

5.3 Results 72

In general, the number of bug fixes in the target period decreases, if the
number of refactorings increases and the number of overall changes de-
creases.

In general, the number of bug fixes in the target period decreases, if the
number of refactorings increases and the number of bug fixes decreases.

Most of the time, the number of bug fixes in the target period decreases, if
the number of bug fix lines changed decreases, and the number of refactoring
lines changed increases.

Most of the time, the number of bug fixes in the target period decreases,
if the number of bug fix lines changed per transaction decreases, and the
number of refactoring lines changed per transaction increases.

Mostly, the number of bug fixes in the target period decreases, if the bug
fix peak month is before the refactoring peak month, or if there is a small
distance between both peak months, when the refactoring peak month pre-
cedes the bug fix peak month.

The relation between the refactoring peak month and the peak month of
overall changes seems to have no obvious influence on the occurrence of bug
fixes.

5.3.4 Are certain subsets of refactoring features of major impor-

tance for the prediction models of each project?

We analyze the frequency of occurrence of refactoring features for the gen-
erated models to find out those, most significant for predicting future bug
fixes. Table 25 and Table 26 enumerate for each refactoring feature the num-
ber of occurrences in decision rules that are part of the topmost three tree
levels of the generated prediction models for each project under investiga-
tion. The abbreviations are the same as for models generated from author
related features only (ArgoUML (A.), JBoss Cache (C.), Liferay Portal (L.),
Spring Framework (S.), and XDoclet (X.)). To easily find out those features

5.3 Results 73

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

ArgoUML-jun02 1 8 1 — — 7.1 —
2 10 0.2 — 19.1 — —

ArgoUML-jun03 5 2 0.2 — — — 32.4
7 6 2 5.3 — — —
9 3 0.25 — 26.2 — —

ArgoUML-jun04 1 9 0.75 — — 5.4 —
2 5 1.67 16.3 — — —

Cache-jul05 1 2 0.25 — — — 21.9
4 0.2 — 30.5 — —

2 1 0 28.5 15.6 — 38.7
7 0.33 — 5.5 — —

3 1 0 14.5 19.9 — 25.8
5 1.33 — — 8.6 —

Cache-oct05 1 4 0.25 10.8 7.6 — —
5 0.75 — 7.6 8.4 8.4
6 0.4 — — — 8.4

Cache-jan06 1 9 0.25 — 7.8 — —
9 0.25 — — 8.8 5.8

2 6 0 7.8 — — 15.7
Liferay-feb05 1 3 0.2 — — — 37.4
Liferay-apr05 1 5 0.4 — — 11.8 —

5 6 0.2 — — 9.3 8.4
6 2 0.67 5.9 31.8 19.1 —

Liferay-jun05 1 6 0.17 — 5.0 — —
3 1 0.17 — 19.8 10.3 20.9
2 2 0.17 — 14.7 — —

5 0.33 — 14.7 — —
Spring-dec03 2 6 0.4 — — 7.4 8.3

4 7 0.25 — 8.7 — —
5 4 0.25 — 17.8 7.9 7.0

5 0.17 — — — 7.9
6 7 0.4 8.7 — — —
9 6 0.67 15.7 10.3 — —
10 9 0.4 19.4 — — —
11 3 0 — — — 12.8

4 0.2 — 22.7 — 5.8
6 0.33 13.6 9.1 — —

Table 23: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature refactoringVersusChangePeak-
Month — PART 1

5.3 Results 74

Project Model Tree- Thres- Bug fix=0 Bug fix>=1
No. Level hold [%] [%]

<= > <= >

Spring-dec04 1 4 0.83 21.0 17.9 — —
5 0.33 21.0 — — —

3 4 0.83 — 27.4 — —
4 2 1.25 32.9 — — 23.0

5 0.75 21.8 0.11 — —
5 2 1.25 — — 15.9 —

6 0.75 10.7 — — —
7 0.33 10.7 — — —

6 2 0.83 — — 17.5 6.0
3 0.33 38.9 — 5.6 —

8 3 0.25 — — — 15.1
9 3 0.25 35.7 — — —
10 2 0.33 39.3 — — 19.8
11 5 0.33 5.6 — — —
12 9 0.17 — — — 5.6
14 6 0.83 5.2 6.0 — —
15 3 0.83 — — 15.5 —

Spring-dec05 1 2 0 10.1 7.6 — 19.0
2 2 0.67 — — — 6.6
3 7 0.25 — 15.1 — —
4 6 0.2 — 37.2 — —
5 10 0.2 — 5.6 — —

XDoclet-oct01 1 2 0.2 — 30.9 — —
5 0.2 — 14.5 — —

4 2 1.25 — — 30.0 —
4 0.6 — — 5.5 —

XDoclet-apr02 1 7 0 — — — 6.3
2 5 0 — — — 12.1
4 5 0.33 — 18.9 — —

XDoclet-aug02 2 5 0.5 — — 7.1 —
6 0.33 — 22.2 — —

3 3 0.33 — 41.9 — —

Table 24: Percentage of Classes with or without Bug fixes based on Threshold
Values of Decision Rules concerning Feature refactoringVersusChangePeak-
Month — PART 2

5.3 Results 75

that are of major importance for the model trees of each project, the val-
ues of the five most commonly used features are marked bold. For project
JBoss Cache this happens eight times, since five features hold the same value.

The tree hierarchy in given models is of major importance to estimate the
influence on the prediction. We rate decision rules higher, which occur on
the first three tree levels, in contrast to features appearing later on.
In two tables (Table 25 and Table 26) the occurrence of features in the top
three tree levels is shown to gain insight in interconnections within each
analyzed open source project. Let us now discuss the situation for each
project separately:
ArgoUML uses most often, refactoringChanges, bugfixVersusRefactoringLi-
nesAdd, linesActivityRateRefactorings, refactoringActivityRate, and refactor-
ingTLinesDelPerRefactoring.
JBoss Cache focuses on refactoringLinesChange, refactoringFrequencyBefore,
and refactoringVersusChangePeakMonth. Contrary to the other four projects,
this time eight features are marked, since five features hold the same value.
Liferay Portal favors refactoringCoChangedFiles, refactoringLinesChange, bug-
fixVersusRefactoringPeakMonth, linesActivityRateRefactorings, and refactor-
ingLinesActivityRate.
Spring Framework uses refactoringCoChangedFiles, refactoringChanges, bug-
fixVersusRefactoringPeakMonth, linesActivityRateRefactorings, and refactor-
ingVersusChangePeakMonth most of the time.
XDoclet mostly applies features refactoringLinesChange, refactoringChanges,
linesActivityRateRefactorings, refactoringFrequencyBefore, and refactoring-
VersusChangePeakMonth.
As one can see, all five projects show a different pattern, since each project
runs through a different process of development. As a result of that fact
certain groups of refactoring features are preferred by each project.
Refactoring features belonging to the group of complexity are of great impor-
tance for all projects. These are the features starting from relRefactorings
until refactoringChanges at the bottom of Table 25.
Features part of the other groups appear to a lesser extent in the top three
tree levels, whereby some time related features stick out a bit—namely fea-
tures refactoringVersusChangePeakMonth and bugfixVersusRefactoringPeak-
Month (Table 26).
Concluding, it is necessary to regard each project independently to find out
those features that are most suitable to predict future bug fixes.

5.3 Results 76

Refactoring Feature Project
A. C. L. S. X.

refactoringLinesAdd 4 — — 8 —
refactoringLinesChange — 3 5 2 5

refactoringLinesDel — — 1 — 1
refactoringLinesAddPerRefactoring 1 — — 3 1
refactoringLinesChangePerRefactoring 2 — 1 1 —
refactoringLinesDelPerRefactoring 3 — — 2 2
bugfixVersusRefactoringLinesAdd 5 — — 4 —
bugfixVersusRefactoringLinesChange — — 2 1 —
bugfixVersusRefactoringLinesDel — 2 1 3 —
refactoringLinesType — 1 2 — 1
refactoringAddingChanges — — — — —
refactoringChangingChanges — — — — —
refactoringChangesType 4 — 4 — 1
refactoringLargeModifications — — — — —
refactoringSmallModifications — — — — —
refactoringAuthorCount 1 — — — —
refactoringAuthorSwitches — — — — 1
refactoringVSrevisionAuthorSwitches 2 — — 1 —
relRefactorings 2 1 2 4 —
refactoringsBefore 1 — 2 2 1
refactoringFrequencyBefore 4 3 2 5 6

refactoringLinesActivityRate 2 — 6 — —
refactoringActivityRate 5 1 — — —
linesActivityRateRefactorings 10 — 9 13 4

bugfixRefactorings 2 2 2 5 —
refactoringChanges 5 1 3 23 7

Table 25: Number of Decision Rules of the Top 3 Tree Levels for Refactoring
Features (investigated projects abbreviated) — PART 1

5.3 Results 77

Refactoring Feature Project
A. C. L. S. X.

refactoringCouplings — — 1 1 —
refactoringCoChangedFiles 2 1 9 9 —
refactoringLargeTransactions — — — — —
refactoringSmallTransactions 1 — — — —
refactoringTLinesAdd 2 1 1 4 1
refactoringTLinesChange — — 1 8 2
refactoringTLinesDel 1 1 — 2 2
refactoringTLinesType 1 2 4 1 1
refactoringTChangesType 1 1 — 5 1
refactoringTLinesAddPerRefactoring 1 — 4 1 —
refactoringTLinesChangePerRefactoring 2 — 2 2 1
refactoringTLinesDelPerRefactoring 5 — 2 6 1
TBugfixVersusTRefactoringLinesAdd 1 1 — 3 2
TBugfixVersusTRefactoringLinesChange — 2 — 1 1
TBugfixVersusTRefactoringLinesDel — 1 — 3 2
avgDaysBetweenRefactorings — — — 4 1
avgDaysPerRefactoringLine 1 — 4 — 1
refactoringPeakMonth 2 2 2 8 2
peakMonthRefactorings — — 1 — —
refactoringVersusChangePeakMonth 2 3 4 11 3

bugfixVersusRefactoringPeakMonth — 1 6 10 2

Table 26: Number of Decision Rules of the Top 3 Tree Levels for Refactoring
Features (investigated projects abbreviated) — PART 2

5.3 Results 78

Thus, we conclude:

Certain subsets of refactoring features are of major importance for the pre-
diction models of each project.

The composition of the subsets varies with respect to the investigated
project.

5.3.5 Is a common subset of refactoring features important for all

investigated projects?

Again Table 25 and Table 26 are the basis of discussion. Features most often
used in at least two different projects are emphasized:

• refactoringLinesChange

• refactoringFrequencyBefore

• linesActivityRateRefactorings

• refactoringChanges

• refactoringCoChangedFiles

• refactoringVersusChangePeakMonth

• bugfixVersusRefactoringPeakMonth

Especially, refactoringLinesChange, refactoringChanges, linesActivityRateRe-
factorings, and refactoringVersusChangePeakMonth show coherences, which
reach beyond a single project. These refactoring features are used in at least
three projects—even four in case of linesActivityRateRefactorings—in the
topmost three tree levels.
We can say that there is no subset of features, important for all investigated
projects. Nevertheless, some projects have several, most frequently used
refactoring features in common. For example, projects ArgoUML, Spring
Framework, and XDoclet frequently apply features linesActivityRateRefac-
torings, and refactoringChanges in their prediction models. JBoss Cache and

5.3 Results 79

XDoclet commonly use refactoringLinesChange, refactoringFrequencyBefore,
and refactoringVersusChangePeakMonth in the topmost three tree levels.
Liferay Portal and Spring Framework both utilize linesActivityRateRefac-
torings, refactoringCoChangedFiles, and bugfixVersusRefactoringPeakMonth.
Liferay Portal and XDoclet most often use refactoringLinesChange and line-
sActivityRateRefactorings. Spring Framework and XDoclet have linesActiv-
ityRateRefactorings, refactoringChanges, and refactoringVersusChangePeak-
Month in common. On the basis of these results we can say that certain
coherences, concerning the assembly of tree models exist in selected combi-
nations of projects.

Thus, we conclude:

In general, there is no subset of refactoring features that is important for
all projects under investigation.

Some variable subsets of features are important for certain combinations of
projects.

5.3.6 Is it essential that the number of authors and author switches,

and the number of people switches remains low to reduce

error-proneness?

Within this section we discuss the behavior of three features: authorCount,
authorSwitches, and peopleSwitches. Features authorCount and authorSwitch-
es are related to the current versioning system (e.g. CVS) and peopleSwitches
refers to the bugtracking system (e.g. JIRA).

authorCount Table 27 summarizes the results for each investigated project.
A threshold value of 1 means that there is one author per change.
Let us take a closer look at Table 27 to better understand the presented infor-
mation. The first line analyzes characteristic and frequency of decision rules
that use feature authorCount, in section models generated from data of open
source project ArgoUML. Three decisions assign classes that hold a value
equal or below a threshold range from 0.43—0.58 for feature authorCount—
boundaries included—, to bin ”No bugs”, that is no bug fixes happen in the

5.3 Results 80

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0.43-0.58 (3) 0.18-0.83 (12) 0.43-0.83 (8) 0.45-0.83 (4)
Cache 0.29-0.75 (3) 0.22-0.75 (8) 0.22-0.75 (4) 0.22-0.29 (4)
Liferay 0.33-0.75 (11) 0.15-0.75 (28) 0.19-0.75 (33) 0.17-0.75 (32)
Spring 0.21-0.75 (11) 0.23-0.80 (41) 0.23-0.80 (43) 0.10-0.75 (29)
XDoclet 0.29-0.83 (4) 0.29-0.83 (12) 0.20-0.83 (6) 0.20-0.83 (9)

Table 27: Range of Threshold Values (Number of Decisions) for Feature
authorCount to predict Bug fixes

target period. Twelve decisions attach classes that hold a value above a range
of threshold values from 0.18–0.83 to bin ”No bugs”. Finally, eight decisions
with values for authorCount equal or below a threshold range of 0.43–0.83
and four decisions with values above 0.45–0.83 attach classes that fulfill these
conditions to bin ”One or more bugs”, one or more bug fixes occur in the
corresponding target period of these instances.
For projects ArgoUML (72.7%), Liferay (75.0%), and Spring (79.6%) a mul-
tiple of instances shows bug fixes, if the threshold value is below 0.2-0.8.
Cache (57.1%) and XDoclet (60.0%) show the same trend alleviated, too.
All projects with only one exception have more instances without bug fixes,
if the threshold value is above 0.2-0.8. In that situation ArgoUML (75.0%),
Cache (66.7%), Spring (58.6%), and XDoclet (57.1%) show no bug fixes in
the majority of cases. Liferay (46.7%) shows an roughly equal ratio for in-
stances with or without bug fixes.

Although the given ranges in reference to both situations— bug fix or no
bug fix—are overlapping the trend is obvious: In the case of falling below
a certain value (0.2) the number of bug fixes increases and in the opposite
situation, when a limit is exceeded (0.8) the number of bug fixes decreases.
This behavior is inconvenient, since in general one would guess that the more
authors work on a software, the more bug fixes will appear in the future and
vice versa.
An explanation for that characteristic could be that a minimum level of
authors per change is required to permit a good functioning software de-
velopment. A project can take advantage of a larger number of authors,
since everybody supports the development process with his knowledge and

5.3 Results 81

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0.50-1.38 (7) 0.50-1.38 (12) 0.50-1.25 (12) 0.50-1.20 (8)
Cache — (—) 0.75 (2) 0.75-1.33 (2) 0.67 (1)
Liferay — (—) 0.50-0.67 (8) 0.50-0.67 (5) 0.33-0.75 (14)
Spring 0.50-1.50 (17) 0.50-1.33 (17) 0.75-1.50 (10) 0.50-1.50 (15)
XDoclet 0.67-2.40 (3) 0.50-0.67 (4) 0.67-2.40 (5) 0.67-2.40 (7)

Table 28: Range of Threshold Values (Number of Decisions) for Feature
authorSwitches to predict Bug fixes

valuable ideas to solve problems.
In that, no limit value is above 1, it is hard to say, whether there is an upper
limit that once overstepped leads to more bug fixes. But we assume an upper
bound and consequently an ideal range for feature authorCount to reduce the
probability of bug fixes in the future.

authorSwitches Table 28 shows the results for each analyzed project. A
threshold value of 1 means that there is one author switch per author that
means a specific author works on a software entity without interruption.
For this feature all projects show very different results so it is necessary to
discuss each project separately.
ArgoUML uses a threshold range of about 0.50-1.4 for all four categories and
shows a slight trend to more bugs (63.2%), if there are less author switches
and backwards (60.0%). Projects Cache and Liferay lack of instances for
category ”<=” for ”Bug fix=0”. We found out that project Cache (66.7%)
shows a trend to no bug fixes in the case of more author switches. In contrast,
project Liferay (63.6%) shows a tendency to more bug fixes in the case of
more author switches. Both projects, the Spring framework and XDoclet
display no obvious drift to a definite classification.
Our expectations were that more author switches cause more bug fixes and
otherwise less author switches lead to no bug fixes. In this way the results
were disappointing to us, since no clear statement can be made with respect
to all projects under investigation.

peopleSwitches Table 29 lists the results for each project under investi-
gation. A threshold value of 1 means that there is one issue assignee per

5.3 Results 82

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0-8 (16) 0-3 (7) 0-4 (6) 0-5 (6)
Cache 0-1 (6) — (—) — (—) 0 (3)
Liferay 0 (2) — (—) 0 (2) — (—)
Spring 0-2 (21) (-1)-1 (8) 0-2 (12) 0-1 (16)
XDoclet 0-6 (14) 0-4 (6) 1-6 (6) 0-6 (11)

Table 29: Range of Threshold Values (Number of Decisions) for Feature
peopleSwitches to predict Bug fixes

author switch.
Project ArgoUML shows a trend to no bug fixes (72.7%), if values below
a certain threshold value occur. This does not apply to the appearance
of bug fixes, since about the same number of decisions for both situations
leads to inconsistent results. Cache and Liferay use only few decisions based
on feature peopleSwitches. Cache exhibits a tendency that values below
a threshold value lead to no bug fixes and values above a threshold value
induce one or more bug fixes. By contrast, Liferay does not help us to draw
a conclusion, since the results are controversial. Finally, projects Spring and
XDoclet correspond to the same pattern as for JBoss Cache. For projects
Spring (63.6%), and XDoclet (70.0%) most of the instances show no bug
fixes, if the threshold value is below a given limit. In the contrary situation
instances mostly show bug fixes for projects Spring (66.7%), and XDoclet
(64.7%).
Generally, we can say that most of the investigated projects follow the scheme
that more people switches lead to more bug fixes and the other way round.

Thus, we conclude:

The number of authors negatively correlates to the number of bug fixes in
the target period.

The number of author switches can not definitely predict the occurrence of
bugs in the future.

5.3 Results 83

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0-0.75 (6) 0.67 (1) 0.75 (2) — (—)
Cache 0.40-0.50 (2) — (—) — (—) — (—)
Liferay 0.25-0.50 (3) 0.50 (1) 0.33-0.67 (18) 0.33-0.67 (14)
Spring 0-0.50 (3) — (—) 0.50 (2) — (—)
XDoclet 0.25-0.50 (2) — (—) 0.67 (1) 0.50-0.80 (2)

Table 30: Range of Threshold Values (Number of Decisions) for Feature
bugfixAuthorCount to predict Bug fixes

The number of people switches positively correlates to the number of bug
fixes in the target period.

5.3.7 Is it essential that the number of bug fix authors and bug

fix author switches remains low to reduce error-proneness?

bugfixAuthorCount Table 30 lists the results for each project under in-
vestigation. A threshold value of 1 means that there is one bug fix author
per bug fix.
As one can see there are many blank fields in the table, anyway there is slight
trend to produce no bugs, if a certain threshold value is under-run. This
applies to projects ArgoUML (75.0%), Cache (2 decisions), Spring (60.0%),
and XDoclet (66.7%). In contrast, project Liferay shows a great many of bug
fixes for instances that hold values above (93.3%) and below (85.7%) certain
threshold values.
We expected that the more bug fix authors, the more bug fixes will occur in
the target period. This assumption can not be underlined clearly, because of
variability of results depending on the analyzed project.

bugfixAuthorSwitches Table 31 lists the results for each project under
investigation. A threshold value of 1 means that there is one bug fix author
switch per bug fix author that means a specific bug fix author works on a
bug fix for a software entity without interruption.
In the majority of cases ArgoUML (77.8%), Cache (60.0%), Liferay (75.0%),
Spring (93.3%), and XDoclet(83.3%) show one or more bug fixes for instances

5.3 Results 84

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0-0.50 (11) 0-0.50 (2) 0-0.50 (7) 0-0.50 (7)
Cache 0 (5) 0-0.75 (4) 0 (3) 0 (6)
Liferay 0.50 (2) 0-0.50 (2) 0-0.50 (4) 0-0.50 (6)
Spring 0-0.67 (16) 0 (1) 0-0.50 (12) 0-0.50 (14)
XDoclet 0-0.67 (4) 0 (1) 0-0.75 (4) 0-0.67 (5)

Table 31: Range of Threshold Values (Number of Decisions) for Feature
bugfixAuthorSwitches to predict Bug fixes

that hold values above a given limit. In accordance with these results the
projects ArgoUML (61.1%), Cache (62.5%), and Spring(57.1%) exhibit an
alleviated trend to no bug fixes, if a certain threshold value is under-run.
There are some exceptions concerning the category ”<=” with ”Bug fix>=
1” for projects Liferay (33.3%), and XDoclet (50.0%).
Most of the time, the number of bug fix author switches positively correlates
to the occurrence of bug fixes in the target period.

Thus, we conclude:

The number of bug fix authors can not definitely predict the occurrence of
bugs in the future.

The number of bug fix author switches positively correlates to the number
of bug fixes in the target period.

5.3.8 Is it essential that the number of refactoring authors and

refactoring author switches remains low to reduce error-

proneness?

refactoringAuthorCount Table 32 lists the results for each project under
investigation. A threshold value of 1 means that there is one refactoring
author per refactoring.
All projects show very different results, so it is hard to find out a certain trend
to predict future bug fixes. We found out that ArgoUML (75.0%), Cache

5.3 Results 85

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0.67-0.75 (3) 0.67-0.75 (5) 0.75 (1) 0.33-0.75 (3)
Cache 0.50 (1) 0.50 (2) 0.50 (1) 0.50 (1)
Liferay 0.14-0.50 (4) 0.50 (3) 0.33-0.50 (4) 0.14-0.50 (8)
Spring 0.25-0.50 (3) 0.50-0.67 (2) 0.50-0.67 (7) 0.25 (2)
XDoclet 0.33-0.80 (6) 0.33-0.44 (2) 0.33-0.75 (6) 0.50-0.75 (6)

Table 32: Range of Threshold Values (Number of Decisions) for Feature
refactoringAuthorCount to predict Bug fixes

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0-0.67 (5) 0-0.67 (4) 0.67-1 (5) 0 (5)
Cache 0-0.50 (2) 0-0.50 (2) 0.67 (1) 0 (1)
Liferay 0-0.50 (4) 0.50 (3) 0.33-0.50 (5) 0-0.50 (10)
Spring 0-0.67 (13) 0.50-0.67 (9) 0-0.67 (12) 0-0.50 (10)
XDoclet 0-1 (4) 0-0.67 (5) 0-0.50 (3) 0 (1)

Table 33: Range of Threshold Values (Number of Decisions) for Feature
refactoringAuthorSwitches to predict Bug fixes

(50.0%), Liferay (50.0%), Spring (30.0%), and XDoclet(50.0%) show no bug
fixes for instances that hold values below a given limit. Additionally, we
detected that projects ArgoUML (37.5%), Cache (33.3%), Liferay (72.7%),
Spring (50.0%), and XDoclet(75.0%) show one or more bug fixes for instances
that hold values above a given limit. By reason of these varying results, we
can not answer the question how the number of refactoring authors influences
software defect occurrence.

refactoringAuthorSwitches Table 33 lists the results for each project
under investigation. A threshold value of 1 means that there is one refactoring
author switch per refactoring author that means a specific refactoring author
works on a refactoring for a software entity without interruption.
We found out that ArgoUML (50.0%), Cache (66.7%), Liferay (44.4%),
Spring (52.0%), and XDoclet(57.1%) show no bug fixes for instances that
hold values below a given limit. Additionally, we detected that projects
ArgoUML (55.6%), Cache (33.3%), Liferay (76.9%), Spring (52.6%), and

5.3 Results 86

Project Bug fix=0 Bug fix>=1
<= > <= >

Argouml 0.75 (1) 0.67-0.75 (4) 0.75-1 (3) 0.50-0.75 (2)
Cache 0.67 (1) 0.50-0.67 (2) 0.67 (1) 0.50-0.67 (2)
Liferay — (—) — (—) — (—) — (—)
Spring 0.50 (1) 0.50 (1) 0.50-1.50 (4) 0.50 (1)
XDoclet — (—) 0.67 (1) 0.67 (1) — (—)

Table 34: Range of Threshold Values (Number of Decisions) for Feature
refactoringVSrevisionAuthorSwitches to predict Bug fixes

XDoclet(16.7%) show one or more bug fixes for instances that hold values
above a given limit. Again, all analyzed projects show diverging results, so we
can not answer the question how the number of refactoring author switches
influences software defect appearance.

Thus, we conclude:

It is not possible for us to find out an underlying trend, how the number of
refactoring authors and refactoring author switches influence the occurrence
of future bug fixes.

5.3.9 Is it essential that the same author, who made the last re-

vision refactors the code to reduce error-proneness?

refactoringVSrevisionAuthorSwitches Table 34 lists the results for each
project under investigation. A threshold value of 1 means that there is one
switch from revision author to refactoring author per refactoring author, e.g.
a specific refactoring author works on a refactoring for a software entity after
another author has made a change—a revision.
We detected that ArgoUML (75.0%), Cache (50.0%), Spring (80.0%), and
XDoclet(1 decision) show one or more bug fixes for instances that hold val-
ues below a given limit. Additionally, we found out that projects ArgoUML
(66.7%), Cache (50.0%), Spring (50.0%), and XDoclet(1 decision) show no
bug fixes for instances that hold values above a given limit. Project Lif-
eray has no entries for this feature, concerning author related section models.

5.3 Results 87

There is no clear trend, since the analyzed projects show a diverging behavior.

Thus, we conclude:

It is not possible for us to say, whether it is necessary that the same author,
who made the last revision refactors the code, with respect to software
defect appearance.

88

6 Summary and Conclusion

In this research work the interrelationship of evolution activities such as
refactoring is investigated to predict software defect appearance in the near
future. Our case study is based on five open source projects belonging to
different domains to support generality. Our work extends the knowledge
in the field of software quality estimation, since as far as we know, this is
the first try to quantify the interrelationship between refactoring and other
evolution activities to evaluate the impact on software defect prediction. In
this context, information that brings about a decision where and when to
apply refactoring can help to calculate expenses. Ultimately, the main goal
is to support software engineers and project managers in timely choosing
the best refactorings to improve software quality, especially in relation to
understandability and maintainability of source code.
We use versioning and issue tracking systems to extract 110 data mining fea-
tures to predict medium-term defects. These features are separated in refac-
toring and non-refactoring related features and cover software characteristics
such as size and complexity measures, relational aspects, time constraints,
or team related aspects. At this, size measures are extended by relational
aspects using information of co-change coupling of software entities to better
catch coherences. Complexity measures are of great importance, since soft-
ware continuously becomes more complex, so that changes are more difficult
to add, without violating existing contracts. In relation to time constraints,
especially peak month related facets have proven important to estimate error
proneness. Author related measures regard, besides an overall view, close-
up views of the influence of bug fix and refactoring authors. Every time
an author has to work on software parts that another team member edited
earlier, problems affecting source code comprehension might occur. On this
account, expert knowledge and project-internal communication are corner-
stones of successful software development.
We found out that refactoring related features, as well as non-refactoring
related features produce high quality prediction models. Moreover, the qual-
ity of prediction models is generally kept constant and sometimes slightly
improved by combining features of both categories. Refactoring should be
associated with other software activities in a certain way to reduce the ap-
pearance of software defects: In general, the number of bug fixes in the
target period decreases, if the number of refactorings increases, the number
of bug fixes decreases, and the number of overall changes decreases within

89

the corresponding feature period. The same behavior can be observed, if the
number of bug fix lines changed per transaction decreases, and the number
of refactoring lines changed per transaction increases, and if refactoring peak
month and bug fix peak month are related in a certain way. We found out
that certain subsets of refactoring features are of major importance for the
prediction models of each project, even though the composition of the sub-
sets varies with respect to the investigated project. In contrast, we could not
determine a subset of refactoring features that is important for all projects
under investigation. The analysis of author related features showed variable
results, even so certain interrelationships could be revealed: We found out
that the number of authors negatively correlates to the number of bug fixes
in the target period. In contrast, the number of people switches regarding
the bugtracking system and the number of bug fix author switches positively
correlate to the number of bug fixes in the target period.

In our future work we will concentrate on the following topics:

• Integration of new Refactoring Features. In this thesis we im-
plemented 47 refactoring related features to model certain aspects of
relevant information areas. This set of features could be further ex-
tended to cover more characteristics of refactoring. Especially, features
relating refactoring attributes to software defects of diverse severity
could provide a deeper insight into that complex topic.

• Variation of Time Frames. In this work we base our analysis on
time frames for feature and target period for six months each. It would
be interesting to what extent a variation of both time frames could
influence the prediction results.

• Improvement of SQL Queries. We plan to further improve our
SQL queries to reduce the false positive and false negative rates with
respect to refactoring, as well as bug fix detection. Beyond it, we intend
to use additional constraints, besides lines of code measures to restrict
the total set of investigated instances.

• Automation of Model Analysis. Many processing steps of our
approach, like the import of versioning and issue data, and the compu-
tation of commit transactions are already automated. This also applies
to connecting issues and revisions, relating accounts of versioning and

90

issue data, and finally calculating data mining features. It would be
desirable to automatize the analysis of prediction models generated by
the datamining tool Weka. The most important features, e.g. the three
topmost features in a model tree, or decision rules that concern a min-
imum of instances would be interesting facts for developers, as well as
project managers. In the long run, a tool that outputs classes, which
are in need for refactoring with respect to software defect reduction, is
the aim.

REFERENCES 91

References

[1] Deepak Advani, Youssef Hassoun, and Steve Counsell. Refactoring
trends across n versions of n java open source systems: an empirical
study. Technical report, University of London, 2005.

[2] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An au-
tomatic approach to identify class evolution discontinuities. In Proceed-
ings of the International Workshop on Principles of Software Evolution,
pages 31–40, Kyoto, Japan, 2004.

[3] IEEE Standards Association. http://standards.ieee.org/.

[4] Victor R. Basili, Lionel C. Briand, and Walcélio Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Transactions
on Software Engineering, 22(10):751–761, October 1996.

[5] Lionel C. Briand, Jürgen Wüst, Stefan V. Ikonomovski, and Hakim
Lounis. Investigating quality factors in object-oriented designs: An in-
dustrial case study. In Proceedings of the International Conference on
Software Engineering, 1999.

[6] Fernando Brito e Abreu and Walcélio Melo. Evaluating the impact of
object-oriented design on software quality. In Proceedings of the Inter-
national Software Metrics Symposium, pages 90–99, Berlin, Germany,
March 1996.

[7] Andrea Capiluppi, Maurizio Morisio, and Patricia Lago. Evolution of
understandability in oss projects. In Proceedings of the European Con-
ference on Software Maintenance and Reengineering, pages 58–66, Tam-
pere, Finland, March 2004.

[8] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite
for object oriented design. In Proceedings of the Conference on Object
Oriented Programming Systems Languages and Applications, pages 197–
211, Phoenix, Arizona, USA, 1991.

[9] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering, 20(6):476–
493, June 1994.

REFERENCES 92

[10] Marco D́ambros and Michele Lanza. Software bugs and evolution: A
visual approach to uncover their relationship. In Proceedings of the Eu-
ropean Conference on Software Maintenance and Reengineering, March
2006.

[11] MySQL: Open Source Database. http://mysql.com.

[12] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and ap-
plications, pages 166–177, 2000.

[13] Serge Demeyer and Tom Mens. Evolution metrics. In Proceedings of
the International Workshop on Principles of Software Evolution, pages
83–86, Vienna, Austria, 2001. Session 4A: Principles.

[14] Giovanni Denaro and Mauro Pezzè. An empirical evaluation of fault-
proneness models. In Proceedings of the International Conference on
Software Engineering, pages 241–251, 2002.

[15] XDoclet: Open Source Code Generation Engine. http://xdoclet.net.

[16] Norman E. Fenton and Martin Neil. A critique of software defect pre-
diction models. IEEE Transactions on Software Engineering, 25(5):675–
689, September 1999OB.

[17] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release
history database from version control and bug tracking systems. In
Proceedings of the International Conference on Software Maintenance,
pages 23–32, Amsterdam, Netherlands, September 2003. IEEE Com-
puter Society Press.

[18] Beat Fluri and Harald C. Gall. Classifying change types for qualifying
change couplings. In Proceedings of the International Conference on
Program Comprehension, page to appear, Athen, Greece, June 2006.
IEEE Computer Society Press.

[19] Beat Fluri, Harald C. Gall, and Martin Pinzger. Fine-grained analy-
sis of change couplings. In SCAM ’05: Proceedings of the Fifth IEEE
International Workshop on Source Code Analysis and Manipulation
(SCAM’05), pages 66–74, Washington, DC, USA, 2005.

REFERENCES 93

[20] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, June 1999.

[21] Spring Framework: Open Source Java/JEE Application Framework.
http://www.springframework.org.

[22] Harald Gall, Mehdi Jazayeri, and Jacek Ratzinger (former Krajewski).
CVS release history data for detecting logical couplings. In Proceed-
ings of the International Workshop on Principles of Software Evolution,
pages 13–23. IEEE Computer Society Press, September 2003.

[23] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, July 2000.

[24] L. Hatton. Re-examining the fault density-component size connection.
IEEE Software, 14(2):89–97, March/April 1997.

[25] JBoss Cache: Open Source Performance Improvement.
http://de.jboss.com/products/jbosscache.

[26] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ml/weka.

[27] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. A quan-
titative evaluation of maintainability enhancement by refactoring. In
Proceedings of the International Conference on Software Maintenance,
pages 576–585, October 2002.

[28] Taghi M. Khoshgoftaar, Ruqun Shan, and Edward B. Allen. Using
product, process, and execution metrics to predict fault-prone software
modules with classification trees. In Proceedings of the International
Symposium on High Assurance Systems Engineering, pages 301–310, Al-
buquerque, USA, 2000.

[29] Taghi M. Khoshgoftaar, Xiaojing Yuan, Edward B. Allen, Wendell D.
Jones, and John P. Hudepohl. Uncertain classification of fault-prone
software modules. Empirical Software Engineering, 7(4):297–318, De-
cember 2002.

REFERENCES 94

[30] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James White-
head, Jr. Automatic identification of bug-introducing changes. In Pro-
ceedings of the International Conference on Automated Software Engi-
neering, pages 81–90, Tokyo, Japan, September 2006.

[31] Sunghun Kim, Thomas Zimmermann, E. James Whitehead, Jr., and
Andreas Zeller. Predicting faults from cached history. In Proceedings of
the International Conference on Software Engineering, pages 489–498,
Minneapolis, Minnesota USA, May 2007.

[32] Patrick Knab, Martin Pinzger, and Abraham Bernstein. Predicting de-
fect densities in source code files with decision tree learners. In Proceed-
ings of the International Workshop on Mining Software Repositories,
page to appear, Shanghai, China, May 2006. ACM Press.

[33] Manny Meir Lehman and Laszlo A. Belady. Program Evolution - Process
of Software Change. Academic Press, London and New York, 1985.

[34] Manny Meir Lehman and Juan Fernandez Ramil. Software evolution and
software evolution processes. Annals of Software Engineering, special
issue on Software Process-based Software Engineering, 14:275–309, 2002.

[35] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126 – 139, 2004.

[36] Audris Mockus and Lawrence G. Votta. Identifying reasons for software
changes using historic databases. In Proceedings of the International
Conference on Software Maintenance, page 120. IEEE Computer Soci-
ety, 2000.

[37] Audris Mockus and David M. Weiss. Predicting risk of software changes.
Bell Labs Technical Journal, 5(2):169–180, April-June 2000.

[38] K.H. Moeller and D. Paulish. An empirical investigation of software
fault distribution. In Proceedings of the International Software Metrics
Symposium, pages 82–90, 1993.

[39] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early
indicators of pre-release defect density. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 580–586, St. Louis,
MO, USA, May 2005.

REFERENCES 95

[40] Nachiappan Nagappan and Thomas Ball. Use of relative code churn
measures to predict system defect density. In Proceedings of the Inter-
national Conference on Software Engineering, pages 284–292, St. Louis,
MO, USA, May 2005.

[41] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining met-
rics to predict component failures. In Proceedings of the International
Conference on Software Engineering, pages 452–461, Shanghai, China,
May 2006.

[42] Oscar Nierstrasz. Software evolution as the key to productivity. In
Proceedings Radical Innovations of Software and Systems Engineering
in the Future, Venice, Italy, October 2002.

[43] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[44] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults
in a large industrial software system. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 55–64, Rome, Italy,
July 2002.

[45] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the
bugs are. In Proceedings on the International Symposium on Software
Testing and Analysis, pages 86–96, Boston, Massachusetts, USA, July
2004.

[46] Liferay Portal: Open Source Portal Platform. http://www.liferay.com.

[47] Jacek Ratzinger, Michael Fischer, and Harald Gall. Evolens: Lens-
view visualizations of evolution data. In Proceedings of the International
Workshop on Principles of Software Evolution, pages 103–112, Lisbon,
Portugal, September 2005.

[48] Jacek Ratzinger, Michael Fischer, and Harald Gall. Improving evolvabil-
ity through refactoring. In Proceedings of the International Workshop on
Mining Software Repositories, pages 69–73, St. Louis, USA, May 2005.

[49] Jacek Ratzinger, Martin Pinzger, and Harald Gall. Eq-mine: Predicting
short-term defects for software evolution. In Proceedings of the Funda-
mental Approaches to Software Engineering, pages 12–26, Braga, Por-
tugal, March 2007. Springer.

REFERENCES 96

[50] Jacek Ratzinger, Thomas Sigmund, Peter Vorburger, and Harald Gall.
Mining software evolution to predict refactoring. In Proceedings of the
International Symposium on Empirical Software Engineering and Mea-
surement, page to appear, Madrid, Spain, September 2007.

[51] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting
component failures at design time. In Proceedings of the International
Symposium on Empirical Software Engineering, pages 18–27, Rio de
Janeiro, Brazil, September 2006.

[52] ArgoUML: Open Source UML Modeling Tool. http://argouml.tigris.org.

[53] Nikolaos Tsantalis, Alexander Chatzigeorgiou, and George Stephanides.
Predicting the probability of change in object-oriented systems. IEEE
Transactions on Software Engineering, 31(7):601–614, July 2005.

[54] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, USA, 2 edition,
2005.

[55] Annie T. T. Ying, Gail C. Murphy, Raymong Ng, and Mark Chu-Carroll.
Predicting source code changes by mining change history. IEEE Trans-
actions on Software Engineering, 30(9):574–586, September 2004.

[56] Thomas Zimmermann and Peter Weißgerber. Preprocessing cvs data
for fine-grained analysis. In Proceedings of the International Workshop
on Mining Software Repositories, Edinburgh, Scotland, May 2004.

[57] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. In Proceedings
of the International Conference on Software Engineering, volume 00,
pages 563–572, Edinburgh, Scotland, UK, May 2004.

Index

Conclusion, 88

Evaluation, 44

Introduction, 1

Methodology, 27
Motivation, 2

Organization, 4

Prediction Foundation, 17
Promising Techniques, 15

Related Work, 6

State of the Art, 6

