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Zusammenfassung

Elektron-Ion Rekombination gemessen in Speicherringexperimenten zeigt eine sig-
nifikante Erhöhung der Rekombinationsrate für hochgeladene Ionen mit niederener-
getischen Elektronen relativ zu den Vorhersagen der Standardtheorie der radiativen
Rekombination (RR). Um den fundamentalen Mechanismus dieser Ratenerhöhung
zu verstehen, analysieren wir in dieser Arbeit die Rolle der klassischen chaotischen
Dynamik in der Anwesenheit von Coulomb- und Magnetfeldern.

Unter Verwendung einer klassischen Monte Carlo Trajektorienmethode unter-
suchen wir zunächst die chaotische Dynamik eines Elektrons im Ruhesystem des Ions
innerhalb der Solenoidregion des Elektronenkühlers. Im gemeinsamen Coulombfeld
des Ions und dem homogenen magnetischen Führungsfeld im Kühler werden Elek-
tronen vielfach an einem Ion gestreut, was auf irreguläre Ablenkfunktionen mit
fraktaler Struktur wie die später diskutierte Visitfunktion führt. Demzufolge wird
der Nettofluss von Elektronen in die unmittelbare Umgebung eines Ions signifikant
verändert verglichen mit dem reinen Coulombfeld, was wiederum die Wahrschein-
lichkeit für radiative Rekombination beeinflusst. Wir werden zeigen, dass die chao-
tische Dynamik abhängig von der Relativgeschwindigkeit zwischen Elektron und Ion
entweder auf eine Erhöhung oder auf eine Reduktion der Rekombinationsrate führen
kann. Andererseits findet man während der Strahlzusammenführung von Elektro-
nen und Ionen in der toroidförmigen dem Solenoiden vorgelagerten Magnetfeldre-
gion ein transientes ~~ektrisches Feld im Ruhesystem des Ions vor, welches einen
zusätzlichen Weg für Ubergänge von freien zu gebundenen Elektronen eröffnet. Wir
präsentieren Simulationen für die Elektron-Ion Zusammenführung entsprechend der
Toroidgeometrie des Testspeicherring Elektronenkühlers. Hohe Rydbergzustände,
n ~ 100, werden während der Strahlzusammenführung besetzt. Radiativer Zerfall
dieser Rydbergzustände innerhalb des Solenoiden kann einen kleinen Bruchteil der
gebundenen Elektronen stabilisieren. Wir berechnen die Wahrscheinlichkeit für ra-
diative Stabilization dieser hoch angeregten Zustände in tiefer gebundene im Exper-
iment nachweisbare Elektronen. Hinreichend tief gebundene Elektronen tragen da-
her, zusätzlich zum RR Kanal, ~~ der gemessenen Elektron-Ion Rekombinationsrate
bei. Die erhaltenen absoluten Uberschussraten können in etwa die experimentelle
Ratenerhöhung erklären. Auch die Skalierung der Rate mit der Ionenladung und
dem magnetischen Führungsfeld stimmt gut mit den Messsungen überein.

Eine kurze Analyse eines alternativen theoretischen Ansatzes, bei dem die Er-
höhung der Rekombination ebenfalls auf den mechanischen (d.h. nicht-radiativen)
Einfang während der Strahlzusammenführung zurückgeführt wird, wird präsentiert
und konzeptionelle Schwierigkeiten in diesem Model werden diskutiert. Schließlich
werden Mehrioneneffekte im Plasma adressiert.
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Abstract

Electron-ion recombination observed in storage ring experiments shows a dramatic
enhancement of the recombination rate for highly charged ions with low-energy
electrons relative to what standard radiative recombination (RR) rates predict. To
understand the fundamental mechanism of this enhancement we analyze within this
thesis the role of classical chaotic dynamics in the presence of Coulomb and magnetic
fields.

Using a classical trajectory Monte Carlo method we first investigate the chaotic
dynamics of an electron in the rest frame of the target ion inside the solenoid region of
the electron cooler. In the combined Coulomb field of the ion and the homogeneous
magnetic guiding field in the cooler electrons are scattered by the ion multiple times
involving irregular deflection functions with fractal-like structure such as the visit
function to be discussed below. As a result, the net flux of electrons towards the
immediate vicinity of the ion is changed significantly compared to the pure Coulomb
field, which, in turn, influences the probability for recombination. We will show that
the chaotic dynamics can lead to an enhancement or a reduction of the recombination
rate depending on the relative velocity between electron and ion. On the other hand,
during the merging between electrons and ions in the toroidal-shaped magnetic field
section prior to the solenoid a transient motional electric field is present in the rest
frame of the ion which opens an additional pathway for free-bound transitions of
electrons. We present simulations for the electron-ion merging according to the
toroidal geometry of the Test Storage Ring electron cooler. High Rydberg states,
n ~ 100, are found to be populated during the merging process. Radiative decay of
these Rydberg states inside the solenoid can stabilize a small fraction of the bound
electrons. We compute the probability for radiative stabilization of these high-lying
states to deeper bound electrons observable in the experiment. Thus, sufficiently
deeply bound electrons contribute, in addition to the RR channel, to the observed
electron-ion recombination rate. The absolute excess recombination rates obtained
can approximately account for the experimental enhancement. Also the scaling of
the rate with the nuclear charge and the magnetic guiding field is in close agreement
with the measurements.

A brief analysis of an alternative theoretical approach, where the enhancement
of the recombination is likewise attributed to the mechanical (i.e. non-radiative)
capture during the merging, is presented and conceptual difficulties within this model
are discussed. Finally, effects due to neighboring ions in the plasma are addressed.
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Chapter 1

Introduction

Electron-ion recombination is a fundamental process of great importance in many
areas of basic and applied physics. The cross sections and rate coefficients provide
useful information for applications in astrophysics [1] and plasma physics [2] and are
also relevant for applications in accelerator physics. For example, the recombina-
tion is a significant ion loss mechanism during electron cooling of ions in a storage
ring. The basic two- and three-body recombination processes are of very funda-
mental nature and thus provide an excellent testing ground for collision theory and
atomic structure calculations. Low-energy electron-ion recombination also supplies
a very promising scheme for the production of antihydrogen by recombination of cold
positrons with antiprotons [3, 4]. In this thesis the two-body process of radiative
recombination will be investigated.

While a proper theoretical understanding and description of radiative recombina-
tion within the framework of quantum electrodynamics (QED) was already provided
more than half a century ago by Stobbe [5], Kramers [6] and Bethe and Salpeter [7],
it has proven difficult to perform accurate experimental investigations and measure-
ments of rate coefficients due to the smallness of the corresponding cross sections.
Only with the recent advent of heavy-ion storage rings for atomics physics such as
CRYRING (Sweden), ASTRID (Denmark), TSR and ESR (Germany) the study of
the recombination at low temperatures under well-controlled conditions has become
possible (see [8, 9, 10, 11, 12] and references therein). In these experiments the
incident ion beam is merged with a cold and magnetically guided beam of elec-
trons in the electron cooler. The electrons provide not only the cooling medium
for the ion beam, but also supply a very cold target for electron-ion recombination.
However, already the first experimental results obtained caused a major surprise
since they revealed big deviations from the theoretical predictions: the measured
radiative recombination rates show a dramatic enhancement in excess of what is
expected from standard two-body radiative recombination theory for the recombi-
nation of highly charged ions with electrons at low relative energies (typically ~ 1
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CHAPTER 1. INTRODUCTION 2

meV). This surprising discrepancy with theory for the supposedly well understood
elementary process of radiative recombination has led to intensive investigations
both experimentally and theoretically in the past decade. In a series of measure-
ments at different stûrage rings recombination rates have been explored for bare ions
as well as for multielectron ions. The observed enhancement ratios for bare ions, the
topic of investigation in this thesis, range from 1.6 for He2+ [9] to a factor of 5 for
U92+ [12]. In addition, the dependence of the enhancement on external parameters
such as beam temperatures, electron density and magnetic guiding field has been
quantified [10]. Nevertheless, the origin of this discrepancy is still an open question
and to contribute to its understanding is the goal of this thesis.

In the experiment the electrons are guided by a longitudinal magnetic field
through the cooler. Standard radiative recombination rates according to Refs. [5, 6,
7] are determined at zero magnetic field strength. A quantum mechanical evaluation
of the corresponding rate coefficients in the presence of a magnetic field constitutes
an exceedingly difficult task, since a full non-perturbative solution for the wave-
function of an electron in combined Coulomb and magnetic fields is not available.
Therefore, a quantum mechanical treatment would necessitate a perturbative ap-
proach. In this thesis, however, we explore the effect of the magnetic field on the
recombination rates via a classical description instead.

We will present a detailed analysis of the classical motion of individual electron-
ion pairs in the electron cooler of the storage ring. In the presence of the magnetic
guiding field in the cooler the dynamics of an electron in the Coulomb field of the ion
is classically chaotic. The chaotic nature of electron trajectories will be investigated
for low-lying continuum as well as high-lying bound states. In these regimes a clas-
sical description of the electron motion is valid, which has the advantage that the
dynamics in the magnetic field can easily be treated non-perturbatively in contrast
to a full quantum mechanical treatment. We will thus employa classical trajectory
Monte Carlo (CTMC) method to describe the distribution of electrons in the cooler.
The key point is to construct a proper representation of the quantum mechanical
cross sections and rate coefficients for radiative recombination in a magnetic field
from these CTMC calculations. While the quantum rates are gauge invariant, an ap-
proximate classical description to be presente1 can lead to ambiguities with respect
to its formulation in coordinate or momentum space resulting from the freedom of
gauge available for the representation of a magnetic field. We will treat direct ra-
diative recombination of an electron into low-lying experimentally observable bound
states of the ion. Furthermore, electrons can also be captured non-radiatively by
transient electric fields in the toroidal merging region of the electron and ion beams
at the entrance into the cooler. We will study the capture of electrons during
the merging followed by radiative stabilization in the interaction region inside the
solenoid. Classical chaotic motion plays an important role for these recombination
processes. We will show that the scattering dynamics in a magnetic field becomes
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highly irregular with fractal-like structure involving generalized deflection functions,
whereas the chaotic bound-state motion will be mirrored in a statistical distribu-
tion of angular momentum states reflecting maximum randomness in the magnetic
field. An appropriate incorporation of these chaotic effects into the evaluation of
the recombination rates will be discussed and the calculated rate coefficients will be
compared with the experimental data.

The thesis is organized as follows. In chapter 2 we take a brief glance at the
various recombination experiments and the associated standard radiative recombi-
nation theory. In chapter 3 we investigate the classical chaotic scattering dynamics
of an electron in the Coulomb field of the target ion and the magnetic field inside
the solenoid of the electron cooler, while in chapter 4 we explore the merging of elec-
trons and ions in the toroidal-shaped magnetic field section prior to the solenoid.
We calculate radiative recombination rates in chapter 3 and transient electric field-
induced recombination during the merging with subsequent radiative stabilization
inside the solenoid in chapter 4. Radiative decay of the transiently formed high
Rydberg states into sufficiently deeply bound electrons thus contributes, in addition
to the radiative recombination channel, to the experimental rate coefficients. The
excess recombination rates obtained will be compared with the measurements. More-
over, in chapter 5 a brief analysis of a recently developed alternative model for the
rate enhancement [13], which also assigns the enhanced recombination to the beam
merging region, is presented. However, in that model recombination is induced only
byan instantaneous turn-on of the electron-ion interaction. This oversimplification
and other conceptual difficulties are discussed (see also [14, 15, 16]) and compared
with the realistic merging process of chapter 4. Chapter 6 addresses the influence of
neighboring ions and electrons in the cooler. Finally, in chapter 7 the conclusions of
this work are summarized and an outlook to possible future investigations is given.

Parts of this thesis have already been published [14, 17, 18], are in print [19], or
submitted for publication [20].
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Chapter 2

Recombination: Theory and
Experiment

This chapter covers an introduction to the current status of the topic. It contains an
overview of recent recombination experiments and measurements, a description of
the underlying standard radiative recombination theory including a short discussion
of basic recombination mechanisms, the failure of the theory to describe the mea-
surements, and an outline of other theoretical approaches towards an explanation
of the rate enhancement.

Atomic units (a.u.) are used throughout this thesis unless otherwise stated. In
these units Ii = 1 (Planck's constant), me = 1 (electron rest mass) and e = -1
(charge of the electron). Therefore, aB = 1i2/(mee2) = 5.29 x 10-11 m = 1 a.u.
(Bohr radius), v = e2/1i = 2.18 x 106 mis = 1 a.u. (Bohr velocity), E = meélli2 =
27.2 eV = 1 a.u. (atomic energy), t = aBlv = 2.4 x 10-17 s = 1 a.u. (atomic time)
and F = lella~ = 5.14 x 109 V Icm = 1 a.u. (atomic field strength) .

2.1 Experimental Setup: Storage Ring Experi-
ments

Recent recombination measurements have been performed either in electron coolers
of storage rings (such as [8, 9, 10, 11, 12]) or in single pass electron targets (for
example [21, 22]). Here we focus on the experiments at storage ring facilities such
as the TSR (Test ßtorage Ring) at the Max-Planck-Institute for Nuclear Physics
in Heidelberg (Germany), the ESR (Experimental ßtorage Ring) of the Community
for Heavy Ion Research (GSI) in Darmstadt (Germany) or the CRYRING facility at
the Manne Siegbahn Laboratory in Stockholm (Sweden). In these experiments the
electrons required for the recombination are provided by the conventional electron
cooling device of the particular storage ring. In the following the most important

4
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properties of these experiments and the performed measurements to obtain typical
recombination spectra shall be shortly discussed. Whenever specific numbers are
given to identify typical experimental conditions, they refer to the TSR experiment.
In this sectiûn, as an exception, SI units are frequently used.

A storage ring consists of a few deflecting and focusing units made up by dipole
and quadrupole magnets to keep the injected ions circulating in the ring for millions
of times. Depending on the ion species lifetimes of up to several minutes can be
achieved in the prevailing ultra high vacuum (few 10-11 mbar) of the ring. A central
element of the storage ring is the electron cooler. It provides a cold beam of electrons
which is superimposed on the ion beam over a short distance, for example 1.5 m at
the TSR. The purpose of this electron beam is twofold: it cools the circulating ion
beam and thus improves its beam quality and it supplies a cold electron target for
electron- ion recombination.

The electrons are generated by thermal emission from a hot cathode (with a
temperature of typically 1200 - 1400 K), extracted and then further accelerated to
energies of few keV. Note that the electron beam is guided by a longitudinal (i.e. par-
allel to its direction of motion) homogeneous magnetic field all along its way through
the cooler. The magnetic field avoids a geometric expansion of the electron beam
due to its space charge and thus provides for the lateral confinement of the electron
gas in the cooler. After emission from the cathode the electrons exhibit an energy
distribution determined by the cathode temperature Tcathode. The corresponding ve-
locity distribution can be characterized by a three-dimensional Maxwell-Boltzmann
distribution with temperature Tcathode' The velocity spread in the longitudinal di-
rection is considerably reduced through the subsequent acceleration of the electrons,
whereas the transverse velocity spread remains unaffected.

To decrease also the transverse velocity spread of the electrons and hence the
transverse electron temperature the technique of adiabatic magnetic expansion is
applied [23, 24, 25]. Accordingly, the electrons are guided through a slowly de-
creasing longitudinal magnetic field. For the motion of an electron in a constant
magnetic field B the quantity El../ B (El..: transverse energy) is conserved. Fur-
thermore, El../ B remains also conserved, if B is changed very slowly, i.e. in the
adiabatic limit. For a Maxwell-Boltzmann distributed beam of electrons El.. can be
replaced by its average value (El..) = kTl... In the experiment the adiabatic expan-
sion is realized by placing the cathode into a solenoid producing a strong magnetic
field (Bcathode ~ 1 T at the TSR) and by installing further solenoids on the way to-
wards the interaction region, which then gradually reduce this strong magnetic field
strength to its final value present in the interaction zone (0.02 T ~ B ~ 0.07 T at
the TSR). Thereby, the transverse temperature decreases according to the relation
kTl.. = kT cathode/Ç,. The ratio ( = Bcathode/ B is the resulting expansion factor. Since
the lateral confinement of the electrons in the beam is only imposed by the magnetic
field, the beam diameter correspondingly increases with decreasing value of B. At
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the TSR, for example, the electron beam exhibits a diameter of merely 9.5 mm at
the cathode whereas being expanded to a spatial extent of few cms in the interaction
region. The spatial expansion of the beam is due to the conservation of phase space
volume, whereupon a decrease in the transverse temperature (or velocity) leads to
an increase in the involved transverse coordinate.

Even though this adiabatic expansion is applied (as it is the case at the TSR
and the CRYRING electron coolers) the transverse temperature kTl. of the elec-
tron beam in the interaction region is usually still about two orders of magnitude
larger than typical longitudinal temperatures kl1l. At the TSR temperatures such
as kTl. = 10 meV and kl1l = 0.2 meV are reached. Therefore, the electron veloc-
ity distribution is highly anisotropic with Tl. » 111 given by the product of two
Maxwellian distributions

where veil represents the mean longitudinal velocity of the electrons. The mean
transverse velocity is assumed to be zero.

The electron beam is then merged with the ion beam by a proper bending along
a toroidal-shaped magnetic field region. Note that in addition to the longitudinal
magnetic guiding field along the curvature of the toroid also a dipole field perpendic-
ular to the toroid bending plane is required to ensure the merging of the electrons
within this toroidal plane. For a more detailed discussion of the magnetic field
configuration in the toroid region see chapter 4. In the subsequent solenoid the
electron and ion beams thus fully overlap with collinear velocities Ve II Vian. In this
interaction region (also referred to as cooler region) the cooling and recombination
processes take place. Its length l is, in a first approximation, given by the length of
the cooling solenoid and typically amounts to 0.5 - 2.5 m depending on the specific
electron cooler. For instance, at the TSR l = 1.5 m. Having traversed also the
demerging toroid the electrons are finally led to the collector via further solenoids.
Before arriving at the collector they are retarded and then picked up by a Faraday
cup. Note that also the ions experience a small deflection during passage through
the toroid magnets. However this deflection is compensated by correction dipoles
installed in front of and behind the electron cooler. For a schematic picture of the
geometry see Figure 2.1.

The principle of electron cooling was first suggested by Budker [26] at the end of
the sixties in order to increase the number of particles being accumulated in a storage
ring. Its central idea is to overlap a hot ion beam with a cold beam of electrons both
of them having the same average velocity in the laboratory frame. Before cooling,
however, the ion beam exhibits much bigger statistical velocity deviations from its
mean value than the supplied electron beam. Accordingly, these big ionic velocity
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Ve - Vj

solenoid

~â. ~lenOid
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Figure 2.1: Schematic picture of a recombination experiment: the electron and
ion beams are merged over a short distance in the electron cooler of the storage
ring. The electrons provide not only the cooling medium which can reduce the rest
frame kinetic energy of the fast ions but also supply a very cold electron target for
electron-ion recombination. In the subsequent dipole magnet the recombined ions
are separated from the parent ions due to their lower charge-to-mass ratio. They
are absorbed and measured in the recombination detector.

spreads get reduced by Coulomb interactions with the cold electrons: through cor-
responding collisions faster ions transfer energy and momentum to slower electrons
and vice versa. Whereas the ion beam continuously circulates in the storage ring
and encounters the electron beam many times, the electron beam is permanently
delivered with the same cold temperature from the cathode. In this way the elec-
tron beam acts as a cold reservoir for the ion beam, whose temperature decreases
and gets adjusted to the electronic beam temperature. Therefore, electron cooling
reduces the phase space volume of the "hot" ion beam. It counteracts the heating
processes during the circulation given by ion scattering with residual gas particles
and intra-beam scattering. Clearly, this cooling mechanism also worlœ for electron
and ion beams with initially somewhat different average velocities. Thereby, the
average ion beam velocity accommodates to the electronic one. Thus, after cooling
the ion beam exhibits the same average velocity and the same temperature as does
the electron beam. Theoretically, the process of electron cooling can be described
in terms of a binary collision model and an appropriate expression for the cooling
force can be derived. Electron cooling is particularly efficient for small differences
between 'Î1ïon and ve. Typically, ion currents of several hundred /-lA get cooled down
to a relative momentum uncertainty /::1p/p smaller than 10-4 within few seconds.
The ion beam, which can fill up the whole beam pipe after the injection, has then
been reduced to a diameter of only 2 - 3 mm.
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(2.2)

Electron cooling thus provides a spatially and energetically well defined ion beam,
whose interaction with the electron beam in the cooler can be further analyzed. Fig-
ure 2.1 shows a sketch of the experimental setup for electron-ion recombination mea-
surements. In the solenoidal interadion region, where the electron and ion bC3.ITIS

overlap, free electrons can be captured by the ions. The electrons supply a very
cold electron target for electron-ion recombination with transverse temperatures of
about kT.!. ~ 10 meV and longitudinal temperatures that are even much lower. The
recombined and primary ions leave the electron cooler together and get separated
only in the subsequent dipole magnet due to their different charge-to-mass ratios.
As a result, the recombined ions (with the smaller charge) experience a smaller de-
flection in this bending magnet and, hence, leave their revolving orbit in the ring.
They are absorbed and counted in a scintillation detector.

The quantity of interest is the recombination rate coefficient a, which constitutes
a measure for the probability of the recombination process under investigation. The
definition with respect to a velocity averaged product of velocity times cross section
will be given in section 2.2. It can be extracted from the so-called reaction rate R,

R 7]lionlne-a---
- vionqe,2'

where 7] the efficiency of the detector (7] ~ 1), lion the ion current, l the nominal
length of the interaction region (at the TSR 1.5 m), ne the electron density (typically
several 107 cm-3), Vion the ion velocity, q the charge of the ions, e the elementary
charge and , the relativistic Lorentz factor for the transformation between the center
of mass and laboratory frames, , = 1/ J1 - (Vion/C)2. At the TSR beam velocities
of approximately 10 percent of the velocity of light are reached, i. e. , ~ 1. The ion
current (typically few hundred J-LA) can be expressed in terms of the number of ions
N ion circulating in the ring,

1. - IN. _ qevionNionton - qe ton - --u-- (2.3)

(2.4)

with the revolution frequency I and the ring circumference U (at the TSR U = 55.4
m). The rate coefficient thus reads in experimentally accessible quantities

RU,2
a=---.

7]Nionnel

Usually, in the experiments entire recombination spectra are recorded, where the
recombination rate coefficient Eq. (2.4) is determined as a function of the average
relative energy Erel between electrons and ions. For a typical spectrum see Fig-
ure 2.8a. Since electron cooling eventually results in an ion beam with the same
average velocity as the electron beam, only the rate coefficient at Erel = 0 can be
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obtained at cooling conditions. To measure also rates for Erel =f. 0, the cooler needs
to be detuned on purpose, i.e. being operated beyond the cooling conditions for a
short time interval. In practice, a variation in Erel is accomplished by changing the
electron energy, which amounts to altering t.he cathode voltage at the TSR electron
cooler, whereas at the ESR the voltage at drift tubes mounted inside the cooling
solenoid is correspondingly changed. After a new value for the electron energy dif-
ferent from the cooling energy has been set, only a short time window of few ms
is available for determining the recombination rate. Afterwards, the ionic velocities
start to adjust to the new electron velocities as a result of the cooling mechanism.
Therefore, measurements at Erel =f. 0 have to be performed before the (much heavier
and thus more inert) ions can adapt to the new situation in the cooler. In fact, after
each measuring time-interval a cooling period is operated in order to guarantee an
ion beam of same energy and quality for each measured value of Erel' More de-
tails about the experimental setup and the measuring procedure can be found for
example in Refs. [27, 28, 29].

2.2 Standard Radiative Recombination Theory
Radiative recombination (RR),

(2.5)

is the process where a free electron (e-) is captured into a bound state of an ion (A)
with initial charge state q. Energy and momentum are conserved by the simultaneous
emission of a photon (hv). A schematic picture of this process, the inverse process
of photoionization, is displayed in Figure 2.2. Note that for bare ions q = Z, where
Z indicates the nuclear charge.

As pointed out in the introduction radiative recombination belongs to the class of
elementary QED processes for which accurate calculations can be readily performed.
Since in the case of a pure ionic Coulomb field of a bare ion (without a magnetic
field considered) the initial and final wavefunctions are known, the cross section for
RR is given (in a.u.) by

(2.6)

where Un is the final hydrogenic bound state with principle quantum number n and
Uk the initial hydrogenic continuum state of an electron with wave vector k (energy
Ee). fi is the momentum of the electron in the rest frame of the ion. The radiation
field has a wave vector if, frequency w (w = Ee + Z2 j(2n2)) and a polarization
vector ê. Note that the incoming electron wavefunction Uk is normalized such that
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Figure 2.2: Schematic picture of radiative recombination (RR): A free electron is
captured into a bound state of the (non-bare) ion with simultaneous emission of a
photon.

one electron is incident on a unit area per unit of time. The cross section for
RR can be evaluated in closed form for hydrogenic wavefunctions. In the dipole
approximation, the transition matrix element becomes proportional to the oscillator
strength, I (unlê . T!Uk) 1

2. Bethe and Salpeter [7] (see also Kramers [6]) derived
an approximated cross section for RR based on the fact that the oscillator strength
crosses the continuum limit smoothly. This parameterization of the RR cross section
is convenient compared to the full evaluation of Eq. (2.6). It can be written for bare
lOns as

-22 2 z4E5 (
aRR(n,Ee) = (2.1 x 10 cm )nEe(Z2Eo +n2Ee)' 2.7)

where Eo = 13.6 eV is the Rydberg energy and Z denotes the charge of the bare
ion. However, this approximation is only valid in the limit of high quantum numbers
n > > 1 and low electron energies Ee < < Z2 /n2 Eo. To account for deviations from
the correct quantum result at low n and high Ee correction factors, the so-called
Gaunt factors Gn(Ee), have to be included into the cross section,

Gaunt( E) (2 1 10-22 2) G (E ) z4 E5aRR n, e = . x cm n e nEe(Z2Eo + n2Ee)' (2.8)

The use of Gaunt factors is convenient because they are either tabulated [30] or given
in a parameterized form [31] in contrast to a full quantum mechanical treatment,
which involves the rather tedious evaluation of hydrogenic dipole matrix elements
[5].

The total recombination cross section is obtained by summing up the contribu-
tions from all possible final states up to a maximum contributing principal quantum
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Figure 2.3: The cross section Eqs. (2.8) and (2.9) for radiative recombination of e6+
ions and electrons versus the electron energy Ee with nT = 30.

number nT' i.e.
nr

(Ttotal(Ee) = L (T~Runt(n, Ee).
n=l

(2.9)

(2.10)

The upper cutoff nT is determined by field ionization of states caused by motional
electric fields in the charge-analyzing dipole magnet downstream from the electron
cooler. Hence, electrons recombined into states with n > nT get reionized again in
this bending magnet and therefore do not contribute to the recombination. Fig-
ure 2.3 illustrates the RR cross section for eH ions with electrons.

Eqs. (2.8) and (2.9) represent the recombination cross section for initially bare
ions and free electrons. For non-bare ions (Ttotal(Ee) must be generalized to

~ Z4 E2
~ -22 2 ell 0(Ttotal(Ee) = ~ (2.1 x 10 cm) Gn(Ee)tn E (Z2 E 2E )'
_. ne ello+n en-1lmm

Here nmin denotes the lowest shell into which electron capture is possible and the
quantities tn are introduced to account for already partially filled shells. tn ~ 1
usually represents the ratio between the number of unoccupied states and all states
available for a given n shell (i.e. 2n2). For non-hydrogenic ions also screening effects
through core electrons have to be taken into account. This screening is modeled by
replacing the nuclear charge Z by an effective charge Zell' Based on theoretical or
empirical considerations formulae like Zell = (Z + q)/2 (Z is the nuclear charge
and q the charge state of the ion) or more complex expressions [32] have been
proposed for the effective nuclear charge. However, in this thesis only bare ions will
be investigated, where Zell = Z = q.
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The experimentally obtained recombination rate is a convolution of the cross
section with the velocity distribution f( V) due to the finite velocity spread of the
colliding particles [11, 12, 21, 30],

aRR = (V(7total) = J (7totalvf(V)dv. (2.11)

As discussed in section 2.1, in the experiment a homogeneous magnetic field
along the direction of the merged beams provides for the lateral confinement of the
electron gas in the cooler. The velocity distribution is characterized by two temper-
atures, Tl. and 111, which correspond to the transverse (Vl.) and the longitudinal (VII)
velocity spreads relative to the direction of the magnetic field. The electronic veloc-
ity distribution is highly anisotropic with Tl. » 111 (section 2.1). By comparison, the
ionic velocity distribution is negligibly narrow due to the cooling. The ionic veloci-
ties after the cooling are precisely defined (with relative velocity uncertainties below
10-4) owing to the much larger ion mass (mion» me). Accordingly, the distribution
function f(V) is completely dominated by the electron velocity distribution. From
Eq. (2.1) f(V) follows (in a.u.) as

f(iJI = f (v V ) = 1 e-vlf(2kT.d Ce-(VII-Vrel)2/(2kTII) (2.12)
VJ MB, rei 27rkTl. y ~ '

where Vrel is the detuning velocity between the merged ion and electron beams which
defines the relative energy, i.e. Ee = v;ed2 = Erel. Note that all velocities refer to
the rest frame of the ion. In order to compare experimental results with theoretical
ones, both temperatures Tl. and 111 are extracted from the analysis of experimental
resonance line shapes of dielectronic recombination [33].

In order to apply the standard RR theory within the framework of this thesis the
parameterization of [31] for Gn(Ee) has been used. In this form the Gaunt factors
read

_ G(n, rJ) = ao (rJ) + al (rJ) + a2 (rJ)
n n2

14.6 0.0958- ---- + ---------
14.7 + rJ-1.29 (0.434y + 0.244)2 + 0.449

-0.270 0.571
-

1 + rJ-O.869 (0.810 - 0.434y)2 + 0.200
0.0616+---------

(0.434y + 0.0476)2 + 0.400
0.307 0.0311 - 0.0274y

-
3.833 + rJ-1.015 (0.425 - 0.434y)4 + 0.151

Z Z
y - ln rJ = ln - = ln --.

ke ../2Ee

(2.13)
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Figure 2.4: Gaunt factors as a function of the principal quantum number n shown
for a fixed relative energy of Ee = 1 meV. The energy dependence of Gn is very
weak at the low energies in the experiments.

Figure 2.4 illustrates the Gaunt factors at an energy of Ee = 1 meV for principal
quantum numbers up to n = 50. The Gaunt factors deviate significantly from one
only for the lowest values of n, where the semiclassical approximation of Bethe and
Salpeter (Eq. (2.7)) becomes insufficient. Moreover, they depend only weakly on Ee.
In fact, for the small collision energies of the recombination experiments the energy
dependence of Gn could be approximately neglected.

Finally, Figure 2.5 presents recombination rates evaluated according to the stan-
dard RR theory of Eqs. (2.11) and (2.12) for different relative energies Erel between
electron and ion beam. If Gaunt factors are not included into the RR cross section
the rate coefficients would be somewhat overestimated.

Note that this standard theory does not take into account the magnetic field
present in the electron cooler of the experiment properly. Magnetic field effects
are considered only indirectly by choosing the anisotropic "thermal" distribution of
Eq. (2.12) since the magnetic field restricts the motion of the electrons in transverse
direction and hence tends to suppress the relaxation of energy between longitudinal
and transverse degrees of freedom through Coulomb interactions. However, the
recombination cross sections used to evaluate Eq. (2.11) are extracted from the pure
Coulomb problem irrespective of the magnetic field.
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Figure 2.5: Standard radiative recombination theory: rate coefficients are plotted
for different relative energies between electrons and ions. Gaunt factors are included
into the RR cross section for the solid line, whereas being omitted for the dotted
line. Parameters are taken from the TSR experiment [10], where klll = 0.2 meV,
kTl. = 10 meV, Z = 6 and nr = 30.

2.3 Other Recombination Mechanisms
Free electrons can be captured by ions via several different recombination mech-
anisms. Radiative recombination (RR) (Eq. (2.5)) is the direct capture of a free
electron by an ion Aq+ where the excess energy and momentum are carried away
by the emitted photon. After the capture the electron can be in an excited state
and further radiative transitions within the ion will take place until the electron has
reached the lowest accessible energy level. RR is a non-resonant process which is
possible for any relative energy between electron and ion thus resulting in a continu-
ous contribution of the recombination rate in terms of relative energy. The RR cross
section diverges at zero relative energy and continuously decreases towards higher
energies (see Figure 2.3).

The electron can also be captured resonantly (inverse Auger process)

(2.14)

where the excess energy is used to excite a core electron within the ion. This so-called
dielectronic capture is only possible if the kinetic energy of the projectile electron
matches the difference Ei - E f of the total binding energies of all electrons in the
initial and final states of the ion and the ion carries at least one additional electron
into the collision. After this capture the ion is in a multiply excited state which can
decay in different ways. If the ion stabilizes itself by the emission of photons, such
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Figure 2.6: Schematic picture of dielectronic recombination (DR): a free electron is
captured resonantly accompanied by the excitation of a bound electron in the ion,
followed by radiative stabilization through emission of photons.

as
[A(q-l)+r* --+ [A(q-l)+r + hZ/I --+ A(q-l)+ + hZ/I + hZ/2, (2.15)

while keeping its reduced charge state, the process (Eqs. (2.14) and (2.15)) is called
dielectronic recombination (DR). A schematic picture of this two-step process can
be found in Figure 2.6. Usually, electron emission

(2.16)

of the intermediate electron-ion complex is much more likely than photoemission.
This autoionization process, which is the inverse of dielectronic capture, reduces the
ion to its original charge state. Therefore it does not contribute to the measured
recombination rate. Experimentally, the process described by Eqs. (2.14) and (2.16)
would be observed as resonant elastic or inelastic scattering of the electron on the
Ion.

Dielectronic capture and thus dielectronic recombination can only occur for non-
bare ions. Note that the cross sections for the resonant DR processes exceed those of
RR by several orders of magnitude. However, since the discrepancy between theory
and experiment found at Erel .:S 1 meV persists also for bare ions, where contribu-
tions from DR can be ruled out, the observed enhancement cannot be explained by
the appearance of DR resonances at low relative energies. In order to aim solely at
this remaining enhancement and to exclude contributions from DR only bare ions
will be investigated throughout this thesis.

Another possible recombination mechanism is three-body recombination (TBR)

(2.17)
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Figure 2.7: Schematic picture of three-body recombination (TBR): a free electron
is captured into a bound state of an ion. The excess energy and momentum are
imparted to a neighboring free electron.

where the excess energy and momentum are transferred to another free electron of
the gas. This is the inverse process of electron collisional ionization. It is important
at high electron densities and low collision energies, since the probability for two
electrons to be close to the same ion must be high enough and the e - e scattering
cross section must be sufficient in magnitude. An illustrative picture of TBR is
shown in Figure 2.7. Explaining the measured enhancement by contributions from
TBR faces the difficulty that the electron density ne is quite low (ne ~ 107 cm-3)

in the experiments and the observed recombination rates have been shown to be
insensitive to a variation of ne by a factor of 5 [la]. Since the probability for TBR
should scale as n~,considerable effects from TBR can be excluded likewise.

Therefore, for bare ions radiative recombination remains as the only dominant
recombination mechanism prevailing at the experimental storage ring conditions.

2.4 Review of Experimental Results
The observation of anomalously enhanced electron-ion recombination rates com-
pared to the predictions of standard two-body radiative recombination theory (sec-
tion 2.2 and Refs. [5, 6, 7]) has been a major surprise. Below a brief overview of
various experiments performed at different facilities will be given.

Recombination rate enhancement was first observed in 1989 in an experiment
with U28+ ions at the GSI in Darmstadt [34]. The uranium ions passing a cold dense
electron target at the UNILAC accelerator of the GSI revealed a recombination rate
at zero relative energy between electrons and ions which was about a factor of 200
higher than the theoretically calculated value. This enormous discrepancy between
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experiment and theory stimulated continuous efforts in the investigation of RR of
bare ions as well as of multicharged ions.

The pioneering experiment on radiative recombination of bare ions was per-
formed by Anùersen et al. [35] (see also [30]) in 1990. Absolute rate coefficients
were measured for CH ions in a merged beam single pass experiment at Aarhus
finding a reasonably good agreement between experiment and theory in the inves-
tigated relative energy range from Erel = 0 to 1 eV. In fact, the measured rate
coefficients at seemingly zero relative energy were even slightly below the theoreti-
cal predictions. In a number of consecutive measurements different bare ions (such
as D+, ReH, N7+, NelO+ and Si14 at the CRYRINC [8, 9, 36], CH and CP7+ at
the TSR [10, 37] and Ar18+ at the UNILAC of the CSI [22]) have been investigated
at several facilities. All measured rate coefficients have been in agreement with RR
theory for relative energies Erel ~ 0.01 eV. Nevertheless, in contrast to Andersen's
observation, in these measurements strong deviations of the experimental findings
from the theoretical predictions have been found at very low electron-ion relative
energies (Erel ~ 0.01 eV): towards lower energies the measured rate coefficient a
typically shows an enhancement of ßa = a - aRR on top of the theoretical rate co-
efficient aRR for RR. The resulting rate enhancement factor € = a/aRR at Erel = 0
increases from 1.6 (ReH) to 10 (Ar18+) for the explored bare ions. More recent
measurements at the ESR focus on the recombination of very highly charged bare
ions such as Bi83+ [11] and U92+ [12]. Note that although the RR cross section di-
verges at Erel = 0, the measured rate coefficient attains a finite value at zero average
relative energy due to the experimental electron and ion velocity spreads.

Moreover, since the first observation of the enhancement phenomenon in U28+ [34],
also a series of measurements with non-bare ions (such as Au25+ at the UNILAC
of the CSI [21], Au49+,50+,51+at the TSR [38] and Pb52+,53+,54+in the Low Energy
Antiproton Ring (LEAR) at CERN [39]) have been performed. In such complex
multielectron ions much higher enhancement factors can be observed. For example,
for Au25+ ions it results in a value as high as 365 at zero relative energy. Thereby
the electronic structure of the ion (for example, for Au50+ and Pb53+) has a great
influence on the magnitude of the enhancement. Whereas these very high rate en-
hancement factors of such complex ions could be partly traced back to the presence
of additional recombination channels, i. e. mainly due to dielectronic recombina-
tion [40], the origin of the remaining discrepancies between experiment and theory
for bare ions, where DR cannot occur, is still unknown.

For the further exploration and clarification of the enhancement phenomenon,
its dependences on external experimental parameters such as the electron density
ne, the electron beam temperatures Tl. and 11" the ion charge Z and the magnetic
guiding field B have been investigated at the different storage ring and merged beam
facilities. Variations of the electron density within a total range of 106 cm-3 up to
about 109 cm-3 [10, 11, 21, 36] have not shown any considerable effect on the en-
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Figure 2.8: Experimental results of the RR rate enhancement. The recombination
rate a versus the relative energy between electrons and ions (a) and the excess rate
coefficients ßa = a - aRR at Erel = 0 as a function of the magnetic field (b), the
transverse temperature (c), the longitudinal temperature (d), the electron density
(e) and the ion charge (f) are illustrated. Note that the rates in (b), (e) and (f)
are scaled with ..jkT.l.kTIi according to the observed temperature dependence. The
data (a)-(e) is taken from the TSR experiment [10], whereas the measurements of
the nuclear charge dependence of the excess recombination for fully stripped ions
(f) originate from different storage ring experiments, i.e. the CRYRING facility for
HeH, N7+, Ne10+ and Sil4+ [9], the TSR for C6+ [10] and Cll7+ [37] and the ESR
for Bi83+ [11] and U92+ [12].
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hancement. FUrthermore, the excess recombination rate 6a has been observed to
scale with the transverse electron temperature as T;.1/2, as expected for the stan-
dard rate coefficient aRR alone as well, and, surprisingly, also with the longitudinal
electron temperature as T.-:-1/

2 r101. A svstematic study of the ion char!!e-state de-li L J J """

pendence of the excess rate coefficients for bare ions has yielded approximately a
Z2.8 behavior [9] for smaller charges 1 S Z S 14 and, later on, a similar Z2.6 depen-
dence [12] for all the ions investigated up to Z = 92. In addition, also the magnetic
guiding field B in the interaction region influences the experimental enhancement:
the excess rates at Erel = a increase with B according to an approximate BX scaling
with 0.5 S x S 1 [10, 21, 41]. In particular, the recent systematic measurements at
the TSR [la] have shown a Bo.5 dependence.

Figure 2.8 shows a sample of experimental results thus displaying the dependence
of the poorly understood rate enhancement phenomenon on the different experimen-
tal parameters. To summarize, the measured excess recombination rates 6a have
been found to scale as (kT.lJ-l/2, (kl1,)-1/2, Z2.6, increase with B and are insensitive
ta ne.

2.5 Alternative Theoretical Proposals
Several theoretical proposals have been put forward to explain the anomalously
enhanced electron-ion recombination rates. They range from the influence of three-
body recombination [9] and density enhancement due to plasma screening effects [42,
43, 44] to transient electric field-induced recombination [13, 45]. We note that the
density independence of the experimental rates renders an explanation in terms of
three-body effects unlikely. In [42] molecular dynamics simulations on the elec-
tron density enhancement near an ion in a magnetized electron plasma have been
performed and a self-consistent screening model [43] in terms of extended pseudo-
electrons accounting for the effect of a magnetic field has been developed. The latter
approach, however, includes an adjustable effective temperature Teff (11, STeff S
T.d drastically influencing the overall size of the calculated rate enhancement. A
similar ansatz for the magnetic field with the electron smeared over a Landau disk
with radius rc (re: cyclotron radius) has also been employed in [46]. Moreover,
in [44] a lowering of the ionization threshold at low temperatures for the nonlinear
electron density enhancement has been discussed.

The proposal of field-induced recombination during the electron-ion beam merg-
ing followed by radiative stabilization inside the solenoid has first been made by
Gwinner et al. [45]. A quantitative analysis of the associated recombination rates,
which has been outstanding so far, will be presented in chapter 4 of this thesis.
Finally, we point out that also in the approach by Heerlein et al. [13] the enhance-
ment has been traced to the process of beam merging. In their letter [13] they
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report rate coefficients in good agreement with the experimental data. However, in
this model recombination turns out to be induced by an instantaneous switch-on
of the electron-ion interaction without considering the electric field distribution in
the merp;ing region, the kinematics of merging or the properties of the radiative
stabilization process. A more detailed discussion of these deficiencies is raised in
chapter 5.

In summary, none of these models can, so far, account satisfactorily and consis-
tently for the observed enhancement.



Chapter 3

Classical Chaotic Dynamics
Magnetic Field

•In a

(.

To understand the fundamental mechanism of the underlying recombination pro-
cess in the presence of a magnetic field we explore in this chapter the scattering
dynamics between an electron and an ion inside the solenoidal interaction region
of the electron cooler. For the regime of magnetic field strengths available in the
experiment, the electron can be found, as will be discussed in detail in section 3.1,
on the average, in initial states with high Landau quantum numbers for which a
classical description should be valid. The classical description has the advantage
that the electron dynamics can easily be treated non-perturbatively, while a quan-
tum mechanical treatment would necessitate a perturbative approach, since a full
non-perturbative solution of the electronic wavefunction for an incident scattering
state in the simultaneous presence of Coulomb and magnetic fields is not known.

In the magnetic guiding field of the cooler the classical motion of an electron
becomes chaotic in the Coulomb field of the target ion. The analysis of individual
trajectories and selected phase space portraits shows that the magnetic field dra-
matically changes the phase space structure of the system compared to the pure
Coulomb field: the smooth deflection function (i.e. the deflection of the particle
induced by the scattering) for an electron in the Coulomb potential of the ion gets
highly irregular in the presence of a magnetic field. This generalized deflection func-
tion, specifically the visit function to be discussed, modifies the net flux of electrons
towards the immediate vicinity of the ion. However, the value of such a visit func-
tion, i. e. the number of close encounters of an electron to the target ion, is not
unique. Electronic visits to the ion depend on the representation in coordinate or
momentum space as a result of the gauge freedom available for the description of a
magnetic field.

The influence of the magnetic field on the radiative recombination cross section
will be considered by incorporating the effect of the chaotic dynamics into the eval-

21
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uation of the recombination rates. We thus discuss an appropriate representation of
quantum mechanical rate coefficients by means of our CTMC calculations. While
exploring the effect of the chaotic scattering dynamics on the recombination process
in t.his chapter) the influence of the bound-state motion will be addressed in chap-
ter 4. Correspondingly, radiative recombination of low-energy continuum electrons
is studied throughout this chapter, whereas radiative stabilization of highly excited
bound states will be treated in the next chapter.

After a brief examination of the electronic and ionic motion in the laboratory
frame we treat the system exclusively in the rest frame of the ion. The chaotic scat-
tering dynamics is visualized by individual trajectories of electrons and Poincaré
surfaces of section. Moreover classical scaling relations of the Hamiltonian are dis-
cussed. Based on the significant role of chaotic dynamics we develop a modification
of the standard RR theory by means of the visit function V. The behavior of V in
the Coulomb and magnetic field as well as in the pure Coulomb field is investigated
and illustrated for different subspaces of phase space. The ambiguity of calculating
V in the magnetic field is discussed. Finally, we evaluate recombination rates within
this modified theory and study their dependencies on the different experimentally
accessible parameters such as the average relative energy between electrons and
ions Erel, the magnetic field strength B, the ion charge Z and the longitudinal and
transverse electron beam temperatures klll and kTl...

3.1 Inftuence of a Magnetic Field
The standard RR theory as described in section 2.2 does not take into account
the magnetic field prevailing in the experiments (beyond the obvious corrections
due to the anisotropic velocity distribution Eq. (2.12)). Therefore, in the following
this standard theory is re-analyzed for effects due to the presence of the magnetic
field. Under the influence of a magnetic field the wavefunctions used to evaluate the
recombination cross section (JRR (Eq. (2.6)) need to be modified.

Starting point of our analysis are the different length scales present in the system
(Figure 3.1). The recombination process is governed by two vastly different length
scales: the characteristic distances r ~ rRR from which contributions to the RR
matrix element (Eq. (2.6)) originate and the classical cyclotron radius rc = Vl../wc =
Vl..c/ B which delimits the lateral confinement of the incident electronic wavefunction
in the asymptotic regime. For typical field strengths (B :::::;30 mT) and transverse
beam energies (Tl.. :::::;10 meV) in the cooler the cyclotron radius amounts to an
order of magnitude of rc :::::;105 a.u. By comparison, the final state of the recombined
electron is localized around the ion with a radius rRR :::::;n;/ Z of the order of 10 -
100 a. u. Higher n states are quenched by motional electric fields in the demerging
toroid, the subsequent correction dipoles and the charge analyzing bending magnet
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Figure 3.1: Characteristic scales pertaining to a recombination experiment in the
electron cooler of a storage ring. In the Landau and Coulomb regimes the corre-
sponding classical motion is regular, whereas in the intermediate region it is chaotic.

prior to detection. For example, for initially bare C6+ ions the principal quantum
numbers for recombined electrons are limited to nT ~ 30. Thus, generally TRR «Tc.

In the asymptotic region of large distances to the ion the magnetic interaction
dominates and the electron moves on Landau orbits. The typical cyclotron radius
itself is large compared to the magnetic length IB = w;1/2 = /(c/ B) ~ 103 a.u ..
Note that IB is given by the radius of the quantized circular orbit of the electron in
the magnetic field B (without a Coulomb potential present). This implies that the
electron is, on the average, in high Landau states with Landau quantum numbers
N ~ (Tc/IB? » 1.

On the other hand, near TRR the Coulomb field dominates and the influence of
the magnetic field is entirely negligible. Therefore, the final states strongly localized
around the ion (f1un) entering the cross section (Eqs. (2.6) - (2.10)) are well ap-
proximated using the unperturbed hydrogenic bound states. Only the initial wave-
function for the Coulomb continuum state (f1uk) needs to be modified, i.e. replaced
by a new wavefunction (f1uP) taking into account the simultaneous presence of a
Coulomb and a magnetic field. With the knowledge of such a wavefunction (f1uP)
a direct evaluation of the cross section for RR (Eq. (2.6)) in a magnetic field would
be possible. Unfortunately, no full non-perturbative solution of the wavefunction for
an incident scattering state (f1uP) in the combined Coulomb and magnetic fields is
available. Perturbative approaches turn out to be difficult if not even impossible be-
cause of the large difference in length scales of Tc and TRR. A perturbative expansion



CHAPTER 3. CHAOTIC DYNAMICS IN A MAGNETIC FIELD 24

of the wavefunction (f1uf) using either Coulomb waves or Landau states requires a
huge number of basis set in order to represent the wavefunction (f1uf) accurately
both in the asymptotic region and near the target ion. A perturbative evaluation of
Eq, (2.6) by employing Landau states as initial states rather than Coulomb contin-
uum states has failed to give any significant modification of the recombination rates
due to the fact that Tc/lB is very large compared to one [46].

In between these two regimes of TRR and Tc, however, there exists a region where
the Lorentz force and the Coulomb force are of comparable strengths. Contrary to
the integrable motions of the electron on cyclotron orbits in the asymptotic region
and on Kepler orbits near the target ion the dynamics in this intermediate region is
classically chaotic. The associated electron motion becomes thus very complicated
as will be later visualized by individual trajectories. Whereas in the asymptotic
region of dominant magnetic field the electron ensemble can be described by the
anisotropic velocity distribution of Eq. (2.12), the electronic flux changes towards
the ion due to the underlying chaotic dynamics. Accordingly, the presence of the
B field is expected to lead to a profound alteration of the phase space density of
electrons available for recombination. Thus, the mapping of the asymptotic electron
flux defined in the Landau regime down to the Coulomb zone T ~ TRR will be the
key point of this chapter.

The strategy of modifying the recombination theory in the presence of a magnetic
field becomes therefore obvious: while the transition matrix element for radiative
recombination pertaining to the Coulomb zone remains unchanged, it is the effective
flux of electrons entering from the Landau region into the Coulomb zone that will
be modified within the present framework. To obtain this change in electron flux
we employa classical trajectory Monte Carlo (CTMC) method whose justification
relies on the fact that the typically populated Landau quantum numbers are very
large, i.e N ~ 104. For such high Landau states a classical description should be
valid.

In order to determine the electron density I (f1uf) 1
2 near the ion under the influ-

ence of a magnetic field the electron distribution is treated as an ensemble of classical
trajectories with randomly generated initial conditions which mimic the Maxwell-
Boltzmann distribution (Eq. (2.12)) in the asymptotic region. The biggest advan-
tage of using classical trajectories is that they can be treated non-perturbatively
and, thus, the modification of the electronic flux can be properly described. By
means of the CTMC an entire beam of electrons is simulated from the asymptotic
region down to distances close to the target ion in the presence of the magnetic field.
These simulations will provide, on a classical level, the mapping of the asymptotic
distribution Eq. (2.12) onto the Coulomb orbits near the nucleus. Assuming that
a modification of the recombination rate is due to the enhanced transport of flux
into the Coulomb dominated region the excess recombination ßŒ relative to the
standard rate ŒRR could be extracted from the simulation.



CHAPTER 3. CHAOTIC DYNAMICS IN A MAGNETIC FIELD 25

Finally we point out that the electron densities available in the experiments are
rather low (typically ne ::::::106 - 107 cm-3) resulting in interelectronic distances
Te-e ::::::n;1/3 of the order of 106 a.u. For such large distances, i.e. Te-e » TRR
and even Te-e > Tc, three body rf~combination is expected te playa minor role in
agreement with the density independence observed in the measurements (Figure 3.1).

In the subsequent sections the influence of the classical chaotic dynamics on the
recombination rates will be studied.

3.2 Electron-Ion Motion: Lab, Center of Mass,
and Ionic Rest Frames

First the general two-body problem of the motion of an electron and an ion (charge
Z, mass mion) in the presence of a homogeneous magnetic field Ë = Bêz will be
investigated. Later on, the electron will be treated in the rest frame of the ion. The
electron-ion dynamics through the solenoid region of the electron cooler is governed
in the laboratory frame by the two-particle Hamiltonian

( )2 ( )2e-ian 1 _ Z - _ 1 _ 1 - _
H = 2mian Pian - ~A (Tion) + 2 Pe + ~A (Te) (3.1)

(3.2)

where Pe = (Pex,pey,Pez), ~ = (Xe,Ye,Ze), Pïan = (Pianx,PianY,Pianz) and fian =
(Xian, Yian, Zian) denote the canonical momenta and coordinates of the electron and
ion, respectively. We express the vector potential in the symmetric gauge, A =
1/2 (Ë x T) = 1/2 (-By, Bx, 0). Employing VA = 0 and il (Ë x T) = Ë (r x PJ =
BLz = B(xpy - YPx) the Hamiltonian is written as

1 ~ z2 2 ( 2 2) Z-2--Pion + 8 2 B xian + Yion - 2 B (XionPiany - YianPianx)mian mian e mion e
1~ 1 2 (2 2) 1 Z

+-2Pe + 8 2B Xe + Ye + -2 B (xePey - YePex) - 1- _ -. I.e e ~ ~

Since it is the relative motion between an individual electron-ion pair which
eventually decides whether recombination can occur (the cross section depends on
the relative energy as illustrated in Figure 2.3), it is advantageous to treat the
two-body system Eq. (3.2) in center of mass (CM) variables

Rc- 1 - mian_
M = MTe + MTian

and internal variables

-
PCM = Pe + Pïon (3.3)

(3.4)
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(3.5)

with the total mass given by M = 1+mion. These transformations can be obtained
from the generating function F2

F2(f'e, fion, PCM, P) - PCM' RcM(f'e, fioo) + P . R(f'e, T;=)
.... (1.... mion .... ) ........ ....PCM Mre + Urian + P (re - rion)'

For a more detailed description of canonical transformations and the associated
generating functions see appendix A or Ref. [47]. To derive the Hamiltonian in CM
and internal degrees of freedom we insert the inverted equations

and
.... 1 ....

fion = ReM - -RM
into the Hamiltonian Eq. (3.2) and obtain

_ mion -t -

Pion= --PCM - PM

(3.6)

(3.7)

He-ion HéMian+ H:;/on (3.8)

1 ( .... Z-1( ........ ) mion+Z( ........ ))2Héiton - 2M PCM - ~ B X ReM + 2Mc B X R (3.9)

He-ion _ ~ (p _ -m;on + Z (B X R) + mion + Z (B X ReM))2 - ~ .(3.10)
rei 2J.L 2M2c 2M c IRI

J.L= mion/(1+mian) represents the reduced mass. Thus, in the presence of a magnetic
field the CM and internal motions are no longer separable, but they are coupled.
The coupling appears in both the CM and internal degrees of freedom: the CM
kinetic energy Eq. (3.9) contains the internal coordinates R as well as the relative
kinetic energy in Eq. (3.10) depends on the coordinates ReM of the CM. Referring
to the electric dipole moment of the electron and ion with respect to the CM

(3.11)

the coupling in Eq. (3.9) may be regarded as a dipole contribution. Z -1denotes the
total charge of the electron-ion system. As required, in the field free case B = 0 the
coupling between the CM and internal variables vanishes and the motions become
separable.

Note that the coupling in Eqs. (3.9) and (3.10) is the same, i.e. the coefficients
of R in Eq. (3.9) and of ReM in Eq. (3.10) are identical. Taking advantage of this
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fact the coupling between the CM and internal variables can be minimized [48, 49]
(Power-Zienau-Woolley (PZW) transformation). The classical analog of the PZW
transformation is a point transformation (Te, 'Gon, Pe, 'ßwn) ~ (R, ReM, P, PCM)
which uses the gauge freedom to specify new CM and internal momenta PCM and
P, while retaining the standard CM and relative coordinates of Eqs. (3.3) and (3.4).
For this purpose the F2 generating function (Eq. (3.5)) is modified to

F2 = PCM . ReM(Te, 'Gon) + p. R(Te, 'Gon) - mi~: Z R(Te, 'Gon)B x ReM (Te, 'Gon).
(3.12)

This extended form for F2 now provides more involved relations between Pe and Pion
and PcM and P respectively given by

(3.13)

(3.14)

and vice versa

(3.15)

(3.16)

whereas the Hamiltonian in terms of these newly introduced CM and internal vari-
ables adopts the simpler form

He-ion - He-ion + He-ion (3.17)CM rel

( )2He-ion 1 -- Z-l -- -- mion+Z -- --
- 2M PCM-~(BXRcM)+ Me (BxR) (3.18)CM

He-ion - 2- (p _ -m~on + Z (B x R) ) 2 _ ~. (3.19)rel 2/1 2M2e IRI
Here the only coupling between the CM and internal coordinates arises in the CM
kinetic energy (Eq. (3.18)). In comparison to Eq. (3.9) this coupling has been
doubled, while the coupling term in the relative kinetic energy (Eq. (3.19)) has been
eliminated.

Thus, depending on the definition of t~e CM and internal momenta used, the
electron-ion relative energy E:dion = 1/2 /1R2 - Z /IRI is given either by ~q. (3.19) or
(3.10), likewise the ,electron-ion center of mass energy Eétton = 1/2 M R~M follows
either from Eq. (3.18) or (3.9).
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However, due to the heavy ion mass mion » 1 and thus M » J-l the coupling
between the CM and internal degrees of freedom is small as can be seen from a direct
comparison of the B x R terms in Eqs. (3.18) and (3.19). As will be shown below,
the CM and relative energies will he approximately conserved during the combined
propagation of the electron and ion throughout the solenoid region.

As an example we study the motion of an electron and CH ion for the parameters
available at the TSR experiment [10], where the region of straight overlap of electron
and ion beam inside the solenoid is about 1.5 m and beam velocities of about O.le (e:
velocity of light) are realizable. We choose the lab frame as the frame of reference for
our simulation. The time evolution of the electron and the ion is described by the
classical Hamilton's equations of motion derived from the Hamiltonian Eq. (3.2).
Figure 3.2 shows sample trajectories for both electron and ion propagated in a
magnetic field of B = 42 mT for a time duration of Tc = 60 ns. The electron
performs a cyclotron motion with radius Tc = 1.19 X 105 a.u. and frequency We =
Ble ~ 1.79 x 10-7 a.u. with the guiding center of the spiral shaped trajectory
deflected somewhat from a straight line by the ionic Coulomb potential, whereas
the ion moves along approximately a straight line throughout the solenoid and is
hardly disturbed by the Coulomb and magnetic fields due to its much larger mass
(Figure 3.2a). However, for only slightly different longitudinal (i.e. II B) velocities
the electron and ion can effectively interact through their Coulomb potentials: the
electron, if trailing the ion, is accelerated towards the ion until reaching its maximum
velocity during passage of the ion and is, thereupon, decelerated such that the
ion can again catch up with the electron. Therefore, during the time evolution
the electron is found to overtake the ion and vice versa in the direction parallel
to B (Figure 3.2b). Nevertheless, the electron-ion relative energy E:;ïion is only
insignificantly influenced by this mutual Coulomb interaction in the magnetic field,
exhibiting tiny oscillations with We while retaining its overall magnitude within a
small error bar (Figure 3.2c and 3.2d). The relative change of E:;ïion with time, i.e .
the quantity (E:clion(t) - E:;ïion(t = 0))1 E:;/on(t = 0), remains within an upper
limit of 5 x 10-4 for the trajectories illustrated in Figure 3.2. .

Using the CTMC method we investigate the electron-ion dynamics in the solenoid
region for an entire ensemble of trajectories. The initial ensemble of electrons is dis-
tributed uniformly within a sphere with diameter d = n;;;;f3 in coordinate space (nion
corresponds to a typical ion density available in the TSR experiment) and Maxwell-
Boltzmann distributed (Eq. (2.12)) in velocity space with electron temperatures kTl..
and klll and an average detuning energy Erel with respect to the ion motion. The ion
is always located at the center of the electron ensemble. The electronic (i.e. on top of
the thermal distribution) and ionic velocities are fixed to O.le along the direction of
B in our lab frame simulation. We thus test the non-conservation of the electron-ion
relative energy due to the breakdown of separability for the ensemble. In Figure 3.3
the change of E:clion obtained at the end of the time propagation is explored, both
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Figure 3.2: Simultaneous propagation of an electron and CH ion at B = 42 mT in
the lab frame. Initial velocities are Vionz = D.le for the ion and Vez = D.le+4.46 x 10-4

a.u. and Vd = 2.13 X 10-2 a.u. for the electron with an initial displacement of
R = 5.5 X 105 a.u. from the ion. Thus, initially E:;ïion ~ 2.16 x 10-4 a.u. The
three-dimensional trajectories (a), the longitudinal relative coordinate and velocity
components (b), the total, CM and relative energies (c) and the relative energy on
a magnified scale (d) are shown. Note that in (c) Eé7ton and Ee-ion are displayed
only after subtraction of the initial total energy value Ee-ion(t = D).
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Figure 3.3: Analysis of the non-conservation of the electron-ion relative energy
within the solenoid: a density plot of the relative (a) and the absolute (b) change
of E:~/Ynat time t = Tc relative to the initial value and the corresponding initial
energies at t = 0 is drawn. kTl.. = 10 meV, k711= 0.06 meV, Erel = 0.03 meV,
d = 1.765 X 106 a.u. and B = 42 mT are used. Electron and ion (CH) beam
velocities are O.le. Note that the density is plotted on a logarithmic scale and the
peak height is normalized to 1.
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(3.21)

(3.22)

the absolute change ßE:;Lion(t = Tc) = E:;Lion(t = Tc) - E:;Lion(t = 0) (Figure 3.3b)
and the relative change of ßE:;Lion(t = Tc)/ E:;Lion(t = 0) (Figure 3.3a) with respect
to the initial energy value at t = 0 are displayed on a logarithmic density plot. Tc

denotes the time available inside the solenoid. Accordingly, for typical experimental
parameters the CM and relative energies change only by a diminutive amount during
the combined propagation of the electron and ion through the solenoidal interaction
region. We find that E:;Lion is conserved to better than 10-7 a.u. Therefore, to a
good approximation, the transfer of CM energy to relative energy can be entirely
neglected. Under this assumption the transformation to the rest frame of the ion
(denoted by the superscript R) , which is numerically advantageous since the beam
velocities (D.1e) are much larger than the relative velocity between electron and ion,
can be immediately accomplished. With the ion a priori fixed in R, i.e. ~n = 0
and T'fon = 0, only the motion of the electron in the presence of the magnetic field
B and the fixed ionic charge Z needs to be studied. Thus, in the symmetric gauge
the resultant Hamiltonian in the rest frame of the ion reads

e-ion R 1 (-R 1 (- _R))2 Z 1 (=-El 1 (- =-El))2 Z
(Hrel ) = 2 P + 2c B x R - IRRI = 2 Pe + 2e B X Te - -I~RI

(3.20)
with the relative momenta and coordinates between electron and ion pR and RR
given by the electronic degrees of freedom P:- and ~, respectively. Below the chaotic
dynamics described by Eq. (3.20) will be investigated in detail.

3.3 Classical Chaotic Dynamics
The dynamics of an electron incident from the asymptotic region and approaching
the target ion of charge Z in the presence of a homogeneous magnetic field B = Bêz
is thus governed by the reduced Hamiltonian (compare Eq. (3.20))

p2 Z 1 1222H = "2 - ~ + 2c B (xpy - YPx) + 8c2 B (x + y ),

where fi = (Px, PY' Pz) and r = (x, y, z) are the Cartesian momentum and coordinate
of the electron in the rest frame of the target ion (with the subscript e and super-
script R omitted henceforth). Applying the canonical transformation technique [47]
(appendix A) the Hamiltonian can as well be expressed in cylindrical coordInates

1 (2 L; 2) Z 1 1 2 2H=-2 Pp+2"+PZ - ./~--+-2 BLz+82B P
p V p2 + Z2 C C

exploiting the axial symmetry of the system imposed by the magnetic field B along
the solenoid of the electron cooler, i.e. along z in our notation. p denotes the
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Figure 3.4: Schematic picture of the Coulomb (blue) and diamagnetic (green) po-
tentials of the Hamiltonian Eq. (3.22) as a function of the transverse coordinate p
(z = 0) with Z = 1 and Ble = 1. For potential energies of competitive strength the
underlying classical motion is chaotic (shaded area). The red line indicates the sum
of the two contributions.

transverse distance to the ion and Lz the angular momentum component along the
direction of the magnetic field. Pp = (xPx + YPy)1 p and Lz = XPy - YPx are the
canonically conjugate momenta with respect to the coordinate p = Jx2 + y2 and
the polar angle 4> = arctan(ylx).

This Hamiltonian (Eq. (3.21) or (3.22)) has two constants ofmotion in involution,
the energy E and the angular momentum component Lz. Since the magnetic field
along the solenoid breaks the spherical symmetry, the total angular momentum L2

is not a constant of motion any longer as compared to the pure Coulomb field.
The distribution of L2 in a magnetic field may influence the RR rate (Eq. (2.11))
considerably, because only small L2 significantly contribute.

In order to be integrable a system with N degrees of freedom requires N constants
of motion in involution. For the three degrees of freedom of Eq. (3.22) we find only
two constants of motion (E and Lz). Thus, the electronic motion in the combined
Coulomb and magnetic fields is not integrable and classical chaotic motion can occur.
Note that both the pure Coulomb field (constants of motion: E, Lz and L2) and
the pure magnetic field Ë = Bêz (constants of motion: E, Lz and Pz) alone would
constitute integrable systems.

Figure 3.4 displays a schematic picture of the potential energy terms in the
Hamiltonian Eq. (3.22) as a function of the transverse coordinate p (z = 0). For
small p the Coulomb potential (ex 1/r) dominates, whereas for large p the diamag-
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Figure 3.5: Electron trajectory near the target ion in the combined Coulomb and
magnetic fields (red) as well as in the pure Coulomb field (green). In the presence of
a magnetic field the electron comes close to the ion located at (0,0,0) several times.
The coordinates are given in scaled units according to Eq. (3.23). The scaled initial
velocities have been fixed to VzO = 0.17 parallel to and V.lO = a perpendicular to the
magnetic field direction .

netic potential (ex: p2) dominates with the underlying motion becoming regular in
both cases (Kepler motion in the former and cyclotron motion in the latter case). In
between, however, for intermediate values of p the two potential energies are of com-
parable strength and the associated motion is classically chaotic. For recombination
to take place the incident electron resides in the continuum. Hence, throughout
this chapter the chaotic domain at E > 0, i.e. chaotic scattering dynamics, will be
explored. The chaotic motion is, however, also important for small negative energies
(see chapter 4).

For a given set of initial conditions the dynamics of the system is determined
by the classical Hamilton's equations of motion (appendix A). By integrating these
equations numerically (using either a Runge-Kutta method [50] or a symplectic
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Figure 3.6: Electron trajectory in the combined Coulomb (ion fixed at (0,0,0)) and
magnetic fields (B II zo). The projections onto the Zo - Yo plane (a) and onto the
Xo - Yo plane (b) and the total distance to the nucleus as a function of the evolved
time (c) are shown in scaled coordinates (Eq. (3.23)). The scaled incoming velocities
are V..LO ~ 0.19 and VzO ~ 0.27.
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(3.23)

To -

Po
Lzo -

integrator [51, 52] (appendix C)) the motion of an electron scattered by the Coulomb
potential of the target ion in a magnetic field can be studied. Typical trajectories
near the ion are depicted in Figures 3.5 and 3.6 with the electron moving back and
forth around the nucleus (situated at the origin of the coordinate system) several
times. In the region of comparable strength of the Coulomb force and the Lorentz
force the electronic motion is thus a complicated combination of a (fast) Kepler
orbit and the (slower) cyclotron motion. The key observation is that trajectories
which reach the immediate vicinity of the target ion may return to its proximity
a couple of times before leaving to the asymptotic region. By comparison, in the
pure Coulomb field the electron moves on a hyperbolic Kepler orbit passing by the
ion just once (see Figure 3.5). These multiple traversals in the magnetic field, if as
close as r ::;rRR, will enhance the radiative recombination rate, since each of them
increases the probability for recombination. However, as Figure 3.6c presents, many
of the electronic encounters to the ion proceed at distances by far larger than rRR.

Accordingly, most of the passings of the ion cannot contribute to the recombination.
To estimate the effect of these repeated traversals on the RR rates quantitatively
the simulation of an ensemble of trajectories is required.

The Hamiltonian (Eq. (3.21) or (3.22)) exhibits classical scaling invariance [53,
54]. In our problem the scaling reveals the systematic dependence on B and Z. We
scale the variables by the transformations (appendix B)

(B/c)2/3Z-1/3r,
(B/C)-1/3 Z-1/3p,
(B /C)1/3 Z-2/3 Lz,

where scaled quantities are denoted by the subscript O. Applying these scaling
relations the scaled Hamiltonian, Ho, becomes

(3.24)R = (B/C)-2/3 Z-2/3 H = P6 _ !+ ~L + ~p2o 2 ro 2 zo 8 o.

In the scaled system the only relevant control parameter is the scaled energy Ho.
Different combinations of {H, B, Z} with the same Ho result in the same dynamics.
Accordingly, exploring the dynamics for different Ho covers all possible realizations:
the B and Z dependencies are, in turn, completely contained in the scaling trans-
formations of Eq. (3.23).

The classical simulation is, however, not as simple as it might appear because,
the system has two vastly different length scales, the "target space" (rRR ~ 10 -
100 a.u.) and the asymptotic Landau region (re ~ 105 a.u.). This disparity in
length scales implies that classical scattering trajectories have to be followed from
"infinity" at almost macroscopic distances down to microscopic distances from the
target ion for reliable predictions. Due to the chaotic dynamics this amounts to
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the proverbial search for a needle in the hay stack. To find systematic dependences
(such as on E, Z or B) among such small probabilities requires large ensemble
sizes. Typically, millions of trajectories are necessary for a given set of experimental
parameters in order tü represent the electronic phase space distribution near the ion
properly. Because of the chaotic dynamics the propagation of these trajectories is
not an easy task: very small time steps have to be chosen to maintain the accuracy
of the calculation. This is due to the fact that the numerical error associated with
each trajectory is exponentially enlarged with time, an inherent feature of chaotic
dynamics. However, by the help of parallel processing different trajectories can be
distributed to different processors and, accordingly, the computing time required to
get converged results is reduced by a factor 1/N with N representing the number of
available processors.

3.4 Classical Phase Space Structure: Poincaré Sur-
faces of Section

In order to analyze the classical phase space structure and to view the chaotic nature
of the underlying trajectories we employa modified version of Poincaré surfaces of
section applicable to scattering systems proposed by Jung [55].

A Poincaré surface of section [56] is the representation of trajectories in a sub-
space of phase space. Points of the Poincaré surface of section represent points
of intersections of trajectories with the two-dimensional subspace (plane) of phase
space. For a meaningful representation the intersections should be densely dis-
tributed. This technique has been used extensively for bounded systems whose
trajectories are localized in a finite region of space: a bound-state trajectory can
cross the surface of section many times and becomes visualized as an ensemble of
dots indicating either regular (only finite number of points or a one-dimensional
set for periodic or quasi-periodic motion, respectively) or chaotic motion (points lie
dense in a two-dimensional subset).

However, for scattering systems trajectories are not bounded but they spread
over the phase space: the projectile comes in from infinity, interacts with the target
only for a finite time interval and then goes off to infinity again. Therefore any
surface S is pierced only a finite number of times by a generic scattering trajectory.
Accordingly, only few points can be accumulated on the corresponding Poincaré
surface of section (even if the analyzed scattering potential induces chaotic behavior).
Thus, in order to map out structures in phase space a more involved technique is
required in the case of scattering problems: the method proposed by Jung [55]
suggests that once a projectile leaves the target region, the trajectory is mapped
back onto the entrance region of the phase space to the target zone again. This map
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Figure 3.7: Poincaré surface of section at Zo = a generated from the trajectory of
Figure 3.5 by propagating it up to 100 reflections at Zo = Zc = 100. The transverse.
coordinate Po is plotted against the corresponding transverse momentum PpO' The
trajectory reaches the entire classically allowed region of phase space indicated by
the red line. It is given by PpO = \l'2Eo - Lzo - L;o/ P6 - 1/4P6 + 2/ Po.

should be: 1) independent of the scattering potential and 2) identical to periodic
boundary conditions in the absence of the scattering potential. The resulting map
illustrates regions of phase space which are filled by stable or unstable trajectories.
In our case the motion in the transverse direction is confined due to the magnetic
field. However, a trajectory is unbounded in the longitudinal direction, i. e. parallel
to the magnetic field, chosen as z-axis in our coordinate system. Once z becomes
larger than a given boundary value Zc, we map z - -z. In this way a Poincaré
surface of section for our scattering problem can be constructed. The boundary Zc

is chosen such that the Coulomb potential of the ion has already decreased to a
small strength compared to the magnetic field contribution which is present also in
the asymptotic regime far away from the ion to be scattered at. Thus, in terms of
the two assumptions specified above only the Coulomb potential is regarded as the
"scattering potential" in our case.

Figure 3.7 illustrates a Poincaré surface obtained from the trajectory depicted
in Figure 3.5. The surface of section is taken at the origin where the target ion is
situated. The trajectory lies densely in the entire region of classical phase space
accessible for the chosen initial conditions. We investigated surfaces of section for
different positive energies. In all cases we obtained pictures similar to Figure 3.7 with
no regular structures visible at all indicating that the system features hard chaos.
The nature of chaotic trajectories implies that a small change in the initial conditions
dramatically affects the time evolution and, as time proceeds, the sensitivity on the
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initial conditions becomes stronger and stronger. This intrinsic feature of chaos
manifests itself in the random distribution of points, i. e. a dense two-dimensional
set, shown on the Poincaré surface of section (Figure 3.7). Precisely this chaotic
heha.vior makes the propagation frem the asymptotic region to the target ion very
difficult.

3.5 Modification of the Recombination Rate
From the CTMC simulation the change of the electron density l(fluf)12 near the
ion in the presence of a magnetic field relative to the pure Coulomb case I(flUk) 1

2
can be extracted: following the discussion of section 3.1 we define the Coulomb zone
Sc = {fir< rRR} as the region where radiative recombination takes place and,
below, investigate the probability for finding an electron within Sc. We determine
the change of probability density in terms of a visit function V(T, v), which denotes
the number of visits, i. e. the number of encounters, of a given trajectory with
asymptotic phase space coordinates (T, v) to the Coulomb zone Sc. For a schematic
picture see Figure 3.8. The visit function V plays the role of a generalized time-delay
function of irregular scattering [57, 58, 59, 60]. The corresponding visit functions
are evaluated with (V) and without a magnetic field (Vc).

Since each visit is considered to contribute to the recombination, the ratio VIVc
corresponds to the enhancement of the recombination rate for given initial conditions
(T, V). Accordingly, the enhancement for a fixed asymptotic velocity v is given by

h(v) = J dfV(T, V)
J dfVc(T,V)

(3.25)

(3.26)

with Vc denoting the visit function in the pure Coulomb field. In the presence of
a magnetic field the asymptotic Maxwell-Boltzmann velocity distribution for the
incident electrons needs to be properly weighted according to the modification of
the electron beam flux in coordinate space characterized by Eq. (3.25). Thus, the
radiative recombination rate can be written as

a(vrel) = J Utotalvh(V)fMB(v, vrel)dv.

Note that even though the Hamiltonian and the resulting equations of motion are
derived in the symmetric gauge (Eq. (3.21)), the recombination rate is gauge invari-
ant due to the fact that all the functions in the integrand are evaluated in terms of
gauge independent quantities such as T and V.

We emphasize that the visit functions both V(T, V) and Vc(T, V) are evaluated in
terms of asymptotic phase space coordinates, i. e. the initial ensemble is taken on
the surface of a sphere with radius r or more precisely, exploiting the axial symmetry
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Figure 3.8: Trajectories that enter Sa(r < rRR = n;/Z) around the target ion are
counted as 'visits' to the ion.

for finite field strengths B, on a plane with initial coordinate z = r (for a more
detailed discussion see section 3.7). Hence the integration J dT = cPr in Eq. (3.25)
has the dimension of an area and can be interpreted as the corresponding classical
analog of a cross section. The new rate formula can intuitively be understood: in
Eq. (3.26) an appropriate weighting of the RR cross section atotal with the ratio
of the classical flux for radiative recombination in the combined fields versus the
corresponding flux in the pure Coulomb field needs to be taken into account.

3.6 Determination of the Visit Function
Evaluation of the modified RR rate formula (Eq. (3.26)) requires only the determi-
nation of the visit function V (T,11).

In the pure Coulomb case the visit function Va is easy to evaluate since the
underlying dynamics is regular, i. e. the motion proceeds on hyperbolic Kepler
orbits (Figure 3.9). Accordingly Va takes only the values a and 1 (Figure 3.12b)
and is non-zero only in a single connected phase space region (Figures 3.11b and
3.13b), whose size can be readily calculated. For a hyperbola the distance of the
perihelion from the focus, where the ion is located, is given in terms of the semi-axis
a and the eccentricity é [61]. This distance of closest approach of an electron to the
ion, denoted by rmin, must be smaller than rRR for a visit to occur, i. e.

RR ( Z (J 2EL2 )r ~ rmin = a é - 1) = 2E 1 + ----p - 1 . (3.27)

The angular momentum L and the energy E of the electron are expressed in terms
of asymptotic quantities such as the impact parameter Poo and the velocity Voo at
infinityas

1 2E = -voo'
2

(3.28)
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Figure 3.9: Contribution to the visit function Vc in the pure Coulomb field.

(3.29)L = pv,

Since we want to compare Vc with the corresponding value of V being determined
from the CTMC at the SAME initial phase space coordinates (T, if) (chosen at large
distances from the ion, but definitely not at infinity), we actually employ

v2 ZE=---2 r

to account for the contribution of the Coulomb field at large, but still finite distances
f. Exploiting the spherical symmetry of the Coulomb potential for the evaluation of
Vc the coordinate system can be chosen such that the initial velocity of the electron
becomes parallel to the z-axis, i.e. v = vêz = Jv~ + vi êz, where VII and V.l denote
the corresponding longitudinal (II B) and transverse (J.. B) velocity components
of V in the magnetic field to be compared with. Thus, all electrons with initial
impact parameter p ~ Pmax contribute to Vc (Figure 3.9) and the coordinate space
integration of Vc results in

J 2rRR (ErRR + Z)
Vc(v) = df Vc(f, if) = 7rP~ = 7r v2 (3.30)

with the maximum impact parameter PTTUlX = p(rmin = rRR) having a visit to the
ion being determined by the equality sign in Eq. (3.27). The values obtained for Vc
are displayed in the subsequent figures (Figure 3.11b, 3.12b and 3.13b).

The visit function V in the magnetic field is determined numerically from our
CTMC simulation. Due to the chaotic dynamics in the presence of B the electron
can be scattered by the ion many times allowing for multiple visits (Figure 3.5). The
longer the total propagation time, the higher is the sensitivity of the visit function V
on its initial conditions. Therefore, it is very difficult to analytically predict for given
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Figure 3.10: The initial coordinates and velocities as chosen in the simulations. Due
to the cylindrical symmetry of the system we set p = xêx. 4J denotes the angle
between p and ill.'

initial conditions (T, il) in the asymptotic region whether the electron visits the target
ion within a finite time period and, if it does, how many times. Nevertheless, some
geometrical restrictions on the initial conditions can be made due to the fact that
the angular momentum component Lz is preserved in the magnetic field Ë = Bêz
within the symmetric gauge. Since L2 = L;+L~+L; ~ L;, in analogy to Eq. (3.27)
at least a lower limit for the distance of closest approach r min can be established for
given initial conditions by

z (. >-rmm - 2E
2EL2 )1+ Z2 z - 1 . (3.31)

Equating the lower boundary for rmin with the relevant length scale rRR for RR, i.e.

rRR = 2
Z

E ( 2E 2 )1+ Z2Lz -1 , (3.32)

constraints on the initial conditions contributing to V can be derived. Exploiting the
cylindrical symmetry of the Hamiltonian Eq. (3.22) we choose the initial electronic
coordinates and velocities as (Figure 3.10)

x = p,
y = 0,

Vx = vp = Vl. cos4J
vy = Vl. sin 4J (3.33)

whereupon the angular momentum Lz becomes

Lz = XPy - YPx = PVl. sin 4J- ;c Bp2. (3.34)
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Solving Eq. (3.32) with this expression for Lz with respect to P and 4> finally leads
to the intervals of initial conditions

P E [0, Pmax], (3.35)

where

p_ - ~ (v~ + J2~ v2rRR(ErRR+ Z) +v1)

4>1 - arcsin (2~.l (~ p2 - 2V2rRR (ErRR + Z)) )

4>2 - arcsin (2~.l (~ p2 + 2V2rRR (ErRR + Z)) ) .

3.7 The Visit Function: Numerical Results

(3.36)

(3.37)

(3.38)

In this section we investigate the visit functions, V and Vc, for fixed initial veloc-
ities (V.lO,vzo), To determine Vcr, v) an ensemble of electrons incident from the
asymptotic region is simulated subject to the restrictions Eqs. (3.35) - (3.38). All
scattering trajectories are calculated from the asymptotic incoming region through
the immediate vicinity of the ion (with multiple forward and backward encounters
possible) to the asymptotic outgoing region without any limitation in propagation
time. In Figures 3.lla and 3.13a the set of initial conditions (Po,4>o) with non-zero
values of V is plotted as dots on the corresponding plane. In Figures 3.12a and
3.14 the visit function V(po) is displayed for fixed values of the initial angle 4>0. As
a reference, also Vc is shown (Figures 3.llb, 3.12b and 3.13b). As seen from the
figures V can take any integer value and is a highly irregular function with fractal
structure because of the chaotic dynamics in the presence of a magnetic field.

In Figure 3.lla, where the perpendicular velocity is fixed at V.lO= 0.15, in the
magnetic field a connected region at Po ~ 0.3 (Figure 3.12a) can be found as in the
pure Coulomb case (Figure 3.12b), however at larger impact parameter. In addition
to this connected region with one visit to the ion multiple visits appear spread over
wide regions in phase space with a fractal-like structure. To emphasize these fractal
structures a magnification of a small range of V is drawn in the inset of Figure 3.12a.
The overall contribution of the visit function J dfô V(fô, va) = J dpopo J d4>oV(po, 4>0)
amounts to about 0.101 in the presence of the magnetic field and only to 0.078
in the pure Coulomb field (i. e. for Vc) thus leading to an enhancement ratio of
h(ijQ) ~ 1.29 for (V.lO,vzo) = (0.15,0.3). The horizontalline in Figure 3.11 indicates
the cut through phase space investigated further in Figure 3.12.

The origin of the fractal-like structure of V can be understood by investigating
the dynamics of the associated trajectories. The analysis of individual trajecto-
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Figure 3.11: Phase space region of non-zero visit function V(fô, V'o) (a).and Vc(fô, V'o)
(b) at fixed scaled perpendicular and parallel velocities V.lO = 0.15, VzO = 0.3 and
scaled coordinate Zo = -100. Visits are defined for ro < 1.4 x 10-3 scaled units. Po
denotes the impact parameter and <Po the angle between Po and i1.to. The lines refer
to the subspace of phase space illustrated in Figure 3.12.
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Figure 3.12: Visit function V along the cut <Pain ~ 0.41 (indicated by the horizontal
line in Figure 3.11) with magnetic field (a) and without magnetic field (b). The inset
in (a) is a magnification of the window around Po = a displaying the fractal-like
structure of V.
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Figure 3.13: Phase space portraits of V(f'o, va) (a) and Vc(f'o, Vû) (b) recorded at a
larger perpendicular velocity of V.lO = 1.0. The other parameters are the same as in
Figure 3.11. The various structures visible in V can be assigned to different types
of trajectories as indicated in (a). The two horizontallines denote the subspaces of
phase space depicted in Figure 3.14.

ries (Figure 3.15) reveals that the dense black spot at (Po, 4>0/7r) ~ (1.82,0.36) in
Figure 3.13a represents a small connected area of points with non-zero V which
correspond to the initial conditions of trajectories visiting the ion when the electron
passes by the ion for the first time. Similarly, the spot at (Po, 4>0/7r) ~ (0.65,0.1) is
associated with electrons having a visit at their second pass by. Furthermore, also
the connected regions pertaining to visits at the third and fourth traversals of the
ion appear. As already pointed out, the later a visit occurs the higher its sensitivity
on the initial conditions becomes. Therefore, the size of the connected regions to
be formed is decreasing for visits happening at later times. Piling up these smaller
and smaller structures in the initial conditions the fractal-like structure of the visit
function V(T, v) is obtained. The profile of V depicted in Figure 3.14 for two fixed
angles 4>0 illustrates the fractal behavior of the visit function with magnifications of
connected regions of non-zero values of V. Figure 3.15 displays sample trajectories
related to the connected regions of visits from the first and second pass by.

For the larger velocity component V.lO = 1.0 fewer visits occur (Figure 3.14).
V extends to larger values of the impact parameter Po as a result of the increased
cyclotron radius (rcOex: V.lo) whereas being much more restricted in the initial angle
4>0 for individual values of Po (Figul'e 3.13a). This is due to the fact that a small
angular momentum Lzo (Eq. (3.34)) is required for a visit to occur. Lzo = 0 is
given by 4>0 = arcsin(po/(2v.lo))' In the case of Figure 3.13 the enhancement ratio
(Eq. (3.25)) is calculated as h(Vû) = 1.88, which is considerably larger than for the
smaller perpendicular velocity V.lO = 0.15 discussed above.
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Figure 3.14: Visit function V along 4Yo/1r = 0.1 (a) and 4Yo/1r = 0.95 (b). Note
that Po has been restricted to ~ 0.8. The left inset in (a) enlarges the connected
region around Po = 0.1 associated with visits from electrons passing by the ion for
the third time and the right inset in (a) zooms at the connected region around
Po = 0.65 caused by visits of the second pass by of the electron. The inset in (b)
is a magnification around Po = 0.14, where again visits from the third electronic
traversal are located.
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Figure 3.15: Trajectories originating from the phase space region of Figure 3.13
around Po ~ 1.8, 4Yo/1r = 0.36, i.e. close to or within the connected region related to
visits from the first pass by (a), and trajectories from the region around Po ~ 0.66,
4Yo/1r = 0.1, i.e. close to or within the connected region representing visits from the
second pass by (b). The distance to the ion is shown as a function of scaled time.
Visits are assumed for ro < rRR = 1.4 x 10-3 scaled units (horizontalline). In the
inset the region around the closest approach to the ion is magnified. Note that in
(a) two trajectories visit the ion, whereas in (b) only one does.
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Note that in the phase space portrait of Figure 3.11a only one connected area,
situated at (Po, <po/rr) ~ (0.29,0.42), is visible representing visits to the ion at the
first pass by of the electron. All the other structures in V have already become so
tiny at the given velocity that they could not he resolved within the available Monte
Carlo statistics (with 6456 trajectories contributing to V) thus demonstrating the
extremely high sensitivity of the dynamics on the chosen initial conditions in the
very low velocity regime.

The accurate determination of V and its integration over phase space coordinates
(Eqs. (3.25) and (3.26)) is therefore very difficult. High levels of Monte Carlo
statistics are required to reach converged results for measures of irregular scattering.
Certainly, this difficulty limits the accuracy of the presented results. Finally we
emphasize that the visit functions presented throughout this section do not include
a time limit for visits to the ion.

3.8 Weighted Visit Function
The flux of electrons near the target ion in the presence of a magnetic field is deter-
mined by means of the visit function V(f, v). So far, V has been defined by applying
a sharp cutoff to the contribution to recombination at r = rRR (with rRR decided
by the maximum principal quantum number nr not being field-ionized in the subse-
quent charge-analyzing dipole magnet in the experiment). However, a sharp cutoff
in n irrespective of the angular momentum 1 definitely constitutes an oversimplified
description for RR to take place. To attain a more realistic characterization of the
RR process, each visit into the Coulomb zone Sc by a given trajectory should be
weighted with a weighting function w(rmin),where rmincorresponds to the minimum
distance to the ion associated with this visit. The weighting function is obtained by
breaking the Coulomb zone Sc down into different n,l subsheIls and by assuming
each visit has a weight according to the unperturbed cross section u!,;f for RR into
the (n, 1) state, i.e.

1 nr n-l (1 )
w(r)=-~~u~8 ;-r ,

Utotal n=l l=O
(3.39)

where 8(r) represents the step function. u~R can be approximated within a non-
relativistic treatment in the electric dipole approximation [5, 62] by

(3.40)

in the limit of low electron energy, i.e. Ee« Eni. Ct.1 denotes the fine structure
constant, Ee the free electron kinetic energy (see Eq. (2.7)), Eni the electron binding
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Figure 3.16: Weighting functions (line for Eq. (3.39) and dashed line for Eq. (3.41))
employed to determine the number of visits to the ion. nT = 30 and Z = 6.

energy in the final state and cl::l:1(n,l) the reduced electric dipole matrix elements
given by [62]

(3.41)

22lnl-1e-2n [ (n + 1)! ] 1/2
cl-1(n,1) = ( )' ( 1 )'21- 1 . n - - 1 .

x [F(l - n + 1,21; 4n) - F(l - n - 1,21; 4n)]
_ 22l+4nl+1e-2n [ (n + 1)! ] 1/2

cl+1(n,l) ----- -----(21 + I)! (n - 1 - I)!

x [F(1-n+1,21+2;4n)_1~:;lF(1-n+2,21+3;4n)]

with the confluent hypergeometric function F(ß,,; z) [63]. A plot of the resulting
weighting function Eq. (3.39) with nT = 30 is shown in Figure 3.16 and compared
with that of a sharp cutoff of V at r = rRR,

wshaTp (r) = e (~ - r ) .

Accordingly, the visit function V(T, v) is evaluated by summing up all the weighted
visits of a trajectory launched from the asymptotic coordinate (T,v), i.e. V(T, V) =
2::i w(r:nin) where the index i = 1,2 .. counts the number of repeated visits (if any)
for a given trajectory. The visit functions with (V) and without a magnetic field
(Va) are thus determined.

By the weighting according to Eq. (3.39) the visit function changes from an
integer-valued quantity to a real-valued function. Since in the pure Coulomb field
i = a or 1, Va ::; 1, that is at most one visit per trajectory takes place. Va is a
smooth function and as before non-zero only in a single connected phase space region



CHAPTER 3. CHAOTIC DYNAMICS IN A MAGNETIC FIELD 48

0.7 0.7
0.6 (a) 0.6
0.5 0.5
û.4 u 0.4

> >0.3 0.3
0.2 0.2
0.1 0.1 \0 0

0 0.1 0.2 0.3 0.4 0.5 0 0.1
Po

(b)

0.2 0.3 0.4 0.5
Po

Figure 3.17: Visit function V weighted according to Eq. (3.39) as a function of the
scaled impact parameter Po with magnetic field (a) and without magnetic field (b)
for the data of Figure 3.12 with scaled velocities of V.iO = 0.15 and VzO = 0.3 and
scaled coordinates of Zo = -100 and 1>o/1r ~ 0.41.

(Figure 3.17b). In the presence of a magnetic field the visit function becomes a highly
fluctuating function exhibiting a fractal-like structure (Figure 3.17a). Multiple visits
appear in addition to the connected region at Po ~ 0.3. In the simulation, a point by
point integration of V is performed over the phase space coordinates. With a longer
total time propagation V shows a high sensitivity to the scaled initial coordinate Po
(Figure 3.17a). Figure 3.17 illustrates V and Vc after weighting with Eq. (3.39) for
the same data set as in Figure 3.12 where V and Vc have both been evaluated using
the weighting of Eq. (3.41).

3.9 Magnetic Field Dependence ofthe Visit Func-
tion

In order to understand the effect of the magnetic field on the enhancement of the
recombination we first investigate the phase space region of non-zero visit function
V for different magnetic field strengths at fixed initial velocities. For a comparison
of V(T, il) at the same velocities (V.i, vz) given in a.u. but different magnetic fields
the corresponding phase space portraits (Figure 3.18) are shown in a.u. rather than
scaled units, where different B would lead to different To and Va. The trajectories are
launched from a plane perpendicular to B with initial coordinate z = -7.167 X 106

a.u. With decreasing magnetic field the cyclotron radius increases (re ex: 1/ B) and
the dynamics allowing for visits to the ion extends to larger transverse coordinates
p. In contrast, the range of initial angles 1> contributing to V becomes narrower at
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Figure 3.18: Phase space region of non-zero visit function V(i, V) for lower (a) and
higher magnetic field strengths (b). The initial velocities are fixed to Vz = 2.744 X

10-3 a.u. and V.L = 1.372 X 10-3 a.u., the initial coordinate to z = -7.167 X 106

a.u. and visits are defined for r < rRR = 100 a.u. The dashed lines in (a) indicate
Lz = 0 given by <p = arcsin(1/(2c) Bp/v.L) (compare Eq. (3.34)).

individual values of p in order to preserve an angular momentum Lz small enough
for a visit to take place. Thus, a decrease in B modifies the phase space structure of
V(p, <p) in the same manner as an increase in V.L (discussed in section 3.7) does. For
magnetic fields such as B ;S 3 mT V is essentially non-zero only in a narrow strip
around Lz = 0 (Eq. (3.34)) given by <p = arcsin(1/(2c) Bp/v.L). For small values
of B the dynamics gets more Coulomb-like with V becoming less irregular in (p, <p)
space approaching the distribution in a single region of phase space. Note that with
decreasing B it is increasingly difficult to determine V with sufficient accuracy due
to its sparser representation in the available (p, <p) space. Correspondingly, in our
simulation the sampling of initial conditions according to Eqs. (3.35) - (3.38) becomes
more and more inefficient for lower values of B. Table 3.1 displays the fraction of
the trajectories launched which has at least one visit to the ion as obtained for the
phase space portraits of Figure 3.18.

In Figure 3.18a the Coulomb contribution VC,sim (VC,sim refers to the visit func-
tion obtained from the simulation in contrast to the analytically determined value
Vc) is situated at p » 1 and <p ~ 7r, since in our simulation for B = 0 we do not
rotate the coordinate system in order to achieve v II êz as it is done for the ana-
lytical determination of the visits in Eq. (3.30), whereupon non-zero values of Vc
reside at p ~ Pmo.x with 0 ~ <p ~ 27r (Figures 3.11b and 3.13b). In the simulation
contributing values to VC,sim are found at the larger transverse coordinates p the
larger the ratio V.L/vz becomes in order to obtain an impact parameter small enough
for reaching the ion. The contribution VC,sim(V) = J dfVc,sim(i, V) if evaluated at
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magnetic fraction of sampled phase
field (mT) space contributing to V

0.05 4.44 x la :>

0.1 6.29 x 10-4

0.5 0.0039
1.0 0.0074
3.0 0.019

10.0 0.067
15.0 0.099
30. 0.18

60.0 0.30
120.0 0.36

50

Table 3.1: Fraction of trajectories with non-zero values of V obtained for the phase
space portraits of Figure 3.18.
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Figure 3.19: Projection factor required to account for the deviation of the visit
function evaluated at a fixed z-plane from the corresponding contribution at the
sphere with r = z. A schematic picture (a) and the dependence on p (Eq. (3.42))
(b) are shown.
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Figure 3.20: Enhancement ratio h(V) (Eq. (3.25)) for vr(V) at different magnetic
fields but fixed initial velocity (vz = 2.744 X 10-3 a.u., Vi. = 1.372 X 10-3 a.u.). The
corresponding phase space portraits are illustrated in Figure 3.18. The dashed line
is ex: B-O.2.

the surface of a sphere in the asymptotic region does not depend on the orientation
of the underlying coordinate system due to the spherical symmetry of the Coulomb
potential and VC,sim = Vc. However, since we initiate our simulation at a fixed
z-plane perpendicular to the magnetic field, VC,sim(-Ü) as obtained in the limit of
B - 0 is overestimated compared to the corresponding evaluation on the sphere
(Figure 3.19). To compensate for this overestimate of visits, which is by no means
negligible for Vi. ~ VII (given by {)~ 1r/4), we introduce the projection function

(3.42)P(;;'\ P() {)2 - {)l 1
TJ = P = tan({)2) - tan({)l) COS(({)l+ {)2)/2)

with {)2,1= arctan((p ~ ßpp/2)/z) (Figure 3.19b). Visit functions including this
projection should henceforth be labeled by the superscript T, i.e.

and Vé,sim(f', v) = P(T)VC,sim(f', v). (3.43)

Employing Vé,sim(V) = J d<pJ dppVé,sim(P, <p,v) the Coulomb contribution of visits
is properly determined given by h(V) = 1 (i.e. Vé,sim(V) = Vc(v)). With VC,sim(V),
however, the enhancement ratio at B = 0 would be h(V) ~ 1.12 thus causing a 12
percent error even for the small velocity ratio of Vi./vz = 0.5 studied in Figures 3.18
and 3.20.

Similarly, the projection Eq. (3.42) is required for small magnetic fields, where
the lateral confinement of the dynamics imposed by B is so weak that visits to
the ion can occur at such large transverse distances p of the order of the initial
coordinate z. Only for higher magnetic fields B ~ 10 mT non-zero values of V are
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welliocalized at small p with p / z « 1 (compare Figure 3.18) so that P(p) is close
to 1 and hence VT(T, if) ~ V(T, fi). Nevertheless, for accuracy, we will retain VT(T, fi)
at all field strengths for the determination of the recombination rates below.

For larger magnetic field strength!';; VT is laterally more confined, more irregular,
and multiple visits to the target ion get more pronounced (Figure 3.18). However,
the integration of VT over p and e/>reveals that its contribution is not necessarily
increasing with the irregularity of the scattering dynamics, i.e with increasing B.
In fact, for the phase space portraits of Figure 3.18, the integrated visit function
VT(if) and the resulting enhancement ratio h(fi) at first increase with the magnetic
field with a maximum found at B ~ 1 mT and, thereafter, decrease with B obeying
an approximate B-o.2 scaling (Figure 3.20). This decrease in h(fi) can be attributed
to the increased lateral confinement of the motion by the magnetic field which,
eventually, leads to a strong reduction of the effective phase space volume (due to
the decreased impact parameter p) contributing to VT.

3.10 Velocity Projection of Visits
In this section an alternative determination of the visit function in a magnetic field
will be discussed. According to Eq. (3.25) the definition of visits should, first, be
independent of the specific orientation of the coordinate system used within our
simulation and, secondly, converge to the Coulomb contribution (Eq. (3.30)) in the
limit of B ---+ O. In the pure Coulomb field, the area Vc( fi) with visits to the ion
is evaluated perpendicular to the incident velocity of the electron. Note that this
is the case for the analytical calculation of Vc(if) via Eq. (3.30), where fi = vzêz is
assumed, as well as for the determination of Vé sim(fi) in our simulation, since in the,
pure Coulomb potential the transverse coordinate p and the transverse velocity V.l
for an electron reaching the ion are directly related.

The projection perpendicular to fi might be performed in velocity space instead
(see inset in Figure 3.21) according to the trigonometric relation

P(fi) = I sin(arctan(vz/v.l)I. (3.44)

We will denote visit functions accounting for this projection function in velocity
space by the superscript v,

VV(T, fi) = P(if)V(T, fi) and Vë,sim(r, fi) = P(if)VC,sim(T, fi). (3.45)

The evaluation Vë,sim(if) = J de/>J dppVë,sim(P, e/>,if) yields the correct contribution
of visits in the Coulomb field with an enhancement ratio of h(if) = 1 (Eq. (3.25)).
Note that the application of both projections, the spatial projection of Eq. (3.42)
and the velocity projection of Eq. (3.44), i.e. Vé~im(T, fi) = P(if)P(T) VC,sim(T, if), is
obviously inconsistent and results in h( if) < 1.
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Figure 3.21: Visit functions V (red) and VV (blue) integrated over coordinate space,
i.e. V(v)(V) = J d4>J dppV(v)(p, 4>, v), as a function of the initial electron velocity
V.l perpendicular to the magnetic field. For comparison, the Coulomb contribution
of visits according to Eq. (3.30) (green) is also shown. The longitudinal velocity of
the incident electrons has been fixed to Vz = 6.141 X 10-3 a.u.; B = 42 mT, Z = 6
and rRR = 150 a.u.

Analogously, also the visit function in the combined Coulomb and magnetic
fields could be evaluated as VV(T, V) instead of vr(T, v). Figure 3.21 illustrates the
visit functions V and VV for different transverse velocities and fixed longitudinal
velocity of the incident electrons after integration over coordinate space. V(V.l)
significantly exceeds the contribution of visits in the pure Coulomb field even at
higher values of V.l (V.l = 0.03 a.u. corresponds to a perpendicular energy of E.l ~ 12
meV), whereas VV(V.l) is reduced at large V.l thus compensating for the discrepancy
between V(V.l) and Vc(V.l)' For V.l -+ 0 P(V) tends to unity and V and VV become
identical. Note that at very small V.l, V(V.l) and VV(V.l) fall below the Coulomb
contribution Va. In this case the magnetic field prevents an electron from visiting
the target ion. For example, Figure 3.22a shows an electron trajectory with initial
velocity into the z-direction (V.l = 0) with and without the presence of a magnetic
field. Correspondingly, the magnetic field appears to counteract the deflection of
the electron towards the nucleus induced by the Coulomb potential resulting in a
larger distance of closest approach to the ion than in the pure Coulomb field (inset
in Figure 3.22a). In addition, in Figure 3.22b the coordinate space integrated visit
functions V(vz) (= VV(vz)) and Vc(vz) are illustrated for V.l = 0 (i.e. P(V) = 1). V
exhibits enhanced values at intermediate values of Vz (vz = 0.02 a.u. corresponds to
an energy of Ez = 5.44 meV), whereas approaching Va for high Vz and falling below
Va for small Vz.
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Figure 3.22: Electron trajectory with initial velocity Vz = 0.01 a.u. and V.L = 0
in the presence of Coulomb and magnetic fields (red) and the pure Coulomb field
(green) depicted in (a) and the obtained visit function V(vz) after coordinate space
integration shown in (b) as a function of Vz (V.L = 0, thus P( iJ) = 1) in the combined
fields (red) and the pure Coulomb field (green). The inset in (a) reflects the absolute
distance to the ion versus the elapsed time around the distance of closest approach.
Visits are defined for r :::;rRR = 150 a.u. in (b); B = 42 mT and Z = 6.

3.11 Relative Energy Dependence of the Recom-
bination Rate

As a first application we compare our simulation with the experimental data for
C6+ observed at the TSR in Heidelberg [10]. The electron temperatures in this
experiment are klll ~ 0.2 meV and kT.L ~ 10 meV and the magnetic guiding field
of the electron beam is B = 42 mT. Figure 3.23 shows the recombination rate as a
function of the average relative energy Erel between electrons and ions obtained with
the visit function vr. The standard RR theory (section 2.2), the experimental data
and our CTMC results are displayed. We define vr and Va either with the sharp
cutoff of contributions at rRR = n;/Z (Eq. (3.41)) or via the weighting with a:f
(Eq. (3.39)). The calculated recombination rates (Eqs. (3.25), (3.26) and (3.30))
qualitatively agree with the measurements both in terms of the energy dependence
and the overall magnitude of the effect. In fact, the CTMC calculation seems to
overestimate the enhancement by 20 to 30 percent. FUrthermore, the rate coefficients
obtained with the different weighting functions for vr (Eqs. (3.39), (3.41)) agree well.
Therefore, the recombination rate does not appear to be sensitive to the shape of
the effective region chosen for RR to take place, which confirms the validity of our
simple classical description. In the subsequent analysis we confine ourselves to the
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Figure 3.23: Radiative recombination rate for CH ions at B = 42 mT as a function
of relative energy between electrons and ions. The standard RR theory (Eqs. (2.9),
(2.11) and (2.12)) (green line), the experimental data [10] (red full squares) and
the CTMC results for Vr (blue open squares, magenta crosses) (Eq. (3.26)) are
shown. The blue squares correspond to a weighting of Vr according to Eq. (3.41)
and the magenta crosses to a weighting with Eq. (3.39) respectively. kl1l = 0.2 meV,
kTJ.. = 10 meV and nr = 30 are used.

definition of vr using the step function weighting of Eq. (3.41).
We note that the number of visits is counted only within a time duration Tc

corresponding to the temporal overlap between electron and ion beam in the cooler.
For the TSR experiment [10] Tc ~ 60 ns. In the CTMC, where the electron en-
semble is launched from the asymptotic region according to a Maxwell-Boltzmann
distribution in velocity space (Eq. (2.12)) and a uniform distribution in coordinate
space, the interaction time is counted starting when the distance between electron
and ion has reached typical interionic distances rion = n;;,.(3 (nion: ion density). We
start the clock randomly at distances to the ion ranging from rion/4 to 3rion/4. As
Figure 3.24 presents within the time limit of t ~ Tc the effect of multiple visits to
the ion is comparatively small even at very low relative energies such as Erel = 0.03
meV. Clearly, were a longer propagation time available multiple visits would be-
come more important. The peak of the first visit in Figure 3.24 can be attributed
to electrons visiting the ion at their first pass by. Accordingly, an electron with
Vz = Vrel = 1.485 X 10-3 a.u. reaches the ion after 1.4 ns, 4.2 ns and 8.0 ns respec-
tively depending on whether the time counting is initiated at a distance of rion/4,
rion/2 or 3rion/4 (with rion = 1.765 x 106 a.u.) between electron and ion. Most of the
irregular forth and back motion of typical trajectories around the ion (Figure 3.6)
proceeds at distances to the ion much larger than the Coulomb zone Sc characteriz-
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Figure 3.24: Number of first, second, third and fourth visits to the ion as a function of
time duration inside the cooler. For the electronic ensemble shown about 1.56 x 105

trajectories contribute to V. The parameters are Z = 6, B = 42 mT, nr = 30,
Erel = 0.03 meV, kTJ.. = 5 meV, klll = 0.06 meV and Tion = 1.765 X 106 a.u.

ing the effective region for RR. Therefore, multiple visits are found to playa minor
role for the enhancement of the recombination. For comparison, in Figure 3.25 the
calculated recombination rates including all the visits within Tc are compared with
the rate coefficients resulting from only the first visits to the ion (vr ~ 1). Neverthe-
less, the presence of the magnetic field enhances the recombination rate efficiently
when using the visit function Vr, since due to the chaotic dynamics an increased
volume of asymptotic phase space contributes with visits to the ion compared to the
pure Coulomb field.

We have also evaluated the recombination rates applying the visit function VV
(Figure 3.26). While the calculated rates agree with the experimental data and
the standard RR theory at Erel ~ 10 meV, the behavior of a at smaller relative
energies is remarkable. An increase of a towards lower Erel is observed but stops at
Erel ::::::1 meV and for still smaller values of Erel, even gets reversed into a decrease.
At relative energies close to zero the CTMC rates are reduced to only one half of the
value predicted by the standard theory and cover not even 20 percent of the measured
rate coefficient. This drop of a below aRR is consistent with the behavior of VV at
smalllongitudinal velocities (Figure 3.22b), where the Kepler motion in the pure
ionic Coulomb potential brings an electron closer to the ion than the dynamics in
the combined Coulomb and magnetic fields. While with vr enhanced recombination
can be mainly observed at larger transverse velocities (compare Figure 3.21), a large
part of this enhancement is, however, removed in VV thus leading to a much smaller
effect on the recombination rate. In short, the interplay between the suppression of
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Figure 3.25: Radiative recombination rate for CH ions at B = 42 mT as a function
of relative energy between electrons and ions. The standard RR theory (Eqs. (2.9),
(2.11) and (2.12)) (green line), the experimental data [10] (red full squares) and
the CTMC results for vr (Eq. (3.26)) with (blue open squares) and without (ma-
genta crosses) multiple visits taken into account are drawn. Same parameters as in
Figure 3.23.
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Figure 3.26: Radiative recombination rate for CH ions and B = 42 mT as a function
of relative energy between electrons and ions. The CTMC results for VV (blue
open squares) are compared with the standard RR theory (green line) and the
experimental data [10] (red full squares). Parameters are the same as in Figure 3.23.
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Figure 3.27: Radiative recombination rate with vr for eH ions at Erel = 0.03 meV
as a function of the magnetic guiding field in the electron cooler. Variations in
the interaction time Tc between electrons and ions (a) or the maximum principal
quantum number nr of the recombined ions (b) do not change the scaling of the
rate coefficients with B. Electron temperatures are fixed to klll = 0.06 meV and
kT1.. = 5 meV; nr = 30 in (a) and Tc = 60 ns in (b). The lines drawn to guide the
eye are ex: B-O.2.

V at small v1.. and the enhancement of V at higher v1.. (large contribution to vr, but
only small-sized for VV) determines the shape of the resulting recombination rates.

In the following systematic studies of the dependence of a on B, Z, klll and kT.l
will be presented. First we focus on the results for Vr. Only later we will discuss
the effect of VV on the recombination rates.

• 3.12 Magnetic Field and Charge Dependence of
the Recombination Rate

First we study the recombination rates at low relative energies between the electron
and the ion for different magnetic field strengths B. Henceforth we use the visit
function vr for the evaluation of a. The magnetic field dependence of a acquired
for an ensemble of electrons representing the electron beam in the cooler reflects the
B behavior of the enhancement ratio h( v) found for fixed electron velocities (compare
Figure 3.20). Accordingly, for magnetic field strengths accessible in the experiment
(at the TSR 20 mT ~ B ~ 70 mT [10]) a is seen to decrease approximately as
B-O.2 (Figure 3.27). In Figure 3.27 the calculated recombination rates are shown
for varying interaction times Tc between electron and ion and different principal
quantum numbers n ~ nr contributing to recombination. Neither a variation in Tc
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Figure 3.28: Magnetic field dependence of the excess recombination for C6+ ions.
The CTMC results with vr (blue full squares) are compared with the experimental
data of the TSR experiment [10] (red open squares). The excess rates ßQ = Q-QRR

are scaled with .JkTl..kTIi according to the temperature dependence found in [10].
In the CTMC Erel = 0.03 meV, klll = 0.2 meV, kTl.. = 10 meV and nr = 30. The
line is <X B-1/3• Note that the error bar is within the symbol size for all datapoints.

nor in nr noticeably influences the observed scaling with B.
Furthermore, Figure 3.28 compares the computed absolute excess rate coefficients

ßQ = Q - QRR (QRR: standard RR rate) with the corresponding measurements of
the TSR experiment [10]. Note that ßQ is scaled with .JkTl..klll according to the
temperature dependence observed in [10]. Similarly, as for the enhancement ratio
illustrated in Figure 3.20 the maximum excess rate emerges at a comparatively small
magnetic field such as B ~ 5 mT. For lower values of B the excess recombination
decreases and approaches zero at B = 0, i. e. the standard RR rate is recovered
at zero magnetic field. Due to the increasing inefficiency of our simulation with
decreasing field strength (compare Table 3.1) huge ensemble sizes are required for the
representation of the recombination rate at the smallest values of B in Figure 3.28.
For B ~ 10 mT ßQ scales approximately as B-l/3. This B-1/3 dependence is
in contrast to the experimental observation of ßQ '" BO.s [10]. Thus, the chaotic
dynamics inside the solenoid fails to account for the magnetic field dependence of the
excess rate observed in the measurements. As pointed out previously (section 3.9)
the decreasing cyclotron radius, Tc <X 1/ B, reduces the number of visits to the ion
with increasing B which, in turn, leads to a smaller recombination rate.

In addition, we have investigated the Z dependence of ßQ. Figure 3.29 illus-
trates our CTMC results and the appropriate experimental data from the CRYRING
experiment [9]. The chaotic dynamics increases the recombination with increasing
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Figure 3.29: Charge dependence of the excess recombination rate ßa = a - aRR at
B = 30 mT. The CTMC results with Vr (blue full squares) for Erel = 0.03 meV,
k711= 0.12 meV and kT.l.. = 10 meV and the corresponding experimental data of
the CRYRING experiment [9] (red open squares) are shown. nr is set to 10, 23,
35 and 43 for He2+, CH, NelO+ and .Sil4+, respectively. The lines indicate a Z1.8
behavior found for our CTMC data and the Z2.8 trend observed in the measurements
of Ref. [9].

•

nuclear charge due to an enhanced flux of electrons visiting the ion. We find that
the scaling with Z exhibits a trend in agreement with the measurements, however,
the calculated excess recombination rate scales approximately as Z1.8 while the ex-
perimental data in [9] was fitted by ßa rv Z2.8.

We note that the dependence of a on Z and B, i.e. increasing with Z and decreas-
ing with B, is consistent with the classical scaling relations of Eq. (3.23), whereupon
the characteristic length scale rRR for RR to take place obeys counteracting scaling
laws with Z and B, namely oe Z-I/3 and oe (B/c)2/3. Correspondingly, the scaling
of rRR is found to influence the Z and B dependence of the recombination rate.
Along those lines, a cutoff in momentum space, p ~ pRR, which scales with Z and
B in the same way (Eq. (3.23)), appears to be more suitable for the definition of
vr and thus the determination of a. A representation of visits in momentum space
and the resulting gauge dependence of the classical description will be discussed in
section 3.15.
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Figure 3.30: Recombination rate for CH ions at B = 42 mT and Erel = 0.03
meVas a function of the perpendicular electron temperature. The rate coefficients
a with Vr (Eq. (3.26)) (blue full squares) and aRR (Eq. (2.11)) (green line) are
illustrated in (a) and the resulting excess rates .6.a = a - aRR (blue full squares)
are compared with the experimental data [10] (red open squares) in (b). The lines
in (b) are ex: (kT_d-o.5 for the measurements and ex: (kT.do.2 for the CTMC data.
nr = 30 and klll = 0.06 meV in the simulation, whereas klll has been higher in the
measurements.
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Figure 3.31: Recombination rate for C6+ ions at B = 42 mT and Erel = 0.03 meV as
a function of the parallel electron temperature. The CTMC results for a using Vr

(blue full squares) and the standard rates aRR (green line) (a) and the corresponding
scaled excess rates .6.a(kT_do.5 (blue full squares) together with the experimental
data of [10] (red open squares) (b) are shown; nr = 30. Note that kTl. = 5 meV in
the CTMC, whereas kTl. ~ 10 meV in the experiment.
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Figure 3.32: Phase space region of non-zero visit function V(r, V) at B = 3 mT
(a) and B = 30 mT (b) for different fixed initial velocities V.l (values indicated)
transverse to the magnetic field. The longitudinal initial velocity is Vz = 2.744 X 10-3

a.u. and the initial coordinate z = -7.167x 106 a.u. Visits are defined for r < rRR =
100 a.u.

3.13 Temperature Dependence of the Recombi-
nation Rate

•

We have also analyzed the dependence of the recombination rate on the electron
beam temperatures at low relative energy. Figures 3.30a and 3.31a display the
rate coefficients at Erel = 0.03 meV as a function of kT.l and kl1l respectively
both for the calculated rates a in the combined Coulomb and magnetic fields and
the standard radiative recombination rates aRR. Whereas aRR decreases with kT.l
(i.e. aRR l'V (kT.l)-O.5), the CTMC rates, however, are seen to increase with the
perpendicular temperature (Figure 3.30a). This remarkable trend of a is consistent
with its scaling with B and the observation that the phase space structure of non-
zero visit function is altered in the same way by a decrease of B as by an increase
of V.l (compare section 3.9 and Figures 3.18 and 3.32). To emphasize this similarity
between small V.l and large B in V(r, V) Figure 3.32 illustrates the phase space
region of non-vanishing values of V for fixed magnetic field strength and parallel
velocity but different perpendicular velocities of the incident electron. Therefore,
analogous to the behavior of the enhanced recombination with B, a reduction in
a will become visible only at high transverse temperatures. The resulting excess
recombination rate ßa = a - aRR follows approximately a (kT.l)O.2 scaling in our
simulation in contrast to the experimental finding of ßa l'V (kT.l)-O.5 (Figure 3.30b).
Hence, also the scaling of the excess recombination with the perpendicular electron
temperature contradicts the measurements.
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Figure 3.33: Radiative recombination rates evaluated with VV. The dependence of
a on kT.L (a), klll (b) and the magnetic guiding field (c) is displayed. Erel = 0.03
meV, Z = 6 and nr = 30; B = 42 mT (a), (b), klll = 0.06 meV (a), kT.L = 5 meV
(b) and klll = 0.2 meV, kT.L = 10 meV (c).

On the other hand, the recombination rate, a as well as aRR, exhibits a slight
decrease with klll (Figure 3.31a). The obtained excess rate coefficient ~a though
reduces only marginally with increasing parallel temperature with a scaling much
weaker than the experimentally established ~a rv (klll)-O.5 dependence (Figure 3.31b).

3.14 Parameter Dependences for the Velocity Pro-
jection of Visits

Finally, we investigate the behavior of the recombination rates with the electron
beam temperatures and the magnetic guiding field using the velocity projected visit
function VV (Figure 3.33). Whereas a decrease of a with kT.L is obtained, an increase
with kll, is found in agreement with the increase of a observed at low relative energies
(compare Figure 3.26). The magnetic field dependence of the recombination now
exhibits an increasing trend all the way down to B = 0, where ann is recovered again.
Therefore, by evaluating a with VV, the enhancement of the recombination is not
only suppressed but even reversed into a decline of the rate below the prediction
of the standard RR theory at small relative energies. This implies that the chaotic
dynamics in the magnetic field rather reduces than increases the probability for
radiative recombination at matched beam velocities. On top of this overall reduction
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3.15 Visits in Momentum Space
The visit function V discussed so far represents close encounters of an electron to the
target ion in coordinate space. With increasing magnetic field strength B, however,
the effective spatial volume traversed by an electron decreases (cyclotron radius
rv 11B) and the number of visits to the ion gets reduced. Correspondingly, the
recombination rate (no matter whether evaluated with vr or VV) decreases with B,
which contradicts the measurements. The reduction of this effective spatial volume
can also be seen from the classical scaling relations (compare Eq. (3.23))

H -

r -
p

(Blc)2/3z2/3Ho = (Blc)2/3Z2/3 (~6- :0 + ~Lzo + ~(x~ +Y5))(3.46)

(Blc)-2/3Z1/3f'o, (3.47)
(Blc)1/3Z1/3fo, (3.48)

•

where the subscript 0 again refers to scaled quantities. According to Eq. (3.47)
coordinate space gets enlarged with increasing ion charge Z, but reduced with in-
creasing magnetic field strength B, a behavior reflected in the recombination rate
(Eq. (3.26)). On the other hand, in momentum space (Eq. (3.48)) the same scaling
with both Z and B is observed. This opposite scaling of p with B compared to
the scaling of r indicates that the effective volume in momentum space, or in other
words, visits of the electron towards the nucleus in momentum space, increases as a
function of the magnetic field. Such a different behavior of V with rand p respec-
tively originates from the gauge dependence of the classical approach. The precise
value of p is different for different gauges used for the representation of the mag-
netic field. The more appropriate the chosen gauge is, the better description of the
measurements can be expected.

Visits in momentum space can be represented, in analogy to the coordinate
space definition (section 3.5), by the condition p ~ pRR, where pRR denotes the
minimum momentum required for a visit to occur. This definition, however, faces
serious difficulties for electrons launched at larger transverse distances from the ion.
Since the absolute momentum (using the symmetric gauge again) is calculated as
p = J(vx + 1/(2c)By)2 + (vy - 1/(2c)Bx)2 + v;), large transverse coordinates x or
yare seen to dramatically increase its value. Multiple visits in momentum space are
thus determined for trajectories with high transverse displacements from the ion,
for which radiative recombination could never occur. Note that these artificially
created multiple visits get more pronounced the larger the magnetic field strength
B becomes. Figure 3.34 shows two sample trajectories at B = 90 mT, one behaving
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Figure 3.34: Absolute value of momentum (a), (b) and distance to the ion (c), (d)
as a function of propagated time for two different electron trajectories ((a), (c) and
(b), (d) respectively) at B = 90 mT and Z = 6. The electron is initiated from a
fixed z-plane and a transverse distance from the nucleus of p ~ 2.772 X 103 a.u.
(c) and p = 8.630 X 105 a.u. (d). Note that with nr = 30 the upper limit in T

amounts to TRR = n;/Z = 150 a.u. and the lower limit in p to pRR = Z/nr = 0.2
a.u. (horizontal dashed lines). Whereas the first trajectory exhibits two visits in
momentum space (a) and in coordinate space (c), the second trajectory reveals
multiple visits in momentum space (b) but no visit in coordinate space (d).
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electron trajectories of Figure 3.34. vRR = Z/nr = 0.2 a.u. (dashed line in (a)).
The first trajectory exhibits two visits in velocity space (a) and the second one none
(b) in agreement with the coordinate space behavior in Figures 3.34c, 3.34d.

as desired with visits in momentum space at simultaneous small spatial distances
from the ion (Figures 3.34a and 3.34c) and the second one demonstrating the effect
of artificial multiple visits in momentum space observed at spatial distances as large
as 106 a.u. (Figures 3.34b and 3.34d). Accordingly, a simple classification of visits
analogous to the coordinate space approach is not applicable. In appendix D al-
ternative considerations towards a calculation of recombination rates in momentum
representation are given and a perturbative model for the quantum rate with Lan-
dau states as initial wavefunctions for the incident electrons is discussed. However, a
satisfying description of the recombination of a continuum electron in the combined
Coulomb and magnetic fields could not be given.

A more promising possibility is to define visits via the mechanical momentum
(i.e. velocity) instead of the canonical one (Figure 3.35). A determination of visits
according to v ;:::vRR (vRR: lower cutoff in velocity for V > 0) agrees with the coor-
dinate space representation of visits (compare Figures 3.34c, 3.34d and 3.35). The
problem of artificial multiple visits at large spatial distances from the nucleus does
not occur. Therefore, a definition of V via a velocity based selection criterion seems
to be more reasonable than a corresponding cutoff in momentum space. Note that
both r and v are gauge independent quantities. The recombination rates determined
from the velocity and coordinate space evaluation of visits agree.
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3.16 Formation of Bound States in the Solenoid:
Coupling between the Center of -Mass and
Relative Motions

The possibility of forming bound states within the solenoid can be considered as
well. As discussed in section 3.2, the center of mass (CM) and relative motions are
coupled in the presence of a magnetic field B. Even if this coupling is weak, the
relative energy E:;ïion between electron and ion could be reduced such that a bound
state is formed inside the solenoid given by E:;ïion < O. Figure 3.36 shows an electron
captured by a CH ion during its passage through the solenoid according to the pa-
rameters of the TSR experiment [10]. However, the observed binding energy is very

small. Neglecting at the moment the magnetic field, the relation n = Zj V2IE:;ïionI
is used to assign a principal quantum number n to the populated bound state at
the end of the solenoid. For instance, the CH Rydberg state of Figure 3.36 with
E:;jion ~ -8 x 10-8 a.u. at t = 60 ns possesses a quantum number as high as
n = 15000. The electron and ion motions parallel to the magnetic field direction
proceed such that the electron passes the ion and vice versa (Figure 3.36b). Since
the CM and total energies Eêï:ton and Ee-ion are more than 10 orders of magnitude
larger than the relative energy E:;ïion (in Figure 3.36 Ee-ion ~ 2.1 X 106 a.u. com-
pared to the small value of E:;ïion(t = 0) ~ 6.3 X 10-8 a.u.), the determination of
Eêï:ton and Ee-ion up to an accuracy of better than 10-8 a.u. is numerically difficult.
In fact, the limitation in representation of a double precision real number in Fortran
given by 16 significant digits is almost reached in Figure 3.36a thus some numerical
uncertainties and fluctuations become visible in the representation of Eêï:ton and
Ee-ion. By contrast, E:;ïion, the quantity of interest for recombination, can be very
precisely determined during the calculation.

We have investigated the formation of bound states inside the solenoid for a
typical ensemble of electrons available at the TSR experiment. The total fraction
of bound states accumulated at the end of the solenoid is very small. For the
ensemble of Figure 3.37 (with E:;jion(t = 0) > 0) the acquired bound-state fraction
is approximately 1.0 x 10-4. Figure 3.37 depicts the bound states formed at the end
of the solenoid as a function of the initial relative energy at the beginning of the
solenoid. Only extremely high Rydberg states get populated inside the solenoid, i. e.
n 2: 8000 for the parameters of Figure 3.37. These highly excited states cannot be
observed in the measurements. In the electron cooler such high-lying Rydberg states
will be field-ionized again during the separation of the electron and ion beams in
the toroidal demerging section adjacent to the solenoid. In addition, radiative decay
of these Rydberg states to lower lying bound states before the demerging toroid is
by far too slow to populate low n states that could survive the demerging region
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Figure 3.36: Electron captured by a C6+ ion (E:~/on < D) during the combined
propagation of the electron and ion (beam velocities of D.le) through the solenoid
with B = 42 mT. The total, CM and relative energies (a) and the relative coordinate
and velocity components parallel to the magnetic field (b) are illustrated. Note that
in (a) Eêiton and Ee-ion are shown with reference to the total energy at the beginning
of the solenoid Ee-ion(t = D). The initial electron-ion relative distance and velocity
have been r = ITe - Tienl ~ 4.1415 x 105 a.u. and v = IVe - Vionl ~ 5.3947 x 10-3
a.u. respectively.

of the cooler let alone the subsequent charge analyzing bending magnet prior to
the recombination detector. A detailed discussion of field-ionization in the various
magnets of the experimental setup and radiative stabilization of high Rydberg states
inside the solenoid can be found in the next chapter. At this point, we can state
that the generation of bound states inside the solenoid due to the coupling of the
internal and CM energies of individual electron-ion pairs can be safely neglected for
the investigation of the experimental rate enhancement.

3.17 Summary
We have shown that the classical dynamics of an electron in the simultaneous pres-
ence of the Coulomb field of an ion and the magnetic guiding field in the cooler
is dramatically changed compared to the Kepler motion in a pure Coulomb field.
We have presented a quantitative analysis of the chaotic scattering dynamics in a
magnetic field in terms of the visit function characterized by close encounters in
phase space (coordinate, velocity) of an electron to the target ion. Depending on
whether the electronic visits to the ion are evaluated at an asymptotic sphere around
the nucleus (Vr) or perpendicular to the incident velocity of the incoming electron
(VV) an enhancement or a reduction of the radiative recombination process can be
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Figure 3.37: Negative energies (E:ciWn < 0) obtained inside the solenoid due to the
small but finite coupling between the CM and relative motions of individual electron-
ion pairs. A density plot of the initial energies E:ciian(t = 0) and the reached binding
energies E:ciian(t = Tc) < a at the end of the solenoid is displayed. As a reference,
the corresponding principal quantum numbers n are also given. The parameters are
the same as in Figure 3.3: Z = 6, B = 42 mT, kTl. = 10 meV, klll = 0.06 meV,
Erel = 0.03 meV, the spatial diameter of the initial electron ensemble is 1.765 X 106

a.u. and the overall beam velocities are O.le. Note that the total fraction of bound
states at t = Tc amounts to 1.0 x 10-4 for the investigated ensemble. The density is
plotted on a logarithmic scale and the peak height is normalized to 1.
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observed at small relative velocities between electron and ion. In both cases at zero
magnetic field the standard RR rate is recovered rendering a decision of whether vr

or VV is more appropriate for the calculation of a in a magnetic field difficult.
However, even with Vr, where enhanced remmbination rates at low relative

velocities are obtained in accordance with the measurements, neither the dependence
of the excess recombination on klll and kTJ. nor on Z and B can be reproduced
within our CTMC calculations. Concerning Z and klll at least the general trend
of .!la observed in the experiments is confirmed by our simulations, with .!la f"V

Z1.8, whereas the experimental finding is .!la f"V Z2.6 (with ions up to Z = 92
included), and .!la only weakly decreasing with klll compared to an experimental
scaling of .!la f"V (kll,)-o.s. The calculated B and kTJ. dependences contradict the
measurements. In the simulation we find .!la f"V B-1/3 and .!la f"V (kTJ.)O.2 in contrast
to the experimental observations of .!la f"V BO.s and .!la f"V (kTJ.)-o.s respectively.
Thus, the chaotic dynamics inside the solenoid (as determined from the visit function
Vr) cannot satisfactorily account for the experimentally observed enhancement of
the recombination. Employing VV the enhancement of the recombination persists
only for a narrow interval of relative energies, while it has completely disappeared
at zero relative energy. This is due to the fact that at small longitudinal and
transverse velocities of the electron the magnetic field rather prevents than assists
the recombination with the target ion.

In summary, we have presented various visit functions satisfying 1) the conver-
gence towards the standard rate aRR as B ---+ 0 and 2) the gauge independence of
the recombination rate. However, VV and vr produce non-unique recombination
rates ranging from a reduction of the standard RR rate to an overestimation of the
measurements. Furthermore, we have shown that the formation of bound states
inside the solenoid due to the small coupling between the center of mass (CM) and
relative energies of individual electron-ion pairs can be safely neglected.



Chapter 4

Merging of Electron and Ion Beam

While our simulations of the solenoid region inside the electron cooler presented in
the previous chapter have shown either enhanced or reduced recombination rates at
low relative velocities depending on the specific visit function Vr or VV employed,
the scaling of the calculated rate coefficients with the magnetic field strength con-
tradicts the measurements in both cases. Therefore an additional field dependent
mechanism contributing to the enhancement of the recombination appears to be
operative. Another mechanism which may influence the electron-ion recombination
rates was suggested by Gwinner et al. [45]: during the merging of an electron and
an ion beam in the electron cooler of the storage ring a transient motional electric
field is present in the rest frame of the ion which, in turn, may open an additional
pathway for free-bound transitions of electrons. In this chapter the efficiency of this
alternative route to recombination will be investigated.

We present simulations performed for the toroidal merging geometry of the Test
Storage Ring (TSR) electron cooler. After a detailed discussion of the merging geom-
etry and the involved electric field strengths we analyze the field-induced formation
of Rydberg states during the merging followed by radiative stabilization inside the
solenoid. While we have explored direct radiative recombination of an electron with
the target ion in the previous chapter, kinematic recombination into high Rydberg
states in combination with subsequent radiative decay of these high-lying bound
states is the topic of the present chapter. The dynamics of weakly bound Rydberg
electrons in comparably strong magnetic and Coulomb fields will be visualized. We
will show that the bound-state motion (chaotic or quasi-periodic) results in an in-
variant distribution of angular momentum states during propagation through the
solenoid. Computing radiative decay rates we find a significant contribution to re-
combination into experimentally observable low-lying Rydberg states. The scaling
of the obtained excess recombination rates with the ion charge Z and the magnetic
guiding field B will be discussed.
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Figure 4.1: Electron and ion beam are merged in the toroidal region of the elec-
tron cooler. The magnetic field consists of a toroidal component and a dipole field
perpendicular to the toroid plane.

4.1 Recombination in Transient Electric Fields
Gwinner et. al. [45] studied the influence of motional electric fields at the toroidal
merging and demerging sections in the electron cooler (Figures 4.1 and 4.3a). In
the cooler the electron beam is brought to overlap with the ion beam by a toroidal
magnetic field strength B, aligned along the curvature of the toroid, i. e. Bx =
- B sin <Pand By = B cos <p, where <p ~ a denotes the opening angle with respect
to the entrance plane of the solenoid (<p = a inside the solenoid) with Cartesian
coordinates (x, y) defining the toroid bending plane at z = O. For a schematic
picture of the coordinate system see Figure 4.4a. This longitudinal magnetic field
guides the electrons along the bending of the toroid while avoiding a geometric
expansion of the beam due to space charge effects (Coulomb repulsion between the
electrons). In addition, also a magnetic dipole field perpendicular to the plane of the
toroid Bz = Bdipole is required to ensure the complete merging of the electron beam
(Figure ~.1). Without such a perpendicular dipole field applied, the electrons would
drift away in the direction perpendicular to the toroid plane due to the Lorentz
force Fz = vexBy - veyBx (Figure 4.2). Thus, the strength of the dipole field must
be chosen such as to compensate this undesirable drift motion.

We investigate the electronic motion using the data for the merging geometry
available at the TSR where the toroid has a bending radius of Tt = 80 cm and an
opening angle of <Pt= 45 degrees. At B = 42 mT Bdipole is estimated to be about 0.2
mT in order to obtain an electron trajectory bending properly along the curvature
ofthe toroid (Figure 4.2). For simplicity, we did not consider the decrease of Bdipole
at the end of the toroid within our simulation.

To ensure the guiding of the electrons, the magnetic field strength B and the
central bending Tt of the toroid must fulfill BTt » VeC [64]. Here vec/ B denotes
the pitch Sc (x 1/ (27f)) of the cyclotron orbit. Sc must be small compared to the
circumference of the circle, 27fTt, along which the electron beam is to be guided.
From 27fTt » S = vetc = ve27f /wc = ve27fc/ B (tc and We signify the electronic
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Figure 4.2: Electron trajectory propagated through the merging toroid with beam
velocity ofO.lc at B = 42 mT with (red) and without (cyan) the perpendicular dipole
field Bdipole ~ 0.2 mT. (a) shows the projection ofthe trajectory onto the toroid plane
z = a and (b) depicts one direction along the toroid and the direction perpendicular
to it. Whereas the trajectories coincide in (a) since they both bend in the (x, y)
plane, the trajectory without the dipole field applied drifts off perpendicular to the
toroid plane.

•

cyclotron period and frequency, respectively) the above condition is derived. The
characterization of the cyclotron motion in terms of Sc has the advantage of being
independent of the thermal perpendicular excitation of the electrons. Furthermore,
the dipole field satisfies the relation Bdipole = VeC/Tt «B. With Ve ~ O.lc and
Tt = 80 cm Bdipole ~ 0.2 mT can be determined.

When the ions cross this toroidal region, they are exposed to magnetic field ,
components transverse to their direction of motion 'Î1ïon = vionyêy resulting in a non-
vanishing Lorentz force. Transforming to the rest frame of an ion these magnetic
field components give rise to motional transverse electric fields. An electric field
tilts the ionic Coulomb potential as illustrated in Figure 4.3b. Accordingly, the
Coulomb potential barrier gets depressed near a saddle, the so-called Stark saddle,
within the toroidal section and is raised again when the ions enter the solenoid
region. Initially free electrons can thus become trapped inside the potential of the
ion when the tilted potential is restored to a Coulomb one at the end of the toroidal
merging section [45]. This capture by the Stark saddle was recently observed in an
experiment with a trap-like arrangement [65, 66]. Note that it is the inverse process
to field ionization.

For typical storage ring conditions, the observed binding energies of the captured
electrons are estimated to be small, i.e. only very high Rydberg states will get popu-
lated. These highly excited states will most likely get reionized again at the toroidal
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Figure 4.3: Schematic picture of the TSR electron cooler (a) and Gwinner's pro-
posal [45] (b): In the rest frame of the ion motion induced transverse electric field
components appear in the toroidal region. This electric field modifies the ionic
Coulomb potential such that a Stark saddle allows passage into the Coulomb zone.
Initially free electrons can pass over the saddle and get trapped inside it when the
transient field disappears upon entering the solenoidal region. Radiative decay of
Rydberg states inside the solenoid could then prevent them from being field-ionized
again at the toroidal demerging section.
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demerging section where the Coulomb barrier gets depressed once more. However,
a fraction of Rydberg states might radiatively decay to more deeply bound states
inside the solenoid and can then pass the demerging toroid without field ionization.
Thus, sufficiently deeply bound electrons, i.e. with principal quantum numbers
n ~ nr (with nr being determined by field ionization in the charge analyzing dipole
magnet downstream from the electron cooler), can then effectively contribute to
the electron-ion recombination rate. Since the probability for radiative stabilization
inside the solenoid strongly depends on the quantum numbers nand l of the pop-
ulated Rydberg state, a realistic simulation of the merging section is required to
determine the distribution of the obtained Rydberg states at the end of the toroid
and thus to estimate the contribution from transient bound states. The influence of
this additional recombination channel initially suggested by Gwinner et al. [45] on
the observed recombination rates will be investigated in this chapter.

4.2 Electron-Ion Merging in the Lab Frame
In the laboratory frame the electron and ion (charge Z) are both exposed to the
toroidal and dipole magnetic field and to the Coulomb field. In the symmetric gauge;
Ä = 1/2 (Ë x T), the Hamiltonian of the electron-ion two-body system becomes

H = 2~ion (Pion - ~ (Ë (fion) x fion) ) 2

+~ (Pe + ;c (B (Te) x Te) ) 2 ITe :fionl' (4.1)

(4.2)•
where the electron is described by the position Te and the momentum Pe and the ion
by fion and Pion, respectively, and the magnetic field in the lab frame is given by

(
- B (T) sin 4> )

Ë (T) = B (T) cos 4> .
Bdipole (T)

Note that the magnetic field strength depends on the local position of the particle or,
equivalently, on the time elapsed during the merging process. For a given set of initial
conditions the dynamics of the system is determined by the classical Hamilton's
equations of motion (appendix E).

We study the electron-ion merging for the TSR geometry with a toroid of Tt = 80
em and 4>t = 45 degrees. For B = 42 mT and Bdipole ~ 0.2 mT the electronic
trajectory follows the curvature of the toroid (Figure 4.2), whereas the incoming
ion is displaced perpendicular to the toroid due to the non-vanishing Lorentz force
Fz ~ -VionyBx (Figure 4.4b). This ion drift can be compensated, as in the case
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of the electrons, by applying another dipole field. For simplicity, however, we omit
this dipole field, and choose, instead, initial conditions for the ion beam with a
displacement perpendicular to the toroid plane such that a proper merging with
the electron beam at the end of the toroid is achieved. Figure 4.4b shows sample
trajectories for both the electron and the ion. The ion trajectories with and without
an initial displacement are drawn. In addition, Figure 4.4a depicts a sketch of the
coordinate system used for our simulations.

The relative energy of the electron-ion system is calculated as

Ee-ion I 1 .... 12 Z
rei = "2Jl V - 1f1' (4.3)

•

where Jl = mion/(l + mion) ~ I is the reduced mass, r = Te - fion the relative
coordinate and V = ve - Vion the relative velocity. The relative energy determines
whether a bound state is formed during the merging process, i. e. whether E:;/on < 0
can be reached. It is invariant under frame transformation from the lab system to
the rest frame of the ion. Thus, the distribution of E:;ïion at the end of the toroid will
eventually determine the efficiency of the proposed recombination mechanism [45].
Moreover, the distribution among angular momentum states controls the efficiency
of radiative stabilization in the solenoid region. To obtain these distributions the
electron and ion beams are propagated through the toroidal section where the two
beams exhibit an overlap in coordinate space since only in this region (prior to
the solenoid) the electron and ion can effectively interact through their Coulomb
potentials. For beams of 2 mm in diameter the coordinate space overlap extends
over the last 5.6 em of the toroid of the TSR prior to entering the solenoid. This
corresponds to about 4 degrees in opening angle or 1.86 ns in time for IVeI ~ O.le.
Only during the short time [to, t1] between entering the overlap region at to and
entering the solenoid at t1 the relative internal energy of the electron-ion system is
reduced such that recombination can occur. This time interval t1 - to of coordinate
space merging will also be referred to as tm (r) (chapter 5).

As discussed in section 3.2 already the constant magnetic field in the solenoid led
to a break-down of the separation of the center of mass (CM) and relative motions
for the electron-ion system. However, due to the heavy ion mass the transfer of
energy between these two degrees of freedom turned out to be very small within
the solenoid (~ 10-7 a.u., see Figure 3.3). During the merging, the magnetic field
(Eq. (4.2)) is implicitly time dependent thus allowing for a much larger energy
transfer between the CM and relative motions and, correspondingly, a much larger
fraction of electrons captured by the ion, i. e. E:;ïion < 0, at the end of the toroid
(see Figure 3.37 for a comparison with the solenoid). Before presenting the bound
state distributions obtained for an ensemble of electrons, the electron-ion merging
will be treated in the rest frame of the ion first.
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trajectories of an electron and CH ion (b) propagated over the entire length of the
toroid (<Pt = 45 degrees) for the geometry at the TSR. to and tl mark the region of
overlap of the two beams in coordinate space (with beam diameters chosen to be
2 mm). Without proper alignment the ion beam does not merge with the electron
beam due to the Lorentz force FL.
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Figure 4.5: Schematic picture of the transient electric field ËR over the toroidal
merging section of the TSR electron cooler: the elapsed time and distance towards
the end of the merging section are shown. The time scale is chosen such that at
to = 0 the beams start to have an overlap in coordinate space. The inset depicts
only the short time interval of non-zero overlap [to, tl] (see also Figure 4.4b) during
which the electron and ion can interact with each other before reaching the solenoid
with ËR = o.

4.3 Transformation to the Rest Frame of the Ion
Alternatively, the electron-ion system can be treated in the rest frame of the ion
(denoted by the superscript R). Due to the much larger ion mass (mion» 1) the
ionic accelerations in the magnetic field Eq. (4.2) in the lab frame can be, to a good
approximation, neglected during the time interval [to, tl] (Figure 4.6a). Therefore,
the ion is assumed to move with constant velocity Vian = vianyêy throughout the
merging section. Applying the Lorentz transformation from the lab frame to the
internal frame R, the electric and magnetic field components in the rest frame of the
ion can be obtained. For a boost along the y-axis with speed cß from the lab frame
to the rest frame of the ion the transformation equations for classical electromagnetic
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fields read [67]
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B: = , (Bx - ßEz) E: = , (Ex + ßBz)
B: = By E: = Ey (4.4)
B~ = , (Bz + ßEx) E~ = , (Ez - ßBx) .

In the case of the TSR ß = Viony/C ~ 0.1 and , = 1.0/ y'(1 - ß2) ~ 1. Thus,
relativistic effects can be neglected. For E = a and Ë according to Eq. (4.2) the
rest frame components of the electric and magnetic fields are determined as

(

-B(f', t) sin <p(t) )
ËR(rR, t) = B(f', t) co~<p(t)

Bdipole(r, t) (
Bdipole(f', t) )

ER(rR, t) = Viony a . (4.5)
C B(f', t) sin <p(t)

They depend on the time elapsed during the merging process. Figure 4.5 shows a
schematic picture of the transient electric field components over the entire merging
region for the merging geometry of the TSR. The onset of the electric fields is
determined by the rising transverse magnetic field components the ion encounters
when entering the toroidal region, whereas the decrease in E~ is due to the decrease
of Bx towards the end of the toroid. The inset in Figure 4.5 illustrates the region of
interaction between electrons and ions [to, tl] simulated in our CTMC calculations.
Note that we did not take into account the decrease of E: (i.e. the decrease of
Bdipole) at the end of the merging.

Figure 4.6a illustrates the acceleration of the (initially displaced) CH ion in
the lab frame during the investigated time interval [to, tl] as obtained from the
time evolution of the Hamiltonian Eq. (4.1). For comparison, the electric field
components Eq. (4.5) (see also Figure 4.5) are displayed for the same time interval
in Figure 4.6b. The ionic acceleration aion is about three orders of magnitude (factor
Z/mion, compare appendix F) smaller than the electric field ER thus confirming the
validity of the assumption of a constant ion velocity throughout the merging region
used to derive Eq. (4.5).

A more general derivation of the electric and magnetic field components in the
rest frame of the ion is presented in appendix F by allowing for an acceleration of the
ion in the laboratory frame. It is demonstrated that the electric field components
are well approximated by those in Eq. (4.5). Eq. (4.5) thus constitutes a sufficient
description of the electric and magnetic fields present during the merging of electrons
in the cooler.



CHAPTER 4. MERGING OF ELECTRON AND ION BEAM 80

(4.6)

distance to merging point (em) ~ distance to merging point (em)

5 4 3 2 1 0 ::i 5 4 3 2 1 0~ ni::i

~
4

ni (a) a. b E

~
00 CIl E'

...;;;;. aiony 'E y
III -1 al -4c:c: 00

-2 Co
~ E -8
Qi 0
ä> -3 u

'C -128 ~ni -4
u .g -16'e: -5 ü.Q 0 2 3 4 5 6 7 8 al 0 2 3 4 5 6 7 8

time (107 a.u.l
ä>

time (107 a.u.lto t1 to t1

Figure 4.6: The ionic acceleration in the lab frame (a) and the electric field compo-
nents in R Eq. (4.5) (b) shown as a function of merging time respectively distance
for the merging of a eH ion (with initial displacement) and an electron at the TSR
electron cooler with B = 42 mT and Bdipole ::::::0.2 mT. Only the short time interval
of interaction [to, td is considered.

4.4 Electron-Ion Merging in the Rest Frame of
the Ion

In the rest frame of the ion (superscript R) the electron-ion merging is described by
propagating only the electron. The Hamiltonian is given by

1 (c='R. 1 ( ....R c='R. c='R.) ) 2 Z c='R. ....R c='R.H = 2 Pe + 2c B (Te, t) X Te - I~ I + Te E (Te, t)

with the electric and magnetic fields of Eq. (4.5). Note that this Hamiltonian does
not obey the scaling relations Eq. (3.23) applicable in the solenoidal region, since
the electric field ER = vionl c x Ë breaks the scaling invariance. ER allows for an
acceleration or deceleration of the electron changing its energy during the merging
process. The electron energy in R is equivalent to the relative energy of the electron-
ion system Eq. (4.3),

Ee-ion ER 1 (....R) 2 Z
rei = e = 2 Ve - I~I' (4.7)

. .... ........ :::'R............ ....R d 1 F' 4 7 '11SInce T = Te - Tion = Te' V = Ve - Vion = Ve an Jl:::::: . 19ure . 1 ustrates
an electron trajectory in R and the associated relative energy E:ciion during the
simulated time interval [to, tl]. The observed change in E:;/on is due to the variation
of the magnetic field Eq. (4.2) during the merging section which generates, as already
pointed out, a much larger energy transfer E:ciion <==> E~ion between the relative
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Figure 4.7: Merging of a CH ion and an electron for the TSR geometry at B = 42
mT and Bdipole ~ 0.2 mT: the electron trajectory in R (a) and the corresponding
relative energy between electron and ion (Eq. (4.7)) (b) are displayed for the time
interval [to, t1].

and CM motions than the homogeneous magnetic field in the solenoid (see also
sections 3.2 and 3.16).

4.5 CTMC Simulation of the Merging
To determine the contribution of the transient electric field-induced recombination to
the observed recombination rates the electron-ion merging needs to be investigated
for an ensemble of electrons. Using a classical trajectory Monte Carlo (CTMC)
method we first study the merging of CH ions with electrons at the TSR elec-
tron cooler. The electrons are initially distributed uniformly within a sphere with
radius R = 1/2 rion (rion = n;;},!3 denotes a typical interionic distance in the exper-
iment given by the ion density nion) in coordinate space and Maxwell-Boltzmann
distributed in velocity space with electron temperatures kT.!. and klll' The trans-
verse and longitudinal velocity spreads refer to the direction of the toroidal magnetic
field B. The ensemble has an average detuning energy Erel with respect to the ion
motion. Note that Erel characterizes the average relative energy between the elec-
tron and ion beam after the merging and is not to be confused with the relative
energy E:;jion of an individual electron-ion pair. For beam velocities ß = vie ~ 0.1
and typical magnetic guiding fields at the TSR (20 mT ~ B ~ 70 mT according
to Ref. [10]) the strength of the dipole field amounts to Bdipole ~ 0.2 mT in order
to achieve a properly merged electron beam. Accordingly, the center of the initial



CHAPTER 4. MERGING OF ELECTRON AND ION BEAM 82

(a) initial distribution (b) 2500 me~ed:~~ Imagn;~_ 400 100 ps
20

1
A.86n,j -~

~ 300
;:j 2000
nila -; 1500 100~ ~ 1c:: 200 ps 01 ~ ~ I0 200
0

5 :g 1000.0 300 ps 0.4 0.45 0.5 0.55 50 ps -0.0001 a 0.000.:: .-=
iii 100 iii

500 75 ps
:0 :0

0 0
0 0.01 0.02 0.03 0.04 0 0.001 0.002 0.003

IrE e-ion ( ) IrE e-ion ( )re a Ive energy rei a.u. re a Ive energy rei a.u.

Figure 4.8: Snapshots of the relative energy distribution (Eq. (4.3)) recorded at
different times during the merging of C6+ ions with electrons at the TSR electron
cooler with B = 42 mT and Bdipole ~ 0.2 mT. The inset in (a) displays the initial
distribution at time to. The values for the time indicated are measured relative to
the completion of the merging process, i.e. t = 0 as the end of the toroid (4) = 0) is
reached. The inset in (b) is a magnification of the distributions around E:;ïion = o.
All distributions are normalized, J P(E:ciion)dE:ciion = 1. The parameters of the
initial electronic ensemble are kT.l.. = 10 meV, kl1l = 0.06 meV, Erel = 0.03 meV
and Tion = 1.765 X 106 a.u.

electron distribution is shifted such that at the end of the toroid the electron at
the center merges exactly towards the target ion. We simulate only the short time
interval of interaction [to, td thus starting the propagation of the electron and ion
beams at a distance of 5.6 cm prior to the solenoid and we choose the lab frame for
our calculations.

In Figure 4.8 the distribution of the electron-ion relative energies E:ciion (Eq. (4.3))
is shown for different points in time during the merging simulation. At time to the
relative energies are all positive with a broad distribution around the peak value at
E:ciion ~ 0.465 (inset in Figure 4.8a). As time proceeds throughout the merging
the energy distribution gets narrower and shifts to lower E:;ïion due to the gradual
approach of the electrons towards the ions with increasing alignment of Ve parallel
to 'Ï1ïon as 4> tends to zero. Bound states are found to be formed only during about
the last 100 ps of the merging process (inset in Figure 4.8b and Table 4.1). Table 4.1
presents the total bound-state fractions accumulated in the course of the merging
process.

Furthermore, Figure 4.9a depicts the distribution of the magnitude of the relative
velocity IVI between electron and ion during the merging region. lvi is smallest at the
end of the toroid where the electron and ion beam velocities have become parallel.
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time prior to the
merging point (ps)

fraction of
bound states

200 ~O
100 0.00055
75 0.00279
50 0.00833
25 0.01682
0 0.02119

Table 4.1: Total fraction of bound states present at different times during the merg-
ing process as obtained for the distributions of Figure 4.8.
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Figure 4.9: Distribution of magnitude of relative velocity (lvi = IVe - Vionl) at dif-
ferent times during the merging process (a) and the velocity components along the
longitudinal and transverse (i. e. II and .1 B) directions after the merging (b). The
given times in (a) refer to the end of the merging section and the underlying black
lines in (b) represent the parallel, J1/(27rkl1l) exp( -(vII - Vrel)2/(2kl1l)), and per-
pendicular, 27rvl. 1/(27rkTl.) exp( -vI./(2kTl.)), Maxwell-Boltzmann distributions.
Same parameters as in Figure 4.8.
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Figure 4.10: Bound-state formation during the merging of CH ions with electrons at
the TSR (B = 42 mT, Bdipole ::::::0.2 mT): a density plot of the electron-ion relative
energies (Eq. (4.3)) before the merging E:~tn(to) and after the merging E:ciion(t1)

is shown. The density is plotted on a logarithmic scale. As a reference, for electrons
moving along the trajectory of the center of the Maxwell-Boltzmann distribution
the detuning energy reached in the solenoid is also given. Same parameters as in
Figure 4.8.

However, the thermal distribution of the electronic velocity components remains
essentially unchanged throughout the merging. Figure 4.9b displays the relative
velocities parallel and perpendicular to the magnetic field as obtained at the end of
the toroid. Their distributions agree well with the Maxwell-Boltzmann distribution
(Eq. (2.12)) of the initial electronic ensemble. Moreover, from Figure 4.ga the time
scale for the merging in velocity space tm (v) can be determined. Along the lines of
the coordinate space overlap discussed in section 4.2, tm(v) is estimated via a non-
zero overlap of the" initial" velocity distribution with the corresponding merged one
and, thus, approximately amounts to 0.05 - 0.1 ns (Figure 4.ga). tm(v) is shorter
than the time scale in coordinate space tm(r) ::::::1.86 ns.

We thus find that the vast majority of electrons features E:ciion > 0 at the
end of the toroid at time t1. Only a minor fraction of the electrons forms bound
states after merging is completed. In the case of our CTMC data illustrated in
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Figure 4.8 the bound-state fraction is approximately two percent (see Table 4.1).
In the following the bound-state distributions from our simulation will be examined
in detail. Figure 4.10 displays the distribution of Rydberg states formed for our
currently studied CTMC ensemble. Both the binding energies E:ciion(t1) < a (a.il.)
and the corresponding principal quantum numbers n are shown as a function of the
initial energy before the merging process E:cii01l(to). Accordingly, very high Rydberg
states get populated during the merging process. For example, the probability for
forming Rydberg states with n ~ 400, L~~l P(n) < 2 x 10-5, is very small.

4.6 Analysis of Bound-State Distributions
The challenge of the determination of the contribution of this pathway to recom-
bination lies in the accurate calculation of the bound-state n, l distribution after
the merging. Large ensemble sizes (~ 108 trajectories) are required for the minis-
cule fractions of bound states (compare Table 4.1) obtained at typical storage ring
conditions. We investigate bound-state spectra for different ion charges Z and mag-
netic guiding field strengths B at the end of the merging section. In Figure 4.11
the probability distributions for the binding energies P(EB) (EB = -E:cii01l) and
the corresponding principal quantum numbers P(n) are compared. The field-free
relation n = Z/y2EB is used. The peak in the n distribution (Figure 4.11b) can
be assigned to the spatial extent of the initial electronic ensemble, i.e. a sphere
with radius R. Correspondingly, the position of the peak is roughly estimated as
npeak ~ YRZ and a variation in R or rather in Z shifts the peak position and, in
addition, changes the overall amount of the associated production of bound states.
Therefore, the observed reduction of P(n) at n > npeak is a beam density effect:
for higher values of n Rydberg orbitals of neighboring ions would overlap. Due to
the presence of field non-uniformities and thus small electric stray fields inside the
solenoid, a cutoff appears at smaller n for any realistic experimental setup.

The distribution of bound states (Figure 4.11) falls off precipitously towards
lower n (or higher binding energies EB). The probability that electrons are popu-
lated at low-lying Rydberg states becomes thus very small and is even less than 10-8

at n = 100. For such small probabilities the Monte Carlo statistics is insufficient
to resolve the actual bound-state distributions with reasonable accuracy even with
our large ensembles employed. For example, the curves presented in Figure 4.11 are
obtained from 3.5 x 108 trajectories. Consequently, probabilities of the order of 10-8

correspond to only few trajectories contributing and the lowest value resolvable at
all resulting from the contribution of a single electron amounts to approximately
3 x 10-9. Thus, typically less than one event can be found for n ;S 100 and, ac-
cordingly, the determination of P(n) for such small n requires the controlled smooth
extrapolation of P(n) from higher n values with a continuous slope (indicated by
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Figure 4.11: Binding energy EB (a) and principal quantum number n (b) distribu-
tions after the merging between the electron and ion beams at the TSR electron
cooler with kT.!. = 10 meV, k7j1= 0.06 meV, Erel = 0.03 meV and R = 8.825 X 105

a.u.; blue 6 (dotted line): B = 42 mT, Z = 6, green 0 (dashed line): B = 42 mT,
Z = 14, red. (fullline): B = 10 mT, Z = 6. The distributions are normalized,
J~oo P(E:;Lion)dE:;Lion = 1 (likewise the n distributions), and obtained with 3.5 x 108

trajectories. The verticallines (red, blue for Z = 6 and green for Z = 14) refer to
the approximate cutoff in the distributions due to stray fields in the experiment.
Accordingly, lower EB and higher n values do not contribute to the field-induced
recombination. The lines through the CTMC data in (b) indicate the extrapolation
for low n.
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parameters fraction of bound states
Z B (mT) PB P(n ~ 1000) P(n ~ 500) P(n ~ 200)
2 42 0.00511 1.75 x 10-3 1.67 x 10-4 4.13 x 10-6

6 42 0.0212 1.01 x 10-3 5.42 X 10-5 7.11 X 10-7

14 42 0.0551 3.68 x 10-4 1.08 X 10-5 4.00 X 10-7

6 10 0.0210 9.96 x 10-4 4.92 X 10-5 3.23 X 10-7

6 42 0.0212 1.01 x 10-3 5.42 X 10-5 7.11 X 10-7

6 90 0.0212 1.01 x 10-3 5.51 X 10-5 9.54 X 10-7
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Table 4.2: Cumulative fractions of bound states for different Z and B at the end of
the merging process. PB: total bound-state fraction, P(n ~ no): the probability for
forming Rydberg states with n ~ no. Same parameters as in Figure 4.11.

the lines in Figure 4.11b).
Table 4.2 displays the fraction of bound states obtained for different values of

Z and B. The total bound-state fractions as well as the probabilities for forming
Rydberg states with n ~ 1000, n ~ 500 and n ~ 200 are given. Whereas an
increase in Z considerably enhances the cumulative bound-state fraction due to the
increased Coulomb potential, an increase of B and thus of the transient electric fieldE: (Eq. (4.5)) during the merging displays a more subtle effect on the population
of Rydberg states increasing the relative probability of low-lying bound states (i.e.
at low n or, correspondingly, high EB values). The latter follows from the classical
over-the-barrier relation for the critical quantum number nF ex: (Z3 / F)I/4 (with F
denoting the electric field strength) matching the Stark saddle (for a more detailed
discussion see section 4.9 and Eq. (4.14) therein). Moreover, the distribution among
bound states in Figure 4.11 clearly demonstrates that the majority of the capt~red
electrons exhibits very small binding energies (~ 10-4 a. u.) at the end of the toroid,
i.e. on the average very high Rydberg states get populated during the merging.

The calculated angular momentum distribution P(n, l) (with n fixed) of trapped
electrons at the end of the merging is shown in Figure 4.12. The distribution in 1
(with the field-free relation 1 = Ir x VJ) follows the statistical weight 9n = 2l + 1
corresponding to the m degeneracy for a fixed value of n and, up to rather high
values of l, closely follows the prediction of a microcanonical ensemble,

2l + 1P(n, l) = P(n)-2-'n (4.8)

Deviations from the purely statistical occupation can only be fomid for very high
1 close to the cutoff in n. Since only states with low 1 can effectively contribute to
radiative stabilization, the 1 distribution can be approximated by Eq. (4.8) without
significant error. Due to the dipole selection rules high values of 1 with 1 » nr do
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Figure 4.12: Angular momentum distribution of Rydberg electrons with 1000 ~ n ~
1100 (0) and 1500 ~ n ~ 1600 (.) after the merging of eH ions with electrons at
the TSR for B = 42 mT and otherwise the same parameters as in Figure 4.11. The
lines are proportional to 21 + 1.

not contribute to radiative decay into low lying states with n ~ nr. In Figure 4.12
n has not been fixed to a certain value but rather confined to a small interval to
increase the statistics within the CTMC. Note that P(n) (likewise P(EB)) represents
a reduced distribution of P(n, I).

The statistical distribution of angular momentum states originates from the
bound-state motion of electrons in high Rydberg states in the presence of a mag-
netic field. Electrons are found to move along either chaotic or regular trajectories
depending on the respective binding energy and therefore the strength of the mag-
netic field compared to the Coulomb potential of the parent ion. Correspondingly,
the angular momentum I exhibits (quasiperiodic) fluctuations in the magnetic field
in contrast to analytically known elliptic Kepler orbits in the pure Coulomb field
where I is conserved. The dynamics of electrons in high Rydberg states inside the
solenoid will be studied in the next section.

4.7 Bound-State Evolution in the Solenoid
Starting from the distribution P(n, I) (Eq. (4.8)) at the end of the merging section,
the time evolution through the solenoidal region needs to be analyzed in order to
evaluate the rate for radiative decay. Since in the solenoid the electron-ion relative
energy E:ciion is well conserved (the transfer of center of mass energy to relative
energy due to the coupling by the constant field strength B is negligible and energy is
conserved within an error bar of 10-7 a.u., see section 3.2 and Figure 3.3 therein), the
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reduced distribution P(n) can be considered to be invariant during the propagation.
Accordingly, the bound-state dynamics inside the solenoid can easily be studied in
the rest frame of the ion using the Hamiltonian Eq. (3.21). Figures 4.13 and 4.14
show sample electron trajectories.

The two trajectories visualized in Figure 4.13 correspond to very weakly bound
states with binding energies (EB = -E:clWn) of EB ~ 0.209 meV (n ~ 1529)
and EB ~ 0.025 meV (n ~ 4392) respectively. Because of the weak binding and
the comparatively strong magnetic field (B = 42 mT) the electron motion is very
different from a high n Kepler orbit. For an instructive illustration of the dynamics
the trajectories are propagated for a time interval much longer than the cooler time
in Figure 4.13. The characteristic cyclotron radius for the electron Tc = V.l..c/ B is
much smaller than the separation between the electron and the ion. We denote
the separation transverse to the magnetic field direction (here assumed as the z
axis) by Tl. = y'(Xe - Xion)2 + (Ye - Yion)2. Therefore, Tc « Tl. for the trajectories
of Figure 4.13. Likewise, the cyclotron frequency for the electron Wc = B/ c is
much larger than the other dynamical frequencies of the system. In addition to
the cyclotron motion the electron in Figure 4.13 oscillates back and forth along
the magnetic field in the Coulomb field of the ion (frequency wc) and E x Ë drifts
around the ion (frequency WD) with the frequency ordering given by wc» Wz »WD.

Note that also the frequency of the corresponding unperturbed Kepler motion, Wk =
2/Z y'2(EB)3 [61], is small compared to Wc. The dynamics of these weakly bound
and strongly magnetized atoms has been investigated in Refs. [68, 69], where the
term" guiding center drift atoms" has been appropriately introduced for such atoms.
With the magnetic field sufficiently strong that the electron cyclotron frequency is
the largest of the frequencies and the cyclotron radius the smallest of the length
scales such as in Figure 4.13, the rapid cyclotron motion may be averaged out and
the dynamics of the electron treated by guiding center drift theory.

The electron trajectory visualized in Figure 4.14 is much deeper bound with
EB ~ 2.87 meV or, correspondingly, n ~ 413. In this case the cyclotron radius
is found to be much larger than the electronic distance to the ion, Tc » Tl., The
frequencies due to the cyclotron, field aligned and E x Ë drift motions become
comparable to each other and, moreover, comparable to the Kepler frequency Wk.

The trajectory in Figure 4.14 (Wk ~ 3wc) looks like a strongly perturbed Kepler
orbit. Finally, for sufficiently deeply bound states, i.e. Wk » Wc, the electronic
motion can be well approximated by the unperturbed Kepler motion.

Whereas E:clWn and hence the principal quantum number n remain conserved
throughout the solenoid, the angular momentum l is no longer a good quantum
number in the presence of a magnetic field. The analysis of individual trajectories
shows that l rapidly fluctuates during the propagation through the solenoid region.
In Figure 4.15 the time evolution of l inside the solenoid is illustrated for the trajec-
tories visualized in Figures 4.13 and 4.14. However, the l distribution acquired for
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Figure 4.13: Two electron trajectories for E:;/cm ~ -7.695 x 10-6 a.u. (n ~ 1529)
(red) and E:;/ml ~ -9.332 x 10-7 a.u. (n ~ 4392) (green) propagated through a
magnetic field of B = 42 mT (along z) and the Coulomb field of a CH ion (situated
at the origin) for a time of 360 ns (corresponding to 6 x Tc at the TSR). The three-
dimensional trajectories (b) as well as their projections to the x - y plane (i.e. 1- B)
around the turning points at z > 0 (a) are drawn. In detail, for the deeper bound
state (red trajectory) the transverse electron-ion separation is T.l ~ 2.5x 105 a.u., the
electron cyclotron radius Tc ~ 1.35 X 104 a.u., the cyclotron frequency We ~ 1.8 X 10-7

a.u., the frequency of the field aligned oscillations Wz = 7.0 X 10-9 a.u. and the
frequency of the Ë x Ë drift rotation WD ~ 5.5 X 10-10 a.u., whereas for the weaker
bound electron (green trajectory) one finds T.l ~ 4.8 X 105 a.u., Tc ~ 1.91 X 104 a.u.,
We ~ 1.8 X 10-7 a.u., Wz = 3.6 X 10-9 a.u. and WD ~ 1.25 X 10-10 a.u.
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Figure 4.14: Bound-state trajectory for E:;iion ~ -1.054 x 10-4 a.u. (n ~ 413)
in the Coulomb field of a CH ion and a magnetic field of B = 42 mT (along z)
evolved for a time of 6 ns (a) and 60 ns (b). The initial transverse electron-ion
separation amounts to T.l = 7.51 X 103 a.u., the cyclotron radius to Tc = 2.1 X 105

a.u. and the cyclotron and Kepler frequencies are given by We ~ 1.8 X 10-7 a.u. and
Wk ~ 5.1 X 10-7 a.u. respectively.
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Figure 4.15: The angular momentum l = IT x vi shown as a function of propagation
time through the solenoid for the trajectories of Figure 4.13 (a) and the trajectory
of Figure 4.14 (b). In the presence of the magnetic field (B = 42 mT) l is no longer
conserved.

an ensemble of electrons does not noticeably change during its passage through the
solenoid, but retains the form adopted at the end of the merging process (Eq. (4.8)).
Figure 4.16 displays snapshots of the reduced angular momentum distribution P(l)
from our CTMC calculation taken at different times within the solenoid. Corre-
spondingly, also P(n, l) is found to be invariant throughout the solenoid. This
invariance and maximum randomness of P(n, l) mirrors the classical (chaotic or
quasiperiodic) dynamics of weakly bound Rydberg electrons in a relatively strong
magnetic field compared to the Coulomb field of the parent ion. Therefore, to deter-
mine the probability for radiative stabilization inside the solenoid, the propagation
of the formed Rydberg states through the solenoid becomes dispensable and the
decay rates may be directly evaluated from the CTMC distributions at the end of
the toroid instead.

4.8 Semiclassical Lifetime Estimate
The lifetime of a given Rydberg state with quantum numbers nand l can be deter-
mined by the semiclassical estimate [70],

( l) _ n3l(l + 1)
T n, - TO Z4 (4.9)

with TO = 93 ps. Strictly speaking, Eq. (4.9) is only valid for the field-free case
(B = 0) and does not accurately present the lifetime of individual, magnetized
high Rydberg states. Nevertheless, it may serve as a first-order estimate for the
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Figure 4.16: Angular momentum distribution of the bound-state electrons, as they
follow from the merging with C6+ ions at the TSR with B = 42 mT, recorded at
different times during the propagation through the solenoid. t = 0 refers to the
entrance into the solenoid region. In detail, the parameters of the initial ensemble
are kTJ. = 10 meV, k711= 0.06 meV, Erel = 0.03 meV and R = 8.825 X 105 a.u.

statistically populated Rydberg manifolds since state mixing leads to a redistribution
rather than an overall change in the transition probabilities (see also section 4.7).
Moreover, the precise value of individual T(n, l) does not enter the final analysis.
Taking, for example, n = 1000, Z = 6 and l = 1, T amounts to a value of 1.4 x
105 ns. By comparison, the time Tc available for radiative stabilization within the
solenoidal region of the TSR electron cooler is approximately 60 ns. Therefore, for
Rydberg states typically obtained in the simulation T(n, l) »Tc. Accordingly, the
vast majority of the formed bound states will be reionized again in the toroidal
demerging section where the Coulomb barrier gets depressed a second time. Just a
small fraction of the captured electrons is observed at lower lying Rydberg states
(i.e. with n of the order of few hundred) (see Table 4.2) after the merging. In
view of the long lifetimes of these bound states (even T(200, 1) :::::::1.1 x 103 ns and
T(100,1) :::::::1.4 x 102 ns with Z = 6) only a miniscule fraction of the recombined
electrons will thus have radiatively decayed to a state sufficiently deeply bound
to escape the demerging toroid without field ionization. For instance, for typical
TSR parameters recombined C5+ ions are ionized for Rydberg states with n 2: 60
by demerging and for n > nr :::::::30 by the subsequent bending magnet (compare
Figure 4.17).
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4.9 Properties of the Stark Saddle
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In this section the potential generated by the Coulomb field of an ion (charge Z)
and a homogeneous electric field F = Fêz is analyzed. The position and energy
of the obtained saddle point, the so-called Stark saddle, and the critical principal
quantum number nF with respect to field ionization will be given [71]. Classically,
field ionization, or vice versa, recombination as discussed previously is possible above
the Stark saddle. Its position fô is determined (in a. u.) with F > 0 by

and the energy at fô follows as

E (fô) = -I~I + F Zo = -2vZF. (4.11)

The absolute value of this energy IE (fô) I is referred to as the depth of the Stark
saddle. The electric field strength for which the energy of this saddle point equals the
field free energy of the electron in a given Rydberg state n, i.e. E (fô) = -Z2/(2n2),

is calculated as Z3 Z3
Fsp(n) = 16n4 = çsp n4 Fo. (4.12)

çsp = 1/16 (with the index sp for "saddle point" emphasizing the simple energy
argument used to derive Eq. (4.12)) and Fo refers to the atomic field strength Fo =
ela~ = 1a.u. = 5.142 x 109 V lem. Generally, the critical electric field strength for
field ionization of the Rydberg electron in state n is given by

(4.13)

For hydrogenlike systems the parameter ç has been established as ç ::::::1/8 from
experiments with field-ionization [72]. From Eq. (4.13) the critical quantum number
nF for ionization by the field F is obtained by solving the relation Fc(nF) = F with
respect to nF, which leads to

_ 1/4 Z3/4 _ (6.43 X 108Z3) 1/4
nF - ç (FIFo)1/4 - (FI(Vlcm) (4.14)

Thus, the threshold for field ionization or field-induced recombination increases with
the ion charge, nF ex Z3/4, and decreases with the electric field strength, nF ex F-1/4.
Since F ::::::E:- ex B (Eq. (4.5)) during the merging, nF scales with the magnetic
guiding field B as nF ex B-1/4. Accordingly, the lower tail of the bound state
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Figure 4.17: Critical principal quantum numbers nF with respect to field ionization
obtained for the demerging toroid (F ~ la kV lem), the adjacent correction dipoles
(F ~ 20 kV lem) and the subsequent charge analyzing dipole magnet (F ~ 200
kV lem) of the TSR electron cooler as a function of the ionic charge Z. The values
for F are taken from Ref. [73].

distributions in Figure 4.11b shifts to higher n values with increasing Z, whereas
to lower n with increasing B (see also Table 4.2). Figure 4.17 displays the critical
quantum numbers nF according to Eq. (4.14) as encountered in the various magnets
at the TSR electron cooler [73].

Comparing the depth of the Stark saddle with the transverse electron-ion collision
energies [45] a qualitative estimate for the time scale at which the formation of bound
states sets in during the merging process (see Table 4.1) can be obtained. For the
straight-lined ion trajectories 'Ï1ïon = vionyêy (section 4.3) the electron-ion collision
energy E~ïlonperpendicular to the ion motion is given by the electron energies into
the x and z directions. Neglecting the small velocity spreads due to the Maxwell-
Boltzmann distribution of the velocities in the beam the electrons propagate with a
beam velocity of Veil ~ O.le along the curvature of the toroid. Thus, the transverse
electron-ion collision energy is calculated as

Ee-ion 1 ( . A.)2
coU ~ 2 Vell sm 'Pe . (4.15)

On the other hand, the depth of the Stark saddle due to the electric field E~ =
vionyle Bsin<p (Eq. (4.5)) follows according to Eq. (4.11) with F = E~ ~ a as

EStark = IE (To) I = 2VZ IE~I. (4.16)

It varies along the path of the ion because of the decrease of IE~Iduring the toroidal
merging region. In Figure 4.18 the transverse collision energy Eq. (4.15) with Veil =
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Figure 4.18: The electron-ion collision energy transverse with respect to the ion
motion E:Oitn (Eq. (4.15)) and the depth of the Stark saddle EStark (Eq. (4.16))
generated by the Coulomb and electric fields are shown for the end of the merging
section. The region for electron trapping to occur is estimated by E~ilon < EStark.

Viony = O.le and the depth of the Stark saddle Eq. (4.16) with Z = 6 are compared.
Accordingly, if E:Oilon < EStark electron trapping is expected to become possible.
Thus, for CH ions at the TSR experiment [10] illustrated in Figure 4.18, electrons are
estimated to be captured into bound states within the last 1.6 mm of the toroid or,
correspondingly, the last 50 ps in time before merging is completed. A comparison
with Table 4.1 shows that this simple estimate yields the right order of magnitude
in time for electron capture to occur during the merging region.

4.10 Evaluation of Radiative Decay Rates

(4.17)

To determine the efficiency of the field-induced recombination (FIR) mechanism the
radiative stabilization of the formed Rydberg states by transitions to states with
n ~ nr has to be computed in detail. The probability for a given Rydberg state
with quantum numbers n and L to radiatively decay to a state n', L' inside the
solenoid per unit time is given by [7] (appendix G)

W( L _ ' L' = L :f: 1) = ~w
3

max(l, l') (Rn'Hl)2n, n , 3 c3 2L + 1 ni

where w denotes the energy of the emitted photon. The integralover the radial wave-
functions Rr::/-H = Jooo RmRn'Hlr3dr can be evaluated in closed .form. According to
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Ref. [7] R~I-l is calculated as

Rn'I-1 = (_1)n'-1 (n + L)!(n' + L- 1)! (4nn')I+l(n - n')n+n'-21-2 x
nl 4(2L - 1)! (n - l - l)!(n' - L)! (n + n')n+nl

[ (
4nn' ) (n - nl)2 (2Fl -nr, -n~, 2L; - (n _ n')2 - n + n' 2Fl -nr - 2, -n~, 2L;

97

4nn' )]
(n - n')2

(4.18)

with the hypergeometrie function 2Fl(a, ß,,; z) [63] and the radial quantum num-
bers nr = n - L - 1 and n~ = n' - L of the initial and final states. We assume, for
simplicity, that the field free (B = 0) rates can be used. Due to the invariance of
P(l) within the solenoid (section 4.7 and Figure 4.16) this approximation may be
justified for averages over a very large number of contributing L, L' states while it
is clearly inappropriate for individual state-to-state transitions. The total rate for
radiative stabilization of a given high n, L state to low-lying states is given by the
sum over the decay rates into all final states (n' ~ nr), i.e.

W(n, L) = L W(n, L -7 n', L').
n'~nr, I'

(4.19)

•

Figure 4.19 displays W(n, L) due to radiative decay of highly excited C5+ ions into
experimentally observable final states with n' ~ 30 for the TSR. W(n, L) scales as
n-3 for not too small values of n (deviations from this scaling arise at smaller n
values for larger values of l, however, even for L = 30 the n-3 scaling is approxi-
mately appropriate for n ~ 200) and also strongly decreases with increasing L hence
varying over many orders of magnitude for the Rydberg states typically obtained in
the simulation. Correspondingly, radiative stabilization is highly favored for initial
states with lower n and L quantum numbers.

We note that for the investigated n range (n ~ 102 - 103) the indices in the
hypergeometrie functions of Eq. (4.18), -nr and -nr - 2 respectively, become large
negative numbers. The determination of 2Fl, i.e. 2Fl (a, ß,,; z) = ~v a(a+ 1) ... (a+
II - 1)ß(ß + 1)...(ß + II - 1)/(,(, + 1)... (, + II - l))zV Ill! [63], then involves the
multiplication and subsequent summation of rather large numbers which, in turn,
leads to instabilities in the numerical evaluation of Rr;;/, essentially given by the
difference of two hypergeometrie functions, at higher n values. Eventually, for n » 1,
Rr::,/ is found to diverge at all. Therefore, asymptotic expansions of 2Fl must be used.
Since for larger values of n W(n, l) is well described by a n-3 dependence we can
extrapolate Rr::,/ into the high n region according to this scaling, i.e. Rr;;/ ex n-3/2.

With Eq. (4.19) the recombination probability per ion through radiative stabi-
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Figure 4.19: Density plot of the rate for radiative stabilization W(n, i) (Eq. (4.19))
into final states with n' ~ 30 of recombined CH ions shown as a function of the
initial quantum numbers n and i. Note that W(n, i) (given in units of 8-1) is drawn
on a logarithmic scale and extends over 16 (!) orders of I?agnitude for the parameter
range displayed. Only the lower left corner is of relevance for the experiment.

lization can be estimated as

Ps =L ?(n, i) (1 - e-rcW(n,I)) ~ TcL L ?(n, i)W(n, i -+ n', i'),
ni n I n' I'

(4.20)

•
where ?(n, l) represents the average number of electrons found in the state n, i at
the end of the merging process and Tc ~ 60 ns (Tc: time within the solenoid at the
TSR). ?(n, i) is associated with the distribution of Rydberg states from the CTMC
obtained per incident electron P(n, i) through the relation ?(n, i) = neV P(n, i) .
Here ne is the electron density available in the experiment and V = 4/3 7rR3 the
coordinate space volume of the initial ensemble in the CTMC. In our case, ne =
7.0 X 106 cm-3 [10] and R = 8.825 X 105 a.u. (corresponding to nion = 1.23 x 106

cm -3), i.e. about three electrons are found, on the average, in the simulated volume.
Using Eq. (4.8) ?(n, i) can be expressed as

- (2i+1) - (2i+1)
P(n,i)=neVP(n,i)=neVP(n) 2 =P(n) 2 .n n

(4.21 )

The evaluation of Ps (Eq. (4.20)) thus only requires the distribution of the principal
quantum numbers P(n) (determined at the end of the merging region as discussed
in section 4.7, see also Figure 4.11b) from the simulation. Finally, the probability
for radiative stabilization of transient bound states per ion and per revolution in the
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Figure 4.20: The transition rates W(n ---+ n') summed over i and i' (Eq. (4.22)) plot-
ted as a function of the initial quantum number n for radiative decay into different
final states n' as indicated. W(n ---+ n') decreases ex n-5.

ring reads

nr
Ps TcL P(n) LW(n ---+ n') =

n>nr n'=1
nr 4w3 1 n'-1 1'+1 2

- TcL P(n) L 3c3 n2 L L max(i, i') (R~?,) .
n>nr n'=1 1'=01=1'-1

(4:22)

•
Figure 4.20 presents the involved transition rates W(n ---+ n') after summation over i

and i'. Their scaling with n-5 clearly demonstrates the importance of lower n states
for radiative stabilization. For example, we find a probability of Ps ~ 2.76 X 10-10

for radiative stabilization into states with n' ~ 30 for the ensemble investigated
in section 4.5, where B = 42 mT, Z = 6, kT.l = la meV, klll = 0.06 meV and
Erel = 0.03 meV. By comparison, the probability for radiative recombination PRR =
neaRRTc amounts to 1.45 x 10-10 with ne = 7 x 106 cm-3 and a standard rate
coefficient (Eq. (2.11)) of aRR = 3.45 x 10-10 cm3 Is. Accordingly, the field-induced
formation of Rydberg states during the merging followed by radiative stabilization
is almost twice the contribution from radiative recombination.

For the RR process free electrons are available all over the cooling solenoid. The
rate coefficient aRR, which measures the probability for recombination of an incident
~lectron and a given ion per unit volume and unit of time (compare Eqs. (2.4)
and (2.11)), is well-defined. In contrast, the additional contribution due to the
merging (Eq. (4.20)) faces the conceptual difficulty that the feeding mechanism of
the radiative decay channel by the formation of bound states during the merging is
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(4.23)

transient and stops after the merging is completed. Thus, inside the solenoid the
source term for radiative stabilization continuously gets depleted, conflicting with
the concept of a constant rate coefficient. However, for long-lived high-lying states
T( n, L) » Tc this depletion, i. e. the necrease of available Rydberg states due te
preceding radiative decay processes, can be safely neglected as long as the linear
approximation used to derive Eq. (4.20) and, thus, the conversion of Eq. (4.22) into
a constant rate inside the solenoid is valid. In analogy to RR, a rate coefficient Os

can be defined for the radiative stabilization channel as

Ps
Os = --.

neTc

In fact, this recombination rate converges towards the standard RR rate in the
limit that the initial electron energy becomes positive. Note that in view of the
low probability for forming bound states (see Table 4.2) and the slow decay rate
to lower n, the recombination probability per ion via this additional recombination
channel is a very small number. Nevertheless, as the numerical example given above
clearly shows, it is competitive with radiative recombination, a similarly improbable
process requiring an ion circulating in the storage ring, on the average, for billions
of times before recombination takes place.

Finally we point out that the L and L' sums in Eq. (4.22) can be eliminated by
using an approximate expression for the oscillator strength summed over [, m, [' and
m' [7]. The oscillator strength f (n, [, m and n', l', m' denote the principal, orbital
and magnetic quantum number of the initial and final state, respectively)

fnlm-+n'l'm' = 2w IXnlm-+n'l'm/1
2 (4.24)

(4.25)

•
is a dimensionless quantity and corresponds to the effective number of classical
electron harmonic oscillators that would emit (or absorb) radiation as strongly as
the atom does. For a one electron atom or ion Ln'l'm' fnlm-+n'l'm' = 1 (Thomas-
Reiche-Kuhn sum rule). Note that the definition of f contains only one polarization
direction of the emitted radiation. Therefore, fnlm-+n'l'm' = 2wj31'Gum-+n'l'm/12. The
summed oscillator strength (compare with Eq. (G.g))

fn-+n' = L L fnlm-+n'l'm' = 2; Lmax([,[') (R~tr
11/ m m/ 11/

can be approximated according to Ref. [7] by

25 (1 1 ) -3 1
fn-+n' ~ 3V37r n,2 - n2 n,3 n3' (4.26)

This expression represents the sums accurately for large n and n' and to within a
factor of about two for all values of n i= n', whereat for small n and n' the exact
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expression Eq. (4.25) is overestimated. Hence Eq. (4.22) can be approximately
evaluated as

(4.27)

Similarly, as for the calculation of the standard RR rates (section 2.2), this approx-
imation can be improved by including Gaunt factors (Eq. (2.13)) thus approaching
the exact expression of Eq. (4.22). However, in the following we do not employ
Eq. (4.27) but rather Eq. (4.22) for the determination of the recombination rates
via Eq. (4.23).

4.11 Alternative Approach to Radiative Decay
Before presenting the obtained excess rate coefficients Qs, first, an alternative ap-
proach to determine the radiative stabilization of the formed Rydberg states will
be pursued [64]. The formalism given below clearly demonstrates the equivalence
of the standard RR rates established for positive initial electron energies and the
radiative decay rates evaluated for bound-state electrons.

Starting from radiative recombination we rewrite the rate coefficient in a way
which allows its immediate extension to weakly bound states. The RR rate coef-
ficient (Eq. (2.11)) may be transformed to an integralover the energy scale (E =
E:ciion characterizes the relative energy between electron and ion)

QRR = jUtotalVf(V)d3v = V2L: { uRR(n',E)f~ EdE (4.28)
n' JE>O vE

for the isotropic RR cross section (compare Eq. (2.7), for simplicity Gaunt factors
are omitted) given in a.u. by

( I E) 3271" Z4 14 1671" Z2 -En'
URR n, = 3V3c3 n' E(Z2 12 + n,2E) - 3V3c3 n'E E - En' (4.29)

with En' = -Z2/(2n'2). For the anisotropic Maxwell-Boltzmann velocity distribu-
tion f(V) (Eq. (2.12)) the energy distribution f(E)/VB = y'2 J f(v)dn (0. denotes
the solid angle) is calculated as

f(E)
VB

Erellf,)] (4.30)
k711
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where ç = 1 - TU/Tl. and Erel = v:el/2. Using Eq. (4.29) with the approximation
- En' / (E - En') ~ 1 justified for incident electrons in the energy range of few meV
the rate coefficient becomes

2 Z21 f(E)aRR = TEV27r L-, ID dE
n' n E>O vE

(4.31 )

after having introduced the universal constant TE = 16/(3V3nc3).

In order to rewrite the integrand of Eq. (4.31) we express the average number of
electrons f(E)dE found in the energy interval dE in terms of the density of available
states Dfree and the probability of occupation N(E), i.e.

f(E)dE = neVf(E)dE = Dfree(E)N(E)dE (4.32)

with the electron density ne and the spatial volume V. Employing the density of
states for free electrons disregarding the spin degeneracy

(E > 0) (4.33)

The quantity N(E)/ne has the dimension of a volume and may be interpreted as a
kind of reaction volume. Since quantum states closely below and closely above the
ionization threshold contribute with about the same strength to radiative decay into
lower lying states, the corresponding occupation numbers N(E) for continuum and
bound states can be directly compared in order to estimate the radiative stabilization
of free and bound electrons, respectively. Thus, Eq. (4.35) can be analogously
applied to Rydberg state electrons,

•

the phase space occupation for the continuum states is thus obtained as

f(E) In 2 f(E)
N(E) = neV Dfree(E) = v2n ne .JE'

With this relation the rate coefficient Eq. (4.31) finally yields

aRR = TE L Z~ r N(E) dE.
n' n JE>O ne

where the integrand is determined by

N(E) P(E)
- neDRyd(E) .

(4.34)

(4.35)

(4.36)

(4.37)
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(4.39)

(4.40)

The average number of electrons P(E) is established from the energy distribution
per electron P(E) of the CTMC (Figure 4.11a with EB = -E) by the relation
P(E) = neVP(E) â.1îd DH.yd(E) represents the density üf Rydberg states on the
energy scale neglecting the spin of the electron

Z3
DRyd(E) = (-2E)5/2 (E < 0). (4.38)

From the rate coefficient a the probability for stabilization follows by multipli-
cation with the electron density ne and the cooler time Te (Eq. (4.23)). Accordingly,
the contribution from radiative recombination per ion and per revolution in the
storage ring is given by

y'27r2 nr Z2 ( 1(E)
PRR(Te) = neTeaRR = TelE-V L-:;;;iF Iß dE,

n'=l E>O V D

whereas the contribution from radiative decay of the formed bound states amounts
to

;n~ 1 1 - 5/2Ps(Te) = neTeas = TelE 4v2 ~ Z I P(E)(-E) dE.
n'=l n E<O

The analytically known distribution 1(E) in Eq. (4.39) should be better replaced
by the positive electron energy distribution from the simulation, i.e by P(E) with
E > O. Then the RR rate is accurately determined taking into account also the
effect of FIR during the merging whereupon the electron energy distribution starts
leaking into the E < 0 region due to the transient electric field. Correspondingly,
JE>OP(E)dE = 1- JE<OP(E)dE after the merging instead of JE>Of(E)dE = 1 used
for the calculation of the conventional RR rate. Figure 4.21 displays the Maxwell-
Boltzmann energy distribution f(E) of Eq. (4.30) and the calculated relative energy
distribution P(E) at the end of the merging section. P(E) gets shifted somewhat to-
wards smaller energies compared to the pure Maxwell-Boltzmann distribution. The
total change in the positive energy distribution, however, remains small. For exam-
ple, with the data of Figure 4.21 and nr = 30 the recombination rate is computed
as aRR = 3.53 x 10-10 cm3 Is, whereas the usual rate coefficient with f(E) amounts
to aRR = 3.45 x 10-10 cm3 Is. Therefore, the standard RR rate is not significantly
modified by the formation of bound states during the merging due to the overall
shift of P(E) towards lower E and the conventional determination of aRR according
to Eq. (2.11) may be still applied.

Note that the probability for radiative stabilization according to Eq. (4.40)
agrees with the value previously determined from the n distribution Eq. (4.27) (ap-
pendix H). Moreover, in appendix H also the continuity of the transition rates across
the ionization threshold

lim DRyd(n)W(n ~ n') = lim Dfree(E)W(E ~ n')
n--+oo E--+O

(4.41)
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Figure 4.21: Energy distribution P(E) (red points connected with line) after the
merging between electrons and ions at the TSR with kT.l.. = 10 meV, klll = 0.06
meV, Erel = 0.03 meV, Z = 6 and B = 42 mT; J£>o P(E)dE ~ 0.9788 and
J£<o P(E)dE ~ 0.0212. For comparison, the Maxwell-Boltzmann distribution f(E)
according to Eq. (4.30) (blue line) is also shown.

is verified. Here W(n --+ n') and W(E --+ n') denote the transition probabilities per
unit of time for bound (due to Eq. (4.27) or (4.40)) and free electrons (following
from Eq. (4.39)), respectively.

However, to calculate the magnetic field and the nuclear charge dependence of
FIR in the following, we explicitly evaluate the L and L' sums (see also Eq. (4.25))
in the transition probabilities during our calculation. The presented rates are thus
determined via Eqs. (4.22) and (4.23).

4.12 Magnetic Field and Charge Dependence of
the Field-Induced Recombination

Since the measured rate is a combination of RR and radiative stabilization, i.e.
a = ORR + as, as can be identified with the excess recombination rate observed
in the measurements ßo = as. Note that in this section the effect of the chaotic
scattering dynamics onto the RR rates discussed in the previous chapter is neglected.
Only the enhancement of the recombination due to the merging of electron and ion
beams will be compared with the experimental data.

Figure 4.22 illustrates the magnetic field dependence and Figure 4.23 the charge
dependence of as determined from Eqs. (4.22) and (4.23). The calculated absolute
excess rate coefficient as a function of B agrees with the experimental data quite
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Figure 4.22: Magnetic field dependence of the excess recombination rate for C6+ ions.
The blue full squares denote the rate coefficients due to FIR (Eq. (4.23)) and the
red open squares represent the excess rates of the TSR experiment [10]. The rates
are scaled with ..jkTJ...kTIl according to the temperature dependence found in [10].
In the CTMC kTJ... = 10 meV, kl1l = 0.2 meV, Erel = 0.03 meV and nr = 30. The
line drawn to guide the eye is proportional to Bo.3. Stray fields inside the solenoid
are not considered. The statistical error bar is within the symbol size.

well, in particular for higher magnetic fields (Figure 4.22). The field dependence
of the excess rate .6.a rv BO.3 is somewhat weaker than observed in the measure-
ments (rv Bo.5). However, in the experiment electron cooling did not work well for
small magnetic field strengths (B ;S 25 mT) [74], which is possibly reflected in the
strong drop of the experimental .6.a below 30 mT (see Figure 4.22). Furthermore,
measurements below 20 mT could not be performed. Hence the experimental BO.5

scaling of .6.a might contain a slight overestimate of the actual B dependence of the
enhancement. Similarly, the charge dependence of the field-induced recombination
follows a Z2.4 scaling in close agreement with the experimentally observed Z2.8 de-
pendence of Ref. [9] and the Z2.6 dependence established after including charges up
to Z = 92 [12] (Figure 4.23).

We note that uncertainties in the determination of the recombination rates aB
may arise from the extrapolation performed for low values of n (compare Fig-
ure 4.11b). These low-lying Rydberg states, although very infrequently populated,
nevertheless significantly contribute to the observed recombination into n' ~ nr due
to the n-5 dependence of the transition probability W(n ---+ n') (see Figure 4.20).
In particular, the B dependence of as resulting from the preferential population of
lower lying bound states (see Table 4.2) is likely affected by statistical uncertainties
and the extrapolation error. CTMC simulations with much larger ensemble sizes,
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Figure 4.23: Charge dependence of the excess recombination rate. The blue full
squares present the rate coefficients due to FIR (Eq. (4.23)) for the TSR merging
geometry using B = 42 mT, Erel = 0.03 meV, kT!. = 10 meV and klll = 0.06 meV.
nr is set to 10, 23, 35 and 43 for He2+, C6+, Ne10+ and Sil4+, respectively. For
comparison, the experimental data from the CRYRING experiment [9] (red open
squares) although recorded for a different merging geometry with B = 30 mT and
klll = 0.12 meV is also shown. The lines indicate a Z2.4 behavior for the CTMC data
and the Z2.8 trend observed in the measurements of Ref. [9]. Field non-uniformities
inside the solenoid are neglected. The statistical error bar is within the symbol size.
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Figure 4.24: Effect of stray fields inside the solenoid. The FIR rate for CH at B = 42
mT as a function of the upper cutoff ncut in the principal quantum number n of the
initial state (a) and the B dependence of the thus determined excess rate coefficients
(b). The blue full squares and red open squares in (b) denote the temperature
rescaled CTMC and experimental data of Figure 4.22 respectively. In addition, the
excess rates for ncut = 600, i.e. a stray field of Fstray ~ 1.07 V fcm (Eq. (4.14))
(magenta circles) and ncut = 500 (Fstray ~ 2.22 V fcm) (cyan triangles) are given.
Same parameters as in Figure 4.22.

although at present computationally unfeasible, would be desirable.
Due to the rapid decrease of W(n ---+ n') with increasing n, very high-lying

initial states will hardly contribute to the FIR rate. In our simulations with CH,
for instance, only Rydberg states with n ;S 2000 are found to noticeably influence
the recombination rate into final states with n' ~ nr = 30 (Figure 4.24a).

Moreover, field non-uniformities and electric stray fields inside the solenoid pro-
vide an effective upper cutoff at n = ncut for the n distribution of the formed Rydberg
states (see also Figure 4.11). In the presence of these small stray fields the Stark sad-
dle cannot completely close. Thus, electrons bound more weakly than the average
remaining Stark-saddle energy in the solenoid are in fact not really bound in the ex-
periment. At the TSR electric stray fields of Fstray < 2.6 V fcm are estimated [74, 64]
for the CH and FH measurements of Ref. [10]. The resulting limitation in n then
follows from Eq. (4.14). For example, for Z = 6 cutoffs in n at ncut = 500 and
ncut = 600 correspond to fields of Fstray = 2.22 V fcm and Fstray = 1.07 V fcm, re-
spectively. Figure 4.24a shows the obtained excess rate coefficient for CH with the
summation over n restricted to n ~ ncut in Eq. (4.22). In particular, low n states
significantly influence the value of Os (remember W(n ---+ n') oe n-5). The error bars
refer to the statistical uncertainty within our simulation. In Figures 4.24b and 4.25
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Figure 4.25: Stray fields included into the Z dependence of the excess recombination
rate. The blue full squares (points connected with line to guide the eye) and red
open squares represent the CTMC and CRYRING data depicted in Figure 4.23. In
addition, the rate coefficients obtained for electric stray fields of 1.07 V Icm (magenta
circles) and 2.22 V Icm (cyan triangles) inside the solenoid are also shown. According
to Eq. (4.14) FstralJ = 1.07 VIcm (2.22 VIcm) corresponds to neut = 263 (219) for
He2+, neut = 600 (500) for C6+, neut = 880 (733) for Ne10+ and neut = 1133 (944)
for Sil4+, respectively. Same parameters as in Figure 4.23.
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the Band Z dependences of the excess recombination rates are illustrated including
now the effect of electric stray fields. Accordingly, as is reduced somewhat, but not
dramatically, by the experimental stray fields. Note that with increasing Z, ncut

is shifted to higher va.lues (compa.re Bq. (4.14)). The inclusion of stray fields thus
yields a good agreement of ~a with the experimental results at moderate magnetic
fields such as B = 42 mT while underestimating the measured values somewhat at
higher field strengths. Also the Z dependence of the excess recombination comes
even closer to the experimental findings.

4.13 Summary
To conclude, transient field-induced recombination due to the merging of electron
and ion beams in the electron cooler of a storage ring presents a competitive route
to recombination. The magnitude of the resulting recombination rates matches the
experimentally observed excess rate coefficients quite well. Also the scaling of the
excess recombination with Z and B qualitatively agrees with the measurements. One
important point to note is that this enhancement of the recombination rate depends
on the geometry of the merging and demerging sections. However, current coolers
in different ion storage rings feature similar geometries such that these dependences
have not yet been explored. Correspondingly, present results obtained at different
facilities closely resemble each other.

Moreover, ~a would also depend on the total propagation time Tc through the
solenoid in the limit of long electron coolers (large Tc) where the linear approximation
used to derive Eq. (4.20) fails. For all current cooler setups though the lifetimes of
the transiently formed high-lying Rydberg states are much longer than the available
cooler times Tc. Therefore, the observed stabilization is, to a good approximation,
linear and no dependency on Tc can be obtained. We note that CTMC calculations
with much larger ensemble sizes would be worthwhile, first of all, to improve the
representation of the calculated binding energy (EB) and the principal quantum
number (n) distributions at high EB and low n values respectively, and, secondly,
to try also to tackle a description in terms of n and l quantum numbers, i.e. the
distribution P(n, l), without making use of the l averaging of Eq. (4.8).
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4.14 Sumofthe Field-Induced Recombination and
the Radiative Recombination in the Mag-
netic Field

Finally, the radiative recombination (RR) due to the chaotic dynamics in the mag-
netic field (rate coefficient a) investigated in the previous chapter and the field-
induced recombination during the merging followed by radiative stabilization inside
the solenoid (FIR) (rate coefficient as) treated in the present chapter should be com-
bined. As a first approximation, we simply add the rate coefficients from the two
contributions. The magnetic field and charge dependence of the obtained absolute
excess recombination rates, i.e. ßa = (a - aRR) +as (ann: standard RR rate), will
be explored in the following. In chapter 3 we have presented the visit functions Vr

and VV resulting in different recombination rates a in a magnetic field. The calcu-
lated RR rates led either to an enhancement or a suppression of the recombination
process at almost zero relative energy. Now the total excess rate coefficients ßa
obtained with the two values of a should be compared with each other and with
the experimental data. The agreement with the measurements may eventually favor
one of the two scenarios for the evaluation of visits to the target ion.

Using Vr the resulting Band Z dependences of ßa are depicted in Figures 4.26
and 4.27. In this case the agreement of the calculated values for ßa with the mea-
surements is not satisfactory. The combined excess rate coefficients are seen to
overestimate the experimental data by at least a factor of two with scaling laws
of B-O.08 and Z2.l in terms of the magnetic guiding field and the ion charge, re-
spectively. On the other hand, by employing VV, the RR rates for the solenoid are
reduced in certain velocity regions compared to the standard RR rate prediction
therefore giving rise to negative "excess" recombination rates a - aRR. The result-
ing sum of the RR and FIR channels exhibits excess rate coefficients with respect to
aRR in quite close agreement with the measurements (Figures 4.28 and 4.29). ßa
is observed to scale as BO.3 and Z2.4 approximately. The good agreement with the
experimental data thus lends support to the latter scenario for the calculation of
visits to the ion, i.e. in terms of the visit function VV.

From the comparison with the experiment we can conclude that the magnetic
field inside the solenoid appears to modify the probability for recombination of
an electron with the target ion with both enhancement and reduction possible.
Nevertheless, a significant enhancement of the recombination rate can be found
in storage ring experiments with electron cooling. This enhancement originates
to a large extent from the finite angle merging of the electron and ion beams in
the electron cooler of the ring, which induces an additional channel for free-bound
transitions of electrons. The total excess rates calculated are in good agreement
with the experimental data.



CHAPTER 4. MERGING OF ELECTRON AND ION BEAM 111

20
~ >~ 0)15....- ß

~ Oll)

....-1 C')E 10
~ (J~o
Ö -
<l b 5:s

o
o 20 40 60 80

magnetic field B (mT)
100

Figure 4.26: Magnetic field dependence of the excess recombination obtained from
our simulations of the merging and solenoid regions using Vr for the calculation of
the RR rate. The experimental data for CH [10] (red open squares), the CTMC re-
sults from FIR for the TSR merging (magenta circles) (see Figure 4.22, magenta line:
ex: BO.3), the corresponding data for enhanced RR (cyan triangles) (see Figure 3.28,
cyan line: ex: B-l/3) and the sum of the two contributions (blue full squares) are
shown. Note that the RR rates at B = 20 mT and B = 90 mT are estimated by
extrapolation according to the observed B-l/3 dependence. The combined CTMC
results are found to scale as B-O.08 (blue line).
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Figure 4.27: Charge dependence of the excess recombination for the combined merg-
ing and solenoid calculations using Vr for the evaluation of the RR rate. The mea-
surements from the CRYRING facility [9] (red open squares) are compared with the
CTMC results for FIR (magenta circles, data from Figure 4.23), enhanced RR (cyan
triangles, data from Figure 3.29) and the sum (blue full squares). The lines reflect
the Z2.8 dependence ofthe experimental data in [9] (red), the Z2.4 behavior observed
for FIR (magenta), the ZL8 scaling of enhanced RR (cyan) and a Z2.1 trend for the
combined CTMC contributions (blue).
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Figure 4.28: Magnetic field dependence of the excess recombination by employing
VV for the calculation of the RR rate. The experimental data for CH [10] (red open
squares), the CTMC results for FIR (magenta circles) (see Figure 4.22, magenta
line: ex: BO.3) and reduced RR (cyan triangles) (data from Figure 3.33c, cyan line:
ex: B-1/3) and the sum of the two contributions (blue full squares) are illustrated.
The RR rates at B = 20 mT and B = 90 mT are again estimated byextrapolation
according to B-l/3. The combined CTMC results scale as BO.3 (blue line).
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Figure 4.29: Charge dependence of the excess recombination by employing VV for the
evaluation ofthe RR rate. The measurements from CRYRING [9] (red open squares)
are compared with our CTMC data for FIR (magenta circles, data from Figure 4.23),
reduced RR (cyan triangles) (absolute value ofthe negative "excess" rate is plotted)
and the sum (blue full squares). The lines indicate the Z2.8 dependence of the
experimental data [9] (red), the Z2.4 scaling of FIR (magenta), a p.s behavior seen
for the absolute value of the "excess" RR rate (cyan) and another Z2.4 trend for the
combined CTMC contributions (blue).



Chapter 5

An Alternative Model for the
Enhancement

Recently Heerlein, Zwicknagel and Toepffer [13, 75, 76, 77, 78] have proposed an
alternative model for the radiative recombination enhancement. In this model the
enhancement of the recombination rate 0:: for highly charged ions relative to the
standard rate O::RR is also attributed to the bound-state density generated during
the merging process of the electron and ion beams. The purpose of this chapter is
to compare and contrast our present approach to this model. We point to serious
difficulties of the model and, therefore, emphasize that this alternative approach
does not lead to an understanding of the anomalous rate coefficients. The major
issues raised here have been published in form of a comment [14] to the original
letter [13] of the authors.

5.1 Sudden Turn-On of the Coulomb Field
In [13] a Vlasov equation is employed to describe the time evolution of the classical
phase space density of electrons inside the solenoid in order to investigate whether
concentrated electronic density near the ion enhances radiative recombination in the
presence of a magnetic field. However, both electron-electron scattering and mean
fields are neglected. In this limit the ensemble of electrons evolves as independent
particles under the combined influence of the Coulomb field of the ion and the
magnetic field in the cooler and, correspondingly, the solution of the Vlasov equation
becomes equivalent to the present CTMC calculation. Thus, the electronic dynamics
inside the solenoid is treated in the same way as by our approach.

In [13] the process of beam merging is approximated by a sudden switch-on of the
Coulomb potential of the target ion, -O(t)Z/ITe - 'Gonl, where O(t) denotes the step
function, Z the charge of the ion, and Te and 'Gon the electron and ion coordinates,

115
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respectively. During a sudden turn-on of the Coulomb field of the ion immersed
in the gas of electrons bound-state formation results for electrons that suddenly
acquire large negative potential energy when located in the vicinity of the ion at
the moment of switch-on of the nuclear charge. This nonadiabatic turn-on has to
be contrasted with the merging between electron and ion beams in the experiment,
where a transient electric field in the rest frame of the ion provides an additional
channel for free-bound electron transfer as studied in detail in the previous chapter.

A sudden turn-on should be checked against the experimental time scales in-
volved. At the TSR experiment [10] the characteristic merging time to reach the
region of full density n of the cooler is t~SR(r) :::::::1.9 ns (8 x 107 a.u.) (deduced from
the geometric overlap of electron and ion beams, see section 4.2), while the change
of relative velocity during the bend occurs on a time scale of t~SR(v) :::::::0.05 - 0.1
ns (2 - 4 x 106 a.u.) (section 4.5). Both time scales t~SR(r) and t~SR(v) are sev-
eral orders of magnitude longer than the characteristic orbital period of even the
highest surviving Rydberg state in the cooler. Taking nr = 30 for recombined C5+
ions the orbital period is approximately 1 x 10-13 see (5 x 103 a. u.) providing the
characteristic time scale and upper bound below which non-adiabatic processes may
set in and, therefore, a sudden approximation for the formation of Rydberg states
may hold. This large difference in time scales points to the need to form surviving
bound states by radiative stabilization inside the solenoid. The latter is, however,
not calculated within that model.

The measured enhancement factor € = a/aRR in [13] is assumed to be represented
by the ratio

f = (nfree + nbound) (5.1)
(nfree) ,

where n free and nbound denote the densities of free and bound electrons, respectively.
The average () is taken over the velocity and coordinate (i. e. phase space) distri-
bution of the electrons in the cooler. Note that this description in terms of the
total density of electrons (n free) or (nbound) is different from the spectral density
P(E:dWn) discussed in the previous chapter. According to Ref. [13] the coordinate
space average is restricted to a cylinder with a radius given by the average cyclotron
radius rc and a length along the direction of the magnetic field given by the longitu-
dinal Debye length rdll' This volume is considered as the relevant region for radiative
recombination to take place.

The definition of the enhancement factor according to Eq. (5.1) implies concep-
tual difficulties due to the non-equivalent role of nbound and nfree. nbound describes
the density of bound electrons formed during the "merging" by a non-radiative
redistribution process and n free represents the density of free electrons after the
merging being the source for radiative recombination. While nbound is the result
of a mechanical capture of electrons caused by the sudden turn-on of the ionic
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Coulomb field in [13], nJree is subject to radiative electron capture. Adding these
two densities without weighting factors that contain the information on radiative
and non-radiative recombination probabilities and radiative stabilization appears to
be poorly justified.

The instantaneous turn-on of the ionic Coulomb field will now be analyzed and
compared to the realistic beam merging process treated in chapter 4.

5.2 Test of the Sudden Approximation
In order to test the validity of the sudden approximation employed in [13] the degree
of non-adiabaticity of the electron-ion merging has to be quantified. In the adiabatic
limit of a merging process the electron-ion internal energy would be - as in the
solenoid region - approximately conserved. According to our analysis in section 3.2
the transfer of electron-ion center of mass energy to relative energy due to the
coupling by a constant magnetic field is very small (energy conservation to better
than 10-7 a.u.). Thus, for an adiabatic beam merging transitions from free to
(experimentally resolvable) bound states and, consequently, the formation of a non-
zero (nbaund) are precluded. Non-vanishing values of (nbaund) originate from a non-
adiabatic turn-on of external fields in the merging region.

To study the degree of non-adiabaticity we have simulated the merging of an
ensemble of electrons with an initially spatially homogeneous electron density n~ree

with transverse Tl.. and longitudinal TIl temperatures pertaining to the TSR exper-
iment with an ion beam in a two-body CTMC calculation. Note that the CTMC
is equivalent to the solution of the Vlasov equation in the regime discussed above
(i.e. the mean field and electron-electron collisions are neglected). We consider a
cylindrically shaped segment of the electron beam with radius Tc = (kTl..)1/2/wc (Wc:

cyclotron frequency) and length Tdll = (kTlI/(47rn~ree))1/2 as suggested in [13] (Fig-
ure 5.1). For simplicity and also to deal with the same axially symmetric ensemble
as used in [13], the calculation has been restricted to straight line trajectories of the
merged beam with the correct relative velo city after the bend. For the discussion of
the effect of non-adiabaticity induced by the sudden turn-on of the Coulomb field
this simplification of geometry is irrelevant. At t = 0, the moment of switch-on of
the nuclear charge, the center of this cylinder has a distance Zm from the highly
charged ion. After a time tm = Zm/Vbeam (Vbeam denotes the beam velocity in the lab
frame, at the TSR [10] Vbeam = O.Ogewhereas the relative velocity corresponds to
Erel = 0.03 meV) the ion is fully immersed in the electron gas. With increasing in-
teraction time the electron density rearranges itself due to Coulomb scattering as the
ion approaches the beam segment. A sudden turn-on corresponds to tm = Zm = 0
and the adiabatic turn-on to the limit tm, Zm - 00. Figure 5.1 shows the fraction
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Figure 5.1: Fraction of bound states after the merging between electron and ion
beams (ReH, CH and Sil4+) as a function of the effective merging time tm =
zm/Vbeam. Zm is the distance of the center of the beam segment relative to the ion at
the moment of switch-on of the Coulomb potential. Parameters are taken from the
TSR experiment [la]: B = 42 mT, kl1l = 0.2 meV, kTJ. = 10 meV, n~ree = 7 x 106

cm-3 and Erel = 0.03 meV. All bound states in arbitrary high Rydberg states,
nr = 00, are included.

of bound states
PlxYund = (nlxYund) (5.2)

(nfree + nlxYund)
formed as a function of the merging time tm. For tm ~ a we recover an increase
of the bound-state fraction with the nuclear charge Z, however, at lower magnitude
than observed in [13]. In Figure 5.1 all Rydberg states up to nr = 00 are taken
into account thus by far overestimating the experimentally observable recombined
states. The corresponding probabilities for radiative stabilization of these high Ry-
dberg states inside the solenoid are not taken into account. At the experimental
merging times t?:tSR(v) or t?:tSR(r) the effective formation of bound states is com-
pletely suppressed and € is very close to unity, i.e. an enhancement is not operative
since the time scale for Rydberg state formation is much shorter.

5.3 Magnetic Field Dependence
The magnetic field dependence of the enhancement as treated in [13]should be briefly
discussed. The free and bound electron densities in Eqs. (5.1) and (5.2) are averaged
over a cylinder (volume Ve) with decreasing radius for increasing magnetic field, i.e.
Ve ex r~ ex 1/ B2, thus leading to a larger fraction of bound-state electrons for higher
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Figure 5.2: Fraction of bound states due to the sudden turn-on of the ionic Coulomb
field as a function of the magnetic field for different volumes (as indicated in the
figure) taken for the average () in Eq. (5.2). Parameters according to the TSR
experiment [10]: Z = 6, kT]1= 0.2 meV, kT.l = 10 meV, n~ree = 7 x 106 cm-3 and
Erel = 0.03 meV are assumed; nr = 00.

values of B. This scaling of the reference volume, the volume where one electron-ion
pair is to be found on average (i.e. an inverse density), with B presumes that the
effective density in the cooler increases when the magnetic guiding field becomes
stronger. This assumption is clearly at variance with the experiments, where the
electron density is kept fixed for different magnetic field strength measurements.
Figure 5.2 presents the fraction of bound states Pbaund. with the average () calculated
over different spatial volumes. For the volume used in [13] Pbaund increases with B,
whereas the choice of a B independent volume (for example a cylinder or a sphere
with fixed size) yields a constant Pbound. as a function of B.

5.4 Comparison with Realistic Merging Process
We shall compare the mechanical electron capture due to the sudden turn-on of
the Coulomb field with the capture induced by the transient motional electric field
during the realistic beam merging treated in the previous chapter. Figure 5.3 il-
lustrates the distribution of bound states obtained after suddenly switching on the
ionic Coulomb potential immersed in a Maxwell-Boltzmann distributed ensemble of
electrons with a uniform distribution inside a sphere of diameter d = rion = n-;;!3
(rion and nion refer to the interionic distance and ion density in the experiment)
in coordinate space (same ensemble size as in chapter 4). Both the binding ener-
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Figure 5.3: Bound-state formation at B = 42 mT after the merging induced by
the sudden turn-on of the Coulomb potential of a CH ion fully immersed in the
electron ensemble with kT.!. = 10 meV, klll = 0.06 meV and Erel = 0.03 meV
distributed within a sphere with diameter rion = 1.765 X 106 a.u. A density plot
of the electron-ion relative energies before the merging E:dion = v2/2 and after the
merging E:dion = v2/2 - Z /r is shown. The density is plotted on a logarithmic
scale.
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parameters fraction of bound states
within a sphere of diameter Tion

Z B (mT) Pbound P(n ::; 1000) P(n ::; 500) P(n ::; 200)
2 42 0.00516 l.77 x 10-3 1.70 X 10-4 5.25 X 10-6

6 42 0.0216 1.04 x 10-3 6.70 X 10-5 1.16 X 10-6

14 42 0.0564 4.46 x 10-4 2.03 X 10-5 1.94 X 10-7

6 10 0.0216 1.04 x 1O-;J 6.70 x 10 -5 1.16 x 10-0

6 42 0.0216 1.04 x 10-3 6.70 X 10-5 1.16 X 10-6

6 90 0.0216 1.04 x 10-3 6.70 X 10-5 1.16 X 10-6

Table 5.1: Fractions of bound states for different Z and B after an instantaneous
turn-on of the Coulomb field of the ion fully immersed in the electron gas. The
electron ensemble has a spatial extent of typical interionic distances in the exper-
iment (Tion = 1.765 X 106 a.u.). Pbound: total bound-state fraction, P(n ::; no):
the probability for forming Rydberg states with n ::;no. Same parameters as in
Figure 5.3.

gies E:;/on = v2/2 - ZIT (T = l-Pe - 'Gon I and v = IVe - vionl denote the absolute
relative coordinate and velocity between electron and ion) and the corresponding
principal quantum numbers n are plotted as a function of the kinetic initial energy
E:;/on = v2/2 before the turn-on. High Rydberg states are generated by the instan-
taneous switch-on. The comparison with the electron-ion merging process at the
TSR studied in Figure 4.10 shows that the sudden approximation overestimates the
bound-state population at lower values of n. Table 5.2 lists the fraction of bound
states induced by the sudden turn-on for different ion charges Z and magnetic field
strengths B. The total bound-state fractions as well as the probabilities for forming
Rydberg states with n ::;1000, n ::;500 and n ::;200 are given. These values should
be compared with the formation of bound states at the end of the realistic merging
process given in Table 4.2. Correspondingly, we find larger bound-state fractions
within the sudden approximation for lower lying Rydberg states, in particular for
n ;S 500 (see also Figure 5.4), which, in turn, lead to larger recombination rates
as due to radiative stabilization into low Rydberg states (n' ::;nT) surviving in the
cooler. The resulting values of as (Eqs. (4.22) and (4.23)) are about a factor of 2 to
3 higher than the excess rates from the TSR merging calculation (see Table 5.3) and
thus the experimental rate coefficients. By adopting a B independent spatial volume
for the initial ensemble of electrons the sudden turn-on cannot account for a mag-
netic field dependence of the recombination rate (see also section 5.3). Therefore,
a sudden turn-on of the ionic Coulomb field considering effective densities available
in the experiment significantly overestimates the measured rate coefficients while it
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parameters fraction of bound states
within the cylinder of [13]

Z B (mT) Pbound P(u ~ 1000) P(n ~ 500) P(n ~ 200)
2 42 0.0422 0.0371 0.0221 1.01 x lO-iS

6 42 0.130 0.0861 0.0130 2.23 x 10-4

14 42 0.276 0.0808 3.93 x 10-3 3.72 X 10-5

6 10 0.0504 0.0110 7.34 x 10-4 1.26 x 10-5

6 42 0.130 0.0861 0.0130 2.23 x 10-4

6 90 0.173 0.131 0.0479 1.03 x 10-3

Table 5.2: Fractions of bound states for different Z and B after the sudden turn-on of
the ionic Coulomb field. According to Ref. [13] the electron ensemble is distributed
within a cylinder of radius Tc and length Tdll in coordinate space (n~ree = 7 x 106

cm-3). The total bound-state fractions (Pbound) and the probabilities for forming
Rydberg states with n ~ no (P(n ~ no)) are given. Parameters are otherwise the
same as in Figure 5.3.

cannot explain the magnetic field dependence of the enhancement.
We have also calculated bound-state fractions due to the sudden turn-on for

electron ensembles distributed uniformly inside a cylinder with radius Tc and length
Tdll as proposed in [13] (Table 5.2). In this case we observe much larger bound-state
fractions overestimating the number of bound states acquired at the end of the
toroidal merging section of the TSR electron cooler (Table 4.2) by 1 to 2 orders of
magnitude (see also Figure 5.4). The significant increase of the bound-state fractions
with B results from the decreasing size of the underlying spatial volume. Similarly,
the recombination rates aB determined from radiative stabilization into ni ~ nr

exceed the experimental excess rate coefficients by at least two orders of magnitude
(see Table 5.3).

In [13], however, no radiative stabilization calculation is employed but the en-
hancement of the recombination is determined in terms of the ratio € of electron
densities given in Eq. (5.1) instead. Neglecting radiative stabilization, the sudden
turn-on with the spatial volume of [13] used for the electron ensemble populates
low-lying bound states (for example, nr = 30 for CH) with very small probabilities.
The enhancement ratio € tends to unity for such low Rydberg states. Therefore, the
sudden switch-on of the atomic Coulomb field with the enhancement ratio evaluated
by Eq. (5.1) differs substantially from the transient trapping due to the motional
electric field in the merging region followed by radiative stabilization in the solenoid.
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parameters recombination rate as after
radiative stabilization (10-10 cm3 ç1)

Z B (mT) mergmg sudden turn-on: sudden turn-on:
(chapter 4) sphere (dial'TIeter Tion) cylinder of [13]

2 42 0.409 1.22 2.48 x ID:.!
6 42 6.16 15.0 2.70 x 103

14 42 44.2 98.7 1.69 x 104

6 10 4.20 15.4 1.52 x 1O:.!
6 42 6.58 15.4 2.78 x 103

6 90 7.32 15.4 1.21 x 104

Table 5.3: Recombination rates as (Eq. (4.23)) induced by radiative stabilization of
the formed Rydberg states (of Tables 4.2, 5.1 and 5.2) for different Z and B. The
merging at the TSR electron cooler (chapter 4) is compared with the instantaneous
switch-on of the Coulomb potential for electron ensembles located within a sphere
(diameter rion = 1.765 x 106 a.u.) or within the cylinder of [13]. kTl.. = 10 meV,
kl1l = 0.06 meV, Erel = 0.03 meV and n~ree = ne ~ 7 x 106 cm-3. nr = 10 (He2+),
23 (CH) and 43 (Sil4+) in the upper half of the table, whereas nr = 30 in the lower
part.

5.5 Densities and Rydberg States
The authors of [13] published meanwhile an erratum [15] to their PRL, where they
specified a smaller reference volume for calculating the averages over the electron
densities in Eqs. (5.1) and (5.2). According to this erratum the reported enhance-
ment factors have been obtained by using a much smaller cylinder with radius
(111/Tl..)1/2rc and length 2(111/T.d1/2rdll' This new reference volume per electron-ion
pair amounts to increasing the effective density in the cooler by about three orders
of magnitude compared to the experimental value (for example, n~ree = ne = 7 x 106

cm-3 at the TSR experiment [10]). The resulting bound-state fractions now out-
perform the number of bound states populated during the realistic merging process
by several orders of magnitude (Table 5.4). For comparison, the distribution of the
principal quantum numbers n of the formed Rydberg states is displayed in Figure 5.4
for the merging of electrons and CH ions according to the TSR experiment (data
from Figure 4.11b) as well as for the sudden approximation adopting the different
reference volumes for the electron ensemble discussed so far. While the sudden ap-
proximation with realistic experimental densities still yields bound-state fractions of
the right order of magnitude down to even the lowest values of n, the sudden turn-on
utilizing the cylinder of [13] or yet the cylinder of [15] produces bound-state fractions
far off the electric field-induced capture probabilities discussed in chapter 4.
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parameters fraction of bound states
using the cylinder of [15]

Z B (mT) Pbound P(n ~ 1000) P(n ~ 500) P(n :; 200)
2 42 0.320 0.317 0.305 0.221
6 42 0.644 0.627 0.568 0.180
14 42 0.877 0.839 0.643 0.0400
6 10 0.441 0.413 0.320 0.0136
6 42 0.644 0.627 0.568 0.180
6 90 0.671 0.655 0.600 0.247

Table 5.4: Fractions of bound states (Pbound and P(n :; no)) for different Z and B
after the sudden turn-on of the Coulomb field of the ion located at the center of an
electron ensemble spatially distributed within a cylinder of radius (1I1/T.d1/2rc and
length 2(1I1/T.d1/2rdll as in [15]. Same parameters as in Figure 5.3.

100 1000
principal quantum number n

Figure 5.4: Principal quantum number (n) distribution after the merging between
electrons and CH ions at B = 42 mT for the merging geometry at the TSR (red
squares with errorbar, red line indicates the extrapolation for low n, see chapter 4)
and the sudden turn-on of the ionic Coulomb field with electron ensembles dis-
tributed within a sphere representing the ion density in the experiment (blue) and
within the cylinders of [13] (green) and [15] (magenta) respectively. rion = 1.765 x 106

a.u., n~ree = ne = 7 X 106 cm-3 and otherwise the same parameters as in Figure 5.3.
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distance zm (atomic units)
104 1aS 106 107 108 109

TSR:
tm(v) tm(r)

~ ~

Figure 5.5: Fraction of bound states after the merging between electrons and C6+
ions as a function of tm = zm/Vbeam with parameters from the TSR experiment [10].
0: reference volume in [13], nT = 00, .: reference volume in [15], nT = 00, 0:
reference volume in [15], nT = 1000, A: reference volume in [15], nT = 100.

As in [13] we shall evaluate enhancement ratios according to Eq. (5.1). Figure 5.5
shows the fraction of bound states (Eq. (5.2)) as a function of the merging time tm
for the reference volumes of [13] and [15] with different limiting quantum number
nT considered for the enhancement of the recombination. Even with the unrealistic
density of [15] the proposed recombination mechanism is ineffective (three orders
of magnitude smaller than in the experiment) for the formation of any surviving
Rydberg state in the cooler generously estimated to reach nT = 100 due to the
complete mismatch of time scales. As in [13] radiative stabilization of the formed
Rydberg states inside the solenoid has still not been treated. Only if on top of the
unrealistic sudden limit and the inflated density all bound states in arbitrary high
Rydberg states are included finally seizable bound-state fractions can be obtained.
However, at the experimental merging time t~SR(r) the bound-state contribution
completely disappears (even if the increased densities are used and/or Rydberg
states that cannot contribute are counted) with values less than 10-6 which could
not be resolved within our Monte Carlo statistics.

To conclude, what has been observed in [13], is mechanical recombination due
to an instantaneous turn-on of the electron-ion interaction assumed to mimic the
electron-ion merging in the electron cooler. Neither the electric field distribution
during the merging region nor the kinematics of the merging process have been
considered which results in bound-state fractions exceeding those observed after the
realistic beam merging process. In contrast to our analysis in chapter 4 radiative
decay of the populated Rydberg states inside the solenoid has not been taken into
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account within that model. While we could find a significant contribution from ra-
diative stabilization to the observed electron-ion recombination rates in the previous
chapter, the enhancement ratio evaluated with Eq. (5.1) yields values very close to
unity for experimentally observable low-lying bound states. To obtain non-vanishing
enhancement ratios in [13, 15] dramatically increased densities are employed and
electrons in arbitrary high Rydberg states are considered. In summary, this alter-
native approach does not describe recombination in electron coolers in a realistic
way.
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Chapter 6

Electron Dynamics in Presence of
Two Ions

So far, only the interaction between one electron and one ion in the presence of ex-
ternal fields has been investigated throughout this thesis. Effects due to neighboring
ions and electrons in the plasma have been ignored. The existence of additional ions
lowers the Coulomb potential barrier thus assisting the recombination of an electron
with the target ion. However, in the experiment the ionic density is rather low. For
example, ion beam currents of typically 100 J-lA with a beam diameter of 2 mm after
the cooling result in an ion density of nion :::::::1.2 X 106 cm -3, or, correspondingly, an
interparticle distance of Tion = n:;:,(3 ~ 1.8 x 106 a.u. between individual ions. In
such a tenuous plasma the induced effective Coulomb potential only deviates from
the Coulomb field of a single ion at quite large distances from the target ion (T .2: 105

a.u.). Nevertheless, even a drop in the effective potential at distances larger than 105

a.u. can affect the chaotic dynamics of an electron in the magnetic field significantly
(with an electron cyclotron radius of Tc ~ 105 a.u.), which, in turn, may influence
the observed electron-ion recombination rate. In addition, also neighboring electrons
perturb the effective Coulomb field of the investigated electron. Their effects on the
potential, however, are due to the smaller charge (in a.u. e = -1) by the value of Z
smaller than the influence of neighboring ions for electron densities in the measure-
ments comparable to the ion densities. Therefore, as a first approximation, only the
influence of nearby ions onto the dynamics of the probed electron may be studied.
Note that a many-body approach in terms of vicinal ions is different from attempts
to explain the enhanced rates by three-body recombination or via plasma physics
approaches modeling the electronic density near an ion, where the enhancement is
assigned to the presence of neighboring electrons in the plasma.

In the following the classical description of the electron dynamics inside the
solenoid region of the electron cooler presented in chapter 3 will be thus extended
to the presence of an additional ion. The motion of an electron in the magnetic field
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Figure 6.1: Phase space region of non-zero values of Vi(T, V) (visits to the target
ion) (a) and Vn(T, i7) (visits to the neighboring ion) (b-d) at B = 42 mT and Z = 6
for fixed initial velocities Vx = 0.004 a.u. and Vz = 0.002 a.u. (vlI = 0) and
initial coordinate z = -2.29 X 106 a.u. of the electrons. Visits are defined for
Ir - fionl,21 ~ TRR = 150 a.u. The target ion is fixed at 'Gonl = (0,0,0) and the
second ion is placed at different transverse distances Xion2 = ßx (values specified
in the Figure), Yion2 = 0 and Zion2 = Tion = 1.765 X 106 a.u. The inset in (a)
enlarges Vi for the indicated box around (x, y) = (0,0) when the second ion is found
at ßx = 3.0 X 105 a.u. Magnifications of Vn with ßx = 1.5 X 105 a.u. (c) and
ßx = 3.0 X 105 a.u. (d) for the areas denoted in (b) are visualized with improved
statistics. Note that the initial electron ensemble is restricted to x2 + y2 ~ Tion/2

to aim solely at the target ion. The associated trajectory of the phase space point
marked by "traj" in (b) is displayed in Figure 6.2.
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B = Bêz of the cooler and the combined Coulomb potential of two ions (both with
charge Z) at positions 'Gon! and 'Gon2 respectively is governed by the Hamiltonian

p2 Z
H=------

2 IT - 'Gon! I (6.1)

where p = (Px,py,pz) and r = (x, y, z) denote the momentum and coordinate of
the electron. We choose 'Gon! = (0,0,0) and 'Gon2 = (Xion2, Yion2, Zion2) for the ionic
positions fixed during the calculation. Hence only the electronic degrees of freedom
are propagated according to the classical Hamilton's equations of motion, which we
solve by means of a fourth order Runge Kutta integration method [50]. Here it is
important to note that the existence of a second ion with a transverse displacement
with respect to the original ion, i.e. Xion2 =I 0 or Yion2 =I 0, breaks the cylindrical
symmetry of the system. Accordingly, the angular momentum component Lz of the
electron along the direction of the magnetic field is not conserved any longer.

Again we quantify the motion of an electron in terms of visit functions ~ (T, il)
and Vn(T, il) representing close encounters of the electron to the target ion (~)
and the neighboring ion (Vn) for given asymptotic phase space coordinates (T,V).
Figure 6.1 illustrates phase space portraits of non-zero visit functions ~ and Vn for
a fixed initial velocity of the incident electrons and different positions of the second
ion. The electron ensemble is initiated from an area with x2 + y2 ~ Tion/2 at a
fixed z-plane, thus chosen such as to aim solely at the ion located at the origin of
the coordinate system (also referred to as target ion). Due to the violation of the
conservation of Lz in the presence of a transversely displaced second ion a restriction
in the initial conditions according to Eqs. (3.35) - (3.38) is not applicable any more.

However, as long as the transverse displacement of the second ion Xion2 is large
compared to the electron cyclotron radius Tc (in Figure 6.1 Tc ~ 2.24 X 104 a.u.)
the larger part of visits to the target ion ~ as well as to the displaced vicinal ion
Vn (provided that Xion2 < Tion/2 yet) is well localized in a small region of initial
coordinates (x, y) around the transverse positions of the target and neighboring ions
respectively in comparison with the spatial extent of the initial electronic ensemble.
Magnifications of these regions (Figures 6.1c, 6.1d and inset in 6.1a) show that
analogous to the one-ion system presented in chapter 3 the visiting functions exhibit
fractal-like structures with connected regions of decreasing size for visits occurring at
later times. For a more detailed discussion of these substructures in V see section 3.7.
These visits with initial coordinates close to the tranverse position of the respective
ion are related to trajectories aiming at this ion straight ahead with the dynamics
only weakly perturbed by the presence of the additional ion. Due to this small
perturbation, for example, the positions of the connected regions of visits are shifted
somewhat compared to the one-ion system, their overall sizes though remaining
unchanged.
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Figure 6.2: Electron trajectory at B = 42 mT (along z) and Z = 6 with initial
conditions according to Figure 6.1b. The target ion is situated at 'Gonl = (0,0,0)
and the neighboring ion at 'Gon2 = (1.5 X 105 a.u., 0,1.765 x 106 a.u.) (black points).
The corresponding z - x and z - y projections are shown. The electron is deflected
by the target ion such as to visit the neighboring ion. Propagation time is limited
to 60 ns.

In addition, a few visits can be also observed at larger transverse distances from
the corresponding ion (Figures 6.1a and 6.1b). The analysis of associated trajectories
shows that the motion of such electrons is much more strongly affected by the
Coulomb potential of the nearby second ion. Figure 6.2 shows an electron trajectory
approaching first the target ion but then being deflected by its Coulomb potential
such as to visit the displaced neighboring ion at a later time. Therefore, precisely
those trajectories with visits at seemingly unpredictable initial positions (x, y) are
most sensitive to the presence of the additional ion. In order to investigate these
two-ion effects onto the electron dynamics, a restriction in the sampling of the initial
electron ensemble appears not justified. However, the number of such visits resulting
from a strong perturbation of the dynamics by the neighboring ion is small compared
to the number of visits where the vicinal ion only exerts a weak influence anyway.

We have explored the visit functions for different magnetic field strengths with
a fixed initial velocity of the incoming electrons. Figure 6.3 depicts phase space
portraits of the resulting visits to the target ion \It and the neighboring ion Vn located
at 'Gon2 = (3.0 X 105 a.u., 0,1.765 x 106 a.u.). These visit functions integrated over
coordinate space, i.e. \It,n(v) = J dx J dy\lt,n(x, y, v), again tend to decrease with B
both for \It and Vn .

Up to now we have only been able to determine \It(T, V) and Vn(T, v) at fixed ini-
tial velocities v and for a few selected positions of the additional ion. Calculations
of an electron ensemble with Maxwell-Boltzmann distributed velocities and random
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positions of the second ion turned out to be unfeasible within the available comput-
ing power with an estimated time of more than one year of simulations required to
reach converged results. Therefore, a detailed microscopic analysis of the electron
dynamics in the presence of several ions; let alone the investigation of the parameter
dependences of the resulting recombination rates, is at present computationally im-
possible. However, in view of individual phase space portraits such as in Figures 6.1
and 6.3 the effect of neighboring ions in the beam onto the recombination rates can
be estimated to be very small.



Chapter 7

Summary, Conclusions and
Outlook

A detailed investigation of the classical dynamics between an electron and an ion
in the toroidal and solenoidal regions of the electron cooler of a storage ring has
been presented in this thesis. We have studied the chaotic scattering and bound-
state motion of an electron in the simultaneous presence of Coulomb and magnetic
fields. By including the chaotic effects into the evaluation of the quantum mechanical
recombination rates we have thus accounted for the presence of the magnetic field
in the cooler. We have treated radiative recombination inside the solenoid as well as
non-radiative electron capture induced by the Stark saddle depression of a transient
electric field during the beam merging region.

For the description of the electronic scattering dynamics the visit function has
been introduced. It plays the role of a deflection function representing the number
of close encounters of an electron to the target ion. However, its value is not unique
but allows for different definitions such as vr and VU. In a non-zero magnetic field,
vr and VU become highly irregular exhibiting a fractal-like structure in terms of
the asymptotic initial phase space coordinates of the incident electrons. We have
considered the effect of the magnetic field on the recombination cross section by
incorporating the ratio of visits in the combined fields versus the pure Coulomb
problem into the evaluation of the corresponding rate coefficients. Despite of the
irregular scattering with multiple visits to the nucleus possible the total flux of
electrons towards the immediate vicinity of the target ion is reduced as the magnetic
field is increased. We find recombination rates smaller than the standard RR rate
prediction at low relative velocities using VU. Therefore, the magnetic field inside the
solenoid appears not to enhance but suppress the radiative recombination process.

The enhancement of the recombination observed in storage ring experiments
originates from an additional recombination mechanism available in the electron
cooler. The alternative route to recombination is supplied by the merging of the
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electron and ion beams in the toroidal-shaped entrance region of the cooler, where
a transient motional electric field in the rest frame of an ion allows for additional
free-bound electron transfer. We have simulated the effect of the induced transient
field for the merging geometry of the TSR electron cooler. Accordingly, forma-
tion of bound states can be observed during passage of the very last part of the
toroid, i.e. approximately during the last 100 picoseconds of the merging process
at the given TSR experiment [10]. Typically very high Rydberg states are found to
be populated during the merging. The probability for forming lower lying bound
states is very small. Nevertheless, radiative decay of these Rydberg states inside
the solenoid can stabilize a small fraction of the captured electrons by transitions to
sufficiently deeply bound states observable in the measurements. As a result of the
dynamics in comparable Coulomb and magnetic fields the overall angular momen-
tum distribution of the weakly bound Rydberg electrons remains unchanged during
propagation through the solenoid suggesting the application of field-free radiative
transition rates. In view of the low probability for forming bound states and the slow
radiative decay rates to lower lying Rydberg states CTMC calculations with huge
ensembles are required to determine the contribution to the observed electron-ion
recombination rate. With the calculated ensemble sizes controlled smooth extrapo-
lation at low values of the principal quantum number n is indispensable at present.
Due to the large expenditure of time of these simulations the dependences on the
electron beam temperatures and the spectral shape of the enhancement have not
yet been analyzed. Certainly, future investigations should tackle these parameter
studies. We find absolute excess recombination rates in good agreement with the
experimental data also after the summation of the field-induced recombination rates
with the reduced radiative recombination rates within the magnetic field. The scal-
ing of the excess rate with the ion charge (f"o.J Z2.4) and the magnetic guiding field
(f"o.J Bo.3) differs only slightly from the experimental findings.

In addition, the influence of neighboring ions and electrons in the beam onto
the classical chaotic dynamics of the investigated electron has been discussed. We
have presented a brief analysis of the electronic motion in the presence of two ions.
Accordingly, effects from the neighboring ion appear to be small, however, the cal-
culation of entire ensembles of electrons in the presence of randomly placed vicinal
ions is at present computationally not yet feasible.

We point out that an enhancement of the recombination due to transient bound
states formed during the merging between electrons and ions depends on the geome-
try of the merging and demerging regions. In fact, theoretical results of field-induced
recombination rates for different geometries would be useful in order to explore what
the expected influence might be. Current electron coolers such as at the TSR, the
ESR and the CRYRlNG facilities all feature similar merging geometries thus lead-
ing to similar enhancement ratios. While in electron coolers the rate enhancement
can be traced back to the process of beam merging, under different experimental
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conditions an enhancement of the recombination within moderate magnetic field
strengths cannot be a priori expected. Quite contrary, rather a reduction of the RR
process nlight be inferred from the present analysis.

In summary, the understanding of the puzzling rate enhancement phenomenon,
meanwhile an outstanding problem for more than a decade, has been considerably
improved by the investigations of this thesis. A realistic model yielding, for the first
time, a good quantitative agreement with the measurements both in terms of nuclear
charge and magnetic field dependence of the enhanced rates has been developed and
a deeper insight into the fundamental mechanism of the experimentally observed
tecombiIlation has been obtained. The hew electron target at the TSR and the
even lower temperatures recently achieved open up new experimental possibilities
to check scalings of the recombination rate over a wider range of external parameters
in the near future.



Appendix A

The Hamiltonian in Cartesian and
Cylinder Coordinates: Canonical
Transformation Technique

We employa classical trajectory Monte Carlo method (CTMC) to simulate an in-
coming beam of electrons from the asymptotic region to the target ion of charge Z
in the presence of a homogeneous magnetic field B = Bêz. The Hamiltonian of this
system reads

1 (2 2 2) 1 2 (2 2) 1 ( ) Z ()H= 2 Px+Py+Pz +8c2B x +y +2cB XPy-YPx - y'X2+y2+Z2 A.l

where fi = (PXlPy,PZ) and f = (x, y, z) are the Cartesian momenta and coordinates
of the electron in the rest frame of the ion. For a given set of initial conditions the
classical dynamics of the electron is governed by the Hamilton equations of motion
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y -

z -
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Pz -

aH 1
Vx = - = Px - -By

apx 2c
aH 1

vy = - = py + - Bx
apy 2c
aH
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ay - 4c2 Y 2c Px (x2 + y2 + Z2)3/2
aH Zz

-az (x2 + y2 + Z2)3/2'

136



APPENDIX A. CANONICAL TRANSFORMATIONS 137

where the dot indicates the derivative with respect to time. Since the magnetic field
along the z axis gives rise to a cylinder symmetry of the system, the Hamiltonian
may be treated more easily in cylindrical coordinates. The transformation from one
set of phase space coordinates (r,ff) to another one (R,P) is accomplished by a
canonical transformation [47], which preserves the canonical character of the new
coordinates Rand P!.. i._e._Rand P again obey Hamilton e.9u~tions of motion for
a new Hamiltonian H (R, P). Therefore, both (r, ff) and (R, P) fulfill a modified
Hamiltonian principle

8 1.:' (~PiR; - H(R,P, tl) dt = O.

The integrands of these two integrals may differ by the total time derivative of an
arbitrary function F of the (old and new) canonical variables. The variation of the
integral of such a difference term gives no contribution,

due to the vanishing variations of the canonical coordinates at the end points t1 and
t2. F is the so-called generating function of the transformation, which determines
the transformation equations. It is given in terms of independent variables in one
of the four forms

For a coordinate transformation R = R(f', t) a generating function of the type F2

can be used, whose transformation equations read [47]

(A.2)

(A.3)

with
fI = H + ßF2 (A.4)

at'
The transformation from Cartesian coordinates r = (x, y, z) to cylindrical com-

ponents R = (p, 4>, z) is described by F2 according to

(A.5)
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(A.6)

where for simplicity F2 is restricted only to the four-dimensional subspace describing
the canonical transformation from (x, y) Cartesian to planar polar coordinates (p, <p),
since z and Pz remain unaffected by the required transformation anyway. Eq. (A.3)
leads to the (trivial) relations for the coordinates

aF2 V aF2 (Y)p = - = x2 + y2 <p = - = arctan - ,
app apcf> x

and their inverse forms

(A.8)

(A.9)

(A.7)

(A.10)

Zz
(p2 + Z2)3/2'Pz -

Px

x = pcos <p y = psin <p,

whereas Eq. (A.2) gives the transformation equations for the momenta
aF2 x yI.
-a _/ Pp - 2 2 Pcf>= cos<pPp - - sm <p Pcf>

x V x2 + y2 x + y P
aF2 y x . 1

py = -a -. / Pp + 2 2 Pcf>= sm<p Pp + - cos <p Pcf>,
y V x2 + y2 x + y P

and, by inversion, accordingly

P _ xpx +ypy
p-

VX2 + y2

Inserting the transformation equations (A.7) and (A.8) into Eq. (A.4) the Hamilto-
nian in cylindrical coordinates is found to be (since aF2/8t = 0)

1 (2 L~ 2) 1 2 2 1 ZH = -2 Pp + 2" + Pz + 8 2 B p + -2 BLz - ---;::==.
pcc vr + z2

The coordinate <p is cyclic since it does not show up in Eq. (A.lO) any more and
the corresponding canonical momentum component Lz is thus a constant of motion.
The time evolution of this system is described by the Hamilton equations as follows

aH
p - Vp= - = Ppapp

aH Lz 1
<p - vcf>= aLz = p2 + 2c B

aH
z - Vz = - = Pz

apz
_ aH = __1_B2p + L~ _ Zp

ap 4c2 p3 (p2 + Z2)3/2

- aH = 0 __ Lz is a constant of motion
a<p
aH
az



Appendix B

Classical Scaling Invariance

The Hamiltonian for an electron in the Coulomb field of the ion and a uniform
magnetic field B

(B.l)

(B.3)

(B.2)

may be written in a scale invariant form such that the equations of motion depend
only on a single parameter Eo, rather than on the energy E, the magnetic field B
and the ionic charge Z separately [53]. To show this we scale the Hamiltonian and
the coordinates in terms of Z and B/ c according to

H _ (~)OZßHo

r = (~) ~Zéro,

where scaled quantities are denoted by the subscript 0 and a, ß, 1 and 6 are the
scaling exponents which have to be determined in the following. From Eqs. (B.2)
and (B.3) the scaling of the momentum and the angular momentum can be derived
immediately:

p2 (B) 0/2Hex- =} p = ~ Zß/2pO (BA)
2

( B) >+./'Lz = (xpy - YPx) =} Lz = ~ ZHß/2 Lzo. (B.5)
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Applying the scaling relations Eqs.
Hamiltonian Eq. (B.1)

1 (B)2 "Hex 8 ~ P~ ~

H ex ~ (~) Lz ~

Z
H ex - -.=-==-== ~vp2 + z2

(8.2)-(8.5) to the potential energy terms of the

( ~) 0 zß = (~) 2H2 Z2Ô

(
B)O (B)'Y+O/2+1_ zß = _ ZHß/2
C C

( ~) 0 zß = ( ~) -'Y Z-Hl

we find the following equations for the scaling exponents

a = 2, + 2 ß = 28 (8.6)
a/2 = ,+ 1 ß/2 = 8 (8.7)

a = -, ß = -8 + 1 (8.8)

Whereas Eqs. (8.6) and (B.7) are identical, Eqs. (B.6) and (B.8) can be solved and
lead to the unique solution

2
a=-

3

ß=~
3

(8.9)

Therefore, the desired scaling transformations read

H = (~) 2/3 Z2/3HO

P ( ~) 1/3 ZI/3pO

(
B)-2/3

r - - ZI/3rO
c

Lz = (~) -1/3 Z2/3 Lzo (8.10)

(8.11)

resulting in a scaled Hamiltonian

1 (2 L;o 2 ) 1 2 1 1
Ho = 2 PpO + -2 + PzO + 8Po + 2Lzo - V 2 2'

Po Po + Zo
which no longer depends on the field strength B and the nuclear charge Z. Thus,
the associated classical dynamics depends, as required, only on the scaled energy
Eo = (B/C)-2/3Z-2/3E.



Appendix C

Equations of Motion: Symplectic
Integration

For given initial conditions the time evolution of the classical dynamics of the elec-
tron is determined by the Hamilton equations of motion. In scaled cylindrical coor-
dinates they are given by

aH
Po - -- =Ppoappo

4Jo
aH Lzo 1----+-aLzo - P6 2
aH

Zo - -- =Pzoapzo
aH 1 Lz~ Po

Ppo - -- = --Po+--
apo 4 P~ (P6 +Z6)3/2

Lzo - _ aH = 0
a4Jo
aH Zo (C.l)Pzo - azo

-
( 2 + 2)3/2'Po Zo

To integrate these equations numerically we use a symplectic integrator [51, 52]
within our simulations. In this section this method of integration will be briefly
discussed.

Due to the canonical character of the Eqs. (C.l) their exact solution at a definite
time t is given by a canonical transformation (or a symplectic map) from the initial
conditions (t = 0) to the state at time t,

( ~(t) ) = M(t) ( ~(O) )
po(t) Po(o) ,
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where M(t) denotes this map. In the following we would like to find a symplectic
map Mk(t) which approximates M(t) through order tk. Thus the difference between
the two maps will be of order tH1,

(C.3)

Mk(t) can be determined by successive canonical transformations. These trans-
formations are performed in such a way that the transformed Hamiltonian H' is
expressed in terms of the exact initial conditions fô(O) and P'o(O) through order tk-1,

i. e. H' vanishes through order tk-1 (since fô(O) and P'o(O) are constants on which
their corresponding Hamiltonian does not depend). Thus, the required transforma-
tion (rö,pô, H) --+ (rb,p1, H') is characterized by

with the corresponding equations of motion

rb - rô(O) + O(tk+1
)

p1 - Pö(O)+ O(tH1).

(CA)

(C.5)

(C.6)

where the new coordinates and momenta, rb and p1, differ from the exact initial
conditions at order tH1. This means, if r1 and p1 are used as initial conditions
within the calculation, the error introduced is of the order tH1.

For the explicit calculation of the symplectic map the generating function F3 is
employed for the canonical transformations,

(C.7)

which is a function of the new (i. e. transformed) coordinates and the old momenta.
Its transformation equations for a Hamiltonian H(rö,pô) = T(pô) + V(rö) are given
by [47, 51]

rö aF3 ï dT(pö)
(C.8)- - a .... = ro + d .... tPo Po

1Ïo
aF3 .... dV(rb)

(C.9)- -~ =Po+ .... t
ar' dr'o 0

H' - H + a;3 = V(rö) - V(rb). (C.lO)

After inverting the momentum equation Eq. (C.9) the two transformation equations
Eqs. (C.8) and (C.9) are substituted into the Hamiltonian Eq. (C.lO) and by
expanding for a small time t a first-order symplectic map M1(t) can be found.
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To construct a k-th order symplectic map Mk(t) k transformation steps are
necessary

-iPo (C.ll)

(C.12)

where i decreases from k to 1, (r7/,pok) = (ro,po) and (r"""ôo,poo)= (rb,p1). Note that
the momenta at any given sub-step must be evaluated first followed by the coordi-
nates' evaluation. The coefficients Ci and rf are determined by successively inserting
Eqs. (C.ll) and (C.12) into the transformation equation for the Hamiltonian

(C.13)

until for i = 1 finally an expression for the approximated initial Hamiltonian
HO(röo ,POD) = H'(r1,p1) is reached. To obtain the required form of Eq. (CA)
for H' the coefficients Ci and d!- must satisfy a set of non-linear algebraic equations,
which are thereupon solved for their unknowns Ci and rf. Thus the explicit form of
Mk(t) is attained.

In our simulations we utilize a fourth order symplectic map M4(t), where the
coefficients Ci and d!- are calculated to be [51]

Cl = x + ~
c? =-x
è=-x
c4 = x + ~

dl = 2x + 1
cf2 = -4x - 1
d3 = 2x + 1
d4 = 0

(C.14)

with x = (21/3 + 2-1/3 - 1)/6.
Once Ci and dï are determined, the canonical transformations are applied in

reversesequence, i. e. (r1,p1,H') - (rö,po,H), within thesimulationsand, accord-
ingly, the coordinates and momenta (ro,po) are evaluated from their initial values
(r1,p1). In this way the equations of motion can be solved numerically up to an
error of order tHl by repeatedly applying the symplectic map Mk(t).

Note that the Hamiltonian of our system Eq. (8.11) does not have the simple
form H(rö,po) = T(pö) + V(rö) as assumed in the preceding considerations. How-
ever, if we perform the canonical transformation step for (pp(),Pzo, </>0) first and only
afterwards that for (Po, Zo, £zo) we obtain transformation equations of the form of
Eqs. (C.ll) and (C.12) again. Finally, explicitly inserting the Hamiltonian Eq.
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(8.11), these canonical transformations are written as

I i-I 1 Li_12)
Pi-1 - Ci l Po + _pi-l - ~ t

- pO 3/2 4 0 i-13(p~-12 + Z~-12) Po

i-I
_ pi-l _ Ci Zo t

zO (0_12 0-12) 3/2
P~ + Zb

rpi-l +ci (L;ol +~) t
o i-12 2

Po
P~ _ p~-I + cfp~t

- Z~-l + cfp;ot
Li-1

- zO.
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(C.15)

For M4 (t) i = 1 to 4 transforming the initial coordinates and momenta (rb,1Ïo)
to their new values (ro, Po) after time step t by the sequence of transformations
(' ') ( ....0 ....0) ( ....1 ....1) ( ....2 ....2) ( ....3 ....3) ( ....4 ....4) ( ........ )ro,po = ro ,Po ---+ ro ,Po --t ro ,Po --t ro ,Po --t ro ,Po = ro,po
with their coefficients Ci and cf given by Eqs. (C.14). Note that the full integration
step is the complete sequence of maps and the intermediate values of (rö,po) at the
various sub-steps should not be interpreted as physical values. So, eventually we
have managed to integrate Eqs. (C.l).

The time step t in Eqs. (G15) has to be chosen carefully due to the Coulomb
singularity of the problem. We proceed according to Ref. [82]and fix the next time
step in terms of changes in position after that step. Thereby the relative error in
position Ißf1/If1 (with ßr being the change in position vector after one step) is
confined by the assumption

(C.16)

€ is a positive error parameter which is less than unity. As our Hamiltonian in scaled
cylindrical coordinates Eq. (8.11) has singularities both at ro = 0 and Po = 0 caused
by the Coulomb potential -l/ro and the kinetic energy term Lz6/(2P5), the relative
error in Po as well as in Zo direction has to be kept small enough requiring the two
conditions

Ißpol ::::::€Ipol, Ißzol:::::: €Izol.
A satisfactory time step t for the next integration step can be achieved as the
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minimum of the two time steps [82]

145

•
obtained separately for the Po and Zo directions, i. e. t = min (tp, tz). It is recal-
culated at every integration step. Note that the error parameter E is the same for
all trajectories and for all points on a given trajectory and is thus fixed once at the
beginning of the CTMC.

To conclude this section a remark about the construction of higher order sym-
plectic maps should be made. Given the fourth order symplectic integrator M4(t)
a symplectic integrator of any higher even order can be obtained by a symmetric
product of M4(t). For example, the 6th order symplectic map M6(t) is constructed
by [52]

M6(t) = M4(Ylt)M4(yot)M4(Ylt)
with the coefficients Yo and YI given by

(C.17)

21/5
Yo = - 2 _ 21/5'

1
YI = 2 _ 21/5° (C.18)

Analogously, the 8th order symplectic integrator Ms(t) involves the symmetric prod-
uct of 3 times the map M6(t), i. e. 9 times the map M4(t). This procedure can be
continued up to the 2n-th order symplectic map M2n(t).



Appendix D

Study of the Recombination
Momentum Space

•In

D.I Momentum Distributions of Bound and Free
Electrons

•

Starting point of our investigations are the momentum distributions of bound and
free electrons in a magnetic field, respectively. Since the bound-state wavefunctions
(n ~ nr) of recombined electrons are spatially localized around the ion, they can be
well approximated using hydrogenie bound states in the absence of a magnetic field
(see also section 3.1). For the spherically symmetric Coulomb potential in momen-
tum space V(p) = -Z/(27r2p2) (i.e. the Fourier transform of the coordinate space
potential V(r) = -Z/r) the wavefunction in momentum representation can be like-
wise expressed in terms of spherical polar coordinates, 1/Jnlm(fi) = Fnl(P)Ylm(t}, </»,
where F nl denotes the radial wavefunction and Ylm the corresponding spherical har-
monic (as usual, n: principal quantum number, l: orbital quantum number and
m: magnetic quantum number). The radial momentum space wavefunction for
hydrogen-like ions with charge Z is given by [7]

F. ( ) = [~(n -l - I)!] 1/2 222(l+1)lIZ-3/2 ni (p/z)l C1+1 (n2(P/Z)2 - 1)
nl P 7r (n + l)! n . (n2(p/Z)2 + 1)1+2 n-I-1 n2(p/Z)2 + 1 '

(D.1)
where CX,(x) is the Gegenbauer polynomial, defined as the coefficient of hN in the
expansion of (1 - 2hx + h2)-V in powers of h [63]. Thus, IpFnl(P)j2 represents the
momentum distribution function of the recombined electron specifying the proba-
bility for the absolute value of the momentum p to lie between p and p + dp, i.e.
IpFnl (P) 1

2dp. To obtain a single final-state momentum distribution for an electron
radiatively recombined into any of the (n, l) states with n ~ nr, we weigh the dis-
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Figure D.1: Momentum distributions fB(p) of the electron ensemble for different
magnetic field strengths (values indicated) (a). The momentum is recorded at ran-
dom times within typical interionic distances (Tion = 1.765 X 106 a.u.). For compar-
ison, the cross section weighted final-state momentum distribution g(p) (Eq. (D.2))
(black line) with nr = 30 and Ee = 5.06 meV is also shown in (a). The distributions
obtained within the symmetric gauge (i. e. all distributions in (a)) and the Landau
gauge are compared in (b). In addition, the distribution for B = 70 mT (symmetric
gauge) accomplished by entirely neglecting the Coulomb potential of the ion is given
by the magenta curve in (b). Z = 6, klll = 0.06 meV, kTJ.. = 5 meV and Erel = 0.03
meV.

tributions IpFnl(P)12 with the corresponding unperturbed cross sections anl for RR
(given by Eq. (3.40)),

On the other hand, the initial-state momentum distribution of the continuum
electron needs to be determined in the presence of the magnetic field. Again, we
perform a CTMC calculation justified for electrons in high Landau quantum num-
bers (section 3.1), from which the distribution at non-zero magnetic field strength
can be easily determined. The initial electron ensemble is distributed uniformly in
coordinate space (launched from a fixed z-plane with Izi = Tion/2 spatially confined
in the transverse direction to p ~ Tion/2, Tion denotes a typical interionic distance in
the experiment estimated from the ion density nion as Tion = n:;;(3) and Maxwell-
Boltzmann distributed (Eq. (2.12)) in velocity space. We confine the propagation
of the electrons to a cylinder with radius Tion/2 and length Tion around the ionic
position by imposing periodic boundary conditions, i.e x ~ -x and y ~ -y if
p = Jx2 + y2 ~ Tion/2, likewise z ~ -z if Izi ~ Tion/2. We record the abso-

•
1tr n-l

g(p) = L L IpFnl(pWanl.
n=l 1=0

(D.2)



APPENDIX D. RECOMBINATION IN MOMENTUM SPACE 148

(D.3)

lute momentum p of individual electrons at randomly chosen times. The obtained
momentum distribution function fB(p) mimics the continuum momentum space
wavefunctions of electrons in the cooler. Figure D.1 depicts f B (P) for different mag-
netic field strengths. All distributions arp. normalized, 1000 I fB(P)dp = 1. Note that
fB(p) depends on the gauge chosen for the Hamiltonian. In the symmetric gauge,
Ä = 1/2 (Ë x T) = 1/2 (-By, Bx, 0), the Hamïitonian is described by Eq. (3.21).
The obtained distributions fB(P) are shown in Figure D.1a. Alternatively, the Lan-
dau gauge Ä = (0, Bx, 0) could be employed, where the Hamiltonian reads

p2 Z 1 122H = "2 - -:;:+ ~Bxpy + 2c2 B X •

More details about the motion of an electron in a homogeneous magnetic field using
the Landau gauge can be found for example in Refs. [79,80]. Figure D.1b compares
the distributions fB(p) for the Landau gauge and the symmetric gauge. The shape
of these momentum distributionscan be mainly attributed to the presence of the
magnetic field, whereas the Coulomb field of the target ion plays only a minor role.
In Figure D.1b fB(p) at B = 70 mT is additionally depicted omitting the ionic
Coulomb potential. The curves with and without Coulomb field can hardly be
distinguished.

Having determined the momentum distributions of free and recombined elec-
trons, fB(p) and g(P) respectively, we can investigate the overlap between the two
distributions, given by

O(B) = J fB(p)g(p)dp. (D.4)

Figure D. 2 displays the calculated overlap as a function of the magnetic field strength
with fB(p) defined either in the symmetric gauge or in the Landau gauge. Although
the corresponding distributions presented in Figure D.1b differ considerably, the
momentum space overlap via Eq. (D.4) exhibits approximately the same increasing
trend with B for both gauges. The obtained B dependence is in close agreement
with the experimentally observed BO.s scaling of the excess recombination rate.

However, an evaluation of the RR rate via an overlap such as Eq. (D.4) faces
the difficulty that multiplying the momentum distribution functions with the cross
section, which already contains the momentum overlap in some form, looks like
double counting. We point out that an incorporation of the ratio of overlaps in
the combined fields versus the pure Coulomb problem, i.e. I dpfB(p)lpFnl(p)12/
(f dpfB=°(P)lpFnl(P)12), into the recombination rate similarly as done for the visit
function V in chapter 3 (compare Eq. (3.26)) is impossible due to a dramatic increase
of this ratio for higher n, l states originating from the miniscule overlap of f B=O (p)
with IpFnl(p)12 at large (n, l). To avoid such difficulties of a proper representation of
the quantum RR rate by our CTMC calculations we instead pursue a perturbative
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Figure D.2: Overlap (Eq. (DA)) between the calculated momentum distribution
fB(p) of the continuum electron (see also Figure D.1) and the cross section weighted
final-state momentum distribution g(p) of the bound-state electron (Eq. (D.2)) for
different magnetic fields. Note that the overlap is drawn with reference to the cor-
responding quantity at B = O. The results with fB(p) represented in the symmetric
gauge and Landau gauge are compared. The black line is ex: BO.5. Same parameters
as in Figure D.1.

quantum mechanical approach to the rate coefficients in a magnetic field in momen-
tum representation in the next section. Using first Born approximation, however,
employing Landau states as initial wavefunctions, the effect of a magnetic field on
the recombination rates will be explored.

D.2 Perturbative Quantum Mechanical Approach

(D.5)

The total probability for a transition of an atom or ion from an initial state 1/Ji to a
final state 1/J1 accompanied by the emission of a photon is given in the electric dipole
approximation in momentum representation by [7]

4w 2
W = 3 c31(1/J/IP11/Ji)1

with the transition frequency wand the velocity of light c. In the absence of a mag-
netic field the recombination of an electron with a fully stripped ion is described via
Eq. (D.5) by employing a Coulomb continuum wavefunction for the initial state 1/Ji of
the incoming electron and the corresponding hydrogenic bound-state wavefunction
for the final state 1/J1 of the recombined electron. Note that the recombination cross
section follows as (j = W/ j, where j denotes the incident electron current.
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(D.6)

(D.?)

•

In a magnetic field the initial wavefunction 'lj;i needs to be properly modified. In
the following we will account for the effect of a magnetic field by using Landau states
as initial states. In other words, we will consider first order Born approximation,
however, replacing the plane wave state by a Landau wavefunction. In the Landau
gauge (1= (0, Bx, 0)) the wavefunction for an electron in a homogeneous magnetic
field Ë = (0,0, B) is expressed in coordinate space as [?9, 80]

'lj;f(T) = 2~ eikzze-ü.JcxOY4JN(X - xo),

where 4JN(X - xo) describes a displaced harmonic oscillator wavefunction centered
around the guiding center coordinate Xo (xo = -ky/Wc)

<PN(X - xo) ~ 7r1/4It
1

J2NNfHN (X ~BXo) exp [ -(X2~~xoj2]

with Hermite polynomials HN [63]and lB denotes the magnetic length lB = yic/ B =
W;1/2. The quantum number N of this oscillator is referred to as Landau quantum
number. The momentum representation of Eqs. (D.6) and (D.?) can be readily
determined. Since the Hamilton operator of a harmonic oscillator in momentum
space exhibits the same form as in coordinate space apart from the substitution x -
p/wc = pl1, the momentum oscillator wavefunction can be immediately obtained
from its spatial counterpart (Eq. (D.?)) by replacing the argument x/lB by plB.
Furthermore, the momentum representation of a plane wave 'lj;pw = l/../2iieikx
is given by the delta function 8(p - k). Therefore, the Landau wavefunction in
momentum space becomes

. ll/2 2 2
'lj;f(Pl = c5(pz - kz)8(Py + wcxo)e-tp:rxo 7r1/4~HN(pxlB)e-P:Z)B/2. (D.8)

The additional phase factor e-ip:z:xo originates from the shift of x by Xo and thus the
replacement of (x - xo)/lB by plB.

At typical experimental conditions the electron resides in high Landau states
with quantum numbers N » 1 (section 3.1). In the limit of large N, however, the
harmonic oscillator wavefunction 4JN(X - xo) may be approximated by [63]

A. ( ) N»l { A cos (V2N + l(x - XO)/lB)
'f/N x - Xo - ( )Asin V2N + l(x - XO)/lB

Neven
N odd

(D.9)

Taking into account that HN(O) = (-1)N/2N!/(N/2)! for even N, the prefactor A
is determined to be

(D.lO)
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(D.12)

Since according to Eq. (D.9) in the asymptotic limit even and odd quantum numbers
N have to be treated separately, it might be desirable to combine an even and an odd
order for an appropriate representation of the incoming electron wave in the cooler.
With Eqs. (D.9), (D.lO) and N = 2n a coordinate space Landau wavefunction can
be written in the asymptotic form as [81]

For large values of n, the arguments of sine and cosine can be taken as equal, i.e.
v4n + 1 ~ v4n + 3 ~ v'4Tï. We may assume kl. = kxêx, so that the transverse
energy El. of the Landau state fulfills El. = wc(N + 1/2) = 1/2 k;. Accordingly,
N and kx are related by N ~ int(k;/(2wc) for N » 1. Thus, we have v'4Tï/lB =
v2Nwc = kx in Eq. (D.11). Choosing

C (-l)n 7rl/4l¥22nn!
2n =..j2;ff yi(2n)! '

we find for the asymptotic Landau state of Eq. (D.11)

(D.13)

Accordingly, the wavefunction in momentum representation at large N immediately
follows as

(D.14)

In the limit of B --+ 0, or correspondingly We --+ 0, a plane wave into the x-z plane is
obtained apart from the phase factor e-ikxxo. In the subsequent considerations we
utilize this asymptotic momentum wavefunction to determine the transition matrix
elements ('l/J,IP1'l/Jf8Ym

) in Eq. (D.5).
We investigate the recombination of an electron into the ground state of the ion.

With the radial momentum wavefunction defined in Eq. (D.1) (Co = 1) and the
spherical harmonic Yoo = 1/ J47r the 1s bound-state wavefunction becomes

(D.15)
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Figure D.3: Square of the dipole matrix element (Eq. (D.16)) between the asymp-
totic initial Landau wavefunction 'l/;fsym and the final hydrogenie ground state
'l/;}S displayed in terms of the guiding center coordinate Xo (a) and the corre-
sponding quantity integrated over Xo with no restriction in the Xo range and
Xo ~ Tion/2 = 8.825 x 105 a.u. (b). Note that the vertical line in (a) denotes
the cutoff in Xo. Z = 6, V.l = 0.0271 a.u. and vii = 0.0015 a.u.

Correspondingly, the transition matrix element between 'l/;fsym and 'l/;}S (Eqs. (D.14)
and (D.15)) reads

M - (,I,lSI ;;1,I,aSym) _ J8Z5
1 ( v.!.. ) -iv.lXO

ls,i - 'f/J PI'f/i - -2 ( 2 + 2 2 + 2 + Z2)2 -WcXo e ,
7r v.!.. wcxo VII VII

(D.16)
where we have identified kx and kz with the transverse and longitudinal velocity of
the electron according to the Maxwell-Boltzmann distribution in the experiment.
Note that the guiding center coordinate Xo constitutes an additional free parameter
caused by the uncertainty of the guiding center position of the electron spiral orbit.
Figure D.3a shows the square of the matrix element of Eq. (D.16) IM1s,il2 as a
function of Xo for different magnetic fields. With increasing field strength IMls,il2

gets confined to smaller values of Xo due to its scaling with w;6. The integration over
the entire region of Xo contributing to IMls,il2 results in a clear decrease of the dipole
matrix element with B (Figure D.3b). However, since the average interionic distance
Tion is limited and we want to aim at a single ion in our one-particle approach, the
range of Xo should be rather restricted to Ixol ~ Tion/2. Within this limitation the
xo-integrated squared transition matrix increases with B up to field strengths of
B ~ 1 T for typical interionic distances available in the experiment (for example, in
Figure D.3b Tion = 1.765 X 106 a.u.). Only at even higher fields a reduction in the
matrix element will be observed. Thus, the increase with B can be solely traced back
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(D.18)

(D.19)

(D.20)

•

to the restriction of Xo with the precise value of the peak position of f dxo IM18•i1
2

tuned by the chosen cutoff in Xo.
Once IM18,i12 has been determined the cross section for recombination into the

ground state Ut.. can be calculated. The incident elect.ron current generated by the
initial wavefunction 'ljJf8ym is determined by

J = -~ ['ljJf8ym*(ä'ljJf8ym) - 'ljJf8ym(ä'ljJf8ym*)] + ~A'ljJf8Ym*'ljJfSYm = (2~)3 ( ~~ ) .
VII

(D.17)
It can be easily derived from the coordinate representation of the asymptotic wave-
function Eq. (D.13) with the transverse energy E~ = vl/2 of the Landau state
taken into the x direction. Furthermore, the difference in cross section for the plane
wave obtained in the B ~ 0 limit and the Is cross section calculated with a full
Coulomb continuum state has to be taken into account. The quantum mechanical
Is recombination cross section ufsoul employing a Coulomb continuum wavefunction
as initial state reads [7]

uCoul(v) = 28rr2 Z6 exp [-4Z/v arctan(v/Z)]
18 3c3 (Z2 + v2)2v2 1- exp [-2rrZ/v]

In the limit of V ~ 0 applicable for the low-energy measurements of experimental
rate coefficients exp [-4Z/v arctan(v/Z)] ~ exp( -4) and l-exp [-2rr Z/v] ~ 1 and
ufsoul(v ~ 0) becomes

Coul( 0) 28
rr

2
z6 -4

u18 V ~ = 3c3 (Z2 + v2)2v2e .

On the other hand, the cross section with an incident plane wave 'ljJ{W = fJ3(p-
v) is calculated by means of the electron current J = v/(2rr)3 and the transition
probability W (Eq. (D.5)) with the energy of the emitted photon w = 1/2 (v2 + z2)
and the hydrogenic ground-state wavefunction of Eq. (D.15) as

PW() 4 w 21 18(;;"\121~ -1 27rr z5
u1s V = 3c3v 'ljJf vJ JI = 3c3 (Z2+V2)3v.

Accordingly, the RR cross section ufsoul(v ~ 0) is related to the plane wave contri-
bution uisw (v) by

Coul( ~ 0) _ pw() 2rrZ(Z2 + v2) -4u18 V - u18 V 3 e.
V

(D.21)

Thus, the cross section for RR into the ground state of an ion in the presence of a
magnetic field can be determined. With Eqs. (D.5) (w = 1/2 (v2 + Z2)), (D.16),
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Figure D.4: The radiative recombination cross section af,(E = v2/2) as a function
of energy (Eq. (D.22)) (a) and the resulting recombination rate af,(Erel) versus the
average relative energy (Eq. (D.23)) (b) for recombination into the ground state
at different magnetic field strengths (values indicated in the figure). Z = 6 and
Tion = 1.765 X 106 a.u. The temperatures for the Maxwell-Boltzmann distribution
in (b) are klll = 0.2 meV and kTJ. = 10 meV.

(D.17) and (D.21) and an averaging over the guiding center coordinate Xo it becomes

B () 281f"2 Z6(Z2 + V2)2 -4 1 1 d v2 + W~XÖ
als v = ~ 4 e - Xo (2 2 2 Z2)43(..- v Tion Ixol~rion/2 v + wexo +

with v2 = v~ + vi. Note that the integral over Xo can be solved analytically.
Figure D.4a illustrates af, as a function of energy E = v2/2 for different magnetic

field strengths and Figure D.4b depicts the corresponding recombination rate

(D.23)

in terms of the parallel detuning energy Erel between electrons and ions for the
same values of B. The cross sections and rate coefficients are seen to dramatically
increase with B thus by far overestimating the magnetic field dependence of the
experimental rate enhancement.

Considering this enormous increase of af, with B the presented method to cal-
culate RR rates appears to be too simplistic. For example, the initial Landau
wavefunction could rather be taken without employing the asymptotic limit, i.e.
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where 1>2n (Px) and <P2n+ 1(Px) denote harmonic oscillator eigenfunctions in momentum
space (compare Eq. (D.8)). It should be again noted that the given approach only
represents first order Born approximation without considering the ionic Coulomb
potential. The Coulomb field only enters through Eq. (D.21), i.e. the comparison of
the cross sections for initial plane wave and Coulomb continuum states. Thus, a more
realistic description including the Coulomb potential, preferably a non-perturbative
model, would be highly welcome.



Appendix E

Elect:ron-Ion Merging: Lab Frame

The Hamiltonian for the electron-ion system within the toroidal section of the elec-
tron cooler is given in the lab frame according to Eq. (4.1) in Cartesian coordinates
by

z
1- - I're - rion

1 ( ( Pionx ) Z ( - B sin cPion ) ( Xion )) 2
H =2mion P~onu - 2c B cos cPion X Y~on

P~onz Bd~pole Z~on

1 (( Pex ) 1 (- B sin cPe ) ( Xe )) 2+ 2 Pey + 2c B ~os cPe X Ye
Pez Bdtpole Ze

(E.1)

where we approximate B (T) = B = canst and Bdipole (T) = Bdipole = const. Ex-
ploiting the symmetry of the merging region we use cylindrical coordinates (polar
coordinates in the plane of the toroid and a Cartesian component perpendicular to
that plane) in our simulation. We apply the canonical transformation equations (see
also Appendix A)

X = pcoscP
Y = psincP

Px = Pp cos cP- Pt/>/P sin cP
Pu = Pp sin cP+Pt/>/P cos cP (E.2)

to the ionic and electronic phase space coordinates in order to obtain the corre-
sponding Hamiltonian in cylinder coordinates

z
,- -- I're - rion

1 ( ( Pionp ) Z ( 0 ) ( Pion )) 2
H =2mion P~on4J/Pion - 2c B. X O.

Ptonz Bdtpole Zton

+ ~ (( ;::/ Pe ) + ;c ( ~ . ) X ( ~e )) 2

Pez Bdtpole Ze
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(E.3)
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(E.4)

Pep

Pionp

4>e and 4>ion denote the polar angles (~ 0) with respect to the beginning of the
solenoid region. The classical Hamilton's equations of motion

dTe aH d'Gon aH
dt - aPe ----;It - affïon

dPe aH dffïon __ aH
dt aTe dt - a'Gon

govern the dynamics of the particles. In cylindrical coordinates they read

aH 1
Pe - vep = -a = Pep + -2 BZe

Pep C

aH Pe<!> 1
4>e - ve<!>= -a = 2" + -2 Bdipole

Pe<!> Pe C

aH 1
Ze - Vez = -a = Pez - -2 B Pe

1Jez C

aH P~t/> 1 (2 2) 1 Z
- aPe = P~ - 4él B + Bdipole Pe + 2cBPez - R3 (Pe - PionCOS(4)e - 4>ion))

aH Z
Pet/> - - a4>e = - R3 PePion sine 4>e - 4>ion)

aH 1 2 1 Z
Pez - - aZe = - 4élB Ze - 2cBPep - R3 (Ze - Zion)

aH Pionp Z
Pion - Vionp = -- = -- - ---Bzion

apionp mion 2mion C

aH Piont/> Z
4>ion - Viont/>= -a-- = 2 ---Bdipole

Pion4> mionPion 2mionC
aH Pionz Z

Zion - Vionz = -- = -- + ---B Pion
apionz mion 2mion C

aH P;ont/> Z2 (2 2 )--a - ---3- - 4 _? B + Bdipole Pion
Pion mionpion mionc...-

Z Z
2 . Bpionz - R3 (Pion - Pe COS( 4>e - 4>ion))

mtonc
aH Z . (A,. )

Piont/> - - a4>ion = +R3 PePion sm 'f'e - 4>ion

aH z2 2 Z Z
Pionz - --a - 4 2B Zion + 2 BPionp + R3 (Ze - Zion)Zion mionC mionC
with

R = ITe - 'GonI = vi(Xe - Xion)2 + (Ye - Yion)2 + (Ze - Zion)2 =

P~ + P;on - 2PePion cos( 4>e - 4>ion)+ (Ze - Zion)2.
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The time evolution of the system is obtained by numerically integrating the equa-
tions of motion. We use a fourth order Runge Kutta method for the integration
within our simulation. If Bdipole is chosen such that in the electronic equation of
motion of Pep the terms P~</>/P~ and -1/(4c2)BJipolePe approximately cancel each
other, the undesired drift motion of the electron into the z-direction gets elimi-
nated. Analogously, another dipole field of different strength would be needed for
the compensation of the ionic drift motion. As discussed in section 4.2 we start the
ionic trajectories with an initial displacement instead.

The velocities parallel and perpendicular to the electron and ion beam are given
by

Vell -

Ve.l -

vionll -

Vion.l -

PeVeq,

Jv;z + v;p
Viony = Vionp sin <Pion + Pion Vion</>cos <Pion

J vlonx + Vlonz = J (VionP cos <Pion - PionVion</> sin <Pion)2 + vlonz

and the relative energy of the electron-ion system Eq. (4.3) is calculated as

Erel =~J.L (v;p + p;v;q, + v;onp + P'ton v;on</>- 2VepVionp cos( <Pe - <Pion)

-2VepPionVion</>sin(<pe - <Pion) + 2PeVe</>Vionpsin(<pe - <Pion)

-2PeVe</>PionVion</>COS(<Pe - <Pion) + (Vez - Vionz)2)
Z

VP~ + P~on - 2pePion COS( <Pe - <Pion) + (Ze - Zion)2



(F.l)

Appendix F

Electron-Ion Merging: Ionic Rest
Frame Transformation

In the following an alternative way of transformation to the rest frame of the ion
is presented. This more general approach allows for an acceleration of the ion in
the laboratory frame. According to the nonvanishing Lorentz force Fz ~ -VionyBx
perpendicular to the plane of the toroid the ionic beam is accelerated in the lab-
oratory frame (see also Figure 4.4b). Due to the magnetic dipole field an addi-
tional, albeit small accelerating force component appears also into the x direction,
Fx ~ vionyBdipole' Therefore, changing to the rest frame of the ion involves the
transformation into an accelerated frame of reference. Relativistic effects can be
neglected since Viony ~ a.le and , = 1.0/J{1 - (viony/e)2) ~ 1. We consider the
equations of motion of an ion and an electron in the lab frame for the fields Ë = 0
and Ê according to Eq. (4.2),

.... Z.... B....(.... ) Z (.... ....)mionaion - -Vion X Tion + I.... .... 13 Te - Tione Te - Tion
1.... B....( ....) Z (.... ....)--Ve X Te - ,.... .... 13 Te - Tione Te - Tion

with the electron being described by the position Te, velocity i1e and acceleration ae
and the ion by fion, Vion and aion, respectively. As already pointed out the magnetic
field strength depends on the particular position of the ion or electron. We employ
the frame transformation

aframe(t) = aion(t)

Vframe(t) it aion(t')dt' = Vion(t)

firame(t) it Vion(t')dt' = fion(t)
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R
L

t

vframe = fäfiame(t')dt'
o

.... ....
a frame == ilion

Figure F.l: Ti"â.nsformatioù froin the lab frame to the rest frainé öf the iôh R: The
adding up of velocities is shown.

to transform to the rest frame of the ion R thus connecting the lab frame dynamics
with the dynamics in R by

ä ....R+ ....- a ~on

V ....R+ ....- V Vion

r :=<El .... (F.3)- T + Tion.

Figure F.l illustrates the relation between the lab frame and rest frame velocities.
Inserting Eqs. (F.3) into Eqs. (F.l) the equations of motion in the rest frame of the
ion are obtained. The ionic motion becomes trivial

T'fon = a v:~= a äfon = 0,

whereas the electronic motion is described by

....R.... 1(....R .... ) B....(....) Z ( :=<El :=<El)ae + aion = -- Ve + Vion X Te - I""" :=<El Te - Tien .
C Tn. - T. 13 ~

e ~ =0
=0

(FA)

(F.5)

Correspondingly, the equations of motion for the electron-ion system in R finally
read

(F.6)
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with the transformed electric and magnetic field components

- ~Vion (t) x B (P, t) + aion (t)
e

(

- B (T, t) sin cjJ (t) )
B (P, t) = B (P, t) :os cjJ (t) .

Bdipole (T, t)

(F.7)

(F.8)

The electric and magnetic field strengths are time dependent in R due to their
position dependency in the lab frame.

Finally we note that under the assumption that the ion can be regarded as
infinitely heavy, i.e. not being accelerated at all by the Coulomb and magnetic fields
and hence moving with a constant velocity Vion = vionyêy throughout the merging
section, the above described method simply yields Eqs. (4.5) for the electric and
magnetic fields. In this case the Galilei transformation, since relativistic effects are
ignored,

Vjrame(t)
Tjrame(t) -

Vion = canst

Viont (F.9)

transforms to the rest frame of the ion, an inertial frame (denoted by the superscript
CV), where the relations

a - ëPv

V - ,gcv + Vion
P rev + Viont (F.lO)

connect the lab frame and ev motions. The equations of motion for the electron
then become

~v 1:-:ev B- (- ) Z::ev 1- B- (- )ae = --ve X Te -, ;;CV13Te --Vion X Te
e "--" Te ~ e .J

-ev ~
B _Èev

with the fields

1 _ ( lie Bdipole (P, t) Viony )
- -Vion X B(P,t) = a

e lie B (T, t) sin cjJ (t) Viony
B (T, t) = BR (pR, t)

being identical to Eqs. (4.5).

(F.n)

(F.12)

(F.13)



Appendix G

Radiative Transition Probabilities

The probability for a transition of an atom from a state n, L, m to a state n', L', m'
with the emission of a photon is given in the electric dipole approximation by [7]

( L "') 4 w
3

1_ 12W n, ,m ---+ n ,L , m =:3 Cl Tnlm-+n'L'm' ,

where Tnzm-+n'L'm' is the dipole matrix element

(G.!)

(G.2)

with the principal, orbital and magnetic quantum numbers n, Land m of the hydro-
genic wavefunction separated in spherical polar coordinates, 'l/Jnlm = Rnz¥im (Rnz:
radial wavefunction, ¥im: spherical harmonic). 'l/Jnlm and 'l/Jn'L'm' represent the initial
and final wavefunctions respectively. Moreover, in Eq. (G.!) w denotes the energy
difference between the initial and final state

(G.3)

for an atom or ion of charge Z and c the velocity of light. The radiative decay rate
of a given initial state into low-lying final states is obtained by summing Eq. (G.!)
over all the corresponding final states, i.e.

W(n, L,m) = L W(n, L,m ---+ n', L', m').
n/ L' m/

Using the dipole selection rules

(GA)

ÂL = L' - L = ::I:! Âm = m' - m = ::I:!, a
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(G.5)
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the sum over m' can be evaluated for the two cases L' = L+1 and L' = L-1 separately,

L ITnzm--+n'l+lm' 1
2

m'

L ITnzm--+n'l-lm' 1
2

m'

L+ 1 (Rn'l+l) 2
2l + 1 . nl ,

_L_ (Rn'I-I)2
- 2l + 1 ni

(G.6)

(G.7)

with the integral over the radial wavefunctions given by

In combined form Eqs. (G.6) and (Go7) read

" I.... 12 - max(L, L') (Rn'I,)2L.J Tnlm--+n'l'm' - -2-L-+-1- ni 0

m'

(Go8)

(Gog)

This expression is independent of mo As an immediate corollary the life time of the
initial state is independent of its magnetic quantum number and depends only on n
and L. Therefore, an average transition rate for an electron in the initial n, L state
is defined by averaging over the 2L + 1 possible values of m as

1
W(n, L) = 2L + 1LW(n, L,m).

m

(G.lO)

Taking into account Eqso (Go1), (G.4), (Go5) and (G.g) this radiative decay rate is
determined as

l+1 4 3 (L L') 2
W( L) = " " _:::....max, (Rn'l')n, L.J L.J 3 c3 2L + 1 nl ,

n' 1'=l-1

(G.ll)

whereas the transition probability for an individual state to state transition n, L -t

n', L' = L ::i 1 (after averaging over m and summing over m') becomes

W( L -t ' L' = L::i 1) = ~w3 max(L, L') (Rn'Hl)2n, n , 3 c3 2L + 1 nl . (G.12)



(H.1)

Appendix H

e Continuity of the Transition
Probability Across Threshold

First the equivalence of the probability for radiative stabilization evaluated on the
n scale (Eq. (4.27))

1 - nma:r 2w2 25 (1 1 ) -3 1
P; )(Te) = Tc L P(n) L 7 3V37r n,2 - n2 n,3 n5'

n>nma:r n'=l

and the corresponding probability evaluated on the energy scale (Eq. (4.40))

(H.2)

should be checked. For the initially high lying Rydberg states with n »n' we may
approximate w = En - En' ~ -En' = Z2/(2n'2) and (1/n'2 - 1/n2)-3 ~ n,6 in
Eq. (H.1) and hence obtain with IE = 16/(3V37rc3)

nma:r z4
(1) ~ - ~Ps (TC)~ TelE ~ P(n) ~ n' n5'

n>nma:r n'=l

On the other hand, Eq. (H.2) becomes with (_E)5/2 = Z5/(4V2n5)

(H.3)

(H.4)
nma:r 1 ( Z4

PP)(Te) = TelE L I iF P(E)sdE
n'=l n E<O n

thus having adopted the same form as Eq. (H.3).
Secondly, we want to verify the continuity of the radiative transition probabilities

across the ionization limit, i. e.

lim DRvd(n)W(n ~ n') = lim Djree(E)W(E ~ n'), (H.5)
n-->(X) E-->O
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where DRyd(n) and Dfree(E) denote the density of states below and above threshold,
respectively. DRyd(n) is the density of Rydberg states for a given quantum number
n Eq. (4.38) or in terms of n it is given by

(H.6)

and Dfree(E) specifies the density of free electrons Eq. (4.33). W(n ---+ n') and
W(E ---+ n') are the corresponding transition probabilities per unit time. The tran-
sition probability according to Eq. (H.1)

. . 2w2 25 (. 1 1 ) ~3 1W(n ---+ n') = ---. -.- - -. J __

c3 3V37r ri/2 n2 n,3 n5

reduces in the limit n ---+ 00 (see also above) to

lim W(n ---+ n') = IE Z4
5

.
n-+oo n'n

Accordingly, the left hand side of the continuity relation Eq. (H.5) becomes

lim DRyd(n)W(n ---+ n') = IE Z2.
n-+oo n'

(H.7)

(H.8)

(H.9)

For the continuous spectrum we use the transition probability according to Eq. (4.39)

y'27r2 Z2 1
W(E ---+ n') = IE----.

V n'..jE
(H.10)

(H.n)

With the density of states Dfree(E) of Eq. (4.33) the continuum state limit of
Eq. (H.5) is determined as

lim Dfree(E)W(E ---+ n') = IE z2 ,
E-O ~

which precisely agrees with the bound state limit of Eq. (H.9) thus proving the
continuity across the ionization threshold.
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