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Kurzfassung

Mobile Kommunikationsnetze der dritten als auch der zukünftigen Generationen

sind dafür ausgelegt, den Benutzern hochratige Datendienste für Anwendungen wie

Videotelefonie und Datentransfer zur Verfügung zu stellen. Mit der derzeit üblichen

Rake-Empfängerstruktur wird über kurz oder lang ein Kapazitätsengpass entstehen,

der nicht auf eine Begrenztheit des vorhandenen Spektrums zurückzuführen ist,

sondern vielmehr auf ineffizienten Empfangsarchitekturen beruht.

Komplexe Empfangsalgorithmen können die spektrale Effizienz durch Mehrbe-

nutzerdetektionsverfahren erheblich steigern. Die vorliegende Arbeit untersucht ite-

rative Empfänger für kodierte CDMA Übertragung in der Aufwärtsstrecke. Der

iterative Empfänger ist ein suboptimaler, aber von der Komplexität beherrschbarer

Detektionsalgorithmus. Er besteht aus einem interferenzbeseitigenden Mehrbenut-

zerdetektor, einer Dekoderbank sowie einem Kanalschätzer. Anstatt die Entschei-

dungen über die tatsächlich gesendeten Symbole direkt nach der ersten Dekodierung

zu fällen, werden die vorläufigen Entscheidungen rückgekoppelt, um damit die Inter-

ferenz auf dem Kanal zu schätzen und diese vor der Detektion in der nächsten Iterati-

on zu eliminieren. Gleichsam werden die Rückkopplungssymbole zur Unterstützung

der Kanalschätzung verwendet. Diese Arbeit untersucht, welche Möglichkeiten und

Grenzen iterative Mehrbenutzerempfänger in realistischen Mobilfunkkanälen mit

Mehrwegeausbreitung aufweisen.

Wir gehen auf die Frage ein, unter welcher Voraussetzung Schwundkanäle für

die Dauer einer Blockübertragung als konstant angesehen werden können. Es stellt

sich heraus, dass der Mobilfunkkanal für die Dauer eines UMTS-Slots konstant ist,

wenn die Geschwindigkeit des mobilen Endgeräts 30 km/h nicht überschreitet. Wei-

ters untersuchen wir den Einfluss der Intersymbolinterferenz auf die Bitfehlerra-

te. Im Falle von UMTS kann die Intersymbolinterferenz erst für Spreizfaktoren

größer als 32 vernachlässigt werden. Für kürzere Spreizfaktoren kann die Bitfeh-

lerrate nur dann minimiert werden, wenn die Intersymbolinterferenz im Detektor

eliminiert wird. In Folge wird die Frage erörtert, ob extrinsische oder a-posteriori

Dekoderinformation zur Interferenzbeseitigung herangezogen werden soll. In diesem

Zusammenhang wird Last als das Verhältnis von Anzahl von Benutzern zu Spreiz-

faktor definiert. Prinzipiell zeigt die Verwendung von entscheidungsrückgekoppelten

Symbolen, welche aus a-posteriori Information abgeleitet werden, über einen großen

Lastbereich schnellere Konvergenz. Die maximale Last wird aber nur durch extrin-
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sische Rückkopplungssymbole erreicht. Wir entwickeln ein lineares MMSE Filter

zur Interferenzunterdrückung, welches eine erheblich höhere Last als ein signalan-

gepasstes Einbenutzerfilter erlaubt. Parallele Interferenzbeseitigung wird mit suk-

zessiver Interferenzbeseitigung verglichen. Beide Strukturen ermöglichen praktisch

gleich grosse Lasten, wobei sukzessive Beseitigung weniger Iterationen benötigt. Wir

erweitern die Verarbeitungsstruktur auf Mehrantennenempfang und zeigen, dass die

dadurch erzielte Stabilisierung der mittleren Empfangsleistung die Last erheblich

steigern kann.

Im Speziellen erweitern wir den iterativen Mehrbenutzerdetekor mit einer Ka-

nalschätzeinheit. Für die Kanalschätzung werden neben der bekannten Pilotsym-

bolfolge auch die Dekoderausgangswerte benutzt. Wir entwerfen Kanalschätzer, die

unterschiedliches a-priori Wissen über die Statistik zweiter Ordnung des Rauschens,

der Kanalkoeffizienten und der rückgekoppelten Datensymbole voraussetzen. Es

zeigt sich, dass ein kleinste-Quadrate-Schätzer, der keine Statistik benötigt, nach

sechs Iterationen nahezu die gleichen Bitfehlerraten erzielt wie die komplexeren Ver-

fahren, welche auf linearer MMSE-Schätzung beruhen. Weiters wurde beobachtet,

dass eine einfache QPSK-Pilotsymbolfolge, abhängig vom Ausbreitungskanal, Ver-

luste bis zu 1,75 dB in Eb/N0 aufweist, gegenüber Pilotsequenzen mit perfekter Kor-

relationseigenschaft. Letztere zeigen besonders dann einen Vorteil, wenn der Kanal

nicht in jeder Iteration geschätzt wird, sondern nur in der ersten Iteration mit Hilfe

der Pilotsymbole.

Die gewonnen Erkenntnisse über Mehrbenutzerdetektion und Kanalschätzung

werden für den Entwurf eines UMTS-konformen Empfängers niedriger Komplexität

verwendet. Wir zeigen, dass die iterative UMTS Empfängerstruktur unter der An-

nahme von Benutzersynchronität auch für eine grosse Anzahl von Benutzern eine

erhebliche Senkung der Bitfehlerrate auf praktisch interessante Werte ermöglicht. In

diesem Zusammenhang werden auch die praktischen Grenzen einer solchen aufge-

zeigt.

Weiters analysieren wir das Konvergenzverhalten von iterativen Empfängern mit

integrierter Kanalschätzung auf Basis von Dichteevolution für den Fall eines Kanals

mit konstanter Amplitude und einer zufällig gewählten Phase. Die Resultate für die

Herleitung der Kanalschätzeigenschaften bedienen sich Analysemethoden aus dem

Gebiet der statistischen Physik. Die Leistungsfähigkeit des Empfängers wird anhand

seiner Mehrbenutzereffizienz beurteilt, welche eine Funktion der Symbolblocklänge,

der Anzahl der Pilotsymbole, der Last, sowie des Störabstandes ist.

Schlagwörter: CDMA, MAP Dekodierung, Mehrbenutzerdetektion, Mehrwegeaus-

breitungskanäle, Interferenzbeseitigung, Intersymbolinterferenz, Kanalschätzung,

Mehrfachempfangsantennen, Pilotfolgen, UMTS, Dichteevolution, asymptotische

Systemanalyse.



Abstract

Mobile communication networks of the third and future generations are designed

to offer high-data rate services like video-telephony and data-transfer. The current

Rake receiver architecture will create a shortage in available bandwidth offered to

the users. This is not due to a shortage in spectrum but results from inefficient

receiver architectures.

Spectral efficiency can be increased considerably through multi-user detection

techniques in the receiver algorithms. The present thesis investigates iterative re-

ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a

suboptimal receiver algorithm with manageable complexity. It consists of an inter-

ference mitigating multi-user detector, a bank of single-user decoders, and a channel

estimator. Instead of deciding on the transmitted symbols right after the first decod-

ing, the receiver feeds back tentative decision symbols to mitigate multiple-access

interference in the next iteration. Similarly, soft decision symbols are used to sup-

port channel estimation in every iteration. This thesis analyses the possibilities

and limits of an iterative multi-user receiver in realistic mobile radio channels with

multi-path propagation.

First, we ask the question under which assumption fading channels show block-

fading characteristic. It turns out that, for the duration of a UMTS-slot, channels

are quasi-block static if the velocity of the mobile does not exceed 30 km/h. We

investigate the influence of inter-symbol interference on bit error rate. In the frame-

work of UMTS, inter-symbol interference can only be neglected for spreading factors

larger than 32. With short spreading factors, the bit error rates can only be min-

imised if inter-symbol interference is eliminated in the detector. Further, we analyse

whether extrinsic or a-posteriori decoder information shall be used for interference

mitigation. In this context we define load as the quotient between number of users to

spreading factor. In general, soft decision symbols that are derived from a-posteriori

information allow for faster convergence over a large region of the load. However,

the maximal load is only achieved when soft decision symbols are used that are

derived from extrinsic information. We develop a low-complexity linear MMSE

interference suppression filter with which the load can be increased significantly

over a single-user matched filter. Parallel interference cancellation is compared to

successive interference cancellation. The achievable loads of the two schemes are

practically the same, although successive cancellation requires fewer iterations. We
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extend the multi-user receiver to multiple-antenna reception and show that the load

can be increased considerably through the stabilisation of average receive power.

In particular, we extend the iterative multi-user detector with a channel estima-

tor. Additionally to pilot symbols, also soft decision symbols are used for channel

estimation. We design channel estimators that use different a-priori knowledge on

the second order statistics of the noise, the channel coefficients, and the soft deci-

sion symbols. After six iterations the least squares estimator, that does not require

any knowledge on the statistics, attains nearly the same bit error rates as the more

advanced estimators based on linear MMSE estimation. We further observed, that

a simple random QPSK pilot sequence, spread with the same signature sequence as

the data, shows a loss of up to 1,75 dB, over a perfect correlation pilot sequence,

depending on the particular multi-path channel. Perfect correlation pilot sequences

are particularly advantageous when the channel is estimated only once with the pilot

symbols.

The gained knowledge on multi-user detection and channel estimation is used in

the design of a UMTS compliant iterative receiver with low-complexity components.

With symbol synchronous transmission the receiver decreases the bit error rates

significantly to practically interesting levels. Limits in practical deployment will be

discussed.

Finally, we analyse the convergence behaviour of iterative receivers with inte-

grated channel estimation by means of density evolution for a channel with constant

amplitude and random phase. The results for the derivation of the properties of the

channel estimator are gained by using analysis tools from statistical physics. The

performance of the iterative receiver is assessed by its multi-user efficiency which is

parameterised by the transmission block length, the number of pilot symbols, the

load, and the signal to noise ratio.

Keywords: CDMA, MAP decoding, multi-user detection, multi-path channels,

interference cancellation, inter-symbol interference, channel estimation, multiple re-

ceive antennas, pilot sequences, UMTS, density evolution, large system analysis.
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1 Introduction

1.1 Motivation

With ongoing integration of electronic circuits and growing computational power,

mobile digital communication systems of the second generation became a mass prod-

uct in the 1990s. GSM (Global System of Mobile Communications) and IS-95 (In-

terim Standard 95) are representatives of this generation. Typical net data rates

are in the order of 13 kb/s and with the help of advanced techniques like EDGE

(Enhanced Data Rate for Global Evolution) maximum theoretical data rates of

473,6 kb/s are possible. The advent of the Internet at around the same time trig-

gered applications like MP3 file sharing, Voice over IP (VoIP), web browsing, video

telephony, and mobile data services. These demands were considered in the design

of the third generation of mobile communication systems including UMTS (Uni-

versal Mobile Telecommunication System) in Europe, CDMA2000 (Code Division

Multiple-Access 2.000 MHz) in the US, and TD-SCDMA (Time Duplex - Space

CDMA) in China. UTMS is a commercial multi-user communication system based

on CDMA allowing net-data rates up to 384 kb/s per user (Release 99). The basic

limitations in the supportable data rates is imposed by multiple-access interference:

every user causes noise for the reception of every other user. Since the computa-

tional complexity of systems of the third generation is several hundred times higher

than those of the second generation [Sar03], system manufacturers are striving to

implement the simplest solutions rather than those supporting highest system ca-

pacity. This currently casts the promise of high data rates in a multi-user scenario

as an illusion rather than a reality. There are, however, sophisticated techniques

that can change this situation. One of them is iterative receivers that are the topic

of this thesis.

The challenge in mobile communications is the mitigation of interference and

distortions that are introduced on the mobile radio link during transmission. These

are path loss, shadowing, Doppler shift, inter-symbol interference due to multi-

path propagation, multiple-access interference, and noise. The propagation medium

represents a time-variant system that influences communications. In order to process

information in an optimum way the parameters describing the channel are required

at the receiver. To characterise the channel, so-called sounding or training sequences,
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known to the receiver, are sent together with the data. These enable estimation of

the channel characteristics at moderate cost.

The system capacity in wireless communications is limited by multiple-access

interference that is introduced by other users sharing the same resources. Classical

receivers, based on the Rake concept, model the interference as a white Gaussian

process and do not combat cross-correlation terms from other users. Rake reception

is currently the most widely used technology in CDMA but far from the optimum.

Interference has a structure and can be mitigated effectively in a receiver.

This thesis is devoted to a promising concept based on an iterative receiver

structure. In contrast to classical approaches, where detection and decoding are

performed successively in a so-called one-shot manner [Ver98], iterative receivers

exchange probabilistic quantities and approach the actually transmitted information

gradually. As we will see in Chapters 3–5 this technology allows tremendous gains

in terms of achievable system capacity while at the same time keeping complexity

low. Throughout this work we deal with the uplink, that is, the receiver in the

base station, detecting individual user streams from a commonly received signal.

The results could easily be particularised to the downlink that is technically less

complex since all data streams face the same channel. This thesis puts special em-

phasis on high capacity systems that support loads larger than one, i.e., where the

length of the spreading sequence is smaller than the number of accommodated users.

The practical implication of the use of iterative receivers in current and evolving

systems can be projected as:

1. Higher reception quality - data is detected with less errors.

2. Fewer base stations - this affects not only the deployment costs of additional

base stations but also the operational costs of the sites.

3. Higher system capacity - the number of supported users and/or their data-

rate can be increased within a cell.

4. Less average radiation power - mobiles can lower their transmission power

since their information is decoded with less power at the base-station. This

saves energy in the mobiles.

Finally, the aim of this thesis is to address the following questions:

1. How can near-optimal multi-user performance be achieved with approximate

algorithms?

2. How does a multi-user detector influence the performance?
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3. Are iterative receivers suitable for deployment in multi-path environments?

4. What is the impact of channel estimation on the overall receiver performance?

5. Which channel estimation algorithms are well suited to iterative structures?

6. What are the limits of iterative multi-user processing?

7. How can iterative structures be deployed in the context of UMTS?

8. Is there analytical insight into the behaviour of iterative receivers?

In this work iterative receivers are considered in connection with CDMA systems.

However, most concepts can equally be applied to other multiple-access schemes like

OFDM, MC-CDMA, or TDMA.

1.2 Related Work and Contributions

An iterative receiver exchanges information between the detector, the decoder, and

the channel estimator in an iterative fashion before a final decision on the trans-

mitted information is reached. We restrict our attention to iterative multi-user

receivers for the uplink of coded CDMA. The first publications presenting an itera-

tive CDMA receiver with hard decoder feedback information are due to Alexander et

al. [Ale98] and Reed et al. [Ree98]. Moher [Moh98] considers successive interference

cancellation in connection with Rake reception and perfect channel knowledge. A

paper on iterative detection and decoding with parallel interference cancellation and

LMMSE filtering assuming perfect channel knowledge was published by Wang and

Poor [Wan99]. The mentioned papers on iterative detection and decoding do not

consider the issue of channel estimation.

The contribution of this thesis lies in the design and analysis of iterative receiver

algorithms that deal with inter-symbol interference as well as multi-path channel

estimation. In practical deployment iterative multi-user receivers require channel

estimates. El Gamal and Gereanotis [ElGa00] and Kobayashi et al. [Kob01]

presented estimators for the particular case of a flat fading channel. We ex-

tend iterative channel estimation to deal with multi-path channels and analyse

several channel estimators using soft decision symbol information. This thesis

also proposes detectors that consider inter-symbol interference (ISI), which is

important for high data rate communications. We extend the iterative receiver

to multiple-antenna reception and show that increased spatial diversity allows

a significantly higher number of accommodated users. We design an iterative

receiver with low-complexity components that is compliant with the UMTS
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standard and demonstrate its tremendous gain over a one-shot Rake reception.

This thesis also presents a convergence analysis of an iterative receivers with

integrated channel estimation using soft decision symbols. The analysis is based

on density evolution and describes the receiver behaviour by its multi-user efficiency.

This thesis is based upon the following publications:

• J. Wehinger, R. R. Müller, M. Lončar, and C. F. Mecklenbräuker, “Perfor-

mance of Iterative CDMA Receivers with Channel Estimation in Multipath

Environments”, in Proc. 36th Asilomar Conf. on Sig., Sys. and Comp., pp.

1439–1443, Pacific Grove (CA), USA, Nov. 2002.

• J. Wehinger, “Performance Analysis of Iterative CDMA Receivers in Flat Fad-

ing Channels”, Proc. Canadian Inform. Theory Workshop (CWIT), pp. 231–

234, Waterloo (ON), Canada, May 2003.

• J. Wehinger and R. R. Müller, “Analysis of Iterative CDMA Receivers in Flat

Fading”, Proc. Allerton Conf. on Comm, Control and Comp., pp. 1506–1515,

Monticello (IL), USA, Oct. 2003.

• J. Wehinger, C. F. Mecklenbräuker, R. R. Müller, T. Zemen, and M. Lončar,

“On Channel Estimators for Iterative CDMA Multiuser Receivers in Flat Fad-

ing”, Proc. IEEE Int. Conf. on Comm. (ICC), pp. 2497–2501, Paris, France,

May 2004.

• J. Wehinger and C. F. Mecklenbräuker, “Iterative Space-Time Multiuser Re-

ceiver with Data-Aided Channel Estimation for CDMA”, submitted to IEEE

Trans. on Sig. Proc., Oct. 2004, last revision Aug. 2005.

• C. F. Mecklenbräuker, J. Wehinger, T. Zemen, F. Hlawatsch, and H. Artés,

Chapter on Multiuser MIMO Equalization, Smart Antennas – State-of-the-

Art, Hindawi Publishing Company, to appear in 2005.

To our knowledge there are four PhD theses treating similar issues. Mark Reed

[Ree99] considers the issue of synchronous and asynchronous CDMA reception and

beamforming with perfect channel knowledge. Pei Xiao [Xia04] analyses iterative

receivers with and without coding. The contribution on coded systems is on a maxi-

mum a-posteriori (MAP) multi-user trellis detector. The contribution by Alexander

Kocian [Koc03a] is the rigorous derivation of an iterative receiver from the EM al-

gorithm without coding. The system channel model is a flat fading channel for

synchronous and asynchronous user transmission. Alexander Lampe [Lam03] con-

siders an iterative receiver with dedicated pilot symbols and the assumption that

inter-symbol interference is neglected.
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1.3 Thesis Outline

The content of the individual chapters is briefly described in the following.

Chapter 2 motivates the assumptions imposed on the communication system

that hold throughout this thesis. It starts with discussing mobile communication

channels and the assumption of block fading. Then, we will explain the vital concept

of diversity and illustrate its benefits to communication systems. We discuss CDMA

and introduce the mathematical transmission models for fading channels in the

uplink. Further, we describe the potential of iterative communication systems to

perform near-optimally while exhibiting affordable complexity. The soft-in soft-out

decoding algorithm is shortly described before we review its performance on fading

channels.

In Chapter 3 we design iterative detection and decoding algorithms that

process inter-symbol interference. All detectors perform interference cancellation

in a parallel or in a successive manner. Interference cancellation is followed by a

linear single-user matched filter (SUMF) or a linear minimum mean square error

(LMMSE) filter. First, we derive the filters and and discuss their properties, before

we present results on the joint behaviour of detection and decoding. We show that

mitigation of ISI is crucial for short spreading factors in multi-path environments.

We resolve the question of which kind of decoder output information shall be used in

interference cancellation - either extrinsic or a-posteriori. Further, numerical results

suggest that parallel and successive cancellation allow for the same remarkable num-

ber of users in the system. However, successive cancellation requires less iterations,

in particular in fading environments. We show that the number of supported users

is higher when using a linear MMSE filter rather than a SUMF. An extension to

multiple receive antennas shows a further increase in the number of supported users.

Chapter 4 is devoted to iterative receivers with feedback-supported channel

estimation. Several estimator types are developed for multi-path channels that

assume different statistical a-priori knowledge. They are classified into joint

estimators without interference cancelling and those with interference cancellation.

Interference cancellation on a multi-path fading channel turns out to work poorly.

Reliable estimates are provided by joint estimators only. Their performance will be

discussed and compared against each other. Simulations with several multi-path

power delay profiles indicate their feasibility. We discuss the choice of pilot

sequences for initial channel estimation. The impact of processing either extrinsic

or a-posteriori information in the channel estimator is also investigated.
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In Chapter 5 the insight gained about iterative detection and channel esti-

mation is applied to UMTS receivers. We develop a standard compliant receiver

that performs parallel interference cancellation and single-user matched filtering.

For channel estimation with employ an approximated least-squares estimator.

An alternative low-complexity Viterbi decoding strategy is used instead of the

rather costly BCJR implementation. The results indicate a significant improve-

ment in terms of achievable bit error rate when compared to standard Rake receivers.

Finally, Chapter 6 presents an analysis of iterative receivers based on density

evolution (DE). To manage the theoretical tractability we restrict ourselves to a

single tap channel and random spreading sequences for the case when the quotient

of number of users to spreading factor stays constant while both parameters tend

to infinity. Under this circumstance, mathematical results, that have their origin in

statistical physics, can be used to conjecture the average performance in terms of

multi-user efficiency. The resulting expression for the evolution of the multi-user

efficiency predicts the practical performance limits of iterative receivers with

channel estimation.

Chapter 7 concludes this thesis with a summary of the most important insight

gained in this work.



2 Leaving Optimality by Graceful

Degradation

This chapter is devoted to the development of iterative receivers as a suboptimal

solution to the problem of optimum maximum a-posteriori (MAP) multi-user pro-

cessing. We start with an introduction to the mobile wireless channel, illustrate the

vital concept of diversity, and explain code division multiple-access (CDMA). Then,

we present the transmission models and deal with channel decoding. The assump-

tions that hold for this work are summarised in the following - they are stated in

detail in the remaining parts of this chapter.

1. Uplink of a multi-user CDMA system operating in burst mode.

2. Chip and symbol synchronous transmission model.

3. Pulse shaping filters of the chips are not considered.

4. Short random signature sequences for data spreading.

5. Perfect power control. Only small scale fading is considered.

6. Block Rayleigh fading channel with independent taps.

7. No frequency offsets due to Doppler or oscillator mismatch.

8. Perfect synchronisation at the receiver.

9. Convolutional encoding of information streams.

10. Random interleaver.

For the treatment of UMTS in Chapter 5, some of the assumptions need to be

dropped due to the restrictions given by the standard.
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2.1 The Communications Channel

The transmission of information through electromagnetic waves is influenced by a

large number of environmental effects that cause fading of the instantaneous received

power. These effects can be classified into two categories: large-scale and small-scale

effects. An example of fading, the variation in receive power, is shown in Fig. 2.1.

The fading was generated by a geometry-based stochastic channel model [Hof04a]

for an urban environment and carrier frequency fC = 2 GHz. The received power is

plotted versus the distance between the transmitter and the receiver. The smoothed

curve corresponds roughly to large scale fading and the residual to small scale fading.

We will treat aspects of large scale effects first and then draw our attention to the

small scale effects.

When waves propagate in free space their power is spread along a surface that has

a distinct distance from the transmit point. The power density decreases inversely

to the n-th power of the distance

P (d) ∝ d−n

and we call this reduction in power path loss, where n is the path-loss coefficient. In

free space, a transmit antenna with omni-directional radiation pattern has the value

n = 2. Due to reflections, refraction, and scattering in terrestrial communications,

the path loss coefficient is typically between two and six [Rap96].

Path loss is one component of large-scale fading; another is shadowing. This means

that the receiver whose direct line of sight (LOS) is obstructed receives energy by

reflection and refraction, which causes significant variation of receive power over

a relatively long time period. Typically, large scale effects have slowly changing

characteristics and can be counteracted in communication systems by means of

power control. In this thesis it is assumed that the variations caused by large

scale fading are compensated perfectly. Small scale fading is much more severe.

It has fast varying characteristics and cannot be counteracted with power control.

Small scale fading is the result of a multitude of impinging wavefronts that interact

constructively as well as destructively. This causes an interference pattern with

maxima and minima that are separated by a distance in the order of λ/2 from each

other with λ denoting the wavelength of the carrier signal. The best known model

for small-scale fading is the Rayleigh fading model. Imagine that the transmitter is

located in one of the two focal points of an ellipse and the receiver is in the other

focal point. Further we assume that there is no direct LOS component. All received

wavefronts with the same propagation time are generated by scattering that lies

on the ellipse. At the receiver they mingle together to one single concentration of

effective receiver power. According to the central limit theorem the superposition of

all these complex valued contributions has an amplitude that is Rayleigh-distributed,
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Figure 2.1: A realization of received power as function of the distance between

transmitter and receiver for an urban environment and carrier frequency fC = 2 GHz.

i.e., has the probability density function (pdf)

fRayleigh(p) =
p

σ2
p

exp

(

−p2

σ2
p

)

for p ≥ 0 .

Scattering contributions that can be attributed to a larger ellipse cause an energy

concentration at some later point. In general the contributions decay when they

have longer delays. The temporal dispersion is characterised by either the distance

between the first and the last contribution, the maximal delay, or the square root of

the second central moment of the power delay profile, referred to as root mean square

(rms) delay spread [Rap96]. The emerging small scale fading channel is described

by its temporal impulse response h(τ)1. In the following we associate delay spread

τD to the continuous representation and maximum delay L to the discrete case. The

discrete version of the channel is obtained via sampling at period TC

h[n] = h (nTC)

where TC denotes chip duration. The associated signal bandwidth is given through

B = 1/TC. The channel is described as a sequence of length L

h
△
=
[

h[0], h[1], . . . , h[L− 1]
]T

.

1In this section time indices in parentheses (·) indicate continuous time and brackets [·] imply

discrete time.
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This allows a convenient representation of the received signal y[n] as the result of a

finite convolution

y[n] = a[n] ∗ h[n]
△
=

L−1∑

i=0

a[n− i]h[i] (2.1)

where ∗ is the time discrete convolution and a[n] the transmit signal. Since the

filtering (2.1) can be modelled by a tapped delay line, the individual weighting

coefficients h[n] are called taps.

The statistical properties of the small scale fading can be expressed by its power

delay profile (PDP) and its time-variation. The PDP reflects the strength of the

arriving paths and is defined as

σ2
h[n] = E

{
|h[n]|2

}
, n ∈ {0, . . . , L− 1}.

Contributions arriving at later time instances have less power in average due to the

larger propagation distance. A model for a PDP with exponentially decaying power

is presented in the COST259 initiative [Cor01]. Fig. 2.2 illustrates its PDP for rms

delay spreads of 30,9 ns and 154,7 ns. The range of the corresponding maximum

delays is up to 200 ns for indoor environments and typically up to 1 µs for outdoor

environments [Hof02].

To compare the average performance results over a set of fading channel realiza-

tions for different users we make use of the following normalisation, formulated for

a system with multiple receive antennas NR:

L−1∑

n=0

NR∑

r=1

E
{
|hr[n]|2

}
= 1. (2.2)

The time-variation of a channel is initiated by either a movement of the scattering,

motion of the receiver, motion of the transmitter, or a combination of any of the

three. When fixing the position of the transmitter and the scattering, we can view

the variation of the channel as a motion through a pattern of standing waves.

The channel model used in this thesis is based on the wide sense stationary and

uncorrelated scattering (WSSUS) assumptions that date back to Bello’s work [Bel63].

This model uses h(τ, t) for the channel to reflect its variation in a second temporal

variable t. Bello’s model assumes that the taps are

1. wide-sense stationary (WSS) with respect to t

2. and that scattering contributions attributed to different propagation paths are

mutually uncorrelated (uncorrelated scattering – US) leading to independent

realizations of each tap, modelled by complex Gaussian random variables.
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Figure 2.2: Exponentially decaying power delay profiles according to COST259

with different rms delay spreads τD.

A widely used model for the resulting Doppler power spectrum from above conditions

is the Jakes’ model [Jak75]. Its autocorrelation for transmitting in a plane is given

by

Rh,h(τ1, τ2, ∆t) = E {h∗(τ1, t)h(τ2, t + ∆t)} = J0(2πfD∆t)δ(τ1 − τ2)

with J0(·) denoting the Bessel function of first kind and zero-th order. Particularising

to the interesting case τ1 = τ2 we obtain the characteristic U-shaped power spectral

density

Sh,h(f) = F {Rh,h(∆t)} =

{
1

π
√

f2

D
−f2

for |f | < fD,

0 elsewhere.

The variable fD designates the Doppler frequency given by

fD = fC
v

c0

where fC is the carrier frequency, v the maximum relative speed between transmitter

and receiver, and c0 the speed of light.

During this thesis we assume that the channel is constant for the duration of

M symbols. This feature will be referred to as block fading characteristic. In this

paragraph we investigate how well the block fading assumption is justified for the

UMTS standard. UMTS operates at a chip-rate of 3,84 Mchips/s and the shortest

segment of a continuous data stream is called a slot and has 2.560 chips [TS25.201].

We consider one such slot as a block for validating the block fading characteristic.

One slot has a duration of ∆T = 666,67 µs. The carrier frequency is 2 GHz. Assume

that quarternary phase shift keying (QPSK) modulation is applied, then the phase

shift between the beginning and the end of a slot shall not be larger than π/4 to lead
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Figure 2.3: Cumulative distribution functions of phase differences between start

and end of a UMTS slot with duration 666,7 µs. The carrier frequence fC is 2 GHz

and the user velocities are {10, 30, 50, 100} km/h.

to correct symbol decisions. We employ the simulation model presented in [Zhe03]

with 50 individual scattering objects to create the time-variant fading channel. Our

subject of interest is the cumulative distribution function (cdf) of the absolute phase

difference |∆φ| = |φ(t+∆T )−φ(t)| between the phase φ(t) at the beginning and the

phase φ(t+∆T ) at the end of the slot. The distribution of the phase difference ∆φ is

a symmetric distribution with centre zero. Given the slot duration of ∆T = 666,67 µs

and a maximum speed of v = 100 km/h, the phase difference is essentially limited to

the range [−π, π]. The range increases for higher velocities or longer blocks. Fig. 2.3

shows four cdfs corresponding to velocities v = {10, 20, 50, 100} km/h. The different

cumulative density curves, associated to different velocities, can be assigned outage

probabilities for exceeding the maximum admissible phase difference of π/4. In case

of a fast moving terminal with v = 100 km/h this is 21 % and decreases to 7 %, 4 %,

and less than 0,5 % for 50 km/h, 30 km/h, and 10 km/h, respectively. We consider

outage values of 10 % a reasonable limit to justify block fading.

We like to note that a simple Rayleigh multi-path fading model is a rough approx-

imation to reality and that state-of-the art channel models include a huge number

of environmental parameters. These would comprise the propagation environment

(indoor – office, home; outdoor – urban, suburban, rural, hilly terrains), number of

scattering clusters, correlations among temporal as well as spatial echos, geometric
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heights of transmitter and receiver etc. The modelling initiatives are driven by the

European Union’s projects COST259 [Cor01] and COST273 [Cor05], as well as by

standardisation activities for third generation mobile communications systems in

3GPP [3GPP] and for LAN/MAN systems in IEEE802 [IEEE802]. In standardis-

ation of UMTS, various test scenarios termed Vehicular A/B and Pedestrian A/B

models [TR101 112] were introduced for verifying receiver algorithms. We use some

of them in Chapter 4.

2.2 Diversity

The ability to exploit information on transmitted data from more than one trans-

mission path is called diversity. Employing diversity on a wireless link increases the

reception quality. As we will see shortly, the concept of fading is instrumental to

mobile communications. Instead of relying on rapid fading as it is the case in a

flat fading environment, temporal replicas can be exploited to stabilise the receive

power level. The same concept is feasible for combining spatially separated infor-

mation sources like in multiple-antenna reception. Different information sources xl

are combined via the maximum ratio combining (MRC) criterion, maximising the

SNR of the joint information x [Bre59]:

x =

L∑

l=1

|hl|2xl

/ L∑

k=1

|hk|2. (2.3)

MRC implies that all sources are weighted by their SNR γl = |hl|2/σ2
v before com-

bining. The random variable of power |hl|2 of one single Rayleigh fading tap with

variance σ2
h,l is χ2 (“chi-square”) distributed. An MRC-combination of L equal

power paths has a χ2-distribution with 2L degrees of freedom. The corresponding

pdf reads

fχ(s) =

{
sL−1

(σ2

h,l
)L(L−1)!

e
− s

σ2
h,l for s ≥ 0

0 else.

Using QPSK modulation and Gray coding we obtain the bit error rate (BER) [Pro00]

BER =

(
1− µ

2

)L L−1∑

i=0

(
L− 1 + i

i

)(
1 + µ

2

)i

(2.4)

when L equal power Rayleigh taps are MRC combined with

µ =

√
γ

1 + γ
.
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The variable γ is the SNR of a single path. A generalised expression for paths with

unequal power can be found in [Alo99]. The lower bound for the BER of uncoded

transmission is given for the case of an additive white Gaussian noise (AWGN)

channel. It reads

BER = Q
(√

2γ
)

where Marcum’s Q(x) function is given through

Q(x)
△
=

1√
2π

∫ ∞

x

e−t2/2dt. (2.5)

Fig. 2.4 shows BER curves for different orders of diversity. Two extreme cases can

be identified. The first one is when no diversity is available where L = 1 and is

considered as worst case. The best case is when L → ∞. This channel becomes

an AWGN channel with diversity order infinity [Jak75]. The difference in terms of

BER is tremendous. The worst case achieves a BER of 10−3 at an Eb/N0 of 24 dB

while for the best case the same BER is already earned at 7 dB. The implication

is that the ability to transmit at low values of Eb/N0 is made possible through

exploitation of diversity. Diversity causes a steeper slope in the BER vs. Eb/N0

curve. Increasing the diversity order by one causes an improvement in BER by a

factor of ten over a segment of 10 dB in Eb/N0 [Pau03]. However, this holds only

for uncorrelated channels taps. In case of correlation among taps the diversity order

is reduced.

2.3 Code Division Multiple-Access

This work deals with code-division multiple-access (CDMA). CDMA is the basic

technology of the third and most likely also the fourth generation wireless commu-

nication system. It is a spread spectrum technology where narrow-band information

with bandwidth B′ = 1/TS is spread to a wider bandwidth B = 1/TC by the factor

N = B/B′ = TS/TC. The advantages that are brought in by spreading allow for the

utilisation of the following features:

1. Flexibility in the allocation of variant data rates.

2. Flexible support of different number of users with various data rates.

3. Means to resolve multi-path components and to exploit temporal diversity.

4. Facilitates support of macro diversity for receiving information from different

sources.
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Figure 2.4: Influence of diversity on the bit error rate.

Users transmit data in the same frequency band simultaneously. Distinction between

users is based on individually assigned sequences (signatures, codes) with which the

transmitted information is spread in bandwidth. Users perceive other users as an

increase in their noise floor. The more users are in a system, the higher is the

multiple-access interference (MAI), i.e., the distortions introduced by other users

due to cross-correlations between the signatures. The basic relation in the noiseless

case is given by

y = Sb

with the matrix of signature sequences [Ver98]

S
△
=








s1[0] s2[0] · · · sK [0]

s1[1] s2[1] · · · sK [0]
...

...
. . .

...

s1[N − 1] s2[N − 1] · · · sK [N − 1]








The matrix S is of dimension N×K and has independent and identically distributed

(i.i.d.) entries from the set {±1±j}/
√

2N . The number of users is K and N denotes

the spreading factor. The k-th column corresponds to the spreading sequences

sk ∈ C
N×1 of user k and fulfils the energy constraint ||s||2 = sH

k sk = 1. The

transmitted symbols are stacked vertically in the vector b
△
= [b1, b2, . . . , bK ]T ∈ X

K×1

with X denoting the set of normalised QPSK symbols {±1±j}/
√

2. The symbols can
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be reconstructed by convolving the corresponding matched filter s∗k[N − 1− n], n ∈
{0, . . . N − 1} with the receive signal y[n], n ∈ {0, . . . , N − 1}. Practically, this

operation is implemented as correlator performing chip-wise multiplication of the

received signal y[n] and s∗k[n], n ∈ {0, . . . , N−1} [Ver98]. For convenience the vector

sk is called the single-user matched filter in this work instead of the implementation

of the single-user matched filter. In matrix notation symbol detection for all users

is conveniently expressed as

b̂ = quant
X

{
STy

}
= quant

X

{
STSb

}
= quant

X

{Rb} (2.6)

with

quant
X

{a} △
= argmin

xi∈X

{|a− xi|} .

and R ∈ CK×K denoting the correlation matrix. With this detection method the

transmitted information can be restored if R is diagonal. Off-diagonal terms in R

indicate interference across users which can lead to errors. With a spreading factor

of N one can select up to N orthogonal spreading sequences for which no errors

are introduced in the noiseless case. In this context it is interesting to define the

system load α denoting the ratio of users K to the spreading factor N

α
△
=

K

N
. (2.7)

Hence, a maximal load of α = 1 can be supported by orthogonal spreading sequences.

However, due to multi-path propagation, the orthogonality is lost during trans-

mission. To demonstrate this, let us define the virtual spreading sequence as the

convolution of spreading sequence and the true channel

s̆k[n]
△
= sk[n] ∗ hk[n] =

L−1∑

l=0

sk[n− l]hk[l], n ∈ {0, 1, . . . , N + L− 2}. (2.8)

It has length N + L − 1. Virtual underlines the idealisation of perfect channel

knowledge at the receiver. Practically, the channel is estimated and will be denoted

by h̃k[n]. When the estimated channel is applied in the convolution (2.8) together

with the known spreading sequence sk[n], we obtain the effective spreading sequence

s̃k[n]
△
= sk[n] ∗ ĥk[n] =

L−1∑

l=0

sk[n− l]ĥk[l], n ∈ {0, 1, . . . , N + L− 2}. (2.9)

Concerning the influence of the channel for one single symbol transmission we notice

that it is possible that

s̆k
Hs̆l 6= 0

even when the associated sequences were orthogonal sH
k sl = 0 for k 6= l at the

transmit side.
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2.4 Transmitter Structure

This thesis treats multi-user receiver for two transmitter structures: the first is a

general setup that allows for a compact mathematical representation with freely

chosen components and the second is compliant with the UMTS standard. The

general setup is used in all chapters except Chapter 5. In Chapter 5 the UMTS

standard is revised and the adaptions to the standard are presented.

The general transmitter structure is depicted in Fig. 2.5. It shows the signal gen-

eration for user k with the propagation channel from one transmit antenna to one

receive antenna at the base-station. We stick to the following convention concerning

discrete time indices: parentheses (·) indicate timing on a symbol level while brackets

[·] refer to chip instances. We consider block transmission with M symbols, where the

data symbols are QPSK modulated. The first J symbols bk(m), m ∈ {0, . . . , J − 1}
of each block are reserved for the pilot chip sequence uk[n] with length JN . The

remaining M − J symbols bk(m), m ∈ {J, . . . , M − 1} are data symbols. Pilot sym-

bols are integrated in the transmitted block in order to conduct parametric channel

estimation. In contrary, a non-parametric approach would not aim at directly esti-

mating the channel but rather at using the pilots to train the equaliser. We will only

consider parametric approaches. The channel can be estimated at the receiver with

a known sequence of pilot symbols. The pilots are either a unique chip sequence or

generated by a symbol sequence that is spread with the same signature sequence as

the data.

A block is generated by encoding 2(M−J) RC bits with equally likely information

symbols dk(m
′′) ∈ {0, 1}. The code of user k is denoted as Ck and its rate is RC.

Coding results in the code bit stream ck(m
′) ∈ {0, 1} of length 2(M − J) and

is applied in order to introduce redundancy that allows forward error correction

(FEC) on the receive side in case of erroneous transmissions. As we will see in

Section 3.8 this becomes particularly relevant in systems that are dominated by

MAI. After the encoder we pass on the code bit stream to a random interleaver. The

interleaver is usually applied to alleviate the effect of burst errors that are introduced

through fading on a time-variant channel or through bursty interferers. Interleaving

is conducted by shuffling the encoded bits within the block prior to transmission.

In case of block constant fading and encoding over a single block there is no gain

to be expected due to the interleaver. Still, the interleaver is required to resolve

the statistical dependencies among symbols that are introduced by the code. This

will be a crucial property in the derivation of the interference suppression filters in

Sections 3.4 and 3.5.

The symbols are then mapped to a QPSK symbol constellation such that

bk,code(m) ∈ X. Let F be the set of binary symbols {0, 1}, then with the mapping
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Figure 2.5: The transmitter modules and the channel for user k.

rule

c ∈ F 7→ c′ ∈ {−1, +1} : 0 7→ +1, 1 7→ −1

QPSK Gray labelling [Cai98] for the M − J data symbols reads

bk,code(m) =
(

c′k(2m) + jc′k(2m + 1)
)

/
√

2. (2.10)

The pilot and data symbols bk(m) are then spread with the sequence sk before they

are sent over the multi-path channel hk. This transmission scheme resembles a

serially concatenated convolutional code, where the convolutional code is the outer

code and the multi-path channel takes on the role of an inner convolutional code.

2.5 Transmission Models

In this section three transmission models for the uplink are presented. The first

two models describe the transmission of one single symbol and they are used in the

detector. They are devoted to the case when the channel is single path and multi-

path, respectively. The third model is used for channel estimation and represents

the total observation vector in matrix form. We assume that symbol transmissions

are synchronous. This is motivated in [Lam02, Tse00a] where it was shown that

synchronous transmissions refer to worst case scenarios in terms of mutual interfer-

ence. In other words, a general asynchronous transmission is expected to have a

performance not worse the one that is achieved in the synchronous case.

2.5.1 Model for Detection in Flat Fading Channel

For a single path channel with L = 1 the transmitted signal of user k faces a

stochastic, complex, multiplicative modulation due to the channel realization hk. In

the CDMA multi-user scenario the observation vector of length N that is associated

with the m-th symbol transmission reads

y(m) = S̆(m)b(m) + v(m). (2.11)
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The symbols of the individual users are placed in the vector b(m) ∈ XK×1 as

[b1(m), b2(m), . . . , bK(m)]T. They are modulated by the corresponding virtual

spreading sequences s̆k(m). The signatures are placed in the k-th column of the

matrix S̆(m) ∈ C
N×K . The symbol index m reflects that the sequences can change

from one symbol transmission to the next. When they change, they are called long

spreading sequences, as in UMTS [TS25.213]. On the other hand if S̆(m) is constant

for all symbols m, the sequences are termed short. The additive term v(m) ∈ CN×1

accounts for zero-mean noise with covariance matrix σ2
vIN .

2.5.2 Model for Detection in Frequency Selective Channel

In case of multi-path propagation, characterised through a channel of length L,

energy is spread over N + L − 1 chips. The observation vector y(m) needs to be

extended to this length in order to capture all symbol energy and thus to achieve

the best receiver performance. This observation vector is distorted by inter-symbol

interference attributed to previous and future symbol transmissions. We restrict

ourselves to the case 2 ≤ L ≤ N such that the number of previous as well as future

symbols that affect the symbol of interest is one. The corresponding model for short

sequences is formulated as

y(m) =
1∑

q=−1

S̆qb(m− q) + v(m). (2.12)

The partial influence of the last as well as the next symbol interval stretches over

L−1 chips. Terms indexed by q = −1 in the sum above correspond to pre-cursor ISI

caused by future symbols while terms indexed by q = +1 are related to post-cursor

ISI. The matrices S̆q ∈ C(N+L−1)×K are attributed to previous, future, and current

symbol transmissions. They are defined by

S̆q =
















s̆1[N ] · · · s̆K [N ]

s̆1[N + 1] · · · s̆K [N + 1]
...

. . .
...

s̆1[N + L− 2] · · · s̆K [N + L− 2]

0N · · · 0N










for q = +1 (post-cursor),








s̆1[0] . . . s̆K [0]

s̆1[1] . . . s̆K [1]
...

. . .
...

s̆1[N + L− 2] . . . s̆K [N + L− 2]








for q = 0,
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S̆q =
















0N · · · 0N

s̆1[0] · · · s̆K [0]

s̆1[1] · · · s̆K [1]
...

. . .
...

s̆1[L− 2] · · · s̆K [L− 2]










for q = −1 (pre-cursor).

The additive term v(m) ∈ C(N+L−1)×1 denotes again the zero-mean complex noise

with covariance matrix σ2
vIN .

2.5.3 Model for Channel Estimation in Frequency Selective

Channels

In contrast to detection where observation vectors are attributed to a symbol for

time instance m we want to focus on a model that covers the samples of all symbols

for a whole block. This is convenient for channel estimation since the estimate is

retrieved from all the observation samples y ∈ CMN×1 together. Note that there is

no explicit time dependency any longer like in (2.11) and (2.12) since all symbols are

considered jointly now. The vector y is also used in the derivation of the optimum

receiver in Section 2.7. A linear matrix model with an isolated channel vector h is

given by

y =

(
1∑

q=0

D(q)B(q)

)

h + v =

[
AP

AD

]

h + v = Ah + v . (2.13)

The middle expression with the matrices AP and AD stacked vertically reflects the

contribution that is due to the dedicated pilot symbols AP, typically at hand for the

very first channel estimation. At the receiver the true data is not known. However,

in an iterative receiver we can use the soft feedback symbols to replace the true

AD. In this way the quality of the channel estimates can be enhanced. The various

quantities in the linear matrix model are described in the sequel:

• y ∈ CMN×1 contains samples in the chip-rate. The L − 1 chip samples after

the block of MN samples are neglected in channel estimation.

• D(q) ∈ CMN×MKL is called the “delayed chip matrix”. It is block diag-

onal and defined as diag(U(q), . . . , U(q)
︸ ︷︷ ︸

J

, D(q), . . . , D(q)
︸ ︷︷ ︸

M−J

), where D(q) =

[D1(q), . . . , DK(q)] ∈ CN×KL. Let us define the following 2N ×L dimensional
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auxiliary Toeplitz matrix

Ck
△
=























sk[0] 0 0 0

sk[1] sk[0] 0
...

sk[2] sk[1] sk[0]
...

...
...

. . .
. . . 0

sk[N − 1] sk[N − 2] sk[N − 3]
. . . sk[0]

0 sk[N − 1] sk[N − 2]
. . . sk[1]

... 0 sk[N − 1]
. . . sk[2]

...
... 0

. . .
...

...
...

...
...

...























where elements in Ck that are not covered by the shifted spreading sequence

are zero. The matrix Dk(q) contains the rows of Ck with number qN + 1 to

(q + 1)N . The construction of U (q) works correspondingly where instead of

the spreading sequences sk the pilot sounding sequences uk are used.

• B(q) = [B(0−q), B(1−q), . . . , B(M−1−q)]T is an MKL×KL dimensional

vertically stacked matrix consisting of the KL×KL diagonal matrices

B(m) = diag (b(m)⊗ 1L)

where ⊗ denotes the Kronecker product. Symbol vectors b(m) with 0 ≤ m < J

contain the random pilot symbols and symbols J ≤ m < M represent the

QPSK data symbols. The vector b(m = −1) is the zero vector 0K .

• h ∈ C
KL×1 is a vector obtained by vertically stacking the channel impulse

responses (CIRs) hk ∈ C
L×1 of all users’ channels, i.e., h =

[
hT

1 , hT
2 , . . . , hT

K

]T
.

• v ∈ CMN×1 is modelled as zero-mean spherically invariant complex Gaussian

random vector with covariance matrix σ2
vINM .

2.6 Definition of Eb/N0

For the assessment of iterative receivers we will illustrate bit error rate curves versus

Eb/N0. In this work Eb/N0 is understood as the received energy per information

bit over the spectral noise density N0. The signal to noise ratio is defined as the

quotient of received signal power and noise power. It reads

P

σ2
v

=
ESB

N0B
= G

Eb

N0
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where ES is the energy per symbol, B = 1/TC the signal bandwidth, and G the

number of bits per modulation symbol. This is easily recast to

Eb

N0
=

P

Gσ2
v

.

We keep the transmit power P = 1 and the modulation is QPSK, i.e., G = 2. When

coding is considered, the energy per information bit becomes

Eb

N0
=

1

2σ2
vRC

where RC denotes the code rate. In Chapters 4–6 we will make use of J pilot symbols

per transmission block of length M . To stay consistent with our definition of Eb/N0

we introduce a penalisation for the energy loss in pilot symbols such that we arrive

at
Eb

N0

=
1

2σ2
vRC

M

M − J
. (2.14)

2.7 The Optimum Receiver

In this section, the optimum receiver is understood as the joint maximum a-posteriori

(MAP) sequence detector that minimises the error probability of all user informa-

tion sequences. The optimal way of estimating the information symbols dk(m
′′) for

all users k ∈ {1, . . . , K} and time instances m′′ ∈ {2JRC, . . . , 2MRC − 1} from

the receive vector y ∈ CMN×1 is a joint maximum a-posteriori approach over the

transmitted code and pilot symbols bk(m), m ∈ {0, . . . , M − 1}, k ∈ {1, . . . , K} and

the channel impulse responses h ∈ C
KL×1. Let us denote B ∈ X

M×K the matrix

with the symbols bk(m) in the k-th column and m-th row. We consider the matrix

transmission model (2.13) for the flat fading case. Then, the optimisation problem

reads:
(

B̂, ĥ
)

= argmax
B,h

fB,h|y (B, h, y)

= argmax
B,h

fy|B,h (B, h, y) pB(B) fh(h) (2.15)

subject to

B ∈ {set of all valid code words},
h ∈ C

KL×1.

The last expression in (2.15) follows from the assumption that the code symbols B

are independent of the channel vector h. With f(·) and p(·) we distinguish between
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the continuous probability density function (pdf) and the discrete probability mass

function (pmf). With the elements of B placed in B, according to Paragraph 2.5.3,

the conditional density distribution of the received vector given the code symbols and

the channel impulse responses is the complex Gaussian multi-variate distribution

fy|B,h(B, h, y) =
1

(πσ2
v)

MN
exp

(

− 1

σ2
v

(y −DBh)H (y −DBh)

)

.

The joint pmf of the code symbols is denoted by pB(B) and the pdf fh(h) contains

the knowledge of the channel statistics.

The problem formulated in (2.15) is a mixed-alphabet optimisation problem (the

entries of B are from a finite alphabet and those of h from an infinite one) which

is hard to solve. The only known exact solution to the optimisation over the code-

words requires an exhaustive search over 22(M−J)RCK symbol combinations in case

of QPSK modulation and J pilot symbols, thus exponential complexity in M − J

and K. Its structure is the same as the travelling-salesman problem and is known

as NP-complete (nondeterministic polynomial) problem. This means that there

is no known algorithm that is able to find a solution in a duration that can be

expressed as a polynomial function of time. If a solution to any of the problems in

the NP-complete class can be found, then there would also exist solutions to the

other problems in this class [Man89]. Although the problem formulation (2.15) looks

similar as problems in complex estimation, its particular difficulty is brought in by

the restriction to discrete solutions and the size of the search space.

Additionally to the NP-complete code-word problem, a maximum-likelihood es-

timation of the continuous channel estimate is required. Since solely the task of

detection becomes computational prohibitive, the approach of joint data detection

and channel estimation exceeds the computational capabilities of current processing

technologies, and is hence not feasible. Therefore, we are interested in the develop-

ment of low-complexity approximations to the solution of (2.15).

2.8 Suboptimum Receivers

Practical receiver implementations separate the individual processing tasks. Typi-

cally a single-user matched filter is followed by a decoder in a one-shot manner. This

is nowadays the state of the art. Comparisons to joint optimum symbol sequence

processing illustrate that separate one-shot processing causes big losses in terms of

system capacity.

In 1993 a coding scheme was presented that allows to approach the Shannon-

bound up to fractions of a dB [Ber93]. The underlying principle was a decoding

system that has two independent decoders supporting each other by feeding back
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Figure 2.6: Receiver processing methods - (a) joint processing, (b) classical one-shot

processing, (c) iterative processing.

information, similar to a Turbo engine. The latter is the reason for calling these

systems Turbo decoders. Few years after this important discovery, the turbo struc-

ture was applied to equalise channels with inter-symbol interference [Dou95] and

to perform multi-user detection and decoding [Ale98]. Instead of implementing the

joint optimum sequence receiver, the system is translated into an iterative system

consisting of a multi-user detector and a bank of single-user decoders. We adapt

this scheme to deal with inter-symbol interference processing and extend it to in-

clude multi-path channel estimation in the iterative loop. The discussed receiver

structures are illustrated as block-diagrams in Fig. 2.6. We recap that structure (a)

is the joint approach including channel estimation, detection, and decoding and was

identified as too complex for practical implementation. The type (b) receiver is the

classical one-shot concept that allows only a very low system load. The multi-user

receiver that can support high loads at moderate complexity is based on the iterative

structure (c). This iterative receiver is the subject of interest in this thesis.

Due to the separation of detection, decoding, and channel estimation the code

symbols are detected individually regardless of their code constraints. This means

that we perform symbol by symbol detection rather than joint sequence detection

of M − J code symbols like in the optimum receiver. Chapter 3 will review sym-

bol by symbol detection methods and detectors are developed that are suitable for

iterative processing. Decoding happens individually for all users in a bank of single-

user decoders that receive user code symbols containing distortions from residual

multiple-access interference and remaining noise that could not be resolved by the

detector in the previous processing stage. Finally, channel estimation is based on

dedicated pilot symbols that are supported by soft decision data from the decoder

output. In Chapter 4 we develop and investigate different channel estimation al-

gorithms that fit into the iterative framework. Comparing the presented iterative

approach with formulation (2.15) for the optimum receiver shows that a relaxation

on code symbols takes place. It does not only detect symbols independently but
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Figure 2.7: Schematic illustration of multi-user efficiency.

approaches the solution by mapping and solving the problem into the continuous

domain before reaching a hard decision.

2.8.1 Multi-User Efficiency

In order to compare different multi-user detectors Verdú introduced the term multi-

user efficiency (MUE) [Ver98]. We denote MUE as η and it is defined as the quotient

η =
γw/o(BERtarget, Detector)

γw(BERtarget, Detector, α)
.

Expression γw/o refers to the signal to noise ratio that is required to achieve a target

bit error rate BERtarget without multiple-access interference, i.e., in the single-user

case. The value γw in the denominator is the signal to noise ratio that is required

to achieve a target bit error rate BERtarget with a certain multi-user detector in

case when the system load is α. By definition MUE quantifies the efficiency of a

multi-user detection scheme in mitigating multiple-access interference. In the worst

case, η becomes zero, and in the best case η is one which refers to a total mitigation

of multiple-access interference. In Fig. 2.7 the lower curve shows the BER versus

SNR in case of the single-user setting while the upper dashed curve refers to the

BER performance in the multiple-access scenario. The horizontal distance is the

MUE expressed in dB. Its range is (−∞, 0] dB.



26 Chapter 2 - Leaving Optimality by Graceful Degradation

DeinterleaverDemapper

Mapper

Mapper

Interleaver

Interleaver

Mapper

Mapper Interleaver

Interleaver

DeinterleaverDemapper

z1(m)

b̃1(m)

b̂1(m)
Channel

Estimator

y

Detector

Channel
Decoder

Channel
Decoder

EXT{cK(m′)}

EXT{c1(m
′)}

APP{cK(m′)}

APP{c1(m
′)}
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Figure 2.8: The iterative multi-user receiver.

2.8.2 Separation Theorem

A recent contribution [Mül04] is directed to the question on the loss in spectral

efficiency that is brought in by separating detection and decoding compared to

optimum joint detection and decoding. The paper reveals that for Gaussian as well

as binary codes the loss on the AWGN channel is a mere function of the multi-user

efficiency η of the detector and reads

Closs = Cjoint − Cseparate =
1

2

(

(η − 1) log2(e)− log2(η)
)

. (2.16)

The quantity Cjoint denotes the spectral efficiency in case of joint detection and

decoding and Cseparate is the one when separate processing is applied. The loss Closs

is a monotonically decreasing function of η ∈ {0, . . . , 1}, from “∞” to 0. This means

that the loss to optimum joint detection and decoding vanishes for η → 1. We will

see in Section 3.7 that for a particular set of system parameters an iterative receiver

is able to achieve η = 1 practically within a finite number of iterations.

2.9 Iterative Multi-User Receiver

The proposal for the iterative CDMA multi-user receiver is depicted in Fig. 2.8. It

results from the arguments on the trade-off between complexity and performance

that were discussed in Section 2.8. We will explain its operation principle and

present an interpretation based on a graph representation.
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Operation Principle

The receiver starts with estimating the channel impulse response (CIRs) of all users

by using the chip pilot sequences uk that cover the first J symbols in the transmitted

data block of length M . The channel estimates ĥ
(1)

k ∈ CL×1 of each user k in the first

iteration are then passed on to the multi-user detector to create the effective spread-

ing sequence s̃
(1)
k = sk[n]∗ĥ(1)[n]. Note that in contrast to the virtual sequences (2.8),

effective sequences s̃
(1)
k ∈ C

N+L−1×1 are obtained via the estimated CIR ĥ
(1)

k . With

these we obtain soft data estimates z
(1)
k (m), m ∈ {J, . . . , M −1} from the multi-user

detector. The complex soft estimates are mapped to a real-valued symbol stream

x′(1)
k (m′), m′ ∈ {2J, . . . , 2M − 1}, deinterleaved, and fed as x

(1)
k (m′) to the input of

the channel decoders. The decoders are so called soft-in soft-out (SISO) decoders

that provide a-posteriori and extrinsic probabilities on code symbols, APP{ck(m
′)}

and EXT{ck(m
′)}, respectively. The SISO decoder and its output quantities will

be discussed in more detail in Section 2.10. For the moment let us consider these

values to be probabilistic reliability values on code bits that are computed from

the observations x
(1)
k (m′) and the code dependencies between individual code bits.

We use the probabilities APP{c(1)
k (m′)} to support the channel estimator to yield

ĥ
(2)

k . In this sense the data symbols are exploited as additional pilot symbols. The

iterative structure will use the decoder output values also to mitigate interference.

The quantities EXT{c(1)
k (m′)} are mapped to soft decision symbols b̃

(1)
k (m). These

are then used to generate an estimate of the interference by multiplication with the

effective spreading sequence s̃
(2)
k . The interference estimate is then subtracted from

the received vector y prior to detection. We then obtain symbols z
(2)
k (m) in the

second iteration. This process is continued for several iterations. After the last it-

eration, the a-posteriori output probabilities on information symbols APP{dk(m
′′)}

delivered from the decoders are utilised to decide on the transmitted information

bits along the following rule:

d̂k(m
′′) =

{
0 for APP{dk(m

′′)} > 0,5,

1 for APP{dk(m
′′)} ≤ 0,5.

Interpretation

The flow of information in iterative detection and decoding systems can be described

by graphs. If a graph is free of cycles, the corresponding system is an instance

of the belief propagation (BP) algorithm that computes correct a-posteriori values

on information symbols [Wick03]. This applies also to iterative receivers [Wor01].

Though iterative receivers have some sort of cycles and hence violate this rule, it

was observed that, when cycles are large enough, the analysis based on BP still
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yields excellent results. A first systematic approach to study iterative receivers

with graphs was reported in [Bou02]. This reference points out to use extrinsic

information in the feedback-branch rather than a-posteriori information. It is not

obvious which kind of information to use since a-posteriori information seems to

increase the convergence speed as we will see in Paragraph 3.8.1. There, we will

also resolve the issue of the usage of feedback information. A conceptual extension

to the graph representation of an iterative receiver including channel estimation is

given in [Cai01c,Wor01].

2.10 Decoding

In the following we explain decoding of information for one particular user. For nota-

tional convenience we omit the user index (·)k. At the transmitter single information

bits d(m′′) are mapped to code bits c(m′) according to F 7→ F1/RC by applying the

code C. In the receiver the symbols that are fed into the decoder are scaled and

noisy versions of the bipolarly mapped symbols c(m′). The BPSK-mapping goes

along c′(m′) = 1− 2c(m′) and the received values read

x(m′) = µx c′(m′) + w(m′). (2.17)

The output of a multi-user detector is typically biased as we will see in Chapter 3.

This is taken into account by µx. The variable w(m′) accounts for the residual

noise contribution after the detector, blending system noise and multiple-access

interference. It was shown in [Zha01] that for an LMMSE multi-user detector the

residual noise is well modelled as Gaussian process. The detector output distribution

was also modelled as Gaussian process in interference cancelling multi-user detectors

in [Wan99, Kob01]. In other words, the influences to which the signal c′(m′) is

exposed to during transmission are summarised in the scaling factor µx and the

single additive noise component w(m′). The received value x(m′) has the conditional

distribution N (µx, σ
2
x) and w(m′) is zero-mean Gaussian distributed with variance

σ2
x. A practical method to estimate µx and σ2

x from the observations x(m′) is the

decision directed estimator discussed in [Mec05].

The art of decoding is concerned with finding the most likely transmitted se-

quence of information bits d(m′′). This is made possible through mutual depen-

dencies of code bits that are introduced in the encoder. Let p(·) denote a pmf,

d
△
= [c(2J), . . . , c(2MRC − 1]T, and x

△
= [x(2J), . . . , x(2M − 1)]T. The two most

prominent optimisation criteria for decoding are:

• Maximum-likelihood sequence decoding (Viterbi [Bel57,Vit67]) for which the
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optimisation criterion reads

d̂ = argmax
d

{
px|d (d, x)

}
.

• Maximum a-posteriori (MAP) symbol-by-symbol decoding (BCJR [Bah74])

that is solving

d̂(m′) = argmax
d(m′)

{
pd(m′)|x (d(m′), x)

}
.

Viterbi sequence decoding is widely used in one-shot receivers and delivers hard

output values on estimated information bits d̂(m′′).

In iterative structures soft values are preferred since hard values cause the prop-

agation of errors and eventually become unstable or reach an error floor. Symbol-

by-symbol MAP decoding generates probabilities as output quantities that can be

mapped to soft decision symbols suitable for structures with feedback. The MAP

algorithm minimises the single bit error probabilities. The soft-output Viterbi algo-

rithm (SOVA) [Hag89] and the max-log-MAP implementation [Koc90] have lower

implementation complexity but cause higher bit error probabilities in general.

For our purpose we need a MAP decoder with the input and output measures

depicted in Fig. 2.9. Since the input and all output variables are soft measures the

MAP decoder is termed soft-input soft-output (SISO) decoder. The input are the

noisy observations x(m′) and the output a-posteriori probability (APP) values on

the information bits d(m′′) as well as their APP and EXT on the coded bits c(m′).

In the following we stick to the definitions:

APP{d(m′′)} △
= pd(m′′)=0|x (d(m′′) = 0, x) , (2.18)

APP{c(m′)} △
= pc(m′)=0|x (c(m′) = 0, x) . (2.19)

The conditional pmf for the symbol d(m′′) is normalised such that

pd(m′′)=0|x (d(m′′) = 0, x) + pd(m′′)=1|x (d(m′′) = 1, x) = 1 (2.20)

and similarly for the pmf of c(m′). The gain in information between the received

values and the APP on code bits is quantified as extrinsic information (EXT) prob-

ability. For an AWGN channel the extrinsic probability is given by

EXT{c(m′)} ∝ APP{c(m′)} exp

(
(x(m′)− µx)

2

2σ2
x

)

(2.21)

where ∝ denotes “proportional up to a constant factor”. The MAP algorithm

and some important aspects for its practical implementation are explained in Ap-

pendix D.
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Soft-In Soft-Outx(m′)
APP{c(m′)}

APP{d(m′′)}

EXT{c(m′)}

Figure 2.9: The soft-in soft-out (SISO) decoder.

Soft Decision Data

After decoding, the a-posteriori and extrinsic probabilities are interleaved and used

to produce a conditional soft mean estimate of the transmitted symbols, given the

probabilities APP{c(m′)} or EXT{c(m′)}, respectively. With the definitions (2.19)

and (2.21) the soft QPSK mapping for the APPs and the EXTs is given by

b̂(m) = [+1× APP {c(2m)} − 1× (1− APP {c(2m)})
= + j(+1×APP {c(2m + 1)} − 1× (1− APP {c(2m + 1)})] /

√
2

= [2 APP {c(2m)} − 1 + j(2 APP {c(2m + 1)} − 1)] /
√

2 , (2.22)

b̃(m) = [2 EXT {c(2m)} − 1 + j(2 EXT {c(2m + 1)} − 1)] /
√

2 , (2.23)

with m ∈ {J, . . . , M − 1}.

Impact of Fading

In this section we illuminate the impact of fading on coding. We assume that the

receive amplitude is fading with L diversity branches that can all be maximum ratio

combined. For such a channel there exist upper bounds on the coded bit error rate.

The bounds depend on the free distance of the code. However, no exact analytical

descriptions are known [Pro00]. Hence, we will study the impact of diversity on a

coded system by numerical means. For this, we consider a four-state convolutional

code with rate RC = 1/2 and generator polynomials (5, 7)8. Data is transmitted in

blocks with M = 160 QPSK symbols that are Gray coded. The fading coefficients

stay constant for the duration of a block. In Fig. 2.10 we plot the bit error rate curves

for diversity orders L ∈ {1, 2, 5} for the uncoded and the coded system. Uncoded

transmission is indicated by solid lines while coded transmission is marked by dashed

lines. The uncoded curves were obtained through the analytical expression (2.4) and

those of the coded system by Monte-Carlo simulations over 10.000 blocks. We learn

that for a target bit error rate of 10−3 the gain due to coding is strongest for the

AWGN channel and that it becomes less with decreasing diversity order. For L = 1

there is no gain, but rather a loss of 1 dB. For L = 2 the gain is roughly 0,5 dB, and

finally for the AWGN channel, i.e., L→∞, we achieve a gain of 3,1 dB. When codes

are used in an iterative multi-user receiver, they have the purpose to accelerate the
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Figure 2.10: Impact of diversity combining on bit error rate for coded and uncoded

transmission. Symbols are QPSK modulated with Gray mapping. For the coded

case we apply a convolutional code with rate RC = 1/2 and generator polynomials

(5, 7)8. Dashed lines (−−) refer to coded BERs and solid lines (−) to uncoded

BERs.

convergence towards lower bit error rates by combating multiple-access interference.

For the extreme case with L = 1 the only purpose of codes is to combat multiple-

access interference but there is no gain with respect to the channel over the uncoded

system.





3 Iterative Multi-User Detection

This chapter is devoted to the development and analysis of detectors for the iterative

multi-user receiver. Particular emphasis is directed to the processing of inter-symbol

interference which plays an important role in medium data rate communications.

Throughout, we assume to have perfect channel knowledge available - the aspect of

channel estimation will be illuminated in Chapter 4. We start off with a review of

optimum and non-iterative multi-user detection techniques for single symbol pro-

cessing. Note that the optimum receiver described in Section 2.7 searches for a

codeword of length M . In the iterative receiver, the multi-user detector does not

have any knowledge of the code constraints and the single-user decoders do not know

the waveform of the signals. Hence, the multi-user detector performs single-symbol

processing. We derive detectors based on interference cancellation and discuss an

analysis method for AWGN channels based on density evolution. This analysis will

be extended to include channel estimation in Chapter 6. The subsequent sections

in the present chapter will investigate the impact of transmission and receiver fea-

tures on the achievable bit error rates and system capacities. The studied features

comprise inter-symbol interference processing, the use of feedback information, de-

tector filters, interference cancellation scheduling, user power distributions, multiple

receive antennas, and code constraint lengths.

3.1 Overview

Until around 1984 it was believed that multiple-access interference (MAI) in a multi-

user communication system is best treated as white noise. If this was true the single-

user matched filter (SUMF) would be that receiver filter that maximises the output

signal to noise ratio. The seminal work of Verdú in 1984 [Ver86] brought forth

that multiple-access interference is structured and is hence not white, but coloured.

Verdú derived the optimum detector which shows to be NP-complete, meaning that

the computational effort cannot be given as a polynomial expression of the number

of users. This was the starting point for the area of multi-user detection (MUD) that

deals with suboptimum receiver structures having finite computational complexity.

Excellent overviews on MUD techniques are given in [Mos96,Ver98,Ras03a].

Multi-user detection is obsolete if spreading sequences were perfectly orthogonal
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to each other. Due to multi-path propagation on the wireless link and due to the

use of scrambling codes in systems like UMTS, orthogonality cannot be preserved.

Furthermore, the number of orthogonal sequences is strongly limited by the length of

the spreading sequences. For high capacity systems, that operate in the overloaded

mode, there are more users present than orthogonal sequences are available. We

show that the use of non-orthogonal signalling and coding allows for very low bit

error rates when iterative receivers are employed.

3.2 Optimum Multi-User Detection

Let us consider the multi-user system model defined in (2.11) for the particular case

of an AWGN channel and all users having power ‖sk‖2 = sH
k sk = 1. Omitting the

symbol index m we can conceptually write for the chip level

y = Sb + v

with S ∈ C
N×K the spreading matrix and v ∈ C

N×1 the additive white Gaussian

noise with covariance matrix σ2
vIN . The statistics on the symbol vector b ∈ XK×1

contained in y do not change if the observed vector y is passed through a single-user

matched filter. Then, we obtain a model that is mapped into the symbol space as

r = SHy = Rb + z (3.1)

with R
△
= SHS ∈ CK×K denoting the cross-correlation matrix and z is a K-

dimensional, zero-mean complex Gaussian random vector with covariance matrix

σ2
vR. Hence, the output r forms a sufficient statistic for the estimation of the sym-

bols b of all users. The conditional pdf of r given the symbol vector b is a Gaussian

multi-variate distribution expressed as [Ver86]

fr|b(r, b) =
1

(πσ2
v)

K det R
exp

(

−(r −Rb)HR−1(r −Rb)

σ2
v

)

. (3.2)

The optimum symbol detector, in the sense the bit error probability is minimised, is

a maximum a-posteriori (MAP) detector. It can be formulated for either each user

individually

b̂k = argmax
b̃k∈X

fbk|r

(

b̃k, r
)

,

or for all users jointly

b̂ = argmax
b̃∈XK×1

fb|r

(

b̃, r
)

.

The bit error probability of the individually optimum detector is always lower or

equal the one of the jointly optimum detector. The possible symbols bk can take
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on values from the set X. The symbol vector of all users is b̃ ∈ XK×1. Under the

assumption that all symbol vectors appear equally likely, i.e., p
(

b̃
)

= 4−K , the

MAP detector reduces to a maximum likelihood (ML) detector via Bayes’ law. The

individual ML estimate is

b̂k = argmax
bk∈X







∑

b̃∈XK×1:b̃k=bk

fr|b

(

b̃, r
)






(3.3)

and the joint ML estimate of the data vector reads

b̂ = argmax
b̃∈XK×1

fr|b

(

b̃, r
)

= argmin
b̃∈XK×1

{(

r −Rb̃
)H

R−1
(

r −Rb̃
)}

.

Latter is equal to the minimisation of the quadratic form

b̂ = argmin
b̃∈XK×1

{

b̃
H
Rb̃− 2ℜ

{

b̃
H
r
}}

. (3.4)

The individual ML detector (3.3) involves the evaluation of 4K conditional likelihood

functions (3.2) per user. The joint ML solution requires an exhaustive search over

4K symbol hypotheses. Therefore, the complexity of both detectors is exponential

in the number of users O
(
4K
)
. This is the reason why they have limited practical

importance, i.e., only in systems with few users.

3.3 Linear Multi-User Detection

This section reviews the most prominent linear detectors for an AWGN multiple-

access channel. The canonical model presented in (3.1) is used. The filter is applied

onto the chip-matched receive vector and assigned to a decision region like

ẑ = quant
XK

{
LHr

}
.

All succeeding linear operations work with the sufficient statistics of r. In this sense

the single-user matched filter (SUMF) detector becomes

L = IK (3.5)

that treats all user interference as white noise. A linear filter that exploits the cross-

correlation is the zero-forcer (ZF) also known as decorrelating detector. It simply

neglects the noise and minimises the multiple-access interference to zero. We obtain

L = R−1.
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The decorrelator has the disadvantage that it amplifies noise and in low SNR regions

it performs even worse than the SUMF. A compromise in treating noise and MAI is

achieved by the LMMSE detector that has its origin in signal estimation. It reads

L =
(
R + σ2

vIK

)−1
(3.6)

and performs for low SNRs like the matched filter solution, while for high SNRs

the LMMSE solution converges to the decorrelator performance. The performance

of linear detectors is deteriorated in situations with unequal receive power levels

caused by, e.g., the near-far effect [Ver98]. It was reported in [Tse99] that the equal

power distribution maximises the spectral efficiency for the SUMF, the decorrela-

tor, and the LMMSE detector. For the decorrelator this result was already reported

in [Lup89]. This is the main reason why commercial communication systems exercise

power control [Sch04a]. However, we show in the subsequent sections that unequal

power distributions are actually of benefit for interference-cancellation based detec-

tion schemes.

3.4 Parallel Interference Cancellation (PIC)

We map symbols obtained in previous iterations to soft information b̃k(m) in order

to get an estimate of the total multiple-access interference (MAI) symbolised by

ỹ(m). This estimate is used to lower the effective interference and is subtracted

from the receive vector y(m) prior to symbol detection. In mathematical notation

interference cancellation for a general frequency selective channel (2.12) with short

spreading sequences, i.e., sk(m) = sk, is expressed as

ỹ
(i)
k (m) = y(m)−

1∑

q=−1

S̃qb̃
(i−1)

(m− q) + s̃k b̃
(i−1)
k (m). (3.7)

The index (·)(i) designates iterations i > 0. After interference cancellation we apply

a linear filter f
(i)
k (m) to the vector ỹ

(i)
k (m) to obtain an estimate of the transmitted

symbol in the form ẑ
(i)
k (m) =

(

f
(i)
k (m)

)H
ỹ

(i)
k (m). In the next two paragraphs we

develop linear filters that are suitable for this task.

3.4.1 Single-User Matched Filter (SUMF)

The simplest linear detector for retrieving k-th user’s information is the single-user

matched filter whose elements are given by

fk[n]
△
= s̆k[n] =

L−1∑

l=0

sk[n− l]hk[l], n ∈ {0, 1, . . . , N + L− 2}. (3.8)
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The filter reads as vector f k = [fk[0], fk[1], . . . , fk[N + L − 2]]T. For a short code

CDMA system and a block fading environment the time index m and iteration index

i can be omitted, since the filter stays constant for all symbols and all iterations.

Matched and Mismatched Detectors

Precise channel state information (CSI) is practically never available at the receiver.

It is rather obtained by estimation and associated with an error. Instead of the true

channel h, its estimate ĥ is used in the detector. Such a detector is called a mis-

matched detector in contrast to a matched detector, that has perfect CSI available.

The mismatched detector requires the error covariance matrix of the channel taps.

The error variance is only available, if the power delay profile and the statistical

dependencies of the channel taps are known to the receiver. Since this is a strong

requirement, we will use an approximation by neglecting the term including the

error covariance matrix. Under this approximation, we can use the expressions for

the matched detectors and replace the virtual by the effective spreading sequences.

Subsequently, we restrict ourselves to the treatment of the detector filters in the

matched case.

Filter Output Distribution

The filter output z
(i)
k (m) = fH

k (m)ỹ
(i)
k (m) can be modelled by

z
(i)
k (m) = µ

(i)
k (m)bk(m) + ν

(i)
k (m) (3.9)

as suggested in [Wan99]. The residual noise and multiple-access interference is

jointly modelled as spherically invariant complex Gaussian process with ν
(i)
k (m) ∼

CN
(

0, (σ2
k(m))

(i)
)

. The resulting signal to interference and noise ratio (SINR)

reads

γ
(i)
k (m) =

∣
∣
∣µ

(i)
k (m)

∣
∣
∣

2

(σ2
k(m))

(i)
. (3.10)

The upper index (·)(i) underlines that the statistical output values depend on the

iteration i. In the subsequent treatment of this section we will omit the iteration

index for notational convenience.

SINR of PIC-SUMF Detector in Flat Fading

First, let us consider the particular case of a frequency flat channel. The output of

the matched filter is

zk(m) = |hk|2bk(m) + s̆H
k

(

S̆b(m)− s̆kbk(m)− S̆b̃(m)− s̆k b̃k(m) + v(m)
)

. (3.11)
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The conditional mean of the output symbol zk(m) (3.11) evaluates to

µk(m) = E
v
{b∗k(m)zk(m)} = |hk|2

and the variance of the multiple access interference and noise reads

σ2
k(m) = E

v
{νk(m)ν∗

k(m)}

= sH
k

(

S̆V (m)S̆
H −

(

1−
∣
∣
∣b̃k(m)

∣
∣
∣

2
)

s̆ks̆
H
k + σ2

vIN

)

sk.

The covariance matrix of the soft decision symbol errors, or equivalently the residual

power matrix, V (m) ∈ CK×K is defined as

V (m)
△
= diag

(

1−
∣
∣
∣b̃1(m)

∣
∣
∣

2

, 1−
∣
∣
∣b̃2(m)

∣
∣
∣

2

, . . . , 1−
∣
∣
∣b̃K(m)

∣
∣
∣

2
)

(3.12)

and the corresponding SINR is given through

γk(m) =
|hk|4

s̆H
k

(

S̆V (m)S̆
H −

(

1−
∣
∣
∣b̃k(m)

∣
∣
∣

2
)

s̆ks̆
H
k + σ2

vIN

)

s̆k

. (3.13)

SINR of PIC-SUMF Detector in Frequency Selective Fading

The extension to the multi-path case is straightforward. The desired signal power

is determined through the square of

µk(m) = ‖hk‖2

and the variance is increased by the contributions of pre- and post-cursor ISI terms

along

σ2
k(m) = s̆H

k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q −
(

1−
∣
∣
∣b̃k(m)

∣
∣
∣

2
)

s̆ks̆
H
k + σ2

vIN+L−1

)

s̆k.

We highlight two particular cases for the SINR:

• B̃(m) = diag(0K) ∀ m: The feedback symbols are all unknown. This is the

case in the first iteration. The symbol variance matrices become diagonal

matrices V (m − q) = IK and the SUMF output SINR becomes that of a

conventional SUMF detector (3.5) without feedback

γk(m) =
‖hk‖4

s̆H
k

(
1∑

q=−1

S̆qS̆
H

q − s̆ks̆
H
k + σ2

vIN+L−1

)

s̆k

.
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• B̃(m) = diag(b(m)) ∀ m: This happens when all feedback symbols correspond

to the actually transmitted symbols. The SINR becomes that of a single-user

system and it reads

γk(m) =
‖hk‖2

σ2
v

.

3.4.2 Linear MMSE Filter (LMMSE)

The second filter which is suitable after parallel interference cancellation, is the

linear minimum mean square error filter. We discuss first the flat fading case and

explore then the properties in the frequency selective case.

PIC-LMMSE Detector for Flat Fading

The linear minimum mean square error (LMMSE) filter for the interference cancelled

observation vector ỹk(m) (3.7) and the flat fading CDMA system model presented

in Paragraph 2.5.1 is the solution to the Wiener-Hopf equations [Hay91]

fH
k (m) = E

b,v

{
bk(m)ỹH

k (m)
}

︸ ︷︷ ︸

1

(

E
b,v

{
ỹk(m)ỹH

k (m)
}

︸ ︷︷ ︸

2

)−1

. (3.14)

In the derivation of the LMMSE filter, expectation over b is understood as con-

ditional expectation, given the extrinsic decoder output probability EXT{c(m′)}
defined in (2.21). Let us elaborate on the two expectation terms separately.

1. The first term in (3.14) equates to

E
b,v

{
bk(m)ỹH

k (m)
}

= s̆H
k .

2. The second term expands to

E
b,v

{
ỹk(m)ỹH

k (m)
}

= S̆ E
b,v

{(

b(m)− b̃(m) + b̃k(m)ek

)

×
(

b(m)− b̃(m) + b̃k(m)ek

)H
}

S̆
H

+ σ2
vIN

= S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

where ek
△
= [0, . . . , 0, 1, 0, . . . , 0]T denotes the standard basis unit vector with

a one at the k-th element and zero elsewhere.
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Let us define the Hermitian matrix A ∈ CN×N as

A
△
= S̆V (m)S̆

H
+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN .

The matrix V (m) (3.12) is a covariance matrix that is always positive semi-definite

[Hor99]. Multiplying the matrix with S̆ from the left and S̆
H

from the right leaves

the product positive semi-definite. Hence, it has non-negative eigenvalues. Since

the second expression has non-negative eigenvalues, and the last matrix N non-zero

eigenvalues, the sum has only positive eigenvalues. Hence, the matrix is invertible.

The LMMSE filter yields

fH
k (m) = s̆H

k A−1 = s̆H
k

(

S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

)−1

. (3.15)

The filter output distribution conditioned on bk(m) is modelled as spherically in-

variant complex Gaussian process like in (3.9). The conditional mean of the filter

output is given by

µk(m) = E
b,v
{b∗k(m)zk(m)}

= E
b,v

{
b∗kf

H
k (m)ỹk(m)

}

= E
b,v

{

b∗k(m)fH
k (m)

(

S̆B(m)− S̆B̃(m) + s̆kb̃k(m) + v(m)
)}

= fH
k (m)s̆k

= s̆H
k

(

S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

)−1

s̆k (3.16)

and its conditional variance computes as

σ2
k(m) = E

b,v

{

|zk(m)− E
b,v
{zk(m)}|2

}

= E
b,v
{zk(m)z∗k(m)− 2ℜ{zk(m)b∗k(m)µ∗

k(m)}+ bk(m)µk(m)µ∗
k(m)b∗k(m)}

= E
b,v
{zk(m)z∗k(m)} − µ2

k(m).

The variance evaluates to

σ2
k(m) = fH

k (m)

(

S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

)

fk(m)− µ2
k(m)

= s̆H
k

(

S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

)−1
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×
(

S̆V (m)S̆
H

+
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN

)

f k(m)− µ2
k(m)

= s̆H
k fk(m)− µ2

k(m)

= µk(m)(1− µk(m)). (3.17)

PIC-LMMSE Detector for Frequency Selective Fading

In the multi-path case, the LMMSE filter is computed as in (3.14). The computation

assumes that adjacent symbols of a particular user are statistically independent,

i.e., E
b
{bk(m)b∗k(n)} = 0, ∀ n 6= m. This is fulfilled when a random interleaver with

infinite length is used. The LMMSE filter that deals with ISI reads

fH
k (m) = s̆H

k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q +
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN+L−1

)−1

. (3.18)

With the definition of the SINR in (3.10) and the expressions (3.16) for the mean

and the variance (3.17), we obtain γk(m) = µk(m)/(1 − µk(m)) and the following

special cases emerge:

• B̃(m) = diag(0K) ∀m: In this case the symbol variance matrices become diag-

onal matrices V (m) = IK and the LMMSE detector becomes the conventional

LMMSE multi-user detector, similar to (3.6) for the AWGN channel,

fH
k (m) = s̆H

k

(
1∑

q=−1

S̆qS̆
H

q + σ2
vIN+L−1

)−1

.

The corresponding SINR reads

γk(m) =

s̆H
k

(
1∑

q=−1

S̆qS̆
H

q + σ2
vIN+L−1

)−1

s̆k

1− s̆H
k

(
1∑

q=−1

S̆qS̆
H

q + σ2
vIN+L−1

)−1

s̆k

.

• B̃(m) = B(m) ∀ m: When the feedback symbols are completely known, the

mean µk(m) becomes

µk(m) = s̆H
k

(
s̆ks̆

H
k + σ2

v

)−1
s̆k =

‖hk‖2

‖hk‖2 + σ2
v

and the corresponding SINR is given through

γk(m) =
‖hk‖2

σ2
v

.
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Low Complexity Implementation of the PIC-LMMSE Detector

In general the conditional mean µk(m) of the output of the LMMSE filter (3.16) is

not equal to one. This implies that the output symbols (3.9) are biased. Dividing

the filter by µk(m) yields the unbiased LMMSE filter

f ′H
k (m) =

s̆H
k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q +
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN+L−1

)−1

s̆H
k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q +
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN+L−1

)−1

s̆k

. (3.19)

In Appendix E it is shown that, by applying the matrix inversion lemma (G.2),

expression (3.19) can be translated into the simple expression

f ′H
k (m) =

s̆H
k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q + σ2
vIN+L−1

)−1

s̆H
k

(
1∑

q=−1

S̆qV (m− q)S̆
H

q + σ2
vIN+L−1

)−1

s̆k

. (3.20)

Comparing (3.18) and (3.20) shows that making the filter unbiased, causes a reduc-

tion in complexity. The inverse of (3.18) does not need to be computed for every user

any longer but can be pre-computed for all users at a particular iteration. The filter

output SINR does not change due to this scaling. The expression for the unbiased

LMMSE filter was first used in [Mül02] for an AWGN channel and for multi-path

channels causing inter-symbol interference in [Weh02].

A further reduction in complexity can be achieved when the covariance matrix of

the soft symbol decision V (m) is computed as empirical average over all symbols

instead of each symbol individually:

[V ]k,k = 1− 1

M − J

M−1∑

m=J

∣
∣
∣b̃k(m)

∣
∣
∣

2

. (3.21)

This idea was proposed in [Cai01a]. When the filter uses the average covariance

matrix (3.21), the resulting filter is termed unconditional, otherwise, when the co-

variance matrix is computed for every symbol (3.12), it is called conditional. In the

conditional case, the computation of the filter involves a matrix inversion for each

symbol instance as it can be seen in (3.20). When the unconditional filter is used,

an inverse of a matrix needs to be computed once for every user and every iteration
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only. The unconditional version of (3.20) is expressed as

f ′′H
k =

s̆H
k

(
1∑

q=−1

S̆qV S̆
H

q + σ2
vIN+L−1

)−1

s̆H
k

(
1∑

q=−1

S̆qV S̆
H

q + σ2
vIN+L−1

)−1

s̆k

. (3.22)

3.5 Successive Interference Cancellation (SIC)

In parallel interference cancellation, that we have considered in the previous section,

there is no ordering of the users. For a system where users are received with large

differences in their power due to fading, parallel interference cancellation might not

be the best strategy. In this case it may be better to detect those users first that

are the strongest. Let us exemplify this for a two user scenario with one single

iteration. If first the stronger user is detected, it would result in a good detection

probability since the weak user does not cause much interference. If the correctly

detected signal is subtracted from the received signal, the user with low power can

also be detected reliably. The worst case scenario occurs when both have the same

power.

The strategy described above is called successive interference cancellation (SIC).

Without loss of generality, users are ordered according to their instantaneous gain

‖hk‖2 such that the strongest user has index one, the second strongest index two and

so forth. Then, SIC in the frequency selective case is formulated for k ∈ {1, 2, . . . , K}
as

ỹ
(i)
k (m) = y(m)−

1∑

q=−1

k−1∑

l=1

s̆q,l(m)b̃
(i)
l (m−q)−

1∑

q=−1

K∑

p=k+1

s̆q,p(m)b̃(i−1)
p (m−q). (3.23)

The first sum accounts for all k − 1 users that have already been detected in the

current iteration i whereas the second sum accounts for those that still need to

be detected. This is reflected in the upper index at the soft decision symbol b̃
(i)
l .

Under the assumption that previously detected symbols are correct, it was shown

in [Var97] that SIC can attain the capacity bound.

3.5.1 Single-User Matched Filter (SUMF)

The single-user matched filter with perfect channel impulse response has length

N + L− 1 and is defined as

fk[n]
△
= s̆k[n] =

L−1∑

l=0

sk[n− l]hk[l].
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The corresponding detector output SINR at iteration i is given through

γ
(i)
k (m) =

‖hk‖4

s̆H
k

(
1∑

q=−1

S̆qV
(i)
k (m− q)S̆

H

q +
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆ks̆
H
k + σ2

vIN+L−1

)

s̆k − ‖hk‖4

where the difference to the SINR of the PIC-SUMF (3.13) lies in the computation

of the symbol covariance matrix V
(i)
k (m). Latter is now dependent on the scheduled

user in the following way

[

V
(i)
k (m)

]

l,l
=







1−
∣
∣
∣b̃

(i)
l (m)

∣
∣
∣

2

for l ≤ k,

1−
∣
∣
∣b̃

(i−1)
l (m)

∣
∣
∣

2

for l > k.
(3.24)

3.5.2 Linear MMSE Filter (LMMSE)

Similarly to the LMMSE for the PIC detector, an unbiased and unconditional low-

complexity filter can be developed for the SIC detector. The difference lies again

in the definition of the symbol variance matrix which is caused by the successive

interference cancellation. The unconditional symbol covariance matrix is computed

along

[

V
(i)
k

]

l,l
=







1− 1

M − J

M−1∑

m=J

∣
∣
∣b̃

(i)
l (m)

∣
∣
∣

2

for l ≤ k,

1− 1

M − J

M−1∑

m=J

∣
∣
∣b̃

(i−1)
l (m)

∣
∣
∣

2

for l > k.

With this new definition of the symbol variance matrix we obtain the following

expression for the (unbiased) unconditional filter in the frequency selective case:

f ′′H
k =

s̆H
k

(
1∑

q=−1

S̆qV
(i)
k S̆

H

q + σ2
vIN+L−1

)−1

s̆H
k

(
1∑

q=−1

S̆qV
(i)
k S̆

H

q + σ2
vIN+L−1

)−1

s̆k

. (3.25)

This filter needs to be computed for every user individually. Hence, the computa-

tional increase in complexity grows by a factor of K over the unbiased unconditional

PIC-LMMSE filter (3.22).
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3.6 Antenna Combining

In case of multiple receive antennas, the symbols zk,r(m), m ∈ {J, . . . , M − 1} that

result from detection at the different antenna elements r are maximum ratio com-

bined along (2.3) for a particular user k according to their SINRs γk,r. We have

investigated two methods to obtain an estimate of the SINR. The first is obtained

through the post-detection SINR γ̂
(1)
k,r = µ̂2

k,r/σ̂
2
k,r of the complex symbols after de-

tection. We obtained this estimate through “Estimator 2” described in [Bea00].

The second method is related to the estimated channel γ̂
(2)
k,r = ‖ĥk,r‖2/σ2 where σ2

is the variance of the noise and the multiple-access interference which is assumed

approximately constant at all antennas. Hence, the latter combining only requires

the values ĥk,r. We have observed that the combining along the estimated channel

coefficients leads to the best results. The combined output symbol for user k at

antenna element r becomes

zk(m) =

NR∑

r=1

∥
∥
∥ĥk,r

∥
∥
∥

2 zk,r(m)

µ̂k,r

NR∑

r=1

∥
∥
∥ĥk,r

∥
∥
∥

2
. (3.26)

The scaling of the symbols streams zk,r(m) by a factor of 1/µ̂k,r is required, since

the mean of the symbols is different at the NR antenna elements in general. Hence,

the symbols are scaled by their estimated mean value

µ̂k,r =
1

M − J

M−1∑

m=J

|zk,r(m)|

prior to combining.

3.7 Convergence Analysis

Insight into the convergence of iterative detection and decoding is required for learn-

ing their fundamental performance limits. An early method based on variance evo-

lution is presented in [Ale98]. Recently, EXIT charts have become popular for

analysing iterative systems [Bri01, Li03]. Particular importance in this work is de-

voted to the density evolution presented in [Bou02], where the dynamic behaviour of

iterative detection and decoding is studied by means of a one-dimensional measure,

the multi-user-efficiency η (see Paragraph 2.8.1 for the definition). In Chapter 6 we

explain the details of this method and will extend it to include channel estimation.

In the following, we discuss how the results can be interpreted and restrict ourselves
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Figure 3.1: Evolution of the multi-user-efficiency Ψ(η) for a PIC-SUMF and a PIC-

LMMSE detector on an AWGN channel with Eb/N0 = 5 dB, equal power users, and

convolutional code (5, 7)8.

to the case of iterative detection and decoding on an AWGN channel where all users

have the same power. An exemplified evolution of the multi-user efficiency for a

PIC-SUMF and a PIC-LMMSE without channel estimation is depicted in Fig. 3.1

for different loads α. The Eb/N0 was chosen 5 dB. Let us consider the PIC-LMMSE

curve for load α = 1. Starting point is η = 0 on the horizontal axis and on the

vertical axis the multi-user efficiency Ψ after the next iteration is illustrated. The

value Ψ becomes the starting point in the next iteration. Hence, it is projected onto

the diagonal Ψ = η and a new multi-user efficiency value is computed for the new η

value. In this way, a staircase is built up. In the illustrated case, the staircase leads

to the right upper corner that indicates that all multiple-access interference has been

mitigated. The shape depends on Eb/N0, the system load α, the detector type, and

the received user power distribution. The number of vertical steps is the number of

iterations needed to attain a particular multi-user efficiency. For the PIC-LMMSE

filter the multi-user efficiency for a maximum load of roughly 2,0 is illustrated. For

η = 0,3 the gap between the multi-user efficiency curve and the diagonal Ψ = η is

very narrow and it requires many iterations to pass through. But the analysis tells

us that for the given parameters all multiple-access interference can be mitigated. If

the curve intersected the diagonal Ψ = η, the convergence would come to an end pre-

maturely. The second group of curves belongs to the PIC-SUMF detector, showing
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loads α = 1,0 and α = 1,2. Compared to the PIC-LMMSE case the curve is closer to

the diagonal Ψ = η. This means that for the given parameters, total MAI mitigation

is still possible but at the expense of more iterations. The second curve shows a load

of α = 1,2. This is the maximal load that can be supported by a PIC-SUMF filter.

Note that this case is practically identical to the PIC-LMMSE scenario for α = 2,0.

This means that the symbol SINR at the output of the two detectors is the same.

The analysis shows us that a higher system capacity can be achieved by employing

an LMMSE filter rather than a SUMF after parallel interference cancellation.

3.8 Simulation Results

The assessment of the interference cancelling multi-user detection schemes is carried

out via simulations. We focus on combinations of the parallel (3.7) and successive

(3.23) interference cancellers with either a single-user matched filter or the uncon-

ditional unbiased LMMSE filters (3.22) and (3.25) for PIC and SIC, respectively.

The biased LMMSE filter (3.18) and its conditional unbiased variant (3.20) are not

considered due to prohibitive complexity. We consider receivers that have perfect

channel knowledge available and therefore the schemes are matched, i.e., Σ = 0KL

(see Paragraph 3.4.1 for the definition of matched detectors). Throughout the sim-

ulations we assume the following. The block length was chosen M = 160 QPSK

symbols and no pilots are interlaced as preamble. The number of 160 QPSK sym-

bols is equivalent to 320 BPSK symbols in UMTS slot-processing with spreading

factor N = 8, neglecting the control symbols [TS25.101]. The encoders are all non-

recursive and non-systematic convolutional codes with code rate RC = 1/2 and, if

not explicitly stated differently, four states. We define the single-user bound (SUB)

as the BER for a single-user that has perfect channel knowledge in the receiver.

3.8.1 Feedback Information

In previously published papers on iterative detector and decoding structures there

was quite some debate on which kind of decoder output information shall be used for

interference cancellation. While early papers in the field like [Ale98,Moh98,ElGa00]

use a-posteriori (APP) information, other contributions have shown that it is better

to use extrinsic (EXT) information only. The earliest experimental observation was

published in [Mar01], where the authors observe a bias in the residual interference

due to the statistical dependencies of the feedback symbols and the observation

vector. They state that with extrinsic information higher capacities are achievable.

This was later shown analytically in [Bou02]. To resolve the reported differences we

carry out an experiment that gives rise to an interesting conclusion. We compare
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Figure 3.2: Bit error rate versus number of users illustrated for 30 iterations for a

PIC-LMMSE detector with APP soft decision feedback on an AWGN channel with

Eb/N0 = 5 dB, N = 8.
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Figure 3.3: Bit error rate versus number of users illustrated for 30 iterations for a

PIC-LMMSE detector with EXT soft decision feedback on an AWGN channel with

Eb/N0 = 5 dB, N = 8.
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the capacity of a PIC-LMMSE detector with APP feedback (2.22) and another one

with EXT feedback (2.23). The considered channel is AWGN with Eb/N0 = 5 dB, a

spreading factor of N = 8, and the number of iterations is limited to 30. The BER

curves are drawn versus the number of users and they are illustrated in Fig. 3.2

for the APP feedback and in Fig. 3.3 for the EXT symbols. Taking the BER of

10−3 as a criterion we observe that for K ≤ 11 the APP feedback causes a faster or

equal convergence speed than the EXT feedback. While with N = 11 users, a BER

of 10−3 is obtained after five iterations, it requires one more iteration for the EXT

feedback. However, we observe that with EXT feedback a total of 14 users can be

supported. This happens at the expense of more iterations. While the APP feedback

leads to a clear stop in convergence, the EXT feedback is able to further exploit the

information leading to higher capacities with more iterations. The minimum BER

for eleven users after 30 iterations is 6× 10−3 in the APP case and it is 10−4 for the

EXT case.

The early works dealing with iterative detection and decoding were investigating

systems with α < 1. From the view-point of the number of required iterations, it is

well justified to utilise APP to achieve a particular BER. However, we have seen that

this is not true for all loads. In particular, high loads can be only accommodated

with EXT feedback.

For completeness, we mention that in [Mar01] a weighting of the feedback symbols

was proposed that leads to a trade-off between the bias and the increased symbol

variance, that is caused by the usage of EXT. This weighting is not considered in

the present work. In the remaining parts of this thesis we deal with large loads α

and thus we will employ soft decisions that are retrieved from extrinsic probabilities

via (2.23).

3.8.2 Inter-Symbol Interference

The multi-path wireless channel with L taps spreads the energy of a symbol bk(m)

over N + L− 1 chip intervals, causing inter-symbol interference (ISI). To maximise

the SNR of the signal at the output of the detector, all temporal signal terms

need to be collected. This requires more processing in the computation of the

detector filters and in detection itself. The question is, whether ISI processing, i.e.,

gathering spread energy and mitigating MAI that is introduced by ISI, needs to

be processed exactly along (3.7) and (3.23) for parallel and successive interference

cancellation, respectively, or whether an approximation is sufficient? We consider an

approximated processing that neglects energy contributions that are not covered by

the N chips attributed to the m-th symbol. In this case, the observation vector y(m)

has length N . In case of parallel interference cancellation (3.7) the approximated
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processing becomes

ỹ
(i)
k (m) = y(m)− S̆ab̃

(i−1)
(m) + s̆k,ab̃

(i−1)
k (m).

with the matrix

S̆a
△
=








s̃1[0] s̃2[0] · · · s̃K [0]

s̃1[1] s̃2[1] · · · s̃K [1]
...

...
. . .

...

s̃1[N − 1] s̃2[N − 1] · · · s̃K [N − 1]








consisting of the first N chips of the effective signature sequences of each user that

are placed along the columns. The matrix S̆a has dimension N×K. The single-user

matched filter f k of user k for the approximated processing corresponds to the k-th

column s̆k,a of the matrix S̆a. For spreading sequences with large spreading factor

and short channels, i.e., L≪ N , neglecting ISI is a justified assumption. However, it

is unclear when a channel becomes short enough. To answer this question, we study

a system with L = 5 equally spaced i.i.d. Rayleigh taps. The taps are separated

by a UMTS chip period, i.e., by 260 ns [TS25.101]. Hence, the total channel length

is 1.040 ns. This choice of channel is motivated by the measurement campaign

described in [Hof02] where dispersions of up to 1.ns have been observed. For the

present investigation, the spreading factor N is changed while the system load is

kept fixed at α = K/N = 1. The receiver has perfect channel knowledge and a PIC-

SUMF is employed. Fig. 3.4 shows the attained BER after six iterations for different

spreading factors N . We use a four-state convolutional code with rate RC = 1/2 and

generator polynomials (5, 7)8. The figure shows a dramatic loss for the spreading

factors N = {4, 8, 16} compared to N = 32. The bit error rates for N = 32 and

N = 64 are already very similar. We conclude that in channels of length L = 5

with spreading factor N < 32, allowing for medium data rate communications, the

consideration of ISI creates a huge gain in performance. In hilly terrains, channels

might have even a larger spread such that proper ISI processing will also become

vital for low-data rate communications.

3.8.3 Impact of Fading

From the principle of successive interference cancellation it is intuitive that an equal

power situation among the users is the worst case. Small scale fading causes a “nat-

ural” instantaneous power distribution that helps to accelerate achieving low BERs

in an iterative receiver. It was shown in [Cai04] that particular power distributions

increase the capacity when PIC-LMMSE filtering is employed. In the following we

consider a system with load α = 1,5 with unconditional PIC- (3.22) as well as un-

conditional SIC-LMMSE (3.25) detection for spreading factor N = 8. First, let us



3.8 Simulation Results 51

0 2 4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

N=4
N=8
N=16
N=32
N=64
SUB

Figure 3.4: Influence of neglecting inter-symbol interference for a Rayleigh fading

channel with L = 5 i.i.d. taps and PIC-SUMF detection. The curves are parame-

terised by the spreading factor N = {4, 8, 16, 32, 64} for a load α = 1.

focus on the AWGN case. The BER curves for the PIC are illustrated in Fig. 3.5 and

the SIC is depicted in Fig. 3.6. The individual BER curves correspond to different

iterations and the monotonic decrease indicates convergence towards the single-user

bound. In this particular setting the PIC as well as the SIC attain the single-user

bound at an Eb/N0 of 5 dB. The single-user bound is the bit error rate curve that

is obtained when one single user is active employing a PIC-LMMSE detector and a

symbol-by-symbol MAP-decoder. For mobile applications the bit error rate regime

of interest is below 10−3. A BER of 10−3 is attained at Eb/N0 of 4,5 dB. The PIC

and SIC show different convergence behaviour. While the PIC requires ten iter-

ations to achieve the SUB, the SIC achieves this already after six iterations. The

corresponding BER curves attain lower values as their PIC counterparts. This is due

to the scheduling structure of the SIC that takes into account the already correctly

decoded bits and hence achieves an improved performance.

The second scenario reflects an i.i.d. Rayleigh channel with L = 5 taps. The

corresponding bit error rates are depicted in Figs. 3.7 and 3.8 for PIC and SIC,

respectively. The first observation is that due to fading the single-user bound is

flatter than its AWGN pendant due to limited diversity. Interestingly, the PIC

attains the SUB already after five iterations. In case of the SIC just two iterations

are needed to attain the SUB at an Eb/N0 of 8 dB where the BER reaches 10−3.
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Figure 3.5: PIC-LMMSE detector with α = K/N = 12/8 = 1,5 on an AWGN

channel.
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Figure 3.6: SIC-LMMSE detector with α = K/N = 12/8 = 1,5 on an AWGN

channel.
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The plots also reveal an interesting detail. Those curves that correspond to the

first iteration illustrate the bit error rate performance of non-iterative systems based

on LMMSE detection (3.6). The achievable bit error rate is relatively poor and

cannot be used in a practical setup. A classical Rake structure then has an even

worse performance than the linear MUD schemes. What can also be learnt is that

a SIC scheme can considerably improve with just one iteration. At the expense of a

higher Eb/N0, feasible BERs can be attained.

3.8.4 System Capacity

This section compares the effectivity of the interference cancellation methods in

terms of number of accommodated users. Latter measure is also referred to as

system capacity throughout this work. We consider a five tap i.i.d. Rayleigh fading

channel with Eb/N0 = 9 dB and let the detectors have perfect CSI available. Let us

start with the results for the PIC with a SUMF or a LMMSE filter. The BER curves

are portrayed in Fig. 3.9 and Fig. 3.10, respectively. Taking the BER of 10−3 as

assessment criterion we find that the PIC-SUMF supports up to nine users while the

PIC-LMMSE can support up to 17 users. This is a significant increase in capacity.

Similar results are obtained for the SIC with SUMF and LMMSE. Fig. 3.11 shows

that the SIC-SUMF can accommodate ten users while for the SIC-LMMSE, depicted

in Fig. 3.12, this number increases to 17. From the figures it is obvious that the

successive IC strategy converges with less iterations. The bit error rate curves below

10−3 are jagged due to a limited number of simulations.

3.8.5 Multiple Receive Antennas

The benefit from installing two receive antennas at the receiver is portrayed in

Fig. 3.13 and Fig. 3.14 for the PIC-LMMSE detector and the SIC-LMMSE detector.

We assume an L = 5 i.i.d. Rayleigh fading channel to both receive elements with

the energy restriction formulated in (2.2). Antenna combining is achieved via MRC

given in (3.26). Again, for the target BER of 10−3 the number of users can be

elevated from 17 to 29 for the PIC-LMMSE and from 17 to 30 for the SIC-LMMSE.

This corresponds to a capacity increase of more than 70 %. The extension into

the spatial domain increases the effective diversity order which in turn leads first

to an improved link reliability. Second, the assumption of independent multi-path

realization imposes a spatial signature on the transmitted signal such that the degree

of freedom in the spreading sequences is increased by the factor of two. This reduces

the effective system load α by a factor of two.
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Figure 3.7: PIC-LMMSE detector with α = K/N = 12/8 = 1,5 on an L = 5 tap

Rayleigh fading channel.
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Figure 3.8: SIC-LMMSE detector with α = K/N = 12/8 = 1,5 on an L = 5 tap

Rayleigh fading channel.
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Figure 3.9: BER versus number of users of the PIC-SUMF detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB and spreading factor N = 8.
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Figure 3.10: BER versus number of users of the PIC-LMMSE detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB and spreading factor N = 8.
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Figure 3.11: BER versus number of users of the SIC-SUMF detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB and spreading factor N = 8.
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Figure 3.12: BER versus number of users of the SIC-LMMSE detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB and spreading factor N = 8.
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Figure 3.13: BER versus number of users of the PIC-LMMSE detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB, spreading factor N = 8, and two

receive antennas.
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Figure 3.14: BER versus number of users of the SIC-LMMSE detector on an L = 5

tap Rayleigh fading channel with Eb/N0 = 9 dB, spreading factor N = 8, and two

receive antennas.
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Table 3.1: Coding gains (CG) of convolutional codes with rate RC = 1/2.
Constraint length ι + 1 Polynomials CG at BER of 10−3

3 (5, 7)8 3,10 dB

4 (15, 17)8 3,39 dB

5 (23, 25)8 3,63 dB

3.8.6 Impact of Code Constraint Length

Due to the involvement of coding in iterative detection and decoding, the cancel-

lation process is accelerated thanks to the self-correcting capabilities of the code.

In Fig. 3.15 the evolution of the multi-user efficiency is illustrated for convolutional

codes with rate RC = 1/2 and different constraint lengths ι + 1, with ι denoting the

memory length. They are obtained through the analysis based on density evolution

that we introduced in Section 3.7. The codes have constraint lengths {3, 4, 5} and

their properties are listed in Tab. 3.1. The plots are generated for a system load of

α = 1,9. Despite the difference in coding gain, the plot shows that the maximum

supportable load is nearly the same for all variants. However, the gap between the

multi-user efficiency curve and the Ψ = η line below η < 0,3 is the critical point in

the convergence since it determines whether a receiver converges at all. From that

region we learn that codes with larger constraint length have a closer distance to the

diagonal line and experience a stopping earlier than codes with shorter constraint

length. The different slopes of the multi-user efficiency curves for the region η > 0,3

suggest that a different number of iterations is required to reach convergence. How-

ever, they do not determine whether or not they converge at all. Codes with short

constraint length will require few more iterations but eventually they will also con-

verge. The same behaviour was observed in an experimental setup in [Küh03] for an

iterative receiver in OFDM-CDMA. The rationale behind this lies in the fact that

for low SNRs the BER curve is rather flat and that it suddenly becomes steep as

soon as a threshold value is reached. This behaviour gets more pronounced the more

coding gain a particular code offers. In case of codes with longer constraint lengths,

this threshold is shifted towards higher SINRs and can imply that the threshold

SINR is never exceeded. Then the iterative process stops prematurely. For choosing

among the investigated codes, it is feasible to select the one with constraint length

three since decoding becomes less complex and highest loads can be supported.

3.9 Complexity Issues

From the results on parallel and successive interference cancellation it becomes clear

that both techniques practically attain the same limits in bit error rate and/or num-
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Figure 3.15: Multi-user efficiency evolution of the PIC-LMMSE detector on an

AWGN channel with Eb/N0 = 5 dB with load α = 1,9. The codes are all convolu-

tional codes with different constraint lengths ι + 1.

ber of accommodated users. However, SIC shows a faster progression and requires

fewer iterations. The question, whether successive cancellation can be realized, is

important for practical systems. Sequential user processing causes delays. A new

user cannot be processed before the results from the previous are accessible. For a

system, that accommodates many users, a real-time implementation problem arises.

The PIC can parallelise the user processing but requires more iterations. A trade-off

between processing power and admissible processing-delay has to be found.

The single-user matched filter (3.8), which is the same for PIC and SIC, requires

the spreading sequence sk and the channel estimate ĥk. The LMMSE-filter requires

additional knowledge of the variance of the noise as well as the variance of the

feedback symbols. The calculation of the biased LMMSE filter (3.18) requires the

inverse of an (N + L − 1) × (N + L − 1) matrix that needs to be calculated for

all users and all symbols per iteration. An unbiased filter is obtained by applying

the matrix inversion lemma. It turns out that the computation of the inverse can

then be unified for all users (3.20) which saves a factor of K in complexity. The

computation can be further simplified when we average over the variances of the

soft feedback symbols along (3.21). In this way the inversion needs to be computed

only once per iteration in case of PIC scheduling (3.22). The saving in complexity

over the initial filter (3.20) is then K × (M − J). In case of successive interference
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cancellation the inverse needs to be computed for every user separately per iteration

(3.25). Its complexity is increased by a factor of K over the PIC implementation

(3.20).

3.10 Summary

We have presented and discussed interference cancellation techniques with linear

filters for iterative receivers. Cancellation can be classified into parallel and succes-

sive methods according to the deployed scheduling procedure. The cancellation step

is followed by a linear detector filter that is realized as either single-user matched

filter or linear MMSE filter. Instead of implementing the exact PIC-LMMSE filter

(3.20) we employ an unconditional and unbiased variant (3.22) that saves roughly

K × (M − J) in complexity. A similar strategy is envisaged for the SIC where the

complexity is decreased by a factor of M − J over the exact implementation.

Feedback Symbols: Whether soft decision data shall be derived from extrinsic or

a-posteriori probabilities depends on the objectives. If the prime goal is the

optimization of system capacity, i.e., number of users, without considering

the number of iterations, extrinsic probabilities are the preferred choice. If

convergence speed is the criterion, a-posteriori probabilities shall be used for

a particular load region. For loads smaller than one, a-posteriori probabilities

tend to attain the same performance as extrinsic probabilities. However, for

high load systems, a-posteriori probabilities show a stop in the convergence

cycle due to residual interference.

Detector Filter: Receiver analysis based on density evolution as well as experiments

made obvious that an LMMSE filter after interference cancellation allows more

than 50 % increase in load compared to the SUMF filter.

Scheduling of Interference Cancellation: The number of users that can be accom-

modated with successive interference cancellation is very little higher than for

parallel interference cancellation. Practically, the two accomodate the same

number of users. However, the total number of required iterations to achieve

the maximum is for successive interference cancellation lower than for parallel

interference cancellation. This comes to an expense in processing delay time

and processing power for the LMMSE filter.

Impact of Fading: Fading causes a significant acceleration in convergence. This

holds true for parallel as well as successive interference cancellation. The num-

ber of iterations to reach convergence is reduced from ten to five for the PIC-

LMMSE detector when comparing the AWGN channel and the i.i.d. Rayleigh
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case with L = 5 taps. Respectively, for the SIC-LMMSE the number reduces

from six to two.

Code Constraint Length: From the three investigated convolutional codes with

rate RC = 1/2 and constraint lengths ι + 1 ∈ {3, 4, 5}, the code with con-

straint length three supports the highest system capacity.

Multiple Receive Antennas: An increase in receive diversity enhances link relia-

bility and offers additional degrees of freedom that lower the effective system

load.

Improvement in Bit Error Rate: Iterative processing allows coded bit error rates

below 10−3 in an Eb/N0 region where linear one-shot multi-user detection

performs two to three decades worse in terms of bit error rate.





4 Iterative Channel Estimation

In the previous chapter iterative multi-user detectors were developed with know-

ing the channel impulse response of all users or at least with an estimate thereof.

In a practical situation the channel information is obtained through so called pilot

symbols and it is typically associated with errors. This chapter investigates tech-

niques that refine the quality of the channel estimates by using soft decision symbols

gained from the decoder output symbols as additional pilots. This was illustrated

for a single-tap channel in [ElGa00] and [Kob01]. The current work extends to

multi-path scenarios and develops various estimation algorithms that assume differ-

ent amount of statistical a-priori knowledge on the noise, the channel taps, and the

feedback symbols. Their performance is assessed in terms of bit error rate (BER)

and normalized mean square error (NMSE) for several channels with different power

delay profiles. Further, two schemes for dedicated pilot sequences are investigated

and compared against each other in terms of bit error rate and complexity. The it-

erative receiver is then extended to multiple receive antennas, and system capacities

of the different schemes are evaluated.

4.1 Channel Estimation Algorithms

For the derivation of the estimators we will use the linear matrix signal model

y =

[
AP

AD

]

h + v = Ah + v (4.1)

that we have introduced in Paragraph 2.5.3. The matrices AP and AD account for

the contribution due to the dedicated pilots and the soft decision data, respectively.

The channel is assumed to be block fading over M transmitted QPSK symbols.

The channel impulse response h ∈ C
KL×1 is estimated from the received vector

y ∈ CMN×1 in the two following modes:

1. Pilot estimation: For initial channel estimation in the first iteration.

2. Pilot and soft decision symbol based estimation: For channel estimation in

iteration two and subsequent iterations.
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When the symbols are known to the receiver, the associated estimation is also called

data-aided estimation like in mode one. When detected symbols are used if they

were the true symbols, this is known as decision-directed estimation as in mode

two [Mey97]. In the following, we will first present linear estimators for the case

when only dedicated pilots are employed and will then develop estimators that

employ feedback symbols. For the subsequent derivations we assume to have precise

second order statistics available for the noise and the channel taps.

4.1.1 Initial Estimation

The first channel estimate is gained with the help of the dedicated pilot symbols.

Design rules for pilot sequences with different constellation sizes will be discussed

in Section 4.3. We use the linear matrix model (4.1) and consider that part of the

observation only that corresponds to the pilot contribution AP. Instead of taking

the total receive vector y we use the first JN chips and define

yP
△
= [y[0], . . . , y[JN − 1]]T ∈ C

JN×1.

This vector is the basis for estimating the unknown channel coefficients with the

matrix AP that is known to the receiver. Assuming AP has full column rank, the

least squares (LS) estimator reads

ĥLS,P =
(
AH

PAP

)−1
AH

PyP (4.2)

which is also the maximum-likelihood (ML) estimator due to the linear Gaussian

signal model [Kay93]. It does not require knowledge about the statistics of the

fading nor of the additive white Gaussian noise. The formula illustrates that the least

squares estimator performs matched filtering and applies a decorrelator afterwards.

The linear minimum mean square (LMMSE) estimator is given by

ĥLMMSE,P =
(
AH

PC−1
v,PAP + C−1

h

)−1
AH

PC−1
v,PyP (4.3)

with the covariance matrix of the noise part for the pilot preamble

Cv,P = E
v

{
vPvH

P

}
= σ2

vIJN ∈ R
JN×JN (4.4)

and that of the channel

Ch = E
h
{hhH} = diag

([
pT

1 , pT
2 , . . . , pT

K

])
∈ R

KL×KL.

The vectors pk for all users k that are vertically stacked and diagonalized are defined

as

pT
k =

[
σ2

h,k[0], σ2
h,k[1], . . . , σ2

h,k[L− 1]
]T ∈ R

L×1.
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4.1.2 Approximate Least Squares (ALS)

A least squares estimator for h that operates on the total receive vector y requires to

know AP as well as AD. Since the latter matrix is not known we replace the symbols

bk(m) by their soft data estimates b̃k(m) from (2.22) and hence get an approximation

ÃD. The approximation is reflected in the name of the estimator - approximate least

squares (ALS). One could also call it tentative least squares estimator. Using the

definition

Ã
△
=

[
AP

ÃD

]

∈ C
MN×KL

in (4.1) and assuming that Ã has full column rank, we obtain the ALS estimate

ĥALS =
(

Ã
H
Ã

)−1

Ã
H
y. (4.5)

4.1.3 Approximate Linear MMSE (ALMMSE)

We assume i.i.d. and zero-mean Rayleigh fading taps and a deterministic matrix

A. Latter assumption is an approximation since the soft feedback elements are

stochastic. If the transmitted symbols were correctly at hand we would obtain the

true linear MMSE estimator. The ALMMSE solution is

ĥALMMSE =
(

Ã
H
C−1

v Ã + C−1
h

)−1

Ã
H
C−1

v y. (4.6)

4.1.4 Linear MMSE (LMMSE)

A more advanced method than the ALS and ALMMSE estimator takes into ac-

count the variance of the soft decision symbols [Zem03a,Weh04,Lon04]. This is the

objective of the linear estimator that is obtained via the Wiener-Hopf equations

ĥLMMSE = CH
yhC

−1
yy y. (4.7)

For the computation of the covariance matrices we assume that the receive vector

y ∈ CMN×1, the channel vector h ∈ CKL×1, and the noise vector v ∈ CMN×1 are

zero-mean. Furthermore, h, v, and the data matrix B are assumed statistically inde-

pendent. The expectation over a data symbol E
b
{bk(m)} is understood as conditional

expectation, given the a-posteriori decoder output probability mass function from

the previous iteration. Latter is expressed through the single variable APP{c(m′)}
given in (2.19). The corresponding mapping was carried out in (2.22) and we obtain

b̃k(m) = E
b
{bk(m)}. The covariance matrices of the receive vector and the channel
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vector reads

Cyh = E
B,h,v

{
yhH

}

= E
B,h,v

{
1∑

i=0

D(i)B(i)hhH + vhH

}

=
1∑

i=0

D(i)B̃(i)Ch.

The auto-covariance matrix of the receive vector y is computed as

Cyy = E
B,h,v

{
yyH

}

= E
B,h,v

{
1∑

i=0

1∑

j=0

D(i)B(i)hhHBH(j)DH(j) + vvH

}

=
1∑

i=0

1∑

j=0

D(i) E
B

{
B(i)ChB

H(j)
}

DH(j) + σ2
vIMN . (4.8)

In order to come up with the solution of (4.8) we need to compute the expectation

E
B

{B(i)ChB
H(j)}. If we assume independence among individual code symbols we

arrive at

E
b
{bp(m)bq(n)} =

{
b̃p(m)b̃q(n) for p 6= q, m 6= n

1 for p = q, m = n.

p, q ∈ {1, . . . , K} denote the user indices and m, n ∈ {0, . . . , M − 1} stand for the

symbol indices. The product E
B

{
B(i)ChB

H(j)
}

is expressed as

E
B

{
B(i)ChB

H(j)
}

= E
B

{B(i)}Ch E
B

{
BH(j)

}
+ Λi,j = B̃(i)ChB̃

H
(j) + Λi,j

where the matrix Λi,j ∈ RKLM×KLM denotes a diagonal matrix. Three cases can be

distinguished:

i = j: Λi,j has entries on the main diagonal.

i > j: Λi,j has off-diagonal elements in the upper triangle and the diagonal starts

in the {(i− j)KL + 1}-th column.

i < j: Λi,j has off-diagonal elements in the lower triangle and begins in the {(j −
i)KL + 1}-th row.
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The individual entries on the diagonals are the symbol variances weighted by the

variance of the corresponding fading tap: σ2
h,k[l]σ

2
b,k(m) ≈ σ2

h,k[l](1−|b̃k(m)|2). There

are (M − |i− j|)KL diagonal entries and in vector form they read

[
pT

1 σ2
b,1(1), . . . , pT

Kσ2
b,K(1), pT

1 σ2
b,1(2), . . . , pT

Kσ2
b,K(M − |i− j|)

]T ∈ R
(M−|i−j|KL)×1.

Note that, for perfectly known b̃k(m), the elements in Λi,j become one and the

estimator reduces to the ALMMSE estimator given by (4.6).

4.1.5 Interference Cancellation and Correlation (IC-Corr)

We discuss an interference canceler with post-correlation for channel estimation.

This approach is similar to the interference canceling multi-user detectors with

single-user matched filtering presented in Sections 3.4 and 3.5. For iterations i > 1,

multiple-access interference is canceled from the receive vector y for the identifica-

tion of the l-th path of user k along

ỹ
(i)
k,l = y −

(
1∑

q=0

D(q)B̃
(i−1)

(q)

)

ĥ
(i−1)

∼k,l = y − Ãĥ
(i−1)

∼k,l .

The subindex (·)∼k,l reflects that entry kL+ l− 1 of the vector ĥ is set to zero. The

definition of the matrices follows Paragraph 2.5.3. A new estimate of channel tap

l ∈ {0, . . . , L− 1} is obtained by correlating the interference mitigated observation

vector ỹk,l with a delayed version of a stacked chip sequence consisting of a zero

pre-cursor, the known pilot sequence uk and the soft decision data:

(

ĥk[l]
)(i)

IC−Corr
=

N

MN − l

[
0l, u

H
k , aH

k,l

]
ỹ

(i−1)
k,l .

The vector uk ∈ CJN×1 denotes the pilot sequence of user k. Let ak be the chip

sequence

ak
△
=
[

b̃
(i−1)
k (J), . . . , b̃

(i−1)
k (M − 1)

]T
⊗ sk ∈ C

(M−J)N×1

then

ak,l =
[

ak[0], ak[1], . . . , ak[(M − J)N − 1− l]
]T
∈ C

(M−J)N−l×1.

4.2 Mean Square Error Analysis

The quality of the estimated tap i can be assessed by its mean square error (MSE)

given through

MSEi
△
= [Σ]i,i (4.9)
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with

Σ
△
= E

v

{(

ĥ− h
)(

ĥ− h
)H
}

being the channel estimation error covariance matrix. For the least squares estimator

(4.2) with known pilot symbols the error covariance matrix is given by

ΣLS = σ2
v

(
AH

PAP

)−1
. (4.10)

The corresponding matrix in the case of LMMSE estimation (4.3) reads

ΣLMMSE =

(

C−1
h +

1

σ2
v

AH
PAP

)−1

. (4.11)

During the iterative refinement process we track the mean square error (4.9) of all

taps of all users in one single quantity that we call normalized mean square error

(NMSE). We define it as

NMSE
△
=

1

KL
tr {Σ} . (4.12)

On average, taps with larger power can be expected to be estimated with more

precision than taps with low power. In the NMSE measure this is taken into ac-

count. The strong taps predominantly influence the bit error rate. The convergence

behaviour of an iterative receiver strongly depends on the quality of the channel

estimates that are required in the interference canceler. Interference mitigation is

influenced by the phase as well as by the amplitude and can have a detrimental

influence on detection in case of strong deviations.

The lower limit for the error covariance matrix Σ is given by the Cramér-Rao

lower bound (CRLB) that holds for unbiased estimators. In Paragraph 4.4.3 we

make use of the CRLB for two cases: the first case arises when we consider the

model with J pilot symbols only (CRLB1) – it is valid for the first iteration, i.e.,

when only the pilot symbols are involved. The second is based on the assumption

that we know the J pilot symbols and the M − J data symbols bk(m) perfectly

(CRLB2). Then, the matrix AP is replaced by the complete pilot and data matrix

A (4.1) in (4.11). Our MSE analysis does not include the data-aided cases since we

do not know how to evaluate the value of the soft symbols after the i-th iteration for

a general multi-path fading channel. Hence, only the two above mentioned extreme

cases are considered. With known pilot sequences the least squares estimator is

unbiased and the CRLB bounds its MSE. For the LMMSE estimator, the MSE can

be bounded by the Bayesian CRLB [Tre68]. For the individual channel tap l the

Bayesian CRLB of user k is

MSEĥk[n] ≥
[
K−1

]

(k−1)L+n,(k−1)L+n
(4.13)
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where K is the Bayesian information matrix. The Bayesian information matrix is

composed of the Fisher information matrix and the prior information matrix1

K = J + Jp

with

J = − E
h,v

{
∂

∂h∗

(
∂

∂h∗

)T

log fy|h(h, y)

}

, (4.14)

Jp = −E
h

{
∂

∂h∗

(
∂

∂h∗

)T

log fh(h)

}

(4.15)

with log(·) denoting the natural logarithm. The formalism of the complex deriva-

tive follows the definitions in [Kay93]. The observation vector y is conditionally

distributed as CN (Ah, Cv) and its conditional likelihood function is the complex

Gaussian multi-variate distribution

fy|h(h, y) =
1

πKL(σ2
v)

MN
exp

(

− 1

σ2
v

(y −Ah)H (y −Ah)

)

.

The channel vector h has distribution CN (0, Ch) and its likelihood function reads

fh(h) =
1

πKL det(Ch)
exp

(
−hHC−1

h h
)
.

We now evaluate the information matrices (4.14), (4.15). They involve the second

derivative of the log-likelihood function. Alternatively, we can utilize the following

property [Kay93]: An efficient estimator, i.e., one that attains the CRLB, exists iff
∂

∂h∗ log fy|h(h, y) can be written as

∂

∂h∗ log fy|h(h, y) = J (g(y)− h) . (4.16)

In this case J is the Fisher information matrix and g(y) is the expression for the

estimator attaining the bound. The first derivative of the log-likelihood function

(4.14) is
∂

∂h∗ log fy|h(h, y) =
1

σ2
v

AHA
(
(AHA)−1

AHy − h
)
.

A comparison with (4.16) identifies the Fisher information matrix (4.14) as

J =
1

σ2
v

AHA

1If the prior information matrix Jp is chosen to be the zero matrix then this reduces to the

classical CRLB.
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and g(y) = (AHA)−1AHy. This estimator corresponds to the modified least squares

estimator and equals the ALMMSE in (4.6) for deterministic h, i.e., Ch = 0. We

are left with the computation of the second derivate (4.15) of the prior. After some

algebra we obtain

Jp = −E
h

{
∂

∂h∗

(
∂

∂h∗

)T

log fh(h)

}

= C−1
h .

4.3 Pilot Sequence Design

The design of pilot sounding sequences uk is of utmost importance since the qual-

ity of the channel estimates severely depends on their correlation properties. First,

to resolve multi-path components, one is interested in sequences that exhibit good

auto-correlation properties to keep distortions low that result from multi-path com-

ponents. Second, good cross-correlation properties are desired to keep distortion

low that arise due to the other active users.

4.3.1 Optimal Sequences

Optimal channel sounding sequences minimize the normalized mean square error

(4.12) under an energy constraint. It was shown in [Cro91] that optimal sequences

must satisfy

AH
PAP ∝ IJN . (4.17)

The estimation error is inversely proportional to the total pilot symbol energy ǫ.

When imposing a trace constraint ǫ = tr{AH
PAP} with ǫ being the total pilot

energy, the minimization of the NMSE (4.12) can be understood as a constraint

optimization problem which can be solved by Langrangian multipliers [Cai01] or

by matrix inequalities [Cro91]. Pilot sequences with a particular length JN and R

constellation points are chosen such that this error is minimized. Sequences that

minimize the NMSE have been identified in numerous works. To mention a few the

reader is referred to modified m-sequences [Cro91] and perfect root of unity sequences

(PRUS) [Ng98,Bal00,Rup00].

4.3.2 Pilot Sequences

In this paragraph we present one representative of suboptimal and one from optimal

training sequences.
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Random Symbol Sequence with Spreading (RAND)

A straightforward approach for finding an identification sequence is to apply the

short spreading sequences sk, with which symbol spreading is performed, also on a

sequence

bk,pilots
△
= [bk(0), . . . , bk(J − 1)]T ∈ X

J×1

of random QPSK pilot symbols. The resulting chip sequence uk
△
=

[uk[0], . . . , uk[JN − 1]]T ∈ (X/
√

N)JN×1 of user k can be written as

uk = bk,pilots ⊗ sk.

The individual chip values uk[n] lie on the four possible points of the unit circle

given through the set X/
√

N . This sequence does not minimize the NMSE (4.12)

under a transmit power constraint in general but it has only R = 4 roots.

Perfect Root of Unity Sequences (PRUS)

Periodic sequences for optimal identification x
△
= [x[0], . . . , x[JN − 1]]T ∈ X of

length JN exhibit the perfect autocorrelation property

δ[l] =
1

JN

JN−1∑

n=0

x[n + l]x∗[n] =

{
1 for l = 0,

0 else.
(4.18)

One set of sequences fulfilling this requirement under a constant modulus constraint

are perfect root of unity sequences (PRUS). These are sequences whose elements

are complex roots of unity in the form exp(j2πx) with x being a rational number.

Perfect refers to the fact that the autocorrelation is zero except for lag l = 0. It was

shown in [Mow95] that for a constellation with R roots (this is the alphabet size)

and length JN a lower bound on the number |X | of available sequences is given by

|X | ≥
{

p! qp φp(q)Rp if Rmin divides R,

0 else,
(4.19)

where

Rmin =

{
2pq for q even and p odd,

pq else.
(4.20)

Rmin denotes the minimum alphabet size. It was conjectured in [Mow95a] that for

a given length, PRUS exist if and only if the alphabet size is an integer multiple

of Rmin. The factor p should be chosen such that p2 is the greatest perfect square

factor in JN and q is an integer [Ng98]. Both numbers are chosen such that (4.20)

and

JN = p2q
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are met. The equations imply that for a particular PRUS sequence length JN

a minimum number of roots Rmin is required. In (4.19) the expression φ(q)

denotes the Euler Totient function [Abr70]. It is defined as the number of integers

in the set {1, 2, . . . , q−1} that are relatively prime to q, i.e., have no common factors.

A design of PRUS based on consecutive root of unity phase difference sequences

is given in [Ng98]. With the definition of phase differences

d[l]
△
=

x[n + l]

x[n]
(4.21)

we can see that the individual terms in the correlation (4.18)

x[n + l]x∗[n] =
x[n + l]

x[n]
= d[l]

correspond to phase differences. Hence, for a sequence with perfect autocorrelation

properties the sum of differences for different time lags l diminishes. A solution for

the consecutive root of unity phase difference sequences d[l] fulfilling requirement

(4.18) is given by

d[pk + s] = A[s]Er(k), s ∈ {0, 1, . . . , p− 1}

where

Er[k] = exp

(

j
2π

pq
kr

)

, k ∈ {0, 1, . . . , pq − 1}.

The variable r is an integer factor that is relatively prime to JN . A[s] represents an

arbitrary complex constant with unit magnitude. Setting x[0] = 1 we can determine

the consecutive symbols from (4.21). The number of shifted sequences corresponds

to the sequence length JN . In case of channel identification JN must be larger than

KL, the number of paths that need to be estimated. This in turn imposes a lower

bound on the number of required pilot symbols J

JN ≥ KL. (4.22)

Due to property (4.18) one obtains sounding sequences of length JN for different

users by shifted versions of periodically extended perfect root of unity sequences. A

possible assignment of identification sequences based on a PRUS to the individual

users is

uk[n] = x[(n + (k − 1)L) modJN ].
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4.3.3 Identifiability

To obtain a meaningful estimate of the KL unknown channel coefficients, the matrix

AHA needs to be invertible, i.e., A ∈ CMN×KL needs to have full column rank KL.

Matrices A, that include soft decision data, almost surely show full rank. However,

pilot matrices AP ∈ CJN×KL, that are used for initial channel estimation, can be

a rank deficient. This applies also when a big number of parameters needs to be

identified as it happens in overloaded systems, i.e., where K > N , or in long channels

where L is large.

It was mentioned in [Mar99], in context of a MIMO-BLAST system on a flat

fading channel, that the number of training symbols needs to be at least as great as

the number of transmit antennas. In other words, the number of training symbols

JN in our case must be at least KL. This result corresponds to condition (4.22).

The issue of the optimum amount of pilot symbols dedicated to MIMO channel

sounding was addressed in [Has03] by maximizing mutual information. However, we

do not make explicit use of these results. We simply employ the shortest number of

pilots fulfilling (4.22).

4.3.4 Pilot Placement

Throughout this work we consider block fading, i.e., the channel is supposed to be

constant during the transmission of a block of M symbols. For the transmit block

structure and channel estimation we make the following assumptions:

1. Symbols are placed in a preamble of length J .

2. We assume a guard interval between blocks. This guard interval has length

L−1 and assures that the beginning of each transmission block is not distorted

by previous transmissions. Hence, inter-block interference does not occur.

3. The fraction of energy, that extends the length of a block in mode (i) pilot

estimation and (ii) pilot and soft decision supported estimation, is negligible:

L− 1≪ JN < MN .

We will now justify the placement scheme. The optimum placement of pilot symbols

within a transmission block is studied in [Don02] for a decision-feedback receiver

structure that is able to exploit also the data symbols which are known perfectly.

When we further restrict that data and pilot symbols have the same modulus, the

pilots can be placed anywhere in the block as long as (4.22) is met. However, since

the correctness of feedback data symbols in our iterative receiver depends on the

initial channel estimate, we need to provide a good channel estimate that is based

only on the pilots, i.e., those ones that keep the NMSE low. For the case when only
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pilots are at hand and no data available, a clustered placement of pilots is optimal

since no guard intervals need to be introduced.

4.4 Simulation Results

The achievable bit error rates as well as system capacities of the iterative receivers

with integrated channel estimation are studied in the present section by means of

Monte-Carlo simulations. We will consider a system where all users have a non-

systematic, non-recursive convolutional code Ck with rate RC = 1/2 and generator

polynomials (5, 7)8. We assume channels with L consecutive taps that fulfill the

power constraint formulated in (2.2). The particular power delay profile in force

is given in the description of the considered setup. For the case of ALMMSE and

LMMSE estimation we assume that the noise variance σ2
v and the channel covariance

matrix Ch are perfectly known. We choose M = 160 QPSK symbols per block and

use spreading factor N = 8. We motivate this by UMTS slot processing [TS25.213]

where for a data spreading factor N = 8 we would also obtain 320 bits for a slot

length of 2.560 chips (here, we neglect the ten bits on the control channel). To

take into account the loss of energy due to the J = 10 pilots we stick to definition

(2.14) for Eb/N0 in the following. In the sequel we will study the influence of system

parameters, channel estimators, and detectors on the overall performance. For all

BER vs. Eb/N0 curves we consider overloaded systems with load α = K/N =

1,5. In the following, the single-user bound (SUB) is understood as the bit error

rate that is achieved when only one single user is active having perfect channel

knowledge available and employing unbiased, unconditional PIC-LMMSE detection

and MAP decoding. The SUB is thus the lower bound on the BER for the multi-user

case. A receiver can attain the SUB if all multiple-access interference is mitigated

successfully. To facilitate the comparison to a situation with channel estimation, the

single-user bound is evaluated for the Eb/N0 in accordance with definition (2.14).

4.4.1 Feedback Information

Using soft decision data in the system with perfect channel information was dis-

cussed in Paragraph 3.8.1. Naturally, the question whether to apply extrinsic or

a-posteriori mapped symbols arises also for channel estimation. We have observed

that a mapping from a-posteriori information results in an accelerated convergence

towards the hard values in the discrete symbol set X [Lon04] for frequency selec-

tive fading. Detrimental correlation effects as they were observed for a-posteriori

mapped symbols in case of interference cancellation in the detector cannot be no-

ticed. We will therefore only use a-posteriori symbols.
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4.4.2 Inter-Symbol Interference

Some papers assume that if the channel is short compared to the chip sequence

length L ≪ N , inter-symbol interference can be neglected. In this case only the

first N chips of the effective sequence s̃k are used for detection. The impact of

neglecting the remaining chips was investigated in Paragraph 3.8.2 for the case when

perfect channel knowledge is available at the receiver. Now, we will investigate how

this looks like for different iterations when the channel is estimated. In Fig. 4.1

we illustrate the difference of a system neglecting ISI to one that considers ISI. We

assume an i.i.d. Rayleigh channel of length L = 2 and the spreading sequence length

N is eight. We employ the random pilot scheme described in Paragraph 4.3.2 with

J = 10. The number of users is K = 12 and the channel is estimated via the ALS

algorithm. The multi-user detector is the unconditional, unbiased PIC-LMMSE.

The plot reveals that, in case of neglecting ISI in this short channel, the loss in

terms of bit error rate is significant. There is no possibility to attain a bit error

rate of 10−3 by neglecting ISI. The curves show an error floor after all iterations.

However, when ISI is treated properly a steady improvement of the BER after each

iteration can be observed that allows a BER of 10−3 at an Eb/N0 of 15,5 dB. For a

larger channel this effect becomes more pronounced and points out the significance

of considering ISI in medium data rate communication systems like UMTS.

4.4.3 Channel Estimators

The channel estimators that were developed in Section 4.1 can be classified into

two groups: the first group comprises those estimators that carry out joint channel

estimation and the second group is based on interference cancellation. We comment

separately on the findings for the two groups in the sequel.

Joint Estimators

The ALS, ALMMSE, and LMMSE estimators require different statistical knowledge

on the random parameters v, h, and b̃(m). The simplest scheme is the ALS estimator

(4.5) that does not use any assumption on either of the three random variables. The

ALMMSE (4.6) assumes to know the variance of the noise as well as the covariance

matrix of the channel vector. The ALS and the ALMMSE estimator assume that

the soft data estimates obtained from the feedback are deterministic. However,

due to the probabilistic nature of the decoder output this is not the case. One

way to incorporate all statistical information is to include also the variance of the

individual symbols. This leads to the LMMSE estimator formulated in (4.7) which

can be considered the optimum linear estimator.
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Figure 4.1: Benefits of ISI processing in i.i.d. Rayleigh channel with L = 2. Solid

lines (−) refer to exact ISI processing while dashed lines (−−) indicate that ISI was

neglected. ALS channel estimator with random pilot symbols. N = 8, K = 12,

J = 10.
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Figure 4.2: Comparison of BER with channel estimators PILOTS only (−−), ALS

(− ·), ALMMSE (· · ·), and LMMSE (−). The pilot symbols are RAND and the

parameters N = 8, K = 12, i.i.d. Rayleigh channel with L = 5, M = 160, J = 10.



4.4 Simulation Results 77

Fig. 4.2 shows bit error rate curves plotted versus Eb/N0 corresponding to it-

erations one, three, and six for an i.i.d. multi-path Rayleigh fading channel with

L = 5 taps and different channel estimators. We do not illustrate results for iter-

ations higher than six since there is no further improvement. We use the random

pilot sequence (RAND) which was described in Paragraph 4.3.2. The plot shows

two groups of curves. The first group refers to the case when only the dedicated

pilots are used for channel estimation. The corresponding BER curves are plotted

as dashed lines (PILOTS). The second group is related to the case when also soft

decision symbols are used in the feedback and is illustrated by dash-dotted (ALS),

dotted (ALMMSE), and solid (LMMSE) lines.

The BER curve referring to the first iteration was generated with the pilots only

approach in connection with the ALS or the ALMMSE channel estimator. They

represent the performance of a non-iterative, linear multi-user receiver. If we use

the initial ALMMSE channel estimate in the further iterations we achieve BERs

marked by dashed curves after the third and the sixth iteration. Although there is

no iterative refinement of channel estimates involved during iterations, the receiver

is able to mitigate multiple-access interference due to the code, even with a rather

poor channel estimate. A BER of 10−3 is obtained after the sixth iteration at an

Eb/N0 of 15,1 dB.

All other estimators presented in the plots use, additionally to the pilots, also

the data symbols for channel estimation. After the third iteration, the ALS, the

ALMMSE, and the LMMSE scheme reach a BER of 10−3 at roughly 12,8− 14 dB.

After the sixth iteration the required Eb/N0 lies between 9,5 and 10,5 dB. This

corresponds to an improvement over the pilot estimation of approximately 4− 6 dB

after the third iteration and 5− 6 dB after the sixth iteration. The performance of

the receiver with ALS estimation is 0,5−1 dB worse than the one with the ALMMSE

estimator. The LMMSE estimator achieves an additional gain of up to 0,5 dB. For

a target bit error rate of 10−3, the gap to the single-user bound is 2 dB for the

ALS estimator and 1,5 dB for the LMMSE estimator. For the ALMMSE as well as

the LMMSE estimator we have assumed that we know the noise variance and the

channel covariance matrix perfectly.

A plot of the evolution of the normalized mean square error (4.12) for different

iterations is given in Fig. 4.3. The system load is α = 1,5 and Eb/N0 = 10 dB.

The NMSE is shown for the ALS, the ALMMSE, and the LMMSE estimator. For

the Cramér-Rao lower bound (4.11) we assume that in the first iteration only the

pilots can be exploited (CRLB1) and for all other iterations the complete data

(CRLB2). Since the bounds need to be evaluated for a particular system model,

we randomly choose one particular realization of pilot/data symbols and also one

particular realization of the matrix S of signature sequences. The NMSE decreases

most rapidly for the LMMSE, followed by the ALMMSE, and then the ALS.
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Figure 4.3: Evolution of the NMSE for RAND pilots and different channel estima-

tors, N = 8, K = 12, i.i.d. Rayleigh channel with L = 5, Eb/N0 = 10 dB, M = 160,

J = 10. CRLB1 designates the Cramér-Rao bound for the J pilots only and CRLB2

for M symbols.

The NMSE as a function of Eb/N0 is depicted in Fig. 4.4. Results are illustrated

for the ALS, the ALMMSE, and the LMMSE estimator. Further, the Cramér-

Rao lower bounds for J pilot symbols (CRLB1) and for all M symbols (CRLB2)

are shown. To improve readability the curves are plotted for iterations one, three,

and six only. For the first iteration the ALMMSE estimator is the same as the

LMMSE and it represents the efficient estimator attaining the CRLB1 with the J

pilot symbols. After six iterations the CRLB2 for M symbols is practically reached

by all estimators at 10 dB.

IC-Corr Estimator

On a first glance the idea of interference cancellation for channel estimation is ap-

pealing, since subsequent processing involves only a correlation. And, in fact, the

concept works well as long as there are few channel coefficients, L ≤ 3, that do not

undergo fading, i.e., have constant energy. For practical cases where fading is in-

volved this scheme does not show satisfying results. The reason is that the estimate

of multiple-access interference is influenced by the estimated channel coefficients of

all other users. Small errors propagate very quickly and cause the system to stop

its convergence at unacceptable high bit error rates.
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Figure 4.4: NMSE for RAND pilots and with channel estimators: ALS (−−),

ALMMSE (· · ·), and LMMSE (− ·). CRLB1 designates the Cramér-Rao bound for

the J pilots only and CRLB2 for M symbols. The parameters are N = 8, K = 12,

i.i.d. Rayleigh channel with L = 5, M = 160, J = 10.

4.4.4 Pilot Sequences

In the following we assess the influence of the random pilot sequence (RAND) and

the one of the perfect root of unity sequence (PRUS) on the iterative receiver. The

first J symbols, i.e., the first JN chips of each block represent the pilot sequence uk.

The pilot pattern RAND is based on a random sequence of training symbols that

are spread with sk like the data. This is desirable for a practical implementation

since all symbols are spread with the same signature. The PRUS scheme uses a chip

sounding sequence that is a perfect root of unity sequence.

In the following each user has a channel with L = 5 i.i.d. Rayleigh taps. This

requires KL = 60 taps to be estimated and we choose J = 10, i.e., JN = 80 chips.

The corresponding PRUS sequence has R = 20 roots, the parameters used for the

construction method presented in Paragraph 4.3.2 are p = 2, q = 20, and r = 3. To

estimate the channel we employ the ALS algorithm.

The case of the RAND pilot scheme was already discussed in Paragraph 4.4.3 and

is depicted in Fig. 4.2. We use the same setup to study the behaviour of the multi-

user receiver with perfect root of unity sequences. The corresponding results are

depicted in Fig. 4.5. Perfect root of unity sequences are, in the mean square error
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Figure 4.5: Comparison of BER with channel estimators PILOTS only (−−), ALS

≈ ALMMSE ≈ LMMSE (−). The pilot symbols are PRUS and N = 8, K = 12,

i.i.d. Rayleigh channel with L = 5, M = 160, J = 10.

sense, the optimal sequences for channel estimation. When only J pilots are used

for channel identification and aiming at a target BER of 10−3, we observe a gain of

4 dB over the RAND scheme, that is depicted in Fig. 4.2, after the third iteration

and 3,3 dB after the sixth iteration. However, this gain diminishes when turning

to the approach where soft-decision symbols are used. The results for the ALS,

ALMMSE, and the LMMSE were practically the same. After the third iteration

there is a gain of 0,8− 2 dB and after the sixth iteration a gain of 0,3− 0,6 can be

observed. The gap to the single-user bound at a BER of 10−3 is roughly 1 dB.

We conclude that for the considered load α = 1,5 and a target bit error rate

of 10−3 the PRUS has a gain of 3,3 dB over RAND in case of channel estimation

with pilots only, and shows also an improvement of 1 dB in case when soft decision

symbols are used to support channel estimation.

4.4.5 Soft Multi-User Detectors

In Fig. 4.6 the bit error rate is plotted versus the number of users K for the two

detectors PIC-SUMF (3.8) and unconditional, unbiased PIC-LMMSE (3.22) after

the first, the second, the third, and the sixth iteration. We set Eb/N0 to 10 dB and

employ the random pilot scheme of Paragraph 4.3.2. For channel estimation we use
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Figure 4.6: Impact of detector on number of accommodated users. SUMF (−−)

and LMMSE (−) with ALS channel estimation and RAND pilots. The system

parameters are N = 8, i.i.d. Rayleigh channel with L = 5, Eb/N0 = 10 dB, M =

160, J = 10.

the ALS algorithm (4.5). The curves reflect that with six iterations and a target

BER of 10−3 the PIC-LMMSE detector supports twelve users while the PIC-SUMF

detector accomodates only nine users. The jaggedness of the BER curves in the bit

error rate regime below 10−3 is attributed to an insufficient number of Monte-Carlo

simulations that were producing only K × 2× (M − J)× 250 = K × 75.000 values

due to prohibitive simulation time.

4.4.6 Multiple Receive Antennas

In Fig. 4.7 we outline the performance of the PIC-LMMSE detector and the ALS

channel estimator when NR = 1 and NR = 2 receive antennas are installed when

using the random pilot sequence (RAND). We can clearly perceive a diversity gain

due to an enhanced stabilization of the receive power. The plot reveals that the

number of users to be served can be drastically increased when two receive antennas

are used. For two receive antennas roughly 27 users can be accommodated with a

BER of 10−3. This is made possible by the increased diversity that is due to spa-

tial antenna combining as well as the spatial signature imposed onto the spreading

sequences.
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Figure 4.7: Impact of multiple receive antennas, NR = 1 (−−) and NR = 2 (−), on

number of accommodated users with ALS channel estimation and RAND pilots. The

system parameters are N = 8, i.i.d. Rayleigh channel with L = 5, Eb/N0 = 10 dB,

M = 160, J = 24.

4.4.7 Realistic Channels

The final investigation in this chapter is devoted to the assessment of the PIC-

LMMSE receiver with ALS channel estimation in three multi-path scenarios. The

first power delay profile is based on the exponentially decaying COST259 model

with five taps [Cor01]. The second is the 3GPP test channel Pedestrian-B, specified

in [TR101 112]. And the third, FTW, is obtained from a channel sounding mea-

surement campaign conducted in a suburb of Vienna [Hof02]. In the simulations the

PDPs fulfill the energy normalization constraint (2.2). They are listed with their

temporal delay as well as their relative power with respect to the first tap in Table

4.1. Since oversampling is not considered in this thesis the taps τ [l] were assigned

to the discrete time value n that minimizes

n = argmin
k

{∣
∣
∣
∣
τ [l]−

(

k +
1

2

)

TC

∣
∣
∣
∣

}

.

The COST259 channel with L = 5 is the shortest of the considered channels.

The receiver shows that it can reach a BER of 10−3 at 11,8 dB compared to the

single-user bound at 11,1 dB. This is depicted in Fig. 4.8 for J = 16 RAND pilots.

The Pedestrian-B channel with L = 15 has the largest temporal width. Fig. 4.9

shows the BER curves for a system with J = 24 and RAND pilots. It can be seen
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Table 4.1: Power delay profiles (PDPs) of the simulated multi-path scenarios with

relative power to the first tap.
Tap 1 Tap 2 Tap 3

COST259 0 dB / 1 ns −4,3 dB / 245 ns −8,7 dB / 489 ns

Pedestrian-B 0 dB / 1 ns −0,9 dB / 200 ns −4,9 dB / 800 ns

FTW 0 dB / 1 ns −6,0 dB / 361 ns −3,6 dB / 1.131 ns

Tap 4 Tap 5 Tap 6

COST259 −13,0 dB / 733 ns −17,4 dB / 977 ns -

Pedestrian-B −8,0 dB / 1.200 ns −7,8 dB / 2.300 ns −23,9 dB / 3.700 ns

FTW −9,9 dB / 1.991 ns −7,8 dB / 2.701 ns −14,1 dB / 3.181 ns

that for the Pedestrian-B channel there is a gap of 3,1 dB to the single-user bound

at a target bit error rate of 10−3.

The third channel, FTW, has length L = 13 and it is retrieved from measurements.

Fig. 4.10 shows the result for the RAND pilots sequence. In this case the single-user

bound is approached very closely.

Depending on the power delay profile, the gap to the single-user bound can make

up as much as 3 dB like in the case of the Pedestrian-B channel for a target bit

error rate of 10−3. When utilizing PRUS sequences instead of RAND sequences for

channel sounding, this gap can be reduced. In case of the Pedestrian-B channel

and a target bit error rate of 10−3 an improvement of 1,75 dB could be observed.

For the COST259 channel the corresponding difference is 0,35 dB and 0,5 dB for the

FTW-channel.

4.5 Summary

In this chapter we have developed and analyzed channel estimators that are suit-

able for integration in iterative receivers. The multi-path channel estimators utilize

soft symbol estimates to refine the channel estimates within the iterative process.

We have assessed multi-user receivers in terms of bit error rate and mean square

error of the channel estimates. The setups included different channel estimators

in combination with various detectors, pilot sequences, different number of receive

antennas, and realistic multi-path channels. The channel estimators are the approx-

imate LS (ALS) estimator, the approximate LMMSE (ALMMSE) estimator, that

uses the covariance matrices of the noise and the one of the channel, and the LMMSE

that requires additionally the variance of the soft symbol estimates. We have also

investigated an interference canceling and correlation based type estimator.

Feedback Information Multi-user receivers, that employ a-posteriori mapped sym-
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Figure 4.8: PIC-LMMSE receiver with ALS channel estimation in a COST259

channel with L = 5 paths and RAND pilots. K = 12, N = 8, M = 160, J = 16.
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Figure 4.9: PIC-LMMSE receiver with ALS channel estimation in a Pedestrian-B

channel with L = 15 paths and RAND pilots. K = 12, N = 8, M = 160, J = 24.
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Figure 4.10: PIC-LMMSE receiver with ALS channel estimation in an FTW chan-

nel with L = 13 paths and RAND pilots. K = 12, N = 8, M = 160, J = 24.

bols in the channel estimators, outperform receivers that utilize soft decision

symbols gained from extrinsic information. A-posteriori symbols lead to faster

convergence speed in terms of the bit error rate.

Inter-Symbol Interference: For an i.i.d. Rayleigh channel with L = 2 taps and

spreading factor N = 8, neglecting ISI degradates performance severely and

leads to unacceptable high error floors. With exact ISI processing, as it was

utilized in this work, ISI in practical channels with long delays can be processed

effectively.

Channel Estimators: The ALS estimator does not require statistical a-priori infor-

mation and shows a loss of only 0,5 dB to the more complex LMMSE estimator

after six iterations when random pilots are employed. In case of PRUS, the

difference between ALS and LMMSE diminishes. The IC-Corr channel esti-

mation approach is not useful since error propagation is too strong in a fading

environment with more than three taps.

Soft-Decision Symbols Supported Estimation: Using soft decision symbols for

channel estimation reduces the Eb/N0 by 6 dB to reach a bit error rate of

10−3 when compared to pilot only based channel identification.
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Pilot Sequences: In an iterative receiver, where channel estimation is based only on

perfect root of unity sequences, bit error rates of 10−3 can be reached roughly

4 dB earlier than by random pilot sequences. If soft decision symbols are used

as additional pilots, the gap between RAND and PRUS reduces to less than

1,75 dB depending on the channel.

Detector: After six iterations and a target BER of 10−3 the unbiased, unconditional

PIC-LMMSE detector can support roughly 33% more users than the PIC-

SUMF detector at Eb/N0 = 10 dB.

Receive Diversity: The number of accomodated users can be nearly doubled by

installing two receive antennas instead of a single receive antenna. This is

made possible through the additional degrees of freedom offered by spatial

diversity.

Number of Iterations: Practical convergence of the iterative receiver with channel

estimation supported by soft decision symbols is typically observed after six

iterations.



5 Iterative UMTS Receiver

In the previous chapters the performance of several multi-user detectors and chan-

nel estimators was assessed in order to identify the minimum required complexity

that leads to useful bit error rates for a particular system load and multi-path sce-

nario. In the present chapter, we apply the insight gained in the general setup, to

design an iterative receiver that is compliant with the UMTS-FDD standard. The

objectives are maximization of the system capacity while at the same time keeping

implementation complexity moderately low.

The transmission model in the general setup presented in Section 2.4 and that of

the UMTS standard differ in several aspects. The general setup separates the pilot

and data symbols by transmitting them consecutively. In UMTS, signalization of

data and control information happens simultaneously on the in- and the quadra-

ture phase. While the general setup uses short sequences, the UMTS setup applies

short channelization codes separately for the control and the data information and

subsequently applies a long scrambling sequence. The general transmitter structure

applies a four-state convolutional code with rate RC = 1/2. UMTS uses 64-state

convolutional codes with rates RC = 1/2 and RC = 1/3 or an eight-state Turbo

code with RC = 1/3.

5.1 UMTS-FDD Standard

In UMTS-FDD, signaling between the base-station and the mobile takes place in two

frequency bands, each having a bandwidth of 5 MHz. These bands are called paired

bands - the one in the upper frequency band is used for downlink communications

and the one in the lower frequency band is employed for uplink communications.

This physical separation is reflected in the abbreviation FDD - frequency division

duplex. Data is spread at a chip-rate of 3,84 Mchips/s.

In the subsequent paragraphs we briefly review the following parts of the

UMTS-FDD standard: segmentation [TS25.211], modulation [TS25.213], spread-

ing [TS25.213], and coding [TS25.212].
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Figure 5.1: Structure of slots and frames in UMTS.

5.1.1 Data Block Structure

Dedicated channels are assigned to single users. They are segmented into frames of

length 10 ms corresponding to 38.400 chips. Every frame consists of 15 slots with

2.560 chips. The segmentation in UMTS is depicted in Fig. 5.1. The dedicated

channels are called dedicated physical data channel (DPDCH) and dedicated physi-

cal control channel (DPCCH). The user data is transmitted on the DPDCH while

the control information is conveyed via the DPCCH. Control information contains

pilot symbols for channel estimation (Pilot), the transport format combination in-

dicator (TFCI), feedback information (FBI), and transmission power control (TPC)

commands. For the purposes of this thesis, only the pilot symbols are important

and we will not make use of the remaining control information.

5.1.2 Spreading and Modulation

Fig. 5.2 illustrates how data spreading and data modulation is exercised in the frame-

work of UMTS. Data symbols a are spread with a channelization code sD having

length ND = 2{2,...,8}. Control symbols are spread with a different channelization

code sC with constant length NC = 256. In case of data spreading with factor

four, each user can have up to six dedicated physical data channels. The employed

codes are from the family of Walsh-Hadamard codes and are selected such that they

exhibit mutual orthogonality regardless of the spreading factor. Note that chan-

nelization codes separate the individual channels of one particular user, but they

are not responsible for separation towards other users. Separation to other users is

established after the chipwise combination of the signals from the DPDCH and the

DPCCH. The control information is mapped on the quadrature phase and the data

on the in-phase after they are amplified with the factors βD and βC, respectively.

The amplification factors control the relation of the power devoted to the control and

the data channel. The combined chip stream is further scrambled by the sequence

sS of length 38.400. This is a truncated Gold chip sequence uniquely assigned to
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Figure 5.2: Modulation and spreading in UMTS.

each user by the base-station. After chipwise multiplication of the channelized chip

stream with the scrambling code, the data is transmitted over the channel. Due

to the huge number of available scrambling codes, there is no limit imposed on the

number of users in the uplink. Channelization codes are short codes in the sense

that they are reused for the spreading of every symbol. Scrambling sequences on the

other hand are long - there is no repetitive pattern on the symbol level that can be

exploited. At the receive antenna, chip sequences attributed to a particular data or

control symbol are distorted by interference of other users. The cross-correlation be-

tween symbols of different users varies from symbol to symbol due to the scrambling

sequences.

Channelization and addition of in-phase and quadrature components on the chip

level of user k can be expressed as

xk[n] = βD,kak (⌈n/ND,k⌉) sD,k [n modND,k]

+jβC,kbk (⌈n/NC⌉) sC,k [n mod NC]

with ⌈x⌉ denoting to closest integer value to x that is equal or larger than x. The

channelized chip stream is further scrambled with the user unique scrambling se-

quence sS,k[n]

x′
k[n] = xk[n]sS,k[n mod38.400]. (5.1)

5.1.3 Channel Coding

In UMTS, channel coding is applied over a block whose length is specified by the

transmission time interval (TTI). The minimal value of the TTI is 10 ms and its

maximum value is 80 ms. They correspond to 15 and 120 slots, respectively. In case

of slots having different channel realizations we expect an additional diversity gain

(block interleaving) that lowers the bit error rates.

The UMTS-standard contains three codes: two non-recursive convolutional codes

with rate 1/2 and rate 1/3 and one Turbo code with recursive generator polynomials



90 Chapter 5 - Iterative UMTS Receiver

Table 5.1: Channel codes in UMTS: CC – convolutional code, TC – Turbo code.
CC 1/2 CC 1/3 TC

Rate RC 1/2 1/3 1/3

Memory Length ι 8 8 3

Generators [561, 753]8 [557, 663, 711]8

[

1, 15
13

,
(

15
13

)′
]

8

Required Eb/N0 for BER=10−3 2,4 dB 1,95 dB 0,95 dB

Max. input block size 504 504 5.114

and rate 1/3. The codes and their properties are listed in Table 5.1. The length of

the information sequence, that is encoded to deliver a codeword, is limited by the

standard to 504 bits for the convolutional codes and 5.114 bits for the Turbo code.

In Table 5.1 we obtained the values of Eb/N0, that are required to achieve a bit error

rate of 10−3, by simulations on an AWGN channel. For the two convolutional codes,

we employed a Viterbi decoder and for the Turbo code we used the max-log-MAP

approximation [Bau98] of the BCJR algorithm [Bah74]. The input blocks in the

simulation had a length of 504 for the convolutional code and 1.596 for the Turbo

code. For the Turbo code, the required Eb/N0 depends on the size of the code

block. The value decreases for longer block lengths. Each code block is followed by

terminating tail bits. The details of those are given in [TS25.213].

5.2 Receiver Design

The following passage describes the received signal and discusses the choice of the

receiver elements, based on the observations of the preceeding chapters.

Transmission Model

The general setup used in the previous chapters makes use of short random sequences

that spreads the subsequently transmitted pilot and data symbols. This prerequisite

allowed us to find an elegant expression of the received signal as given in (2.12) and

(2.13). There are two major differences to UMTS: (1) UMTS uses long sequences

and (2) the pilot information is spread with a different channelization code than the

data and both are modulated orthogonally to each other. Further, a long scrambling

sequence is applied. For the sake of simplicity we give the expression for one receive

sample rather than for the whole observation vector y. The received chip stream

y[n] =
K∑

k=1

√

Pk

L−1∑

q=0

x′
k[n− q]hk[q] + v[n] (5.2)
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is a superposition of K user contributions (5.1) and zero-mean additive white Gaus-

sian noise v[n] with variance σ2
v . Every user transmits via a channel hk[n], n ∈

{0, . . . , L− 1} and its transmission power is Pk.

Inter-Symbol Interference Processing

Paragraphs 3.8.2 and 4.4.2 study the impact on the bit error rates when inter-symbol

interference is neglected. It turns out that even for short channels the loss can be

dramatic. In cases where the spreading factor ND < 32, inter-symbol interference

needs to be considered in order to approach the single-user bound. Hence, our

iterative UMTS receiver shall incorporate this feature.

Detector

In Paragraph 3.8.4 it was shown that parallel interference cancellation allows for the

same number of accommodated users as successive interference cancellation. This

comes at an expense of additional iterations in the case of parallel cancellation. For

a fading environment, SIC requires two iterations to come close to the single-user

bound while PIC processing requires four to five. Hence, from the viewpoint of

number of iterations, SIC seems more appealing. However, SIC is associated with a

long latency time. For the present receiver design it is assumed that latency time is

a more critical point than distributed parallel processing power. Hence, we decided

for PIC scheduling.

The unconditional, unbiased LMMSE-filter given by (3.22) allows for an efficient

implementation since the involved matrix inverse can be used for all users and all

symbols in the same iteration step. This holds only, when the spreading sequences

are short. Due to the long scrambling in UMTS, the sequences change from symbol

to symbol and calculation of the filter is required for every symbol instance. This

is an additional complexity that scales linearly with the length of a block. The

increased number of updates renders LMMSE as too demanding and we decided to

apply a linear single-user matched filter instead.

Decoding

The 64-state convolutional codes with rates 1/2 and 1/3 are too complex to decode

with the optimum symbol by symbol MAP decoder presented in Section 2.10. In-

stead, we apply a hard-output Viterbi decoder. The estimated hard information bits

are re-encoded and fed back to the interference canceler as well as to the channel

estimator. Improved performance is achieved when the hard feedback information

from the Viterbi decoder is weighted as it was done in [Mar01, Nor02]. However,

the latter is not applied in the present work. In case of the Turbo code, there is an
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additional inner decoding loop that requires a MAP decoder. The number of these

inner iterations was set to eight. Due to the short memory length of the Turbo code,

MAP decoding does not impose a computational constraint.

Channel Estimator

The results in Chapter 4 make evident that the approximate least squares algorithm

is most practical. In contrast to the approximate linear MMSE and the exact lin-

ear MMSE scheme, it does not require any second-order statistical information on

neither the noise nor the channel coefficients. In UMTS, the pilot data is no longer

contained in a preamble, but resides in the quadrature path and is sent in parallel

to the data which is in the in-phase. We adapt the ALS estimator correspondingly.

5.3 Processing Chain for Simulation

In the general setup that was used in the previous chapters, the codeword length

was exactly the size of a transmission block minus the pilot sequence length. One

codeword effectively undergoes one particular fading realization. The individual

blocks face independent block fading realization. Now, in UMTS, code symbols are

split among several slots that undergo different fading realization. In general, this

causes a so called block interleaving gain. To simulate block interleaving, we need to

adapt the simulation chain. The modified processing chain for UMTS is depicted in

Fig. 5.3. Data dk is generated for K users in accordance with the spreading factor

ND and the number of slots NoS which is itself determined through the transmis-

sion time interval (TTI). For simplicity we assume that all users have the same

spreading factor ND. We create multi-path channels hk(s), that are independent

from slot to slot, and convolve them with the chip sequences x′
k[n] given in (5.1).

The contributions of all users and the noise are summed up as formulated in (5.2).

After the observation vectors y(s) of all slots have been generated, they are passed

on to the receiver. The processing is carried out over NoI iterations. After all all

symbols have been detected for a particular user, they are passed on to the decoder.

The decoder outputs values d̂k that are re-encoded to form estimated code symbols

ĉk. These are used for interference cancellation and channel estimation during the

next iteration. In each iteration the bit error rate is evaluated.

5.4 Simulation Results

In the general transmission setup, with pilots in the preamble, the loss in information

energy due to the overhead was considered via (2.14). Similarly, we introduce a
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NoF := number of simulation frames

NoI := number of iterations

NoS := number of slots per TTI

for f = 1:NoF

- Generate data dk

- Encode data dk 7→ ck

- Split ck to NoS ck(s)

for s = 1:NoS

- Generate multi-path channels hk(s)

- Generate y(s) from all ck(s) and hk(s)

end s

for i = 1:NoI

for s = 1:NoS

- Estimate channels ĥk(s)

- Perform IC and linear filtering to obtain ĉk(s)

end s

- Assemble ĉk from NoS ĉk(s)

- Decode ĉk to obtain d̂k

- BER evaluation of d̂k

- Re-encode d̂k 7→ ĉk

end i

end f

Figure 5.3: Structure of the UMTS simulator.

correction factor for UMTS modulation. Given the Eb/N0 and system noise variance

σ2
v , the transmit powers of the individual users become

Pk = 2σ2
vRC

Eb

N0

NC/ND

β2
CEC + β2

DEDNC/ND

.

In the following we define the overhead OH as the fraction of the total transmit

energy that is spent on control information. The overhead is given by

OH =
β2

CEC

β2
CEC + β2

DEDNC/ND

with EC = |sC|2 = 1 and ED = |sD|2 = 1 being the energy of the spreading sequence

used in the control and the data path, respectively. The values
√

PkβC and
√

PkβD

denote the amplitude factors of the control and the data path. The scrambling

sequence sS[n] has amplitude one and does hence not influence the normalization.
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We investigate the influence of coding for the simulation setup summarized in

Table 5.2. The number of pilot symbols per slot is eight and the overhead energy

makes up 11,1 % for the rate 1/2 code and 15,8 % for the simulations with rate

1/3 codes. The multi-path channel employs the exponentially decaying power delay

profile of the COST259 channel covering five relevant taps.

Fig. 5.4 and Fig. 5.5 show the bit error rate curves versus Eb/N0 for the convo-

lutional codes with rate RC = 1/2 and rate RC = 1/3, respectively. For the code

with rate RC = 1/2, we have observed that the improvement stops after the fifth

iteration. Comparing the BERs with the single user bound makes clear that the

loss is less than 1 dB in the relevant regime where bit error rates are lower than

10−3. When studying the result for the convolutional code with rate RC = 1/3,

we notice that the main difference lies in the accelerated convergence. It is also

clear from intuition - a code with a lower rate carries more redundancy that can be

exploited with the cost of a lower net data rate. For the considered setup, we save

one iteration compared to the scheme with rate RC = 1/2. Both decoders attain

the bit error rate of 10−3 at roughly 11 dB.

For the Turbo code we obtain the result depicted in Fig. 5.6. In each iteration

of the iterative receiver, the Turbo decoder performs eight internal iterations. As

long as the first iteration does not cause bit error rates that are smaller than 0,14,

the Turbo decoder is not able to converge. However, as soon as this threshold is

reached, a water-fall effect takes place that decreases the bit error rate drastically.

A target bit error rate of 10−3 is reached within four iterations at an Eb/N0 of 9 dB.

While for the convolutional codes, the improvement stops after five iterations, the

Turbo code leads to a further decrease in bit error. After ten and 15 iterations, bit

error rates of 2,2× 10−3 and 10−4 are reached. The gap to the single-user bound is

roughly 2 dB. The effectivity of the multi-user detector to remove multiple-access

interference is poor at very low levels of Eb/N0 and it cannot produce sufficiently

reliable uncoded symbols that cause the decoder to converge. Despite the increased

complexity, the potential gain over the rate 1/3 convolutional code makes up roughly

6 dB for a target bit error rate of 10−3.

5.5 Summary

We have designed an iterative receiver for the UMTS-FDD standard and have

demonstrated its functionality in the COST259 multi-path channel with L = 5

taps. The core elements were chosen to exhibit low-complexity such as the parallel

interference canceling detector with the single-user matched filter, the hard Viterbi

output decoder, and the approximate least squares channel estimator. An extension

to multiple receive antennas was tested and it essentially showed similar behaviour
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Table 5.2: Parameters for UMTS Uplink Simulation.
Parameter Value

Number of users K 12

TTI 10 ms

NDCH, NCCH 8, 256

βc/βd

√
2

OH RC = 1/2,RC = 1/3 11,1 %, 15,8 %

Number of pilot symbols per slot 8

Number of COST259 taps L 5

Pulse shaping off
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Figure 5.4: Average bit error rates for K = 12 users having spreading factor NDCH =

8 on a COST259 channel with L = 5 taps. All users employ a convolutional code

with rate RC = 1/2 (CC 1/2).
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Figure 5.5: Average bit error rates for K = 12 users having spreading factor NDCH =

8 on a COST259 channel with L = 5 taps. All users employ a convolutional code

with rate RC = 1/3 (CC 1/3).
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Figure 5.6: Average bit error rates for K = 12 users having spreading factor NDCH =

8 on a COST259 channel with L = 5 taps. All users employ a Turbo code with rate

RC = 1/3 (TC).
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as the more general setup presented in Paragraph 4.4.6.

The critical issue that will be faced in practice is that users transmit asyn-

chronously in the uplink. In case of large TTI values, the codeword can comprise

up to 120 slots. Then, only fractional cancellation of user contributions (MAI) can

be envisaged which results in a deteriorated performance. However, in the high

speed downlink packet access (HSDPA) mode of UMTS [TR25.858] all users are syn-

chronous with spreading factor 16 and the TTI is fixed to three slots. Therefore,

the iterative receiver can be fully employed. Since one user can be assigned up to 15

parallel data channels, decoding of all individual streams is required a-priori, and

this supports the iterative receiver structure in a natural fashion.





6 Iterative Receiver Analysis

In the previous chapters we assess the convergence behaviour of iterative receivers

including channel estimation by numerical means. The associated simulations re-

quire a large number of simulation frames to deliver meaningful results. This is

time costly and, thus, it is beneficial to gain insight from an analytical point of

view. This is a difficult problem, caused by the following two factors: First, there

is no tractable exact formulation for the relation of bit error rate and signal to

noise ratio for a given channel code. Second, the involved soft decision symbols that

are the substantial part of the iterative processing cause a mismatched situation in

the channel estimator as well as in the multi-user detector. Results for the output

signal to noise and interference ratio in mismatched situations were published only

recently [Cai04]. We will extend on these results and present a semi-analytical ap-

proach to predict the convergence behaviour of the iterative receiver by resorting to

results from statistical physics.

A first analysis on iterative receivers with channel estimation was reported by

Alexander and Grant in [Ale00b] where a certain amount of the power is devoted

to pilot symbols. It uses an approximation for the decoder behaviour, and the

exchanged measures are symbol output variances. Lampe presented an analysis

[Lam03] that makes use of results from random matrix theory for channel estimates

that are based on dedicated pilots but not on soft decision symbols. Recently, a

technique called density evolution was successfully applied to accurately describe the

behaviour of an iterative receiver with symbols transmitted on an AWGN channel

[Bou02]. We extend that analysis to include channel estimation for a single channel

tap with random phase and constant amplitude.

We include the soft decision symbols gained from the output of the decoder to en-

hance channel estimation as it was done in Chapter 4. This results in a mismatch of

the symbol power distribution that is due to the fact that the soft decision symbols

differ from the true data symbols. The mismatched behaviour can be described by

deploying results from statistical physics. We conduct a semi-analytical investiga-

tion, where the bit error rate of the channel code is derived from simulations and

the infinite number of users is replaced by a finite number of users. As a result the

analysis delivers the achievable multi-user efficiency for a given symbol block length

and amount of energy spent on pilot symbols.
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6.1 Signal Model

We consider the uplink of a chip-synchronous CDMA system with K users as it is

depicted in Fig. 2.5. Every user is assigned one single fading tap designated by hk.

The assumption is again that the channel is block fading meaning that it remains

constant during the transmission of M symbols. The block of M symbols bk(m), m ∈
{0, 1, . . . , M − 1} of each user are QPSK modulated. All of them are spread by

random signature sequences sk(m)
△
= [sk[0], . . . , sk[N − 1]] , k ∈ {1, . . . , K} with

spreading factor N . For the purpose of the analysis, the sequences are long, meaning

that they are different for every symbol interval. This ensures that all chips are i.i.d.

which is a requirement to apply results from random matrix theory and the replica

method. In contrast to our previous considerations, where the chips were randomly

chosen from the discrete set X/
√

N , the chips are now i.i.d., zero-mean, complex

Gaussian distributed

CN (0, 1/N)
△
= N (0, 1/(2N)) + jN (0, 1/(2N)).

Each block of symbols contains a preamble with J randomly chosen pilot symbols

from the set X. This choice corresponds to the random pilot symbol sequence

presented in Paragraph 4.3.2. The remaining M − J symbols are obtained by

mapping the encoded data stream ck(m
′) onto a QPSK constellation with Gray

labeling after random interleaving. The encoded data stream ck(m
′) is obtained

from encoding the raw data stream dk(m
′′) with a code Ck.

Restricting the matrix model (2.13) to the flat fading case the received vector

y ∈ CMN×1 is written as

y = DBh + v (6.1)

where

• D ∈ CMN×KM is a block diagonal matrix diag[S(0), S(1), . . . , S(M − 1)].

S(m) ∈ CN×K denotes the spreading matrix at discrete time m. It is composed

as [s1(m), . . . , sK(m)] with the signature sequence sk(m) ∈ CN×1 of user k and

symbol m placed in the k-th column.

• The matrix B
△
=
[
BT

P, BT
D

]T
has dimension KM × K and is defined by the

vertically stacked matrices [B(0), B(1), . . . , B(M − 1)]T. The first J matrices

B(m) make up the pilot part BP ∈ {X, 0}JK×K, and the remaining M − J

matrices denote the part due to the data BD ∈ {X, 0}(M−J)K×K. B(m) is a

diagonal matrix of dimension K ×K. The index m ∈ {0, . . . , J − 1} accounts

for the pilot symbols and m ∈ {J, . . . , M − 1} for the code symbols.
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• The vector h ∈ CK×1 denotes the K channel coefficients of all the users.

The coefficients have a random phase and unit power in each realization, i.e.,

|hk|2 = 1.

• The noise vector v ∈ C
MN×1 has zero-mean, spherically invariant complex

Gaussian distributed samples CN (0, σ2
v).

For the system Eb/N0 we use definition (2.14) that takes into account the loss due

to pilot symbols.

6.2 Density Evolution

This analysis describes the convergence behaviour of the iterative receiver including

channel estimation. The involved soft decision symbols and the channel estimates

are represented through densities. Hence, this form of analysis is called density evo-

lution. To explain the idea we present the “big picture” conveyed through Fig. 6.1.

The analysis does not use any observed measures except the relation between bit

error rate and the signal to noise ratio for the considered channel code Ck. We study

the large system case, meaning that the number of users K and the spreading factor

N tend to infinity at a fixed ratio K, N → ∞, K/N = α. This has the advantage

that the average receiver performance, expressed in terms of its multi-user efficiency,

can be described analytically and does not depend on the particular realization of

signature sequences any longer.

Our aim is to describe the multi-user efficiency Ψ of the multi-user detector,

defined in Paragraph 2.8.1, after one iteration, given an assumed multi-user efficiency

η. In the large system case the multi-user efficiency η is the same for all users since

they all experience the same effective interference [Tse99]. The effective SINR at

the input of the decoder for user k is given by γk = η|hk|2/σ2
v . It is associated with

the parameter µk that fully describes the distribution of all log-likelihood values

at the output of the decoder for the assumption that all code bits are +1. This

condition does not restrict the validity of the results but helps us to find a simple

description of the decoder output. The decoder output density is conveyed to the

channel estimator that outputs the individual distributions of all channel estimates.

Latter are characterized by the mean of the estimate h̄k and its mean square error ξ2
k.

Thus, we obtain again a density. The densities of the log-likelihood ratios and the

channel estimates are passed on to the multi-user detector and the new multi-user

efficiency Ψ is evaluated. This procedure is repeated for several values of η ∈ [0, 1]

such that we obtain the relation Ψ(η) from which the convergence of the receiver

can be predicted.
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hk, ξ
2
k, βk

Detector

Channel
Estimator

Multi-User Ψ(η)

tanh(·/2)

Decoder

Lk(m
′) ∼ N(µk, 2µk)

η

Figure 6.1: The iterative receiver and the quantities involved in the analysis.

6.3 Decoding

We employ the soft-in soft-out decoder that was discussed in Section 2.10. The algo-

rithm computes individual a-posteriori probabilities APP{dk(m
′′)} on information

bits (2.18) and extrinsic probabilities EXT{ck(m
′)} on code bits (2.21). Unlike in

the previous chapters, extrinsic values are passed on to the multi-user detector and

the channel estimator as shown in Fig. 6.1. In the experiments in Chapter 4 we

mentioned that a-posteriori mapped symbols lead to faster convergence when used

in the channel estimator. However, we know from [Bou02] that this violates the

assumptions of the belief propagation algorithm. The question under which condi-

tions a-posteriori information can be used for channel estimation in the analysis is

subject to current investigations. From the technical point of view it is a simple

extension and requires only the evaluation of the bit error rate curve obtained from

a-posteriori information. The log-likelihood ratio (LLR) of the code bits depend on

their extrinsic probability as

Lk(m
′)

△
= log

(
EXT{ck(m

′)}
1− EXT{ck(m′)}

)

.

Without loss of generality, let us assume for the purpose of the analysis, that code

bits c′k(m
′) = +1 ∀m′ were sent. Then, their log-likelihood ratios Lk(m

′) are approx-

imately Gaussian distributed [Chu01]. It was observed in [Ric01a] that the output

distribution of any binary-input symmetric-output memoryless channel exhibits the

symmetry property g(x) = g(−x) e−x. This property implies that for a Gaussian

distribution the variance equals two times its mean

Lk(m
′) ∼ N (µk, 2µk) , m′ ∈ {2J, . . . , 2M − 1}. (6.2)

Hence, the parameter µk fully characterizes the decoder output distribution. Next,

we show how the parameter µk can be determined, given an assumed multi-user
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Figure 6.2: Bit error rate for code bits based on extrinsic log-likelihood ratios. The

code C is a four-state convolutional code with rate 1/2 and polynomials (5, 7)8.

efficiency η, the system noise variance σ2
v , and the channel realization hk. In the

analysis we model the input to the decoder as the output of an AWGN channel

zk(m
′) = bk(m

′) + ρk(m
′)

with ρk(m
′) ∼ N (0, 1/γk) where

γk
△
= η|hk|2/σ2

v (6.3)

denotes the effective signal to interference and noise ratio of user k. This quantity

can range between zero and |hk|2/σ2
v and directly reflects the capabilities of the multi-

user detector to mitigate multiple-access interference via its multi-user efficiency η.

The decoder output bit error rate of the code bits is a function of the particular code

Ck and the effective output SINR γk of the multi-user detector. The input-output

relation BER = es(C, γk) of the code has to be derived by simulations since no exact

analytical expressions exist. For the convolutional code with generator polynomials

(5, 7)8 the corresponding bit error rate curve based on the extrinsic output code

bits is depicted in Fig. 6.2. When the BER is evaluated along ĉ′(m′) = sign(L(m′)),

it can be expressed in terms of the SINR µ2
k/(2µk) = µk/2 of the LLR output

distribution (6.2) along

BERk = Q

(√
µk

2

)

,

such that we can solve for the parameter µk as

µk = 2
(
Q−1 (BERk)

)2
. (6.4)
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6.4 Mismatched Channel Estimation

The receiver feeds back extrinsic information retrieved from code bits to the channel

estimator in each iteration. This information is used to improve the channel estimate

by means of transferring reliability information into soft decision symbols that act

as additional pilot symbols. The log-likelihood ratio values L(m′), which range

from “−∞” to “+∞”, are mapped to soft decision symbols c̃(m′) in the confined

interval [−1, +1], depending on their reliability. The mapping function f(L), that

minimizes the mean square error E
L
{(f(L(m′))− c′(m′))2}, is tanh(L(m′)/2) [Sgr01].

The QPSK code symbols are finally obtained from two consecutive LLR values along

b̃k(m) =

(

tanh

(L′
k(2m)

2

)

+ j tanh

(L′
k(2m + 1)

2

))

/
√

2. (6.5)

For this analysis we employ the approximate LMMSE (ALMMSE) channel estimator

(4.6) that we have derived in Paragraph 4.1.3. The ALMMSE estimator is obtained

when we assume that the channel vector h and the received signal y are zero-

mean and that the deterministic code symbol matrix B in (6.1) is replaced with the

mixture of known pilot symbols and mapped soft code symbols B̃
△
= [BPB̃D]T. For

the flat Rayleigh fading channel with all taps hk, k ∈ {1, . . . , K} having variance

one, the ALMMSE estimator (4.6) reads

ĥ =
(

B̃
H
DHDB̃ + σ2

vIK

)−1

B̃
H
DHy =

(

Ã
H
Ã + σ2

vIK

)−1

Ã
H
y. (6.6)

The channel estimator (6.6) is mismatched since it assumes that the soft decision

symbols b̃(m) are the true data symbols b(m). It is only matched if the M − J data

symbols were perfectly known.

The statistical description of the soft decision data, characterized through µk (6.4),

prohibits us from finding an exact expression for ĥk, k ∈ {1, . . . , K}. Rather than

looking at a particular outcome of the channel estimator, we now aim at finding an

expression that describes the distribution of the estimate ĥk. If we had soft decision

symbols with constant modulus we could use results from random matrix. It was

shown in [Eva00] how under these circumstances a distribution of ĥk can be found.

However, in our analysis, the soft decision symbols do not have constant modulus

and thus the true output SINR would be too optimistic. Fortunately, a recently

developed generalization [Mül04a] of Tanaka’s replica method [Tan02a] to analyze

large CDMA systems provides the tool to tackle SINR prediction in mismatched

channel estimators. We have found the following conjecture.

Conjecture 1 The SINR βk of the mismatched channel estimator (6.6) for user

k converges, as the number of users K and the spreading factor N grow large with
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their ratio α = K/N fixed, to

βk = lim
k→∞

Ẽ2
k

F̃k

(6.7)

where Ẽk and F̃k are the unique solutions to the systems of fixed point equations

(F.7) and (F.8) that are given in Appendix F.

A rigorous proof of Conjecture 1 is yet unknown. However, Monte Carlo simulations

with real systems indicate an excellent match between the average observed and

predicted signal to noise ratio. This evidence is presented in Appendix F.

With Conjecture 1 and results from Guo and Verdú [Guo02], the conditional mean

becomes asymptotically

h̄k =
Ẽk

1 + Ẽk

hk (6.8)

and the mean square error (MSE), i.e., the variance of the estimated fading tap ĥk,

is expressed as

ξ2
k =

1 + F̃k
(

1 + Ẽk

)2 . (6.9)

In this case the distribution of the channel estimate ĥk, conditioned on its true value

hk, is given by the complex Gaussian distribution

fĥk

(

ĥk|hk

)

=

(

1 + Ẽk

)2

π|hk|2
(

1 + F̃k

) exp




−

∣
∣
∣

(

1 + Ẽk

)

ĥk − Ẽkhk

∣
∣
∣

2

(

1 + F̃k

)

|hk|2




 . (6.10)

The conditional mean h̄k and its variance ξ2
k, together with the distribution of hk

(which is known by assumption in the analysis), fully characterize the distribution

of the estimate ĥk. This distribution is needed to evaluate the performance of the

multi-user detector suffering from imperfect channel knowledge.

6.5 Mismatched Multi-User Detection

For soft data detection we deploy parallel interference cancellation followed by linear

MMSE filtering that was introduced in Paragraph 3.4.2. In a real receiver, the input

measures to the detector are the received vector y, the soft decision symbols B̃ based

on extrinsic information, the channel estimate ĥ, and the spreading matrix D. In

the analysis we need the parameters describing the statistics of the log-likelihood

feedback values, i.e., µk (6.4), the mean square error of the channel estimate ξ2
k

(6.9), the mean of the channel estimate h̄k (6.8), the Eb/N0, and the system load α.
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In the large system limit, the multi-user efficiency Ψ of the PIC-LMMSE detector

is determined by the Tse-Hanley equation [Tse99] provided that the detector is

perfectly matched, i.e., ĥk = hk. Let U denote the residual interference power and

K, N → ∞ with K/N = α. Then, the multi-user efficiency κ of the IC-LMMSE

multi-user detector is given by

κ = lim
K→∞

(

σ2
v +

α

K

K∑

k=1

∫
u

1 + uκ
dHk(u)

)−1

(6.11)

with the cumulative distribution function (cdf) of the residual interference

Hk(u) = f

(∣
∣
∣bk − b̃k

∣
∣
∣

2 ∣
∣
∣ĥk

∣
∣
∣

2

< u

)

. (6.12)

If the residual interfering power of the users is not completely known, i.e., ĥk 6= hk,

expression (6.11) describes the nominal multi-user efficiency κ [Cai04]. The true

multi-user efficiency Ψ is computed as

Ψ = κ

lim
K→∞

(

1 +
α

K

K∑

k=1

∫
u

(1 + uκ)2 dHk(u)

)

lim
K→∞

(

1 +
α

K

K∑

k=1

∫ ∫
p

(1 + uκ)2
dHk(u) dHk(p|u)

) (6.13)

with dHk(p|u) being the true conditional cdf of the residual interference power of

all users

Hk(p|u) = f

(∣
∣
∣bkhk − b̃kĥk

∣
∣
∣

2

< p

∣
∣
∣
∣
u = hk

)

. (6.14)

The nominal and true distributions of the interference in (6.12) and (6.14) are com-

puted with the Gaussian approximation for the soft symbols b̃k and the conditional

Gaussian distribution of the channel estimates with mean h̄k and variance ξ2
k.

This work extends the analysis presented in [Bou02] by the channel estimator

and by taking into account the amplitude and phase mismatch expressed by a dis-

tribution of the channel estimate in the multi-user detector. The variances of the

individual symbols depend on the soft decision symbols and on the statistics of the

channel estimate ĥk. The true symbol variance for QPSK is computed as

ζk(m) =
∑

bk∈X

∣
∣
∣bk hk − b̃k(m) ĥk

∣
∣
∣

2

p (bk)

and becomes

ζk(m) = |hk|2 +
∣
∣
∣b̃k(m)

∣
∣
∣

2 ∣∣
∣ĥk

∣
∣
∣

2

− 2
∣
∣
∣b̃k(m)

∣
∣
∣

2

ℜ
{

h∗
kĥk

}
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when we assume that the probability for transmitting a symbol bk = (a + jb)/
√

2

with a, b ∈ {+1,−1} is given through

p
(

b̃k,real(m) = a
)

× p
(

b̃k,imag(m) = b
)

.

The nominal symbol variance is similarly derived according to (6.12) and results in

ζk(m) =

(

1−
∣
∣
∣b̃k(m)

∣
∣
∣

2
) ∣
∣
∣ĥk

∣
∣
∣

2

.

We want to point out that b̃k(m) and ĥk are assumed to be independent and that

we are aware of the fact that this is not completely true. When viewing channel

estimation as a factor graph, ĥk consists of J pilot symbol contributions and M −J

contributions of b̃k(m). The individual influence of one single symbol onto the fading

tap of the same user tends to zero when the block length goes to infinity. But, for

finite block length, the two variables are not fully independent.

The pdf of the code symbols b̃k(m) is known and completely characterized by

µk. We can compute (6.11) and (6.13) by numerical integration as described in

Appendix G.2. The individual soft feedback symbols b̃k(m) are obtained via (6.5).

The channel estimates are conditionally distributed as fĥk

(

ĥk|hk

)

∼ CN
(
hk, ξ

2
k

)

as shown in (6.10).

6.6 Results

The required steps for conducting the previously described analysis are outlined

in Fig. 6.3. The large system behaviour for a continuous user distribution is well

approximated by K = 25 users. When applying this procedure, we produce the

following results.

First, we illustrate the SINR βk (6.7) of the channel estimate versus the multi-user

efficiency η as an intermediate result before we assess the overall performance of the

iterative receiver. We consider the channel |hk|2 = 1 of a particular user k. In the

considered setting the system load is α = 1.5 and Eb/N0 = 5 dB. Fig. 6.4 shows the

SINR values corresponding to the block lengths M ∈ {20, 50, 100} and the number

of pilot symbols J = 2. The SINR curves in Fig. 6.5 refer to the same block lengths

but with J = 10 pilot symbols. Due to the energy normalization (2.14) the curves

of βk do not originate at the same value. For η = 0, channel estimation relies only

on the J dedicated pilot symbols. When the multi-user efficiency η attains larger

values, the SINR βk increases except for a remarkable phenomenon at low multi-user

efficiencies. For small values of η the SINR slightly decreases. This is due to the

fact that soft decision symbols are used in the channel estimator. The ALMMSE is
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Parameters

- σ2
v , M, J

- BER - SINR characteristic of code Ck, e.g., Fig. 6.2

- Choose hk with random phase and constant amplitude for K users

- NoE . . . number of linearly spaced η values

for n = 1:NoE

η(n) ← n/NoE

γk ← η|hk|2/σ2
v Eq. (6.3)

Determine BER for considered code Ck and SINR γk

µk ← 2(Q−1(BERk))
2 Eq. (6.4)

c̃′k ←
∫ +∞

−∞
tanh(λ/2)/

√
4πµk exp(−(λ− µk)

2/(2µk)) dλ

b̃k ← c̃′k(1 + j)/
√

2 Eq. (2.10)

Ẽk, F̃k ← solve fixed point equations (F.9) and (F.10)

βk(n) ← Ẽ2
k/F̃k Eq. (6.7)

hk ← Ẽk/(1 + Ẽk)hk Eq. (6.8)

ξ2
k ← (1 + F̃k)/(1 + Ẽk)

2 Eq. (6.9)

Compute κ (6.11) and Ψ(n) (6.13) via Gaussian integration (Appendix G.2)

end n

Plot βk(n) vs. η(n)→ Figs. 6.4, 6.5

Plot Ψ(n) vs. η(n) → Figs. 6.6, 6.7

Figure 6.3: Outline of the iterative receiver analysis.

not aware that soft decision symbols with small amplitudes do not indicate a small

amplitude of the channel taps. Hence, the estimator underestimates the amplitude

of the channel. For large values of η the soft decision symbols become “harder” and

the SINR flattens out. The maximum SINR βk is achieved for η = 1 and it implies

that all feedback symbols b̃k(m) have converged to their true values bk(m).

To assess the performance of the whole receiver we illustrate the evolution Ψ(η)

of the multi-user efficiency η. That is, we plot the relation between the assumed

multi-user efficiency η that is the input measure to the analysis versus the resulting

multi-user efficiency Ψ after one iteration. A particular value of η characterizes the

densities of the soft decision code symbols and the channel estimates. Evaluating

(6.13) for several values of η results in an input-output relation Ψ(η) from which

the behaviour of the iterative receiver can be predicted. We plot the relation Ψ(η)

versus η for an Eb/N0 of 5 dB, a load α = 1,5, and a rate RC = 1/2 convolutional
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Figure 6.4: Output SINR βk of the ALMMSE channel estimator for Eb/N0 = 5 dB,

number of pilots J = 2, and load α = 1,5.
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Figure 6.5: Output SINR βk of the ALMMSE channel estimator for Eb/N0 = 5 dB,

number of pilots J = 10, and load α = 1,5.
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Figure 6.6: Evolution of the multi-user efficiency Ψ(η) for Eb/N0 = 5 dB, number

of pilots J = 2, and load α = 1,5.

code with generator polynomials (5, 7)8. The evolution curves Ψ(η) for the multi-

user efficiency are given in Figs. 6.6 and 6.7 for block length M ∈ {20, 50, 100} and

J = 2 and J = 10, respectively. Like in Section 3.7 we plot the diagonal Ψ(η) = η.

The crossing of a particular curve with the diagonal marks the final point in the

iterative process and denotes a fixed-point. When a staircase is plotted, the number

of steps to a fixed-point tells us the number of iterations required to attain where

convergence comes to an end. The corresponding value η in dB can be determined

from the upper horizontal axis and designates the distance to the single-user receiver

performance.

In the following, we discuss the impact of approximate LMMSE channel estimation

on the iterative receiver performance. The lowest curve describes the performance

when neither the mean value h̄k nor the mean square error ξ2
k of the distribution of

the channel estimate ĥk is available in the receiver (“No CIR”) except its statistics

σ2
k,h = 1. In this case we set hk = 1 and ξ2

k = 1. The resulting fixed point indicates a

gap of roughly 7 dB to the single-user bound. The most upper curve in the diagrams

characterizes the performance for perfectly known channel coefficients at the receiver

(“Perfect CIR”) with hk = hk and ξ2
k = 0. At Eb/N0 = 5 dB the receiver is able to

attain the single-user bound. In the plots we can further recognize three more curves

representing the evolution of the multi-user efficiency Ψ(η) for soft decision directed
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Figure 6.7: Evolution of the multi-user efficiency Ψ(η) for Eb/N0 = 5 dB, J = 10,

and load α = 1,5.

channel estimation described in Section 6.4. The block length M corresponds to 20,

50, and 100 symbols, respectively. Fig. 6.6 shows the case for J = 2. The fixed

point for M = 20 is associated with a loss of 0,46 dB to the single-user performance

and those of M = 50 and M = 100 with 0,17 dB and 0,1 dB, respectively. The

results for J = 10 show an interesting detail. Due to the normalization (2.14) the

noise level is increased compared to the case J = 2. For the case M = 20 the

SNR becomes rather poor such that the convergence stops 3,46 dB from the single-

user bound. For the given Eb/N0 an increase of number of pilot symbols does not

improve the performance. For blocks of length M = 50 and M = 100 the loss due

to normalization is not that strong any more but there is still an increase of the

system SNR compared to the J = 2 case. Hence, for the given load and Eb/N0, an

increase in J is not beneficial.

6.7 Summary

In this chapter we applied density evolution to the analysis of an iterative CDMA

receiver consisting of a parallel interference canceling LMMSE multi-user detector,

a bank of single-user MAP decoders, and an approximate LMMSE (ALMMSE)

channel estimator for a single path channel with constant amplitude and random
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phase. The quantities that are delivered through the iterative process are described

by parameters that describe their Gaussian distributions. This holds for the soft

decision symbols and the average channel estimate. The channel estimator makes

use of soft decision symbols that are derived from the output quantities of a MAP

decoder. In the large system case we derive analytical expressions for the mean

channel estimates hk and their error-variances ξ2
k when soft decision symbols are used

in the estimator. These values are passed on to the multi-user detector and they

are jointly used with the soft decision symbols that are derived form the extrinsic

information. The performance is evaluated in terms of the multi-user efficiency Ψ

and we show how the performance depends on the symbol block length M , the

number of dedicated pilot symbols J , the system Eb/N0, and the load α = K/N .



7 Conclusions

This thesis investigates iterative CDMA receivers with coding for realistic channel

environments in uplink communications. We derive iterative receivers with channel

estimation as suboptimum implementation of the optimum receiver that exhibits

prohibitive computational complexity. An iterative receiver consists of three de-

coupled modules - the multi-user detector, a bank of single-user decoders, and a

channel estimator. In this way the complexity is reduced to a manageable measure

compared to the defying effort required by optimum joint multi-user decoding and

channel estimation. The emphasis of this work is placed on inter-symbol interference

processing in the detectors and multi-path channel estimation that is integrated in

the iterative processing loop. We investigate various types of detectors with dif-

ferent realizations of interference cancellation and the subsequent linear filter and

assess their support for system capacity, convergence properties, and bit error rate.

Then, we develop channel estimation algorithms that use different degrees of statis-

tical a-priori knowledge. An interesting aspect is also the choice of pilot sequences

for initial channel estimation in the first iteration when no soft decision data is

available. The estimation schemes are compared against each other with several

multi-path channels. Further, we design an iterative receiver for the UMTS-FDD

standard using the results on multi-user detection and channel estimation obtained

from the general setup considered previously. The iterative receiver requires some

modifications due to the different modulation format and the type of convolutional

codes used. We demonstrate that the general concepts can be applied successfully

in UMTS under the assumption of frame-synchronous transmission. Finally, we

present an approach to study the iterative receiver in a semi-analytical way for the

particular case of a single path channel. The most important insight gained from

this work shall be summarized in the following paragraph.

Feedback Information: For interference cancellation in the multi-user detector ex-

trinsic information leads to highest achievable loads. For a particular range

of the system load a-posteriori feedback converges faster but does not achieve

better results than when extrinsic information is used with more iterations.

When soft decision symbols are used in channel estimation symbols derived

from a-posteriori information lead to better channel estimates than their ex-

trinsic counterparts.
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Inter-Symbol Interference: For realistic channels, where energy can be dispersed

over an observation interval of 1 µs, inter-symbol-interference processing is

required for spreading factors N < 32 to maximize the system capacity.

Interference Cancellation: Successive interference cancellation requires two to

three iterations less to achieve the best possible performance compared to

parallel interference cancellation. However, the maximum load was observed

to be only slightly higher for successive IC than for the parallel IC.

Soft-Decision Symbols Supported Channel Estimators: Iterative structure pro-

mote the usage of channel estimators that consider soft decision symbols. We

show that with the most complex scheme, that considers the variances of

soft decision symbols, the lowest mean square error can be obtained. How-

ever, the relatively small gains in the mean square error do not accelerate the

convergence speed of the receiver. It turns out that a simple approximated

least-squares scheme shows a loss of up to 1,75 dB over the LMMSE estimator

at a BER of 10−3 in the Pedestrian-B multipath environment.

Channel Sounding Sequences: Optimum sequences for initial channel estimation

minimize the mean square error of the channel estimates. However, the final

bit error rate achieved with a setup based on perfect root of unity sequences

can be replaced by the less complex random symbol sequence.

System Capacity: An iterative receiver with integrated ALS channel estimation

and PIC-LMMSE detection allows system loads of 1,5 in various multi-path

channels. This implies a significant increase in system capacity when compared

to one-short Rake receivers.

Multiple Antenna Reception: An increase in the number of receive antennas al-

lows roughly the same increase in the number of accommodated users.

Convolutional Codes: Convolutional codes with larger constraint lengths lead to a

premature end in the iterative convergence process.

UMTS Receiver: Under the assumption of symbol synchronous transmission the

UMTS compliant iterative receiver shows large performance gains compared

to one-shot Rake receivers.

Analysis: We have developed an analysis tool based on density evolution to predict

the convergence behaviour of an iterative receiver with integrated channel

estimation for the case of a constant amplitude channel with random phase.

The best performance is always achieved with larger block lengths M . The

number of pilot symbols J can be kept at a minimum to ensure identifiability.



A Acronyms

ALS Approximate Least Squares

ALMMSE Approximate Linear Minimum Mean Square

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BP Belief Propagation

BPSK Binary Phase Shift Keying

CC Convolutional Code

cdf Cumulative Distribution Function

CG Coding Gain

CIR Channel Impulse Response

COST COperation europenne dans le domaine de la recherche Scien-

tifique et Technique

CSI Channel State Information

CDMA Code Division Multiple-Access

DE Density Evolution

DS Direct Sequence

EDGE Enhanced Data Rate for Global Evolution

FBI Feedback Information

FEC Forward Error Correction

GSM Global System of Mobile Communications

HSDPA High Speed Downlink Packet Access
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IC Interference Cancellation

IEEE Institute of Electrical and Electronics Engineers

i.i.d. Independent and Identically Distributed

ISI Inter-Symbol Interference

IS-95 Interim Standard 95

LAN Local Area Network

LMMSE Linear Minimum Mean Square Error

LOS Line of Sight

MAI Multiple-Access Interference

MAN Metropolitan Area Network

MAP Maximum A-Posteriori

MC-CDMA Multi-Carrier CDMA

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MRC Maximum Ratio Combining

MSE Mean Square Error

MUE Multi-User Efficiency

NMSE Normalized Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

pdf Probability Density Function

pmf Probability Mass Function

PIC Parallel Interference Canceler

QPSK Quarternary Phase Shift Keying
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PRUS Perfect Root of Unity Sequence

RAND Random Symbol Pilot Sequence

rms Root Mean Square

SIC Successive Interference Canceler

SINR Signal to Interference and Noise Ratio

SNR Signal to Noise Ratio

SOVA Soft Output Viterbi Algorithm

SUMF Single-User Matched Filter

TC Turbo Code

TDMA Time Division Multiple-Access

TFCI Transmit Format Combination Indicator

TPC Transmit Power Control

TTI Transmission Time Interval

UMTS Universal Mobile Telecommunication System

UTRA UMTS Terrestrial Radio Access

WLAN Wireless LAN

WSSUS Wide Sense Stationary and Uncorrelated Scattering

ZF Zero Forcer

3GPP Third Generation Partnership Program





B Notation

a, b, c, . . . Scalars

a, b, c, . . . Vectors

A, B, C, . . . Matrices

[A]k,l Element in the k-th row and l-th column of matrix A

0N All-0 vector of dimension N × 1

1N All-1 vector of dimension N × 1

IN Identity matrix of dimension N ×N

ek The standard basis unit vector for the k-th dimension

(·)∗ Conjugate operator

(·)T Transpose operator

(·)H Hermitian operator

(·)−1 Inverse operator

(·)(i) Indication for i-th iteration

j
√
−1

exp(·) Exponential function

log(·) Natural logarithmic function

log2(·) Logarithm with base 2

argmin
x

f(x) Argument x for which the scalar function f(x) is mini-

mized.
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argmax
x

f(x) Argument x for which the scalar function f(x) is maxi-

mized.

quant
X

{x} Assignment of that value in X that has the minimum Eu-

clidian distance to the observation x.

|x| Absolute value of x

‖a‖ l2 norm of a

diag(a) Place elements of the vector a on the main diagonal of a

matrix that has zeros elsewhere (becomes a matrix).

diag(A) Diagonal of A (becomes a vector)

tr(A) Trace of A

F(·) Fourier transform

ℜ{·} Real part

ℑ{·} Imaginary part

f(·) Probability density function (pdf)

p(·) Probability mass function (pmf)

E{·} Expectation operator

△
= Defined as

∝ Proportional

∼ Distributed as

∗ Convolution

⊗ Kronecker product

Cm×n Set of complex matrices with dimension m× n

Fm×n Set of matrices with dimension m× n and elements {0, 1}
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Rm×n Set of real matrices with dimension m× n

Xm×n Set of matrices with dimension m× n and elements

{±1± j}/
√

2.

N (µ, σ2) Real Gaussian distribution with mean µ and variance σ2.

CN (µR + jµI , σ
2) Complex Gaussian distribution for Z = X + jY with

X and Y independent and distributed as X ∼ N (µR, σ2/2)

and Y ∼ N (µI , σ
2/2), respectively.

δ(k − l) Kronecker Delta function: δ(k − l) =

{
0 : k 6= l

1 : k = l

φ(·) Euler Totian function

∇xf(x) Gradient of scalar function f(x) with respect to x.





C Variables

B Bandwidth

G Number of bits per transmit symbol

J Number of pilot symbols

K Number of users

L Length of propagation channel

M Transmission block length

N Spreading sequence length

NR Number of receive antennas

P Power

RC Code rate

TC Chip duration

TS Symbol duration

i Iteration index

k User index

l Path index

m Symbol index

n Chip index

r Antenna index

b(m) Transmit symbol
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c(m′) Coded symbol

d(m′′) Information bit

h[n] Channel impulse response

s̆[n] Effective spreading sequence with perfect CSI

s̃[n] Virtual spreading sequence with estimated CSI

s[n] Spreading sequence

u[n] Pilot sequence

v(m) Noise contribution where v(m) ∼ CN (0, σ2
v)

x(m′) Demapped detector output symbols

z(m′) Detector output symbols

α System load

η True multi-user efficiency

γ Signal to noise ratio (SNR) or

Signal to noise and interference ratio (SINR)

σ2
h Channel tap variance

σ2
x Observation noise variance

σ2
v Additive noise variance

κ Nominal multi-user efficiency

ι Code memory length

τD Channel delay spread

Ψ True multi-user efficiency as output of analysis

Σ Covariance matrix of the channel estimation error



D The MAP Decoding Algorithm

Convolutional codes can be represented by a trellis that shows all valid transitions

from a particular state s(m′′) at time m′′ to the state s(m′′ + 1). An example of a

trellis for a four-state convolutional code with rate RC = 1/2 and memory length ι

is depicted in Fig. D.1. There are 2ι possible states denoted by {s0, s1, s2, s3}. For

time m′′ = 0 we assume that the state of the code is S(m′′ = 0) = s0 in the trellis.

From this initial state the trellis is built up according to the M ′′ = 2(M − J)RC

information bits and the generator polynomials of the convolutional code. At the

end the trellis is forced to its initial state by appending ι terminating zero input

symbols. From state each state si, i ∈ {0, . . . , 3} at time m′′ there are two outgoing

edges: e0 is associated with the information bit d = 0 and the output code word

c = [c0 c1]. Similarly, this holds for the information bit d = 1 that is associated

with edge e1. The conditional probability for a transition from state Si to state Sj,

assuming that the states are connected, calculates as

γ(Si, Sj , m
′′) =

1
√

2πσ2
x

1/RC∏

u=1

exp

(

−
(
x(u + m′′/RC)− µxc

′
i,j(u)

)2

2σ2
x

)

where µx and σ2
x correspond to the parameters of the AWGN model (2.17). The value

c′i,j(u) is the BPSK mapped u-th code bit that is associated with the transition from

state Si to state Sj . The probability for being in a particular state Si is computed

by means of the forward propagation probabilities α and the backward propagation

probabilities β. They are expressed as

α(Si, m
′′ + 1) =

2ι−1∑

j=0

α(Sj , m
′′) γ(Sj , Si, m

′′),

β(Si, m
′′) =

2ι−1∑

j=0

β(Sj, m
′′ + 1) γ(Si, Sj , m

′′).

The initial values of α(Si, 0) and β(Si, M
′′ + ι) are

α(Si, 0) =

{
1 i = 0 ,

0 i 6= 0 ,
β(Si, M

′′ + ι) =

{
1 i = 0 ,

0 i 6= 0 .



126 Appendix D - The MAP Decoding Algorithm

m′′ m′′ + 1

S3 = 11

S2 = 10

S1 = 01

S0 = 00

γ(s(m′′) = S3, s(m
′′ + 1) = S2,m

′′)

e0 : d = 0, c = [c0 c1]

γ(s(m′′) = S3, s(m
′′ + 1) = S3,m

′′)

e1 : d = 1, c = [c0 c1]

Figure D.1: Example of a trellis for a four-state convolutional code with rate RC =

1/2.

The forward and backward state probabilities α(·) and β(·) are computed as prod-

ucts of probabilities. These quantities take on very small values after few stages

and can cause errors due to overflows that are typically caused by the finite num-

ber representation capabilities of the hardware. The problem is removed when the

following normalisations are applied at every stage

2ι−1∑

i=0

α(Si, m
′′) = 1 and

2ι−1∑

i=0

β(Si, m
′′) = 1 .

With a ∈ F the APP on the information bits are computed from the state probabil-

ities

APP {d(m′′) = a|x} =

∑

d=a

α(Si, m
′′) β(Sj, m

′′ + 1)

∑

d=0,d=1

α(Si, m
′′) β(Sj, m

′′ + 1)
, (D.1)

where the sum over d = a concerns all transitions from state Si to state Sj where

the information symbol d has the value a. The APP on the code bits cl, l ∈ {0, 1},
are computed from the transition probabilities

APP {cl(m
′′) = a|x} =

∑

cl=a

α(Si, m
′′) γ(Si, Sj , m

′′) β(Sj, m
′′ + 1)

∑

cl=0,cl=1

α(Si, m
′′) γ(Si, Sj , m

′′) β(Sj, m
′′ + 1)

. (D.2)
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Similar as in (D.1) the sum over cl = a includes all transitions for which the code

bit cl is a. For the implementation the following details turn out to be important.

The relation between the APP and EXT values is given by

EXT {cl(m
′′) = a|x} ∝ APP {cl(m

′′) = a|x} ×

exp

(
(x(l + m′/RC)− (1− 2a)µxc

′(l))2

2σ2
x

)

.

This relation allows to compute the EXT values from the APP and the observations.

For APP values that are very close to 0 or 1 the corresponding conversion into

likelihoods casts a numerical problem. Expressions like “∞−∞” occur and provoke

instabilities. The MAP algorithm offers an intrinsic way to compute the EXT values

by reshaping expression (D.2) to

EXT {cl(m
′′) = a|x} =

∑

cl=a

α(Si, m
′′) γ∼l(Si, Sj, m

′′) β(Sj, m
′′ + 1)

∑

cl=0,cl=1

α(Si, m
′′) γ∼l(Si, Sj , m

′′) β(Sj , m
′′ + 1)

with

γ∼l(Si, Sj , m
′′) =

1
√

2πσ2
x

1/RC∏

u=1,u 6=l

exp

(

−
(
x(u + m′′/RC)− µxc

′
i,j(u)

)2

2σ2
x

)

.





E Proof of Equation (3.20)

The variables used in the matrix inversion lemma (G.2) are identified with those in

(3.19) as

A
△
=

1∑

q=−1

S̆qV (m− q)S̆
H

q + σ2
vIN+L−1,

b
△
= s̆k b̃k(m).

Hence, (3.19) can be recasted to

s̆H
k

(

A−1 −A−1b
(
1 + bHA−1b

)−1
bHA−1

)

s̆H
k

(

A−1 −A−1b
(
1 + bHA−1b

)−1
bHA−1

)

s̆k

=
s̆H

k

(
A−1 + A−1bHA−1b−A−1bbHA−1

)

s̆H
k

(
A−1 + A−1bHA−1b−A−1bbHA−1

)
s̆k

=
s̆H

k A−1 + s̆H
k A−1bHA−1b− s̆H

k A−1bbHA−1

(
s̆H

k A−1 + s̆H
k A−1bHA−1b− s̆H

k A−1bbHA−1
)
s̆k

=
s̆H

k A−1 +
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆H
k A−1s̆H

k A−1s̆k −
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆H
k A−1s̆ks̆

H
k A−1



s̆H
k A−1 +

∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆H
k A−1 s̆H

k A−1s̆k
︸ ︷︷ ︸

scalar

−
∣
∣
∣b̃k(m)

∣
∣
∣

2

s̆H
k A−1s̆k
︸ ︷︷ ︸

scalar

s̆H
k A−1



 s̆k

=
s̆H

k A−1

s̆H
k A−1s̆k

and relation (3.20) is established.





F Remark on Conjecture 1

In [Nis01,Tan02a] the replica method was used to analyse the output SINR of a max-

imum a-posteriori multi-user detector. The replica method is a tool from statistical

physics and it describes the macroscopic behaviour of a compound of microscopic

particles. In case of multi-user detection the microscopic particles correspond to the

individual chips of all users and the SINR would result from two macroscopic mea-

sures. The replica method is particularly useful for mismatched situations, i.e., when

the noise variance σ2
v or the power distribution of the users is not perfectly known. It

is able to accurately describe the SINR in such a mismatched situation. A matched

LMMSE multi-user detector described through the replica method is described by

the same equations as those obtained through random matrix theory [Tan02a].

We apply the replica method to mismatched channel estimation in the case when

all users have constant power but a random phase. The problem of linear channel

estimation is structurally the same as that of linear multi-user detection. A linear

multi-user detector is a two stage device that first applies a filter on the observa-

tion vector and then uses the output to decide on the transmitted symbol. In the

following we review the estimation problem for the situation of a single tap channel

and formulate a conjecture for the output SINR based on results obtained through

the replica method. Its validity is supported through experimental results.

Computing the SINR of the Mismatched Channel Estimator

The channel estimates obtained through approximated LMMSE estimation are

h̃ =
(

Ã
H
Ã + σ2

vIK

)−1

Ã
H
y.

We want to find the associated output distribution of ĥk ∼ N(h̄k, ξ
2
k). The mean and

the error variance are given through (6.8) and (6.9). They are parameterised by the

macroscopic measures Ẽk and F̃k whose quotient (6.7) is the SINR βk [Nis01] of the

channel estimate, assuming that the power of all taps is one. The physical meaning

of Ẽk and F̃k is that they describe a set of fixed-points that minimise the free energy

of the multi-user detector (channel estimator) [Tan02a]. For the computation of the

parameters we follow [Mül03] which is a generalisation of [Tan02a] allowing unequal

chip variances. The variable wk[m] denotes the variance of the chip in the k-th
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column and m-th row of Ã ∈ CMN×K . The parameters Ẽk and F̃k write

Ẽk
△
=

1

MN

MN∑

m=1

E[m]wk[m] =
1

M

M∑

m=1

E[mN ]wk[mN ],

F̃k
△
=

1

MN

MN∑

m=1

F [m]wk[m] =
1

M

M∑

m=1

F [mN ]wk[mN ]

where the last equation follows from the fact that the chip variances for user k

associated with symbol m are all the same. To simplify notation we use E[mN ] →
E(m) and F [nM ] → F (m) and reflect the dependence on the symbol level by the

bracket (·). The variables E(m) and F (m) are computed as

E(m) =
1

σ2
v + α(p(m)− q(m))

,

F (m) =
σ2

v + α(p0(m)− 2r(m) + q(m))

(σ2
v + α(p(m)− q(m))2)

.

The set of parameters {p(m), q(m), p0(m), r(m)} are directly related to the variances

of the related symbol variances. They are in general different for different users and

chips due to the soft decision data. To bring into play the soft decision data we make

a modification in the set of equations (186), (187), (202)–(205) presented in [Mül03].

The variances are replaced by the associated variance of the soft decision value in

the following way:

Assumption 1

Ẽk =
1

M

M∑

m=1

E(m)ℜ
{

bn(m)b̃∗n(m)
}

(F.1)

F̃k =
1

M

M∑

m=1

F (m)ℜ
{

bk(m)b̃k(m)
}

(F.2)

r(m) =
1

K

K∑

n=1

Ẽn

1 + Ẽn

ℜ
{

bn(m)b̃∗n(m)
}

(F.3)

q(m) =
1

K

K∑

n=1

Ẽ2
n + F̃n

(1 + Ẽn)2

∣
∣
∣b̃n(m)

∣
∣
∣

2

(F.4)

p(m) =
1

K

K∑

n=1

Ẽ2
n + Ẽn + F̃n + 1

(1 + Ẽn)2

∣
∣
∣b̃n(m)

∣
∣
∣

2

(F.5)

p0(m) =
1

K

K∑

n=1

∣
∣
∣bn(m)

∣
∣
∣

2

(F.6)
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With the assumptions (F.3–F.6) the parameters Ẽk and F̃k are determined as

Ẽk =
M∑

m=1

ℜ
{

b̃k(m)b∗k(m)
}

σ2
v +

α

K

K∑

n=1

∣
∣
∣b̃n(m)

∣
∣
∣

2

1 + Ẽn

(F.7)

F̃k =

M∑

m=1

∣
∣
∣b̃k(i)

∣
∣
∣

2

× (F.8)

σ2
v +

α

K

K∑

n=1

(

1 + Ẽk

)2

− 2ℜ
{

b̃n(m)b∗n(m)
}(

Ẽk + Ẽ2
k

)

+
∣
∣
∣b̃n(m)

∣
∣
∣

2(

Ẽ2
n + F̃n

)

(

1 + Ẽ2
n

)




σ2

v +
α

K

K∑

n=1

∣
∣
∣b̃n(m)

∣
∣
∣

2

1 + Ẽn






2 .

For large block length (M − J)≫ 1, the summation over the soft decision symbols

is equivalent to averaging over their distribution Lk(x, y). Hence, (F.7) and (F.8)

can be rewritten as

Ẽk =
J

σ2
v +

α

K

K∑

n=1

1

1 + Ẽn

+

∫

R2

(M − J)

σ2
v +

α

K

K∑

n=1

thc(x, y)

1 + Ẽn

ths(x, y) dLk(x, y) (F.9)

F̃k = J

σ2
v +

α

K

K∑

n=1

1 + F̃n

(1 + Ẽn)2

(

σ2
v +

α

K

K∑

n=1

1

1 + Ẽn

)2 + (M − J)× (F.10)

∫

R2

σ2
v +

α

K

K∑

n=1

1− 2Ẽn ths(x, y)

1 + Ẽn

+

(

Ẽ2
n + F̃n

)

thc(x, y)

(1 + Ẽn)2

(

σ2
v +

α

K

K∑

n=1

thc(x, y)

1 + Ẽn

)2 thc(x, y) dLk(x, y)

with the definitions

ths(x, y)
△
=

tanh
(

x
2

)
+ tanh

(
y
2

)

2
and

thc(x, y)
△
=

tanh2
(

x
2

)
+ tanh2

(
y
2

)

2
.
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The LLR values are approximated through a two-dimensional Gaussian distribution

[Chu01]

∂2

∂x∂y
Lk(x, y) =

1

4πµk

exp

(

−(x− µk)
2 + (y − µk)

2

4µk

)

.

The SINRs βk can be calculated analytically given the mean µk of the LLR values.

The fixed-point equations for Ẽk (F.9) and F̃k (F.10) are solved via Monte-Carlo

integration.

The above choice of {p(m), q(m), p0(m), r(m)} is an assumption and we do not

know a rigorous proof that this choice leads to a valid energy function that describes

the channel estimation problem. This is an open issue. However, we will show

comparisons with experimentally evaluated SINRs that strongly support this choice.

Validation

To verify the validity of our conjecture we determine the SINRs of an LMMSE esti-

mator for a finite dimensional system that is based on random signature realizations.

We consider the pairs {M = 20, J = 2} and {M = 100, J = 10} for the block length

and the number of pilot symbols. The system load is α = K/N = 48/32 = 1,5 and

the elements of the signature sequences are from the discrete set X/
√

2N . The pilot

symbols are chosen randomly from the set X. For the data we generate 2(M − J)

random log-likelihood ratio values according to the statistics (6.2) given through η

and map them to the complex soft decision symbols via (6.5). These are substituted

in B̃D and we obtain the ALMMSE channel estimator (4.6) of user k as

fH
k = ãH

k

(

ÃÃ
H

+ σ2
vIMN

)−1

with ãk ∈ CMN×1 denoting the k-th column of Ã ∈ CMN×K . The corresponding

output SINR of the LMMSE estimator for user k is given by

SINRk =
(fH

k ak)
2

fH
k f kσ

2
v +

K∑

i=1,i6=k

(fH
i ai)

2

. (F.11)

Figs. F.1 and F.2 show 100 SINRs (F.11) of one particular user and the associated

mean SINR for {M = 20, J = 2} and {M = 100, J = 10}, respectively. We also plot

the analytical result conveyed through (6.7). The plots indicate that the analytical

description through the results from the replica method show strong agreement with

the experiments. The dynamic range of the SINRs becomes smaller with a growing

spreading factor N [Tse99,Tse00].
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Figure F.1: Comparison of analytical SINR (‘−−’) results through the replica

method and experimentally evaluated SINRs and their mean (‘−’) for a system

with M = 20, J = 2, α = K/N = 32/48 = 1,5 and Eb/N0 = 5 dB.
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Figure F.2: Comparison of analytical SINR (‘−−’) results through the replica

method and experimentally evaluated SINRs and their mean (‘−’) for a system

with M = 100, J = 10, α = K/N = 32/48 = 1,5 and Eb/N0 = 5 dB.





G Mathematical Tools

G.1 The Matrix Inversion Lemma

Lemma 1 Let A ∈ Cm×m be a non-singular matrix, B and C be complex-valued

matrices of dimension m×n and n×n, respectively. If
(
A + BCBH

)
is invertible,

its inverse can be rewritten as

(
A + BCBH

)−1
= A−1 −A−1B

(
C + BHA−1B

)−1
BHA−1. (G.1)

This relation is called the matrix inversion lemma, also known as Woodbury identity

[Hay91]. For the special case of vectors it can be simplified to

(
A + bbH

)−1
= A−1 −A−1b

(
1 + bHA−1b

)−1
bHA−1

= A−1 − A−1bbHA−1

1 + bHA−1b
. (G.2)

G.2 Numerical Integration

Whenever integrals cannot be given in closed, analytic form, numerical methods

become inevitable. In this case the integration interval [−h, +h] is discretised into a

finite number of n sections. The contribution of one section can be approximated by

the piece-wise approximation of the integrand function f(x). Typical approximation

functions are the linear function or polynomial functions of low degree. When it

comes to the evaluation of R-dimensional expressions, even numerical computation

can become prohibitive since in those cases the number of operations scales with

O(nR). For these cases one can apply methods dating back to Gauss, Lagrange,

and Laguerre [Abr70]. Considering a finite interval, Gaussian integration proves to

be particularly useful. The rule of Gauss states that the integral over f(x) on the

range [−h, +h] can be expressed as [Eng87]

∫ +h

−h

f(x) dx = Qn(−h, +h) + En(−h, +h) =

n∑

i=1

wif(xi) +O(h2n+1).

The variable n expresses the number of points of support, Qn(−h, +h) denotes the

Gaussian quadrature part, and En(−h, +h) is the error part. The term O(h2n+1)
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denotes the local order of the error for n points of support on the interval [−h, +h].

The integrand function f(x) is evaluated and weighted at n discrete points xi. The

values of the weights wi as well as the points of support xi are obtained from a

transformation from values x′
i, w

′
i that are given for the range [−1, +1] according to

xi = hx′
i,

wi = hw′
i.

Look-up tables parameterised by n are given in [Abr70]. The error term looks like

En(−h, +h) =
22n+1(n!)4

(2n + 1)((2n)!)3
h2n+1f 2n(ζ) with ζ ∈ [−h, +h].

The degree n determines the accuracy of the approximation and is given in look-up

tables, e.g., [Abr70].

For the particular case of a Gaussian distribution f(λ) ∼ N (µ, 2µ) the integration

limit h can be calculated solving the inequality

p(µ + h)

p(µ)
=

p(µ− h)

p(µ)
≤ ǫ with ǫ ∈ [0, 1]. (G.3)

Since, from the centre µ, the Gaussian distribution is a monotonically decreasing

function to both sides, we consider all contributions where the amplitude is larger

than ǫ times the maximum p(µ). The measure ǫ can be interpreted as accuracy

factor. When shifting the distribution by −µ, the value h satisfying (G.3) is

readily found by

h ≥
√

−4 log ǫ.
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[Weh04] J. Wehinger, C. F. Mecklenbräuker, R. R. Müller, T. Zemen and M. Lončar.
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