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Abstrakt

In dieser Dissertation werden Blackbox Modelle von Mikrowellen-Leistungsverstärkern
vorgestellt und untersucht.

Blackbox Modelle oder Verhaltensmodelle sind Teil von theoretischen und experi-
mentellen Methoden der Systemtheorie, und sind in der Systemidentifikation angewen-
det. Die Modelle werden aus eingangs- und ausgangsseitigen Messdaten generiert, ohne
die innere Struktur der zu modellierenden Einheit zu kennen. Hauptaugenmerk liegt
dabei auf der Struktur dieser Modelle, den Schätzverfahren für die Modellparameter,
Evaluierungsmethoden und Entwicklung neuer Modelle.

Praktische Einsatzmöglichkeiten der Verhaltensmodelle von Leistungsverstärkern
sind beispielsweise in Programmen zur Schaltungssimulation und in Linearisierungsver-
fahren zu finden. Die somit erhaltenen Modellparameter sind dabei repräsentativ für
das Verhalten der physikalischen Einheit. Leistungsverstärker sind jedoch nichtlin-
eare, gedächtnisbehaftete Bauelemente (d. h., das aktuelle Ausgangssignal von dem
gegenwärtigen und vergangenen Eingagssignal abhängt). Daher ist es eine besonders
anspruchsvolle Aufgabe, ein Modell zu extrahieren, welches das (nichtlineare) Verhal-
ten des Leistungsverstärkers in ausreichend hoher Qualität beschreibt, und dabei auch
Speichereffekte berücksichtig.

Der erste Teil dieser Dissertation beschäftigt sich mit einer Analyse bezüglich jener
Signale, die zur Anregung von Verhaltensmodellen geeignet sind, sowie Unterteilung
von Daten in spezielle Datensätze und der Auswertung von Bewertungskriterien zur
Feststellung der Modellgüte. Außerdem werden lineare Schätzverfahren und Parame-
trisierung linearer Systeme untersucht, wobei die Fortschritte von Schätzverfahren mit
FIR Filtern aufgezeigt werden. Zusätzlich zu den linearen Schätzverfahren werden
auch Methoden zur nichtlinearen Systemidentifikation, insbesondere von Mikrowellen-
Leistungsverstärkern, vorgestellt. Hervorgehoben werden statische und dynamische
nichtlineare Modell, zusammen mit den zugehörigen, linearen Schätzmethoden.

Der zweite Beitrag dieser Dissertation ist eine Studie von ausgewählten Anwen-
dungen von Verhaltensmodellen. Abschnitt 5.3 evaluiert Verhaltensmodelle von Leis-
tungsverstärkern, derer Modellparameter mit verschiedenen Eingangsrauschpegeln ge-
schätzt worden sind. Dabei stellt sich heraus, daßdie Modelle, die mit vorhandenem
Eingangsrauschen extrahiert worden sind, in der Regel bessere Resultate liefern als
jene, die ohne Eingangsrauschen bestimmt worden sind. Jedoch verhalten sich Let-
ztere optimal im rauschfreien Betrieb.

Die nächste Anwendung, die in Abschnitt 5.4 vorgestellt wird, ist die Implemen-
tierung einer Vorverzerrung in einem Mikrowellen-Leistungsverstrker. Der Vorverzer-
rer lieferte annehmbare Resultate, welche durch detaillierter ausgearbeitete Modelle
verbessert werden konnten.

Im Abschnitt 5.5 werden Fortschritte in der Verhaltensmodellierung aufgezeigt.
Beispielweise wird eine Volterra Modellapproximation (Wiener-Bose) vorgestellt, wel-
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ches gut strukturiert ist und lineare Schätzmethode verwendet. Das Hauptproblem
der Schätzverfahren zur Volterra Approximation ist die schlechte konditionierte Hes-
sianmatrix. Hier wird eine Methode zur Verbesserung der Konditionszahl von der
Hessianmatrix dargestellt, basierende auf der Änderung der Abtastrate, die in der Re-
gressionmatrix angewandt wurde.

In weiterer Folge wird ein Bewertungskriterium entwickelt, das zur Evaluierung der
Modellierung von Nichtlinearitäten am Ausgang des Leistungsverstärkers herangezogen
wird. Das Kriterium wurde an gedächtnislosen, linear gedächtnisbehafteten, nichtlinear
gedächtnisbehafteten, sowie an linear und nichtlinear gedächtnisbehafteten Systemen
angewandt. Die Ergebnisse werden in Abschnitt 5.6 präsentiert.

Eine Vorverarbeitung für die Parametrisierung von Verhaltensmodellen für Leis-
tungsverstärker wird in Abschnitt 5.7 präsentiert. Eine Klasse von Modellen basierend
Zweige zusammengesetzt aus einer Lookup-Tabelle gefolgt von einen ausgedünnten
Volterra Model (reduzierte Wiener-Bose Struktur) wird vorgestellt. Unter Verwendung
von Multiraten Signalverarbeitung im Identifikationsprozess erhält man hochpräzise
Modelle mit paralleler Struktur. Dieser Zugang erlaubt eine effizientere Auswertung im
Vergleich zu Modellen mit einem einzelnen Zweig und einer dementsprechend höheren
Anzahl an Parametern. Die erzielten Ergebnisse bestätigen die Leistungsfähigkeit
dieser Modelle das Verhalten eines Leistungsverstärkers zu verkörpern und dabei höhere
Genauigkeiten zu erzielen als die zuvor analysierten Modelle. Simulations- und/oder
Messdaten bildeten die Grundlage für alle präsentierten Modellierungs- und Validi-
erungsergebnisse.

Im letzen Kapitel wird ein Fazit der durchgeführten Arbeiten gezogen und auf öffene
Aspekte hingewiesen welchen der Kernpunkt weitererführender Forschungsaktivitäten
sein werden.



Abstract

This thesis is a research about PA BMs structures and their estimation strategies for
digital pre-distortion purposes.

Black-box or behavioral models (BM) are obtained from input/output observations
of a system, without knowledge of its inner structure. They can be optimized for a
specific system, and so it is possible to represent the physical component behavior by
this model (e.g., RF power amplifiers – PAs).

The principal applications of PA BMs are linearization and circuit simulation tools.
PAs are nonlinear devices with memory effects (i. e., the actual output signal value
depends of the present and past input signal values), therefore, it is a challenging task
to extract their equivalent BM.

The work starts with a brief overview of BMs excitation signals and partitioning of
data used in the modeling process. Figures of merit, tools to measure BMs quality, are
analyzed.

An investigation of linear estimation techniques and parametrization of linear sys-
tems is also performed, showing advances in the finite impulse response filter estimation.

Following, techniques for nonlinear systems estimation are described, focused on
PAs. Static nonlinear models and dynamic ones are outlined, together with their linear
estimation methods.

In the second part of this work, selected applications of behavioral models are
surveyed.

In Section 5.3, a study about PA BMs estimated under different noise levels shows
that models estimated with noise corrupted data achieve better general results than
models estimated with noise free data. Models estimated using noise free data have an
optimal performance only if noise free data is used.

The next application was a PA pre-distorter implementation, in Section 5.4. The
pre-distorter presented reasonable results, that could be enhanced by the use of more
elaborated models.

In Section 5.5, advances in BMs are shown, as a Volterra series model approxi-
mation (Wiener-Bose) that uses linear estimation techniques, having a well organized
structure. The main problem when estimating Volterra approximation models is the ill-
conditioned Hessian. A method for improving the condition number of the least-squares
Hessian is depicted, based on a resampling factor used in the regression matrix.

A figure of merit was developed to analyze the modeling of nonlinear distortions
of the output signal is shown in Section 5.6. Different models presented better perfor-
mance for systems with specific memory effects (memoryless, linear memory, nonlinear
memory, linear and nonlinear memory). Models have to be optimized for each situation
to avoid noise modeling.

A pre-processor for PA BMs estimation is presented in Section 5.7. New models
are introduced, composed by branches with look-up tables and pruned Volterra series
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approximation (Wiener-Bose reduced). Using a resampling factor in the fitting process,
these models have high accuracy and operate in parallel, what is more computationally
efficient than models having a single branch with a high number of parameters. The
results have shown that these parallel models were more accurate and capable to a
better representation of a PA than previously analyzed and developed models.

Simulated and/or measured data are used for modeling and validation in all cases.
Conclusions about the work and future research are drawn in the last chapter.
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Chapter 1

Introduction

Modern wireless communications systems use multilevel and/or multi-carrier modu-
lation formats in order to obtain high transmission rates in the assigned bandwidth,
requiring bandwidth efficiency, since frequency resources are always limited. Those
efficient modulation formats (presenting high peak to average power ratios, PAPR)
are also very sensitive to the inter-modulation distortion (IMD), that results from mild
nonlinearities in the RF transmitter chain (see Fig. 1.1). All these issues demand power
amplifier (PA) operation at significant back-off levels, thus power is used inefficiently.
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Figure 1.1: Example of IMD caused by a PA in a 16-QAM modulated signal.

In addition, modern communication standards are thought to operate with high
data rates, where memory effects (i. e., the actual output signal value depends on the
present and past input signal values) in PAs cannot be ignored. The PA is not only
one of the most power consuming components in the transmitter, but also the cause of
the main nonlinear effects in the transmitter chain.

In summary, a requirement of actual communication systems is a highly linear and
efficient PA. The main reasons are:

• Cost of the amplifier: Using cheaper transistors operating at a higher efficiency
will reduce the overall system price;

• Digital modulation: With the increase of bits/symbol and higher data rates,
signals to be amplified have a high crest factor (CF), forcing the amplifier to

1



2

operate in significant back-off in order to reduce the distortion and achieve the
desired error vector magnitude (EVM);

• Power consumption: A lower consumption is crucial for all systems, from
battery powered devices to high power base station amplifiers.

A well designed amplifier can meet some of the above cited requirements. However,
but only when the signal is pre-distorted satisfactory levels of efficiency can be achieved.
In this sense, the need of accurate pre-distorters can improve the IMD cancelation, as
shown in Fig. 1.2. This figure shows that not only the magnitude but also the phase
of the models used in the pre-distortion process have to be well determined to achieve
good cancelation results.
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Figure 1.2: IMD cancelation that can be obtained from a basic pre-distorter for different values
of gain and phase error [1].

The most accurate models are based on input/output measurements of the PA (be-
havioral models). They are used for pre-distortion purposes but are of limited use in
the design of a new PA [2]. For this task, circuit equivalent models, based on semicon-
ductors physics, are employed. These models are characterized by the high number of
parameters and the difficult fitting. The accuracy is lower than with behavioral models,
so their use in pre-distortion circuits is restricted.

Motivation and Problem Formulation

An actual problem in power amplifier (PA) behavioral models (BMs) research area is
that a large number of them are reported in the literature, but unfortunately many
authors do not present the extraction procedure in sufficient detail to permit its im-
plementation, or use computationally intensive nonlinear estimation techniques. Many
works do not perform a comparison with other models in a way that it is possible to
distinguish differences, strengths and weakness of each model. A reasonable use of BMs
is only possible if they have a well-organized structure and a moderate complexity of
the estimators used, so their characteristics could be completely understood.

This thesis is about BMs for PAs, designed for complex-valued signals. The main
objective is the investigation of a subset of existing baseband time-domain BMs, com-
paring their performance and possible estimation methods, and to propose new models
and estimation techniques, using as much previous information as possible. Its moti-
vation is the implementation of efficient BMs, using the simplest estimation techniques
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available, thus being computationally efficient. These new models find applications
mainly in linearization [3] and system simulation tools, as e. g. Advanced Design
Systems from Agilent, as commented below.

Behavioral models

Behavioral models are employed in different areas of science, as automotive, medicine,
geology, and control engineering. They do not need an a priori knowledge of the system
internal composition, for that reason they are also known as black-box models [4].
The objective is to derive a mathematical model from input/output observations that
describes the passive or active system behavior with good accuracy (see Fig. 1.3).
Therefore, their exactness is highly sensitive to the adopted model structure and the
parameter extraction procedure (optimization algorithm).

Black-Box Model

e(k)
E(f)

umeas(k)
Umeas(f)

ymeas(k)
Ymeas(f)

ymodel(k)
Ymodel(f)

Optimization 
Algorithm

System

Figure 1.3: A general modeling procedure.

The input/output measurement signals and the error signal in the (sampled) time
domain are denoted by umeas(k), ymeas(k), and e(k), respectively. In the frequency
domain they are represented by Umeas(f ), Ymeas(f ), and E(f ).

Adding some a-priori information to the estimation process can always improve
results, instead of doing a “blind estimation”. So, a good knowledge of the system to
be modeled is necessary in order to advantageously restrict the possibilities of model
implementation.

Linearization:

In digital pre-distortion (DPD) linearizers an accurate reproduction of PA memory
is of particular importance for a later compensation of PA nonlinear dynamics [5].
The extraction of PA BMs for DPD linearization purposes is carried out by means of
input/output complex envelope signal observations.

Figure 1.4 shows two possible architectures for DPD purposes (direct and indirect
learning) [6]. In the direct learning case, the model is calculated and inverted to
minimize the distortion. In indirect learning, the inverse amplifier BM is calculated
using the attenuated output signal and the input signal after pre-distortion. This BM
is then used to pre-distort the signal. In both cases, the BM structure and extraction
strategy is crucial for accurate results.

Application examples of the direct and indirect learning approaches are given in
[7–10].
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Figure 1.4: Direct (left) and indirect (right) learning architecture for pre-distorters.

System Simulation:

In system simulations, an entire amplifier can be represented by a BM. This procedure
protects the company’s intellectual property, as internal transistor effects are repre-
sented with reasonable accuracy. The model is totally described by its coefficients [11].
However, these extracted parameters have not a direct relationship to physical param-
eters within a PA. Indeed, these models deliver results very close to reality.

1.1 Thesis Outline and Contributions

The thesis is organized as:
Chapter 1: Introduction on BMs and applications, thesis problem formulation and

organization, listing of contributions, and a review of main bibliographies in the area.
Chapter 2: BMs particularities, as excitation signals, and organization of obser-

vation data. An investigation about figures of merit (FOMs) showing their advan-
tages/disadvantages is presented.

Chapter 3: Linear estimation techniques, and how they are applied for linear
systems as finite impulse response (FIR) filter estimation. A contribution here was
the adaptation and the use of singular value decomposition (SVD) techniques [12] for
FIR filters estimation operating with complex-valued signals [13]. The advantages are
highlighted. A FIR frequency-domain estimation technique is also shown.

Chapter 4: A classification of nonlinear systems is depicted, with the main focus
on PA. Following, several PA models are analyzed. The static models covered are:
power series, baseband power series using orthogonal polynomials, Saleh model, and
neural networks configured only with tangent-sigmoid basis functions. Also a pre-
processing technique for estimation of baseband power series is presented. The dynamic
models covered are: Wiener, Hammerstein, and their relation to Volterra series; parallel
configured models, and Wiener-Bose model – a direct approximation of Volterra series.
Contributions here were the application of SVD techniques to nonlinear models, and
an analysis about Volterra kernels of PAs [14]. A comparison among several models
(including some of these models commented) from different universities was coordinated
and presented in [15].

Chapter 5: This chapter is about recent developments in BMs. It includes identifi-
cation in the presence of different levels of additive white Gaussian noise (AWGN) [13],
and a predistorter based on Wiener and Hammerstein models [16]. Further on an
introduction of the Wiener-Bose model is presented: a Volterra series approximation
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using linear techniques [17]. It is followed by an alternative FOM for nonlinear distor-
tion identification. Finally, a discussion about parallel models, a pre-processing for PA
BM estimation, and a parallel model composed of the combination of the Wiener-Bose
model and look-up tables (LUTs) are presented in the last section.

Chapter 6: Draws the final conclusions and discusses some possible and recom-
mendable future research directions.

1.2 Bibliography Review

This section will present some of the main references in the area, but is away from
being exhaustive.

The basis theory for nonlinear systems, including a wide description is given in
[18–20]. A modern and extensive theoretical overview of BMs for PAs is presented
in [21]. In [22] another overview is reported, oriented to automation and control area,
and in [23] a comprehensive description of linear and nonlinear systems is encountered,
oriented to physiological systems, as well as in [24], which has a practitioner’s guide.
A complete classification of nonlinear systems is reported in [25]. The theory about
baseband polynomials is well explained in [26, 27]. The main studies on orthogonal
polynomials for baseband complex-valued signals are in [28, 29]. A discussion about
Wiener models, Hammerstein models, and parallel structures, as well as figures of
merit, is in [30–33]. A recursive BM is found in [34]. An interesting reference when
dealing with Volterra approximations combined with adaptive filter techniques is [35].
References [36,37] present advanced studies about Volterra series (VS) used in modeling
of PAs and pruning techniques for VS. Linear and nonlinear methods for estimating
BMs are in [38–40]. Information about neural network structures and estimation is
given in [41,42]. Pre-distortion techniques using BMs can be found in [3, 10,43].



Chapter 2

System Identification – Overview

2.1 Introduction

This chapter will describe excitation signals, measurement data partitioning, and fre-
quently used figures of merit (FOMs).

2.2 Excitation Signal

The selection of an excitation signal is essential to build an efficient model. The ideal
input signal for system identification is white Gaussian noise [18, 24]. It excites every
nonlinearity source of an unknown system, but it is hard to generate, due to the wide
bandwidth and randomness required.

In the ideal case, this signal would have an impulse as auto-correlation function.
But, for best results, it is necessary that the signal maintain these characteristics also
for higher order correlations with its delayed version. The reasons are explained in
sections 3.2 and 5.5.4.

In practice, signals are generated as close to Gaussian noise as possible, using mod-
ulated signals. In the frequency domain, they are limited to the system bandwidth and
measured up to the highest IMD product to be analyzed.

2.3 Measurement Data Partitioning

The measurement data used in the modeling process have to be partitioned into [40]:

• Training Data: Used for the estimation process;

• Validation Data: Used to validate the model. Should be different from the
training data;

• Test Data: Obtained from another realization or a third part of the measurement
data. Used to verify the model quality.

A graphical representation of these different types of data is shown in Fig. 2.1.

6
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Figure 2.1: Different data types used in the modeling process.

In the identification process, several models are trained with training data. They
are then selected with validation data. Finally, test data is used to verify the model
quality.

2.4 Figures of Merit

The FOMs are used to quantify how well a model describes a system. Figure 2.2 shows
how a FOM is obtained. The measured input signal is used to obtain the model output
signal, which is compared with the measured output signal. The results are described
by the FOM.

It can be defined in several ways, in time or in frequency domain, linear or logarith-
mic, parametric (a number) or nonparametric (graphic). Most commonly used FOMs
will be described in this chapter.

Amplifier

Black-Box Model

FOM 

ymodel(t)

Ymodel(f)

umeas(t)

Umeas(f)

ymeas(t)

Ymeas(f)

=

Figure 2.2: Obtaining a FOM.

2.4.1 Parametric FOMs

These FOMs are characterized by a number, summarizing the model performance.

Percent Variance Accounted For

The Percent Variance Accounted For (%VAF) is widely used in physiological system
identification. It is a statistically based figure of merit, defined as [44]:
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%VAF = 100

(
1− var(y− ŷ)

var(y)

)
(2.1)

Where var(·) is the variance, y and ŷ are the measured and model estimated output
signal, respectively. It is a linear FOM, well suited for general modeling, and sensible
to the synchronization between measurement and model signals. Very small differences
in measured and modeled signals are almost imperceptible, due to the linear nature of
this FOM.

Normalized Mean Square Error

The Normalized Mean Square Error (NMSE) is a frequently used metric to verify the
model accuracy on a sample-per-sample basis [33,36,45–47]. It is defined as:

NMSE = 10 log


N∑
k=1

|y(k)− ŷ(k)|2

N∑
k=1

|y(k)|2

 (2.2)

The NMSE main characteristics are:

• Accounts for very small variations in signals;

• Well suited for measurement of the accuracy of the model in the presence of IMD,
even when they are very small;

• Provides a logarithmic measurement.

Although it is apparently an efficient and parsimonious FOM, it reveals little in-
formation about the modeling of memory effects, nor which kind of memory effect was
modeled.

The NMSE can be mathematically related to the raw EVM [48] as:

EVMraw = 10
NMSE (dB)

20 (2.3)

Normalized Mean Square Error Problems

The main problems of the ordinary NMSE are its high sensibility to:

• Errors in linear components of the signal;

• Signal’s synchronization.

Nonlinear distortions, which are really interesting from a nonlinear behavioral mod-
eling perspective, have little weight in this metric.

Error in Linear Components

Fig. 2.3 shows two model output signals, and the respective NMSE related to the
measured output signal. The black signal is obtained from a model without any mod-
ifications (NMSE = −34.2 dB). For the generation of the signal that has a NMSE
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of −20.2 dB, a gain of 10% was applied only to the linear coefficients of the same
model, thus introducing an intentional error in these coefficients. The FOM NMSE
was strongly influenced by this 10% gain in linear coefficients, although no alterations
were made in nonlinear coefficients of the model.
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Figure 2.3: Modified model output signals for NMSE performance analysis. The signal with
NMSE = −20.2 dB was generated from a model with an increase of 10% at linear coefficients
(left). The signal with NMSE = −32 dB was generated from a model with an increase of 20%
at nonlinear coefficients (right).

Doing a similar analysis, an increase of 20% was done only in nonlinear coefficients
of the original model. An even higher error was expected, due to the higher error intro-
duced in the nonlinear coefficients. Despite these alterations, the NMSE pointed out a
mere 2 dB difference, leading to the wrong conclusion that model with and without in-
crease in nonlinear coefficients have a close performance. The results are also displayed
in Fig. 2.3.

Synchronization Errors

Figure 2.4, shows two model output signals and their NMSE results relative to the
measured output signal. The signal with a NMSE of −1.5 dB has a synchronization
difference of 4 samples relative to the signal with NMSE of −34.2 dB. If only the
NMSE is used as a FOM, the model which produced an output signal with a NMSE
of −1.5 dB would be badly classified, although the model output signals are almost the
same, having only a synchronization error.

So, gain differences and synchronization errors have to be considered when applying
NMSE to verify BM’s accuracy.

Adjacent Channel Power Ratio

A method used to measure modeling performance and compare models in frequency
domain is to evaluate the differences in the adjacent channel power ratio (ACPR) of
the measured and modeled outputs and calculate its difference. This FOM is defined
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Figure 2.4: Unsynchronized model output signals for NMSE performance analysis. The signal
with a NMSE of −1.5 dB has a synchronization difference of 4 samples relative to the signal
with NMSE of −34.2 dB.
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Figure 2.5: WCDMA signal and ranges used for ACPR calculation.

as:

∆ACPR =ACPRmeas −ACPRmod

ACPR =10 log


∫
fadj

|Y(f )|2df∫
fch

|Y(f )|2df

 (2.4)

here Y(f ) is the Fourier transform of the corresponding signal, fadj the frequency band
of the adjacent channel, and fch the carrier frequency range. The output filter included
in a similar FOM calculation (adjacent channel leakage ratio – ACLR) according to
standard [48] was neglected in this case. Figure 2.5 shows the input and output signal
spectra for a WCDMA signal and the respective frequency ranges used for the ACPR
calculation.

This is a very useful FOM, since it is also widely employed in the frequency domain
for amplifiers characterization, when amplifier output spectra are tested with a spectral
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mask defined by a specific standard.
The same analysis done before in section 2.4.1, increasing linear coefficients by 10%

and nonlinear coefficients by 20%, was repeated for ∆ACPR, and the results are listed
in Table 2.1. The results were not so conclusive, close to the error free ∆ACPR value,
and bring no information about which kind of inaccuracy the model has (e. g., bad
fitting of linear or nonlinear memory). Nevertheless, the difference between linear and
nonlinear errors is smaller.

Table 2.1: Error in parameters analysis for ∆ACPR

Model 0.18

10% error linear coef. −0.58

20% error nonlinear coef. 1.65

2.4.2 Nonparametric FOMs

Although parametric FOMs offer a very parsimonious way to quantify a model, they
are not optimal to avail how much memory of the system is considered by the obtained
model. Graphical FOMs may deliver better results in this case.

AM/AM – AM/PM curves

Boundary lines of the AM/AM (gain compression) – AM/PM (phase distortion) con-
version plots are an indication of memory effects. Figure 2.6 shows an example, for a
WCDMA signal applied to a PA operating at 5 dB input back off. The points spread
clearly indicate that the amplifier presents linear and nonlinear memory.

Figure 2.6: AM/AM – AM/PM conversion boundary lines of a WCDMA signal applied to a
PA.

By the use of boundary lines instead of the full conversion plot it is also possible
to compare several AM/AM conversion plots within the same graph. As an example,
Fig. 2.7 shows the boundary lines of the AM/AM conversion of the reference and the
modeled output signals for three different models. The best performance was achieved
by Model3, with the closest approach to the reference lines.
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Figure 2.7: AM/AM-conversion boundary lines of the reference and several modeled output
signals.

Another possibility is to visualize the AM/AM and AM/PM signal characteristics
simultaneously, in a 3-D plot. Figure 2.8 shows a mean curve in black that denotes
the nonlinearity of an amplifier output signal. The other curves are projections of this
curve in the xy, xz, and yz planes.
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Figure 2.8: AM/AM – AM/PM mean curve denotes the amplifier static nonlinear behavior.

Extending this concept to include also memory effects, it is possible to draw a 3-D
graph with polygons surrounding this line (see Fig. 2.9). They stand for memory outer
borders in 3-D, as boundary lines in 2-D in Fig. 2.6.

This figure shows that an amplifier BM should take into consideration AM/AM and
AM/PM variations in order to be complete. Also a correct reproduction of PA memory
is important, since it is essential for accurate adaptive pre-distortion purposes [5].
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Figure 2.9: 3-D representation of the signal AM/AM and AM/PM variations.

Complimentary Cumulative Density Function

Another useful indication of the quality of a model’s output signal is a comparison of
the Complimentary Cumulative Density Function (CCDF) of measured and modeled
outputs. Figure 2.10 displays an example of this procedure for three given models.
Throughout this FOM, the comparison of model’s capability to reproduce peaks en-
countered in the output signal is possible. For this particular case, the performance of
the models is very close, and other FOMs are needed to decide which model is more
accurate.
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Figure 2.10: CCDF of the reference and several modeled output signals.



2.5. CONCLUSION 14

Coherence

The coherence is a function of the power spectral density (PSD) and the cross PSD of
the input/output signal. It is defined as [49]:

Cuy(f ) =
|Suy(f )|2

Suu(f )Syy(f )
(2.5)

Where Suu(f ) and Syy(f ) are the input/output PSD, respectively, and Suy(f ) is the
cross PSD, defined as

Suy(f) = 〈u(f)y∗(f)〉 (2.6)

with 〈u(f)〉 = 0 and 〈y(f)〉 = 0, where < · > is the expectation operator. The auto
PSD is derived in a similar way. If the coherence is estimated between two linearly
related signals, the output for all frequencies is Cuy(f ) = 1.

Figure 2.11 shows the coherence graphs between two models and measured output
signal: a linear (a FIR filter) and a nonlinear dynamic model (Wiener model). This
graph is a measure for model’s representation of nonlinear effects [23], or if there are
any unmodeled linear dynamics in the model. If there are unconsidered dynamics in
the model output signal, the value tends to zero at that frequency.

The improvements achieved by the nonlinear model are clear in Fig. 2.11, once there
are less values near zero for the nonlinear curve than in the linear one. No information
about dynamics can be extracted using only this parametric FOM.
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Figure 2.11: Coherence between a linear (FIR filter), a nonlinear model (Wiener), and the
measured output signal of a given amplifier.

2.5 Conclusion

This chapter depicts issues about system modeling. In excitation signal design, it
was shown that the Gaussian noise is the most suitable signal, but unrealizable in
practice. The stimulus signals used for modeling are in general the ones also used in
normal operating conditions by the system. It was also explained how and why data
is partitioned in modeling, validation and test data in the estimation process. Finally,
parametric and nonparametric FOMs were displayed. The former is frequently used in
estimation algorithms due to its easiness of evaluation, and the latter is more suitable
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to the analysis of system dynamics represented by models under test.



Chapter 3

Linear Estimation and Linear

Systems Estimation

3.1 Introduction

The dynamic part of an amplifier model represents memory effects, constituted by
filters. Its coefficients can be estimated together with the nonlinear model part (as
in Volterra series based models), or separately (as for block models), using a linear
estimation technique. Several methods can be used for the linear estimation of linear
models in time or frequency domain. The main properties of linear estimators are [40]:

• A unique optimum exists;

• A “one shot” solution can be computed analytically;

• Many numerically stable and fast algorithms are published (LS, TLS, LMS, RLS
etc.).

In this chapter, a linear estimation overview for linear systems will be given, and
different strategies will be commented.

3.2 Least Squares Method

The Least Squares (LS) is the most commonly used solution for linear optimization
problems. Least square sense means the minimal sum of squared error loss function
values, or the best linear combination of regressors. A detailed LS algorithm derivation
can be found in [50]. All equations here described are for single input–single output
systems.

The LS equation is defined as:

ĥ = (UHU)−1UHy (3.1)

where ĥ is the estimated parameter vector, U is the regression matrix, UHU is the
Hessian, and y the output vector.

16
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A problem when inverting very large Hessians from (3.1) is the insufficient memory.
In this case, it is recommended to use the Strassen inversion method [51]:

[
A B
C D

]−1

=
[

A−1 + A−1BΣ−1CA−1 −A−1BΣ−1

−Σ−1CA−1 Σ−1

]
(3.2)

where A and its Schur complement Σ = (D−CA−1B) are the only terms requiring
inversion.

An extension of the LS is the weighted LS:

ĥ = (UHWU)−1UHWy (3.3)

where the weight matrix W is composed as:

W =


W11 0 . . . 0

0 W22 . . . 0
...

...
. . .

...
0 0 . . . WNN

 (3.4)

where N is the number of samples of the input observation signal. Using this
weighted estimator it is possible to emphasize the contributions of some sets of modeling
data, correcting the ordinary LS method, where the contribution of all data is assumed
to be equal. A drawback is that this method becomes inefficient for very large data-sets,
which results in very large matrix W.

The way that the LS regression matrix is composed allows the solution of a wide
range of linear estimation problems.

Of special interest for amplifier modeling is the LS for FIR estimation, since this
filter is the linear block of some modular models (Wiener, Hammerstein, Wiener-
Hammerstein and the respective cascades) [23].

3.2.1 LS for FIR Filter Estimation

The FIR filter components are unit-delays, multipliers and adders. The order of the
filter is given by M in Fig. 3.1. The output y(k) is the convolution of the input u(k)
with the filter impulse response function (IRF) vector ĥ.

The FIR regression matrix U for N values, a memory length M and the parameter
vector ĥ is:

ĥ =
[
h0 h1 . . . hM

]T (3.5)

U =


u(M + 1) u(M) . . . u(1)
u(M + 2) u(M + 1) . . . u(2)

...
...

. . .
...

u(N) u(N − 1) . . . u(N −M)

 (3.6)

For accurate estimations, N should be at least 10 times bigger than M (empirical
observation).
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Figure 3.1: Schematic of a FIR filter.

3.2.2 Correlation Methods

Another way to represent the LS estimator (3.1) is through correlations. Formulating
the general regression matrix as:

UH =


u∗1(1) u∗1(2) . . . u∗1(N)
u∗2(1) u∗2(2) . . . u∗2(N)

...
...

. . .
...

u∗n(1) u∗n(2) . . . u∗n(N)

 (3.7)

and:

U =


u1(1) u2(1) . . . un(1)
u1(2) u2(2) . . . un(2)

...
...

. . .
...

u1(N) u2(N) . . . un(N)

 (3.8)

The Hessian H = UHU in (3.1) can be written as:

H =


∑N

i=1 |u1(i)|2
∑N

i=1 u∗1(i)u2(i) . . .
∑N

i=1 u∗1(i)un(i)∑N
i=1 u∗2(i)u1(i)

∑N
i=1 |u2(i)|2 . . .

∑N
i=1 u∗2(i)un(i)

...
...

. . .
...∑N

i=1 u∗n(i)u1(i)
∑N

i=1 u∗n(i)u2(i) . . .
∑N

i=1 |un(i)|2

 (3.9)

Which is the autocorrelation matrix Ruu. Using a similar procedure, UHy in (3.1)
is:

UHy =


∑N

i=1 u∗1(i)y1(i)∑N
i=1 u∗2(i)y1(i)

...∑N
i=1 u∗n(i)y1(i)

 (3.10)

This expression is the input/output signal cross-correlation ruy. The resulting LS
solution is [40]:

ĥ = R̂
−1
uu r̂uy (3.11)
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The main difficulty is that neither R̂uu nor r̂uy are available in advance and have
to be estimated. Equation (3.11) is also known as Wiener filter and can be used for
adaptive filter techniques (see [52]).

This is a good approximation only if very long training sequences are used for the
estimation of the autocorrelation function.

3.2.3 Singular Value Decomposition Techniques (SVD)

If the system input signal is a band-limited white Gaussian noise, an alternative way
to find a suitable form for the LS estimator of the IRF h is to apply the SVD, due to
its de-noising possibility [39].

Band-limited white Gaussian noise are signal conditions of some modern standard
communication signals, like WCDMA and Wimax. This technique is computationally
efficient and very suitable if signal-to-noise ratio (SNR) is low [53]. The model assumed
is in Fig. 3.2.

y(k)

n(k)
Linear 

dynamic

(FIR Filter )

Modeling 
noise

u(k)

Figure 3.2: Model assumed for a linear filter estimation.

The pseudo-inverse derivation [12,53] for complex data is:

ĥ = R−1
uu ruy + R̂

−1
uu r̂un (3.12)

= h + R̂
−1
uu r̂un (3.13)

= VS−1VHVSVHh+ VS−1VHr̂un (3.14)

with ruy = Ruuh and R−1
uu = VS−1VH. The vector r̂un is the input/output noise

correlation, V is a matrix composed of the singular vectors and S is a diagonal ma-
trix formed by the singular values. R̂uu are the estimated input correlation matrices.
Substituting VHh = ς and VHr̂un = η yields to:

ĥ = VVHh + VS−1VHr̂un (3.15)

=
T∑
j=1

(
ςj +

ηj
sj

)
vj (3.16)

where sj are the singular values. Only terms for which

|ςj | ≥
|ηj |
sj

(3.17)

contribute to the estimator in (3.16). The Minimum Description Length (MDL) cost



3.2. LEAST SQUARES METHOD 20

function is defined as [12]:

MDL(nsv) =

(
1 + nsv

log(N)
N

)
N∑
k=1

(y(k)− ŷ(k))2 (3.18)

where nsv is the number of singular vectors, N is the total number of input/output
realizations, y(k) is the reference output and ŷ(k) is the model’s output. Using (3.17)
and (3.18), it is possible to separate the necessary singular vectors s for the estimator.

Another possibility is to develop an algorithm considering the noise-free output
variance of a linear system without bias at its input [23]:

1
N

N∑
k=1

y2(k) =
1
N

N∑
k=1

(
M−1∑
τ1=0

h(τ1)u(k − τ1)

)(
M−1∑
τ2=0

h(τ2)u(k − τ2)

)
(3.19)

=
M−1∑
τ1=0

M−1∑
τ2=0

h(τ1)h(τ2)
1
N

N∑
k=1

u(k − τ1)u(k − τ2) (3.20)

= hHRuuh (3.21)
= hHVSVHh (3.22)

A rearrangement of the taps can be carried out considering the contribution of each
component γi that composes the output variance:

γi =
M∑
i=1

si

(
vH
i ĥ
)(

vH
i ĥ
)H

(3.23)

=
1
si

diag
[(

VHruz

) (
VHruz

)H]
(3.24)

Where diag(·) is the main diagonal of a matrix. Then, after estimating R̂uu and
r̂uy, equation (3.23) is calculated by means of the SVD of R̂uu, and the results can be
sorted in decreasing order. This is the final IRF estimate.

Benefits of SVD techniques

The rearranging of the taps brings some benefits for the linear estimation. Fig. 3.3
shows a comparison of the estimated output signals using ordinary FIR LS and SVD
techniques. An improvement can be seen in out-of-band components, where results are
closer to the measured signal. Also in Fig. 3.3, the resulting taps of these estimators
are displayed. If the filter memory estimation (the value that the IRF magnitude is
zero) was done by the ordinary LS estimator, the results would be around 10 taps.
Using SVD techniques, the first tap with a value around zero is observed at position
5, so the filter function has more energy concentrated in less taps, allowing the use of
models with less parameters and with the same efficiency.
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Figure 3.3: Spectral results for the measured and modeled signals using ordinary FIR LS and
SVD techniques. At the right side respective taps magnitudes are displayed.

3.3 Total Least Squares

The LS estimation technique is based on minimizing an error given by:

eLS = min||y− ŷ||2 (3.25)

and once the minimum is found, any h satisfying:

Uh = y (3.26)

is the LS solution.
The Total Least Squares (TLS) [39, 54] was developed to account for errors in the

LS regression matrix U also, and not only in the output vector. The TLS problem is
formulated as minimizing the error given by:

eTLS = min||[U|y]− [Û|ŷ]||F (3.27)

Where [U|y] indicates that U and y are stacked side-by-side, and || · ||F is the
Frobenius norm. The TLS takes input/output distortions into account, a situation
that occurs in practice.

The difference between these two methods is displayed in Fig. 3.4 for the one pa-
rameter equation y = hu. The LS approach minimizes the vertical distance to line,
and the TLS minimizes the total distance to line [39].

The entire solution is obtained by using SVD, and is explained in details in [39,54].
Let C = [U|y], then:

C = Udiag(s1, s2, . . . , sn+1)V H =
n+1∑
k=1

skukvH
k (3.28)

with U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vn+1]. The final solution is:

h = −vn+1(1 . . . n)
vn+1(n+ 1)

(3.29)
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Figure 3.4: LS (left) and TLS (right) solution for the one parameter equation.

3.4 Frequency-Domain Estimation

Using the input power spectrum and the input/output cross-power spectrum it is pos-
sible to estimate the frequency response:

Ĥ(f) =
Suy(f)
Suu(f)

(3.30)

where Ĥ(f) is the estimated frequency response, Suy(f) the input/output cross-
power spectrum and Suu(f) the input power spectrum.

Suy(f) is defined as the Fourier transform of the cross-correlation function ruy(τ)

Suy(f) =
+∞∑
−∞

ruy(τ)e−j2πfτdτ (3.31)

Other properties and definitions can be found in [55]. Suu(f) can be derived in a
similar way.

This method is called the indirect method of power spectrum estimation [56].
The direct method is calculating the expectation of the Fourier transform of the

input/output signal.
The main disadvantage of this approach is that much averaging is necessary to

reduce the random error to acceptable levels when signals are noisy.

3.5 Conclusion

Different types of estimators can be used to determine the dynamic part of a BM, or
even to estimate the entire BM, if the BM structure is “linear in parameters”.

The techniques presented in this chapter are less computational intensive than non-
linear optimization techniques, and are a fast way to calculate the solution.

Due to these characteristics, linear estimation techniques have great potential to be
widely used and implemented in hardware.



Chapter 4

Nonlinear Systems Estimation

4.1 Introduction

A RF PA is a typical nonlinear system. Even when the transistor is operating in the
linear region, driven with small variance input signals, the output signal has nonlinear
components, due to the physics of the transistor.

Different methods can be used for nonlinear systems estimation in the time or in
the frequency domain. Nonlinear estimation techniques are more powerful compared
to linear ones, but they have some undesirable properties [40]:

• Multiple minima in the cost function;

• Iterative solutions are often necessary;

• Numerically stable and efficient algorithms are still under research;

• Nonlinear estimation algorithms can present better results for estimation, but the
convergence rate and the initial parameters have to be well chosen.

Due to these characteristics, and also because models used in this work are linear
in parameters, similar algorithms as for the linear systems estimation will be used.

4.1.1 Classification of Nonlinear Systems

In [25] a complete classification of nonlinear systems is given. If any of the following
phenomena occurs, a nonlinear dynamic model has to be used:

1. Asymmetric responses to symmetric input signal changes (ASYM);

2. Generation of higher-order harmonics in response to a sinusoidal input (HARM);

3. Input multiplicity, means that one steady-state response corresponds to more
than one steady-state input (IM);

4. Output multiplicity, means that one steady-state input corresponds to more than
one steady-state output (OM);

5. Generation of sub-harmonics in response to any periodic input (SHAM);

23
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6. Highly irregular responses to simple inputs like impulses, steps or sinusoids (CHAOS);

7. Input-dependent stability (IDS).

A nonlinear system is classified due to phenomena presence as follows:

• Mild: ASYM, HARM, IM;

• Intermediate: IDS;

• Strong: OM, SHAM, CHAOS.

A PA BM remains in the mildly nonlinear class. The known PAs to be modeled
present these characteristics in normal operation conditions, when tested with a sinusoid
stimuli. None of the other phenomena (OM, SHAM, CHAOS or IDS), that imply the
need of intermediate or strong nonlinear dynamic models, were observed in amplifier
measurements.

Classification of Power Amplifier Behavioral Models

The classification of PA BMs used in this work is as in [21]:

• Memoryless: The output envelope reacts instantaneously to variations in the
input envelope;

• Linear memory: BM that account for envelope memory effects attributable to
the input and output matching networks’ frequency characteristics;

• Nonlinear memory: Dynamic interaction of nonlinearities through a dynamic
network.

Figure 4.1 is used by the authors to classify the various BMs. Memoryless mod-
els are represented by the block “Nonlinear/Memoryless”. Linear memory models are
models that accounts for the “Nonlinear/Memoryless”, H(ω) and O(ω) blocks (match-
ing networks). Models that care for nonlinear memory contains all previous mentioned
blocks, and the feedback path with the block F(ω), attributed to electrothermal and/or
bias circuitry dynamics.

)X(f E(f)
1 2

2
3

3 Y(f)

Nonlinear/MemorylessLinear Dynamic

Linear Dynamic

Linear Dynamic

Figure 4.1: A PA representation using a nonlinear feedback structure.
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4.1.2 Volterra Series

Volterra series (VS) account for mildly nonlinear class of nonlinear systems and has the
property of dynamic interaction of nonlinearities, so it is well suited for the description
of PA.

The finite, discrete VS model is given by [18]:

yV (k) =
P∑
p=0

M−1∑
τ1=0

· · ·
M−1∑
τp=0

hp(τ1, · · · , τp)u(k − τ1) . . . u(k − τp) (4.1)

Where hp is the kernel of order P , k and τ are discrete indices of the sampling
interval, and M is the memory length. The sampling interval must be selected to cover
the needed input/output signal’s bandwidth.

The main disadvantage of a VS based BM is the number of parameters necessary
to estimate, and consequently, to represent the model. A Volterra model using 5
delay taps needs 5, 125, 625, and 3125 parameters for the 1st, 3rd, 5th, and 7th order
kernels, respectively. These values are not practical, since an estimation using so many
coefficients is very computational intensive, even for actual computers.

By using the symmetry condition, the complexity of the Volterra kernels as a func-
tion of the order of nonlinearity is given by the binomial [35]:

(
M + p− 1

p

)
(4.2)

where M is the number of delay taps used and p is the order of the kernel. Using
(4.2), the above cited model is reduced to 5, 45, 126, and 330 parameters. Unfortu-
nately, this equation is valid only for real valued signals.

Complex Valued Baseband Volterra series

In order to obtain the best model performance, it is necessary to adapt the BMs under
study to the modern PA input/output industry standard signals, once these models are
designed for linearization purposes. The excitation signals are complex valued, and as
a practical issue only first-zone filtered (baseband) equivalent BMs are frequently used,
due to the difficulties to implement bandpass models in hardware.

The model complexity grows significantly for baseband VS using complex signals,
represented until 7th order in (4.3) for symmetric kernels.
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y(k)=
M−1∑
i=0

h1(i)u(k − i) +
M−1∑
i=j

M−1∑
j=0

M−1∑
l=0

h3(i, j, l)u(k − i)u(k − j)u∗(k − l)+

+
M−1∑
i=j

M−1∑
j=l

M−1∑
l=0

M−1∑
m=n

M−1∑
n=0

h5(i, j, l,m, n)u(k − i)u(k − j)u(k − l)u∗(k −m)u∗(k − n)+

+
M−1∑
i=j

M−1∑
j=l

M−1∑
l=m

M−1∑
m=0

M−1∑
n=r

M−1∑
r=s

M−1∑
s=0

h7(i, j, l,m, n, r, s).

. u(k − i)u(k − j)u(k − l)u(k −m)u∗(k − n)u∗(k − r)u∗(k − s)
(4.3)

A closed form for determining the number of independent terms for baseband VS
using complex signals is the binomial:(

M + bp/2c
bp/2c

)(
M + bp/2c
bp/2c+ 1

)
1

M + bp/2c
(4.4)

Where b·c is the floor operation.
As an example, the numbers of parameters for a system using 4 delay taps are 4,

40, 200, and 700 for the 1st, 3rd, 5th, and 7th order symmetric kernels. The use of the
Volterra kernel symmetry property is necessary in the model extraction process, since
it eliminates the linear dependent columns of the kernel to be estimated.

Several techniques are employed to estimate VS. If the system is memoryless, VS
are reduced to a Taylor series and can be estimated as described in section 4.2. If
the system has only linear memory, it can be estimated using the techniques listed
in section 4.3. If the system presents only nonlinear memory or linear and nonlinear
memory, some strategies described in section 4.4 can be employed.

Model Memory Estimation

The memory estimation is crucial since it determines the number of delays necessary in
a VS and has direct influence onto the model performance. The system memory length
can be estimated observing when the value of the transfer function of the first order
Volterra kernel decays near zero [24].

Minimum Memory Length

The minimum number of lags along each dimension of the Volterra kernel required to
represent it in discrete time domain is given by [24]:

Lmin = 2Bsµ (4.5)

Where Bs (Hz) denotes the baseband bandwidth of the measured output signal
and µ is the effective kernel memory or the correlation time over which the kernel has
significant values.
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Maximum Memory Length

A limit for the kernel maximum memory length is where it shows no exponential de-
caying, but some oscillations around zero [24] that can be considered modeling noise.
This point limits the number of lags used for the next estimation. In [14], it was de-
termined by squaring the kernels magnitude and calculating where they concentrate
approximately 90% of the total kernel energy. An example of this procedure is shown
in Fig. 4.2, where an arrow shows where the kernel was limited.
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Figure 4.2: Example of a first order kernel estimation. The arrow shows where the memory
was limited for the next estimation.

Minimum and maximum memory length are important information obtained from
data, since no prior knowledge about the amplifier’s memory are known in advance.

The kernel is limited to the smallest possible memory length for practical applica-
tions, in order to generate parsimonious models.

4.2 Nonlinear Memoryless

The nonlinear part of an amplifier model represents the IMD, or the static part, and is
usually composed of polynomials or other nonlinear functions (e. g., tangent-sigmoids,
look-up tables). These models do not account for dynamics of the system.

In this section, the memoryless nonlinear estimation based on measurements will
be covered, and different strategies will be commented.

4.2.1 Power Series

A nonlinear system can be represented by a power series:

y(k) =
P∑
p=0

cpu
p(k) (4.6)

where cp are the polynomial coefficients and P is the order.
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Polynomial LS Estimation

A simple form to estimate a power series is using linear regression methods, as polyno-
mial coefficients are linear in parameters. The polynomial regression matrix U for N
measurements, a polynomial degree P and the parameter vector θ̂P is [40]:

U =


1 u(1) u2(1) . . . uP (1)
1 u(2) u2(2) . . . uP (2)
...

...
...

. . .
...

1 u(N) u2(N) . . . uP (N)

 (4.7)

θ̂P =
[
c0 c1 . . . cP

]T (4.8)

Then (3.1) can be applied. This regression matrix results in a Hessian with a high
condition number (CN), defined as the ratio of the largest to smallest singular value in
the singular value decomposition of a matrix [57]. A large CN is not desirable in the
estimation process, as it implies that small errors in the input can cause large errors in
the output.

The use of orthogonal polynomials can improve the Hessian CN for input signals
that these polynomials were derived. The regressors are closer to the ideal situation
for a Hessian (regressors mutually orthogonal).

For real valued input signals, Chebyshev (derived for single tones) and Hermite
(derived for Gaussian distribution) polynomials are typically applied. For complex
Gaussian baseband input signals, a derivation is found in [28].

Chebyshev Polynomials

The Chebyshev polynomials basis function is bounded between the interval [−1, 1]
for inputs between [−1, 1], and this leads to similar regressors variances. The model
input signals should be normalized to this input range. The modeling error near ±1 is
heavily weighted in this kind of polynomial [18]. This behavior is an advantage when
modeling amplifiers operating with non-Gaussian input signals. The recurrence relation
for Chebyshev polynomials is as (4.9):

Tn+1[u(k)] = 2u(k)Tn[u(k)]− Tn−1[u(k)] (4.9)

The first few Chebyshev polynomials of the first kind are:

T0[u(k)] = 1 (4.10)
T1[u(k)] = u(k) (4.11)
T2[u(k)] = 2u2(k)− 1 (4.12)
T3[u(k)] = 4u3(k)− 3u(k) (4.13)

Hermite Polynomials

If the input signal is normalized as a zero-mean, unit-variance Gaussian distribution,
the Hermite polynomials are the choice for the regression matrix orthogonalization.
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The recurrence formula for Hermite polynomials is [51]:

Hn+1[u(k)] = 2u(k)Hn[u(k)]− 2u(k)Hn−1[u(k)] (4.14)

The first Hermite polynomials are:

H0[u(k)] = 1 (4.15)
H1[u(k)] = u(k) (4.16)
H2[u(k)] = u2(k)− 1 (4.17)
H3[u(k)] = u3(k)− 3u(k) (4.18)

4.2.2 Baseband Power Series

Although polynomial LS estimation is a reasonable possibility to calculate the IMD
components, it generates also “out-of-band” harmonics (second, third harmonic zone
and so on), as shown as example for a two-tone excitation in Fig. 4.3.
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Figure 4.3: Frequency-domain response of a nonlinear amplifier supplied with a two-tone test
input signal.

These are uninteresting for pre-distortion purposes, the main objective of behavioral
modeling. To solve this problem, the first-zone equivalent (or baseband) polynomial is
necessary. It can be derived writing the input signal as [55]:

u(k) = Re
[
u(k)ejwk

]
(4.19)

=
1
2

[
u(k)ejwk + u(k)∗e−jwk

]
(4.20)

So, a binomial based expression for un(k) can be obtained:

up(k) =
{

1
2

[
u(k)ejwk + u(k)∗e−jwk

]}p
(4.21)

=
1
2p

p∑
s=0

(
p

s

)
up(k)up−s(k)ejw(2s−p)k (4.22)

Only the terms where p is odd and 2s − p = ±1 can contribute for the first-zone
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output, or s = (p+ 1)/2 and s = (p− 1)/2. Then (4.22) can be written as:

up1z =
1
2p

p∑
s=0

(
p
p+1
2

)
[u(k)]

p+1
2 [u∗(k)]

p−1
2 ejwk+

+
1
2p

p∑
s=0

(
p
p−1
2

)
[u(k)]

p−1
2 [u∗(k)]

p+1
2 e−jwk

(4.23)

Using the binomial property and the relation observed in (4.20)

up1z =
1

2p−1

(
p
p+1
2

)
[u(t)]

p+1
2 [u∗(k)]

p−1
2 (4.24)

Finally the first-zone filtered input signal can be found as:

up1z =
1

2p−1

(
p
p+1
2

)
u(k)|u(k)|p−1 (4.25)

The component 1
2p−1

( p
p+1
2

)
corresponds to the baseband power series coefficients,

and can be determined as proposed in the next section.

Baseband Polynomial LS Estimation

If no bias is present in the input/output signals, the regression matrix can be written
as:

U =


u(1) u(1)|u(1)|2 . . . u(1)|u(1)|p−1

u(2) u(2)|u(2)|2 . . . u(2)|u(2)|p−1

...
...

. . .
...

u(N) u(N)|u(N)|2 . . . u(N)|u(N)|p−1

 (4.26)

The baseband polynomial can be written in a compact form:

φp[u(k)] =
P∑
p=1

cp|u(k)|2(p−1)u(k) (4.27)

Pre-Processing for Baseband Polynomials

An alternative way to determine baseband polynomials is using a pre-processing method.
This procedure divides the measured data in AM/AM and AM/PM conversion curves
in slices dependent of the input power and the number of points involved. Figure 4.4
shows a histogram that contains the number of points taken into account to construct
the corresponding slice. This histogram shows the irregular distribution of the points,
dependent on the instantaneous input power. Then the signal AM/AM and AM/PM
conversion curves are determined directly from the mean of the slices, as in Fig. 4.5.
From these curves, a baseband polynomial can be fitted and the amplifier nonlinearity
is then parameterized.
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Figure 4.4: Histogram of the AM/AM nonparametric estimation.

Figure 4.5: AM/AM and AM/PM pre-processing.
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Raich-Zhou Polynomials

These polynomials are orthogonal for a baseband complex Gaussian input, presenting a
numerical improvement in the Hessian matrix CN in comparison with the power series
polynomial. It has a closed-form expression and is especially designed for baseband
BM estimation, using unity variance complex input signals. All these properties are
an advantage in comparison with other orthogonal approaches like G-functionals [18]
or Hermite polynomial. A detailed proof and derivation of these polynomials can be
found in [28]. The polynomials until the 9th order for the conventional polynomial basis
function as in (4.27) are listed below:

φ1 = u(k) (4.28)

φ3 =
√

2
(
−1 +

1
2
|u(k)|2

)
u(k) (4.29)

φ5 =
√

3
(

1− |u(k)|2 +
1
6
|u(k)|4

)
u(k) (4.30)

φ7 =
√

4
(
−1 +

3
2
|u(k)|2 − 1

2
|u(k)|4 +

1
24
|u(k)|6

)
u(k) (4.31)

φ9 =
√

5
(

1− 2|u(k)|2 + |u(k)|4 − 1
6
|u(k)|6 +

1
120
|u(k)|8

)
u(k) (4.32)

With a recurrence equation:

Ψ2w+1(u(k)) =
w∑
s=0

(−1)w−s
√
w + 1

(s+ 1)!

(
w

s

)
φ2s+1(u(k)) (4.33)

The same authors also present an orthogonal polynomial for uniformly distributed
input signals in the interval [0, 1], with odd and even terms (see [29]).

4.2.3 Saleh Model

The Saleh memoryless nonlinear model was widely applied for Traveling Wave Tube
Amplifier (TWTA) models. It is characterized by two equations, one for the AM/AM
characteristics and another one for the AM/PM, as following

fAM/AM =
α1|u(k)|

1 + β1u(k)2
(4.34)

fAM/PM =
α2|u(k)|2

1 + β2|u(k)|2
(4.35)

The parameters α1, α2, β1 and β2 completely characterize the model. Its funda-
mentals and estimation techniques can be found in [58]. Figure 4.6 presents a block
diagram of this model.
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Figure 4.6: Saleh model block diagram.

4.2.4 Neural Networks (NN)

Another possible method to estimate an amplifier nonlinearity is to use neural networks
(NN). Although the estimation with NN is an interesting alternative, care should be
taken not to switch from a completely unknown model (amplifier) to another one (very
complex NN structure), due to the low flexibility and information that can be extracted
from a very complex NN structure.

Neural Networks Estimation

The complex valued signal is split in real and imaginary parts, for the use in Matlabr
NN algorithm [49]. So the input and output layers have 2 inputs and consequently 2
neurons.

The network topology was composed of linear activation functions in the input
(compare (4.36)), followed by tangent-sigmoid activation functions in the hidden layer
(compare (4.37)), and linear activation functions on the output.

lin[u(k)] = u(k) (4.36)

tansig[u(k)] =
2

1 + e−2u(k) − 1
(4.37)

The network configuration can be seen in Fig. 4.7.

uQ(k)

yI(k)

yQ(k)

y(k)
(complex)

u(k)
(complex)

input
layer

hidden
layer

output
layer

uI(k)

Figure 4.7: NN configuration for a memoryless estimation.

The main drawbacks of NN are:

• The number of neurons used should be previously known, or the network has to
be pruned or augmented and recalculated;
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• The weights are internal to the network and do not always have a direct corre-
spondence to Volterra kernels as polynomials;

• The tangent-sigmoid activation function generates only odd-order harmonics, but
not only on baseband (first-zone filtered), as baseband polynomials.

• The network is nonlinear in parameters, so the method used for parametriza-
tion should be also capable of nonlinear estimation. The complexity is clearly
increased;

• With a very high complexity, NN have low possibility to be implemented in DSP’s,
or embedded systems with reduced computational capacity.

The advantages are:

• Having a higher complexity and using nonlinear methods for the system estima-
tion, NN can sometimes achieve better results than the estimation using polyno-
mials;

• The function used (tangent-sigmoid) is bounded, eliminating any divergence pos-
sibilities.

4.2.5 Look-Up Tables

Look-up tables (LUTs) are the most common type of nonlinear static models in real-
world implementations [40]. An advantage in comparison with other methods is the
configuration possibility of the interpolation and extrapolation behavior. LUTs also
present good accuracy, and very fast evaluation. The drawbacks are: poor physical
interpretation, high number of parameters, and not continuously differentiable. For the
special case of PAs, LUTs can be parametrized using the technique already explained
in section 4.2.2, from AM/AM and AM/PM characteristic curves. Linear interpolation
is normally used to determine the points among intervals, but also other methods as
cubic interpolation and splines are possible [49].

4.3 Linear Memory

The two-box modeling technique is a possibility to represent the linear memory of an
amplifier.

4.3.1 Two-Box Models

Two-box models are also known as modular approach [24] or feed-forward block ori-
ented models [25]. They are obtained by combining components from the following two
classes: static (or memoryless) nonlinearities and causal, linear time-invariant dynamic
subsystems. Parametric and nonparametric modeling methodologies can be used. Flex-
ible arrangements of block structured models in two possibilities are feasible: Wiener
model (Linear-Nonlinear) and Hammerstein model (Nonlinear-Linear) [20].

The most frequently used configuration is a FIR filter and a nonlinearity, represented
by a polynomial [25]. Examples of these structures are shown in Fig. 4.8.
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Figure 4.8: Wiener (left) and Hammerstein (right) models.

If the linear dynamic block is represented by a FIR filter, the output of this block
for the Wiener Model is:

yWL(k) =
M−1∑
τ=0

h(τ)u(k − τ) (4.38)

For the Hammerstein Model, the FIR filter output is:

yHL(k) =
M−1∑
τ=0

h(τ)x(k − τ) (4.39)

If the static nonlinearity block is represented by a power series, the output of this
block can be formulated for the Wiener Model as (4.40) and as (4.41) for the Hammer-
stein Model.

yWNL(k) =
P∑
p=0

cpx
p(k) (4.40)

yHNL(k) =
P∑
p=0

cpu
p(k) (4.41)

The overall model output is then the combination of these equations for each model:

yW(k) =
P∑
p=0

cp

(
M−1∑
τ=0

h(τ)u(k − τ)

)p
(4.42)

yH(k) =
M−1∑
τ=0

h(τ)

 P∑
p=0

cpu
p(k − τ)

 (4.43)

Equations (4.42) and (4.43) are a simple way to model a nonlinear amplifier with
memory.

4.3.2 Volterra Kernels Relationship to Wiener and Hammerstein Mod-

els

As Volterra kernels are the complete and reliable descriptors of the system’s behavior
response [24], it is interesting to find the relationship between Wiener and Hammerstein
models and Volterra kernels. The finite VS model is given by (4.1).
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The pth order kernel describes nonlinear interactions among p copies of the input.
For p = 0 a constant output is the response, for p = 1 the one dimension linear kernel
will be the output, for p = 2 the nonlinear interactions between two copies of the input
will result in two-dimension matrix and so on.

If equation (4.42) is written as:

yW(k) =
P∑
p=1

cp

M−1∑
τ1=0

· · ·
M−1∑
τq=0

h(τ1) . . . h(τq)u(k − τ1) . . . u(t− τq)

 (4.44)

The resulting relationship for the order pth order Volterra kernel will be as fol-
lows [25]:

hp(τ1, · · · , τq) = cph(τ1)h(τ2) . . . h(τq) (4.45)

So the order p Volterra kernel is equal to the product of p copies of the impulse
response function of the linear block multiplied by the pth nonlinearity coefficient.

To verify if a system can be represented by a Wiener model it is necessary that
any one-dimensional slice, taken parallel to an axis of a Volterra kernel would be pro-
portional to the first order kernel, as stated mathematically in (4.45). This is not a
sufficient condition. This procedure is described in [59]. This condition means also that
for the Wiener model estimation, all input signal combinations cannot be taken into
consideration.

An example of a 2nd order Volterra kernel of a Wiener system is shown in Fig. 4.9.

Figure 4.9: Example of a hypothetical 2nd order Volterra kernel of a Wiener system.

The Hammerstein-Volterra relationship can be derived in a similar way. The equiv-
alent Volterra kernels are as in (4.46).

hp(τ1, · · · , τq) =


cph(τ) τ1 = τ2 = · · · = τq

0 otherwise
(4.46)

The Volterra kernels of a Hammerstein system are only nonzero along their diagonals
(τ1 = τ2 = · · · = τq).

A system can be treated as a Hammerstein model if the kernels are only nonzero



4.3. LINEAR MEMORY 37

along their diagonals, and is also necessary that these diagonals are proportional to the
first order kernel [59].

An example of a 2nd order Volterra kernel of a Hammerstein system is shown in
Fig. 4.10.
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Figure 4.10: Example of a hypothetical 2nd order Volterra kernel of a Hammerstein system.

Equations (4.45) and (4.46) show how close these representations are to VS, with the
advantage that Wiener and Hammerstein models do not need large matrices inversions
required by Volterra models in the estimation process. Fifth order models or even
seventh order models can be represented in a very parsimony way.

4.3.3 Wiener and Hammerstein Models Estimation

A procedure to estimate a Wiener model is:

1. Parameterize a FIR filter estimated from the measured input/output signal, using
LS combined with SVD techniques [13];

2. Fit a nonlinearity between the filtered input signal (x(k) in Fig. 4.8) and the
output signal, using LS for polynomials.

An alternative way is:

1. Fit a nonlinearity between the measured input/output signal, using LS for poly-
nomials;

2. Estimate the intermediate signal (x(k) in Fig. 4.8): apply LS for polynomials
between the measured output/input signal. In this way, it is possible to fit the
polynomial inverse. Then x(k) is calculated applying the measured output signal
to this inverse polynomial;

3. Identify a FIR filter between the measured input signal and the intermediate
signal x(k).

An algorithm to estimate a Hammerstein model is:

1. Fit a nonlinearity between the measured input/output signal, using LS for poly-
nomials;
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2. Estimate a FIR filter between the measured input signal and the intermediate
signal x(k).

Estimating Wiener and Hammerstein models using this two-step LS procedure is
not the most accurate method, because the influence of a component of the model (filter
or polynomial) is always neglected for the first estimation. Nevertheless, the method
is linear in parameters, allows a first estimation of the system memory, and uses less
parameters than other methods (described in next section).

4.4 Nonlinear Memory

More complex models are necessary to estimate the nonlinear memory, like parallel
models or a close approximation of the VS model, the Wiener-Bose model.

4.4.1 Parallel Cascade Models

Any system that can be represented by a truncated VS (4.1) can be also modeled
exactly using parallel cascaded structures [60].

This technique is the association in branches of various models (Wiener, Hammer-
stein, Wiener-Hammerstein etc.). The overall model structure becomes more compli-
cated with each iteration, as each branch is composed by a single model. The value
of the cost function decreases or stays constant with each additional branch [61]. An
example of this configuration is seen in Fig. 4.11. This method combines following fa-

u(k) Linear 
Dynamic

Static 
Nonlinear

x(k) y(k)

Linear 
Dynamic

Static 
Nonlinear

Figure 4.11: Example of a parallel Wiener model.

vorable properties: It is computationally efficient even for high-order models with large
memory-bandwidth products, allows the direct extraction of the Volterra kernels, and
offers the convenience to use different methods for the identification of the linear and
nonlinear blocks [61]. But is very sensitive to noise if too many paths are used [24].
Consequently, a proper selection of the paths using parametric FOMs and the system
order of the nonlinearity should be made to achieve low noise and good convergence
models.

4.4.2 Parallel Cascade Models Estimation

The general algorithm is [30, 61], and the procedure is represented graphically for a
parallel Wiener model as shown in Fig. 4.12:

1. Fit the first cascade from amplifier measurement input/output data;

2. Compute the output from the first branch and subtract it from the measured
output to find the first residue: res1(k) = ymeas(k)− ym1(k);
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3. Fit a second branch between the input and the first residue (Intermediate black-
box model);

4. Compute the second residue subtracting the output of the second path from the
first residue: res2(k) = res1(k)− ym2(k);

5. Include this branch in the model only if FOM results are better than previous
results;

6. Continue this procedure until no improvements in the chosen FOM are obtained.

The model has its output defined as:

yPW(k) =
I∑
i=1

P∑
p=0

c(i)p

(
M−1∑
τ=0

h(i)(τ)u(k − τ)

)p
(4.47)

where I is the total number of paths, P denotes the maximum order of the poly-
nomial used, c(i)p are the polynomial coefficients for the ith path, M is the memory
length, k and τ are discrete indexes of the sampling interval, and h(i)(τ) is the impulse
response ith path.

res1(k)=ymeas-ym1(k)

Linear Dynamic Static Nonlinear

(FIR Filter) (Polynomial)

ym1(k)xm1(k)

xm2(k)

ymeas(k)

Amplifier Measurement Data

ymeas(k)=ym_total(k)?
FoM (NMSE, %VAF)

FoM (NMSE, %VAF)

res1(k)

ym2(k)

res2(k)=res1(k)-ym2(k)

Intermediate BB 
Model

!! ym_total(k)=ym1(k)+ym2(k)

umeas(k)

umeas(k)

umeas(k)

umeas(k)

ym_total(k)=ym1(k)
1st iteration

2nd iteration

Figure 4.12: Graphical parallel Wiener algorithm.

4.4.3 Wiener-Bose Model

Models that can approximate the behavior of VS were studied and implemented in
different areas as physiology [23] and automotive [40]. The Wiener-Bose architecture
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Figure 4.13: Wiener-Bose model structure.

(compare structure in Fig. 4.13) is valid for systems with fading memory (i. e., systems
which Volterra kernels are absolutely summable on the system memory [0,M ]), as a
PA [62].

It combines a delay structure with a multi-input polynomial, providing every pos-
sible combination of the input signal. This model was also called VS approxima-
tion [62,63], and is a powerful tool to estimate nonlinear systems.

The output of the ith filter in the bank is [23]:

xi(k) =
M−1∑
τ=0

h(i)(τ)u(k − τ) (4.48)

The static nonlinearity is formulated as a multiple input polynomial of degree P :

m(x1, . . . , xP ) =
P∑
p=0

Q∑
i1=1

Q∑
i2=i1

· · ·
Q∑

iq=iq−1

c
(i1,i2,...,ip)
p Mp(xi1(τ), xi2(τ), . . . , xip(τ))

(4.49)
where Mp(xi1(τ), xi2(τ), . . . , xip(τ)) is the product of the arguments x1 through xP

of the pth order multiple input polynomial.
Unifying these equations, the overall output of the Wiener-Bose model is:

y(k) =
P∑
p=0

Q∑
i1=1

Q∑
i2=i1

· · ·
Q∑

ip=ip−1

c
(i1,i2,...,ip)
p xi1(τ)xi2(τ) . . . xip(τ) (4.50)

The Wiener-Bose model has a general output equation and can be estimated in
many different ways. One of these possibilities is described in the next chapter.

4.5 Conclusion

A power amplifier is a mild nonlinear system, that can be fully described with a VS,
although building the former requires a very high number of coefficients. The linear
estimation technique has the most suitable characteristics for amplifier BMs estimation.
Depending on the memory presented by the amplifier, different amplifier models can
be used: memoryless, linear memory and nonlinear memory. The parallel models and
the Wiener-Bose Volterra approximation are powerful methods to estimate an amplifier
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behavioral model. For pre-distortion purposes, the models presented can be inverted
using the output signal as input signal, and input signal as output signal in the LS
estimation.



Chapter 5

Practical Model Identification

5.1 Introduction

This chapter describes measurement signals and setups, different estimation techniques,
and selected applications of BMs. It is dedicated to the search of efficient and accurate
BMs for pre-distortion purposes.

5.2 Measurements

Behavioral models are fully based on measurements. This section will present PAs and
input signals characteristics used to generate the input/output measurement signals,
referenced in this entire chapter.

5.2.1 Measured PA’s

Two amplifiers were used for measurements. The first one is an Ericsson base station PA
(amplifier A), and the second one is a Freescale Board, designed for Wimax applications
(amplifier B).

Amplifier A

The class AB main amplifier had the following nominal characteristics: Frequency range
of 1.93 to 1.99 GHz, maximum output power of +48 dBm, 36 dB gain, and 1 dB output
compression point of +53 dBm. This amplifier uses a Motorola 90 W MRF 18090A
LDMOS transistor in the final stage. The amplifier output is protected by an isolator
which assures proper matching and negligible reverse gain.

An important issue for the amplifier measurements was to assure thermal stability.
The amplifier was cooled by a fan producing a flow rate of 95 m3/h which set the
amplifier casing temperature at approximately 40 ◦C at maximum output power. The
measurements were performed starting from the linear and moving to the compression
operation region. Before taking a measurement at a fixed input back-off (IBO) the
DUT was driven for one hour by the input signal.

The measured amplifier gain curves are shown in Fig. 5.1. The gain magnitude and
phase present significant changes in the area near the 1 dB compression point.

42
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Figure 5.1: Amplifier A gain curves.

Amplifier B

The amplifier was a Freescale board equipped with a MRFS3801H LDMOS transistor.
This 10 W transistor is optimized for base station applications up to 3.8 GHz. It is
suitable for WiMax, WiBro and OFDM multicarrier Class AB and Class C amplifier
applications. The drain bias circuit of amplifier board was modified to introduce the
memory effects, as the amplifier board from Freescale shows a static but not a dynamic
nonlinear behavior. The gain curve is displayed in Fig. 5.2.
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Figure 5.2: Amplifier B gain curve.

5.2.2 Excitation Signals and Measurement Setups

Different measurement setups were used for the various excitation signals.

QAM Signal

A potential and attractive modulation scheme when high data rate transmission is
needed is the 16-QAM. It offers high power/spectral efficiency [64], but lacks a constant
envelope and becomes highly sensitive to PA nonlinearities.
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Figure 5.3: Measurement setup for modeling (S1 closed and S2 open) and pre-distortion pro-
cedures (S1 open and S2 closed).

The measurement system is presented in Fig. 5.3. The 16-QAM modulated input
signal was filtered by a root raised cosine (RRC) filter with roll-off equal to 0.25,
loaded in the I/Q Modulation Generator Rohde & Schwarz AMIQ, and upconverted by
a Vector Signal Generator Rohde & Schwarz SMIQ. By varying the noise source level
(compare Fig. 5.3), it was possible to generate measurement signals with different levels
of SNR. The RF bandwidth of the signal was 2.5 MHz. The PA’s output signal was
measured at a center frequency of 1.96 GHz using an Agilent Performance Spectrum
Analyzer (PSA) operating at a sampling rate of 10 MSamples/s, and was processed by
the Agilent 89600 Signal Analysis Software.

Noise Source

The noise source was implemented to corrupt the amplifier input signal (and conse-
quently the output signal) with Gaussian noise.

In order to quantify the noise level, the Signal to Noise Ratio (SNR in dB) was used
as a parameter. It is defined as the ratio of the signal power S to the noise power N
and is related to Eb

N0
in dB for complex signals as following [49]:

SNR = 10 log

(
Eb

N0

)
+ 10 log(k)− 10 log

(
Tsym

Tsamp

)
(5.1)

where Eb
N0

is the ratio of bit energy to noise power spectral density, k is the number of
information bits per symbol, Tsym is the signal symbol period and Tsamp is the signal
sampling period. The noise bandwidth is equal to the sampling frequency.

WCDMA Signal

To estimate BMs for WCDMA amplifiers, a WCDMA signal with 3.84 MHz RF band-
width, 10 dB Peak-to-Average Power Ratio (PAPR), and 12.2 kbps data rate was used.
The PA was at operating at 5 dB IBO. The Vector Signal Analyzer was operating
at a sampling rate of 35 MSamples/s with a SNR of 60 dB for this input signal. In
Fig. 5.4 the power spectral density of the measured input/output signal is shown at
compression. Figure 5.5 shows the block diagram of the measurement setup.
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Figure 5.4: PSD of the WCDMA input/output measured signal.
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Figure 5.5: Measurement system used to obtain the RF PA input/output data.

WCDMA Signal – Simulation

In order to obtain perfectly synchronized and noiseless signals for BMs estimation, a
simulation was performed. The sets of data are from an Advanced Design Systems
PA model (compare Fig. 5.6), where different memory effects (memoryless (noM),
linear memory (LM), nonlinear memory (NLM) and linear and nonlinear memory
(LM/NLM)) could be selected changing the characteristics of the sub-circuits SC1 and
SC2. Four sets of WCDMA simulated data (same characteristics as described above),
acquired at 2 dB input back-off (IBO), were used for model extraction and validation.
Figure 5.7 shows AM/AM characteristics for these signals.

Wimax Signal

To estimate BMs using Wimax signal, the Wimax excitation signal was generated by the
use of the Visual System Simulator from AWR, according to the following specification
(based on [65]): WirelessMAN-OFDM (256-carriers), bandwidth of 3.5 MHz, 64 QAM,
code rate of 3/4, length of cycling prefix of 1/8, and sampling factor of 8/7. The final
input signal resulted in a Peak-to-Average Power Ratio (PAPR) of 9.7 dB.

The signal was captured at a rate of 28 MSamples/s, which corresponds to a mea-
surement duration of 2.5 ms, using the measurement setup from Fig. 5.5 at 3.5 GHz.
The amplifier output power was 35.6 dBm (2 dB IBO).
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Figure 5.6: ADS equivalent circuit model used in simulations.

Memoryless Only linear memory

Only nonlinear memory Linear and nonlinear memory

Figure 5.7: AM/AM characteristics of the signals presenting different types of memories.
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5.3 Identification in the Presence of Noise

This section discusses the black-box modeling of a PA using a quadrature amplitude
modulated (QAM) input signal corrupted by different levels of Additive White Gaussian
Noise (AWGN).

5.3.1 Introduction

Understanding the influence of AWGN in the PA modeling can improve the identifica-
tion methods, as noise is always present in the measured input/output signals. In [66]
an interesting investigation of several 16-QAM constellations in a noisy environment
over a satellite channel in the linear and nonlinear case was presented. In [67] three PA
models were simulated and analyzed with analytical expressions using CDMA modu-
lations with AWGN and different back-off levels, although no amplifier modeling tech-
nique was involved. Kumar [68] showed simulations of a PA with 16-QAM signals and
some back-off configurations, but the amplifier is approximated as a limiter. A study of
AWGN influence in the estimated models can also help to decide whether to use noise
free data (NFD) models or noise corrupted data (NCD) models. The denomination
NFD is relative to the digital generation of the signal, and not to the measured signal,
that indeed contains measurement noise.

This kind of identification has two main difficulties:

• The nonlinear output signal components generated by the amplifier at low input
back-off (IBO) operating conditions can change the output constellation and lead
to difficulties in finding the correct model parameters;

• The AWGN degrades the SNR and can lower the model accuracy that should
ideally not be influenced.

The IBO is here specified as the average input power level with respect to the 1 dB
compression point at the input.

Firstly, the models were estimated using NFD and then with different levels of
NCD. NFD was also applied to the models calculated with NCD and vice versa. Two
situations were considered: 6 dB IBO and 2 dB IBO.

Final results show a loss of accuracy caused by noise in the identified models. The
achieved modeling results were analyzed to check how an estimated model is affected
by noise added to the measured input/output signals.

5.3.2 Measurement Setup

The PA used (amplifier A) is described in section 5.2.1. The excitation signal is de-
scribed section 5.2.2 (QAM signal), as well as the setup used to obtain the measured
input/output signals with different levels of SNR.

5.3.3 Amplifier Identification and Investigation

By using the SVD technique (compare 3.2.3) Wiener models were identified from the
measurement results. All models were calculated using a small segment (30%) of the
recorded input/output signals at different IBO levels and were cross-validated with the
remaining data set until a satisfactory %VAF (or NMSE) was achieved. The estimated
FIR filter had 3 taps and the model nonlinearity was implemented by a 9th order
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Figure 5.8: PSD curves for the NFD estimated model at 6 dB IBO (left), and PSD curves for
the validation data SNR = 12.3 dB applied to the same model (right).

polynomial. The process used in BM analysis is demonstrated in Table 5.1. The NFD
models were tested with NFD (case A) and NCD (case B); NCD models were tested
with NFD (case C) and NCD (case D).

Table 5.1: Process used for BM analysis with different signals

Validation

Models NFD NCD

Modeling
NFD A B

NCD C D

5.3.4 Noise Free Amplifier Identification

The models were first estimated using NFD. In this ideal situation the noise source
was inactive and identification at different IBO levels was realized. These results are
shown in the first column of Tables 5.2 and 5.3, under the NFD section. Then NFD
models were tested with the same signals contaminated with noise (NCD case). Two
levels of SNR were used. The results are listed in the second and third column and
show that these models have a high sensitivity to noise. PSD curves from a NFD model
estimated at 6 dB IBO and validated with NFD, and PSD curves for validation data
SNR = 12.3 dB applied to this NFD estimated model are depicted in Fig. 5.8.

Although the highest modeling accuracy is obtained when NFD are used as in-
put/output signals, the models could not predict the noise influence, and in some cases
the accuracy loss was as high as 18 dB (6 dB IBO model).

5.3.5 Noisy Data Amplifier Identification

In a second step, models were estimated using NCD with different levels of SNR. NFD
was also applied to the models calculated with NCD. The results are represented in
Table 5.2 and 5.3, section SNR = 12.3 dB and SNR = 5.3 dB. The column model shows
the identification accuracy using only the NCD. The column validation (NFD) presents
the results when NFD is applied to these models.
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Table 5.2: Summary of modeling and validation results, 6 dB IBO

6 dB IBO
NFD SNR = 12.3 dB SNR = 5.3 dB

model validation validation model validation model validation
SNR SNR NFD NFD

12.3 dB 5.3 dB
%VAF 99.9 97.5 97.6 99.8 99.2 99.7 99.2
NMSE −34.0 −16.0 −16.0 −29.0 −21.0 −26.0 −21.0

Table 5.3: Summary of modeling and validation results, 2 dB IBO

2 dB IBO

NFD SNR = 12.3 dB SNR = 5.3 dB
model validation validation model validation model validation

SNR SNR NFD NFD
12.3 dB 5.3 dB

%VAF 99.9 98.1 90.6 99.8 98.7 99.0 95.6
NMSE −28.5 −17.0 −10.0 −26.0 −19.0 −20.0 −13.5

An example of this modeling procedure is shown in Figs. 5.9 and 5.10. These models
were estimated at 6 dB IBO and 2 dB IBO, respectively, and validated using NFD.

A reasonable fit between measurement and model can be seen in Fig. 5.10, at the
left side, but the same model fails to represent the nonlinearities 30 dB below the carrier
signal for the NFD case, due to the high level of nonlinearities.

The models estimated with NCD showed a better performance when validated with
NFD. Although estimated with NCD, they are more suitable to the general use, because
of their reasonable results in comparison with NFD models and their ability to predict
the noise that could be incident in the signals.

Some models identified with NCD in Table 5.2 and 5.3, section SNR = 12.3 dB for
2 dB IBO and 6 dB IBO had achieved better modeling accuracy than with NFD, and a
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Figure 5.9: PSD curves for the SNR = 12.3 dB estimated model at 6 dB IBO (left), and PSD
curves for the NFD validation data applied to the same model (right).
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Figure 5.10: PSD curves for the SNR = 5.3 dB estimated model at 2 dB IBO (left), and PSD
curves for the NFD validation data applied the same model (right).

reasonable result when NFD was used. This can be explained by the fact that the most
suitable signal to identify nonlinear models is the Gaussian noise [24], since it excites
every possible source of nonlinearity, as already stated in chapter 2.

5.3.6 Conclusion

This section analyzed the influence of AWGN on a Wiener model using SVD techniques,
with complex valued input/output signals. A comparison between models estimated
with NFD and NCD was shown. The models estimated with NFD have an optimal
performance only when NFD is used. The models estimated with NCD presented
general superior results, once they account for the noise interference on the signals
and have relatively close results to the NFD model. The SVD techniques exhibited
reasonable results for PA modeling with 16-QAM modulation, even when AWGN was
present.

5.4 A Hammerstein Pre-Distorter Based on a Wiener Model

This section will analyze the performance of a Hammerstein pre-distorter based on a
Wiener model using SVD techniques, as this model showed good performance when
AWGN is present.

5.4.1 Introduction

Among linearizing techniques proposed in the literature [1], digital pre-distortion (DPD)
has become of significant importance and gained much attention because it offers re-
liability, flexibility and scalability in its implementation and performance. Among the
different DPD techniques (RF, IF, Baseband), baseband DPD aims at compensating
the whole transmitter in advance, and its methodology is independent of the type of
PA used. DPD is currently carried out by means of high speed digital signal processors
(DSP’s, FPGA’s), already present in most of the current communication equipment
for mandatory issues within the wireless standards. In order to implement the DPD
estimation process and later apply adaptive DPD to ensure real-time performance, a
reliable PA nonlinear dynamic model is necessary.
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A 16-QAM modulation scheme has been selected as input signal. Then SVD tech-
niques are used to find a parsimonious Wiener model that is cross-validated with mea-
surement data. Once the PA model is obtained, a Hammerstein based DPD is estimated
by means of the indirect learning approach [69].

Simulation and experimental results are provided in order to show linearity im-
provement achieved by this Hammerstein DPD. In band and out-of-band distortion
compensation was measured in terms of ACPR and EVM reduction.

5.4.2 Measurement Setup

The PA used (amplifier A) is described in section 5.2.1. The measured input/output
signals were obtained from the measurement setup described in section 5.2.2 (QAM
signal).

5.4.3 Digital Pre-Distorter Design

In order to pre-distort the PA characterized by a Wiener model, a Hammerstein model
(depicted in Fig. 5.11) was considered. It is the structural inverse of a Wiener model.
The memoryless nonlinearities have been modeled using baseband polynomial. For
modeling the linear block, finite and infinite impulse response (FIR and IIR) filters
have been applied. The Hammerstein model used for DPD is described in (5.2), and

f(u(k))=c1x(k)+c2x(k)|x(k)|2+…+cpx(k)|x(k)|p N(z)
D(z)

b0+b1z-1+…+bmz-m

1+a1z-1+…+aDz-D
u(k) y(k)

Figure 5.11: Hammerstein nonlinear dynamic model.

further details on the DPD indirect learning identification process can be found in
chapter 1.

y(k) =
M−1∑
m=0

bm

 P∑
p=0

cpu(k − τm)|u(k − τm)|(2p+1)

− D∑
d=1

ady(k − τd) (5.2)

Where cp are the polynomial coefficients, bm are the FIR filter coefficients, ad are
the IIR filter coefficients, M is the delay index, and P is the polynomial order. In
this study two Hammerstein DPD have been considered. One based on a FIR filter for
modeling the linear block (Hammerstein-FIR) and another on an IIR filter for modeling
the linear block (only poles – compare Fig. 5.11, Hammerstein-IIR), as it is shown in
(5.3) and (5.4), respectively.

y(k) =
M−1∑
m=0

bm

 P∑
p=1

cpu(k − τm)|u(k − τm)|2(p−1)

 (5.3)
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y(k) =
P∑
p=0

cpu(k − τp)|u(k − τp)|2(p−1) −
D∑
d=1

ady(k − τd) (5.4)

In order to choose the best delays contributing in the Hammerstein DPD (FIR and IIR),
a preceding study was carried out. It consisted in selecting the most significant past
samples of the input (τ1 . . . τm) and of the output (τ1 . . . τD), among a subset of delays
considered for the search, that minimize the estimation error. For this purpose, a FOM
was chosen (NMSE) and several model validations with different delays configuration
were done. Further details on this study can be found in [3].

Moreover, Hammerstein DPD can be implemented in a digital signal processor using
look-up tables (LUTs), as it is shown in Fig. 5.12, where MSD means most significant
delays.

u(k- 1)

u(k- n)

u(k) y(k)
u(k)

y(k)

Figure 5.12: Hammerstein-FIR and IIR LUTs implementation.

5.4.4 Simulation Results

A simulation was carried out to avail the performance and viability of the Hammerstein
pre-distorter. Fig. 5.13 shows simulation pre-distorted output power spectra using
memoryless DPD, IIR and FIR Hammerstein DPD.

Figure 5.13: Simulated output power spectra Hammerstein FIR and IIR PD (2 dB IBO).
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Figure 5.14: Simulated 16-QAM constellation for: a) Measured PA data (EVM=5.44%), b)
Memoryless PD (EVM=5.38%), c) Hammerstein FIR PD (EVM=1.34%), d) Hammerstein IIR
PD (EVM=1.37%).

Around −10 dB of ACPR improvement was achieved using both FIR and IIR Ham-
merstein DPD. Note that even memoryless DPD can obtain linearity improvement,
although very discrete (correction in constellation rotation). In addition, regarding
the in-band compensation, Fig. 5.14 shows at least 4% EVM reduction when using
both Hammerstein DPD, although this cannot be accomplished when a memoryless
pre-distorter is used.

Simulation results present significant improvement in both in-band and out-of-band
distortion compensation by using Hammerstein DPD. These results will be compared
in the next subsection with experimental results.

5.4.5 Experimental Results

The measurement system is shown in Fig. 5.3, where the modulated input signal is
first pre-distorted at baseband (S1 open and S2 closed), up-converted and fed into the
PA. Results on the ACPR and EVM reduction achieved by these pre-distorters are
listed in Table 5.4. Fig. 5.15 shows the amplified 16-QAM RRC filtered signal output
power spectrum, and both output power spectra corresponding to the FIR and IIR
Hammerstein DPD.

Table 5.4: Results on pre-distorters compensation performance.

Lower ACPR Upper ACPR EVM
(dBr) (dBr) (%)

PA −32.5 −32.0 7.5
Hammerstein-FIR −37.0 −37.0 5.0
Hammerstein-IIR −37.5 −35.5 3.5
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Figure 5.15: PA and Hammerstein DPD FIR and IIR output power spectra.

5.4.6 Conclusion

Practical results show a reasonable DPD performance in comparison with simulations,
some spectral regrowth is compensated and in-band distortion is significantly improved.
ACPR reduction depends on the AM/AM nonlinear compensation, rather than on
memory effects compensation. Table 5.4 shows that since power spectrum regrowth is
approximately symmetric, nonlinear effects are dominant in front of possible memory ef-
fects, so memoryless DPD could compensate such out of band emission. But, regarding
in-band distortion, which can be assumed to be shown in the demodulated constella-
tion and measured in terms of EVM, memory effects need to be compensated in order
to avoid distortion. Both experimental and simulation results show significant EVM
improvement when using Hammerstein DPD. Moreover, the IIR Hammerstein DPD
can achieve better linearization results using fewer taps than the FIR Hammerstein
DPD. The only drawback regarding the IIR Hammerstein DPD model is the possible
unstabilities due to the feedback introduced by the IIR filter. Therefore, future work
will be focused in obtaining better nonlinear dynamic models, that consider dynamic
interactions of nonlinearities, in order to better match the AM/AM and AM/PM com-
pensation, together with an efficient memory effects estimation. The Wiener model was
too simple to represent a PA, and other models have to be developed, for better mod-
eling and pre-distortion results. More accurate models, capable of representing linear
and nonlinear memory, could improve the identification results, leading to even more
precise linearizes. These models are VS approximations, studied in the next section.

5.5 A Behavioral Model Based on the Wiener-Bose Struc-

ture

In this section, a strategy to extract a first-zone filtered behavioral model based on
Wiener-Bose structure is introduced, and improvements applied to this model identifi-
cation are highlighted.
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5.5.1 Introduction

The model described in this section is an approximation of VS for complex baseband
input/output signals, using linear estimation techniques. Its derivation and particular-
ities are explained. A closed form equation for determining the number of independent
parameters for the Wiener-Bose model parametrization process is described. A method
to improve the Hessian condition number in the model calculation procedure is pre-
sented. The modeling and validation results based on measurements of an industry
standard input signal (WCDMA) are displayed. It is shown that this model is capable
to represent efficiently PA memory effects with good accuracy.

5.5.2 Measurement Setup

The PA modeled (amplifier A) is described in section 5.2.1. The measured input/output
signals were obtained from the measurement setup described in section 5.2.2 (WCDMA
signal).

5.5.3 Model Extraction

In this subsection, sub-matrices corresponding to each model order of the regression
matrix are explained: U1, U3, U5, U7. These sub-matrices are latter grouped into one
U matrix:

U =
[

U1 U3 U5 U7

]
(5.5)

Then the model parametrization process is described, and the final model is pre-
sented.

Polynomial Used

The selected basis function was an odd-order baseband polynomial [27]. This struc-
ture was applied to form different time delay terms of the regression matrices. The
polynomial is constructed as (4.27), repeated here for convenience:

φp[u(k)] =
P∑
p=1

cp|u(k)|2(p−1)u(k) (5.6)

First Order

The first order kernel matrix was based on the ordinary FIR regression matrix [40].
It is a (N −M + 1) ×M matrix, where N represents the number of elements of the
input vector used in the model extraction process and M represents the number of taps
considered in the filter or the memory of the system.

U1 =
[

u(k) u(k − 1) . . . u(k −M + 1)
]

(5.7)
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Third Order

The third order kernel structure describes every third order interaction between the
instantaneous and the delayed version of the input. It is a (N −M + 1)×M3 matrix,
before profiting from the symmetry properties of the Volterra kernels, and (N −M +
1) × [M2(M + 1)/2] after that. A single example with M = 2 resulting in 8 elements
is shown in (5.8).

U3=[u(k)u(k)u∗(k) u(k)u(k)u∗(k − 1) u(k)u(k − 1)u∗(k)
u(k)u(k − 1)u∗(k − 1) u(k − 1)u(k)u∗(k) u(k − 1)u(k)u∗(k − 1)
u(k − 1)u(k − 1)u∗(k) u(k − 1)u(k − 1)u∗(k − 1)]

(5.8)

From this example, it is possible to conclude that the 5th and the 6th elements of the
matrix can be discarded in the estimation process, because they are exactly the same
as the 3rd and the 4th elements (symmetry). This results in a reduced rank matrix.

Fifth and Seventh Orders

The fifth and seventh order kernels are every fifth and seventh order interactions be-
tween the input and its delayed versions.

The fifth order matrix is (N −M + 1) ×M5 (full) and (N −M + 1) × [M2(M +
1)2(M + 2)/12] (symmetric).

The seventh order matrix is (N −M + 1)×M7 (full) and (N −M + 1)× [M2(M +
1)2(M + 2)2(M + 3)/144] (symmetric).

Model Parametrization

The Wiener-Bose model is linear in its parameters and can be solved using linear
regression methods as Least-Squares (LS).

The final Hessian has the structure as:

H=UHU=


U∗1U1 U∗1U3 U∗1U5 U∗1U7

U∗3U1 U∗3U3 U∗3U5 U∗3U7

U∗5U1 U∗5U3 U∗5U5 U∗5U7

U∗7U1 U∗7U3 U∗7U5 U∗7U7

 (5.9)

So interactions between all matrices are considered in the Hessian.
For very large matrices, the Strassen inversion method [51] was applied to reduce

the rank of the matrices to be inverted, and the ordinary LS solution was used.

Final Model

Fig. 5.16 shows the final structure used for the parametrization of the model with the
regression sub-matrices.

The resulting parameter vector of the LS solution contains the Wiener-Bose coeffi-
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Figure 5.16: Final Wiener-Bose model structure with regression sub-matrices.

cients and has the length:

L =

1storder︷︸︸︷
M +

3rdorder︷ ︸︸ ︷
M2 (M + 1)

2
+

+

5thorder︷ ︸︸ ︷
M2 (M + 1)2(M + 2)

12
+ (5.10)

+ M2 (M + 1)2(M + 2)2(M + 3)
144︸ ︷︷ ︸

7thorder

From this structure it is possible to identify the sequentially organized coefficients
corresponding to the kernels.

5.5.4 Improving the Condition Number of the

Ill-Conditioned Hessian

A problem when estimating high order kernels is that the LS Hessian, (5.9), can be
singular due to the products UH

5 Ui and UH
7 Ui (for i = 1, 3, 5, 7). If the columns in

the matrices U5 and U7 present very small differences between themselves, a very high
condition number (CN) will arise due to the almost linear dependency.

This effect happens because the sample rate used to acquire the signal was so high
that the input was not a persistent excitation for these nonlinearities (5th and 7th

order). On the other hand, a lower sample rate would not allow to capture the desired
7th IMD order using this measurement setup. So, although the excitation signal had a
strong high order inner correlation in short-periods of time, it may be less correlated
when observed in longer periods.

To the best of the author’s knowledge, other works in the area of baseband Volterra-
based behavioral models do not consider this phenomenon (e. g., [36,70]). To avoid this
effect, the delays considered were multiplied by an integer resampling factor rf , and
consequently the time between each sample was increased as in (5.11). This technique
reduces the CN and can lead to a positive definite Hessian if rf is chosen sufficiently
high (typically 2 or 3), this way improving the estimation process.

U1=
[

u(k.rf) u[(k − 1).rf ] . . . u[(k −M + 1).rf ]
]

(5.11)

Table 5.5 shows the CNs for models of different orders using 3 delay taps with
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rf = 1 to 5. The CN in bold represent that the Hessian was singular. In these cases,
an increase of rf was necessary to find the solution.

It is important to note that this process needs to be applied to all matrices involved
in the estimation process (U1, U3, U5 and U7), and not only to the ones that became
singular (U5 and U7).

Table 5.5: Hessian CN for models of 3rd, 5th and 7th order

rf 1 2 3 4 5

H3 5.9e9 1.3e7 7.4e5 1.9e4 1.0e3
H5 1.2e18 2.6e12 5.1e9 3.2e7 3.0e5
H7 3.4e18 3.3e18 1.1e14 1.5e11 2.5e8

5.5.5 Validation

Fig. 5.17 shows AM/AM-conversion limiting curves of the measured output signal (ref-
erence) and of the estimated models using 2 and 4 delay taps. These two figures
highlight an important characteristic of VS that the Wiener-Bose model also has, i. e.,
a higher order and number of coefficients improve not only the NMSE of the models,
but also the model capacity to effectively represent amplifier memory effects. This
property cannot be observed if the NMSE or the PSD are used as the only metrics
(see Table 5.6 and Fig. 5.18). The higher order models showed a good accuracy in
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Figure 5.17: AM/AM-conversion limiting curves of the reference and models of 3rd, 5th, and
7th order using 2(left side) and 4(right side) delay taps.

modeling the linear and especially the nonlinear memory, what confirms that this kind
of memory is strongly present on the signal higher order interactions. Models that do
not care about these interactions can not represent nonlinear memory correctly [21].

Table 5.6: NMSE( dB) for models of 3rd, 5th and 7th order

3rd order 5th order 7th order

2 delay taps −33.0 −33.8 −34.1
4 delay taps −33.1 −34.2 −34.2
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Figure 5.18: PSD of the measured and modeled output data. The results are from a 7th order
model using 4 delay taps.

5.5.6 Conclusion

This section described the extraction of a new first zone filtered behavioral model using
the Wiener-Bose structure, improvements in the estimation process, and its properties.

The well-organized model configuration allows to determine precisely the input
signal interactions. An easy identification of the input signal interactions is a very
useful property when pruning VS models, as only the most important interactions
should be selected among a high number of parameters.

A method to improve the LS Hessian used in the estimation process was introduced.
Models of different orders and number of coefficients were estimated and validated from
measured input/output data, and good NMSE results were achieved. It was shown that
the estimated models were capable of representing linear and nonlinear memory.

Although Wiener-Bose models have good accuracy and the capacity of representing
linear and nonlinear memory, they have a high number of parameters, and can even-
tually have worse results than simpler models due to the noise modeling, as will be
shown in next section. New FOMs will be developed and a performance comparison
will be established, in order to determine which models are better for different systems
presenting distinct types of memory.

5.6 A Figure of Merit for Nonlinear Distortion

This section presents alternatives to correct NMSE drawbacks, explained and shown
with examples in subsection 2.4.1.

5.6.1 Introduction

The PA output signal is as a sum of an input correlated part yC(k) and an input
uncorrelated part yN(k), each composed by a static and a dynamic part

y(k) = yC(k) + yN(k)
= yCS(k) + yCD(k) + yNS(k) + yND(k)

(5.12)

The correlated part of the signal yC(k) is determined by the best linear approx-
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imation (BLA), defined as in (3.11) for time domain, and (3.30) for frequency do-
main [33, 52]. The BLA is usually calculated by the receiver equalizer. The correlated
components are the main part of the output signal, not crucial for nonlinear modeling
purposes, but they have an enormous weight in the ordinary NMSE leading to erro-
neous conclusions about the efficiency of models in characterizing nonlinear distortions.
As an example, in Fig. 5.4, the yC(k) is 99.6% of the energy of the signal, and the
components of yND(k) are only 0.4%.

Figures of Merit are defined to quantify the models inaccuracy, in time or frequency
domain. Although mathematically correct, they can heavily weight the correlated part
of the signals, as well as synchronization issues, and put little weight to the uncorrelated
part, the main objective of nonlinear PA models. In order to correct this behavior, new
FOMs were developed.

5.6.2 Mathematical Formulation

The NMSE without the BLA components (NMSEBLA) is found by removing the BLA
output components from both measured and modeled signal. This FOM is capable to
quantify the amount of the uncorrelated part yN(k) of the signal taken into account by
the model. It is defined as

NMSEBLA = 10 log


N∑
k=1

|ymeas
2 (k)− ymod

2 (k)|2

N∑
k=1

|ymeas
2 (k)|2

 (5.13)

Where

ymeas
2 (k) = ymeas(k)− BLAmeas[u(k)]

ymod
2 = ymod(k)− BLAmod[u(k)]

(5.14)

The BLAmeas[u(k)] is the BLA estimated between input/output measured signal and
BLAmod[u(k)] is the BLA calculated between the measured input and the model output
signal. This calculation is also seen in Fig. 5.19.

meas

model

2
meas

BLAmod

2
mod

BLAmeas

meas

mod

meas

BLA

Figure 5.19: Estimation of the NMSEBLA.

An example of a measured spectrum signal without BLA output components is
given in Fig. 5.20. The distortion is now evident and can be compared, resulting in a
clear difference when the NMSE is calculated using the full signal.
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Figure 5.20: An example of a measured signal without BLA output components.

Extending this concept, it is possible to define the best nonlinear approximation
(BNA) from (5.12)

yN (k) = BNA[u(k)] = BNAS[u(k)] + BNAD[u(k)]

BNAS[u(k)] =
∑
p

c(2p−1)u(k)|u(k)|2(p−1)

BNAD[u(k)] = y(k)− BNAS[u(k)]

(5.15)

It is composed by a static part, BNAS, and a dynamic part, BNAD.
The BNAS contains the linear and the nonlinear static components of the signal.

The coefficients c(p) for the BNAS calculation can be estimated performing a LS poly-
nomial fit between the measured input signal and the difference of the measured output
signal and the BLA output signal, where p is the maximal order of the measured IMD.

The BNAD[u(k)] is obtained indirectly by the subtraction of the BNAS[u(k)] com-
ponent from the signal in analysis, and is the objective of behavioral modeling. It
contains not only the nonlinear memory, but also other distortion sources included in
the signal, like synchronization errors, noise, and estimation errors.

The NMSEBNAS
is defined as

NMSEBNAS
= 10 log


N∑
k=1

|ymeas
3 (k)− ymod

3 (k)|2

N∑
k=1

|ymeas
3 (k)|2

 (5.16)

Where

ymeas
3 (k) = ymeas(k)− BNAmeas

S [u(k)]

ymod
3 = ymod(k)− BNAmod

S [u(k)]
(5.17)

This FOM suppresses the nonlinear static components of the signal, weighting only
the nonlinear distortion. It shows the ability of the model to describe the dynamic
effects, including linear and nonlinear memory, and solves the problems of the ordinary
NMSE, providing a better insight of the models under test capabilities. Fig. 5.21 shows
an spectrum example of a given signal without BNAS output components.
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Figure 5.21: An example of a measured signal without BNAS output components.

5.6.3 Models Extraction and Results

The measured input/output signals were obtained from the measurement setup de-
scribed in section 5.2.2 (WCDMA Signal – Simulation).

From these signals, seven models were estimated for all types of memory effects,
and the NMSE, NMSEBLA and NMSEBNA were evaluated. The results are shown
in Tables 5.7, 5.8, and 5.9, sorted by NMSE results. The abbreviations are: neural
networks using 10 neurons with tangent-sigmoid activation functions (NN), seventh
order baseband polynomial (BB Poly), look-up table (LUT), parallel Wiener (PW),
parallel Hammerstein (PH), and Wiener-Bose (WBose). The PH model has a structure
as shown in Fig. 5.22. The models PW, PH, and WBose had a maximum of 3 delay taps.
Table 5.10 present these models based on the reference ranking number in Tables 5.7,
5.8, 5.9, and on the FOMs NMSEBLA and NMSEBNA.

c1.uk

c2.uk|uk|
2

+
uk yk

cP.uk|uk|
P

Filter

Filter

Filter

Figure 5.22: Parallel Hammerstein model.

Table’s Analysis

For the signal from the PA model with linear and nonlinear memory (LM/NLM) in
Table 5.10, the ranking is the same as for NMSEBLA. For the NMSEBNA, Saleh model
presents better results than BB Poly and NN.

Using the signal from the PA model with linear memory (LM), the LUT had the
best overall results, although this is a memoryless model. NN appears as the worst one.
BB poly is better than Saleh at NMSEBLA ranking. For NMSEBNA ranking, Saleh is
the second one.

For the signal from the PA model with nonlinear memory (NLM), WBose showed
the best overall results, and LUT comes right after it. Thereafter appears another
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model with memory, the PH. NN is again the last one. Saleh present better results
than BB Poly and PW.

For the signal from the memoryless PA model (noM), LUT present overall best
results, while NN again performs worse. The models without memory were better than
models with memory in general, except the WBose for NMSEBLA. Saleh stayed on
second position for NMSEBNA.

No model presented an overall top performance for the different system memory.
The models have to be selected according to the system characteristics, in order to
obtain the best performance.

Table 5.7: NMSE summary – simulated signal LM/NLM and LM

Model LM/NLM LM
NMSE NMSE NMSE NMSE NMSE NMSE

BLA BNA BLA BNA
(dB) (dB) (dB) (dB) (dB) (dB)

WBose −44.0 −27.0 −13.5 −42.0 −26.5 −11.0
PH −37.5 −22.0 −7.0 −40.5 −25.0 −9.5
PW −37.0 −21.5 −7.0 −40.0 −25.0 −9.5
LUT −35.0 −21.0 −6.5 −38.0 −29.0 −14.0

BB Poly −34.5 −20.5 −6.0 −36.0 −24.0 −8.5
NN −32.0 −17.0 −3.0 −31.0 −16.0 −2.0

Saleh −30.0 −16.5 −6.0 −26.0 −16.0 −12.0

Table 5.8: NMSE summary – simulated signal NLM

Model NLM
NMSE NMSE NMSE

BLA BNA
(dB) (dB) (dB)

WBose −44.0 −28.0 −13.0
PH −37.0 −21.0 −6.5

LUT −37.0 −21.5 −7.0
PW −36.0 −21.0 −6.0

BB Poly −36.0 −6.0 −6.0
NN −31.0 −15.0 −1.5

Saleh −30.5 −16.5 −6.5

5.6.4 Conclusion

New FOMs were derived extracting the BLA and the BNA components of the output
signals. Using the NMSEBLA and NMSEBNA, a detailed analysis of models’ perfor-
mance was achieved, based on simulated input/output signals.

When systems present linear and nonlinear memory, models should be capable of
representing these types of memory effects to accomplish good results. Memoryless
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Table 5.9: NMSE summary – simulated signal noM

Model noM
NMSE NMSE NMSE

BLA BNA
(dB) (dB) (dB)

LUT −62.0 −49.0 −33.5
WBose −42.0 −27.0 −11.0

PH −40.5 −25.0 −9.5
BB Poly −40.5 −25.0 −9.5

PW −40.5 −25.0 −9.5
NN −28.0 −12.5 2.0

Saleh −25.0 −17.0 −19.0

Table 5.10: Ranking based on NMSEBLA and NMSEBNA

LM/NLM LM NLM noM
NMSE NMSE NMSE NMSE NMSE NMSE NMSE NMSE
BLA BNA BLA BNA BLA BNA BLA BNA

WBose WBose LUT LUT WBose WBose LUT LUT
PH PH WBose Saleh LUT LUT WBose Saleh
PW PW PH WBose PH PH PH WBose
LUT LUT PW PW BBPoly Saleh BBPoly BBPoly

BBPoly Saleh BBPoly PH PW BBPoly PW PH
NN BBPoly Saleh BBPoly Saleh PW Saleh PW

Saleh NN NN NN NN NN NN NN
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models are inefficient in this case.
For systems having only linear memory, representing memory in models has little

effect in overall results, as the LUT showed best performance, and the Saleh model was
at the second place in NMSEBNA ranking. Nonlinearity has a much stronger impact
than the linear memory for these systems.

For systems with nonlinear memory, it is necessary to select the correct model struc-
ture and achieve good nonlinearity fitting. This characteristics were better achieved
by the WBose, but the best nonlinearity fitting was reached by the LUT, which was
placed on the second rank. Only after are models as PH and PW, that can represent
some amount of nonlinear memory.

Models representing memory may have bad performance for memoryless systems.
This fact was presented by the BB Poly which showed a better result than PH and
PW.

Saleh had surprisingly good results. This model is known for a good fitting of
the nonlinearity with only 4 coefficients. Indeed, fitting memory is important for pre-
distortion purposes and cannot be ignored. But using complex models capable of linear
and nonlinear memory estimation as the WBose can deliver worse results than the LUT,
for the wrong systems (e.g., memoryless systems). Better methods for fitting memory
should be developed, in order to estimate nonlinearity and memory in an efficient way.

NN has the worst results almost in all categories. The NN using only tangent-
sigmoid functions was too simple for these signals, and more elaborated (and compu-
tationally intensive) ones should be used. These networks are out of the scope of this
analysis.

After determining which models have better performance for specific systems, par-
allel structures combining models which have the best results will be shown in the next
section. The proposed models are expected to achieve superior accuracy, allowing the
construction of precise pre-distorters.

5.7 An Analysis of Nonlinear Parallel Behavioral Models

This section presents an analysis of actual nonlinear parallel behavioral models, com-
pares their performance, proposes a general pre-processing structure, and also new
parallel model configurations.

5.7.1 Introduction

A common strategy to obtain more accurate behavioral models consists in adding sev-
eral structures in parallel. Parallel models have been successfully employed in non-
linear system identification in different areas using time or frequency-domain data, as
in [30, 32, 71]. The advantage of parallel models regards the possibility of integrating
several structures in different branches, permitting scalability in the design. The con-
vergence is guaranteed since the next branch is conformed to the residue of the previous
one. Some of these models will be analyzed in this section that proposes also a pre-
processor for the extraction of parallel PA behavioral models that improves the identi-
fication capabilities shown by classical parallel structures. The general pre-processing
structure follows the principle of separating the static nonlinear PA behavior in order
to allow better identification results. New parallel modeling techniques are introduced,
with improved performance in comparison with the actual ones. A comparison of the
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Figure 5.23: Polyspectral model.

proposed pre-processing structure with common parallel configurations using linear es-
timation is presented. Four types of noise-free simulated data obtained from PA models
presenting different memory effects were applied, and also an additional measured sig-
nal. Finally, three new parallel structures are proposed and the results are described.

5.7.2 Parallel Models

An example of a parallel model that uses time-domain data for its extraction is reported
in [30, 71] and shown in Fig. 4.11. The estimation procedure can be summarized as
follows: In a first approach, a filter (linear time invariant block) is estimated; then an
intermediate signal is obtained as the result of filtering the input signal with the previ-
ously obtained filter and finally, a polynomial is estimated by means of this intermediate
signal and the output signal. The error generated by this two-step least-squares (LS)
estimation is then captured by the next branch of the parallel structure, and so on until
no significant improvement in the entire model performance can be noted. This error
can be avoided if a suitable estimator for the Wiener structure is used. Neural networks
typically apply such nonlinear estimation techniques, but they are a computationally
intensive solution. Unfortunately, a linear estimator for a Wiener model would require
the same number of parameters as required for a VS, and would not be suitable, but
this is the price to pay for generality.

Another example is the modified parallel Hammerstein (PH) [31,45], that uses one
filter for each nonlinear order. Its structure allows determining Volterra kernels in one
step. Using exactly the same structure in a second branch does not lead to better
results, as the whole dynamic behavior of the PA has been already captured by the
first branch. The second branch then will only model noise, and thus its contribution
is completely useless. As already reported in [24], parallel models are very sensitive to
noise if too many paths are used. Consequently a proper selection of the paths and the
order of the nonlinearity should be made to assure low noise and good convergence.

An accuracy improvement in parallel modeling is possible by considering the use
of a different structure (than the one used for the first branch) on the second branch,
capable of estimating the remains of dynamics that have not been modeled in the first
branch. An example of this structure can be found for frequency domain in [32], and it
is shown in Fig. 5.23. In these models, a path is designed for the linear part of the signal
and another path for the nonlinear one. Treating the residue with another structure,
better results were achieved in comparison with a model that presents branches with
the same structure. However, the continuation of this process is crucial to obtain better
modeling results, as it will be shown in following sections.
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5.7.3 A Pre-Processor for PA Linear Estimation

The linear LS estimation combines very interesting characteristics and is a widely em-
ployed estimator. Nevertheless, it treats linear and nonlinear components of the data
in the same way, and to correct this problem applying weighted LS for every particular
input signal is a difficult task. Focusing in the particular case of PA modeling, the linear
components present much more power than the nonlinear ones, normally the distortion
is at least 30 dB below the carrier. If models are estimated directly from input/output
sets of data, both linear and nonlinear behavior will be modeled together and thus the
linear part of the signal will appear as noise for the nonlinear part within the estima-
tion. This unwanted situation can be avoided by removing the linear part of the signal.
This could be accomplished fitting a best linear approximation between input/output
data, in an approach similar to the one described for polyspectral models [32].

Therefore, we now go a step further, and propose a parallel model consisting in a
first (upper) pre-processing branch, that represents the memoryless nonlinearity (NL),
and subsequent branches, responsible for modeling the remain of the output signal that
has not been identified by the first branch. The block diagram is depicted in Fig. 5.24,
and an example of the residue for the next estimation using given input/output data
records is displayed in Fig. 5.25. The upper branch (pre-processing) removes all the
static nonlinearity of the signal, or the noise for the identification of nonlinear distortion
parameters, allowing a more accurate identification of the dynamic behavior (in lower
branches). The PA dynamic model is estimated between umeas(k) and yres(k). The
output signal is composed of the sum of yNL(k) and ydyn(k), the nonlinear static block
and the PA dynamic model output, respectively.

A similar approach was suggested in [30], but limited to build the nonlinearity
with the two-tone AM/AM – AM/PM response. Alike in [32], it is possible to replace
the memoryless nonlinearity by a filter (upper branch) in order to remove linear PA
dynamics to proceed with the identification of the nonlinear part in lower branches.
However, the identification performance achieved with this solution is too dependent
on the number of coefficients used to describe the filter and thus it looses generality
in the comparison. Also in [33] the procedures to extend the model were not given, as
pointed out in [21].

umeas(k) yres(k)=ymeas(k)-yNL(k)

yNL(k)

ydyn(k)

NL

PA Dynamic 

model

ytot(k)=yNL(k)+ydyn(k)

Figure 5.24: Pre-processing for a dynamic PA model.

In the following section, several structures for PA modeling (with and without pre-
processing) will be compared in terms of normalized mean squared error (NMSE), in
order to compare the identification performance achieved when using this pre-processing
technique.
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Figure 5.25: Residue at the output of the NL block (Meas signal w/o NL).

5.7.4 Models Extraction and Results

Five sets of data were used for model extraction and validation. Four sets were the
ones also used in section 5.2.2 (WCDMA – Simulation).

A fifth measured set of data was obtained from a PA with modified Bias-Tee (am-
plifier B) described in section 5.2.1, using the Wimax signal described in section 5.2.2
(Wimax Signal). The AM/AM and AM/PM characteristics of this modified amplifier
are displayed in Fig. 5.26. The measurement setup covered intermodulation distortions
up to 7th order. The input/output PSD are shown in Fig. 5.27.

Figure 5.26: AM/AM and AM/PM characteristics of the modified Bias-Tee amplifier mea-
sured signal used for modeling.

Table 5.11 shows a comparison among the following behavioral models: ordinary
baseband power series [26], Wiener, parallel Wiener (PW), and modified parallel Ham-
merstein models (PH). The figure of merit used to characterize the models’ accuracy
is the NMSE [32]. Models were extracted considering a 7th order baseband polynomial
and a maximum of 3 delay taps. Observing results in Table 5.11, we can see that the
parallel Wiener with 2 branches shows practically the same NMSE as a single Wiener
model for all different type of data. No significant accuracy improvement, measured
in terms of NMSE, is appreciated. The inclusion of additional branches in the model
would be useless, since it would be modeling noise and thus not contributing to the
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Figure 5.27: PSD of the modified Bias-Tee amplifier driven by a Wimax input signal.

final estimation results. The PH model shows the best NMSE results, since Volterra
coefficients were estimated in one step. Practically no residue is left for a further branch
using the same PH structure. Attending to these results one may conclude that the
addition of parallel replicas of the same model structure do not contribute significantly
to obtain a more accurate identification performance.

Table 5.11: NMSE summary – simulated and measured signals

Model LM/NLM LM NLM noM Meas
(dB) (dB) (dB) (dB) (dB)

Poly −34.5 −36.0 −36.0 −40.5 −21.0
Wiener −37.0 −40.0 −36.0 −40.0 −21.0

PW −37.0 −40.5 −36.0 −40.5 −21.0
PH −37.5 −40.5 −37.0 −40.5 −22.0

In order to highlight the advantages of the general pre-processing technique pre-
sented in Fig. 5.24, we particularize the general dynamic PA model with a reduced
Volterra series (WBose) structure, as it shown in Fig. 5.28. The WBose block follows
the Wiener-Bose approach, reported in [17]. For this model only three delay taps have
been considered. Moreover, in order to reduce the complexity of the model, the pruning
technique proposed in [37] has been used. It was originally derived until 5th order base-
band Volterra series (VS), and was extended to the 7th order in this work, as presented
in Appendix A.

This behavioral model with pre-processing is composed of a nonlinear memory-
less block, implemented with a look-up table (LUT) to avoid the dependency on the
polynomial order, and the WBose block.

The estimation procedure for the extraction of the WBose model with pre-processing
can be summarized as follows (see Fig. 5.24):

• First, extract the memoryless nonlinear function by means of the measured input
(umeas(k)) and output (ymeas(k)) data;

• Then, calculate the residual signal yres(k) defined as the difference between the
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Figure 5.28: Proposed initial configuration for estimation of PA behavioral models.

measured output ymeas(k) and the output of the memoryless nonlinear model
yNL(k);

• Parameterize the dynamic model using the input signal umeas(k) and the residual
signal yres(k).

The output of the overall model is the sum of the outputs of both branches, as it is
depicted in Fig. 5.28.

Table 5.12 shows the identification results for a memoryless nonlinearity (LUT
alone), a PH with pre-processing, a WBose model without pre-processing (WBose),
and a WBose model with pre-processing (Pre-WBose).

Table 5.12: NMSE summary – simulated and measured signal

Model LM/NLM LM NLM noM Meas
(dB) (dB) (dB) (dB) (dB)

LUT −35.0 −38.0 −37.0 −60.0 −21.0
Pre-PH −38.0 −54.0 −38.0 −64.0 −22.0
WBose −42.0 −42.0 −42.0 −42.0 −23.0

Pre-WBose −44.0 −56.0 −44.0 −65.0 −23.0

Unlike the use of parallel replicas (see results in Table 5.11), the use of the pro-
posed pre-processing technique improves the identification results achieved by a single
dynamic model without any kind of pre-processing, for all systems presenting memory
effects. Therefore, this technique offers the possibility to increase the identification ac-
curacy with only a slight change in the estimation procedure. For signals obtained from
memoryless systems, the pre-processing technique with LUT shows improvements of
more than 15 dB. Results also show that improvements for this modeling technique us-
ing WBose and LUTs are at the limit. Different structures at the subsequent branches
could improve the NMSE results. In the following, the data used to compare and val-
idate the proposed architectures and techniques will be the measured data obtained
from the modified Bias-Tee amplifier.

5.7.5 Estimating Memory Effects With Sub-Band Structures

A RF power amplifier has a complex structure, presenting many kinds of memory. They
can be classified as [72]:

• Low frequency ( kHz to MHz): Thermal effects, trapping effects, biasing circuits,
AGC loops;
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• High frequency ( GHz): Transistor (transit time and reactance parasitics), match-
ing networks (group delay).

These memories are mixed together in a PA (nonlinear coupled), and the problem of
estimating behavioral models becomes very difficult [73]. Models capable of identifying
memory at different signal rates can improve the identification performance. This can
be accomplished using parallel sub-band filtering techniques. It is a powerful method
to design very large order FIR filters, operating at a high speed, with smaller filters,
operating at slower speed, reducing computational complexity, as shown in [74, 75].
In this technique, the input signal is decimated into different rates, filtered for each
branch, and later interpolated with the respective branch rate to form the output signal.
With smaller filters, the matrix to be inverted in LS estimation process is also smaller.
An example of baseband digital pre-distortion using this technique if found in [75].
A system identification problem, where sub-band neural networks were employed to
recover audio signals is shown in [76]. It was concluded that sub-band adaptive filters
have better performance for highly correlated input signals (also the case for amplifier
identification) than full-band adaptive filters. Also in [76] it was proven that, for sub-
band input signals, the eigenvalue spread of the sub-band signal will be smaller or equal
the eigenvalue spread of the full signal, what guarantees a better condition number of
the Hessian matrix used in the LS estimation.

A proposed model to estimate different kinds of memories is presented in Fig. 5.29,
with two variants. They will differ in the way in which the resampling factor (rf),
already explained in [17], is optimized. The first model has the first branch with rf
of 1, thus doing a “blind” first estimation, and then optimizing the other branches
considering the other resampling rates. The second model begins the rate optimization
already in the first branch. This factor is adjusted for each branch, following a nonlinear
search. This is accomplished by varying rf and performing an estimation for this point,
recording the results and retaining the best rf for this branch. Another similar work
using decimation for optimal estimation was reported in [77], where a way to optimize
this resampling factor for ill-conditioned LS Hessian is shown, also with evaluations of
the estimated function. When using this resampling factor, only the decimation was
employed for the estimation proposed. The interpolation operation cited by references
[74–76] was not necessary.

u(k) y(k)Pre WBose

rf=1

WBose

rf=optimum

u(k) y(k)Pre WBose

rf=optimum

WBose

rf=optimum

Figure 5.29: Proposed configuration for estimation of PA behavioral models.

This degree of freedom for rf can be optimized for “short-term” memory effects
(rf = 1 to rf ≈ 50) in single steps, as it has been done in this work. Therefore, the
model will be composed of branches optimized for different rates, having improved
identification capabilities.
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Finally, the overall model output is obtained by the sum of all responses at each
branch. The single branches structures (LUT-WBose) are rich enough to capture
residues of the signal that still are not modeled.

5.7.6 Extraction of Sub-Band Parallel Models

The models described in Fig. 5.29 were estimated with the same input/output signals
as in section 5.7.4, using 5 branches each.

Figure 5.30 shows the results of the rf optimization curves for branches from 2 to
5 and considering rf = 1 in the first branch.

Figure 5.31 shows the NMSE dependency on rf values at the first branch of the
model having rf optimized for all branches in Fig. 5.29 (right structure), and for re-
maining branches. No significant changes were noted after rf > 50, so rf iterations
were limited up to 50.
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Figure 5.30: Results for optimization at remaining branches. The best resampling factor were:
19, 13, 30, 3 for branches 2 to 5, respectively.
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Figure 5.31: Results for optimization of the first branch (left) and at remaining branches
(right). The best resampling factor was found at position 9 for the first branch, and 12, 4, 39,
30 for branches 2 to 5, respectively.

A third variant of model optimization was tested, using the heuristic search algo-
rithm named Simulated Annealing (SA). This algorithm is used to find the best sparse
delays contributing at each branch to the identification of the behavioral model of the
PA, as displayed in Fig. 5.32. This nonlinear search technique has been used in the
extraction of baseband behavioral models [78]. It searches for the best configuration of
delays to improve the identification accuracy. The results achieved in terms of NMSE
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using this method are also listed in Table 5.13. It can be observed that already in the
second branch, the technique with SA parameterize a considerable part of the residue,
having a faster convergence than the other methods. However, the total NMSE figure
is slightly worse than the other configuration using the rf technique. Nevertheless, the
NMSE figure is improved in comparison to the use of a single branch for the identifica-
tion. The absence of the fifth branch is due to the noise modeling of this branch, that
does not contribute to the final results. Another possibility for the initial conditions,
having the first branch with higher identification FOM (−24.0 dB NMSE) was also
tested (compare Table 5.13), but results were very close to this previous model using
SA and will not be reported here.

Table 5.13 presents the NMSE obtained by models at each branch, and their cor-
responding resampling factor. At the end, the total NMSE achieved by each model, as
the result of the contribution of all branches forming the model, is also displayed. Al-
though the model having an optimized rf at the first branch presented a better NMSE
figure in the initial branch, the final optimization results were practically the same as
the one starting with rf = 1. So, initial conditions (or the rf in the first branch) were
considered good for both cases. What is significant is that the use of the resampling
factor together with parallel models has improved final results by approximately 6 dB
NMSE in comparison with results shown in Table 5.12 (results obtained using the mea-
sured signal). Although the models presented here have an increased complexity in
comparison with previous models, the accuracy is clearly better.

u(k) y(k)Pre WBose

rf=1

WBose

optimized 

delays with SA

Figure 5.32: Variation with Simulated Annealing optimization for the subsequent branches.

Table 5.13: NMSE, rf and optimal delays results

First branch rf = 1 Optim. for Optim. with SA
all Branches

Branch rf NMSE rf NMSE Delays NMSE
(dB) (dB) (dB)

1 1 −23.0 9 −24.0 [1 2 3] −23.0
2 19 −3.0 12 −2.0 [1 8 24] −4.0
3 13 −1.0 4 −1.0 [1 8 6] −0.5
4 30 −1.0 39 −1.0 [1 20 29] −0.5
5 1 −1.0 30 −1.0 — —

Model −29.0 −29.0 −28.0

Finally, the model that takes into account optimized rf for all branches (Pre-WBose
par) was also tested considering all different sets of simulated data. The obtained
results were compared with the other modeling techniques presented in Table 5.12
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and repeated here for convenience in Table 5.14. For memoryless and linear memory
systems, no additional branches were necessary, and results were better than −55 dB
NMSE. For systems presenting nonlinear memory, additional branches were necessary
to improve final results, staying at −48 dB NMSE. An unmodeled residue was initially
present, minimized by subsequent branches. Based on the previous results, the VS
pruning technique derived in [37] is more suitable for systems presenting linear memory,
fortunately the most often case.

Also improvements comparing with other modeling techniques were evident: 4 dB
NMSE for simulated signals, and 6 dB NMSE for measured signals, when compared
with Pre-WBose (without parallel additional branches). Comparing with a memoryless
model (LUT), improvements were from 5 dB to 18 dB NMSE.

Sub-band parallel models are a suitable possibility to estimate linear memory and
also nonlinear memory, throughout estimation residues and sub-band techniques, lead-
ing to more accurate results. In order to highlight the spectral improvements of this

Table 5.14: Comparison NMSE summary – simulated and measured signal

Model LM/NLM LM NLM noM Meas
(dB) (dB) (dB) (dB) (dB)

LUT −35.0 −38.0 −37.0 −60.0 −21.0
Pre-WBose −44.0 −56.0 −44.0 −65.0 −23.0
Pre-WBose −48.0 −56.0 −48.0 −65.0 −29.0

par
Branches 3 1 4 1 5

technique, Fig. 5.33 shows the measured output signal and the residues of the model
with pre-processing and sub-sampling parallel branches (Pre-Wbose par) and the model
with only pre-processing (Pre-Wbose) – the NMSE results are listed in Table 5.14, in
column Meas. The in-band residue improvements of the model employing sub-sampling
techniques are clearly seen in this figure.
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Figure 5.33: PSD of the measured output signal and of the residue of the model with pre-
processing and sub-sampling parallel branches (Pre-Wbose par) and only with pre-processing
(Pre-Wbose).
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5.7.7 Conclusion

A general pre-processing technique for PA behavioral modeling has been presented.
This technique has shown to be efficient and has been validated using a PH model
and a particular configuration based in a reduced Wiener-Bose dynamic PA behavioral
model. Later on, three types of parallel models using pre-processing technique in the
first branch and reduced VS in the remaining ones were introduced. They employed
resampling factor or Simulated Annealing techniques and showed an improved identifi-
cation performance, in terms of NMSE, in comparison with other simpler models. The
main drawback is the increase in the number of parameters used for modeling when
considering these techniques. Results have shown that parallel models with different
structures using sub-sampling in their subsequent branches can improve the identifica-
tion performance and justify the inclusion of additional branches. Results have con-
firmed that the accuracy of a PA behavioral model considering only one single branch
is lower than considering pre-processing and resampling techniques. The importance
of sub-band parallel models was shown in terms of overall NMSE improvement, and
showing an efficient reduction of the residue in the final estimation process.



Chapter 6

Conclusions

This thesis analyzed different methodologies and possibilities to implement BMs, rang-
ing from linear systems, as FIR filters, to accurate PA models, composed by parallel
cascades of look-up tables and reduced order VS approximation.

A general overview of BMs was initially presented, and main difficulties in estimat-
ing a PA BM were highlighted. The most used FOMs were analyzed for their strengths
and weaknesses. A reliable FOM is necessary, since it offers a possibility to quantify the
model’s performance. Parametric FOMs are very suitable for use in algorithms, but
lack from information about memory effects contained in nonparametric (graphical)
FOMs. In general, more than one FOM is necessary for a complete analysis. Improved
alternatives for the NMSE were proposed (NMSEBLA and NMSEBNA), for a better
evaluation of the modeled nonlinear distortions components of the signal.

Linear estimation techniques for linear systems were surveyed, and a de-noising
estimator for linear systems was proposed, based on SVD, that reorganized the filter
taps sequence. This technique improves the system memory estimation.

Then the PA was analyzed as a nonlinear system. Memoryless models were stud-
ied, including orthogonal polynomials for complex-valued input signals and LUTs. The
latter presented the best overall results, employed after in other estimation techniques.
An analysis of basic nonlinear systems with memory was performed. Wiener, Hammer-
stein, and their equivalent parallel models were explored in details. Their particularities
relative to linear estimation were identified, e. g., Wiener models cannot be estimated
directly using linear estimation techniques, and Hammerstein models include only the
main diagonals of the Volterra kernels. They are very simplified models, which do not
account for dynamic interaction of nonlinearities, insufficient for an amplifier charac-
terization operating near compression, the main interest of this study.

More elaborated models were studied and developed, capable of VS approximations.
The Wiener-Bose (WBose) model was adapted for the complex-valued input/output
signal case, its regression matrix was well defined, and alternatives to improve the CN
of the Hessian matrix were established. Further on, pruning techniques were applied
to the WBose model, making it very suitable for amplifier estimation, due to the lower
number of parameters in comparison with a full VS. Good results and suitable charac-
teristics encouraged further studies with the pruned WBose model. It was integrated
in a parallel configuration, after a pre-processing technique which improved the PA
estimation. The pre-processing consisted in removing the static nonlinearities of the
signal, so only the dynamic part was to be identified by the model. The linear part
of the signal, which is much bigger than the nonlinear distortions (the main interest
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of BM), was then removed. This technique, combined with the use of a resampling
factor for pruned WBose models in a parallel configuration, showed to be very effi-
cient for PA modeling. The distortions caused by the PA’s different memories (thermal
effects, trapping effects, biasing circuits, AGC loops, transistor transit time and reac-
tance parasitics, matching networks) can then be better identified, so more accurate
pre-distorters can be developed.

Further studies are the improvement of Wiener-Bose models, with other pruning
techniques (e. g., based on the input/output signal), and the full automatization of
this process. Also of interest are other parallel models, as well as the implementation
and analysis of their performance in pre-distortion systems. On-line adaption routines
can be implemented in a fast and efficient way for computers, as all models are based
on linear estimation techniques.



Appendix A

Derivation of Volterra Kernels

Reduction up to 7th Order

This appendix present an extension to the 7th order from the pruning technique pre-
sented in [37], to be used with (4.3). The extension was necessary due to the possibility
to obtain more accurate models, and for comparisons with other modeling strategies.

Table A.1: Equations 3thorder

1) x(n)x(n)x(n) h3(0, 0, 0)

2) x(n)x2(n− i) h3(0, i, i)

Table A.2: Term 2

h̃3(0∗, i, i)
h3(0, i, i)

h̃3(0, i∗, i)

Table A.3: Equations 5thorder

1) x(n)x(n)x(n)x(n)x(n) h5(0, 0, 0, 0, 0)

2) x(n)x(n)x(n)x2(n− i) h5(0, 0, 0, i, i)

3) x(n)x(n)x3(n− i) h5(0, 0, i, i, i)

4) x(n)x4(n− i) h5(0, i, i, i, i)

5) x(n)x2(n− i)x2(n− i2) h5(0, i1, i1, i2, i2)

6) x2(n− i)x3(n− i2) h5(i1, i1, i2, i2, i2)
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Table A.4: Terms 1 to 4

h̃5(0∗, i∗, i, i, i)
h5(0, i, i, i, i)

h̃5(0, i∗, i∗, i, i)

Table A.5: Term 5

h5(0, i1, i1, i2, i2)

h̃5(0∗, i∗1, i1, i2, i2)

h̃5(0∗, i1, i1, i∗2, i2)

h̃5(0, i∗1, i
∗
1, i2, i2)

h̃5(0, i∗1, i1, i
∗
2, i2)

h̃5(0, i1, i1, i∗2, i
∗
2)

Table A.6: Term 6

h5(i1, i1, i2, i2, i2)
h̃5(i∗1, i

∗
1, i2, i2, i2)

h̃5(i∗1, i1, i
∗
2, i2, i2)

h̃5(i1, i1, i∗2, i
∗
2, i2)

Table A.7: Equations 7thorder

1) x(n)x(n)x(n)x(n)x(n)x(n)x(n) h7(0, 0, 0, 0, 0, 0, 0)

2) x(n)x(n)x(n)x(n)x(n)x2(n− i) h7(0, 0, 0, 0, 0, i, i)

3) x(n)x(n)x(n)x(n)x3(n− i) h7(0, 0, 0, 0, i, i, i)

4) x(n)x(n)x(n)x4(n− i) h7(0, 0, 0, i, i, i, i)

5) x(n)x(n)x5(n− i) h7(0, 0, i, i, i, i, i)

6) x(n)x6(n− i) h7(0, i, i, i, i, i, i)

A x(n)x(n)x(n)x2(n− i)x2(n− i2) h7(0, 0, 0, i1, i1, i2, i2)

B x(n)x(n)x2(n− i)x3(n− i2) h7(0, 0, i1, i1, i2, i2, i2)

C x(n)x3(n− i)x3(n− i2) h7(0, ii, i1, i1, i2, i2, i2)

D x(n)x2(n− i1)x2(n− i2)x2(n− i3) h7(0, i1, i1, i2, i2, i3, i3)

E x(n)x2(n− i1)x4(n− i2) h7(0, i1, i1, i2, i2, i2, i2)

F x2(n− i1)x5(n− i2) h7(i1, i1, i2, i2, i2, i2, i2)

G x2(n− i1)x2(n− i2)x3(n− i3) h7(i1, i1, i2, i2, i3, i3, i3)

H x3(n− i1)x4(n− i2) h7(i1, i1, i1, i2, i2, i2, i2)

Table A.8: Terms 1 to 6

h̃7(0∗, i∗, i∗, i, i, i, i)
h7(0, i, i, i, i, i, i)

h̃7(0, i∗, i∗, i∗, i, i, i)
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Table A.9: Term A

h7(0, 0, 0, i1, i1, i2, i2)

h̃7(0∗, 0∗, 0∗, i1, i1, i2, i2)

h̃7(0, 0∗, 0∗, i∗1, i1, i2, i2)

h̃7(0, 0∗, 0∗, i1, i1, i∗2, i2)

h̃7(0, 0, 0∗, i∗1, i
∗
1, i2, i2)

h̃7(0, 0, 0∗, i∗1, i1, i
∗
2, i2)

h̃7(0, 0, 0∗, i1, i1, i∗2, i
∗
2)

h̃7(0, 0, 0, i∗1, i
∗
1, i
∗
2, i2)

h̃7(0, 0, 0, i1, i∗1, i
∗
2, i
∗
2)

Table A.10: Term B

h7(0, 0, i1, i1, i2, i2, i2)

h̃7(0∗, 0∗, i∗1, i1, i2, i2, i2)

h̃7(0∗, 0∗, i1, i1, i∗2, i2, i2)

h̃7(0, 0∗, i∗1, i
∗
1, i2, i2, i2)

h̃7(0, 0∗, i∗1, i1, i
∗
2, i2, i2)

h̃7(0, 0, i∗1, i
∗
1, i
∗
2, i2, i2)

h̃7(0, 0, i1, i∗1, i
∗
2, i
∗
2, i2)

h̃7(0, 0, i1, i1, i∗2, i
∗
2, i
∗
2)

Table A.11: Term C

h7(0, i1, i1, i1, i2, i2, i2)

h̃7(0∗, i∗1, i
∗
1, i1, i2, i2, i2)

h̃7(0∗, i∗1, i1, i1, i
∗
2, i2, i2)

h̃7(0∗, i1, i1, i1, i∗2, i
∗
2, i2)

h̃7(0, i∗1, i
∗
1, i
∗
1, i2, i2, i2)

h̃7(0, i1, i∗1, i
∗
1, i
∗
2, i2, i2)

h̃7(0, i1, i1, i∗1, i
∗
2, i
∗
2, i2)

h̃7(0, i1, i1, i1, i∗2, i
∗
2, i
∗
2)
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Table A.12: Term D

h̃7(0∗, i∗1, i
∗
1, i2, i2, i3, i3)

h̃7(0∗, i∗1, i1, i
∗
2, i2, i3, i3)

h̃7(0∗, i∗1, i1, i2, i2, i
∗
3, i3)

h̃7(0∗, i1, i1, i∗2, i
∗
2, i3, i3)

h̃7(0∗, i1, i1, i2, i2, i∗3, i
∗
3)

h̃7(0, i∗1, i
∗
1, i
∗
2, i2, i3, i3)

h7(0, i1, i1, i2, i2, i3, i3)
h̃7(0, i∗1, i

∗
1, i2, i2, i

∗
3, i3)

h̃7(0, i∗1, i1, i
∗
2, i
∗
2, i3, i3)

h̃7(0, i∗1, i1, i
∗
2, i2, i

∗
3, i3)

h̃7(0, i∗1, i1, i2, i2, i
∗
3, i
∗
3)

h̃7(0, i1, i1, i∗2, i
∗
2, i
∗
3, i3)

h̃7(0, i1, i1, i2, i∗2, i
∗
3, i
∗
3)

Table A.13: Term E

h̃7(0∗, i∗1, i
∗
1, i2, i2, i2, i2)

h̃7(0∗, i∗1, i1, i
∗
2, i2, i2, i2)

h̃7(0∗, i1, i1, i∗2, i
∗
2, i2, i2)

h7(0, i1, i1, i2, i2, i2, i2)
h̃7(0, i∗1, i

∗
1, i
∗
2, i2, i2, i2)

h̃7(0, i1, i∗1, i
∗
2, i
∗
2, i2, i2)

h̃7(0, i1, i1, i∗2, i
∗
2, i
∗
2, i2)

Table A.14: Term F

h7(i1, i1, i2, i2, i2, i2, i2)
h̃7(i∗1, i

∗
1, i
∗
2, i2, i2, i2, i2)

h̃7(i1, i∗1, i
∗
2, i
∗
2, i2, i2, i2)

h̃7(i1, i1, i∗2, i
∗
2, i
∗
2, i2, i2)

Table A.15: Term G

h̃7(i∗1, i
∗
1, i
∗
2, i2, i3, i3, i3)

h̃7(i∗1, i
∗
1, i2, i2, i

∗
3, i3, i3)

h̃7(i1, i∗1, i
∗
2, i
∗
2, i3, i3, i3)

h̃7(i1, i∗1, i2, i2, i
∗
3, i
∗
3, i3)

h7(i1, i1, i2, i2, i3, i3, i3)
h̃7(i1, i∗1, i

∗
2, i2, i

∗
3, i3, i3)

h̃7(i1, i1, i∗2, i
∗
2, i
∗
3, i3, i3)

h̃7(i1, i1, i∗2, i2, i
∗
3, i
∗
3, i3)

h̃7(i1, i1, i2, i2, i∗3, i
∗
3, i
∗
3)
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Table A.16: Term H

h̃7(i∗1, i
∗
1, i
∗
1, i2, i2, i2, i2)

h̃7(i∗1, i
∗
1, i1, i

∗
2, i2, i2, i2)

h7(i1, i1, i1, i2, i2, i2, i2)
h̃7(i1, i1, i∗1, i

∗
2, i
∗
2, i2, i2)

h̃7(i1, i1, i1, i∗2, i
∗
2, i
∗
2, i2)
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