
MASTERARBEIT

Recognizing Structure in Report Transcripts

An Approach Based on Conditional Random Fields (CRFs)

Ausgeführt am Zentrum für Hirnforschung

Institut für Medizinische Kybernetik und Artificial Intelligence

der Medizinischen Universität Wien

unter der Anleitung von

ao.Univ.Prof. Dipl.-Ing. Dr.techn. Harald Trost

durch

Jeremy M. Jancsary, Bakk.techn.

Kalvarienberggasse 18/1/15

A-1170 Wien

Wien, am 5. Februar 2008 Jeremy M. Jancsary

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe

verfasst, andere als die angegebenen Quellen nicht benützt und die den benutzten Quellen

wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 5. Februar 2008 Jeremy M. Jancsary

2

Abstract

Typically, the output of Automatic Speech Recognition (ASR) is a mere sequence of words.

This view may be sufficient for some tasks, whereas others require a more structured ap-

proach. This thesis presents a framework that allows for identification of deep, underlying

structure in report dictations. Identification of structural elements, such as headings, sections

and enumerations is an important step towards automatic post-processing of dictated speech.

The contributions of this thesis include a generic approach that can be integrated seamlessly

with existing ASR solutions and provides structured output, as well as a freely available Con-

ditional Random Field (CRF) toolkit that forms the basis of aforementioned approach and

may also be applicable to numerous other problems.

Kurzfassung

Typischerweise gibt automatische Spracherkennung lediglich eine Folge von Wörtern aus.

Diese Sichtweise mag für einige Anwendungen ausreichend sein; andere wiederum benötigen

eine etwas strukturiertere Vorgehensweise. Diese Diplomarbeit stellt ein Framework vor, das

es ermöglicht, zugrundeliegende Strukturen in diktierten Berichten zu erkennen. Die explizite

Ausweisung von strukturellen Elementen wie Abschnitten, Überschriften und Aufzählungen

ist ein wichtiger Schritt in Richtung automatischer Nachverarbeitung von Diktaten. Der wis-

senschaftliche Beitrag dieser Diplomarbeit ist einerseits die Entwicklung eines generischen

Ansatzes, der bestehende Spracherkennungssysteme dahingehend erweitert, dass strukturi-

erte Ausgabe generiert werden kann; andererseits liegt der Beitrag in der Veröffentlichung

eines frei verfügbaren Conditional Random Field (CRF) Toolkits, das dem zuvor genannten

Ansatz zugrunde liegt, aber auch für viele andere Problemstellungen einsetzbar ist.

3

Acknowledgement

I would like to thank my advisor, Harald Trost, for his encouragement throughout the duration

of this project and for introducing me to the field of computational linguistics. I am greatly

indebted to my colleagues at OFAI1 for their advice and many fruitful discussions.

Furthermore, I would like to thank Andrew McCallum and Charles A. Sutton2 for their in-

sightful publications on Conditional Random Fields, which got me interested in the topic in

the first place.

1http://www.ofai.at
2http://cs.umass.edu

4

http://www.ofai.at
http://cs.umass.edu

Contents

1 Introduction 11

1.1 Motivation . 12

1.2 Related Work . 15

2 Approach 20

2.1 Analysis of Requirements . 21

2.2 Representing the Problem . 22

2.3 On the Choice of CRFs . 24

2.4 Outline . 26

3 Data Preparation 27

3.1 Available Corpora . 28

3.2 Required Annotation . 29

3.2.1 Analysis of Report Structure . 29

3.2.2 Formal Description of Report Structure 30

3.2.3 Determining Section and Subsection Types 32

3.2.4 From Hedge to Label Chains . 33

3.3 Semi-Automatic Label Annotation . 34

3.3.1 Cleansing . 36

3.3.2 Parsing of Formatted Reports . 36

3.3.3 Mapping Annotations via Alignment 37

3.4 Feature Generation . 42

4 Review of Theory 45

4.1 Introduction to Conditional Random Fields 46

4.2 Factorial Conditional Random Fields . 48

4.3 Inference in Factorial Conditional Random Fields 49

4.3.1 Belief Propagation . 50

4.3.2 Loopy Belief Propagation . 53

4.3.3 The TRP Schedule . 54

5

Contents

4.4 Parameter Estimation . 55

4.4.1 The Objective Function . 56

4.4.2 Regularization . 57

4.4.3 Convex Optimization Algorithms 58

5 Implementation Overview 63

5.1 Introducing VieCRF . 64

5.2 Implemented Functionality . 65

5.2.1 Flexible Feature Support . 65

5.2.2 Pre-Pruning of Observations . 66

5.2.3 Inference and Training Algorithms 67

5.2.4 Restriction of Label Transitions . 67

5.2.5 C++ and Perl APIs . 68

5.3 Efficiency Considerations . 69

5.3.1 Avoiding Log-space Computation 69

5.3.2 Fast Sparse Vector Operations . 69

5.3.3 Parallelization . 70

5.3.4 Compile-time Polymorphism . 71

5.3.5 Parameterizable Data Types . 71

6 Experiments 72

6.1 Training, Labeling and Post-Processing . 73

6.1.1 Parameter Settings and Algorithmic Choices 74

6.1.2 Post-Processing . 77

6.2 Estimated Accuracy . 79

6.3 Estimated Precision, Recall and F1 . 81

6.4 Confusion . 89

6.5 Estimated WindowDiff . 92

6.6 The Effect of Noisy Training Data . 94

6.7 Further Analysis of Training Progress . 95

6.8 Preliminary Analysis of Convergence Behavior 97

7 Conclusion and Outlook 99

7.1 Remaining Challenges . 100

7.2 Further Processing . 101

8 Summary 102

6

Contents

A Acronyms 104

B Bibliography 106

7

List of Figures

1.1 A typical medical report . 13

1.2 Raw output of speech recognition . 13

1.3 Successive multi-level segmentation of a list of tokens 14

2.1 Multi-level segmentation represented as a tagging problem 23

3.1 A hedge . 31

3.2 A RHG describing permissible report structure 32

3.3 Mapping labels via alignment . 38

3.4 Dynamic programming matrices after aligning two strings 41

4.1 A FCRF with 3 label chains (dependencies on x omitted for brevity) 48

4.2 Belief propagation on a tree . 50

4.3 Alternative factorization of the tree in figure 4.2 52

6.1 Progress of training on CCOR-ALL . 76

6.2 Progress of training on CRCG-ALL . 76

6.3 Confusion plot for section level of CCOR-ALL (with post-processing) 90

6.4 Confusion plot for section level of CRCG-ALL (with post-processing) 91

6.5 Progress of accuracy vs. loss function on CCOR-V AL 96

6.6 Progress of accuracy vs. loss function on CRCG-V AL 96

8

List of Tables

3.1 Labels used for annotation (excluding “Begin” labels) 35

6.1 Accuracy achieved on CCOR-ALL . 80

6.2 Accuracy achieved on CRCG-ALL . 80

6.3 F1 for sentence level of CCOR-ALL (with post-processing) 82

6.4 F1 for sentence level of CRCG-ALL (with post-processing) 82

6.5 F1 for subsection level of CCOR-ALL (with post-processing) 84

6.6 F1 for subsection level of CRCG-ALL (with post-processing) 85

6.7 F1 for section level of CCOR-ALL (with post-processing) 87

6.8 F1 for section level of CRCG-ALL (with post-processing) 88

6.9 WindowDiff for CCOR-ALL . 93

6.10 WindowDiff for CRCG-ALL . 93

6.11 Accuracy achieved on CCOR-BEST . 94

6.12 Accuracy achieved on CRCG-BEST . 94

6.13 Convergence Behavior of TRP . 97

9

List of Algorithms

1 GENERALIZED LEVENSHTEIN DISTANCE 40

2 TRP SCHEDULE . 55

3 STANDARD LBFGS METHOD . 59

4 LBFGS DIRECTION UPDATE . 60

5 ONLINE LBFGS METHOD . 61

6 OLBFGS DIRECTION UPDATE . 62

7 POST-PROCESS CCOR . 77

8 POST-PROCESS CRCG . 78

10

Chapter 1

Introduction

“ The beginning is the most important
part of the work. ”

– Plato

Automatic Speech Recognition (ASR) has now reached a state where it can be used success-

fully for everyday tasks. Its users are as diverse as individuals dictating letters into their word

processor software and companies incorporating ASR into their automatic inquiry systems.

Yet other companies provide transcription services, facilitating the work of their professional

typists via ASR.

Traditionally, utterances are treated by ASR systems as mere sequences of words. Indeed, this

view is sufficient for many tasks. However, when it comes to processing dictations of clearly

structured text – like reports, for instance – capturing words is only one particular facet of a

much wider task.

This thesis presents a means of enhancing existing speech recognition systems in a non-

intrusive way such that deep, underlying structure can be identified in dictated reports, rather

than a mere sequence of words. The domain of medical reports serves as the application area

that will be portrayed throughout this document; however, the techniques and findings should

be equally applicable to any domain comprising dictations of highly structured text.

It should be noted that the focus of this thesis are machine learning aspects of structure iden-

tification rather than concrete technical integration with available ASR software or speech

recognition itself.

11

Chapter 1 Introduction

1.1 Motivation

The need to dictate reports arises in various domains. While it may still be common for a

secretary to transcribe these dictations and create a well-formatted document, it makes sense

to start employing ASR at a certain point. Often, the process will then be outsourced to a third

party offering professional transcription services.

ASR can help professional typists by handling much of their original work. Yet, some tasks

remain that still have to be performed manually. First, the output of the speech recognition

software needs to be proof-read, and any recognition errors need to be corrected. Most of

these errors are inherently hard to avoid – they can be due to homophones1, sloppy pronun-

ciation or various other speech-related phenomena such as hesitations and repetitions by the

speaker. On a related note, speakers can direct instructions to the transcriptionist which have

to be interpreted by a human being. Therefore, some amount of manual work will always

have to be performed.

Another task that is typically performed by a professional typist is proper formatting, arrang-

ing and structuring of a dictated report. Missing headings may have to be inserted, sentences

must be grouped into paragraphs in a meaningful way, enumeration lists may have to be in-

troduced and properly indented. These activities require some amount of domain knowledge.

However, in some domains, such as medical consultations, most reports bear a striking re-

semblance. Fairly clear guidelines exist with regards to what has to be dictated, and how it

should be arranged. This indicates that part of this task could be automated.

The first step towards achieving that goal is the identification of various structural elements

in a dictated report. This forms the basis for later rearrangement, rephrasing and formatting,

should it be necessary.

Consider figure 1.1. This is a typical example of a report concerning a medical consultation,

after being processed by a professional transcriptionist. Obviously, such reports arise in great

quantity, since the number of medical consultations required in modern health care systems

is enormous. This fortifies the wish for increasing automation.

One solution is the move towards structured data entry, and there is a clear tendency towards

that approach. However, dictation will probably remain ubiquitous for years to come, if only

for the reason that certain special cases simply cannot be squeezed into a rigid form.

1Homophones are words that are pronounced the same way but differ in meaning.

12

Chapter 1 Introduction

CHIEF COMPLAINT

Dehydration, weakness and diarrhea.

HISTORY OF PRESENT ILLNESS

Mr. Wilson is a 81-year-old Caucasian gentleman who came in

here with fever and persistent diarrhea. He was sent to the

emergency department by his primary care physician due to him

being dehydrated.

. . .

PHYSICAL EXAMINATION

GENERAL: He is alert and oriented times three, not in acute

distress.

VITAL SIGNS: Stable.

. . .

DIAGNOSIS

1. Chronic diarrhea with dehydration. He also has hypokalemia.

2. Thromboctopenia, probably due to liver cirrhosis.

. . .

PLAN AND DISCUSSION

The plan was discussed with the patient in detail. Will transfer

him to a nursing facility for further care.

. . .

Figure 1.1: A typical medical report

complaint dehydration weakness and diarrhea full stop Mr. Will

Shawn is a 81-year-old cold Asian gentleman who came in with

fever and Persian diaper was sent to the emergency department

by his primary care physician due him being dehydrated period

. . . neck physical exam general alert and oriented times three

known acute distress vital signs are stable . . . diagnosis is one

chronic diarrhea with hydration he also has hypokalemia neck

number thromboctopenia probably duty liver cirrhosis . . . a plan

was discussed with patient in detail will transfer him to a nurse

and facility for further care . . . end of dictation

Figure 1.2: Raw output of speech recognition

13

Chapter 1 Introduction

... ...

Figure 1.3: Successive multi-level segmentation of a list of tokens

Another possible solution is increasingly intelligent processing of natural language data via

statistical methods. This is the approach pursued in this thesis.

Figure 1.2 shows possible output of ASR software for the dictation that eventually ended up

as the report in figure 1.1. It should be noted that most ASR software is nowadays capable of

detecting sentence boundaries and automatically inserting punctuation (with a varying degree

of success), so actual output may in practice be slightly more structured than depicted in

1.2. However, since sentence boundary detection can easily be performed within the holistic

framework presented in this thesis, a worst case scenario will be assumed for the available

input – a mere sequence of words, that is. In a way, the methods outlined in this document

can be considered a natural generalization of already available or emerging features, such as

automatic punctuation.

It is fairly obvious that a fair amount of effort is required to transform the input (figure 1.2)

into the desired output (figure 1.1). From a schematic point of view, words need to be grouped

into sentences, sentences into paragraphs, etc. We can proceed this way for a while, building

ever coarser units, until a report is segmented into top-level sections (actually, the report itself

may be considered the coarsest unit). Figure 1.3 depicts this process. It can be thought of as

extrapolating structure out of a sequence. In principle, this is the task that is solved by the

mechanisms presented in this thesis.

14

Chapter 1 Introduction

As mentioned above, identifying underlying structure in a dictated report is only the first,

albeit quite intricate, step. Depending on the quality of a dictation, certain transformations

may be required (such as re-ordering of sections, insertion of headings, etc.). However, this

is outside the scope of this thesis and remains an interesting topic for future work. This

thesis aims to provide the basis for aforementioned transformations. Once it is known which

elements occur in a dictation, and how they relate to each other, operating on the data will be

much easier.

What is the benefit of such analysis and transformation of report dictations? By now, one

aspect should be fairly clear: one of the goals of the work performed in the context of this

thesis is to ultimately free professional typists from the needless burden of repetitive tasks.

From a less humanistic point of view, further automation of report transcription increases

throughput and allows for cost cutting.

However, there is also another aspect that has not been highlighted thus far. There is hope that

the error rate of speech recognition can be improved by identifying sections of limited scope

that occur frequently in reports. Some sections in medical reports, for instance, are quite

limited with regards to the vocabulary. Examples are sections that typically only contain

medication lists and sections about laboratory data2. In the end, this is quite similar to the

first goal, in that it will ultimately reduce cost or further assist human beings, depending on

the point of view.

1.2 Related Work

This topic of this thesis is closely related to the field of linear text segmentation. The goal of

linear text segmentation is – as its name implies – to partition text into coherent blocks. Now,

this is different from the work performed in this thesis in that segmentation is only performed

on a single level (thus the name linear), whereas this thesis aims to find deeper structure.

Indeed, our task may be viewed as a generalization of linear text segmentation.

The recognition of such deep structure has various merits. First, it allows for explicit repre-

sentation of report structure, including fine-grained elements such as headings and enumer-

ations. This information is required for automatic formatting of reports, for instance. The

2 A possible strategy might be to first perform automatic speech recognition using a broad coverage language
model, then segment the text using the methods presented in this thesis, and finally re-invoke speech recog-
nition using specific language models for the different sections that could be identified. In fact, there is
ongoing research that investigates this option [Pro07].

15

Chapter 1 Introduction

explicit representation also greatly facilitates further processing, such as transformation of

report transcripts according to formal and informal requirements of the domain, or rephrasing

of utterances to better suit a written style.

Segmenting report dictations into adjacent segments on a single level is one step up from

the original representation as a mere sequence of words, but it is not quite sufficient for our

scenario. Still, many insights gained in the research area of linear text segmentation also apply

to this thesis. In particular, a solution to our structure recognition task could be approached

by repeatedly performing linear text segmentation, thereby iteratively splitting segments into

more fine-grained items. Section 2.1 demonstrates why this simple approach is not such a

good idea after all.

A meanwhile classic approach towards domain-independent linear text segmentation is pre-

sented by Choi in [Cho00]. His algorithm C99 is the baseline which many current algorithms

are compared to. Choi’s algorithm surpasses previous work by Hearst, who invented the pop-

ular Texttiling algorithm ([Hea97]). The best results that have been published to date are – to

the best of the author’s knowledge – those of Lamprier et al. ([LALS07]).

With regards to domain-specific text segmentation, the thesis of Matsuov ([Mat03]) should

be noted. In his thesis, Matsuov presents a dynamic programming algorithm capable of seg-

menting medical reports into adjacent sections. Matsuov’s work is similar to this thesis in that

he applies his algorithms to medical reports. Furthermore, the task of identifying the sections

of a report can be considered a subtask of the problem solved in this thesis. Matsuov also

attempts to automatically assign a topic to each section in a report; this is common to both

theses. Our goal is different in that Matsuov only performs linear segmentation of report tran-

scripts and is not concerned with more fine-grained elements. Furthermore, the underlying

machinery differs from the approach taken in Matusov’s thesis.

The automatic detection of section and subsection types or topics is an important part of

our thesis. First, these types provide important clues for further processing. For instance,

appropriate headings can easily be derived from the section type. Information extraction tasks

are also greatly simplified if the topic of sections and subsections is known beforehand; at the

very least, the types show which sections need not be considered. Second, topic detection

techniques also provide valuable input for segmentation: If a change of topic is detected, this

indicates that a section boundary may have to be introduced.

Topic detection is usually performed using methods similar to those of text classification or

text categorization). Automatic text categorization can be seen as the task of assigning a num-

ber of category labels to each document of a given document collection. Sebastiani ([Seb99])

16

Chapter 1 Introduction

more formally defines the problem of automatic text categorization as that of determining an

assignment of a value from {0, 1} to each entry of a decision matrix

d1 ... dj ... dn

c1 a11 ... a1j ... a1n

...

ci ai1 ... aij ... ain

...

cm am1 ... amj ... amn

where C = {c1, ..., cm} is a set of pre-defined categories and D = {d1, ..., dn} is a set of
documents to be categorized. A non-zero value of aij then indicates that category ci has been

assigned to document dj .

Numerous solutions to the problem of automatic text classification have been proposed. While

the dominant approach towards automatic text categorization used to be that of manual knowl-

edge engineering, this labor-intensive strategy has mostly been superseded by inductive ma-

chine learning algorithms since the early to mid-90ies.

Some examples of rather early inductive learning algorithms for text categorization include a

mechanism presented by Apté and Damerau ([ADW94]), which employs inductive decision

rule learning, as well as the often-cited RIPPER algorithm by Cohen and Singer ([CS96]),

which can be used to learn simple hypotheses in the form of a disjunction of conjunctions.

Clearly, these algorithms were motivated by earlier, manually constructed expert systems such

as CONSTRUE ([HANS90]). Meanwhile, with the arrival of thorough understanding of com-

putational learning theory, research seems to be shifting towards application and construction

of mathematically well-founded algorithms such as Support Vector Machines (see [Joa98] for

an extensive introduction).

This thesis uses transcripts of medical report dictations in order to demonstrate our approach

and to assess the efficacy of the presented algorithms. Natural language processing of free text

from the medical domain has a long tradition and uses ideas and tools similar to those applied

in this thesis. Originally, such processing was usually performed for the sake of automatic

information extraction. For instance, an article discussing automated analysis of discharge

summaries was published by Gabrieli and Speth as early as 1986 ([GS86]).

The increasing complexity and matureness of medical nomenclatures such as SNOMED also

intensified the need for automatic coding of free text documents. To hospitals, such automatic

17

Chapter 1 Introduction

coding could result in significant cost cutting. Unsurprisingly, this problem is treated exten-

sively in current literature; e.g., Moore and Berman present an automatic SNOMED coding

algorithm for pathology reports in [MB94].

Upon further inspection, such information extraction problems are indeed closely related to

text segmentation. Both tasks may be approached using similar machinery, since both of

them can be represented as a tagging problem. Using that representation, labels which mark

concept boundaries or segment boundaries, respectively, have to be assigned to the sequence

of tokens that constitutes the text.

As we shall see in section 2.2, the task of finding deep structure in report transcripts can also

be represented as a tagging problem. A great number of theoretical frameworks is available

for solving such tagging problems; most of them are statistical in nature.

Hidden Markov Models (HMMs) (see [Rab89]) are a mature and efficient framework that

has been used ubiquitously for tagging tasks. HMMs have been applied to tasks as diverse

as Part-of-Speech (POS) tagging ([Bra00]), text segmentation and topic tracking on broad-

cast news ([MvG+98]) and emotion recognition ([WVA07]). HMMs are generative models,

which is a natural representation for many original applications, such as modeling of signal

sources. On the other hand, many tagging tasks are better viewed as classification problems.

Discriminative models can be applied successfully in such cases.

Conditional Random Fields (CRFs) are one particular probabilistic tagging framework that

takes a discriminative approach. CRFs were introduced by Lafferty et al. in 2001 (see

[LMP01]) and have quickly gained in popularity. They are the main formalism employed

in this thesis. Section 2.3 gives further insight regarding the choice of dicriminative versus

generative models and motivates why CRFs lend themselves naturally to the structure recog-

nition approach pursued in this thesis.

Major parts of this thesis are dedicated to CRFs. First, a theoretical introduction to this

formalism is given in chapter 4. Second, CRFs form the basis of the practical structure recog-

nition implementation that was used for the empirical experiments presented in chapter 6.

Therefore, most literature about CRFs is in one or another way relevant to parts of this thesis.

The most comprehensive introduction to CRFs available to date is the highly recommended

tutorial by Sutton ([SM06]). This tutorial is more recent than the original article by Lafferty

et al. and covers current trends.

While not strictly related to the topic of this thesis, the work of Ye and Viola ([YV04]) bears

interesting similarities. Ye and Viola apply CRFs to parsing of hierarchical lists and outlines

in handwritten notes. Naturally, the features and hints considered for this task are different,

18

Chapter 1 Introduction

but the goal of finding deep structure and the probabilistic framework are common to both

approaches.

CRFs and HMMs are not the only feasible statistical segmentation frameworks. Numerous

special purpose algorithms exist. For instance, McDonald et al. present a new model of

segmentation based on ideas from multilabel classification ([MCP05]). Their approach allows

for natural handling of overlapping or non-contiguous segments and may be an interesting

alternative to the CRF-based approach pursued in this thesis.

Finally, it should be noted that options other than statistical analysis of data exist. For instance,

Semecký and Zvárová apply regular grammars in order to gather structured data from free-text

medical reports; they use a cardiology knowledge base for building the rules of the grammar

(see [SZ02]).

19

Chapter 2

Approach

“ Difficulties increase the nearer we
approach the goal. ”

– Johann Wolfgang von Goethe

The structure identification task that was sketched in the introduction leaves many degrees

of freedom. At first, it might seem that a myriad of different approaches may have to be

considered. Indeed, various different solutions to the problem are conceivable and have been

applied successfully to similar tasks.

In this chapter, the problem description will be narrowed. First, a catalog of requirements

will be established that has to be met by any feasible approach. In particular, the structural

dependencies that are inherent to such a task will be analyzed. Subsequently, the problem

representation will be formalized in such a way that these dependencies can be fulfilled.

This still leaves us with a number of options. We will argue that CRFs, a probabilistic frame-

work for segmenting and labeling sequence data, are a natural, if not the best choice for the

task at hand. This is illustrated by briefly comparing the relevant properties to those of other

similar models, such as HMMs.

Finally, an outline of the approach pursued in this thesis is presented. The outline not only lists

all major steps that must be performed, but also serves to give an overview of the remaining

chapters in this document.

20

Chapter 2 Approach

2.1 Analysis of Requirements

Many feasible approaches towards the identification of structure in report transcripts exist. In

section 1.1, a possible strategy was already outlined: Tokens can be grouped into sentences,

sentences into paragraphs, and so on. This corresponds to an iterative approach, and one can

envision at least two variants of this procedure:

• The bottom-up approach: Start at the smallest unit of interest (tokens, in our case) and
group the items into coarser units. The resulting, coarser items, can in turn be grouped

into even coarser units. Iterate this step until the coarsest unit of interest is reached (the

whole report, for instance).

• The top-down approach: Start at the coarsest unit of interest (e.g., a whole report), and
segment it into more fine-grained units. The resulting items can in turn be segmented

into even more fine-grained units. This step can be iterated until the smallest unit of

interest is reached (tokens, in our case).

Which of these two approaches should be preferred? We will argue that neither of these

two variants satisfy our requirements. The problem is one that is quite typical and often

encountered in Natural Language Processing (NLP) applications. Such iterative approaches

fail to properly incorporate existing interdependencies. At each level of segmentation, there

is separate knowledge about where a boundary should be introduced, and therefore, it must

be possible to provide feedback in both directions.

As an example, every sentence boundary strongly influences the possible points for section

boundaries (a section boundary will probably not lie in the midst of a sentence), but the

opposite is also true: If we have strong knowledge that a section boundary lies at a certain

point, this indicates that a sentence boundary needs to be introduced.

If these dependencies are only tracked in one direction, errors will accumulate at each level.

A similar situation typically arises in phrase chunking. As a first subtask, a POS tagger will

assign the best syntactic label to each token. The main task will then use these labels to

segment sentences into phrases. However, if the Part-of-Speech tagger was wrong in the first

place, these errors will be carried over. The phrase chunker may have its own idea of where

a phrase is likely to start, and it should be able to signal that information back to the Part-of-

Speech tagger. This dilemma is well-known and has been studied thoroughly by Sutton and

McCallum ([SM05]).

In summary, what is needed is a flexible and non-intrusive mechanism that satisfies at least

the following requirements:

21

Chapter 2 Approach

• Robustness with regards to noise and variance. Noise is introduced by ASR in the shape
of recognition errors. Great variance arises from different speakers, each of whom has

his or her own style, different topics (within certain bounds), and various speech-related

phenomena. This strongly suggests that a stochastic, corpus-based approach may be

appropriate.

• Incorporation of interdependencies between various structural levels. It must be possi-
ble for knowledge at one level to propagate to a different level and vice versa.

• Seamless incorporation of various knowledge sources, hints and observations into the
decision process. This is mandatory since knowledge about how to best segment a

report can come from resources as diverse as word lists, ontologies, grammars and

more.

The requirements outlined above suggest that we need to optimize over all possible boundaries

on all levels at the same time. Only such a global view allows for proper incorporation of

interdependencies between different levels – a requirement that any iterative approach fails to

meet.

Some of these requirements may be obvious, and identifying them is not particularly hard.

Meeting them can be quite tricky, though. In particular, a formal representation of the struc-

ture identification task must be established that is not contradictory to these demands.

2.2 Representing the Problem

In principle, the problem that has to be solved can be considered a segmentation task. One

trick that is well-known from chunking and named entity recognition, for instance, is that

segmentation problems can be represented as tagging problems. Typically, the so-called BIO

notation (BEGIN - INSIDE - OUTSIDE) is used. Assigning a B label to a token indicates that a

segment starts here, whereas I indicates that we’re inside a segment and O indicates that the

token is not in any segment of interest.

For our purposes, that notation needs to be adapted slightly: First, since complete segmenta-

tion is performed in the scenario of this thesis, there are no O labels - any token belongs to a

particular segment. Second, we also want to assign types to certain segments: the motivation

behind this is to not only find the section boundaries in a report, for instance, but to also en-

code what kinds of sections are present. For this purpose, labels such as B-Ti and I-Ti can be

22

Chapter 2 Approach

...t1

t2

t3

t4

time

step

...

...

...

...

...

...

t5

t6

tokens level 1 level 2 level 3

...< < <

...

B-T3 B-T4B-T1

I-T3 I-T4I-T1

I-T3 I-T4B-T2

I-T3 I-T4I-T2

B-T3 I-T4B-T2

I-T3 I-T4I-T2

Figure 2.1: Multi-level segmentation represented as a tagging problem

23

Chapter 2 Approach

used to indicate that a segment of type Ti begins at a certain token, or that a token lies within

a segment of type Ti, respectively.

Furthermore, since segmentation is to be performed on multiple levels, multiple label chains

are required. Figure 2.1 illustrates this representation. By adding an additional label chain, it

is possible to group the segments of the previous chain into coarser units. Tree-like1 structures

of unlimited depth can be expressed this way. Notice that a tree-like structure is only induced

if any segment on a higher level fully contains one or more segments of the adjacent lower

level. This means that no B label on a higher level may lie between any two B labels on a

lower level.

The gray lines in figure 2.1 denote dependencies between connected nodes. The horizontal

lines indicate that it must be possible for knowledge to propagate between different levels,

whereas the vertical lines indicate that any node label depends on the label of its successor

node within the same vertical chain. Finally, node labels also depend on the input sequence,

which is a sequence of tokens in our case. Ideally, it should be possible for any node to

inspect the whole input in order to decide on its label. Typically, only the closer context

will be inspected; however, some knowledge sources may require inspection of a wider token

window.

A formalism is then needed that is able to properly assign labels to the nodes in figure 2.1,

ideally by estimating a stochastic model from a training corpus, which can in turn be applied

to new, unknown data. We demand that the requirements identified in section 2.1 must be

satisfied by such a formalism.

2.3 On the Choice of CRFs

As it turns out, Conditional Random Fields (CRFs), a relatively recent formalism that was

first introduced by Lafferty et al. in 2001 ([LMP01]), are perfectly suitable for this type of

problem. Lafferty first applied CRFs to tagging of a single, linear chain. That representation

was later generalized in order to allow for more flexible structures by McCallum and Sut-

ton ([SRM04]). An in-depth introduction to CRFs, most notably the variant which will be

used in this thesis, namely Factorial Conditional Random Fields (FCRFs), will be given in

chapter 4.

1 In practice, the last chain will still contain multiple segments, since it’s redundant to model a “top-level”
chain with only one segment. From a theoretic point of view, the data structure is therefore a hedge rather
than a tree. Hedges will be introduced properly in chapter 3.

24

Chapter 2 Approach

What makes CRFs so compelling for the purpose of this thesis is that they can directly solve

complex multi-chain tagging problems (as presented in figure 2.1), while allowing for natural

incorporation of relevant features and dependencies.

This is mostly due to CRFs being discriminative models that describe a conditional probability

distribution p(y|x) over all possible sequence labelings y given a fixed, arbitrary observation

x. In contrast, generative models such as HMMs ([Rab89]) describe a joint probability distri-

bution p(y,x), which means that the observations xmust also be modeled. For many tagging

tasks, this is less natural and intuitive than the discriminative view. Furthermore, it seriously

restricts the use of x in model features: each observation xt ∈ x only depends on the current

state in an HMM. In CRFs, all elements of x can be accessed as a feature at any time step of

the sequence without additional computational cost.

Both CRFs and HMMs exist in generalized variants that can incorporate dependencies in

multi-chain tagging (see [JGJS99] for several generalizations of HMMs, for instance), so the

flexible model structure is not an inherent advantage of CRFs. The flexible feature support,

on the other hand, is exclusive to discriminative models. It is safe to assume that this is

advantageous for the task at hand – in particular for modeling segment topics/types.

The multilabel classification-based segmentation framework by McDonald et al. ([MCP05])

which was mentioned in section 1.2 also might have been an option; however, it lacks the

considerable momentum that CRFs have gained in recent years. Meanwhile, there are signif-

icant theoretical and empirical results for CRFs. This is an important advantage that should

not be disregarded.

In short, CRFs were chosen because of their great flexibility, and because they combine both

state-of-the-art performance and sufficient matureness. Furthermore, they can be directly

applied to the problem representation established in the previous section. However, it should

be expected that comparable results can also be obtained using other problem representations

and other probabilistic frameworks.

Regardless of the concrete formalism or method, any machine learning approach requires a

substantial amount of training data. Naturally, this also applies to CRFs. Since this thesis

aims to provide automatic recognition of structure in medical reports, a large number of such

reports need to be available so that a CRF training routine can be used to estimate model

parameters.

25

Chapter 2 Approach

2.4 Outline

Now that the task has been formalized and all pieces are in place, the approach pursued in this

thesis can be outlined as follows:

• First, the available data (medical reports) must be sighted and analyzed. A set of labels
and label chains must be determined that allows for modeling of the structure typically

found in the available reports. A training corpus consisting of reports that are annotated

using the aforementioned set of labels must then be compiled. The course of this work

is described in chapter 3.

• Second, actual code for training of CRFs (parameter estimation) and for labeling new
data using CRFs must be written or re-used. The software should implement the theo-

retical framework presented in chapter 4. An overview of the implementation is given

in chapter 5.

• Finally, experiments must be conducted that prove the practicability of the presented
approach. The experimental setup and the corresponding results are presented in chap-

ter 6.

The thesis is then concluded by giving an outlook on future activities (chapter 7) and a sum-

mary of the presented work (chapter 8).

26

Chapter 3

Data Preparation

“ Mathematics may be compared to a mill of exquisite
workmanship which grinds your stuff to any degree

of fineness; but, nevertheless, what you get out de-

pends on what you put in; and as the grandest mill

in the world will not extract wheat flour from peas-

cods, so pages of formulae will not get a definite

result out of loose data. ”
– Thomas Henry Huxley

As with any corpus-based approach, the available data plays a major role in this thesis. This

chapter aims to give an overview of the available data and its characteristics.

The data consists of a large number of medical reports. These reports will be analyzed regard-

ing their structure. A formal model describing the structure and contents of any well-formed

medical report of the corpus will be presented. From that model, a suitable set of labels will

be derived that forms the basis for representing reports as a CRF instance.

Data cleansing and corpus annotation will be described in detail. This is a particularly tricky

issue: Manual annotation is infeasible due to the sheer size of the corpus. Therefore, a semi-

automatic approach based on parallel corpora is presented.

Finally, feature generation will be described in this chapter. This is a key topic since CRFs

allow for incorporation of arbitrary knowledge sources. The available resources will be pre-

sented, and it will be shown how this knowledge can find its way into CRF features.

While this chapter is tied to the available data (medical reports, that is), it should be possi-

ble to pursue a similar approach for any kind of structured documents. The labels used for

annotation will differ, but the process should remain the same.

27

Chapter 3 Data Preparation

3.1 Available Corpora

For the purpose of this thesis, two parallel corpora consisting of 2,007 manually corrected and

formatted reports and the corresponding raw output of ASR, respectively, were compiled. All

reports are concerned with medical consultations and were dictated by physicians.

The first part of the corpus will be referred to as CCOR. These documents have all been edited

by professional typists and are formatted as presented in figure 1.1. The second part of the

corpus, which will be called CRCG, consists of the raw output of ASR which was used by the

typists to produce the properly formatted reports in CCOR. This means, in essence, that every

report is available in two forms: a properly formatted and manually corrected version, and an

unformatted, error-ridden original version.

Now, the goal of this thesis is to allow for structured output of speech recognition. Since this

process should work in an automatic fashion, such a mechanism will be restricted to using

whatever speech recognition provides. This may raise the question of what use the documents

in CCOR are. Actually, these reports play an important role during training: In order to train

a statistical model that is suitable for identifying structure in raw, unformatted documents,

annotation is required which explicitly marks the various structural elements. Obviously, it

would be a daunting task to manually annotate 2,000 unformatted reports with regards to their

underlying structure.

This is where CCOR comes into play. Since the documents in CCOR are formatted quite

consistently, it is possible to automatically parse their structure. The idea is then to find some

way of mapping the structure identified in the documents of CCOR onto the corresponding

documents of CRCG. This can certainly be done – to a varying degree of accuracy –, since

any two parallel reports are in general quite similar. However, the task is still non-trivial, since

there may be various discrepancies:

• As mentioned before, documents in CRCG typically contain recognition errors.

• Passages may have been rephrased by a typist to better suit a written style.

• Structural elements that are explicitly marked in CCOR may not have been dictated at

all. As an example, headings are often introduced by typists to clearly indicate the

structure of a document.

• Certain utterances contained in the original dictations, such as instructions directed to
the typist, will have been removed and therefore cannot be found in CCOR.

28

Chapter 3 Data Preparation

The above list is by no means exhaustive. Rather, it serves to give an idea of the obstacles that

are to be expected when trying to automatically annotate reports of CRCG using the parsed

structure of their counterparts in CCOR.

3.2 Required Annotation

One key question, and indeed the first problem to tackle, is the kind of annotation that is

required in order to properly capture the structure of all reports contained in the corpus. A

set of labels must be determined that allows for encoding of all relevant aspects. This can be

achieved by analyzing the reports in CCOR with regards to how they were structured by the

transcriptionist.

3.2.1 Analysis of Report Structure

As has been mentioned already, the structure of reports in CCOR is readily visible due to

markup, indenting, etc. It is – for a human reader, anyway – easily possible to identify the

various elements a report consists of. A first quick look at figure 1.1 reveals at least the

following structural elements:

Headings: These are indicated via a bold font and capital letters (HEADING). Conceptually,

headings introduce the coarsest structural unit of a report, which we’ll call sections.

Subheadings: Like top-level headings, these are shown in all capital letters and a bold font,

followed by a colon (GENERAL:). They are usually indented and introduce a following

subsection.

Enumerations: Enumerations are usually separated from the rest of the text by one or more

blank lines. They contain a number of enumeration items, which usually start by a

number, followed by a period, and are horizontally indented using one or more blanks.

These are, however, only the most obvious elements. It is possible to go much further than

that. Undoubtedly, a medical report also consists of paragraphs. We can descent even further,

dividing paragraphs into (possibly multiple) sentences.

If a medical report is hierarchically dissected into the elements identified above, the outcome

is a hierarchic data structure comprising all elements of the report. Compared to the original

representation as a plain file, the function of each element is expressed explicitly. A formal

29

Chapter 3 Data Preparation

model which describes the structure and contents of any well-formed report in our corpus

can be expressed as a Regular Hedge Grammar (RHG) and will be introduced later in this

section.

What does this mean in practice? Such a formal model describes which structural elements

may be contained in a document, and where these may occur. Obviously, a medical report

may contain elements such as headings, sections, subsections, enumerations, etc. A more

delicate question is how these elements are related to each other. May an enumeration occur

in a subsection? How many paragraphs can be contained in a section? Where may a heading

be placed in a medical report? It quickly becomes evident that these questions can best be

solved by providing a formal description of the model. In order to do so, some theory is

required, which will be treated next.

3.2.2 Formal Description of Report Structure

Hedge Theory

Informally, a hedge can be considered a sequence of trees. It is important to note that a hedge

is unequal to a forest: forests are unordered sets of trees. We will adopt the formal definition

of Murata [Mur00] for the purpose of this thesis:

A hedge over a finite set Σ of symbols and a finite set X of variables is:

⇒ ε , (null hedge)

⇒ x, where x is a variable in X , (variable data)

⇒ a〈u〉, where a is a symbol in Σ and u is a hedge, or (addition of a symbol as root node)

⇒ uv, where u and v are hedges. (concatenation of two hedges)

An example of a hedge is heading〈token〈ε〉 token〈ε〉〉paragraph〈sentence〈token〈ε〉 token

〈ε〉〉〉. It is depicted in figure 3.1. As the figure demonstrates, a hedge is not in general a tree.
However, a hedge can be a tree if there is only one root node.

The set of variables X deserves some explanation: it is a special property of hedges which

can be traced back to the history of hedges as a formal description language for XML doc-

uments. There, X can for instance be used to describe elements containing character data

by adding #PCDATA to X . Our model of report structure currently does not use character

data, hence X will be empty. Now that we can describe single hedges, we would like to have

some mechanism to describe classes of valid hedges (i.e., all valid reports). Regular Hedge

Grammars (RHGs) come to the rescue. Again, the definition of Murata will be used:

30

Chapter 3 Data Preparation

heading

token token

paragraph

sentence

token token
ε ε

ε ε

Figure 3.1: A hedge

A Regular Hedge Grammar (RHG) is a 5-tuple 〈Σ, X,N, P, rf 〉, where Σ is a finite set

of symbols, X is a finite set of variables, N is a finite set of non-terminals, rf is a regular

expression comprising non-terminals and P is a finite set of production rules, each of which

takes one of the two forms given below:

⇒ n → x, where n is a non-terminal in N , and x is a variable in X ,

⇒ n → a〈r〉, where n is a non-terminal in N , a is a symbol in Σ, and r is a regular

expression comprising non-terminals.

We can then go on to define a RHG that describes the permissible structure of reports in

CCOR.

A RHG for Reports in CCOR

The RHG shown in figure 3.2 was determined by looking over all reports in CCOR and identi-

fying their structural elements. It should cover most of what is needed for properly arranging

a typical medical report.

The regular expression syntax used in figure 3.2 follows the usual conventions, where “*”

stands for zero or more occurrences, “+” stands for at least one occurrence, and “|” is used

to express alternation. Parentheses are used to disambiguate operator precedence. In order

to make the grammar more comprehensible, non-terminals are always capitalized, whereas

terminal symbols consistently start with a lower-case letter.

Please note that this grammar only holds for corrected, properly arranged reports as contained

in CCOR. In particular, most raw dictations in CRCG will not strictly satisfy all constraints

imposed by the grammar. For instance, it is quite common that headings or enumeration

31

Chapter 3 Data Preparation

REP = 〈Σ, X,N, P, Section+ 〉

Σ = {section, heading, subsection, subheading, enumeration,
enumelement, enummarker, paragraph, sentence, token}

N = {Section,Heading, Subsection, Subheading, Enumeration,
Enumelement, Enummarker, Paragraph, Sentence, Token}

X = {}

P = {Section → section〈Heading(Subsection|Enumeration|Paragraph)+〉,
Heading → heading〈Token+〉,
Subheading → subheading〈Token+〉,
Subsection → subsection〈Subheading Paragraph〉,
Enumeration → enumeration〈Enumelement+〉,
Enumelement → enumelement〈Enummarker Paragraph+〉,
Enummarker → enummarker〈Token〉,
Paragraph → paragraph〈Sentence+〉,
Sentence → sentence〈Token+〉,
T oken → token〈ε〉,

Figure 3.2: A RHG describing permissible report structure

markers are not explicitly dictated. Still, the grammar gives a good overview of what can be

expected.

Finally, elements (or nodes) of RHGs are typically assigned attributes. This is not strictly part

of the formalism; however, it is common practice. In our case, it will be useful to assign a

type attribute to section and subsection elements. There is only a limited number of types of

sections and subsections that are used in medical reports over and over again, and it may be

helpful for further processing to know the type of a segment.

3.2.3 Determining Section and Subsection Types

Section and subsection types are certainly dependent on the report domain. For the medi-

cal domain, attempts have been made to standardize the contents of reports in the past by

defining a set of sections and subsections that are typically needed in such reports and which

practitioners should adhere to. An example of such a standard is the “Standard Specifica-

tion for Healthcare Document Formats”, issued by the American Society for Testing and

32

Chapter 3 Data Preparation

Materials (ASTM) International under designation number E2184-02 ([Int02]). This specifi-

cation addresses requirements for the headings, arrangement and appearance of sections and

subsections when used in healthcare documents.

However, it should be noted that in spite of the existence of such clear recommendations, ac-

tual medical reports still vary greatly with regard to their structure, depending on the dictating

practitioner and in-house standards of healthcare providers. The section and subsection types

used for the purpose of this thesis were thus identified as follows:

• As an initial set, the section and subsection types listed in E2184-02 were adopted.

• The headings and their respective variants given for each section and subsection type
in E2184-2 were used as a starting point for assigning a type to each report segment

occurring in CCOR.

• If a new heading was found in the corpus that had not been seen so far, the first step
was to try to manually assign it to one of the previous section or subsection types; only

if this was impossible, a new section or subsection type was added to the previous set.

This process was supported by a script that automatically assigned a type to report segments

if their heading was already known. In order to keep the amount of manual work as low as

possible, the assumption had to be made that segments with the same heading are of the same

type. This may not be true in all cases, but for the vast majority this premise seems to hold.

In the end, manually created heading clusters were available that could be used to identify the

type of a report segment.

3.2.4 From Hedge to Label Chains

The formal model of report structure (see figure 3.2), along with the set of section and sub-

section types identified above, provides all information that is required in order to determine

a set of labels for annotating reports in CCOR and CRCG.

As outlined in the previous chapter, tree-like structures of finite depth can easily be rep-

resented via multiple label chains containing typed BEGIN and INSIDE labels (figure 2.1).

Since the RHG depicted in figure 3.2 is non-recursive, all productions are of limited depth.

Each structural element described by the RHG could easily be assigned to one of three levels

or label chains:

• Sentence level: This term will be used to denote the first label chain, which describes
the boundaries of sentences, headings, subheadings, and such.

33

Chapter 3 Data Preparation

• Subsection level: This is the label chain describing boundaries of typed subsections,
paragraphs and enumerations. Obviously, each segment in this label chain spans one or

more segments at the sentence level.

• Section level: The topmost label chain is used to encode boundaries of typed sections.
Each section spans one or more subsections, paragraphs, etc., at the subsection level.

For untyped segments such as headings, subheadings, sentences and paragraphs, the identi-

fiers introduced in figure 3.2 were used. For each of these structural elements, one BEGIN

label (e.g.: BeginHeading) and one INSIDE label (e.g.: Heading) were used. One notable

exception is Enummarker, which does not have a corresponding BEGIN label because it never

spans multiple tokens.

For typed segments (sections and subsections), a separate (BEGIN, INSIDE) label pair was

introduced for each type (e.g.: BeginDiagnosis and Diagnosis). Figure 3.1 gives the anno-

tation labels used for each level, excluding the BEGIN variants. The None label has a special

purpose: If there is a Heading segment at the sentence level, there isn’t any segment at the

subsection level that might contain it; yet, some label must be assigned in this formalism,

therefore None labels are used to encode this situation.

Finally, it should be noted that the division into the three label chains listed above (and the

corresponding labels) is somewhat arbitrary. Other divisions (and labels) are conceivable that

might be just as useful. However, most plausible representations are probably rather close to

the one presented in this thesis, simply because it is quite natural.

3.3 Semi-Automatic Label Annotation

Now that it is clear what kind of annotation is required, the next question is how CCOR and

CRCG can be annotated without unreasonable manual effort.

The approach presented in this section follows the following outline:

• In the first step, the fact that reports in CCOR are consistently formatted and arranged

is exploited. Each report is parsed with regards to its underlying structure, and the

resulting hedge is then used to annotate the report using three label chains.

• The second step consists of mapping the annotation of each report in CCOR onto the

corresponding report in CRCG. This involves a smart alignment process that draws on

domain knowledge and phonetic similarity.

34

Chapter 3 Data Preparation

Sentence Level Subsection Level Section Level
Heading Abdomen AdvanceDirectives
Subheading AnoRectal Allergies
Sentence Back ChiefComplaints
Enummarker Brain Course

Breasts Diagnosis
Cardiac DiagnosisAndPlan
Cardiovascular DiagnosticStudies
Coordination Findings
CranialNerves Habits
Ears HistoryOfPresentIllness
Endocrine Medication
Enumelement Neurologic
Extremities Notes
Eyes PastHistory
Gastrointestinal PastSurgicalHistory
General PhysicalExamination
Genitourinary Plan
HEENT Practitioner
Head Procedures
Hematologic Prognosis
Immunologic ReasonForEncounter
LymphNodes ReviewOfSystems
MentalStatus Time
Motor
MouthAndThroat
Musculoskeletal
Neck
Neurologic
None
NoseAndSinuses
Paragraph
Pelvic
PeripheralVascular
Psychiatric
Reflexes
Respiratory
Sensory
Skin
Speech
Station
ThoraxAndLungs
VitalSigns

Table 3.1: Labels used for annotation (excluding “Begin” labels)

35

Chapter 3 Data Preparation

3.3.1 Cleansing

To ensure that all reports in CCOR could be parsed automatically, some initial cleansing was

necessary. This involved manual sighting of all reports.

In particular, proper formatting of section and subsection headings had to be checked, since

these are essential clues for subsequent parsing. Furthermore, proper indentation of enumera-

tion items had to be ensured. Finally, some reports contained fragments of instructions to the

transcriptionist or other meta markers like “end of dictation”. Such passages were removed.

Each report was manually edited until the parser was able to properly determine its structure.

Fortunately, only a small percentage of reports required any editing at all.

3.3.2 Parsing of Formatted Reports

The structure of reports in CCOR could be parsed using a parsing module that had been devel-

oped in a previous practical course. This process involves the following steps:

• First, domain-specific tokenization and POS tagging is performed. The tokenizer uses
a broad-coverage dictionary and a domain-specific grammar that covers most common

numerical expressions (dates, physical units, dosages, etc.) of the medical domain.

Both resources were compiled into finite state automatons for runtime efficiency. The

tokenization component is described in detail in [HJK+06].

• In the second step, phrase chunking is performed. The output of this step is not relevant
to this thesis, however, since the syntactical structure of sentences need not be analyzed.

• Finally, report structure is identified via section and subsection headings, linebreaks,
enumeration tokens (“1.”, “A.”, etc.) and other simple heuristics.

The output of the parsing component is a hedge data structure following the rules of the RHG

shown in figure 3.2. The Part-of-Speech (POS) information associated with each token is not

immediately helpful, but can be used during feature generation (section 3.4).

Annotation in the form of three label chains could then be created from the hedge data struc-

ture as described in subsection 3.2.4. Each token of a report corresponds to one time step of

the label chains.

36

Chapter 3 Data Preparation

3.3.3 Mapping Annotations via Alignment

The remaining step is to map the newly created annotation of reports in CCOR onto the corre-

sponding reports in CRCG. For this purpose, an existing smart alignment framework could be

used (see [HJK+06]) 1.

The basic idea of this approach is that since any two corresponding reports ofCCOR andCRCG

should be very similar (except for formatting, etc.), the automatically created annotation of

reports in CCOR should – to a large degree – also apply to those in CRCG. The key is to

establish proper alignment between any two corresponding tokens of parallel reports. This

process is illustrated in figure 3.3. Note that this figure only shows the first label chain (the

sentence level); however, the idea can easily be extended to multiple label chains.

Multiple problems need to be dealt with when pursuing the aforementioned approach:

1. Typically, most tokens occurring in the edited and properly formatted version of a re-

port (CCOR) are somehow contained in the unedited version (CRCG). However, the

token may be formatted differently (e.g., “09/07/2007” vs “September 7, 2007”), there

may have been a speech recognition error (e.g., “09/07/2007” vs “09/17/2007”), or a

more formal synonym may have been used by the transcriptionist (“acute myocardial

infarction” or “AMI” vs “heart attack”).

2. Quite often, some utterances of the dictation have been removed from the edited report.

Typical examples are meta instructions directed to the transcriptionist, or repetitions

by the practitioner. Obviously, it is then impossible to properly align the tokens of the

dictation with corresponding ones of the formatted report. Mapping annotation onto the

unedited dictation is quite tricky in such situations.

3. Sometimes, part of the formatted report has never been dictated (e.g., because punctua-

tion was inserted by the ASR automatically, or because the document was supplemented

at a later point). In this case, it is impossible to properly align the newly introduced pas-

sage. However, this is rather unproblematic, since it is obviously not necessary to carry

over annotation labels for such parts.

Since point three is essentially unproblematic, two problems remain: In order to solve the

problem described in point one, the alignment algorithm needs to be able to perform some

kind of “sloppy” matching that takes into account phonetic and/or semantic similarity. Such

an alignment algorithm will be described shortly.

1The author of this thesis helped develop the alignment framework within the SPARC project
(http://www.sparc.or.at).

37

http://www.sparc.or.at

Chapter 3 Data Preparation

CCOR OP CRCG

.
BeginHeading CHIEF del

Heading COMPLAINT sub complaint BeginHeading

BeginSentence Dehydration sub dehydration BeginSentence

Sentence , del

Sentence weakness sub weakness Sentence

Sentence and sub and Sentence

Sentence diarrhea sub diarrhea Sentence

Sentence . sub fullstop Sentence

BeginSentence Mr. sub Mr. BeginSentence

Sentence Wilson sub Will Sentence

ins Shawn Sentence

Sentence is sub is Sentence

Sentence a sub a Sentence

Sentence 81-year-old sub 81-year-old Sentence

Sentence Caucasian sub cold Sentence

Sentence ins Asian Sentence

Sentence gentleman sub gentleman Sentence

Sentence who sub who Sentence

Sentence came sub came Sentence

Sentence in del

Sentence here sub here Sentence

Sentence with sub with Sentence

Sentence fever sub fever Sentence

Sentence and sub and Sentence

Sentence persistent sub Persian Sentence

Sentence diarrhea sub diaper Sentence

Sentence . del

.

Figure 3.3: Mapping labels via alignment

38

Chapter 3 Data Preparation

Finally, the problem described in point two can really only be solved heuristically. In practice,

it proved to be the best strategy to simply assume that any passage that only occurs in the

dictation belongs to the last segment for which proper alignment could be established (see

figure 3.3). This approach (when enhanced with some exceptions) yields satisfactory results

for the label chains of section and subsection levels; however, the segment boundaries on the

sentence level may be inaccurate at times, which is due to the fact that this level is the most

fine-grained one. This is a concession to the time-saving automatic annotation mechanism

that could really only be remedied by manually correcting the annotation.

So far, establishing alignment between the corresponding reports ofCCOR andCRCG has been

presented as an abstract process. In the following, a concrete algorithm will be given that can

be used to align arbitrary sequences according to user-defined criteria.

One well-known algorithm that is frequently applied to such problems was published by Lev-

enshtein as early as 1966 (see [Lev66]). In its original form, the algorithm is used to compute

the distance between two character sequences. The Levenshtein distance is defined as the

minimum number of operations needed to turn one of these sequences into the other, where

each operation must be one of “insertion” (ins), “deletion” (del) and “substitution” (sub). If

the minimal path of operations is captured, this information implicitly defines an alignment

of the two input sequences.

Algorithm 1 shows a slight generalization of the Levenshtein algorithm, which allows to

specify a user-defined cost function that depends on the operation that is performed and the

elements of the sequences which the operation is performed for.

The algorithm returns two matrices, the cost matrixC and the back pointer matrixO. Finding

an optimal alignment for sequences x and y is equivalent to finding the shortest path from

C[0, 0] to C[n,m]. This is achieved through dynamic programming: Each element C[i, j] is

iteratively assigned the minimum cumulated cost of reaching it fromC[0, 0]. Therefore, after

the algorithm has terminated, C[n,m] contains the cost of the shortest path from C[0, 0] to

C[n,m].

The path itself can be reconstructed via O. Each element O[i, j] stores the operation that

minimized the costC[i, j]. This information can be used as a back pointer: If the operation is

sub, the previous node of the shortest path was [i-1, j-1], whereas del and ins imply [i-1, j]

and [i, j-1], respectively. The shortest path can thus be found by following the back pointers

fromO[n,m] toO[1, 1]. This is quite similar to the Viterbi algorithm.

The complexity of the algorithm is obviously O(nm). Note that Algorithm 1 is just a sketch.

Actual implementations may perform several optimizations; for instance, C need not be kept

39

Chapter 3 Data Preparation

Algorithm 1 GENERALIZED LEVENSHTEIN DISTANCE

Given:

• Two arbitrary sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym);

• A cost function cost(xi, yj, op) that measures the cost of of operation
op ∈ {del, ins, sub} given element xi ∈ x and element yj ∈ y;

1. C = [0..n, 0..m]; # empty matrix of size n+1× m+1

2. O = [1..n, 1..m];

3. C(0, 0) := 0;

4. for i := 1, 2, . . . , n:

(a) C[i, 0] := C[i-1, j] + cost(xi, ǫ, del);

5. for j := 1, 2, . . . ,m:

(a) C[0, j] := C[0, j-1] + cost(ǫ, yj, ins);

6. for i := 1, 2, . . . , n:
for j := 1, 2, . . . ,m:

(a) cc(op) =

C[i-1, j] + cost(xi, yj, del) if op = del

C[i, j-1] + cost(xi, yj, ins) if op = ins

C[i-1, j-1] + cost(xi, yj, sub) if op = sub

(b) C[i, j] := min {cc(del), cc(ins), cc(sub)};
(c) O[i, j] := argmin

op
{cc(del), cc(ins), cc(sub)};

7. return (C,O).

40

Chapter 3 Data Preparation

S a t u r d a y

0 1 2 3 4 5 6 7 8
S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

(a) Matrix C

S a t u r d a y

S sub ins ins ins ins ins ins ins

u del sub ins sub ins ins ins ins

n del del sub ins sub ins ins ins

d del del del sub ins sub ins ins

a del sub ins del sub del sub ins

y del del sub ins del del del sub

(b) MatrixO

Figure 3.4: Dynamic programming matrices after aligning two strings

in memory completely – it is sufficient to store two rows at any time.

Traditionally, a cost function might be defined as follows:

cost(xi, yj, op) =

0 if op = sub and xi = yj

1 otherwise
(3.1)

If x and y are two strings, then Algorithm 1 returns the well-known string edit distance when

invoked with this cost function.

Figure 3.4 shows the resulting matricesC andO if Algorithm 1 is invoked with cost function

(3.1) for two strings (“Sunday” and “Saturday”)2.

For the purpose of this thesis, a more sophisticated cost function is required:

• Tokens that are similar (either from a semantic or phonetic point of view) should be
assigned low cost for substitution, whereas dissimilar tokens should receive a pro-

hibitively expensive score. It is not practical in this scenario to perform substitution

of unrelated tokens, since this would result in these two tokens being aligned – and

ultimately, the two tokens would therefore receive the same annotation labels.

2This example is adopted from Wikipedia (http://www.wikipedia.org).

41

http://www.wikipedia.org

Chapter 3 Data Preparation

• The cost for deletion and insertion should behave inversely: If phonetic or semantic
similarity between two tokens cannot be established, the cost for insertion and deletion

should be low; otherwise, the cost should be prohibitively high.

In practice, the cost function applies a few additional heuristics for dealing with punctuation

and other subtle issues; however, measuring phonetic and semantic similarity is of primary

importance.

The semantic scoring module described in [HJK+06] could be used to check if two tokens are

synonymous or have a similar meaning; this works roughly as follows:

• In the first stage, a check is performed if the tokens are actually identical modulo for-
matting and way of speaking. For this purpose, a large finite state transducer is used that

covers a multitude of different formattings and variants of domain-specific expressions.

For instance, “09/01/2007” and “September the first, two thousand and seven” can be

identified as being identical using the aforementioned finite state automaton.

• In the second stage, resources of the Unified Medical Language System (UMLS) – see
[LHM93] – are used to check the semantic relation between two tokens, if any. An

ordinal number is returned that describes the degree of semantic similarity.

For phonetic matching, the Metaphone algorithm ([Phi90]) was used. This algorithm is a

slightly improved variant of the well-known Soundex algorithm. It converts an input string

into a pseudo-phonetic representation; two words that are pronounced the same way should

result in a similar representation when Metaphone is invoked on them.

The cost function used for this thesis first applies the Metaphone algorithm to any two to-

kens that shall be compared, and then computes the string edit distance between the resulting

pseudo-phonetic representations. Tokens that are pronounced equally are thus assigned a

distance of zero. This is a reasonable way of identifying possible errors of the speech recog-

nizer.

The actual cost for substituting two tokens is then derived from the degree of semantic simi-

larity and the phonetic distance (which is calculated as described above).

3.4 Feature Generation

The annotation discussed in the previous sections is only one part of a training corpus for a

CRF-based approach. The other part are features or observations that need to be provided for

42

Chapter 3 Data Preparation

each time step (token) of a report. These observations are expected to indicate as strongly

as possible which annotation labels need to be assigned to the time step. The CRF training

algorithm (or any other discriminative machine learning approach, for that matter) will try to

find out which observations typically occur in conjunction with which annotation labels; this

is the basis for later tagging of unseen, unlabeled reports.

Part of the appeal of CRFs is that arbitrary features can be computed for any time step, and that

the whole input sequence may be inspected in doing so. However, along with great flexibility

also comes the need for great discipline; CRFs make it easy to specify useless features.

The following features were computed for each time step of the reports in CCOR and CRCG:

• N-gram features covering the close local context of the current time step. These fea-
tures inspect a window of ± 2 tokens. Typical examples are patient@0, the@-1 and

is@1, where the second part of the feature (after the @) is the offset, and the first part

is the token found at that offset. The reasoning behind these features is that they should

be suitable for covering local phenomena such as headings, which consist of a (small)

number of subsequent tokens.

• Syntactic features inspecting the same context as the N-gram features above. In con-
trast, these features use the possible syntactic categories of a token (as determined using

a broad-coverage dictionary) rather than the token string itself. Examples are NN@0,

JJ@0, DT@-1 and be+VBZ+aux@1. These features are introduced to provide some kind

of redundancy; they encode indications for families of tokens rather than specific to-

kens.

• Bag-of-Words (BOW) features inspecting the wider context of the current time step.
In contrast to the N-gram features, the BOW features do not encode any order of to-

kens; they merely indicate how often a particular concept occurred within a window

of ± 10 tokens. UMLS ([LHM93]) concept IDs are used rather than the actual token

strings – these features are intended to capture the topic of a text segment, and for that

purpose, different words describing the same concept can be considered equal. As an

added bonus, this approach reduces the feature space. If a UMLS concept ID cannot

be retrieved, stemming is performed on the token. Examples are C00028734〈bow〉(3)
and polydipsia〈bow〉. The first part of the feature string specifies the concept ID or
word stem, whereas the number in parentheses is a feature value that indicates how

often that concept or stem occurred in the inspected window. If no number is given,

a feature value of 1.0 is assumed. This corresponds to TF term weighting, which is

43

Chapter 3 Data Preparation

shown to perform competitively for text categorization in a recent study by Lan et al.

([LSLT05]).

• Semantic type features inspecting the same context as the BOW features. These fea-
tures are similar to the BOW features; however, semantic types of the UMLS semantic

type hierarchy are given rather than UMLS concept IDs. The semantic type hierarchy

is much coarser than the space of concept IDs, so these features are again used to in-

troduce some kind of redundancy (this is similar to what the syntactic features do for

local phenomena, but this time for topic detection). Examples are A1.4.1.2.1.7〈bow〉
and B2.2.1.2.1〈bow〉(2).

• Relative position features give the relative position of the current time step in the
report. The report is divided into eight parts corresponding to eight binary features;

only one of these features is non-zero, depending on the part into which the current time

step falls. An example of such a feature is relpos=first_eighth. These features are

encoded as multiple binary features rather than a single feature on a scale from, say,

0.0 − 1.0, because the latter representation fails to encode a positive indication for a

certain label at the beginning of a report. The idea behind the relative position features

is that they can actively support topic detection, because certain report sections are more

likely to occur at the end of a report than in the beginning, for instance.

It may seem peculiar at first that most of these features are – in some way – based on the tokens

of the report. Indeed, other application domains may possibly draw on more diverse features;

however, in a NLP task, the tokens are really the only input that is available. One notable

exception is the position indicator described above, which encodes the relative position of a

token in the report. This feature models domain knowledge and is not derived from the token

itself.

On a related note, it is certainly possible to use slightly different features for the same task;

however, since most features have to be based on the tokens occurring in the report anyway,

the options are rather limited and mostly equal from a performance point of view. The only

thing that can really be done to improve performance – compared to an approach using only

plain token N-grams or bags – is to introduce some kind of redundancy, which is what the

syntactic and semantic type features provide, and to model further domain knowledge, as the

relative position features do.

44

Chapter 4

Review of Theory

“ There is nothing so practical as a
good theory. ”

– Kurt Lewin

This chapter aims to introduce the theoretic framework that forms the basis of the structure

identification approach pursued in this thesis.

The theory of Conditional Random Fields (CRFs) lies at the very heart of this framework.

First, a formal definition of general CRFs will be given. That definition will then be con-

cretized for a special family of CRFs, so-called Factorial Conditional Random Fields (FCRFs).

FCRFs are particularly suitable for modeling document structure using multiple label chains.

Algorithms will be introduced that can be used for performing inference in a CRF. Inference

is required in order to predict the most likely outcome of the random variables in a CRF given

a set of parameters.

The parameters of a CRF are typically estimated from training data. This chapter will present

common methods of parameter estimation. All of these methods involve optimization of an

objective function. Several different objective functions are conceivable; the most frequently

used variant requires running inference for each instance of the training data at each step of the

optimization algorithm. This emphasizes the central role of efficient inference algorithms.

Finally, it should be noted that the notation used in this chapter is similar to that used by

Sutton and McCallum in [SM06].

45

Chapter 4 Review of Theory

4.1 Introduction to Conditional Random Fields

Let G be an undirected model over a set of random variables y and a fixed, observed entity

x. A CRF is then a conditional distribution p(y|x), where:

p(y|x) =
1

Z(x)

∏

ΨA∈G

ΨA(yA,xA; θ) (4.1)

and the factors ΨA of the undirected model G are parameterized as follows:

ΨA(xA,yA; θ) = exp

K(A)
∑

k=1

λAkfAk(xA,yA)

 (4.2)

Here, K(A) denotes the number of feature functions fAk defining factor ΨA, and θ ∈ R
N =

{λAk} are the parameters of the CRF. The normalization function Z(x) is then defined as

Z(x) =
∑

y

∏

ΨA∈G

ΨA(yA,xA; θ) (4.3)

and sums over all possible assignments of y.

The factors can be partitioned into a set of clique templates C = {C1, C2, . . . CP}, where each
clique template Cp is a set of factors whose parameters θp ∈ R

P are tied. The CRF can then

be rewritten as:

p(y|x) =
1

Z(x)

∏

Cp∈C

∏

Ψc∈Cp

Ψc(yc,xc; θp) (4.4)

and the normalization function Z(x) is defined accordingly. Some comments may be appro-

priate at this point:

• A separate random variable yi ∈ y is associated with each node of the undirected graph-

ical model G. For our purposes, all random variables will be discrete: the outcomes of

these variables correspond to the labels that may be assigned. If variables are adjacent

in G, this means that there is a dependency between them.

• The nature of x depends on the task; in sequence tagging, x will typically be an ob-
served sequence of input data.

• Factors Ψc are defined over cliques1 c of G. They assign a potential to each assignment

of the variable(s) of a clique. If G is a pairwise graph, there are typically univariate and

1A clique is a set of pairwise adjacent nodes.

46

Chapter 4 Review of Theory

bivariate factors. Bivariate factors define potentials for the joint outcomes of the two

variables in a two-node clique.

• The feature functions fck for a clique template Cp determine the value of the potential

for a certain assignment of the variable(s) of factor Ψc over clique c. Typically, G has a

repetitive structure and the parameters (feature coefficients) θp = {λpk} of each clique
template are tied across time. Feature functions are often binary; they depend on x

(often only a local context xc) and the variable assignment yc of clique c.

• As an example, a typical feature function in a Part-of-Speech (POS) tagging task might
be defined as follows:

fck(yc,xc) =

1 if yc = (VBZ, DT) and xc = (book, ...)

0 otherwise

This highlights another property of feature functions: most features functions are ever

only non-zero for a particular variable assignment – (VBZ, DT) in this case.

As mentioned above, the underlying graphical model G usually has a repetitive structure.

Several useful families of CRFs can be distinguished on the basis of that structure and the

form of parameter tying.

One well known type are linear chain CRFs, which are similar to HMMs as far as their

application area is concerned. Linear-chain CRFs consist of only one connected chain of

variables y; their parameters are tied across time. Factors are typically defined over single-

node and two-node cliques. These capture the local probabilities and transition probabilities2,

respectively, given the observed input sequence x.

Factorial Conditional Random Fields (FCRFs) are another important type of CRF, which is

applied in this thesis. They can be considered a generalization of linear-chain CRFs and a

special case of DCRFs (see [SMR07]). FCRFs will be described in detail in the following

section.

Other useful types of CRFs exist; the tutorial of Sutton and McCallum ([SM06]) describes

these in detail and also gives an overview of how various types of graphical models are re-

lated.

2It should be noted that from a probabilistic point of view, these are not really probabilities. The term potentials
may be more appropriate.

47

Chapter 4 Review of Theory

...

t1

t2

t3

t4

observed

sequence x

random variables y

(labeling of x)

time

step

Ψc41

Ψc42

Ψc43

Ψc51

Ψc52

Ψc53

Ψc61

Ψc62

Ψc63

Ψc71

Ψc72

Ψc73

Ψc74

Ψc81

Ψc82

Ψc83

Ψc84

...

Ψc21
Ψc31

Ψc12
Ψc22

Ψc32

Ψc13
Ψc23

Ψc33

Ψc14
Ψc24

Ψc34

Ψc11

Figure 4.1: A FCRF with 3 label chains (dependencies on x omitted for brevity)

4.2 Factorial Conditional Random Fields

FCRFs consist of multiple chains of equal length. Dependencies exist not only within these

chains, but also between co-temporal variables of different chains. As such, FCRFs can be

considered a composition of multiple linear-chain CRFs with additional dependencies be-

tween chains. Figure 4.1 shows a typical FCRF with 3 chains.

Factors of a FCRF are tied across time. Multiple clique templates exist; the factors defined

over cliques of the same clique template are shown in the same color in figure 4.1:

• There is one clique template for the single-node cliques of each chain. Figure 4.1
shows clique templates C1 = {Ψc11 , Ψc12 , Ψc13 , Ψc14}, C2 = {Ψc21 , Ψc22 , Ψc23 , Ψc24}
and C3 = {Ψc31 , Ψc32 , Ψc33 , Ψc34}.

• In addition, there is a clique template for the two-node cliques of each chain (the corre-
sponding factors will be referred to as in-chain factors in this thesis):

C4 = {Ψc41 , Ψc42 , Ψc43}, C5 = {Ψc51 , Ψc52 , Ψc53} and C6 = {Ψc61 , Ψc62 , Ψc63}.

• Finally, all two-node cliques between the same two chains have a clique template of
their own (the corresponding factors will be called between-chains factors):

C7 = {Ψc71 , Ψc72 , Ψc73 , Ψc74} and C8 = {Ψc81 , Ψc82 , Ψc83 , Ψc84}.

48

Chapter 4 Review of Theory

Factors that are in the same clique template Cp share the same set of parameters {λpk}. By
inspecting the different clique templates depicted in figure 4.1, one can easily see why this

results in the parameters being tied across time.

In general, a FCRF with n label chains will have n single-node clique templates, n in-chain

clique templates and n−1 between-chains clique templates; this accounts for a total of 3n−1

clique templates (which are, in effect, separate sets of parameters).

With regards to the observed input sequence x, it should be noted that any dependencies of

factors Ψcij
on x are omitted in figure 4.1 for the sake of visual comprehensibility. Do note

that all feature functions defining the factors in figure 4.1 can access any element of x at any

time step (in fact, this is one of the major advantages of discriminative models like CRFs);

however, typically, only the local context of the current time step will be inspected.

Finally, it should be noted that univariate factors are not strictly necessary; the same family

of distributions can be defined using bivariate factory only ([SM06]). However, univariate

factors may prove to be useful if the training data is rather sparse, since they provide redun-

dancy.

4.3 Inference in Factorial Conditional Random Fields

Inference in a CRF is required for several reasons:

• First, inference is needed to solve the task of finding the most likely labeling for an
unseen instance (i.e., the Maximum a Posteriori (MAP) configuration of the variables

y of a CRF).

• Second, during training, if Maximum Likelihood Estimation (MLE) is performed, in-
ference is required in order to compute the likelihood p(y|x) (most notably the normal-

ization term Z(x)) and marginal probabilities pc(yc|x) (where c is a clique)3.

Multiple algorithms exist that may successfully be used to perform exact inference on trees.

Typical examples are the Viterbi (MAP) and Baum-Welch (MLE) algorithms for linear chains,

and the max-product (MAP) and sum-product (MLE) variants of belief propagation for any

tree structure. In general, every algorithm that is suitable for trees can be applied to arbi-

trary graphs by clustering nodes in such a way that they form a so-called junction tree (see

3As we shall see in subsection 4.4.1, Maximum Pseudolikelihood Estimation avoids these costly computations.

49

Chapter 4 Review of Theory

Ψ{1} Ψ{2} Ψ{3}

Ψ{5}

Ψ{4}

Ψ{1,2} Ψ{2,3}

Ψ{3,4}

Ψ{3,5}

m1→2

m2→1

m2→3

m3→2

m3→4

m5→3

m4→3

m3→5

(1)

(2)

(3)(4)

(5) (6)

(7)

(8)

π propagation

λ propagation

Figure 4.2: Belief propagation on a tree

[WJW02b]). However, this approach yields exact inference results and may often be pro-

hibitively expensive.

Loopy belief propagation generalizes the well-known belief propagation algorithm to arbi-

trary graphs. As opposed to the junction tree approach, loopy belief propagation is an approx-

imate inference algorithm that allows for reasonable computational cost on many graphs of

interest. In particular, loopy belief propagation is suitable for performing inference on FCRFs.

The underlying model of FCRFs does not satisfy tree properties, as is evident in figure 4.1.

In the following, the original belief propagation algorithm for inference on trees, and its gen-

eralization, loopy belief propagation for approximate inference on arbitrary graphs, will be

presented.

4.3.1 Belief Propagation

Belief propagation can perform inference on a tree using two message-passing sweeps: the

first sweep (λ-propagation) runs from the leaves up to a designated root; the second sweep

(π-propagation) runs from the root to the leaves (see figure 4.2).

In order to proceed, our notation needs to be clarified first. Let c be a clique of an undirected

graphical model G. This clique can either be referred to as {i} (in the case of a single-node
clique) or as {i, j} (in the case of a two-node clique), where i and j (with associated variables

yi and yj) are nodes of G. Analogously, Ψ{i} and Ψ{i,j} denote the factors defined over a

50

Chapter 4 Review of Theory

single-node and a two-node clique, respectively. We will use that notation to describe belief

propagation for pairwise graphs as presented by Yedidia ([YFW03]).

The belief propagation messages are then self-consistently determined as follows:

mi→j(yj) =
∑

↓yi

Ψ{i}(yi)Ψ{i,j}(yi, yj)
∏

k∈N(i)\j

mk→i(yi)

 (4.5)

where mi→j denotes a message from node i ∈ G to node j ∈ G. Such a message can be

thought of as a vector with one component for each possible outcome of yj . Each compo-

nent of mi→j encodes the current belief of node i about the corresponding outcome of yj .

The message is built by marginalizing the product of all incoming messages (except for the

message from j itself), the single-node factor Ψ{i} and the two-node factor Ψ{i,j} for yj; this

marginalization is performed by summing over all outcomes of yi (hence
∑

↓yi
).

In practice, the messages are computed in the order given above (λ-propagation followed by

π-propagation). After all messages have been computed, single-node and two-node beliefs

are defined as presented in (4.6) and (4.7), respectively:

b{i}(yi) = κΨ{i}(yi)
∏

j∈N(i)

mj→i(yi) (4.6)

b{i,j}(yi, yj) = κΨ{i,j}(yi, yj)Ψ{i}(yi)Ψ{j}(yj)
∏

k∈N(i)\j

mk→i(yi)
∏

l∈N(j)\i

ml→j(xj) (4.7)

Here, κ is a normalization constant that ensures the beliefs sum to 1.

Sum-Product

If belief propagation is performed using the sum-marginalization operator (
∑

↓yi
), this results

in the so-called sum-product algorithm. Other operators are feasible, as we shall see shortly.

We note that the following relations hold if G is a tree and messages are computed according

to the sum-product algorithm:

51

Chapter 4 Review of Theory

p{1} p{2} p{3}

p{5}

p{4}

p{1,2}

p{1}p{2}

p{2,3}

p{2}p{3}

p{3,4}

p{3}p{4}

p{3,5}

p{3}p{5}

p{i,j} ≡ p{i,j}(yi, yj | x)

p{i} ≡ p{i}(yi | x)

Figure 4.3: Alternative factorization of the tree in figure 4.2

b{i}(yi) ≡ p{i}(yi|x) (4.8)

b{i,j}(yi, yj) ≡ p{i,j}(yi, yj|x) (4.9)

This means that the single-node and two-node beliefs are equivalent to the marginal probabil-

ities pc(yc|x), which are required for MLE (see subsection 4.4.1).

Besides the marginals, efficient computation of the normalization term Z(x) is of great im-

portance. As (4.3) shows, naive computation requires summing over all assignments of y.

This is too expensive to be practical. Fortunately, it turns out that belief propagation produces

an alternative factorization of p(y|x), as follows:

p(y|x) =
∏

{i}∈Cs

p{i}(yi|x)
∏

{i,j}∈Ct

p{i,j}(yi, yj|x)

p{i}(yi|x)p{j}(yj|x)
(4.10)

where Cs and Ct are defined to be the sets of all single-node and all two-node cliques, respec-

tively. In other words, the conditional distribution defining the CRF can be expressed in terms

of the marginals gained during sum-product belief propagation. This representation does not

require any additional normalization, so Z(x) need not be computed. The derivation of (4.10)

is explained by Wainwright in [WJW02b]; it can be considered a generalization of the well-

known factorization of Markov chains. The alternative factorization is depicted in figure 4.3.

Further insights on this topic are also discussed by Kschischang et al. (see [KFL01]).

52

Chapter 4 Review of Theory

Max-Product

If the max-marginalization operator max↓yi
is substituted for

∑

↓yi
in equation (4.5), this

results in the so-called max-product algorithm. max↓yi
marginalizes over all outcomes of yi

by selecting the maximum associated value.

The sum-product variant is useful for MLE, whereas max-product can be used to find the

MAP assignment of y ([WJW02a]). The MAP assignment y∗
i of a variable yi ∈ y is obtained

by computing the belief propagation messages using the max-product algorithm and then

selecting the outcome of yi with the highest belief according to the max-marginals b{i}(yi):

y∗
i = argmax

yi

(

b{i}(yi)
)

(4.11)

Generalizations of the max-product algorithm for finding theM most probable configurations

also exist (see [YW04]).

Equation (4.11) is the final piece of a complete inference algorithm for CRFs, which needs

to compute marginals and likelihood for MLE and the MAP assignment for labeling unseen

instances. However, since any FCRF with > 1 chains and > 1 time steps contains loops (see

figure 4.1), we cannot immediately apply the above results (which are valid for trees only)

without further consideration.

4.3.2 Loopy Belief Propagation

The good news is that the inference algorithms given above can be used for loopy graphs

without extensive adaption. However, a different schedule is needed for message-passing:

obviously, λ-propagation and subsequent π-propagation are inapplicable if a graph contains

loops.

Typically, loopy belief propagation is performed as follows:

• The messagesmi→j are initialized to 1 (other initializations are possible).

• Messages are sent repeatedly according to some schedule until the process has con-
verged, i.e., newly computed messages m′

i→j do not differ from previous messages

mi→j between the same nodes except for some small ε.

• Another sensible convergence criterion is that at a message must have been sent between
any two adjacent nodes at least once (in both directions).

53

Chapter 4 Review of Theory

A multitude of schedules are feasible; a simple strategy that seems to fare surprisingly well

is to randomly select adjacent nodes. Schedules for belief propagation are analyzed in detail

by Sutton and McCallum in [SM07a]. Tree-based Reparameterization (TRP), one particular

schedule that has been recommended repeatedly (e.g., [SM06]), will be presented in the next

subsection.

So much for the good news; the bad news is that loopy belief propagation is not guaranteed to

converge on all graphs, although it has been applied successfully for various tasks in the past

([YFW03], [SM06]). Indeed, examples can be constructed for which loopy belief propagation

fails to converge ([YFW03]). This is clearly an undesirable property; still, it is a reasonable

trade-off, seeing that exact inference algorithms with guaranteed convergence properties can

easily get intractable, whereas loopy belief propagation works mostly well in practice. Prac-

tical experience regarding the convergence behavior of loopy belief propagation is discussed

in section 6.8.

4.3.3 The TRP Schedule

Tree-based Reparameterization (TRP) is introduced by Wainwright et al. in [WJW02b].

Wainwright’s PhD thesis ([Wai02]) contains additional background information.

It should be noted that Wainwright gives two versions of TRP which yield identical results:

The first version can be considered a particular schedule for loopy belief propagation, whereas

the second version is a message-free algorithm involving a sequence of local reparameteri-

zation operations. The former presentation of TRP will be described in this thesis, since it

allows to build on the previous results about belief propagation.

Algorithm 2 gives a rough outline of the TRP schedule. With regards to step 1, it should be

noted that twice as many messages mi→j as the number of edges in G are needed; this is

due to the fact that messages need to be sent in both directions. The convergence criterion

of step 2 also deserves mention: as described in the previous subsection about loopy belief

propagation, convergence is usually checked by comparing newly computed messages to their

counterparts of the previous iteration; if all messages are equal except for some small ε, the

algorithm is considered to have converged (another common constraint is that each message

must have been updated at least once).

Step 2a should be fairly clear; each spanning tree τ is an acyclic subgraph that connects all

nodes of G. Step 2b is a bit more subtle – consider the message update equation (4.5): it

is very important to realize that while step 2b only updates the messages for the edges of τ ,

54

Chapter 4 Review of Theory

Algorithm 2 TRP SCHEDULE

Given:

• An undirected graphical model G;

1. Initialize the components of all messagesmi→j for edges of G to 1.

2. while not converged:

a) Randomly select a spanning tree τ ∈ G;

b) Perform a λ-sweep followed by a π-sweep on τ , thereby updating the messages
mi→j for all edges of τ ;

3. return all messages {mi→j}.

these updates need to incorporate incoming messages from all nodes that are adjacent inG. In

particular, this means that the term N(i) \ j of equation (4.5) refers to adjacency in G, rather

than τ . If this is disregarded, inference on τ will be performed completely independent of any

previous iteration. The messages for τ are then essentially re-computed from scratch at each

iteration, and the algorithm will fail to converge.

Once Algorithm 2 has converged, the single-node and two-node beliefs are then defined as

per equation (4.6) and (4.7).

Concluding the section on inference, it should be mentioned that the presentation of belief

propagation in this thesis is restricted to pairwise graphs; generalizations to arbitrary clique

sizes do exist and are also described in detail by Yedidia ([YFW03]). Since we are concerned

with pairwise FCRFs, these algorithms exceed the scope of this thesis.

4.4 Parameter Estimation

Parameter estimation is the task of determining the parameters θ of a CRF from independent

and identically distributed (IID) training data D = {x(i),y(i)}N
i=1.

As Sutton notes ([SM06]), the training instances x(i),y(i) can be considered disconnected

components of a single undirected model G. The clique templates {C1, C2, . . . , CP} are then
assumed to extend over the factors of all training instances. This spares us from explicitly

summing over N
i=1 in the following.

55

Chapter 4 Review of Theory

4.4.1 The Objective Function

Ultimately, the goal is to achieve high prediction accuracy on unseen data T . This is accom-
plished by choosing the parameters θ in such a way that they fit the training data D. In order
to do so, an objective function is needed that measures how well the parameters fit D; the
parameters θ = {λpk} are then adjusted so that the objective function reaches its optimum.
Different objective functions are feasible.

Maximum Likelihood Estimation (MLE)

Frequently, the parameters are chosen such that they optimize the conditional likelihood

p(y|x) given the fully observed training dataD. This principle is called Maximum Likelihood
Estimation (MLE). Typically, for numerical reasons, one chooses to optimize the logarithm of

the conditional likelihood. This results in the following objective function, which is obtained

by taking the logarithm of equation (4.4):

ℓ(θ) =
∑

Cp∈C

∑

Ψc∈Cp

K(p)
∑

k=1

λpkfpk(xc,yc) − log Z(x) (4.12)

Naive computation of the normalization termZ(x) is intractable; however, using the inference

algorithms presented in section 4.3, one can avoid that computation.

If an optimization algorithm shall be used that optimizes by gradient, the partial derivatives

of the objective function need to be calculated. The partial derivative of ℓ(θ) with respect to

a parameter λpk of clique template Cp is:

∂ℓ

∂λpk

=
∑

Ψc∈Cp

fpk(xc,yc) −
∑

Ψc∈Cp

∑

y′

c

fpk(xc,y
′

c)pc(y
′

c|x) (4.13)

Note that y′

c ranges over all possible label assignments of clique c. The gradient can be

considered the difference between the expected value of feature fpk under the empirical dis-

tribution of the training data and the expectation of fpk under the model distribution ([SM06]).

It is rather intuitive that one wants to minimize this value. Computation of the gradient re-

quires the marginal probabilities pc(yc|x) for each clique c. Again, these can be computed

efficiently using the algorithms discussed in the previous section.

56

Chapter 4 Review of Theory

Maximum Pseudolikelihood Estimation

Pseudolikelihood is an approximation of true likelihood which uses local information; in

doing so, it avoids costly inference. It is a well-known result that if the model family includes

the true distribution, then pseudolikelihood converges to the true parameter setting in the limit

of infinite data ([SM07b]).

Various variants of Maximum Pseudolikelihood Estimation exist for CRFs; the objective func-

tion we present here is a factor-based variant of log-pseudolikelihood as described by Sanner

et al. ([SGHM07]):

pℓ(θ) =
∑

Cp∈C

∑

Ψc∈Cp

log pc(yc|x,MB(Ψc)) (4.14)

As one can see, this objective function does not require true inference in a CRF, since the

pseudo-marginals are conditioned on the Markov blanket4 of the corresponding factor. By its

very definition, this approach can only be applied during parameter estimation from training

data, since the “true” variable assignment of the Markov blanket needs to be known.

The gradient can be calculated similar to equation (4.13), except that the marginals pc(y
′

c|x)

are also conditioned on the Markov blanket, i.e., pc(y
′

c|x,MB(Ψc)).

Other Approaches

Various other approaches have been suggested; most of these employ some kind of local

training in order to avoid the substantial computational effort required for inference over a

whole graph. Some of these approaches are discussed and compared in [SM07b].

4.4.2 Regularization

If parameters θ are determined from training data – in particular if training data is sparse –

this harbors the danger of overfitting. Overfitting means that the estimated parameters fit the

training data D extremely well, but do not achieve good accuracy on unseen data T .

In order to reduce this effect, extremely large or small parameters are typically penalized; this

process is called regularization. Gaussian priors have been used extensively for this purpose

4Here, the Markov blanket of a factor Ψc denotes the set of variables occurring in factors that share variables
with Ψc, non-inclusive of the variables of Ψc.

57

Chapter 4 Review of Theory

in the current literature, but other choices may yield reasonable results as well (see [PM04]

for a comparison of some regularization methods).

The use of a Gaussian prior will be assumed in this thesis. In that case, if f(θ) is the original

objective function (e.g., log-likelihood or log-pseudolikelihood), a penalized version

f ′(θ) = f(θ) −
N

∑

k=1

λ2
k

2σ2
(4.15)

will be optimized instead. This results in the following partial derivative with respect to

parameter λk:
∂f ′

∂λk

=
∂f

∂λk

− λk

σ2
(4.16)

The regularization parameter 1
2σ2 determines the strength of the penalty. This is a free pa-

rameter; optimizing it might require a computationally expensive parameter sweep. However,

Sutton notes that the accuracy of the final model is often not sensitive to σ2, even if the pa-

rameter is varied up to a factor of 10 ([SM06]).

4.4.3 Convex Optimization Algorithms

All objective functions f(θ) given in subsection 4.4.1 are concave. This follows from the

convexity of functions of the form g(x) = log
∑

i exp(xi) ([SM06]). Therefore, any concave

optimization algorithm can be used to optimize f(θ).

In practice, it is common to minimize the penalized negative objective function −f ′(θ) and

call it the loss function. Minimizing the loss function requires a convex optimization algo-

rithm. Therefore, the algorithms in this section all minimize the given objective function.

Finally, it should be noted that LBFGS and OLBFGS are presented here as described by

Schraudolph et al. ([SYG07]).

Limited Memory BFGS (LBFGS)

LBFGS is a variant of the classic Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm that was designed for solving large-scale optimization problems.

BFGS incrementally updates an estimate of the inverse Hessian Bt of the objective function

f(θ),θ ∈ R
n. This operation is O(n2) with regards to memory requirements and runtime

58

Chapter 4 Review of Theory

complexity. For applications of NLP, CRFs can easily require hundreds of thousands or even

millions of parameters; for such cases, BFGS is prohibitively expensive.

In LBFGS, on the other hand, the estimation of the inverse Hessian is based only on the lastm

steps in gradient and parameter space. The quasi-Newton direction can be obtained directly

from these steps. This reduces complexity to O(nm), which is a huge improvement (typical

values form range from 3 to 10).

Consider Algorithm 3. LBFGS is an iterative algorithm that terminates once a certain conver-

gence criterion is fulfilled (see step 2); typically, one checks whether the norm of the gradient

∇f falls below a certain ε. At each iteration, a direction update is first performed (step 2a).

Subsequently, a line search function obeying the Wolfe conditions5 is invoked in order to de-

termine the step length (step 2b). The parameters are then updated using the scaled step st,

and the difference yt between the old and the new gradient∇f is computed (steps 2c - 2e).

Algorithm 3 STANDARD LBFGS METHOD

Given:

• objective f and its gradient ∇f :=
∂

∂θ
f(θ)

• initial parameter vector θ0;

• line search linemin obeying Wolfe conditions;

• convergence tolerance ε > 0;

1. t := 0;

2. while ‖∇f(θt)‖ > ε :

(a) pt = LBFGS DIRECTION UPDATE;

(b) ηt = linemin(f,θt,pt);

(c) st = ηtpt;

(d) θt+1 = θt + st;

(e) yt = ∇f(θt+1) −∇f(θt);

(f) t := t + 1;

3. return θt.

The direction update (Algorithm 4) uses the last m vectors y and t in order to compute the

step direction for each iteration. Typically, an implementation of LBFGS will maintain ring

5The Wolfe conditions specify sufficient decrease and curvature conditions.

59

Chapter 4 Review of Theory

Algorithm 4 LBFGS DIRECTION UPDATE

Given:

• integersm > 0, t ≥ 0;

• ∀i = 1, 2, . . . , min(t,m) :
vectors st−1 and yt−1 from Algorithm 3;

• current gradient ∇f(θt) of objective f ;

1. pt := −∇f(θt);

2. for i := 1, 2, . . . , min(t,m) :

(a) αi =
s⊤

t−ipt

s⊤
t−iyt−i

;

(b) pt := pt − αiyt−i;

3. if t > 0 : pt :=
s⊤

t−1yt−1

y⊤
t−1yt−1

pt;

4. for i := min(t,m), . . . , 2, 1 :

(a) β =
y⊤

t−ipt

y⊤
t−ist−i

;

(b) pt := pt + (αi − β)st−i;

5. return pt.

buffers of y and t for this purpose. We refer to the original article of Nocedal ([Noc80]) for

details about this part of the algorithm.

In practice, LBFGS works remarkably well for CRF training, leading to fast convergence; it

is now used as the default optimization algorithm in various CRF toolkits ([Kud05], [Sut06],

[PNN05]). This seems to confirm earlier results by Wallach ([Wal02]).

Online LBFGS (OLBFGS)

Recently, Schraudolph et al. ([SYG07]) developed OLBFGS, a stochastic variant of LBFGS

for online convex optimization. Stochastic (or online) gradient-based methods obtain their

gradient estimates from small subsamples (batches) of training data. At each iteration, the

algorithm updates the parameters θ using one small batch of data. This means that adaptation

of parameters can start much earlier, compared to a traditional approach where the gradient

60

Chapter 4 Review of Theory

Algorithm 5 ONLINE LBFGS METHOD

Given:

• stochastic approximation of convex objective f and its gradient ∇f over data se-
quenceX t;

• initial parameter vector θ0;

• sequence of step sizes ηt > 0;

• parameters λ ≥ 0, ǫ > 0;

1. t := 0;

2. while not converged:

(a) pt = OLBFGS DIRECTION UPDATE;

(b) st = ηtpt;

(c) θt+1 = θt + st;

(d) yt = ∇f(θt+1,X t) −∇f(θt,X t) + λst;

(e) t := t + 1;

3. return θt.

needs to be computed for the whole training data before the first parameter update can occur.

Computational requirements can be greatly reduced on large, redundant data sets.

Consider Algorithm 5. Here, X t denotes one batch of data – the one intended for iteration

t. Another remarkable difference compared to Algorithm 3 is that OLBFGS does not use

line search. Schraudolph et al. note that line searches are highly problematic in a stochastic

setting, since the global criteria they employ cannot be established from local subsamples.

Instead, Algorithm 5 employs a sequence of step sizes ηt. A commonly used decay schedule

for this sequence is given by ηt =
τ

τ + t
η0. Optimal values for τ and η0 depend on the data

and on the batch size.

Algorithm 5 iterates until the convergence criteria are met. The convergence test of Algo-

rithm 3 is insufficient in a stochastic setting; it must be replaced with a more robust one.

Schraudolph et al. suggest checking whether the gradient ∇f has remained below a given

threshold for the last k iterations. The first step in each iteration is to determine the direction

update (step 2a). Subsequently, the current step st is determined using step size ηt and the

new direction pt, and the parameters are updated accordingly (steps 2b - 2c). Finally, step

2d computes yt. Note that the difference of gradients must be computed on the same batch

61

Chapter 4 Review of Theory

Algorithm 6 OLBFGS DIRECTION UPDATE

Identical to Algorithm 4, except that step 3 is replaced by:

pt :=

ǫpt if t = 0;

pt

min(t,m)

min(t,m)
∑

i=1

s⊤
t−iyt−i

y⊤
t−iyt−i

otherwise.

X t. This doubles the number of gradient calculations, but is needed in the stochastic setting

to prevent sampling noise from entering the direction update ([SYG07]). The additional term

λst is introduced to cope with regions of low curvature; λ > 0 is a free model-trust region

parameter in this context.

The direction update for OLBFGS (Algorithm 6) is almost identical to the direction update

for LBFGS (Algorithm 4). However, Schraudolph et al. introduce a small refinement which

ensures that the first parameter update is small and improves online performance by averaging

away some of the sampling noise.

While OLBFGS does perform remarkably well under ideal settings, its biggest problem right

now is the substantial number of free parameters (η0, τ, λ), which needed to be tuned accord-

ing to data, batch size andm. Schraudolph et al. do note, however, that they anticipate further

insight regarding ways to automatically set and adapt them ([SYG07]).

The author’s own experience with OLBFGS indicates that bad parameter settings can easily

lead to divergence of the training algorithm. Manual tuning may be extremely time consuming

for large tasks, because divergence often only happens after a large number of iterations.

62

Chapter 5

Implementation Overview

“ Knowledge that is not put into practice is like
food that is not digested. ”

– Sri Sathya Sai Baba

The theoretical framework presented in chapter 4 is a sound basis for practical implementa-

tion. Yet, there are only a handful of publicly available CRF packages. To the best of the au-

thor’s knowledge, only two of these support Factorial Conditional Random Fields (FCRFs):

• Charles A. Sutton’s Graphical Models In Mallet (GRMM) (see [Sut06]): An ex-
cellent and very flexible toolkit written in Java. GRMM has support for arbitrary CRF

structures (which subsume FCRFs, of course); however, that flexibility comes at a price.

The code makes generous use of runtime polymorphism even in performance-critical

sections and leaves a lot of room for micro optimization. In addition, its memory re-

quirements are quite substantial.

• Kevin Murphy’s CRF Toolbox for Matlab supports 2D lattices, but it is restricted
to binary labels (+1 and −1) and seems to be intended for solving computer vision

problems. See [MS06] for details.

Other CRF implementations that do not support FCRFs include Taku Kudo’s CRF++ ([Kud05]),

Sunita Sarawagi’s CRF package ([Sar04]) and the FlexCRFs toolkit by Xuan-Hieu Phan et al.

The small number of options for FCRFs is probably both due to the fact that CRFs are a

relatively recent development and the relatively high effort required for a thorough imple-

mentation (as compared to HMMs, for instance).

63

Chapter 5 Implementation Overview

Choosing GRMMmight have been an option; however, seeing that CRF training times would

be a major challenge for the large problem at hand, a lean and efficient from scratch im-

plementation seemed to be the best bet. Indeed, the venture turned out very well, and the

resulting CRF toolkit is one of the bigger contributions of this thesis.

5.1 Introducing VieCRF

The Vienna Conditional Random Field Toolkit (VieCRF) is a fast toolkit for Factorial Con-

ditional Random Fields. It was designed from scratch to provide high runtime performance,

good scalability and a reasonably low memory footprint.

VieCRF consists of three major parts:

1. The C++ API builds the core of VieCRF. It is implemented efficiently using generic

programming techniques and wholly contained in a number of header files. All per-

formance-critical algorithms are part of the core. The C++ source code is documented

using VieCRF’s own inline documentation system (which is similar to perldoc).

2. The Perl API exposes the functionality of the C++ Application Programming Interface

(API) to Perl code. In addition to this wrapper code, the Perl API also implements

some convenience modules for less performance-critical functionality like reading in

data files, maintaining a mapping between strings and integer IDs, etc. All modules are

thoroughly documented using POD/perldoc.

3. The Perl utilities include command line tools that make VieCRF’s functionality avail-

able to users without knowledge of programming languages. These tools are suitable

for experimenting with data and model parameters, creating plots, evaluating accuracy

and many more tasks. It is also convenient to invoke them from within shell scripts.

Complete documentation for all tools is realized via POD/perldoc.

VieCRF is freely available at http://www.ofai.at/~jeremy.jancsary/. It is steadily

growing with regards to the implemented functionality and becoming more mature. All ex-

periments presented in this thesis were conducted using VieCRF.

At the time of writing, the C++ API comprises about 9400 LOC; the Perl API accounts for

roughly 5000 LOC and the corresponding tools are implemented in just about 3100 LOC.

These numbers include inline documentation. Therefore, VieCRF is still easily comprehen-

sible and it should be possible even for people who are unfamiliar with VieCRF to add new

functionality.

64

http://www.ofai.at/~jeremy.jancsary/

Chapter 5 Implementation Overview

5.2 Implemented Functionality

The functionality available within VieCRF was mostly dictated by the demands of this thesis.

More recently, though, some new features found their way into the core of VieCRF which

were not used by the experiments described in chapter 6. In fact, by now, there is such

a wealth of parameters, inference algorithms and training algorithms that evaluating their

effects and interaction would be a worthy task of its own.

5.2.1 Flexible Feature Support

The description of features in chapter 4 is quite abstract and theoretically motivated. In prac-

tice, VieCRF expects a user to provide a number of observations for each time step of a

sequence. These observations are often binary and indicate a certain condition that holds

at a particular time step. For a natural language processing task, such an observation could

be infarction@0, indicating that the token at the current position in an input document is

“infarction”.

VieCRF can then create a CRF feature for each possible assignment of each clique template

from the observations in the training data, i.e., infarction@0, coupled with a label unigram

or a label bigram would correspond to one feature. Such a feature is active only when the

particular observation is active at a given time step and the label assignment matches. Thus,

the clique templates in VieCRF actually maintain a vector of weights for each of their as-

signments, corresponding to the supported observations. This allows VieCRF to find out how

strong an indication a certain observation is for a particular label assignment – the stronger

the indication, the higher the feature weight. These weights correspond to the parameters θ

of a CRF. Each clique template Cp maintains its own set of parameters θp, since the possible

label assignments differ.

Now, it is obvious (and indeed intended) that certain observations will never be active together

with a particular label assignment in the training data. As an example, in a Part-of-Speech

(POS) tagging task, a time step with an observation of the@0 will never be labeled as ADJ,

simply because the determiner “the” cannot be an adjective.

This brings up the question of how to handle these cases. VieCRF implements three different

strategies:

• The most obvious strategy is to simply allocate a feature weight for each observation
paired with each label assignment (as outlined above). This strategy will be referred

65

Chapter 5 Implementation Overview

to as using all features from now on. The drawback is that this can quickly lead to

millions of features and unfeasible training times.

• More commonly, only the supported features are allocated. These are combinations of
an observation and a label assignment that actually occur in the training data. However,

in general, this leads to slightly reduced accuracy since such features can only encode

a positive indication for a certain label assignment. Unsupported features, on the other

hand, can receive a negative feature weight to actively encode that a certain observation

is a negative indication for a particular label assignment.

• Any label assignment has at least one weight for the so-called default feature. The
default feature is active for any time step and any label assignment in the training data.

This is useful for cases where no other feature is active. VieCRF allows to reduce the

feature support of a clique template to the default features; these features then effec-

tively capture the a priori probability of each label assignment. This approach is quite

natural: if nothing else is known about which label assignment should be chosen, the

one with the highest a priori probability will be picked. Note that this feature reduction

usually only makes sense for bivariate clique templates (transition probabilities will be

captured in this case).

VieCRF allows to specify a feature value along with each observation. These should be seen

as an indication of how strongly pronounced a particular observation is. Most notably, using

the feature value to encode a certain symbolic meaning (as in: 1.0 – “red”, 2.0 – “blue”, 3.0

– “green”, ...) is a grave mistake. Instead, binary features should be used for such cases

(is_red, is_blue, is_green, ...).

5.2.2 Pre-Pruning of Observations

In a typical NLP task, such as the work presented in this thesis, a training corpus will contain

tens if not hundreds of thousands of distinct observations, simply because most observations

will – in one or another way – be related to the words occurring in the corpus.

This raises the question of feature selection. It should be noted that through regularization

(see subsection 4.4.2), CRFs already include a mathematically principled method of reducing

the effects of overfitting. Therefore, dismissing all irrelevant features may not be as essential

a task as for some other formalisms.

However, regularization does not help reduce training time. If this is an issue, it may be appro-

priate to prune features that contribute little to the overall prediction accuracy of a model.

66

Chapter 5 Implementation Overview

A comparative study on feature selection in text categorization is presented by Yang and

Pedersen in [YP97]. One of the feature selection criteria that fares well in this comparison,

albeit very simple, is document frequency. The idea behind this criterion is that features that

occur in very few training documents cannot usually have great impact on prediction accuracy

of a classifier.

VieCRF adopts this idea (because it is conceptually simple and can easily be applied to CRFs)

and implements it in the form of instance frequency: Observations that only occur in few train-

ing instances may be pruned. No feature weights are allocated for such observations, thereby

effectively reducing training time. This process is referred to as pre-pruning in VieCRF’s

manual because the features are removed before they even find their way into the training

step.

5.2.3 Inference and Training Algorithms

For training/feature estimation, VieCRF supports the convex optimization algorithms pre-

sented in subsection 4.4.3: the limited-memory Quasi-Newton approach LBFGS and its

stochastic online variant OLBFGS. In general, LBFGS seems to be much easier to use than

OLBFGS, because it does not require tuning of free parameters; this is why LBFGS is the de-

fault choice in VieCRF. However, Schraudolph shows that OLBFGS may reach the minimum

of the loss function significantly faster on redundant training data if suitable parameters are

specified.

For inference, VieCRF implements loopy belief propagation with a tree-based schedule (TRP).

The sum-product variant is applied for MLE training, whereas the max-product variant is used

for labeling unseen instances. See section 4.3 for in-depth discussion of these algorithms.

Alternatively, VieCRF supports maximization of pseudolikelihood. In that case, no real in-

ference is required. However, the pseudolikelihood-based approach only applies to parameter

estimation. It cannot be used for labeling unseen instances by its very definition.

5.2.4 Restriction of Label Transitions

In some cases, it may be preferable to prevent certain label transitions; for instance, in the

segmentation task of this thesis, label transitions such as Diagnosis-Plan should be avoided.

The BIO notation requires that a BEGIN label be used to indicate the beginning of a new

section type: Diagnosis-BeginPlan.

67

Chapter 5 Implementation Overview

There are several ways of enforcing such constraints:

• The relevant elements of the bivariate factors can explicitly be set to a fixed value of
zero, thereby preventing “forbidden” solutions (the a posteriori probability of any path

involving such transitions will end up being zero).

• Roth and Yi present an approach based on Integer Linear Programming (ILP) in [RY05].
They view the inference problem as the task of finding the shortest path through the

Viterbi trellis. Shortest path search can be performed using ILP by representing the task

as a set of linear inequalities which are then solved by any ILP solver. This approach has

the advantage that additional user-defined inequalities can be added before the solver

is invoked. These inequalities allow for expression of arbitrary boolean constraints

over the predicted label sequence. However, as of now, this approach has only been

presented for linear-chain CRFs.

VieCRF implements both approaches presented above; the latter approach is of little use for

the purpose of this thesis, though. Finally, a generalization of CRFs called Semi-Markov

CRFs should be mentioned. This formalism was first presented by Sarawagi ([SC04]). Semi-

Markov CRFs are particularly suitable for segmentation tasks because labels are assigned to

variable-length “segments” rather than single time steps. This method inherently solves the

issue of invalid label transitions for segmentation tasks; however, again, it is only applicable

to linear-chain structures at this time. Semi-Markov CRFs are not yet available in VieCRF.

5.2.5 C++ and Perl APIs

VieCRF was designed from scratch so that most relevant functionality could easily be exposed

to scripting languages. Scripting languages can provide a great productivity boost while ex-

perimenting with various algorithms and parameter settings. This lends itself well to the

explorative approach that is usually taken when performing machine learning experiments.

So far, VieCRF comprises a fairly complete Perl API. Perl is the programming language of

choice for many NLP tasks and was thus a natural candidate. The most prominent user of

the Perl API is the viecrf command line tool itself. This ensures that most if not all of the

implemented functionality will remain available to Perl users.

68

Chapter 5 Implementation Overview

5.3 Efficiency Considerations

Efficient implementation of all core algorithms is of primary importance to any CRF imple-

mentation. The discriminative nature of CRFs demands that a convex optimization algorithm

involving tens if not hundreds of iterations be applied to finding the optimal features weights;

each of these iterations require an updated gradient of the loss function which in turn requires

running inference for each instance of the training corpus if MLE is performed.

VieCRF implements several strategies that help to keep training time reasonably low.

5.3.1 Avoiding Log-space Computation

In the sum-product variant of loopy belief propagation, summing of factor elements is a fre-

quent operation. Typically, for numerical stability, the logarithm of the factor elements is

used. Unfortunately, addition of numbers is not naturally defined in logarithmic space. This

means that numbers need to exponentiated first, and can only then be summed. A numerically

stable variant of this operation is defined as follows ([SM06]):

a ⊕ b = a − log(1 + eb−a) = b + log(1 + ea−b)

Typically, the version of the identity with the smaller exponent will be used. However, albeit

numerically stable, this operation can be prohibitively expensive. It involves two log and two

exp invocations for one primitive operation. On Intel R© processors, VieCRF optimizes this
operation using a routine of the Integrated Performance Primitives (IPP) ([Tay07]).

Alternatively, VieCRF leaves the choice of not maintaining factor elements in logarithmic

space. The factor elements will then be normalized regularly such that they sum to 1, thereby

magnifying particularly small numbers ([SM06]). This approach may be slightly less stable

from a numerical point of view; however, it results in much faster factor operations, and the

author has yet to see a real-world training corpus on which the log-space approach results in

noticeably different feature weights.

5.3.2 Fast Sparse Vector Operations

Since VieCRF usually maintains a sparse list of feature weights (by default, only weights

for supported features are allocated), it is frequently necessary to merge the list of supported

69

Chapter 5 Implementation Overview

features and the list of those features that are active at a given time step. Most importantly,

this is required for computing factor elements (the dot product between feature weights and

feature values is computed for this step).

These sparse vector operations can consume a considerable amount of training and prediction

time (although the time required for inference usually dominates).

VieCRF implements sparse vector operations using the same strategy as Meschach ([SL94]),

a high-performance library for matrix computations in C:

• If both sparse vectors contain roughly the same number of elements, linear merging is
performed.

• If one vector contains significantly fewer elements than the other, binary search will be
applied to find the corresponding elements in the more densely populated vector.

Both approaches require that the sparse vector elements be sorted according to their (non-

sparse) indices. In practice, for CRF training, the second approach seems to be advantageous

if one vector is populated at least ten times as densely as the other.

5.3.3 Parallelization

CRFs allow for parallelization of training. At each step of the training algorithm, inference

needs to be run for each training instance; while the steps of the training algorithm need to be

run in sequence, inference can be performed for multiple training instances at the same time

without violating any data dependencies.

VieCRF exploits this fact and scales up to an arbitrary number of CPUs on a shared-memory

system (as long as there are at least as many training instances as CPUs, that is). Synchroniza-

tion overhead is negligible, and the computations performed by the training algorithm itself

only account for a small fraction of the overall computational effort, so VieCRF scales up

almost perfectly (on a system with a 4 CPU/core SMP configuration, training will typically

only require a fourth of the training time).

On a related note, the FlexCRFs package ([PNN05]) can perform parallel CRF training on dis-

tributed memory systems (i.e., separate network nodes) using MPI. Such functionality might

be implemented in VieCRF at a later point.

70

Chapter 5 Implementation Overview

5.3.4 Compile-time Polymorphism

VieCRF tries to achieve nice object-oriented encapsulation while still maintaining the high-

est performance possible. Polymorphic type hierarchies can be quite costly, since method

invocation may involve lookups in the virtual table of an object.

Such overhead is avoided by VieCRF by exploiting the powerful template system of C++.

Compile-time polymorphism is applied instead of run-time polymorphism in all performance-

critical code regions. Numerical libraries such as Blitz++1 have shown that this strategy can

equal if not surpass the performance of loosely structured, highly specialized Fortran or C

code ([VJ97]).

5.3.5 Parameterizable Data Types

Finally, VieCRF allows for parameterization of the floating-point data types used for storing

features values and performing factor operations.

For most applications, it will be preferable to hold feature values in memory using single

precision only. That way, a lot of main memory can be saved. Certainly, this depends on the

application domain; in NLP, features are typically binary (1.0 or 0.0), so single precision is

entirely sufficient.

The data type used for factor operations is a bit more intricate; for CRF training involving

a multitude of possible label assignments or particularly long sequences/complex structures

one will usually have to resort to double precision. However, in other scenarios, where the

individual training instances are rather simple, but the corpus consists of tens of thousands

of instances, single precision may be adequate and will speed up training considerably (in

addition to lower memory requirements).

Combined with the choice of performing factor operations in logarithmic space, parameteriz-

able data types allow for great flexibility when trading off computational performance against

numerical stability.

1http://www.oonumerics.org/blitz/

71

http://www.oonumerics.org/blitz/

Chapter 6

Experiments

“ A little experience often upsets a lot
of theory. ”

– Samuel Parkes Cadman

In this chapter, experiments will be presented that investigate the practicability of the approach

introduced in the previous chapters. For this purpose, the data described in chapter 3 will be

used to train and evaluate CRF models. Detailed statistics and performance measurements

are provided.

The first section of this chapter discusses the experimental settings; the approach towards

training and evaluating CRFs will be explained. Post-processing of assigned labels will also

be addressed.

In the second section, the accuracy of all relevant configurations will be assessed. This shall

serve to give a rough general impression of how well the approach works. The initial impres-

sion is then refined in section 6.3 by presenting precision, recall and F1 on a per-label basis,

as well as macro-averaged variants of these metrics.

Subsequently, section 6.4 goes on to analyze typical errors. Confusion plots are provided for

visual comprehensibility; they give insights into how well the topic detection task is solved.

Section 6.5, on the other hand, presents results for the WindowDiff metric; this allows for

realistic assessment of segmentation quality.

The remaining sections study the impact of various phenomena and settings on the resulting

CRF models. Section 6.6 sheds light on the effect of noisy training data. Section 6.7 as-

sesses the impact of early stopping during parameter estimation. Finally, section 6.8 presents

preliminary findings regarding the convergence behavior of label prediction.

72

Chapter 6 Experiments

6.1 Training, Labeling and Post-Processing

For evaluation, 2007 annotated reports of CCOR and the corresponding annotated reports of

CRCG were available. Remember that CCOR denotes the corpus of manually corrected, prop-

erly formatted corpus, whereas CRCG refers to the raw, unprocessed output of speech recogni-

tion. The goal is to automatically predict the underlying structure in unseen output of speech

recognition (i.e., data similar to that of CRCG); however, CCOR is also useful for evaluation.

Each report of CCOR or CRCG will be referred to as a training instance, or instance, for short.

These training instances are all divided into time steps, which correspond to the tokens of a

report. The annotation of each time step consists of the expected labels, which describe the

structure of the report (see figure 2.1), as well as a number of active features or observations,

which give hints regarding the expected labels for that time step. Feature generation was

discussed in section 3.4. Naturally, the expected labels are available to the machine learning

algorithms only during training. During testing, the features of each time step serve as the

input from which the labels shall be predicted.

For the purpose of evaluating the practicability of our CRF-based approach, we consider two

related scenarios:

• CCOR will serve to estimate the performance to be achieved under ideal conditions. The

features for these reports were prepared in such a way that they dismiss any formatting

information (capital letters, blanks, line breaks, etc.); however, punctuation and head-

ings all find their way into the features. Basically, perfect dictation is simulated: speech

recognition achieves 100% accuracy, and the speaker properly dictates headings, punc-

tuation, enumerations and related items. Note that such dictation still contains a lot of

ambiguity and variance; many different variations of one and the same heading exist,

for instance.

• CRCG, on the other hand, is used to assess the performance under more realistic condi-

tions. The features are derived from the output of speech recognition (with varying

error rates) on actual, less than perfect dictation without any kind of editing what-

soever. Speakers do not consistently dictate punctuation, headings or other markup

elements. Note that the label annotation for these training instances was created semi-

automatically (see section 3.3). This means that the expected labels may be erroneous

and contain noise. Any performance metric determined on CRCG will thus be slightly

lower than it could have been, assuming manually labeled training instances. An at-

tempt is made in section 6.6 to assess the effect of noisy training data.

73

Chapter 6 Experiments

Whenever we refer toCCOR orCRCG in the following, the respective scenario described above

is intended. All performance metrics will be determined for both scenarios.

Unless indicated otherwise, each corpus was partitioned into three sets, with two parts used

for training (1338 instances) and the remainder (669 instances) used for testing. This allows

for
(

3
1

)

=
(

3
2

)

= 3 independent test sets and the same number of training sets per corpus.

Three disjoint pairings can be built from these sets. For each such pairing, a separate CRF

model was trained from the training set and then applied to the corresponding test set. Various

performance metrics were then averaged over the three runs. We will use CCOR-ALL and

CRCG-ALL to denote that training and testing has been performed as described above – using

all 2007 instances, that is.

A confidence interval can also be estimated. If we assume the results of the three independent

runs are normally distributed1, a 95%-confidence interval is given by:

Ȳ ± t(α/2,N−1)
s√
N

= Ȳ ± t(0.025,2)
s√
3

(6.1)

where Ȳ is the sample mean, s is the sample standard deviation,N is the sample size (3 in our

case), α is the desired significance level (0.05 in our case) and t(α/2,N−1) is the upper critical

value of the t-distribution with N − 1 degrees of freedom.

If a confidence interval is given in the following sections (indicated via ±), it was computed
as described above. Naturally, 10-fold cross-validation would have yielded even more reliable

results, but it would have been prohibitively expensive.

6.1.1 Parameter Settings and Algorithmic Choices

Chapter 4 should have made it clear that for CRF training, there is a wealth of different

algorithms and free parameters. Obviously, not all of these are supported by VieCRF; still,

the number of options is enormous (just think of the combinatoric explosion). Given that CRF

training is computationally expensive, extensive parameter sweeps are infeasible.

Therefore, experiments were only performed using the following reasonable settings, which

were either motivated by practical limitations, experience or ad-hoc experiments2:

1 This assumption should be rather safe since the performance metrics are computed over a large number of
instances, cf. Central Limit Theorem (CLT).

2The author is painfully aware that this is less than optimal, but a more principled approach would have been
extremely time-consuming.

74

Chapter 6 Experiments

• LBFGS was used for parameter optimization. While OLBFGS may have superior prop-
erties in some circumstances, the big number of free parameters made it unsuitable in

this context. LBFGS was set to use the last 3 steps in parameter and gradient space

for for estimation of the inverse Hessian (i.e., m = 3). Larger numbers require more

memory and ad-hoc experiments did not indicate significantly faster convergence. The

maximum number of iterations of LBFGS was set to 800. Progress became minuscule

much earlier in most cases (see figures 6.1 and 6.2).

• Maximum Pseudolikelihood Estimation was performed. This was required in order to
keep training times reasonable; pseudolikelihood does not require true inference and

is therefore faster than MLE (by a large factor). In addition, it is not ridden by the

convergence problems of loopy belief propagation.

• For testing, loopy belief propagation with a TRP schedule was used in order to de-
termine the MAP configuration. This is the only option currently implemented by

VieCRF. The algorithm was set to perform a maximum of 1000 iterations. For most

instances, labeling converged much sooner (see section 6.8).

• Supported features were used for single-node clique templates, whereas in-chain and
between-chains clique templates were restricted to the default features (see subsection

5.2.1). These settings were chosen in order to achieve reasonable dimensionality of the

parameter space, thereby both reducing training time and danger of overfitting.

• A Gaussian prior with a variance of σ2 = 1000 was used for regularization. This im-

poses a relatively weak penalty on extreme weights; the reasoning behind this setting

was that it should keep the number of invalid label transitions low by assigning ex-

tremely low weights to transitions that do not occur in the training data. In practice,

ad-hoc experiments did not show any significant difference between values of 1000 and

10 (see also subsection 6.1.2 on post-processing).

Figures 6.1 and 6.2 depict the progress of the loss function for training on CCOR-ALL and

CRCG-ALL, respectively. The curve is averaged over all three training runs in both figures.

Since one training process converged after roughly 400 iterations, the loss function is not

depicted for higher iteration numbers in figure 6.2 (due to the average being undefined).

In general, what can be seen from these figures is that most of the loss is eliminated rather

early; after that, progress happens slowly. Training on CCOR-ALL runs a lot more smoothly

than training on CRCG-ALL, which is to be expected, given the greater variance and noise in

the latter corpus. Also, the final relative loss is much lower for CCOR-ALL.

75

Chapter 6 Experiments

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 100 200 300 400 500 600 700 800

lo
s
s

number of iterations

Figure 6.1: Progress of training on CCOR-ALL

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 50 100 150 200 250 300 350 400

lo
s
s

number of iterations

Figure 6.2: Progress of training on CRCG-ALL

76

Chapter 6 Experiments

Algorithm 7 POST-PROCESS CCOR

1. Ensure every segment at the section level starts with a “Begin” label (this is a formal
constraint).

2. Ensure boundaries of “typed” subsections occur only at sensible points (e.g., at the start
of a subheading)

3. Ensure all segments at the subsection level start with a “Begin” label.

4. Make sure there are no “untyped” paragraphs in between “typed” subsections.

5. Ensure section boundaries occur only at the beginning of a heading.

6. Ensure every section segment starts with a “Begin” label.

On average, each training run on CCOR-ALL required about 385 hours of CPU time and

roughly 2.2 GB of RAM on an Intel R© Core2Quad machine with four 2.4 GHz cores, re-

sulting in an average training time of 385/4/24 ≃ 4 days per run. An average training run

on CRCG-ALL took only 3.15 days; this is due to one run converging early. It should be noted

that 2.2 GB of RAM were only required for parallel training on all four cores; about 1.1 GB

of RAM are sufficient for single-threaded training.

6.1.2 Post-Processing

Labeling of instances (i.e., computation of the MAP configuration) is performed within the

CRF framework. However, it became evident that additional improvements could be achieved

using further processing. Therefore, besides CRF-based label prediction, a post-processing

mechanism was implemented that serves two purposes:

• Illegal label transitions (i.e., those that violate the typed BIO notation or simply do not
make sense) can be flattened out in a sensible way.

• Additional domain knowledge can be considered without being restricted to the first-
order Markov property of FCRF variables.

The first point is slightly delicate: the typed BIO notation employed for multi-level segmen-

tation demands that any segment start with a Begin label, i.e., sequences like “. . . -Plan-

Plan-Diagnosis-Diagnosis-. . . ” do not have a meaningful interpretation in this notation

and should be encoded as “. . . -Plan-Plan-BeginDiagnosis-Diagnosis-. . . ” instead. Such

constraints do not only exist for the vertical chains, but also horizontally: For example, any

section of a report in CCOR starts with a heading; therefore we know that a Begin label may

77

Chapter 6 Experiments

Algorithm 8 POST-PROCESS CRCG

1. Make sure section boundaries only occur at sensible points (e.g., at the start of a heading
or the start of a paragraph).

2. Ensure every section segment starts with a “Begin” label.

3. If two section segments of the same type occur after each other, merge them in a smart
way (e.g., let the new section segment start at the beginning of a heading).

4. Make sure every element at the subsection level starts with a “Begin” label.

5. Eliminate all inappropriate cases of two subsequent “Begin” labels at the subsection
level.

6. Make sure every enumeration at the subsection level consists of at least two enumeration
elements.

7. Ensure every segment at the sentence level starts with a “Begin” label.

8. Make sure a new sentence starts at every paragraph boundary.

9. Fix headings of excessive length at the sentence level (try to guess a more appropriate
length or split the heading into two headings).

only occur on the section level if a BeginHeading label occurs at the same time step of the

sentence level.

Such constraints could also be enforced by manipulating the relevant elements of the bivariate

factors of an instance such that the transitions are effectively eliminated (see subsection 5.2.4).

However, this proved to be impractical: First, it turned out that such manipulation of bivariate

factors affected the convergence behavior of loopy belief propagation negatively. Second, it

did enforce the formal constraints, but not in a meaningful way: for instance, many tokens

on the section level were erroneously assigned a BeginHeading label so that a new segment

could be started on the section level. This is the opposite of the actual goal, which is to prevent

the beginning of a new section unless a heading starts at the sentence level. In these cases, it

was cheaper to “push” one label towards being a heading than to convince multiple labels on

the section level that they belong to the previous section.

Post-processing can be much more effective here: by recognizing that headings are identified

very reliably, spurious section boundaries can simply be eliminated if a heading doesn’t start

at the same time step of the sentence level.

The second point is related, but could not be solved by manipulating bivariate factors anyway:

Certain kinds of domain knowledge cannot be captured by a first-order Markov dependence.

For instance, an enumeration list with only one enumeration item doesn’t make sense. It

78

Chapter 6 Experiments

makes sense to require that an enumeration list must contain at least two enumeration items.

Such constraints cannot be modelled within a first-order FCRF (and neither with a FCRF of

second order, for that matter), since each enumeration item spans arbitrarily many tokens (and

thus labels).

It should be noted that post-processing is slightly different for instances of CCOR and CRCG.

This is due to the greater noise of the latter corpus and the fact that structural elements like

headings do not consistently occur in CRCG; as such, they are less suitable for use as anchor

points than those of CCOR. Algorithms 7 and 8 give a rough outline of the post-processing

algorithms used for CCOR and CRCG, respectively. The actual implementations contain some

refined heuristics.

Admittedly, the approach of a separate post-processing component is not particularly elegant.

However, from a pragmatic point of view, it is a better solution, compared to enforcing con-

straints within the CRF framework – at least until further research on the topic helps to get a

grip on the convergence problems of inference and allows for more detailed control of how

these constraints will be satisfied.

For the following evaluation results, unless indicated otherwise, it is assumed that post-

processing has been performed before computing the performance metrics.

6.2 Estimated Accuracy

One particularly intuitive and often-used performance metric is Accuracy. Accuracy can be

estimated from a labeled test set as follows. We will use N to denote the total number of time

steps in a label chain (over all instances), and Correct to denote the number of time steps that

have been assigned a correct label. The Accuracy metric is then defined as

Accuracy =
Correct

N
(6.2)

This leads to the natural definition of Error:

Error = 1 − Accuracy (6.3)

Table 6.1 shows estimated accuracies for CCOR-ALL, with and without post-processing. Ac-

curacies are given for each label chain – Chain 0 refers to the sentence level, Chain 1 stands

for the subsection level, and finally, Chain 2 is used to denote the section level. In addition,

79

Chapter 6 Experiments

Estimated Accuracies

Accuracy ±
Average 91.19% 1.10
Chain 0 99.65% 0.04
Chain 1 91.50% 0.57
Chain 2 82.42% 2.80
Joint 77.30% 3.11

(a) without post-processing

Estimated Accuracies

Accuracy ±
Average 97.24% 0.33
Chain 0 99.64% 0.04
Chain 1 95.48% 0.55
Chain 2 96.61% 0.68
Joint 92.51% 0.97

(b) with post-processing

Table 6.1: Accuracy achieved on CCOR-ALL

Estimated Accuracies

Accuracy ±
Average 85.18% 0.97
Chain 0 91.75% 0.16
Chain 1 84.77% 0.64
Chain 2 79.00% 2.39
Joint 66.72% 2.16

(a) without post-processing

Estimated Accuracies

Accuracy ±
Average 86.36% 0.80
Chain 0 91.74% 0.16
Chain 1 85.90% 1.25
Chain 2 81.45% 2.14
Joint 69.19% 1.93

(b) with post-processing

Table 6.2: Accuracy achieved on CRCG-ALL

Average indicates the accuracy averaged over all chains, and Joint gives the fraction of time

steps with correctly assigned labels on all levels. Naturally, Joint ≤ Average holds. Table 6.2
presents the same numbers for CRCG-ALL.

As is obvious from this table, post-processing is much more effective for CCOR-ALL; the

reasons have been outlined in subsection 6.1.2. Still, post-processing also seems to be effec-

tive on CRCG-ALL. In particular, the joint accuracy is improved by ensuring sensible label

transitions horizontally.

Overall, high accuracy (> 97%) can be achieved on CCOR-ALL. This is a reassuring result,

as it shows that the approach works very well under ideal conditions. Unsurprisingly, ac-

curacy on CRCG-ALL is much lower; however, at just above 86%, performance may still be

good enough for real-life tasks (this certainly depends on the nature of errors, which will be

discussed later). In addition, it is reasonable to assume that accuracy on CRCG-ALL could be

even higher if the training set had been annotated manually.

It should be noted that Accuracy is not appropriate in all cases, since more prominent label

80

Chapter 6 Experiments

categories have bigger impact on the score. In particular, on our data, labels of Chain 0/

sentence level are unequally distributed. Sentence labels account for the biggest part of all

labels. Naturally, the baseline accuracy for Sentence is quite high. The accuracy achieved

for BeginSentence is much more interesting in this context; yet, it has only little impact

on the total accuracy due to the small number of occurrences. Other performance metrics

such as F1 andWindowDiff may be more appropriate here; consequently, these will also be

presented in this chapter.

6.3 Estimated Precision, Recall and F1

Precision, Recall and the harmonic mean of these two scores, F13, are performance metrics

that are popular in information retrieval. They are typically computed on a per-label basis and

thus allow for more fine-grained consideration of classification performance than Accuracy,

for instance.

If we use Correcty to denote how often label y has been correctly assigned, Returnedy to

denote how often label y has been assigned in total (this includes correct and incorrect assign-

ments) and Ny to denote how often label y should have been assigned, Precision, Recall and

F1 are defined as follows:

Precisiony =
Correcty

Returnedy

(6.4)

Recally =
Correcty

Ny

(6.5)

F1y =
2 × Precisiony ×Recally

Precisiony + Recally
(6.6)

Often, it is useful to give a single number describing the performance of a classification al-

gorithm. This can be done by averaging over the scores for all separate labels. Two different

variants are in wide-spread use:

• Macro-averagedF1 (F1mac) simply sums the F1 scores for each label and then divides

that score by the number of distinct labels. The effect is that each label has equal

influence, regardless of its relative frequency.

3More generally, the Fα score allows for arbitrary weighting of Precision and Recall, but F1 is the most
commonly used variant.

81

Chapter 6 Experiments

Label N Correct Returned P R F1

Subheading 3119 2926 2989 0.98 0.94 0.96
Enummarker 16740 16284 16507 0.99 0.97 0.98
BeginSubheading 20857 20449 20731 0.99 0.98 0.98
BeginHeading 21753 21471 21645 0.99 0.99 0.99
Heading 26245 25701 25985 0.99 0.98 0.98
BeginSentence 122082 120087 122079 0.98 0.98 0.98
Sentence 1187422 1186223 1188282 1.00 1.00 1.00

Total 1398218 1393141 1398218 0.99 0.98 0.98

Table 6.3: F1 for sentence level of CCOR-ALL (with post-processing)

Label N Correct Returned P R F1

Subheading 6530 2771 5421 0.51 0.42 0.46
Enummarker 16031 9940 14388 0.69 0.62 0.65
BeginSubheading 16562 12543 15879 0.79 0.76 0.77
BeginHeading 18571 14278 19394 0.74 0.77 0.75
Heading 24736 17921 25266 0.71 0.72 0.72
BeginSentence 118065 71416 95079 0.75 0.60 0.67
Sentence 1050772 1019036 1075840 0.95 0.97 0.96

Total 1251267 1147905 1251267 0.73 0.70 0.71

Table 6.4: F1 for sentence level of CRCG-ALL (with post-processing)

• Micro-averaged F1 (F1mic) first sums counts (Ny, Correcty, Returnedy) for all labels

and then calculates the score from these sums. This results in more frequent labels

having more impact on the score.

It is easy to show that micro-averaged F1 is equal to Accuracy if each time step is assigned a

label (which is the case in this scenario). If N = Returned, the following relations hold:

Correct

N
= Precisionmic =

Correct

Returned
= Recallmic (6.7)

2 × Precisionmic ×Recallmic

Precisionmic + Recallmic

= F1mic = Precisionmic = Recallmic (6.8)

If we consider the definition of Accuracy (6.2), we see that it is equal to Recallmic, and

therefore equal to F1mic. ¤

For this reason, macro-averaged F1 scores will be given in this section.

A special case arises if Returnedy = 0 for label y; in this corner case, Recally is undefined

(division by zero). According to equation (6.6), F1 is then undefined, too. This situation will

82

Chapter 6 Experiments

be denoted using “N/A” in the results. The F1mac score is averaged over defined F1y scores

only; the same applies to Precisionmac and Recallmac.

Such denormalization usually only occurs for particularly infrequent labels; it is a strong in-

dication that multiple labels should be collapsed into a single category, or that more balanced

training data is required.

Tables 6.3 and 6.4 show Precisiony (P),Recally (R) and F1y for all labels of the sentence level

of CCOR-ALL and CRCG-ALL, respectively. Counts are computed over all three independent

test sets. The bottom row of the tables show estimated Precisionmac, Recallmac and F1mac for

the sentence level.

High scores are consistently achieved for CCOR-ALL. This is expected, since CCOR assumes a

scenario in which punctuation is dictated. The scores for CRCG-ALL, on the other hand, leave

quite a bit to be desired. First, this is due to punctuation being dictated only sporadically.

Second, sentence boundaries are often not unambiguous, since some speakers tend to dictate

in telegram style, which leaves room for different correct solutions. This means that some

label assignments that are counted as errors (because the assigned label does not correspond

to the reference annotation) are actually not so bad. Third, performance on the sentence

level suffers particularly from semi-automatic reference annotation. Quite often, the reference

labels are off by one or two time steps; this is an artifact of the relaxed alignment procedure.

Finally, speech recognition may have got word boundaries wrong, so that the actual sentence

boundary lies in the midst of a single token; obviously, the reference annotation of such cases

is a bit arbitrary.

WindowDiff is a metric which properly recognizes that boundaries which are off by a small

number of time steps are better than no boundary at all. WindowDiff results are given in

section 6.5; indeed, CRCG-ALL fares quite a bit better in that comparison.

F1 scores for the subsection level of CCOR-ALL and CRCG-ALL are given in tables 6.7 and

6.8. For brevity, only Begin labels are listed; these are the most interesting ones anyway. The

first thing the observant reader will notice is that in both tables, there is a number of labels

with extremely low counts. Performance is unsatisfying for such infrequent labels; in fact,

for both CCOR-ALL and CRCG-ALL, there is a clear trend that better scores are achieved for

more frequent labels. It may therefore be appropriate to reduce the number of distinct labels,

perhaps by building sensible clusters. These labels of low frequency also heavily impact the

macro-averaged scores.

In general, it can be noted that the scores of CCOR-ALL are still quite high (especially if

one considers the greater number of distinct labels); the scores achieved on CRCG-ALL, on

83

Chapter 6 Experiments

Label N Correct Returned P R F1

BeginBrain 3 0 0 N/A 0.00 N/A
BeginImmunologic 3 0 0 N/A 0.00 N/A
BeginSpeech 4 0 0 N/A 0.00 N/A
BeginPeripheralVascular 4 1 1 1.00 0.25 0.40
BeginStation 18 1 3 0.33 0.06 0.10
BeginEars 40 31 32 0.97 0.78 0.86
BeginCoordination 41 16 22 0.73 0.39 0.51
BeginReflexes 48 24 30 0.80 0.50 0.62
BeginCranialNerves 57 50 53 0.94 0.88 0.91
BeginSensory 59 24 32 0.75 0.41 0.53
BeginMotor 73 28 35 0.80 0.38 0.52
BeginBreasts 76 61 66 0.92 0.80 0.86
BeginNoseAndSinuses 81 65 70 0.93 0.80 0.86
BeginPelvic 98 82 89 0.92 0.84 0.88
BeginMouthAndThroat 116 102 113 0.90 0.88 0.89
BeginMentalStatus 119 102 109 0.94 0.86 0.89
BeginPsychiatric 141 131 133 0.98 0.93 0.96
BeginLymphNodes 144 126 132 0.95 0.88 0.91
BeginBack 155 146 146 1.00 0.94 0.97
BeginEyes 185 179 180 0.99 0.97 0.98
BeginHematologic 204 189 192 0.98 0.93 0.95
BeginAnoRectal 292 279 282 0.99 0.96 0.97
BeginEndocrine 325 319 321 0.99 0.98 0.99
BeginSkin 407 392 399 0.98 0.96 0.97
BeginHead 462 440 445 0.99 0.95 0.97
BeginRespiratory 503 487 495 0.98 0.97 0.98
BeginMusculoskeletal 539 520 527 0.99 0.96 0.98
BeginCardiac 539 523 529 0.99 0.97 0.98
BeginGenitourinary 554 540 546 0.99 0.97 0.98
BeginGastrointestinal 588 581 584 0.99 0.99 0.99
BeginNeck 1427 1410 1423 0.99 0.99 0.99
BeginHEENT 1448 1402 1429 0.98 0.97 0.97
BeginVitalSigns 1572 1565 1568 1.00 1.00 1.00
BeginNeurologic 1586 1538 1576 0.98 0.97 0.97
BeginExtremities 1627 1594 1612 0.99 0.98 0.98
BeginAbdomen 1670 1647 1658 0.99 0.99 0.99
BeginCardiovascular 1713 1667 1686 0.99 0.97 0.98
BeginThoraxAndLungs 1744 1698 1720 0.99 0.97 0.98
BeginGeneral 2062 2046 2060 0.99 0.99 0.99
BeginEnumelement 16740 16254 16588 0.98 0.97 0.98
BeginParagraph 21687 17851 21299 0.84 0.82 0.83
BeginNone 21753 21474 21648 0.99 0.99 0.99
. .

Total 1398218 1335024 1398218 0.90 0.77 0.85

Table 6.5: F1 for subsection level of CCOR-ALL (with post-processing)

84

Chapter 6 Experiments

Label N Correct Returned P R F1

BeginBrain 3 0 0 N/A 0.00 N/A
BeginImmunologic 3 0 0 N/A 0.00 N/A
BeginSpeech 4 0 0 N/A 0.00 N/A
BeginPeripheralVascular 4 0 0 N/A 0.00 N/A
BeginStation 18 2 6 0.33 0.11 0.17
BeginEars 32 11 23 0.48 0.34 0.40
BeginCoordination 41 3 14 0.21 0.07 0.11
BeginReflexes 48 8 29 0.28 0.17 0.21
BeginCranialNerves 57 7 59 0.12 0.12 0.12
BeginSensory 59 13 35 0.37 0.22 0.28
BeginMotor 73 9 62 0.15 0.12 0.13
BeginBreasts 74 31 39 0.79 0.42 0.55
BeginNoseAndSinuses 75 23 59 0.39 0.31 0.34
BeginPelvic 98 27 54 0.50 0.28 0.36
BeginMouthAndThroat 115 61 99 0.62 0.53 0.57
BeginMentalStatus 119 37 128 0.29 0.31 0.30
BeginPsychiatric 132 93 111 0.84 0.70 0.77
BeginBack 133 65 96 0.68 0.49 0.57
BeginLymphNodes 143 65 91 0.71 0.45 0.56
BeginEyes 173 95 152 0.62 0.55 0.58
BeginHematologic 190 103 149 0.69 0.54 0.61
BeginAnoRectal 291 214 279 0.77 0.74 0.75
BeginEndocrine 311 208 272 0.76 0.67 0.71
BeginSkin 390 258 371 0.70 0.66 0.68
BeginHead 454 356 439 0.81 0.78 0.80
BeginRespiratory 486 319 480 0.66 0.66 0.66
BeginMusculoskeletal 519 370 501 0.74 0.71 0.73
BeginCardiac 525 383 540 0.71 0.73 0.72
BeginGenitourinary 529 366 513 0.71 0.69 0.70
BeginGastrointestinal 566 424 589 0.72 0.75 0.73
BeginNeck 1410 1143 1463 0.78 0.81 0.80
BeginHEENT 1427 1062 1544 0.69 0.74 0.71
BeginNeurologic 1549 1114 1763 0.63 0.72 0.67
BeginVitalSigns 1550 1173 1650 0.71 0.76 0.73
BeginExtremities 1601 1285 1747 0.74 0.80 0.77
BeginAbdomen 1647 1383 1718 0.81 0.84 0.82
BeginCardiovascular 1695 1283 1732 0.74 0.76 0.75
BeginThoraxAndLungs 1725 1353 1771 0.76 0.78 0.77
BeginGeneral 2008 1587 2278 0.70 0.79 0.74
BeginEnumelement 16192 9332 14162 0.66 0.58 0.61
BeginNone 18571 14336 19554 0.73 0.77 0.75
BeginParagraph 20542 13109 23146 0.57 0.64 0.60
. .

Total 1251267 1074773 1251267 0.62 0.52 0.59

Table 6.6: F1 for subsection level of CRCG-ALL (with post-processing)

85

Chapter 6 Experiments

the other hand, indicate that usable performance can only be achieved for the more frequent

labels.

Finally, tables 6.7 and 6.8 give the results for the section level of CCOR-ALL and CRCG-ALL.

The situation is a bit better here compared to the subsection level; however, again, there

are labels that occur hardly at all in the corpora. The results also indicate that some types of

sections can be identified much more reliably than others. Unsurprisingly, the scores achieved

on CCOR-ALL are quite a bit higher; this can mostly be attributed to the fact that headings are

dictated more consistently, and that there aren’t any speech recognition errors which obfuscate

dictated headings.

Overall, the macro-averaged F1 scores may suggest worse performance than is actually the

case; label prediction works pretty well for those labels that do occur frequently in the cor-

pora. This is also reflected in the relatively high Accuracy scores. The findings do indicate,

however, that the set of labels may have to be reduced in a sensible way, or that more training

data is needed.

86

Chapter 6 Experiments

Label N Correct Returned P R F1

BeginPrognosis 1 0 0 N/A 0.00 N/A
BeginAdvanceDirectives 1 0 0 N/A 0.00 N/A
BeginNotes 1 0 0 N/A 0.00 N/A
Prognosis 2 0 0 N/A 0.00 N/A
BeginCourse 6 0 0 N/A 0.00 N/A
BeginProcedures 8 2 2 1.00 0.25 0.40
Notes 11 0 0 N/A 0.00 N/A
BeginTime 30 22 24 0.92 0.73 0.81
AdvanceDirectives 62 0 0 N/A 0.00 N/A
BeginFindings 77 65 67 0.97 0.84 0.90
BeginNeurologic 120 95 102 0.93 0.79 0.86
BeginChiefComplaints 127 121 122 0.99 0.95 0.97
Course 209 0 0 N/A 0.00 N/A
Time 299 261 777 0.34 0.87 0.49
BeginHabits 308 273 284 0.96 0.89 0.92
BeginPractitioner 488 469 472 0.99 0.96 0.98
Procedures 501 94 94 1.00 0.19 0.32
BeginDiagnosisAndPlan 519 454 513 0.88 0.87 0.88
BeginPastSurgicalHistory 964 927 938 0.99 0.96 0.97
BeginPlan 1171 1061 1105 0.96 0.91 0.93
ChiefComplaints 1240 726 730 0.99 0.59 0.74
BeginReviewOfSystems 1496 1477 1493 0.99 0.99 0.99
BeginDiagnosticStudies 1532 1461 1497 0.98 0.95 0.96
BeginMedication 1541 1509 1525 0.99 0.98 0.98
BeginAllergies 1542 1520 1529 0.99 0.99 0.99
BeginDiagnosis 1619 1577 1619 0.97 0.97 0.97
BeginReasonForEncounter 1646 1630 1661 0.98 0.99 0.99
BeginHistoryOfPresentIllness 1898 1868 1896 0.99 0.98 0.98
BeginPhysicalExamination 1948 1941 1945 1.00 1.00 1.00
BeginPastHistory 3074 3006 3123 0.96 0.98 0.97
Findings 3123 2495 2711 0.92 0.80 0.86
Practitioner 4334 3966 4402 0.90 0.92 0.91
Habits 7571 6903 7314 0.94 0.91 0.93
Allergies 8361 8159 8914 0.92 0.98 0.94
PastSurgicalHistory 16646 15982 16786 0.95 0.96 0.96
Neurologic 18383 15810 16505 0.96 0.86 0.91
ReasonForEncounter 42327 41734 44486 0.94 0.99 0.96
Medication 44595 43967 44899 0.98 0.99 0.98
DiagnosisAndPlan 65290 57905 65851 0.88 0.89 0.88
ReviewOfSystems 85744 84278 85040 0.99 0.98 0.99
Plan 104386 93373 96522 0.97 0.89 0.93
DiagnosticStudies 105764 101361 106275 0.95 0.96 0.96
Diagnosis 123488 116736 126298 0.92 0.95 0.93
PastHistory 127348 125161 128131 0.98 0.98 0.98
PhysicalExamination 255692 254475 259970 0.98 1.00 0.99
HistoryOfPresentIllness 362725 357932 362596 0.99 0.99 0.99

Total 1398218 1350796 1398218 0.95 0.73 0.90

Table 6.7: F1 for section level of CCOR-ALL (with post-processing)

87

Chapter 6 Experiments

Label N Correct Returned P R F1

Prognosis 1 0 0 N/A 0.00 N/A
BeginPrognosis 1 0 0 N/A 0.00 N/A
BeginAdvanceDirectives 1 0 0 N/A 0.00 N/A
BeginCourse 6 0 1 0.00 0.00 N/A
BeginTime 8 0 0 N/A 0.00 N/A
BeginProcedures 8 0 0 N/A 0.00 N/A
AdvanceDirectives 37 0 0 N/A 0.00 N/A
BeginFindings 77 42 55 0.76 0.55 0.64
BeginChiefComplaints 119 83 89 0.93 0.70 0.80
BeginNeurologic 120 37 110 0.34 0.31 0.32
BeginPractitioner 145 85 98 0.87 0.59 0.70
Time 154 0 0 N/A 0.00 N/A
Course 198 0 14 0.00 0.00 N/A
BeginHabits 303 129 267 0.48 0.43 0.45
Procedures 473 0 0 N/A 0.00 N/A
BeginDiagnosisAndPlan 520 239 586 0.41 0.46 0.43
BeginPastSurgicalHistory 947 668 948 0.70 0.71 0.71
ChiefComplaints 977 495 1286 0.38 0.51 0.44
BeginPlan 1169 712 1547 0.46 0.61 0.52
Practitioner 1234 318 2030 0.16 0.26 0.19
BeginReasonForEncounter 1338 1135 1261 0.90 0.85 0.87
BeginReviewOfSystems 1480 1126 1585 0.71 0.76 0.73
BeginAllergies 1516 1099 1523 0.72 0.72 0.72
BeginMedication 1517 1128 1600 0.70 0.74 0.72
BeginDiagnosticStudies 1520 1016 1680 0.60 0.67 0.64
BeginDiagnosis 1612 1204 1730 0.70 0.75 0.72
BeginHistoryOfPresentIllness 1879 1426 2144 0.67 0.76 0.71
BeginPhysicalExamination 1943 1420 1999 0.71 0.73 0.72
Findings 2810 1714 2400 0.71 0.61 0.66
BeginPastHistory 3042 2156 3463 0.62 0.71 0.66
Habits 6404 3708 6012 0.62 0.58 0.60
Allergies 8310 5927 11043 0.54 0.71 0.61
PastSurgicalHistory 15105 12034 17034 0.71 0.80 0.75
Neurologic 17540 9505 13850 0.69 0.54 0.61
ReasonForEncounter 36083 10389 22814 0.46 0.29 0.35
Medication 39580 35419 43582 0.81 0.89 0.85
DiagnosisAndPlan 63944 33904 51909 0.65 0.53 0.59
ReviewOfSystems 73828 65456 73710 0.89 0.89 0.89
DiagnosticStudies 90764 81265 101055 0.80 0.90 0.85
Plan 97415 75320 104530 0.72 0.77 0.75
PastHistory 112300 97538 130032 0.75 0.87 0.80
Diagnosis 116052 82103 109528 0.75 0.71 0.73
PhysicalExamination 209832 187954 204178 0.92 0.90 0.91
HistoryOfPresentIllness 338955 302438 335574 0.90 0.89 0.90

Total 1251267 1019192 1251267 0.63 0.52 0.66

Table 6.8: F1 for section level of CRCG-ALL (with post-processing)

88

Chapter 6 Experiments

6.4 Confusion

Apart from the fraction of errors, the nature of these errors may also be of interest. In partic-

ular, it may be enlightening to study the confusion of labels, i.e., which labels y′ are typically

predicted instead of a given reference label y.

Such analysis is particularly useful for the section level of our corpora. The section level is

completely dissected into a number of typed sections; a wrongly assigned label means here

that a token has been attributed to a wrong section type. We would then like to know which

section types are typically confused; this may be helpful in determining a better set of section

types and allows for further insight into the typical contents of sections.

For this purpose, confusion plots were drawn for both CCOR-ALL and CRCG-ALL (see figures

6.3 and 6.4). The dots in these plots indicate how often label y′ given on the y-axis has been

predicted instead of reference label y given on the x-axis. The bigger the dot, the higher the

number of confusions. If an algorithm works fairly well, the dots in the diagonal will usually

be the biggest ones (since the correct label will have been assigned most of the time).

The plots for the two corpora are rather similar, except that on CRCG-ALL, a lot more errors

occurred, so a slightly lower part of the mass is distributed over the diagonal. However, the

prominent confusions are typically the same as on CCOR-ALL, with the only difference being

that they are even more frequent.

Very commonly, DiagnosisAndPlan is confused with Diagnosis or Plan (and vice versa).

This is not particularly surprising: Ideally, the DiagnosisAndPlan label would not even

exist; however, some practitioners tend to dictate such a combined section rather than separate

Diagnosis and Plan sections. Typically, the contents is intermingled, so it’s not possible to

simply split such sections either.

Another frequent mistake is the confusion of sections of type HistoryOfPresentIllness

with ReasonForEncounter (and the other way around). These section types are rather simi-

lar with regards to the vocabulary that is used, and, furthermore, they usually occur right after

each other. This makes it hard to find the proper section boundary if headings are not dictated.

What makes the task even more difficult is that not all speakers correctly distinguish between

these section types, thereby introducing inconsistencies in the training data.

Finally, Neurologic is often confused with PhysicalEximination, which is due to the

fact that some speakers prefer to make Neurologic a section of its own, whereas others

89

Chapter 6 Experiments

Prognosis

AdvanceDirectives

Time

ChiefComplaints

Practitioner

Allergies

Neurologic

Medication

ReviewOfSystems

DiagnosticStudies

PastHistory

HistoryOfPresentIllness

PhysicalExamination

Diagnosis

Plan

DiagnosisAndPlan

ReasonForEncounter

PastSurgicalHistory

Habits

Findings

Procedures

Course

Notes

P
ro

g
n

o
s
is

A
d

v
a

n
c
e

D
ir
e

c
ti
v
e

s

T
im

e

C
h

ie
fC

o
m

p
la

in
ts

P
ra

c
ti
ti
o

n
e

r

A
lle

rg
ie

s

N
e

u
ro

lo
g

ic

M
e

d
ic

a
ti
o

n

R
e

v
ie

w
O

fS
y
s
te

m
s

D
ia

g
n

o
s
ti
c
S

tu
d

ie
s

P
a

s
tH

is
to

ry

H
is

to
ry

O
fP

re
s
e

n
tI
lln

e
s
s

P
h

y
s
ic

a
lE

x
a

m
in

a
ti
o

n

D
ia

g
n

o
s
is

P
la

n

D
ia

g
n

o
s
is

A
n

d
P

la
n

R
e

a
s
o

n
F

o
rE

n
c
o

u
n

te
r

P
a

s
tS

u
rg

ic
a

lH
is

to
ry

H
a

b
it
s

F
in

d
in

g
s

P
ro

c
e

d
u

re
s

C
o

u
rs

e

N
o

te
s

p
re

d
ic

te
d

 l
a
b
e
l

expected label

scale: 1/2 diameter means 1/16 absolute count

Figure 6.3: Confusion plot for section level of CCOR-ALL (with post-processing)

90

Chapter 6 Experiments

Prognosis

Time

Procedures

Practitioner

Habits

PastSurgicalHistory

ReasonForEncounter

DiagnosisAndPlan

DiagnosticStudies

PastHistory

PhysicalExamination

HistoryOfPresentIllness

Diagnosis

Plan

ReviewOfSystems

Medication

Neurologic

Allergies

Findings

ChiefComplaints

Course

AdvanceDirectives

P
ro

g
n

o
s
is

T
im

e

P
ro

c
e

d
u

re
s

P
ra

c
ti
ti
o

n
e

r

H
a

b
it
s

P
a

s
tS

u
rg

ic
a

lH
is

to
ry

R
e

a
s
o

n
F

o
rE

n
c
o

u
n

te
r

D
ia

g
n

o
s
is

A
n

d
P

la
n

D
ia

g
n

o
s
ti
c
S

tu
d

ie
s

P
a

s
tH

is
to

ry

P
h

y
s
ic

a
lE

x
a

m
in

a
ti
o

n

H
is

to
ry

O
fP

re
s
e

n
tI
lln

e
s
s

D
ia

g
n

o
s
is

P
la

n

R
e

v
ie

w
O

fS
y
s
te

m
s

M
e

d
ic

a
ti
o

n

N
e

u
ro

lo
g

ic

A
lle

rg
ie

s

F
in

d
in

g
s

C
h

ie
fC

o
m

p
la

in
ts

C
o

u
rs

e

A
d

v
a

n
c
e

D
ir
e

c
ti
v
e

s

p
re

d
ic

te
d

 l
a
b
e
l

expected label

scale: 1/2 diameter means 1/16 absolute count

Figure 6.4: Confusion plot for section level of CRCG-ALL (with post-processing)

91

Chapter 6 Experiments

dictate it as a subsection of the PhysicalExamination section. Obviously, this reduces the

discriminative effect of BOW features.

In general, most confusions seem to be rather intuitive. The section types that are typically

confused with each other really do bear a lot of resemblance. This is a reassuring result, since

it shows that most errors on the section level are not grave; rather, the “correct” type of a

section may even be debatable at times.

6.5 Estimated WindowDiff

WindowDiff is an evaluation metric for segmentation algorithms. It measures how accu-

rately segment boundaries are determined. Two compelling properties of WindowDiff are

that “near misses” are penalized less strongly, and that “false positives” and “false negatives”

are assigned equal penalties.

WindowDiff is defined by Pevzner and Hearst as follows (see [PH02]):

WindowDiff(ref, hyp) =
1

N − k

N−k
∑

i=1

(|b(refi, refi+k) − b(hypi, hypi+k)| > 0) (6.9)

where b(i, j) represents the number of boundaries between positions i and j in the text,N rep-

resents the number of “sentences” in the text and k is half the average length of a “sentence”

in the reference annotation.

The notion of “sentences” in their definition is dependent on the task and should not be con-

fused with natural language sentences. Rather, they denote atomic items that are grouped into

segments by a segmentation algorithm. In our case, these atomic items are tokens, and they

are grouped into sections, subsections, paragraphs, and such (depending on the level).

WindowDiff works as follows: for each position of the probe, it compares how many refer-

ence segmentation boundaries fall in this interval (b(refi, refi+k)), versus how many bound-

aries are assigned by the algorithm (b(hypi, hypi+k)); the algorithm is penalized if these num-

bers differ.WindowDiff is normalized such that it will return a number between 0 and 1, with

0 indicating perfect segmentation and 1 indicating the worst possible algorithm.

Table 6.9 shows the WindowDiff scores for all levels of CCOR-ALL, with and without post-

processing. Table 6.10 gives the same numbers for CRCG-ALL. It should be noted that

WindowDiff does not take into account the type of a segment (i.e., the concrete label); only

92

Chapter 6 Experiments

Estimated WindowDiff

WindowDiff ±
Sentence Level 0.007 0.000
Subsection Level 0.052 0.007
Section Level 0.036 0.007

(a) without post-processing

Estimated WindowDiff

WindowDiff ±
Sentence Level 0.007 0.000
Subsection Level 0.050 0.007
Section Level 0.015 0.001

(b) with post-processing

Table 6.9: WindowDiff for CCOR-ALL

Estimated WindowDiff

WindowDiff ±
Sentence Level 0.193 0.008
Subsection Level 0.148 0.002
Section Level 0.126 0.013

(a) without post-processing

Estimated WindowDiff

WindowDiff ±
Sentence Level 0.193 0.008
Subsection Level 0.149 0.005
Section Level 0.118 0.013

(b) with post-processing

Table 6.10: WindowDiff for CRCG-ALL

the position of boundaries is relevant. In order to computeWindowDiff for the levels of the

two corpora, any label starting with Begin was assumed to denote a boundary; the trivial

boundaries at the very beginning of an instance were not counted.

First, it can be noted that post-processing does not seem to affect the WindowDiff scores

strongly, with the notable exception of the section level. In particular on CCOR-ALL, the

WindowDiff score of the section level is improved substantially by post-processing; on this

corpus, post-processing can eliminate spurious section boundaries by relying on headings.

Overall, the scores are quite good, even for CRCG-ALL – especially compared to the low

macro-averaged F1 scores. Part of this is due to the fact thatWindowDiff does not account for

type confusions; the other part can be attributed toWindowDiff penalizing “near misses” less

strongly. TheWindowDiff scores do not suffer as badly from inaccurate reference annotation

for this reason. It is hard to specify a concrete threshold, butWindowDiff scores consistently

below 0.2 certainly do promise usable segmentation quality for the purposes of this thesis.

93

Chapter 6 Experiments

Estimated Accuracies

Accuracy ±
Average 90.28% 0.51
Chain 0 99.58% 0.08
Chain 1 90.13% 0.67
Chain 2 81.13% 1.70
Joint 75.38% 1.25

(a) without post-processing

Estimated Accuracies

Accuracy ±
Average 96.48% 0.82
Chain 0 99.55% 0.08
Chain 1 94.64% 0.23
Chain 2 95.25% 2.16
Joint 90.65% 2.15

(b) with post-processing

Table 6.11: Accuracy achieved on CCOR-BEST

Estimated Accuracies

Accuracy ±
Average 86.04% 1.75
Chain 0 93.80% 0.66
Chain 1 86.08% 1.59
Chain 2 78.24% 3.24
Joint 67.11% 3.74

(a) without post-processing

Estimated Accuracies

Accuracy ±
Average 87.73% 2.07
Chain 0 93.77% 0.68
Chain 1 87.59% 1.79
Chain 2 81.81% 3.79
Joint 70.91% 4.50

(b) with post-processing

Table 6.12: Accuracy achieved on CRCG-BEST

6.6 The Effect of Noisy Training Data

Measuring the effect of the imprecise reference annotation of CRCG is a difficult task; in fact,

without corresponding manual annotation, it is impossible to give exact numbers.

However, a simple experiment may serve to give a rough feeling of the impact on prediction

accuracy: A subset of CRCG was compiled which comprises the 1002 reports that yielded the

lowest Word Error Rate (WER) when aligned with their counterparts of CCOR. This subset

will be referred to as CRCG-BEST , while the subset of corresponding reports from CCOR will

be called CCOR-BEST . Accuracy was then determined for CCOR-BEST and CRCG-BEST using

three-fold cross-validation as previously described for CCOR-ALL and CRCG-ALL.

The results of this experiment are shown in tables 6.11 and 6.12. If these numbers are com-

pared to the Accuracy scores achieved on CCOR-ALL and CRCG-ALL, one can see that overall

accuracy decreased for CCOR-BEST , whereas we see an increase for CRCG-BEST . This effect

can be attributed to two different phenomena:

94

Chapter 6 Experiments

• Since CRCG-BEST contains those reports for which alignment worked particularly well,

it is safe to assume that the reference annotation created for these reports is better than

that of an average report of CRCG-ALL. This helps parameter estimation by decreasing

noise and reduces the number of label predictions that are erroneously counted as a

misprediction.

• Part of the effect, however, must also be attributed to the fact that the reports inCRCG-BEST

typically contain fewer speech recognition errors (which, in turn, facilitated alignment).

Sadly, it is not possible to isolate these effects; still, the experiment shows that proper manual

annotation of CRCG may result in significant performance gains.

6.7 Further Analysis of Training Progress

Subsection 6.1.1 showed plots indicating the progress of the loss function during training (see

figures 6.1 and 6.2). The parameter optimization algorithm (e.g., LBFGS) is typically iterated

until there is no further progress.

The actual goal, however, is not to minimize the loss function (which is computed over the

training set), but to maximize some performance metric over the test set. The loss function is

usually chosen such that one can expect it to behave similar to the performance metric; i.e.,

by minimizing the loss function, the score of the performance metric will be optimized. This

need not be the case in general. For instance, without regularization, it may happen that the

performance on the test set starts decreasing after some point, because overfitting sets in.

An experiment was performed that compares the progress of the Accuracy metric on a vali-

dation set to the progress of the loss function (negative penalized conditional log-likelihood,

in this case) on a training set. The training and validation sets were compiled as follows: the

instances in CCOR were shuffled first; then the first third (669 instances) was taken for the val-

idation set, whereas the remaining two thirds formed the training set. These two sets will be

referred to as CCOR-V AL. The same process was applied to CRCG, resulting in CRCG-V AL

For both corpora, a single training run was performed on the training set; Accuracy on the

validation set was computed using the intermediate CRF parameters θt every 5 iterations

of LBFGS. The progress of the loss function was then plotted against the progress of the

Accuracy metric. Figures 6.5 and 6.6 show these plots.

95

Chapter 6 Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

re
la

ti
v
e
 l
o
s
s
 /

 a
c
c
u
ra

c
y
 (

%
)

number of iterations

Loss on training set
Accuracy on validation set

Figure 6.5: Progress of accuracy vs. loss function on CCOR-V AL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800

re
la

ti
v
e

 l
o

s
s
 /
 a

c
c
u

ra
c
y
 (

%
)

number of iterations

Loss on training set
Accuracy on validation set

Figure 6.6: Progress of accuracy vs. loss function on CRCG-V AL

96

Chapter 6 Experiments

Converged (%) Iterations (∅)

CCOR-ALL 0.999 15.4
CRCG-ALL 0.911 66.5
CCOR-BEST 0.999 14.2
CRCG-BEST 0.971 37.5

Table 6.13: Convergence Behavior of TRP

The plots demonstrate that the progress of the loss function corresponds well to that of the

Accuracy metric, although the latter tends to flatten out quite a bit sooner. It might be tempt-

ing to interrupt training well before the loss function has reached its minimum if there is no

more progress in performance on a validation set; this approach is called “early stopping”

and is often applied in the neural networks community in order to avoid overfitting. However,

the regularization applied to parameter estimation of CRFs is a more principled approach

which protects against overfitting anyway (it does not cut down on training time, though).

Furthermore, the author noticed that CRF parameters seem to be strongly biased towards la-

bels of high frequency during earlier stages of training; this is sufficient for reaching a good

Accuracy score, but other metrics such as macro-averaged F1 may suffer.

6.8 Preliminary Analysis of Convergence Behavior

Subsection 4.3.2 revealed that loopy belief propagation, the inference algorithm typically

used for determining marginals and the MAP configuration, is not guaranteed to converge

in all cases. While this limitation could be avoided during CRF training (by maximizing

pseudolikelihood instead of “true” likelihood), it became apparent when labeling instances of

the test sets.

As indicated in subsection 6.1.1, instances were labeled using TRP, a particular schedule

for loopy belief propagation. The TRP implementation was set to perform a maximum of

1000 iterations (which is more than enough in most cases). Table 6.13 shows the percentage

of instances for which TRP converged (i.e., required fewer than 1000 iterations), as well as

the average number of iterations required if TRP converged. Both numbers are given for

CCOR-ALL, CRCG-ALL, CCOR-BEST and CRCG-BEST .

The first thing which stands out is that the convergence behavior of TRP is much worse on

the CRCG corpora than on their CCOR counterparts. The reasons for this behavior are not

completely clear; presumably, the greater noise in the CRCG corpora, along with sometimes

97

Chapter 6 Experiments

contradictory reference annotation, have negative impact on convergence. Preliminary obser-

vations by the author also seem to indicate that convergence is related to how similar instances

in the training and test sets are. In general, variance is much greater in the CRCG corpora, so

chances are bigger that some instances in the test sets are unlike any instances in the training

sets.

Another interesting observation is that convergence typically occurs much sooner onCRCG-BEST

than on CRCG-ALL. This supports the assumption that erroneous reference annotation nega-

tively affects the convergence behavior of TRP on unseen instances; however, the lower rate

of speech recognition errors in CRCG-BEST may also contribute to this effect.

98

Chapter 7

Conclusion and Outlook

“ The best way to predict the future is
to invent it. ”

– Alan Kay

A lot has been achieved throughout the course of this thesis: The experiments performed in

the previous section indicate that the presented approach may indeed prove to be applicable

in practice. However, some refinement may be required: In particular, the semi-automatic

annotation process described in section 3.3 results in inferior performance, compared to a

manually annotated corpus. This was to be expected, though, and overall, the estimated accu-

racy is still sufficient for a wide area of applications. Furthermore, the experiments indicate

that better performance can be achieved by using a coarser (and more sensible) set of section

and subsection types.

The actual practicability of the framework for further processing of dictated reports remains to

be seen. Early experiments are promising, but manual improvement of the semi-automatically

created annotation might become necessary in order to straighten out systematic errors. In

general, most of what is required is in place and works sufficiently well. Still, there is certainly

room for further in-depth analysis and new experiments. Some of these potential tasks will

be presented in this chapter; they can be broken down into two distinct categories:

• First, there are some remaining challenges with regards to structure identification; these
should be analyzed and remedied, if necessary.

• Second, as mentioned in the introduction, identification of structure is only the begin-
ning. The resulting information needs to be put to use in order to create reports that are

properly arranged and formatted.

99

Chapter 7 Conclusion and Outlook

7.1 Remaining Challenges

While the approach presented in this thesis works fine in general, there are still some rough

edges that may have to be smoothed out; additionally, some investigations that could yield

interesting results have not been performed thus far:

• Further analysis of convergence behavior could yield interesting insights. In particular,
it would be useful to establish a catalog of sufficient criteria for rapid convergence of

loopy belief propagation. Such results are desirable both from a theoretic and a practical

point of view. Alternatively, the use of other (ideally approximate) inference algorithms

with guaranteed convergence properties should be explored.

• More principled feature selection may be indicated. In particular, the influence of fea-
tures derived from UMLS should be studied thoroughly. If the same performance could

be achieved without using UMLS, this large and resource-intensive knowledge source

could be abandoned. Furthermore, it may be helpful to explore the use of more ad-

vanced topic modeling techniques, such as latent Dirichlet allocation (see [Wal06]).

Alternatively, class probabilities as determined by a separate local classifier, such as a

SVM-based model, might be used as input features for the CRF model.

• The post-processing algorithms that are currently applied after CRF-based labeling do
work well, but they are inelegant from a theoretic point of view. Further research on

constrained CRF inference may provide more satisfying results.

• It may also be interesting to compare the performance achieved by training on a semi-
automatically annotated corpus to that of a manually annotated corpus, once (if) such a

corpus becomes available in the future.

• Another promising attempt would be to work on the word graph produced by Automatic
Speech Recognition (ASR), rather than on the single best path only. In particular, this

may help for reports with high error rates, assuming other paths in the word graph

contain correct solutions.

• Finally, determining theM best label configurations is not currently supported. A suit-

able algorithm has been proposed by Yanover and Weiss ([YW04]); implementing it

may be worthwhile, since it enhances flexibility for further processing and decreases

loss of information between loosely coupled components.

Probably, not all of these potential tasks will be completed; their importance greatly depends

on the demands of further processing, which are still emerging.

100

Chapter 7 Conclusion and Outlook

7.2 Further Processing

Currently, two scenarios of further processing are actively pursued which will put the structure

identification framework presented in this thesis to use:

• First, the results of this thesis will serve as the basis of a transformation framework for
producing properly structured, formatted and phrased reports that conform to the for-

mal and informal requirements of the respective domain. Once the underlying structure

has been identified in a report dictation, transformation rules can be applied that ensure

these requirements are met. Ultimately, the goal is to enhance speech recognition sys-

tems such that they automatically perform many tasks which are routinely carried out

by professional transcriptionists today.

• Second, the output of structure identification will serve to improve the error rate of ASR
by allowing for segment-specific language models. The section and subsection types

identified in this thesis are typically characterized by the use of different vocabulary;

choosing a specific language model may therefore result in significant performance

gains. One possible architecture might be to perform a second pass of speech recogni-

tion after the different segments of a report have been identified; however, architectures

involving online adaptation of the language model may also be feasible.

Other applications may arise as the framework matures and its potential is fully exploited.

Finally, VieCRF, the easily reusable CRF implementation that lies at the heart of the structure

identification framework will certainly be applied to numerous other challenging machine

learning tasks.

101

Chapter 8

Summary

“ People take the longest possible paths, digress to
numerous dead ends, and make all kinds of mis-

takes. Then historians come along and write sum-

maries of this messy, nonlinear process and make it

appear like a simple, straight line. ”

– Dean Kamen

A framework has been established in this thesis which allows for identification of structure in

report dictations. Unformatted raw output of Automatic Speech Recognition (ASR) serves as

the input to this mechanism. This ensures loose coupling and, consequently, equal applicabil-

ity to any concrete ASR implementation.

The framework can identify the boundaries of sentences, paragraphs, enumerations, subsec-

tions, sections and various other structural elements occurring in a dictation, even if no explicit

clues are dictated. Furthermore, meaningful types are automatically assigned to subsections

and sections. These types provide valuable information for various tasks; they may be used

to automatically assign headings, if none were dictated, for instance.

Reports from the medical domain have been used as a showcase and for evaluation of the

framework; however, the framework can easily be applied to other domains just as well.

A mechanism has been presented that exploits the potential of parallel corpora for semi-

automatic annotation of data. Using formatted reports that were manually edited by transcrip-

tionists, and the corresponding raw output of speech recognition, reference annotation can be

generated that is suitable for learning how to identify structure in the latter representation.

102

Chapter 8 Summary

Conditional Random Fields (CRFs), a recently introduced probabilistic framework for la-

beling sequences and more general structures, lie at the heart of the structure identification

mechanism. Through the course of this thesis, VieCRF, an efficient and scalable CRF soft-

ware package has been developed. VieCRF is publicly available and supports numerous al-

gorithms for both inference and parameter estimation.

Multiple experiments have been performed using VieCRF. For this purpose, CRF models

were trained using parts of the aforementioned, semi-automatically annotated corpus. The

other, unseen parts of the corpus were then labeled automatically. Various performance met-

rics were computed from the labeled data in a three-fold cross-validation setting. These re-

sults have been presented and discussed thoroughly. They confirm the practicability of the

approach pursued in this thesis and give rise to a number of interesting questions which may

be clarified in follow-up studies.

103

Appendix A

Acronyms

“ I’m perplexed when people adopt
the modish abbreviation Ms., which

doesn’t abbreviate anything except

common sense. ”

– Dick Cavett

API Application Programming Interface

ASR Automatic Speech Recognition

ASTM American Society for Testing and Materials

BFGS Broyden-Fletcher-Goldfarb-Shanno

BOW Bag-of-Words

CLT Central Limit Theorem

CRF Conditional Random Field

DCRF Dynamic Conditional Random Field

FCRF Factorial Conditional Random Field

GRMM Graphical Models In Mallet

HMM Hidden Markov Model

IID independent and identically distributed

ILP Integer Linear Programming

IPP Integrated Performance Primitives

104

Appendix A Acronyms

LBFGS Limited Memory BFGS

LOC Lines Of Code

MAP Maximum a Posteriori

MLE Maximum Likelihood Estimation

NLP Natural Language Processing

OLBFGS Online LBFGS

POD Plain Old Documentation - Perl’s documentation format

POS Part-of-Speech

RHG Regular Hedge Grammar

SVM Support Vector Machine

TRP Tree-based Reparameterization

UMLS Unified Medical Language System

VieCRF Vienna Conditional Random Field Toolkit

WER Word Error Rate

105

Appendix B

Bibliography

“ If we steal thoughts from the moderns, it will be
cried down as plagiarism; if from the ancients, it

will be cried up as erudition. ”
– Charles Caleb Colton

[ADW94] C. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision rules for

text categorization. ACM Transactions on Information Systems, 12(3):233–251,

1994.

[Bra00] Thorsten Brants. TnT: a statistical part-of-speech tagger. In Proceedings of the

sixth conference on Applied natural language processing, pages 224–231, 2000.

[Cho00] Freddy Choi. Advances in domain independent linear text segmentation. In

Proceedings of the first conference on North American chapter of the Association

for Computation Linguistics, pages 26–33, 2000.

[CS96] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text catego-

rization. In Hans-Peter Frei, Donna Harman, Peter Schäuble, and Ross Wilkin-

son, editors, Proceedings of SIGIR-96, 19th ACM International Conference on

Research and Development in Information Retrieval, pages 307–315, Zürich,

CH, 1996. ACM Press, New York, US.

[GS86] E. R. Gabrieli and David J. Speth. Automated analysis of the discharge summary.

Journal of Clinical Computing, 15:1–28, 1986.

106

Appendix B Bibliography

[HANS90] P. J. Hayes, P. M. Andersen, I. B. Nirenburg, and L. M. Schmandt. TCS: A shell

for content-based text categorization. In Proceedings of the Sixth IEEE CAIA,

pages 320–326, 1990.

[Hea97] Marti A. Hearst. Texttiling: Segmenting text into multi-paragraph subtopic pas-

sages. Computational Linguistics, 23(1):36–47, 1997.

[HJK+06] Martin Huber, Jeremy Jancsary, Alexandra Klein, Johannes Matiasek, and Harald

Trost. Mismatch interpretation by semantics-driven alignment. In Proceedings

of KONVENS ’06, 2006.

[Int02] ASTM International. ASTM E2184-02: Standard specification for healthcare

document formats, 2002.

[JGJS99] Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul.

An introduction to variational methods for graphical models. Machine Learning,

37(2):183–233, 1999.

[Joa98] T. Joachims. Text categorization with support vector machines: learning with

many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Pro-

ceedings of ECML-98, 10th European Conference on Machine Learning, pages

137–142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

[KFL01] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor

graphs and the sum-product algorithm. IEEE Transactions on Information The-

ory, 47(2):498–519, February 2001.

[Kud05] Taku Kudo. CRF++: Yet another CRF toolkit.

http://crfpp.sourceforge.net/, 2005.

[LALS07] S. Lamprier, T. Amghar, B. Levrat, and F. Saubion. Seggen: A genetic algorithm

for linear text segmentation. In Proceedings of International Joint Conference on

Artificial Intelligence (IJCAI), 2007.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[LHM93] D. A. B. Lindberg, B. L. Humphreys, and A. T. McCray. The Unified Medical

Language System. Methods of Information in Medicine, 32:281–291, 1993.

[LMP01] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random

Fields: Probabilistic models for segmenting and labeling sequence data. In

Proceedings of the Eighteenth International Conference on Machine Learning

(ICML), 2001.

107

http://crfpp.sourceforge.net/

Appendix B Bibliography

[LSLT05] Man Lan, Sam-Yuan Sung, Hwee-Boon Low, and Chew-Lim Tan. A compara-

tive study on term weighting schemes for text categorization. In Proceedings of

International Joint Conference on Neural Networks, 2005.

[Mat03] Evgeny Matsuov. Statistical methods for text segmentation and topic detection.

Master’s thesis, Rheinisch-Westfälische Technische Hochschule Aachen, 2003.

[MB94] G. William Moore and Jules J. Berman. Automatic SNOMED coding. In Pro-

ceedings of the 18th Annual Symposium on Computer Applications in Medical

Care, JAMIA Symposium Supplement, pages 225–229, 1994.

[MCP05] Ryan McDonald, Koby Crammer, and Fernando Pereira. Flexible text segmenta-

tion with structured multilabel classification. In Proceedings of Human Language

Technology Conference and Conference on Empirical Methods in Natural Lan-

guage Processing (HLT/EMNLP), pages 987–994, 2005.

[MS06] Kevin Murphy and Mark Schmidt. Conditional Random Field (CRF) toolbox for

Matlab. http://www.cs.ubc.ca/~murphyk/Software/CRF/crf.html,

2006.

[Mur00] M. Murata. Hedge automata: a formal model for XML schemata. Web page,

2000. http://www.xml.gr.jp/relax/hedge_nice.html.

[MvG+98] P. Mulbregt, I. van, L. Gillick, S. Lowe, and J. Yamron. Text segmentation and

topic tracking on broadcast news via a hidden markov model approach. In In

Proceedings of the ICSLP’98, volume 6, pages 2519–2522, 1998.

[Noc80] Jorge Nocedal. Updating Quasi-Newton matrices with limited storage. Mathe-

matics of Computation, 35:773–782, 1980.

[PH02] Lev Pevzner and Marti Hearst. A critique and improvement of an evaluation

metric for text segmentation. Computational Linguistics, 28(1), March 2002.

[Phi90] Lawrence Philips. Hanging on the metaphone. Computer Language, 7(12), 1990.

[PM04] Fuchun Peng and Andrew McCallum. Accurate information extraction from re-

search papers using Conditional Random Fields. In Proceedings of Human Lan-

guage Technology Conference and North American Chapter of the Association

for Computational Linguistics (HLT-NAACL), 2004.

[PNN05] Xuan-Hieu Phan, Le-Minh Nguyen, and Cam-Tu Nguyen. FlexCRFs: Flexible

Conditional Random Field toolkit. http://flexcrfs.sourceforge.net,

2005.

108

http://www.cs.ubc.ca/~murphyk/Software/CRF/crf.html
http://www.xml.gr.jp/relax/hedge_nice.html
http://flexcrfs.sourceforge.net

Appendix B Bibliography

[Pro07] ALSO Project. Automatic learning and specific adaptation.

http://www.coast.at/, 2007.

[Rab89] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77:257–286, February 1989.

[RY05] Dan Roth and Wen-tau Yih. Integer Linear Programming inference for Con-

ditional Random Fields. In ICML ’05: Proceedings of the 22nd international

conference on Machine learning, pages 736–743. ACM Press, 2005.

[Sar04] Sunita Sarawagi. CRF package: A Java implementation of Conditional Random

Fields for sequential labeling. http://crf.sourceforge.net, 2004.

[SC04] Sunita Sarawagi and William Cohen. Semi-Markov Conditional Random Fields

for information extraction. In Proceedings of ICML 2004, 2004.

[Seb99] Fabrizio Sebastiani. A tutorial on automated text categorisation. In Proceed-

ings of THAI-99, European Symposium on Telematics, Hypermedia and Artificial

Intelligence, 1999.

[SGHM07] Scott Sanner, Thore Graepel, Ralf Herbrich, and Tom Minka. Learning CRFs

with hierarchical features: An application to go. International Conference on

Machine Learning (ICML) workshop, 2007.

[SL94] David E. Stewart and Zbigniew Leyk. Meschach: Matrix computations in C.

In Proceedings of the Centre for Mathematics and its Applications, volume 32,

1994.

[SM05] Charles Sutton and Andrew McCallum. Composition of Conditional Random

Fields for transfer learning. In Proceedings of Human Language Technologies /

Empirical Methods in Natural Language Processing (HLT/EMNLP), 2005.

[SM06] Charles Sutton and Andrew McCallum. An introduction to Conditional Random

Fields for relational learning. To appear, 2006.

[SM07a] Charles Sutton and Andrew McCallum. Improved dynamic schedules for Belief

Propagation. In Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

[SM07b] Charles A. Sutton and Andrew McCallum. Piecewise pseudolikelihood for ef-

ficient CRF training. In Proceedings of International Conference on Machine

Learning (ICML), 2007.

[SMR07] Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. Dynamic

Conditional Random Fields: Factorized probabilistic models for labeling and

109

http://www.coast.at/
http://crf.sourceforge.net

Appendix B Bibliography

segmenting sequence data. Journal of Machine Learning Research, 8:693–723,

March 2007.

[SRM04] Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum. Dynamic

Conditional Random Fields: Factorized probabilistic models for labeling and

segmenting sequence data. In Proceedings of International Conference on Ma-

chine Learning, 2004.

[Sut06] Charles Sutton. GRMM: A graphical models toolkit.

http://mallet.cs.umass.edu, 2006.

[SYG07] Nicol N. Schraudolph, Jin Yu, and Simon Günter. A stochastic Quasi-Newton

Method for online convex optimization. In Proceedings of 11th International

Conference on Artificial Intelligence and Statistics, 2007.

[SZ02] J. Semecký and J. Zvárová. On regular analysis of medical reports. In Proceed-

ings of NLPBA 2002, pages 13–16, 2002.

[Tay07] Stewart Taylor. Optimizing Applications for Multi-Core Processors, Using the

Intel R© Integrated Performance Primitives. Intel Press, second edition, 2007.

[VJ97] T. L. Veldhuizen and M. E. Jernigan. Will C++ be faster than Fortran? In Pro-

ceedings of the 1st International Scientific Computing in Object Oriented Parallel

Environments (ISCOPE’97), 1997.

[Wai02] Martin Wainwright. Stochastic processes on graphs with cycles: geometric and

variational approaches. PhD thesis, MIT, 2002.

[Wal02] Hanna M. Wallach. Efficient training of Conditional Random Fields. Master’s

thesis, Division of Informatics, University of Edinburgh, 2002.

[Wal06] Hanna M. Wallach. Topic modeling: Beyond bag-of-words. In Proceedings of

the 23rd International Conference on Machine Learning, 2006.

[WJW02a] M. Wainwright, T. Jaakkola, and A. Willsky. Tree consistency and bounds on

the performance of the max-product algorithm and its generalizations. Technical

Report LIDS P-2554, Laboratory for Information and Decision Systems, MIT,

July 2002.

[WJW02b] Martin Wainwright, Tommi Jaakkola, and Alan S. Willsky. Tree-based reparam-

eterization framework for analysis of sum-product and related algorithms. IEEE

Transactions on Information Theory, 49(5), 2002.

[WVA07] Johannes Wagner, Thurid Vogt, and Elisabeth André. A systematic comparison

of different HMM designs for emotion recognition from acted and spontaneous

110

http://mallet.cs.umass.edu

Appendix B Bibliography

speech. In Proceedings of Second International Conference on Affective Com-

puting and Intelligent Interaction, pages 114–125, 2007.

[YFW03] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding Belief

Propagation and its Generalizations, Exploring Artificial Intelligence in the New

Millennium, chapter 8, pages 236–239. Science & Technology Books, January

2003.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in

text categorization. In Proceedings of Fourteenth International Conference on

Machine Learning, pages 412–420, 1997.

[YV04] Ming Ye and Paul Viola. Learning to parse hierarchical lists and outlines using

Conditional Random Fields. In Proceedings of the Ninth International Workshop

on Frontiers in Handwriting Recognition (IWFHR’04), pages 154–159. IEEE

Computer Society, 2004.

[YW04] Chen Yanover and Yair Weiss. Finding the M most probable configurations us-

ing Loopy Belief Propagation. In Advances in Neural Information Processing

Systems 16. MIT Press, Cambridge, MA, 2004.

111

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Approach
	2.1 Analysis of Requirements
	2.2 Representing the Problem
	2.3 On the Choice of CRFs
	2.4 Outline

	3 Data Preparation
	3.1 Available Corpora
	3.2 Required Annotation
	3.2.1 Analysis of Report Structure
	3.2.2 Formal Description of Report Structure
	3.2.3 Determining Section and Subsection Types
	3.2.4 From Hedge to Label Chains

	3.3 Semi-Automatic Label Annotation
	3.3.1 Cleansing
	3.3.2 Parsing of Formatted Reports
	3.3.3 Mapping Annotations via Alignment

	3.4 Feature Generation

	4 Review of Theory
	4.1 Introduction to Conditional Random Fields
	4.2 Factorial Conditional Random Fields
	4.3 Inference in Factorial Conditional Random Fields
	4.3.1 Belief Propagation
	4.3.2 Loopy Belief Propagation
	4.3.3 The TRP Schedule

	4.4 Parameter Estimation
	4.4.1 The Objective Function
	4.4.2 Regularization
	4.4.3 Convex Optimization Algorithms

	5 Implementation Overview
	5.1 Introducing VieCRF
	5.2 Implemented Functionality
	5.2.1 Flexible Feature Support
	5.2.2 Pre-Pruning of Observations
	5.2.3 Inference and Training Algorithms
	5.2.4 Restriction of Label Transitions
	5.2.5 C++ and Perl APIs

	5.3 Efficiency Considerations
	5.3.1 Avoiding Log-space Computation
	5.3.2 Fast Sparse Vector Operations
	5.3.3 Parallelization
	5.3.4 Compile-time Polymorphism
	5.3.5 Parameterizable Data Types

	6 Experiments
	6.1 Training, Labeling and Post-Processing
	6.1.1 Parameter Settings and Algorithmic Choices
	6.1.2 Post-Processing

	6.2 Estimated Accuracy
	6.3 Estimated Precision, Recall and F1
	6.4 Confusion
	6.5 Estimated WindowDiff
	6.6 The Effect of Noisy Training Data
	6.7 Further Analysis of Training Progress
	6.8 Preliminary Analysis of Convergence Behavior

	7 Conclusion and Outlook
	7.1 Remaining Challenges
	7.2 Further Processing

	8 Summary
	A Acronyms
	B Bibliography

